
Presentable Document Format: Improved On-demand
PDF to HTML Conversion

Ralph Sommerer
Microsoft Research

7 J J Thomson Avenue
Cambridge CB3 0FB, United Kingdom

som@microsoft.com

ABSTRACT
Search engines such as Google and MSN Search crawl and index
files in Adobe’s Portable Document Format (PDF) alongside
material in HTML. Google furthermore offers a View as HTML
option for PDF that includes query term highlighting. The visual
appearance of these HTML files converted from PDF is very poor.
In this paper we claim that significant improvements to the quality
of on-demand PDF to HTML conversion can be achieved at
insignificant cost in terms of increased file size and processing
time. We can show in particular, that a slightly more sophisticated
HTML coding can easily compensate for the increase in file size
when including line graphics and images.

Categories and Subject Descriptors
E.4 [CODING AND INFORMATION THEORY]: Data
compaction and compression; H.3.3 [INFORMATION
STORAGE AND RETRIEVAL]: Information Search and
Retrieval; H.3.5 [INFORMATION STORAGE AND
RETRIEVAL]: Online Information Services—Web-based
services; H.5.4 [INFORMATION INTERFACES AND
PRESENTATION]: Hypertext/Hypermedia; D.3.4
[PROGRAMMING LANGUAGES]: Processors—
Optimization, Parsing; I.7.2 [DOCUMENT AND TEXT
PROCESSING]: Document Preparation—Markup languages,
Format and notation; I.7.5 [DOCUMENT AND TEXT
PROCESSING]: Document Capture—Document analysis

General Terms
Algorithms, Documentation, Performance, Design.

Keywords
Portable Document Format, HTML optimization, document
conversion, Web services, search engines.

1. INTRODUCTION
Adobe’s Portable Document Format (PDF) is a popular file
format for the distribution of online publications. Because of the
popularity and ubiquity of PDF, search engines such as Google
[4], and more recently also MSN search [8] crawl and index PDF
files alongside material in HTML (and other formats like that of
Microsoft Word). Additionally, Google also offers a “view as
HTML” option to preview PDF files in the result set in HTML
form. Previewing in HTML has a particular advantage, because it
allows Google to highlight query terms in the document, a feature
that is only very difficult to achieve in PDF without actually
changing the document itself.

The previewing-as-HTML facility in Google is a useful feature
that allows users to assess the relevance of a PDF file before it is
downloaded. However, the visual representation of the PDF file in
HTML is usually very poor. Figure 1 shows a moderately
complex page of a PDF file and its HTML representation as
shown by Google. The two obviously share a faint resemblance
regarding the arrangement of text. But otherwise it is hard to
identify one as a conversion of the other.

This paper argues that a more sophisticated conversion of PDF
files to HTML including images and line graphics can be
accomplished at only moderate cost with regard to file size or
processing time. In particular by employing a slightly more
complex text flow reconstruction, the increase in file size due to
the inclusion of figures in all but some pathological cases is easily
compensated for by a more compact HTML coding of the text.

In the following section 2 we will briefly discuss a few other
existing PDF to HTML converters, both standalone and online.
Then, we will introduce the PDF file format in section 3 and
discuss the basics of the conversion techniques that are common
among the various HTML converters. Sections 4 and 5 will give
an overview of the software architecture and discuss in some
detail the conversion algorithms. A performance evaluation with
regard to file size and conversion efficiency follows. Finally, our
conclusions and a bibliography will complete this paper.

2. OTHER WORK

2.1 Standalone PDF converters
There are many proprietary standalone PDF converters available
that extract text from PDF and represent the result either as plain
text, or convert it to various document formats including HTML
[3], [5], [9]. The purpose of these converters is to provide an
alternative format for PDF files in order to make them available
for Web users or search engines [5]. Under these circumstances
PDF files usually need to be converted only once, for example
before being published on the Web. These converters are
therefore optimized for quality, and the result can be expected to
be nearly identical to the original PDF and in fact may actually
replace it.
In contrast to standalone offline converters ours is an online on-
demand converter that is not optimized for quality. The result of
the conversion is therefore still a far shot from that of the original
PDF. Instead, our converter is optimized for compactness of the
result, and for efficiency of the computation to enable an on-
demand HTML conversion of reasonable quality and similarity to
the original.

2.2 Online PDF converters
A quick Google query reveals that there are not that many online
PDF converters available on the Web. The most notable is
Adobe’s own online converter [1]. Incidentally, it is also the one
pointed to by many of the result sites in said Google query that
mention online PDF conversion.
Adobe’s converter is a simple text flow reconstruction utility that
preserves text looks (font and styles) and column widths but
disregards all other layout information. The result is a linear
single-column HTML file with explicit line breaks where the PDF
file has implicit line breaks at column margins. It does not mimic
the layout of the original PDF file and, in particular, does not
show page breaks.
Despite the simplicity of the result, Adobe’s online conversion is
quite slow, and takes tens of seconds to complete.

2.3 Google’s View as HTML
Google’s online PDF-to-HTML conversion is more sophisticated
than Adobe’s because it preserves the original two-dimensional
layout in a page-wise arrangement. This is accomplished by
providing an absolutely positioned <div> element for each line
of text. There does not appear to be any higher level layout
structure beyond text lines, but to avoid excessive repetition of
font attributes, several lines sharing the same font are sometimes
grouped together. All in all, however, in addition to having a poor
appearance the generated HTML coding is also inefficient and
repetitive.

3. BACKGROUND

3.1 Portable Document Format
There are two common misperceptions regarding PDF. The first
one is a consequence of the format’s brand name, namely that
PDF is a document format comparable to Microsoft Word’s or
HTML. PDF is not a document format, because it doesn’t store a
document, but rather a document’s rendering. A PDF file contains
instructions where to leave marks (ink) on a page, and therefore is
actually a graphics meta-file, or more precisely a print file.

The opposite misperception is that, given that PDF is not a
document format, its content is essentially a bitmap and therefore
requires optical character recognition (OCR) techniques to extract
text. The truth is somewhere in the middle: because PDF files are
print files, the character information is usually explicit, but
because they are not document files, the text flow information is
lost. Therefore, text extraction is essentially text flow
reconstruction. (Note that there are two exceptions to the above:
first, there PDF files whose contents are bitmaps, e.g. scanned
documents, but we regard them as image files embedded in PDF
and don’t discuss them any further here. Second, more recent
versions of the format do define explicit text flow information.)

A (physical) PDF file consists of a collection of objects that are
identified by a pair of numbers (id, version number). These
translate via a cross-reference table into absolute file positions.
Objects have either scalar form like numbers and strings, or
compound form based on dictionaries (name-value pairs), arrays
(of arbitrary element types), and streams (dictionaries with an
attached data sequence of arbitrary length and content type,
subjected to various different compression and encoding
schemes). A reference object (similar to a pointer) in place of a
value allows for a level of indirection. Different object types are

distinguished by a Type entry in the corresponding dictionary.
Although PDF files are considered binary files, the file syntax and
all values, names etc. are in ASCII form and therefore have to be
parsed. Only the contents of streams are usually rendered
unreadable because of compression filters applied to the content.
Logically, a PDF file consists of a number of page descriptions
(dictionaries with Type “Page”). A page description contains
general attributes of the page, such as its size, orientation, a
resources dictionary that lists fonts, images etc. needed to render
the page, and, most importantly, a content stream that contains the
marking (drawing) commands to render the page. The content
stream is a sequence of (ASCII) commands and their attributes in
postfix notation. The drawing command vocabulary includes
commands to set attributes (color, line thickness, fonts, etc.), to do
line graphics (move-to, line-to, stroke/fill a path), to draw strings
(with/without inter-word and/or line spacing etc.) and to draw
images (taken from the resources dictionary attached to the page,
or specified inline for small images).

Figure 1. Example page: PDF (top),
Google’s View as HTML (bottom)

3.2 Text Extraction
Extracting text from a PDF file requires executing the commands
of the pages’ content streams to establish the proper graphics state
and to assemble the data of text drawing commands (character
codes and coordinates). The character codes are then merged to
ever longer strings according to various properties of the graphics
state (e.g. whether the characters are close enough to be part of
the same word, and whether they align properly and thus form a
text line). From the graphics state, color and font information can
also be gathered. Because in PDF the text flow information is lost,
all PDF-to-text converters have to employ this or a very similar
technique to reconstruct the text flow.
Geometry
In PDF text is usually drawn in “natural order” e.g. left to right,
top to bottom, and is therefore in the correct order to be
assembled into ever longer strings, lines and paragraphs. A new
string being printed is considered part of the line currently under
construction if it overlaps vertically with the line (allowing for
super-/subscripts) and is less than a certain fraction (e.g. 40%) of
the font height away from the current right end of the line. A new
line is started whenever a string does not continue the previous
one.

After the strings are assembled into lines, a vertical arrangement
of lines is assembled called text box. The following algorithm
gives an initial estimate which subsequent lines are part of the
same text box, i.e. a group of lines sharing the same inter-line
space. This is the basis for computing higher level logical
structures such as paragraphs (a box may contain several
paragraphs and a paragraph my span several boxes):

1. Lines obtained using the above rules are enumerated in
the natural order (i.e. as they are printed).

2. The distance between the first pair of lines is computed.

3. While the distance to the new line is within a small
margin (e.g. 0.05 * line-height) of the computed
distance, the line is added to the box, updating its
bounds.

4. If the new distance is bigger, the new line is presumed
to belong to a new box. If the new distance is smaller,
both the previous and new lines are presumed to belong
to a new box. The corresponding distance is set as the
boxes’ inter-box distance (the line space is the inner-
box distance).

Above algorithm produces a list of boxes bounding all sequences
of lines sharing the same inter-line space.

Styles

In the course of all of above text assembling steps, style
information (in particular font face and size) is collected and, if it
is shared among all elements, inherited “upwards” to the next
higher level. Thus, if all strings in a line share the same font, the
whole line also assumes the font. Similarly, if all lines in a box
share the same font, the whole box assumes the font as well. This
factoring out of font information to higher structural levels is the
key to a more efficient i.e. more compact conversion to HTML by
avoiding unnecessary repetition of font and position information
[12]. Font styles (bold/italic) are not included in the font
information shared between lines and boxes because they tend to
change more frequently.

4. ARCHITECTURE
The overall architecture of our prototype PDF extraction and
HTML conversion service, and the algorithms and processes that
drive it, are based on the design decision to avoid any duplication
of data. We regard a PDF file as an archive of objects (text,
graphics, and images), therefore there is no need to extract and
store separately from it any information contained therein. As a
consequence, we compute the HTML from a PDF file on demand
and upon request. Also, we extract all secondary features such as
images etc. on-the-fly directly from the file as well. Modern
search engines usually have an associated file storage containing
all crawled documents that they can deliver the “snippets” from
i.e. the text excerpts with highlighted query terms that accompany
the search results. Google even includes a link in the result set
allowing users to actually pull the target page from the storage.
This is especially useful when the originals are found to be
temporarily inaccessible, or if they have been removed since the
engine has indexed them. Considering the amount of data that this
storage is required to hold, it is clearly undesirable to duplicate
unnecessarily any information that can be extracted from an
existing file without undue effort at the time it is requested. By
extracting the data directly out of the PDF file we avoid any
unnecessary duplication of data.

Figure 2. Software architecture of the PDF to HTML

conversion service.

The PDF converter whose software architecture is depicted in
figure 2 is a Web service that provides HTML versions of PDF
files upon request. It accepts GET requests to convert files from
the local archive, and POST requests to convert PDF data that is
uploaded as part of the request. The PDF file is then opened and
processed i.e. “printed” if it is found to be valid. PDFDoc
contains the PDF parser and the logic to print pages, i.e. to
execute the commands of the pages’ content streams. For each
graphics command encountered while executing the content
stream a method of an interface named Graphics is called. This
interface is supplied as an argument to the PDFDoc’s print
method. The component HTMLGraphic in figure 2 implements
that interface. HTMLGraphic then uses the services of
HTMLCoder and FigureCoder to create HTML and figures,
respectively. The text flow is reconstructed with the help of the
TextAssembler component. It employs the methods described in
section 3.2. HTMLCoder and FigureCoder write the resulting
code directly onto the wire. The inner workings of the latter two
components are explained in more detail in the following sections.

Request
HTMLGraphic Web

Service

PDFDoc

HTMLCoder

FigureCoder

TextAssembler

5. HTML CONVERSION
5.1 Text
The result of the text extraction phase is a data structure that
integrates text flow information (text and style) with placement
information (text boxes grouping text lines that share the same
inter-line spacing). For the sake of simplicity we have ignored the
higher level text flow information such as paragraphs etc. and rely
only on the box and line structure for conversion to HTML.

The layout of the text is encoded in HTML using a nested
structure of absolutely positioned HTML <div> elements, with
Cascading Style Sheet (CSS) [14] properties to store position and
look (absolute positioning of <div> elements is set globally in the
HTML’s header section). The top level of the structure is a
sequence of <div> elements, one for each page. Nested within
these are text boxes and lines. The advantage of this arrangement
is that (vertical) coordinates can be relative to the “outer” page
element and therefore limited in range and hence number of digits
used to represent them. The following example shows the top 5
lines of a text box and below its representation in HTML:

Lorem ipsum dolor sit
amet, consectetur
adipisicing elit, sed
do eiusmod tempor
incididunt ut labore
…

<div style='left:68;top:261;font:9pt serif'>
 <i>
 <div style='top:0'>Lorem ipsum dolor sit</div>
 <div style='top:14'>amet, consectetur</div>
 </i>
 <div style='top:29'>
 <i>adipisicing, </i>elit<i>, sed</i>
 </div>
 <i>
 <div style='top:44'>do eiusmod tempor</div>
 <div style='top:59'>incididunt ut labore</div>
 …
 </i>
</div>

In HTML the box is represented using a <div> element, and for
each text line of the box there’s a nested <div> element. Lines
require only a vertical coordinate (offset from the top of the
surrounding box) because the left margin is shared among all lines
within a box. Indented lines do have a left coordinate which is an
offset from the left margin of the box. Note that the font face and
size are set at the box level and hence shared by all lines.
Variations of the font style such as italics are applied to lines and
line fragments as appropriate.

5.2 Figures
Unfortunately, there is still not yet a simple, agreed-upon standard
format for representing simple line graphics on the Web. Page
authors usually revert to bitmap images for representing graphics,
at a cost of lower figure quality, and both higher complexity and
bandwidth requirements. The closest to what we can consider a
simple yet powerful enough format for line graphics on the Web is
Microsoft’s proposal for the Vector Markup Language (VML)
[13]. The competing standard called Scalable Vector Graphics
(SVG, [11]) is more complex due to an attempt to emulate more
elaborate formats such as Macromedia’s Flash [7]. To represent
line graphics in our prototype, we chose to employ the simpler

VML (which incidentally happens to be natively supported in
Microsoft’s Internet Explorer).
Transformation of PDF line drawing commands to VML is more
or less trivial, because PDF’s line-drawing objects (paths) can be
translated directly into VML elements such as <polyline>,
<line> or <shape>. Without any optimization, however, the size
of the resulting VML code will be prohibitive, because VML is a
rather verbose way of representing line graphics. Also, there will
be a lot of repetition because graphics properties such as stroke
and fill colors that are usually shared across subsequent graphics
operations must be included as an attribute separately with every
VML element (unless they are equal to the default values for these
colors). To obtain a more compact representation, it is therefore
necessary to fold as many compatible graphics operations as
possible into a single VML <shape> element. The following
observations guide these optimizations.
Outlined Shapes
In PDF the same outline cannot be filled using one color and
outlined using another in a single step. Rather, two distinct
operations are required. Consequently, two (or more) graphics
operations using the same path are quite common. Because VML
shape elements contain a stroke and a fill color, we can merge
subsequent filling and drawing operations on the same path into a
single VML shape. This is even true if the poly-line is not closed
(i.e. a polygon a-b-c-a can be merged with a poly-line a-b-c).
Sequence of shapes
If there’s a sequence of shapes sharing the same stroke and fill
colors we can fold them into a single <shape> element’s path
attribute. While this does not reduce the number of VML
operations required to represent the graphic, it allows for a more
compact representation by avoiding repetition of the element’s tag
name and its color attributes. Furthermore, in a shape element’s
path shorter relative coordinates can be used for the vertices.
Nevertheless, figures add significantly to the size of a converted
document.
We found VML to be very simple yet powerful enough for our
purposes, and we expect it to be so for most line graphic needs of
the Web publishing industry. We therefore expect it to be
implemented soon by various browser manufacturers, even if they
intend to go for the more complex SVG as well. Nevertheless, a
pluggable figure converter in our PDF service allows switching to
a different coding scheme (e.g. SVG if that is what the browser
supports), or a simple fall-back coding using pure HTML but with
severely limited capabilities (only boxes and horizontal/vertical
lines are shown).

5.3 Images
5.3.1 Addressing
Images in PDF are data streams. There are two kinds of images
with respect to the way they are stored in PDF files: (1) in-line
images that appear in the page’s content stream, and (2) so called
XObjects which are located in a page’s resource dictionary. The
latter can be accessed given the pair (page number, image name).
The former require positioning the page’s content stream to the
exact position where the in-line image starts and then executing
(i.e. parsing) the content stream from that location on. Note that
positioning of the content stream may actually require scanning
the stream linearly from the start up to that position because the
stream may be subjected to a compression filter.

5.3.2 Coding
Photographic images are usually stored in PDF using a discrete
cosine transformation filter that is familiar from the JPEG image
compression [10]. In fact, the image format is identical to the one
employed in JPEG. Extracting such an image thus requires only
copying the stream to the wire without touching it.

Other non-photographic images are usually bitmaps with either
indexed (via color lookup table) or direct color coding (using
RGB or various other color schemes). These are stored as pixel-
maps without any further formatting but possibly subjected to a
compression filter. Before transmitting them to the client they
need to be repackaged as a bitmap stream in a common bitmap
format. In our prototype we package the image data as BMP [16]
streams because this requires only prefixing the pixel data with a
BMP header and possibly realigning the pixel data on 4-byte
boundaries (BMP files are not compressed).

5.3.3 Extraction
Images represented as XObjects can be extracted and served
directly from the PDF. If during the text extraction process, an
image is encountered that is of XObject type, an image tag is
inserted into the HTML page with a URL that encodes the page
number, the image name and the expected coding of the image
(JPEG or BMP).

If the browser later resolves the URL the server can extract the
image from the PDF using the page number and image name, and
directly stream the data back to the client. In-line image are
handled differently using an URL-coding scheme.

As explained above, extracting inline images is expensive because
they require scanning the content stream up to the image’s starting
position (decompression is a process where any code xi is a
function of all previous codes x0 to xi-1). However, extracting
inline images is cheap at the time they are encountered while
extracting text. There is no way to “skip” past an inline image
during text extraction; therefore, the content stream must be

positioned behind an inline image by parsing the image data. It is
of course possible to extract such images to a cache for later
delivery but we chose a different approach: we “inline” the images
into the HTML. There is, however, no direct way of inlining
image data into an HTML page in a way that could be processed
by browsers, but we have devised an indirect way that places the
bulk of the work when it is cheap and defers the rest to when it is
easy. We do it by encoding the image data into the image URL.

This is done by (1) compressing the image data and then (2)
Base64-encoding [6] the compressed image string. The resulting
character string is then set as the src attribute of an tag
to be added to the HTML document. Note that the image URL is
the image and doesn’t merely link to it. Nevertheless, a server
interaction is still required because the image URL needs to be
resolved. However, resolution is essentially confined to re-coding
the image URL (Base64-decoding and decompressing) and
sending the resulting data back. The image Web service thus acts
as a reflector.

While this technique has the appearance of a “hack” it actually
mirrors a common technique in computing to improve efficiency:
a potentially complex operation is done optimistically when it is
cheap to do so, irrespective of whether it may be needed at all.
Later, when the task proves to be necessary, the expensive work is
already done, and the remaining processing is relatively cheap.

6. EXAMPLES
A few examples may serve to illustrate the improvement obtained
by including figures and images with converted PDF files. Figure
3 depicts the PDF file seen in figure 1, but this time converted via
our converter. It goes without saying that it resembles the original
PDF file more closely than Google’s version. Figure 4 shows the
details of a two further PDF files, one in each row, with the
original in the left column, Google’s View as HTML in the middle
and our conversion on the right.

7. PERFORMANCE
The following tables and figures show the results of an
experiment to measure the time required for the various phases of
the conversion, and to establish the resulting file sizes. We
measured the times and sizes of a selection of PDF files that were
chosen to cover a wide range of situations: from no or little
graphics to extensive graphics.

Table 1. Document properties

File PDF size Pages Shapes1 Shapes/Page
1 479232 130 945 7.27
2 224349 16 200 12.5
3 291599 14 262 18.71
4 109705 9 225 25
5 196818 18 515 28.61
6 238592 16 843 52.69
7 103424 2 185 92.5
8 236048 7 1744 249.14
9 909413 108 10261 95.01
1. Graphics primitive: a polyline with ≥ 2 vertices, outlined and/or filled

The table 1 shows the file sizes and graphics properties of a
selection of PDF documents. The first few are scientific papers
with only a few figures each, and the last one is a data sheet with a

Figure 3. PDF file from figure 1 run through our converter.

lot of complex line graphics. Graphics complexity is indicated by
the number of graphics primitives (shapes) per page.

Note that the average number of shapes per page can give an
indication of the overall graphics complexity of a file, but does
not necessarily reflect the true distribution of graphical contents
among the pages. However, this does not influence the
performance measures (file sizes, conversion times) much because
they are aggregates for the full files.

We compare three variants of each document (table 2 and figure
5): the original PDF file (column heading PDF), the version
obtained by Google’s View as HTML (Google), and our version
(italics) in both “HTML plus graphics” and “HTML only”. The
comparison clearly shows that the inclusion of line graphics can
be accomplished at no or only marginal additional cost. Where
there are no or only very few simple figures, the more
sophisticated HTML representation leads to a net reduction in the
file size, and where the ratio is below about 50 shapes per page

Figure 4. Details of two PDF files. Original (left column), Google’s View as HTML (middle), our conversion (right).

Table 2: File sizes

File PDF Google1 HTML
+VML

HTML
only limited2

1 479232 5253902 602101 536251 444241
2 224349 222059 191718 170824
3 291599 241142 181786 160697
4 109705 130497 100399 79683
5 196818 03 104158 70194
6 238592 196710 201291 133814
7 103424 34673 31896 20088
8 236048 149870 198366 114822
9 909413 5253702 1356670 805634 389899

1. Google size includes a small page header
2. Google apparently limits the amount of PDF served; limited figures
are HTML+VML sizes for the same number of pages
3. File unavailable for View as HTML

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1 2 3 4 5 6 7 8 9

PDF
Google
HTML+VML
HTML only

Figure 5. File sizes

the increase in size due to the figures is more or less compensated
for by the more sophisticated HTML representation. In most cases
the converted HTML including graphics are smaller than the PDF
file they are converted from – notably before compression. This is
significant because PDF files are usually compressed.

The datasheet (document number 9) makes extensive use of
complex line graphics. It is therefore no surprise that the file size
obtained by including line graphics by far exceeds that obtained
via Google’s View as HTML feature. However, Google limits PDF
viewing to about 512kBytes of data (about 42 pages in the
datasheet). The datasheet in question has 108 pages, and most
figures are in the second half of the document. When compared
with only the first 42 pages, our converter results in file size that
is much smaller (see column ‘limited’).

Table 3 and figure 6 show the processing times of the various
phases of the conversion for the same PDF files. We measured the
time by running the each PDF file through different increasingly
complex converters: a null conversion to measure PDF parsing
time, a simple text extraction, a full HTML conversion with
figures turned off, and finally full conversion including figures.
Each phase is run 3 times, and the average taken. An initial run
which is not included in the count is a full conversion to make
sure that disk caches are filled, and all program objects loaded and
initialized. Because we don’t know what type of conversion
Google employs we singled out the text extraction phase as it
provides a fair lower bound to compare our converter with.
Google’s processing time is likely to be somewhere between those
of text extraction and HTML conversion.

Table 2: Processing times (msec)

File Parse
Time

Text
Extraction

HTML
Creation

VML
Creation

1 524 197 170 30
2 240 107 36 17
3 364 73 40 23
4 157 53 13 4
5 240 47 26 11
6 233 67 73 14
7 36 10 4 10
8 300 64 29 44
9 1372 310 214 243

It can be seen in table 2 and figure 6 that while adding figures
does contribute measurably to the overall processing time, the
increase is modest and only a fraction of the time that is required
to simply parse PDF. Even for documents with extensive use of
graphics the additional processing time is only of the order of the
time required to extract text or convert to HTML.

In our performance assessment we discovered a rare pathological
case where the inclusion of figures results in an increase of the
total file size by a factor of 20. This is due to a 3D plot painted
back to front in order to obscure hidden surfaces. We found that
the processing time is still within reasonable bounds and in
particular less than the time required to merely parsing the PDF
file (parsing 2136 msec, VML creation 1309 msec). However, the

corresponding increase in size is clearly totally unacceptable
(HTML 118K, HTML+VML 2.5M). It may come as a surprise
that the problem rests not so much with the PDF service which is
perfectly capable of creating and delivering the data in reasonable
time, but with the browser that is completely overwhelmed by
such amounts of VML graphics. Indeed, it freezes up completely
when faced with a drawing of that sort. Some measures such as a
limitation of the amount of data returned by the Web service
(comparable to Google’s 512kBytes limit) may therefore be
required – to protect the integrity of browsers.

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9

VML Creation
HTML Creation
Text Extraction
PDF Parse

Figure 6. Processing times for different phases.

8. CONCLUSIONS
In this paper we have presented and evaluated a scheme to
improve the appearance of PDF files that are “Viewed as HTML”.
In particular we have visual and numerical evidence to show that
a significant improvement of the resulting HTML can be
accomplished at almost no additional cost in terms of file sizes,
and only moderate cost in terms of processing time. An increase
in the file size due to the inclusion of graphics commands into the
HTML file is easily compensated for by a slightly more
sophisticated HTML synthesis and hence more compact HTML.
Our prototype PDF server which is written in C# can convert a
posted PDF file of a few dozen pages in a few seconds, including
figures and images.

9. REFERENCES
[1] Adobe’s PDF to HTML converter

http://access.adobe.com/simple_form.html

[2] Adobe Systems Incorporated. Portable Document Format.
Reference Manual, Version 1.3, March 11, 1999

[3] BCL, http://www.gohtm.com

[4] Google. http://www.google.com

[5] IntraPDF, http://www.intrapdf.com

[6] Josefsson, S. (Ed.), RFC 3548 - The Base16, Base32, and
Base64 Data Encodings,
http://www.faqs.org/rfcs/rfc3548.html

[7] Macromedia Flash,
http://www.macromedia.com/software/flash/

[8] MSN search. http://search.msn.com

[9] pdftohtml http://www.ra.informatik.uni-
stuttgart.de/~gosho/pdftohtml/

[10] Pennebaker, W. B., Mitchell, J. L., The JPEG Still Image
Data Compression Standard, Van Nostrand Reinhold, 1993

[11] Scalable Vector Graphics (SVG),
http://www.w3.org/Graphics/SVG/

[12] Spiesser, J., Kitchen, L., Optimization of HTML
Automatically Generated by WYSIWYG Programs, Proc 13th
World Wide Web Conf. (WWW2004), May 17–22, 2004,
New York City, NY, USA, May 2004

[13] W3C. Vector Markup Language (VML), Draft specification
http://www.w3.org/TR/NOTE-VML.html

[14] W3C. Cascading Style Sheets, Level 2 CSS2 Specification,
http://www.w3.org/TR/REC-CSS2/

[15] W3C. XHTML™ 1.0 The Extensible HyperText Markup
Language (Second Edition), http://www.w3.org/TR/xhtml1

[16] Windows GDI - Bitmap Storage,
http://msdn.microsoft.com/library/default.asp?url=/library/en
-us/gdi/bitmaps_4v1h.asp

