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Figure 1: Our system takes a grayscale photo with labeled and segmented foreground objects (a) as input and generates a set of colorization
results (b) using reference image regions automatically searched from the internet and filtered to obtain the most suitable examples. Some of

these examples are shown in (c).

Abstract

Colorization of a grayscale photograph often requires considerable
effort from the user, either by placing numerous color scribbles over
the image to initialize a color propagation algorithm, or by looking
for a suitable reference image from which color information can
be transferred. Even with this user supplied data, colorized images
may appear unnatural as a result of limited user skill or inaccurate
transfer of colors. To address these problems, we propose a col-
orization system that leverages the rich image content on the inter-
net. As input, the user needs only to provide a semantic text label
and segmentation cues for major foreground objects in the scene.
With this information, images are downloaded from photo sharing
websites and filtered to obtain suitable reference images that are re-
liable for color transfer to the given grayscale photo. Different im-
age colorizations are generated from the various reference images,
and a graphical user interface is provided to easily select the desired
result. Our experiments and user study demonstrate the greater ef-
fectiveness of this system in comparison to previous techniques.
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1 Introduction

Image colorization can bring a grayscale photo to life, but of-
ten demands extensive user interaction. In techniques such as
[Levin et al. 2004; Huang et al. 2005], a user typically needs to
specify many color scribbles on the image to achieve a desirable
result. Moreover, it can be difficult for a novice user to provide
these color scribbles in a consistent and perceptually coherent man-
ner. Other methods take a different approach by using a color im-
age of a similar scene as a reference, and transferring its colors to

the grayscale input image [Reinhard et al. 2001; Welsh et al. 2002].
This requires less skill from the user, but a suitable reference im-
age may take much effort to find. In addition, inaccuracies in color
transfer can lead to results that appear unnatural.

To colorize grayscale photos with less manual labor, we present
a system that takes advantage of the tremendous amount of im-
age data available on the internet. The internet is almost certain
to contain images suitable for colorizing a given grayscale input,
but finding those images in a sea of photos is a challenging task,
especially since search engines often return images with incompat-
ible content. We address this problem with a novel image filter-
ing method that analyzes spatial distributions of local and regional
image features to identify candidate reference regions most com-
patible with the grayscale target. The user needs only to provide
semantic labels and segmentation cues for major foreground ob-
jects in the grayscale image, which is more intuitive than previous
scribble based user interaction. For each foreground object, a mul-
titude of images is downloaded from the internet using the semantic
label as a search term, and our system filters them down to a small
number of best matches. To minimize the amount of user input, our
system does not require the user to label and segment background
regions. Rather, it exploits correlations between the foregrounds
and backgrounds of scenes by re-using the images downloaded for
the foreground objects, which likely contain some backgrounds that
can serve as a reference for background colorization.

From the filtered reference images, the system transfers colors to
the corresponding foreground objects and background with a graph-
based optimization based on local properties at a super-pixel resolu-
tion. Since the filtering method seeks reference objects with spatial
distributions of features most consistent with the target object, color
transfer becomes more reliable, as corresponding locations between
the reference and target can be identified more accurately. Various
colorization results are generated from the set of reference images,
and the user is provided an intuitive interface to rapidly explore the
results and select the most preferred colorization.

2 Related Work

Colorization methods can be roughly divided into those based on
user drawn scribbles and those that utilize example images. Scrib-
ble based methods propagate the colors from an initial set of user
drawn strokes to the whole image. For example, Levin et al. [2004]
derived an optimization framework for this propagation to ensure
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that similar neighboring pixels are assigned a similar color. This
method was improved in [Huang et al. 2005] to reduce color blend-
ing at image edges. Yatziv et al. [2006] combined the colors of mul-
tiple scribbles to colorize a pixel, where the combination weights
depend on a distance measure between the pixel and the scribble.
Qu et al. [2006] and Luan et al. [2007] both propagated colors ac-
cording to texture similarity among local areas within an image to
reduce the number of scribbles needed.

Instead of relying on user scribbles for color information, ex-
ample based methods transfer colors automatically from a color
reference image of a similar scene. This approach was pro-
posed in [Reinhard et al. 2001; Welsh et al. 2002] and was also
demonstrated as an application in [Hertzmann et al. 2001]. Irony
et al. [2005] transferred colors only to points of high confi-
dence as a first step, then treated them as user scribble input to
[Levin et al. 2004] for colorization. Charpiat et al. [2008] proposed
a global optimization method for automatic color assignment. The
success of these methods depends heavily on finding a suitable ref-
erence image, which can be a time-consuming task. Moreover, cor-
rect color assignments can be difficult to infer from these images
due to correspondence ambiguities. These issues are avoided in the
method of Liu et al. [2008], which colorizes photos of famous land-
marks using internet images. For famous landmarks, suitable ref-
erence images are easily found on the web, and color assignments
for these fixed, rigid objects can be determined by image registra-
tion. Our work also takes advantage of internet image search to find
appropriate reference images, but addresses the much more chal-
lenging problem of colorizing general objects and scenes for which
exact matches typically cannot be found.

3 Overview

A block diagram of our system framework is shown in Fig. 2. To
colorize a grayscale image, the user first segments the foreground
object(s) with the powerful and intuitive Lazy Snapping technique
[Li et al. 2004], and provides a semantic text label for each object.
These are the only inputs required from the user. We use the se-
mantic labels to download a large set of photos from image sharing
websites such as Flickr, Google Image Search and Picasa. To ex-
pand the diversity and quantity of downloaded images, we employ
Google Translation to translate the text labels into German, Chi-
nese, French, Spanish, Italian and Portuguese, then search with the
translated terms as well. Among the downloaded images, we find
the most suitable reference photos (for both foreground objects and
background) by filtering the search results with respect to similar-
ity to the grayscale input. Each scene object and the background
is then colorized using the reference images to obtain a diverse set
of natural colorization results. The user can efficiently select from
among these results with a provided user interface.

4 Reference Image Selection

Internet image search is far from perfect, and many downloaded im-
ages do not contain the desired object. Furthermore, certain images
allow for more reliable color assignment because their high sim-
ilarity to the grayscale target facilitates accurate correspondence.
We wish to identify such images and use them as color references.
Here, we build on the recent work of [Chen et al. 2009] to find
the most appropriate reference images from among the downloaded
photos for each foreground object and background.

4.1 Foreground Object Filtering

In selecting reference images for a foreground object, we aim to
identify photos in which the foreground object provides a close
match to grayscale target object in terms of several appearance
properties, since such objects have a high likelihood of being both
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Figure 3: Reference image selection for foreground ob-
Jects. Top internet images according to: (a) shape con-
text scores, (b) our method with lowest combined score from
Eq. (1), (c) [Chenetal 2009], (d) [Hays and Efros |, and (e)
[Zhu et al. 2011].

correct and reliable for color transfer. We first download a set
of internet images (around 30K) with the user supplied text label.
We next select so-called ‘algorithm-friendly’ internet images (about
10K) using saliency filtering as done in [Chen et al. 2009]. Salient
foreground objects are segmented automatically from these images
by applying the saliency detector in [Liu et al. 2007] and the Grab-
cut algorithm [Rother et al. 2004]. We apply contour consistency
filtering [Chen et al. 2009] to these segmented objects to find ob-
jects with shape context descriptors [Belongie et al. 2002] similar
to the input grayscale object. To allow for some shape deformation,
we apply an affine transformation to register the internet object with
the input object, where the affine matrix is computed from the cor-
respondences of matching shape context descriptors. We sum up
the shape context matching cost with that of the affine registration
to give an overall shape matching score. This overall score is used
to rank the segmented internet objects, and the top 250 objects are
retained for further filtering. In Fig. 3(a), we show some internet
objects found in this manner for the ‘rooster’ example of Fig. 1(a),
sorted according to their shape consistency score.

While shape information can be a vital cue to filter away irrelevant
internet objects, some inappropriate objects are likely to remain,
e.g. the top ranked object in Fig. 3(a). In the following, we present
a novel filter to improve image selection based on local information
(e.g. intensity, texture and SIFT features), which leads to reference
images more suitable than those obtained by [Chen et al. 2009].

Intensity We describe each internet object by a 3D intensity his-
togram spanned by the dimensions of row, column and intensity.
The row and column dimensions of this representation encode the
spatial distribution of the intensities. All internet objects are regis-
tered to the input grayscale image by an affine transformation be-
fore building their histograms. To avoid boundary artifacts, each
contribution into a histogram bin is weighted by 1 — d for each di-
mension, where d is the distance of the pixel to the bin center mea-
sured in terms of bin spacing. We compute the distance between
two histograms A, B by the x? distance. Our implementation em-
ploys ten bins for the row and column dimensions and 64 bins for
the intensity dimension.

Texture In addition to intensity, we also exploit texture features
to evaluate object similarity. For each of the retained internet ob-
jects, we apply Gabor filters with eight orientations varying in
increments of 7/8 from 0 to 77/8, and five exponential scales
exp(i x ), = 0,1,2,3,4 to compute a 40-dimensional texture
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Figure 2: System pipeline. Foreground objects are labeled and segmented by the user. Our system searches the internet to find relevant
reference images for colorization, and utilizes these images to colorize the grayscale input image.

feature at each pixel. These texture features are then grouped by k-
means clustering, with k set to 64 in our work. The cluster centers
are taken as texton codewords, and each pixel is associated with the
codeword with the smallest Euclidean distance to its texture fea-
ture. Based on the image position and texton codeword index of
each pixel, we build a 3D texture histogram for each object and use
the x* distance to measure the distance between two histograms.

Dense SIFT We adopt dense SIFT features [Lowe 1999] in a
manner similar to that for texture. Specifically, we extract SIFT
features at the finest scale, and cluster the SIFT features from dif-
ferent pixels to a set of (64) codewords, which are used together
with pixel position to construct a 3D histogram. The x? distance is
used to measure the distance between histograms.

Combined similarity metric The intensity, texture and dense
SIFT matching scores are then linearly combined as

D(A, B) = w;D;(A, B) + w;Dy(A, B) + wsDs(A,B) (1)

where A, B denote an input object and an internet object respec-
tively. We denote D;(-,-), D¢(-,-), Ds(-,-) as the x* distance be-
tween their intensity, texture and SIFT histograms. w;, w; and ws
are set to 0.10, 0.45 and 0.45 in all our experiments. We show the
top ranked internet images based on this distance in Fig. 3(b).

4.2 Background Image Filtering

To limit the amount of user interaction, our system does not require
labeling and segmentation of background regions, but instead capi-
talizes on the strong correlation that exists between the foreground
and background components of a scene [Oliva and Torralba 2007].
Reference images for the background regions in the input grayscale
photo can generally be found among the images that were down-
loaded for the foreground objects, so we filter these images for suit-
able reference backgrounds as well.

In comparison to labeled foreground objects, close matches for
backgrounds are difficult to find, since they tend to exhibit much
more diversity. Rather than employ the filtering method used
for foreground objects, we utilize the compact GIST descrip-
tor [Oliva and Torralba 2006], which has been shown to be ef-
fective at finding semantically similar scenes such as forests and
beaches. We exclude the foreground from the background filter-
ing process by specifically adopting the weighted GIST descriptor
[Hays and Efros ], where the segmentation mask is used to weight
each spatial bin of the GIST descriptor in proportion to the number
of valid pixels in it. Filtering is thus performed using the sum of
squared differences between the GIST descriptor of the input im-
age and that of the internet images, weighted by the segmentation
masks of both the internet and input images. Note that the back-
ground masks for the internet images are simply the inverse of those
computed for foregrounds during foreground image filtering. The
top row of Fig. 4 shows some background images found to be most
relevant to the input background according to this method.
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Selection of background images for Fig. 1(a).
Top internet images selected by [Hays and Efros | (top row),
[Chen et al. 2009] (middle row), and [Zhu et al. 2011] (bottom
row).

5 Image Colorization

We colorize each scene object and the background according to
their highest scoring internet images. First, colors are transferred at
the resolution of super-pixels using an energy minimization frame-
work. These results are then smoothed using guided image filter-
ing [He et al. 2010] to suppress color noise while preserving color
structures.

5.1 Colorization by optimization

Super-pixel representation All internet objects are first normal-
ized to have the same diagonal bounding box length as the input ob-
ject. We then apply over-segmentation [Comanicu and Meer 2002]
with stringent thresholds (of spatial bandwidth 1 and range band-
width 3) to break these images into super-pixels. Typically, there
are between 1000 to 5000 super-pixels per image. We describe
each super-pixel by the average intensity, texture, SIFT feature val-
ues and spatial coordinates of its pixels. We also extract the median
CbCr color values from each super-pixel of a reference object.

Graph-based optimization In assigning colors from reference im-
ages to the grayscale photo, we aim to optimize the quality and like-
lihood of correspondences while favoring smoothness/consistency
between neighboring super-pixels. We compute a color ¢, for each
super-pixel P, of the grayscale input image by minimizing the fol-
lowing energy function:

E=Y Ealca,Pa)+ X > Es(caco, P, ) (2
Pq P,EN(Pq)

where N (P,) denotes the set of neighboring super-pixels of P,,
and ) is a weight parameter A € {0.1,0.5}.

The term Eq(-, -) defines the data cost of assigning color ¢4 to Pi,.
To evaluate this cost, we first find the internet object super-pixel of
color ¢ = ¢, with the most similar intensity to P,. We then evaluate
the intensity based cost as

B (e Py = il Pringensity (¢,4) + Billia — || (3)



Figure 5: Colorization results with different weight settings.

where ¢, and ¢ are the intensity of P, and this internet object super-
pixel respectively. Printensity(c,i) = Y. |Px|/A is the prob-
PLEY

ability that an internet object pixel has the intensity ¢ and color
c. Hence, the cost will be smaller if many pixels of the internet
object have color ¢. The second term ||i, — || is the difference
between their intensities, which favors internet object super-pixels
with an intensity similar to P,. | - | denotes the number of pix-
els within a super-pixel, and T denotes the set of internet object
super-pixels whose intensity and color values are 7 and c respec-
tively. The normalization factor A is the total number of pixels in
the internet object. «;, 3; are normalization coefficients to ensure
1/Printensity(c, ) and ||iq — ¢|| vary from O to 1.

Similarly, we also define

By (e, Pa) = el /Pricsture(e,t) + Bl |ta — |
E&?IFT(C, P.) = asl/Prsirr(c,s)+ Bs||sa — s||
E;patial(c, Pa) = ||$a — $||

Here, Pricazture(c,t) (or Prsrrr(c,s)) is the probability of a
pixel having color c and texture ¢ (or SIFT value s). The normaliza-
tion coefficients av, B¢, as, Bs are determined in the same way as
i, Bi. We denote t,, sq, T, as the average texture, SIFT value and
spatial position of the super-pixel P, respectively. Similarly, ¢, s,
are respectively the texture, SIFT value and position of the internet
object super-pixel of color ¢ with the minimum Euclidean distance
to ta, Sa, Ta-

The overall data cost is defined as

Ed(C, Pa) _ W1E;nten5ity(c, Pa) + széeztuTE(c7 Pa)
+ wsBi T (e, Pa) + waEF T (e, Pa) (@)

where wi,...ws are the combination weights, w; €
{0, 10, 20, 30}.

The term Es(-,-,-,-) measures smoothness between two super-
pixels and is defined as

Es (s cv, Pa, Po) = F(a,b)||ca — cb| ®)

where ¢, and ¢, are the colors assigned to P, and P, respectively,
and F(a,b) = exp” (Willia—tlltwzllta—toll+wslisa=sull) controls
the relative strength of the smoothing term. We use the belief prop-
agation framework [Komodakis and Tziritas 2007] to minimize the
overall objective function and obtain the color assignments.

Weight sampling The performance of our method depends heav-
ily on weights w; ... w4, which control the relative importance of
different features, and on A which controls the extent of smoothing.
In practice, we find that fixed weights cannot generate good results
for all data. To address this problem, we colorize the object using
many different weight settings, cluster the results, and let the user
choose one via an intuitive interface. We sample each weight value
w; as 0, 10,20 or 30 and A as 0.1 or 0.5, which yields 512 different

ad

Lo cick 1w ok custer.

Figure 6: Our graphical user interface, based on a hierarchical
cluster tree, helps the user to quickly select the preferred image.

Our colorized result

Input gray image

Internet examples

Figure 7: Comparison to intrinsic colorization [Liu et al. 2008].

results for each scene object. Prior to clustering, we evaluate the
colorfulness of these results [Hasler and Strunk 2003], and discard
images whose color quality is below the recommended threshold in
[Hasler and Strunk 2003]. The remaining images are grouped by k-
means clustering (k is set to 5), where image distance is computed
by the x? distance of color histograms. From each cluster, we retain
the two images that are closest to the internet color reference im-
age. The top row of Fig. 5 displays examples of retained foreground
object colorizations.

We apply the same method for background colorization, except
with ws = 0 because the geometric relationship between back-
grounds is weak. The bottom row of Fig. 5 shows some colorized
backgrounds.

5.2 Interface for result selection

To compose a diverse set of colorized results, we typically use four
to six reference internet images for each input grayscale image.
Colorized foreground objects and backgrounds are then combined
to form a set of results. We have designed a user interface (see
Fig. 6) to help the user to quickly select a desirable result. We ap-
ply hierarchical k-means clustering (k=6) to the set of colorization
results to generate a hierarchical tree of images, where images in
the same cluster have similar color. We display six cluster centers
to the user at a time. Clicking on a thumbnail brings the user one
level down the hierarchical tree, and the six cluster centers at that
level will then be shown. With this interface, a user can select a
colorized photo from among the O(6") results in 7 clicks.

6 Experiments

We first evaluate our filtering methods and compare them with ex-
isting works. Fig. 3(b)-(e) show filtering results on the ‘rooster’
example by our method, [Chen et al. 2009], [Hays and Efros ] and
[Zhu et al. 2011], respectively. The foreground objects returned
by our method are perceptually more similar to the input. Back-
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Figure 8: Comparison of colorization methods. The last column shows the foreground and background reference examples selected using
our filtering technique. These reference images were used for all algorithms in this comparison.

ground filtering results by [Hays and Efros ], [Chen et al. 2009] and
[Zhu et al. 2011] are shown in the top, middle and bottom rows of
Fig. 4, respectively. Here, it can be seen that [Hays and Efros ],
which utilizes GIST descriptors, finds background images percep-
tually similar to the input background. More filtering results are
provided in the supplementary materials.

We compare our colorization to [Liu et al. 2008] in Fig. 7. The
reference internet examples used for our colorization are shown
on the right. Our system produces a result similar in quality to
that shown in Fig. 1(c) of [Liu et al. 2008], but is capable of col-
orizing a substantially broader range of imagery. We note that
[Liu et al. 2008] requires the reference internet object to be identi-
cal to the target object for precise per-pixel registration between ref-
erence and target objects. Hence, it is limited to colorizing objects
like landmark buildings. In Fig. 8, we compare our method with
[Welsh et al. 2002], [Charpiat et al. 2008] and [Tai et al. 2005]. For
all the methods, the foreground objects and background image
were colorized separately using the same reference internet ex-
amples obtained by our filtering. The threshold settings for
[Welsh et al. 2002; Charpiat et al. 2008; Tai et al. 2005] were var-
ied to obtain the best results for these methods. Our method is seen
to work well for images with different amounts of texture, as well
as for very colorful objects such as the rooster and parrot. From our
observations, the amount of time a user needs to spend on semantic
labeling and providing segmentation cues for foreground objects,
and selecting a final result from the user interface, is typically about
1-1.5 minutes in total for the images used in this work.

Fig. 9 exhibits several more colorization results from our method.
For colorizing input images with multiple objects, we use a seman-
tic label to download internet images for each object, and utilize
these images to colorize the object. The background is colorized
using the collective sets of downloaded internet images. Fig. 10
displays different colorizations of an input image using different
internet examples. We show colorization results using different
keywords (given at the top of each result) in Fig. 11. Coloriza-
tions obtained with excessively broad keywords are shown on the
left, and those obtained with more specific keywords are on the
right. It is seen that colorizations are poor with excessively broad

keywords. This is due to the lack of relevant internet images that
are downloaded. Taking the input parrot image in the top row of
Fig. 11 as an example, visual inspection yields no useful parrot
images from the first 1000 internet images downloaded by Flickr
with the ‘animal’ keyword. Colorizations improved markedly when
slightly more compatible keywords are used (e.g. using ‘bird’ as
the keyword for the parrot image). To zoom into the images, please
view the pdf file. Additional colorization results are provided in the
supplementary materials.

6.1 User study

We performed a user study to quantitatively evaluate our method.
We chose 120 images from the internet and randomly converted
30 of them to grayscale (using Matlab’s rgb2gray function). The
30 images were then colorized by our method and the methods in
[Welsh et al. 2002; Charpiat et al. 2008; Tai et al. 2005]. The other
90 images were used for comparison.

We show each subject a set of four different images at a time (such
as in Fig. 12) for a total of 30 sets, and asked the subject to iden-
tify all artificially colorized photos in each set. Beforehand, the
subject is told that at most two of the four images in each set are
artificially colorized. In each set, the colorized images (if present)
are obtained using the same method, to avoid bias against a com-
paratively weaker method. We perform two tests. In the first test,
the subject is given five seconds to view the four displayed images.
In the second test, the subject has unlimited time. In total, thirty
subjects took part in this study.

In the first test, the subjects classified results of our system as real
66.59% of the time. This compares favorably to the 48.90% ob-
tained by [Welsh et al. 2002], 32.30% by [Charpiat et al. 2008] and
40.79% by [Tai et al. 2005]. Interestingly, they identified original
color images as real only 90.57% of the time. We believe this is
due to subjects scrutinizing these images to such an extent to be-
lieve they were artificially colored. In the second test, the sub-
jects identified our results as real 64.52% of the time, while that
by [Welsh et al. 2002], [Charpiat et al. 2008] and [Tai et al. 2005]
drop to 45.23%, 27.36% and 39.55% respectively. The original
color images were identified as such 90.33% of the time. These re-
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Figure 9: Colorization results obtained using the proposed method.

Figure 12: Examples of images displayed for quantitative evalu-
ation. The third image is artificially colored with our colorization
method, while the others are original photos.

sults demonstrate the better performance of our method, where even
with unlimited viewing time, over half of the colorized images are
of sufficient quality to appear real. A t-test shows the comparison
results to be statistically significant, (p < 107%).

7 Conclusion

We proposed a novel colorization method that utilizes internet pho-
tos and image filtering to minimize user effort and facilitate ac-
curate color transfer. Both image filtering and colorization results
were shown to outperform related methods.

There are limitations of our system that we plan to investigate in fu-

ture work. One is that foreground segmentation by Lazy Snapping
can be coarse for boundaries with fine-scale structure, such as but-
terfly feelers. Methods for alpha matting may be more appropriate
in such cases. Another is that color transfer for background regions
is generally less accurate than for foregrounds, since spatial con-
straints cannot be as effectively leveraged for background match-
ing. We plan to examine more discriminative region based prop-
erties to compensate for this lack of spatial information. Thirdly,
scenes with many foreground objects may be time-consuming for
users to label and segment. To address this issue, we intend to re-
duce user interaction by taking advantage of foreground object co-
occurrences within a scene, in a manner similar to backgrounds in
the current implementation. Additionally, for complex scenes with
serious occlusions between objects, our image filtering may fail
as shape context matching favors examples with a similar contour,
which may be difficult to find. Incorporating object recognition into
the image filtering framework may help to identify relevant internet
examples in such cases. We also plan to implement our internet-
based system as a web-based application where users can benefit
from the massively parallel search resources of a web server.
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