
Mining Behavior Graphs for “Backtrace” of Noncrashing Bugs∗

Chao Liu† Xifeng Yan†‡ Hwanjo Yu† Jiawei Han† Philip S. Yu‡

†Department of Computer Science

University of Illinois at Urbana-Champaign

{chaoliu, xyan, hwanjoyu, hanj}@cs.uiuc.edu
‡IBM T. J. Watson Research Center

psyu@us.ibm.com

Abstract

Analyzing the executions of a buggy software program is es-

sentially a data mining process. Although many interesting

methods have been developed to trace crashing bugs (such

as memory violation and core dumps), it is still difficult to

analyze noncrashing bugs (such as logical errors). In this

paper, we develop a novel method to classify the structured

traces of program executions using software behavior graphs.

By analyzing the correct and incorrect executions, we have

made good progress at the isolation of program regions that

may lead to the faulty executions. The classification frame-

work is built on an integration of closed graph mining and

SVM classification. More interestingly, suspicious regions

are identified through the capture of the classification accu-

racy change, which is measured incrementally during pro-

gram execution. Our performance study and case-based ex-

periments show that our approach is both effective and effi-

cient.

1 Introduction

Software reliability is a top concern in modern indus-
try. Software bugs cost the U.S. economy an estimated
59.5 billion dollars annually, or approximately 0.6% of
the GDP, according to a report from the National In-
stitute of Standards and Technology (NIST). As soft-
ware becomes increasingly bulky in size, sophisticated
in complexity, and originated by integration of multi-
ple components, it is an increasingly challenging task to
ensure software robustness and reliability.

As well-known in software engineering, better un-
derstanding of program behavior can be invaluable to

∗This work was supported in part by the U.S. National Science

Foundation NSF ITR-03-25603, an IBM Faculty Award, and an
IBM Summer Internship. Any opinions, findings, and conclusions
or recommendations expressed in this paper are those of the
authors and do not necessarily reflect the views of the funding
agencies.

build reliable systems. Extensive research has been
conducted on software reliability, ranging from static
source code checking [3, 6] to dynamic program veri-
fication [5, 18]; and from low-level program execution
profiling [9, 7] to high-level behavior analysis [5, 20].
Related achievements have motivated practices in ab-
normality detection [9, 25] and computer-aided debug-
ging [26, 18, 2].

From a knowledge discovery point of view, the
analysis of executions of a buggy program is essentially a
data mining process—tracing the data generated during
program executions may disclose important patterns
and outliers that may help the discovery of software
bugs. Thus, we believe that recently developed data
mining technology can improve software reliability. In
this paper, we investigate the application of data mining
methods to program bug analysis. By treating program
executions as software behavior graphs, a new method
is developed to integrate closed graph mining and SVM
classification for the isolation of suspicious regions of
noncrashing bugs.

In program analysis, software bugs can be classified
into two categories: crashing bugs and noncrashing
bugs. The former refers to the bugs that crash the
program execution, such as core dumps or segmentation
faults. One can trace back the function call stack from
the crashing point for debugging. The latter refers to
the bugs that do not incur crashes, such as logic bugs,
which are difficult to locate since no crashing point,
hence no backtrace, is available.

In this study, we develop a novel classification
method for backtracing noncrashing bugs. Our method-
ology can be outlined as follows.

First, we summarize each execution of a program as
a concise but informative behavior graph. Fig. 1 shows
an example of behavior graphs, which is excerpted from
two different runs of ccrypt-1.2, a utility program for en-
crypting and decrypting files. Behavior graphs summa-

rize program execution at function level with each node
for one function. Solid arrows represent the calling rela-
tionship and dashed ones for transitions. As one can see,
behavior graphs only preserve function-level sequential
information and are thus compact. Despite of its suc-
cinctness, it does manifest the behavior abnormities cor-
responding to incorrect runs. For example, ccrypt-1.2
has one bug that is triggered when a user corresponds
to the prompt for overwriting an existing file with EOF,
rather than as expected ‘Y(es)’ or ‘N(o)’. As shown in
Fig. 1, the correct and incorrect runs diverge at the tran-
sition edges emitted from function file exists, which
is a strong indicator for classification.

traverse_file

file_action

file_exists
 known_
 inodes
add_suffix

xrealloc

Behavior Graph for

Encrypting a File

Region R

(a) one correct run

traverse_file

file_action

file_exists
 prompt
add_suffix

xrealloc

Region R

xreadline

xalloc

(b) one incorrect run

Figure 1: Software Behavior Graphs

Second, based on the behavior graph representation
of program runs, the classification of program runs can
be formulated as a graph classification problem: Given
a set of behavior graphs that are labelled either positive
or negative, can we train a classifier to identify unknown
behavior graphs?

In our study, we use support vector machine (SVM)
[13] with linear kernel to do classification. Inspired by
the better scalability of closed subgraphs over frequent
ones and their stronger expressibility over raw edges
as features, we explore the benefits by incorporating
closed subgraphs as classification features, which, as
shown, has higher classification accuracy as well as
better scalability. Interestingly, we also explore the
relationship between closed and frequent graph-based
SVM classifiers, which sheds light on the inherent
relationship between these two related methods.

Third, for effective classification, we develop a novel
method to uncover the “backtrace” for noncrashing
bugs. Recall that backtrace usually refers to the func-
tion call stack at the time a program crashes (i.e., core
dump or segmentation fault), based on which debug-
ging can be easy to start. Unfortunately, for noncrash-
ing bugs, such backtrace is no longer available. To help
locate such bugs, we attempt to uncover a virtual “back-
trace” for noncrashing bugs, which is essentially a series
of bug-relevant functions. We believe that the func-

tions, whose execution behavior promotes the classifica-
tion accuracy of distinguishing incorrect runs from cor-
rect runs, are likely suspicious functions. Taking Fig.
1 as an example, a classifier can be trained at the re-
turn of function file exist, but its accuracy cannot
be high because behavior graphs up to this point (i.e.,
the subgraph within region R) are almost identical for
both incorrect and correct runs. However, if we train
another classifier at the return of file action (recall
that file action returns later than file exist), the
accuracy will be much higher since the training behav-
ior graphs do include the traces that differentiate correct
and incorrect runs.

In summary, we make the following contributions:

1. We investigate the application of recently devel-
oped data mining techniques to software robustness
enhancement and show that data mining may help
backtrace noncrashing bugs.

2. We have proposed software behavior graph as a con-
cise but informative summary of program execu-
tions and developed an efficient mining algorithm,
CloseMine, to uncover closed frequent subgraphs
from behavior graphs, which has been proven effec-
tive at identifying failing runs. We further explored
the connection between closed frequent graph based
and frequent graph based SVM classifiers.

3. We developed a novel classification method to
uncover the backtrace for noncrashing bugs, which,
as shown through a detailed case study, can be
effective in assistance to debugging.

The remainder of the paper is organized as follows.
We first introduce preliminary concepts in Section 2.
The classification framework is laid out in Section 3,
within which both the mining algorithm design and the
relationship between frequent graph-based and closed
graph-based SVMs are examined. Section 4 describes
how to uncover a backtrace based on behavior graphs.
Experimental evaluations of classification quality and a
case study are presented in Section 5. We discuss the
related work in Section 6, and conclude our study in
Section 7.

2 Preliminaries

A software execution can be summarized into a behavior
graph, which consists of its call graph and transition
graph. A call graph Gc(α) is a directed graph displaying
the function calling relationship in a program run α.
The vertex set V (Gc(α)) includes all the functions
involved in α. Edge (vi, vj) belongs to E(Gc(α)) if
and only if function i calls function j in α. Transition
graph Gt(α) is also a directed graph, but exhibits the

transition relationships in α. Edge (vi, vj) belongs to
E(Gt(α)) if and only if function j is called immediately
after function i returns. It is also required that functions
i and j are called by the same caller function. The
superposition of Gc(α) and Gt(α) forms the behavior
graph G(α) of run α. Fig. 2 shows three behavior
graphs, where solid and dashed arrows represent call
relation and transition relation respectively.

We use behavior graphs to model program execu-
tions. Call graphs represent the task-subtask relation-
ship, while transition graphs record the sequential order
of the subtasks. Behavior graph only preserves the first-
order transition and is thus succinct compared with the
entire execution sequences. This is necessary for a scal-
able mining and classification method.

1

3

4

5

2

1:
makepat

2:
 esc

3:
 addstr

4:
 getccl

5:
 dodash

6: in_set_2

7:
 stclose

(1)

1

3

4

5

2

1

3

4

5

2

6

7

(2)
 (3)

Figure 2: A Behavior Graph Dataset

Example 1. Fig. 2 shows behavior graph segments
derived from three different runs of a program “replace”,
a regular expression matching and substitution utility
software. Taking the run corresponding to the third
graph for instance, getccl, addstr, esc, in set 2 and
stclose are subtasks of function makepat. They work
together to complete the task associated with makepat.
As to transition, the dashed arrow from getccl to
addstr means that addstr is called immediately after
getccl returns.

If a behavior graph G is a subgraph of G′, then
G′ is a supergraph of G, written G ⊆ G′. G′ is the
proper supergraph of G if G ⊂ G′. In the following
discussion, we introduce the concepts of frequent and
closed frequent graphs.

Definition 1. (Frequent (closed) graph) Given
a graph dataset D, support(g) (or frequency(g)) is
the percentage (or number) of graphs in D, of which g

is a subgraph. A graph is frequent if its support is no
less than a minimum support threshold, min sup. A
frequent graph is closed if there exists no supergraph
that has the same support.

1

3

4

5

2

(1)

3

4

5

2

(2)

Figure 3: Frequent Graphs

Example 2. Fig. 3 depicts two of frequent subgraphs
in the dataset shown in Fig. 1, assuming that min sup
is equal to 66.6%. In Fig. 3, the first graph is closed
while the second is not since the latter is a subgraph of
the former and both of them have the same support.

3 The Classification Framework

Given a set of behavior graphs that are labelled either
positive (for incorrect runs) or negative (for correct
runs), we intend to train a classifier to identify new
behavior graphs with unknown labels. The dynamics of
classification accuracy will be analyzed to identify the
backtrace of non-crashing bugs. In our study, we use
support vector machine (SVM) [13] with linear kernel to
do classification. The classification framework consists
of three steps:

1. extract features from behavior graphs (training
dataset),

2. learn an SVM classifier using these features, and

3. classify new behavior graphs.

In order to apply SVM in behavior graph classifica-
tion, we represent graphs as vectors in a feature space.
A naive representation is to treat edges as features and
a graph as a vector of edges. The vector is {0, 1} val-
ued. If a graph has a specific edge, it has value “1” in
the corresponding dimension, otherwise “0”. Using this
representation, the dot product of two feature vectors
is the number of common edges that two graphs have

(3.1) xi · xj = |E(gi) ∩ E(gj)|,

where xi and xj are the vector representation of graphs
gi and gj . For example, the dot product of the first two
graphs in Fig. 2 is 10.

The similarity measure given in Eq. (3.1) is mean-
ingful since it captures the relationship between two be-
havior graphs. As shown in our experiments, SVMs
trained by the above measure work well in identify-
ing some incorrect runs. Unfortunately, the hyperplane

learned in this way will be a linear combination of edges.
Thus, it may not achieve good accuracy when a bug is
characterized by multiple connected call and transition
structures.

As shown in Fig. 2, the major portions of these
graphs are very similar to each other although various
incorrect runs may behave differently. In well-designed
programs, functions usually exhibit strong modularity
in source code and in dynamic executions. They
are often grouped together to perform a specific task.
Hence, the calls and transitions of these functions will
be tightly related in the whole behavior graph. The
buggy code may first disturb the local structure of a
run and then have an effect on its global structure. This
intuition inspires us to use recurrent local structures as
features.

The classification process based on frequent graphs
shares the same framework as the edge-based approach.
Each frequent graph is treated as a separate feature
in the feature vector. A behavior graph G is first
transformed into a feature vector whose i-th dimension
is instantiated to 1 if G contains the i-th frequent graph
or 0 otherwise.

Unfortunately, due to the explosive number of fre-
quent graphs in behavior graphs, it is often intractable
to mine all of them. According to the Apriori prop-
erty, all the subgraphs of a frequent graph must be fre-
quent. A large frequent graph may generate a huge
number of frequent subgraphs. When the number of
frequent graphs increases, the performance at mining,
training and classifying will drop dramatically. Thus,
Deshpande et al. [4] propose a feature selection scheme
to screen frequent graphs and Huan et al. [11] introduce
the concept of coherent subgraphs to shrink the feature
set. These approaches are successful in their problem
domains. However, in our problem setting, they are not
scalable. For example, in the “replace” program, if the
minimum support is set at 40%, which is pretty high,
there are still millions of frequent graphs. This renders
the classification nearly impossible because it cannot
even finish the feature extraction step.

As an alternative, closed frequent graph mining
can complete in several orders of magnitude faster
than frequent graph mining. Moreover, it commonly
generates much less features for classification purpose.
Taking the ”replace” program as an example, among the
millions of frequent graphs, only around 1,000 are closed
frequent graphs. This makes the closed frequent graph-
based classification more appealing than the frequent
graph-based one. Furthermore, since closed frequent
graphs is a lossless compression of frequent graphs,
the classifier based on closed frequent graphs should
have similar performance as the frequent graph based

classifier. Our empirical study suggests that the former
is better.

3.1 Mining Closed Frequent Graphs. The first
step in our classification framework is to mine closed fre-
quent graphs from a set of behavior graphs and then use
them as features. Behavior graphs can be transformed
to labelled undirected pseudographs. A pseudograph is a
non-simple graph in which both loops and parallel edges
are permitted. A labelled graph has labels associated
with its vertices and edges. Since behavior graphs have
distinct labels for each vertex, we can treat them as sets
of 3-tuples (vi, vj , elabel), where i < j. Edge label elabel

has four types: (i) uplink call, (ii) downlink call, (iii)
uplink transition, and (iv) downlink transition, where
“uplink” means that the edge direction is from vi to vj

whereas “downlink” means the direction is from vj to
vi. In this way, each behavior graph is regarded as a
set of distinct edges. Traditional closed graph mining
algorithms, such as CloseGraph [24], do not take advan-
tage of this property. In the following discussion, we
develop a simpler graph mining algorithm that fits be-
havior graphs better.

We apply the pattern-growth methodology to mine
closed frequent graphs1: Whenever a new frequent
graph is uncovered, we extend this graph as much as
possible until the maximum one is found. Let g be a
frequent subgraph with n edges. Suppose g is extended
in a series of g1, g2, ..., gn (g1 = ∅, gn = g), where gi

is a graph formed from gi−1 by adding one new edge.
If graphs gi, gi+1, . . ., and gn have the same support,
one could skip the search space between gi and gn.
That is, whenever gi is found, gi should be directly
extended to gn through gi+1 to gn. Any other graph
that is a supergraph of gi and a subgraph of gn should
not be enumerated except gi, gi+1, . . ., and gn−1. We
call it search space skipping. However, as illustrated
in [24], CloseGraph has to miss some skipping in order
to preserve the depth-first search order. The miss of
search space skipping may cause problem when the
closed frequent subgraphs are very large. Therefore,
the naive search order [23] is adopted in our mining
algorithm to skip the search space as much as possible.

Algorithm 1 (CloseMine) describes the pseudo code
of our closed frequent graph mining algorithm. At each
iteration of CloseMine, it first extends a newly discov-
ered frequent graph with one more edge. Then CloseM-
ine checks whether this graph has already been discov-
ered (Line 1 in Algorithm 1). If not, it continues search-
ing its supergraphs. CloseMine adopts an optimization

1Note that all the closed frequent graphs under examination
are connected graphs.

Algorithm 1 CloseMine(g, D, minsup, S)

Input: A graph g, a graph dataset D, a minimum
support threshold minsup.

Output: The closed frequent graph set S.

1: if ∃ g′ ∈ S s.t. g ⊂ g′ and support(g) = support(g′)
then return;

2: extend g to g′ as long as support(g) = support(g′);
3: insert g′ to S;
4: scan D once, find edge e s.t. g′ ∪ {e} is frequent;
5: for each frequent g′ ∪ {e} do

6: CloseMine(g′ ∪ {e}, D, minsup, S);
7: return;

(Line 2) that extends a frequent graph as much as pos-
sible until there is no supergraph having the same sup-
port.

3.2 Relationship between Closed and Frequent

Graph-based Classification. In this section, we ex-
amine the relationship between the frequent graph-
based and the closed frequent graph-based classification.

Since the whole set of frequent graphs can be
reconstructed from closed frequent graphs, a potential
question is whether frequent graph-based SVMs can be
exactly constructed through a closed frequent graph-
based training process? The answer is “yes”. Actually,
the concept discussed here can also be generalized
to other kinds of frequent patterns like itemsets and
sequences. Let us first examine how to build a mapping
from frequent graphs to closed frequent graphs.

Lemma 3.1. Given a behavior graph G, there is one
and only one closed behavior graph G′ such that G ⊆ G′

and support(G) = support(G′).

Proof. Assume to the contrary that there is another
closed graph G′′ s.t. G ⊂ G′′ and support(G) =
support(G′′). Let G∗ be the graph formed by G′ ∪
G′′. G∗ is a connected graph since G′ and G′′ share
a common subgraph G. Therefore, G′′ ⊂ G∗ and
support(G′′) = support(G∗), contradicting our assump-
tion.

Note that Lemma 3.1 only holds for graphs that
have distinct label for each node. Fortunately, behavior
graph has this property. Lemma 3.1 shows that there
exists one function f : F 7→ C, which maps any frequent
graph in a frequent graph set F to one and only one
closed graph in a closed frequent graph set C. Thus,
given a graph dataset D and a pre-defined minimum
support threshold δ, the above mapping function can
be obtained by mining closed frequent graphs from the

dataset and constructing frequent graphs from closed
frequent graphs.

In the frequent or closed feature space, a graph
instance G is represented by a feature vector whose i-
th dimension is instantiated to 1 if G contains the i-th
feature (frequent graph or closed frequent graph) or 0
otherwise. Given a graph G, the vectors of G in the
frequent and closed feature space can be transformed
with each other through the mapping function f as
described before. The number of frequent graphs that
map to the same closed frequent graph g is written as
c(g).

In the following discussion, we will show that an
SVM trained in the frequent feature space for a training
dataset can be constructed in the closed feature space.
That is, we may solve the quadratic programming
problem for a frequent graph-based SVM in the closed
feature space.

Let x be the feature vector of a graph instance G in
the frequent feature space and z be the vector of G in the
closed feature space. Let d be the number of dimensions
in the closed feature space and M be a diagonal matrix,

M =









√

c(g1) 0

0
√

c(g2) . . . 0
0 0

0
√

c(gd)









.

If we train a linear SVM in the frequent feature
space, then k(xi,xj) = xi ·xj , which is equal to (Mzi) ·
(MT zj). Let z′ = Mz. Vector z′ is in a new feature
space C

′, which is formed by scaling the original closed
feature space with M . Since xi ·xj = z′i ·z

′

j , the solution
of the quadratic programming problem in this new
space will be exactly the same as that of the quadratic
programming problem in the frequent feature space.
Thus, we may use closed frequent graphs as features
with the scaling matrix M to learn an equivalent SVM
in the frequent feature space.

We further found that if two frequent graphs gi

and gj , gi ⊂ gj , are mapped to the same closed
frequent graph, their weights in the optimal hyperplane
are the same. That means SVMs cannot distinguish
graphs gi and gj from the training set. In the closed
frequent graph-based classification, we only treat graph
gj as a feature (if gj is closed), while the frequent
graph-based approach also counts gi as a feature. It
is difficult to tell which method is better. However,
our experiments indicate that the closed graph-based
approach can achieve the similar or even better accuracy
in comparison with the frequent graph-based approach.

4 Uncover “Backtrace” for Noncrashing Bugs

With the classification technique developed in Section
3, we here illustrate how to assist programmers in
debugging noncrashing bugs.

Software bugs can be classified into two categories,
according to their running behaviors. The first one is
crashing bugs, which terminate the program execution
abnormally with segmentation fault. For instance, il-
legal memory access and dereference to null pointers
are two typical cases. Although crashing bugs happen
quite often, they are not too difficult to tackle. At the
crashing point, developers can obtain the backtrace, the
snapshot of function call stack, based on which tracing
back is straightforward. For example, in Fig. 1(b), the
program crashes in prompt, then we have a function call
stack, traverse file → file action → prompt. Pro-
grammers may carefully check the logic in these func-
tions first. On the other hand, the other type is non-
crashing bugs, which, as suggested through the name,
do not incur program crashes. Noncrashing bugs are
usually detected in software testing phase. Specifically,
when a set of test suites are applied, some of outputs fail
to match the expected. In general, fighting noncrash-
ing bugs is harder than crashing ones. Few clues are
available for programmers to debug noncrashing bugs.

Through comparison, we notice that this extra diffi-
culty for noncrashing bugs partially comes from the ab-
sence of “backtrace”-like information. Suppose a “back-
trace” is available for noncrashing buggy runs, which
shows what functions are bug relevant, developers could
be hinted to focus initial emphasis on those suspected
functions. Therefore, we then aim at identifying sus-
picious functions that are relevant to incorrect runs.
These functions may provide information to program-
mers in a way similar to “backtrace”.

Component A

Classifier A trained here

Component B

Classifier B trained here

BUG hides here

Component
 C

Figure 4: Classification Accuracy Boost

Our method is based on the analysis of the classifi-
cation accuracy boost. Generally, the classification ac-

curacy should not decrease while more and more trace
data become available; especially, accuracy will improve
once the execution data contain buggy behaviors. This
is illustrated in Fig. 4. Suppose a program runs through
components A,B and C in sequence and a noncrashing
bug resides in component B as shown. Classifier fA is
trained at the end of execution of component A. As ex-
pected, its accuracy cannot be high since it knows few,
if any, behaviors induced by the bug. In contrast, classi-
fier fB that is trained after component B, is expected to
have a much higher accuracy than fA because it does
have behavior graphs induced by the bug in incorrect
runs. Therefore, as long as fB has a classification accu-
racy boost in comparison with fA, it is more likely that
the bug is located in Component B than Component A.
This inspires us to uncover “backtrace” for noncrash-
ing bugs by detecting the accuracy change in a series
of classifiers incrementally trained along the execution
axis.

Specifically, for each function, Fi, two checkpoints
Bi

in and Bi
out are placed at the entrance and the exit of

Fi respectively. At each checkpoint, a set of behavior
graphs are collected, each of which corresponds to
one test case running up to this checkpoint. Then
using the classification technique developed in Section
3, a classifier can be trained at each checkpoint with
accuracy (precision and recall) evaluated through cross-
validation. In our experiments, we choose the highest
precision as the accuracy measure while keeping recall
no less than 90%. This guarantees that only few
incorrect runs are missed and hence precision is a fair
measure for comparison. In this way, each function is
attached with a precision pair [P i

in, P i
out]. If there is a

significant precision boost from P i
in to P i

out, we would
think function Fi as bug-relevant. Its formal definition
is given as follows.

Definition 2. (Bug-relevant) Given a significance
level of precision boost θ (0 < θ ≤ 1), a function Fi is
bug-relevant if P i

out − P i
in ≥ θ.

Consequently, bug-relevant function set (BRFS)
refers to the set of functions that are bug-relevant with
respect to a significance level θ.

In general, BRFS is a smaller subset of all the
functions, and hence it will be effective in helping
programmers at debugging; otherwise, all functions are
conceptually suspicious.

Furthermore, through experimental studies, we
found that BRFS has several nice properties, which
further enhance its applicability in debugging. For in-
stance, it is easy to choose a proper cutoff θ, distinguish-
ing bug-relevant from “bug-irrelevant”. In addition, due
to the nested structure of function executions, BRFS is

Version Incorrect Runs Correct Runs Buggy Line # Bug Description
3 130 5412 493 missing one condition testing in if testing
4 143 5399 493 misuse of variable
5 271 5271 117 misuse of < while <= is expected
14 137 5405 369 missing one condition testing in if testing
26 198 5344 369 misuse of j while j+1 is expected

Table 1: Summary of Buggy Versions

likely to line up in a form quite similar to “backtrace”.
However, since we are not yet very clear about the un-
derlying model governing program executions, we re-
frain from presenting these properties formally. As an
alternative, we examine a detailed case study in Section
5.4 together with reasonings about its soundness.

5 Experiments and Case Study

In this section, we evaluate the effectiveness and effi-
ciency of closed frequent graph-based classification. A
detailed case study is also given to illustrate its usage
in uncovering backtrace of noncrashing bugs.

For classification evaluation, we designed three
methods for comparison.

1. edge: Edges of a behavior graph are treated as
features.

2. frequent+: In addition to edge, frequent graphs
are treated as additional features. The symbol ’+’
means the classifier also uses edges as features.

3. close+: In addition to edge, closed frequent graphs
are treated as additional features.

All of our experiments were carried out on a 3.2GHz
Intel Pentium 4 PC with 1GB physical memory, running
Redhat Linux 9.0. SV M light [13] was chosen in our
implementation due to its good scalability.

5.1 Subject Programs. We took Siemens Programs
as our testbed, which are widely used in software re-
search [12, 21, 8, 10] because of its artificially instru-
mented but “realistic” enough software bugs. Readers
interested in how Siemens researchers simulated realistic
software bugs are referred to [12]. In our experiments,
we chose replace, one of Siemens Programs, as our sub-
ject program. It performs regular expression matching
and substitution. We chose it because the correctness
of an execution is easy to label given the availability of
a bug-free version.

Replace program in our study contains 32 versions
in total, among which Version 0 is a bug-free version
and other versions have one bug each. In this setting,
Version 0 serves as the oracle in labelling whether a run

Version for incorrect runs for correct runs
3 15 549
4 22 547
5 74 538
14 39 604
26 50 543

Table 2: Number of Distinct Behavior Graphs

is “correct”. We conducted experiments on five buggy
versions, which, in our point of view, nicely mimic the
typical noncrashing bugs in reality. Table 1 shows the
characteristics of these five buggy versions and their bug
descriptions.

In order to objectively evaluate the effectiveness
of classification, we remove duplicated behavior graphs
within the set of correct and incorrect runs respectively.
This is based on the consideration that two different but
similar inputs may result in the same behavior graph.
Table 2 lists the number of distinct graphs in the five
versions.

5.2 Effectiveness. In our experiment, incorrect runs
are labelled as positive samples and correct ones as
negatives. As shown in Table 2, the numbers of positives
and negatives are highly imbalanced, suggesting that we
should evaluate the effectiveness through precision and
recall, rather than pure accuracy.

Recall is defined as the fraction of the total num-
ber of incorrect runs that are classified right. Precision
refers to the fraction of incorrect runs classified that are
actually incorrect runs. Though it is highly desirable to
achieve both high precision and recall, these two mea-
sures are usually contrary to each other. In practice,
higher recall means low rate of missing incorrect runs
while high precision means high hit rate and low rate of
false alarms. In assistance to programmers’ debugging,
high precision with reasonably high recall means that
the classification features are of high quality in discrim-
inating incorrect runs from correct ones.

We perform five-fold cross validation and plot the
result of each method in a recall-precision curve. Intu-
itively, a better method should have the recall-precision

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

Pr
ec

is
io

n

Recall

Precision and Recall Comparison on Version 3

edge
close+

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

Pr
ec

is
io

n

Recall

Precision and Recall Comparison on Version 4

edge
close+

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100

Pr
ec

is
io

n

Recall

Precision and Recall Comparison on Version 26

edge
close+

Figure 5: Precision and Recall: close+ vs. edge

curve nearer to the upper right corner.

5.2.1 Effectiveness in Detecting Failing Runs.

Fig. 5 shows the classification results of edge and close+
on Versions 3, 4 and 26. The other two versions have
the similar trend.

In classification of program runs, high recall is
required due to the high cost of bugs [16, 1]. Thus
we emphasize the precision when the recall is at a high
level, e.g., 70% and higher. Version 3 in Fig. 5 has
the best accuracy: with the 100% recall, the precision
can be as high as 50%. It indicates that the classifier
does not miss any real incorrect runs and at least
one of two alarms is hit on average. Table 2 shows
that the ratio between positives and negatives is about
1:37 (i.e., 15:549), which implies that random guessing
according to this prior distribution would result in a
precision around 2.7% (i.e., 15/(15+549)). The 20-
times promotion of precision reaffirms our belief that
behavior graphs are informative as to correctness of
program executions. Similar conclusions can also be
drawn on Version 4 and Version 26 depicted in Fig. 5.
Generally, when the recall is as high as above 90%,
our classifiers can still maintain a precision no lower
than 25%. Considering the highly skewed distribution
of positives and negatives in Table 2, we believe SVMs
on behavior graphs perform well in the identification of
incorrect runs.

Fig. 5 shows that close+ generally outperforms
edge, especially when a high recall is a must. This
indicates that the addition of closed frequent graphs as
features can leverage the classifier quality. In Versions
4 and 26, edge also achieves good performance. These
are the cases where edges can be rather discriminative
in revealing program correctness.

5.2.2 Closed vs. Frequent Graph-Based Clas-

sification. Next, we compare the classification accu-
racy between frequent+ and close+. In Section 3, we
show that frequent graph-based SVMs can be trained in
the closed feature space. Therefore, we conjecture that

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100

Pr
ec

is
io

n

Recall

Precision per Recall on Version 26 with sup=60%

close+
frequent+

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 20 40 60 80 100

Pr
ec

is
io

n

Recall

Precision per Recall on Version 26 with sup=75%

close+
frequent+

Figure 6: Precision and Recall: close+ vs. frequent+

closed and frequent graph-based SVMs would probably
have similar classification performance.

Fig. 6 presents the accuracy of close+ and frequent+
on Version 26, which also suggests a little bit better
performance of close+. Note that the minimum support
is set at 60% and 75% respectively, rather than 25% as
used in Fig. 5. Under the 50% threshold, frequent+
failed to complete the mining process.

5.3 Scalability. Figs. 7 and 8 compare close+ and
frequent+ in terms of mining and training time. It indi-
cates the better scalability of close+ over frequent+. We
only plotted the results from Version 3 for examination
since others have the similar characteristics.

It becomes obvious that the computational cost of
frequent+ is exponential with regard to the minimum
support threshold. For example, frequent+ cannot finish
in 10 hours when the support threshold is at 50%. On

1

10

102

103

104

 0 20 40 60 80 100

tim
e(

s)

support(%)

Mining Time

close+
frequent+

Figure 7: Mining Time w.r.t. Support

10-2

10-1

1

10

102

103

104

 0 20 40 60 80 100

tim
e(

s)

support(%)

Training Time

close+
frequent+

Figure 8: Training Time w.r.t. Support

the contrary, close+ ran smoothly when the support
was gradually lowered down. In practice, a reasonably
low threshold is preferred since more patterns can be
explored as potential features. When the support is
at 5%, close+ only takes around 15 seconds to learn a
classifier (i.e. mining time + training time), which is
surprisingly fast.

5.4 Case Study. In this subsection, we illustrate
how to backtrace a noncrashing bug through a detailed
case study. Section 5.4.1 describes what the bug is,
followed by an examination of our approach in Section
5.4.2. We discuss its validity in Section 5.4.3.

5.4.1 Case Description. The buggy code we stud-
ied is shown in Program 1, which comes from Version
3 of the “replace” program. Within the if-statement at
line 9, the subclause “(lastm != m)” is missed for some
reason. This “miss of corner case” logic bug causes more
than expected runs fall into the condition block between
Lines 9 and 12, which in consequence induces incorrect
outputs. In this buggy program, programmers may feel
confused about where to start debugging since incorrect
runs will finish smoothly. Usually they have to verify
the code step by step, which is very time-consuming.

Program 1 Buggy Code - Subline Function

1 void

2 subline(char *lin, char *pat, char *sub)

3 {

4 int i, lastm, m; 8

5 lastm = -1;

6 i = 0;

7 while ((lin[i] != ENDSTR)) {

8 m= amatch(lin, i, pat, 0);

9 if (m >= 0) /* && (lastm != m) BUG!!!*/{

10 putsub(lin, i, m, sub);

11 lastm = m;

12 }

13 if ((m == -1) || (m == i)){

14 fputc(lin[i],stdout);

15 i = i + 1;

16 } else

17 i = m;

18 }

19 }

main
[0, 58.462]

getpat
[0, 33.808]

getsub
[29.336, 33.928]

change
[33.886, 58.462]

makepat
[0, 33.808]

makesub
[29.368, 33.928]

addstr
[0, 0]

in_set_2
[25.390, 25.390]

stclose
[28.212, 28.212]

esc
[29.368, 33.928]

subline
[38.356, 56.138]

getline
[33.886, 33.886]

amatch
[38.356, 56.632]

putsub
[57.708, 57.708]

omatch
[56.632, 56.632]

patsize
[56.632, 56.632]

in_pat_set
[56.632, 56.632]

Figure 9: Entrance Precision and Exit Precision

5.4.2 How It Works. Fig. 9 shows the experimental
results using our approach that helps narrow down
the suspicious bug region. The classifiers are trained
on behavior graphs from various program runs. Our
classification method is applied at the entrance and
the exit of each function. So each function has two
precision values – entrance precision and exit precision.

0

10

20

30

40

50

60

Functions

P
r
e
c
i
s
i
o
n

B
o
o
s
t

main

amatch

change

makepat getpat

subline

getsub

esc

makesub

Figure 10: Precision Boost of Functions

Precisions depicted here are with recall at least 95%. We
sort functions in increasing order of precision boosts in
Fig. 10.

According to the method laid out in Section 4,
the first task is to choose a proper significance level θ

to identify bug-relevant functions. Seen from Fig. 10,
eight functions induce no precision boost while another
three only cause less than 5% precision increase. In
contrast, the remaining six functions possess more than
17% boost. Therefore, it is easy to choose a safe cutoff
in differentiating bug-relevant functions from irrelevant
ones. The wide range of cutoffs clearly shows that bug
relevance is an objective fact, rather than a subjective
judgement. In addition, we believe this property should
hold in general because functions that have nothing to
do with the incorrect executions are less likely to cause
significant precision boost. As a result, six out of the
entire 17 functions are identified as bug-relevant. The
result is summarized in Table 3.

function name Precisionin Precisionout

main 0 58.462
getpat 0 33.808
makepat 0 33.808
change 33.886 58.462
subline 38.356 56.318
amatch 38.356 56.632

Table 3: Bug-Relevant Functions with θ = 20%

Table 3 together with Fig. 10 exposes the following
interesting results.

First, main function always has the highest preci-
sion and precision boost. This makes sense because
P main

out measures the classifier that uses the informa-
tion of the whole run, hence achieves the best precision.
Meanwhile, P main

in is always 0% since no information is

available in the entrance to the main function. There-
fore, the main function always has the highest precision
boost. Since main is the only entrance of a program, it
is trivial to be regarded as bug-relevant.

Second, we can divide the six functions in Table 3
into two groups and rank them by their exit precision
(i.e. P i

out). Clearly, functions main, change, subline
and amatch form a group with the highest exist preci-
sion, which actually reveals the backtrace to the buggy
code.

Finally, bug-relevant functions tend to line up to
form a backtrace. As shown in Fig. 9, the identified
bug-relevant functions, namely main, change, subline
and amatch, form the backtrace for this noncrashing
bug. Again, we think this property should hold in
general because the nested calling structure is typical
in program executions. For instance, if function A calls
B and B is regarded as bug-relevant, A would also be
bug-relevant because A exits later than B and hence has
more bug-relevant information.

In summary, through the above analysis we have
uncovered the “backtrace” for this noncrashing bug.
Taking this “backtrace” as hints, a programmer can
start debugging in a similar way as facing the real
backtrace. It is expected that a programmer could pay
more attention on this backtrace rather than suspecting
all the functions.

5.4.3 Discussion on General Validity. Although
our method works reasonably well in the above case,
we are not going to claim its general applicability. Due
to the wide variety of software bugs, it is unlikely for
a method to work well in all cases. In this study, we
have been exerting great efforts to narrow down suspi-
cious bug trace by using data mining techniques. The
entire framework of exploiting classification dynamics
to uncover “backtrace” makes sense by intuition and
reasoning. Furthermore, our case study does capture a
kind of common bugs, which may imply its applicability
beyond this particular case.

We note that our method can only provide pro-
grammers with the “backtrace”, a set of bug-relevant
functions, which hopefully can assist programmers in a
similar way as debugger-provided backtraces for crash-
ing bugs. However, just as a real backtrace may not
immediately lead to the discovery of the bug root for a
crashing bug, neither does our method. Still a program-
mer has to scrutinize the source code and figure out a
way to fix.

Computer-aided debugging is profound and hence
hard to be solved thoroughly in one shot. To the best
of our knowledge, it is less likely, if not impossible, to de-
vise a fully-automated debugger, which detects and fixes

bugs without the involvement of human intelligence. We
are looking forward to more debates and insights on this
interesting and challenging problem.

6 Related Work

Previous related work falls into two fields: frequent
pattern-based classification and software debugging.

6.1 Frequent Pattern-Based Classification. Sta-
tistical significance of frequent patterns motivates their
applicability in classification problems, which is based
on the belief that frequent patterns can embody signif-
icant and discriminative features. Associative classifi-
cation [19, 17] tries to find a set of association rules
based on frequent patterns, from which high quality
rules are selected as meta-rules for classification. In con-
trast, we explore the potentials of all the patterns and
use sophisticated learning algorithms, such as SVMs, to
combine their discriminative power smoothly. In ad-
dition, pattern-based classification has been successfully
applied to chemical and biological domains, such as clas-
sification of outer membrane proteins [22] and chemi-
cal compounds [4]. In this paper, we not only apply
data mining techniques in software engineering, but also
demonstrate the power by incorporating closed frequent
patterns as features. As shown through experiments,
our method has better scalability and meanwhile uplifts
the classification accuracy. To the best of our knowl-
edge, this is the first piece of work on using closed fre-
quent patterns in classification and demonstrating their
usage in software engineering.

6.2 Software Bug Detection. Software reliability
is actively pursued in software engineering and com-
puter system research from various angles. Static anal-
ysis [3, 6] aims at detecting program abnormities from
the source code level without running the programs.
Dynamic analysis [2, 5, 20, 18, 26], on the contrary,
usually instruments subject programs to dump runtime
information during their execution for further analysis.
In addition, model checking [15] and fault injection and
analysis [14] also work towards better software reliabil-
ity through their own approaches.

Our work is in the category of dynamic program
analysis, within which the following studies are the
most related. Program invariants [7] are used to as-
sist programmers in debugging [2, 18, 26]. Logistic re-
gression is adopted in [18, 26] to single out discrimi-
native invariants while Brun and Ernst use SVMs [2].
Researchers also explore the possibility of clustering in-
correct runs based on software behaviors [5, 20]. We ap-
proach the software reliability problem through a clas-
sification method.

7 Conclusions

In this paper, we investigate the capability for comput-
ers to classify incorrect and correct executions based on
observations of program behaviors. We develop a classi-
fication framework by summarizing program executions
as behavior graphs. As demonstrated through experi-
ments, the classification can be both effective and effi-
cient. Moreover, we propose a novel method to exploit
the classification accuracy boost and help programmers
debug noncrashing buggy code, which otherwise may
be elusive to handle. By examining software reliability
from a data mining point of view, we make our ini-
tial efforts to explore how data mining techniques can
contribute to software reliability, a hard but invaluable
problem.

There are many issues that need to explore further.
For example, it is not clear whether our method can
be effective at tracing large software programs with the
existence of multiple bugs in different program modules,
how to further develop our method to make the trace
deeper with finer granularity (such as a small set of
program lines), and how to integrate this new approach
with other existing software debugging methods. These
are a set of issues for our future research.

Acknowledgement

We would like to thank Professor Gregg Rothermel and
his colleagues at University of Nebraska - Lincoln for
providing us Subject Infrastructure Repository.

References

[1] E. S. Agency. Arianne-5 flight 501 inquiry
board report. In http://ravel.esrin.esa.it/docs/esa-x-
1819eng.pdf.

[2] Y. Brun and M. Ernst. Finding latent code errors via
machine learning over program executions. In Proc. of
the 26th Int. Conf. on Software Engineering (ICSE’04),
2004.

[3] D. Dhurjati, S. Kowshik, V. Adve and C. Lattner.
Memory safety without runtime checks or garbage
collection. In Proc. Languages Compilers and Tools
for Embedded Systems, 2003.

[4] M. Deshpande, M. Kuramochi, and G. Karypis. Fre-
quent sub-structure-based approaches for classifying
chemical compounds. In Proc. of the third IEEE Int.
Conf. on Data Mining (ICDM’03), 2003.

[5] W. Dickinson, D. Leon, and A. Podgurski. Finding
failures by cluster analysis of execution profiles. In
Proc. of the 23rd Int. Conf. on Software engineering
(ICSE’01), pages 339–348. IEEE Computer Society,
2001.

[6] N. Dor, M. Rodeh, and M. Sagiv. Cssv: towards a re-
alistic tool for statically detecting all buffer overflows

in c. In Proceedings of the ACM SIGPLAN 2003 Int.
Conf. on Programming language design and implemen-
tation (PLDI’03), pages 155–167. ACM Press, 2003.

[7] M. Ernst, J. Cockrell, W. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to
support program evolution. IEEE Transactions on
Software Engineering, 27(2):1–25, 2001.

[8] P. Frankl and O. Iakounenko. Further empirical studies
of test effectiveness. In Proceedings of the 6th ACM
SIGSOFT Int. symposium on Foundations of software
engineering (FSE’98), pages 153–162. ACM Press,
1998.

[9] S. Hangal and M. Lam. Tracking down software bugs
using automatic anomaly detection. In Proceedings of
the 24th Int. Conf. on Software engineering (ICSE’02),
pages 291–301. ACM Press, 2002.

[10] M. Harrold, G. Rothermel, R. Wu, and L. Yi. An em-
pirical investigation of program spectra. In Proceedings
of the ACM SIGPLAN-SIGSOFT workshop on Pro-
gram analysis for software tools and engineering, pages
83–90. ACM Press, 1998.

[11] J. Huan, W. Wang, D. Bandyopadhyay, J. Snoeyink,
J. Prins, and A. Tropsha. Mining spatial motifs from
protein structure graphs. In Proc. of the 8th Annual
Int. Conf. on Research in Computational Molecular
Biology (RECOMB’04), 2004.

[12] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand.
Experiments of the effectiveness of dataflow- and
controlflow-based test adequacy criteria. In Proc. of
the 16th Int. Conf. on Software engineering (ICSE’94),
pages 191–200. IEEE Computer Society Press, 1994.

[13] T. Joachims. Advances in kernel methods: Support
vector learning. In chapter Making large-Scale SVM
Learning Practical. MIT Press, 1999.

[14] G. Kanawati, N. Kanawati, and J. Abraham. Ferrari:
A flexible software-based fault and error injection
system. IEEE Transactions on Computers, 44:248–
260, 1995.

[15] S. Kumar and K. Li. Using model checking to debug
device firmware. SIGOPS Oper. Syst. Rev., 36(SI):61–
74, 2002.

[16] N. Leveson and C. Turner. An investigation of the
therac-25 accidents. Computer, 26(7):18–41, 1993.

[17] W. Li, J. Han, and J. Pei. CMAR: Accurate
and efficient classification based on multiple class-
association rules. In Proc. 2001 Int. Conf. Data Mining
(ICDM’01), pages 369–376, San Jose, CA, 2001.

[18] B. Liblit, A. Aiken, A. Zheng, and M. Jordan. Bug
isolation via remote program sampling. In Proc. of the
ACM SIGPLAN 2003 Int. Conf. on Programming Lan-
guage Design and Implementation (PLDI’03), 2003.

[19] B. Liu, W. Hsu, and Y. Ma. Integrating classifica-
tion and association rule mining. In Proceedings of the
fourth ACM SIGKDD Int. Conf. on Knowledge dis-
covery and data mining (KDD’98), pages 27–31. ACM
Press, 1998.

[20] A. Podgurski, D. Leon, P. Francis, W. Masri,
M. Minch, J. Sun, and B. Wang. Automated sup-

port for classifying software failure reports. In Proc. of
the 25th Int. Conf. on Software engineering (ICSE’03),
pages 465–475. IEEE Computer Society, 2003.

[21] G. Rothermel and M. J. Harrold. Empirical studies
of a safe regression test selection technique. IEEE
Transaction on Software Engineering, 24(6):401–419,
1998.

[22] R. She, F. Chen, K. Wang, M. Ester, J. Gardy, and
F. Brinkman. Frequent-subsequence-based prediction
of outer membrane proteins. In Proc. of the ninth ACM
SIGKDD Int. Conf. on Knowledge discovery and data
mining (KDD’03), pages 436–445. ACM Press, 2003.

[23] X. Yan and J. Han. gSpan: Graph-based substructure
pattern mining. In Proc. 2002 Int. Conf. on Data
Mining (ICDM’02), pages 721–724, 2002.

[24] X. Yan and J. Han. CloseGraph: Mining closed fre-
quent graph patterns. In Proc. 2003 ACM SIGKDD
Int. Conf. Knowledge Discovery and Data Mining
(KDD’03), pages 286 – 295, 2003.

[25] T. Zhang, X. Zhuang, S. Pande, and W. Lee. Hardware
supported anomaly detection: down to the control flow
level. In Technical report, Center for Experimental
Research in Computer System, GIT-CERCS-04-11,
Georgia Institute of Technology, 2004.

[26] A. Zheng, M. I. Jordan, B. Liblit, and A. Aiken. Statis-
tical debugging of sampled programs. In Advances in
Neural Information Processing Systems 17 (NIPS’03),
2003.

