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Abstract

We study the multi-play budgeted multi-armed ban-
dit (MP-BMAB) problem, in which pulling an arm
receives both a random reward and a random cost,
and a player pulls L(≥ 1) arms at each round. The
player targets at maximizing her total expected re-
ward under a budget constraint B for the pulling
costs. We present a multiple ratio confidence bound
policy: At each round, we first calculate a truncat-
ed upper (lower) confidence bound for the expect-
ed reward (cost) of each arm, and then pull the L
arms with the maximum ratio of the sum of the up-
per confidence bounds of rewards to the sum of the
lower confidence bounds of costs. We design a 0-
1 integer linear fractional programming oracle that
can pick such the L arms within polynomial time.
We prove that the regret of our policy is sublinear
in general and is log-linear for certain parameter
settings. We further consider two special cases of
MP-BMABs: (1) We derive a lower bound for any
consistent policy for MP-BMABs with Bernoulli
reward and cost distributions. (2) We show that the
proposed policy can also solve conventional bud-
geted MAB problem (a special case of MP-BMABs
with L = 1) and provides better theoretical results
than existing UCB-based pulling policies.

1 Introduction
Multi-armed bandits (MAB) are a typical sequential decision
problem, in which a player receives a random reward by play-
ing one of K arms from a slot machine at each round and
wants to maximize her cumulated reward. Multiple real world
applications have been modeled as MAB problems, such as
auction mechanism design [Mohri and Munoz, 2014], search
advertising [Tran-Thanh et al., 2014], UGC mechanism de-
sign [Ghosh and Hummel, 2013], and personalized recom-
mendation [Li et al., 2010]. Many policies have been de-
signed for MAB problems and studied from both theoretical
and empirical perspectives, including UCB1, εn-GREEDY
[Auer et al., 2002], LinRel [Auer, 2003], UCB-V [Audibert
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et al., 2009], DMED [Honda and Takemura, 2010], and KL-
UCB [Garivier and Cappé, 2011]. A good survey on MAB
can be found in [Bubeck and Cesa-Bianchi, 2012].

Recently, budgeted MABs have attracted much research at-
tention. In budgeted MABs, playing an arm needs to pay a
cost while receiving a reward, and the player targets at max-
imizing her cumulative reward under a budget constraint for
the total costs. Different settings of costs have been studied in
budgeted MABs. Deterministic costs were studied in [Tran-
Thanh et al., 2012]. [Vanchinathan et al., 2015] attacked an
MAB related problem by taking both deterministic costs and
the diversity of the selected items into consideration. UCB
based algorithms were adapted to the random discrete cost
setting [Ding et al., 2013] and random continuous cost set-
ting [Xia et al., 2015a]. Thompson sampling algorithm for
budgeted MAB was studied in [Xia et al., 2015b]. Besides
minimizing the regret, the best arm identification problem for
budgeted MAB was studied in [Xia et al., 2016].

Multiple-play MABs, in which the player pulls multiple
arms at each round, have been studied in conventional set-
tings without considering budget [Anantharam et al., 1987;
Agrawal et al., 2010; Komiyama et al., 2015; Liu and Zhao,
2010; Chen et al., 2013]. In some applications, a decision
maker needs to take multiple actions at each round and con-
sider a budget constraint. For example, consider an adver-
tiser who creates an ad campaign to promote her products
in a search engine. To participate in search ad auctions, she
needs to choose multiple keywords for her campaign and set a
monthly/quarterly budget. Since each keyword (together with
a bid price) can be regarded as an arm [Ding et al., 2013], this
keyword selection and bid optimization problem can be mod-
eled as a budgeted MAB with multiple plays. In this work,
we study this new setting, the Multiple-Play Budgeted Multi-
armed Bandit (denote as MP-BMAB) problem. For simplic-
ity, we refer the simple case of the budgeted MAB, playing
a single arm at each round, as Single-Play Budgeted Multi-
armed Bandit (denoted as SP-BMAB).

Consider a bandit withK arms in total and the player needs
to pull L ≥ 1 different arms at each round. There are

(
K
L

)
dif-

ferent ways of pulling L different arms, and the number could
be of order O(2K) in the worst case. Therefore, we need to
carefully design policies that can efficiently deal with large
number of possible pullings. Our work can be summarized
from the following three aspects:



Policy Design: Intuitively, a good policy for MP-BMABs
should try to pull the L arms with the maximum ratio of the
sum of the expected rewards to the sum of the expected costs.
Since the reward and cost distributions of all the arms are un-
known, the policy needs to allocate necessary explorations to
all the arms. We design an efficient policy for the MP-BMAB
problem, called Multiple Ratio Confidence Bound policy (de-
noted as MRCB), which works as follows. For each arm, we
introduce a truncated upper confidence bound for the estimat-
ed expected reward and a truncated lower confidence bound
for the estimated expected cost. A hyper parameter is intro-
duced to the confidence bound, which brings flexibility to the
policy. At each round, we pull the L arms with the maximum
ratio of the sum of the upper bounds of rewards to the sum
of the lower bounds of costs. How to find such L arms with
the maximum ratio is an 0-1 integer linear fractional program
(denoted as 0-1 ILFP) [Seerengasamy and Jeyaraman, 2013].
We design an efficient algorithm that can find the optimal so-
lution of the 0-1 ILFP in our setting within polynomial time.

Theoretical Analysis: We conduct theoretical analysis on
MRCB, and show that it enjoys a sublinear regret bound with
respect to budgetB. By properly setting the hyper parameter,
we show that the policy theoretically achieves a log-linear
regret. Comparing with conventional MABs, there are two
challenges to analyze MRCB: (1) One needs to pull L dif-
ferent arms at each round (for simplicity, we say any L dif-
ferent arms constitute a super arm) and there are exponential
number of possible super arms, which might bring the com-
binatorial number into the regret bound and make the bound
very loose. (2) The randomness of both the rewards and cost-
s brings difficulties when decomposing the probabilities that
suboptimal super arms are pulled1. To address the first chal-
lenge, we carefully divide the exponential number of subopti-
mal super arms intoK subsets and design intermediate events
related to the pulling time of each super arm in each subset.
Doing so we can eliminate the affects brought by the expo-
nential number of super arms. To address the second one,
we introduce the δ-gap in Eqn.(11a), based on which we can
separate the ratio related terms which depend on both reward-
s and costs into terms that depend on rewards only and costs
only.

Special Cases: We further study two special cases of MP-
BMABs. First, for Bernoulli MP-BMABs (whose rewards
and costs are either 0 or 1), we give a lower bound to any con-
sistent policy and show that our proposed policy can match
the lower bound in terms of the order of B. Second, for con-
ventional budgeted MABs (i.e., SP-BMABs), we show that
our policy can be directly applied and achieves a better re-
gret bound than existing UCB based policies [Ding et al.,
2013]. We also provide a lower bound for SP-BMABs, which
is missing in the literature.

2 The Problem
An MP-BMAB problem can be described as follows. Given a
slot machine with K arms (K ≥ 2), at each round, the player

1The super arms which do not have the maximum ratio of the
sum of the expected rewards to the sum of expected costs are subop-
timal.

needs to pull L(≥ 1) different arms of the bandit. Denote
the set of arms pulled at round t as It. For each pulled arm
i ∈ [K] at round t (let [K] denote the set {1, 2, · · · ,K}), she
needs to pay a random cost ci(t) and receives a random re-
ward ri(t). Both ci(t) and ri(t) are drawn from distributions
supported in [0, 1]. We study the semi-bandit setting [Kveton
et al., 2015], in which the player can only observe ri(t) and
ci(t) for pulled arms, i.e., for all i ∈ It. The player can keep
pulling until her budget, B, runs out. B is a positive number
and does not need to be known to the player in advance.

Following the common practice in standard MABs, we as-
sume the independence between arms and rounds: the re-
wards and costs of an arm are independent of any other arm,
and the rewards (and costs) of arm i at different rounds are
independently drawn from the same distribution with expec-
tation µri (and µci ). For ease of reference, denote the vector
(µr1, µ

r
2, · · · , µrK) as µr, and so for µc. Note that we do not

assume that the rewards of an arm are independent of its cost-
s. Without loss of generality, we assume 0 < µri , µ

c
i < 1

for all i ∈ [K]. The player wants to minimize the regret,
which is usually defined as the differences between R∗, the
maximum expect cumulative reward that a pulling policy can
obtain when the reward/cost distributions of all the arms are
known, and the expected reward that a policy can obtain, both
under the budget constraint. Mathematically,

Regret = R∗ − E
∑∞

t=1

∑
i∈It

ri(t)I{Bt ≥ 0}, (1)

where Bt is the remaining budget at round t, i.e., Bt =
B −

∑t
s=1

∑
i∈Is ci(s), and I{·} is the indicator function.

I{E} = 1 if the event E is true; otherwise, 0.

3 Pulling Policy
It is hard to find the optimal policy for MP-BMABs. Even for
a simplified setting, in which the reward and cost of each arm
are deterministic and L = 1, the problem is an unbounded
knapsack problem, which is NP-hard [Lueker, 1975]. For the
semi-bandit setting, this problem becomes even harder. To
solve the MP-BMAB problem, in this section, we first con-
sider a simple case with known reward and cost distributions
for all the arms, and show that a simple greedy policy Mg

can obtain almost the same expected reward as R∗. Then we
design a pulling policy for the setting with unknown reward
and cost distributions by leveragingMg .

3.1 Mg for Known Distributions
Remind that any L different arms from theK candidates con-
stitute a super arm. Let CKL denote the set of all the super
arms, which is mathematically defined as follows.
{{j : xj = 1}|

∑K
j=1 xj = L;xj ∈ {0, 1} ∀j ∈ [K]}.

Let I∗ denote the super arm defined as follows:

I∗ = argmaxI∈CKL (
∑
k∈I µ

r
k)/(

∑
k∈I µ

c
k). (2)

Without loss of generality, assume I∗ is unique. Define %∗L as
(
∑
k∈I∗ µ

r
k)/(

∑
k∈I∗ µ

c
k).

The greedy policyMg is shown in Algorithm 1. Lemma 1
shows thatMg is close to the optimal policy for the case with
known reward/cost distributions, and therefore we call I∗ the
nearly-optimal super arm.



Algorithm 1:Mg for Known Distributions

1 Input: The reward and cost distributions of the K arms;
the budget B; L ∈ [K];

2 For any arm i ∈ [K], calculate the expected reward µri
and expected cost µci ; find the I∗ of the bandit in (2);

3 Keep pulling the L arms in I∗, until the budget runs out.

Lemma 1 When the reward and cost distributions of all the
arms are known, we have R∗ ≤ (B +L)%∗L and the expected
reward ofMg is at least (B − L)%∗L.

Due to space limitations, we leave the proof of Lemma 1 to
Appendix A. Lemma 1 tells that the gap between R∗ and the
expected reward ofMg is at most 2L%∗L, which is very small
when B is sufficiently large.

Step 2 of Algorithm 1 needs to find the I∗ defined in (2),
which is actually a 0-1 Integer Linear Fractional Program-
ming problem defined as follows.

max (
∑
i∈I ai)/(

∑
i∈I bi) s.t. I ∈ CKL , (3)

where a and b are K-element vectors with the i-th element
ai > 0, bi ≥ 0 for any i ∈ [K]. We design a 0-1 ILFP Oracle
O(a, b, L) that can efficiently solve the optimization problem
in (3). The oracle is shown in Algorithm 2.

Algorithm 2: 0-1 ILFP Oracle O(a, b, L)

1 Input: Vectors a and b with ai > 0, bi ≥ 0 ∀i ∈ [K];
L ∈ [K];

2 Boundary Cases: Denote Z0 = {i|bi = 0,∀i ∈ [K]}. If
|Z0| ≥ L, then randomly return L elements in Z0; Else if
L is 1, return argmaxi(ai/bi) for any i ∈ [K] directly;
Else, go to the next step;

3 Solve the LP problem marked with (4) by Interior Point
Method. Denote the solution as y∗ and z∗.
max aT y s.t.

∑K
i=1 yi − Lz = 0; bT y = 1; (4)

z ≥ 0; 0 ≤ yi ≤ z ∀i ∈ [K];
4 Let I = {i|y∗i = z∗; i ∈ [K]},F = {i|0 < y∗i < z∗; i ∈

[K]}; If |I| = L, return I; otherwise, pick any L− |I|
elements from F forming F ′ and return I ∪F ′.

Lemma 2 The O(a, b, L) in Algorithm 2 can output the op-
timal solution of (3) within polynomial time2.
The proof of Lemma 2 is constructive: (1) Relax the 0-1 inte-
ger constraints to continuous ones, (2) solve the relaxed linear
fractional programming, and then (3) convert the fractional
solutions to integer ones. Complete proof is in Appendix B.

3.2 Multiple Ratio Confidence Bound Policy
Now we turn to the MP-BMAB problem with unknown re-
ward/cost distributions. We can only observe the reward-
s/costs of the pulled arms at each round. Our idea is simple
and straightforward: We estimate the expected reward/cost

2We follow the common practice in combinatorial optimization
literature that the “polynomial time” means “polynomial time in the
number of bits of precision in which the inputs are specified”.

of each arm using historical observations and then apply Al-
gorithm 2 with estimated expected rewards/costs as input to
select the pulled arms at each round.

For any i ∈ [K], let Ti(t), µ̂ri (t), µ̂ci (t) and Eκi,t denote the
number of pulling rounds, the empirical average reward and
cost, and a confidence term of arm i at round t respectively:

Ti(t) =

t∑
s=1

I{i ∈ Is}, µ̂ri (t) =
1

Ti(t)

t∑
s=1

ri(s)I{i ∈ Is},

µ̂ci (t) =
1

Ti(t)

t∑
s=1

ci(s)I{i ∈ Is}, Eκi,t =

√
κ ln(t− 1)

Ti(t− 1)
,

(4)

where κ is a positive hyper parameter, which brings flexibil-
ity3 to our policy.

Note that for each arm, we do not directly replace the ex-
pected reward and cost by the empirical average reward and
cost. Instead, we take the uncertainty of the estimation into
consideration. Define µ̃ri (t) and µ̃ci (t) as the truncated up-
per confidence bound for the empirical average reward (see
(5)) and truncated lower confidence bound for the empirical
average cost (see (6)) respectively.

µ̃ri (t) = min{µ̂ri (t− 1) + Eκi,t, 1}; (5)
µ̃ci (t) = max{µ̂ci (t− 1)− Eκi,t, 0}. (6)

Our proposed policy, Multiple Ratio Confidence Bound pol-
icy (briefly denoted as MRCB), is shown in Algorithm 3, in
which µ̃r(t) is aK-dimensional vector4 with the i-th element
µ̃ri (t), and so for µ̃c(t).

Algorithm 3: Multiple Ratio Confidence Bound (MRCB)
1 Input: hyper parameter κ > 0, the budget B; L ∈ [K];
2 for t→ 1 : dK/Le do
3 Pull arms {([(t− 1)L+ j− 1] mod K) + 1|j ∈ [L]};
4 for t→ dK/Le+ 1 :∞ do
5 Update the Ti(t), µ̂ri (t), µ̂ci (t), µ̃ri (t), µ̃ci (t) for any i;
6 Pull the arms output by O(µ̃r(t), µ̃c(t), L); update

Bt; if Bt ≥ 0, obtain the reward; else, return;

4 Theoretical Analysis
In this section we theoretically analyze and upper bound the
regret of the MRCB policy.

We first define some notations. (1) Let Cs denote CKL \{I∗}.
(2) For any i ∈ [K], let Si denote {I|I ∈ Cs, i ∈ I}. (3) For
any i ∈ [K], define

∆i
min = minI∈Si(%

∗
L

∑
k∈I µ

c
k −

∑
k∈I µ

r
k);

∆i
max = maxI∈Si(%

∗
L

∑
k∈I µ

c
k −

∑
k∈I µ

r
k).

(7)

Define B = {i|i ∈ [K],∆i
min > 0}.

(4) TL(B) = b2B/(Lµcmin)c, where µcmin = mini∈[K] µ
c
i .

(5) XL(B) = O
(
[B/(Lµcmin)] exp{−(Bµcmin)/2}

)
.

3This trick has also been used in [Li et al., 2010].
4Keep in mind that both µ̃r(t) and µ̃c(t) depend on the κ.



The above notations can be interpreted as follows. (1) Cs
can be regarded as the set of all suboptimal super arms, s-
ince it is very likely that these arms are not as good as the
near-optimal arm I∗ in terms of the ratio of expected reward-
s to expected costs. (2) Si is the collection of suboptimal
super arms containing arm i. (3) ∆i

min and ∆i
max are two

gaps measuring the suboptimality of the super arms in Si. B
is a collection of “bad” arms, which can lead to regret after
pulling. (4) TL(B) can be seen as the pseudo stopping time
of the bandit, since when B is large, the probability that the
pulling rounds of an MP-BMAB can exceed TL(B), bounded
by XL(B), is very small. Mathematically,∑∞

t=TL(B)+1P{Bt ≥ 0} ≤ XL(B). (8)

Note XL(B) decreases exponentially w.r.t. B. The proof of
the above inequality is left in Appendix C. In our MP-BMAB
problem, the stopping time is not given in advance like those
in [Auer et al., 2002; Badanidiyuru et al., 2013]; instead, the
stopping time is controlled by the budget B. To leverage the
proof techniques from conventional bandits, we introduce the
pseudo stopping time TL(B). We will see how to use it later.

Define ζκ(TL(B)) =
∑TL(B)
t=1 (log2(t) + 1)t−κ.

One can verify that when κ > 1, ζκ(TL(B)) can be bound-
ed by a term depending on κ only; when κ = 1, ζκ(TL(B))
is of order O(ln2(B)); when κ < 1, ζκ(TL(B)) is of order
O(B1−κ ln(B)/(1− κ)). (See Appendix D for details.)

We can upper bound the regret of our policy as follows.
Theorem 3 The regret of MRCB is upper bounded by

ϕι ln TL(B) + ϕsζκ(TL(B)) + ϕ0, (9)

where ϕι = (%∗L + 1)2L2(
√
κ + 1)2

∑
i∈B(2/∆i

min −
1/∆i

max), ϕs = 2L
∑
i∈B∆i

max, and ϕ0 = 0.5(L −
1)ϕι lnK + ϕs + L%∗LXL(B) + 2L%∗L + 2

∑
i∈B∆i

max.

When κ ∈ (0, 1), the regret shown in (9) can be written as
ϕsT 1−κ

L (B) ln(TL(B))/(1 − κ) + o(TL(B)), which is sub-
linear in terms of TL(B), and thusB. When κ > 1, the regret
improves to ϕι ln TL(B)+O(1), which is of orderO(κ lnB).
Proof outline: The proof of Theorem 3 is quite technical.
Here we only give a proof sketch. The omitted derivation
details are left in Appendix E.
◦ Step 1: Bridge the regret and the expected pulling number
of each suboptimal super arm. With some derivations, we can
get that the regret can be bounded as

Regret ≤
∑
I∈Cs∆

IE{NI}+ L%∗LXL(B) + 2L%∗L, (10)

where for any I ∈ Cs, ∆I is defined as (
∑
k∈I µ

c
k)[%∗L −

(
∑
k∈I µ

r
k)/(

∑
k∈I µ

c
k)], NI is the pulling number of super

arm I from round 1 to round TL(B). The insight behind (10)
is very intuitive: if the player pulls a suboptimal super arm I
once, the expected cost is

∑
k∈I µ

c
k; if she spends such cost

on the near optimal super arm, she can gain ∆I more reward.
(10) frees us from the randomness of the stopping time, and
allows us to only consider the expected pulling number of
suboptimal arms before round TL(B), which is deterministic
(even though the budget might run out before it).
◦ Step 2: Bridge the regret and each arm. It is not convenient
to work on the super arms directly. Therefore, we need to
further decompose (10).

Let Ki denote that number of super arms in Si for any
i ∈ [K], and S(i, j) denote one super arm in Si indexed by
j ∈ [Ki]. Assume the super arms in Si are sorted by the order
∆S(i,1) ≥ ∆S(i,2) ≥ · · · ≥ ∆S(i,Ki). For simplicity of use,
denote ∆S(i,j) as ∆i,j .

For any suboptimal super arm S(i, j), define the δ-gap
δi,j(γ) in Eqn.(11-a), which can be seen as a weighted ver-
sion of ∆i,j . We can verify that the gap satisfies Eqn.(11-b).

(a) δi,j(γ)=
∆i,j

γ%∗L + 1
; (b) %∗L=

(
∑
k∈S(i,j) µ

r
k) + δi,j(γ)

(
∑
k∈S(i,j) µ

c
k)− γδi,j(γ)

. (11)

In the analysis of the upper bound of the regret, we only
need to consider the case of 5 γ = 1. For ease of reference,
let δi,j denote δi,j(1).

Define fi,j = L2(
√
κ + 1)2 ln[

√
KL−1TL(B)]/(δi,j)2.

According to [Chen et al., 2013], the
∑
I∈Cs ∆IE{NI} of

(10) can be bounded by
∑
i∈BRi, in whichRi is

Ri ≤2∆i
max + L2(1 +

√
κ)2(%∗L + 1)2(2/∆i

min − 1/∆i
max)

ln[
√
KL−1TL(B)] + E

TL(B)∑
t=t0

Ki∑
j=1

∆i,jI{It = S(i, j),

∀k ∈ It Tk(t− 1) > bfi,jc}, (12)

where t0 = dK/Le+ 1.
◦ Step 3: Bound the E{·} in (12). For ease of reference, let
Ui,j(t) denote the event {It = S(i, j),∀k ∈ It Tk(t − 1) >
bfi,jc} in (12). Define the event Qo(t) as:

Qo(t) =
⋃

k∈I∗
{µ̃rk(t) ≤ µrk} ∪ {µ̃ck(t) ≥ µck}. (13)

Accordingly, the E{·} in (12) can be decomposed as:

E
∑TL(B)
t=t0

∑Ki
j=1∆i,jI{Ui,j(t),Qo(t)} (14)

+E
∑TL(B)
t=t0

∑Ki
j=1∆i,jI{Ui,j(t),Qo(t)}, (15)

where Qo(t) means that the event Qo(t) does not hold.
Step 3-1: Bound (14). Since Ui,j(t) are disjoint for different
j ∈ [Ki], we have that

∑Ki
j=1 I{Ui,j(t),Qo(t)} ≤ I{Qo(t)}.

Since we do not need to consider the randomness of the stop-
ping time, we can apply Hoeffding’s maximal inequality and
union bound, and obtain that

P{Qo(t)} ≤ 2L{log2(t− 1) + 1}(t− 1)−κ. (16)

Thus, (14) is bounded by 2L∆i
maxζκ(TL(B)).

Step 3-2: Bound (15). If super arm S(i, j) is pulled where
i ∈ B and j ∈ [Ki], conditioned on Qo(t), we know that
P{Ui,j(t),Qo(t)} is upper bounded by

P
{⋃

k∈S(i,j)
{µ̃rk(t) ≥ µrk +

δi,j

L
, Tk(t− 1) > bfi,jc} ∪⋃

k∈S(i,j)
{µ̃ck(t) ≤ µck −

δi,j

L
, Tk(t− 1) > bfi,jc}

}
. (17)

5The case of γ 6= 1 will be considered when analyzing the lower
bound of MP-BMAB in the next section.



With some derivations, for any k ∈ S(i, j), we have

P{µ̃rk(t) ≥ µrk +
δi,j

L
, Tk(t− 1) > bfi,jc} ≤ 1/[KL−1TL(B)];

P{µ̃ck(t) ≤ µck −
δi,j

L
, Tk(t− 1) > bfi,jc} ≤ 1/[KL−1TL(B)].

Therefore, P{Ui,j(t),Qo(t)} ≤ (2L)/[KL−1TL(B)]. Ac-
cordingly, (15) can be bounded by 2L∆i

max.
According to the above three steps, by combining (10),

(12), the bound of (14) in Step 3-1, and the result of (15)
in Step 3-2, we can eventually get Theorem 3. �

5 Special Cases
In this section, we consider two special cases of MP-BMABs:
the Bernoulli MP-BMABs, in which the reward and cost dis-
tributions of all the arms are Bernoulli, and the SP-BMABs,
in which the player can only pull L = 1 arm at each round.

5.1 Bernoulli MP-BMABs
In this subsection, we present a lower bound for the regret
of any consistent policy (defined later) for Bernoulli MP-
BMABs and compare it with the regret of MRCB.

For any policy w, let Γwk (T ) denote the pulling number of
arm k ∈ [K] in the first T rounds, and ΓwI (T ) for super arm
I ∈ CKL , where T ∈ Z+. If

∑
I∈Cs E{Γ

w
I (T )} = o(T a)

holds for any a ∈ (0, 1) and any bandit, we say policy w is
consistent. According to the analysis in Section 4, we can
get that the regret of any consistent policy is sublinear to the
pseudo stopping time TL(B), and so to the budget B.

Since the costs are no larger than 1, the stopping time of a
policy is at least B/L (assume B/L is an integer for simplic-
ity). The regret of the first B/L rounds is certainly a lower
bound of the total regret, thus we will only consider the regret
in these rounds. Let kl(x, y) denote the KL divergence of two
Bernoulli distributions with parameters x and y:

kl(x, y) = x ln
x

y
+ (1− x) ln

1− x
1− y ∀x, y ∈ (0, 1). (18)

For ease of reference, define δimin(γ) = minj∈[Ki] δ
i,j(γ)

for any i /∈ I∗. Define the following optimization problem:

minγ kl(µri , µ
r
i + δimin(γ)) + kl(µci , µ

c
i − γδimin(γ))

s.t. µri + δimin(γ) < 1, µci − γδimin(γ) > 0, γ ≥ 0.
(19)

As shown in Appendix F.1 and F.2, we can prove that: (1) the
feasible set of (19) is non-empty; (2) the optimal solution of
(19) is an interior point of its constraint set. Thus, the optimal
value exists and is strictly positive. Denote the optimal value
of (19) as L∗i .

Theorem 4 For Bernoulli MP-BMABs, if the rewards are in-
dependent to the costs for each arm, for any consistent policy
w (i.e.,

∑
I∈Cs E{Γ

w
I (T )} = o(T a) holds for any a ∈ (0, 1)

and T ∈ Z+), we have that for any i /∈ I∗ and ε > 0,

lim
B→∞

P
{
Γwi (B/L) ≥ (1− ε) ln(B/L)

L∗i

}
= 1,

and lim infB→∞ E[Γwi (B/L)]/[ln(B/L)] ≥ 1/L∗i .

From Theorem 4, we can get that for Bernoulli MP-BMABs,
the pulling time of arm i /∈ I∗ for any consistent policy is
at least Ω(ln(B/L)/L∗i ). After some derivations, we can get
that the regret is Ω(

∑
i/∈I∗(∆

i
min/L∗i ) ln(B/L)). The the-

orem can be proved by using the change-of-measure tech-
niques and large number laws, as shown in Appendix F.3.

First, we can see that, for Bernoulli bandits, the upper
bound of the regret of MRCB is O(κ lnB) when κ > 1,
which matches the lower bound in terms of the order of B.

Second, we make some discussion about the coefficients of
lnB. We specify MRCB by setting κ = 2. For ease of refer-
ence, denote the upper bound and lower bound as O(o lnB)
and Ω(ω lnB) respectively. Similar to the UCB-based poli-
cies for conventional MABs (without budget constraints), our
MRCB cannot match the lower bound perfectly, i.e., o > ω.
The following example shows that o in the upper bound of
MRCB and ω in the lower bound share similar trends.

Example 5 We study the relationship between the regret and
the ratio gap ∆i

min ∀i ∈ B for an MP-BMAB. Suppose p ∈
(0, 0.5). Consider a Bernoulli bandit with µrj , µ

c
j ∈ [p, 1− p]

∀j ∈ [K] and ∆i
min < p/2 ∀i ∈ B. In this case, we have

(a) o =
∑
i∈B L

2/(p2∆i
min); (b) ω =

∑
i/∈I∗ p

2/∆i
min.

That is, the coefficients of lnB in both the upper and lower
bounds of the regret are linear to

∑
i/∈I∗ 1/∆i

min.

5.2 Single-Play Budgeted MAB
Since SP-BMABs are a special case of MP-BMABs withL =
1, our MRCB policy (Algorithm 3) can be directly applied.

While applying Algorithm 3 to the SP-BMAB problem, I∗
degenerates to the arm with the maximum ratio of the expect-
ed reward to the expected cost, i.e., i∗ = arg maxi∈[K] µ

r
i /µ

c
i

and %∗1 = µri∗/µ
c
i∗

. For any i 6= i∗, (a) ∆i
max equals ∆i

min and
we denote them as ∆i = µci%

∗
1 − µri ; (b) δimin(γ) degenerates

to δi(γ) = ∆i/(γ%∗1 + 1); (c) the optimization problem of
(19) degenerates as follows:

minγ kl(µri , µ
r
i + δi(γ)) + kl(µci , µ

c
i − γδi(γ))

s.t. µri + δi(γ) < 1, γ ≥ 0.
(20)

One can verify the existence of the optimal solution and opti-
mal value of (20). Denote the optimal value as L∗∗i . Theorem
3 and 4 degenerate to the following two corollaries:

Corollary 6 For SP-BMABs, the regret of MRCB is upper
bounded by∑

i 6=i∗

[(
√
κ+ 1)(%∗1 + 1)]2

∆i
ln T1(B) + 2ζκ(T1(B))

∑
i 6=i∗

∆i

+4
∑
i 6=i∗ ∆i + [2 + X1(B)]%∗1, where the T1(B) and

X1(B) are obtained by setting the L’s in TL(B) and XL(B)
(defined at the beginning of Section 4) as 1.

Corollary 7 For Bernoulli SP-BMABs, if the rewards are in-
dependent to the costs for each arm, for any consistent policy
w (i.e.,

∑
i 6=i∗ E{Γ

w
i (T )} = o(T a) holds for any a ∈ (0, 1)

and T ∈ Z+), we have that for any i 6= i∗ and ε > 0,
limB→∞ P{Γwi (B) ≥ [(1− ε)/L∗∗i ] lnB} = 1;

consequently, lim infB→∞ E[Γwi (B)]/[lnB] ≥ 1/L∗∗i .



Corollary 7 tells that the regret for Bernoulli SP-BMAB is at
least Ω(

∑
i 6=i∗(∆

i/L∗∗i ) lnB). So far as we know, it is the
first non-trivial lower bound for SP-BMABs. Similar to the
Example 5, for SP-BMABs, the coefficients of lnB in both
the upper bound of MRCB’s regret and the lower bound of
the regret of any consistent policy are linear to

∑
i 6=i∗ 1/∆i.

SP-BMABs with random costs have been studied in [Ding
et al., 2013]. Compared with the above literature, MRCB has
two advantages: (1) Since there is a hyper parameter of our
policy, by carefully setting the parameter, the empirical per-
formance of our policy can outperform previous algorithms
(see Section 6). (2) The theoretical guarantees of our poli-
cy are better than previous UCB-based policies. For exam-
ple, Corollary 6 outperforms the regret bound in [Ding et al.,
2013]. (See Appendix G for the details.)

6 Empirical Evaluations
We conducted a set of numerical simulations to test the em-
pirical performance of our policy. We compared with the fol-
lowing baselines. (1) The ε-first policy first pulls the arms
one by one when the spent budget is less than εB; after that
we have two schemes to recommend L arms: Scheme T al-
ways pulling the top L arms with the largest average reward
to average cost ratio, and Scheme R always pulling the L arm-
s with the maximum ratio of the sum of average rewards to
the sum of average costs. We followed the practice in [Tran-
Thanh et al., 2010; Xia et al., 2015b] to set ε = 0.1. (2) Frac-
tional KUBE [Tran-Thanh et al., 2012] with both schemes T
and R. (3) BTS policy [Xia et al., 2015b] with schemes T
and R. (4) the UCB-BV1 [Ding et al., 2013] with scheme T
only, since the confidence term is added to the ratio of the
average rewards to average costs, which makes it hard to be
associated with scheme R. For ε-first, we set the budget as
{5K, 10K, 15K, · · · , 50K}; for the other policies, we set the
budget as 50K and record the regret at each budget.

We simulated the bandit with two distributions: one with
multinomial distribution, and the other with beta distribution.
For each distribution, we simulated a 10-armed bandit and a
50-armed bandit. Detailed parameters of the distributions are
left in Appendix H.1 due to limited space. We individually
run each policy under each setting for 100 times and report
the average regret and standard derivation over the 100 runs.

MRCB has a hyper parameter κ. We searched the κ in the
set {2−10, 2−7, 2−4, 21} and found that κ = 2−4 worked well
for most cases. Therefore, we fix 2−4 in the following exper-
iments. Though asymptotically MRCB enjoys log-linear re-
gret when κ > 1, it is not good to set large values for κ since
B is limited in our experiments.

The results of the first three baselines with differen-
t schemes are shown in Table 1. It is obvious that Scheme R
is better than Scheme T. Thus, in the following experiments,
we will only show the results for Scheme R. We will not show
the regrets for UCB-BV1 neither since they are too large.

The average regret and the standard deviation of each pol-
icy w.r.t different K and different reward/cost distributions
are shown in Figure 1. We can see that our MRCB has clear
advantages over the 3 baselines: It achieves smaller regrets
and lower standard derivations. When the number of arms in-

Table. 1 Comparison of Baselines
ε-first KUBE BTS UCB-BV1

Scheme T 1159.0 831.3 568.5 2273.8
Scheme R 919.4 760.8 344.3 - - -

creases from 10 to 50, the regrets of all the policies increase.
This is in accord with our intuition, since more candidate arm-
s can make the nearly-optimal super arm harder to be found.
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(a) Multinomial, K = 10
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(b) Multinomial, K = 50
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(c) Beta, K = 10
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(d) Beta, K = 50

Figure 1: The Regrets

We also tested the performance of MRCB under the SP-
BMAB setting (i.e., L = 1). The results are in Table 2, which
are carried out on the bandits with multinomial reward/cost
distributions and B = 50K. The average regrets and the
standard derivations are reported. Again, MRCB performs
the best, which shows the MRCB can handle the SP-BMAB.
Additional experiments can be found at Appendix H.2.

Table 2. Regrets for SP-BMAB
10-armed bandit 50-armed bandit

ε-first 2183.5± 51.9 2403.8± 54.9
KUBE 552.9± 34.4 2722.3± 66.9
BTS 226.9± 38.3 1182.0± 93.6

MRCB 103.3± 13.5 521.9± 31.1

7 Conclusion and Future Work
In this work, we studied the MP-BMAB problem and pro-
posed a policy for it. The policy theoretically enjoys a sublin-
ear regret (log-linear under some conditions) and empirically
outperforms several baselines in different settings.

There are several aspects to study in the future for MP-
BMABs. (1) multi-play budgeted linear/contextual bandit, in
which each arm is associated with a multi-dimensional fea-
ture vector, is an attractive topic; (2) the distribution-free up-
per/lower bound of MP-BMABs is still unknown and remains
to be explored.
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Appendix
In the proofs, we will often come across the sum of the specific elements in a vector indexed by a set. Assume x is a

K-dimensional vector, with the i-th element xi (i ∈ [K]), and I is a set s.t. I ⊂ [K]. Define Σ(x, I) =
∑
i∈I xi. Let

µr denote the vector (µr1, µ
r
2, · · ·µrK). Let µc denote the vector (µc1, µ

c
2, · · ·µcK). For any t ∈ Z+, let r(t) denote the vector

(r1(t), r2(t), · · · , rK(t)) and let c(t) denote the vector (c1(t), c2(t), · · · , cK(t)). Consequently, for any I ⊂ [K], Σ(µr, I) =∑
i∈I µ

r
i and Σ(µc, I) =

∑
i∈I µ

c
i . Σ(r(t), I) =

∑
i∈I ri(t), Σ(c(t), I) =

∑
i∈I ci(t) for any t ≥ 1 and I ∈ CKL . The super

arm pulled at round t is denoted as It. Denote the history before round t asHt−1, which is defined as follows:

Ht−1 = {Iτ , rk(τ) for each k ∈ Iτ , ck(τ) for each k ∈ Iτ , τ = 1, 2, · · · t− 1}. (21)

A Bound Expected Rewards of the Optimal Policy andMg

We give the proof of Lemma 1 in this section.
(1) Bound R∗: Define B0 = B. Denote the pulling sequences generated by an algorithm w as Iw = {It}∞t=1. When the reward
and cost distributions are all known, the decision of It can depend on (1)Ht−1, (2) the reward and cost distributions, but cannot
depend on the reward and cost at and after round t. Denote the expected reward of algorithm w before the budget runs out as
R̃w. R̃w can be bounded as follows:

R̃w = E
∞∑
t=1

∑
I∈CK

L

Σ(r(t), I)I{It = I, Bt ≥ 0} ≤
∞∑
t=1

∑
I∈CK

L

E
[
Σ(r(t), I)I{It = I, Bt−1 ≥ 0}

]
BBt ≥ 0 implies that Bt−1 ≥ 0.

=

∞∑
t=1

∑
I∈CK

L

E
[
E[Σ(r(t), I)I{It = I,Bt−1 ≥ 0}|Ht−1]

]
B The first E is taken w.r.tHt−1.

=

∞∑
t=1

∑
I∈CK

L

E
[
E{Σ(r(t), I)|Ht−1}E[I{It = I, Bt−1 ≥ 0}|Ht−1]

]
B I{It = I, Bt−1 ≥ 0} is determined byHt−1.

=

∞∑
t=1

∑
I∈CK

L

E
[
Σ(µr, I)E[I{It = I,Bt−1 ≥ 0}|Ht−1]

]
B Reward of a fixed super arm I at round t are independent ofHt−1.

=

∞∑
t=1

∑
I∈CK

L

Σ(µr, I)

Σ(µc, I)
E
[
Σ(µc, I)E[I{It = I, Bt−1 ≥ 0}|Ht−1]

]
=

∞∑
t=1

∑
I∈CK

L

Σ(µr, I)

Σ(µc, I)
E
[
E{Σ(c(t), I)|Ht−1}E[I{It = I,Bt−1 ≥ 0}|Ht−1]

]
B The first E is taken w.r.tHt−1.

=

∞∑
t=1

∑
I∈CK

L

Σ(µr, I)

Σ(µc, I)
E[Σ(c(t), I)I{It = I, Bt−1 ≥ 0}]

≤
∞∑
t=1

∑
I∈CK

L

%∗LE{Σ(c(t), I)I{It = I, Bt−1 ≥ 0}} B Recall that %∗L =
Σ(µr, I∗)

Σ(µc, I∗)
≥ Σ(µr, I)

Σ(µc, I)
for any I ∈ CKL .

= %∗LE
∞∑
t=1

∑
I∈CK

L

Σ(c(t), I)I{It = I,Bt−1 ≥ 0} = %∗LE
∞∑
t=1

Σ(c(t), It)I{Bt−1 ≥ 0} ≤4 (B + L)%∗L. �

There are two things to be claimed in the above derivations:
1. We need to prove that

E
∞∑
t=1

∑
I∈CK

L

Σ(r(t), I)I{It = I, Bt ≥ 0} =

∞∑
t=1

∑
I∈CK

L

E
[
Σ(r(t), I)I{It = I, Bt ≥ 0}

]
; (22)

E
∞∑
t=1

∑
I∈CK

L

Σ(c(t), I)I{It = I, Bt ≥ 0} =

∞∑
t=1

∑
I∈CK

L

E
[
Σ(c(t), I)I{It = I, Bt ≥ 0}

]
. (23)

Also, the two Bt’s in (22) or (23) need to be replaced with two Bt−1’s.
We need to use the following conclusion to prove the above two equations:



B If X0, X1, · · · is a sequence of random variables such that
∑∞
j=0 E{|Xj |} converges, then the linearity of expectations

holds: E[
∑∞
j=0Xj ] =

∑∞
j=0 E[Xj ].

The above conclusion is from Page 23 (or, Exercise 2.29), Book “Probability and Computing: Randomized Algorithms
and Probabilistic Analysis”, authored by Michael Mitzenmacher, Eli Upfal, Cambridge University Press, 2005, eBook at:
https://books.google.co.jp/books?id=0bAYl6d7hvkC&lpg=PA23&pg=PA23#v=onepage&q&f=false
Note that each term in the r.h.s of (22) is nonnegative. The r.h.s of (22) can be bounded as

∞∑
t=1

∑
I∈CK

L

E
[
Σ(r(t), I)I{It = I, Bt ≥ 0}

]
=

∞∑
t=1

E
[
Σ(r(t), It)I{Bt ≥ 0}

]
≤ L

∞∑
t=1

E
[
I{Bt ≥ 0}

]

=L

TL(B)∑
t=1

P{Bt ≥ 0}+ L

∞∑
t=TL(B)+1

P{Bt ≥ 0} ≤ L(TL(B) + X̃L(B)),

(24)

where the last inequality is obtained by Lemma 9, which is shown later. Both TL(B) and X̃L(B) are deterministic and
finite numbers, which tells that

∑∞
t=1

∑
I∈CKL

E
[
|Σ(r(t), I)I{It = I,Bt ≥ 0}|

]
converges. Therefore, (22) holds. (23)

can be similarly proved. If the Bt’s in (22) or (23) are replaced with Bt−1’s, they can also be similarly proved. In the next
context, we can safely exchange the position of E when meeting similar situations like those in (22) and (23).

2. Another thing is the inequality marked with 4 holds because: assume Bτ−1 ≥ 0 but Bτ < 0. In this case, we have
∞∑
t=1

Σ(c(t), It)I{Bt−1 ≥ 0} =
( τ−1∑
t=1

Σ(c(t), It)
)

+Σ(c(τ), Iτ ) ≤ B −Bτ−1 + L ≤ B + L. (25)

Adding E to both sides of (25), we can get that the inequality marked with 4 holds.
(2) Bound the expected reward ofMg . Denote the expected reward of always pulling I∗ (i.e.,Mg) as Rg . We have

Rg = E
∞∑
t=1

Σ(r(t), I∗)I{Bt ≥ 0} ≥ E
∞∑
t=1

Σ(r(t), I∗)I{Bt−1 ≥ L} B Note Bt−1 ≥ L implies that Bt ≥ 0.

=

∞∑
t=1

E{Σ(r(t), I∗)}P{Bt−1 ≥ L} B The reward of super arm I∗ is independent to the history until round t− 1.

=

∞∑
t=1

Σ(µr, I∗)P{Bt−1 ≥ L} =

∞∑
t=1

Σ(µr, I∗)

Σ(µc, I∗)
Σ(µc, I∗)P{Bt−1 ≥ L} =

∞∑
t=1

%∗LE{Σ(c(t), I∗)}P{Bt−1 ≥ L}

=

∞∑
t=1

%∗LE{Σ(c(t), I∗)I{Bt−1 ≥ L}} ≥ (B − L)%∗L. B Can be similarly obtained like (25). �

B Proof of Lemma 2
The original problem is (P1). We give a relaxed version in (P2). We only need to consider the case that ai > 0, bi ≥ 0 for any
i ∈ [K], and there are at most L− 1 bi’s s.t. bi = 0.

(P1) max

∑K
i=1 aixi∑K
i=1 bixi

s.t.

K∑
i=1

xi = L;

xi ∈ {0, 1} for any i ∈ [K].

(26)

(P2) max

∑K
i=1 aixi∑K
i=1 bixi

s.t.

K∑
i=1

xi = L;

0 ≤ xi ≤ 1 for any i ∈ [K].

(27)

We first need to prove the following lemma:
Lemma 8 Given any optimal solution of (P2) in (27), it can be converted to the optimal solution in (26) within K steps.
Proof. Assume x(0) is one optimal solution of (P2). If each element in x(0) is either 0 or 1, then it is the optimal solution of
(P1), and we can directly return x(0).

Otherwise, denote
∑K
i=1 aix

(0)
i as A1, and denote

∑K
i=1 bix

(0)
i as A2 (Note that A1, A2 > 0, since ai > 0 ∀i ∈ [K] and

there are at most L − 1 bi’s equaling zero. The number of non-zero xi’s is at least L.). If there exist some fractional elements
in x(0), there are at least two fractional elements in x(0), since L is an integer. Denote two indexes of the fractional element as
m and n, which means that 0 < x

(0)
m , x

(0)
n < 1. Denote ν as a real number s.t. 0 < ν ≤ min{x(0)

m , 1− x(0)
n }. We have that∑

i 6=m,n aix
(0)
i + am(x

(0)
m − ν) + an(x

(0)
n + ν)∑

i6=m,n bix
(0)
i + bm(x

(0)
m − ν) + bn(x

(0)
n + ν)

≤
∑K
i=1 aix

(0)
i∑K

i=1 bix
(0)
i

. (28)



Please note that the two denominators in (28) are both strictly larger than zero. Therefore, (28) implies that

A2(am − an) ≥ A1(bm − bn). (29)

On the other hand, we can obtain for any 0 < ν ≤ min{1− x(0)
m , x

(0)
n }.∑

i 6=m,n aix
(0)
i + am(x

(0)
m + ν) + an(x

(0)
n − ν)∑

i6=m,n bix
(0)
i + bm(x

(0)
m + ν) + bn(x

(0)
n − ν)

≤
∑K
i=1 aix

(0)
i∑K

i=1 bix
(0)
i

,

which implies that
A2(am − an) ≤ A1(bm − bn). (30)

Combining (29) and (30), we have that
A2(am − an) = A1(bm − bn). (31)

We propose two rounding methods to get x(1): (Recall we have assumed that 0 < x
(0)
m , x

(0)
n < 1)

• (R1) Define dm,n = min{x(0)
m , 1− x(0)

n }. x(1)
i = x

(0)
i for any i 6= m,n; x(1)

m = x
(0)
m − dm,n; x(1)

n = x
(0)
n + dm,n.

• (R2) Define d′m,n = min{1− x(0)
m , x

(0)
n }; x(1)

i = x
(0)
i for any i 6= m,n; x(1)

m = x
(0)
m + d′m,n; x(1)

n = x
(0)
n − d′m,n.

We will prove that the x(1) obtained by (R1) from x(0) is the optimal solution of (P2):

1. By Eqn. (31), we know that if am = an, we must have bm = bn; if bm = bn, we must have am = an. That is, if am = an
or bm = bn, x(1) is another optimal solution of (P2). The number of non-integer element in x(1) is strictly smaller than
that of x(0).

2. If am 6= an and bm 6= bn, we can conclude that
am − an
bm − bn

=
A1

A2
. (32)

Thus, ∑K
i=1 aix

(1)
i∑K

i=1 bix
(1)
i

=

∑K
i=1 aix

(0)
i − dm,n(am − an)∑K

i=1 bix
(0)
i − dm,n(bm − bn)

=
A1 − (A1/A2)dm,n(bm − bn)

A2 − dm,n(bm − bn)
=
A1

A2
. (33)

Therefore, x(1) is still the optimal solution of (P2), and the number of non-integer element in x(1) is strictly smaller than
that of x(0).

We can similarly prove that the x(1) obtained by (R2) from x(0) is also the optimal solution of (P2):
Therefore, we can keep adjusting with either (R1) or (R2) (Note (R1) and (R2) can be used alternatively), and get the

sequences

x(0) (R1)−−→
(R2)

x(1) (R1)−−→
(R2)

x(2) (R1)−−→
(R2)
· · ·x(K). (34)

The number of non-integer elements in x(i) is at least one fewer than that of x(i−1) for any i ∈ [τ ], where xτ is the first vector
whose elements are all integer. This process will stop within at most K steps. �

The proof of Lemma 8 is constructive, which shows that: given x(0), assume that x(0) has L1 1’s, L0 0’s. To get an optimal
solution of (P1), we can keep the 1’s in x(0); set any L − L0 elements in x(0) s.t. 0 < x

(0)
i < 1 as 1; and set the left elements

as 0. This is an optimal solution of (P1).
(P2) is a linear fractional programming, which can be efficiently solved. Here we show the method proposed in the Section

4.3.2. of [Boyd and Vandenberghe, 2004]. (P2) can be transformed into

(P3) max aT y

s.t. 0 ≤ yi ≤ z ∀i ∈ [K];

1T y − Lz = 0;

bT y = 1,

z ≥ 0.

(35)

By Interior Point Method, we can solve the optimization problem (P3) in (35) within polynomial time. Denote the optimal
solution of (P3) as y∗ and z∗. It is obvious that z∗ > 0. Thus, the solution of (P2) is y∗/z∗.



C Proof of (8)
The XL(B) described at the beginning of Section 4 is just an order. The complete form of XL(B) is denoted as X̃L(B), which
is shown below:

X̃L(B) = (b 2B

Lµcmin

c+ 1) exp
{
− Bµcmin

2

}
+

1

L(µcmin)2
exp{L(µcmin)2 − 2Bµcmin}. (36)

We will prove the following lemma:

Lemma 9
∑∞
t=TL(B)+1 P{Bt ≥ 0} ≤ X̃L(B).

The proof of Lemma 9 relies on the following fact:
Fact 1 (Lemma 1 of [Flajolet and Jaillet, 2015]) Consider n random variables X1, X2 · · · , Xn with support in [0, 1], if for
any t ∈ [n], E{Xt|X1, · · · , Xt−1} ≥ µ, then P{X1 +X2 + · · ·+Xn ≤ nµ− a} ≤ exp{− 2a2

n } for any a ≥ 0.
We will use two sub steps to prove Lemma 9.
(S1) We prove that for any t ≥ TL(B) + 1, P{Bt ≥ 0} ≤ exp

{
− 2(B − tLµcmin)2/(tL)

}
.

In (S1), temporally let Xc
σ(i),t denote the cost of arm σ(i) at round t, in which σ(i) is the i-th smallest element in It.

Obviously, given i ∈ [L] and t ≥ 1, we have that E[Xc
σ(i),t|{X

c
σ(j),t}j<i ∪ {X

c
σ(j),s}s<t,j∈[L]] ≥ µcmin. Also, we can verify

that for any t ≥ TL(B) + 1, B − tLµcmin ≤ B − (b 2B
Lµcmin

c+ 1)Lµcmin ≤ B − 2B < 0. As a result, we have

P{Bt ≥ 0} = P
{ t∑
s=1

L∑
i=1

Xc
σ(i),t ≤ B

}
= P

{ t∑
s=1

L∑
i=1

Xc
σ(i),t ≤ tLµcmin +B − tLµcmin

}
≤ exp

{
− 2(B − tLµcmin)2

tL

}
, (37)

where the last inequality is obtained by Fact 1.
(S2) Bound

∑∞
t=TL(B)+1 P{Bt ≥ 0}. According to (S1),

∞∑
t=TL(B)+1

P{Bt ≥ 0} ≤
∞∑
l=0

exp
{
− 2(B + lLµcmin)2

2B
µcmin

+ lL

}
B function h(t) = −2(B − tLµcmin)2

tL
decreases w.r.t t ∈ [

B

Lµcmin

,∞)

≤(b 2B

Lµcmin

c+ 1) exp
{
− Bµcmin

2

}
+

∞∑
l=TL(B)+1

exp{−lL(µcmin)2} ≤ X̃L(B).

D Proof of the Upper Bound for ζκ(TL(B))
The proof contains four steps:

1. When κ > 2: We know that lnx < x holds for any x ∈ [1,∞). Therefore,

ζκ(TL(B)) ≤ 1 +

∞∑
t=2

(log2(t) + 1)t−κ ≤ 1 +
1

ln 2

∞∑
t=2

t−(κ−1) +

∞∑
t=2

t−κ

≤ 1 +
1

ln 2

∫ ∞
1

t−(κ−1)dt+

∫ ∞
1

t−κdt ≤ 1

ln 2

1

κ− 2
+

κ

κ− 1
.

(38)

2. When 1 < κ ≤ 2: For any ε > 0, we can verify that ln(x) < xε when x > max{1, ( 1
ε )

1
ε }. This is because that function

xε − ln(x) monotonically increases in [( 1
ε )

1
ε ,∞), and we can verify that ln(1) < 1ε. Given any ε ∈ (0, 1], we know that

1 ≤ ( 1
ε )

1
ε . Therefore,

ζκ(TL(B)) ≤ 1 +

∞∑
t=2

(log2(t) + 1)t−κ ≤ 1 + (
1

ε
)
1
ε

+1 log2(
1

ε
) +

1

ln 2

∞∑
t=2

t−(κ−ε) +

∞∑
t=2

t−κ

≤ 1 + (
1

ε
)
1
ε

+1 log2(
1

ε
) +

1

ln 2

∫ ∞
1

t−(κ−ε)dt+

∫ ∞
1

t−κdt

≤ (
1

ε
)
1
ε

+1 log2(
1

ε
) +

1

ln 2

1

κ− ε− 1
+

1

κ− 1
+ 1.

(39)

By choosing ε = κ−1
2 , (39) can be further written as

ζκ(TL(B)) ≤ (
2

κ− 1
)
κ+1
κ−1 log2(

2

κ− 1
) + (

2

ln 2
+ 1)

1

κ− 1
+ 1.

Case 1 & 2 show that when κ > 1, ζκ(TL(B)) is related to κ only.



3. When κ = 1:

ζκ(TL(B)) =

TL(B)∑
t=1

(log2(t) + 1)t−1 ≤
TL(B)∑
t=1

t−1 + log2(TL(B))

TL(B)∑
t=1

t−1 ≤ O(ln2(TL(B))) = O(ln2 B).

4. When 0 < κ < 1:

ζκ(TL(B)) =

TL(B)∑
t=1

(log2(t) + 1)t−κ ≤ ln TL(B)

ln 2

T 1−κ
L (B)

1− κ +
T 1−κ
L (B)

1− κ +O(1) = O
(B1−κ lnB

1− κ
)
.

E Detailed Regret Analysis of the MRCB Policy
E.1 Derivations of the Step 1 in the Proof for Theorem 3
For any algorithm under the (semi-)bandit setting, the decision at round t (i.e., It) should only depends on Ht−1. Given any
algorithm w, denote the expected reward before the budget runs out as R̃w. We have that

R̃w = E
∞∑
t=1

Σ(r(t), It)I{Bt ≥ 0, It = I∗}+ E
∞∑
t=1

Σ(r(t), It)I{Bt ≥ 0, It ∈ Cs}

≥ E
∞∑
t=1

Σ(r(t), It)I{Bt−1 ≥ L, It = I∗}+ E
∞∑
t=1

Σ(r(t), It)I{Bt−1 ≥ L, It ∈ Cs}

= E
∞∑
t=1

%∗LΣ(c(t), It)I{Bt−1 ≥ L, It = I∗}+ E
∞∑
t=1

%∗LΣ(c(t), It)I{Bt−1 ≥ L, It ∈ Cs} (40)

− E
∞∑
t=1

(%∗LΣ(c(t), It)−Σ(µr, It))I{Bt−1 ≥ L, It ∈ Cs} (41)

= E
∞∑
t=1

%∗LΣ(c(t), It)I{Bt−1 ≥ L} − E
∞∑
t=1

(%∗LΣ(c(t), It)−Σ(µc, It))I{Bt−1 ≥ L, It ∈ Cs}

≥ (B − L)%∗L − E
∞∑
t=1

(%∗LΣ(c(t), It)−Σ(µr, It))I{Bt−1 ≥ L, It ∈ Cs}.

In the above derivations, the first term in (40) can be obtained, because:

E
∞∑
t=1

Σ(r(t), It)I{Bt−1 ≥ L, It = I∗} = E
∞∑
t=1

Σ(r(t), I∗)I{Bt−1 ≥ L, It = I∗} =

∞∑
t=1

E{Σ(r(t), I∗)}P{Bt−1 ≥ L, It = I∗}

=

∞∑
t=1

Σ(µr, I∗)P{Bt−1 ≥ L, It = I∗} =

∞∑
t=1

%∗LΣ(µc, I∗)P{Bt−1 ≥ L, It = I∗} =

∞∑
t=1

%∗LE{Σ(c(t), I∗)}P{Bt−1 ≥ L, It = I∗}

=E
∞∑
t=1

%∗LΣ(c(t), I∗)I{Bt−1 ≥ L, It = I∗} = E
∞∑
t=1

%∗LΣ(c(t), It)I{Bt−1 ≥ L, It = I∗}, (42)

and (41) can be obtained because

E
∞∑
t=1

Σ(r(t), It)I{Bt−1 ≥ L, It ∈ Cs} = E
∞∑
t=1

∑
I∈Cs

Σ(r(t), I)I{Bt−1 ≥ L, It = I} =
∞∑
t=1

∑
I∈Cs

E{Σ(r(t), I)}P{Bt−1 ≥ L, It = I}

=

∞∑
t=1

∑
I∈Cs

Σ(µr, I)P{Bt−1 ≥ L, It = I} = E
∞∑
t=1

Σ(µr, It)I{Bt−1 ≥ L, It ∈ Cs}.

As a result,

Regret ≤ R∗ −
(

(B − L)%∗L − E
∞∑
t=1

(%∗LΣ(c(t), It)−Σ(µr, It))I{Bt−1 ≥ L, It ∈ Cs}
)

≤ E
∞∑
t=1

(%∗LΣ(c(t), It)−Σ(µr, It))I{Bt−1 ≥ L, It ∈ Cs}+ 2L%∗L. B By Lemma 1, we know R∗ ≤ (B + L)%∗L

(43)



(43) can be further decomposed as

Regret ≤ E
TL(B)∑
t=1

(%∗LΣ(c(t), It)−Σ(µr, It))I{Bt−1 ≥ L, It ∈ Cs}+ E
∞∑

t=TL(B)+1

(%∗LΣ(c(t), It)−Σ(µr, It))I{Bt−1 ≥ L, It ∈ Cs}+ 2L%∗L

≤ E
TL(B)∑
t=1

(%∗LΣ(c(t), It)−Σ(µr, It))I{Bt−1 ≥ L, It ∈ Cs}+ E
∞∑

t=TL(B)+1

L%∗LI{Bt ≥ 0}+ 2L%∗L

≤ E
TL(B)∑
t=1

(%∗LΣ(c(t), It)−Σ(µr, It))I{Bt−1 ≥ L, It ∈ Cs}+ L%∗LXL(B) + 2L%∗L B According to Lemma 9

≤
TL(B)∑
t=1

∑
I∈Cs

(%∗LE{Σ(c(t), I)} −Σ(µr, I))EI{Bt−1 ≥ L, It = I}+ L%∗LXL(B) + 2L%∗L B Similar to the derivations in (42).

= E
TL(B)∑
t=1

∑
I∈Cs

(%∗LΣ(µc, I)−Σ(µr, I))I{It = I}+ L%∗LXL(B) + 2L%∗L B Similar to the derivations in (42).

=
∑
I∈Cs

(%∗LΣ(µc, I)−Σ(µr, I))E{N I}+ L%∗LXL(B) + 2L%∗L =
∑
I∈Cs

∆IE{N I}+ L%∗LXL(B) + 2L%∗L.

E.2 Derivations of the Step 2 in the Proof for Theorem 3
Define a counter Ni,t for any i ∈ [K] as follows (the same as the one in [Chen et al., 2013]): If a suboptimal super arm I
is pulled at round t, let i = arg minj∈I Nj,t−1, and Ni,t = Ni,t−1 + 1. Ni,0 = 0 for any i ∈ [K]. If arg minj∈I Nj,t−1 is
not unique, randomly pick one from the smallest counters and increase it. According to Eqn.(18), Eqn.(28) in Appendix A of
[Chen et al., 2013] (, which is in the supplementary document), we can get that for any i ∈ [K],

Ri ≤2∆i
max + (%∗L + 1)2 2L2(

√
κ+ 1)2 ln[

√
KL−1TL(B)]

∆i
min

− (%∗L + 1)2L
2(
√
κ+ 1)2 ln[

√
KL−1TL(B)]

∆i
max

+

+ E
TL(B)∑
t=t0

Ki∑
j=1

∆i,jI{It = S(i, j), Ni,t > Ni,t−1, Ni,t−1 > bfi,jc}.

The 2∆i
max in the above inequalities is obtained because the suboptimal arms in Si are pulled at most twice in the first t0 − 1

rounds. For the update rules of the counters, I{It = S(i, j), Ni,t > Ni,t−1, Ni,t−1 > bfi,jc} implies I{It = S(i, j),∀k ∈
S(i, j), Nk,t−1 > bfi,jc}, and further, I{It = S(i, j),∀k ∈ S(i, j), Tk(t− 1) > bfi,jc}

E.3 Derivations of the Step 3 in the Proof for Theorem 3
Proof of (16) in Step 3-1 For ease of reference, Xk,l denotes the l-th observations of the reward of the k-th arm for any
k ∈ [K]. Xk,l’s are independent for different l. X̄k,s = 1

s

∑s
l=1Xk,l. We can get that for any k ∈ [K],

P{µ̃rk(t) ≤ µrk} ≤ P
{
µ̂rk(t) ≤ µrk −

√
κ

ln(t− 1)

Tk(t− 1)

}
≤P
{
∃s ∈ {1, 2, · · · , t− 1} s.t. X̄k,s ≤ µrk −

√
κ

ln(t− 1)

s

}
B Tk(t− 1) cannot be zero, since each arm is pulled in the initial phase.

=P
{
∃s ∈ {1, 2, · · · , t− 1} s.t.

s∑
l=1

(Xk,l − µrk) ≤ −
√
κs ln(t− 1)

}

≤
b ln(t−1)

ln 2
c∑

h=0

P
{
∃s ∈ (

1

2
)h+1(t− 1) < s ≤ (

1

2
)h(t− 1) s.t.

s∑
l=1

(Xk,l − µrk) ≤ −
√
κ(

1

2
)h+1(t− 1) ln(t− 1)

}

≤4
b ln(t−1)

ln(2)
c∑

h=0

(
1

t− 1
)κ ≤

(
log2(t− 1) + 1

)
(

1

t− 1
)κ, (44)

in which the “≤” marked with 4 is obtained by Hoeffing’s maximal inequality [Bubeck, 2010] (in Page 30). Similarly, we also
have

P{µ̃ck ≥ µck} ≤ P
{
µ̂ck(t) ≥ µck +

√
κ

ln(t− 1)

Tk(t− 1)

}
≤
(

log2(t− 1) + 1
)

(
1

t− 1
)κ;

By union bound, we can obtain that P{Qo(t)} ≤ 2L
(

log2(t− 1) + 1
)
(t− 1)−κ. �



Detailed Proofs of Step 3-2 We give detailed proofs to bound (15). Assume It = S(i, j) for some i ∈ B and j ∈ [Ki].
B First we prove why P{Ui,j(t),Qo(t)} can be bounded by (17): if Qo(t) is true, we know that

Σ(µ̃r(t), I∗)

Σ(µ̃c(t), I∗)
≥ Σ(µr(t), I∗)

Σ(µc(t), I∗)
.

Since super arm It is pulled, we have that

Σ(µ̃r(t), It)

Σ(µ̃c(t), It)
≥ Σ(µ̃r(t), I∗)

Σ(µ̃c(t), I∗)
≥ Σ(µr(t), I∗)

Σ(µc(t), I∗)
. (45)

If for any k ∈ It = S(i, j), we have µ̃rk(t) < µrk + δi,j

L and µ̃ck(t) > µck − δi,j

L , we know that

Σ(µ̃r(t), It)

Σ(µ̃c(t), It)
<
Σ(µr(t), It) + δi,j

Σ(µc(t), It)− δi,j
=
Σ(µr(t), I∗)

Σ(µc(t), I∗)
≤ Σ(µ̃r(t), I∗)

Σ(µ̃c(t), I∗)
. (46)

(45) and (46) are contradictions. That is, at round t, {Ui,j(t),Qo(t)} implies that the following event is true:{ ⋃
k∈S(i,j)

{µ̃rk(t) ≥ µrk +
δi,j

L
, Tk(t− 1) > bfi,jc} ∪

⋃
k∈S(i,j)

{µ̃ck(t) ≤ µck −
δi,j

L
, Tk(t− 1) > bfi,jc}

}
. (47)

Thus, P{Ui,j(t),Qo(t)} can be bounded by (17).
BWe will prove the two inequalities below (17). Again, temporally let {Xk,l}∞l=1 denote the independent reward observations
from arm k ∈ [K], and let X̄k,s denote the average of the s independent observations, i.e, X̄k,s = 1

s

∑s
l=1Xk,l. For any

k ∈ S(i, j), we have that

P{µ̃rk(t) ≥ µrk +
δi,j

L
, Tk(t− 1) > bfi,jc}

≤P{min{µ̂rk(t) + Eκk,t, 1} ≥ µrk +
δi,j

L
, Tk(t− 1) > bfi,jc}

≤P{µ̂rk(t) + Eκk,t ≥ µrk +
δi,j

L
, Tk(t− 1) > bfi,jc} ≤4 P{µ̂rk(t) ≥ µrk +

1√
κ+ 1

δi,j

L
, Tk(t− 1) > bfi,jc} (48)

≤
TL(B)∑

l=bfi,jc+1

P{X̄k,l ≥ µrk +
1√
κ+ 1

δi,j

L
} ≤ TL(B) exp

{
− 2 ln[

√
KL−1TL(B)]

}
B According to Hoeffding’s inequality

≤ 1

KL−1TL(B)
. (49)

Note that the inequality marked with 4 in (48) hold because

δi,j

L
− Eκi,t ≥

δi,j

L
−
√
κ

(δi,j)2 ln TL(B)

L2(
√
κ+ 1)2 ln[

√
KL−1TL(B)]

≥ 1√
κ+ 1

δi,j

L
.

Similarly, we have that for any k ∈ S(i, j),

P{µ̃ck(t) ≤ µck −
δi,j

L
, Tk(t− 1) > bfi,jc} ≤

1

KL−1TL(B)
. (50)

Thus, according to (49), (50) and union bound, we have that (17) can be bounded as

P{Ui,j(t),Qo(t)} ≤
2L

KL−1TL(B)
. (51)

Accordingly,

E
TL(B)∑
t=1

Ki∑
j=1

∆i,jI{Ui,j(t),Qo(t)} ≤ ∆i
max

TL(B)∑
t=1

Ki∑
j=1

P{Ui,j(t),Qo(t)} ≤ 2L∆i
max. (52)

F Proofs about the Lower Bound
The proof for Theorem 4 consists of three main steps:



F.1 Proof of the Non-Empty of the Constraint Set in (19)
Given a suboptimal super arm S(i, j) where i /∈ I∗, j ∈ [Ki], to make µri + δi,j(γ) < 1 and µci − γδi,j(γ) > 0, we must have

µri +
∆i,j

γ%∗L + 1
< 1;

µci −
γ∆i,j

γ%∗L + 1
> 0.

(53)

Define the solution set of (53) as Di,j . If µri + ∆i,j ≤ 1 or µci − ∆i,j

%∗L
≥ 0, Di,j is not empty. Otherwise, to make Di,j

non-empty, γ has to satisfy that γ′′(i, j) < γ < γ′(i, j), where

γ′′(i, j) = (
∆i,j

1− µri
− 1)

Σ(µc, I∗)

Σ(µr, I∗)
; γ′(i, j) =

µci
∆i,j − µci%∗L

. (54)

Then we only need to ensure that γ′′(i, j) < γ′(i, j), which is equivalent to

Σ(µr, I∗)

Σ(µc, I∗)
<
Σ(µr, S(i, j)) + 1− µri
Σ(µc, S(i, j))− µci

. (55)

Given any fixed k ∈ I∗, let I\k denote {I∗\{k}} ∪ {i}. It is obvious that I\k = S(i, j′) for some j′ ∈ [Ki]. Next we will use
two steps to discuss whether Di,j′ is empty or not.

1. When µri + ∆i,j′ ≤ 1 or µci − ∆i,j′

%∗L
≥ 0: Di,j′ is certainly non-empty. Correspondingly, we can find the proper γk s.t.

Σ(µr, I∗)

Σ(µc, I∗)
=

Σ(µr, I\k) + δi,j
′
(γk)

Σ(µc, I\k)− γkδi,j′(γk)
; δi,j

′
(γk) < 1− µri ; γkδ

i,j′(γk) < µci . (56)

2. When µri + ∆i,j′ > 1 and µci − ∆i,j′

%∗L
< 0: We can verify that

Σ(µr, I∗) =
∑

l∈I∗\{k}

µrl + µrk <
∑

l∈I∗\{k}

µrl + [µri + (1− µri )] = Σ(µr, I\k) + 1− µri ;

Σ(µc, I∗) =
∑

l∈I∗\{k}

µcl + µck >
∑

l∈I∗\{k}

µcl + [µci − µci ] = Σ(µc, I\k)− µci .

Therefore, (55) holds for the super arm I\k. Correspondingly, we can also find the proper γk satisfying (56).

Since δimin(γ) ≤ δi,j(γ) for any j ∈ [Ki], we have that (56) implies that δimin(γk) < 1−µri and γkδimin(γk) < µci , from which
we know that the constraint set of (19) not empty.

F.2 Proof of the Existence of the Optimal Solution and the Optimal Value of (19)
Assume the i /∈ I∗ is fixed in this section. Let Li(γ) denote kl(µri , µ

r
i + δimin(γ)) + kl(µci , µ

c
i − γδimin(γ)). Let Di denote the

constraint set of (19). Throughout this section, let super arm I denote S(i,Ki). Remind that we have already assumed that
∆i,1 ≥ ∆i,2 ≥ · · ·∆i,Ki . Minimizing Li(γ) w.r.t γ ∈ Di is equivalent to maximizing

L̃i(γ) = µri ln
(
µri +

∆i
min

γ%∗L + 1

)
+ (1− µri ) ln

(
1− µri −

∆i
min

γ%∗L + 1

)
+ µci ln

(
µci −

γ∆i
min

γ%∗L + 1

)
+ (1− µci ) ln

(
1− µci +

γ∆i
min

γ%∗L + 1

) (57)

w.r.t γ ∈ Di. The first order derivative of L̃i(γ) w.r.t γ is:

∂L̃i(γ)

∂γ
=

∆i
min

(γ%∗L + 1)2

{
− µri %

∗
L

µri +
∆imin
γ%∗
L

+1

+
(1− µri )%∗L

1− µri −
∆imin
γ%∗
L

+1

− µci

µci −
γ∆imin
γ%∗
L

+1

+
1− µci

1− µci +
γ∆imin
γ%∗
L

+1

}
. (58)

In the following context, let W (γ) denote terms within {·} of (58). One can easily verify that W (γ) decreases w.r.t γ ∈ R,
thus, decreases w.r.t γ ∈ Di. According to the derivations in Appendix F.1, we know Di is a continuous region.

The proof of the existence of the optimal solution is divided into the following four cases:



1. When µri + ∆i
min ≤ 1 and µci −

∆i
min

%∗L
≤ 0: We can verify that

lim
γ→0+

{
− µri %

∗
L

µri +
∆imin
γ%∗
L

+1

+
(1− µri )%∗L

1− µri −
∆imin
γ%∗
L

+1

}
= − µri %

∗
L

µri + ∆i
min

+
(1− µri )%∗L

1− µri −∆i
min

=
∆i

min%
∗
L

(µri + ∆i
min)(1− µri −∆i

min)
> 0. (59)

Please note that in the boundary case that µri + ∆i
min = 1, (59) will tend to +∞, which is still positive.

Let γ′ denote µci − (γ′∆i
min)/(γ′%∗L + 1) = 0. Note that γ′ can be +∞. We have that limγ→0+

W (γ) > 0 and

limγ→γ′−W (γ) < 0. According to intermediate value theorem 6, there exists a unique γ∗ s.t. ∂L̃i(γ)
∂γ

∣∣
γ=γ∗

= 0. The
γ∗ is the optimal solution of (19).

2. When µri + ∆i
min ≤ 1 and µci −

∆i
min

%∗L
> 0: First we have that limγ→0+

W (γ) > 0. Since

lim
γ→∞

{
− µci

µci −
γ∆imin
γ%∗
L

+1

+
1− µci

1− µci +
γ∆imin
γ%∗
L

+1

}
= − µci

µci −
∆imin
%∗
L

+
1− µci

1− µci +
∆imin
%∗
L

= − ∆i
min

%∗L(µci −
∆imin
%∗
L

)(1− µci +
∆imin
%∗
L

)
< 0,

(60)

we know limγ→∞W (γ) < 0. According to intermediate value theorem, there exists a unique γ∗ s.t. ∂L̃i(γ)
∂γ

∣∣
γ=γ∗

= 0.
The γ∗ is the optimal solution of (19).

3. When µci−
∆i

min

%∗L
≥ 0 and µri+∆i

min > 1: Let γ′′ denote µri+∆i
min/(γ

′′%∗L+1) = 1. It is obvious that limγ→γ′′+ W (γ) > 0

and limγ→∞W (γ) < 0. Again, using intermediate value theorem, there exists a unique γ∗ s.t. ∂L̃i(γ)
∂γ

∣∣
γ=γ∗

= 0. The γ∗

is the optimal solution of (19).

4. When µci −
∆i

min

%∗L
< 0 and µri + ∆i

min > 1: According to the above derivations, we have that limγ→γ′−W (γ) < 0 and

limγ→γ′′+ W (γ) > 0. According to intermediate value theorem, there exists a γ∗ s.t. ∂L̃i(γ)
∂γ

∣∣
γ=γ∗

= 0. The γ∗ is the
unique optimal solution of (19).

F.3 Proof of the Lower Bound for Bernoulli MP-BMABs
In this section, let Γi denote Γwi (B/L), and let ΓI denote ΓwI (B/L) for ease of reference. We will prove the lower bound of
Γi for the any given i /∈ I∗. Denote the optimal solution of (19) as γ∗. We have that µri + δimin(γ∗) < 1, µci − γ∗δimin(γ∗) > 0
and γ∗ ≥ 0. For any ρ > 0, we can always find an xr and an xc such that

kl(µri , µ
r
i + δimin(γ∗) + xr) < (1 + ρ)kl(µri , µ

r
i + δimin(γ∗)), and xr > 0, µri + δimin(γ∗) + xr < 1;

kl(µci , µ
c
i − γ∗δimin(γ∗)− xc) < (1 + ρ)kl(µci , µ

c
i − γ∗δimin(γ∗)), and xc > 0, µci − γ∗δimin(γ∗)− xc > 0.

Define χr = µri + δimin(γ∗) + xr and χc = µci − γ∗δimin(γ∗) − xc. Define D̃i = kl(µri , χ
r) + kl(µci , χ

c). Define a modified
bandit as follows: For any arm j ∈ [K]\{i}, the reward and cost distributions are Bern(µrj) and Bern(µcj); The reward and cost
distributions for arm i are Bern(χr) and Bern(χc), where Bern(p) represents the Bernoulli distribution with success probability
p ∈ (0, 1). We use the notation PM and EM when we integrate with respect to the original bandit. And we use the notation
PM ′ and EM ′ when we integrate with respect to the modified bandit. Please note that the best super arm of the modified bandit
(denoted as Ĩ∗) is different from that of the original one7, because

Σ(µr, S(i,Ki)\{i}) + χr

Σ(µc, S(i,Ki)\{i}) + χc
>

Σ(µr, S(i,Ki)) + δimin(γ∗)

Σ(µc, S(i,Ki))− γ∗δimin(γ∗)
=
Σ(µr, I∗)

Σ(µc, I∗)
. (61)

Without the modified arm i, the maximum achievable ratio is %∗L. Arm i must belong to Ĩ∗. Thus, if arm i is not pulled,
the suboptimal super arms are certainly pulled. Therefore, according to the assumption of the policy in Theorem 4, we have

6See http://en.wikipedia.org/wiki/Intermediate value theorem for a quick introduction.
7Please note that if there are more than one “best super arm” with the modified arm i, put these super arms in a set Õ∗i . Denote the original

bandit with parameters µri and µci ∀i ∈ [K] as B0. Denote the “modified bandit” obtained by modifying arm i from B0 as B′i(B0) (i.e.,
obtained by the method listed under the title of Subsection F.3). Given a super arm sa ∈ Õ∗i , we can find a group of arms Y s.t. Y ⊂ sa
but Y does not belong to x for any x ∈ Õ∗i \{sa}. Construct a K-armed bandit derived from B0 as follows (denoted as Bsa

z (B0)): for
any i ∈ [K]\Y , the rewards and costs of arm i follow Bern(µri ) and Bern(µci ) resp.; for any j ∈ Y , the rewards and costs of arm j follow
Bern(µrj + z) and Bern(µcj − z) resp. where z > 0. When z is very close to zero, (1) the I∗’s obtained from both B0 and Bsa

z (B0) are the
same and unique; (2) there is only one Ĩ∗ obtained from B′i(B

sa
z (B0)); (3) the Ĩ∗ obtained from B′i(B

sa
z (B0)) belongs to the set formed

by the Ĩ∗ from B′i(B0). By letting z → 0, we can remove the effect brought by z.



EM ′
{

(B/L)− Γi
}
≤
∑
I∈Cs EM ′{ΓI} = o((B/L)a). On the other hand, we can obtain that with 0 < a < ρ,

EM′{B/L− Γi} = EM′
{

(B/L− Γi)|Γi <
(1− ρ) ln(B/L)

D̃i

}
PM′

{
Γi <

(1− ρ) ln(B/L)

D̃i

}
+ EM′

{
(B/L− Γi)|Γi ≥

(1− ρ) ln(B/L)

D̃i

}
PM′

{
Γi ≥

(1− ρ) ln(B/L)

D̃i

}
≥ EM′

{
(B/L− Γi)|Γi <

(1− ρ) ln(B/L)

D̃i

}
PM′

{
Γi <

(1− ρ) ln(B/L)

D̃i

}
≥
(
B/L− (1− ρ) ln(B/L)

D̃i

)
PM′

{
Γi <

(1− ρ) ln(B/L)

D̃i

}
.

Accordingly, we can obtain that

PM′
{
Γi <

(1− ρ) ln(B/L)

D̃i

}
= o((B/L)a−1). (62)

Let {Xr
i,t}t∈[B/L] and {Xc

i,t}t∈[B/L] denote the successive reward and cost observations from the arm i. Define

L (m) =

m∑
t=1

ln
µriX

r
i,t + (1− µri )(1−Xr

i,t)

χrXr
i,t + (1− χr)(1−Xr

i,t)
+

m∑
t=1

ln
µciX

c
i,t + (1− µci )(1−Xc

i,t)

χcXc
i,t + (1− χc)(1−Xc

i,t)
.

An important property is: For any event A in the σ-algebra generated by {Xr
j,t}j∈[K],t∈[B/L] and {Xc

j,t}j∈[K],t∈[B/L], the
following change-of-measure identity holds:8

PM′{A} = EM{I{A} exp{−L (Γi)}}. (63)

According to (62), we know that PM ′(ξ) = o((B/L)a−1), where

ξ =
{
Γi <

(1− ρ) ln(B/L)

D̃i
and L (Γi) ≤ (1− a) ln(B/L)

}
. (64)

Given n1, n2, · · · , nK s.t.
∑K
j=1 nj = B, 0 ≤ nj ≤ B/L ∀j ∈ [K], we have

PM′{Γ1 = n1, Γ2 = n2, · · · , ΓK = nK ,L (Γi) ≤ (1− a) ln(B/L)}
=EM{I{Γ1 = n1, Γ2 = n2, · · · , ΓK = nK ,L (Γi) ≤ (1− a) ln(B/L)} exp{−L (Γi)}}
≥ exp(−(1− a) ln(B/L))PM{Γ1 = n1, Γ2 = n2, · · · , ΓK = nK ,L (Γi) ≤ (1− a) ln(B/L)}.

(65)

Since
ξ =

⋃
∑K
j=1 nj=B;Γi<

(1−ρ) ln(B/L)

D̃i

{
Γ1 = n1, Γ2 = n2, · · · , ΓK = nK ,L (Γi) ≤ (1− a) ln(B/L)

}
, (66)

we know that ξ can be decomposed into a group of the disjoint events. Therefore,

PM (ξ) ≤ (B/L)1−aPM′(ξ)→0 as B →∞. (67)

By the strong law of large numbers, L (m)
m → D̃i > 0, therefore, according to Lemma 10.5 in [Bubeck, 2010], as m→∞

max
l≤m

L (l)

m
→ D̃i a.s. [PM ]. (68)

Since 1− a > 1− ρ, it then follows that

PM
{

L (l) > (1− a) ln(B/L) for some l <
(1− ρ) ln(B/L)

D̃i

}
→ 0 (69)

as B →∞. Therefore,

lim
B→∞

PM
{
Γi <

(1− ρ) ln(B/L)

D̃i

}
= lim
B→∞

PM
{
Γi <

(1− ρ) ln(B/L)

D̃i
,L (Γi) > (1− a) ln(B/L)

}
+ lim
B→∞

PM{ξ} = lim
B→∞

PM{ξ} = 0.

8Please refer to Eqn. (2.10) of [Bubeck and Cesa-Bianchi, 2012], or Eqn. (2.6) of [Lai and Robbins, 1985] for more details. We have
already assumed that the rewards and costs are independent, i.e., their joint distributions can be written in the product form. Therefore, we
can safely use (63).



As a result, we have

lim
B→∞

PM
{
Γi <

1− ρ
1 + ρ

ln(B/L)

L∗i

}
≤ lim
B→∞

PM
{
Γi <

(1− ρ) ln(B/L)

D̃i

}
= 0. (70)

Therefore, by replacing 1−ρ
1+ρ with 1− ε, we can obtain Theorem 4. By letting ε→ 0, we get the second claim.

Next we will prove the regret stated in the words below Theorem 4. The proof consists of three steps:
(S1) We will prove that Regret ≥

∑
I∈Cs E{ΓI(B/L)}∆I − 2L%∗L.

Proof : Obviously, the expected reward ofMg is a lower bound for R∗. Similar to the derivations in Section E.1, we have

Regret ≥ (B − L)%∗L − E
∞∑
t=1

∑
I∈CK

L

Σ(r(t), I)I{Bt ≥ 0, It = I} ≥ (B − L)%∗L − E
∞∑
t=1

∑
I∈CK

L

Σ(r(t), I)I{Bt−1 ≥ 0, It = I}

≥ (B − L)%∗L − E
∞∑
t=1

∑
I∈CK

L

Σ(µr, I)I{Bt−1 ≥ 0, It = I}

≥ E
∞∑
t=1

∑
I∈CK

L

%∗LΣ(c(t), I)I{Bt−1 ≥ 0, It = I} − 2L%∗L − E
∞∑
t=1

∑
I∈CK

L

Σ(µr, I)I{Bt−1 ≥ 0, It = I} B By (25)

= E
∞∑
t=1

∑
I∈Cs

∆II{Bt ≥ 0, It = I} − 2L%∗L

≥ E
B/L∑
t=1

∑
I∈Cs

∆II{It = I} − 2L%∗L B The budget cannot run out at the first B/L rounds.

≥
∑
I∈Cs

E{ΓI(B/L)}∆I − 2L%∗L. B ΓI(T ) represent the pulling number of super arm I at the first T rounds. �

(71)

(S2) We will prove that
∑
I∈Cs E{ΓI(B/L)}∆I ≥

∑
i/∈I∗ E{Γi(B/L)}∆i

min.

Proof. For any I ∈ Cs, denote the element in I as I = {i∗1, i∗2, · · · , i∗m, i1, i2, · · · , in}, where i∗k ∈ I∗ for any k ∈ [m], ik /∈ I∗
for any k ∈ [n] and m + n = L. Assume I∗\I = {i∗m+1, i

∗
m+2, · · · , i∗m+n}. Temporally define the following super arms:

SIk = I∗ ∪ {ik}\{i∗m+k} for any k ∈ [n]. Since

∆I =
[ m∑
k=1

µci∗
k

+

n∑
k=1

µcik

]
%∗L −

[ m∑
k=1

µri∗
k

+

n∑
k=1

µrik

]
n∑
k=1

∆SIk =
[ n∑
k=1

µcik +

m∑
k=1

µci∗
k

+ (n− 1)Σ(µc, I∗)
]
%∗L −

[ n∑
k=1

µrik +

m∑
k=1

µri∗
k

+ (n− 1)Σ(µr, I∗)
]
,

we can verify that ∆I =
∑n
k=1 ∆SIk . Please also note that for each super arm SIk , there is only one element in I\I∗.

Accordingly,

∑
I∈Cs

ΓI(B/L)∆I =
∑
I∈Cs

ΓI(B/L)

|I\I∗|∑
k=1

∆SIk ≥
∑
I∈Cs

ΓI(B/L)
∑
i∈I\I∗

∆i
min =

∑
I∈Cs

∑
i/∈I∗

ΓI(B/L)∆i
minI{i ∈ I} =

∑
i/∈I∗

Γi(B/L)∆i
min.

(S3) According to (S1) and (S2), we have that the regret is lower bound by Ω(
∑
i/∈I∗ Γi(B/L)∆i

min), which can be further
written as Ω(

∑
i/∈I∗(∆

i
min/L∗i ) ln(B/L)).

G Omitted Proofs for Single-Play BMAB
G.1 Proof of the Example 5
By setting κ = 2, the coefficient of arm i before lnB in Theorem 3 is

(%∗L + 1)2L2(
√
κ+ 1)2(2/∆i

min − 1/∆i
max) ≤ (

√
2 + 1)2(

1− p
p

+ 1)2L2 2

∆i
min

≤ 12L2

p2∆i
min

. (72)

For the lower bound, we know that γ = 1 belongs to the constraint in (19) for any i /∈ I∗, because

µri + δimin(1) ≤ 1− p+
p/2

%∗L + 1
< 1− p+

p

2
= 1− p

2
< 1; and µci − δimin(1) ≥ p− p/2

%∗L + 1
> p− p

2
> 0.



Thus, according to the fact that

2(x− y)2 ≤ kl(x, y) ≤ (x− y)2

y(1− y)
, for any x, y ∈ (0, 1), (73)

we have
kl(µri , µ

r
i + δimin(1)) + kl(µci , µ

c
i − δimin(1))

≤ [δimin(1)]2

(µri + δimin(1))[1− (µri + δimin(1))]
+

[δimin(1)]2

(µci − δimin(1))[1− (µci − δimin(1))]
=

4[δimin(1)]2

p2
.

(74)

As a result, we have that ∑
i/∈I∗

∆i
min

L∗i
≥
∑
i/∈I∗

p2∆i
min

4[δimin(1)]2
=
∑
i/∈I∗

p2(%∗L + 1)2

4∆i
min

≥
∑
i/∈I∗

p2

4∆i
min

.

G.2 Discussion for SP-BMAB
Discussions We discuss the upper bound in Corollary 6 and lower bound Corollary 7 like those for MP-BMAB by the examples.
By setting κ = 2, the regret of MRCB for SP-BMAB is still O(lnB). For ease of reference, denote the upper bound and lower
bound as O(

∑
i/∈I∗ oi lnB) and Ω(

∑
i/∈I∗ ωi lnB) respectively. Similar to the UCB-based policies for conventional MABs

(without budget constraints), our MRCB cannot match the lower bound perfectly, i.e., oi > ωi.
Like Example 5, the following example shows that o in the upper bound of MRCB and ω in the lower bound share similar

trends.

Example 10 We study the relationship between the regret and the ratio gap ∆i. Suppose p ∈ (0, 0.5) and consider a Bernoulli
bandit with µri , µ

c
i ∈ [p, 1− p], ∆i < p/2, for all i ∈ [K]. In this case, we have that oi = 1/(p2∆i) and ωi = p2/(∆i). That

is, the coefficients of lnB in both the upper and lower bounds of the regret are linear to
∑
i/∈I∗(1/∆

i).

Proof that MRCB has smaller regret bound than UCB-BV1 The constant in the regret bound of UCB-BV1 [Ding et al.,
2013] before lnB is at least:

%∗1
∑
i 6=i∗

(2 + 2
µcmin

+ ∆̃i

∆̃iµcmin

)2

+
∑

i:µri<µ
r
i∗

(µri∗ − µ
r
i )
(2 + 2

µcmin
+ ∆̃i

∆̃iµcmin

)
, (75)

where ∆̃i = %∗1 −
µri
µci
> 0 for any i 6= i∗.

Both the two terms in (75) are larger than zero. We have the following facts:

1. We can find the proper κ > 1 s.t. (2 + 2
µcmin

+ ∆̃i)
2 > (1 + κ)2(1 + %∗1)2, since 1

µcmin
> %∗1 and ∆̃i > 0.

2. %∗1
(µcmin∆̃i)2

> 1
∆i .

Therefore, by choosing proper κ, the regret bound of MRCB outperforms UCB-BV1.
Similar discussions could be applied to the UCB-BV2 in [Ding et al., 2013].

H Supplemental for Experiments
H.1 Parameters for the Distributions
The parameters for 50-armed distributions in Section 6 are shown in Figure 2 and 3. For the 10-armed setting, we use the first 10
arms. We generate random variables using std::discrete distribution (for multinomial distributions) and std:: Beta distribution
(for beta distributions). Each line in Figure 2 and 3 represent the parameters for an arm.

For multinomial distributions, each line in Figure 2 is of the form ArmID (α0, α1, α2, α3, α4, α5, β0, β1, β2, β3, β4, β5),
which represents that:

P{rArmID(t) = 0.2j} =
αj∑5
k=0 αk

; P{cArmID(t) = 0.2j} =
βj∑5
k=0 βk

, ∀j ∈ {0, 1, 2, 3, 4, 5}. (76)

For beta distributions, each line in Figure 2 is of the form ArmID (αr, βr, αc, βc), which represents that the reward distribu-
tion of ArmID is Beta(αr,βr) and the cost distribution of ArmID is Beta(αc,βc).

H.2 Additional Experiments



(a) Arm 1 to Arm 13 (b) Arm 14 to Arm 26 (c) Arm 27 to Arm 39 (d) Arm 40 to Arm 50

Figure 2: Parameters for the Multinomial Distribution

(a) Arm 1 to Arm 13 (b) Arm 14 to Arm 26 (c) Arm 27 to Arm 39 (d) Arm 40 to Arm 50

Figure 3: Parameters for the Beta Distribution
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(a) Multinomial, K = 50, L = 1

0 1 2 3 4 5

x 10
4

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Budget

R
eg

re
t

 

 

ε-first
KUBE
BTS
MRCB

(b) Bernoulli, K = 50, L = 1
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(c) Beta, K = 50, L = 1
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(d) Multinomial, K = 50, L = 3
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(e) Bernoulli, K = 50, L = 3
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(f) Beta, K = 50, L = 3
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(g) Multinomial, K = 50, L = 5

0 1 2 3 4 5

x 10
4

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Budget

R
eg

re
t

 

 

ε-first
KUBE
BTS
MRCB

(h) Bernoulli, K = 50, L = 5
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(i) Beta, K = 50, L = 5
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(j) Multinomial, K = 50, L = 10
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(k) Bernoulli, K = 50, L = 10
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(l) Beta, K = 50, L = 10

Figure 4: We carry out additional experiments. The parameters are randomly generated. Each experiment is individually
repeated for 100 times. The average regrets and standard derivations are reported. We can see that our MRCB performs the
best.


