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ABSTRACT

We investigate possible improvements in online fraud detec-
tion based on information about users and their interactions.
We develop, apply, and evaluate our methods in the context
of Skype. Specifically, in Skype, we aim to provide tools that
identify fraudsters that have eluded the first line of detection
systems and have been active for months. Our approach to
automation is based on machine learning methods. We rely
on a variety of features present in the data, including static
user profiles (e.g., age), dynamic product usage (e.g., time
series of calls), local social behavior (addition/deletion of
friends), and global social features (e.g., PageRank). We in-
troduce new techniques for pre-processing the dynamic (time
series) features and fusing them with social features. We
provide a thorough analysis of the usefulness of the differ-
ent categories of features and of the effectiveness of our new
techniques.

Categories and Subject Descriptors

C.2 [Computer-Communication Networks]: Security
and Protection; H.3.4 [Information Storage and Re-
trieval]: Systems and Software—user profiles and alert ser-
vices
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1. INTRODUCTION

Fraud detection has attracted considerable attention in
both academia and industry (e.g., [1, 26, 8]). Techniques
for fraud detection rely on a wide variety of data, often tied
to specific applications. Each application may in fact give
rise to several different kinds of data, even more so as fraud
schemes evolve over time. In addition, some of the data may
be voluminous, incomplete, and not fully reliable. Therefore,
one strategic element in fraud detection is the development
of approaches for fusing disparate information sources, and
for making sense of the aggregate information, robustly and
at scale.

In this paper, we propose and evaluate an approach to
this problem based on supervised machine learning. The
approach combines information from diverse sources such as
static user profiles, time series that represent user activities,
and the results of algorithms that analyze user social connec-
tions. Separately, these sources can be insufficient for fraud
detection. The data are often sparse, containing missing val-
ues, and the abnormal patterns associated with attacks may
manifest themselves in different parts of the data. Our work
explores a new way to fuse the data sources, synergistically,
for the purpose of fraud detection.

We develop and study our approach in the context of
Skype. Skype is one of the largest providers of Internet
communication software, and is the target of varied fraud-
ulent activities. Accordingly, Skype employs sophisticated
techniques for detecting and thwarting fraud. As a result,
the majority of fraudulent users are detected within one day.

The aim of our work is to go beyond the present, sophis-
ticated defenses, and to detect “stealthy” fraudulent users,
namely, those that manage to fool those defenses for a rela-
tively long period of time. Our concrete objective is to catch
these stealthy fraudulent users within the first 4 months of
activity. Our results indicate that, with our methods, we are
able to detect 68% of these users with a 5% false positive
rate; and we are able to reduce by 2.3 times the number of
these users active for over 10 months.

We analyze a large dataset from Skype. This dataset
represents a carefully anonymized snapshot that contains



the Skype contact network, time series of the utilization of
Skype products, and time series of the social /contact request
activity of users. It does not contain information about in-
dividual calls and their contents.

To this data, we apply techniques and algorithms for su-
pervised learning, but only after non-trivial pre-processing.
As will be seen, we have relatively short time series to work
with. In order to extract as much information as possible
from them, we use a set of Hidden Markov Models (HMMs)
that produce odds of fraudulent vs. normal activities (both
in terms of service utilization and social activities). A sim-
ilar approach was used by one of the authors [12] for the
purpose of predicting failure in datacenter disks. The appli-
cation to fraud detection, and its evaluation in the context
of real data (Skype), is new. Similarly, we adapt techniques
from work on social graphs [17] in order to estimate the rep-
utation of users according to their social connections. The
application to fraudulent activity in Skype is also new, as is
the combination with time series.

In summary, the contributions of this paper are:

e an architecture and methods to process and fuse infor-
mation from a variety of sources in order to identify
fraudulent users;

e an evaluation of the efficacy of the methods on real
data;

e the quantification of the impact of each one of the dif-
ferent sources of information for the task of detecting
fraudulent users.

The rest of the paper is organized as follows. Section 2
briefly reviews the relevant literature. Section 3 formally
states the problem that we address, and describes the input
data and its features. Section 4 describes our approach. Sec-
tion 5 presents experimental results. Section 6 summarizes
our main conclusions and discusses directions for further re-
search.

2. RELATED WORK

In this section we briefly review approaches and techniques
related to our study. We concentrate on research in machine
learning and in social network analysis, with a focus on work
on fraud detection.

Skype allows users to communicate with each other via
text messaging, audio, and video calls. It supports both
free services as well as paid-for products and subscriptions.
Skype is not a telecommunication provider but, in some
ways, fraud in Skype resembles fraud in telecommunication
services. Previous work (e.g., [15, 14, 9]) has extensively
studied fraud in telecommunications, and in some cases has
explored data mining and machine learning techniques [25,
10, 20]. However, these previous studies have mostly lever-
aged the static user profiles and usage features for detection.
In our work, we consider usage features based on time se-
ries, which provide richer and more fine-grained information
than static usage features represented by simple statistics
(e.g., mean and standard deviations). In addition, we study
a broader set of features, including local and global social
features.

In Skype, users add each other in friend lists and employ
multiple channels to communicate. Thus, the Skype com-
munication graph can be viewed as a social network graph,

to some extent. Social network features were studied in the
literature [21, 28, 7] as a tool for fraud detection. Their
value motivates us to explore them within a general machine
learning framework.

In order to fuse dynamic time-series usage features and
other static profile features (for both training and detection),
we combined the use of Hidden Markov Models [24] and the
(log-odds) comparison to normal users and a classification
framework based on Random Forest [3]. A number of pre-
vious studies discuss the combination of different machine
learning methods [16, 5]. In particular, the general subject
of classifier combinations has been considered and justified
theoretically by Kittler and Hatef [19]. Furthermore, our
approach can be regarded as a simple way of cascading clas-
sifiers advocated by Viola and Jones in the context of vision
applications [27], except that we are using the cascade to
transform different inputs rather than to select regions of
the feature space.

In this paper, we do not address how fraudsters might
adapt and attempt to evade our detection techniques (cf. [22,
18]). We hope that our use of a large number of features
would make evasive actions rather costly. Further investiga-
tion of such questions may be worthwhile.

Despite the existence and the deployment of various ap-
proaches to fraud detection, many financial institutions and
companies still rely on manual review in addition to au-
tomatic screening, spending more than half of their fraud
management budget on review-staff costs. Recent reports
indicate that many financial companies lose 0.9% of their
online revenue to fraud [1], suggesting that fraud detection
is still an important problem that requires improved solu-
tions.

3. PROBLEM STATEMENT, DATA,
FEATURES

Fraud is commonly defined as intentionally deceiving an-
other person or organization and causing them to suffer a
loss. In this study, we define a fraudulent user as a regis-
tered user who intentionally deceives another user or a ser-
vice provider, causing them to suffer a loss. There is a wide
variety of fraud schemes [23]. The kinds of fraud relevant
to Skype include, in particular, credit card fraud and other
online payment fraud, as well as account abuse such as spam
instant messages.

Our aim is to catch those fraudsters that elude the first
line of defenses at Skype. We define our target as those
fraudsters that engage in activity for over K months (af-
ter creating their accounts), where K is a parameter which
in this study we will set to 4 months. Our strategy is to
combine information from different kinds of activities, both
social (e.g., requests to be accepted as contact) and on the
use of Skype products. To this end, we cast the problem of
fraud detection as that of automated pattern classification.

Specifically, we are interested in automatically deriving a
function f (the classifier) that, given a user u in the set of
users U, classifies the users as either fraudulent or normal,
that is, f : U — {fraud,normal}. Each user u; is repre-
sented as a feature vector x; = (x;1, Ti2, . . ., xim), where the
features are the characteristics of the user extracted from an
input dataset D. The features thus represent the informa-
tion that our classifier is combining in order to detect the
fraudsters.



Table 1: Sets of features (with activity logs in italic)
Profile set gender
age
country
OS platform

connected days
audio call days
video call days
chat days
additions by a user
deletions by a user
additions of a user
deletions of a user
accept rate (%)
degree

Global social activity full contact graph

Skype product usage

Local social activity

Figure 1 depicts the entire workflow of the process. In
the rest of this section we describe the first two levels, i.e.,
the data and the feature set, leaving the pre-processing of
the features for the next section. The measures for the ac-
curacy of our classifier, namely, how good is f at detecting
fraudulent users, will be presented in Section 5.1.

The input dataset D is a snapshot of the data collected
by Skype that encompasses all registered users and part of
their activity both in terms of the usage of Skype products
and in terms of the user-to-user contact-list requests over a
period of time.

Skype takes the privacy of its users very seriously, and we
implemented rigorous and carefully considered safeguards
throughout this study in order to protect the privacy of
Skype users. For example, all Skype IDs were anonymized
using a one-way cryptographic salted hash function. None
of the Skype usage data contained information about indi-
vidual Skype communications, such as the parties involved
in a communication, the content of communications, or the
time and date of communications. Rather, it merely con-
tained the number of days in each month that a Skype user
used a particular communications feature, such as Skype
chat, Skype video calls, and Skype In and Skype Out calls.
Furthermore, the study’s data was maintained on separately
administered computer system, and access to it was strictly
limited to the study’s authors. Finally, we plan to erase the
data when it is no longer needed for research.

Relying on the user-to-user contact requests, we built a
directed graph that consists of 677.8 million nodes and 4.2
billion directed edges. We also have timestamps of edge
creations and deletions. Edge creation means that a user
(the sender) sends a friendship request to another user (the
receiver). Once the request is sent, we count it as an edge
creation from the sender to the receiver. After the request,
there are two scenarios: either the receiver accepts it or not.
In case of acceptance, we consider it as another edge creation
from the receiver to the sender. We handle edge deletions
by the same principle.

Additionally, we have 10.8 million labels for fraudulent
users, which we use both in training, to induce the classifier,
and for testing its accuracy (see Subsection 5.1).

The labels further identify four different types of fraud
schemes. Skype’s definitions and procedures for these four

different types of schemes is internal confidential informa-
tion, which therefore we do not discuss further. Moreover,
in our work, we choose not to rely on Skype’s informal in-
tent in those definitions, nor on Skype’s software for each of
the different types, in order to develop robust, self-contained
methods.

From dataset D we extract information to construct a
feature vector (zi1,Zi2,...,Tim) for each user. We divide
the features into different types according to the kind of
information they provide as well as how much processing is
needed to transform raw data into the inputs to the classifier.
Table 1 summarizes the various types that we proceed to
describe.

e Features in the first set are directly extracted from the
profile information provided by the users at account-
registration time. They include user age, gender, coun-
try of residence, etc. Such information is not compul-
sory and it is not verified by Skype. For many users,
this data is incomplete or totally missing.

e Features in the second set encode information about
Skype product usage. We refer to this set of features
as activity logs: the total number of days per month
a user was active using a specific product. For exam-
ple, connected days represent the number of days per
month a user was logged in Skype, while video calls
shows on how many days the user made a video call.
Note that these features are in the form of time series,
and will be further processed before we use them as in-
put to our classifier (see Figure 1 and Section 4). We
introduce some notation: consider a fixed set of activi-
ties {a1,az2,...,ar}. Foreach user u; and each activity
a; we have an activity log £(ui,a;) = (y1,Y2,--.,YK),
where yj, represents the value of activity a; for user
u; during the k-th month since its account creation.
Because of the limitations of our dataset, activity logs
do not

indicate which pairs of users actually communicate,
nor distinguish a user who makes hundreds of calls per
day from a user who makes just one.

e Features in the third set, which we name local social
activity, capture information about the “social” activ-
ity from each user’s perspective or so-called egocentric
network [11]. From the snapshot of the social network,
we extract information about additions and deletions
of contacts by a user as well as how many contacts
added or deleted this user. These features are also ex-
pressed as monthly activity logs, where the value is the
number of times a user was involved in the activity,
e.g., how many times the user was deleted during the
month. Note that it does not necessarily mean that
the user deletes the initiator of the deletion in return.
We also include further information such as degree and
users’ acceptance rate. Degree is the number of con-
tacts in the users’ list and acceptance rate is the per-
centage of outbound friend requests being accepted by
others.

e Features in the last set represent global social activity.
To compute these features, we need a full social graph
of users based on contact-list requests. In particular,



Figure 1: Entire workflow for the classification process.
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we compute the PageRank and the local clustering co-
efficient for each user. These features provide informa-
tion at a much more global scale than those extracted
from the egocentric network (see subsections 4.3) and
4.2).

As we will see in Section 5, it is the combination of these
different types of features that will enable a better detection
of fraudulent activity.

4. THE CLASSIFIER AND ITS INPUTS

In our initial experiments, we benchmarked several classi-
fiers, including Random Forest, SVM, and logistic regression
(using both lasso and ridge regularization). While a thor-
ough comparison of these classifiers is beyond the scope of
this paper, and in particular we did not attempt to opti-
mize their parameters, we estimated their accuracy via 5-
fold cross-validation. Since Random Forest yielded superior
results (by about 10%), we decided to adopt it for this work.

Random Forest, first introduced by Breiman and Cutler,
is a modification of bagging that builds an ensemble of deci-
sion tree classifiers [3]. The idea behind the algorithm is to
reduce variance by reducing the correlation between trees.
This reduction is achieved by growing unpruned trees with
random feature selection. The final classification result is
derived by combining the classification results of individual
trees through major voting [13]. Since each tree is trained
independently, the training procedure is fast even for large
data sets with many features.

The various pieces of information described in Section 3
constitute the inputs to our classifier. The user-profile fea-
tures are in the form of categorical data that can be directly
fed into the classifier. The remaining features (the activ-
ity logs and the local and the global social features) require
further processing before they can be fed into the classi-

fier. Part of the novelty in our approach stems from this
pre-processing, which we explain in the rest of the section.
The classifier is trained in the usual way using 5-fold cross-
validation.

4.1 Log-likelihood ratios of activity logs

The user activity logs include information about Skype
product usage as well as the addition and deletion of contacts
(see Section 3). We represent this information as a set of
time series. In order to combine the time series with other
static, categorical features, we further transform the data
into a set of features represented as log-likelihood ratios.

We perform this data transformation for each type of user
activity (e.g., audio calls, video calls, contact additions) sep-
arately. This process consists of the following steps:

1. Given a specific type of user activity (e.g., audio calls),
build two different models of activities, one for the
normal users and the other for the known fraudsters,
based on training data.

2. For each user (to be classified), produce a score using
the above two models, representing how close this par-
ticular user is to the activities of a fraudster vs. the
activities of a normal user.

3. Feed this score into the classifier, where the score will
be combined with other features (and the scores from
other activities) in order to perform the classification.

This approach leverages the information from an entire time
series in order to produce a score that will be input to the
classifier. It is fundamentally different from previous ap-
proaches that summarize a time series using simple statistics
such as its mean or its standard deviation, and it can yield
better results [12].



One way to instantiate the steps above is to use probabilis-
tic models for the activity logs. Let Pr(€(ui,a;)) denote the
probability that the data in the activity log £(ui,a;) was
generated from a fraudulent user, and correspondingly let
Pn(£(ui,aj)) be the probability that the data was gener-
ated by a normal user. Then the score we want in Step 2
above is the log-likelihood ratio:

This ratio reflects how much more probable it is that the
data in (u;,a;) comes from a fraudster than from a normal
user. The bigger LLR, the more evidence that user u; acts
like a fraudster.

What is left for us to describe is how we automatically
get Pr and Py from training data. There are many viable
statistical models for this task; in this paper we explore the
use of Hidden Markov Models (HMMs) [24]. It is beyond
the scope of this paper to provide a tutorial on HMMs, as
these are well known. However, we explain these models
informally, and describe the specific way in which we use
them and parameterize them for our purposes.

An HMM is a statistical model in which the system being
modeled is assumed to produce output signals according to a
Markov process governed by unobservable (hidden) states.
In our case, the observable signals are the levels of user’s
activity O; = (01,02, O3, ...). Thus, O; corresponds to the
outputs in the activity log reflected in the raw data—one
for each month. The hidden states correspond to the user
“intensity” for that month. As explained below, we consider
two possible states: high intensity and low intensity (i.e.,
the user plans a high or a low level of engagement for the
month).

In order to specify an HMM mathematically, we need
three components:

1. the probability distribution of the initial state: P(S1 =
s), for all s € S,

2. the transition probabilities between states: P(Siy1 =
s'|Sy = s), for all 5,5" € S,

3. the emission probabilities (of the observable data) giv-
en a specific state: P(O; = o|S; = s), for all s € S,
o€ O.

Given these, P(¢(u;,a;)) with say £(u:, a;) = (y1, Y2, Y3, Ya)
is equal to

Y. PE)PuISH T P(SealS0)P(yesa|Se)) (2)

S1,52,53,54 1<t<3

In our case, after some initial experimentation, we settled
for the following parameters and distributions:

e The user can be in one of two hidden states (which
represent intensity levels), and the initial distribution
P(S1) is a binomial distribution with parameter p;.

e Correspondingly, the transition probabilities P(Si+1 =
§'|S¢ = s) are also binomial distributions with param-
eters {p51>p52}~

e We discretize the space of observables (level of activ-
ity) into three possible ones: O1 (no activity in this
month), Oz (between one and five days of activity),

and O3 more than 5 days of activity in the month. Cor-
respondingly, the conditional probability distributions
are multinomials with parameters {ps1(O1), ps1(02),
Ps1(03), ps2(01), ps2(02), ps2(0s) }-

We use the standard Baum-Welch algorithm described by
Rabiner [24] in order to fit the maximum likelihood param-
eters listed above, with the same training data as for the
rest of the classification training. Once the parameters are
fitted, the computation of Equation 2 employs a standard
dynamic programming algorithm [24].

Thus, we are essentially cascading models. The log-like-
lihood computations for each activity log (Eq. 1) provide
a pre-classification from which the scores can be used and
compared at the next level by the final classifier.

4.2 PageRank

The PageRank algorithm is widely used for ranking Web
pages based on Web link structures [4]. Pages with high
PageRank scores are usually authoritative pages, with either
many incoming links or links from other important pages.
Pages with low PageRank scores are usually of low impor-
tance or spam pages. Recently, PageRank has also been used
for identifying spammers on social graphs [6, 17]. In that
work, the PageRank algorithm is run on a reversed email
graph. More specifically, if user A sends an email to user B,
one places an edge from B to A in the reversed email graph.
A spammer that sends many spam emails but receives very
few emails will have a high number of incoming edges in the
reserve email graph, hence will likely have a high PageRank
score.

In our work, we adopt a similar approach and compute
PageRank scores on the reversed Skype user contact graph.
More specifically, each user represents a node in the graph.
If user u; sends a friend request to user u;, we place a link
from user u; to user w;. Thus, users with higher PageRank
scores are likely to be those that sent out a large number of
friend requests. On such a reversed contact graph, we assign
a uniform score to each user initially, then perform iterative
PageRank computation until the PageRank scores converge.

In each iteration, each user propagates her scores to neigh-
bors (friends). At the end of the iteration, a user u’s new
PageRank score R, 41 is computed as:

Rx. i

witl =1 — —
Rui1 d+d Z outdegree(X)

{X:ex,€E}

where d is the damping factor usually set to be 0.85 [4],
Rx; is the score of the user X after the previous iteration,
and {X : ex, € E} is the set of users in the graph having
directed edges pointing to u (friends who received contact
requests from u).

Thus, we compute a PageRank score for every user on the
Skype communication graph. This score will be the input to
the classifier that represents the user’s global social activity.

4.3 The local clustering coefficient

Another input to our classifier that comes from the full
contact graph is the local clustering coefficient [29]. The
local clustering coefficient is the ratio of the number of con-
nections in the neighborhood of a user to the number of
connections in a fully connected neighborhood. Intuitively,
it is a measure of how tightly the neighborhood of the user
is connected. In terms of the Skype network, each user’s
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[able 2: Confusion matrix
Predicted

Actual Fraudulent Regular
Fraudulent | True Positive (TP) False Negative (FN)
False Positive (FP) True Negative (TN)

Regular

contacts constitute its neighborhood. If the neighborhood is
fully connected, the clustering coefficient is 1; on the other
hand, if the clustering coefficient is close to 0, there are no
connections between contacts of the user.

More formally, let k; be the size of the neighborhood of
user u;. Let n; be the number of directed links between
those k; users. Then, the clustering coefficient cc(u;) of user
u; is defined as:

(us) = 0 itk <2
ce(ui) = ni/(ki(ks — 1)) otherwise

g coefficient is greater in social networks than in a random
network [29]. As fraudulent users often seem to add unre-
lated users to their contact lists, their clustering coefficients
are often lower than those of normal users.

5. EXPERIMENTAL RESULTS

For the experimental evaluation of our techniques, we con-
sider a sample of Skype users that consists of 100,000 ran-
domly chosen users labeled as fraudulent by Skype, and the
same number of randomly chosen users not so labeled. From
this sample, we include a user u in our study if w is not
blocked within 4 months since its account creation. We end
up with 34,000 such users. In this set, the ratio of users
labeled as fraudulent to other users is 1:6.

Our models are trained using cross-validation with 5 re-
peated splits of 50% — 50%. We use 4 months as an obser-
vational period to collect activity logs £(u;, a;). We selected
the period of 4 months as a compromise: longer periods may
result in more information, but our data pertains to a lim-
ited time window, and in addition we expect that relatively
few fraudulent users escape detection for many months.

5.1 Metrics of success

We base the evaluation of the performance of the classifier
on the standard notion of a confusion matriz (Table 2). We
let

TPR (True Positive Rate) = TP/(TP + FN)
and
FPR (False Positive Rate) = FP/(FP +TN)

where TPR shows the ratio of correctly classified fraudulent
users and FPR shows the ratio of misclassified normal users.

We visualize the tradeoff between TPR and FPR using
the receiver operating characteristic curve (ROC) [2]. To
quantify the overall ability of a model, we compute the Area
Under the Curve (AUC) of the ROC. The AUC represents
the probability that a classifier will rank a randomly chosen
positive instance higher than a randomly chosen negative
one. Also, in addition to comparing models using their AUC,
we fix the FPR to 5% and compare the TPR between the
models. The models differ on the inputs used, so comparing

them establishes the value of the inputs for the purpose of
capturing the patterns of interest.

5.2 Results

Using our approach, we achieve a TPR of 68% with a FPR
of 5%. This TPR is especially significant as the fraudulent
users that we are detecting were able to overcome the first
line of defenses in the existing, effective detection system.
Similarly, the FPR of 5%, which may appear as high for
a stand-alone system, may be reasonable in the context of
other defenses. In addition, with our approach, the number
of the fraudulent users that elude detection for more than
10 months since their account creation decreases by a factor
of 2.3.

Figure 2 plots the distributions of the account lifetimes
for fraudulent users before and after the application of our
methods. Each account lifetime is calculated as the interval
from the account creation to the final detection (closure) of
the account by Skype. The x axis is in months. The fig-
ure labeled “Before” depicts the lifetime of fraudsters that
escape Skype’s current defenses. The figure labeled “After:
missed” shows the lifetime of fraudsters that would have es-
caped detection with our approach, and the one labeled “Af-
ter:detected” shows those fraudsters that would have been
detected after the first 4 months of activity by our methods.
The reduction in volume is apparent.

Note that our method is most effective in detecting fraud-
sters that would have 10 or less months of activity (after the
initial 4 months), while missing most of those that stay ac-
tive for over 30 months. Preliminary investigations indicate
that an initial period of observation longer than 4 months
would improve the detection of such long-term fraud. Per-
haps a cascading set of classifiers, each with a different initial
period of observation, would be helpful. We also conjecture
that a large number of these fraudsters took over the ac-
counts of normal users. Other techniques, such as change-
point detection, may be fruitful in this context.

Figure 3 shows the overall performance of classifiers built
using only one feature at a time (left-hand side, labeled “sep-
arate models” ) and classifiers built by adding one feature
at a time (right-hand side, labeled “nested models”). For
the nested models we begin from the simplest classifier that
uses only the profile features. The next model combines
profile features and product usage features. We continue to
increase the complexity of the classifier by adding the fea-
ture sets one-by-one. In this study we use only a particular
order for adding the feature sets. The order corresponds to
the complexity and computational effort in pre-processing
the features as discussed previously (see Section 3).

As depicted in the graph for nested models, the improve-
ment in performance as we add features is monotonic, con-
firming that all the features contribute to detection.

Table 3 represents these results quantitatively. As can be
observed, a model based on only the local social activity
information has the best TPR, and the user profiles yield
the best overall AUC score. Also, as mentioned above, the
best model is one where all the features are used.

Finally, we report on the statistics per type of fraudulent
user. As can be seen from Figure 4, we are able to detect
most of the type II fraudsters, but we are less successful in
detecting type III and type IV fraudsters. In further work,
it may be attractive to investigate various feature sets for



Figure 2: Distribution of fraudulent users by their lifetime (of undetected activity) before using our approach
and after eliminating those fraudsters caught by our approach
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Table 3: Table of TPR under an FPR of 5% with corresponding confidence intervals, and AUC for different

models when the features are used in isolation (isolation) and added one at a time (nested)

Features TPR 95% C.I. | AUC AUC

(FPR = 0.05) isolation | nested
Profile set 0.50 (0.48;0.52) | 0.79 0.79
Skype product usage | 0.25 (0.23;0.27) | 0.65 0.84
Local social activity | 0.54 (0.52;0.56) | 0.74 0.86
Global social activity | 0.37 (0.35;0.39) | 0.68 0.87
All 0.68 (0.66;0.70) | 0.87




Figure 3: ROC curves for models built on one feature (left-hand side and labeled “separate models”) and
models built by adding one feature at a time (right-hand side and labeled “nested models”)
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Figure 4: Distribution of fraudulent users by types and proportion of detected among them
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different types of fraud, tailoring classifiers to the patterns
of behavior that correspond to each type of fraud.

6. CONCLUSIONS

In this paper we present and evaluate an approach to de-
tecting fraudulent users based on supervised machine learn-
ing. The approach combines information from diverse sourc-
es such as user profiles, user activities, and social connec-
tions. As our results demonstrate, fraud classification im-
proves as we add each one of these sources (see Figure 3).

The concrete goal of our work was to detect stealthy fraud-
ulent users. Specifically, we identified 68% of these users
within the first 4 months of activity with a 5% false positive
rate, and reduced the number of undetected fraudulent users
active for over 10 months by a factor of 2.3. We consider
that these quantitative results are encouraging and positive.

A central contribution of this paper is a set of methods for
transforming raw data into features suitable for consump-
tion by classifiers. In particular, we use HMMs in order to
build models from the time-series data, thus producing in-
puts for our classifier. The applications of this approach go
well beyond fraud detection (as suggested by work on failure
prediction [12]). Classifiers are some of the most successful
technologies to come out of machine learning, and time se-
ries are a natural way to represent data.

Our experiments also suggest several directions for further
investigation. The different detection rates for various types
of fraud indicate that each source of information may corre-
late differently with those types of fraud; hence, more elab-
orate ways of combining and cascading classifiers may lead
to enhanced fraud detection for particular types of fraud.
It should also be interesting to perform experiments with
longer time series, attempting in particular to detect points
in time at which users change behavior. Those changes in be-
havior sometimes result from account hijacking, a difficult,
important problem that machine learning may help address.
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