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Abstract

Repeated, morphological functionality, from limbs to leaves, is widespread
in nature. Pattern formation in early embryo development has shed light on
how and why the same genes are expressed in different locations or at different
times. Practitioners working in evolutionary computation have long regarded
nature’s reuse of modular functionality with admiration. But repeating na-
ture’s trick has proven difficult. To date, no one has managed to evolve the
design for a car, a house or a plane. Or indeed anything where the number of
interdependent parts exposed to random mutation is large. It seems that while
we can use evolutionary algorithms for search-based optimisation with great
success, we cannot use them to tackle large, complex designs where functional
reuse is essential.

This thesis argues that the modular functionality provided by gene reuse
could play an important part in evolutionary computation being able to scale,
and that by expressing subsets of genes in specific contexts, successive stages of
phenotype configuration can be controlled by evolutionary search. We present
a conceptual model of context-specific gene expression and show how a ge-
nome representation can hold many genes, only a few of which need be ex-
pressed in a solution. As genes are expressed in different contexts, their func-
tional role in a solution changes. By allowing gene expression to discover phe-
notype solutions, evolutionary search can guide itself across multiple search
domains.

The work here describes the design and implementation of a prototype sys-
tem to demonstrates the above features and evolve genomes that are able to
use gene expression to find and deploy solutions, permitting mechanisms of
dynamic control to be discovered by evolutionary computation.
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Chapter 1

Outline of work presented

This thesis proposes that evidence from biology relating to the mechanisms
of gene expression during early development could be useful to those work-
ing in evolutionary computation. It demonstrates how a device configured
by evolutionary algorithms can be appropriately reconfigured as the environ-
ment changes. A mechanism is shown that links information about the search
domain to the gene expression controlling reconfiguration. Evolution is thus
not only able to discover a series of suitable solutions on the device, but also
determine which solution should be deployed in which environment.

1.1 Research hypothesis and interpretation

The research hypothesis is explained in detail in Chapter 3. In this thesis, the
process of gene expression during biological development is abstracted and
used to guide evolutionary search. In our model, genes relate to configurable
elements in an analogue circuit, while the configuration of a circuit represents
a stage in phenotype configuration. In this context, we make the following
hypothesis:

Hypothesis — By expressing subsets of genes in specific contexts, successive stages
of phenotype configuration can be determined by evolutionary search.

Thus evolutionary search finds not only one solution, but several, and can con-
trol the movement between consecutive phenotype stages. Gene regulatory
processes in biology are immensely complex. Any abstract representation of
them inevitably conceals details. Only those parts pertinent to our needs have
been included in our model.

Our approach has been motivated by trying to help in two areas of weak-
ness in evolutionary computation, scalability and the reuse of modular func-
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6 CHAPTER 1. OUTLINE OF WORK PRESENTED

tionality. Genes are reused during the development of organisms, giving rise to
a range of repeated, morphological features such leaves, limbs and hair. Gene
reuse is one key to why biological systems scale so well. The developmen-
tal processes that lead to cell differentiation and pattern formation in embryos
gives an indication of the importance that special proteins, known as transcrip-
tion factors, play in determining which genes are expressed in which cells. We
abstract some key features of biological gene expression to see how they might
enable the reuse of genes in evolutionary computation. We examine a single
“cell”, with different gene expressions over time, responding to different envi-
ronmental conditions.

Our application area is the adaptation of a Field Programmable Analogue
Array (FPAA) to processing an analogue signal. As that signal changes, we al-
low reconfiguration to occur so that the signal can be processed differently. The
mechanism for controlling reconfiguration comes from an evolved genome ca-
pable of expressing a subset of genes by examining the output of the FPAA.
This “feedback loop” governs how our evolutionary search uses gene expres-
sion to explore a dynamic search domain.

1.2 Overview of Thesis Structure

This chapter has given the abstract of the thesis. The remaining chapters are
summarised below.

Chapter Two is an introduction to evolution and evolutionary computation.
Taking its lead from contemporary thinking in biology, it advocates that
we have more to learn from the role that developmental processes play in
natural evolutionary search than has previously been admitted by prac-
titioners in evolutionary computation. A brief summary of evolutionary
biology is given, from Darwin to Dawkins and beyond, alongside the-
oretical insights from authors such as Kauffman and Solé. The chapter
then sketches the development of evolutionary computation as a field of
computer science. It gives some background to how the “central dogma
of biology” gained a canonical form as an algorithm and why decompos-
ing tasks for evolutionary computation remains a difficult problem. It
ends by indicating how gene reuse and context-dependent gene expres-
sion may provide one key to how evolution creates scalable solutions of
such complexity.

Chapter Three re-examines the conclusions to Chapter 2 in the light of our
conceptual architecture and uses them to formulate and interpret the re-
search hypothesis.
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Chapter Four moves from the conceptual architecture to a system architec-
ture composed of hardware and software elements. Justifications for the
choice of platform are given, and a clearer breakdown of the proposed
processes to allow gene expression using information from the search
domain.

Chapter Five covers the implementation of the system architecture. It looks
at how our genome representation is able to contain several solutions, in-
cluding a degree of redundancy that means some forms of the phenotype
will not be expressed. The capabilities and difficulties of our hardware
platform are discussed and the mechanism for binding an analogue sig-
nal to a digital genome is explained.

Chapter Six gives the preliminary results and attempts to deal with the prob-
lems of evolution and gene expression on noisy hardware. The main
experiment is described. Examples of the solutions discovered and how
they were deployed are discussed.

Chapter Seven concludes the work with a summary of what has been pre-
sented, why it is novel, a review of the key design decisions during the
project and, with the benefit of hindsight, where the work could lead us.

Appendices A-C have additional material germane to the thesis.
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Chapter 2

An Introduction to Evolution

This chapter gives some biological background to evolutionary computation.
It traces the history of evolutionary biology, from Darwin to Dawkins and be-
yond, looking both at the gene reductionism of the 1970s–80s and more theo-
retical work modelling the complexities of evolutionary systems. The section
concludes with a look at recent discoveries in developmental evolutionary bi-
ology, arguing that the field of evolutionary computation could benefit from a
richer representation of the developmental process between genotype and phe-
notype. A brief summary of the development of evolutionary computation as a
search technique is given, showing the canonical form of the evolutionary algo-
rithm and noting troublesome aspects of the field, such problem representation
/ decomposition and the use of the technique in areas outside multi-objective
optimisation. The chapter concludes with a discussion urging for a broader ap-
proach to tackling the problems of evolving complex, scalable solutions. The
case is put that one way to do this would be to look at gene reuse, as employed
in natural biological systems during development, and to see if an abstraction
of the mechanisms used would help evolutionary search scale to larger, more
complex problems.

2.1 Background

Evolutionary computation uses the process of natural selection as a search al-
gorithm. Like evolution, the algorithm works over successive generations,
gradually moving the search closer to the objectives until no more improve-
ment in the population is possible, or the objectives are satisfied.

Evolutionary computation has a long academic and industrial record (§
2.8.1). Within that time it has branched into variants (§2.8.1), developed a
canonical form (§2.8.2) and been deployed in a wide range of industrial ap-

9



10 CHAPTER 2. AN INTRODUCTION TO EVOLUTION

plications (§2.9.1). During the mid 1990s, evolutionary computation began to
draw media attention with claims that human-competitive patents were being
discovered through the use of evolutionary search techniques (Fonlupt, 2005;
Koza et al., 2003). The techniques found industrial application wherever a de-
sign required taking a set of competing objectives into account. Examples from
this period include Honda’s “evolved” gas turbine fan blades (Jin, 2005), while
NASA carried out experiments to evolve antennae and other aerospace hard-
ware (Miller, 2000). More recently, claims in popular science journals, such as
Peter Bentley’s article in New Scientist, have fuelled expectations that evolu-
tionary computation is poised to take over human design and that creativity
can now be automated (Bentley, 2004a). The reality is more mundane. The
achievements of evolutionary computation remain relatively modest. No one
has evolved the design for a car, a house, or anything where the number of
parts exposed to random mutation significantly adds to the complexity of the
objective.

The problem is one of scale. Evolutionary computation has successfully
been used as a search-based optimisation technique. Such optimisation gener-
ally involves a handful of factors in the fitness assessment. But as the number
of elements sought by evolutionary search goes up, the time required to find a
solution increases dramatically (§2.8.1). Where elements can affect one another,
the search space size increase is exponential.1 To get round this, the process is
generally “bootstrapped” to the point where evolutionary algorithms optimise
just a few variables on an existing solution, poor though that initial solution
might be. But bootstrapping incurs a penalty — it constricts the search start
point and therefore its trajectory. While we can trace the search trajectory of an
evolved artifact, it is harder to estimate the place we should have started from
to get a better result, particularly when the nature of the search space is un-
known. Tackling these issues requires being well-versed in the art of problem
representation and decomposition, an area that continues to cause difficulties
(§2.9.2).

Claims that evolutionary computation is inspired by biological evolution
must be tempered with the understanding that the representation and process
bear only a token correspondence to those in nature. Although evolutionary
computation employs a genetic encoding from which a population is gener-
ated and upon which selection is made, the step between the genetic encoding
and selection of the phenotype is very small. In contrast, natural evolution
has brought about a complex developmental process that plays a vital role in
the exploration of the functional search space, and by extension, on phenotype

1Natural evolution deals with just such multi-dimensional search spaces, but of mind-boggling
proportions, see §2.6.3.
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selection. It is worth noting the historical legacy at work here, both from the
study of evolution by biologists and the “borrowing” done by practitioners of
evolutionary computation. The theory of evolution and natural selection, as
developed by Charles Darwin (§2.3), was taken up and revised after the 1960s
by those who believed that genes alone were the driving forces behind evo-
lutionary change (see §2.3.2). This was the point at which evolutionary com-
putation first settled on an established representation of genetic encoding and
mutation (§2.8.1). But the genetic “reductionism” of the late 1970s was seen
by some in biology as omitting the bigger picture (§2.3.3). They argued that
evolution did not have a free hand to exploit genetic mutations. Instead, de-
velopmental processes constrain the degree and type of changes permitted in
order to maintain the viability of the organism (discussed in §2.3.3 and §2.5.1).
These restrictions have important implications on how natural evolution han-
dles the combinatorial explosion of scale that has so far defeated proponents
of evolutionary computation. However, despite the emerging evidence from
biology on gene reuse and expression, and criticisms of the field’s own short-
comings over the last decade (Banzhaf et al., 2006), evolutionary computation
has failed to move away from evolutionary models founded in the 1960s and
has largely ignored what phenotype development could bring to the process
of evolutionary discovery.

During the 1990s, theoretical biologists began to investigate complexity and
evolution by building models of how evolutionary paths were traversed in
competitive ecologies (§2.6). The models indicated that rather than striving for
continuous perfection, organisms are involved in an evolutionary arms race
against other organisms. Those who stand still while the world evolves around
them fail in the race for survival. Likewise those who stray too high up an evo-
lutionary peak of specialist adaptation find their evolutionary paths are cut
off when they need to adapt to new circumstances (§2.6.3). These theoreti-
cal models suggest that natural evolutionary systems are poised close to the
edge of chaos, as small changes in one part frequently have knock on effects
throughout the system (§2.6.3; page 46). This picture of evolution is closer
to one where the system is held in balance and species expand into available
niches as they appear, rather than one geared to isolated optimisations over an
open landscape. Such theoretical evidence may give clues to how evolution
works within highly connected systems and perhaps help evolutionary com-
putation cope with the complexity generated when evolution can act on all
parts of a system.

Although it is difficult to do justice to the breadth of developmental and
evolutionary biology, the following sections attempt to show where the ar-
guments in favour of a developmental approach to evolutionary computation
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Figure 2.1: Insect camouflage: one mimics a shiny seed pod found on the forest
floor (left), another mimics bird excrement while it feeds.

Images copyright of BBC Worldwide Ltd. (Attenborough, 1984)

come from, and in doing so try to give a flavour of the inspiration that natural
evolution provides.

2.2 The Inspiration of Nature

Nature furnishes us with examples of organisms that have adapted to a be-
wildering variety of environments. Forms of life extend almost as far below
the earth as they do above it. From bacteria thriving in complete darkness in
hostile, boiling sulphur springs miles beneath the surface of the Pacific Ocean,
to insects blown aloft in the oxygen-deprived, freezing temperatures of our
upper atmosphere, there are few places that life has not managed to adapt to
and survive. This general purpose, problem-solving ingenuity can be found
almost anywhere life exists, but where there are abundant sources of food and
water, such as equatorial rain forests, there is more opportunity for specialist
adaptation. Camouflage is a vivid manifestation of adaptation to a particular
habitat, and insects in particular draw inspiration for camouflage from almost
anything in their environment. Examples can be found of beetles on the for-
est floor that have evolved to mimic fallen seeds pods (Fig. 2.1), while others
mimic twigs or diseased leaves (Fig. 2.2). Caterpillars may mimic other, more
poisonous caterpillars, or even bird excrement (Fig. 2.1). Birds also make use
of their plumage and stance to render themselves invisible (Fig. 2.3).

The variety of evolved forms is one factor that allows life to solve the prob-
lem of existence within such a wide range of habitat (see Fig. 2.4). But variety
alone would be insufficient to allow phyla to survive indefinitely. If environ-
ments change, whether by movement of the organism or from external factors,
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Figure 2.2: Stick insects come in huge variety of shapes, but each subspecies is
closely adapted to a particular species of flora.

Images copyright of BBC Worldwide Ltd. (Attenborough, 1984)

organisms must change with them. If a species fails to change, it may quickly
die out. No organism knows how it will need to adapt for the future and only
reproduction permits a species to survive.

In Europe at least until the mid-nineteenth century, what had enabled a
species to arise in the first place had traditionally been ascribed to the creative
power of God. There was no recognition that things ever changed from the
point of creation onward. But a famous debate by the British Association for
the Advancement of Science in Oxford in 1860 (Howard, 2001), gave birth to a
new vision of how life created and continued to create new forms. Theologians
lost the right to impose a single understanding of how life had been created,
and although that debate is still engaged in some quarters, the explanation of
how life has evolved has been almost universally attributed to the theory of
natural selection developed by Charles Darwin.
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Figure 2.3: The feathers of Brazilian potoo closely resemble both the colour
and textures of bark and lichen, allowing it to mimic a tree stump when sitting
motionless on its nest.

Images copyright of BBC Worldwide Ltd. (Attenborough, 1984)

2.3 Darwin’s Theory of Natural Selection

Jonathon Howard has commented in his book on Darwin that anyone attempt-
ing a biography of the man is “faced with an embarrassment of riches” (Howard,
2001). But while a very full account of Darwin’s life would be possible given
the notes and records that have come down to us, the following section at-
tempts to summarise in brief terms who Darwin was, with respect to his time
and place, and what enabled him to formulate the most famous theory in biol-
ogy, in his book “On The Origin of Species” (Darwin, 1859).

Grandson of the doctor and “speculative evolutionist” (Howard, 2001) Eras-
mus Darwin, Charles Darwin was born into a wealthy family, allowing him
the opportunity to study what he wished. After giving up a brief career as a
medical student in Edinburgh, Darwin took the retrospectively ironic step of
moving to Cambridge to become an Anglican priest. But his interest in science
developed and led him at the age of 22, thanks to his tutor’s recommenda-
tion, to be accepted as the naturalist on board a five-year scientific voyage by
the HMS Beagle. Darwin claimed that the “voyage of the Beagle has been by
far the most important event in my life and has determined my whole career”
(Darwin and Henry, 1974) and there is no doubt that the places that the Beagle
visited, in particular some isolated islands, were to play a large part in shaping
Darwin’s thoughts about evolution.

Most biographers assert the principal influence on Darwin while aboard the
Beagle was Charles Lyell’s Principles of Geology. Prior to the theory of natural
selection, the earliest battles fought by scientists against the scriptural dogma
of the Church were fought by geologists:
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Figure 2.4: Two specialist adaptations: the lichen beetle (left) exudes a glue
so that it can stick pieces of lichen to itself, while a relative of the cockroach,
grylloblattodea (right), scavenges high up above the snowline on the Himalayan
mountains. It is so closely adapted to temperatures below freezing that the
heat of your hand would kill it in a few minutes.

Images copyright of BBC Worldwide Ltd. (1984)

“It was inevitable that a geological science which looked at the
surface of the earth as a mobile and changing structure and part of
a mobile and changing cosmos should eventually come into direct
conflict with theological limitations on the development of science.
Historical geology, with its emphasis on slow and continued pro-
cesses, introduced a new and almost limitless timescale for the past
evolution of the earth which recognised none of the miraculous and
instantaneous events of the Mosaic creation story.” (Howard, 2001)

Alongside evolutionary geology were the natural sciences that represented the
prevailing scientific beliefs of the time, some of which were intermingled with
religious sentiments regarding man’s “place” within nature, and the widespread
belief that there was a well-defined hierarchy of species or types, and that such
types persisted unchanged through time. For example, as Howard points out,
the concept of permanence among species type was closely correlated to the
story of Genesis, where God created all living things on a single day and their
types continued unchanged to the present day via reproduction.

But our ability to classify distinct types or species had already been ques-
tioned. Linnaeus had begun his System Naturae in 1735 with the conviction that
a distinct categorisation was possible for all species, but ended his life doubt-
ing it was achievable (Howard, 2001). This wasn’t the only messy problem that
failed to fit with the vision of a divinely created natural system. Others more
firmly attached to “natural theology”, such as the Anglican cleric Malthus,
sought in 1809 to justify why an ideal creation countenanced a system that al-
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lowed a species population to exhaust its resources and suffer. Malthus argued
that populations always increase geometrically where there is no competition
for resources. What made Malthus different from previous justifications for
nature’s “unreasonableness” was that he declared that competition between
species was a “law of nature” and that man was no different from any other
creature with respect to competition. This was at least a shift from most classi-
fications that painted man at the head of creation.

One can draw from early Victorian thinking to depict the background from
which the theory of natural selection sprung, but whether such opinion would
have had much sway on a passenger of the Beagle when it was several thou-
sand miles from home is doubtful. What we do know is that Darwin took with
him Lyell’s work, and Lyell’s second volume of the Principles of Geology reached
Darwin midway through his voyage. In that volume, Lyell dealt with biologi-
cal evolution and in particular, responded to a theory of evolution put forward
by Jean Baptiste de Larmark in his book Philosophie Zoologique (1809). Lamark
not only emphasised Linnaeus’s doubts about the difficulties of classification,
he noted the specialist adaptations of which nature was capable and presented
a theory to explain such adaptations. Lamark claimed, without evidence, that
the evolution of animals was propelled by their recognition of “new needs”,
which in turn provoked behavioural change to satisfy those needs, and this
in turn caused structural change to make the behavioural change more effi-
cient (Howard, 2001). This neat circularity was complete when the structural
changes made in the creature’s lifetime were inherited by its offspring. But
while Lyell came up with his own ideas about biological evolution (later re-
jected by Darwin), his importance to Darwin was that he effectively dismissed
Lamark’s ideas as speculative, i.e. that the mechanism of evolution had not been
proven, even by argument (Howard, 2001). It was Lyell’s insistence that the
mechanism required a scientific explanation that led Darwin to concentrate on
this first, rather than why variations occurred between species, or the more
established problem of species classification.

2.3.1 The three generalisations

The mechanism involving the flawed replication of DNA code through which
inheritable variation operates was not found in Darwin’s lifetime. However,
the attributes manifested by the process were deduced by Darwin through ob-
servation and argument. Darwin drew up three independent generalisations
which allowed him to argue for the theory of natural selection:

Variation: no two individuals are identical within a population.
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Hereditary characteristics: the variation expressed as individual characteris-
tics is inheritable from parents to offspring.

Multiplication and competition: Malthus’s observation — about population
increase where no competition for resources exists — means that as re-
sources are always finite, competition must act as a brake on population
growth.

If these processes were acting, then hereditary variations within a population
that allowed an organism to survive would stand a greater chance of being
passed on to their offspring. This was the method that explained how charac-
teristic adaptations to the environment evolved within species and why species
diverged.

However, geographical divergence between species was not entirely ex-
plained by natural selection. A new species isolated on an island or separated
by a mountain range from a similar species presented an easy case, but Dar-
win found it harder to provide convincing arguments for why speciation still
occurred where there was no geographical barrier. This area would continue
to cause difficulty for Darwin in his later years, even to the extent of damaging
his reputation when he published an account of it (his hypothesis of panege-
nesis) which veered dangerously close to Lamark in explaining the process of
heredity. Richard Dawkins points out that this may have had its roots in 19th
century views that heredity was a blending process. He comments:

. . . if heredity is of this blending type, it is almost impossible for
Darwinian natural selection to work because the available variation
is halved in every generation. Darwin knew this, and it worried
him enough to drive him in the direction of Lamarckism. (Dawkins,
1998)

Despite the difficulties Darwin faced trying to explain heredity and varia-
tion, his theory of natural selection went on to become the dominant explana-
tion of evolution which the discovery of DNA, almost a century later, would
do little to change. Indeed, some would say the discovery has strengthened
the theory of natural selection, even though in the words of Richard Dawkins,
biologists now had to turn “from the fact of evolution to the less secure theory
of its mechanism” (Dawkins, 1998).

2.3.2 Neo-Darwinism

“The definition that I want comes from G.C. Williams. A gene
is defined as any portion of chromosomal material that potentially
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last [sic] for enough generations to serve as a unit of natural selec-
tion.” (Dawkins, 1989)

The solution to Darwin’s problem over the blending nature of hereditary was
published, unknown to him, by the German Gregor Mendel in 1865. Mendel’s
theory was that heredity was particulate, rather than blending in nature, so
that parents pass on to their offspring discrete hereditary particles. The mech-
anism underlying this was not provided until the twentieth century, with the
discovery that how particular genes are inherited from a parent — and genes
are particulate in nature, either they are inherited or they are not. There is no
half-way, partial inheritance. It is claimed (by neo-Darwinists) that this makes
all the difference to the mathematical plausibility of the theory of natural selec-
tion. Dawkins states that Hardy and Weinberg were the first to realise:

“there is no inherent tendency for genes to disappear from the
gene pool. If they do disappear, it will be because of bad luck,
or because of natural selection — because something about those
genes influences the probability that individuals possessing them
will survive and reproduce. The modern version of Darwinism, of-
ten called Neodarwinism, is based upon this insight.” (Dawkins,
1998)

Dawkins was one of those who championed neo-Darwinism, and he sum-
marised the modern genetic theory of natural selection as follows.

The genes of interbreeding animals constitute a gene pool. The genes com-
pete, but in practice spend their time either sitting in individual bodies which
they helped to build, or travelling from body to body via sperm or egg in the
process of sexual reproduction. Sexual reproduction shuffles the genes, and it
is in this sense that the long-term habitat of a gene is the gene pool. Any given
gene originates in the gene pool as a result of a mutation, a random error in the
gene-copying process. Once a mutation is formed, it can spread by means of
sexual mixing provided that its carrier is able to sexually reproduce. Good car-
riers will contribute more to the gene pool than reproductively less successful
ones. Any given gene in a gene pool is said to have a frequency, as it is likely
to exist in the form of several copies, all descended from the original mutant.
Some genes such as the albino gene are rare in the gene pool, others are com-
mon. At a genetic level, evolution may be defined as the process by which gene
frequencies change in gene pools (adapted from (Dawkins, 1998)).

For Dawkins, although natural selection accounts for the “perfection of
adaptation” in nature, it is of primary importance only because of its conse-
quences for the survival of genes in the gene pool. If a gene is successful in
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creating a good body that reproduces successfully, then it ensures its own sur-
vival. Dawkins (1989) developed this idea in great detail in his first book, The
Selfish Gene. In it he suggested that in the world of the selfish gene (“what is a
single selfish gene trying to do? It is trying to get more numerous in the gene
pool”) there is no individual altruism in the carriers of genes other than kin
selection, that is to say, “a gene might be able to assist replicas of itself that are
sitting in other bodies”. The logical extension to this, Dawkin argues, is that al-
most all behaviour is genetically predetermined to aid the survival of the gene
and nothing else. This he argues, explains all manner of bizarre behaviours:

Mantises are large carnivorous insects. . . If the female gets the
chance she will eat [the male]. . . It might seem most sensible for her
to wait until copulation is over before she starts to eat him. But the
loss of the head does not seem to throw the rest of the male’s body
off its sexual stride. Indeed, since the insect head is the seat of some
inhibitory nerve centers, it is possible that the female improves the
male’s sexual performance by eating his head. (Dawkins, 1989)

Dawkin’s one caveat to the selfish gene is that humans may be the one or-
ganism capable of resisting genetically determined behaviour through cultural
and moral values.

Dawkin’s ideas helped swing popular opinion towards a belief that genes
explain “life”, and persuaded many that the notion of competitive genes fitted
perfectly into the theory of natural selection. But such genetic reductionism be-
gan to look less convincing as more became known about the developmental
process of molecular biology and the constraints of the environment. It became
apparent that genes do not have a free hand when it comes to altering features
that could affect the viability of the organism. Conflicting genetic evidence
also started to muddy the waters concerning the separate evolution of similar
organs across species, such as the eye (see §2.3.2). But even outside these dis-
coveries, there were there those who remained sceptical about the presence of
minute variations in the gene pool explaining the eventual appearance of new
species.2 Brian Goodwin, one of those who sought to bring the generic com-
plexity across nature (including developmental biology) back to the forefront
of the evolutionary debate, commented a few years after The Selfish Gene was
published that neo-Darwinism failed to explain “large scale aspects of evolu-
tion, including the origin of species”:

“New types of organisms simply appear upon the evolution-
ary scene, persist for various periods of time, and then become ex-

2When I refer to such scepticism, I am referring to those in the scientific community who wish
to be convinced of better scientific arguments, rather than those who counter such arguments with
religious bias.
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tinct. So Darwin’s assumption that the tree of life [i.e. speciation]
is a consequence of the gradual accumulation of small hereditary
differences appears to be without significant support. Some other
process is responsible for the emergent properties of life, those dis-
tinctive features that separate one group of organisms from an-
other. . . ” 3 (Goodwin, 1994)

Goodwin questioned whether the mechanisms of evolution could be reduced
to the action of genes alone. Genetic mutation painted a convincing picture
for small scale changes — the “fine tuning” of varieties — but not differences
of type: fish from amphibian, worms from insects, or horsetails from grasses.
Darwin’s original difficulty to explain speciation began to rear its head again,
despite the best efforts of neo-Darwinists to put the argument to bed. This
is a broad topic and one we can summarise only a part of. The next section
tries to indicate the nature of current debates over speciation and functional
features, and how these debates now include evidence from diverse areas, such
as developmental biology and gene regulation, and the development of similar
functional features across the species divide.

2.3.3 The role of complexity in evolution

Fully developed forms of animals and plants, with their millions of eukaryotic
cells acting in concert to provide much larger scale functionality, can seem a
long way from the genetic code that translates a string of amino-acids to some
proteins. The gap between the two is the part investigated by developmental
biology.

Goodwin, in his book How the Leopard Changed its Spots, argued that genes
are not the whole picture, and that complex organs have developed the way
they are due to a robust, morphological process of development that was both
helped and constrained by its environment (Goodwin, 1994). Goodwin’s choice
of the eye as one of his principal examples was deliberate. It was the organ that
Darwin had gone to enormous effort to convince people that such “organs of
extreme perfection and complication” could have developed by the infinitely
gradual process of inheritable variation and natural selection, even though in
his own words, it “seems I freely confess, absurd in the highest possible de-

3Goodwin and others, such as Gould (1989), may not have had access to Darwin’s notebooks,
particularly some of his pencil sketches, which give a less rigid idea of his tree of descent than is
often portrayed. Darwin was perfectly aware that his tree of descent could not simply be an ever-
growing tree of diversification, but instead was somewhat fragmented, more “like a piece of coral,
with some parts dead and missing at the root, some parts alive and growing at the tips.” (Howard,
2001)
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gree”.4 It was his defence of the evolution of the eye that provided one of the
more famous quotes in The Origins of Species:

“If it could be demonstrated that any complex organ existed,
which could not possibly have been formed by numerous, succes-
sive, slight modifications, my theory would absolutely break down.
But I can find out no such case.” (Darwin, 1859)

Darwin marshaled all manner of examples to suggest that primitive eyes were
present in many organisms in different stages of evolutionary development,
that nerve endings in many creatures were sensitive to light and that the “un-
erring skill of natural selection” would forever refine the simplest form of eye
towards greater perfection.

By re-examining the evolution of the eye, Goodwin created a long-running
debate between molecular, developmental and evolutionary biologists. Daw-
kins wrote a direct response to Goodwin from the neo-Darwinist perspective in
Chapter 5 of his book Climbing Mount Improbable (Dawkins, 1996). In it he gives
a picture by Mike Land that tries to represent the evolutionary landscape of all
known eyes (Fig. 2.5). Dawkins argued that climbing an evolutionary peak of
optical sophistication was easy enough for a species, but no species could jump
from one mountain top to another. Others have pointed to the fact that the sim-
ple compound image-forming eye appears to have been invented at least three
times during the course of evolution (D. Fogel 2000), and therefore types of eye
couldn’t be explained by a diagram such as Fig 2.5.

But it seems now as if neither Dawkins (for neo-Darwinists and gene re-
ductionism) nor Goodwin (influence of developmental processes and morpho-
logical constraints) can claim an emphatic victory over the root causes of dif-
ferences in species type and that the truth lies somewhere between the two.
Russell Fernald, writing in (2001), sums up how the arguments swing this way,
then that, almost as each new research paper is published:

Have the structural similarities among eyes resulted from evo-
lutionary convergence due to similar selective pressures (analogous)
or from descent from a common ancestor (homologous)? This dis-
tinction is particularly hard to draw when comparing eyes because
the physical laws governing light greatly restrict the construction
of eyes. Similar eye structures may have arisen in unrelated an-
imals simply because of constraints imposed by light. . . . How-
ever. . . opsin has a significant DNA sequence homology across all
phyla. Remarkably, recent work by Gehring and Ikeo (Gehring and

4To counter the scepticism he met, Darwin felt compelled to extend his arguments for the evo-
lution of the eye between the first (1859) and sixth (1872) edition of the The Origins of Species.
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Figure 2.5: Possible landscape of eye evolution created by Mike Land. Height
represents optical quality and the ground plane evolutionary distance. Land
writes that “Climbing the hills is straightforward but going from one hilltop to
another is near impossible” (Quoted by Ferald (2001)).

Image and text taken from Ferald (2001) (originally in Dawkins (1996))

Ikeo, 1999) has shown that features of ocular development in differ-
ent phyla can be coordinated by a homologous “master” gene, Pax-
6. That a single gene could trigger construction of an animal’s eye
in diverse species led to their proposal that eyes are monophyletic,
i.e. evolved only once. (Ferald, 2001)

What can be said about the ongoing debate on the evolution of complex
organs is that developmental processes and environmental constraints seem to
be playing a larger part in the discussion than in the early eighties, when they
were largely discounted by those advocating gene reductionism. The following
sections examine the physical development of the phenotype and assess why
such developmental processes are important in their own right to the creation
of complex organisms.

2.4 Aspects of Development

Development controls whether evolutionary designs can be built or not, and
helps exploit the complexity of the physical world to allow life to be con-
structed. In evolutionary terms, genes play a vital role as the instigators of
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change, but the viability of the organism during development restricts what
mutations will be passed on in the phenotype. This section draws heavily from
the introduction to Kumar and Bentley’s book On Growth, Form and Computers
(2003), which in turn takes much of its information from Wolpert’s The Princi-
ples of Development (1998).

Wolpert describes development as “the emergence of organised structures
from an initially very simple group of cells” (Wolpert, 1998). The process of
moving from simple cells to more complex structures is almost entirely gov-
erned by proteins, but in order to understand how proteins influence develop-
ment, we need to first become familiar with development at the level of the cell.
This overview therefore starts with a high level view of cell development, then
looks at the internals of cells, covering the synthesis of proteins within cells
and cell signalling, before ending with a look at DNA and the role of proteins
in gene regulation.

2.4.1 Cells

Cells are complicated. They have their own internal logic, they can act as sen-
sors to respond to external signals and are able to emit signals that govern the
behaviour of other cells. Cells and their proteins have resulted in a sophis-
ticated control mechanism that not only dictates how development proceeds,
but which also controls the running of bio-machinery after development.

Cells have two forms: prokaryotic (bacteria, including the important, large
group of cyanobacteria, sometimes referred to as “blue green algae”) and eu-
karyotic (everything else). The latter encases its DNA within a membrane, giv-
ing advantages in terms of control, defence and the ability to process informa-
tion. Many regard the eukaryotic cell as the foremost achievement of evolution.
Wolpert goes as far to claim that:

“Once you had the eukaryotic cell, from the point of view of
evolution and development, it was downhill all the way: very, very
easy. . . Among the basic components required for development, I
can think of virtually nothing that eukaryotic cells did not have
which is required for the developmental process.” (Wolpert, 2003)

Certainly when we look at the extraordinary information processing capabili-
ties of the cell one can only marvel that the system scales so well.

Cell signalling

The cell container is a membrane (Fig. 2.6), a subtle discriminator over what
passes through it — some proteins may enter, others can leave, the membrane



24 CHAPTER 2. AN INTRODUCTION TO EVOLUTION

Figure 2.6: “Eukaryotic cells have an extensive array of membrane-bound com-
partments and organelles with up to 4 levels of nesting. The nucleus is a double
membrane. The external membrane is less than 10% of the total.”

Image and text taken from Cardelli (2005)

determines which. This selective permeability gives cells a filtering mechanism
that can listen to broadcast messages as though tuned into a single hormonal
frequency. Cells act as marvellously sensitive sensors and emitters of signals.
They can operate in a wide range of media, from insect pheromone signalling
in an air stream over miles of open space, to hormone signals carried in the
blood stream in animals, from cell membrane surface proteins signalling to
their immediate neighbours during development, to intra-cellular signalling
for the presence of invading pathogens, cells can do it all. The mechanisms
they use are equally complex and diverse (Hancock, 2003). Without cell sig-
nalling, it is hard to envisage how multicellular organisms, that are awash with
information, could evolve, develop or exist at all.

The physical sequence of a cell signal generally follows the pattern of a
molecule being released by one cell to be detected by the receptors on another
cell, but there are variations on this, such as the detection of membrane proteins
on one cell by receptors on another or the transfer of small molecules through
“gap junctions”.

Cell signalling plays an important part in development, particularly mech-
anisms such as juxtacrine signalling (surface to surface) in early development
when the cells may be closely packed together (Wearing et al., 2000). But more



2.4. ASPECTS OF DEVELOPMENT 25

generally, without cell signalling an organism could not even begin to differen-
tiate positional information to set up the axes of the body plan (see Speman’s
‘organiser experiment’ 5 on amphibian embryos in Wolpert (1998)). Without
cell signalling, only asymmetric distribution of transcription factors during
cleavage could cause cells to become different from one another (see §2.5.2, also
Kumar and Bentley, 2003). Signalling provides an important, if still poorly un-
derstood part of the context for early cell differentiation, laying the pathways
for later developmental processes that require context-specific gene expression
(§2.5.2–2.5.4).

Finally, binding a protein to a cell’s receptor can trigger internal cell reac-
tions that relay information back to the genome via signal transduction path-
ways. Such pathways can be viewed as signal cascades, sometimes involv-
ing many events that can be used by the cell as an amplification mechanism.
Pathways are complex, as during the “cascade” there are opportunities for in-
creased interaction or influence from other pathways, leading to a complex
interplay of genes, proteins, even conflicting signals.

Cell division

Cells multiply by duplicating their contents and splitting in two. The cycle of
cell division contains several phases: interphase, where DNA replication and
the production of proteins occurs, mitosis or nuclear division, and cytokinesis,
which concerns the division of a cell’s cytoplasm after nuclear division (Kumar
and Bentley, 2003).

Cell division is either symmetric or asymmetric. Symmetric division occurs
when the plane of cleavage divides the cell into equal sizes with equal propor-
tions of cytoplasmic proteins. Asymmetric division results in unequal sizes of
daughter and parent cells containing different cytoplasmic factors. The differ-
ent levels of cytoplasmic factors plays a large part in local regulation of gene
expression in the embyro (§2.5.2).

2.4.2 Proteins

The broad behaviour range of eukaryotic cells is due to their interaction and
production of proteins. With each cell containing several thousand proteins,
the scope of potential functions a cell can achieve is huge. Proteins form not
just the structural components of cells and tissues, but are involved in both
signalling and the general “house keeping” of the cell, such as transporting

5Speman’s early experiments involved lassoing a fertilised newt’s egg with a baby’s hair to
force cell divisions to be on one side only. This led to the discovery that “grey crescent cells”
initiate gastrulation of other cells.
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or storing oxygen or haemoglobin molecules. Proteins are also involved in
defensive mechanisms such as the production of antibodies.

In terms of their chemical structure, all proteins are polymers comprised
from twenty different amino acids. These amino acids are joined by peptide
bonds giving long polypeptide chains, hundreds or thousands of amino acids
in length. The chains “fold”, taking on distinctive three dimensional shapes
which are critical to their function. Conceptually, proteins might be described
as rather like a scrunched up ball of string, with the string itself being com-
posed of up to 20 differently coloured segments, which can be repeated, and
whose sequence order is specified by the order of nucleotides in the gene (see
next section). The spatial proximity of the segments in their scrunched up ball
largely determines the functionality of the protein. However understanding
proteins in the real world is less easy than this simple, visual conceptualisa-
tion. 3D modelling software can help indicate the physical complexities of
proteins by producing “ribbon” drawings (see Fig. 2.7), but understanding the
modelled structures remains difficult, particularly when trying to determine a
functional role from protein folding.

2.4.3 Genes code for proteins

The genome specifies when and where proteins are synthesised, and there are
those who argue that genes have no function other than to specify proteins
(Wolpert, 2003). As hinted at in the introductory section on proteins (§2.4.2),
complicated networks of interactions involving proteins and genes are built up
within cells. Proteins can promote or inhibit other proteins, and the absence or
presence of certain proteins can affect the expression of a gene, which would
in turn affect the production of another protein. These forms of “cascading”
control sequences in protein production are termed gene regulatory networks
and can be extremely complex. A minor industry has built up trying to infer
such networks by analysing the massive amounts of data produced during
the study of gene expression. It is important to understand that it is via gene
regulatory networks and protein signalling pathways that physical feedback
loops are possible during the development of the organism. Such feedback
and control during development gives the organism a measure of flexibility in
response to its environmental conditions.

Deoxyribonucleic Acid (DNA) and the translation process

In what would appear to be a case of massive redundancy, every cell in every
living organism contains the unique instruction set for that organism’s con-
struction. That might seem a lot of information for each cell to contain, but
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Figure 2.7: The structure of the Choline Kinase CKA-2 Dimer. (A) Shows a
ribbon drawing of the CKA-2 dimer looking straight down the two-fold axis of
symmetry. (B) and (C) show enlarged views of the residues involved in interac-
tions between the two symmetry-related helices. The view in (B) is orthogonal
to those in (A) and (C).

Image and text reproduced from Peisach et al. (2003)

the cell as it divides and multiplies will make use of just a tiny part of it. The
cell must construct itself from proteins, and the rules for synthesising those
proteins are contained in the DNA sequence that specifies the proteins for that
cell.

The discovery of the structure of DNA by Crick and Watson in 1953 helped
understand how genetic information copied itself. Rather like the polypep-
tide chains of amino acids that make up proteins, DNA contains two polynu-
cleotide chains of nucleic acids, linked to form the two strands of a double
helix. The nucleic acids are simpler than their amino acid counterparts in pro-
teins and contain just four bases (usually represented by their first letters), two
purines: adenine (A) and guanine (G), and two pyrimidines: thymine (T) and
cytosine (C) (see Fig. 2.8). Along the two polynucleotide chains of the helix,
purines and pyrimidines face inward and pair up in what are termed the com-
plementary base pairings: G-C and A-T. 6 One consequence of complementary
base pairings is that a single strand of DNA or RNA can act as a template for

6In RNA, thymine is replaced with uracil (U), giving a base pairing of A-U.
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Figure 2.8: The double helix structure of DNA.
Image reproduced from Alberts et al. (2002)

the synthesis of its complementary strand, allowing nucleic acids the capability
of directing their own replication (Kumar and Bentley, 2003).

In a section of the DNA, the order of the nucleic acid sequences governs the
creation of amino acids that make up the protein. However, DNA is passive.
It does not directly control the protein synthesis generated in the cell cyto-
plasm. That process is controlled by synthesised RNA, known as messenger
RNA (mRNA), itself synthesised from the DNA template. In order to construct
a protein, the nucleotide sequence in the mRNA is read three bases at a time, in
what are termed nucleic triplets, or codons, with each codon corresponding to
a single amino acid (Kumar and Bentley, 2003). This allows some redundancy,
with some of the amino acids being encoded by more than one codon.

The translation of the codon into an amino acid is carried out by transfer
RNA (tRNA) molecules, with at least one tRNA molecule being specific for an
amino acid and a particular codon (although some amino acids may require
the services of two or three different tRNAs). The amino acid is attached to the
tRNA by an enzyme (aminoacyt-tRNA synthetase) which is again specific to
that amino acid and its corresponding tRNA molecule. In a process similar to
DNA replication, each kind of tRNA has a sequence of 3 unpaired nucleotides
known as the anticodon, which bind into complementary base pairs in exactly
the same way as the double helix strands in DNA, except this pairing is to the
codon in the mRNA molecule.7

7Although I can’t include it here, I can recommend John Kyrk’s online animation of how the
translation process constructs proteins: http://www.johnkyrk.com/DNAtranslat.swf.

http://www.johnkyrk.com/DNAtranslat.swf
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Having covered the basic building blocks of protein transcription, we can
now look at what restrictions development places on evolution, how develop-
mental processes differentiate cells and how evolution is able to reuse func-
tional genes in new locations.

2.5 Evolutionary Developmental Biology

Although the supporting evidence changes, evolutionary developmental biol-
ogy is still tussling with the same question that Darwin hesitatingly put to his
readers: how did organs “of extreme perfection and complication” such as the
eye evolve?

“One of the most important concepts in evolutionary develop-
mental biology is that any developmental model for a structure
must be able to account for the development of earlier forms in the
ancestors.” Carroll et al. (2001).

Over a hundred years after Darwin first posed the question, and even with our
increased knowledge about the developmental process, being able to account
for earlier ancestral forms presents a fascinating challenge and as we shall see
in later sections, its answers may help computer scientists as much as biolo-
gists.

Evolution and development are closely interwoven. In §2.3.3 it was ar-
gued that the importance of developmental processes has begun to be given
greater credence in evolution. Wolpert is not being provocative when he states
that “DNA is rather boring and passive” (Wolpert, 2003), he is promoting the
extent to which proteins are responsible for interpreting the complex informa-
tion contained within DNA. While it is true that all changes of form and func-
tion are down to changes in DNA, as DNA dictates which proteins are made,
change to DNA material does not imply that there is a “one-way flow of in-
formation, from DNA to proteins” (Banzhaf et al., 2006) that forms the basis of
functional exploration by evolutionary search. Developmental processes also
play an important role in saying which genes will be expressed in which places.
Organisms evolve into environments, and this would be impossible unless the
flow of information was two-way. As the environment into which an organ-
ism develops isn’t a given constant, the developmental process needs constant
feedback and gene regulatory networks cannot obtain information about their
environment except via protein interaction. The presence of certain proteins
(transcription factors) inhibits or promotes gene expression, so that genes en-
code not only for the proteins that build the biological infrastructure, but also
for the proteins that control their own self-expression.
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The ability of genes to encode for proteins that allow them to self-construct
their own rules of operation is one of the more remarkable features of develop-
ment. But there are restrictions on how those rules evolve to explore functional
space, and the evidence for that comes from the field of evolutionary develop-
mental biology.

2.5.1 The development of complexity

For evolutionary developmental biologists,8 every structure has two histories
that relate to how it developed: ontogeny (its complete development to matu-
rity) and phylogeny (its evolutionary history). Wolpert states that, “ontogeny
does not recapitulate phylogeny”, as many embryos pass through common
phases that their ancestors passed through (Wolpert, 2003, pg. 47).9 For exam-
ple, all vertebrates pass through a similar phylotypic stage involving the de-
velopment of the nervous system (neurolation) and the formation of somites
(body segments). This suggests that a distant ancestor of all vertebrates passed
through this stage, and despite the stages before and after the phylotypic stage
diverging in many species, neurolation has persisted to become a feature of all
vertebrate development.

Sharing an embryonic stage provides evidence of common ancestors. An
alternative source of evidence is to trace the alteration of structures present in
ancestral forms in early embryonic stages. An example is the evolution of the
branchial arches and clefts that are present in all vertebrate embryos, including
humans. During evolution the branchial arches have produced both gills in
primitive jawless fishes, and in a later modification, given rise to jaws. But
Wolpert makes an important point:

“These are not the relics of the gill arches and the gill slits of
an adult fish-like ancestor, but of structures that would have been
present in the embryo of the fish-like ancestor.” Wolpert (2003) (my
emphasis)

This has profound implications. It suggests that while all changes to form re-
sult from changes in the DNA, the changes are limited to where they can oc-
cur. Early embryonic stages appear to be robustly protected against change,
perhaps because change here would be dangerous to the organism, but also
because change appears to be easier once critical stages of development have
passed.

8This section draws heavily from a single source (Wolpert, 2003).
9This is a common rebuttal of Ernst Haeckel’s theory of recapitulation put forward in 1866,

which claims that embryos pass through all their evolutionary stages. A full discussion of
the debate (with references) can be found on Wikipedia, http://en.wikipedia.org/wiki/
Ontogeny_and_phylogeny.

http://en.wikipedia.org/wiki/Ontogeny_and_phylogeny
http://en.wikipedia.org/wiki/Ontogeny_and_phylogeny
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Striking evidence of the restriction imposed on gene mutations that control
early development is the almost universal conservation of a group of genes
called Hox gene clusters. Hox gene clusters control a wide range of devel-
opmental processes, such as limb bud or body plan development, and range
across species from fruit flies to elephants. An important function of some Hox
genes is to specify positional identity in the embroyo. These positional val-
ues are interpreted differently in different embryos, so that cells develop into,
for example, segments and appendages (Wolpert, 2003). This means that the
same genes expressed in a different location, time or context, may give rise to
a different morphological form (Carroll et al., 2001). This aspect of reuse is ex-
amined in more detail in the following section, as it demonstrates how nature
has invented a few, very useful genes, and re-used them widely across species.
If we want evolutionary computation to mimic this trick, we need to discover
what allows context-specific expression of a gene, and allow that context to
in-part define the gene’s functional role.

But the universal presence of Hox gene complexes should not be used as
blanket evidence that such genes cannot mutate. Quite the reverse is true, but
the manner they have mutated gives an insight into a key evolutionary mecha-
nism. Gene duplication can occur in a variety of ways during DNA replication
and provides the embryo with an additional copy of the gene. The beauty of
this is that:

“. . . this copy can diverge in its nucleotide sequence and acquire
a new function and regulatory region, so changing its pattern of ex-
pression and downstream targets without depriving the organism
of the function of the original gene.” (Wolpert, 2003)

Haemoglobins (an oxygen carrier in red blood cells) in humans are an example
of the evolution of new proteins and patterns of gene expression that have oc-
curred by gene duplication. The duplication that gave rise to Hox genes means
that they can be compared across a variety of species, allowing one to recon-
struct how they are likely to have evolved from “a simple set of six genes in a
common ancestor of all species” (Wolpert, 2003). Thus Hox genes are evidence
on the one hand of conservation in development due to their widespread de-
ployment, and on the other hand they indicate how successful genes that pro-
vide functional features can be both kept and changed at the same time. Both
these aspects are pertinent to evolutionary computation, where there is a need
to protect a good solution as part of solving a larger problem.

If gene mutation is limited to where it can occur, it suggests that functional
complexity deriving from development may be hierarchical in nature, with
change easiest at the “leaves” of the tree. The supporting evidence from evolu-
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tionary biology is two-fold. Firstly, entirely new structures are rare, evolution
tends to “tinker with existing structures”:

“New anatomical features usually arise from modification of an
existing structure. A nice example is provided by the evolution of
the mammalian middle ear. This is made up of three bones that
transmit sound from the eardrum (the tympanic membrane) to the
inner ear. In the reptilian ancestors of mammals, the joint between
the skull and the lower jaw was between the quadrate bone of the
skull and the articular bone of the lower jaw, which were also in-
volved in transmitting sound. During mammalian evolution, the
lower jaw became just one bone, the dentary, with the articular no
longer attached to the lower jaw. By changes in their development,
the articular and the quadrate bones in mammals were modified
into two bones, the malleus and incus, whose function was now
to transmit sound from the tympanic membrane to the inner ear.”
(Wolpert, 2003).

Although mammals and reptiles appear to have evolved separate mechanisms
for hearing, the mechanism actually stems from a common structure. Secondly,
comparisons of embryos suggests that those characteristics that are shared by
a group of animals appear earliest in their evolution:

“In the vertebrates, a good example of such a general charac-
teristic would be the notochord (a skeletal rod of tissue enclosed by
a firm sheath), which is common to all vertebrates and is also found
in other chordate embryos. Paired appendages, such as limbs, which
develop later, are special characters that are not found in other chor-
dates and which differ in form among different vertebrates.” (Wolpert,
2003)

The evolutionary record therefore provides us with some interesting evidence:
shared characteristics occur earlier in evolution, and entirely new structures
are, if not infeasible, at least rare. While the fossil record has long suggested
these observations, fossil evidence is often patchy and its discovery down to
chance. It is the more recent genetic evidence from embryology and develop-
mental biology that has thrown light on the restrictions that evolution operates
under. Although mutations may occur at random, developmental processes
place restrictions on changes to the DNA, as any change must leave the organ-
ism viable. The scope of potential change is therefore narrowed to produce the
“tinkering” effect described by Wolpert.

Evidence provided by Sean Carroll and his colleagues suggests that most
changes are in the cis-regulatory region of the genes, rather than in the nature
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Figure 2.9: Drosophila embryos showing pattern and stripe formation.
Image reproduced from Kosman et al. (2004)

of the protein for which the genes encode (Carroll et al., 2001). The reason for
this is that the cis-regulatory region is where protein factors — the transcription
factors — bind and determine whether or not the gene will be transcribed. The
subtle variations in morphological form, or “tinkering”, is a by-product of this
process, and its role in evolutionary development explained in the following
section.

2.5.2 Evolutionary development

Work on developmental processes has uncovered much of what drives mor-
phological variation in organisms. The literature is full of examples of dro-
sophila embryos showing early body plan layout or stripe formation. These
pictures are created by attaching fluorescent proteins to certain transcription
factors (see Fig. 2.9) which enables biologists to see the distribution of such
proteins across the embryo.

The individual contexts provided by the varying distribution of transcrip-
tion factors allows the expression of repetitive morphological structures, such
as backbone vertebrae or body segments. In the following sections we con-
centrate on how regulation works at the level of a single cell nucleus, rather
than tackle the complexity caused by cascading networks of control, which is
beyond a short introduction such as this.

As mentioned briefly in §2.5.1, the cis-regulatory regions or “switches” em-
ployed by gene regulatory networks (GRNs) determine the contexts in which
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Figure 2.10: Different switches cause the gene for bone material protein 5
(BMP5) to be expressed in different locations in a mouse embryo.

Image taken (with permission) from Carroll (2006)

a particular gene is expressed or inhibited from transcribing proteins in the
nucleus of a cell. These “switches” allow a gene to be re-used in a variety of
contexts, which means that the protein a gene encodes will have the opportu-
nity of interacting with different sets of proteins according to the cell’s location
in the embryo. For example, the different bones in our body are not created
by different genes encoding separate proteins for particular bones, but by the
same gene being used in different contexts to create the bone material protein
for a rib, a sinus, an outer ear and so on (see Fig. 2.10).

Gene switches work by certain proteins being able to bind to small sections
of DNA material upstream of where the gene is located. These transcription
factors or “binding proteins” act on DNA to inhibit or promote gene expres-
sion. Whether a transcription factor is present or not in a particular cell type
is determined by that cell’s location in the embryo. For example, in Fig. 2.11, a
promoter for a gene is distributed in vertical stripes that extend to the horizon-
tal axis of an embryo. However, the presence of inhibiting transcription factors
for the same gene in the lower third and back half of the embryo results in a
net expression of the gene as a series of dots along the horizontal axis. Pattern
formation is the basis of all gene reuse. The following section looks at some as-
pects of gene reuse that are of particular interest to evolutionary computation:
context-specific functionality, and the mechanism that some extent determines
the degree of gene reuse in an organism.
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Figure 2.11: Gene switches acting on a drosophila embryo results in the gene
being expressed as a series of dots extending halfway along the horizontal axis.

Image taken (with permission) from Carroll (2006)

2.5.3 Gene expression and reuse

Research suggests that hardly any morphological features are created de novo
from new genes (Carroll, 2006; Wolpert et al., 2002). Instead different morpho-
logical features between species are the result of the same genes (usually one
of the four Hox clusters) being employed in different contexts. The Distal-less
gene, essential for the formation of appendages, such as limbs or wings, is one
example. Fig. 2.12 shows how in butterflies, this gene has evolved an addi-
tional “switch”. The switch provides a new context for the Distal-less gene to
be expressed — in this particular case, that location is on the wing. In the new
context, rather than forming a limb bud, the gene results in an entirely different
morphological feature: a spot of colour (Carroll, 2006).

The gene switch mechanism allows reusable, configurable instances of a
gene to be expressed in the different contexts of embryo development. Re-
peated use of a gene in different contexts is called modularity by biologists, and
gives rise to repetitive morphological structures such as vertebrate backbones,
thorax segmentation, rib cages, leaf and wing venation, limbs, etc.. Such struc-
tures are common in nature, but it has taken researchers a long time to un-
derstand the link between switches and gene reuse. An important part of this
interaction is how the switches work to allow the binding process some degree
of flexibility.
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Figure 2.12: Switches in the Distal-less gene control expression in the embryo,
larval legs and wing in both flies and butterflies, but butterflies evolved an
additional switch providing a new context for Distal-less (giving wing eyespots
— a different morphological feature).

Image and text taken (with permission) from Carroll (2006)

2.5.4 Binding signatures

Transcription factors attach to stretches of DNA by recognising signature se-
quences of base pairs. For example, a single switch for a gene may consist of
several hundred base pairs (bp), lying perhaps several thousand bp upstream
of the gene. Within the gene switch, there are usually 6–20 signature sequences
(each ∼6–9 bp in length) that affect the expression of the gene concerned (a
gene contains∼1000 or so bp, and a chromosome contains thousands of genes,
so millions of bp). Even a short signature length has a huge number of possible
combinations (Carroll, 2006).

Signature sequences sometimes require exact matches for every position,
sometimes they contain wildcards. Wildcard positions can be filled by all four
nucleic acids (Cytosine, Thymine, Adenosine, and Guanine) but are more often
limited to pairs of alternatives (e.g T or A, C or G, etc.). For example, Tinman,
a gene related to heart development in most species, is highly specific. How-
ever, Pax-6 (the gene supposedly controlling the development of sight across
species) and the gene Dorsal use wildcards in their binding signatures, repre-
sented by K (G or T), Y (C or T), M (C or A), W(. . . ), etc. (example below is
from Carroll (2006)):

Tinman TCAAGTG

Pax-6(eyeless) KKYMCGCWTSATKMNY

Dorsal GGGWWWWCCM

Thus Pax-6 has a signature with only 6 specific sites out of 16 possible bp com-



2.6. MODELS OF EVOLUTION AND COMPLEXITY 37

binations, indicating that it could bind at a variety of locations. This is borne
out by experimental evidence that shows eyes can be “grown” in other con-
texts — such as on wings or legs — by altering the transcription factors present
at those locations (Carroll, 2006).

Binding signatures and proteins permit the genome to maintain a set of so-
lutions from which it selects how to explore its functional domain. The action
of “binding” is one of feedback: the information relayed by the presence of
binding proteins in the cell nucleus feeds back to the DNA and determines
which genes will be expressed in that context. But a by-product of exploring
the functional search space in this way is that developmental processes have
a fundamental impact on which genes are conserved. Their continued pres-
ence means that they are not only more likely to be reused by evolution during
later developmental processes, but they also stand a greater chance of being
available to evolutionary action such as gene duplication. Genes expressed
in a particular location have the opportunity to construct morphological func-
tions that will differ if the same gene is expressed elsewhere at another point
in development. To summarise our look at evolutionary developmental biol-
ogy, we can say that although all change is driven by changes to DNA, it is the
developmental processes of construction that largely determine whether those
changes can have an effect.

2.6 Models of Evolution and Complexity

So far we have taken examples from nature, looked at how theories of evolu-
tion have developed, and tried to investigate how the evidence provided by
our greater understanding of genetics has influenced those theories. We have
also looked at the process of construction, including the basic building blocks
of life and combined them with a brief excursion into evolutionary develop-
mental biology to see if they could shed some light on the evolution of com-
plex features. However, it should be noted that not all the progress in this area
has been done by practitioners gathering samples and amassing data from real
life examples. Some important concepts have been developed by theoretical
biologists, particularly those such as Kauffman (1995) and Solé and Goodwin
(2000) working on abstract models of evolution and complexity.

One consequence of the restrictions that developmental processes impose
on evolution’s design is a “smoothing out” effect. Large jumps, as we saw in
the theoretical landscape of all possible eyes, are not possible; small, incremen-
tal changes of direction are.
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2.6.1 Fitness landscapes

The analogy of the landscape that represents peaks and troughs of evolution-
ary success within a population was first devised by the American geneticist
Sewall Wright, who coined the phrase “adaptive landscape” to describe the
shifting balance of population genetics (Wright, 1932). The adaptive landscape
and its associated heuristics is an influential model in evolutionary biology, but
its use is not universally accepted. It was strongly criticised by Wright’s own
biographer, Provine, who declared the heuristic was mathematically uninter-
pretable (as there appears to be no way of generating the continuous “surface”
of the landscape) (Provine, 1986). But it has also been defended by Ruse (1996)
and most recently by Skipper (2002) who, in a short survey on the influence
of Wright’s work, claims that the adaptive landscape diagram remains of use
in the study of dynamic behaviours. Despite apparent weaknesses with the
model, Wright’s adaptive landscape has gone on to be extensively developed
by Kauffman, Levin, Johnsen and others, in the investigation of what they term
“adaptive walks” by organisms (Kauffman and Levin, 1987). They term their
models “fitness landscapes”.

The model is a simple one. An individual within a species is represented as
a string of genes that defines its genotype. The string itself has a real number
associated with it. This number defines the fitness of the string in terms of the
phenotype it produces. The assessment of fitness as a single or two dimen-
sional trait is one aspect of the model that has been criticised (see following
paragraph). The distribution of fitness values over the space of all genotypes
gives the fitness landscape, and all members of the population map onto that
landscape according to their fitness value. If an individual has a high fitness
value, it falls somewhere near a peak on the landscape; if it has a low fitness
value, it is in a trough. A schematic fitness adaptive landscape is shown in
Fig. 2.13, although most landscapes are considerably more rugged (and higher
dimensional, see §2.6.3) than this, something that has important implications.
Initially (at least conceptually), the population of phenotypes falls over the
landscape with a random distribution, according to the fitness values given
to them by their genes. However, after undergoing selection and mutation
(more details of this are given in §2.8.1), individuals start to gain higher fitness
values and start to “walk” towards the nearest peak. For the purpose of the
model, the process of adaptation or improving a phenotype’s fitness values is
equivalent to walking up a peak.10

A crucial part of the model is the definition of the fitness landscape, as it

10One could select for negative values and this might be more apt, particularly for aspects of
development as one could model “basins of attraction” (see D. Fogel (2000) and also §2.6.4).
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Figure 2.13: Schematic “adaptive” or “fitness” landscape.

is this which measures how the fitness of the population moves towards some
optimal configuration. Although the model is intuitive to visualise for two
fitness traits that can be isolated and easily quantified, the situation becomes
more difficult as we try to represent complex, interrelated factors. But let us
first examine the case of single fitness traits. In an imaginary world, I might
have a creature that is predated on by an animal that can run fast. The en-
vironment therefore selects individuals who can run fast as these individuals
have more chances of escape, by reproducing those individuals who are lo-
cated higher up on the fitness peak that represents the ability to run fast and
discarding others. Over time, the individuals who survive are all fast runners.
At least that is the theory of the model. In reality, there is no evidence that
evolution works on single traits. It may select for longer legs, faster muscles,
and so on, but it could equally evolve the strategy of growing sharp horns,
becoming poisonous or evolving a thick skin. Even in the former case, there
might be many different ways of achieving the same fitness value as it is mea-
sured solely in terms of running speed. For the purpose of modelling selection
based on a single trait the model is adequate, and some authors even go so far
to claim that the model reflects reality:

“Selection acts on collections of interactive phenotypic traits,
not on singular traits in isolation. The appropriateness of an or-
ganism’s holistic functional behaviour in light of the physics of its
environment is the sole quality that is optimised through selection”.
(D. Fogel 2000)

D. Fogel thus suggests that providing one selects (or assesses) on the basis of
an aggregated, holistic functional behaviour, the complex genetic relationships
that cause the behaviour can safely be ignored. This perspective is one that is
interested in the perceived “optimisation” of that behavioural trait.

The problem for fitness-landscape models is that we are forced to assess



40 CHAPTER 2. AN INTRODUCTION TO EVOLUTION

Figure 2.14: Imaginary rugged fitness landscape, showing optimal shape con-
figurations of fossil tribolites.

Image reproduced from (Solé and Goodwin, 2000)

all fitness in terms of such amalgamated functional features, which in the real
world are the complex expressions of genes and proteins. But as this would
lead to a very difficult to visualise model, involving thousands of dimensions,
fitness landscapes are instead generally plotted against just two dimensions
representing two traits in the phenotype. Often, there is a sleight of hand at
work here, in that we need to forget the multi-dimensional nature of the geno-
type space. Stuart Kauffman gives a flavour of this easy-to-imagine model:

“Consider a set of all possible frogs, each with a different geno-
type. Locate each frog in a high-dimensional “genotype space”,
each next to all genotypes that differ from it by a single mutation.
Imagine that you can measure the fitness of each frog. Graph the fit-
ness of each frog as a height above that position in genotype space.
The resulting heights form a fitness landscape over the genotype
space, much as the Alps form a mountainous landscape over part
of Europe”. (Kauffman, 2000)

The appealing nature of such illustrations is shown in Fig. 2.14 from Solé and
Goodwin (2000), where a fictitious landscape has been plotted based on fossil
tribolites and fitness assessed in terms of shape. In any one set of conditions,
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there are some optimal configurations for the organism, represented by the
peaks in the fitness landscape. However, the extent to which this has any real
meaning in nature is doubtful. Even Wright (1932) realised that such a repre-
sentation hugely over-simplified the case:

“. . . accurately representing the population genetics of the evolution-
ary process requires thousands of dimensions. This is because the field of
possible gene combinations in the field of gene frequencies of a population
is vast. . . . Wright used the two dimensional graphical depiction of
an adaptive landscape . . . as a way of intuitively conveying what
can only be realistically represented in thousands of dimensions.
The surface of the landscape is typically understood as represent-
ing the joint gene frequencies of all genes in a population graded for
adaptive value.” (Wright’s words italicised by me) (Skipper, 2002)

But Provine (1986) argues that Wright’s original illustrations have no gradation
along the axis or even any indication of what the units are (as they represent
“genotype interpretation”) and neither are there points along them to indicate
where a gene combination is placed. Provine therefore claimed that there is no
way of generating the continuous surface of an adaptive landscape. A second,
more serious criticism by Gavrilets (1997), is that many gene combinations are
incompatible, the number of which rises with the number of genes under con-
sideration. Therefore the idea of representing gene combinations by a smooth
continuous surface is itself specious; reality more closely resembles a landscape
pock-marked with variously sized holes, where the holes indicate unachiev-
able gene combinations. Others, notably Stadler (2002), have extended fitness
landscapes with views similar to Gavrilets based on the impossibility of certain
genotypes realising phenotypes due to developmental processes (in essence
the same restrictions placed on evolution that were noted in §2.5.1). As a result
of these issues, most biologists have abandoned Wright’s original genotype in-
terpretation in favour of one that assumes a population-based interpretation:
“joint frequencies of all genes in a population graded for adaptive value” (Skip-
per, 2002). But even if one takes this model as realistic, the problems are not
over for fitness landscapes.

2.6.2 The NK model

The difficulties with the genotype interpretation led to the development in the
late 1980s of a fitness landscape that tried to tackle the interdependency be-
tween genes, known as epistasis. In Kauffman and Levin’s well-known NK
model (Kauffman and Levin, 1987), N represents the number of genes (and
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Figure 2.15: Building up fitness landscape. Each gene receives inputs from two
other genes (K = 2) that affect the fitness contribution of the gene. Each gene
in each of the 23 = 8 possible genomes is randomly assigned a fitness contribu-
tion between 0 and 1. The fitness value of each genome is then computed as the
mean value of the fitness contributions of the three genes. A fitness landscape
is constructed as a Boolean hypercube. Circled vertices on the cube represent
local optima, arrows represent “uphill” directions (text from Kauffman (2000)).

Image reproduced from Solé and Goodwin (2000)

therefore the dimension), while K indicates how many other genes influence
any given gene, i.e. the K other genes are epistatic inputs to the fitness of the
considered gene. If K = 0, so that no gene influences any other gene, then it
results in a fitness landscape of only one peak with smooth sides (known as
the Fujiyama landscape). But as K increases, the number of peaks on the land-
scape increases and the mean fitness of the nearest peak decreases toward that
of an entirely random genotype (Skipper, 2002). Typically, interconnection re-
sults in a rugged fitness landscape. Genes (or traits) are represented as binary
alleles, so that they are either expressed (1), or not (0). For computer scientists,
the model starts to sound familiar:

“the 2 to the N combinations of alleles of the N genes are there-
fore located on the vertices of the N -dimensional Boolean hyper-
cube. The fitness of each type of organism, or vertex, is written
on that vertex and can be thought of as a height. Hence the NK
model creates a fitness landscape over the N -dimensional Boolean
hypercube” (Kauffman, 2000).

The NK model and its statistical properties (i.e. the effects of changing values
of N and K) have been widely explored (Solé and Goodwin, 2000).

As before, a species evolves by “adaptive walks”. Essentially this means
that we can choose a given trait, mutate the bit and then examine the fitness
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table. If the average fitness of the resulting configuration is higher, an adaptive
walk has occurred and the species moves in the landscape (it starts to climb).
As already mentioned, when K = 0 the system is disconnected and there is
a single global optimum. But when K is the theoretical maximum, N − 1,
the system is entirely interconnected and every gene influences every other
gene. Kauffman explored the generic properties of interconnected landscapes
by assigning random fitness values across each of the allele states affecting a
given gene (i.e. alleles of other genes whose expression affects the gene you
are looking at). The fitness value of a specific allele at each of the N genes is
then the average of the fitness contributions of the other N genes, yielding a
random fitness landscape over the N dimensional hypercube (see Fig. 2.15).
These random, highly interconnected landscapes yield interesting properties:

“A main feature of random landscapes is that there are nearly
exponentially many local peaks, indeed the number of local peaks
is 2 to the N/(N + 1). For N = 1000, there are 10297 local peaks
on the landscape. Finding the global peak by hill climbing is im-
probable, and the system becomes trapped on a local peak. Other
features include the lengths of walks via fitter neighbours to nearby
peaks, which scales as the logarithm of N , and the way directions
uphill dwindle on walks uphill. At each step uphill, the fraction of
directions uphill is cut in half, yielding exponential slowing in the
rate of finding fitter variants.” (Kauffman, 2000)

These features of highly interconnected, rugged landscapes are crucial to
understanding the nature of genotype search space. Because the landscape is
big and interconnected, finding a global optimum becomes not just improb-
able, but of dubious value even as a strategy. The odds are stacked against
the organism. Furthermore, the fact that the rate of improving fitness slows
exponentially with each uphill step, and that the system gets trapped on local
optima, correlates to the earlier suggestion by Wolpert that evolution merely
“tinkers” with existing structures. Big jumps are not possible. The reason you
are forced to tinker with the edges, making only incremental movements in any
direction, is because each step uphill seriously restricts the other directions you
can move in. If an organism wants to stay flexible in a dynamic environment, it
can’t afford to get trapped on a local peak of specialist perfection having aban-
doned its options for adaptive movement. Unfortunately organisms have no
way of knowing whether their adaptive movements may strand them or keep
them in the race of poor, but flexible competitors.
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2.6.3 Coevolution

Natural systems are much more complicated than single genotype popula-
tions. In a Malthusian world of limited resources, everything is fighting for
survival. For cheetahs to stay alive and reproduce, the species must keep up
with the gazelles who are constantly evolving to outrun the fastest cheetah.
Organisms not only affect each other’s environment, they compete in an evolu-
tionary race against other species. Losing means extinction. The idea of organ-
isms competing merely to “stay in the race” was first put forward by Van Valen
(1973) and is known as the Red Queen hypothesis.11

Solé and Goodwin (2000) explain the hypothesis thus: based on the fossil
record, Van Valen observed that a species may become extinct at any time, re-
gardless of how long it had previously existed. But if evolution is a process
of constant improvement, why are modern species as equally likely to disap-
pear as their ancestors were? Van Valen’s hypothesis suggests that if continual
improvement were the case, we would expect to see a decreasing probability
of extinction the longer a species had existed. Instead, the fossil record shows
the probability remains constant. That constant probability can only mean that
continuous improvement is not possible for any species.12 Van Valen claims
that this means species are compelled instead to continuously adapt to each
other’s changes. Rather than continuous improvement, we have continuous
re-adjustment. And despite natural selection doing its best to improve your
chances of genetic survival, you might find you can no longer hill-climb as
well as you could because someone else is affecting your ability to do that.
Thus you can drop out of the race at any moment, and according to Van Valen,
that would probably be the moment you failed to adapt to someone else’s ad-
vantageous change. So we have yet another route to extinction. But this time,
rather than getting trapped on a local peak due to your own adaptive move-
ments, you get trapped because the landscape moves faster than you do.

Modelling adaptive landscapes takes on a whole new level of complexity
when competing species are able to affect the fitness criteria of the genotype
search space. Kauffman uses a simple, fictitious model of a frog and fly in
evolutionary competition (see Fig. 2.16)

“Each of the N genes in the frog receives inputs from K genes
in the frog and C genes in the fly, and vice-versa. Thus, the sticky
tongue of the frog affects the fitness of the fly via the presence or

11The name of the hypothesis comes from the Red Queen in Lewis Carroll’s Alice Through the
Looking Glass, in which she explains to Alice “Here, you see, it takes all the running you can do, to
keep in the same place” Solé and Goodwin (2000).

12As pointed out in the previous section, the evidence suggests that continuous improvement is
actually dangerous to the continued existence of a species.
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Figure 2.16: Interconnected genes affecting two coevolving species where K
represents epistatic influence, C represents the degree of epistatic coupling be-
tween species.

Image reproduced from Kauffman (2000)

absence in the fly of slippery feet, sticky stuff dissolver, or a strong
sense of smell for sticky frog tongues . . . Now when the frog pop-
ulation moves by mutation and selection uphill on the frog land-
scape, those moves distort the fly’s landscape and vice-versa. Co-
evolution is a game of coupled, deforming landscapes.” Kauffman
(2000)

The NKC model developed by Kauffman and Johnsen (1991) introduces the
new parameter C to represent the coupling between species. Kauffman and
Johnsen claim that these models “generally behave in two regimes: an or-
dered regime and a chaotic regime, separated by phase transition” (Kauff-
man, 2000). Solé and Goodwin describe these regimes as a) low-K, ordered
or frozen, where species settle on local optima, and b) high-K, chaotic or Red
Queen, where the ecosystem is in constant flux. They also comment that the
system appears finely, if not critically balanced:

“At the boundary between these regimes, species in a finite sys-
tem reach local peaks, but any small perturbation generates a co-
evolutionary avalanche of changes through the system. The distri-
bution of these avalanches follows a power law, as expected for a
critical state.” (Solé and Goodwin, 2000)

Such changes are usually interpreted as extinction events. Kauffman and John-
sen (1991) mapped these avalanches to extinction events in the fossil record
and although initially unsuccessful in finding a correlation, once the model was
adapted to allow connections between species themselves to co-evolve, a corre-
lation was found (Kauffman, 1995). Kauffman concluded that as avalanches of
extinction events can propagate across species, it appears that species survive



46 CHAPTER 2. AN INTRODUCTION TO EVOLUTION

Figure 2.17: Waddington’s epigenetic landscapes: his original drawing on the
left showing developmental pathways (Waddington, 1957) and a later alter-
native showing epigenetic influences on the same landscape. Genes pull guy
ropes attached to the landscape, deforming it and fixing the path of the ball,
but a slight alteration in the genotype will not significantly change the final
state, due to the stability (homeostasis) of development.

Right-hand image reproduced from Saunders (1993)

by niching on local optima and thus protecting themselves against too much
“evolutionary competition” from other species. This niching, in a highly cou-
pled, adaptive landscape is akin to each species “tuning” the ruggedness of its
landscape (i.e. managing its interconnectedness) so that it retains both a degree
of independence from the adaptive movements of other species and the ability
to make its own adaptive moves. Both Solé and Kauffman further claim that
by tuning their own landscapes, species poise the entire system as close to the
critical boundary as possible. That boundary line is the edge of chaos between
the two system states, low-K and high-K, as described above. The knack of
maintaining the system near that edge of chaos is termed “self-organised crit-
icality”.13 This is an interesting property of interconnected evolutionary sys-
tems, and perhaps one that those in evolutionary computation should bear in
mind as they attempt to scale their models.

2.6.4 Deforming landscapes of development

The NK and NKC models of adaptive landscapes are not the only theoreti-
cal models that use the metaphor of deforming landscapes. Waddington de-
veloped a model in the 1950s of an epigenetic landscape that uses a slightly
different metaphor to explain stability during development. In Waddington’s
model, rather than adaptive walks over a fitness landscape, the image is one
of a ball rolling down the hills and valleys of a landscape of potential devel-
opmental paths, as shown in Fig. 2.17. The hills and valleys are created by
the competing influence of genes (the genes were later shown as pulling on

13Per Bak (1996) was largely responsible for developing ideas around self-organised criticality.
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guy ropes that are attached both to each other and to the surface of the land-
scape with different degrees of force). Waddington’s model does not suffer the
problems of some gene combinations being impossible, as we are looking at
the developmental process. Instead, unrealisable developmental paths (due to
the viability of the organism) are represented by peaks in the landscape that
deflect the path the ball can take. The smooth continuous surface is the result
of gene expression during development, itself an interconnected system of guy
ropes where many genes can affect the influence of a specific gene’s tension
on the landscape. Waddington was fascinated by the ability of the system to
return to a stable state even after being perturbed by environmental or genetic
effects, a property he termed homeostasis. He also used the word canalization to
describe the property that development can typically proceed to one or more of
a restricted number of alternative end states, rather than to a broad spectrum
(Saunders, 1993). Waddington’s point was that a system, especially a dynamic,
non-linear system such as an organism, is unlikely to have stability in the tra-
ditional sense of a single point equilibrium. Waddington sought to emphasise
that dynamic, nonlinear systems had a richer notion of stability, one closer to a
path or trajectory, which could be returned to if travel along it was deflected at
some point.

The importance of stability is crucial in determining the viability of the or-
ganism and although this acts as a restriction on evolutionary change, it also
brings benefits. For example, it is through developmental stability that great
genetic variation can be supported in a population of nearly identical pheno-
types (Saunders, 1993). The model also has explanatory value when we want
to view how large evolutionary changes might affect the developmental pro-
cess. From Waddington’s model, we can see that, even if the influence (i.e. the
tension on the guy rope) of a gene is increased dramatically, change is miti-
gated by the opposing tensions from other genes’ guy ropes that are attached
to it. Thus for one change to have a large impact, it would have to affect many
other genes with a similar degree of force, and make them somehow conspire
to work together to allow a large alteration to affect the shape of the landscape.
Large changes to the outcome of developmental processes are thus both diffi-
cult and unlikely by random mutation.

2.7 Concluding Remarks on Biological Evolution

The invention of nature appears almost limitless. Nevertheless, evolutionary
adaptation is tightly constrained by natural selection and the viability of the
organism throughout both its evolutionary and developmental history. The in-
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terplay of so many aspects in evolution makes the process difficult to model.
From complex developmental processes that show little evidence of tampering
with the early embryonic stages, to theoretical models showing the interplay of
epigenetic forces through to evidence from the avalanches of extinction events
in the fossil records, no single model can capture it all. The best we can hope
for, it seems, is to take as much evidence as we can from natural and theoret-
ical biology when hoping to understand evolution in its broadest sense, and
investigate how the mechanics of the process tune and govern themselves.

If there were a single criticism of the field of evolutionary computing, it
would be that too little evidence from biology has been used during adoption
of the evolutionary paradigm. While no one would wish to try to replicate
the intricacy of biology, evolutionary computation has historically taken a very
narrow interpretation of evolution, one that is predominantly based on mod-
els of fitness landscapes. These models are highly abstract and perhaps rather
sterile as a consequence. There is little opportunity for the rich, complex inter-
actions we see in real biological processes to take place. For example, very little
work has demonstrated the role developmental processes play in evolutionary
search, despite evidence from biology suggesting its fundamental importance.

In the following sections we briefly examine the history of evolutionary
computation, taking in the major trends in the field and examining where the
current research effort is focused. We see how some of the early successes of
evolutionary computation were in part responsible for the direction of later
work. We look at interesting results on the evolution of logic circuits in hard-
ware, which suggest that physical complexity or “richness” is a quality we
could exploit using evolutionary algorithms, and end by looking at some mod-
els that have shifted their emphasis from evolutionary search towards devel-
opment.

2.8 Evolutionary Computation

Towards the end of the twentieth century, biotechnology increasingly made
headline news. There was a growing awareness, even hysteria, about the ex-
tent to which genes determined many aspects of our lives. Genes were dis-
covered, it was disturbingly claimed, for homosexuality, schizophrenia, even
criminality (Hutcheon, 1996). Other spinoffs from biotechnology, such DNA
“fingerprinting” have become commonplace and large scale. Publicly funded
research such as the Human Genome Project14 kept biotechnology in the pub-
lic eye. The famous double helix even features on a British sterling two pound

14http://www.genome.gov/ and http://www.ornl.gov/sci/techresources/
Human_Genome/home.shtml

http://www.genome.gov/
http://www.ornl.gov/sci/techresources/Human_Genome/home.shtml
http://www.ornl.gov/sci/techresources/Human_Genome/home.shtml
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coin minted specially for the fiftieth anniversary of the discovery of DNA.
Biotechnology’s rise to fame and its increasing influence on people’s lives

is perhaps matched only by that of computer science over the same period.
As biologists have become increasingly reliant on computers, it was inevitable
that the latest findings and theories in biology would feed back into computer
science research. Just a decade after Crick and Watson’s discovery of the struc-
ture of DNA, computer scientists were already investigating what ideas could
be taken from biology to use in their own field (L. Fogel, 1963). But although
the borrowing has been somewhat piecemeal to date, the trend to adopt ideas
from biology shows signs of becoming even stronger in the coming years. For
some, such as Peter Bentley writing the New Scientist in 2004, the future of
computer science will be inextricably linked to paradigms of biological pro-
cesses:

“You could say we are going back to nature. I am convinced
that in the future, software will evolve and grow instead of being
designed and built. In place of programmers there will be digital
horticulturalists who plant, prune and grow software from seeds
that they have cultured. Not a single line of code will ever be typed
into a computer again.” (Bentley, 2004a)

Whatever the truth to such grandiose claims, links between computer science
and biology are gaining strength. One could point to areas such as neural net-
works and immune systems as examples of this, but perhaps the greatest re-
cipient of bio-inspired ideas is the area covered by evolutionary computation.

2.8.1 A brief history of evolutionary computation

The earliest attempts at simulating evolution were linked to machine learn-
ing. Turing (1950) suggested how an evolutionary or genetic search might be
used in general machine learning, while Friedman (1956) speculated on the use
of feedback, selection and mutation to design “thinking machines” (an idea
which has raised its head again recently, with the work of Bongard and Lip-
son (2004)). There were others too, perhaps less closely tied to academia, such
Friedburg (1958) (who suggested “a population-based hill climbing search”)
and Box (1957). Box’s work is interesting in that it dates the involvement of in-
dustrial systems control engineering to the earliest days of evolutionary com-
putation. While never purely an engineering discipline, the practical side of
evolutionary computation has remained influential and been partly responsi-
ble for the direction and narrowness of later research (see §2.9.1). However,
despite these early pioneers, evolutionary computation as a field didn’t really
develop until the early 1960s, when several branches appeared independently.
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Evolutionary programming

Evolutionary programming was part of the attempt to create artificial intelli-
gence. L. Fogel (1962) used finite state machines and simulated evolution on
a population of contending algorithms to demonstrate intelligent behaviour.
The machine in question had to predict an input symbol and its prediction was
an output based on previous experienced input symbols. L. Fogel exposed a
population of machines to the learning environment of input symbols and se-
lected machines on fitness criteria. The selected machines were then randomly
mutated and the process repeated with their offspring.

It is worth noting that L. Fogel presented his work initially in an industrial
research journal and it would be fair to say received mixed reviews. While
some were positive, others such as Solomonoff (1966) were critical of the in-
efficiency of random, hill-climbing searches. But the criticisms stemmed from
comparisons with other artificial intelligence research, rather than an objective
look at the potential of the method for its own sake. More recent commen-
tary on the early work in automated programming by Lenat (1983) is equally
critical, but perhaps unfairly so given the considerable benefit of hindsight:

“. . . early (1958–1970) researchers in automatic programming
were confident that they could succeed by having programs ran-
domly mutate into desired new ones. This hypothesis was sim-
ple, elegant, aesthetic and incorrect. The amount of time neces-
sary to synthesise or modify a program was seen to increase ex-
ponentially with its length. Switching to a higher level language
. . . merely chipped away somewhat at the exponent, without muf-
fling the combinatorial nature of the process. All the attempts to get
programs to ‘evolve’ failed miserably, casualties of the combinato-
rial explosion.” Lenat (1983)

D. Fogel (2000) argues that claims about the amount of time to evolve a solu-
tion increasing exponentially with its length are unsubstantiated in the liter-
ature. However, the “combinatorial explosion” of the total search space is a
well-documented issue with other branches of evolutionary computation, par-
ticularly genetic programming, but also more generally when the representa-
tion length is increased or given greater complexity. Practitioners still advo-
cate throwing more computing power at this problem, much as they did in the
1960s (discussed in §2.9).
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Evolutionary strategies

Evolutionary strategies developed as general function optimisation algorithms
to solve difficult real-valued parameter optimisation problems. The work was
started in the mid-1960s at the Technical University of Berlin by Rechenburg
(1963; 1964; 1973) and Schwefel (1975; 1977; 1981). Evolutionary strategies had
some noteworthy features. For example, “the components of a trial solution
are viewed as behavioural traits of an individual, not as genes along a chro-
mosome” (D. Fogel, 2000). Although a genetic source for phenotypic traits is
assumed, the nature of that linkage is not made explicit. The genetic transfor-
mations result in behaviour changes that follow a Gaussian distribution, allow-
ing many phenotypic characteristics to change following a genetic alteration.

Another interesting feature was the self-adapting strategy parameters, en-
abling the degree of mutation of a parent to change dynamically and for the pa-
rameter to be mutated and undergo evolution itself. This work bears compar-
ison with the more recent dynamic parameter encoding in genetic algorithms
(Schraudolph and Belew, 1992). D. Fogel (2000) claims that “strong similarities
exist between evolution strategies and evolutionary programming . . . In many
cases, the procedures are virtually equivalent even though they developed in-
dependently”. More recent work on evolutionary strategies can be found in
Voigt et al (1996).

Genetic programming

Genetic programming was extensively developed by Koza as a means to auto-
mate programming, but some of its greatest successes have been in the field of
machine generated analogue circuit designs (Fonlupt, 2005; Koza, 1992, 1994;
Koza et al., 1999, 2003). An individual in genetic programming is a computer
program rather than a chromosome. Each program is evaluated by being run
and a fitness is then assigned to it (although this may be over multiple runs
with different inputs).

Programs themselves are usually represented as parse tree structures, with
subtree nodes acting as the points on which mutation or recombination occurs.
For example, in recombination, two different subtrees in the same node posi-
tion might be swapped between parent trees, or if using a mutation operator,
a node might be selected and the subtree replaced by a randomly generated
subtree. Other variants of mutation exist.

Like other branches of evolutionary computation, genetic programming
has been successful in industrial applications (Koza et al., 2004), particularly
with respect to human-competitive solutions in analogue electrical circuit de-
sign, some of which have been patented (Streeter et al., 2003). Unfortunately
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the physical construction of analogue circuits is slow, and has meant that the
evolutionary design process and fitness evaluations in Koza’s work have run
as software simulations. The simulations use a specially modified version of
the freely available SPICE program. Even with this version of the program
(which is not freely available), Koza requires large populations running over
many generations, and despite his success in discovering patentable designs,
the simulations need immense computing power.15

However, a big problem with genetic programming has historically been
the issue of “bloat”. Operators can grow large structures that have no effect
or that are wasteful. This feature of genetic programming has been likened
to “junk DNA”, in that while it doesn’t alter the semantics of the program it
represents junk code that is either unused or wasteful. There are many papers
suggesting ways to tackle bloat (Brameier and Banzhaf, 2003; Fernández et al.,
2004; Langdon, 2000; Langdon and Banzhaf, 2000; Langdon and Poli, 1997;
Tomassini et al., 2004; Vanneschi, 2004). Some good papers theorising about
the shapes of parse trees and the causes of bloat have been recently been pub-
lished by Diada et al (2004; 2003; 2005), in particular an analysis of the visual
form of evolved tree structures which has lead to the hypothesis that evolved
trees are inherently “deep and narrow rather than wide” due to the numbers
of nodes on deep subtrees leading to them being more likely to be selected.
Variants of GP have appeared over the years, including Linear GP (Banzhaf,
1998; Brameier, 2003), Grammatical Evolution (O’Neill and Ryan, 2003) and
others, with some designed explicitly to avoid the tree structure of traditional
GP. Cartesian Genetic Programming (Miller, 2001) is one such example and as
this form of genetic programming has particular relevance to this thesis, we
now give a detailed summary of the development and variants of this tech-
nique.

Cartesian Genetic Programming (CGP)

CGP appeared in an early form as an evolutionary algorithm, in a paper dis-
cussing the evolution of arithmetic circuits (Miller et al., 1997). It used a “linear
chromosome of cell functionalities and connectivities based on a rectangular
array of logic cells”. From a later perspective, particularly given Miller’s de-
velopmental work on cells (Miller, 2004), it is interesting to note that Miller
contemplated the relationship between cell connectivity and evolvablilty, and
wondered whether “a concept of cell-neighbourhood” would help the evolu-
tionary process, something he would later go on to investigate.

15Stanford offered Koza a thousand parallel node Beowulf cluster with 1/2 teraflops capacity
(interview with EvoNet, 14 Aug, 1998).
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The name CGP first appeared in 1999, when Miller compared the perfor-
mance of his “linear integer chromosomes in the form of connections and func-
tionalities” (Miller, 1999) with GP and Evolutionary Programming (EP) (Koza,
1994). Miller’s results demonstrated that CGP was more efficient at learning
Boolean functions than either GP or EP.16 The Cartesian part of the name came
about because the method considered a grid of nodes addressed in a Carte-
sian co-ordinate system. CGP was finally described explicitly in Miller and
Thomson (2000). Since then several variants have appeared, including an em-
bedded form that allows the acquisition of modular functionality (Walker and
Miller, 2007a,b) and a self-modifying version (Harding et al., 2007). Claims of
improved performance against CGP were made by Lones (2003), but this work
has not been replicated and Lones’s results were refuted (along with others
that had used results from CGP using restricted genome lengths) in a paper
comparing the performance of CGP against a range of other methods (Walker
and Miller, 2008).

Genetic algorithms

Genetic algorithms (GA) were largely developed by John Holland and his stu-
dents from the 1960s onwards (1962; 1992),17 with theoretical work being added
by Goldberg (1989; 2002) and Vose (1999a; 1999b). Holland’s original motiva-
tion was to “understand the principles of adaptive systems” (Dimutrescu et al.,
2000) and in common with other branches of evolutionary computation, the
early papers presented the process of evolution in a highly abstract form, so
that key elements of the simplified process could be identified and understood
in terms of what made the process effective as a search algorithm.

GAs are generally comprised of a population of candidate solutions en-
coded as chromosomes in a binary string representation.18 The process is sim-
ple: take the best members from the candidate population of solutions and
use those to form your next generation of solutions by combining them with
randomly chosen individuals or each other. Assess your new population and
repeat. Natural selection ensures successive generations move the population
towards your fitness objectives. The canonical form of GAs is given in the fol-
lowing section.

Exactly how each successive generation should be formed soon became a
major topic of debate, with many forms of crossover between individuals be-

16This was not difficult in the case of GP, as the method was known to suffer “bloat” and required
large populations over many generations. Miller compares GP bloat and CGP in Miller (2001).

17D. Fogel (2000) also cites Bremermann (1962; 1966) and Fraser (1957; 1968) as among the early
developers.

18Binary representation has declined in recent years, but the canonical form is generally given
as a fixed length binary string representation. See §2.8.2.
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ing tried. A large part of the debate focused on improving the performance of
GAs. Running a simulation over many generations containing large popula-
tions was computationally expensive and early workers in the field frequently
struggled with limited computing power (D. Fogel, 1998). This, combined with
the pressure to achieve practical results on engineering problems, meant it be-
came the dominant area of research.

The GA is considered to be the main paradigm of evolutionary computation
(Dimutrescu et al., 2000) and as so much work has been done on aspects of
the model, we will look in greater detail at its main components and theories
relating to their influence in §2.8.2.

Evolutionary computation

The previous four sections have outlined the historical branches of evolution-
ary computation. Although each of the variants presents slightly different
models of evolution, the representation of individuals and the mechanism of
exploring the population search space, the differences are not sufficient to con-
sider any of the variants unique. D. Fogel (2000) notes that since 1993 and
the formation of the journal Evolutionary Computation, “evolutionary compu-
tation” (or “evolutionary computing”) has become an accepted umbrella term
for all the variants. D. Fogel even doubts whether any value can continue to be
gained by using specialist terminology from one of the branches:

“It is no longer possible to identify a particular effort in evolu-
tionary computation as a genetic algorithm, an evolution strategy,
or an evolutionary program, simply by examining the representa-
tion chosen, the selection method, the use of self-adaptation, re-
combination or any other factor. In fact, the practical utility of each
of these terms has evolved to be essentially useless: Little or no in-
formation is conveyed by identifying a particular effort as a genetic
algorithm, evolution strategy or evolutionary program.” (D. Fogel
2000)

In agreement with this sentiment and notwithstanding the historical impor-
tance of the variant branches, the term evolutionary computation will be used for
the remainder of this thesis.

2.8.2 The canonical genetic algorithm

The basic framework of evolutionary computation is one based on population
convergence over optimal peaks in a fitness landscape of the genotype’s pop-
ulation. In the breeding of successive generations, selection occurs according



2.8. EVOLUTIONARY COMPUTATION 55

to individuals being assessed against some fitness criteria, thus some of their
“good” genes are carried over into the next generation. The canonical process
uses fixed-length binary strings to represent chromosomes. In terms of actual
algorithms, the genetic operators are procedures that modify the individuals
represented as chromosomes by mutation (or inversion) or by combining them
(crossover). As individuals usually map to a represented solution, it is common
in evolutionary computation to refer to the population as containing candidate
solutions.

The canonical or simple GA is as follows (from Dimutrescu et al. (2000)),
where t means time step:

1. Set t = 0

2. Initialise chromosome population P (t).

3. Evaluate P (t) using fitness criteria.

4. while termination condition not satisfied do
begin

(a) Select best individuals from P (t). Let P1(t) be the set of selected
chromosomes. Choose individuals from P1(t) to enter mating pool
(MP ).

(b) Recombine chromosomes in MP forming populations P2. Mutate
chromosomes in P2 forming P3.

(c) Select replacements from P3 and P (t) forming P (t+ 1).

(d) Set t = t+ 1

end

This simple process provides certain key elements to the model that have been
investigated in great detail. For example, there are many forms of crossover.
Holland created a straightforward crossover between two parent chromosomes
to get two offspring by “selecting a random position along the coding and
splicing the section that appears before the selected position in the first string
with the section that appears after the selected position in the second string,
and vice versa” (see D. Fogel (2000) and Fig. 2.18). Other types exist that use
multiple crossover points.

Generally each chromosome is assigned a probability of reproduction so
that its chances of being selected are proportional to its fitness. One method of
doing this is the roulette wheel, which divides up the population such that all
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Figure 2.18: The one-point crossover operator applied to two parents.
Image and text reproduced from D. Fogel (2000)

Figure 2.19: Roulette wheel selection.
Image and text reproduced from D. Fogel (2000)

chromosomes receive a probability in relation to their fitness (Fig. 2.19). An-
other popular method is tournament selection, and there are several others.

The use of binary encoding for fixed-length chromosomes has been criti-
cised since it was first proposed as a universal encoding by Holland (1975).
Binary encoding has its historical roots in the introduction of the schema theo-
rem and building blocks, also by Holland. D. Fogel (2000) states that “schemas
allow a way of determining the usefulness of finding out fitness values for
strings that match your schema, as a partial match should also mean a partial
fitness.” His example explains how using a wild card [*] in a schema where
the evaluation of the string [0000] has some fitness, the schema would sug-
gest that partial information is also received about the worth of sampling the
variations in [****], [0***], [*0**], [0*0*], [*00*] and so on (D. Fogel 2000). This
characteristic is called implicit parallelism and indicates that a single sample can
provide information with respect to many schemas. It is claimed that certain
representations and problem spaces are more amenable to implicit parallelism
in schema design, particularly those where individual genes are not epistatic
(MacKay, 2003).

But although Holland claims to have proved maximum implicit parallelism
(i.e. the effectiveness of using schemas) occurs when the encoding is binary
(1975), others have found no practical advantage. Michalewicz (1992) finds
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that real-valued numerical optimisation problems are best encoded in floating-
point representations (faster, more precise), and others had similar experiences
after practical experimentation (Koza, 1989; Syswerda, 1991; Wright, 1991).
Nowadays, binary representations are rarely used except when the represen-
tation can be easily mapped to a series of Boolean decisions or a bit mask.
Whatever representation is chosen for the chromosome encoding, it would be
well to remember that Fogel and Ghozeil (1997) “proved that there are essen-
tial equivalencies between any bijective representations, regardless of cardi-
nality. . . Thus, no intrinsic advantage accrues to any particular representation”
(D. Fogel, 2000).

According to the building block hypothesis (Goldberg, 1989; Holland, 1975),
genetic algorithms work by locating and maintaining “good” building blocks.
Building blocks are defined as “low order, low defining-length schemata with
above average fitness”.19 Good building blocks are joined to other building
blocks to create sequences that are associated with above average fitness. The
hypothesis rests on the assumption that combinations of good schemata are
likely to result in higher fitness more quickly than could be achieved if every
possible combination of bits in a string were tried. Goldberg states “instead of
building high-performance strings by trying every conceivable combination,
we construct better and better strings from the best partial solutions of past
samplings” (Goldberg, 1989). The building block hypothesis has been criticised
as having no theoretical basis (Wright et al., 2003) and experimental evidence
has shown that single point crossover does not result in identifiably better so-
lutions (Syswerda, 1989). Despite the uncertainty around the building block
hypothesis, it is notable that there is no other well developed philosophy about
how genetic algorithms work and such a theory (or practical understanding) is
needed if evolutionary computation is ever to scale to tackling large, complex
problems (see §2.9.2).

GAs have been applied to a wide variety of real-world tasks. As that expe-
rience has been gained, practitioners discovered there were issues that reduce
the technique’s attractiveness as a search-based optimisation algorithm. Pre-
mature convergence is a common problem that occurs when the population
of chromosomes reaches a generation where crossover no longer provides off-
spring that are capable of out-performing their parents. Although one might
suspect this is the natural fate of any hill-climbing search, premature conver-
gence is peculiar in that the means to avoid it often seem landscape depen-
dent. An example was the attempt to introduce dynamic parameter encoding
(DPE) by Schraudolph and Belew (1992). The technique seems to offer promise

19Definition taken from Wikipedia: http://en.wikipedia.org/wiki/Genetic_
algorithm.

http://en.wikipedia.org/wiki/Genetic_algorithm
http://en.wikipedia.org/wiki/Genetic_algorithm
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Figure 2.20: DPE performance on an extreme landscape (inverted Shekel’s fox-
holes).

Image reproduced from (D. Fogel, 2000)

on quadratic bowl shaped landscapes; however, it actually fares worse than
a simple GA on multimodal type landscapes (such as Shekel’s foxholes, see
Fig. 2.20). Further doubt was cast on the wisdom of pursuing solutions to pre-
mature convergence by coming up with landscape-specific algorithms. The
“No free lunch theorem” by D. Wolpert and Macready (1995; 1997) states that
averaged over all landscapes, no search algorithm performs better than any
other. The same may be true for landscape-specific solutions to premature
convergence. In addition to which, landscape-specific solutions require prior
knowledge of the search space — something which it may be impossible to
ascertain.

Despite these shortcomings, there is no doubting the popularity of GAs,
either in academia or industry. They are now part of the standard toolbox
of search algorithms where the search space is large and unpredictable, and
have become the default method for tackling traditional, NP-hard problems,
such as the travelling salesman. Unsurprisingly, their ability to tackle multiple
objectives and to find optimal (or “good enough”) solutions grouping those
objectives finds many applications in control systems and other industrial ap-
plications.

However, the range of problems that evolutionary computation has tack-
led outside those relating to optimisation is not as wide as one might imagine.
Perhaps a victim of its own (industry-based?) success, evolutionary computa-
tion and in particular, GAs, have themselves evolved little beyond their basic
operational framework that was first described in the 1960s.
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2.9 Weaknesses in EC Models

No one has yet evolved a design for a car, a house, or anything that has a high
number of parts, each of which can be exposed to evolutionary change. In
the current model, as complexity grows, the length of the chromosome string
representation grows, and large numbers of generations start to be required to
reach good solutions. This increasingly hampers the effectiveness of an evo-
lutionary search and during the 1980–1990s researchers attempted to address
the issue. Initially, in an echo of the 1960s, researchers tackled the problem by
simply throwing more computing power at it (Koza et al., 2003). Parallel GAs
running on parallel machines were also tried (Cantu-Paz, 1998; Cantu-Paz and
Goldberg, 1997). But the promised breakthrough hasn’t happened. To date, no
one has cracked the problem of scale when it comes to complexity, and evolu-
tionary computation remains tied to addressing the same problems of multi-
objective optimisation that it first started investigating over twenty five years
ago.

2.9.1 Obsessed by optimisation

By tracing the historical successes in evolutionary computation we can under-
stand better the influence of those successes on the direction of subsequent
research. Industrial success is often a good thing, but there is no doubt that
evolutionary computation as a field has been heavily influenced by the need
to fulfill its practical promise. Success in industrial applications, such as cir-
cuit design (Koza et al., 2004) and control systems (Robinson and McIlroy,
1995; Sharman et al., 1995), has meant that evolutionary computation was al-
ways being pushed towards making the evolutionary process more efficient,
more practical. Such implementation concerns are not usually the domain of
academia, but Chris Stephens being interviewed in 2003 for the EvoNet web-
site, admits that research in the field is driven by those who want to use evolu-
tionary computation for practical design problems:

“Evolutionary computation, at least in terms of the fraction of
papers dedicated to it, is mainly driven by the practitioners. . . . there
is a big gap between the mathematical perspective and the engi-
neering perspective.” (Stephens, 2003)

While research programs can be forgiven for focusing on ways to improve
the performance of genetic algorithms, that same focus has produced a rather
blinkered view of evolutionary computation, one that sees nothing more in
evolution than a set of optimising search algorithms. For example, David Fo-
gel, in his introduction to Evolutionary Computation: the fossil record firmly states
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Multi-objective GA Year
Schaffer’s Vector Evaluated GA 1985
Syswerda & Palmucci GA with weighted sums 1991
Fonseca and Fleming propose MOGAs 1992
Wilson & MacLeod goal based GA 1993
Goldberg’s Fast Messy GA 1993
Srinivas & Deb Nondominated sorting GA 1993
Horn, Nafliotis and Goldberg’s Niched Pareto GA — co-operative
sharing

1993

Coello Min-Max Optimisation — ideal non-Pareto feasibility vet-
ting

1996

Priaux et al. GA-based approach with game theory 1997
Gary Lamont & David Van Veldhuizen’s survey of MOGAs 2002
Tan, Khor, Lee &. Yang Tabu-based exploratory GA 2003

Table 2.1: List of multi-objective GAs (MOGAs), adapted and much reduced
from Coello (2000).

that “natural evolution is a population-based optimization process” (Fogel,
1998). Martin Keane, in a similar introductory chapter, describes evolutionary
computation as “design search and optimization” (Keane, 2000). Both of these
views stem from a practitioner’s perspective, a perspective which has built up
authority after the success GAs had in particular with multi-objective optimi-
sation problems. So the last two decades have seen a continuous stream of
papers published on the performance of GAs and optimisation, perhaps to the
detriment of work that could have explored other features of the evolutionary
process, such as greater exploration, better bootstrapping to deal with com-
plexity, alternative mechanisms for encoding or problem representation and so
on.20 For example, a survey by Coello (2000) for the IEEE on multiple objective
GAs (MOGAs) managed to list almost fifty separate applications and variants
of MOGAs, and one wonders whether even industrial applicants would wish
to wade through them all to find one appropriate to their needs (see Table. 2.1).

2.9.2 The black art of decomposition

Despite the attention to optimisation issues, to say that nothing had been re-
ported about other interesting aspects of the evolutionary process would be
wrong. Indeed the ability of evolution to “invent” things was widely publi-
cised in popular journals like Scientific American (Koza et al., 2003). As noted,
human-competitive, even patented designs have been produced by evolution-

20This remains the case. A count of papers submitted to EvoWorkshop 2003 and 2004 shows the
majority (over 60%) in areas related to optimisation.



2.9. WEAKNESSES IN EC MODELS 61

ary computation, and practitioners such as David Goldberg claim that what
was going on in these processes was more than mere optimisation:

“. . . the design of effective GAs [is] ultimately helping us create
first-order computational models of innovation.” Goldberg (2002) (my
italics)

However, a genuine computational model of innovation is something we are
far from having. Innovation is hard to quantify or model in any sense, and
working out how people (or GAs) invent things has proved equally difficult
(although Thompson (2002) has some interesting comments on how evolution
does this).

Goldberg, following on from Holland, believes that the knack of getting
your problem effectively solved by GAs lies in the correct representation of
the problem, and that representation itself relies on the problem being broken
down in the correct “chunks”, so that the right building blocks can be chosen.
This may seem something of a black art to the uninitiated, an impression un-
likely to be diminished by Goldberg’s interesting, if unconvincing, description
of the invention of human flight by the Wright Brothers in 1903. According
to Goldberg, the Wright brother’s success was down to how they decomposed
the problem. While the evidence for this is sketchy and based on Goldberg’s
analysis of events, Goldberg nevertheless makes some interesting observations
about the nature of invention and human design.

Goldberg demonstrates that human design isn’t always a rational process
of problem decomposition. When the problem domain is poorly understood,
people will apparently try anything, no matter how deeply it may run against
the grain of common sense. Fig. 2.21 gives an idea of just how wild human
invention can be when unconstrained by design principles.21 But it equally
demonstrates just how dangerous a little knowledge can be, as an incomplete
understanding of aerofoils led to people misapplying what little knowledge
they had and trying designs that were doomed to fail. Goldberg described
these early pioneers of aviation as appearing to “flail about in design space,
hoping for good luck” (Goldberg, 2002).

But even if Goldberg were correct, and the reason for the Wright broth-
ers’ success was the correct decomposition of their problem, there is still no
convincing rationale behind why they broke it down the way the did — was
it fluke, intuition, or did they use a set of rules that could be applied to un-
known problem domains everywhere with the same degree of success? Gold-
berg claims the latter, but offers only a vague method, while the record of those

21I can find no authoritative source for the photographs in Fig. 2.21, which appear on many
websites. A good source for explanations about the machines can be found at http://www.
ctie.monash.edu.au.

http://www.ctie.monash.edu.au
http://www.ctie.monash.edu.au
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Figure 2.21: Bats and bikes as flying machines from early aviation pioneers:
(a) Le Bris, The Albatross, 1868; (b)–(d) Adapted Lilienthal c.1890; (e) Phillips
Multiplane of 1904; (f) Phillips Multiplane of 1907.

aviation pioneers shows that while many tried, hardly any had success. One
argument that supports finding the “lucky” decomposition of the problem is
that over a population, the success rate of so many failures is consistent with an
evolutionary process exploring a large search space. However, it is one thing
for human engineers to have discovered “good building blocks” that could
then be combined to solve a bigger problem, it quite another to suggest that
evolutionary computation can do the same. The problem again comes back to
scale.

Practitioners, such as Goldberg, advocate “careful” decomposition for com-
plex problems: one should decompose the problem into small chunks, then run
an evolutionary computation process over them. Leaving aside whether your
problem decomposition is correct, for larger, more complex problems, decom-
posed solutions must “bolt back together” so that the whole thing works as a
single solution. But although problem decomposition is a typically human ap-
proach to finding a solution, there is no evidence that natural evolution tackles
large scale problems this way. In fact the evidence is to the contrary. We have
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seen that epistatic fitness landscapes in co-evolution appear to be self-tuned
close to the critical point of interconnectedness (see page 46), meaning that al-
though species appear to be evolving in isolation, they are in fact responding to
a wider ecosystem that cannot easily be broken into parts. Despite ideas about
species niching on local optima, there is no evidence that natural evolution al-
lows a chunk of the system to evolve in isolation, with the aim of making it fit
into the wider whole at a later point. Such a proposal seems counter-intuitive,
but this is what has been proposed as a way to scale evolutionary computa-
tion (Goldberg, 2002). However, work by Torrensen (2000) again reinforces the
fact that evolutionary algorithms exploit the particular characteristics of their
search space to find a solution, and this results in highly localised solutions for
local problems.

Torrensen (2000) investigated issues of scalability and complexity while try-
ing to evolve a signal filter over a range of inputs for a road image recognition
exercise. Torrenson first broke the problem into a series of subproblems (each
evolving a logic circuit on part of an FPGA (Field Programmable Gate Array)).
For each subproblem, he then subdivided his inputs. Although the circuits
evolved individually to high fitness, Torrensen found that when they were re-
assembled, the circuits failed to work due to noise from other inputs. This is a
characteristic of evolved solutions in that evolution is typically “lazy”; it does
the minimum possible to achieve a satisfactory result. It is also highly environ-
ment sensitive, solutions are not generally portable (see also Thompson (1997),
discussed in more detail in §2.9.3). Torrensen’s solution was to evolve his de-
composed filters by exposing them to the full range of inputs. This worked
when the decomposed elements were reassembled, but meant that the evolu-
tionary process was now much slower for each subunit than before, resulting
in a less than ideal solution to the problem of complexity and scale (see also
investigations by Vassilev et al. (2000).

2.9.3 Towards richer invention

Humans “flailing about in the design space” of early aviation is an example of
highly unconstrained invention, but it is not a realistic example of evolution-
ary invention. We know from evidence in evolutionary developmental biology,
that evolution tends to tinker with successful structures rather than create en-
tirely new structures out of the blue. A better example of evolutionary design
by humans is the evolution of golf balls in the latter part of the twentieth cen-
tury (Thompson, 2002). In contrast to early aviation, where a little knowledge
led to many misguided designs, the evolution of golf balls was carried out in
ignorance of why the changes led to improvements.
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The earliest balls were called featheries and were made of hide case densely
packed with feathers. Around 1850, a new type of ball appeared, a guttie, of
solid gutta percha (a sort of rubber). They were cheap and smooth, but didn’t
fly as far as the older featheries. Gradually it was noticed that used featheries
travelled further than brand new ones, so people experimented adding nicks
and cuts to make their balls fly further. Over time, the manufacturers started to
produce balls that had similar textures on them. Modern balls prefer a variety
of dimples. However, it is only recently that the aerodynamics causing a rough
ball to travel further have been understood. Two things stand out in this ex-
ample of design evolution; i) changes were made at random and in ignorance
of why they were good changes to make, ii) the changes were incremental.

Thompson wanted to see if a blind, incremental evolutionary search could
still be encouraged to generate truly innovative designs. In 1995 he set up a
ground-breaking experiment designed to promote design innovation through
the relaxation of constraints (Thompson, 1996). His experiment evolved a cir-
cuit to distinguish between two frequencies on an FPGA, at the lowest level
of abstraction possible — that of the physical behaviour of the platform. A
10x10 area of Xilinx 6126 bitstream was evolved (i.e. all the bits in this area
were evolved directly as chromosome bits in a GA). The evolved circuit had
to discriminate between 1kHz and 10kHz bursts of signals, no other input was
given. Even the clock on the chip was turned off (Gordon and Bentley, 2002).

The experiment was a success. However, when Thompson tried to copy
the evolved circuit onto another FPGA chip, he found that the circuit wasn’t
portable. He then tried to move the circuit onto another part of the original
chip used in the experiment. Again the circuit failed to work. Thompson dis-
covered that the circuit made use the physical properties of the silicon on the
FPGA chip. It was extremely sensitive to any alteration in its environment
— temperature, electricity supply, even the silicon of the chip — a change in
any of them could stop the circuit working. The result again demonstrates the
“laziness” of evolution.

Thompson’s circuits lacked both robustness and portability.22 But there was
another feature of the evolved circuit that caused puzzlement. A lengthy anal-
ysis of the circuit concluded that its functionality was “bizarre” and some parts
of it are still not understood (Thompson, 1997; Thompson et al., 1999). By util-
ising physical characteristics of the platform, the algorithm made some very
unusual and complex circuitry. Commentators on Thompson’s work have sug-
gested that the reason for the innovative nature of his evolved circuit was not
because evolution had searched a bigger design space than human designers,
but that evolution had navigated through that search space differently (Gor-

22Thompson later evolved more robust circuits by varying the environmental conditions.
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don and Bentley, 2002). It seems inescapable that the reason for the search
trajectory is due in part to evolution making use of the physical properties of
its environment.

Miller and Downing (2002) have investigated what it would mean for com-
plexity and innovation if evolved solutions were given a free reign to make
use of the physics embedded in a rich medium. Rather than being surprised at
evolution exploiting the complex physical properties of silicon, Miller states we
should be impressed that it was able to do anything at all, given that silicon as
a material was chosen expressly for its stability in electronics. He suggests the
time is ripe to abandon media traditionally chosen for its physical stability and
even the conventional components of electronic circuit boards: “. . . artificial
intrinsic evolution may be best attempted in physical substrates that are rich
and complex, rather than conventional transistor based technology” (Miller
and Downing, 2002). To this end, Miller and Harding investigated evolving
robot controllers in media such as liquid crystal (Harding and Miller, 2003).

2.9.4 The gap between genotype and phenotype

Environments select for fitness based on the capabilities of the phenotype. In
the natural world, the viability of the phenotype not only acts as a brake on the
random mutation of genetic material, it also acts to link evolutionary search to
the process of construction. In most models of evolutionary computation, the
development of the phenotype prior to selection is conspicuously absent. But
as greater importance began to be attached to developmental processes in biol-
ogy, so researchers in evolutionary computation began to question why it was
missing from their models (Shipman et al., 2000). The standard representation
for genetic algorithms, for example, is that shown in Fig. 2.22 (Lewontin, 1974).
While such diagrams show the mappings between genotype and phenotype
populations, and even some cursory epistasis, they stem from the period of
neo-Darwinism that saw genes as the source of all phenotypic features and be-
haviours, and the role of development was credited with less influence than it
has today. But these diagrams still constitute the majority of models employed
in evolutionary computation. Genotype to phenotype mapping remains in-
significant. The developmental process of the organism interacting with its en-
vironment and the restrictions imposed on evolution by development — such
as the viability of the organism and the dependence of complex features on
phylogenic predecessors — is ignored. But if these things help nature handle
the combinatorial explosion of complexity when all parts of the system are po-
tentially exposed to mutation and selection, then why would they not also be
of advantage to evolutionary computation?
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Figure 2.22: Lewontin’s (1974) distinction between the two state spaces of
genotype population space (informational/encoding) and phenotype popula-
tion space (behavioural/performance). The middle spaces have been added to
indicate the missing stages of development in the model.

Image adapted from (D. Fogel 2000)

Genetic evidence from evolutionary developmental biology provides us
with evidence of why evolution has to tinker with existing structures. Em-
bryology has given us clues about the hierarchical nature of developmental
structures and how evolution is constrained to act at the later stages of devel-
opment. Evolutionary computation has yet to take account of such evidence.
Instead, hypotheses such as building blocks and schema theorems that have
no basis in biology have been allowed to dominate the research agenda, while
failing to tackle either complexity or scalability. Thompson’s work opened re-
searchers’ eyes to a whole new world of search potential. To explore it we
need to allow our search algorithms to exploit physical resources. If we want
to evolve solutions beyond human design space, we must move evolutionary
computation out of sterile software abstractions into a much richer environ-
ment. However, providing access to richer resources does not guarantee they
will be used. We know that biological development feeds back information
about the search environment to the genome. The genome in its turn, dictates
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how to respond to that environment. To attempt a similar exploratory system
in evolutionary computation, we need a mechanism capable of dynamic gene
expression that can control the developmental process.

2.9.5 Models of development

Development in evolutionary computation is a still nascent subject area. Other
than an interesting collection of essays edited by Kumar and Bentley (2003)
and some isolated submissions in the field of evolvable hardware (Gordon and
Bentley, 2002; Lones, 2003; Tufte and Haddow, 2003), there has been little work
done on modelling development within the evolutionary computation com-
munity.23 Some early papers that are often cited, such as Fleischer and Barr
(1994); Hogeweg (2000a,b) have presented models that, while impressive, have
not been further developed by other authors. However, the field is growing
and we highlight below some of the better known frameworks.

One relatively successful framework with a considerable body of re-
search behind it is Lindenmayer, or L-system, grammars (Lindenmayer and
Prusinkiewicz, 1989). The approach is capable of modelling the growth of
plants and simple cell development. The use of generative grammars such
as L-systems provides a means of modelling structure, and in particular, the
growth of that structure. Structural elements represented in L-systems may
not have or need a close mapping to the microscopic units that comprise real
biological structures — in fact, successful models have been built using macro-
level abstractions of plant parts, such as petals and leaves.

A powerful feature of L-systems is their brevity of expression. A relatively
small rule set can generate surprisingly complex structures. Another is that
generative grammars lend themselves to repetitive modular structures, so that
structural elements such as branches or hair can be elegantly represented. One
side effect of the “abstraction” of macro-level units is that some irregularity
has to be introduced into the models so that forms acquire “roughness” (see
Fig. 2.23). This can be done using context-sensitive or stochastic means. Some
success has also been achieved using fractals for this purpose (Ferraro et al.,
2005) and when rendered with turtle graphics, such models can be startlingly
realistic in both behaviour and appearance (see Jacob (1999); Prusinkiewicz
(2000) and Fig. 2.24).

For those looking at particular influences on development, feedback points
can be introduced into L-system structures in conjunction with turtle graphics
to produce models that respond to changes in their environment. Work by

23Until recently there were few places to get such work published. For example GECCO, the
main conference for evolutionary computation, featured its first track in development in 2007.
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Figure 2.23: Some trees with different branching structures produced by L-
systems.

Image reproduced from Prusinkiewicz and Lindenmayer (1990, pg. 60, Fig. 2.8)

Měch and Prusninkiewicz (1996) has shown how feedback can be incorporated
into open L-systems to show variance in the developmental outcome according
to environmental conditions (see Fig. 2.25). Thus the potential to have open
systems that develop in a natural way by interaction becomes a possibility.

To date, such systems have been implemented in software-based virtual en-
vironments (as opposed to embedded solutions using real sensor data). Jacob
was one of the first to use evolutionary computation with L-systems to explore
the evolution of plants and branching structures under light deprivation (Ja-
cob, 1999). Following on from this, work by Hornby has shown that evolution
is able to quickly make use of the structural forms that L-systems can describe,
and that the use of a generative encoding to produce such structures is ad-
vantageous in that “good” structures can be built more quickly (Hornby et al.,
1999, 2001; Hornby and Pollack, 2001a,b). His work suggests that there may
be a link between these sorts of highly compressed, generative descriptions
and the complex, cascading control of genetic regulatory expression, and this
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Figure 2.24: Photograph of wild crocus (left) and rendered image produced by
a “hairy” L-system (right).

Image and text reproduced from Fuhrer et al. (2006)

would be interesting to explore. Hornby and Pollack have also evolved con-
trollers based on L-systems (in conjunction with neural networks) to produce
realistic gaits in simulated walking robots (Hornby and Pollack, 2002). The use
of L-systems to model developmental processes is attractive to computer sci-
entists as generative grammars are easy to represent and much of the work to
render the structures graphically has already been done.

Developmental characteristics, such as canalization, have been viewed as
a useful attribute for systems seeking fault recovery or robustness. Such ap-
proaches generally take the view of development as a robust construction pro-
cess, rather than an adaptive control response to exploration. One example
is Miller’s French flag “multicellular organism” (Miller, 2004), which formed
the starting point for several other pieces of work. Miller evolved two solu-
tions demonstrating interesting capacities for self-repair based on cell growth
(i.e. cell replication). The cell behaviour was based on chemical input bits and
determined whether the cell would live, die or differentiate as it grew in the
Moore neighbourhood (the 8 cells surrounding a 2-D cell). The number of
chemicals varied but all chemicals followed a diffusion rule as they spread
to new neighbourhoods. Miller’s choice of a flag as the task map was based
on Wolpert’s description of positional information in early embryo develop-
ment (Wolpert, 1998). Miller’s experiments demonstrated that pattern recov-
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Figure 2.25: Model for an open L-system allowing environmental feedback, in
this case modelling root exploration.

Image and text reproduced from Měch and Prusinkiewicz (1996)

ery, even after damage, was possible following a simple developmental model.
In his models, the presence of more chemicals had a positive effect on fitness.
Miller proposed to take the work forward and implement the system as a con-
trol mechanism giving cell growth a function, however to my knowledge this
has not yet been done.

Pauline Haddow’s group in Norway have also emphasised the importance
of a developmental approach, initially using FPGAs (Haddow and Tufte, 2001)
and examining the benefits of an extended genotype-phenotype mapping and
redundancy / self-repair, and more recently, extending Miller’s work and look-
ing at cell development in three dimensions (Haddow and Hoye, 2007). In the
latter, they asked whether the presence of chemicals was helpful or a hindrance
to the developmental process, but rather than having cell behaviour solely de-
termined by chemicals, proteins requests are used. The chemicals form part
of a precondition to protein production, and in contrast to Miller’s results it
was found that too many chemicals hindered phenotype fitness. Haddow’s
work is possibly the closest models we have to investigating development in
the light of gene expression control. However, even here development is es-
sentially modelled at the level of the single cell (albeit with some parallelism).
No gene regulatory networks are modelled, nor are attempts made to see if
intermediate fitness can be assigned to developmental stages. Such cascading
regulatory control is common in natural systems, but it isn’t clear what role
evolution plays in all aspects of regulatory control. Like many areas of bio-
logical development, this could be a rich vein for evolutionary computation to
explore.

As a final note, a taxonomy has been proposed by Stanley and Mikku-
lainen (2003) for artificial developmental systems, or what the authors call “ar-
tificial embryogeny”. Under their classification, models of development fall
into two camps: L-systems (or similar generative grammars) and cell chem-
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istry approaches. The latter is inspired by the early models by Turing (1952),
who defined mathematical models of diffusion and reactions in physical sub-
strates. Stanley and Mikkulainen claim that the division between grammatical
systems and cell chemistry approaches is the easiest to make in what is admit-
tedly a fledgling field. However, they go on to say that differences between the
two are “largely superficial and [do] not reflect how phenotypes can develop”
(page 106). Instead, their taxonomy draws up five dimensions of development,
which help position an artificial developmental system in terms of what it is
trying to achieve:

Cell Fate The eventual role of a cell during development;

Targeting Connections made by cells to target locations;

Heterchrony Timing and ordering of events in the phylogeny of an organism;

Canalization Stable development despite genetic perturbation;

Complexification The addition of new genes.

These dimensions are sliding scales with respect to nature. Stanley and Mikku-
lainen point out that being closer to natural systems isn’t necessarily a measure
of whether the system is “better”, and that the dimensions instead inform you
about the broad characteristics and capabilities of the system. For example,
not being faithful to nature could give an artificial development model con-
siderable advantage in terms of its computing speed. However, Stanley and
Mikkulainen’s dimensions contain some bias towards neural networks in par-
ticular and machine intelligence more generally. The dimension of targeting
seems focused on the quality (or ability) of cells to form extensions such as
dendrites and axons used in neural connections and nervous systems. Such
qualities relate more to animal cytology than a general measurement of biolog-
ical development. This criticism aside, their system of classification is at least
a useful reminder of some of the qualities that artificial development models
should emulate in order to get closer to nature and their report contains a use-
ful summary of work in this area.

2.10 Summary

The previous section has taken an overview of the field of evolutionary compu-
tation. Some omissions were necessary in both this overview and that of bio-
logical evolution and development. The purpose of covering what has already
become well-trodden ground to some in computer science is to try and empha-
sise the importance of a developmental perspective on evolutionary processes.
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The genetic reductionism of the 1970s in biology left a lasting impression on
evolutionary computation, and it is one that has become the de facto viewpoint.

However, there is evidence that calls for more inclusive models of evolu-
tionary search are gaining acceptance. A research agenda calling for evolution-
ary computation to abandon its “restricted and dated understanding of natu-
ral evolution” has recently appeared (Banzhaf et al., 2006). That article asks
the field to challenge its long held assumption that there is a “one-way flow
of information, from DNA to proteins” that forms the basis of solution discov-
ery by evolutionary search algorithms. The view prevalent among practition-
ers of evolutionary computation is that genetic material is essentially symbolic
rather than physical. But ignoring the physical aspects of gene translation may
have led the field to underestimate the importance of developmental processes
on issues like scalability and reuse. Advances in developmental biology have
given us fresh insights into how evolution explores a functional domain and
the constraints it operates under. Criticisms of this nature have appeared else-
where (Kumar and Bentley, 2003) but have had little impact on the field, which
continues to be dominated by efforts to optimise evolutionary search.

One agenda, to investigate how evolutionary algorithms find solutions and
what they are capable of finding, was set in motion by Adrian Thompson in the
mid 1990s (Thompson, 1996). His in silico experiments were designed to en-
courage as much innovation from the evolutionary process as possible. By al-
lowing free access to the physical nature of the search domain, Thompson dis-
covered that evolution was capable of finding solutions in areas that humans
would find difficult or impossible to operate (see discussions in Gordon (2001);
Harding and Miller (2004); Miller and Downing (2002)). An outstanding task
for evolutionary computation — for those who want to pursue Thompson’s
aims — is to find ways of introducing the equivalent richness of real world
physics into virtual environments.

However, the introduction of richer resources does not guarantee their ac-
cessibility. In order to access interesting physical properties in evolved solu-
tions, we may need a physical embodiment of the developmental mechanisms
employed by nature. This requires a two-way flow of information that allows
a phenotype to explore a functional domain in a manner controlled by the ge-
nome. A crucial ability of the developmental process is to sense environmental
inputs and respond. Things grow in accordance with their surroundings, using
a feedback mechanism that tells cells when to start producing certain proteins
or inhibit the production of others. Evidence from the study of gene regulatory
networks suggests that evolution has exploited developmental mechanisms to
allow the reuse of “useful” genes in different contexts (Carroll, 2006; Carroll
et al., 2001).
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The issue of reuse prompts another criticism of current models of evolution-
ary computation, namely the “single solution genome”. This artifact results
from the proximity between genotype and phenotype, the translation process
between them being so direct a mapping as to make them often indistinguish-
able. In nature, a genome controlling the developmental process selects from
many potential responses, according to the developmental context. A gene
used in one place will have a different role somewhere else, roles that are sep-
arated by time and space. The repeated morphological features we witness
throughout nature are the product of developmental processes. By contrast,
in evolutionary computation, selection is carried out on “instant” phenotypic
solutions, randomly mutating from one generation to the next, in a process
that has no natural mechanism for exploring the functional search space, or
conserving and re-using useful genes (see discussion in §2.5.4). Such evolved
solutions only work as single, fixed answers to static environments.

Biological evolution has come up with a neat trick: DNA encodes for pro-
teins, and those proteins can govern the production of other proteins. Thus it
encodes for the rules that dictate how it explores a particular functional do-
main. Not only that, but a tiny fraction of what could be expressed is ever
realised in a phenotype. A genome contains solutions for countless sets of con-
texts. Change the contexts and the genome still has room for developmental
exploration. Without similar mechanisms of interaction and feedback, digi-
tal genomes cannot guide themselves across functional search spaces in a way
that fully exploits a domain’s resources, and this is particularly true where that
domain includes the complexity provided by real-world physics.

While the wet manufacture of life is hardly a practical ambition for com-
puter scientists, it contains clues, patterns if you like, of how subtle, scalable
structures can be built that allow evolution to explore and interact with the
world about it. DNA alone can’t do that: it’s a passive instruction set. To para-
phrase Lewis Wolpert, it’s proteins that do all the work (Wolpert, 2003).

2.10.1 Key points from Literature Review and Background

The previous section argued for a broader developmental approach to evolu-
tionary computation. There seem good reasons to look at abstracting the pro-
cesses behind gene reuse in biological systems as one way to address issues
such as scalability in evolutionary computation. The following bullet points
list the motivation for the approach taken in this thesis, and hopefully can be
more easily kept in mind by the reader as they read the next chapter.

• Gene reuse during development suggests that a few, very useful genes
can produce a wide range of morphological function.
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• The key to reuse is the mechanism that governs which genes are ex-
pressed. The mechanism also determines when and where.

• Context is vital to the functional role a gene will play during develop-
ment. If different contexts were not possible, a gene would always have
the same role.

• Applying evolutionary search to areas too difficult for human design is a
challenging research task. Often these design spheres are those that have
to deal with physical complexities that are difficult to analyse.



Chapter 3

Hypothesis and Experiment
Aims

The summary to Chapter 2 gives an overview of the research agenda this the-
sis sets out to explore. It argues that a developmental perspective could help
overcome some of the problems of reuse and scalability in evolutionary com-
putation. It maintains that genome representations should contain, like biolog-
ical DNA, sets of solutions, only some of which are realised during phenotype
development. Finally, it suggests the mechanisms that control gene expression
during development lie at the heart of what enables phenotype exploration.

For a digital genome to explore dynamic design domains, a system architec-
ture is required that permits gene expression from the genome to govern stages
of phenotype exploration. For this we need some way of “binding” responses
from the search domain to gene expression, so that the genome can dictate
how it explores a particular developmental stage. Our proposal is based on
feedback to the genome, in a manner reminiscent of the role of transcription
factors discussed in §2.5.4.

3.1 Conceptual Requirements

The conceptual architecture in Fig. 3.1 shows how we link developmental as-
pects of gene expression in an analogous process for exploration of a physical
domain by evolutionary search algorithms. The top half of the diagram shows
an abstract view of gene regulation according to the presence of transcription
factors in the cell nucleus. These factors are context specific, and change their
distribution in cells across the embryo as shown in §2.5.4. The manner in which
these proteins control the later production of other proteins can be thought of
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Figure 3.1: Diagram (a) shows an abstract representation of natural gene ex-
pression, where expression is affected by the presence of transcription factors
in the cell nucleus. (b) A conceptual architecture to allow gene expression to
control how a phenotype would explore a complex design domain, for exam-
ple one affected by real world physics.

as a feedback process from earlier protein translation in other cells. Our model
captures this feedback loop conceptually, it is not our intention to claim that
this is how all protein translation occurs. We also acknowledge the omission of
many other important stages to protein translation. However, for our purposes
of abstracting this process for adaptation into a dynamic search algorithm, we
include only the minimum possible so that implementation and understanding
the algorithm will be made easier. Using a feedback process to control gene ex-
pression (and hence phenotype exploration) gives the conceptual architecture
a number of benefits:

• many exploratory solutions can be contained in a genome, as a solution
is based on a subset of genes that have been expressed;

• the changing environmental inputs determines when a solution is explor-
ing the search space at which moment;

• by varying the context of expression, different functional behaviours can
be obtained from reused genes.

These benefits bring something new to evolutionary computation: they permit
evolutionary algorithms not only to search for adaptive designs, but to control
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how and when phenotype exploration moves between each adaptive solution.
For our purposes, we will define each adaptive solution as a developmental stage.

3.2 Experiment Requirements

The conceptual architecture in Fig. 3.1 gives us a framework on which to base
our requirements for an experimental system. While the architecture lends
itself particularly to a software configurable platform, we know that physical
complexity is hard to capture in software environments (§2.10 and §4.1). Phys-
ical environments can be difficult to interface with software, as they may be
noisy or unpredictable. For ease of implementation, most evolutionary com-
putation experiments are therefore run in simulated environments, or on sim-
ulated devices, or both. Software exploration of virtual environments has sev-
eral weakness (§4.1). But there are software configurable devices that have
a design environment containing rich physics which could suit our purpose.
The challenge with such hardware is that it is not generally intended to be
used in an automated design search that makes use of its physical characteris-
tics. Notwithstanding this difficulty, the following points represent the system
requirements for our experiments:

• a design domain of exploration affected by real physics (i.e. not simu-
lated);

• a software configurable physical device;

• a means of incorporating physical feedback from the search domain into
the reconfiguration process.

Our aim is to build a system that meets satisfies these requirements and the
conceptual aims listed §3.1, so that the following hypothesis can be tested.

3.3 Research Hypothesis

As stated in §1.1 and repeated here, in the context of this hypothesis, the pro-
cess of gene expression during biological development is abstracted and used
to guide evolutionary search. The search domain we have chosen is analogue
circuit design. The motivation for selecting this domain is fully detailed in the
following chapter (§4.1). For the interpretation of this hypothesis, genes relate
to configurable elements in an analogue circuit, while the configuration of a
circuit represents a stage in phenotype configuration.



78 CHAPTER 3. HYPOTHESIS AND EXPERIMENT AIMS

Hypothesis —By expressing subsets of genes in specific contexts, successive stages
of phenotype configuration can be determined by evolutionary search.

This thesis allows us to set ourselves the following objectives with regard to
constructing a system to test the hypothesis:

• As subsets of genes are used to define a phenotype solution, the reuse of
genes must be demonstrated.

• For the system to have practical use, the different combinations of genes
in subsets must demonstrate different functional possibilities.

• To back the claim that evolution was able to configure successive stages of
phenotype configuration, the experiments must demonstrate that a pre-
vious stage of phenotype configuration in some part determines the abil-
ity of the system to move to the next configuration.

If these objectives are demonstrated by the system, then the claim of the hy-
pothesis can be backed up by experimental evidence.

The next chapter connects the conceptual architecture in Fig. 3.1 to a system
architecture more grounded in specific hardware and software processes. We
give the rationale behind our choice of search domain and hardware platform,
and propose a mechanism that will allow the feedback of physical output to
control the evolved, developmental exploration of a dynamic search space.



Chapter 4

System Architecture

4.1 Selecting a complex design domain

One of the most challenging areas for evolutionary search is to apply the algo-
rithms to design domains containing real world physics. Searches operating in
these domains have the opportunity to access physical properties that would
be difficult or even impossible for human engineers to take into consideration.
The area has been termed evolvable hardware, and has found practical applica-
tion on deep space missions, where it is difficult to shield Field Programmable
Gate Arrays (FPGAs) from potential damage by radiation sources. The Jet
Propulsion Lab (JPL) at the California Institute of Technology,1 has shown how
in-situ evolution can overcome physical damage in extreme environments by
exploiting hardware properties (Stoica et al., 2007), and there is similar work
on fault recovery for robots (Berenson et al., 2005). Most work on evolvable
hardware uses an external search process that downloads a configuration bit-
stream onto an FPGA, which then performs a logic-based function. However,
despite small analogue FPGAs2 being available since 1995, and Thompson’s
original work that turned a digital, clocked FPGA into an unclocked analogue
device (Thompson, 1996), the use of software configurable analogue platforms
has been limited.

Analogue electronics provides the sort of physical complexity where an au-
tomated search for better circuit design could bring significant benefits. For
example, analogue component behaviour can be affected by environmental
conditions such as temperature range, but also by complex physical effects,
such as strong electric or magnetic fields. Such issues complicate the design of

1http://www.jpl.nasa.gov/index.cfm
2This term was used by Thompson (Thompson et al., 1999), presumably to refer to early hybrid

devices.
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circuits and components in close proximity. Evolutionary computation has a
long track record of addressing the design difficulties in this area, with notable
successes by John Koza and his colleagues (Koza et al., 2004). As already dis-
cussed in §2.8.1, there are issues relating to the use of program such as SPICE
to simulate an analogue circuit. Testing a software simulation of analogue
circuits is several factors slower than testing the same circuit in real-time on
hardware, but simulations have the advantage of being able to test many cir-
cuit configurations across a range of inputs, without having to construct any of
them. Another drawback with simulating analogue hardware is the accuracy
of simulated behaviour. Software is constrained to work within certain lim-
its (e.g. number of components, temperature, etc.); outside those boundaries
the accuracy of predictable behaviour goes down. This hampers one of the
most interesting capabilities of in materio evolutionary computation3 — which
is to use parts of the design space that are too difficult or complex for human
engineers. Software simulation forces experimentation to stay within known
bounds, limiting the opportunity for novel exploration.

Selecting analogue electronics for in materio evolution provides an opportu-
nity for the search algorithms to operate on a range of application design that
uses analogue technology to interface with the real world. For example, elec-
tronic sensors feed analogue inputs into circuits, where they usually require
other analogue components to treat the signal in some way, before the signal is
passed to an analogue-to-digital converter (ADC) for digital processing. Digi-
tal processing of analogue signals is always subject to compromise, so it helps
to have the signal condition as good as possible from the sensor before it is
digitised. The design space for analogue treatment of signals is huge, as can
be witnessed by the range of commercial sensors that offer particular operat-
ing characteristics so that signal treatment is as easy as possible. Each of these
sensors is likely to have a circuit built around it to meet a particular functional
specification. Even if we take a trivial circuit specification that contains an op-
erational amplifier (op-amp) and a sensor, such as a photo-diode, it is obvious
that there is a wide variety of potential circuits that could process the sensor’s
output.

To summarise, the principal difficulties of working with traditional ana-
logue circuit design are:

• the design space of analogue components is large and complex (as dis-
cussed in the second paragraph of this section).

• software simulations are slow and inaccurate, particularly as physical
limits in the simulation are approached;

3 This term was apparently first coined by Miller and Downing (2002).
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• software simulations have design limits built into them;

• real analogue circuits need to be “built”, i.e. physically assembled and
tested with physical inputs;

4.1.1 Reconfigurable Analogue Hardware

In the last decade, switched-capacitor based integrated circuits (ICs) have ap-
peared that offer a research platform that overcomes some of the problems
of working with traditional analogue electronics. Configurable Analogue ICs,
sometimes called Field Programmable Analogue Arrays (FPAAs),4 implement
an analogue circuit by downloading a configuration bitstream onto the IC. This
makes the implementation of analogue circuits fast enough to consider testing
circuits in hardware. To date, other than the work at Edinburgh by Hamilton
and colleagues Hamilton et al. (1998), at Heidleberg in Germany by Meier’s
group Schemmel et al. (2002), the work done at JPL by Berenson et al. (2005)
mentioned earlier and some work at MIT by Aggarwal et al. (2006), reconfig-
urable analogue devices appear to have been little used in research. This is
partly due to the very small capacity of the early devices (several op-amps
is typical) and partly due to the widespread shift to digital signal process-
ing. Other than the work at JPL that uses evolutionary computation to allow
a device to continue working by exploiting the physics of the platform even
after the platform has been damaged (extreme heat was used in their exper-
iments), the work using analogue devices is relatively conventional in that it
either uses evolutionary algorithms to perform circuit searches Hamilton et al.
(1998) or searches to find good parameter adjustments to PID loops Aggarwal
et al. (2006). However to date, no one has taken advantage of reconfigurable
analogue devices in a way that combines evolutionary search and reconfigura-
tion to discover circuits, but also uses gene expression to say when the device
should be reconfigured.5

Such a system would have some nice properties, as shown in Fig. 4.1. The
genome would in effect be acting as a control system: it would contain both the
configuration of the circuit components and the rules of reconfiguration. As
changing environmental signals are fed into the system, the circuit responds
by reconfiguring to the desired output. The fitness of each reconfiguration
could be assessed by testing the analogue output, and the sum of fitnesses

4Alternative names for these ICs include Field Programmable Transistor Arrays (FPTA, see
Schemmel et al. (2002) for an example) or Dynamically Programmable Analogue Signal Proces-
sors (dpASP).

5See Mattiussi (2005) for similar ideas but using gene expression to adjust components in an
evolved circuit. However this work was not evolution in materio (SPICE simulation was used) and
the circuit configurations were otherwise static.
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 Figure 4.1: Diagram (a) shows natural gene expression where expression is

affected by the presence of transcription factors in the cell. (b) A conceptual ar-
chitecture with reconfigurable analogue hardware as the search domain. In
contrast to Fig. 3.1, circuit components (configurable analogue modules, or
CAMs) are expressed and used to form a circuit on an FPAA. The changing
output of the circuit is used to trigger the next reconfiguration (Clegg et al.,
2007)

used to estimate the overall fitness of the phenotype. The analogue output
would need to be digitised to allow binding to the digital DNA. But by using
the circuit output to provide the context for gene expression, we have a system
that not only searches for solutions in given contexts, but one that reconfigures
to new solutions when the context changes.

Having discussed our conceptual architecture, the nature of the search do-
main and the advantages of reconfigurable analogue devices over analogue
circuit simulation, we can investigate some hardware platforms. We need to
ensure that any device we choose has a sufficiently rich mixture of configurable
functionality to make evolutionary search worthwhile. The platform needs to
have an accessible API, so that circuit creation can be automated and driven
from an evolutionary harness. There are also cost and time constraints for the
project. For example, custom-made hardware such as that used by JPL is not
an option open to us, and even creating our own development board for an



4.1. SELECTING A COMPLEX DESIGN DOMAIN 83

 

Analogue inputs /outputs 

Serial port 
interface 

On-board 
power 

Audio 
jacks 

Digital inputs /outputs Anadigm FPAA 

Figure 4.2: The Servenger PAM board as delivered in March 2006. It supports
7 analogue inputs and 2 outputs, and includes on-board power supply, EEP-
ROM to store configuration files and an RS-232 serial interface. The Anadigm
AN221E04 FPAA is located centrally and is about 1cm2 in size.

FPAA would incur time and cost that would be best avoided.

4.1.2 An overview of FPAA technology

In the last decade, a number of silicon-based platforms have been proposed
for evolvable hardware (Keymeulen et al., 2004; Stefatos et al., 2006; Stoica
et al., 2007). Some of these (e.g. FPTA, FPTA2) have been funded by DARPA or
NASA, and as such are not available to researchers outside the United States.
However a few reconfigurable analogue devices, including some hybrid forms
containing a mix of FPGA-type logic and op-amps Hamilton et al. (1998), are
becoming more widely available.6 After assessing price and the “lead time
to delivery” from some manufacturers, it was decided to purchase a commer-
cially available FPAA from Anadigm, pre-mounted on a development board
(the Servenger PAM, see Fig. 4.2). Having the FPAA on a development board
meant we could start investigating the hardware API immediately, as hard-

6NB. ”Off-the-shelf” availability does not mean that no export licence from the US is required.
Jacyl Technology’s AX16 board with 4 FPAAs and an FPGA controller does require a licence. Ex-
port licences take between 6–9 months to obtain.
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Figure 4.3: Anadigm’s FPAA architecture (left), with the view inside a CAM
shown on the right.

Image taken from Berenson et al. (2005)

ware interfaces such as on-board power, serial port connection and analogue
connection pins were already made.

The Anadigm AN221E04 FPAA is capable of implementing dynamically re-
configurable analogue circuits. Its architecture is split into 4 CABs (Configurable
Analogue Blocks). Each CAB can support one or more Configurable Analogue
Modules (CAMs), the internals of which are shown in Fig. 4.3. Anadigm sup-
plies a range of about 40 CAMs with various configuration options. CAMs pro-
vide high-level functional modules that contain circuits functioning as filters,
multipliers, integrators, differentiators and so on. Table 4.1 gives a selection
of typical CAMs that could be considered for an application conditioning the
output of a sensor, such as a photodiode.

CAMs are configured by setting specific options, floating point parameters
and clock speeds using the AnadigmDesigner2 software.7 The software allows
analogue circuit engineers to design and test circuits using a “drag-and-drop”
graphical user interface. The software can also be controlled by an API “wrap-
per” referencing the ad2.exe file. The build up of circuits and the reconfigu-
ration process can then be controlled by an external application. The low-level
configuration commands (i.e. individual elements of the bitstream) are not pro-
vided by the API. However, circuits can be saved as AHF (Ascii Hex Format)
configuration files, which can be downloaded onto the FPAA as needed. For
dynamic reconfiguration during run-time, each circuit configuration file must

7This software is free to download from http://www.anadigm.com.

http://www.anadigm.com
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Table 4.1: Selection of CAMs that could be used to condition the signal output
of a photo-diode or similar sensor (taken from AnadigmDesigner2 software
listings).

be saved in advance and then all possible transitions between the configura-
tions determined. Anadigm’s proprietary software works out the minimal bit
differences required to reconfigure the FPAA between one configuration and
the next, so that very fast updates are possible. Unfortunately, we were un-
able to make use of this feature and relied on a “hard reset” of the FPAA to
reconfigure it (see issues, §6.3.1).

In terms of our conceptual architecture (Fig. 4.1), the feature of most in-
terest on the Anadigm FPAA is the availability of high-level functional mod-
ules, whose behaviour can change according to their context of deployment
(i.e. their inputs / outputs) and be configured by setting options or parameters.
These two features allow us to model phenotype exploration by gene expres-
sion (permitting gene reuse in different contexts) and genetic exploration by
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evolutionary mutation (fine tuning of functional behaviour). To try and make
the links between our conceptual architecture and the proposed system archi-
tecture more obvious to the reader, the next section briefly recaps the biological
mechanisms that control gene reuse during development, and suggests ways
we could incorporate an abstract representation of these features into our sys-
tem architecture.

4.2 Linking evolutionary developmental biology to

our system architecture

The purpose of this section is to justify why we have abstracted a small part
of the developmental process relating to gene reuse and show we can link el-
ements of our conceptual model of that process to parts of the the hardware
architecture of our platform.

We have seen how evolution is able to reuse genes as a by-product of the
developmental process (§2.5). By controlling context-specific gene expression,
developmental processes can create repetitive morphological features such as
bone vertebrae, leaf venation, bristles and limb buds. It was argued in §2.5.1
that the majority of change in morphological form comes not from direct mu-
tation of the gene itself as commonly supposed, but from mutation that causes
the context of expression to change. An example is the Distal-less gene. This
gene, important for limb bud development, evolved a new “switch” that led to
it being expressed on a butterfly wing, where instead of a limb bud the gene
makes a spot of colour (see Fig. 2.11 in §2.5.4).

It is vital to capture this context-specific nature of gene reuse in our archi-
tecture. Notwithstanding that low-level configuration bitstream mutation is
unavailable to us on the Anadigm FPAA8 (as it had been to Thompson (1997)),
using CAMs directly in our representation frees us from the problem of hav-
ing to evolve and protect high-level functional elements capable of reuse. The
formation and protection of re-usable building blocks in evolutionary compu-
tation is a recognised and long-standing problem (Walker and Miller, 2008).
Having a ready-made selection of CAM “primitives” as building blocks means
that we can focus on making their reuse have context-specific functionality. Al-
though coming across it long after selecting the Anadigm FPAA, it is interesting
to see how closely the following quote from Thompson matches the platform
architecture and backs our developmental approach:

“The fine-grained control over the hardware that is required im-

8Directly mutating some of the bits on bitstream configuration files and attempting to download
them was tried, but the FPAA failed to recognise any of the attempts made.
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plies a vast search-space for a system of any complexity, so tech-
niques need to be developed to cope with this. One possibility is
the use of developmental genetic encoding schemes for genetic al-
gorithms, which allow the evolution of re-usable building blocks
. . . permitting fine-grained tuning of the building blocks, but yet re-
ducing the search space to systems built out of them.” (Thompson
et al., 1999)

§2.9.1 argued that most work in the field of evolutionary computation has
focused on the performance of population based, stochastic search. While per-
formance is interesting from a computational perspective, it does not help ad-
dress the issues of scalability or reuse. Nor does it help move attention to-
wards new types of dynamic, flexible solutions that evolution can find for us.
Most evolutionary computation aims at a phenotype representation containing
a single, static solution. Neither the inclusion of redundancy in the genome
(Miller and Smith, 2006), nor ideas of neutral variation to allow “island hop-
ping” in the search landscape (Thompson, 2002), extend the genome represen-
tation to contain multiple phenotypes. Instead, ideas about redundancy have
tended to remain at the level of unused genetic material in the genome. How-
ever, biological organisms contain an additional form of redundancy: genetic
responses that will only be expressed under certain conditions. Often in evi-
dence during development, this flexibility gives organisms room to manoeuvre
in a variety of environmental conditions. By tying the expression of genes to
particular contexts, a genome can contain multiple phenotype responses, includ-
ing some that might be redundant. Recent developmental work has appeared
in a broadly similar vein to this, where Tufte and Haddow model “phenotype
plasticity” (Tufte and Haddow, 2007).

When faced with the breadth of examples from biology, it is difficult to see
how to map the huge variety of proteins found in the cell nucleus to a digital
representation. The problem of representing the richness entailed by different
protein identities has been investigated by Bentley (2004b) using fractal expres-
sion. As we want to explore in materio evolution on an FPAA, we chose not to
follow either this approach or one such as Tufte (2006) or Miller (2004), where
cell neighbourhoods are modelled. Instead, the specific context provided by
different protein transcription factors in the cell nucleus is modelled by trans-
forming the analogue output of the FPAA into a complex digital context, that
can trigger gene expression as part of a feedback process (see Fig. 4.1).

Having the FPAA output on its own represent the different contexts for
gene expression would not give the evolutionary process the sort of flexibility
available during biological development. §2.5.4 described how transcription
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Figure 4.4: Binding works by transforming the output signal of the circuit into a
“binding signature”. This binding signature is checked against the binding site
of each gene. If a match is found, the gene is added to the circuit configuration.

factors bind to stretches of DNA material. The presence of “wildcards” at some
transcription factor binding sites widens the opportunities for gene expression.
Likewise, the absence of wildcards in some signatures (e.g. the heart develop-
ment gene, tinman) suggests that some genes have a very restricted range of
expression.

In order to provide similar flexibility for evolution to exploit, we propose
that the transform of the FPAA output maps onto a signature scheme contain-
ing wildcard positions. There are various ways of doing this. For example, a
Fourier transform shows the amount of power in a signal at different frequen-
cies. Signals containing a mixture of frequencies could be suitably binned to
give the desired signature length, with the area of a bin corresponding to one
of the 4 nucleic acids. While such a scheme would work, it was noted in discus-
sions with colleagues9 that Fourier transforms had limitations in terms of the
amount of information they could extract from a signal, and a more attractive
scheme could be devised that would let wildcard positions appear and allow
evolution to manipulate them. Our final binding scheme therefore adopted
a wavelet transform instead ( §5.5.1 gives further details), with a grid super-
imposed on the transform to give a binding signature of the desired length (§
5.5.2).

Fig. 4.4 gives an overview of how the matching process works to trigger
gene expression. The analogue output of the circuit is used to create a binding
signature. Each gene’s binding site (shown by the ovals on the genome rep-

9Tim Clarke, Dept. of Electronics, University of York.
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Figure 4.5: The system architecture, showing how circuit output “binds” onto
parts of a digital genome, triggering gene expression which manifests as a new
circuit configuration.

resentation string) is checked against the binding signature. In the diagram,
although the binding sites on the genes are 4 bases long, the signature they are
checked against is only 3 bases, therefore only the first 3 bases of a binding site
are used. The curly braces in the signature indicated that the first position is
a wildcard consisting of A or C. Thus for the example shown, the first gene’s
binding site would match with this binding signature. When a match is found,
that gene is added to the set of genes that are expressed. The configuration rep-
resented by these genes is then used to make a new circuit. The matching pro-
cess is part of the wider reconfiguration process of the chip, as shown in Fig. 4.5
(where Fig. 4.4 is embedded). The signal inputs shown in Fig. 4.5 represent 4
distinct stages of signal input. The varying input (actually an increase in the
frequency of the signal) means that the signal output subsequently changes,
leading to new genes being expressed and the reconfiguration loop starting
again.
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4.3 Summary of system architecture

This chapter has listed motives for taking evolutionary search into a design
domain containing rich physics and gave reasons for selecting analogue elec-
tronics as that search domain. §4.1 argued that searching within virtual en-
vironments inevitably means that large areas of the physical design space are
not considered. §4.1.1 outlined the advantages of reconfigurable analogue de-
vices and how the platform architecture of the Anadigm FPAA was a good fit
to our conceptual requirements. Finally, we discussed how creating a context
to trigger gene expression from the analogue output of an FPAA allows us to
evolve multiple phenotype solutions, as each phenotype stage comes from the
expression of a subset of genes in the genome (§4.2). The binding process that
triggers reconfiguration will use a wildcard scheme similar to that found in the
binding sites of biological transcription factors, in the hope that evolution can
manipulate the appearance of wildcards in a binding signature to its advan-
tage. The next chapter looks at issues that arose during the implementation of
our system.



Chapter 5

Implementation

We have covered the biology behind our conceptual architecture and shown
why the Anadigm FPAA platform is suitable for a developmental approach,
allowing evolutionary exploration of hardware-based analogue circuits, high-
level gene reuse and the possibility of using gene expression to control recon-
figuration (§4.2 and §4.3). We now cover how we implemented system. The
implementation provides one important feature related to our conceptual re-
quirements listed in §3.1, in that our mapping from the genome to a phenotype
stage creates a context-specific functionality for the reuse of genes. Context-
specific functionality is an important feature of gene reuse and one that means
relatively few, very useful genes are responsible for a wide variety of the func-
tional morphology found in natural organisms (see §2.5, §2.10.1 and §4.1.2).
The implementation of context-specific gene reuse was fortunately relatively
easy to achieve on the platform we have chosen.

This chapter describes in detail how the process of genome encoding and
decoding is done, the implementation of the binding signature generation and
binding site matching processes, problems relating to inter-process communi-
cation and the difficulties that were encountered using the Anadigm API. We
begin with an overview of the system components.

5.1 Overview

At the heart of our architecture is an Anadigm FPAA on which we wish to
test evolved circuits, as shown in Fig. 4.5. Around that are components that
generate analogue signal input to the FPAA and transform its output. The
main system components are shown in Fig. 5.1.

Most of our system runs on a single PC containing a National Instruments
Data Acquisition (DAQ) card to get the analogue signals in and out of the
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PC containing DAQ card and hosting Matlab scripts and evolutionary harness  

  

Digital signal generation & 
wavelet transform 

Inputs / outputs viewed on 
oscilloscope 

Anadigm FPAA 

Host application running 
evolutionary harness DAQ card in PC 

Software oscilloscope 
running on separate PC 

 
Evolved 
circuits 

downloaded 
via API  

Analogue connections 
for input / output to 

FPAA 

Serial 
interface to 

PCB  

Figure 5.1: Main components of system architecture. Thick black border indi-
cates the PC containing the software API and drivers, the evolutionary harness
and the DAQ card.

FPAA. The PC runs the evolutionary process that creates the genome popu-
lation using the CAM library supplied by Anadigm. This application refer-
ences the Anadigm API to save phenotype circuit configuration files for each
genome. It also references Mathwork’s Matlab application, so that a wavelet
script transforming the FPAA output can be started and stopped from within
the application. The main application was coded in Visual Basic under the .Net
framework, using Microsoft’s Visual Studio. This environment has excellent
support for referencing and accessing APIs under Windows and much better
support for hardware interfaces than in the past. Due to the heavy proces-
sor requirements of signal generation, sampling and transform, the analogue
signal inputs and outputs that were generated and sampled by the DAQ soft-
ware drivers on the host PC were verified against measurements taken with
a software-based oscilloscope running on a separate PC (running the oscillo-
scope and doing the signal generation / transforms was too much for one PC).

Each genome has a set of possible circuits formed from the combinations of
its genes. One gene contains all the information relating to the configuration of
a CAM “primitive”, that is, a CAM with one of its options selected. A gene
encoding also includes input and output connections for the CAM and the
gene’s binding site.

The evolutionary harness generates every possible circuit that could be
made from the subsets of genes in a genome. Each circuit is saved as an ASCII
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Hex file (*.AHF) and in Anadigm’s graphical format (*.ad2) (see §4.1.2) so that
phenotypes can be later viewed. Using the DAQ card drivers, the application
begins generating the analogue input signal via the DAQ card to the FPAA.
The FPAA output is sampled at regular intervals by a Matlab script (see §6.2.2
and Fig. 6.1). After a short time to allow the signal to settle, the transform of
the output (the “binding signature”) is matched against the binding sites of
“genes” or CAMs (see §5.5.2). CAMs that match will form the next circuit, and
the corresponding configuration file is downloaded onto the FPAA. The output
signal is again given time to settle, before the new circuit is tested for fitness.
Reconfiguration can take place at specific points or on an almost continuous
basis.1 Each input stage can be viewed as a developmental stage that the phe-
notype must be tested against to judge its fitness (see §6.2.2). The sum of all
fitnesses gives the final fitness of the genome.

We begin this description of the system implementation by looking at the
CAM representations in the genome and the problems of downloading invalid
circuit configurations (§5.2). This is followed by a short introduction to Carte-
sian Genetic Programming (CGP, see §2.8.1), the representation used to de-
scribe the circuit connections (§5.2.4). We then step-through the process to de-
code a genome during the binding process (§5.5.2). This is followed by a closer
look at the binding signature generation and matching algorithm (§5.5.2), and
the chapter ends with some caveats for anyone planning to use the Anadigm
API for similar work and a discussion of the problems encountered with Mat-
lab.

5.2 Encoding the genome

5.2.1 Requirements

Circuits are formed by connecting together CAMs. In order to represent a cir-
cuit, we need to hold the configuration of each CAM and how they are con-
nected to each other. We will consider each CAM (or basic configuration option
of a CAM) as a gene in the genome. Due to the limited capacity of the Anadigm
FPAA, genomes are restricted in length to just a few genes.2 The mutually ex-
clusive options of each CAM are each given an identification (CAM ID) and can
become a gene. Most CAMs can make up to five or six genes this way. With
each gene are details of its connections to other CAMs and the parameters that
determine its behaviour. Finally, each gene has a binding site associated with

1 This is dependent on processor speed, but see also the discussion in §6.3.1 on the effects of
signal disruption of frequent reconfiguration.

2This is a hardware limitation. If we “daisy-chain” together some FPAAs, the genome length
could be increased. See §7.4 for issues relating to this.
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it, which determines when that gene can be expressed. The essential parts of
the representation are shown below:

CAM ID Connections Parameters Binding Site 
 

Figure 5.2: A gene in the genome.

The mutation operator can operate on any of the fields. The details of each
of the fields and how they are encoded is given below and an example genome
is shown in Fig. 5.3. We begin by looking at a typical CAM and its configuration
options.

5.2.2 CAM IDs and parameters

A selected list of CAMs showing a representative range of the functionality
available has already been given in Table 4.1. We now look in more detail at
a typical CAM to consider how the configuration options can be represented,
and in particular how conflicts between configuration settings can be avoided.

The options and associated parameter ranges of the BiQuadLinear Filter
CAM supplied by Anadigm are shown in Table 5.1 which was obtained by
assessing the different values available to this particular CAM using the Ana-
digmDesigner2 software. The table does not show all the options available
(e.g. resource usage, low-corner frequency) for reasons of space. A configura-
tion for the BiQuadLinear Filter must lie somewhere along a row of this table
if it is to be realised in a valid circuit. Each filter type represents a mutually
exclusive option with an associated set of parameters. Initially, each gene in a
genome has its CAM ID, connections, parameters and binding site given ran-
dom values within certain ranges. Although it would be easiest to allow gene
values to be freely mutated without regard to allowed parameter ranges, if a
parameter is set outside an acceptable value, that CAM may not be instantiated
in the circuit.

Unfortunately, Table 5.1 does not show the effect of changing a parameter
value on the CAM, so that the ranges of other parameters are forced to accom-
modate it. For example, selecting the high pass option removes the options of
setting the input sampling phase, polarity and resource usage. This means that
in order to set the CAM to this filter configuration, one needs to set the filter
type, before setting the other parameters related to it. As the user changes the
configuration dialogue box, other parameter ranges are also adjusted automat-
ically. For example, the internal clock speed of this CAM can be set to one of
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Table 5.1: There are a wide range of parameter settings for the BiQuadLinear
Filter CAM. However, many of them are affected by different clock speeds.
Parameters such as corner frequency are relatively consistent, other like Gain
vary more widely. As explained in the text, each of the parameter settings may
be linked to another parameter value, so changing one may change the range
available to another.

five values. If the clock speed exceeds the corner frequency parameter, that
parameter becomes highlighted in red.

The flexibility embedded in the graphical interface is difficult to reproduce
as a flat text representation. Rather than have all possible options available
within a CAM representation, it is easier to treat the mutually exclusive option
as separate genes. Thus the BiQuadLinear Filter CAM would have four main
variants (Low Pass, High Pass, Band Pass and Band Stop), with further sub-
variants (related to input sampling phase type, polarity and resource usage),
with each variant having additional floating point parameters (such as corner
frequency or gain) that further alter its behaviour. In the case of the BiQuad-
Linear Filter, this gives a total of nine “primitive genes”, whose behaviour can
be fine tuned by mutation.

With this scheme, there are just over two hundred CAM “primitives”. 3

3The actual number is larger. However, for reasons involving the design of the API it easier to
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Within many primitive configurations, a large range of behaviour is possible
as most CAMs take floating point parameter values. We encode a maximum of
four parameters, with those that are unused being ignored. To get round the
dynamic nature of parameter range adjustments, a parameter encoding is gen-
erated as a percentage value, which is applied as a function of the parameter
range after the configured CAM has been added to the FPAA (as it is possible
that the presence of other CAMs on the chip can alter the available parame-
ter range). Unfortunately, as each CAM has to be added to a circuit before its
parameter adjustments can be checked, it makes circuit generation too slow to
be performed dynamically during run-time (it takes around twenty seconds to
generate the circuits for a genome with three genes). Instead, each circuit con-
figuration is saved in advance as an *.AHF file, which can be then downloaded
as needed. It should be noted that generating the circuit configuration files is
made slower by the error handling required to avoid connection conflicts or
bad parameter values. As an example, to generate circuits for a population of
one hundred genomes results in fourteen hundred files being written to disk,
taking around thirty minutes (see also §5.6.1).

Having described representing CAM configuration, the next section looks
at the technique we use to specify the connections between CAMs.

5.2.3 Connecting CAMs together

A circuit made from connected CAMs can be viewed as a network of connected
nodes. In order to maintain the connection details between CAMs, the repre-
sentation needs to be able to hold the maximum number of input connections
a CAM could have. This means the representation will have a large degree of
redundancy, as few CAMs have high numbers of inputs. Inevitably, many mu-
tations to the genome may then have no effect on the phenotype stages they
represent. Network models often use feed-forward, directed graphs to repre-
sent information flow. Electrical circuits, however, can have feedback loops.
These form an important part of analogue circuit design.

However, the purpose of this thesis is not to discover the most efficient
evolutionary algorithm or representation. What is important for us is to see
whether our conceptual architecture can bring something new to evolutionary
computation. For our representation, we needed an established technique, one
that had both proven results as a search algorithm and one in which it would be
easy to represent a network of functional nodes. Cartesian Genetic Program-
ming (CGP) fulfils these requirements. In addition, its originator Dr. Julian

build up the CAM library omitting some of the option configurations.
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Figure 5.3: A simple CGP representation that caters for the maximum number
of inputs and parameters that are available to a CAM. If a CAM has fewer in-
puts or parameters, the remaining values are not used (they may still be subject
to mutation, however, see §5.2.4).

Miller,4 kindly offered his help with any implementation or performance is-
sues we might encounter.5 Importantly for us, the method had already been
used on an in materio evolvable hardware project (Harding and Miller, 2004,
2003) — the experience of which we were later grateful for when noise in our
prototype made mutation rate and fitness assessment difficult. For a reminder
of the background to CGP, we refer the reader to §2.8.1. We now give a short
description of how we adapted it to implement our requirements.

5.2.4 Encoding circuit connections in the genome

CGP represents nodes connected in a feed-forward, directed graph. Our ver-
sion is adapted to allow feed-back loops, as these form an interesting and im-
portant part of analogue circuitry. Our integer-based representation is shown
in Fig. 5.3 and explained in detail below. While in theory a genome can con-
tain any number of genes, the eventual size of a circuit depends on how many
genes are being expressed at that moment. Fig. 5.4 shows the process of de-
coding the genome, from being fully specified (all genes expressed) to a circuit
containing just a couple of CAMs.

The genome representation is the part subject to mutation and its length
is defined by the number of nodes. As in CGP, the number of inputs to each
node is fixed. In our case, as the maximum number of inputs on any of the
pre-configured CAMs supplied by Anadigm is five,6 we use this and later trim

4Dept. of Electronics, University of York.
5Particular thanks must also go to Dr. James Walker, with whom I had several discussions about

possible representations for circuit configuration.
6NB. Fig. 5.4 shows only 4 inputs for clarity.
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the excess inputs as needed. All five inputs are required to be satisfied under
CGP. An input request generates a feeder node ID and the output index of that
node. Thus in the example given in Fig. 5.3, the first input of Node 1 (CAM
47) requests the first output of Node 4. The second input requests the second
output of Node 2, and so on. When this Node 1 is translated into a CAM, its
variant of the BiLinear Filter CAM (CAM 47) turns out to have only two inputs,
so the remaining input requests are ignored. The encoding links each input to
an output (either from another node or itself). It is possible that one output on
a node is linked many times and another not at all. In this case, the unlinked
output is simply left “open”. However, the process ensures that every input is
connected and no inputs are left open.

Once the directed graph has been generated, it is necessary to translate the
node into the specifications of the corresponding CAM. This means that most
nodes have their inputs trimmed to the number on the corresponding CAM.
For example, in Fig. 5.4, Node 2 has four inputs and one output, but the CAM
corresponding to its ID (CAM 81) has two inputs and two outputs. Both of
Node 2’s inputs (shown in the specification as 3:2, 3:1, etc) are linked to the first
and second outputs of Node 3. However, CAM 116 that Node 3 represents, has
only one output, therefore this output is used to feed both of Node 2’s inputs.7

For Node 2’s outputs on the other hand, only Node 1 makes a request for the
second output. No other node requests input from the first output of Node
2, and so that output is left “open” (unconnected). The process of re-aligning
inputs and outputs in the specification to the actual values on the CAMs means
that although all inputs are connected, about 20% outputs are likely to be left
unconnected.

5.2.5 Binding Sites

The final part of a gene specification is the binding site for each CAM. This is
a string representing the four nucleic acids in DNA (e.g. AAC, TGT, etc). As a
single FPAA can fit around four to seven CAMs depending on their resource
usage, the binding site length is generally proportional to the expected expres-
sion rates, i.e. choosing a very short binding site might result in the expression
of too many CAMs for most contexts. A future project could allow evolution to
choose the binding site length, but in our current prototype this is fixed. §5.5.2
describes how binding sites are matched to the binding signature and covers
in detail the generation of the binding signature itself.

7This is one example of an “arbitrary” design decision in the wiring algorithm. There are several
others, in particular those relating to errors raised by the Anadigm API when attempting incom-
patible connections (see §5.3 and §5.6.1). If you wish to check specific details, Appendix §A.2 lists
the Visual Basic code for the wiring algorithm.
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Figure 5.4: Genome to phenotype: decoding a genome into a developmental
stage of the circuit phenotype. Circuit output is fed back to the genome which
reacts by expressing those CAMs that match the binding signature, allowing
the genome to respond to changing conditions by expressing a new phenotype
stage. See §5.3 for full description of how a subset expressed from the genome
is connected together.
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5.3 Expressing a subset of genes

The previous sections detailing the genome have described how CAM configu-
rations are represented, how a directed graph satisfying 5 input requests from
each node is generated and how that directed graph is then modified to match
the actual number of input requests that the CAMs can make.

The next part of the process involves the expression of genes from the ge-
nome. The directed graph contains the connection details for a fully expressed
genotype (all CAMs expressed). However, there are many circuits that can be
created from a subset of CAMs in the genome. Each subset is turned into a
phenotype circuit configuration using the wiring connections of the fully ex-
pressed circuit. As each subset is generated, many with requested connections
from missing CAMs, the circuit wiring specification from the genome no longer
holds good for all inputs. For example, Fig. 5.4 shows a binding condition in
which Node 3 (CAM 116) fails to be expressed. This leaves Nodes 1, 2 and 4
to create a circuit configuration. Unfortunately, Node 1 has only one output
specified as being connected to Node 3. As Node 3 has not been expressed in
this phenotype, the circuit is effectively split in two.

In cases such as these, the wiring algorithm defaults to having the first CAM
take the circuit input, regardless of whether that means much of the circuit is
unused. The wiring algorithm then traces through the circuit to the first “open”
output that will enable the circuit to have both an input and output. In this
case, the first open output it finds is on the first CAM, and so the other CAMs
(Nodes 2 and 4) fail to have an impact on the circuit. The final phenotype
circuit translation is shown with only Node 1 (CAM 47) making up the circuit.
Node 2 (CAM 81) has been left in as a connection can still be made to the first
input. Although no input goes to Node 2, the connection may still affect the
phenotype fitness and we do not judge how “sensible” a circuit is from the
viewpoint of conventional design.

Appendix §A.2 lists the code for the wiring algorithm and shows how
each circuit is first connected following the full genome specification, ignor-
ing nodes that have not been expressed. If this is unsuccessful, a search is at-
tempted for suitable circuit inputs and outputs. It should be noted that despite
the strategies employed in the algorithm (including localised error handling to
avoid dropping out of object collection loops), it is sometimes not possible to
connect an input or an output to the circuit, resulting in a dud circuit. How-
ever, we discovered in our experiments that evolution still made use of such
circuits (see §6.7 for examples and discussion).

The decision to use an algorithm to try and create some sort of valid input
and output to a circuit was taken after it was realised how few good circuits
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Part of Gene  Mutation Rate 

CAM ID 1/19 = 5.2% 

Input Requests 10/19 = 52.6% 

CAM Parameters 4/19 = 21% 

Binding Site 4/19 = 21% 
 

Table 5.2: Probabilities for gene configuration fields being mutated.

were created if the circuits were employed exactly as they were specified but
with missing CAMs. Even with the wiring algorithm fixing up inputs and
outputs, there a large number of circuits that cannot work due to broken con-
nections. The wiring algorithm acts the same way during the construction of
every circuit phenotype, so that although it admittedly “interferes” with the
specification selected by the evolutionary harness, it does so in a consistent
fashion and might be considered in the same light as restrictions on protein
formations that occur in cell nucleus due to the cell chemistry or physics (see
also the discussion at the end of §5.6.1).

5.4 Evolving the genome

When the initial population is generated, the gene configurations are created
by applying random numbers (within specific ranges) to each field of a gene.
For example, for CAM ID, a random number between 0–209 is generated. For
an input request from another node, a number between 0 and the total number
of genes in the genome is generated. CAM parameters and binding sites are
generated the same way. After a genome has been selected as the fittest of
its generation, it is cloned and mutated.8 One mutation per gene is carried
out. The fields are stored internally in an array and each field has an equal
chance of being mutated. As some parts of a gene have more fields than others
(e.g. input requests), there is a greater chance of these fields being mutated.
CAM IDs have the least chance. However, where a mutation falls does not
have the same impact from gene to gene, and clearly some mutations (such as
CAM ID) will have greater impact than one on a redundant field (such as an
unused input or parameter setting). Table 5.2 gives the likelihood of a mutation
falling on the parts of a gene configuration.

Maintaining a fully expressed circuit wiring specification means that in the
case that all CAMs in a genome are expressed, all inputs will be satisfied. How-

8This is assuming a 1+4 evolutionary strategy. See §6.5 for details on population sizes and
mutation policy in the experiments.
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ever, as there is a “patching up” process for circumstances in which full expres-
sion does not occur, it allows us to investigate how evolutionary progress is
affected by the interaction between the context of expression and the binding
site mutation of individual CAMs. If a CAM has connections specified as com-
ing from another CAM and that CAM is never expressed in the same context,
evolution must mutate their binding sites to allow both CAMs to be expressed
simultaneously if those connections are to be realised in a higher fitness for
that phenotype stage. However, a later mutation to a binding site may have a
greater effect than simply allowing the expression of the missing CAM in that
context. The new CAM may mean connections are possible that change the be-
haviour of the original CAM. This is particularly important for our conceptual
architecture, as the expression of the same gene in different contexts should not
result in predetermined circuit behaviour. Rather like the reuse of genes in dif-
ferent developmental contexts, under our scheme, different binding signatures
are likely to result in the same CAM behaving differently, as it will be deployed
in different circumstances.

This highly non-linear mapping from genome to phenotype gives several
benefits. For example, it allows us to investigate phenotypic stages of devel-
opment, as a phenotype may get high fitness in one context, low in another,
and we can investigate what that means for phenotype exploration. We can
assign progressively difficult tasks for contexts, and look to see what “useful”
genes are conserved to allow the genome to “bootstrap” over generations. We
can also alter fitness criteria for a particular context after a genome has already
achieved good fitness for other contexts, and see what impact this has on the
re-organisation of the genome. These interesting aspects of the architecture are
discussed further in §7.4.

5.5 Search Domain feedback and response

To access the complexity and richness in the design domain of analogue hard-
ware, we need some means of processing the output of that environment digi-
tally so that it can interact with evolutionary processes on the host application.
The first part of this is decoding the genome into phenotype circuits. The sec-
ond part is the binding process that allows the genome to receive feedback to
say when to express certain genes from the phenotype’s functional domain of
analogue signals. Translating the physical complexity of the analogue output
signal from the FPAA into a digital form is done via a wavelet transform. As
explained in §4.2, alternative schemes for this transform were considered, the
primary other possibility being a simple Fourier transform (FT). While FTs are
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fast and easy to implement, they extract a limited amount of information from
a signal. Plus our original plans had been to use this architecture on devices
such as remote sensors that needed to adapt to their environments. In such ap-
plications, the signals coming from the sensors are not stationary waves such
as sine waves, but are more akin to changing levels of DC voltages. Changes
in this type of signal would be best picked up by a transform process such as
a wavelet transform, rather than an FT. Unfortunately, we were unable to test
our FPAA system using real world sensor signals, and so the extra effort to
implement the wavelet transforms did not provide us with substantial bene-
fits. The process of matching the circuit output (i.e. the “context”) to a set of a
binding sites on the genome is done separately and is covered in §5.5.2.

5.5.1 An overview of wavelets

Wavelets grew out of the requirements of a group investigating new techniques
for locating oil from the return of impulses applied to the ground (Hubbard,
1998). The return signal was cluttered. To process it properly required the
ability to resolve simultaneously in time and frequency. The Fourier Transform
(Soliman and Srinath, 1998) defined in Eq. 5.1 provides excellent resolution in
the frequency domain, but time domain information is lost. Truncation of the
signal produces conflicting artifacts (spectral spreading and leakage) related to
the length and shape of the time window over which the signal is expressed.

F (ω) =
∫ ∞
−∞

f(t)e−iωtdt (5.1)

Where i is the imaginary unit from Euler’s formula9, ω = 2πf (angular fre-
quency) and t is time. There are methods for improving this trade-off between
frequency and time. One such method is the Short Time Fourier Transform
(STFT) Poularikas (1995), given in Eq. 5.2:

STFTf (ω, τ, γ) =
∫ ∞
−∞

f(t)γ(t− τ)e−iωtdt (5.2)

The STFT gives the frequency components within different windows de-
fined by the windowing function γ(t − τ), where τ is the time index. This
function allows the frequency distribution within a time band to be measured.
Whilst this is an improvement on the time-frequency resolution of the Fourier
transform, it is still limited because of the window size. The smaller a win-
dow is, the better a high frequency component can be located in time. How-
ever, with smaller windows few cycles of low frequency components will be

9See explanation of this and −iωt on Wikipedia at http://en.wikipedia.org/wiki/
Wavelet.

http://en.wikipedia.org/wiki/Wavelet
http://en.wikipedia.org/wiki/Wavelet
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observed and so there is a loss of resolution (Hubbard, 1998). Wavelets are de-
signed to remove these artifacts. We can use them to analyse the output from
our analogue circuit without distortion. The continuous wavelet transform,
Wf (a, τ, ψ) where a is the wavelet scale, effectively “cuts up data or functions
or operators into different frequency components, and then studies each com-
ponent with a resolution matched to its scale” (Daubechies, 1992):

Wf (a, τ, ψ) =
1√
|a|

∫ ∞
−∞

f(t)ψ
(
t− τ
a

)
dt (5.3)

The wavelet transform provides a time-frequency localisation that is not
available using the STFT. By calculating the correlation between the desired
signal and a wavelet function then scaling, dilating and shifting the wavelet
function before repeating the process, an accurate representation of the fre-
quency variability with time can be built up. The transform repeatedly com-
pares the similarity between the wavelet and the signal under inspection at
different dilations and shifting positions.

In general, the energy contained within a signal, the average of the square
of the signal, will be preserved by the wavelet transform and so the original
signal can be recovered. The function ψ(t), the “mother wavelet”, is unscaled,
undilated and unshifted. The dilation is inversely linked to the frequency band
that the wavelet will detect. At a high dilation the wavelet is stretched over
a wide time period and so is more suited to low frequency signals. At low
dilations the wavelet is compressed into a smaller time frame and so will pick
up high frequency signals. The term, a, in the wavelet transform is the dilation.
In addition the a factor ensures that the energy in the transform is normalised
(Poularikas, 1995).

There is a wide range of wavelets that have been created and each has var-
ied properties. When performing the wavelet transform a critical factor in ob-
taining an adequate result is that the appropriate wavelet function is selected.
As our circuit output was based on sine wave input, we used the “Morlet”
wavelet (Daubechies, 1992). The next section walks through the binding pro-
cess, starting with the wavelet transform, the Frobenius normalisation10 and
finally conversion to a binding signature. The signature is then matched to
binding sites on the genome to create the next circuit reconfiguration.

10The Frobenius norm is a submultiplicative matrix norm based on an inner product on the space
of all matrices. We use the Mathworks implementation for calculating this norm on the wavelet
coefficient matrix.
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Figure 5.5: Three different circuit output behaviours analysed as wavelets us-
ing Mathworks’ Wavelet Toolbox. In each picture, the top plot is the output
signal of the circuit, below that is continuous wavelet transform, followed by a
grid formed by averaging the intensity of the correlation values (wavelet coeffi-
cients) into cells using the Frobenius norm. Finally the same cells are compared
against a binary threshold mask. The dark vertical bars in the last plot of each
figure show binding signature positions (in this case, we are only reading the
first four positions as the signature length=4). The nucleic acid values (A, C,
G, or T) are read across from the Y-axis. More than one value on a vertical bar
gives wildcards in that position. The bottom right picture shows each binding
signature in detail. The three outputs give the following binding signatures,
with wildcards shown in curly braces:

1st output — AA{AC}{AC}{AC}
2nd output — {AC}CCCC
3rd output — {ACT}T{AT}{ACGT}T
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5.5.2 The binding process

We take the wavelet transform of the FPAA analogue output and create the
binding signature using the three stage process shown in each of grey boxes in
Fig. 5.5. Each box shows circuit output for a sine wave input (1kHz, 5kHz and
10kHz respectively), each of which generates a different output and therefore
a different binding signature. Each box shows the sampled analogue output of
the FPAA on the top plot (see lines 10–48 in the Matlab script A.1). Below this
is a continuous wavelet transform. This plots time (shifting) along the x-axis,
frequency (dilation) along the y-axis, and the degree of correlation between the
dilated and shifted wavelet and the signal at that time as an intensity value.
The continuous wavelet transform was performed by a function called twice
a second (see Appendix, lines 53–82 in A.1). This was as rapidly as our PC
hosting the application could run a continuous transform (see problems with
lag in §5.6.2).

On top of the continuous wavelet transform plot, we overlay a grid repre-
senting the 4 bases (A,C, T, G) as four rows (see lines 99–135 in listing A.1). The
grid works almost as a truth table, in that we inspect the Frobenius norm of the
correlation values (wavelet coefficients) in a grid cell (third plot from top) to see
if it falls above a threshold or not. If the answer is positive, that square equates
to that base being present at that position in the signature (bottom plot). The
grid is read column by column. More than one value in a column means that
this signature has a wildcard at that position. If no square in a column is above
the threshold, then that position is ignored. As many positions are read as re-
quired to match a signature. The signature length can therefore be extended to
meet the number of CAMs in the genome as needed. The Matlab script used to
generate the wavelet and Fourier transforms is given in Appendix §A.1, and
output logs of the entire process of creating circuits and testing the phenotype
expressions of a generation can be viewed in Appendix §A.3.

Matching the circuit signature to binding sites

The matching algorithm simply compares the two strings; the binding signa-
ture and the binding site. If a CAM binding site matches the signature, it is
added to the list of CAMs that will make up the next circuit configuration.
The algorithm always compares all binding sites in the genome to the binding
signature. This means that although the wiring algorithm generates all pos-
sible circuits from subsets of the genome’s CAMs, the binding sites of some
CAMs can mean that some subsets will never be expressed. For example a
genome such as that shown in Fig. 5.6 may have three genes, two of which
have the same binding site. Even though a genome like this has seven possi-
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CAM 1 AC CAM 2 GC CAM 3 AC  
 
 
Possible subsets of CAMs:  Binding signature required: 

1      AC 
1,2      {AG}C 
1,2,3      {AG}C 
1,3      AC 
2,3      {AG}C 
3      AC 
2      GC 

 

Figure 5.6: Simple three gene genome with binding sites, showing possible
circuit subsets and the binding signature that would be required to express
them.

ble circuits,11 some subsets will never be expressed, as the binding signature
they require is part of a bigger subset. In example given, both CAM 1 and
CAM 3 require AC as a binding signature to be expressed. As the algorithm
matches all CAMs where possible, if AC is the binding signature, both CAM 1
and CAM 3 get added to the list to make up the next circuit, and neither can
ever be expressed as a circuit on their own. This effect is even more dramatic if
the signature were to contain the wildcards AG in the first position, in which
case every subset matches, but only one will be expressed (123), as this is the
largest.

Even from such a small example, it is clear that the presence of wildcards
has a major impact on which circuits are expressed. Generally, the presence of
wildcards favours larger circuits, because more genes will be expressed. This is
not to say that it has an effect on the fitness of the phenotype being tested, but it
might have an impact if hardware measurements were being included as part
of the fitness tests, such as power or resource usage. The effect of wildcards
has been difficult to assess in the time period of the project. It would certainly
be interesting to explore if the presence of wildcards in signatures narrows the
problem of “subset explosion” as the length of genome increases (see §7.4, for
further discussion).

5.6 Implementation Issues

The final section in this chapter looks at some implementation difficulties of
using hardware, such as the Anadigm FPAA, as a platform on which to conduct
evolutionary search. It also covers some of the issues with application lag,

11All possible subsets = 2n − 1, where n is number of genes. One is subtracted as the empty set
is ignored.
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memory leaks, signal sampling and wavelet transform we had with Matlab.

5.6.1 The Anadigm API

Despite the Anadigm design libraries containing high-level functional blocks
that fitted well with our conceptual requirements, the random mutation driv-
ing the search gave rise to many ineligible circuit configurations that caused
unforeseen problems, often mid-way through an evolutionary run. The Ana-
digm API was created to allow automated circuit generation by third party
software, and as such, offers flexible and well-thought out interface. The API
is built using the .Net platform, and so its executable can be referenced on
projects using a variety of languages (C++ , C#, VisualBasic and Javascript).
Although the means of accessing the API differs in each language, its underly-
ing interface is the same. If requested, documentation is available from Ana-
digm for the Automation API at no cost, although the company makes clear
that it will not support applications using the Automation API, neither does it
guarantee the accuracy of the documentation.

One quickly gets the flavour of this, as it is clear the documentation pro-
vides code snippets that were written for an earlier version of the software.
The Automation API comprises objects and collections (groups of objects). Af-
ter instantiating an object, one can view its members using the “dot notation”
and Intellisense™ feature in Visual Studio. This makes for very quick explo-
ration of nested object interfaces, even though some object methods may have
no associated documentation.

The use of collections is one aspect of the API that can cause problems.
These are in effect dynamic arrays, and as such access to particular objects in
a collection is never guaranteed if one references that object by its index value
in the collection. Instead, one is forced to loop through the collection using
Microsoft’s “for each object in collection . . . next object” construct, checking each
in turn. While there are sort and find interfaces to collections that can speed
up access to a degree, in large collections the procedure of looping through
each object can seem an unnecessary overhead. This is particularly true when
attempting to wire up incompatible CAM inputs or outputs. For example, as
a CAM contact can be either an input or output type, one needs to instantiate
the CAM, then its Contacts collection, then each member of that collection,
before the type of a contact can be checked (it is not possible to assume the first
object in the contacts collection will be the first or main input connection). Thus
the wiring algorithm quickly gets complicated. For example, as each CAM’s
Contacts collection has to be looped through to find its input contact type, one
needs a second set of loops to check each of the CAMs to which it connects to
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try and instantiate the connection.
This “looping within loops” means that error handling needs to be very lo-

calised. Being thrown out of loop, for example, because of an attempt to wire
incompatible contacts together, means that you lose the chance to check the
remaining contacts. The only way round this is to have errors caught within
each loop so that they are not raised to the subroutine level. The code for the
wiring algorithm is given in Appendix §A.2 and shows the process of looping
through object collections and the localised error handling required to ensure
the remainders of collections are still searched after errors are raised on unac-
ceptable connections.

Even so, there are some errors that are not handled correctly inside the
Anadigm API, against which special provision has to be made. These errors
get raised to the highest level they can and may even require the routine to
be aborted, causing that phenotype to fail to be downloaded onto the FPAA.12

The API also provides different levels of warning. Warnings can generally be
ignored, as they seem to relate to accurate simulation of the circuit within Ana-
digmDesigner2. As these often occur when parameter ranges on the CAM’s
options are exceeded, either because of incorrect clock speed or some other
parameter setting has reduced the original parameter range, it is still worth
trying to download a parameter value that has raised the warning. Sometimes
it may lie just outside the declared parameter range for simulation, but is still
acceptable to the hardware.

Where errors prevent a connection being made, a decision has to be taken
in software whether to abort the attempt at creating a circuit or to continue.
An example is attempting to assign the FPAA input. Initially the algorithm
tries the first input of the first CAM, as would have been specified on a fully
expressed phenotype. If this fails, it tries to see if there is an “open” input con-
nection on the same CAM it can use. If this fails, it looks for the next “open”
input connect in the circuit. Finally, it tries to connect to the last CAM in the
circuit, even if its input is already connected. If this fails the circuit is undoubt-
edly a dud as no input signal can enter the circuit. However, it is still saved as
a configuration — as there are cases where even dud circuits can score high fit-
nesses (see §6.7). But what is important to note is that the connection attempts
are made as a result of errors being raised by the Anadigm software. These
connection attempts were not part of the genome specification. The same sit-
uation occurs trying to connect the circuit output. So despite trying to avoid
the limits that a software simulation of hardware would impose, the example

12One instance involved a modal error message box being raised from the API. This could not
be handled from the main application, and halted all execution during an evolutionary run until
a user clicked “OK” to remove it. However, after raising the issue with Anadigm, they graciously
sent a specially compiled version with the modal error message removed.
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illustrates how error handling affects circuit implementation and consequently
the design exploration by phenotypes. However, a more positive way to view
the wiring decisions is that they act as a kind of arbitrary “physics” or “bio-
chemistry” that governs some connection rules: the rules are consistent, they
always act in the same way and they add a layer of complexity above that given
by gene expression, much as real physics and chemistry act to control protein
behaviour.

5.6.2 Matlab scripts and processes

One unfortunate result of choosing a wavelet transform of the output signal on
which to base our binding signature was that there are relatively few wavelet
libraries that we could use. In particular, the DAQ card drivers that would
have integrated well with the main application under the .Net framework did
not offer wavelet transform as part of their signal processing package.

Originally we intended to use Matlab’s Signal Acquisition Toolbox to both
generate the input signals to the FPAA via the DAQ card drivers, and to sam-
ple the output. It was argued that Matlab would be much more flexible with
regard to signal generation than the DAQ card drivers. What was not apparent
was the amount of processing and memory Matlab would require in order to
perform continuous signal sampling and wavelet transform.

The initial design had a Matlab m-file script running in parallel to the main
application, which both generated sine wave input to the FPAA and and sam-
pled the output signal to perform a Fourier transform. The input was di-
vided into three stages: each stage having a different frequency. The Fourier
transform was used as part of the fitness criteria in later tests (to establish the
amount of power in the output signal). To do this, we needed to write the fit-
ness scores and binding signatures to disk midway through an input stage. The
main application read the files and summed the results to create a fitness score
for the genome. However, it became clear that the burden of performing sig-
nal generation, signal sampling and subsequent Fourier and wavelet transform
was too much for a single processor. In addition, Matlab itself seemed to suffer
a memory leak, causing a processing lag which led to out of date fitness scores
being written to disk and being picked up by the main application. As our
gene expression is a dynamic reconfiguration processes, the two applications
needed to run synchronously to work. The script was sent to Mathworks for
suggestions on how to cure the lag, however the problem was never resolved
and the only solution seemed to be to use the DAQ card drivers to generate the
signal input from within the main application.13

13This proved an advantage, as it was possible to control very closely when signal generation
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We continued to use Matlab to sample the output to perform the Fourier
analysis and wavelet transform. The principal advantage to this is that Mat-
lab’s native data format is a 2-dimensional array or “matrix”, therefore it proved
trivial to compare the wavelet transform to a thresholded binary mask to cre-
ate the binding signature. Again this was written to disk and read by the main
application. As the output was sampled and the signature written every half
second, there were rare occasions when file access clashed between the two
applications. Rather than write extensive error checking to work out at what
point in a test this occurred, we simply restart the test for the phenotype (see
listing of application output, in particular line 528 in A.3).

The memory leak in Matlab continued to cause us problems on long evolu-
tionary runs, to the extent it would eventually crash the machine as it used up
all the available RAM.14 In order to avoid this, it was decided to start and stop
the Matlab process from within the main application. The Matlab executable
was instantiated as an application object within Visual Basic, which meant it
could be shut down and restarted as required. Unfortunately, the Matlab appli-
cation object is instantiated as a DCOM server object under Windows, so that
the quit() method on the Matlab object does not kill the process completely.
It remains in RAM and is used next time the application object is started in the
main application. This meant the memory leak continued, even with quit()

being called on the object. Our only recourse, after several weeks working with
Mathworks to try to cure the problem, was to explicitly kill the process using
Windows system calls and restart it. Again, this slowed down the testing of
phenotypes as a new instance of Matlab would have to be loaded into RAM
before signal generation and testing could start.

However, the memory leak was the last major hurdle to clear and meant
we were finally able to execute evolutionary runs lasting two to three days (the
amount of time required to evolve 50–60 generations).

5.7 Summary

This chapter covered the implementation of system architecture. It related in
detail those aspects of the implementation that provided parts important to the
conceptual architecture, such as the context-sensitive reuse of genes / CAMs
under different conditions of expression. It described the main components of
the system architecture, how the software elements were built and how deci-
sions relating to connecting CAMs together and the choice of wavelet trans-

would start and stop, and to re-do any test where fitness scores failed to be written to disk in time.
14Mathworks technical support were unable to provide a fix for this. The full script used is given

in Appendix A.1 (Matlab ver. 2006b).
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forms were motivated and implemented. It finally records, as a caveat, some
of the issues we had trying to use the Anadigm API provided by the Ana-
digmDesigner2 software under Microsoft’s .net platform and Visual Basic. We
also describe the performance problems of continuous wavelet transform us-
ing Matlab’s Wavelet Toolbox. The next chapter gives the details and results of
the experiments we ran using the system described.



Chapter 6

Experiments

The previous chapter discussed the implementation of the conceptual archi-
tecture. Once glitches and memory leaks in the software had been ironed out
and the system was stable enough to run for several days, we were able to
conduct preliminary experiments. This chapter covers the design of the ex-
periments, aspects of search space coverage and the problems of hardware
noise. It gives the encouraging results of tests against a hypothesis looking
at evolved phenotype behaviour through several developmental stages. The
prototype demonstrated that the evolved mechanism can control progressive
developmental stages (canalisation) or provide homoeostatic control in the ap-
plication.

6.1 Overview

6.1.1 Aims

The broad aim of these experiments is to test the hypothesis of the thesis (§3.3).
However, the experiments themselves focus on a specific hypothesis relating
to the performance of evolved phenotypes in different environments. As this
is too specific for the wider scope of the thesis hypothesis, we use this section
to show how the system exhibits the desired characteristics of our conceptual
architecture (Fig. 3.1). The experiments themselves are detailed in §6.6. To the
best of my knowledge, the experiments are entirely novel. I have not found
similar work related to assigning fitness at intermediary stages of the develop-
ment of a phenotype, or work that uses gene expression to move from one de-
velopmental stage to the next, where those stages and the movement between
them have been configured by a single evolutionary search.

Earlier chapters premised that a developmental approach could help evo-
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lutionary computation overcome difficulties relating to scale and reuse. This
led to the design of our conceptual model and the implementation of a pro-
totype system; one of few in evolutionary computation that tie the evolution
of gene expression to phenotype exploration. Given the results of our proto-
type, there are encouraging signs that the exploration of developmental stages
could be expanded over longer time spans (i.e. the execution time of the phe-
notype would be extended, allowing more developmental stages to be passed
through). While there are questions relating to the frequency of reconfigura-
tion over very short time intervals (§6.8.1), provided the system is given time
to settle, there should be no restriction to the number of developmental stages
a phenotype can be assessed against, bearing in mind the increase in time to
reach a solution. Although it was not possible to conduct experiments on our
prototype to prove it (due to the limited capacity of the FPAA), the ability to
extend the number of developmental stages a phenotype adapts to indicates
that the system has a degree of scalability.1

The second characteristic of the architecture we want to highlight is the
reuse of genes in different contexts. The previous chapter showed how the
advantages of a non-linear mapping from genotype to phenotype could pro-
vide contexts for CAM expression. The context of a CAM’s expression means
that the same CAM is likely to provide different circuit functionality when ex-
pressed with other groups of CAMs, despite retaining its evolved configura-
tion in either group. These two factors controlling CAM behaviour (evolu-
tionary configuration and context-dependent functionality) correlate well with
the flexibility inherent to biological gene reuse and its context-dependent func-
tional morphology.

Gene expression allows developmental stages in the phenotype to explore
dynamic environments. As environments change, different genes are expressed
or inhibited allowing the phenotype to adjust its mode of exploration. While
we wished to evolve a genome capable of demonstrating dynamic response to
changing input, we also wanted to show how a single genome could evolve
a set of adaptive behaviours to different environments. This interesting aspect of
phenotype plasticity is discussed in the experiment results given in §6.7.

Even at the onset of experimentation, several unknowns remained in the
experiment design. For example, how often should gene expression be allowed
to reconfigure a phenotype? If we divide phenotype lifespan into multiple
stages, how should a phenotype be tested for fitness? The latter question is
one we will return to in our final chapter. However, for now, we take a simple,
if naive, analogy from biology to justify our method.

1Increasing the number of developmental stages is only one aspect of scalability, see also §5.5.2
and § 7.4 on potential difficulties relating to scale.
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In biological terms, the only measure of fitness applied to phenotypes is
successful reproduction. However, there are clearly selection pressures ap-
plied to the developmental stages of a number of animals (for example, the
specialist camouflages of caterpillars, the eggs of ground-nesting birds, even
the behaviour of many animal young). The degree these developmental stages
contribute to the overall fitness of the organism is obviously difficult to de-
termine. But we feel high performance in these stages must contribute to the
phenotype fitness to some degree, and used this as the basis of our approach.
The method of assigning fitness is described in detail in §6.2.2.

Method The behavioural requirements of the task are broken up into developmental
stages, to which we apply selection pressure by awarding fitness scores to each
stage. The sum of fitness scores give the overall phenotype fitness.

Not unexpectedly, as the number of stages (or environments) a phenotype
must adapt to goes up, the time to reach a solution increases. But it appears
from our experiments that rather than an exponential increase in the total size
of search space that one might expect, the increase is linear, as one is in essence
examining repeated instances of the same domain. Secondly, and perhaps most
interestingly, not all developmental stages need be weighted equally in terms
of their overall fitness contribution. If desired, stages can have their fitness
scores weighted so that the most important behaviour is targeted at the ex-
pense of other stages. This ability to guide evolution was not one we were
fully able to explore, but is discussed speculatively in §7.4.

6.1.2 Summary

Our experiments intend to illustrate how:

• a single genome can evolve to meet different fitness requirements at dif-
ferent developmental stages;

• gene reuse can provide different functionality when the context of ex-
pression changes;

• a genome can respond dynamically to changing conditions.

The next section looks at the types of task that our system could perform to
fulfil these aims, followed by a description of the task chosen. We detail how
initial experiments (§6.3) had issues relating to noise (§6.3.1) and address the
question of effective search space coverage (§6.3.4), including binding site (§
6.3.4) and phenotype variability (§6.3.4). We then examine the evolutionary
strategy used in the experiments (§6.4) and the experiment hypothesis (§6.6).
A discussion of the results concludes the chapter (§6.7).
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6.2 Tasks

6.2.1 Task requirements

The requirements of the system architecture (shown in Fig. 4.1) suggest the task
requirements should include:

a) a series of changing analogue inputs;

b) a series of signal processing tasks that Anadigm CAMs on the FPAA
can perform;

c) a means of measuring the fitness of circuits.

While this would seem to offer a broad scope for potential tasks, we are limited
by the signal processing possible on this size of FPAA and the time / difficulty
of constructing a reliable test environment. Unfortunately this prevented us
from carrying out our initial proposals to look at the real-world signal condi-
tioning of sensor output (such as a photo-diode responding to changing light
— see §4.1.2). However, we were able to set up a task for the prototype using
computer generated analogue input which fulfilled the above criteria. The ad-
vantage to having input signals created by the host application was that we had
precise control over how an input signal would change and could more easily
track sources of noise in our system. As the DAQ card came with drivers for
generating analogue sine wave output, it was decided to use a series of differ-
ent frequencies as input to the FPAA. While it could be argued that wavelet
transforms may not be the most efficient method to analyse stationary waves
(wavelets are better at detecting changes in signals), it was easy enough to gen-
erate frequencies sufficiently far apart for the transform to clearly distinguish
binding signatures.

Having decided on the FPAA input, we looked for a task which would be
easy to gauge in fitness tests. It was important that the task could be achieved
in a number of different ways so that the evolutionary runs were not attempt-
ing to find rare solutions in a large search space. Having more than one so-
lution also meant that successive runs could be compared for aspects such as
novelty and robustness, and the fitness tests perhaps tweaked to encourage
solutions in those directions.

The task chosen was to maximise the power of the output in some input
stages and to minimise it in others. The task was split into three (i.e. requiring
three fitness assessments): maximise the amount of power in the signal in the
middle stage, minimise it in the other two (see §6.2.2). However, even with
this simple task and set of input stages, assessing the fitness of the phenotypes
proved surprisingly deceptive (§6.3).
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6.2.2 Task description

The prototype has set two primary objectives:

1. to evolve reliable reconfiguration;

2. to configure the FPAA in stages according to different fitness criteria.

No requirement was set regarding the time to reach solutions to the task or the
resources used. Three different sine waves were selected as input stages (1kHz,
5kHz and 10kHz), each input being generated for a fixed duration. The fitness
criteria were to minimise power output from the chip on the 1kHz and 10kHz
stages, and maximise power output during the 5kHz stage.

Each phenotype starts against the output of a ‘bare wire’ (i.e. a straight con-
nection between input and output), so that for the search to move anywhere,
a phenotype must reconfigure the FPAA. Not reconfiguring the FPAA incurs
a penalty (see below). A signal frequency is input for 5 seconds to allow the
system to settle, after which the wavelet transform is converted to a binding
signature and checked against each gene binding site. Each match is added to
a list of genes that will be expressed to make up the next circuit. Reconfigu-
ration takes place, while input continues for a further 5 seconds, allowing the
system to settle again. Finally, a Fourier transform gives a power reading for
that circuit which is converted into a fitness score. The input is then changed to
the next frequency step and the process repeated, or a new test started. Fig. 6.1
shows how the system evaluates an input stage. Appendix A.3 (lines 357 on-
wards) show the output logs as the FPAA is reconfigured after binding during
input sequences.

The fitness scores are based on a formula that moves the selection process
in the direction of circuits that maximise power in the middle frequency band.
To the best of my knowledge, this work is the first that assigns intermediate de-
velopmental stages a fitness score, and so the derivation of the fitness formula
was arrived at through practical consideration and experiments:

Fitness = (B +R)− (A+ C) (6.1)

where B, A and C are the power readings at mid, lower and upper frequencies
respectively. R is the reconfiguration bonus. As mentioned previously, the phe-
notype must initially respond to the output of a bare wire that passes the input
signal through unaltered (except for a slight reduction in voltage). If no recon-
figuration occurs, the power readings return negative fitness values. Due to
noise in the system and a result of elitism in a 4+1 evolutionary scheme, phe-
notypes that do nothing (i.e. fail to reconfigure) can get selected above those
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Figure 6.1: Sequence of binding and fitness evaluation for an input stage (out-
put of FPAA is blue / darker line).

that reconfigure badly if power readings are used exclusively as the basis of
selection. As this imposes an unacceptable delay for the search process to ‘get
started’, we penalise any phenotype that fails to reconfigure from the initial
setting. Conversely phenotypes that reconfigure — even to a bad circuit —
have their fitness scores augmented by a small bonus (usually less than 10%
of final fitness score). On runs for random sequence frequency steps, more re-
configurations are required so bonuses are accordingly reduced (see §6.7). The
addition of a reconfiguration bonus gives some indication of the problems that
are typically encountered when creating fitness measures. Fitness can be no-
toriously difficult to nail down, and if care is not taken, evolution will blindly
follow a path your experiments may not have intended.

6.3 Preliminary Experiments

Building a system such as ours requires us to use the Anadigm API and FPAA
in ways it was never intended. In a similar fashion, the use of Matlab to run sig-
nal sampling from which we calculate continuous wavelet and Fourier trans-
forms is also unusual. We encountered problems both building the system (as
described in §5.6) and during our evolutionary runs. We now look at the initial
experiments that helped us overcome issues we had with noise, search space
coverage and hysteresis.
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6.3.1 Noise

There are three main areas where noise affects the assessment of phenotype
fitness. The first was noise during wavelet transform. The second was minor
inconsistencies in the Fourier transform readings for phenotype fitness. The
third source of noise was related to fitness score fluctuations that came from
signal disruption, caused either by hard re-sets of the FPAA during reconfig-
uration or by stepping up the input frequency. In addition to noise, the final
part of this section also looks at the problem of hysteresis — an unexpected
phenomena linked to particular CAMs at the moment of deployment.

Noise during wavelet transform

During wavelet transform, wavelet coefficients measure similarity of the
wavelet to a signal as it is time shifted at different scales. Part of our bind-
ing process converts wavelet coefficients into a four-row grid of binary values
determined by a threshold (§ 5.5.2). The more noise present in a signal, partic-
ularly a very weak signal, the more likely it will have coefficients scaled over
the threshold. This translates into columns with more than one value — giving
“wildcards” for that binding position — so that more genes are expressed as a
result (see §5.5.2 for an explanation).

During evolutionary runs, no attempt is made to ensure gene expressions
make valid circuits. It is possible that circuits may be broken (no output is pro-
duced) or circuit output may be severely restricted or otherwise made noisy. In
these cases, as coefficients are scaled, the noise introduced into the binding pro-
cess results in wildcards being produced for all positions. An unexpected effect of
this is that a particular circuit can be expressed by a “lucky” binding signature
(i.e. one brought about by random noise, due to a previous stage’s poor circuit).
Although this new circuit may get a high fitness score, the binding signature
that caused the circuit to be expressed might never be repeated. Elitism results
in the evolutionary process being ‘conned’ into keeping and mutating the poor
solution for many generations. The mutations never make successive pheno-
types improve above the lucky fitness score of the original phenotype, as the
binding that allowed the good circuit to be downloaded occurred by chance,
leaving the evolutionary process stranded on a false peak of high fitness.

This raises the question of whether a 4+1 strategy with elitism is suitable for
noisy environments, as fitness assessments can be led astray by random fluc-
tuations.2 Crossover, or similar strategies that gain variety from a remainder
of the population, might avoid this pitfall. However, given our motivation for

2Pauline Haddow has mentioned to me that her group in Trondheim had similar problems with
4+1 in noisy environments.
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using small populations (we needed a fast method to create a generation, due
to the amount of time needed to create the circuit configuration files) and our
stated aim of not wanting to demonstrate an optimal search technique (§5.2.3),
we decided to continue with the 4+1 strategy but resorted to taking the median
of several tests per phenotype. The method is described in §6.3.3. There is evo-
lutionary computation research commenting on evolving solutions in noisy en-
vironments, but what we resorted to here was a simple practical measure to get
past the problems mentioned. We do not compare our approach with others
or claim it was a good solution to the problems — it was simply an pragmatic
measure we took that enabled us to continue with our experiments.

Noise in Fourier transforms for fitness calculations

A second source of noise in the system comes from the Fourier transforms
at each frequency step. These readings are susceptible to fluctuations due to
variations in heat and interference from surrounding electrical and computer
appliances. Power readings of the same circuit configuration will therefore al-
ways vary from one test to another. The fluctuations are small but can vary by
as much as 40% (particularly if a test run starts with the equipment “cold”), al-
though the figure is generally closer to 10% depending on the CAMs involved.
The effects of this variation was reduced by testing each phenotype several
times. After initial runs, we were able to improve accuracy by taking the av-
erage of three readings close to the frequency of interest. This was initially
defined as a band of 200Hz centred either side of the frequency being mea-
sured, but was later reduced to 100Hz to give greater accuracy. However, it
appears impossible to completely eradicate variation in the Fourier transform
and the fitness scores of phenotypes tested several times in succession will al-
ways vary to some degree. But generally speaking, the variation witnessed
was not greater than 10% of the final fitness score (see A.3 for examples of
variability).

Signal disruption

The third source of noise is caused by signal disruption and settling after a re-
configuration done using a “hard reset” on the FPAA. As mentioned briefly in
§4.1.2, dynamic reconfiguration without disrupting the signal was not possi-
ble under our scheme, as it would have meant calculating all possible circuit
state transitions and generating the configuration “bit differences” that would
allow the very fast updates required for dynamic reconfiguration. Instead, our
reconfiguration method was to send a “hard reset” to the FPAA and then to
download the configuration bitstream. This gives a “jolt” in the signal output,
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Figure 6.2: The circuits deployed by an unreliable champion phenotype. Left
circuit (HoldVoltageControlled) was downloaded at 1kHz, the circuit on the
right (with SumFilter added) was downloaded at 5kHz and 10kHz.

part of which is sometimes picked up in the sampling period for the wavelet
transform. There is a similar, smaller “jolt” as each frequency increase step
occurs on the input, as the signal generation is briefly halted and restarted at
the new frequency. In either of these cases, when the binding process is given
a free hand to reconfigure rapidly, or the frequency steps are small and nu-
merous, evolution struggled to find genomes with high levels of fitness. Some
speculative assessments for this are given in §6.8. In order to minimise the ef-
fects of signal disruption, input stages were increased significantly in length to
give the system time to settle. Fig. 6.1 shows how the signal transforms and
measurements were made, with time to settle in each case after a reconfigura-
tion of the FPAA.

6.3.2 Hysteresis

Aside from these examples, a more serious source of fluctuations in our phe-
notype fitness was discovered after the first week of preliminary runs. Despite
the degree of expected noise, some champion phenotypes would not reproduce
anything close to the scores they achieved during the evolutionary run. For ex-
ample, a champion phenotype that had scored 4130 at the midpoint of one
run, was re-tested five times at the end of the run. It scored successively -1067,
-1036, 300, 4096, -1993 (the total range for fitness scores is generally around
-2000 to 4500). On closer inspection, it was noticed that despite the huge vari-
ation in fitness scores, the phenotype was reconfiguring using the same cir-
cuits at each frequency step, therefore the variation could not be due to noise
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in the binding signature. Two circuits were being used by the phenotype (see
Fig. 6.2) . The tests were repeated with the circuits loaded separately to observe
their behaviour at each step. Neither circuit produced the high power rating
in any of the frequency steps. In fact the circuits seemed inert and produced
no output at all. Each of the circuits was then downloaded while input signals
were being put through the chip. At first nothing happened, but then at ran-
dom, the switch in one circuit latched producing a high power output. Once
downloaded the circuit reversed the switch at high frequency so that no output
signal was produced at that frequency and no reconfiguration was required to
produce a high fitness score. The reason for this behaviour lies in the fact that
CAMs such as those shown in Fig. 6.2 exhibit hysteresis. Certain CAM be-
haviour depends on the input to a comparator (GainSwitch, GainPolarity, etc.).
If the two inputs of the comparator are connected together then even small
amounts of noise are going to lead to the CAM behaviour ‘flipping’ accord-
ing to the coincident moment the circuit is instantiated with circuit input. The
eventual state of circuits such as these is therefore impossible to predict.3

6.3.3 Tackling noise and hysteresis

Rather than exclude CAMs that exhibit hysteresis from the pool of “primitives”
that evolution could select from, and to try and overcome the effects of noise in
the other areas described above, we decided on a general strategy to test each
phenotype five times, and to take the median result for our fitness scores. This
strategy, despite increasing the length of each run fivefold, had the desired
effect of reducing the worst variability due to noise or unexpected CAM be-
haviour. The results can be seen in Fig 6.3, where the heavy lines are the cham-
pion phenotype fitness scores, while the light lines are the best of a generation
fitness score. Runs that tested each phenotype once show best of generation
scores varying considerably from the current champion. Taking the median of
five tests gives best of generation scores much closer to the current champion,
and produces final solutions that are more stable (in terms of their behaviour)
and which show earlier gains in fitness. The decision about how many tests
per phenotype should be run were based on practical time constraints. More
tests would have given us greater accuracy, but we felt the results using five
tests per phenotype were good enough (i.e. stable solutions were found in a
reasonable amount to time) to allow us to proceed.

3Our thanks to Dave Lovell of Anadigm for this explanation.
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Figure 6.3: Graphs showing five typical evolutionary runs using a binding site
of length of two: one test per phenotype (top) and median of five tests per
phenotype (bottom). The charts show the reduction in noise (shown by the
pale lines) when running five tests per phenotype. The closer the best of each
generation score (shown by the pale lines) is to the current champion score
(bold lines), the more stable and reliable are the phenotypes.
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Figure 6.4: Input frequencies and their binding signature (length =3) outputs
on bare-wire circuits.

6.3.4 Search space coverage

In order to check that a search algorithm is effectively covering a search space,
tests need to be done to verify that the stochastic process is producing the de-
gree of variability required in the population. In our case, there are two main
factors with regard to phenotype exploration.

1. Mutation within the gene configuration;

2. Mutation on the gene binding site.

These are listed separately due to the fact that unless a gene is expressed at
some point in development, it can have no impact on the phenotype, regard-
less of its gene configuration. The mutation rates for gene configuration were
given earlier in §5.4. However, with regard to the mutation on binding sites, it
is instructive to look at the chances of binding occurring given random gener-
ation of a binding string.

Binding site variation

Fig. 6.4 shows the binding signatures generated (length = 3) if a bare wire is
attached from the circuit input to its output at the stated input frequencies. In
order for a gene to be expressed in the initial input stage, it must have a binding
site corresponding to AAA. If no reconfiguration occurs during the first stage,
then it will need to have a gene with a binding site matching GGG and so on.
Once reconfiguration has taken place, the remaining bare wire signatures are
irrelevant as the output is then determined by the current circuit configuration.

Table 6.1 shows the results of a randomly generated population of 100 ge-
nomes, each with three genes and each gene having a binding site of three
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Binding signature No. of bases 
matching in 
binding site AAA GGG TTT Total

All 3  7 (7) 0 (0) 9 (9) ~5.3% 

1st 2  18 (18) 6 (5) 32 (22) ~18.6% 

1st   77 (58) 70 (52) 86 (63) ~78% 

 

Table 6.1: Results from a sample of 100 genomes, showing the percentage of
randomly generated binding sites matching the initial bare-wire configuration
given in Fig. 6.4. Total percentages calculated to one decimal place and repre-
sent total out of 300 genomes (100 genomes for each column).

bases. The first figure in a column represents the number of genes that were
found to match the signature (out of 100 genomes), the figure in brackets gives
the number of genomes (as a genome may contain more than one gene with
a binding site matching AAA / GGG / etc.). The first row in the table gives
the figures for genes that matched all 3 bases of the signature (e.g. AAA). The
second row gives the figures for binding sites matching the first 2 bases of a
signature (e.g. AA*) and the last row gives the figures matching just the ini-
tial base (A**). Based on these figures, the final column gives the approximate
percentage of genes that would be expressed given binding signatures of 3, 2
and 1 base in length (the total percentage is therefore out of 300 genomes, and
calculated to one decimal place).

While not an exact match, we can see that the stochastically generated num-
bers broadly tally when we calculate the probabilities. If we take the probabil-
ity p of base A being generated in the binding site of a gene as:

p =
1
4

(6.2)

Given the generation of each successive base is independent of the previous
result, the probability of a binding site being AA is p2, and for AAA is p3. So
we can write:

pa =
(

1
4

)n

(6.3)

where pa is the probability of the binding site being all As and n is the length
of binding site. This means that the probability of a binding site not being all
As is:

¬pa = 1− pa
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= 1−
(

1
4

)n

(6.4)

To work out the probability that at least one gene g in a genome contains a
binding site of all As, we can subtract the probability that no gene in a genome
has a binding site of all As. As we know the probability of a binding site not
being all As is Eq. (6.4) for one gene, the probability of at least one gene in a
genome of more than one gene is that probability raised to power of g, where
g is the number of genes in the genome:

pg = 1− (¬pa)g (6.5)

Substituting in Eq. (6.4) gives the general formula:

pg = 1−
(

1−
(

1
4

)n)g

(6.6)

where n is the length of binding site and g is the number of genes. Thus for
binding sites of length two and length three, and for genomes of three genes,
the probabilities of having bindings sites with all As in at least one gene is:

AAA = 1−

(
1−

(
1
4

)3
)3

(6.7)

= 1−
(

63
64

)3

= 0.057

= 5.7%

AA = 1−

(
1−

(
1
4

)2
)3

(6.8)

= 1−
(

15
16

)3

= 0.177

= 17.7%

These are sufficiently close to the figures shown in Table 6.1 not to cause con-
cern, i.e. the margin of difference over 300 genomes is under 1%, therefore we
can conclude the degree of variability in the binding signatures is working as
it should — see statistical test for significance later (§ 6.7). However, it is worth
noting the low probability of generating all three bases of the binding signa-
tures for any of the initial bare-wire stages, particularly as we use very small
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populations for a 4+1 strategy (i.e. 5% of four genomes is generally zero!). This
realisation led us to “seed” initial binding site generation with a higher pro-
portion of the expected bases of an initial stage (see §6.5 for details). Of course,
merely generating a binding site that would allow a gene to be expressed does
not mean that the circuit will be useful or even valid, but without an initial
expression of some sort, no progress can be made.

Phenotype variability

One concern of using high-level functional modules as “primitives” for evo-
lution to “fine tune”, was that the level of functional granularity might be too
coarse or too fine, and this might have a detrimental effect on the search for
novel circuits. As explained in §5.2.1, the primitives are generated from mu-
tually exclusive CAM options, and there may even be sub-variants of those.
While it is difficult to make a general statement about the degree of difference
in functionality between one option on a CAM and another, it became clear
after some initial runs that CAM IDs in successful genomes were remarkably
stable across many generations.

There are various possibilities for this. One is that many CAM primitives
perform broadly similar functions on the type of input we were using (sine
waves of different frequencies). So mutation to another CAM primitive would
be unlikely to significantly raise fitness. In a similar vein, CAM ID may not
be as critical to fitness as might be supposed and that binding sites may play
a more prominent role. Another possibility was that the frequency of CAM
ID mutation was too low (1/19 per gene) to have an impact on small popula-
tions and relatively short evolutionary runs. This latter possibility was one we
needed to ensure was not impinging on the phenotype’s ability to explore the
search domain, and so we correlated some runs showing levels of fitness over
generations against a plot showing the CAM ID mutations in the “best of each
generation” genomes over the same period.

Fig. 6.5 shows a typical example. The top plot shows the variation of CAM
ID mutation from the best of each generation over 75 generations. Each ge-
nome had three genes. The lower plot shows the level of fitness achieved by
the best of each generation and the current champion by this run over the same
period. Vertical bars have been placed over both plots at points of significant
jumps in fitness. The top plot gives some idea of how stable CAM IDs are,
despite mutations occurring in the best of each generation. The mutations to
CAM ID seem to show relatively good search space coverage. This is shown by
the degree of coverage of each of the CAM ID lines. When a CAM ID has not
been mutated in a generation, the line remains flat. If one follows a particular
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gene, such as G2, it can be seen how its CAM ID goes through a period of tur-
bulence between generations 23–27, which corresponds to the period where the
steepest increase in fitness levels was achieved. So it seems reasonable to as-
sume that mutations to this gene’s CAM ID during that period had significant
impact. But G1 and G3 do not show similar correlations.4 In fact, the second
major jump in fitness levels does not correspond to a change in CAM IDs of
any of the genes, suggesting that the increase in levels of fitness at this later
stage of evolution was caused by “fine tuning” gene configurations. However,
it must be noted that the persistence of CAM IDs in successful phenotypes over
many generations is made more puzzling by the variety of phenotype circuits
that achieve high levels of fitness. For example in the case of some prelimi-
nary experiments where very long evolutionary runs were performed, CAM
ID mutation can clearly be seen to correlate with jumps in fitness (see Fig. C.1
and C.2). Given that the task chosen is relatively easy, there should be many
ways for phenotypes to solve it (for example, compare phenotype variety in
Fig. 6.9, 6.10 and B.1). One might expect therefore, that an occasional CAM ID
mutation would occur late in a run that would raise the fitness score, even if
only slightly. This does not seem to happen, and the causes remains an area
of investigation for us. However, we think the cause is not down to a lack of
CAM ID mutation, as the plots do show the best of generation mutations to
CAM ID giving good coverage of the search space.

Redundancy and neutral variation

Another area of concern relating to search space coverage was the degree of re-
dundancy in the genome specification. For example, the number of CAMs with
5 inputs is very low, therefore many mutations that fall on a gene’s connection
specification are never realised in the phenotype. While this was a deliber-
ate design decision to encourage neutral variation (and similar to Walker and
Miller (2008))5 there was the possibility that such “wasteful” mutation was hin-
dering the discovery of high fitness levels. To ensure this was not the case, we
adopted a variable mutation scheme based on population size.6 This scheme
increases the amount of mutation for progressive members of the population.
For example, the first member of the population to be mutated has one mu-
tation per gene, the second member two mutations per gene and so on. The

4However, G1 and G3 may not have been expressed (mutation to a CAM ID has no impact
unless that gene is expressed). Unfortunately it proved too difficult to extract from the log files
which genes were expressed during the tests for each generation, and the analysis is weakened as
a result of not knowing this information.

5Neutral variation occurs when mutation causes the genome to be changed without altering its
fitness, see discussion in Thompson (2002).

6I am indebted to Dr. Simon Harding (EFPL, Lausanne) for this suggestion.
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Figure 6.5: Median of five tests per phenotype using a binding site length of
two: Top chart shows CAM ID mutations in best of generation (3 genes per
genome). Bottom chart shows fitness scores for best of generation and current
champion. The vertical bars show significant jumps in fitness.
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scheme allows both fine levels of adjustment (small amounts of mutation) and
greater variability (large degrees of mutation). The mutation logs of several
runs seem to show that the scheme provides a means to move the population
forward early on with large mutations, and to move it incrementally in later
stages (see §6.5).

6.4 The Evolutionary Harness

There is a vast literature debating population sizes, mutation rates and evolu-
tionary strategies. Unfortunately, much of this work is done on well studied
types of search landscape (for example, work investigating the performance of
evolutionary algorithms designing 1– or 2–bit adders). Such detailed knowl-
edge of the search space is rare in evolvable hardware, as the presence of real-
world physics can make the search domain extremely complex or noisy, and
quite likely beyond the ability of human assessment. Given that we are not
in a position to assess the nature of our search space and make an informed
decision over aspects such as population size or mutation rates, we must pro-
ceed with an experimental approach. However, it is worth reiterating that the
purpose of this thesis is not to test the efficacy of particular search algorithms
in finding a solution. Providing an evolutionary strategy finds satisfactory re-
sults, it will meet our purpose. How quickly it achieved it or how many re-
sources it took are not the object of inquiry for this thesis.

We have left it to others to demonstrate that CGP is an effective search al-
gorithm (Walker and Miller, 2008). In keeping with previous work on CGP, we
chose a 4+1 evolutionary strategy (Miller and Smith, 2006; Walker and Miller,
2007a,b). In this scheme, the best of a previous generation is cloned and kept,
the remaining 4 copies are mutated and the selection process repeated. The 4+1
scheme has a number of advantages:

• easy to implement (small populations, no crossover);

• quick turnover of populations make it easier to view lack of progress;

• time and memory needed to generate a population is low.

These characteristics were helpful during our debugging phases of building
the prototype. As many errors were raised during the fitness assessment of
phenotypes (including errors from circuit creation, fitness function design and
signal sampling), it was important to keep population sizes low so we could
begin re-testing as quickly as possible. In addition to this, even with low num-
bers of genes per phenotype, several files need to be written to disk (e.g. for
a three gene genome, seven circuit configuration files are produced, each with



6.5. EVOLUTIONARY PARAMETERS 131

Phenotype
task 

generator
fitness 

evaluation

population
fitnesses

population
of genomes

decode for 
evaluation

record
fitness

next 
generation

clone & 
mutate

generate 
circuit files

Figure 6.6: Evolutionary harness.

an associated graphical format file, giving 14 files in all). As the processor and
memory requirements of the system ran the PC to around 95%–100% of its
capacity during the circuit generation phase, it was important to keep popula-
tions small so that other applications (such as Matlab performing the wavelet
and Fourier transforms) were not struggling for resources. Fig. 6.6 shows how
the evolutionary harness integrated into the system architecture.

6.5 Evolutionary parameters

Tests were performed over 75 generations using a 4+1 evolutionary scheme.
Initial tests tried up to 500 generations, but improvement was rare after about
50 or 60 generations. This may be because the tests were too easy for the phe-
notypes to solve, as it became clear that there were many ways of achieving
similar levels of high fitness. Another possibility is that relatively few muta-
tions were required to reach the higher levels of fitness once an initial solution
had been found.

In addition to reconfiguration bonuses, further “bootstrapping” assistance
was provided by allowing genes to have “seeded” binding sites. Thus for a
bare wire configuration (i.e. a single wire from input to output), the binding
signature produces a set of signatures that run through the frequencies (if no
reconfiguration occurs) from AA, CC/GG (the middle band could be either),
to TT. Having binding sites of length two gave a good chance of matches being
found, but to speed up the search we seeded initial generations with binding
site bases known for signatures with a bare wire configuration at the initial
frequency step. For example, the first generation in a step-up specialist envi-
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Figure 6.7: The 3 phenotype environments.

ronment might have all binding sites seeded with A or C bases, as the bare wire
output signature for 1kHz is generally AAA (only first two positions used).

6.6 Main experiment

Having convinced ourselves that some of the issues relating to noise, hysteresis
and search space coverage had been reduced to an acceptable level, we were
able to propose an experiment to look at the evolution of phenotype develop-
ment. As part of our interest in gene expression during developmental stages,
we set up a hypothesis to test not only if phenotypes could be adaptable, but
also whether having such adaptability incurs a fitness cost.

Experiment hypothesis —Phenotypes that evolve to cope in an unpredictable envi-
ronment perform less well than phenotypes that evolve as specialists when both
phenotypes are placed in a predictable environment.

To test this, the three frequency steps were considered developmental stages
during which different behaviour was required from the phenotype. In spe-
cialist environments, the steps in frequency either increased or decreased. In
non-specialist environments, all possible transitions occurred. Fig. 6.7 shows
input-stage transitions for specialists (a) and (b), and non-specialists (c).

In all environments the fitness test remained the same: maximise power
in the 5kHz band, minimise it elsewhere. As a phenotype uses circuit out-
put to trigger a reconfiguration, the current configuration is crucial to how the
phenotype configures the next step. For example, a specialist phenotype may
have configured to a high pass filter with gain suitable for high fitness during
a 5kHz stage. On stepping up to 10kHz, this filter produces a binding signa-
ture that the phenotype can use to configure to the next circuit. However, if
the same step occurs as part of a sequence that runs from 10kHz to 5kHz and
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back to 10kHz, the previously unknown step from 10kHz to 5kHz may cause
the phenotype to configure the FPAA to another circuit. The step from 5kHz
to 10kHz now results in a different output signature and the previously used
genes for the good circuit no longer match the new binding signature. Special-
ists evolving in predictable environments can therefore both profit and suffer
from previously encountered steps in a non-specialist environment. To counter
potential bias from phenotypes encountering a recognised sequence of inputs,
the non-specialist environment starts with a bare wire configuration at 5kHz
(as opposed to 10kHz or 1kHz) and introduces steps that will not have been
previously met by specialist phenotypes (such 1kHz to 10khz).

6.7 Main results

Each of the specialist and non-specialist phenotypes were evolved over 75 gen-
erations, using the median of five tests per phenotype. The champion pheno-
type was then tested in environments it had not evolved in. Each test in the
new environment used the average of two results (each result being the me-
dian of five fitness scores, as during the evolutionary runs). This it was hoped
would remove any effects of the new circuits being tested on the FPAA “cold”
without the previous state having an impact (perhaps because of some circuits
making the chip hotter than others), as in evolutionary runs similar circuits are
tested repeatedly and the FPAA generally runs at the same temperature. The
results, shown in Fig. 6.8, show poor capability for specialists in their ‘oppo-
site’ specialist environment (where the frequency steps are reversed) and in the
non-specialist environment. The reason seems largely the result of a strategy
employed by phenotypes in the final stage of specialist environments. Circuits
that reconfigure to ‘broken’ last circuits (at 1kHz or 10kHz stages, for example
see Fig. 6.9 and Fig. B.1) help their fitness scores and have nothing to lose from
reconfiguring to a circuit that no longer uses circuit input or one that produces
no output at all. But the same phenotypes suffered badly if they needed to
recover from that stage in the non-specialist environment, and generally failed
to reconfigure.

The runs for non-specialist phenotypes appear to show a slightly reduced
fitness in a decreasing environment compared to the specialists of that envi-
ronment. Taking the median of the specialist (decreasing) runs in their own
environment as S and the median for the non-specialists in a decreasing envi-
ronment as NS, the median fitness score for the two sets of runs show a slight
difference:

S = 3156
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Figure 6.8: Results of specialists (top) and non-specialists (bottom) tested
across all environments. Dark bars show phenotype scores in their own en-
vironment.
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NS = 2940

To find out if this is statistically significant, we can set up a null hypothesis to
say whether distributions of the two sets have the same median for their runs
(s and ns):

h0 : s = ns (6.9)

As the distribution of either set of runs is unknown, we use a non-parametric
significance test — the rank sum test (Mann-Whitney-Wilcoxon, 1947) — to de-
termine if h0 is true. The Matlab ranksum function, [p,h] = ranksum(s,

ns), performs a two-sided rank sum test of the null hypothesis h0 for the data
in s and ns. The p-value of the test (i.e. the probability that the data in s and
ns are independent samples from identical distributions) is returned in p. h=1
indicates a rejection of h0 at the 5% significance level. For the two sets of evo-
lutionary runs we get:

s = [2999,3050,3156,3235,3434]

ns = [2940,2892,2706,2948,2946]

[p,h] = ranksum(s, ns)

p = 0.0079

h = 1

Thus refuting h0 with a confidence level over 99%. This would seem to back
the hypothesis given in §6.6, however it should be borne in mind that reconfig-
uring to manage seven frequency steps is more difficult than reconfiguring for
three, and the added difficulty may have led to lower fitnesses. This conclu-
sion has some backing from test results for non-specialists in specialist environ-
ments. In all cases, the non-specialists performed well; not as well as specialist
phenotypes, but their scores were higher than the scores they achieved in the
environment they evolved in, leading us to suspect that the specialist environ-
ments were easier.

Examples of champion phenotypes are shown in Fig. 6.9– 6.12.7 Given the
simplicity of the task and the size and complexity of the search space, it was to
be expected that the phenotypes would discover a variety of ways to gain high
fitness scores, and on the surface it appears that no two champion phenotypes
are identical. However, there are CAMs that appear in many of the successful
phenotypes. For example, nearly all successful phenotypes included a Gain-
Switch of some type that was deployed at the 5kHz input stage (Appendix B
has several instances) where maximum power output was required. Similarly,

7 Appendix B has further examples.
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where the specialists could get away with “dying” (i.e. downloading a broken
circuit on the final input stage), they would adopt this to boost their fitness
scores. Naturally, a broken circuit is the best way to minimise the power from
a circuit, and although all such broken circuits get the same fitness score in
terms of our fitness criteria, none of these final “broken” circuits have the same
configuration. Finally, the redundant parts of the genome (containing genes
that were never expressed) showed a wide variety of CAMs, indicating that
flexibility lay in the wings should the evolutionary conditions change.

Examination of the reconfiguration patterns show that the non-specialists
were able to go back and forth using the same good circuits in both forms
of specialist environment, demonstrating robust homoeostasis. This suggests
that this mechanism of control could be suitable for in-situ evolution in lo-
calised environments, where the broad range of inputs (and required response)
is known (for example, diurnal patterns in data received by an external sen-
sor), but where inputs might have local peculiarities. Similarly, the specialists
demonstrate very high fitnesses can be achieved over predictably changing en-
vironments. It is interesting to speculate what applications this could be put
to, particularly with regard to the evolution of phenotypes that “expire” as
a means to gain the highest possible fitness during their last developmental
stage. Single-use hardware might seem uncommon, but there are examples in
military or space applications.

6.8 Further investigations

6.8.1 More frequent reconfigurations

Rather than limit the genome to just 3 reconfigurations (one per input stage),
we tried increasing the potential number of reconfigurations by increasing the
tests for binding to 10. The input frequency was stepped up by 1kHz, with each
step lasting for 5 seconds. The task was the same as for the specialist (increas-
ing) environment shown previously. That is to say, no account was taken of
the intermediate reconfigurations between tests for fitness at 1kHz, 5kHz and
10kHz. The results for 5 runs are shown in Fig. 6.13. Despite taking the median
of 5 tests per phenotype as before, it seems that the increase in noise described
in §6.3.1 from more frequent interruptions to signal input (and output, from
reconfigurations) prevented the genome from achieving high levels of fitness.
In particular, although an increase in fitness levels can be seen, no genomes
achieved the levels of fitness of phenotypes in tests where less disruption to
the signal occurred.

This may be down to the system requiring more time to settle after a re-
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Figure 6.9: Example of champion specialist (decreasing) phenotype, showing
the 7 possible circuit expressions. The first circuit shows the fully specified ge-
nome containing FilterLowFreqBilinear, GainSwitch and Comparator CAMs.
This phenotype scored 3434 and deployed 3 circuits (no. 6 at 10kHz, no. 2 at
5kHz and no. 7 at 1kHz, shown with additional borders) Note “dead” circuit
in the final configuration!
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Figure 6.10: Example of champion specialist (decreasing) phenotype, showing
the 7 possible circuit expressions. The first circuit shows the fully specified
genome containing GainHalf and two MultiplierFilterLowFreq CAMs. Notice
how on the full specification the two multipliers are connected to each other,
but are not connected to either circuit input or output. However, the wiring
algorithm is able to connect them up when they are expressed as single CAMs.
One side effect of this is that the first 4 expressions of this phenotype are prob-
ably functionally equivalent. This phenotype scored 3050 and deployed 2 cir-
cuits (no. 7 at 10kHz and 5kHz, and to no. 4 at 1kHz, shown with additional
borders).
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Figure 6.11: Example of champion non-specialist phenotype, showing the 7
possible circuit expressions. The first circuit shows the fully specified genome
containing SumIntegrator, GainSwitch and SumDiff CAMs. This phenotype
scored 2555 and deployed 2 circuits (no. 4 at 1kHz and no. 5 at 5kHz, shown
with additional borders). What is interesting here is that 1Khz expression is ap-
parently non-functional (shown by the dotted connection lines), but it passed
enough current to still tell the phenotype when to reconfigure but not enough
to give it a poor fitness in terms of its power reading.
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Figure 6.12: Example of champion non-specialist phenotype, showing the
7 possible circuit expressions. The first circuit shows the fully specified
genome containing SumIntegrator, GainSwitch and GainVoltageControlled
CAMs. This phenotype scored 2644 and deployed 2 circuits (no. 4 at 5kHz
and no. 7 at 1kHz, shown with additional borders). Again note the poor but
sufficient circuit deployed for the 1kHz stage.
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Figure 6.13: Additional Results: Chart shows the effect of reconfiguring the
FPAA at 1kHz frequency steps (5 tests per phenotype, genome with gene bind-
ing sites of length 2).

configuration, as the evolutionary process can be led astray by false fitness
assessments such as those described in §6.3.1. However, the increase of noise
may also have an impact on the relationship between binding site length and
the generation of wildcards. This relationship is discussed further below, and
more speculatively in § 7.4.

6.8.2 Increasing binding site length

Prior to the experiment described in §6.6, we experimented with various bind-
ing site lengths.8 Initially binding sites of three bases were generated per gene,
and the performance of genes containing sites of two bases were compared
against these, both in the three step frequency tests (see Fig. 6.14) and in the
ten step version. It was found that increasing the site length neither improved
the final level of fitness achieved nor the time taken to reach that level of fit-
ness. Due to a perception that genes containing binding sites of length three
were slower to achieve comparable levels of fitness, tests were carried out up
to 500 generations, but with no significant improvements on runs that stopped
after 75–100 generations.

However, it must be said that the length of binding site and the effect of

8NB. This was also before using the median of five tests per phenotype.



142 CHAPTER 6. EXPERIMENTS

 Best of gen / current champ  
BS length = 2 vs. BS length = 3

-1800

-800

200

1200

2200

3200

4200

0 25 50 75 100 125 150 175 200 225

Number of generations

Fi
tn

es
s 

Sc
or

e

Best of Gen Site Len. 3
Current Champ Site Len. 3
Best of Gen Site Len. 2
Current ChampSite Len. 2

Figure 6.14: Additional Results: Chart shows a comparison between best
of generation and current champions of genomes with gene binding sites of
length two and three.

wildcards on gene expression and genome fitness is deceptive. It might be the
case that in noisier environments, genomes containing more genes with longer
gene binding sites could result in more stable behaviour. Unfortunately the
size of our FPAA meant we were limited to genomes containing a maximum of
three genes, as a fully expressed genome containing more genes than this could
exceed the capacity of the FPAA (depending which CAMs were involved). As
a result, we were unable to test this out reliably, particularly as noisier out-
put signals tend to produce more wildcards in a signature, resulting in bigger
circuits being configured (see §5.5.2). As the FPAA was very limited in its re-
sources, larger circuits exceeded the available resources and the unpredictable
nature of gene expression during an evolutionary run made longer genomes
with longer binding sites impractical to test. This would be an interesting area
to explore further, as suggested in §7.4.
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6.9 Summary

The experiments in this chapter covered the evolution of an analogue circuit (or
filter) that would maximise the power output of a sine wave input at 5kHz. To
do this, the circuits needed to reconfigure from a circuit that minimised power
output at 1kHz. The circuits also need to reconfigure after the 5kHz stage to
minimise the power output of a 10kHz signal. The fact that evolution could
discover changes in the input and respond to them demonstrates that the sys-
tem is capable of reconfiguring to adaptive filters as needed. Considering our
FPAA platform as a “reconfigurable device”, this part of the work confirms the
broad hypothesis of the thesis. During these early experiments, many issues
with noise and the effects of random variation were dealt with, and gave us
confidence to proceed with the second set of experiments that tackle the more
specific hypothesis given in §6.6. These experiments demonstrated that there
is indeed a cost associated with being generalist, in that generalists perform
more poorly in a predictable environment that a specialist. However, the spe-
cialists achieve their high levels of fitness in predictable environments by using
an irreversible configuration. This means that in generalist environments they
cannot recover once they reach what they believe is a final stage and so suffer
poor fitness scores as result. In all, over 30 experiments were carried out, over
a period of almost four months. The preliminary experiments took around 24
hours each to complete 75 generations. The second set of experiments, using
median fitness scores described earlier, would take up to three days each to
complete.

As we have seen, the prototype has successfully managed to give us some
interesting results: it has evolved specialist and non-specialist solutions with
small populations over only a limited number of generations. What we have
shown in a broader sense is that search can by self-guided by a mechanism
such as gene expression across several search domains. Each domain can have
a different fitness criteria against which the reconfiguration of the phenotypic
stage is judged against. However, as mentioned in §6.8, limitations with the
prototype left several questions unanswered and there are several areas where
it would be interesting to run more experiments and to take the work further.
Broader questions relating to other aspects of development, such as the em-
bodiment of some form growth, are beyond the scope of this work. But we feel
our system gives the possibility of creating a self-governing mechanism, dis-
covered by evolutionary search, that could form the basis of cell differentiation
and hence be incorporated into a model of growth. The final chapter of this
thesis looks at some of these questions and how we might best approach them,
given the encouraging results of the prototype.
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Chapter 7

Conclusions

7.1 Context of interpretation

The motivation for bio-inspired computation is given variously as ranging
from curiosity about how “natural” algorithms might work to admiration for
biological characteristics such as robustness, adaptability and ingenuity. My
own motivation was similarly born out of admiration and curiosity. I wanted
to see if we could build a system that captured some of the qualities that or-
ganisms use to adapt and respond to their environments.

Justifying this excursion into bio-inspired paradigms was made easier due
to the somewhat limited success of evolutionary computation. While not di-
minishing its achievements and breadth of application, doubts remain among
practitioners that unless evolutionary computation demonstrates the scalable
reuse of modular functionality, the promises to take automated design search
into areas too difficult for human engineers will start to ring hollow in applica-
tions for research funding. The evolutionary computation community is all too
well aware of how that fate befell the artificial intelligence (AI) community in
the early 1970s, when critical books from Minsky, Dreyfus and others (Dreyfus,
1992; Minsky, 1988) devastated the field and caused funding for AI research to
virtually disappear (Crevier, 1993). When one looks at what happened to the
AI community, it is clear that hopes had been raised artificially high by ex-
travagant claims about the sort of problems AI would solve. Meeting those
claims proved elusive, and scepticism set in among those responsible for re-
search funding. As a community we cannot let this happen to evolutionary
computation.

We may be approaching a juncture: either we move away from the seem-
ingly endless stream of papers claiming further optimisation of well-studied
evolutionary algorithms, or we will face increasing criticism from those within

145
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our own discipline that evolutionary computation has progressed little beyond
the tasks and applications first identified in the 1960s. This concern is not in-
tended to denigrate the work on performance — from a computational per-
spective, the work is justified. However, it is difficult to see how improving
performance is going to help us with scalability. There is no evidence that sug-
gests better performance is going to unlock the key to successful reuse or the
ability to tackle larger, more complex problems.

By the same token, as we seek ways of meeting scalability we should be
circumspect with our claims about what our techniques can deliver. Given
the source of our inspiration, it not surprising that we turn again to nature for
ideas. Everywhere around us is evidence of how marvellously the eukaryotic
cell scales, adapts, evolves. Does the secret of evolutionary search finding so-
lutions to large, complex problems lie within the cell? According to Wolpert
(2003), there can be no doubt it does. The answer for computer scientists is
less certain. Despite their obvious success, biological systems are fantastically
complicated, while our abstractions of those systems and processes can be su-
perficial. What to abstract, and why, has become a hot topic of conversation
in evolutionary computation conferences and workshops. The plundering of
the latest findings in biology by computer science can sometimes seem akin to
the “land grab” of the American mid-west in the 1870s: the first to incorporate
the latest findings into their model, becomes the first to lay claim to having
introduced those ideas into the field! But careless borrowing and subjective
abstraction of biological processes could backfire on us.

It may be time to take stock of what we mean by scalability and discuss the
sorts of solution discovery we can sensibly aspire to with evolutionary compu-
tation. We may have to accept that the way biology scales and reuses genes is
so far removed from the way humans engineer that we will never make evo-
lutionary computation design cars, hospitals or even a house. This not to say
we cannot evolve complex control systems, highly adapted to specific circum-
stances. But it may depend more on what we are controlling and the applica-
tion environment than we have previously realised.

Development offers us a way to adapt and respond to dynamic environ-
ments, yet keep the advantages of evolutionary search. This is already a scal-
ing up of what can be tackled by evolutionary computation. We are now well
versed in how to evolve a genome that represents a good solution for a static
environment and there are many papers telling us how to do it quickly. Gene
expression offers us something different: the ability to extract solution subsets
contained within a single, evolved control structure. Perhaps the challenge
for us is to ignore the requests for evolutionary computation to design big,
complex applications, and instead think of an application realm where small,
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autonomous, embedded devices require highly localised configuration. Where
devices that operate across a range of context-specific conditions would be too
expensive or time consuming to configure individually. Instead of scaling up,
perhaps the future of evolutionary computation is to think small, and think
many.

7.2 Summary of work presented

The arguments put forward in this thesis make claims that evolutionary com-
putation has failed to keep pace with developments in evolutionary biology.
The canonical form of an evolutionary algorithm is itself testimony to a some-
what outdated view from the 1970s that declared genes alone were responsible
for evolutionary design. Developmental biology has increasingly challenged
this view, with evidence demonstrating the degree to which gene expression is
governed by developmental processes. Those processes act to constrain, con-
serve, reuse and modify the opportunities for gene expression. Without devel-
opmental processes dictating patterns of expression, the variations of repetitive
functional morphology we see around us would be impossible. There is noth-
ing in a segment of DNA material that says when or where it will be used, or
reused, except in the context of where that material will be expressed. DNA is
an entirely passive instruction set, which would be meaningless were it not for
its context-specific interpretation by proteins.

It is hard to overstate the importance of this for evolutionary computation.
If you want your evolutionary designs to reuse useful genes, you need to in-
troduce something that determines when and where they will be reused. You
need an environment that gives contextual flexibility to reuse, so that reuse in
different contexts can mean different things.

The system presented here met the requirements of the conceptual architec-
ture in Chapter 3. However, capturing those conceptual needs does not mean
that our system offers a solution to all the issues of scalability and reuse. While
we still hope that these can be met by combining developmental approaches
with evolutionary computation, our prototype is not intended as a blueprint
for scaling up evolutionary search to large, complex applications. The pro-
totype successfully demonstrates context-sensitive gene reuse, in a form that
allows gene expression to guide evolutionary search across several phenotypic
stages of development. Comparing this achievement with the work of others
in the field is difficult: the majority of work in evolutionary computation fo-
cuses on the optimisation of a search strategy, while the little work there is on
phenotype development has largely been led by researchers interested in char-
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acteristics such as stability or robustness (such as Pauline Haddow’s group in
Trondheim and Tyrrell’s group at York). Neither is the work here comparable
to evolution in materio, where evolution is able to directly access the physical
properties of the platform to create novel circuits (such as the work at JPL, and
researchers such as Thompson and Miller). We believe the ideas behind our
system are novel, even if the techniques we used to build our system are rela-
tively well established. The evolutionary search algorithm and representation
(4+1 and CGP) are widely known and studied, and our work is not intended to
demonstrate an improvement in performance through their adaptation. Simi-
larly, the use of wavelets for signal analysis is already almost two decades old
and the use of feedback as a mechanism of control in analogue systems has
been around even longer. These aspects of our prototype are not new and are
not presented as such. The novelty in our approach is the creation of a form of
evolutionary search that relies on gene expression to guide itself across several
search domains. By using different fitness criteria at each domain (which we
choose to call a phenotypic stage in development), the results from the system
demonstrate a proof of the hypothesis: evolutionary search can control succes-
sive stages of phenotype configuration through the use of gene expression.

Our system set out to demonstrate that gene expression, tied to a specific
context of deployment, is a first step towards enabling gene reuse. Evolution
is free to manipulate the rules that configure a gene and dictate its context of
expression. But in addition to this, phenotypes need to be able to respond to
changes in their environment, and so we tied the control of gene expression to
the signal output of the FPAA. Feedback from the phenotype as it explores de-
velopmental environments allows evolution to select on the basis of phenotype
performance in specific contexts. It remains for engineers to determine what
weighting they wish to give certain contexts in the hope of coaxing evolution
down certain paths of control.

The FPAA in our system can be best thought of as analogous to a cell nu-
cleus, within which the presence of transcription factors (the context of ex-
pression provided by the signal output) determines which genes are expressed
from the genome at a particular stage of development. The resulting configu-
ration from the gene expression can then be assessed for fitness. The genome
representation, and the inclusion of gene expression tied in a feedback loop to
the genome, gives the system some novel features. While the prototype has not
been tested on a wide range of tasks, the prototype implementation and results
that were obtained demonstrate that:

• configurable, high-level modular functionality is suitable for representa-
tion as genes in a genome;
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• the translation from genome to phenotype should be sufficiently rich so
that reuse of genes in different contexts can give different functionality;

• gene expression allows solutions to be discovered using a subset of genes
from the genome;

• gene expression can say when to deploy solutions in changing environ-
ments;

• a genome can be evolved that expresses phenotypes adapted to multiple
developmental stages;

• redundancy is possible from genes that are not expressed and in parts of
the genome not realisable in the phenotype;

• by extracting rich information from the search domain and tying it to
gene expression, we have an automated mechanism of reconfiguration
that can guide genomes across successive search domains that humans
would find difficult to explore.

Pleasing though this list of features may be, the construction of the proto-
type and the results we have obtained raised many questions. The next section
examines some of the design decisions made with regard to the platform and
system implementation.

7.3 A Review of Design Decisions

The conceptual requirements were motivated by the list of key points given at
the end of Chapter 2 (§2.10.1). The decisions that were then taken, regarding
the choice of platform and implementation of the system architecture, reflected
the need to meet those requirements. While those requirements were met, we
acknowledge that there were many difficulties encountered during the coding
and testing stages of the project, and that some of these were due to our choice
of the Anadigm FPAA as a platform on which to conduct evolutionary search.

Firstly, it must be noted that the Anadigm FPAA we used was an “off the
shelf” component. Its manufacturers never intended it for use in evolutionary
computation. To use it as such, required help from the company’s engineers
and we are grateful to them for the assistance they were able to give (see §
5.6.1). Without their help, it is doubtful this project would have been com-
pleted. However, Anadigm make a point of saying that the Automation API
they provide is not supported and neither will they supply details relating to
the generation of the bitstream used to configure the FPAA. Researchers wish-
ing to make use of the platform for further work should bear in mind that
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some of the most interesting technology related to this FPAA is patented by
Anadigm and remains inaccessible and proprietary. For example, the ability
to do dynamic reconfiguration during runtime (without a “cold reset” of the
FPAA) was a key characteristic behind our decision to go ahead with the plat-
form. Unfortunately, on closer inspection, it turned out not to be possible to
employ this mechanism. This had implications for the experiments, in particu-
lar, it meant we were unable to experiment with “continuous” reconfiguration
between fitness test points. As we had to employ a cold reset of the FPAA
before downloading a configuration bitstream, the signal output would stop
and then start again with the new configuration. If many configurations oc-
curred close together, the stopping and starting of the signal output created
too much noise for the evolutionary search to be successful. This resulted in us
having to employ three stages during which reconfiguration could occur, and
these stages required long periods (several seconds each) between them to al-
low any disruption in the signal output caused by the cold reset to have settled
before fitness assessment could be made.

Compromises such as these are no doubt common when experimental hard-
ware is being used for the first time. During the implementation of our system,
some aspects relating to circuit representation and search were hampered by
constraints imposed by the platform. It could be argued that implementing
the system in software would have reduced many of the problems we encoun-
tered, and with the benefit of hindsight that may be the case. However, there
were a number of positive benefits that Anadigm’s API gave us with the re-
spect to the platform. For example, the context-specific reuse of genes was
achieved by virtue of having to wire up the CAMs according to the genome
specification. CAMs missing in a particular context of expression meant that
a CAM in one context could receive or output an entirely different signal to
the same CAM in another context. If this feature had not been present in our
system, a context-sensitive scheme of gene reuse would need to have been de-
signed and implemented somehow.

The question of whether a system such as ours could have been more eas-
ily built using software simulation should also be addressed bearing in mind
of our principal motivation for selecting an FPAA: we wanted to employ our
form of evolutionary search and reconfiguration in an area of design where the
complexity that exists comes from certain physical effects that are difficult to
simulate. That is what makes simulation in the area of analogue circuit design
difficult. Admittedly software does exist, such as SPICE, which gives accurate
simulation (within limits) of analogue circuit components and is widely used in
circuit design. As previously mentioned, SPICE already has some association
with search techniques such as evolutionary computation (Koza et al. (2004);
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Mattiussi (2005)). However, any work with SPICE deals with simulated, rather
than real world, physics. The software simulation of a circuit is not a guaran-
tee how that circuit will perform when it is built in hardware. Our choice of a
reconfigurable analogue platform was in part motivated by the understanding
that evolution would be allowed to react to actual circuits as they were imple-
mented on the chip, rather than in simulation. It was hoped that evolution
would manipulate the signal processing in materio and that this might give a
better chance for novel circuits to be discovered. While this decision was well-
motivated, it turned out that there were more disadvantages to dealing with
real world, noisy signals on hardware than the hope of novel circuit discovery
could justify. However, it should be accepted that it was never our intention to
discover previously unknown forms of circuits, making use of some difficult-
to-understand physical properties of the platform. Like many modern FPGAs,
low-level access to the configuration bitstream is not possible on the Anadigm
FPAA. As a consequence, the opportunity of using the physical characteristics
of the platform to create entirely novel circuits is restricted. But this criticism
does not mean that the search space evolution has access to is not large and
difficult, neither does it mean that a software simulation of a similar environ-
ment would have given better results or an easier implementation. However,
for an exploratory project such as ours, the additional difficulties of working
in hardware probably outweighed the advantages given by the Anadigm API
and the CAM architecture. Despite being a good fit with our conceptual ar-
chitecture, the reality of working with limited support on novel hardware was
often frustrating.

Some the biggest software difficulties we faced were as a result of choosing
a signal transform based on wavelets. The processing requirements of continu-
ous wavelet transform are considerable; it is not a technique designed for rapid
signal analysis. Neither is it particularly suited to picking up changes to a sta-
tionary wave, such as steps in frequency. Our thinking behind the adoption of
wavelets was that if we were to use our system as a means to evolve and adapt
(by reconfiguration) devices such as wireless sensors, those systems would be
feeding analogue input signals that were of a type that would be ideally suited
to wavelet transform. However, the work involved to implement the wavelet
transform and the processing problems we subsequently incurred delayed our
project by several weeks. Even when the hurdles with Matlab were overcome,
we were left with a system that was perhaps overly susceptible to noise. Mat-
lab’s implementation of the continuous wavelet transform results in weak sig-
nals being scaled appropriately. This coupled with our “wildcard” binding
scheme meant that bindings were easily triggered by noisy signals, which had
the effect of misleading the evolutionary search by producing randomly good
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fitness scores. In hindsight, another scheme to perform signal transform could
have been adopted (such as Fourier transform) that would have been easier to
implement and given the benefit of a lower processing load.

Most issues related to our choice of platform are down to problems of pro-
cessing noisy signals. Here it is relatively easy to make judgements about the
wisdom of adopting analogue signal processing as a design area, or using hard-
ware components as our “reconfigurable unit” or cell nucleus. But given the
novelty of the work presented, it is much harder to assess aspects of the sys-
tem implementation such as the binding scheme. Indeed, this was one area
that we were unable to explore in the time available and its influence on the
search process remains obscure. Taking our schema design from biological
inspiration was not unreasonable, as our approach wanted to investigate the
potential for gene expression to guide the search process in as natural a way
as possible. However, the process of matching binding sites to a binding sig-
nature that contains wildcards can mean that there are subsets of genes that
will never be expressed (§5.5.2). This reduction in search space coverage was
difficult to quantify, as evolution was able to choose the circuit to deploy at any
stage and therefore affect the presence of wildcards in the signature. This, cou-
pled with the effect of noise and the increase in wildcards it produced, gives
an element of uncertainty when we come to describing how the system works.
The feedback loop that triggers gene expression is certainly an intriguing part
of the system, but future work should investigate how this mechanism might
help or hinder the search process, and to do that, the system would need to be
implemented in a way that would avoid the problems of noise and excessive
wildcard generation (i.e. a software only environment). The next section looks
at this and other aspects of taking the work forward.

7.4 Future work

Perhaps the single biggest difficulty facing the Anadigm FPAA, both in terms
of garnering interest from industry and other academics, and in terms of test-
ing the platform, is its limited size. Having each CAM primitive represented
as a gene means that even short genomes risk exceeding the capacity of the
FPAA. This is partly because there is no way of knowing whether phenotype
testing during an evolutionary run will mean that, a) full expression of the ge-
nome will occur, or b) the CAMs that get expressed will use more resources
than usual. These two factors mean we have had to keep the genome length to
no more than 3 genes, even though the FPAA could generally support between
4–7 CAMs. Even so, a genome of 3 genes produces 7 possible phenotype ex-
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pressions, and that number quickly escalates as genome length increases. What
would be a short genome by most evolutionary computation standards of 16–
20 genes, for us would generate upwards of 65,000 to over a million possible
phenotype expressions, having implications for writing to disk and the time
required to generate and search through this number of files.1

As the total number of phenotype expressions rises, doubts also begin to
surface over the degree of specificity possible with our binding site scheme.
Fortunately, as Carroll has illustrated, binding signatures (even without wild-
cards) generate huge numbers of combinations (Carroll, 2006). But that does
not answer how we extract rich information from the search domain that can
effectively access all those combinations if needed. We have already shown
that the presence of wildcards can have consequences affecting subsets of gene
expression (§5.5.2). An unforeseen effect of wildcards is that they reduce ac-
cess to specificity still further. But there may not be sufficient richness in the
many application environments for binding signatures to search upwards of
a million different gene combinations. For some applications this may not be
a problem, as solutions to the task might be relatively easy to find, but until
we can formulate some experiments that can test these assertions, it is difficult
say with confidence whether this aspect of the binding signature scheme is a
weakness or not.

Our binding signature allows the domain space to be searched using a
transform that is further processed to remove much of the “richness” of in-
formation it could convey. This raises the question of how effectively such a
scheme works. It should be pointed out that the signal to trigger a gene expres-
sion may not need to be “rich” in information (cf. “weak linkage” in Kirschner,
2005). Unfortunately we have no way of knowing whether evolution is making
use of the size of combinatorial space for binding signatures. So having a com-
plex scheme of signal transform and encoding may not be giving advantages
to the search process. What we do know is that biological genes exist with
transcription factors using highly specific binding sites, while others make use
of a more flexible wildcard scheme. But to my knowledge, the relationship be-
tween the number of wildcards in the binding site of a transcription factor that
affects a gene and the frequency with which that gene is translated in different
contexts has not been demonstrated. With our prototype we could gain only
an inkling of what this relationship might be for an architecture such as ours:
it needs much more testing and experiment design to verify.

§2.5.2 discusses how some Hox-gene clusters show very strong conserva-
tion across all species of animal. One of our earliest and unfulfilled aims was to

1It should be borne in mind that the total number of circuit configuration files would be double
this number. See §5.2.2
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investigate if genes that are important for early developmental stages would be
conserved if the requirements for later stages are changed. This will be a fasci-
nating area to study for the future and one which could give us real insight into
how the conservation of useful genes affects features that develop in later evo-
lution. One of the difficulties of setting up an experiment to test this is the de-
velopment of modular functionality that can be “tweaked” and traced through
an evolutionary run. It is hard to imagine we could come up with an exam-
ple to match the development of the mammalian middle ear given on page 32,
as the changes in functional morphology led to separate emergent function-
alities between species. But tracing the development of such functional fea-
tures through evolution (and perhaps even trying to guide them) is an exciting
challenge for those who want to use developmental processes in evolutionary
computation.

It may be the case that to answer these questions, we will have to derive a
new architecture that is composed of software elements only. Hardware is dif-
ficult and expensive to scale, and a software only system would give a much
greater range of tasks we could tackle. The elements of feedback, gene expres-
sion and output transform can still form part of the system, although it may
be debatable how much “richness” can be extracted from virtual environments
as part of the feedback process, and the arguments for trying to build the sort
of complex transform and binding scheme seen in our architecture might be
weakened as a result. But whatever system is built to take this work further,
I believe the future looks bright for the increasing use of ideas from devel-
opmental biology in evolutionary computation. Evolutionary algorithms have
performed usefully as search-based optimisation tools for several decades. The
next step is to look at processing tasks as a series of developmental stages in
which we seek solutions, using gene expression as the means of exploration
and feedback as the trigger for phenotype reconfiguration.
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Program code and scripts

This appendix lists the Matlab script called by the main application as ex-
plained in §5.6.2. It also gives some output from the logging function in the
application to show how each CAM configuration could be identified from the
logs and a trace made to see which elements had been altered by mutation (see
§5.2.2). Finally, we show example code from the main application (the wiring
algorithm) to illustrate some of the issues related to error handling and how
the Anadigm API is accessed. Note for this code sample, the FPAA has already
had its CAMs downloaded so that the any parameters exceeding the allowable
ranges have been altered. The application retrieves these values if needed, and
in the case of the wiring algorithm, tests connections in situ (see §5.6.1).

A.1 Matlab script for wavelet and Fourier transform

Listing A.1: Matlab script, started and stopped from main application for each
phenotype, and used for signal sampling, wavelet and Fourier transforms.

1 function ProofOfConceptTask
2
3 %% First check if we are still accessing the DAQ I/O drivers. If we
4 %% are, then make sure we stop scanning the card.
5 if (˜isempty(daqfind))
6 stop(daqfind)
7 end
8
9 % set up main output from chip for wavelet transform

10 AI = analoginput(’nidaq’,’Dev1’);
11 % add two channels for analogue input. One to determine WHEN to write
12 % fitness values to files (based on freq of input into chip), the other
13 % to measure the actual VALUES to write to the files (based on output of
14 % chip). These correspond to AI inputs AI0 (pin 68) and AI1 (pin 33) on
15 % the terminal block.
16 addchannel(AI,0:1,{’output_from_chip’,’input_into_chip’});
17 AI.Channel.InputRange = [-10 10];
18 set(AI,’InputType’, ’SingleEnded’);
19 set(AI,’SampleRate’, 50000);
20 set(AI,’SamplesPerTrigger’, inf);
21 set(AI,’TimerPeriod’, 0.5);
22
23 bsize = (AI.SampleRate)*(AI.TimerPeriod);
24 Fs = get(AI,’SampleRate’);
25
26 % maxRate = daqhwinfo(AI, ’MaxSampleRate’)

155
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27 % set(AI, ’SampleRate’, 50000);
28 % set(AI, ’SamplesAcquiredFcnCount’, 10000);
29 % bsize = 10000;
30 % set(AI,’SampleRate’, 50000);
31 % set(AI, ’SamplesAcquiredFcn’, {@plot_output_of_chip, bsize, Fs});
32
33 set(AI,’TimerFcn’,{@plot_output_of_chip, bsize, Fs})
34
35 % plot config stuff
36 % fighandle = 1;
37 % ScreenSize is a four-element vector: [left, bottom, width, height]:
38 % scrsz = get(0,’ScreenSize’);
39 % Figure position. This property specifies the size and location
40 % on the screen of the figure window. Specify the position rectangle
41 % with a four-element vector of the formrect = [left, bottom, width,
42 % height]
43 % figure(’Position’,[scrsz(3)/2 scrsz(2) scrsz(3)/2 scrsz(4)])
44 % figure(’Position’, scrsz)
45 % % stop screen flicker
46 % set(gcf,’doublebuffer’,’on’)
47
48 start(AI);
49
50 %%%% END OF PROGRAM %%%%
51
52 %%%% FUNCTIONS %%%%
53 function plot_output_of_chip(obj, event, bsize, Fs)
54
55 % 2 channels in data
56 data = zeros(bsize, 2);
57 data = getdata(obj, bsize);
58 % now take first SamplesToPlot of that
59 SamplesToPlot = 320;
60 % define our variables to create the ASCII binding signature
61 Signature = 4;
62 SigDim = SamplesToPlot/Signature;
63 SigDimV = ones(1,Signature)*SigDim;
64 Scales = 32;
65 Bases = 4;
66 BaseDim = Scales/Bases;
67 BaseDimV = ones(1,Bases)*BaseDim;
68 % get output from chip in 1st channel
69 samples = data(1:SamplesToPlot, 1);
70
71 % % show analysed signal
72 % subplot(411)
73 % plot(samples);
74 % title(’Analysed signal.’);
75 % set(gca,’Xlim’,[1 SamplesToPlot],’Ylim’,[-4 4]);
76 % set(gca,’Xlim’,[1 SamplesToPlot]);
77 %
78 % % Perform continuous wavelet transform by mexh at all integer
79 % % scales from 1 to Scales.
80 % subplot(412)
81 % coefficients = cwt(samples, 1:Scales, ’morl’, ’plot’);
82 coefficients = cwt(samples, 1:Scales, ’morl’);
83 % title(’Continuous Transform, absolute coefficients.’)
84 % ylabel(’Scale’)
85 % xlabel(’Sample’)
86 % set(gca,’Zlim’,[0 4]);
87
88 % Divide the data matrix into a series of cells. We need the 4 bases (A,
89 % C, G, T) as rows, with the signature length as the number of columns
90 % (SigDim). Thus scales gives us the total rows in the matrix, and
91 % SamplesToPlot is the total number of columns in the matrix. The cells
92 % are used to create a new matrix. Each cell is used to create a
93 % Frobenius-norm of the values in the matrix and that average is used in
94 % the new matrix to create the final binding signatures.
95 % e.g. ccfs = Scales x SamplesToPlot
96 % cells = BaseDim x SigDim
97 % bindingSignature = prod(size(cells))
98
99 cells=mat2cell(coefficients, BaseDimV, SigDimV);

100
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101 % create matrix of size we need
102 bindingSignature = zeros(size(cells));
103
104 % loop through cells, getting Frobenius-norm of each cell
105 % NB. The Frobenius-norm of matrixA, sqrt(sum(diag(A’*A))).
106 for s=1:numel(cells)
107 bindingSignature(s)=norm(cells{s}, ’fro’);
108 end
109
110 % horizontal flip of matrix to keep plots pretty
111 bindingSignature = flipud(bindingSignature);
112
113 threshold = max(max(bindingSignature)) / 2;
114
115 % if true, insert 1 into truth matrix
116 ThresholdedValues = bindingSignature > threshold;
117
118 % create mask of form
119 % AAAA
120 % CCCC
121 % GGGG
122 % TTTT
123 % NB. ASCII values: A=65, C=67, G=71, 84=T
124 % first create ones matrix, then convert to int to map to ASCII values
125 Sig = ones(Bases, Signature);
126 A = Sig(1,:)*65;
127 C = Sig(2,:)*67;
128 G = Sig(3,:)*71;
129 T = Sig(4,:)*84;
130
131 SigCell = cell(size(Sig));
132 SigCell(1,:) = cellstr(char(A)’)’;
133 SigCell(2,:) = cellstr(char(C)’)’;
134 SigCell(3,:) = cellstr(char(G)’)’;
135 SigCell(4,:) = cellstr(char(T)’)’;
136 % logical index using mask gives binding signature as vector of columns
137 % e.g.
138 % AA
139 % C
140 % G G
141 % T
142 % would be C, GT, A, AG (gaps are zero values)
143 SigCell(˜ThresholdedValues)={’ ’};
144
145 % write to dummy array
146 for i=1:Signature
147 bs(i,:) = reshape(SigCell(:,i),1,4);
148 end
149
150 % subplot(413)
151 % imagesc(bindingSignature);
152 % title([’Continuous transform Frobenius normalised into cells, ’,
153 % num2str(BaseDim),’x’, num2str(SigDim),’.’])
154 % colormap(cool(128));
155 % ylabel(’Bases’)
156 % set(gca,’Ylim’,[0.5 4.5]);
157 %
158 %
159 % subplot(414)
160 % imagesc(ThresholdedValues);
161 % title([’Logical values of binding signature bases (A, C, G, T) after
162 % thresholding at ’, num2str(1), ’.’])
163 % ylabel(’Bases’)
164 % set(gca,’Ylim’,[0.5 4.5]);
165
166 % write binding signature of chip output to file.
167 try
168 dlmwrite(’D:\BindingSignature.txt’, bs,’delimiter’,’’)
169 catch
170 pause(0.25)
171 dlmwrite(’D:\BindingSignature.txt’, bs,’delimiter’,’’)
172 end
173
174 % calculate freq getting 2nd input channel as signal input to chip
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175 %!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
176 % NB. data channels = {’output_from_chip’,’input_into_chip’});
177 %!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
178 % Work out freq input into chip
179 [f,mag] = daqdocfft(data(:,2),Fs,bsize);
180
181 % Find the maximum value of the input signal, use it to say when to
182 % perform a fitness test. Test Points currently defined at 1K, 5K and
183 % 10K. NB. ymax = max amplitude
184 [ymax,maxindex] = max(mag);
185 maxfreq = f(maxindex);
186 %plot(f,mag)
187 band = 100;
188
189 % test point freqs
190 LFTP = 1000;
191 MFTP = 5000;
192 HFTP = 10000;
193
194 if LFTP - band < maxfreq && maxfreq < LFTP + band
195 fitnessScore = calculateFitnessScores(data(:,1), bsize, Fs);
196 try
197 dlmwrite(’D:\LowFreqMaxPower.txt’,fitnessScore)
198 catch
199 pause(0.25)
200 dlmwrite(’D:\LowFreqMaxPower.txt’,fitnessScore)
201 end
202 %disp([num2str(maxfreq),’- ’, num2str(fitnessScore)])
203
204 elseif MFTP - band < maxfreq && maxfreq < MFTP + band
205 fitnessScore = calculateFitnessScores(data(:,1), bsize, Fs);
206 try
207 dlmwrite(’D:\MidFreqMaxPower.txt’,fitnessScore )
208 catch
209 pause(0.25)
210 dlmwrite(’D:\MidFreqMaxPower.txt’,fitnessScore )
211 end
212 %disp([num2str(maxfreq),’- ’, num2str(fitnessScore)])
213
214 elseif HFTP - band < maxfreq && maxfreq < HFTP + band
215 fitnessScore = calculateFitnessScores(data(:,1), bsize, Fs);
216 try
217 dlmwrite(’D:\HighFreqMaxPower.txt’,fitnessScore)
218 catch
219 pause(0.25)
220 dlmwrite(’D:\HighFreqMaxPower.txt’,fitnessScore)
221 end
222 %disp([num2str(maxfreq),’- ’, num2str(fitnessScore)])
223 end
224
225 clear fitnessScore
226
227 function fitnessScores = calculateFitnessScores(output, bsize, Fs)
228 % fft of chip output
229 xfft = abs(fft(output));
230 index = find(xfft == 0);
231 xfft(index) = 1e-17;
232 % mag = 20*log10(xfft);
233 mag = (xfft);
234 % floor rounds numbers to inf
235 mag = mag(1:floor(bsize/2));
236 f = (0:length(mag)-1)*Fs/bsize;
237 f = f(:);
238 % [ymax,maxindex]= max(mag);
239 % maxfreq = f(maxindex);
240
241 %[f,mag] = daqdocfft(output,Fs,bsize);
242
243 % need to scale the x-axis as it is scaled against blocksize and freq
244 % (mag is bsize/2 long)
245
246 band = int16(100/max(f)*length(mag));
247
248 % test point freqs (in Kilohertz)
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249 TP1 = 1000;
250 TP2 = 5000;
251 TP3 = 10000;
252
253 LFTP = int16(TP1/max(f)*length(mag));
254 MFTP = int16(TP2/max(f)*length(mag));
255 HFTP = int16(TP3/max(f)*length(mag));
256
257 a = mean(mag(LFTP - band:LFTP + band));
258 b = mean(mag(MFTP - band:MFTP + band));
259 c = mean(mag(HFTP - band:HFTP + band));
260
261
262 fitnessScores = [a,b,c];

A.2 Wiring algorithm code

Listing A.2: Visual Basic code for wiring algorithm, showing Anadigm API,
the use of loops through object collections and the required localised error
handling within each loop (see §5.3 and §5.6.1 for full description of wiring
algorithm and error handling issues). The application had 3178 lines of code.

1 Private Sub WireUpExpressedCAMs(ByVal ExpressedPhenotype As List(Of Node), ByVal phenotypeIndex
As Integer)

2 ’Wires up what has been expressed of a phenotype, i.e. if only
3 ’2 CAMs of a 5 node genotype have been expressed in the
4 ’phenotype, the code tries to wire them up according to the
5 ’rules held in the genome. This is likely to mean CAMs are
6 ’left floating or only connected to themselves, or that the
7 ’circuit has no input or output. To solve this, the wiring
8 ’algorithm tries to see if the expression has left any
9 ’dangling outputs or inputs. If so, it tries to wire these to

10 ’the input or output as required. If this fails, then the
11 ’algorithm makes a decision to wire up circuit input using the
12 ’first cam with a free input. It then traces to the first
13 ’free output for circuit output. Some errors occur, as a CAM
14 ’can change its numbers of inputs or outputs according option
15 ’chosen. Hence much local error trapping, as the code should
16 ’drop through to the next option. However, this is causing a
17 ’lot of errors, and we get modal error messages raised
18 ’occasionally - might need a fix for this if we start to do
19 ’long runs overnight.
20 Dim node As New Node
21 Dim input As New Input
22 Dim output As New Output
23 Dim currentCAM As AnadigmDesigner2.ICam
24 Dim param As AnadigmDesigner2.ICamParameter
25 Dim contact As AnadigmDesigner2.IContact
26 Dim inputContact As String = ""
27 Dim outputContact As String = ""
28 Dim errorMessage As String = ""
29 Dim ConnectToCamID As Integer = 0
30 Dim CircuitOutputConnected As Boolean = False
31 Dim CircuitInputConnected As Boolean = False
32 Dim n As Integer = 0
33 Dim diff As Double = 0.0
34 Dim ConnectingNode As New Node
35
36 node = New Node
37 input = New Input
38 output = New Output
39
40 Try
41 For Each node In ExpressedPhenotype
42 ’ node type and id identifies the cam on this chip
43 currentCAM = currentchip.Cams(node.CamType & "_NodeID:" & node.NodeID)
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44 ’ now loop through the wiring specification in the
45 ’ node.
46 For Each input In node.InputConnections
47 If input.ConnectingNodeIndex = CircuitInputFeed Then
48 ’if circuitinputfeed is detected,
49 ’connect this cam to circuit input
50 inputContact = CAMArray(node.CamID).InputConnections(0)
51 outputContact = currentchip.Name & "\InputCell1\Out"
52 ’check if contacts are actually
53 ’there?!
54 Try
55 currentCAM.Contacts(inputContact).ConnectWire(

outputContact)
56 CircuitInputConnected = True
57 Catch ex As Exception
58 errorMessage = vbCrLf & ex.Message
59 End Try
60 Else
61 ’connect remaining inputs (but don’t
62 ’bother trying to connect to nodes
63 ’that haven’t been expressed)
64 ConnectingNode = New Node
65 ConnectingNode = population(phenotypeIndex).Item(input.

ConnectingNode)
66 Try
67 If ExpressedPhenotype.Contains(ConnectingNode) Then
68 ConnectToCamID = ConnectingNode.CamID
69 inputContact = CAMArray(node.CamID).

InputConnections(input.MyIndex)
70 outputContact = currentchip.Name & "\\"
71 outputContact = outputContact & currentchip.Cams

(ConnectingNode.CamType & "_NodeID:" &
ConnectingNode.NodeID).Name & "\\"

72 outputContact = outputContact & CAMArray(
ConnectToCamID).OutputConnections(input.
ConnectingNodeIndex)

73 currentCAM.Contacts(inputContact).ConnectWire(
outputContact)

74 End If
75 Catch ex As Exception
76 errorMessage = vbCrLf & ex.Message
77 End Try
78 End If
79 Next input
80 ’try to set parameter settings on currentCAM to those
81 ’held in phenotype node.Phenotype(holds) these as a
82 ’percentage, so need to find range of acceptable
83 ’values on CAM. Obviously, these ranges change as
84 ’values are applied (i.e. one setting affects another)
85 ’so some errors are likely to be raised here. Only 4
86 ’parameters are currently configured for each node.
87 ’If a CAM has more than this, an error will be raised.
88 n = 0
89 For Each param In currentCAM.Parameters
90 diff = param.UpperLimit - param.LowerLimit
91 param.Value = node.Parameters(n) / 100 * diff
92 n += 1
93 Next param
94 Next node
95
96 ’if no input to the circuit exists, first try and find a
97 ’dangling input. if that fails, connect circuit input to last
98 ’cam’s inputs (see above)
99 If CircuitInputConnected = False Then

100 outputContact = currentchip.Name & "\InputCell1\Out"
101 ’first try to see if there are dangling inputs after
102 ’expression of cams
103 For Each node In ExpressedPhenotype
104 input.MyIndex = FirstDanglingInput(node)
105 If input.MyIndex >= 0 Then
106 ’we have a dangling input on this
107 ’node, so connect to inputcell1
108 currentCAM = currentchip.Cams(node.CamType & "_NodeID:" _
109 & node.NodeID)
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110 inputContact = CAMArray(node.CamID).InputConnections(input.
MyIndex)

111 Try
112 currentCAM.Contacts(inputContact).ConnectWire(

outputContact)
113 CircuitInputConnected = True
114 Exit For
115 Catch ex As Exception
116 errorMessage = currentCAM.Name & "-input:" &

inputContact & "->" & outputContact & vbCrLf & ex.
Message

117 End Try
118 End If
119 Next node
120 If CircuitInputConnected = False Then
121 ’no dangling input found, so connect first
122 ’input of first cam to be expressed we have to
123 ’check to see if an input is already
124 ’connected, as sometimes it doesn’t allow
125 ’contact to same equipotential
126 currentCAM = currentchip.Cams(0)
127 For i As Integer = 0 To currentCAM.Contacts.Count - 1
128 contact = currentCAM.Contacts.Item(i)
129 If contact.Type = AdContactType.adInputContact Then
130 If contact.IsConnected(contact) = False Then
131 Try
132 currentCAM.Contacts(contact.Name).

ConnectWire(outputContact)
133 CircuitInputConnected = True
134 Exit For
135 Catch ex As Exception
136 errorMessage = currentCAM.Name & "-input

:" & contact.Name & "->" &
outputContact & vbCrLf & ex.Message

137 End Try
138 End If
139 End If
140 Next i
141 ’OK, all inputs on first cam were connected, so now try last cam.
142 ’If this fails, this phenotype really is a dud! (though if
143 ’expressedPhenotype.count = 1 it will be the same)
144 If CircuitInputConnected = False Then
145 currentCAM = currentchip.Cams(ExpressedPhenotype.Count - 1)
146 For i As Integer = 0 To currentCAM.Contacts.Count - 1
147 contact = currentCAM.Contacts.Item(i)
148 If contact.Type = AdContactType.adInputContact Then
149 If contact.IsConnected(contact) = False Then
150 Try
151 currentCAM.Contacts(contact.Name

).ConnectWire(outputContact)
152 CircuitInputConnected = True
153 Exit For
154 Catch ex As Exception
155 errorMessage = currentCAM.Name &

"-input:" & contact.Name &
"->" & outputContact &
vbCrLf & ex.Message

156 End Try
157 End If
158 End If
159 Next i
160 End If
161 End If
162 End If
163
164 ’!!!CIRCUIT OUTPUT!!!! connect first free CAM output to
165 ’circuit output. This may still end up with a broken circuit
166 ’as collections do not guarantee order in which objects are
167 ’accessed i.e. last CAM in collection may come first, and that
168 ’CAM may be unconnected to others. NB. no checks are made to
169 ’see if this CAM has an input - we may need to do this later
170 ’(see below comments about mesh object).
171 For Each currentCAM In currentchip.Cams
172 inputContact = currentchip.Name & "\OutputCell1\In"
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173 For i As Integer = 0 To currentCAM.Contacts.Count - 1
174 contact = currentCAM.Contacts.Item(i)
175 If contact.Type = AdContactType.adOutputContact And _
176 contact.IsConnected(contact) = False Then
177 Try
178 currentCAM.Contacts(contact.Name).ConnectWire(

inputContact)
179 CircuitOutputConnected = True
180 Exit For
181 Catch ex As Exception
182 errorMessage = currentCAM.Name & "-output:" & contact.

Name & "->" & inputContact & vbCrLf & ex.Message
183 End Try
184 End If
185 Next
186 Next currentCAM
187
188 ’no free output found, so connect last output of last cam to
189 ’be expressed
190 If CircuitOutputConnected = False Then
191 currentCAM = currentchip.Cams(ExpressedPhenotype.Count - 1)
192 inputContact = currentchip.Name & "\OutputCell1\In"
193 For i As Integer = 0 To currentCAM.Contacts.Count - 1
194 contact = currentCAM.Contacts.Item(i)
195 If contact.Type = AdContactType.adOutputContact Then
196 Try
197 currentCAM.Contacts(contact.Name).ConnectWire(

inputContact)
198 CircuitOutputConnected = True
199 Exit For
200 Catch ex As Exception
201 errorMessage = currentCAM.Name & "-output:" & contact.

Name & "->" & inputContact & vbCrLf & ex.Message
202 End Try
203 End If
204 Next
205 End If
206
207 ’rats! one of those cases where the last cam can’t be
208 ’connected to an output e.g. DC voltage cam, so try to connect
209 ’first cam’s output. NB. if only one cam was expressed, this
210 ’will be the same as above and still fail.
211 If CircuitOutputConnected = False Then
212 currentCAM = currentchip.Cams(0)
213 inputContact = currentchip.Name & "\OutputCell1\In"
214 For i As Integer = 0 To currentCAM.Contacts.Count - 1
215 contact = currentCAM.Contacts.Item(i)
216 If contact.Type = AdContactType.adOutputContact Then
217 Try
218 currentCAM.Contacts(contact.Name).ConnectWire(

inputContact)
219 CircuitOutputConnected = True
220 Exit For
221 Catch ex As Exception
222 errorMessage = currentCAM.Name & "-output:" & contact.

Name & "->" & inputContact & vbCrLf & ex.Message
223 End Try
224 End If
225 Next
226 End If
227
228 ’check circuit is reasonably connected? We need to loop
229 ’through the mesh object here, via all the output contacts and
230 ’see if each on is connected - if we continue until we reach
231 ’the input of the circuit. Thus circuit is good. Need to do
232 ’this, because broken circuits give errant wavelet transforms
233 ’and can cause a "freak" binding to occur which gets a high
234 ’fitness value and is later impossible to reproduce and
235 ’completely confuses evolution.
236 Catch ex As Exception
237 File.AppendAllText(logFilePath, vbCrLf & " Wiring failed, dud circuit - " & ex.

Message)
238 End Try
239
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240 ’debug stuff
241 If CircuitInputConnected = False Then
242 ’ad2.Visible = True
243 File.AppendAllText(logFilePath, vbCrLf & "This circuit has no input.")
244 File.AppendAllText(logFilePath, errorMessage)
245 End If
246 If CircuitOutputConnected = False Then
247 Try
248 File.AppendAllText(logFilePath, vbCrLf & "This circuit does not produce an

output.")
249 File.AppendAllText(logFilePath, errorMessage)
250 ’inputContact = currentchip.Name & "\InputCell1\Out"
251 ’outputContact = currentchip.Name & "\OutputCell1\In"
252 ’’all else has failed - attempt bare wire as no ouput is possible
253 ’for this circuit??
254 ’’screwing up the run, but...
255 ’currentchip.IOCells(0).Contacts(inputContact).ConnectWire(outputContact)
256 ’ad2.Visible = True
257 Catch ex As Exception
258 File.AppendAllText(logFilePath, errorMessage &" Bare wire failed - " & ex.

Message)
259 End Try
260 End If
261 Exit Sub
262 ’’’’’’’’’’’’’’’’’’’’’
263 End Sub

A.3 Output logs of circuit creation and tests for a
phenotype generation

Listing A.3: Output log from final generation of a specialist phenotype. Un-
fortunately the log prints longer lines than it is possible to display in some
places. The output initially shows what has changed due to mutation from the
clone of the current champion (as we use a 4+1 evolutionary scheme). This
is followed by the full listing of this generation’s genome values. Each of the
genome specifications is listed, showing CAM option, parameter settings and
binding site values. Finally the connected genome is listed (i.e. the full genome
specifications after the wiring algorithm as adjusted input requests to match
CAM inputs) and the circuit generation can begin. The phenotype tests are
then shown, with each reconfiguration being logged at the frequency of input
and the value of the binding signature that caused the reconfiguration. The
median fitness of each phenotype is taken and the degree of variation between
individual tests can be seen. The generation test ends by recording the best of
this generation and noting the current champion score. Note too, the error on
line 528, where Matlab fails to write signature file (probably due to its size in
RAM getting too large), causing the application object for matlab to be killed,
restarted and the test for that phenotype re-run.

1 Best for generation 73: 2360 (current champion: 2999)
2
3 Mutating gene 0 of genotype 0
4 Parameter value has changed from 12 to 55
5 Mutating gene 1 of genotype 0
6 Binding Signature has changed from 1 to 4
7 Mutating gene 2 of genotype 0
8 Input request has changed from -1 to 1
9 Mutating gene 0 of genotype 1

10 Input index has changed from -2 to 4



164 APPENDIX A. PROGRAM CODE AND SCRIPTS

11 Mutating gene 0 of genotype 1
12 Binding Signature has changed from 1 to 3
13 Mutating gene 1 of genotype 1
14 Parameter value has changed from 4 to 99
15 Mutating gene 1 of genotype 1
16 Binding Signature has changed from 4 to 2
17 Mutating gene 2 of genotype 1
18 Binding Signature has changed from 1 to 3
19 Mutating gene 2 of genotype 1
20 Input index has changed from -1 to 3
21 Mutating gene 0 of genotype 2
22 Input request has changed from 1 to 2
23 Mutating gene 0 of genotype 2
24 Input request has changed from -1 to 1
25 Mutating gene 0 of genotype 2
26 Binding Signature has changed from 1 to 1
27 Mutating gene 1 of genotype 2
28 Binding Signature has changed from 3 to 4
29 Mutating gene 1 of genotype 2
30 Parameter value has changed from 40 to 49
31 Mutating gene 1 of genotype 2
32 Input index has changed from -1 to 5
33 Mutating gene 2 of genotype 2
34 Input index has changed from -1 to 5
35 Mutating gene 2 of genotype 2
36 Input index has changed from 0 to 3
37 Mutating gene 2 of genotype 2
38 Input index has changed from -1 to 3
39 Mutating gene 0 of genotype 3
40 Input request has changed from -1 to 2
41 Mutating gene 0 of genotype 3
42 Binding Signature has changed from 1 to 1
43 Mutating gene 0 of genotype 3
44 Parameter value has changed from 26 to 73
45 Mutating gene 0 of genotype 3
46 Input request has changed from -1 to 0
47 Mutating gene 1 of genotype 3
48 Parameter value has changed from 30 to 5
49 Mutating gene 1 of genotype 3
50 Input request has changed from -1 to 1
51 Mutating gene 1 of genotype 3
52 Input request has changed from 0 to 1
53 Mutating gene 1 of genotype 3
54 Binding Signature has changed from 3 to 4
55 Mutating gene 2 of genotype 3
56 Input index has changed from -1 to 1
57 Mutating gene 2 of genotype 3
58 Input request has changed from 2 to 2
59 Mutating gene 2 of genotype 3
60 Binding Signature has changed from 1 to 4
61 Mutating gene 2 of genotype 3
62 Binding Signature has changed from 4 to 4
63 Mutating gene 0 of genotype 4
64 Input index has changed from 1 to 1
65 Mutating gene 0 of genotype 4
66 Binding Signature has changed from 1 to 4
67 Mutating gene 0 of genotype 4
68 Input request has changed from 1 to 1
69 Mutating gene 0 of genotype 4
70 Binding Signature has changed from 2 to 4
71 Mutating gene 0 of genotype 4
72 CAM ID has changed from 89 to 24
73 Mutating gene 1 of genotype 4
74 Input request has changed from -1 to 1
75 Mutating gene 1 of genotype 4
76 Input index has changed from -1 to 1
77 Mutating gene 1 of genotype 4
78 Binding Signature has changed from 4 to 4
79 Mutating gene 1 of genotype 4
80 Input index has changed from 1 to 2
81 Mutating gene 1 of genotype 4
82 Input request has changed from 0 to 0
83 Mutating gene 2 of genotype 4
84 Input request has changed from 2 to 0
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85 Mutating gene 2 of genotype 4
86 Input index has changed from -1 to 5
87 Mutating gene 2 of genotype 4
88 Binding Signature has changed from 1 to 3
89 Mutating gene 2 of genotype 4
90 Input request has changed from -1 to 1
91 Mutating gene 2 of genotype 4
92 Parameter value has changed from 43 to 3
93 Mutated Genome 0: 89,-2,-2,0,1,1,0,-1,-1,-1,-1,30,55,26,37,2,4,1,1,

38,0,0,0,1,-1,-1,-1,-1,-1,-1,4,22,40,30,3,4,3,4,
23,2,0,1,-1,-1,-1,-1,-1,-1,-1,43,23,16,56,1,1,1,3,

94 Mutated Genome 1: 89,-2,4,0,1,1,0,-1,-1,-1,-1,30,12,26,37,2,4,1,3,
38,0,0,0,1,-1,-1,-1,-1,-1,-1,99,22,40,30,3,2,3,1,
23,2,0,-1,-1,-1,-1,-1,-1,-1,3,43,23,16,56,1,1,3,3,

95 Mutated Genome 2: 89,-2,-2,0,1,2,0,-1,-1,1,-1,30,12,26,37,2,4,1,1,
38,0,0,0,1,-1,5,-1,-1,-1,-1,4,22,49,30,4,4,3,1,
23,2,3,-1,5,-1,3,-1,-1,-1,-1,43,23,16,56,1,1,1,3,

96 Mutated Genome 3: 89,-2,-2,0,1,1,0,2,-1,0,-1,30,12,73,37,2,4,1,1,
38,0,0,1,1,1,-1,-1,-1,-1,-1,4,22,40,5,3,4,4,1,
23,2,0,-1,-1,-1,-1,-1,1,-1,-1,43,23,16,56,1,1,4,3,

97 Mutated Genome 4: 24,0,3,2,2,1,1,2,4,0,3,30,12,26,37,4,4,1,4,
38,0,0,0,2,-1,-1,-1,-1,1,1,4,22,40,30,3,4,3,1,
23,0,0,-1,-1,1,5,-1,-1,-1,-1,3,23,16,56,1,3,1,3,

98
99 Fully Expressed Genome: 0

100 Number of nodes: 3
101 -----------------------------------
102 0. CAM ID: 89
103 Inputs (input index/inputting node/inputting node’s output index):
104 Circuit Input, 1:0:1, 2:1:0,
105 Outputs (output index/connecting node/connecting node’s input index):
106 1:0:1, 0:1:0, 1:1:1, Parameters: 30,55,26,37,
107
108 CAM: HoldVoltageControlled
109 Dual Input
110 {89, 3:2, []}
111
112 Binding signature: CT
113
114 1. CAM ID: 38
115 Inputs (input index/inputting node/inputting node’s output index):
116 0:0:0, 1:0:1,
117 Outputs (output index/connecting node/connecting node’s input index):
118 0:0:2, Parameters: 4,22,40,30,
119
120 CAM: FilterLowFreqBilinear
121 External Cap Value
122 {38, 2:1, [0.489 (0-100000), 1 (0.1-10), 0.8 (0.8-0.8), ]}
123
124 Binding signature: GT
125
126 2. CAM ID: 23
127 Inputs (input index/inputting node/inputting node’s output index):
128 0:2:0,
129 Outputs (output index/connecting node/connecting node’s input index):
130 0:2:0, Parameters: 43,23,16,56,
131
132 CAM: FilterBilinear
133 Low Corner Frequency
134 {23, 1:1, [20 (20-20), 80.1 (8-400), 1 (0.05-10), 0.25 (0.025-5), ]}
135
136 Binding signature: AA
137
138 Total dangling outputs: 0
139
140
141 Fully Expressed Genome: 1
142 Number of nodes: 3
143 -----------------------------------
144 0. CAM ID: 89
145 Inputs (input index/inputting node/inputting node’s output index):
146 Circuit Input, 1:0:1, 2:1:0,
147 Outputs (output index/connecting node/connecting node’s input index):
148 1:0:1, 0:1:0, 1:1:1, Parameters: 30,12,26,37,
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149
150 CAM: HoldVoltageControlled
151 Dual Input
152 {89, 3:2, []}
153
154 Binding signature: CT
155
156 1. CAM ID: 38
157 Inputs (input index/inputting node/inputting node’s output index):
158 0:0:0, 1:0:1,
159 Outputs (output index/connecting node/connecting node’s input index):
160 0:0:2, Parameters: 99,22,40,30,
161
162 CAM: FilterLowFreqBilinear
163 External Cap Value
164 {38, 2:1, [0.489 (0-100000), 1 (0.1-10), 0.8 (0.8-0.8), ]}
165
166 Binding signature: GC
167
168 2. CAM ID: 23
169 Inputs (input index/inputting node/inputting node’s output index):
170 0:2:0,
171 Outputs (output index/connecting node/connecting node’s input index):
172 0:2:0, Parameters: 43,23,16,56,
173
174 CAM: FilterBilinear
175 Low Corner Frequency
176 {23, 1:1, [20 (20-20), 80.1 (8-400), 1 (0.05-10), 0.25 (0.025-5), ]}
177
178 Binding signature: AA
179
180 Total dangling outputs: 0
181
182
183 Fully Expressed Genome: 2
184 Number of nodes: 3
185 -----------------------------------
186 0. CAM ID: 89
187 Inputs (input index/inputting node/inputting node’s output index):
188 Circuit Input, 1:0:1, 2:2:0,
189 Outputs (output index/connecting node/connecting node’s input index):
190 1:0:1, 0:1:0, 1:1:1, Parameters: 30,12,26,37,
191
192 CAM: HoldVoltageControlled
193 Dual Input
194 {89, 3:2, []}
195
196 Binding signature: CT
197
198 1. CAM ID: 38
199 Inputs (input index/inputting node/inputting node’s output index):
200 0:0:0, 1:0:1,
201 Outputs (output index/connecting node/connecting node’s input index):
202 Dangling output warning! Index: 0, Parameters: 4,22,49,30,
203
204 CAM: FilterLowFreqBilinear
205 External Cap Value
206 {38, 2:1, [0.489 (0-100000), 1 (0.1-10), 0.8 (0.8-0.8), ]}
207
208 Binding signature: TT
209
210 2. CAM ID: 23
211 Inputs (input index/inputting node/inputting node’s output index):
212 0:2:0,
213 Outputs (output index/connecting node/connecting node’s input index):
214 0:0:2, 0:2:0, Parameters: 43,23,16,56,
215
216 CAM: FilterBilinear
217 Low Corner Frequency
218 {23, 1:1, [20 (20-20), 80.1 (8-400), 1 (0.05-10), 0.25 (0.025-5), ]}
219
220 Binding signature: AA
221
222 Total dangling outputs: 1
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223
224
225 Fully Expressed Genome: 3
226 Number of nodes: 3
227 -----------------------------------
228 0. CAM ID: 89
229 Inputs (input index/inputting node/inputting node’s output index):
230 Circuit Input, 1:0:1, 2:1:0,
231 Outputs (output index/connecting node/connecting node’s input index):
232 1:0:1, 0:1:0, Parameters: 30,12,73,37,
233
234 CAM: HoldVoltageControlled
235 Dual Input
236 {89, 3:2, []}
237
238 Binding signature: CT
239
240 1. CAM ID: 38
241 Inputs (input index/inputting node/inputting node’s output index):
242 0:0:0, 1:1:0,
243 Outputs (output index/connecting node/connecting node’s input index):
244 0:0:2, 0:1:1, Parameters: 4,22,40,5,
245
246 CAM: FilterLowFreqBilinear
247 External Cap Value
248 {38, 2:1, [0.489 (0-100000), 1 (0.1-10), 0.8 (0.8-0.8), ]}
249
250 Binding signature: GT
251
252 2. CAM ID: 23
253 Inputs (input index/inputting node/inputting node’s output index):
254 0:2:0,
255 Outputs (output index/connecting node/connecting node’s input index):
256 0:2:0, Parameters: 43,23,16,56,
257
258 CAM: FilterBilinear
259 Low Corner Frequency
260 {23, 1:1, [20 (20-20), 80.1 (8-400), 1 (0.05-10), 0.25 (0.025-5), ]}
261
262 Binding signature: AA
263
264 Total dangling outputs: 0
265
266
267 Fully Expressed Genome: 4
268 Number of nodes: 3
269 -----------------------------------
270 0. CAM ID: 24
271 Inputs (input index/inputting node/inputting node’s output index):
272 Circuit Input,
273 Outputs (output index/connecting node/connecting node’s input index):
274 0:1:0, 0:1:1, 0:2:0, Parameters: 30,12,26,37,
275
276 CAM: FilterBiquad
277 Low Pass
278 {24, 1:1, [40 (8-400), 1 (0.1-100), 0.707 (0.06-70), ]}
279
280 Binding signature: TT
281
282 1. CAM ID: 38
283 Inputs (input index/inputting node/inputting node’s output index):
284 0:0:0, 1:0:0,
285 Outputs (output index/connecting node/connecting node’s input index):
286 Dangling output warning! Index: 0, Parameters: 4,22,40,30,
287
288 CAM: FilterLowFreqBilinear
289 External Cap Value
290 {38, 2:1, [0.489 (0-100000), 1 (0.1-10), 0.8 (0.8-0.8), ]}
291
292 Binding signature: GT
293
294 2. CAM ID: 23
295 Inputs (input index/inputting node/inputting node’s output index):
296 0:0:0,
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297 Outputs (output index/connecting node/connecting node’s input index):
298 Dangling output warning! Index: 0, Parameters: 3,23,16,56,
299
300 CAM: FilterBilinear
301 Low Corner Frequency
302 {23, 1:1, [20 (20-20), 80.1 (8-400), 1 (0.05-10), 0.25 (0.025-5), ]}
303
304 Binding signature: AG
305
306 Total dangling outputs: 2
307
308
309 Connected Genome: 0: 89,-2,-2,0,1,1,0,-1,-1,-1,-1,30,55,26,37,2,4,1,1,

38,0,0,0,1,-1,-1,-1,-1,-1,-1,4,22,40,30,3,4,3,4,
23,2,0,-1,-1,-1,-1,-1,-1,-1,-1,43,23,16,56,1,1,1,3,

310 Connected Genome: 1: 89,-2,-2,0,1,1,0,-1,-1,-1,-1,30,12,26,37,2,4,1,3,
38,0,0,0,1,-1,-1,-1,-1,-1,-1,99,22,40,30,3,2,3,1,
23,2,0,-1,-1,-1,-1,-1,-1,-1,-1,43,23,16,56,1,1,3,3,

311 Connected Genome: 2: 89,-2,-2,0,1,2,0,-1,-1,-1,-1,30,12,26,37,2,4,1,1,
38,0,0,0,1,-1,-1,-1,-1,-1,-1,4,22,49,30,4,4,3,1,
23,2,0,-1,-1,-1,-1,-1,-1,-1,-1,43,23,16,56,1,1,1,3,

312 Connected Genome: 3: 89,-2,-2,0,1,1,0,-1,-1,-1,-1,30,12,73,37,2,4,1,1,
38,0,0,1,0,-1,-1,-1,-1,-1,-1,4,22,40,5,3,4,4,1,
23,2,0,-1,-1,-1,-1,-1,-1,-1,-1,43,23,16,56,1,1,4,3,

313 Connected Genome: 4: 24,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,30,12,26,37,4,4,1,4,
38,0,0,0,0,-1,-1,-1,-1,-1,-1,4,22,40,30,3,4,3,1,
23,0,0,-1,-1,-1,-1,-1,-1,-1,-1,3,23,16,56,1,3,1,3,

314
315 Creating circuit 0 of phenotype 0
316 Creating circuit 1 of phenotype 0
317 Creating circuit 2 of phenotype 0
318 Creating circuit 3 of phenotype 0
319 Creating circuit 4 of phenotype 0
320 Creating circuit 5 of phenotype 0
321 Creating circuit 6 of phenotype 0
322 This circuit has no input.
323 Creating circuit 0 of phenotype 1
324 Creating circuit 1 of phenotype 1
325 Creating circuit 2 of phenotype 1
326 Creating circuit 3 of phenotype 1
327 Creating circuit 4 of phenotype 1
328 Creating circuit 5 of phenotype 1
329 Creating circuit 6 of phenotype 1
330 This circuit has no input.
331 Creating circuit 0 of phenotype 2
332 Creating circuit 1 of phenotype 2
333 Creating circuit 2 of phenotype 2
334 Creating circuit 3 of phenotype 2
335 Creating circuit 4 of phenotype 2
336 Creating circuit 5 of phenotype 2
337 Creating circuit 6 of phenotype 2
338 This circuit has no input.
339 Creating circuit 0 of phenotype 3
340 Creating circuit 1 of phenotype 3
341 Creating circuit 2 of phenotype 3
342 Creating circuit 3 of phenotype 3
343 Creating circuit 4 of phenotype 3
344 Creating circuit 5 of phenotype 3
345 Creating circuit 6 of phenotype 3
346 This circuit has no input.
347 Creating circuit 0 of phenotype 4
348 Creating circuit 1 of phenotype 4
349 Creating circuit 2 of phenotype 4
350 Creating circuit 3 of phenotype 4
351 Creating circuit 4 of phenotype 4
352 Creating circuit 5 of phenotype 4
353 Creating circuit 6 of phenotype 4
354 Generation 74
355 (current champion: 2999)
356
357 Now testing phenotype 0 of generation 74
358 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\BareWire.ahf
359 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_0_circuit_5.ahf
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360 Binding of GTGTGTGT found, reconfigured to circuit: 1 at 5000 kHz.
361 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_0_circuit_6.ahf
362 Binding of AAAA found, reconfigured to circuit: 2 at 1000 kHz.
363 LowFreq: 0, MidFreq: 2327, HighFreq: 154
364 Fitness score: 2373
365 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\BareWire.ahf
366 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_0_circuit_5.ahf
367 Binding of GTGTGTGT found, reconfigured to circuit: 1 at 5000 kHz.
368 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_0_circuit_6.ahf
369 Binding of AAAA found, reconfigured to circuit: 2 at 1000 kHz.
370 LowFreq: 0, MidFreq: 2271, HighFreq: 154
371 Fitness score: 2317
372 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\BareWire.ahf
373 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_0_circuit_5.ahf
374 Binding of GTGTGTGT found, reconfigured to circuit: 1 at 5000 kHz.
375 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_0_circuit_6.ahf
376 Binding of AAAA found, reconfigured to circuit: 2 at 1000 kHz.
377 LowFreq: 0, MidFreq: 2330, HighFreq: 154
378 Fitness score: 2376
379 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\BareWire.ahf
380 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_0_circuit_5.ahf
381 Binding of GTGTGTGT found, reconfigured to circuit: 1 at 5000 kHz.
382 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_0_circuit_6.ahf
383 Binding of AAAA found, reconfigured to circuit: 2 at 1000 kHz.
384 LowFreq: 0, MidFreq: 2315, HighFreq: 153
385 Fitness score: 2362
386 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\BareWire.ahf
387 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_0_circuit_5.ahf
388 Binding of GTGTGTGT found, reconfigured to circuit: 1 at 5000 kHz.
389 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_0_circuit_6.ahf
390 Binding of AAAA found, reconfigured to circuit: 2 at 1000 kHz.
391 LowFreq: 0, MidFreq: 2320, HighFreq: 153
392 Fitness score: 2367
393 Median fitness score for this phenotype: 2367
394
395 Now testing phenotype 1 of generation 74
396 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\BareWire.ahf
397 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_1_circuit_6.ahf
398 Binding of AAAA found, reconfigured to circuit: 2 at 1000 kHz.
399 LowFreq: 0, MidFreq: 552, HighFreq: 154
400 Fitness score: 498
401 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\BareWire.ahf
402 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_1_circuit_6.ahf
403 Binding of AAAA found, reconfigured to circuit: 2 at 1000 kHz.
404 LowFreq: 0, MidFreq: 551, HighFreq: 154
405 Fitness score: 497
406 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\BareWire.ahf
407 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_1_circuit_6.ahf
408 Binding of AAAA found, reconfigured to circuit: 2 at 1000 kHz.
409 LowFreq: 0, MidFreq: 550, HighFreq: 153
410 Fitness score: 497
411 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\BareWire.ahf
412 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_1_circuit_6.ahf
413 Binding of AAAA found, reconfigured to circuit: 2 at 1000 kHz.
414 LowFreq: 0, MidFreq: 550, HighFreq: 154
415 Fitness score: 496
416 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\BareWire.ahf
417 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_1_circuit_6.ahf
418 Binding of AAAA found, reconfigured to circuit: 2 at 1000 kHz.
419 LowFreq: 0, MidFreq: 550, HighFreq: 152
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420 Fitness score: 498
421 Median fitness score for this phenotype: 497
422
423 Now testing phenotype 2 of generation 74
424 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\BareWire.ahf
425 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_2_circuit_5.ahf
426 Binding of TTTT found, reconfigured to circuit: 1 at 10000 kHz.
427 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_2_circuit_5.ahf
428 Binding of GTGTGTGT found, reconfigured to circuit: 1 at 5000 kHz.
429 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_2_circuit_6.ahf
430 Binding of AAAA found, reconfigured to circuit: 2 at 1000 kHz.
431 LowFreq: 0, MidFreq: 2323, HighFreq: 701
432 Fitness score: 1922
433 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\BareWire.ahf
434 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_2_circuit_5.ahf
435 Binding of TTTT found, reconfigured to circuit: 1 at 10000 kHz.
436 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_2_circuit_5.ahf
437 Binding of GTGTGTGT found, reconfigured to circuit: 1 at 5000 kHz.
438 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_2_circuit_6.ahf
439 Binding of AAAA found, reconfigured to circuit: 2 at 1000 kHz.
440 LowFreq: 0, MidFreq: 3039, HighFreq: 699
441 Fitness score: 2640
442 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\BareWire.ahf
443 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_2_circuit_5.ahf
444 Binding of TTTT found, reconfigured to circuit: 1 at 10000 kHz.
445 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_2_circuit_5.ahf
446 Binding of GTGTGTGT found, reconfigured to circuit: 1 at 5000 kHz.
447 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_2_circuit_6.ahf
448 Binding of AAAA found, reconfigured to circuit: 2 at 1000 kHz.
449 LowFreq: 0, MidFreq: 3072, HighFreq: 709
450 Fitness score: 2663
451 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\BareWire.ahf
452 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_2_circuit_5.ahf
453 Binding of TTTT found, reconfigured to circuit: 1 at 10000 kHz.
454 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_2_circuit_5.ahf
455 Binding of GTGTGTGT found, reconfigured to circuit: 1 at 5000 kHz.
456 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_2_circuit_6.ahf
457 Binding of AAAA found, reconfigured to circuit: 2 at 1000 kHz.
458 LowFreq: 0, MidFreq: 2319, HighFreq: 669
459 Fitness score: 1950
460 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\BareWire.ahf
461 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_2_circuit_5.ahf
462 Binding of TTTT found, reconfigured to circuit: 1 at 10000 kHz.
463 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_2_circuit_5.ahf
464 Binding of GTGTGTGT found, reconfigured to circuit: 1 at 5000 kHz.
465 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_2_circuit_6.ahf
466 Binding of AAAA found, reconfigured to circuit: 2 at 1000 kHz.
467 LowFreq: 0, MidFreq: 3061, HighFreq: 689
468 Fitness score: 2672
469 Median fitness score for this phenotype: 2640
470
471 Now testing phenotype 3 of generation 74
472 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\BareWire.ahf
473 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_3_circuit_5.ahf
474 Binding of GTGTGTGT found, reconfigured to circuit: 1 at 5000 kHz.
475 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_3_circuit_6.ahf
476 Binding of AAAA found, reconfigured to circuit: 2 at 1000 kHz.
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477 LowFreq: 0, MidFreq: 2358, HighFreq: 153
478 Fitness score: 2405
479 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\BareWire.ahf
480 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_3_circuit_5.ahf
481 Binding of GTGTGTGT found, reconfigured to circuit: 1 at 5000 kHz.
482 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_3_circuit_6.ahf
483 Binding of AAAA found, reconfigured to circuit: 2 at 1000 kHz.
484 LowFreq: 0, MidFreq: 2250, HighFreq: 724
485 Fitness score: 1726
486 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\BareWire.ahf
487 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_3_circuit_5.ahf
488 Binding of GTGTGTGT found, reconfigured to circuit: 1 at 5000 kHz.
489 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_3_circuit_6.ahf
490 Binding of AAAA found, reconfigured to circuit: 2 at 1000 kHz.
491 LowFreq: 0, MidFreq: 2321, HighFreq: 154
492 Fitness score: 2367
493 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\BareWire.ahf
494 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_3_circuit_5.ahf
495 Binding of GTGTGTGT found, reconfigured to circuit: 1 at 5000 kHz.
496 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_3_circuit_6.ahf
497 Binding of AAAA found, reconfigured to circuit: 2 at 1000 kHz.
498 LowFreq: 0, MidFreq: 2346, HighFreq: 153
499 Fitness score: 2393
500 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\BareWire.ahf
501 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_3_circuit_5.ahf
502 Binding of GTGTGTGT found, reconfigured to circuit: 1 at 5000 kHz.
503 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_3_circuit_6.ahf
504 Binding of AAAA found, reconfigured to circuit: 2 at 1000 kHz.
505 LowFreq: 0, MidFreq: 2287, HighFreq: 154
506 Fitness score: 2333
507 Median fitness score for this phenotype: 2367
508
509 Now testing phenotype 4 of generation 74
510 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\BareWire.ahf
511 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_4_circuit_3.ahf
512 Binding of TTTT found, reconfigured to circuit: 0 at 10000 kHz.
513 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_4_circuit_1.ahf
514 Binding of GTGTGTGT found, reconfigured to circuit: 01 at 5000 kHz.
515 LowFreq: 2627, MidFreq: 2962, HighFreq: 692
516 Fitness score: -157
517 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\BareWire.ahf
518 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_4_circuit_3.ahf
519 Binding of TTTT found, reconfigured to circuit: 0 at 10000 kHz.
520 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_4_circuit_1.ahf
521 Binding of GTGTGTGT found, reconfigured to circuit: 01 at 5000 kHz.
522 LowFreq: 2628, MidFreq: 2992, HighFreq: 703
523 Fitness score: -139
524 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\BareWire.ahf
525 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_4_circuit_3.ahf
526 Binding of TTTT found, reconfigured to circuit: 0 at 10000 kHz.
527 NB. At this point, Matlab fails to write the signature values to file, causing the main

application to report an error.
528 No threshold signature file from Matlab?
529 Could not find file ’D:\Anadigm FPAA projects\Anadigm data files\LowFreqMaxPower.txt’. -

repeating test for phenotype 4...
530 Retrieving the COM class factory for component with CLSID {A052DEB6-24BF-4425-B4AE-

E8C55D264566} failed due to the following error: 800706ba. - repeating test for
phenotype 4...

531 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\BareWire.ahf
532 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_4_circuit_3.ahf
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533 Binding of TTTT found, reconfigured to circuit: 0 at 10000 kHz.
534 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_4_circuit_1.ahf
535 Binding of GTGTGTGT found, reconfigured to circuit: 01 at 5000 kHz.
536 LowFreq: 2649, MidFreq: 3161, HighFreq: 640
537 Fitness score: 72
538 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\BareWire.ahf
539 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_4_circuit_3.ahf
540 Binding of TTTT found, reconfigured to circuit: 0 at 10000 kHz.
541 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_4_circuit_1.ahf
542 Binding of GTGTGTGT found, reconfigured to circuit: 01 at 5000 kHz.
543 LowFreq: 2645, MidFreq: 2987, HighFreq: 645
544 Fitness score: -103
545 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\BareWire.ahf
546 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_4_circuit_3.ahf
547 Binding of TTTT found, reconfigured to circuit: 0 at 10000 kHz.
548 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_4_circuit_1.ahf
549 Binding of GTGTGTGT found, reconfigured to circuit: 01 at 5000 kHz.
550 LowFreq: 2651, MidFreq: 2944, HighFreq: 714
551 Fitness score: -221
552 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\BareWire.ahf
553 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_4_circuit_3.ahf
554 Binding of TTTT found, reconfigured to circuit: 0 at 10000 kHz.
555 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_4_circuit_1.ahf
556 Binding of GTGTGTGT found, reconfigured to circuit: 01 at 5000 kHz.
557 LowFreq: 2632, MidFreq: 2996, HighFreq: 700
558 Fitness score: -136
559 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\BareWire.ahf
560 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_4_circuit_3.ahf
561 Binding of TTTT found, reconfigured to circuit: 0 at 10000 kHz.
562 Reconfiguration file name: D:\Anadigm FPAA projects\Anadigm data files\

phenotype_4_circuit_1.ahf
563 Binding of GTGTGTGT found, reconfigured to circuit: 01 at 5000 kHz.
564 LowFreq: 2634, MidFreq: 2942, HighFreq: 708
565 Fitness score: -200
566 Median fitness score for this phenotype: -136
567
568 Best for generation 74: 2640 (current champion: 2999)



Appendix B

Further examples of
phenotypes

The purpose of this appendix is to show that the champion phenotypes in the
experiments were able to find a variety of circuits that gave them high levels
of fitness. Some CAMs seem to occur regularly in successful phenotypes, such
as the GainSwitch CAM. The functional behaviour of this CAM reflects the
requirements of the task, which ostensibly was to reconfigure the circuit on a
change of input frequency. However, some phenotypes also employed circuits
utilising CAMs such as GainSwitch or one of the bilinear filter CAMs, set at the
correct corner frequency, so that the switch or filter would come pass through
the signal (perhaps amplifying it in the process) at the right moment and no
reconfiguration of the FPAA was required.
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Chip: Phenotype_0 

 

Clocks: Phenotype_0 

Master Clock - DCLK (fc) 16 MHz Chopper Clock (fc / 64) 250 kHz

System Clock (sys = fc / 1) 16 MHz

Clock 0 (sys / 4) 4 MHz Clock 1 (sys / 1) 16 MHz

Clock 2 (sys / 8) 2 MHz Clock 3 (sys / 64) 250 kHz

2999_gen_22_phenotype_0_circuit_0.ad2 - AnadigmDesigner2

25 February 2008 (Page 1 of 3)

Chip: Phenotype_0 

 

Clocks: Phenotype_0 

Master Clock - DCLK (fc) 16 MHz Chopper Clock (fc / 64) 250 kHz

System Clock (sys = fc / 1) 16 MHz

Clock 0 (sys / 4) 4 MHz Clock 1 (sys / 1) 16 MHz

Clock 2 (sys / 8) 2 MHz Clock 3 (sys / 64) 250 kHz

2999_gen_22_phenotype_0_circuit_1.ad2 - AnadigmDesigner2

25 February 2008 (Page 1 of 3)

Chip: Phenotype_0 

 

Clocks: Phenotype_0 

Master Clock - DCLK (fc) 16 MHz Chopper Clock (fc / 64) 250 kHz

System Clock (sys = fc / 1) 16 MHz

Clock 0 (sys / 4) 4 MHz Clock 1 (sys / 1) 16 MHz

Clock 2 (sys / 8) 2 MHz Clock 3 (sys / 64) 250 kHz

2999_gen_22_phenotype_0_circuit_2.ad2 - AnadigmDesigner2

25 February 2008 (Page 1 of 3)

Chip: Phenotype_0 

 

Clocks: Phenotype_0 

Master Clock - DCLK (fc) 16 MHz Chopper Clock (fc / 64) 250 kHz

System Clock (sys = fc / 1) 16 MHz

Clock 0 (sys / 4) 4 MHz Clock 1 (sys / 1) 16 MHz

Clock 2 (sys / 8) 2 MHz Clock 3 (sys / 64) 250 kHz

2999_gen_22_phenotype_0_circuit_3.ad2 - AnadigmDesigner2

25 February 2008 (Page 1 of 3)

Chip: Phenotype_0 

 

Clocks: Phenotype_0 

Master Clock - DCLK (fc) 16 MHz Chopper Clock (fc / 64) 250 kHz

System Clock (sys = fc / 1) 16 MHz

Clock 0 (sys / 4) 4 MHz Clock 1 (sys / 1) 16 MHz

Clock 2 (sys / 8) 2 MHz Clock 3 (sys / 64) 250 kHz

2999_gen_22_phenotype_0_circuit_4.ad2 - AnadigmDesigner2

25 February 2008 (Page 1 of 3)

1

1

Figure B.1: Example of champion specialist phenotype (decreasing) demon-
strating the wide variety of circuit configurations in the 7 possible gene ex-
pressions. The first circuit shows the fully specified genome (i.e. the result if
all genes were expressed) containing FilterLowFreqBilinear, FilterBilinear and
HoldVoltageControlled CAMs. Only 3 circuits could be deployed in the spe-
cialists environment, giving these genomes a large degree of redundancy. This
phenotype scored 2999 and deployed just 2 circuits (no. 6 at 5kHz and no. 7 at
1kHz, shown with additional borders). The experiment is described in §6.6.
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Chip: Phenotype_4 

 

Clocks: Phenotype_4 

Master Clock - DCLK (fc) 16 MHz Chopper Clock (fc / 64) 250 kHz

System Clock (sys = fc / 1) 16 MHz

Clock 0 (sys / 4) 4 MHz Clock 1 (sys / 1) 16 MHz

Clock 2 (sys / 8) 2 MHz Clock 3 (sys / 64) 250 kHz

3156_gen_55_phenotype_4_circuit_0.ad2 - AnadigmDesigner2

25 February 2008 (Page 1 of 3)

1

Chip: Phenotype_4 

 

Clocks: Phenotype_4 

Master Clock - DCLK (fc) 16 MHz Chopper Clock (fc / 64) 250 kHz

System Clock (sys = fc / 1) 16 MHz

Clock 0 (sys / 4) 4 MHz Clock 1 (sys / 1) 16 MHz

Clock 2 (sys / 8) 2 MHz Clock 3 (sys / 64) 250 kHz

3156_gen_55_phenotype_4_circuit_2.ad2 - AnadigmDesigner2

25 February 2008 (Page 1 of 3)

Chip: Phenotype_4 

 

Clocks: Phenotype_4 

Master Clock - DCLK (fc) 16 MHz Chopper Clock (fc / 64) 250 kHz

System Clock (sys = fc / 1) 16 MHz

Clock 0 (sys / 4) 4 MHz Clock 1 (sys / 1) 16 MHz

Clock 2 (sys / 8) 2 MHz Clock 3 (sys / 64) 250 kHz

3156_gen_55_phenotype_4_circuit_3.ad2 - AnadigmDesigner2

25 February 2008 (Page 1 of 3)

Chip: Phenotype_4 

 

Clocks: Phenotype_4 

Master Clock - DCLK (fc) 16 MHz Chopper Clock (fc / 64) 250 kHz

System Clock (sys = fc / 1) 16 MHz

Clock 0 (sys / 4) 4 MHz Clock 1 (sys / 1) 16 MHz

Clock 2 (sys / 8) 2 MHz Clock 3 (sys / 64) 250 kHz

3156_gen_55_phenotype_4_circuit_4.ad2 - AnadigmDesigner2

25 February 2008 (Page 1 of 3)

Chip: Phenotype_4 

 

Clocks: Phenotype_4 

Master Clock - DCLK (fc) 16 MHz Chopper Clock (fc / 64) 250 kHz

System Clock (sys = fc / 1) 16 MHz

Clock 0 (sys / 4) 4 MHz Clock 1 (sys / 1) 16 MHz

Clock 2 (sys / 8) 2 MHz Clock 3 (sys / 64) 250 kHz

3156_gen_55_phenotype_4_circuit_5.ad2 - AnadigmDesigner2

25 February 2008 (Page 1 of 3)

1

Figure B.2: Examples of champion specialist phenotype (decreasing), show-
ing the 7 possible circuit expressions The first circuit shows the fully speci-
fied genome containing MultiplierFilterLowFreq, GainVoltageControlled and
GainSwitch CAMs. This phenotype scored 3156 and deployed 2 circuits (no. 2
at 10kHz and no. 7 at 5kHz and 1kHz, shown with additional borders). The
experiment is described in §6.6.
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Chip: Phenotype_4 

 

Clocks: Phenotype_4 

Master Clock - DCLK (fc) 16 MHz Chopper Clock (fc / 64) 250 kHz

System Clock (sys = fc / 1) 16 MHz

Clock 0 (sys / 4) 4 MHz Clock 1 (sys / 1) 16 MHz

Clock 2 (sys / 8) 2 MHz Clock 3 (sys / 64) 250 kHz

2735_gen_69_phenotype_4_circuit_0.ad2 - AnadigmDesigner2

25 February 2008 (Page 1 of 3)

Chip: Phenotype_4 

 

Clocks: Phenotype_4 

Master Clock - DCLK (fc) 16 MHz Chopper Clock (fc / 64) 250 kHz

System Clock (sys = fc / 1) 16 MHz

Clock 0 (sys / 4) 4 MHz Clock 1 (sys / 1) 16 MHz

Clock 2 (sys / 8) 2 MHz Clock 3 (sys / 64) 250 kHz

2735_gen_69_phenotype_4_circuit_1.ad2 - AnadigmDesigner2

25 February 2008 (Page 1 of 3)

Chip: Phenotype_4 

 

Clocks: Phenotype_4 

Master Clock - DCLK (fc) 16 MHz Chopper Clock (fc / 64) 250 kHz

System Clock (sys = fc / 1) 16 MHz

Clock 0 (sys / 4) 4 MHz Clock 1 (sys / 1) 16 MHz

Clock 2 (sys / 8) 2 MHz Clock 3 (sys / 64) 250 kHz

2735_gen_69_phenotype_4_circuit_2.ad2 - AnadigmDesigner2

25 February 2008 (Page 1 of 3)

1

Chip: Phenotype_4 

 

Clocks: Phenotype_4 

Master Clock - DCLK (fc) 16 MHz Chopper Clock (fc / 64) 250 kHz

System Clock (sys = fc / 1) 16 MHz

Clock 0 (sys / 4) 4 MHz Clock 1 (sys / 1) 16 MHz

Clock 2 (sys / 8) 2 MHz Clock 3 (sys / 64) 250 kHz

2735_gen_69_phenotype_4_circuit_3.ad2 - AnadigmDesigner2

25 February 2008 (Page 1 of 3)

1

Chip: Phenotype_4 

 

Clocks: Phenotype_4 

Master Clock - DCLK (fc) 16 MHz Chopper Clock (fc / 64) 250 kHz

System Clock (sys = fc / 1) 16 MHz

Clock 0 (sys / 4) 4 MHz Clock 1 (sys / 1) 16 MHz

Clock 2 (sys / 8) 2 MHz Clock 3 (sys / 64) 250 kHz

2735_gen_69_phenotype_4_circuit_5.ad2 - AnadigmDesigner2

25 February 2008 (Page 1 of 3)

Figure B.3: Examples of champion non-specialist phenotype, showing the 7
possible circuit expressions. The first circuit shows the fully specified genome
containing Differentiator, GainSwitch and Comparator CAMs. This phenotype
scored 2735 and deployed 2 circuits (no. 4 at 5kHz and no. 6 at 1kHz, shown
with additional borders). The experiment is described in §6.6.
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Chip: Phenotype_4 

 

Clocks: Phenotype_4 

Master Clock - DCLK (fc) 16 MHz Chopper Clock (fc / 64) 250 kHz

System Clock (sys = fc / 1) 16 MHz

Clock 0 (sys / 4) 4 MHz Clock 1 (sys / 1) 16 MHz

Clock 2 (sys / 8) 2 MHz Clock 3 (sys / 64) 250 kHz

2670_gen_35_phenotype_4_circuit_0.ad2 - AnadigmDesigner2

25 February 2008 (Page 1 of 3)

Chip: Phenotype_4 

 

Clocks: Phenotype_4 

Master Clock - DCLK (fc) 16 MHz Chopper Clock (fc / 64) 250 kHz

System Clock (sys = fc / 1) 16 MHz

Clock 0 (sys / 4) 4 MHz Clock 1 (sys / 1) 16 MHz

Clock 2 (sys / 8) 2 MHz Clock 3 (sys / 64) 250 kHz

2670_gen_35_phenotype_4_circuit_1.ad2 - AnadigmDesigner2

25 February 2008 (Page 1 of 3)

Chip: Phenotype_4 

 

Clocks: Phenotype_4 

Master Clock - DCLK (fc) 16 MHz Chopper Clock (fc / 64) 250 kHz

System Clock (sys = fc / 1) 16 MHz

Clock 0 (sys / 4) 4 MHz Clock 1 (sys / 1) 16 MHz

Clock 2 (sys / 8) 2 MHz Clock 3 (sys / 64) 250 kHz

2670_gen_35_phenotype_4_circuit_2.ad2 - AnadigmDesigner2

25 February 2008 (Page 1 of 3)

1

Chip: Phenotype_4 

 

Clocks: Phenotype_4 

Master Clock - DCLK (fc) 16 MHz Chopper Clock (fc / 64) 250 kHz

System Clock (sys = fc / 1) 16 MHz

Clock 0 (sys / 4) 4 MHz Clock 1 (sys / 1) 16 MHz

Clock 2 (sys / 8) 2 MHz Clock 3 (sys / 64) 250 kHz

2670_gen_35_phenotype_4_circuit_3.ad2 - AnadigmDesigner2

25 February 2008 (Page 1 of 3)

Chip: Phenotype_4 

 

Clocks: Phenotype_4 

Master Clock - DCLK (fc) 16 MHz Chopper Clock (fc / 64) 250 kHz

System Clock (sys = fc / 1) 16 MHz

Clock 0 (sys / 4) 4 MHz Clock 1 (sys / 1) 16 MHz

Clock 2 (sys / 8) 2 MHz Clock 3 (sys / 64) 250 kHz

2670_gen_35_phenotype_4_circuit_4.ad2 - AnadigmDesigner2

25 February 2008 (Page 1 of 3)

1

Figure B.4: Examples of champion non-specialist phenotype, showing the 7
possible circuit expressions. The first circuit shows the fully specified genome
containing HoldVoltageControlled, GainSwitch and SumDiff CAMs. This phe-
notype scored 2670 and deployed 2 circuits (no. 4 at 1kHz and no. 7 at 5kHz,
shown with additional borders). The experiment is described in §6.6.
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Appendix C

Further results

This appendix lists some additional results to those given in §6.8.
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 Mutations of CAM ID for 3 genes with binding site length = 2
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Figure C.1: Chart showing the stability of CAM ID to mutation over a long evo-
lutionary run, with binding site lengths of 2, applying one test per phenotype.
This run of 250 generations took almost 2 days to complete.
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Mutations of CAM ID for 3 genes with binding site length = 3
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Figure C.2: Chart showing the stability of CAM ID to mutation over a long
evolutionary run with binding site lengths of 3, applying one test per pheno-
type. Note reduction in the amount of noise (best of generation fitness scores)
compared to previous chart showing binding site length =2. This run of 500
generations took 3.5 days (83.3 hours) to complete.



182 APPENDIX C. FURTHER RESULTS

 4 Runs for Power Band Task using binding site length = 3
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Figure C.3: Early runs investigating effects of increasing binding site length
to 3. Chart shows best of generations against current champion phenotype.
Despite relatively high fitnesses, large amounts of noise are present in each
generation and the phenotypes were often unreliable. Depending on whether
runs were mostly during the day or night, a run of 100 generations took around
16.5 hours to complete, so the 4 runs in total took 5 working days to finish.
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5 Runs for Power Band Task using signature length = 2, 
specialist (decreasing) frequency task
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Figure C.4: Best of generation against current champion for specialist (decreas-
ing) phenotype (see also Fig. 6.8). Note low levels of noise throughout all runs.
Experiment is described in §6.6.



184 APPENDIX C. FURTHER RESULTS



Bibliography

Aggarwal, V., M. Mao, and U.-M. O’Reilly (2006). A self-tuning analog
proportional-integral-derivative (pid) controller. In AHS, pp. 12–19. IEEE
Computer Society. 81

Alberts, B., A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter (2002,
March). Molecular Biology of the Cell: Fourth Edition. Garland. 28

Attenborough, D. (1984). The Living Planet. BBC Worldwide Ltd.: BBC TV in
association with Time Life Films. 12, 13, 14, 15

Bak, P. (1996). How Nature Works: The Science of Self-Organised Criticality. Coper-
nicus Press. 46

Banzhaf, W. (1998). Genetic Programming. San Francisco: Morgan Kaufmann
Publishers. 52

Banzhaf, W., G. Beslon, S. Christensen, J. Foster, F. Kepes, V. Lefort, J. F. Miller,
M. RAdman, and J. J. Ramsden (2006, September). Guidelines: From artificial
evolution to computational evolution: a research agenda. Nature Reviews
Genetics 7(9), 729–735. 11, 29, 72

Bentley, P. (2004a). The Garden Where Software Grows. New Scientist 2437. 10,
49

Bentley, P. J. (2004b). Fractal proteins. Genetic Programming and Evolvable Ma-
chines 5(1), 71–101. 87

Berenson, D., N. Estevez, and H. Lipson (2005). Hardware evolution of analog
circuits for in-situ robotic fault-recovery. In Evolvable Hardware, pp. 12–19.
IEEE Computer Society. 79, 81, 84

Bongard, J. C. and H. Lipson (2004). Automating genetic network inference
with minimal physical experimentation using coevolution. See Deb et al.
(2004), pp. 333–345. 49

Box, G. E. P. (1957). Evolutionary operation: A method for increasing industrial
productivity. Applied Statistics 6(2), 81–101. 49

Brameier, M. (2003). On linear genetic programming. Ph. D. thesis, Dortmund.
52

185



186 BIBLIOGRAPHY

Brameier, M. and W. Banzhaf (2003). Neutral variations cause bloat in linear
GP. In C. Ryan, T. Soule, M. Keijzer, E. Tsang, R. Poli, and E. Costa (Eds.),
Genetic Programming, Proceedings of EuroGP 2003, Volume 2610 of LNCS, pp.
290–299. Springer-Verlag. 52

Bremermann, H. J. (1962). Optimization through evolution and recombination.
In M. C. Yovitis and G. T. Jacobi (Eds.), Self-Organizing Systems, pp. 93–106.
Washington, D.C.: Spartan Books. 53

Bremermann, H. J., M. Rogson, and S. Salaff (1966). Global properties of evo-
lution processes. In H. H. Pattee, E. A. Edlsack, L. Fein, and A. B. Callahan
(Eds.), Natural Automata and Useful Simulations, pp. 3–41. Washington D.C.:
Spartan Books. 53

Cantu-Paz, E. (1998). Designing efficient master-slave parallel genetic algo-
rithms. In Genetic Programming 1998: Proceedings of the Third Annual Confer-
ence, pp. 455. Morgan Kaufmann. 59

Cantu-Paz, E. and D. E. Goldberg (1997). Predicting speedups of ideal bound-
ing cases of parallel genetic algorithms. In T. Bäck (Ed.), Proc. of the Sev-
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