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Abstract

We address the problem of computing the three-dimensional motions of objects in a long
sequence of stereo frames. Our approach is bottom-up and consists of two levels. The first
level deals with the tracking of 3D tokens from frame to frame and the estimation of their
kinematics. The processing is completely parallel for each token. The second level groups
tokens into objects based on their kinematic parameters, controls the processing at the low level
to cope with problems such as occlusion, disappearance and appearance of tokens, and provides
information to other components of the system. We have implemented this approach using
3D line segments obtained from stereo as the tokens. We use classical kinematics and derive
closed-form solutions for some special, but useful, cases of motions. The motion computation
problem is then formulated as a tracking problem in order to apply the extended Kalman filter.
The tracking is performed in a prediction-matching-update loop in which multiple matches can
be handled. Tokens are labeled by a number called its support of existence which measures their
adequation to the measurements. If this number goes beyond a threshold, the token disappears.
The individual line segments can be grouped into rigid objects according to the similarity of
their kinematic parameters. Experiments using synthetic and real data have been carried out
and the results found to be quite good.

Keywords: Image Sequence Analysis, 3D Motion Tracking and Computation, Kinematic
Model, 3D Token tracker, Multiple Object Motions, Grouping, 3D Vision.

Résumé

Nous traitons le probleme de I’estimation des mouvements d'objets dans une séquence
longue de triplets stéréoscopiques. Notre approche est ascendante et est composée de
deux niveaux. Au niveau inférieur, chaque attribut 3D est indépendamment suivi d’une
vue a ’autre, et sa cinématique est estimée par un filtrage temporel. Le processus est
complétement paralléle. Au niveau supérieur, nous groupons des attributs en objets
selon la similarité des paramétres cinématiques. C’est 'intégration spatiale. Ce méme
niveau controle le processus du niveau inférieur pour résoudre les problemes comme
I’'occlusion, la disparition et I’apparition. Nous avons implémenté cette approche en
utilisant des segments 3D comme attributs reconstruits par un systéme stéréoscopique.
Nous résolvons explicitement les equations de la cinématique pour ces attributs dans
certains cas particuliers mais trés utiles en pratique. Le probléme de I’estimation du
mouvement est formulé comme un probléme de suivi auquel le filtre de Kalman é-
tendu s’applique immédiatement. Le suivi est effectué dans une boucle de prédiction-
appariement-mise-a-jour et le probléme des appariements multiples est traité. Les at-
tributs sont caractérisés par un nombre, appelé son support d’existence, qui mesure
leur adéquation aux observations. Si ce nombre dépasse un seuil, nous considérons que
I’attribut a disparu. Nous avons mené des expériences en utilisant données synthétiques
et données réelles. Les résultats sont présentés.

Mots clés: Analyse de séquences d’images, Estimation et suivi du mouvement 3D,
Modéle cinématique, Suivi d’attributs 3D, Mouvements d’objets multiples, Groupe-
ment, Vision 3D.
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1 Introduction

The problem of analyzing sequences of images to extract three-dimensional motion and structure
has been at the heart of the research in computer vision for many years. It is very important
since its success or failure will determine whether or not vision can be used as a sensory process in
reactive systems. There are of course many possibilities for attacking the problem and many more
remain to be explored. We discuss a few of them.

In fact, image sequence analysis is a rather vague term and can cover several meanings. Our
definition is that, given one or several sequences of images acquired from one or several cameras
whose relative positions are known and which are rigidly moving in an unknown environment con-
taining a number of mobile rigid objects, we must determine the various relative motions (cameras
and objects) and the structure of the scene.

There has been a tremendous amount of work on the analysis of monocular sequences of images.
This work has basically followed two main paths: optical flow and token tracking. The philosophy of
optical flow is to work in two steps. First estimate from the variation of image intensities the projec-
tion of the three-dimensional velocities and second, compute those velocities (in fact the kinematic
screw that defines them) and the depth from the optical flow. The reason for splitting the process
of recovery into those two steps can be traced back to the work of Gibson (Gibson, 1950) and Koen-
derink (Koenderink and van Doorn, 1975; Koenderink and van Doorn, 1978; Koenderink, 1986).
Because of fundamental difficulties such as the aperture effect, researchers have only been able
to partially solve the first step (Horn and Schunk, 1981; Nagel, 1983; Nagel, 1986; Hildreth, 1984)
and the results of the second step have been reported to be of very poor quality. These and other
reasons such as the fact that the relationship between the optical flow and the projected velocity
field is a bit uncertain (Faugeras, 1990) and the optical flow can only be reliably estimated near
image discontinuities, have led researchers to explore another route, to track tokens.

The philosophy of the token tracking approach is also to work in two steps. First detect reli-
able tokens such as curves, corners, from the spatial variations of image intensities, assuming that
they correspond to markings on the three-dimensional ob jects. Second, track them over time and
recover the depth and three-dimensional velocities of the corresponding 3D tokens. This tracking
is performed by building a kinematic model for the two-dimensional tokens. There are two main
possibilities, either to work directly in 3D or to work in 2D. The advantage of the first option is
that one works in the “right space” where it makes more sense to model the kinematics of objects
but at the cost of being very sensitive to noise. The advantage of the second approach is that
one works in the “easy space” where measurements are made but at the cost of not computing
directly the values we are really interested in computing. This is where the largest amount of work
has been performed (Sethi and Jain, 1987; Crowley et al., 1988; Gambotto, 1989; Hwang, 1989;
Deriche and Faugeras, 1990; Broida and Chellappa, 1986;
Broida and Chellappa, 1989; Weng et al., 1987; Dickmanns, 1987; Dickmanns and Graefe, 1988b;
Dickmanns and Graefe, 1988a).

Another possibility for performing this computation is to consider that the two-dimensional
tracking gives us matches between different frames and estimate the three-dimensional mo-
tions from those matches. This last problem has also received considerable attention. A
lot of work has been published on algorithms for recovering motion and structure from n
point matches, p line matches, between ¢ views, where typically n is 5, p is 6, and ¢
is 2 or 3 (Ullman, 1979; Tsai and Huang, 1981; Huang and Tsai, 1981; Longuet-Higgins, 1981;
Yen and Huang, 1983; Tsai and Huang, 1984; Zhuang and Haralick, 1985; Liu and Huang, 1986;
Liu and Huang, 1988; Aggarwal and Wang, 1987; Faugeras and Maybank, 1990). These results are




theoretically very interesting but are limited to the estimation of the motion of a single object and
to the reconstruction of the structure of the scene up to a scale factor unless considerable a priori
information is available. Also, due to the complexity of image formation and the nonlinear relation
between 3D motion and changes in the images, the solutions have been reported to be very sensitive
to noise, and thus have so far been of little practical use except, perhaps, for calibration.

There has also been a large amount of work on stereo (Baker and Binford, 1981;
Grimson, 1981; Grimson, 1985; Nishihara, 1984; Ohta and Kanade, 1985; Pollard et al., 1985;
Marr and Poggio, 1976; Marr and Poggio, 1979; Yachida, 1986; Ayache and Lustman, 1987;
Kitamura and Yachida, 1990) which can be seen as the analysis of two or three sequences of images
(if we use binocular or trinocular stereo), each sequence being limited to only one image. The main
problem has been, and remains, to establish correspondences between the images and to reconstruct
a depth map which is as dense as possible.

Much less has been done on the analysis of several, simultaneously acquired, sequences of images.
Clearly the amount of information is much higher and one would hope that this would allow us to
solve the problem in a more robust fashion. It is not obvious, however, to decide how to proceed and
build upon existing techniques, for example those developed for the analysis of monocular sequences
and stereo. In (Zhang et al., 1988; Zhang and Faugeras, 1991a; Zhang and Faugeras, 1991b), we
have proposed an algorithm based upon the hypothesize-and-verify paradigm to match 3D line
segments and to compute 3D displacements between two 3D frames obtained from stereo. In order
to reduce the complexity of the method, we have made the assumption that ob jects are rigid. This
algorithm has been extended to deal with the case where several mobile objects are present.

The solution which we explore in this paper is the following. We assume that we can do reliable
stereo at a reasonable rate, let us say five times a second to fix ideas. We then match the set of
sequentially reconstructed three-dimensional representations and estimate motion. Therefore, we
do three-dimensional motion from three-dimensional structure.

Of course, there are many details that need to be filled in:

1. what are the three-dimensional representations that are used ?
2. how do we match them ?
3. how do we estimate motion from the matches ?

The answer to point number 1 is that we use an edge-based stereo algorithm that has been developed
in the past (Ayache and Lustman, 1987) and put into hardware (Faugeras ef al., 1988b). It can
deliver three-dimensional line segments at the rate of 5Hz. Therefore, our representation is quite
simple and consists of sets of three-dimensional line segments. It is not clear how crucial this
assumption is for the whole system. We believe that many of the ideas described in this paper
can be used for other simple geometric primitives, other tokens, even though in the details of the
current implementation the line segment assumption plays an important role.

The answer to points number 2 and 3 is that we build a model of the kinematics of each token,
assuming that it is attached to a moving rigid ob ject. We use this model to predict the appearance
of the token in the three-dimensional visual map obtained at the next time instant. We use this
prediction to verify whether the token is present and match it, if possible, to a real token. The
match is then used to update the kinematic model. The whole process is implemented as a Kalman
filter. Therefore, matching and estimation of motion are intimately related in this approach. One
interesting feature is that we actually integrate the kinematic equations by making the assumption
that the motion we observe can be well approximated on a short-time scale by constant angular




velocity and constant linear acceleration. This is in general true only if the time sampling frequency
is high enough so that the accelerations can be neglected between two sampling times.
We also tackle the following problems that arise when we deal with (long) sequences of images:

e Occlusion: A moving object may be partially or totally occluded by the background or by other
objects.

¢ Disappearance: A moving object in the current field of view may move partially or totally out
of it in the next frames.

s Appearance: A previously unseen object may partially or totally come into view.

Clearly, occlusion is related to disappearance and appearance, since when we talk about the occlu-
sion of an object, we mean that some of its features disappear for a moment and may eventually
reappear in the future. Those three events are due to regular transformations of the scene. We
must add to them a fourth one which is due to the failure of the algorithms that produce the
description:

e Absence: When features which should be present are not due to the failure of the feature
extraction (or reconstruction) process.

These remarks bring forward an interesting aspect of the problem, namely that there are always
two kinds of tokens: those which have been seen for a sufficiently long time so that the system has
been able to build a good model of their kinematics, and those which have just entered the field
of view and for which no kinematics information is available. The first kind of tokens is “easily”
dealt with since it is likely that the prediction stage will help to cut down heavily the number of
tentative candidates to a match in the next frame. For the second kind a computational explosion
is likely to happen: in order to find the right match, we may have to explore a large number of
possibilities and if we make the wrong choice we will lose track of the token. Therefore our system
can be seen as operating in two modes, the first one called the continuous mode and the second
called the bootstrapping mode.

The continuous mode applies to tokens for which the system has built up a kinematic model
with low uncertainty. The model at time ¢ is used to predict the position and orientation of the
token in the scene at time ¢t + At. Since the uncertainty of the model is small, the search for
corresponding tokens can be restricted to a small zone around the predicted token. :

The bootstrapping mode assumes no knowledge of the kinematics of the token, i.e assumes
that it is not moving, with a large uncertainty. Its position and orientation at time ¢t + At are
predicted to be the same as those at time t but, since the uncertainty of the model is large, the
search for corresponding tokens is conducted in a larger zone than in the previous mode leading to
the possibility of many candidates.

One interesting feature of both modes is that they use the idea of least-commitment and, instead
of forcing a decision, may make multiple correspondence choices and use the time continuity to
throw away later the ones which are not confirmed by the measurements.

Another feature of our approach is that we can- detect multiple motions by grouping tokens
which have similar kinematic models, thus obtaining a segmentation of the scene into “objects” (i.e
sets of tokens) moving rigidly.

We are not the first ones to investigate this problem from that viewpoint. Young and Chel-
lappa (Young and Chellappa, 1988) describe the computer simulation of a system that uses a num-
ber of noisy 3D points assumed to belong to the same rigid object to estimate its motion. In
their work, the problem of obtaining the matches from frame to frame and the problem of multiple
objects are not addressed.




Fig. 1: Illustration of the motion tracking problem

2 Statement of the Problem

We address the motion tracking problem that arises in the context of a mobile vehicle navigating
in an unknown environment where other mobile bodies such as human beings or robots may also
be moving. A stereo rig mounted on the mobile vehicle provides a sequence of 3D maps of the
environment. The current stereo system is trinocular (Ayache and Lustman, 1987), and the 3D
tokens we are using are line segments produced by significant intensity discontinuities in the images.
Although the framework to solve the motion tracking problem developed in this paper arises in
this specific context, we believe it should be applicable in other contexts; in particular we could
use other 3D primitives, for example, points, combinations of points and lines, curves.

The situation is illustrated in Figure 1. The static environment is represented by cross-hatched
regions. Only one moving object is drawn, represented by a square. The mobile robot is rep-
resented by a frame of reference, which is the one of the stereo system. This reference frame is
attached to the mobile robot and its numerical parameters are determined in the camera calibra-
tion phase (Faugeras and Toscani, 1986). In the figure, the object undergoes a general motion from
right to left, and the robot moves from left to right. We want to solve the following problems:

1. Find the positions of static and moving objects in each stereo frame,

2. Determine the motion of the robot as well as those of the moving objects with respect to the
static environment.

As stated earlier, in order to resolve these issues we have to handle problems in dynamic scene
analysis such as occlusion, appearance, disappearance, and absence of features.

Those problems can be solved at the level of ob jects: object tracking, or at the level of features
which constitute objects: token tracking. In the object tracking approach, the scene must first
be segmented into objects, which in general requires high-level knowledge about the characteristics
of objects such as rigidity and geometry (planar world). This approach is in general difficult. In
some special cases, such as Radar imagery and in the experiment reported in (Gordon, 1989) using
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tennis balls, objects can be easily detected and can be replaced by points (usually their centers of
gravity). In the token tracking approach, no such knowledge is required and the tracking process
can be carried out in parallel for each token. For this reason and also for the followings, we track
3D line segments instead of 3D objects:

e Objects can be later identified by grouping line segments with similar motion,

o After tracking individual line segments, one can detect multiple moving ob jects, articulated
objects or even deformable objects based on common motion characteristics. '

Because of this, the hypothesis which assumes that ob jects are moving rigidly can be somewhat
relaxed in the analysis of long sequences.

3 A Framework to Solve the Motion Tracking Problem

To clarify the presentation, we call the 3D line segments being tracked the tokens and the currently
observed 3D line segments the scene tokens.

3.1 Outline of the Motion Tracking Algorithm

Our motion tracking algorithm consists of two levels (see Figure 2). In the figure, single arrows
represent data flow, and the double arrow represents the flow of control.

— Supervisor
l Prediction [e
l ity
VI
LRI - : N : K. to
: 5 VR Ty inematic
+ Frame i E— E o E ' Frame ¢ ! Parameter
e - ' & S ' Updating
X | ;
+ T
i Token
L Tracking Team ! 1(3 ! Matching
' ]
' ]
| SRS |

) . . . . Block Diagram of the Token Track-
Fig. 2: An Architecture for Motion Tracking Fig. 3: ing Algorithm

The low level is called the tracking team. A token being tracked can be considered as one
of the team members. As we discussed earlier, the token tracking process uses a model of the
3D kinematics, instead of a model of the evolution of the token parameters. A token is then
characterized by its position and. orientation in the current frame, its kinematic parameters, and a
positive number called support. The support indicates the degree of support for the existence of
the token, which will be described in section 9.

When a new frame is acquired, each token being tracked “searches” the whole frame for a
correspondence. The search space can be considerably reduced by using a kinematic model and
information from previous frames: before the new frame is available, one can predict the occurrence




of each token in the new frame based on the kinematic model. When the new frame is obtained,
one only needs to look for scene tokens in the neighborhood of the predicted position.

When a match is found, the parameters of the token kinematic model are updated, the position
parameters are replaced by those of its match*, and the support parameter is also updated. The
prediction and update of the position and kinematic parameters are done by using an Extended
Kalman Filter. The matching process is based on the Mahalanobis distance. Due to occlusion
or absence of some scene tokens in the current frame, a token may not find any match in the
neighborhood of its predicted position in the current frame. Of course, this phenomenon may also
occur due to the disappearance of the token. To handle the occlusion and absence of scene tokens,
it is necessary to hypothesize the existence of the token and continue to change its kinematic
parameters according to the kinematic model and update its support.

Figure 3 shows the block diagram of the algorithm, and the details will be described in the
following sections. As we can observe, the above process can be performed independently for each
token to be tracked, and this allows a completely parallel implementation.

The high level is called the supervisor. It has three main functions:

o Grouping tokens with similar kinematic parameters as a single ob ject. If there exist multiple
moving objects, they can be segmented on the grounds that they undergo different motions.
We describe later the details about how to group tokens.

e Monitoring the tracking team by detecting the following events:

1. Appearances: When a new token appears, i.e., when a scene token in the current
frame cannot be matched with any token being tracked, then the supervisor activates
an additional token in the tracking team. This new token starts the same process as the
others.

2. False matches: When a token loses the support of its existence (see Section 9), the
supervisor then deactivates this token. Usually such tokens have been activated due
to false matching in the previous frames. In a parallel implementation, the processor
occupied by this token would be freed, and could be used by some new token.

3. Disappearances: When a token moves out of the field of view, the supervisor deacti-
vates this token. We can easily determine whether a tracked token is out of the field of
view by projecting it onto one of the camera planes. Just as in the previous case, in a
parallel implementation, the processor occupied by this token would be freed, and could
be reutilized.

4. Multiple matches: A token being tracked may find multiple matches in the current
frame with a criterion defined a priori (the Mahalanobis distance, for example), espe-
cially when there are several scene tokens which are near to each other. A common way
to solve this problem is to choose the scene token which is the nearest to the predicted po-
sition (best-first search), as in (Crowley et al., 1988; Deriche and Faugeras, 1990). This
may lead to unpredictable results. A more robust approach is to keep tracking the token
using several nearest scene tokens in the current frame; thus a token can be split. This
approach can be called beam search. In our implementation, we choose the two nearest
scene tokens to the predicted position in the sense of the Mahalanobis distance (see

*One can also update the position parameters by modifying a little the state vector in the formulation of Section 7.
The computation will be more expensive, as the complexity of EKF is O(ns), where n is the dimension of the state

vector.




Section 8), if their distances are both less than some threshold. The token updates its
kinematic parameters by incorporating the nearest scene token. If the second nearest
scene token exists, then the token reports it to the supervisor. The supervisor acti-
vates an additional token by integrating the original token and the matched one. The
beam search strategy is utilized in other research fields, such as in the HARPY speech
understanding system (Lowerre and Reddy, 1980). This strategy has been found to be
efficient as well as robust.

5. About changes: A potential capacity of the supervisor to monitor the tracking team
is to detect abrupt changes in the motion of a token due, for example, to collision, and
to reinitialize its kinematic parameters.

e Providing information to other components of the global system. For example, in an active
tracking application, one may need to control the motion of the robot or adjust the camera
parameters to adapt the changing situation based on the information provided by the motion
tracking algorithm. The information may include the kinematics of the robot (ego-motion)
and the kinematics and relative positions of the moving objects.

3.2 A pedagogical example

Figure 4 shows an example of how the tracking team works. At ty, token 1 is split in two (token 1
and token 1') due to ambiguous matches. At t3, token 1’ cannot find a correspondence in the current
frame, and it makes an hypothetical extension to cope with the occlusion problem. But because
too many such hypothetical extensions are made consecutively, it loses its support for existence at
ts and is then deactivated. At ts, token 1 cannot find its correspondence in the current frame, and
it makes an hypothetical extension. It finds its correspondence at tg. Thus the occlusion problem
is handled gracefully.

hypothetical ———— 4 ]
extension "o .- deactivated

N
Lo
5
........ 17
e
1
split occlusion

Fig. 4: An example of motion tracking




4 Representation of 3D Line Segments

Our stereo system reconstructs a set of 3D line segments about its environment. These segments
may correspond to the contours of objects, to shadows or to region markings. Line segments
addressed here are oriented thanks to the intensity contrast. In this section, we propose a new
representation for a line segment which we think is well adapted for the task at hand.

4.1 Motivation

It is a consensus among many researchers in the field that uncertainty should be ezplicitly repre-
sented and manipulated in computer vision and robotics applications (Ayache and Faugeras, 1989;
Durrant-Whyte, 1988). We can think of uncertainty as follows. Let us model the features as ran-
dom and consider their probability density functions. In practice those functions are very hard to
estimate and one is usually satisfied with the first few moments, usually the first two, the mean
vector and the covariance matrix. This does not imply that the features are modeled as Gaussian
but only that we neglect their higher order moments. The question of whether this poses problems,
for example with the Kalman filter, is answered in Section 6.

A related question is the following. Suppose that we have a random feature vector x with mean
Xp and covariance matrix Ax to which we apply a nonlinear function f to produce a new random
feature y. The question is to compute the mean and covariance matrix of y. One way to do this is
to compute the Taylor series expansion of f in the vicinity of xo. If we perform this expansion up
to the second order, we obtain:

y = f(x) = f(x0) + £'(X0)(x — %0) + O(||x ~ Xol|*)
This shows that, up to the first order, we have:
E(y) = (x0) = 1(E(x))

and
Ay = E(y - E))(y — E(y))T] = '(x0)Axf'(x0)” (1)

Of course these may be poor approximations if the second order term is not negligible. For example,
up to the third order, the mean is given by':

E(y) = f(z0) + 3/"(20)0

This formula clearly shows that the fact that the second order term can or cannot be neglected
depends upon both the magnitude of the second order derivative of f and of the variance of z.

In this paper, we assume that the first order approximation is sufficient either because the
second order derivatives are small compared to the first order derivatives, or because the second
order moments are small, or both.

A line segment is usually represented by its endpoints M; and M;, which require 6 parameters,
and their covariance matrices A; and A2. A; and A2 are estimated by stereo triangulation from point
correspondences (Ayache, 1988). Equivalently, a line segment can be represented by its direction
vector v, its length [, and its midpoint M, and their covariance matrices.

tFor simplicity, we assume that x and y are scalar.
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But we cannot directly use these parameters in most cases. As explained in section 4.2.2, the
endpoints or the midpoint of a segment are not reliable. Thus, instead of the line segment, the
infinite line supporting the segment is usually used, as in (Kim and Aggarwal, 1987). In an earlier
version of our algorithm for motion analysis of two stereo views (Ayache and Faugeras, 1987a;
Faugeras et al., 1988a; Zhang et al., 1988), a line segment is treated in a mixed way. The infinite
supporting line is used in estimating motion and the line segment is used in matching.

Many representations have been proposed in the literature for a line segment
(Ayache and Faugeras, 1987b; Roberts, 1988). The main problem is that the uncertainty on
the line parameterization does not reflect that of the segment which the line supports
(see (Zhang, 1990) for more details). A segment with big uncertainty may yield a small uncertainty
in the line parametrization, for example, if its uncertainty is in the direction of the line.

4.2 Our Representation

Because of the deficiencies of the previous representations for a line or a line segment, we use a
five parameter representation for a line segment: two for the orientation, three for the position of a
segment. This is a trade-off between an infinite line and a line segment. If we add the length, a line
segment can then be fully specified. Special attention is given to the representation of uncertainty.

4.2.1 Representing the orientation by its Euler angles ¢ and ¢

Let us consider the spherical coordinates. Let u = [u, uy, u,]’ be a unit vector of orientation, we
have:

uy = cos¢sind
uy, = sin¢sind (2)
u, = cosl

with0< o <2r, 0<8<L .
From u, we can compute ¢, 6:

arccos 7-=&=" ifu, >0
¢ _ { 1-u2 v =
- 2T — arccos 7:-&-“ otherwise 3
f = arccosu,.

If we denote [¢, 6] by 1, then the mapping between ¥ and u is 1-to-1, except when 8 = 0.
When 6 = 0, ¢ is not defined. This will show in the covariance matrix of 9 as a very large entry for
the variance of ¢, indicating that the ¢-measurement cannot be trusted very much (Zhang, 1990).

Another problem with this representation is the discontinuity in ¢ when a segment is nearly
parallel to the plane y = 0. In that case, the angle ¢ may jump from the interval [0, 7/2) to
the interval (37/2, 27), or vice versa. This discontinuity must be dealt with in matching and
integration.

In the following, we assume that the direction vector v = [z, y, z]* and its covariance matrix
Ay of a given segment are known. We want to compute 4 and its covariance matrix A1/’ from v
and Ay. ¢ and 8 are simply given by:

s { arccosvx-i? ify>0

I

T — s i
2w — arcco oy otherwise (4)
0 arccos 7———‘ .
1‘2+y2+22
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Since the relation between v and v is not linear, we use the first order approximation of equation
1 to compute the covariance matrix A¢, from Ay. That is

oy oyt
Ay = 3v ey (5)
3¢ 94 8
where the Jacobian matrix %3‘@ = [ g% ?;2 gg ] .
dr Jy Tz

4.2.2 Modeling the midpoint of a 3D line segment

We choose the midpoint as the three parameters to localize a segment, but a special treatment on
the covariance is introduced to characterize the uncertainty in the location of a segment.

The reason for this is that the way the uncertainty of the endpoints of a three-dimensional seg-
ment is computed takes only into account the uncertainty of the pixel coordinates due to the edge de-
tection process and the uncertainty of the calibration of the stereo rig (Ayache and Faugeras, 1989).
But it does not take into account the uncertainty due to the variations in the different images of
the stereo triplet of the polygonal approximations of corresponding contours. There are two main
sources for these variations.

The first is purely algorithmic: because of noise in the images and because we sometimes
approximate significantly curved contours with line segments, the polygonal approximation may
vary from frame to frame inducing a variation in the segments endpoints which has not been
accounted for. The second is physical: because of partial occlusion in the scene, a segment can be
considerably shortened or lengthened and this has also to be taken into account in the modeling of
uncertainty.

In an attempt to cope with all this, we model the midpoint m of a segment M, A, as:

m =M + nu, (6)

where M = (M; + M2)/2, u is the unit direction vector of the segment and n is a random scalar.
Equation 6 says in fact that the midpoint has some extra uncertainty attached to it. It may vary
randomly along the line supporting it in successive views.

The random variable n in Equation 6 is modeled as zero-mean with deviation o,, a positive
scalar. If a segment is reliable, 0,, may be chosen to be a small number; if not, it may be chosen to
be a big number. In our implementation, o, is related to the length ! of the segment, i.e., 0, = &l,
where k is some constant. That is to say that the longer a segment is, the bigger the deviation oy,
is. That is reasonable since a long segment is much likely to be broken into smaller segments in
other views. In our experiments, K = 0.2.

In order to compute the covariance of m, we should first compute u and Ay. The unit direction
vector u and its covariance Ay can be computed from a non-normalized direction vector v and its
covariance matrix Ay from equation 1. Indeed, we have

v du, Ju’
'Il_v'”, Au -_ 5;AV5; y (7)

where 2% is a 3 x 3 matrix (§2 = ﬂl\éﬂ - ﬁ‘g‘) Note that the covariance matrix Ay is singular (the

u=

determinant is zero). This is due to the fact that the three components of u are not independent
since ||u|| = 1.
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At this point, the covariance of m can be computed. We start with the covariance of nu. Since
n and u are independent of each other, we have

E[nu] = E[r]E[u] = 0, (8)
Anu = E[(nu)(nu)’] = E[n’|E[un’] = o (Au + 0W'), (9)

where @t = E[u]. Now we have:
E[m] = E[M] + E[nu] = E[M]

and:
Am = E[(m—E[m])(m - E[m])’] = E[(M - E[M])(M - E[M])'] + E[(nu)(nu)'] + E[n(M - E[M])u’]
Since n is independent of M and u and has zero-mean, the last two terms are equal to 0 and

Am =AM + Apu
We consider that M; and M; are independent, therefore

Ap = (A1 4+ A2)/4

and this completes the computation of Aps, up to the first order.

If we add another parameter ! to denote the length of the segment, we can then represent
exactly a line segment. This ends our modeling of a line segment See (Zhang and Faugeras, 1990a;
Zhang, 1990) for more details.

5 Kinematic Model

A common approach to model the motion kinematics is to divide the motion into two parts: a
rotation about a point (called the center of rotation) and a translation of the center of rotation.
The rotation is often assumed to be constant angular velocity or constant precession. The trajec-
tory of the rotation center is assumed to be well approximated by the first k£ terms of a polyno-
mial (k > 0). See (Broida and Chellappa, 1986; Broida and Chellappa, 1989; Weng et al., 1987;
Young and Chellappa, 1988) for such a modelling. We show in (Zhang, 1990) that in case of
constant angular velocity, that modelling is a special case of the one described in this section.
In (Webb and Aggarwal, 1982), the fized azis assumption is used to recover the 3D structure of
moving rigid and jointed objects from several single camera views. The fixed axis assumption is
stated as follows: Every rigid object movement consists of a translation plus a rotation about an
axis that is fixed in direction for short periods of time. In this section, we describe the well-known
model of classical rigid bodies kinematics and then derive the closed-form solutions for some special
motions.

5.1 The Classical Kinematic Model

Given a Cartesian system of reference Oryz for rigid bodies in which a rigid body is in motion.
Choose a point on the solid, noted by P. Consider any point M of the solid, then its velocity vas
is the sum of the velocity vp of the point P and the rotation around the point P (see Figure 5),
that is

vam(t) = vp(t) + w(t) x PM, (10)
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Fig. 5: Illustration of the classical kinematics for rigid bodies

where w(t) is called the angular velocity, and x denotes the cross product of two vectors.
The above equation is true for any point P. For simplicity, we choose the origin as the point
P, ie, P =0, and we have the kinematic model as following:

vm(t) = v(t) + w(t) x OM. (11)

The kinematics of any point M of the body is completely characterized by v(t), the velocity of the
point of the solid coinciding with the origin of the reference system, and w(t), the angular velocity
of the point M around the origin. The pair (w(t),v(t)) is called the kinematic screw of the solid.

Let us replace OM in Equation 11 by p(t), and vas(t) by p(t), where p(t) denotes the time
derivative of p(t), i.e., é%%ﬂ. For the sake of clarity, we write the time as a subscript. For instance,

p(t) is written as p;. If we denote by ¥ the antisymmetric matrix associated with v. = [vy, vz, vs}’,
i.e.,
0 —v3 V2
vV = V3 0 - s (12)
—V2 m 0

then we have v x u = Vu. Equation 11 can therefore be rewritten as a first order differential
equation in py:

Pt = wipt + Vi (13)

It is very difficult to get the solution of Equation 13 for a general motion. In the appendix of

this paper, we show that a closed form can be obtained if the angular velocity is constant and the

translational velocity is described by a polynomial of degree n (n > 0). We give in the following
section the closed form of the kinematic models for two special motions.
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5.2 Closed-form Solutions for Two Special Motions

In the case of constant.angular and translational velocities, we have a simple closed-form of the
solution (Theorem 1). Let w; = w and vy = v.-

Theorem 1: Trajectory in the case of constant angular and translational velocities

The trajectory of a point p; given by Equation 13 is given, in the case of
constant angular velocity w and translational velocity v, as:

Pt =Wpo+Vy, (14)
where
i - AL
W o= L+ sm(ZAt)a 4 1 c;sz( A )&32’ (15)
1 — cos(fAt) . O0At —sin(6AL) _
V = LiAt+ 02( )w + e ( )wz, (16)

and § = ||w||, At =t - to, I3 is the 3 X 3 identity matrix, and po = ps,. O

See the appendix for the proof. From Theorem 1, we can observe that when w = 0 (i.e., pure
translation), then
Pt = Po + V(t — to). (17)
This is the well-known equation for a point moving on a straight line with constant velocity.
When angular velocity and translational acceleration are constant, we have the following equa-
tions:
w = w
Vi = Vv ’+ a(t — tp), (18)
where w denotes the constant angular velocity, v denotes the translational velocity at ¢t = to, and

a denotes the constant translational acceleration. The trajectory of a point in this case is defined
by the following theorem:

Theorem 2: Trajectory with constant angular velocity and translational acceleration

The trajectory of a point p, given by Equation 13 is given, in the case of
constant angular velocity w and constant translational acceleration a, as:

pt = Wpo+ Vv + Aa, (19)
where W is the same as in Equation 15,V is the same as in Equation 16, and

At? 6At —sin(dAt) . (0AL)?2 — 2(1 — cos(0AL)) _,
A = I
L+ 3 & g @2,

and 6 = ||lw||, At =t — tp and I3 is the 3 X 3 identity matrix. O

(20)

See the appendix for the proof. From Theorem 2, we observe that when w = 0 (i.e., pure
translation), then
(t—10)?

p: = Po+v(t~to)+aT. (21)

This is the well-known equation for a point moving on a straight line with constant acceleration.
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6 Extended Kalman Filter

In this section, we adapt the Extended Kalman Filter (EKF) (Maybeck, 1982) formulation to our
problem. It will then be used in the next section to solve our motion tracking problem. For more
details, the reader is referred to (Maybeck, 1979; Maybeck, 1982).

In practice, the individual state variables of a dynamic system cannot be determined exactly by
direct measurements; instead, we usually find that the measurements that we make are functions
of the state variables and that these measurements are corrupted by random noise. The system
itself may also be subjected to random disturbances. We want to estimate the state variables from
the noisy observations. '

If we denote the state vector by s and denote the measurement vector by x, a dynamic system
(in discrete-time form) can be described by

Si+1 = hg(S,’) +n;, 1=0,1,---, (22)
fi(xi,s;) = 0, 1=0,1,--.. (23)

Equation 22 is the state equation, and Equation 23 the measurement equation. In Equation 22, n;
is the vector of random disturbance of the dynamic system and is usually modeled as white noise:

E[n;]=0 and E[n,'n;] = 6;;Q;-

Where 6;; = 1 if ¢ = j and 0 otherwise is the Kronecker symbol. The measurement X; is corrupted
by additive random noise, that is

E[x;] =%; and E[(x; - )‘c;)(x; - )'(,')t] = Ax...

We assume also that there is no correlation between the noise process of the system and that of
the observation, that is
E[(x; — %;)nf] = 0.

When h; and f; are linear functions, we write s;4; = H;s; + n; and x; = F;s;, and the standard
Kalman filter (Maybeck, 1979) is directly applicable.

The performances of the Kalman filter in the linear case have been completely characterized as,
for example, in (Maybeck, 1979). If we assume that the n; and the x; are Gaussian then, among
all possible estimators, the Kalman filter provides the one with minimum variance, i.e., which
minimizes

E((si - 8)!(si - 8)]
If we do not assume Gaussianness, among all possible linear estimators (those which are computed
as linear functions of the measurements), the Kalman filter also computes the one with minimum
variance. Note that in this case there may exist nonlinear estimators that yield better results, i.e
a smaller variance.

In that sense, in the case of linear state and measurement equations, the Gaussian assumption
is unnecessary.

If h,(s;) is not linear or if a linear relationship between x; and s; does not exist, the so-called
eztended Kalman filter (EKF) can be applied. The EKF approach is to apply the standard Kalman
filter (for linear systems) to nonlinear systems with additive white noise by continually updating
a linearization around the previous state estimate, starting with an initial guess. In other words,
we only consider linear Taylor approximations of the state equation at the previous state estimate
and of the measurement equation at the corresponding predicted state. This approach gives a
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The relation between s and x described by Equation 29 is not linear. In order to apply the
EKF algorithm, it is necessary to compute the derivatives of f(x,s) with respect to s and x. It is
easy to show that

af,
el (30)
Js =%V A
of; B
L R (31)
Ix 0 W 0 -I
where
of 99 d(Wuy)
dw — Bu] fw
o _ 8(Wm1)+8(Vv)+8(Aa)
ow ow Ow 0w ’
o _ 8y, 0h
9¢, Ouj 9,

. _ ' I} 3h
with u; = h(%,;) and uj = Wu, . 3-5;- can be computed from Formula 3. 2, 20 be computed
from Formula 2. Since ﬂ%ﬂ has the same formula as ?-(%u%), we then only need to compute

) L) 10 2

After some simple computations, we get:

o(Wu)  sin(6At).  OAtcos(§At) —sin(AL) ¢
dw T T8 7 3 (Guje
4 6At sin(6AL) —03(1 - cos(OAt))(&(&u))wt
+1_+82(0At_). [_3(1 + (w . u)Is - uwt] , (32)
oVv) 1 —cos(8At) .  8Atsin(8AL) — 2(1 — cos(BAL)) , ¢
AN 5 (@v)w
+ 3sin(8At) — 03:(2 + cos(GAt))(G’(a’v))w,
+‘W+;“("AQ [-5v + (@ V)L - veo!], (33)
J(A At —sin(8AL).. 3sin(fAt) — A2 + 0AL)) , .
(An) _ _pat-sinBa), , 3uin(00) - 0N+ coxBA0)
2 .
+4(1 — cos(fAt)) — (zeAt) - 0At sm(OAt)(a’(aa))w,
+(0At)2 — 2(2104— COS(OAt)) [_(3’8 + (w . 8)13 _ awt] . (34)

where w - u denotes the inner product of the two vectors w and u.
When a token matches a segment in the current frame, we use the above formalism to update
its kinematic parameters. The same process is applied to each token.

19




8 Matching Segments

In this section, we describe how to match a token being tracked to a segment in the current frame.
The matching technique is based on the Mahalanobis distance, which can be considered as an
Euclidean distance in parameter space weighted by uncertainty.

8.1 Prediction of a Token

Let z = [¢', m'])' be the parameter vector of the token being tracked. The token kinematic

., ~ AP
t, al]'. We can use them to predict its parameter vector Z = [¢p , W']' at the

{ b = g(Wh(¥)), (35)

parameters are [w!, v
next time instant:

_—~—

m = Wm+ Vv + Aa,

where the functions g and h are defined as in Equation 28 in Section 7. Due to noise from multiple

- . . ~ St
sources, it is very unlikely that a segment can be found with exactly the parameters zZ = [¢ , m!}*
and we have to design a matching strategy.

8.2 Matching Criterion

Let {---, [#!, m], ---} be the set of observed segments in the scene and [fl\at, m']* be the ex-
pected segment. All segments have their measures of uncertainty attached (covariance matrices):
{--+, Aj, ---} and Aiogen- Atoken is the covariance matrix of the predicted parameters z = [1,7)‘, m')t
of the token being tracked, whose computation is given below. The Mahalanobis distance between
the expected segment to each segment in the current frame is then given by

dM = riAf!r;, (36)

where

ry = [‘d’i—i]a
m; — m

Ar, = Ai+ Atoken-

The variable dM is a scalar random variable following a x? distribution with 5 degrees of freedom.

By looking up the x? distribution table, we can choose an appropriate threshold ¢ on the
Mahalanobis distance. For example, we can take ¢ = 11.07 which corresponds to a probability of
95% to have the distance dM less than e if the match is correct. Thus segments in the current frame
can be considered as plausible matches, if they verify the inequality:

dM < e (37)

Using the above technique, a token may have multiple matches in the current frame. This problem
has been described in Section 3.

Before we compute the Mahalanobis distance (Equation 36), we must take care of the discon-
tinuity of ¢ when a segment is nearly parallel to the plane y = 0 (see section 4). The idea is the
following. If a segment is represented by ¥ = [, 8]!, it is also represented by [¢ — 27, 8]'. Therefore,
when comparing the representations of two segments S and S’, we perform the following tests and
actions. If ¢ < /2 and ¢’ > 37 /2, then set ¢' to be ¢' — 2rx; else if ¢ > 37/2 and ¢’ < 7/2, then
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simple and efficient algorithm to handle a nonlinear model. However, convergence to a reasonable
estimate may not be achieved if the initial guess is poor or if the disturbances are so large that
the linearization is inadequate to describe the system. Contrarily to the linear case, there are no
optimality results for the EKF, but note that the Gaussian assumption is also unnecessary.
The measurement equation f;(x;,s;) = 0 is first linearized to obtain a new measurement equa-
tion
ys = Ms; + v;, (24)

where y; is the new measurement vector, v; is the noise vector of the new measurement, and M; is
the linearized transformation matrix. They are given by

_ Ofi(x, si)
M; = s
o i g g (i i)
yl - ’"ft(xh st) + 35,' sls
E[v;] = o,
. . . . . .t
Blvivi) = ZXos)y ORbu )" gy,

The partial derivatives are evaluated at s; = §;;_; and x; = X;. The extended Kalman filter
equations are given as follows:
Algorithm: Extended Kalman Filter

e State prediction:

Sili-1 = hi(8im1)
e Prediction of the state covariance matrix:
dh; oh;!
Py = —P_1— i
t]i~1 s, 1 las,' + Qi1

¢ Kalman gain matrix:
Ki = Pg yMHM;Py; M} +V;)™}
e Update of the state estimation:
8 = Bjiny + Ki(yi — Mi8yi_1) = 8021 — Kifi(%i, 84ji-1)
o Update of the covariance matrix of states:
P = (I- KiM)Py;_,
e Initialization:
Popp = As, Sop = E[so

7 Formulation of Motion Tracking Problem for EKF Approach

In this section, we formulate the motion tracking problem in such a way that we can apply the
extended Kalman filter formulation of the preceding section. The token is assumed to undergo a
motion with constant angular velocity and constant translational acceleration (see Theorem 2). We
are given a sequence of stereo frames taken at tg, ¢y, ---, t;_1, ¢, -+ -, such that the interval between
t;_1 and t; is constant and is denoted by At.
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7.1 State Transition Equation

Let the angular velocity at time ¢; be w;, the translational velocity v; and the translational accel-
eration a;. Define the state vector as

8; = [w,~ Vi a;]‘. (25)

The state transition equation can be written as:

si = Hsi_1 + n;_, (26)
where
I, O 0
H = 0 Iz LAt
0 o0 I

We then replace %%—L in the EKF Algorithm by H, since the transition function is linear. The n;_,
in Equation 26 is the random disturbance, with

Eln;_1]=0 and An,_, = Qi_1.

n; is used first to model noise due to, for example, vibration of objects during motion. But our
constant acceleration kinematic model is also in general only an approximation. By adding n;_;
in the dynamic model, we can partially take the approximation error into account.

7.2 Measurement Equations

As described in Section 4, a segment S is represented by ¥ and m and their covariance matrices.
Suppose a match {S7, S2} is given, where Sy occurs at time ¢;_; and S; at time ¢;. We define the
measurement vector as

x = [$] m} ¥5 my]". (27)
From Theorem 2, we have the following equation:

mo = Wm1 + VV+ Aa.

Let u; be the unit direction vector of segment S; and u, that of segment S;. We have the following
relation:
U = Wll].

If we define two functions g and A to relate ¥ and u together (see Equations 2 and 3) so that
¥=g(u) and u=h(y), (28)
then we have the following measurement equation

fs) = | L I ABD - P o (29)

This is a 5-dimensional vector equation. In the following, the first two elements in f(x,s) are
denoted by f; and the last three elements by f5.
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set ¢ to be ¢ — 27; else do nothing. Notice that adding a constant to a random variable does not
affect its covariance matrix.

Note that the fact that ¢ is discontinuous is only an artifact of the representation used. The
right way to avoid this kind of problems is to use the notions of manifold and maps (Faugeras, 1991)
which are outside the scope of this paper.

Now we return to the problem of computing Aioken. Given the original parameters of the token
[¥*, m!]’ and their covariance matrix A(p,m)> and given the kinematic parameters [w?, v, al]t
and their covariance matrix Ay v a)- Ung)er the first order approximation, the covariance matrix
of the expected segment is given by

Atoken = J(‘w,m)A(’lf},m)J(t'lj},m) + J(w,v,a)A(w,v.a)J(tw,v,ar (38)

From Equation 35, the Jacobian matrix with respect to [%f, m']! is

dg .., Oh
—W— 0
Japm) = [ o’ o L w ] ; (39)
and the Jacobian matrix with respect to [w!, vt a']! is
9g 8(Wu) 0 0
J — oun’ Ow (40)
(w,v.a) d(Wm) d(Vv) 9(Aa) '
+ + V A
Oow 0w Ow

where u = h(%) and u' = Wh(). All derivatives in the above equations are computed as in
Section 7.

8.3 Reducing the Complexity by Bucketing Technique

Although the complexity of matching one segment is linear in the number of segments present in
the current frame, the matching process may be slow, especially when there is a large number of
segments. This is because the computation of the Mahalanobis distance is relatively expensive (it
involves the inversion of a 5 x 5 matrix). If we can compute the distances dM of the expected
segment to only a subset of segments which are near the expected one, we can considerably speed
up the matching process; this can be achieved by the use of bucketing techniques. which are
now standard in Computational Geometry (Preparata and Shamos, 1986).

We can apply the bucketing techniques either in 3D space or in 2D space. Bucketing in the
image plane of one camera is preferred because it is cheaper. The image plane is partitioned into
m? square windows (buckets) W;; (in our implementation, m = 16). To each window W;; we
attach the list of segments {S;} intersecting W;;. The key idea of bucketing is that on the average
the number of segments intersecting a bucket is much smaller, and in practice constant, than the
total number of segments in the frame (see for example (Faugeras et al., 1990) for details). Given a
predicted token to be matched, we first compute the buckets which the disk defined by the predicted
segment intersects. The disk is defined as follows: its center coincides with the midpoint of the
predicted segment and its diameter equals its length plus a number corresponding to the projected
uncertainty of its midpoint. Again, the idea is that, on the average, this disk will intersect a small
number of buckets, except for a token which just appeared. Since we initialize such a token with a
big uncertainty in motion, its corresponding disk is quite big and may intersect many buckets. The
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Fig. 6: Bucketing technique

set of potential matching candidates is then the union of the lists of segments intersecting these
buckets. This set is now considerably reduced, on the average. Figure 6 illustrates the bucketing
technique. In the figure, T is the expected segment. Thanks to the bucketing technique, it finds 4
potential matching candidates {S, Sz, S3, S4} instead of 9 in total. After computing the matching
criterion described in the above section, there remain only two candidates S3 and S4. Note that
the computation of buckets can be performed very quickly by an algorithm whose complexity is
linear in the number of segments in the current frame.

9 Support of Existence

In this section we describe in detail how the beam search strategy sketched in section 2 makes
tracking much more robust by allowing multiple matches.

Indeed, in practice, a token being tracked may find several correspondences in the current
frame. The most common strategy is to choose the nearest segment as in (Crowley et al., 1988;
Deriche and Faugeras, 1990) and to discard the other possibilities.

Our implementa-
tion is based on the work of Bar-Shalom and Fortmann (Bar-Shalom and Fortmann, 1988) and
is much less sensitive to false matches. The idea is to keep open the possibility of accepting several
or no matches for any given token. But, if tokens never disappear we may rapidly reach a compu-
tational explosion. To avoid this we compute for each token a number that we call its support of
existence which measures the adequateness of the token with the measurements: if the token has
not found any correspondences in a long time then it is bound either to be the result of a false
match that happened in the past or to have disappeared from the scene.

We use the notations of Section 8 and denote the sequence of measurements corresponding to
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the token being tracked up to time t; as Z¥ 2 {z(t1),---,2(tx)} in which z(t;) = [#'(t:), m*(2)]* is
the parameter vector of the segment observed at time ¢;. Denote the event that Z* yields a correct
token, i.e., that its components z(t;) were produced by the same segment moving in space, by

e £ {ZF yields a correct token}. The likelihood function of this sequence yielding a correct token
is the joint probability density function (or PDF):

L¥(e) = p(Z*|e) = plz(t1),- -, 2(tk)le]- (41)
From the definition of a conditional PDF, L*(e) can be written as
I*e) = plZ*,2(ti)le] = pla(te)| 2% €] p[Z57 €]

k
Hp[z(t;)|Z"‘l,e], (42)

i=1

where Z° represents the prior information.

As in Section 8, we denote the measurement residual as r, ie., r; = z(t;) — Z(¢;). Then
p(ri) = N[ri;0,Ar,] with Ar, = Ai + Aoken- We use N[x;%,A] to denote the Gaussian density
function of the random variable x with mean X and covariance A. We now make the admittedly
strong assumption that the r; are Gaussian and uncorrelated. We thus write:

plz(t)| 2, €] = N[ri; 0, Ar,]. (43)

It follows that under the previous assumption:

k

k
L*(e) = [H |27rA,-..|'1/2] exp [—:‘12- erA;'.lr.] .
=1

=1

Note that riAg'r; = dM (see Equation 36). The modified log-likelihood function, corresponding to
the exponent of L¥(e), is defined as

k k
l £ -2ln [L"(@/lemr.r‘/’] = SdM

=1
and can be computed recursively as follows:
k=l + diw-

The last term has a x? distribution with n, = 5 degrees of freedom. Since the ry are assumed to
be independent, [, has a x? distribution with kn, degrees of freedom.
The statistical test for deciding that Z* yields a correct token is that the log-likelihood function
satisfies
L <, (44)

where the threshold k is obtained from the x? table with kn, degrees of freedom by setting
Pr(x*c,, < k) = a, where « is typically equal to 95%.

In practice, the test (44) cannot be used for long sequences because the likelihood function is
dominated by old measurements and responds very slowly to recent ones. In order to limit the
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“memory” of system, we can multiply the likelihood function at each step by a discount factor
¢ < 1. This results in the fading-memory likelihood function:

k
= clyy +d)f =3 FaM.
i=1

The effective memory of I; is now (1 — ¢)~!, and in steady state l; is approximately a x? random
variable with n,(1 + ¢)/(1 — ¢) degrees of freedom, mean n,/(1 — ¢), and variance 2n,/(1 — c?).
See (Bar-Shalom and Fortmann, 1988) for the proof. In our implementation, ¢ = 0.75.
In the above discussion, we assume implicitly that a match is detected at each sampling time.
As described earlier, match detection may fail from time to time for a number of reasons. In these
cases, it means that:
df 2 ¢,

as described in Section 8. Thus, if at time ¢, no match is found, the fit between the prediction and
the observation is not very good. But note that even in that case we may still have [, < k and
the processing of the token will continue. This allows us to cope with problems such as occlusion,
disappearance and absence. Of course if the Mahalanobis distances stay over the threshold ¢ at
too many consecutive time instants, i.e., if the token does not find any good match in the scene
too often, then I, will go beyond the threshold «, and the token will be discarded, as expected. In
practice we set dfc" = o€ where « = 1.2 in our implementation.

10 Grouping Tokens into Objects

In the previous sections, we have described how to track each token and estimate its kinematic
parameters in parallel. In this section, we address the following problem: how can the supervisor
group tokens into objects based on their kinematic parameters?

We assume that moving objects in the scene are rigid. From Section 5, we know that each token
belonging to a rigid object must have the same kinematic parameters with respect to a common
point. In our algorithm, the kinematic parameters of all tokens are computed with respect to the
same point—the origin of the system of reference. We can then define an object as follows: an
object is a set of tokens with the same kinematic parameters. Under this definition, two different
objects are grouped as a single one if they undergo the same motion.

Of course, the estimated kinematic parameters are uncertain, and have attached to them an
uncertainty measure — their covariance matrix. One cannot expect to find two tokens having
exactly the same kinematic parameters. The Mahalanobis distance is again used in this case to
measure the discrepancy between kinematic parameters. Given two kinematic parameter vectors
s1 and s and their covariance matrices Ag, and Ag,, their Mahalanobis distance is given by

M = [Sl - SQ]t(Asl + A32 )-1[51 - 52]' (45)

When s = [w, v, a]*, M is a random scalar following a x? distribution with 9 degrees of freedom. By
looking up the x? distribution table, we can choose an appropriate threshold ¢ on the Mahalanobis
distance. For example, we can take ¢ = 16.92 which corresponds to a probability of 95% that the
distance 6M is less than €. Thus two tokens can be considered to belong to the same object, if the
Mahalanobis distance of their kinematic parameters verifies the inequality:

M <. (46)
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If two tokens are identified to belong to a single object by the above test, we can compute a
better estimate s of the kinematic parameters for the object from those attached to each token by
the Kalman filter or simply by the modified Kalman minimum-variance estimator:

s = AFN(AFls1 + Aglsy),

47
AS (As—ll +A;2l —1, ( )

where Ag is the covariance matrix of the new estimate s. We then try to find more tokens compatible
with s and Ag and update them by Equation 47. When all tokens have been processed, we get

e an object with a list of tokens associated with it and its kinematic parameters, and
e a list of tokens not yet attached to an object.

The same process is then performed on the list of tokens non-identified to recover new ob jects,
and so forth, until no more object can be identified. We finally obtain all plausible objects in the
scene.

11 Experimental Results

We have implemented the proposed algorithm on a SUN workstation using the C language. Our
program can display and control interactively the motion tracking process. In this section, we
provide two experimental results with real data to show the performance of our algorithm. Results
with synthetic data has been reported in (Zhang and Faugeras, 1990b). The angular velocity unit is
radians/unit-time, and the translational velocity unit is millimeters/unit-time, except when stated
otherwise.

In each figure shown below, if there are four pictures, the upper left one is the front view of a
3D frame (i.e., its orthographic projection onto a frontoparallel plane), the upper right one is the
top view (i.e., its orthographic projection onto a horizontal plane), and the lower left and right
ones form a stereogram to allow the reader to perceive 3D information by cross-eye fusion. If there
are only two, then they are a pair of stereograms.

11.1 Real Data with Controlled Motion

The data are acquired as follows: the trinocular stereo rig is in front of a rotating table (at about 2.5
meters). The rotating table has two degrees of freedom: vertical translation and rotation around
the vertical. The motion is controlled manually. Boxes are put on the table and will be considered
by the program as an object. The table undergoes a general motion, combination of a rotation
and a translation parallel to the rotation axis. It rotates of 3 degrees (clockwise, if viewed from
the top), and at the same time, translates from bottom to top of 50 millimeters between adjacent
frames. Thus, the motion corresponds exactly to the constant velocity model. There are in fact
three “objects” in the scene (see Figure 7): the second is the static support of the table, and the
third is what is below and attached to the rotating table, and undergoes the same translation but
no rotation.

Ten 3D frames have been acquired for this experiment. Each frame contains about 130 3D
line segments. Figure 8 displays the images taken by the first camera at t; and ¢19. To show the
motion, the first and the second 3D frames are superposed in Figure 9 and the first and the last in
Figure 10, together with a pair of stereograms. We find that the data are very noisy even for the
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Fig. 7: Description of the rotating table undergoing general motion

static object and that occlusion, appearance, disappearance and absence problems are very severe.
We can also observe that the object in translation is not detected until the third frame is taken.

Each segment in the first frame is initialized as a token to be tracked. Since the motion tracking
algorithm is recursive, some a priori information on the kinematics is required. A reasonable as-
sumption may be that objects do not move, as the inter-frame motion is expected to be small. The
kinematic parameters are thus all initialized to zero, but with fairly large uncertainty: the stan-
dard deviation for each angular velocity component is 0.0873 radians/unit-time, and that for each
translational velocity component is 150 millimeters/unit-time. The variances on the acceleration
components are set to zero (no acceleration).

Those tokens are then predicted for the next instant t, and the predicted tokens are compared
with those in the new frame. Of course, since we have assumed no motion, the predicted position
and orientation of each token remains unchanged, but its uncertainty changes and becomes very
large. Thus Figure 9 displays also the difference between the predicted tokens (in solid lines) and
the observed line segments (in dashed lines) at time f;. As expected, multiple matches occur for
most of tokens. Techniques based only on the best match usually fail at this stage, since the
nearest segment is not always the correct match. We retain the two best matches if a token has
multiple matches. The token updates its kinematic parameters using its best match. The supervisor
initializes a new token by combining the token and its second best match which is used to estimate
its kinematic parameters.

We continue the tracking in the same manner. Figure 11 shows the superposition of the pre-
dicted segments for t3 and the observed segments. As can be observed, more active tokens (in
solid lines) exist at this moment: some have been activated due to multiple matches at time t; and
some just entered the field of view. We observe that segments belonging to the object undergoing
general motion coincide well, and so do the segments of the static support. The segments belonging
to the translating object do not coincide well, because they just appeared in the field of view and
no information about their kinematics is available. Figure 12 shows the superposition between the
predicted segments for tjo and the observed segments. Almost all segments are well superposed
except those in the middle part. Those segments correspond to the outline of the rotating table
which is an ellipse. Using line segments to approximate an ellipse is of course difficult, and this
is clearly one of the limitations of our system. One can notice that most of the tokens due to
false matching in the preceding instants have disappeared, because they have lost their supports of
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Fig. 8: The images taken by the first camera at ¢; and £;p

existence.

The supervisor successfully segments the scene into 3 groups of objects based on the information
of the kinematics of each token. In the following, we show the result of the estimated kinematic
parameters of the object undergoing general motion. If we describe the motion in the stereo
coordinate system, the kinematic parameter vector is s = [0.0, 5.236e-02, 0.0, ?, -50, ?7]. The
z and z components of the translational velocity are not known, since because of the calibration
method we have used, the rotation axis (i.e., the axis of the cylinder) is not known in the stereo
coordinate system. We know the y component of the translational velocity because the rotation
axis is parallel to the y axis. Figure 13 shows the variation of the absolute errors in the estimation
of the angular velocity. Figure 14 shows only the error in the estimation of the y component of
the translational velocity. The results are good: after a few (four or five) frames, the error for
the angular velocity is less than 2.5 milliradians/unit-time (compared with 52.36), and the error
for the translational velocity is less than 1.5 millimeters/unit-time (compared with 50). The final
estimation for this object is

§ = [4.291e-04, 5.328¢-02, -7.059e-04, -7.387e+00, -4.951e+01, 3.677e+01]".
The relative error of the angular velocity is 2.36%. The angle between the true and estimated axes
of rotation is 0.9 degrees. Similar results are observed for the other objects. The final motion
estimate corresponding to the translating object is
[3.437e~04, 1.353e-03, ~7.303e-04, —2.009e-01, —4.937e+01, 8.361e-01]",
which should be compared with [0, 0, 0, 0, -50, 0]. The final motion estimate of the static object is
[-2.321e-04, 5.009e—04, 2.981e-04, 2.681e-02, -3.399e-01, 4.799e-01}".

We now show that the position of the axis of the rotating table in the stereo coordinate system
can be computed from the estimated kinematics § and the known nature of the motion. For a point
not on that axis, its trajectory is a helix. For a point on that axis, its trajectory is a straight line.
Let a point on the axis be p. From Equation 11, the velocity of p is given by

Vp =V +wXp.
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Fig. 9: The superposition of the first (in solid lines) and the second (in dashed lines) frames
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Fig. 10: The superposition of the first (in solid lines) and the last (in dashed lines) frames

29



Z. Zhang and O.D. Faugeras. Determining motion from 3D line segments: a comparative study.
Image and Vision Computing, 9(1):10-19, February 1991.

Z. Zhang and O.D. Faugeras. Estimation of displacements from two 3D frames obtained from
stereo. IEEE Trans. Pattern Analysis and Machine Intelligence, September 1991. accepted, to
appear.

Z.Zhang, O.D. Faugeras, and N. Ayache. Analysis of a sequence of stereo scenes conta.ining multiple
moving ob jects using rigidity constraints. In Proc. Second International Conference on Computer
Vision, pages 177-186, IEEE, Tampa, Florida, December 1988.

X. Zhuang and R.M. Haralick. Two view motion analysis. In Proc. IEEE Conf. Computer Vision
and Pattern Recognition, pages 686-690, San Francisco, California, June 1985.

46

Imprimé en France
o . . par .
. I'Institut National de Recherche en Informatique et en Automatique




The superposition of the predicted (in solid lines) and the observed (in dashed lines)
segments at time £;g

Fig. 12:
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Since the rotation is about the axis of the table, the velocity vp of p must be parallel to the rotation
axis w, i.e., w X vp = 0. We thus have

WXV4+wX(wxp)=0. (48)

Equation 48 gives only two independent scalar equations, because the three components of a cross-
product are not linearly independent. It defines the axis of the table. In order to compute a point
on it, we can choose the y component p, of p equal to 0, and compute its z and 2z components:
pr and p,. In this example, we get p, = 677.68 and p, = 131.08. That point is shown at the
intersection of the two bold line segments in the top view of Figure 12, and seems roughly correct.

11.2 Real Data with Uncontrolled Motion

The data described in this section are acquired as follows. The trinocular stereo rig is mounted on
a mobile vehicle, which moves in the laboratory. Objects in the scene are about 2 to 7 meters away
from the mobile vehicle. We have taken 15 stereo views while the vehicle was supposed to undergo
a translation. Figure 15 displays the images taken by the first camera at ¢, and t;5. We have thus
reconstructed 15 3D frames using our stereo system, each containing around 85 line segments.
Ideally, the motion of the vehicle is a pure translation. If described in our stereo coordinate
system, the translation between successive views is about [-25, 0, -98]%, i.e., a displacement of 100
millimeters. However, due to precision of the mechanical system and slipping of the vehicle wheels,
it is naive to believe that the vehicle motion is going to be exactly the requested one. To check
this, we have applied an algorithm developed earlier for computing motion between two 3D frames
((Zhang et al., 1988; Zhang and Faugeras, 1991b)) to every successive 3D views. We have found
that there is a random rotation of about one degree between successive views and a difference in
translation of up to 30 millimeters in z or z direction. To give an idea, we show in Table 1 the z
and z components of the computed motions (the sign is omitted). We can remark that the motion
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Fig. 15: The images taken by the first camera at {; and #;5

realized by the mobile vehicle is not very smooth and does not satisfy either the constant velocity
or the constant acceleration model. This is our ground truth data for checking the performances
of the methods presented in this article.

Table 1: z and z components of the translations between successive views

| views | 1-2[ 2-3]| 3-4] 4-5] 5-6] 6-7] 7-8] 8-9f 9-10{10-11]11-12|12-13|13-14]14-15]
z (mm)[ 30.8]34.8]18.7[24.7] 21.0] 29.5[33.1]26.2] 7.1] 30.7] 9.8] 19.9] 21.1] 254
z (mm)|104.1]85.7{91.1{99.7]107.7]108.7[89.4]95.0{126.8] 97.3] 104.8] 104.3] 103.7| 93.8

We apply the techniques described in this article to the above data. As in the previous ex-
periment, each segment in the first frame is initialized as a token to be tracked. The kinematic
parameters are all initialized to zero, but with fairly large uncertainties: the standard deviation is
0.0873 radians/unit-time for each angular velocity component, and 150 millimeters/unit-time for
each translational velocity component. The variances on the acceleration components are set to zero
(no acceleration). The only difference is that the noise term n;_; in the state equation (Equation 26)
is not zero. We have added at each step a noise with standard deviation 0.5 degrees/unit-time to the
w components and a noise with standard deviation 2 millimeters/unit-time to the v components.

The position and orientation of those tokens are then predicted for the next instant ¢, and the
predicted tokens are compared with those in the new frame. Of course, since no motion is assumed,
the predicted position and orientation of each token remains unchanged, but its uncertainty changes
and becomes very large. Figure 16 displays a stereogram showing the difference between the
predicted tokens (in solid lines) and the observed line segments (in dashed lines) at t,. The reader
can perceive the 3D information by cross-eye fusion. As expected, multiple matches occur for most
of tokens, which are treated in the same way as in the previous experiment.

Figure 17 displays a stereogram showing the superposition of the predicted (in solid lines)
and observed (in dashed lines) segments at t3. As can be observed from the figure, more active
tokens (in solid lines) exist at this moment: some have been activated due to multiple matches

33



%:

A stereogram showing the superposition of the predicted (in solid lines) and observed

Flg. 16: (in dashed lines) segments at i

at time to and some just entered into the field of view. We observe that most of the tokens have
already a good kinematics information since their predictions coincide well with their observations.
Unfortunately, this is not always the case. For example, the motion between the ninth and tenth
views is not coherent with the global motion (see Table 1). Figure 18 displays a stereogram showing
the superposition of the predicted (in solid lines) and observed (in dashed lines) segments at tq.
We can observe a big difference between the prediction and the observation. After several views,
such occasional incoherent motion will be compensated for by the algorithm. Figure 19 displays a
stereogram showing the superposition of the predicted (in solid lines) and observed (in dashed lines)
segments at t;5. Quite a good fitting between the prediction and observation can be observed. The
final estimate of the angular velocity (in radians/unit-time) is [-1.1x10~5, 2.6 x1073, -3.2x1074]".
The final estimate of the translational velocity (in millimeters/unit-time) is [-24.5, -1.25, -97.1}".

The program runs on a SUN 4/60 workstation. The number of active tokens varies between
110 and 155, except in the first view (89 tokens). The average user time for predicting a token
is about 6.7 milliseconds and that for matching and updating a token is about 44.6 milliseconds.
That is, if we implement the algorithm on a parallel machine with the same performance as SUN
4/60, the time required to process two frames is a little more than 50 milliseconds. The average
user time required to group tokens into objects is about 2.5 seconds. In the last view, 90 segments
have been identified as belonging to the static environment.

12 Discussion

In the above discussion about multiple matches we presented the concept of splitting of a token. In
fact, two cases of multiple matches should be distinguished. Figure 20 shows such cases. The token
L is represented by a thick line segment. It has two matches $; and S; (represented by thin line
segments). In the first case, the two matches S; and S, are not collinear. The splitting technique
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Fig. 17:

A stereogram showing the superposition of the predicted (in solid lines) and observed

(in dashed lines) segments at ¢3

-~ aewa

Fig. 18:

A stereogram showing the superposition of the predicted (in solid lines) and observed

(in dashed lines) segments at to

35




A stereogram showing the superposition of the predicted (in solid lines) and observed

Fig. 19: . .
'8 (in dashed lines) segments at #;5

can be applied to handle the problem. That is, the token L is duplicated, one pursuing the tracking
by incorporating S;, and another pursuing the tracking by incorporating S,.

S S1 S
S2 S>
S2
L L L
case 1 case 2

Fig. 20: Two different cases of multiple matches

In the second case, the two matches Sy and S are collinear. Of course, the splitting technique
is still applicable, but we do not want to apply it (see below). A reasonable interpretation is that
S1 and S, are both parts of a single longer segment in space. The segment is broken in two because
of the edge detection process, the line segment fitting process or other reasons. Note that not any
two collinear segments can be interpreted this way. We use the fact that there exists a token, L,
which links S; and S, together because it has been matched to both of them. Based on the above
consideration, we first merge S; and S into a single segment S (see (Zhang and Faugeras, 1990a)
for the merging technique). The token L continues to track by matching S without splitting.

The merging concept is very important. It can avoid the abnormal growth of the number of
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tokens due to splitting. For example, in an extreme case as shown in Figure 21, we have 2 tokens
at t,, 4 tokens at 14, 8 tokens at tg, ....

/
\
1 t

t 2 13 ta ts tg ®°°

Fig. 21: An example to show the importance of merging

13 Conclusion

Our system is based upon three main assumptions. The first one is that the stereo process provides
us with features which are fairly stable over time in the sense that they move rigidly in space. Our
choice of features has been straight line segments which work well if the environment is close to
polyhedral. It is expected that if many curved objects are present the method will break down
unless we choose new features but this is an open area for research.

The second assumption is the approximation of the angular velocity by a constant vector and
the linear velocity by a polynomial of known degree in time (in practice, the degree has been taken
equal to 0 or 1). The goodness of this approximation increases with the time sampling frequency
which is limited by the rate at which we can perform stereo. Currently our hardware for stereo
works at frequencies varying between 1 and 5 Hz depending upon the complexity of the scene.
We have noticed that the use of noise in the state equation was very useful in that it helped
compensating for the systematic modeling errors.

The third assumption is that the Kalman filter and more precisely the extended Kalman filter
can be used to predict the positions and orientations of the straight line segments being tracked.
Even though the assumptions that underlie the use of the Kalman filter are stretched a little in
our case (but we have justified the reasons for our choice in Sections 4 and 6) we have found in our
experiments that we obtained excellent results if the first assumption was well verified.

Several ideas developed in this paper are not completely new, and can be found in the litera-
ture (Roach and Aggarwal, 1979; Hwang, 1989; Crowley et al., 1988). Consider, for example, the
concept of support. In (Hwang, 1989), Hwang postulates that the correspondence process in hu-
man vision is local and opportunistic. The correspondence of two image features in two consecutive
frames should be determined only by the contextual information collected during some short time
interval in the past. And the correspondence algorithm should allow multiple competing solutions.
As more three-dimensional frames are observed, the correspondence that best fits the observed
data should eventually win. Due to occlusion or absence of features or false match in the past, a
trajectory may not find any match in the current frame by extension. In his algorithm, he uses
a concept called age to indicate the number of times that a trajectory (similar to our concept of
token) does not find any match in the observed frame. Any trajectory whose age is greater than
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MAXAGE (a fixed integer) is removed from further consideration.

Our concept of support differs significantly from the age concept in that it takes into account
not only the number of times a token has not been present, but also the number of times it has
been present in the past and how well the measurements agreed with the predictions. This is nicely
summarized in the log-likelyhood function defined in Section 9.

In (Jenkin and Tsotsos, 1986), Jenkin and Tsotsos proposed an approach different from ours to
handle the multiple matching problem. They called it a “wait and see” approach: multiple matches
are first hypothesized to be correct and are later disambiguated based on a temporal smoothness
constraint by considering all possible temporal combinations. Their approach requires to store data
observed during the last instants (at least three frames) in memory. In our approach, only the
log-likelyhood function is updated and retained.

Our approach to tracking is similar to several methods which exist in the litera-
ture (Gennery, 1982; Broida and Chellappa, 1986; Broida and Chellappa, 1989) in the sense that
they are also based on estimation theory and that the state parameters are estimated by filtering
over time. The main difference is that the other approaches assume that there exists only one
moving object in the scene or that all objects are known a priori. Such an assumption is not used
in our approach in which objects are segmented after tracking, making it more flexible.

We are currently programming this technique on a special purpose hardware to accommodate
the throughput of the stereo process and trying to extend it to deal with significantly curved
objects.

Appendix: Proofs of the Theorems

In this appendix, we prove that when the angular velocity w(t) is constant and the linear velocity
v(t) is a polynomial in ¢t we can integrate in closed-form the differential equation 13, i.e we can
express the vector p; as a function of w(t), v(t).

The following notation (exponential of a matrix) will be used in this appendix

1 1 1
MET 4 — M4 =M b b =M™ 4. (49)
1! 2! n!

where M is an m X m matrix, I is the m X m identity matrix, and M™ denotes the multiplication

of n matrices M, i.e.,
n

D e Nm——
Mr=M...M.

If M is a constant matrix, it can be easily shown that

%eMtzMeMtzeM'M, (50)

since we have
d d nin nyn—1 n-1 n—1
—dt(Mt)“ = HE(M ") =nM"t =nM(Mt) =n(Mt)"" M.

Note that in general, if M is not a constant matrix, Equation 50 does not hold.
The following theorem known as Rodrigues’ formula (Rodrigues, 1840) will be used in the
following derivation.
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Theorem 3: Rodrigues’ formula

Given a three-dimensional vector r. The following relation holds:

- ; — cosd
e’=13+smoi‘+1 cos 2,

; 92 (51)

where T has the same definition as in Equation 12 and 8 is the magnitude of
r (i.e., 8 =|r|). o

Proof: From Equation 49, e’ can be written as:

% 1 1 1
r =2 =n
1! 2_!1- +...+_!r +...

It can be easily verified that

Fn-1 = (C1)n192n-D%) forn > 1
P o= (-reTUE, forn2

Therefore we have

~ 1 92 -1 n-192(n-1) N
er=13 + ( —++u__—+. T

3 (2n - 1)!
4 1 92 N N (_l)n—102(n—l) N 2
217 gt T (2n)! :
Recall that . 5 -
sin0=£_0_+9_+...+(_1)""1_—8n_ 4.,
1 3 8! (2n - 1)!
and 2 gt gon
cos @ = 1—§+Z_...+(_1)"(2n)! +-eey

we thus get Formula 51.

Now we show the following important theorem.

Theorem 4: Trajectory with constant angular velocity and polynomial linear velocity

The trajectory of a point p,; given by Equation 13 can be given in closed
form if the angular velocity is constant and if the translational velocity is a
polynomial of degree n (n > 0). O

Proof: Let the motion be described by w; = w and

(=t L, (-t

Vi =V0+V1(t—t0)+V2 21 oy N

where vg is the velocity at time ty. Define a new variable y, so that
ye = e®l=tlp,,
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This yields y;, = po, the position of the point at 5. Based on Equation 50, we have
yi = e @l-)(p — Gp) = e Wty

Integrating the above equation, we get

t  ~
¥t = Po +/ e~ Wty ds.
to
From the definition of y,, we thus have

_ - t o~
p: = ew(t-to)yt — ew(!—io)po + | e*0-%y ds. (52)

to
Using Theorem 3, we find that
ew(t-to) — W,

where W is given by Equation 15. Denoting the last term of Equation 52 by r; and using Theorem 3,
we have

N /to‘ [13 + sin[G(; - s)]‘3 + 1- cosgi(t - s)]a,,z] .

w+...+v"<_sﬂ]ds,

[vo +vi(s —to) + v2 o ol

Let us define .
Ly = / (s — to)* sin[0(t — s)]ds
to

and
Jp = /t (s —to)* cos[8(t — s)]ds

We can express r; in terms of L; and Ji (k = 0..n). If we obtain closed-form expressions for L
and Jg, this will be true also for r;. Indeed,

o= 3 [ ot deotoe - o)

= %(s — 1) cos[8(t — s)] ::0 - %/t:(s — t0)* " cos[8(t — s)]ds
= %(t — to)k — %Jk_] (53)

Je = = [ (s to)dinlee - )

= gl to)sinlo(e s+ [ (s 1) sinllc - o)l

= -S-Lk_l (54)
Ly = /z sin[f(t — s)]ds = % {1 = cos[8(t - to)]} (55)
Jo = /tt cos[f(t — s)]ds = —;-sin[G(t —19)] (56)
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By iteration, we can obtain closed forms of Ly and Jj for all £ > 0. Indeed, if we use the following

notations: .
| Lk 10 -1 _ (t - to) /0
| 1= cos[8(t - to)]
and a = [ sinf0(t - to)] |’
we have
k
Xp = ZAxk—l +b, fork>0, (57)
Xo = %a. (58)
After some algebra, we obtain
k!
Xp = 0k—_H-Aka+ B, for k>0, (59)

where

(=1)fk+1)/2] (k+1) mod 2 k mod 2

Ak —kmod2 (k+1)mod2 |’

[k/2] (—l)i d? .
Z g2i+1 m(t — to)
i=0

By = f(k—l)_/ﬂ (—1)'. d2i+1

k
92(+1) qz2i+1 (t - to)

1=

Here [j] denotes the largest integer less than j, “mod” denotes the modulo function, and %(-)
denotes the i-th derivative with respect to t. This yields a closed-form expression for r; and
therefore, also for p;. QED.=

Theorem 1 is a special case of Theorem 4 for v; = v (i.e., n = 0). The reader can easily verify
it.

Theorem 2 describes the special case v = v + a(t — ) (i.e., n = 1). From Equation 59, we
obtain:

L = %(t—to)—blisin[o(t—to)]z %{O(t—to)—sin[e(t—to)]} (60)
5= 0—12{1—cos[0(t—t0)]} (61)

After some algebra, we get Theorem 2.
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