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Abstract

Machine reading aims to automatically extract knowledge
from text. It is a long-standing goal of AI and holds the
promise of revolutionizing Web search and other fields. In
this paper, we analyze the core challenges of machine read-
ing and show that statistical relational AI is particularly well
suited to address these challenges. We then propose a uni-
fying approach to machine reading in which statistical rela-
tional AI plays a central role. Finally, we demonstrate the
promise of this approach by presenting OntoUSP, an end-to-
end machine reading system that builds on recent advances in
statistical relational AI and greatly outperforms state-of-the-
art systems in a task of extracting knowledge from biomedical
abstracts and answering questions.

Introduction
Machine reading aims to extract knowledge from unstruc-
tured text with little human effort. It has been a major goal of
AI since its early days. The advent of the Web makes avail-
able billions of documents and virtually unlimited amount
of knowledge to extract, further increasing the importance
and urgency of machine reading. The success of machine
reading will not only help breach the knowledge acquisition
bottleneck in AI, but also revolutionize Web search, scien-
tific and applied research (e.g., biomedical research and drug
design (Poon and Vanderwende 2010)), and other fields.

In the past, there has been a lot of progress in automating
many subtasks of machine reading by machine learning ap-
proaches (e.g., components in the traditional NLP pipeline
such as tagging and parsing). However, end-to-end solu-
tions are still rare, and existing systems typically require
substantial amount of human effort in manual engineering
and/or labeling examples. As a result, they often target re-
stricted domains and only extract limited types of knowl-
edge (e.g., a pre-specified relation). Moreover, many ma-
chine reading systems train their knowledge extractors once
and do not leverage further learning opportunities such as
additional text and interaction with end users.

Ideally, a machine reading system should strive to satisfy
the following desiderata:
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End-to-end: the system should input raw text, extract
knowledge, and be able to answer questions and support
other end tasks;

High quality: the system should extract knowledge with
high accuracy;

Large-scale: the system should acquire knowledge at Web-
scale and be open to arbitrary domains, genres, and lan-
guages;

Maximally autonomous: the system should incur minimal
human effort;

Continuous learning from experience: the system should
constantly integrate new information sources (e.g., new
text documents) and learn from user questions and feed-
back (e.g., via performing end tasks) to continuously im-
prove its performance.

These desiderata raise many challenging research ques-
tions. In this paper, we argue that the key to resolving such
challenges hinges on joint inference and uncertainty han-
dling, the combination of which is the hallmark of statistical
relational AI. Therefore, machine reading is a natural “killer
app” for statistical relational AI. In addition, we propose a
unifying approach to machine reading that capitalizes on re-
cent advances in statistical relational AI.

To demonstrate the promise of this approach, we present
OntoUSP (Poon and Domingos 2010), an end-to-end ma-
chine reading system that features large-scale joint infer-
ence. In a task of extracting knowledge from biomedical ab-
stracts and answering questions, it greatly outperforms state-
of-the-art approaches in both precision and recall. For exam-
ple, compared to TextRunner (Banko et al. 2007), the state-
of-the-art open information-extraction system, OntoUSP not
only improved precision by over 38 points, but also extracted
more than five times of correct answers.

We begin by discussing the core challenges in machine
reading. We then proposing our unifying approach based
on statistical relational AI. Finally, we present the OntoUSP
system and the experimental result.

Machine Reading: Core Challenges
A salient challenge to machine reading is the prevailing
uncertainty in text understanding. Linguistic analyses are
highly ambiguous at all levels from morphology to pragmat-
ics. Moreover, contradictions and errors abound in natural
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Figure 1: A unifying vision for machine reading: bootstrap
from the head regime of the power-law distribution of textual
knowledge, and conquer the long tail in a self-supervised
learning process that raises certainty on sparse extractions
by propagating information via joint inference from frequent
extractions.

text. Consequently, a machine reading system must be well
versed in handling uncertainty.

Another salient challenge is the long tail of textual knowl-
edge. The heterogeneous Web contains texts that vary sub-
stantially in subject matters (e.g., finance vs. biology) and
writing styles (e.g., blog posts vs. scientific papers). In ad-
dition, natural languages are famous for their myraid varia-
tions in expressing the same meaning. A fact may be stated
in a straightforward way such as “kale contains calcium”.
More often though, it may be stated in a syntactically and/or
lexically different way than as phrased in an end task (e.g.,
“calcium is found in kale”). Finally, many facts are not even
stated explicitly, and must be inferred from other facts (e.g.,
“kale prevents osteoporosis” may not be stated explicitly but
can be inferred by combining facts such as “kale contains
calcium” and “calcium helps prevent osteoporosis”).

As a result, a machine reading system must not rely on
explicit supervision such as manual rules and labeled ex-
amples, which will incur prohibitive cost in the Web scale.
Instead, it must be able to learn from indirect supervision. A
key source of indirect supervision is redundancy (Downey,
Etzioni, and Soderland 2010). While a rare extraction may
arise by chance of error, it is much less likely so for the ones
with many repetitions. Such highly-redundant knowledge
can be extracted easily and with high confidence, and can be
leveraged for bootstrapping.

For knowledge that resides in the long tail, explicit forms
of redundancy (e.g., identical expressions) are rare, but this
can be circumvented by joint inference. For example, ex-
pressions that are composed with or by similar expressions
probably have the same meaning. In effect, joint inference
abandons the i.i.d. assumption and leverages the interdepen-
dencies to propagate information among objects and rela-
tions (Getoor and Taskar 2007; Bakir et al. 2007).

In general, joint inference can take various forms, ranging

from simple voting to sophisticated probabilistic reasoning
over a joint model. Simple ones tend to scale better, but their
capability in propagating information is limited. Sophisti-
cated methods can uncover implicit redundancy and prop-
agate much more information with higher quality, yet the
challenge is how to make them scale as well as simple ones.
A self-supervised learning process stipulates what form of
joint inference to use and how. Effectively, it increases cer-
tainty on sparse extractions by propagating information from
more frequent ones. Figure 1 illustrates this vision for ma-
chine reading.

Recently, there has been increasing interest in incorpo-
rating active human involvement into machine learning pro-
cesses (Basu and Kapoor 2009). Machine reading can nat-
urally benefit from this direction. The output of a machine
reading system (i.e., the extracted knowledge) can be ap-
plied to end tasks such as question answering, whereas the
interactions with human in performing such end tasks pro-
vide valuable indirect supervision (e.g., whether users find
the answer useful or not). With joint inference, such feed-
back can be easily incorporated into the reading system to
improve performance.

A Unifying Approach to Machine Reading
In the previous section, we observe that joint inference is
essential for machine reading. Recent research in statisti-
cal relational AI offers a plethora of approaches for joint
inference and learning (Getoor and Taskar 2007; Bakir et
al. 2007). We propose to use Markov logic (Domingos and
Lowd 2009) for machine reading since it is the leading uni-
fying framework for statistical relational AI, but other ap-
proaches can be used as well. Markov logic is a probabilis-
tic extension of first-order logic and can compactly specify
probability distributions over complex relational domains.
It has been successfully applied to unsupervised learning for
various NLP tasks such as coreference resolution (Poon and
Domingos 2008) and semantic parsing (Poon and Domingos
2009). A Markov logic network (MLN) is a set of weighted
first-order clauses. Together with a set of constants, it de-
fines a Markov network with one node per ground atom and
one feature per ground clause. The weight of a feature is the
weight of the first-order clause that originated it. The proba-
bility of a state x in such a network is given by the log-linear
model P (x) = 1

Z exp (
∑

i wini(x)), where Z is a normal-
ization constant, wi is the weight of the ith formula, and ni

is the number of satisfied groundings.
While joint inference can make machine reading more ef-

fective, scaling up joint inference remains a prominent chal-
lenge. We propose to use coarse-to-fine inference (Felzen-
szwalb and McAllester 2007; Petrov 2009; Kiddon and
Domingos 2010) as a unifying framework to scale joint
inference to the Web. Essentially, coarse-to-fine infer-
ence leverages the sparsity imposed by hierarchical struc-
tures that are ubiquitous in human knowledge (e.g., tax-
onomies/ontologies). At coarse levels, ambiguities are rare
(there are few objects and relations), and inference can be
conducted efficiently. The result is then used to prune un-
promising refinements at the next level. This process con-
tinues down the hierarchy until decision can be made. In



this way, inference can potentially speed up exponentially,
analogous to binary tree search.

The success of coarse-to-fine inference hinges on the
availability of appropriate hierarchical structures. An on-
tology specifies entities and their relations in a problem do-
main, among which are the ISA and ISPART hierarchies that
can be used to support coarse-to-fine inference. In general,
constructing the ontology (ontology induction) and map-
ping textual expressions to ontological nodes (ontology pop-
ulation) remain difficult open problems (Staab and Studer
2004). Traditional approaches are manual, which makes
them very costly and limits them to well-circumscribed do-
mains. More recently, machine learning approaches have
been developed (e.g., Snow et al. (2006), Cimiano (2006),
Suchanek et al. (2008,2009), Wu & Weld (2008)), but they
are still limited in several aspects. First, many approaches
induce and populate a deterministic ontology, which does
not capture the inherent uncertainty among the entities and
relations. Second, most approaches either bootstrap from
heuristic patterns (e.g., Hearst patterns (Hearst 1992)) or
build on existing structured or semi-structured knowledge
bases (e.g., WordNet (Fellbaum 1998) or Wikipedia), and
thus have limited coverage. Third, most approaches focus
on inducing ontology over words rather than arbitrarily large
meaning units (e.g., idioms, phrasal verbs, etc.). Finally and
most important of all, existing approaches typically separate
ontology induction from population and knowledge extrac-
tion, and pursue each task independently. This is highly
suboptimal. The resulted ontology is disconnected from
text and requires additional effort to map between the two.
Moreover, this fails to leverage the intimate connections be-
tween the three tasks for mutual disambiguiation and propa-
gating information.

Therefore, we propose to induce a probabilistic ontol-
ogy from text, and to do so jointly with ontology popula-
tion and knowledge extraction. A probability model governs
the joint process which simultaneously does the following:
parse text and identifies meaning units (extraction), assign
them to existing ontological nodes (population) and/or cre-
ate new nodes (induction). Such a joint approach can unlock
much more implicit information in text to help ontology in-
duction and population, and can potentially work well even
in domains not equipped with resources like WordNet and
Wikipedia (e.g., biomedical papers). Furthermore, we pro-
pose to incorporate hierarchical smoothing into the induc-
tion process, which enables more accurate parameter esti-
mation and better generalization. To support coarse-to-fine
inference, we propose to inject some learning bias (e.g., in
the form of priors) to favor inducing an ontology that facili-
tates efficient coarse-to-fine inference.

To maximize the benefit from interactive machine learn-
ing, we propose a novel form of continuous learning that
leverages the interaction with end users to constantly im-
prove the system performance. This is straightforward to do
via self-supervision and joint inference. Essentially, when
the system output is applied to an end task (e.g., answering
questions), the user feedback is incorporated into the sys-
tem as a bootstrap resource. Feedback can take the form of
explicit supervision (e.g., via community content creation

or active learning) or indirect signals (e.g., click data and
query logs). We thus bootstrap an online community from an
initial machine reading system that provides imperfect but
valuable end services, and continuously improve the quality
of system output to attract more users with higher degree of
participation, thereby creating a positive feedback loop and
raising the machine reading performance to a high level that
is difficult to attain otherwise.

In sum, we propose the following unifying approach to
machine reading:
1. Bootstrap from easiest extractable knowledge and con-

quer the long tail via a self-supervised learning process.
2. Apply Markov logic as the unifying framework for knowl-

edge representation and joint inference.
3. Govern self-supervised learning by a probabilistic model

that incorporates a small amount of heuristic knowledge
with large-scale joint inference to maximize the amount
and quality of information to propagate.

4. Scale up joint inference with coarse-to-fine inference.
5. Automatically induce probabilistic ontologies from text

for better generalization and tractable coarse-to-fine infer-
ence. The ontology induction and population are incorpo-
rated into the probabilistic model for self-supervision.

6. Accomplish continuous learning by combining bootstrap-
ping and crowdsourced content creation to synergistically
improve the reading system from user interaction.

OntoUSP
In this section, we demonstrate the promise of our unify-
ing approach by presenting OntoUSP (Poon and Domingos
2010), a recent system that capitalizes on Markov logic and
joint inference and achieves state-of-the-art results on a ma-
chine reading task. OntoUSP (Poon and Domingos 2010)
builds on the USP unsupervised semantic parser (Poon and
Domingos 2009) and synergistically conducts probabilistic
ontology induction, population, knowledge extraction, and
hierarchical smoothing in a single integrated process. In the
remainder of the section, we first introduce the task of se-
mantic parsing and the USP system. We then present On-
toUSP and the experimental results. (Additional details can
be found in Poon & Domingos (2010).)

Semantic Parsing
Semantic parsing aims to obtain a complete formal mean-
ing representation for input sentences. It can be viewed
as a structured prediction problem, where a semantic parse
is formed by partitioning the input sentence (or a syntactic
analysis such as a dependency tree) into meaning units and
assigning each unit to an entity or relation (Figure 2). In ef-
fect, a semantic parser extracts knowledge from input text
and converts them into logical forms (the semantic parses),
which can be used in logical and probabilistic inference and
support end tasks such as answering questions.

As discussed earlier, a major challenge facing semantic
parsing is syntactic and lexical variations of the same mean-
ing. For example, the fact that IL-4 protein induces CD11b
can be expressed in a variety of ways, such as, “Interleukin-4
enhances the gene expression of CD11b”, “CD11b is upreg-
ulated by IL-4”, etc.
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Figure 2: An example of semantic parsing. Top: semantic
parsing converts an input sentence into logical forms (here in
Davidsonian semantics). Bottom: a semantic parse consists
of a partition of the dependency tree of the input sentence
and the assignment of its parts.

Unsupervised Semantic Parsing
Past approaches to semantic parsing either manually con-
struct a grammar or require example sentences with meaning
annotation, and do not scale beyond restricted domains. Re-
cently, we developed USP, the first unsupervised approach
for semantic parsing (Poon and Domingos 2009).1 USP
inputs dependency trees of sentences and first transforms
them into quasi-logical forms (QLFs). For each sentence,
a semantic parse comprises of a partition of its QLF into
lambda-form subexpressions, and an assignment of each
subexpression to a lambda-form cluster. An object cluster
corresponds to semantic concepts such as INDUCE, and con-
tains a number of property clusters such as INDUCED (the
patient argument of INDUCE). Each property cluster may
in turn contains subclusters of property values (e.g., the pa-
tient argument-form subcluster may contain dependency la-
bels like dobj and nsubjpass). Effectively, USP simulta-
neously discovers the lambda-form clusters and learns an IS-
PART hierarchy among them. It does so by recursively com-
bining subexpressions that are composed with or by similar
subexpressions. The partition breaks a sentence into mean-
ing units, and the clustering abstracts away syntactic and lex-
ical variations for the same meaning.

This novel form of relational clustering is governed by
a joint probability distribution P (T,L) defined in Markov
logic (Domingos and Lowd 2009), where T are input de-
pendency trees, and L semantic parses. The predicates are:
SubExpr(s, e): s is a subexpression of e;
HasValue(s, v): s is of value v;
IsPart(c, i, p): p is a property cluster in object cluster c

indexed by i.

The probability model of USP is captured by two formulas:

x ∈ +p ∧ HasValue(x, +v)
e ∈ c ∧ SubExpr(x, e) ∧ x ∈ p⇒ ∃i.IsPart(c, i, p).

1In this paper, we use a slightly different formulation to facili-
tate the exposition of OntoUSP.

All free variables are implicitly universally quantified.
The “+” notation signifies that the MLN contains an instance
of the formula, with a separate weight, for each value com-
bination of the variables with a plus sign. The first formula
is the core of the model and represents the mixture of prop-
erty values given the cluster. The second formula ensures
that a property cluster must be a part in the corresponding
object cluster; it is a hard constraint, as signified by the pe-
riod at the end. To encourage clustering, USP imposes an
exponential prior over the number of parameters.

To parse a new sentence, USP starts by partitioning the
QLF into atomic forms, then hill-climbs on the probability
using a search operator based on lambda reduction until it
finds the MAP parse. In learning, USP starts with clusters of
atomic lamba forms, maintains the optimal semantic parses
according to current parameters, and hill-climbs on the log-
likelihood of observed QLFs using two search operators:
MERGE(c1, c2) merges clusters c1, c2 into a larger cluster
c by merging the core-form clusters and argument clus-
ters of c1, c2, respectively (e.g., c1 = {“induce”}, c2 =
{“enhance”}, and c = {“induce”, “enhance”}.)

COMPOSE(c1, c2) creates a new lambda-form cluster c
formed by composing the lambda forms in c1, c2 into
larger ones (e.g., c1 = {“amino”}, c2 = {“acid”}, and
c = {“amino acid”}.)
Each time, USP executes the highest-scored operator and

reparses affected sentences using the new parameters. The
output contains the optimal clusters and parameters, as well
as the MAP semantic parses of input sentences.

Unsupervised Ontology Induction From Text
A major limitation of USP is that it either merges two ob-
ject clusters into one, or leaves them separate. This is sub-
optimal, because different object clusters may still possess
substantial commonalities. Modeling these can help extract
more general knowledge and answer many more questions.
The best way to capture such commonalities is by forming
an ISA hierarchy among the clusters. For example, INDUCE
and INHIBIT are both subconcepts of REGULATE. Learn-
ing these ISA relations helps answer questions like “What
regulates CD11b?” when the text states that “IL-4 induces
CD11b” or “AP-1 suppresses CD11b”.

For parameter learning, this is also undesirable. With-
out the hierarchical structure, each cluster estimates its pa-
rameters solely based on its own observations, which can be
extremely sparse. The better solution is to leverage the hi-
erarchical structure for smoothing (McCallum et al. 1998;
Gelman and Hill 2006). For example, if we learn that
“super-induce” is a verb and that in general verbs have active
and passive voices, then even though “super-induce” only
shows up once in the corpus as in “AP-1 is super-induced
by IL-4”, by smoothing we can still infer that this probably
means the same as “IL-4 super-induces AP-1”, which in turn
helps answer questions like “What super-induces AP-1”.

OntoUSP overcomes the limitations of USP by replacing
the flat clustering process with a hierarchical clustering one,
and learns an ISA hierarchy of lambda-form clusters in ad-
dition to the IS-PART one. The output of OntoUSP con-
sists of an ontology, a semantic parser, and the MAP parses.



The OntoUSP MLN can be obtained by modifying the USP
MLN with three simple changes. First, we introduce a new
predicate IsA(c1, c2), which is true if cluster c1 is a sub-
concept of c2. For convenience, we stipulate that IsA is
reflexive (i.e., IsA(c, c) is true for any c). Second, we add
the following formulas to the MLN:

IsA(c1, c2) ∧ IsA(c2, c3) ⇒ IsA(c1, c3).
IsA(c1, c2) ∧ IsPart(c1, i, p1) ∧ IsPart(c2, i, p2)

⇒ IsA(p1, p2).

The first formula simply enforces the transitivity of ISA re-
lation. The second formula states that if the ISA relation
holds for a pair of object clusters, it also holds between
their corresponding property clusters. Both are hard con-
straints. Third, we introduce hierarchical smoothing into the
model by replacing the USP mixture formula x ∈ +p ∧
HasValue(x,+v) with a new formula

ISA(p1,+p2) ∧ x ∈ p1 ∧ HasValue(x, +v).

Intuitively, for each p2, the weight corresponds to the delta
in log-probability of v comparing to the prediction according
to all ancestors of p2. The effect of this change is that now
the value v of a subexpression x is not solely determined by
its property cluster p1, but is also smoothed by statistics of
all p2 that are super clusters of p1. Shrinkage takes place via
interaction among these weights. In particular, if the weights
for some property cluster p are all zero, it means that values
in p are completely predicted by p’s ancestors. In effect, p is
backed off to its parent. To encourage shrinkage, we applied
m-estimate when estimating the weights.

OntoUSP uses the same inference algorithm as USP, ex-
cept that the MLN is different and so the probability may
be different. For learning, it augments the USP algo-
rithm with a few changes. Most important of all, besides
from MERGE and COMPOSE, OntoUSP uses a third operator
ABSTRACT(c1, c2), which does the following:
1. Create a new cluster c;
2. Retain c1, c2; add ISA links from them to c;
3. Create super-clusters for property clusters of c1 and c2

and place them in c, so as to maximize the log-likelihood.
Intuitively, c corresponds to a more abstract concept that
summarizes similar properties in ci’s. Specifically, for prop-
erty clusters p1, p2 in c1, c2 respectively, ABSTRACT may
create a property cluster p with ISA links from pi’s to p.

Experiments We applied OntoUSP to extract knowledge
from the GENIA dataset (Kim et al. 2003) and answer
questions, and we evaluated it on the number of extracted
answers and accuracy. GENIA contains 1999 PubMed ab-
stracts. The question set contains 2000 questions that were
created by sampling verbs and entities according to their fre-
quencies in GENIA. Sample questions include “What reg-
ulates MIP-1alpha?”, “What does anti-STAT 1 inhibit?”.2
We used these simple question types to focus the evaluation
on knowledge extraction rather than engineering for specific
question types or reasoning.

2http://alchemy.cs.washington.edu/papers/-
poon09.

Table 1: Comparison of question answering results on the
GENIA dataset.

# Total # Correct Accuracy
KW 150 67 45%
KW-SYN 87 67 77%
TR-EXACT 29 23 79%
TR-SUB 152 81 53%
RS-EXACT 53 24 45%
RS-SUB 196 81 41%
DIRT 159 94 59%
USP 334 295 88%
OntoUSP 480 435 91%

OntoUSP is the first unsupervised approach that synergis-
tically conducts ontology induction, population, and knowl-
edge extraction. The systems closest in aim and capabil-
ity are USP and TextRunner (Banko et al. 2007). We thus
compared OntoUSP with them. Other systems that we com-
pared with include: a keyword-matching baseline (KW),
RESOLVER (Yates and Etzioni 2009) (RS), and DIRT (Lin
and Pantel 2001). USP and OntoUSP first parse input text
using the Stanford dependency parser (de Marneffe, Mac-
Cartney, and Manning 2006), learn an MLN for semantic
parsing from the dependency trees, and output this MLN
and the MAP semantic parses of the input sentences. These
parses formed the knowledge base (KB). To answer ques-
tions, the semantic parses of the questions (with the ques-
tion slot replaced by a dummy word) are matched to parses
in the KB via subsumption test. In addition, when On-
toUSP matches a question to its KB, it not only considers
the lambda-form cluster of the question relation, but also all
its sub-clusters.

Table 1 shows the results comparing OntoUSP with other
systems. USP easily dominates all other systems except for
OntoUSP in both precision and recall. In particular, its accu-
racy is 9 points higher than the second best and it extracted
more than three times as many correct answers as the sec-
ond best. OntoUSP further substantially improved on the
recall of USP by 47%, while incurring no loss in precision.
Compared to TextRunner, OntoUSP extracted more than five
times of correct answers.

Manual inspection shows that both USP and OntoUSP re-
solve many nontrivial syntactic variations without user su-
pervision. They consistently resolve the syntactic difference
between active and passive voices and identify many distinct
argument forms that mean the same (e.g., “X stimulates Y”
≈ “Y is stimulated with X”, “expression of X”≈ “X expres-
sion”). They also resolve many synonymous expressions for
entities and relations. Their large performance gain over pre-
vious systems illustrate the advantage of applying Markov
logic and joint inference.

Additionally, OntoUSP gains on recall over USP by the
induced ISA hierarchy. Like USP, OntoUSP discovered the
following clusters (in core forms) that represent some of the
core concepts in biomedical research:

{regulate, control, govern, modulate}
{induce, enhance, trigger, augment, up-regulate}



{inhibit, block, suppress, prevent, abolish, abrogate,
down-regulate}
However, USP formed these as separate clusters, whereas
OntoUSP also induces ISA relations from the INDUCE and
INHIBIT clusters to the REGULATE cluster. This allows On-
toUSP to answer many more questions that are asked about
general regulation events, while the text states them in spe-
cific directions. Below is an example question-answer pair
output by OntoUSP; neither USP nor any other system were
able to extract the necessary knowledge.

Q: What does IL-2 control?
A: The DEX-mediated IkappaBalpha induction.
Sentence: Interestingly, the DEX-mediated IkappaBal-

pha induction was completely inhibited by IL-2, but not IL-
4, in Th1 cells, while the reverse profile was seen in Th2
cells.

This illustrates the importance of discovering ISA rela-
tions and performing hierarchical smoothing.

Conclusion
Machine reading has attracted increasing interest in recent
years. A breakthrough in it will result in profound impacts in
many fields. In this paper, we analyze the core challenges in
machine reading and propose a unifying approach based on
statistical relational AI. We also present OntoUSP, an end-
to-end machine reading system based on Markov logic and
joint inference, as well as the experimental results in a ma-
chine reading task. The dramatic performance gain of On-
toUSP over previous state-of-the-art systems demonstrates
the promise of our approach and highlight the significance
of statistical relational AI.

Key directions for future work include: identify bootstrap
sources with easily extractable knowledge, develop a uni-
fying learning framework to incorporate various forms of
direct or indirect supervision, scale up joint inference with
coarse-to-fine inference, induce probabilistic ontology for
efficient coarse-to-fine inference, develop continuous learn-
ing systems for community creation, etc.
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