
Decision Jungles:
Compact and Rich Models for Classification

Jamie Shotton Toby Sharp Pushmeet Kohli
Sebastian Nowozin John Winn Antonio Criminisi

Microsoft Research

Abstract

Randomized decision trees and forests have a rich history in machine learning and
have seen considerable success in application, perhaps particularly so for com-
puter vision. However, they face a fundamental limitation: given enough data,
the number of nodes in decision trees will grow exponentially with depth. For
certain applications, for example on mobile or embedded processors, memory is
a limited resource, and so the exponential growth of trees limits their depth, and
thus their potential accuracy. This paper proposes decision jungles, revisiting the
idea of ensembles of rooted decision directed acyclic graphs (DAGs), and shows
these to be compact and powerful discriminative models for classification. Unlike
conventional decision trees that only allow one path to every node, a DAG in a
decision jungle allows multiple paths from the root to each leaf. We present and
compare two new node merging algorithms that jointly optimize both the features
and the structure of the DAGs efficiently. During training, node splitting and node
merging are driven by the minimization of exactly the same objective function,
here the weighted sum of entropies at the leaves. Results on varied datasets show
that, compared to decision forests and several other baselines, decision jungles
require dramatically less memory while considerably improving generalization.

1 Introduction

Decision trees have a long history in machine learning and were one of the first models proposed
for inductive learning [14]. Their use for classification and regression was popularized by the work
of Breiman [6]. More recently, they have become popular in fields such as computer vision and
information retrieval, partly due to their ability to handle large amounts of data and make efficient
predictions. This has led to successes in tasks such as human pose estimation in depth images [29].

Although trees allow making predictions efficiently, learning the optimal decision tree is an NP-hard
problem [15]. In his seminal work, Quinlan proposed efficient approximate methods for learning
decision trees [27, 28]. Some researchers have argued that learning optimal decision trees could
be harmful as it may lead to overfitting [21]. Overfitting may be reduced by controlling the model
complexity, e.g. via various stopping criteria such as limiting the tree depth, and post-hoc pruning.

These techniques for controlling model complexity impose implicit limits on the type of classifi-
cation boundaries and feature partitions that can be induced by the decision tree. A number of
approaches have been proposed in the literature to regularize tree models without limiting their
modelling power. The work in [7] introduced a non-greedy Bayesian sampling-based approach for
constructing decision trees. A prior over the space of trees and their parameters induces a posterior
distribution, which can be used, for example, to marginalize over all tree models. There are similari-
ties between the idea of randomly drawing multiple trees via a Bayesian procedure and construction
of random tree ensembles (forests) using bagging, a method shown to be effective in many applica-
tions [1, 5, 9]. Another approach to improve generalization is via large-margin tree classifiers [4].

1

While the above-mentioned methods can reduce overfitting, decision trees face a fundamental limi-
tation: their exponential growth with depth. For large datasets where deep trees have been shown to
be more accurate than large ensembles (e.g. [29]), this exponential growth poses a problem for im-
plementing tree models on memory-constrained hardware such as embedded or mobile processors.

In this paper, we investigate the use of randomized ensembles of rooted decision directed acyclic
graphs (DAGs) as a means to obtain compact and yet accurate classifiers. We call these ensembles
‘decision jungles’, after the popular ‘decision forests’. We formulate the task of learning each DAG
in a jungle as an energy minimization problem. Building on the information gain measure commonly
used for training decision trees, we propose an objective that is defined jointly over the features of the
split nodes and the structure of the DAG. We then propose two minimization methods for learning
the optimal DAG. Both methods alternate between optimizing the split functions at the nodes of the
DAG and optimizing the placement of the branches emanating from the parent nodes. As detailed
later, they differ in the way they optimize the placement of branches.

We evaluate jungles on a number of challenging labelling problems. Our experiments below quantify
a substantially reduced memory footprint for decision jungles compared to standard decision forests
and several baselines. Furthermore, the experiments also show an important side-benefit of jungles:
our optimization strategy is able to achieve considerably improved generalization for only a small
extra cost in the number of features evaluated per test example.

Background and Prior Work. The use of rooted decision DAGs (‘DAGs’ for short) has been
explored by a number of papers in the literature. In [16, 26], DAGs were used to combine the
outputs of C×C binary 1-v-1 SVM classifiers into a single C-class classifier. More recently, in [3],
DAGs were shown to be a generalization of cascaded boosting.

It has also been shown that DAGs lead to accurate predictions while having lower model complex-
ity, subtree replication, and training data fragmentation compared to decision trees. Most existing
algorithms for learning DAGs involve training a conventional tree that is later manipulated into a
DAG. For instance [17] merges same-level nodes which are associated with the same split function.
They report performance similar to that of C4.5-trained trees, but with a much reduced number of
nodes. Oliveira [23] used local search method for constructing DAGs in which tree nodes are re-
moved or merged together based on similarity of the underlying sub-graphs and the corresponding
message length reduction. A message-length criterion is also employed by the node merging al-
gorithm in [24]. Chou [8] investigated a k-means clustering for learning decision trees and DAGs
(similar ‘ClusterSearch’ below), though did not jointly optimize the features with the DAG struc-
ture. Most existing work on DAGs have focused on showing how the size and complexity of the
learned tree model can be reduced without substantially degrading its accuracy. However, their use
for increasing test accuracy has attracted comparatively little attention [10, 20, 23].

In this paper we show how jungles, ensembles of DAGs, optimized so as to reduce a well defined
objective function, can produce results which are superior to those of analogous decision tree en-
sembles, both in terms of model compactness as well as generalization. Our work is related to [25],
where the authors achieve compact classification DAGs via post-training removal of redundant sub-
trees in forests. In contrast, our probabilistic node merging is applied directly and efficiently during
training, and both saves space as well as achieves greater generalization for multi-class classification.

Contributions. In summary, our contributions are: (i) we highlight that traditional decision trees
grow exponentially in memory with depth, and propose decision jungles as a means to avoid this;
(ii) we propose and compare two learning algorithms that, within each level, jointly optimize an
objective function over both the structure of the graph and the features; (iii) we show that not only
do the jungles dramatically reduce memory consumption, but can also improve generalization.

2 Forests and Jungles

Before delving into the details of our method for learning decision jungles, we first briefly discuss
how decision trees and forests are used for classification problems and how they relate to jungles.

Binary decision trees. A binary decision tree is composed of a set of nodes each with an in-degree
of 1, except the root node. The out-degree for every internal (split) node of the tree is 2 and for the
leaf nodes is 0. Each split node contains a binary split function (‘feature’) which decides whether an

2

(a)

2

grass

grass

cow

sheep

c s g

c s g

c s g

c s g c s g c s g

Training
patches

c s g

0

1

3 4 5

… (b)

Figure 1: Motivation and notation. (a) An example use of a rooted decision DAG for classifying
image patches as belonging to grass, cow or sheep classes. Using DAGs instead of trees reduces the
number of nodes and can result in better generalization. For example, differently coloured patches
of grass (yellow and green) are merged together into node 4, because of similar class statistics. This
may encourage generalization by representing the fact that grass may appear as a mix of yellow and
green. (b) Notation for a DAG, its nodes, features and branches. See text for details.

input instance that reaches that node should progress through the left or right branch emanating from
the node. Prediction in binary decision trees involves every input starting at the root and moving
down as dictated by the split functions encountered at the split nodes. Prediction concludes when
the instance reaches a leaf node, each of which contains a unique prediction. For classification trees,
this prediction is a normalized histogram over class labels.

Rooted binary decision DAGs. Rooted binary DAGs have a different architecture compared to
decision trees and were introduced by Platt et al. [26] as a way of combining binary classifier for
multi-class classification tasks. More specifically a rooted binary DAG has: (i) one root node, with
in-degree 0; (ii) multiple split nodes, with in-degree ≥ 1 and out-degree 2; (iii) multiple leaf nodes,
with in-degree≥ 1 and out-degree 0. Note that in contrast to [26], if we have a C-class classification
problem, here we do not necessarily expect to have C DAG leaves. In fact, the leaf nodes are not
necessarily pure; And each leaf remains associated with an empirical class distribution.

Classification DAGs vs classification trees. We explain the relationship between decision trees and
decision DAGs using the image classification task illustrated in Fig. 1(a) as an example. We wish
to classify image patches into the classes: cow, sheep or grass. A labelled set of patches is used to
train a DAG. Since patches corresponding to different classes may have different average intensity,
the root node may decide to split them according to this feature. Similarly, the two child nodes may
decide to split the patches further based on their chromaticity. This results in grass patches with
different intensity and chromaticity (bright yellow and dark green) ending up in different subtrees.
However, if we detect that two such nodes are associated with similar class distributions (peaked
around grass in this case) and merge them, then we get a single node with training examples from
both grass types. This helps capture the degree of variability intrinsic to the training data, and reduce
the classifier complexity. While this is clearly a toy example, we hope it gives some intuition as to
why rooted DAGs are expected to achieve the improved generalization demonstrated in Section 4.

3 Learning Decision Jungles

We train each rooted decision DAG in a jungle independently, though there is scope for merging
across DAGs as future work. Our method for training DAGs works by growing the DAG one level
at a time.1 At each level, the algorithm jointly learns the features and branching structure of the
nodes. This is done by minimizing an objective function defined over the predictions made by the
child nodes emanating from the nodes whose split features are being learned.

Consider the set of nodes at two consecutive levels of the decision DAG (as shown in Fig. 1b). This
set consist of the set of parent nodesNp and a set of child nodesNc. We assume in this work a known
value for M = |Nc|. M is a parameter of our method and may vary per level. Let θi denote the
parameters of the split feature function f for parent node i ∈ Np, and Si denote the set of labelled
training instances (x, y) that reach node i. Given θi and Si, we can compute the set of instances
from node i that travel through its left and right branches as SL

i (θi) = {(x, y) ∈ Si | f(θi, x) ≤ 0}
1Jointly training all levels of the tree simultaneously remains an expensive operation [15].

3

and SR
i (θi) = Si \SL

i (θi), respectively. We use li ∈ Nc to denote the current assignment of the left
outwards edge from parent node i ∈ Np to a child node, and similarly ri ∈ Nc for the right outward
edge. Then, the set of instances that reach any child node j ∈ Nc is:

Sj({θi}, {li}, {ri}) =

 ⋃
i∈Np s.t. li=j

SL
i (θi)

 ∪
 ⋃
i∈Np s.t. ri=j

SR
i (θi)

 . (1)

The objective function E associated with the current level of the DAG is a function of {Sj}j∈Nc
.

We can now formulate the problem of learning the parameters of the decision DAG as a joint mini-
mization of the objective over the split parameters {θi} and the child assignments {li}, {ri}. Thus,
the task of learning the current level of a DAG can be written as:

min
{θi},{li},{ri}

E({θi}, {li}, {ri}) . (2)

Maximizing the Information Gain. Although our method can be used for optimizing any objective
E that decomposes over nodes, including in theory a regression-based objective, for the sake of
simplicity we focus in this work on the information gain objective commonly used for classification
problems. The information gain objective requires the minimization of the total weighted entropy
of instances, defined as:

E({θi}, {li}, {ri}) =
∑
j∈Nc

|Sj |H(Sj) (3)

where Sj is defined in (1), and H(S) is the Shannon entropy of the class labels y in the training
instances (x, y) ∈ S.

Note that if the number of child nodes M is equal to twice the number of parent nodes i.e. M =
2|Np|, then the DAG becomes a tree and we can optimize the parameters of the different nodes
independently, as done in standard decision tree training, to achieve optimal results.

3.1 Optimization

The minimization problem described in (2) is hard to solve exactly. We propose two local search
based algorithms for its solution: LSearch and ClusterSearch. As local optimizations, neither are
likely to reach a global minimum, but in practice both are effective at minimizing the objective. The
experiments below show that the simpler LSearch appears to be more effective.

LSearch. The LSearch method starts from a feasible assignment of the parameters, and then alter-
nates between two coordinate descent steps. In the first (split-optimization) step, it sequentially goes
over every parent node k in turn and tries to find the split function parameters θk that minimize the
objective function, keeping the values of {li}, {ri} and the split parameters of all other nodes fixed:

for k ∈ Np

θk ← argmin
θ′k

E(θ′k ∪ {θi}i∈Np\{k}, {li}, {ri})

This minimization over θ′k is done by random sampling in a manner similar to decision forest train-
ing [9]. In the second (branch-optimization) step, the algorithm redirects the branches emanating
from each parent node to different child nodes, so as to yield a lower objective:

for k ∈ Np

lk ← argmin
l′k∈Nc

E({θi}, l′k ∪ {li}i∈Np\{k}, {ri})

rk ← argmin
r′k∈Nc

E({θi}, {li}, r′k ∪ {ri}i∈Np\{k})

The algorithm terminates when no changes are made, and is guaranteed to converge. We found that
a greedy initialization of LSearch (allocating splits to the most energetic parent nodes first) resulted
in a lower objective after optimization than a random initialization. We also found that a stochastic
version of the above algorithm where only a single randomly chosen node was optimized at a time
resulted in similar reductions in the objective for considerably less compute.

4

ClusterSearch. The ClusterSearch algorithm also alternates between optimizing the branching vari-
ables and the split parameters, but differs in that it optimizes the branching variables more globally.
First, 2|Np| temporary child nodes are built via conventional tree-based, training-objective mini-
mization procedures. Second, the temporary nodes are clustered into M = |Nc| groups to produce a
DAG. Node clustering is done via the Bregman information objective optimization technique in [2].

4 Experiments and results

This section compares testing accuracy and computational performance of our decision jungles with
state-of-the-art forests of binary decision trees and their variants on several classification problems.

4.1 Classification Tasks and Datasets

We focus on semantic image segmentation (pixel-wise classification) tasks, where decision forests
have proven very successful [9, 19, 29]. We evaluate our jungle model on the following datasets:

(A) Kinect body part classification [29] (31 classes). We train each tree or DAG in the ensemble on
a separate 1000 training images with 250 example pixels randomly sampled per image. Following
[29], 3 trees or DAGs are used unless otherwise specified. We test on (a common set of) 1000
images drawn randomly from the MSRC-5000 test set [29]. We use a DAG merging schedule of
|ND

c | = min(M, 2min(5,D) · 1.2max(0,D−5)), where M is a fixed constant maximum width and D is
the current level (depth) in the tree.

(B) Facial features segmentation [18] (8 classes including background). We train each of 3 trees or
DAGs in the ensemble on a separate 1000 training images using every pixel. We use a DAG merging
schedule of |ND

c | = min(M, 2D).

(C) Stanford background dataset [12] (8 classes). We train on all 715 labelled images, seeding
our feature generator differently for each of 3 trees or DAGs in the ensemble. Again, we use a DAG
merging schedule of |ND

c | = min(M, 2D).

(D) UCI data sets [22]. We use 28 classification data sets from the UCI corpus as prepared on the
libsvm data set repository.2 For each data set all instances from the training, validation, and test set,
if available, are combined to a large set of instances. We repeat the following procedure five times:
randomly permute the instances, and divide them 50/50 into training and testing set. Train on the
training set, evaluate the multiclass accuracy on the test set. We use 8 trees or DAGs per ensemble.
Further details regarding parameter choices can be found in the supplementary material.

For all segmentation tasks we use the Jaccard index (intersection over union) as adopted in PASCAL
VOC [11]. Note that this measure is stricter than e.g. the per class average metric reported in [29].
On the UCI dataset we report the standard classification accuracy numbers. In order to keep training
time low, the training sets are somewhat reduced compared to the original sources, especially for
(A). However, identical trends were observed in limited experiments with more training data.

4.2 Baseline Algorithms

We compare our decision jungles with several tree-based alternatives, listed below.

Standard Forests of Trees. We have implemented standard classification forests, as described in [9]
and building upon their publically available implementation.

Baseline 1: Fixed-Width Trees (A). As a first variant on forests, we train binary decision trees
with an enforced maximum width M at each level, and thus a reduced memory footprint. This is
useful to tease out whether the improved generalization of jungles is due more to the reduced model
complexity or to the node merging. Training a tree with fixed width is achieved by ranking the leaf
nodes i at each level by decreasing value of E(Si) and then greedily splitting only the M/2 nodes
with highest value of the objective. The leaves that are not split are discarded.

Baseline 2: Fixed-Width Trees (B). A related, second tree-based variant is obtained by greedily
optimizing the best split candidate for all leaf nodes, then ranking the leaves by reduction in the

2http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/

5

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

0

0.1

0.2

0.3

0.4

0.5

1 100 10000 1000000

Te
st

 s
eg

m
en

ta
ti

o
n

 a
cc

u
ra

cy

Total number of nodes

Stanford Background dataset

Standard Trees

Baseline 3: Priority Scheduled Trees

Merged DAGs

0

0.1

0.2

0.3

0.4

0.5

1 10 100 1000

Te
st

 s
eg

m
en

ta
ti

o
n

 a
cc

u
ra

cy

Max. no. feature evaluations / pixel

Stanford Background dataset

Standard Trees
Baseline 3: Priority Scheduled Trees
Merged DAGs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 10 100 1000 10000

Te
st

 s
eg

m
en

ta
ti

o
n

 a
cc

u
ra

cy

Max. no. feature evaluations / pixel

Faces dataset

Standard Trees
Baseline 3: Priority Scheduled Trees
Merged DAGs

(c)

(f)

0

0.05

0.1

0.15

0.2

0.25

0.3

1 10 100 1000 10000 100000 1000000

Te
st

 s
eg

m
en

ta
ti

o
n

 a
cc

u
ra

cy

Total number of nodes

Kinect dataset

Standard Trees

Baseline 1: Fixed-Width Trees (A)

Baseline 2: Fixed-Width Trees (B)

Baseline 3: Priority Scheduled Trees

Merged DAGs

(a)

(e)0

0.05

0.1

0.15

0.2

0.25

0.3

0 50 100 150 200

Te
st

 s
eg

m
en

ta
ti

o
n

 a
cc

u
ra

cy

Max. no. feature evaluations / pixel

Kinect dataset

Standard Trees
Baseline 1: Fixed-Width Trees (A)
Baseline 2: Fixed-Width Trees (B)
Merged DAGs

(d)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 10 100 1000 10000 100000 1000000

Te
st

 s
eg

m
en

ta
ti

o
n

 a
cc

u
ra

cy

Total number of nodes

Faces dataset

Standard Trees
Baseline 3: Priority Scheduled Trees
Merged DAGs

(b)

Figure 2: Accuracy comparisons. Each graph compares Jaccard scores for jungles vs. standard
decision forests and three other baselines. (a, b, c) Segmentation accuracy as a function of the total
number of nodes in the ensemble (i.e. memory usage) for three different datasets. (d, e, f) Segmenta-
tion accuracy as a function of the maximum number of test comparisons per pixel (maximum depth
× size of ensemble), for the same datasets. Jungles achieve the same accuracy with fewer nodes.
Jungles also improve the overall generalization of the resulting classifier.

objective, and greedily taking only the M/2 splits that most reduce the objective.3 The leaf nodes
that are not split are discarded from further consideration.

Baseline 3: Priority Scheduled Trees. As a final variant, we consider priority-driven tree train-
ining. Current leaf nodes are ranked by the reduction in the objective that would be achieved by
splitting them. At each iteration, the top M nodes are split, optimal splits computed and the new
children added into the priority queue. This baseline is identical to the baseline 2 above, except that
nodes that are not split at a particular iteration are part of the ranking at subsequent iterations. This
can be seen as a form of tree pruning [13], and in the limit, will result in standard binary decision
trees. As shown later, the trees at intermediate iterations can give surprisingly good generalization.

4.3 Comparative Experiments

Prediction Accuracy vs. Model Size. One of our two main hypotheses is that jungles can reduce the
amount of memory used compared to forests. To investigate this we compared jungles to the baseline
forests on three different datasets. The results are shown in Fig. 2 (top row). Note that the jungles
of merged DAGs achieve the same accuracy as the baselines with substantially fewer total nodes.
For example, on the Kinect dataset, to achieve an accuracy of 0.2, the jungle requires around 3000
nodes whereas the standard forest require around 22000 nodes. We use the total number of nodes as
a proxy for memory usage; the two are strongly linked, and the proxy works well in practice. For
example, the forest of 3 trees occupied 80MB on the Kinect dataset vs. 9MB for a jungle of 3 DAGs.
On the Faces dataset the forest of 3 trees occupied 7.17MB vs. 1.72MB for 3 DAGs.

A second hypothesis is that merging provides a good way to regularize the training and thus increases
generalization. Firstly, observe how all tree-based baselines saturate and in some cases start to
overfit as the trees become larger. This is a common effect with deep trees and small ensembles.
Our merged DAGs appear to be able to avoid this overfitting (at least in as far as we have trained
them here), and further, actually have increased the generalization quite considerably.

3In other words, baseline 1 optimizes the most energetic nodes, whereas baseline 2 optimizes all nodes and
takes only the splits that most reduce the objective.

6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 10 100 1000 10000 100000 1000000

Te
st

 s
eg

m
en

ta
ti

o
n

 a
cc

u
ra

cy

Total number of nodes

Faces dataset
Standard Trees
Merged DAGs (M=128)
Merged DAGs (M=256)
Merged DAGs (M=512)

0

0.05

0.1

0.15

0.2

0.25

0.3

1 100 10000 1000000

Te
st

 s
eg

m
en

ta
ti

o
n

 a
cc

u
ra

cy

Total number of nodes

Kinect dataset

1 Standard Tree
3 Standard Trees
9 Standard Trees
1 Merged DAG
3 Merged DAGs
9 Merged DAGs

0

0.05

0.1

0.15

0.2

0.25

0.3

1 10 100 1000

Te
st

 s
eg

m
en

ta
ti

o
n

 a
cc

u
ra

cy

Max. no. feature evaluations / pixel

Kinect dataset

1 Standard Tree
3 Standard Trees
9 Standard Trees
1 Merged DAG
3 Merged DAGs
9 Merged DAGs

(a) (b) (c)

Figure 3: (a, b) Effect of ensemble size on test accuracy. (a) plots accuracy against the total
number of nodes in the ensemble, whereas (b) plots accuracy against the maximum number of com-
putations required at test time. For a fixed ensemble size jungles of DAGs achieve consistently
better generalization than conventional forests. (c) Effect of merging parameter M on test accu-
racy. The model width M has a regularizing effect on our DAG model. For other results shown on
this dataset, we set M = 256. See text for details.

Interestingly, the width-limited tree-based baselines perform substantially better than the standard
tree training algorithm, and in particular the priority scheduling appears to work very well, though
still inferior to our DAG model. This suggests that both reducing the model size and node merging
have a substantial positive effect on generalization.

Prediction Accuracy vs. Depth. We do not expect the reduction in memory given by merging to
come for free: there is likely to be a cost in terms of the number of nodes evaluated for any individual
test example. Fig. 2 (bottom row) shows this trade-off. The large gains in memory footprint and
accuracy come at a relatively small cost in the number of feature evaluations at test time. Again,
however, the improved generalization is also evident. The need to train deeper also has some effect
on training time. For example, training 3 trees for Kinect took 32mins vs. 50mins for 3 DAGs.

Effect of Ensemble Size. Fig. 3 (a, b) compares results for 1, 3, and 9 trees/DAGs in a forest/jungle.
Note from (a) that in all cases, a jungle of DAGs uses substantially less memory than a standard
forest for the same accuracy, and also that the merging consistently increases generalization. In
(b) we can see again that this comes at a cost in terms of test time evaluations, but note that the
upper-envelope of the curves belongs in several regions to DAGs rather than trees.

LSearch vs. ClusterSearch Optimization. In experiments we observed the LSearch algorithm to
perform better than the ClusterSearch optimization, both in terms of the objective achieved (reported
in the table below for the face dataset) and also in test accuracy. The difference is slight, yet very
consistent. In our experiments the LSearch algorithm was used with 250 iterations.

Number of nodes 2047 5631 10239 20223 30207 40191
LSearch objective 0.735 0.596 0.514 0.423 0.375 0.343
ClusterSearch objective 0.739 0.605 0.524 0.432 0.382 0.351

Effect of Model Width. We performed an experiment investigating changes to M , the maximum
tree width. Fig. 3 (c) shows the results. The merged DAGs consistently outperform the standard
trees both in terms of memory consumption and generalization, for all settings of M evaluated.
Smaller values of M improve accuracy while keeping memory constant, but must be trained deeper.

Qualitative Image Segmentation Results. Fig. 4 shows some randomly chosen segmentation re-
sults on both the Kinect and Faces data. On the Kinect data, forests of 9 trees are compared to
jungles of 9 DAGs. The jungles appear to give smoother segmentations than the standard forests,
perhaps more so than the quantitative results would suggest. On the Faces data, small forests of 3
trees are compared to jungles of 3 DAGs, with each model containing only 48k nodes in total.

Results on UCI Datasets. Figure 5 reports the test classification accuracy as a function of model
size for two UCI data sets. The full results for all UCI data sets are reported in the supplementary
material. Overall using DAGs allows us to achieve higher accuracies at smaller model sizes, but in

7

Input
Image

Ground
Truth

Merged DAGs
Segmentation

Standard Trees
Segmentation

Input
Image

Ground
Truth

Merged DAGs
Segmentation

Standard Trees
Segmentation

Figure 4: Qualitative results. A few example results on the Kinect body parts and face segmentation
tasks, comparing standard trees and merged DAGs with the same number of nodes.

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Total number of nodes

M
u

lt
ic

la
s

s
 a

c
c

u
ra

c
y

Dataset "mnist−60k", 10 classes, 5 folds

8 Standard Trees

8 Merged DAGs

10
2

10
4

10
6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Total number of nodes

M
u

lt
ic

la
s

s
 a

c
c

u
ra

c
y

Dataset "poker", 10 classes, 5 folds

8 Standard Trees

8 Merged DAGs

Figure 5: UCI classification results for two data sets, MNIST-60k and Poker, eight trees or DAGs
per ensemble. The MNIST result is typical in that the accuracy improvements of DAGs over trees
is small but achieved at a smaller number of nodes (memory). The largest UCI data set (Poker, 1M
instances) profits most from the use of randomized DAGs.

most cases the generalization performance is not improved or only slightly improved. The largest
improvements for DAGs over trees is reported for the largest dataset (Poker).

5 Conclusion

This paper has presented decision jungles as ensembles of rooted decision DAGs. These DAGs are
trained, level-by-level, by jointly optimizing an objective function over both the choice of split func-
tion and the structure of the DAG. Two local optimization strategies were evaluated, with an efficient
move-making algorithm producing the best results. Our evaluation on a number of diverse and chal-
lenging classification tasks has shown jungles to improve both memory efficiency and generalization
for several tasks compared to conventional decision forests and their variants.

We believe that decision jungles can be extended to regression tasks. We also plan to investigate
multiply rooted trees and merging between DAGs within a jungle.

Acknowledgements. The authors would like to thank Albert Montillo for initial investigation of
related ideas.

8

References
[1] Y. Amit and D. Geman. Randomized inquiries about shape; an application to handwritten digit recogni-

tion. Technical Report 401, Dept. of Statistics, University of Chicago, IL, Nov 1994.

[2] A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh. Clustering with Bregman divergences. Journal of
Machine Learning Research, 6:1705–1749, Oct. 2005.

[3] D. Benbouzid, R. Busa-Fekete, and B. Kégl. Fast classification using sparse decision DAGs. In Proc. Intl
Conf. on Machine Learning (ICML), New York, NY, USA, 2012. ACM.

[4] K. P. Bennett, N. Cristianini, J. Shawe-Taylor, and D. Wu. Enlarging the margins in perceptron decision
trees. Machine Learning, 41(3):295–313, 2000.

[5] L. Breiman. Random forests. Machine Learning, 45(1), 2001.

[6] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification and Regression Trees. Chapman
and Hall/CRC, 1984.

[7] H. Chipman, E. I. George, and R. E. Mcculloch. Bayesian CART model search. Journal of the American
Statistical Association, 93:935–960, 1997.

[8] P. Chou. Optimal partitioning for classification and regression trees. IEEE Trans. PAMI, 13(4), 1991.

[9] A. Criminisi and J. Shotton. Decision Forests for Computer Vision and Medical Image Analysis. Springer,
2013.

[10] T. Elomaa and M. Kääriäinen. On the practice of branching program boosting. In European Conf. on
Machine Learning (ECML), 2001.

[11] M. Everingham, L. van Gool, C. Williams, J. Winn, and A. Zisserman. The Pascal Visual Object Classes
(VOC) Challenge. http://www.pascal-network.org/challenges/VOC/.

[12] S. Gould, R. Fulton, and D. Koller. Decomposing a scene into geometric and semantically consistent
regions. In Proc. IEEE ICCV, 2009.

[13] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer, 2001.

[14] E. B. Hunt, J. Marin, and P. T. Stone. Experiments in Induction. Academic Press, New York, 1966.

[15] L. Hyafil and R. L. Rivest. Constructing optimal binary decision trees is NP-complete. Information
Processing Letters, 5(1):15–17, 1976.

[16] B. Kijsirikul, N. Ussivakul, and S. Meknavin. Adaptive directed acyclic graphs for multiclass classifica-
tion. In Pacific Rim Intl Conference on Artificial Intelligence (PRICAI), 2002.

[17] R. Kohavi and C.-H. Li. Oblivious decision trees, graphs, and top-down pruning. In Intl Joint Conf. on
Artifical Intelligence (IJCAI), 1995.

[18] P. Kontschieder, P. Kohli, J. Shotton, and A. Criminisi. GeoF: Geodesic forests for learning coupled
predictors. In Proc. IEEE CVPR, 2013.

[19] V. Lepetit and P. Fua. Keypoint recognition using randomized trees. IEEE Trans. PAMI, 2006.

[20] J. Mahoney and R. J. Mooney. Initializing ID5R with a domain theory: some negative results. Technical
Report 91-154, Dept. of Computer Science, University of Texas, Austin, TX, 1991.

[21] K. V. S. Murthy and S. L. Salzberg. On growing better decision trees from data. PhD thesis, John Hopkins
University, 1995.

[22] D. Newman, S. Hettich, C. Blake, and C. Merz. UCI repository of machine learning databases. Technical
Report 28, University of California, Irvine, Department of Information and Computer Science, 1998.

[23] A. L. Oliveira and A. Sangiovanni-Vincentelli. Using the minimum description length principle to infer
reduced ordered decision graphs. Machine Learning, 12, 1995.

[24] J. J. Oliver. Decision graphs – an extension of decision trees. Technical Report 92/173, Dept. of Computer
Science, Monash University, Victoria, Australia, 1992.

[25] A. H. Peterson and T. R. Martinez. Reducing decision trees ensemble size using parallel decision DAGs.
Intl Journ. on Artificial Intelligence Tools, 18(4), 2009.

[26] J. C. Platt, N. Cristianini, and J. Shawe-Taylor. Large margin DAGs for multiclass classification. In Proc.
NIPS, pages 547–553, 2000.

[27] J. R. Quinlan. Induction of decision trees. Machine Learning, 1986.

[28] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, 1993.

[29] J. Shotton, R. Girshick, A. Fitzgibbon, T. Sharp, M. Cook, M. Finocchio, R. Moore, P. Kohli, A. Criminisi,
A. Kipman, and A. Blake. Efficient human pose estimation from single depth images. IEEE Trans. PAMI,
2013.

9

	Introduction
	Forests and Jungles
	Learning Decision Jungles
	Optimization

	Experiments and results
	Classification Tasks and Datasets
	Baseline Algorithms
	Comparative Experiments

	Conclusion

