Oded's work on Noise Sensitivity

Christophe Garban
Université Paris Sud and ENS

Oded Schramm Memorial conference

Sensitivity of Percolation

We will see that Macroscopic properties of critical percolation are highly sensitive to perturbations.

Sensitivity of Percolation

We will see that Macroscopic properties of critical percolation are highly sensitive to perturbations.

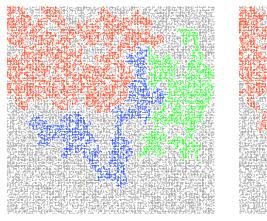
This will correspond to the following phenomenon:

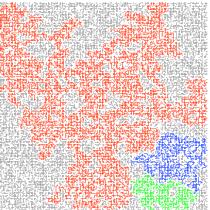
Property

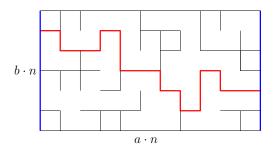
In critical percolation, macroscopic events are of 'High Frequency'.

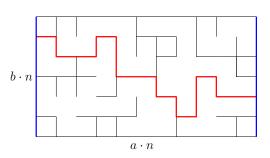
An illustration of this noise sensitivity

An illustration of this noise sensitivity

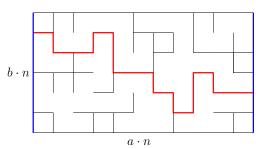






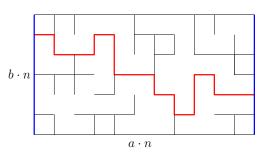


Let $f_n: \{-1,1\}^{O(1)n^2} \to \{0,1\}$ be the Boolean function defined as follows



Let $f_n: \{-1,1\}^{O(1)n^2} \rightarrow \{0,1\}$ be the Boolean function defined as follows

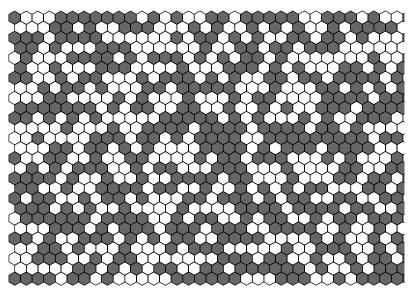
$$f_n(\omega) := \left\{egin{array}{ll} 1 & ext{if there is a left-right crossing} \end{array}
ight.$$

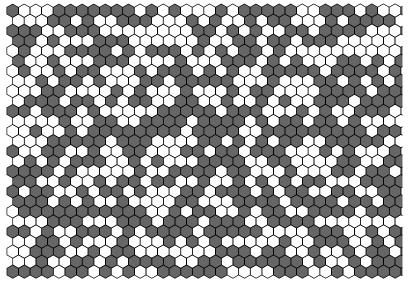


Let $f_n: \{-1,1\}^{O(1)n^2} \rightarrow \{0,1\}$ be the Boolean function defined as follows

$$f_n(\omega) := \left\{ egin{array}{ll} 1 & ext{if there is a left-right crossing} \\ 0 & ext{else} \end{array}
ight.$$

 ω_0 :





Noise Sensitivity

We are interested in a fast decorrelation (or fast mixing) of macroscopic properties.

This can be measured with the covariance

$$Cov(f_n(\omega_0), f_n(\omega_t)) = \mathbb{E}[f_n(\omega_0)f_n(\omega_t)] - \mathbb{E}[f_n]^2,$$

or equivalently by

$$\operatorname{Var}\left[\mathbb{E}\left[f_n(\omega_t) \mid \omega_0\right]\right].$$

Noise Sensitivity

We are interested in a fast decorrelation (or fast mixing) of macroscopic properties.

This can be measured with the covariance

$$\operatorname{Cov}(f_n(\omega_0), f_n(\omega_t)) = \mathbb{E}[f_n(\omega_0)f_n(\omega_t)] - \mathbb{E}[f_n]^2,$$

or equivalently by

$$\operatorname{Var}\left[\mathbb{E}\left[f_n(\omega_t) \mid \omega_0\right]\right].$$

If these quantities converge towards 0 when the size n of the system goes to infinity, then the macroscopic property is said to be (asymptotically) noise sensitive.

Noise Sensitivity

We are interested in a fast decorrelation (or fast mixing) of macroscopic properties.

This can be measured with the covariance

$$\operatorname{Cov}(f_n(\omega_0), f_n(\omega_t)) = \mathbb{E}[f_n(\omega_0)f_n(\omega_t)] - \mathbb{E}[f_n]^2,$$

or equivalently by

$$\operatorname{Var}\left[\mathbb{E}\left[f_n(\omega_t) \mid \omega_0\right]\right].$$

If these quantities converge towards 0 when the size n of the system goes to infinity, then the macroscopic property is said to be (asymptotically) noise sensitive.

Defined in this way, noise sensitivity is a non-quantitative property. We will need more detailed information on the speed at which the large scale system decorrelates.

Harmonic Analysis of Boolean functions

We consider the larger space $L^2(\{-1,1\}^n)$ of real-valued functions from n bits into \mathbb{R} , endowed with the scalar product:

$$\langle f, g \rangle = \sum_{x_1, \dots, x_n} 2^{-n} f(x_1, \dots, x_n) g(x_1, \dots, x_n)$$

= $\mathbb{E}[fg]$

Harmonic Analysis of Boolean functions

We consider the larger space $L^2(\{-1,1\}^n)$ of real-valued functions from n bits into \mathbb{R} , endowed with the scalar product:

$$\langle f, g \rangle = \sum_{x_1, \dots, x_n} 2^{-n} f(x_1, \dots, x_n) g(x_1, \dots, x_n)$$

= $\mathbb{E}[fg]$

One has at our disposal a natural basis for this space isomorphic to \mathbb{R}^{2^n} : the so-called characters of the group $\{-1,1\}^n$.

For any subset $S \subset \{1, \ldots, n\}$, consider the function χ_S defined by

$$\chi_{\mathcal{S}}(x_1,\ldots,x_n):=\prod_{i\in\mathcal{S}}x_i$$

The set of these 2^n functions forms an orthonormal basis of $L^2(\{-1,1\}^n)$.

Fourier-Walsh expansion

Thus, any Boolean function $f:\{-1,1\}^n \to \{0,1\}$ can be decomposed as

$$f = \sum_{S \subset [n]} \widehat{f}(S) \chi_S$$

where $\widehat{f}(S)$ are the Fourier-Walsh coefficients of f. They satisfy

$$\widehat{f}(S) = \langle f, \chi_S \rangle = \mathbb{E}[f\chi_S]$$

Note in particular that the coefficient $\widehat{f}(\emptyset) = \mathbb{E}[f]$ corresponds to the mean $\mathbb{E}[f]$.

Why is it any helpful?

Why is it any helpful?

The correlation between $f(\omega_0)$ and $f(\omega_t)$ has a very simple form in terms of the Fourier coefficients $\hat{f}(S)$. Indeed:

Why is it any helpful?

The correlation between $f(\omega_0)$ and $f(\omega_t)$ has a very simple form in terms of the Fourier coefficients $\hat{f}(S)$. Indeed:

$$\mathbb{E}[f(\omega_0) f(\omega_t)] = \mathbb{E}[\left(\sum_{S_1} \widehat{f}(S_1) \chi_{S_1}(\omega_0)\right) \left(\sum_{S_2} \widehat{f}(S_2) \chi_{S_2}(\omega_t)\right)]$$

$$= \sum_{S} \widehat{f}(S)^2 \mathbb{E}[\chi_{S}(\omega_0) \chi_{S}(\omega_t)]$$

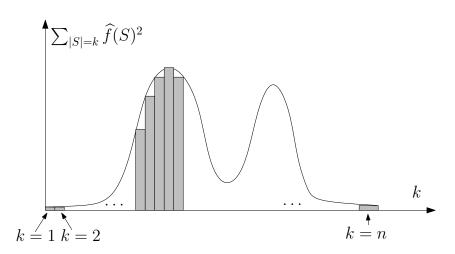
$$= \sum_{S} \widehat{f}(S)^2 e^{-t|S|}$$

Therefore our covariance can be written

$$\mathbb{E}\big[f(\omega_0)\,f(\omega_t)\big] - \mathbb{E}\big[f(\omega)\big]^2 = \sum_{S \neq \emptyset} \widehat{f}(S)^2\,e^{-t|S|}$$

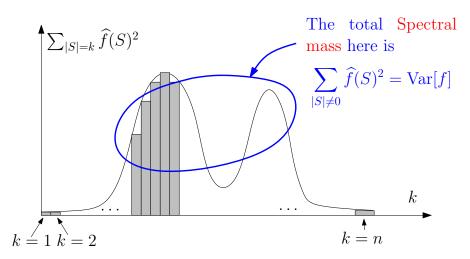
Energy spectrum of a Boolean function

If $f: \{-1,1\}^n \to \{0,1\}$ is a Boolean function, its "sensitivity" is controlled by its Energy Spectrum:



Energy spectrum of a Boolean function

If $f: \{-1,1\}^n \to \{0,1\}$ is a Boolean function, its "sensitivity" is controlled by its Energy Spectrum:

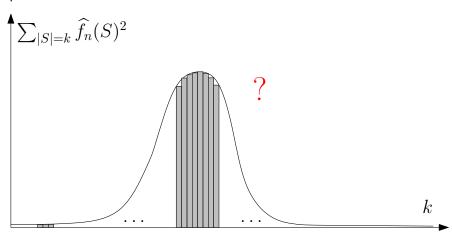


The Energy Spectrum of macroscopic events

Recall our above left-right crossing events corresponding to the Boolean functions $f_n, n \ge 1$.

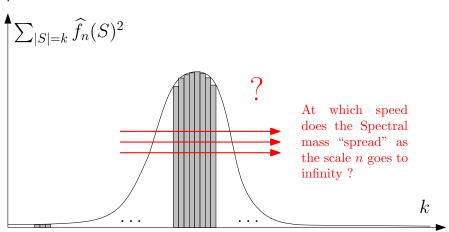
The Energy Spectrum of macroscopic events

Recall our above left-right crossing events corresponding to the Boolean functions $f_n, n \geq 1$. One is interested in the shape of their Energy Spectrum



The Energy Spectrum of macroscopic events

Recall our above left-right crossing events corresponding to the Boolean functions $f_n, n \geq 1$. One is interested in the shape of their Energy Spectrum



Energy Spectrum of Majority

Let Φ_n be the majority function on $\{-1,1\}^n$ (n being odd)

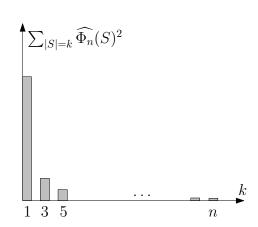
$$\Phi_n(x_1,\ldots,x_n) := \operatorname{sign}(\sum_i x_i)$$

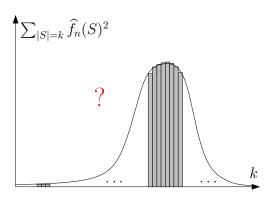
Energy Spectrum of Majority

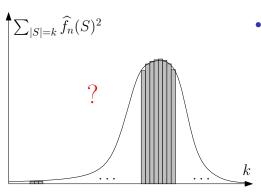
Let Φ_n be the majority function on $\{-1,1\}^n$ (n being odd)

$$\Phi_n(x_1,\ldots,x_n) := \operatorname{sign}(\sum_i x_i)$$

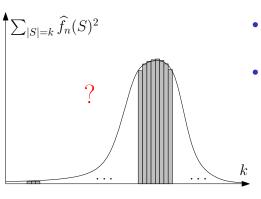
The Energy Spectrum of Φ_n has the following shape:



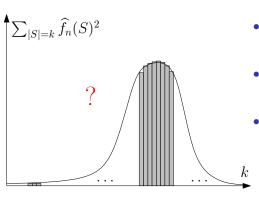




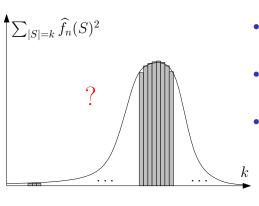
Hypercontractivity, 1998
 Benjamini, Kalai, Schramm



- Hypercontractivity, 1998
 Benjamini, Kalai, Schramm
- Randomized Algorithms, 2005
 Schramm , Steif

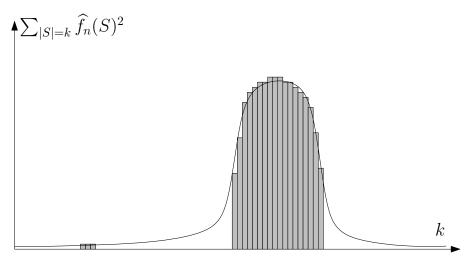


- Hypercontractivity, 1998
 Benjamini, Kalai, Schramm
- Randomized Algorithms, 2005 Schramm , Steif
- Geometric study of the 'frequencies', 2008
 G., Pete, Schramm

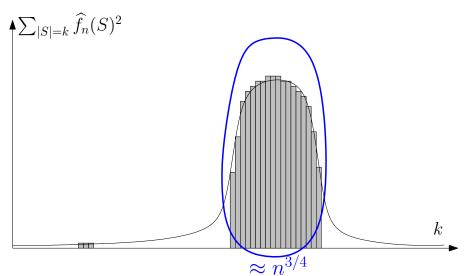


- Hypercontractivity, 1998
 Benjamini, Kalai, Schramm
- Randomized Algorithms, 2005
 Schramm, Steif
- Geometric study of the 'frequencies', 2008
 G., Pete, Schramm

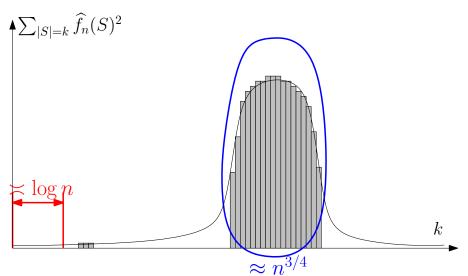
First Approach [BKS, 98] Hypercontractivity



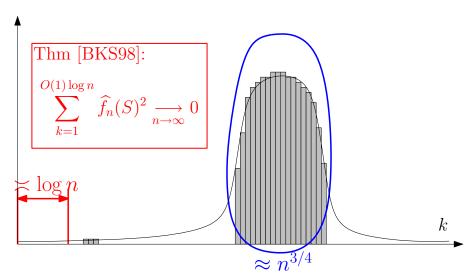
First Approach [BKS, 98] Hypercontractivity



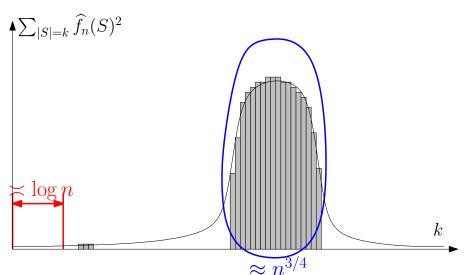
First Approach [BKS, 98] Hypercontractivity



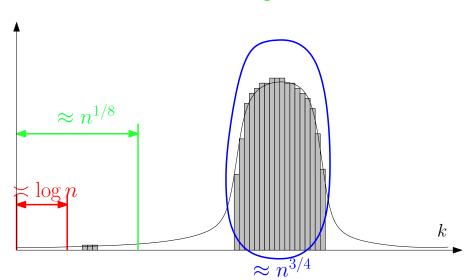
First Approach [BKS, 98] Hypercontractivity



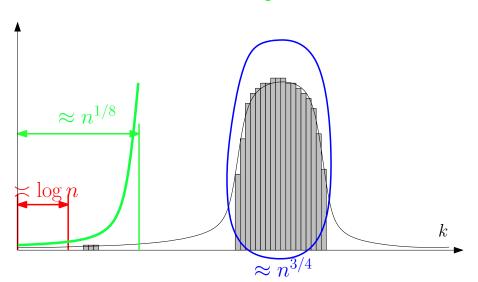
Second Approach [SS, 05] Randomized Algorithms



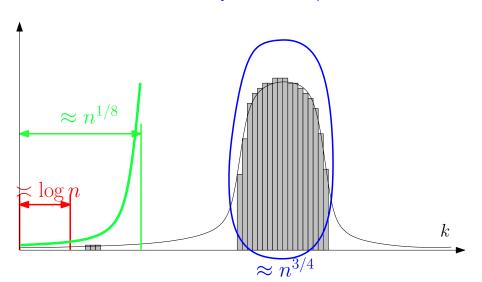
Second Approach [SS, 05] Randomized Algorithms



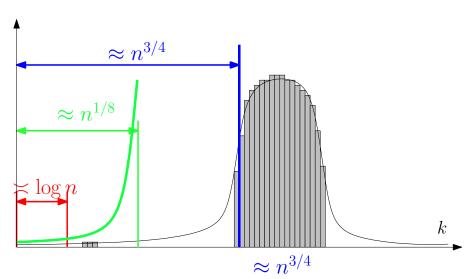
Second Approach [SS, 05] Randomized Algorithms



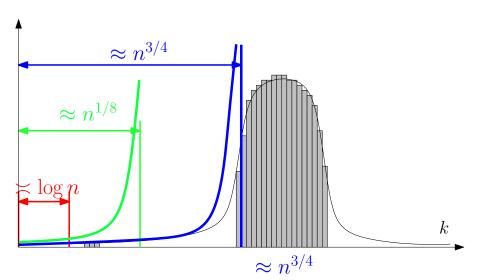
Third Approach [GPS 08] Geometric Study of the 'frequencies'



Third Approach [GPS 08] Geometric Study of the 'frequencies'



Third Approach [GPS 08] Geometric Study of the 'frequencies'



Consider a Boolean function $f: \{-1,1\}^n \to \{0,1\}$.

Consider a Boolean function $f: \{-1,1\}^n \to \{0,1\}$.

A (markovian) randomized algorithm for f is an algorithm which examines the intput bits one at a time until it finds what the output of f is.

If A is such a randomized algorithm, let $J = J_A \subset [n]$ be the **random** set of bits that are examined along the algorithm.

Consider a Boolean function $f: \{-1,1\}^n \to \{0,1\}$.

A (markovian) randomized algorithm for f is an algorithm which examines the intput bits one at a time until it finds what the output of f is.

If A is such a randomized algorithm, let $J = J_A \subset [n]$ be the **random** set of bits that are examined along the algorithm.

We are looking for algorithms which examine the least possible number of bits.

Consider a Boolean function $f: \{-1,1\}^n \to \{0,1\}$.

A (markovian) randomized algorithm for f is an algorithm which examines the intput bits one at a time until it finds what the output of f is.

If A is such a randomized algorithm, let $J = J_A \subset [n]$ be the **random** set of bits that are examined along the algorithm.

We are looking for algorithms which examine the least possible number of bits. This can be quantified by the **revealment**:

$$\delta = \delta_{\mathcal{A}} := \sup_{i \in [n]} \mathbb{P} \big[i \in J \big] .$$

Examples

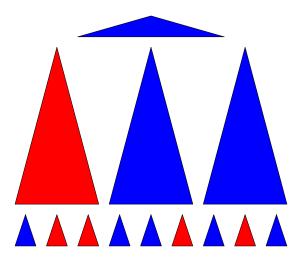
• For the Majority function Φ_n :

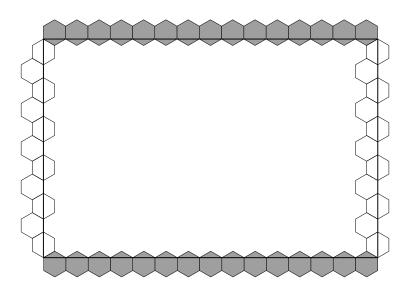
Examples

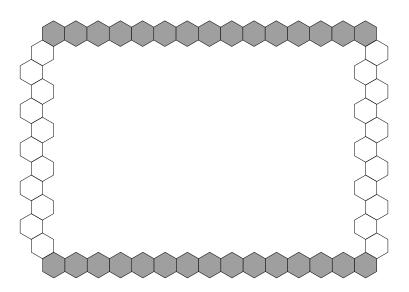
ullet For the Majority function Φ_n : $\delta \approx 1$

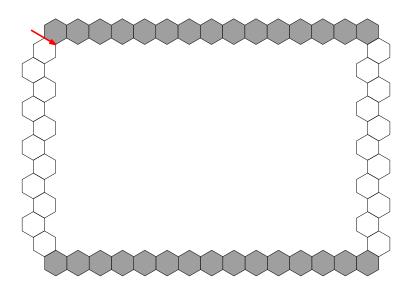
Examples

- For the Majority function Φ_n : $\delta \approx 1$
- Recursive Majority:

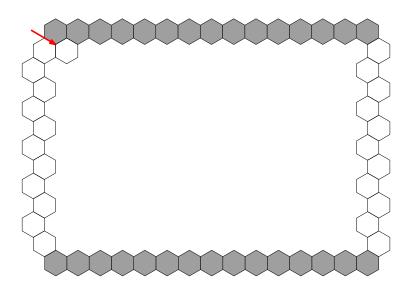


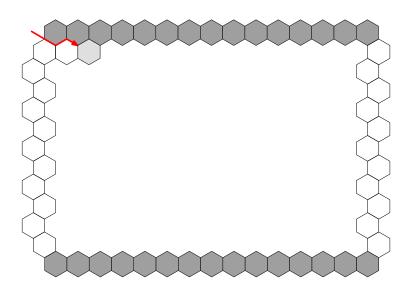


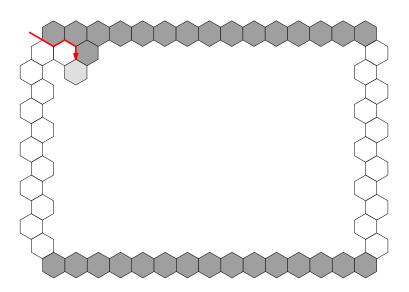




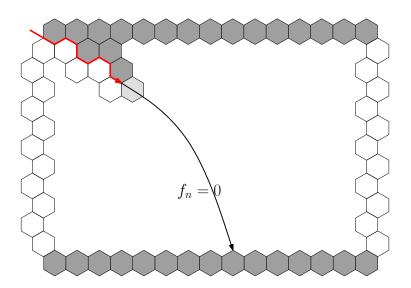


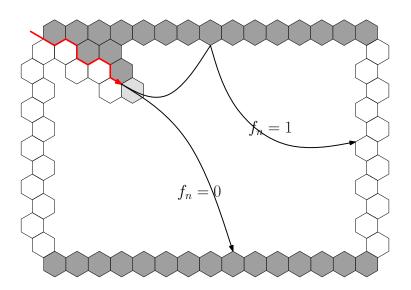












Revealment for percolation

Proposition (Schramm, Steif, 2005)

On the triangular lattice, a slight modification of the above randomized algorithm gives a small revealment for the left-right Boolean functions f_n of order

$$\delta_n \approx n^{-1/4}$$

Theorem (Schramm, Steif, 2005)

Let $f: \{-1,1\}^n \to \mathbb{R}$ be a real-valued function.

Theorem (Schramm, Steif, 2005)

Let $f: \{-1,1\}^n \to \mathbb{R}$ be a real-valued function. Let \mathcal{A} be a randomized algorithm computing f whose revealment is $\delta = \delta_{\mathcal{A}}$.

Theorem (Schramm, Steif, 2005)

Let $f: \{-1,1\}^n \to \mathbb{R}$ be a real-valued function. Let \mathcal{A} be a randomized algorithm computing f whose revealment is $\delta = \delta_{\mathcal{A}}$.

Then, for any k = 1, 2, ... the Fourier coefficients of f satisfy

$$\sum_{|S|=k} \widehat{f}(S)^2 \le k \delta ||f||^2$$