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Preface

This volume constitutes the proceedings of the Second International Workshop of
Component-Oriented Programming (WCOP’97), held June, 9 in Jyv¨askylä, Finland,
as a ECOOP Workop. Included in the book are a summary of the presentations and
discussions at the workshop and the twelve accepted and presented papers.

We would like to thank all those who helped to make WCOP’97 a success. Most
importantly, we thank all participants for coming and contributing to the lively and in-
teresting discussions. Many thanks also to all the authors for submitting a paper. We
are also grateful to the ECOOP workshop chair, Antero Taivalsaari, who did an ex-
celent job in preparing the event. Thanks also to the University of Jyv¨askylä and the
staff who supported us during the day. Finally, this volume could have not been pro-
duced without the financial support of the Turku Centre for Computer Science (TUCS),
Turku, Finland, and without Mats Aspn¨as, who helped with the text processing.

For the WCOP’97 Organizers
Wolfgang Weck, September 1997
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WCOP’97, held together with ECOOP’97 in Jyv¨askylä, was a follow-up workshop
to the successful WCOP’96, which had taken place in conjunction with ECOOP’96.
Where WCOP’96 had focused on the principal idea of software components and their
goals, WCOP’97 was more directed towards composition and other topics, such as
architectures, glueing, component substitutability, evolution of interfaces, and non-
functional requirements.

WCOP’97 had been announced as follows:

COP has been described as the natural extension of object-oriented
programming to the realm of independently extensible systems. The most
prominent examples of such systems are constructed around compound
document models such as OLE, OpenDoc, JavaBeans, or Netscape ONE
and rest on object models such as SOM/CORBA, COM or Java’s virtual
machine. WCOP’97 intends to address their methodological and theoret-
ical underpinnings.

COP aims at producing software components for a component market
and for late composition. Composers are third parties, possibly the end
user, who are not able or willing to change components. This requires
standards to allow independently created components to interoperate, and
specifications that put the composer into the position to decide what can
be composed under which conditions. These needs raise open research
questions like what kind of standards are needed and how they should be
defined. Or what information specifications need to give, how this inform-
ation should be provided, and how correct implementation and usage of
specifications could be verified or enforced.
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16 position papers were submitted to the workshop and formally reviewed. 12 pa-
pers were accepted for presentation at the workshop and publication with the proceed-
ings. Unfortunately, the paper by M.Goedicke and T.Meyer could not be presented,
because force majeure hindered the authors to attend the workshop. Still, 25 parti-
cipants from 13 countries were counted at the workshop.

During the morning session, participants presented their work, which covered a
wide range of topics. A major theme was how to select components for composition in
a specific situation. Such a selection must rest on two pillars. Firstly, the selected com-
ponents must be compatible with each other. Secondly, characteristics that are not part
of the standardized component interface may decide which component to pick from
otherwise equal ones. Examples are time or resource requirements, fault tolerance,
degree of distribution, etc.

To address the compatibility of components, various approaches and philosophies
were presented. An important property of component-oriented programming is that a
single specification may be supported by multiple implementations. However, prob-
lems may arise if individual implementations depend on the implementation of other
components. These dependencies may cause conflicts, which can often only be detec-
ted when the composed system is analysed as a whole.

One solution is that dependencies on other components as well as known conflicts
with other components become part of a component’s specification. Reuse Contracts
[De Hondt et al.] have been proposed as a tool for this. They also allow the composer
to decide quickly whether a given set of components may conflict.

[Mikhajlov & Sekerinski] suggest to define rules that, if being followed, exclude
conflicts in principle. These rules affect the design of specifications, the implementa-
tion of components, and the implementation of a component’s clients. For inheritance
between classes of objects, such rules can be derived formally.

A third approach is to accept that components will have some dependencies that
are not part of a specification and hence cannot be checked by the composer. The
component creators, however, are aware of these dependencies. Thus, this knowledge,
available during component creation time, has to be maintained and made accessible to
system composers. [Murer] suggests that this requires tool support.

Finally, a component may not be applicable in a specific situation as it is. In these
cases, it needs to be adapted, which can be done either by modifying the program’s
source code or by wrapping it. Both approaches have their disadvantages. Alternatives
on a middle ground are needed. [Bosch] proposes the use of component adaptation
types that can be superimposed on components.

One aspect of specifications is that they embody a contract between programmers
of service providing components and service clients. Because it is impossible to test
a provider component against all clients and vice-versa, it must be decided without
testing both whether a specification is implemented correctly and whether a client uses
it correctly. For this, formal methods are helpful, but need to be made applicable in
practice. [Büchi & Sekerinski] address the problem of poor scalability by specification
statements, which are used in refinement calculus.

The second mayor theme of the presented work were properties of components that
are not part of the (functional) standard interface. One may want to add such properties
to existing components when putting them together to a complete system. This allows
the system’s composer to pick those properties that are actually needed in the specific
situation. [Troya & Vallecillo] discuss some technical precautions for this, such as a
specific communication mechanism.

An example of such add-on properties are mechanisms for run-time fault man-

2



agement in distributed systems. [Baggiolini & Harms] propose to use wrappers for
providing monitoring, diagnosis, or failure correction.

Components that are otherwise interchangeable will distinguish themselves by some
important (unchangeable) properties, such as resource requirements. It is an important
task to select the right components, meeting possible constraints imposed by the de-
ploying system or the problem to be solved. [Lalanda] suggests that this selection may
be best made at run-time, and proposes a special architecture.

Some of the work addressed other topics than these two main themes. Workflow
systems seem to lend themselves to component-oriented software, because of their
configurability and building-block-like structure. [Schreyjak] proposes a special com-
ponent framework to support component-based workflow systems.

One way of composing systems is by expressing relations and cooperation between
components in a special language. [Steensgaard-Madsen] proposes an interpreted lan-
guage, in which the commands are components. Such language interpreters are spe-
cialized for an application domain and need to be generated automatically.

[Weck] discusses the problems of code inheritance across component boundaries,
such as the danger for unwanted dependencies. Instead, inheriting classes need to refer
to specifications of base classes. With this, inheritance can be replaced by object com-
position without sacrificing the possibility of static analysis, yet being more flexible.

Because of the many participants, during the afternoon session the workshop was
split up into discussion groups. The participants expressed interest in four areas: Com-
ponents, Architectures, Non-Functional Requirements, and Glue. The following are
short summaries, based on presentations and notes provided by different participants
of the discussion groups.

Components As a start, it was recognized that what makes something a compon-
ent is neither a specific application nor a specific implementation technology. In this
sense, ”anything” may be cast into a component. To provide access to something about
which so little is known, an interface needs to be provided. Interfaces are mainly
seen as a collection of ”Service Access Points”, each of them including a semantics
specification. The main purpose of components is reuse of both implementations and
interfaces. For effective implementation reuse, the aforementioned independence from
implementation technology is particularly important. Two kinds of life cycles are to be
distinguished: that of the interface and that of the component itself. The latter is shorter
than the former, because the interface exists as long as any implementation is around.
For interfaces, formalization of semantics is necessary. Even more important, the in-
teroperation between components must be described. On the technical level, one needs
a binary interoperation standard and a mechanism to map semantics specifications to
implementations using this binary standard.

Architecture Architecture describes compositions of components, and therefore re-
lationships between them. This requires consideration of the component’s interfaces.
Architecture is to be stated in terms of interfaces rather than component implementa-
tions. In contrast, if architecture would be seen just as design patterns for composition,
a concrete architecture may not be realizable because the components at hand may not
fit together (architectural mismatch). On the other hand, in a given architecture, com-
ponents are replaceable by others implementing the same interface. Thus, architecture
represents the longer lasting and slower changing design as opposed to component im-
plementations. More precisely, an architecture consists of a collection of interfaces
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that represent slots to be filled (or roles to be played) by components. Some support-
ing white-box implementation, for instance, a kernel, may be bundled with a given
architecture.

Non-Functional Requirements Examples of systems currently under construction
were collected together with their specific non-functional requirements. For instance,
an avionics system that plans trajectories of a plane and must react to route problems
(such as a storm or being low on fuel) must be fast (2-3 second response time) and
must adapt itself to many different situations that might arise. Secondly, a system for
numerical computing on parallel processors must run fast on a given parallel machine.
It also must be quickly portable to run on a new machine. Thirdly, software for con-
trolling a kidney dialysis machine must be responsive (quickly read various sensors
and updates actuators), flexible (to adapt easy and reliably to changes in hardware,
such as a new pump model, or medical practice, such as a new protocol for dialysis),
and demonstratable (to be shown to a regulatory agency to convince them of its safety
and benefit).

There are different ways of meeting non-functional requirements, depending on the
type of requirement. Some are automatically satisfied if each component of the sys-
tem is properly designed. Others arise out of the interaction of components, and can
only be addressed at that level, not at the level of individual components. Four ways
of providing non-functional properties could be found. One can parameterize compon-
ents so that specific properties can be requested of them; or one can reorganize the
components to deal with the property; or one can design an overall architecture that
is responsible for the property and that can provide it if the components adhere to the
architecture; or, finally, a meta-level mechanism can provide access to the component
interaction to deal with the property. The latter is similar to aspect-oriented program-
ming.

Glue By glue, the participants understood middleware that is used to connect exist-
ing components. Examples are Tcl/Tk, scripting mechanisms, even make files. Some
support for typing would be nice to have but hard to achieve due to the vast variety of
types components may introduce. In general, the glue is more flexible than the com-
ponents glued together, and thus should use a dynamic language. In connection with
the discussion on architecture, it turns out that components are sandwiched between
architecture and glue. To be accessible from within a given scripting environment, the
components must meet some architectural requirements, like accepting messages sent
by the script interpreter. Thus, the script (glue) builds on components that in turn are
built for the scripting architecture.
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Toward Automatic, Run-time
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Vito Baggiolini and J̈urgen Harms
Centre Universitaire d’Informatique Universit´e de Gen´eve

Rue Général-Dufour 24 1211 Gen´eve 4
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While components are well tested and intrinsically more reliable than custom-
made software, applications built of components generally lack global verifica-
tion (especially if they are independently extensible) and are subject to distributed
failure scenarios. We discuss a simple framework for building fault-resilient ap-
plications based on a data flow architecture. We illustrate the characteristics that
make this architecture particularly suitable for automatic fault management and
explain the mechanisms we use for detecting, diagnosing and correcting faults at
run-time.1

1 Introduction

The background of this work lies in fault management of open distributed applications,
a field we have been working in for the past few years. A year ago, we have terminated
a project in which we built a management infrastructure for the operational E-mail
service of our university [1, 2]. Now we are exploring the field from a more conceptual
viewpoint, aiming at elaborating a sound basis for automated fault management [3].

The goal of fault management is to keep a system up and running and to cope with
failures in the environment or in parts of the system itself. Amanagermonitors the
behavior of the system, and, when it detects failures, it acts on the system to diagnose
and correct them. Management can be done manually (by a human operator), or it can
be carried out partly or fully automatically by a software application. Let us introduce
a few related vocabulary items: afailure is the inability of a system to fulfill a task
it was intended for, and afault is the actual cause of the failure. Fault management
aims at handling faults before they cause failures. Fault management has three phases:
monitoringto detect fault symptoms,diagnosisto identify the type and location of the
fault andcorrectionto eliminate the fault.

Current approaches to fault management of distributed applications typically use
network management paradigms and technology [4, 5]. Based on our experience
gained in the E-mail management project, we believe that this approach does not have
the potential to provide a basis for automatic management. There are two main prob-
lems we have identified:

1This work was funded by a research grant of the Swiss National Science Foundation, Project 2129-
04567.95
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� Management is added as an afterthought to existing applications. This means
that applications are used for a purpose they were not intended for. The archi-
tecture may for instance be completely unsuitable for management or there may
be no appropriate means of acting on the application at run-time. If there is any
functionality for management, it generally is aimed at humans (e.g. system man-
agers), and unsuitable for automatic use by a manager application. This leads to
complex and inefficient management solutions.

� The software is large and monolithic. A distributed application is composed
of processes running on different machines and these processes correspond to
large, monolithic programs (e.g. E-mail relays). A finer granularity is needed
for management. Information about internal structure and dynamic behavior of
the managee processes must be accessible and it must be possible toselectively
act on aspects of their behavior and on their structure.

We believe that manageability must be considered in the software engineering pro-
cess right from the start. In other words, we want to buildmanageable applications. We
advocate a framework containing (1) ”application components”, which are the build-
ing blocks for the primary application functionality and (2) ”management components”
that are capable of handling typical failure scenarios. A developer constructs an applic-
ation out of the application components and makes it failure-resilient by ”mixing in”
management components that take care of potential failures.

2 Problem Description

Components are mature and reliable pieces of software. They are extensively tested and
have many less bugs than custom-made code. However, this is not the case for com-
binations of components [6, 7]. It is tedious to test all possible combinations between
components of a framework and impossible to do so in the case of components pro-
duced by different manufacturers. Interoperability problems are inevitable. Global
analysis of component-based applications is complex. It is unfeasible for applications
that can be independently extended by the end-user, and of course for open distributed
applications.

Fault management is confronted with various problems, of which the following two
are of special interest for this paper:

� Propagation of faults. A fault in a component may cause wrong behavior in
other components and provoke fault symptoms that often are distant from the
cause and at first do not seem to have any relation to it. The symptoms must be
traced back to the actual fault, which requires, amongst other things, accurate
and detailed knowledge on dependencies between parts of the system. Such
dependency information, however, is generally difficult to establish.

� Distributed failures. Distributed failures have their origin in faulty interactions
of several components; examples of such failures are interoperability problems,
deadlocks or data forwarding loops (the latter happen in message-passing sys-
tems [8]). Often, there is no single component that can be diagnosed as being
faulty, and it may be very difficult to decide how and where to intervene to cor-
rect the problem. This becomes even more difficult if all components are actually
behaving correctly on their own but their dynamic or structural combination oc-
casionally fails to work properly.
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3 A Manageable Data Flow Architecture

In this section, we present an application architecture that has many characteristics that
enable fault management and that addresses many aspects of the problems listed above.
We first describe our design and then explain its suitability for fault management.

3.1 Description

The architecture we use is known as ”data flow” or ”pipe-and-filter” (see e.g. [9]). Well
known examples are Unix shells which allow commands to be connected by pipes,
image processing frameworks where images flow through several filters, routers that
forward data through a network, E-mail relays forwarding messages, and so on.

This architecture is based on interconnected filter components that accept data
items on one side, carry out transformations on them and push them out on the other
side. This push-paradigm results in a flow of data items through the application.

The specific framework we are developing for our research contains active and
passive components. Active components are the ”motors” of the application, while
passive components carry out the data processing. Active components contain a thread
and an incoming queue in which upstream components can deposit data items.

An active component is typically followed by a number of passive components.
It fetches one data item after the other from its queue and pushes them through the
passive components up to the next active component (Fig. 1).

Fig. 1: Active component pushing data item through passive components

data items
waiting in queue

data item being
processed

active
component

passive
components

active
component

data
item

data
item data

item

Passive components are stateless: except for transient information on the data item
being processed, they do not contain dynamic data processing state. Once a data item
has been processed, the component discards all related state. The only permanent state
is related to configuration (e.g. a component’s downstream peers, or its configuration
parameters).

Components are connected together using a registration scheme. Connections are
normally set up when the application is started, but they can be freely modified at run-
time. Components can in principle be interconnected to arbitrary graphs. But typically,
they are recursively grouped to composite components which have essentially the same
behavior as elementary components and are again connected to graphs. This results in
a hierarchical design with intuitive abstraction layers.

3.2 Features enabling fault management

We have identified a number of generic ”manageability” requirements, i.e., charac-
teristics that make an application suitable for fault management. Among these are:
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modularity, homogeneity, accessibilityandstatelessness. This section explains them
in more detail and illustrates how our framework complies with them.

Modularity. Our framework consists of weakly coupled modules which inter-
act along well-established dependencies by forwarding encapsulated data items. This
design has the following advantages for management: (1) it favors fault containment: a
faulty component cannot corrupt others, and fault symptoms are less likely to propag-
ate to other parts of the system. (2) It makes diagnosis easier: if a fault symptom
propagates, this can only happen along well-known dependency paths. Thus, when a
fault symptom is detected, it can be traced along the dependencies back to the actual
fault. (3) It makes corrective interventions easier: components can be manipulated
independently from one another and they can even be substituted at run-time.

Homogeneity. Our framework is based on one single processing paradigm (re-
ceive, process and forward data) and one single type of component interaction (one-
to-one forward connections through which uniform data items are forwarded). This
pattern is homogeneously applied throughout the whole application: all components
(elementary or composite) follow the same processing paradigm, and the interconnec-
tions work the same through all abstraction levels. As a consequence, management
is easier to accomplish. As only one paradigm must be managed, there are less pos-
sible failure scenarios to be dealt with and consequently a smaller set of management
algorithms is sufficient.

Accessibility. The internal characteristics of applications built with our framework
are accessible to management. The components can be manipulated selectively. The
application structure (the connections between components) can be explored and re-
configured, and components can be substituted. The interactions between components
can be analyzed for correctness. All these interventions can be carried out at run-time.

Statelessness.In our design, all data processing state is encapsulated in the data
items. The passive components contain data processing state only while they process
a data item, and discard it thereafter. The active components do not contain data pro-
cessing state at all, just references to the data items waiting in the input queue. This
has several positive consequences: (1) Components can be manipulated independently,
because there is no distributed state to be maintained. (2) Checkpointing is limited to
data items, the components do not have state that needs to be checkpointed. (3) The
application is more robust: since they are stateless, components cannot be crashed by
a corrupt data item; at worst, that data item fails to be processed correctly.

3.3 Generic fault management strategies and algorithms

One of our goals is to find generic management strategies and algorithms that can be
applied to different kinds of components and data items regardless of their specific
function or contents. The idea is to take typical failure scenarios that can happen to
applications based on the framework and to develop the algorithms for handling these
faults. These algorithms are implemented as re-usable management components. The
application components must be ”management-enabled”, i.e., they must contain func-
tionality to detect failure symptoms, and they must provide a management interface
through which they can be controlled by the management components. In the follow-
ing, we discuss the monitoring mechanisms used in our framework and a number of
algorithms and strategies for diagnosis and fault correction.

Monitoring. In order to detect suspicious situations as fast and close to the cause
as possible, monitoring should ideally be carried out almost continuously and every-
where in the application. However, only a very limited overhead can be tolerated, and
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the mechanisms and their use must be carefully chosen. We use the following light-
weight monitoring mechanisms: (1)Data consistency checksintegrated into the data
objects are executed every time the data enters a component. They are based on simple
assertions on invariant characteristics of the data and constitute a simplified form of
pre- and post-conditions as used in software contracts2[10]. (2) A hop countercon-
tained in the data items is incremented in every component the data passes through. It
makes it possible to detect loop failures (i.e., data items being continuously forwarded
in a circular manner between a set of components). (3) Thequeue lengthsof the active
components are monitored to detect bottleneck conditions. (4)Time-out mechanisms
protect the forwarding of data items from one component to the next and help to detect
deadlock conditions.

In addition to the above, components contain self-tests routinesthat are executed
from time to time (possibly when the application is idle). They assert amongst others
that the component have enough resources and that their configuration and internal data
structures are consistent.

Diagnosis.Diagnosis starts when a failure condition has been discovered by mon-
itoring. Diagnosis has the goal to establish a hypothesis about the fault type and the
component(s) responsible for the failure. This hypothesis serves as a basis for car-
rying out corrective actions. Diagnostic activities include ”isolation testing” of data
items and components, inspection of the data stream between components, tracking of
dependency paths and analysis of the application structure.

� Isolation testingis not based on the integrated test functions of data items or
components, but essentially black-box testing. To test a component, some spe-
cifically crafted data items are sent through it, as a kind of ”test suite” of data
items. For this purpose, the component is temporarily taken out of the data
stream (hence the name ”isolation testing”), so that the tests can be carried out
in the ”live” execution environment without affecting the rest of the application.
A similar procedure is used for testing data items: they are sent through a dia-
gnosis component that is specially tailored for their type and capable of finding
inconsistencies in their contents.

� Data stream inspectionis used for instance for diagnosing cases of incompatib-
ility between two components. A diagnosis component is inserted between the
two components to determine which one of them is behaving faultily. In a sim-
ilar way, a component’s behavior can be assessed by observing the interactions
with all its neighbors.

� Dependency pathsare explored to trace back a fault symptom to the actual fault.
For example, if a corrupt data item has been detected, it is likely that it has been
corrupted by a previous processing step. Thus, the dependency path must be
followed upstream. Conversely, if there is a bottleneck scenario, one must track
the downstream dependencies to find the component that slows down processing.

� Structural analysisis used to diagnose deadlocks and loops, which are both
caused by circular connections between components. Deadlocks happen if too
many data items are present in a cycle of components; data items keep looping in

2Note that in a chain of components, the post-condition of a component coincides with the next compon-
ent’s pre-condition.
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a cycle due to erroneous forwarding (routing) information. In this case, all com-
ponents that are part of the loop must be identified, as well as those components
where data items flow into and out of the loop.

Fault correction. Once the faulty component has been identified, corrective ac-
tions must be taken to eliminate the fault. Note that failuresinsidea component, e.g.
design flaws or programming errors, cannot be corrected at run-time. Failure correc-
tion is thus limited to the following options: (1) re-configuration, re-initialization or
substitution of a component and (2) reconfiguration of the application structure.

Examples forcomponent reconfigurationare: augmenting the number of slots in
the in-queue of an active component; switching to a resource-conservative mode in
case of a resource shortage; insertion of additional active components in a composite
component to enhance throughput. If a component is found to be buggy, it can be
substituted by a compatible replacement component.

Management actions aimed at thereconfiguration of the application structurein-
clude for instance: de-coupling of incompatible components by insertion of a man-
agement component in between; insertion of additional components in parallel to an
overloaded component to alleviate bottlenecks; insertion of buffers into a loop to limit
the potential of deadlocks happening.

In this way, most typical day-to-day problems can be corrected automatically. But
of course, it is impossible to handle all possible failures automatically, and the inter-
vention of a human manager (e.g. a system administrator) may be necessary from time
to time. Even in this case, automatic fault management is fundamental to keeping a
service up and running. Firstly, problems are detected at an early stage, before they
cause a deterioration of the service, so that there is enough time left to alert a human, if
necessary. And secondly, once a human administrator is available, s/he does not have
to troubleshoot the problem from scratch, but s/he can build on the diagnosis that has
already been made by the fault management system.

Last but not least, run-time fault management contributes to the long-term amelior-
ation of software products: a complete ”history of events” related to a failure provides
invaluable debugging information to the developers of both the application and the
underlying component framework.

4 Prototype Implementation

We have implemented a prototype of an E-mail relay based on our framework. It is
composed of around thirty elementary components grouped into nine composite com-
ponents. Each of these implements a piece of high-level functionality (like the SMTP
protocol engine, aliasing of addresses, formatting of the message body, etc.). In its
current implementation, it contains a central management component with a user in-
terface that gives a human manager access to the composite components and to all the
elementary components they contain.

In the current prototype only monitoring is done automatically. The detected fault
symptoms are dispatched to the management component, and the human manager
can diagnose them at run-time using the components’ management interface. This
approach has proven to be very useful for the design and testing of management al-
gorithms.
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We use Java for our developments because it has many characteristics suitable for
management. The language is object oriented, robust and includes support for multi-
threading and exceptions, and the Java development kit (JDK 1.1) provides reflection,
distribution, and persistence. Last but not least, our architecture (that we started to
develop before JavaBeans were available) can easily be adapted to comply with the
JavaBeans specifications, which would allow us to profit from the associated visual
development environment.

5 Conclusions

There is an interesting symbiosis between component-oriented programming and auto-
matic fault management: Component-based applications can benefit from run-time
fault management to handle the unforeseen failure situations resulting from the lack
of global testability. Fault management, in turn, profits from many characteristics of
components as described in the paper.

The idea of management-enhancedcomponent frameworks seems particularly prom-
ising to us. A frameworks containing management-aware application components as
building blocks and management components that are able to handle framework spe-
cific failures makes it easier to build fault resilient applications. The advent of a stand-
ard component market will make failure handling by substitution of faulty components
feasible.

The data flow architecture we have chosen is very suitable for management. While
various kinds of applications can be built with this architecture, we do of course not
expect that everybody - just for the sake of manageability - implement their applications
with it. We intend to further investigate what are the core characteristics that make an
application manageable, and how our approach can be applied also other application
architectures. This, however, is a long-term goal of our research. For the time being,
we are working on the implementation and automation of our algorithms and on their
application to distributed store-and-forward applications.
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Several authors have identified that the only feasible way to increase pro-
ductivity in software construction is to reuse existing software. To achieve this,
component-based software development is one of the more promising approaches.
However, traditional research in component-oriented programming often assumes
that components are reused ”as-is”. Practitioners have found that ”as-is” reuse sel-
domly occurs and that reusable components generally need to be adapted to match
the system requirements. Component adaptation techniques should be transparent,
black-box, composable, configurable, reusable and efficient to use. Existing com-
ponent object models, i.e. white-box techniques, such as copy-paste and inherit-
ance, and black-box approaches, such as aggregation and wrapping, these require-
ments. To address this, this paper proposessuperimposition, a novel black-box
adaptation technique that allows one to impose predefined, but configurable types
of adaptation functionality on a reusable component. In addition, three categor-
ies of typical adaptation types are discussed, related to the component interface,
component composition and monitoring.

1 Introduction

Component-oriented programming is receiving increasing amounts of interest in the
software engineering community. The goal is to create a collection of reusable com-
ponents that can be used for component-based application development. Application
development then becomes the selection, adaptation and composition of components
rather than implementing the application from scratch.

The abstract, naive view of component reuse is that the component can just be
plugged into an application and reused as is. However, many researchers have identi-
fied that ”as-is” reuse is very unlikely to occur and that in the majority of the cases, a
reused component has to be adapted in some way to match the application’s require-
ments. Adapting a component can be achieved usingwhite-box, e.g. inheritanceor
copy-paste, andblack-box, e.g. aggregation or wrapping,adaptation techniques.

In this paper, we argue that the aforementioned techniques are insufficient to deal
with all required types of adaptation without experiencing, potentially considerable,
problems. To address these problems, we introduce the notion ofsuperimposition, a
technique to impose predefined, but configurable, types of functionality on a compon-
ent’s functionality. The notion of superimposition has been implemented in the layered
object model (LayOM ), an extensible component object model.LayOM consists of
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nested objects, methods, states, acquaintancesandlayers. The layers encapsulate the
basic object and all messages sent to or from the object are intercepted by the lay-
ers. Through the use of these layers,LayOM provides several types of superimposing
behaviour that can be used to adapt components. The advantage of layers over tradi-
tional wrappers is that layers are transparent and provide reuse and customisability of
adaptation behaviour.

The remainder of this paper is organised as follows. In the next section, conven-
tional component adaptation techniques are evaluated. In section 3, the notion of su-
perimposing adaptation behaviour on components is discussed and a number of typical
types of adaptation are described. Section 4 presents the layered object model and
briefly discusses some examples of superimposing adaptation behaviour. In section 5,
our results are compared to related work and the paper is concluded in section 6.

2 Component Adaptation Techniques

Component-based software engineering intends to construct applications by putting
together reusable components. The naive view assumes that one selects a set of com-
ponents that deliver parts of the application requirements and then put these compon-
ents together by connecting inputs to outputs. However, research in software reuse has
shown that components generally need to be adapted to match the application architec-
ture or the other components.

2.1 Requirements for Component Adaptation Techniques

Before conventional component adaptation techniques are discussed, the requirements
that a component adaptation technique has to fulfil in general are specified. These
requirements provide a framework that can be used to evaluate conventional component
adaptation techniques, but also to provide an insight in the required functionality of
novel adaptation types.

� Transparent: The adaptation of the component should be astransparentas pos-
sible. Transparent, in this context, indicates that both the user of the adapted
component and the component itself are unaware of the adaptation in between
them. In addition, aspects of the component that do not need to be adapted should
be accessible without explicit effort of the adaptation. Wrapping a component,
for instance, requires the wrapper to forward all requests to the component, in-
cluding those that need not be adapted.

� Black-box: As we identified in the previous section, the software engineer al-
ways has to develop some mental model of the functionality of a component be-
fore the component can be reused. This model should, however, be kept as small
and simple as possible. One suitable approach is to make sure that the adaptation
technique requires no knowledge of the internal structure of the component, but
is limited to the interface of the component.

� Composable: The adaptation technique should be easily composable with the
component for which it is applied, i.e. no redefinition of the component should
be required. Secondly, the adapted component should be as composable with
other components as it was without the adaptation. Finally, the adaptation should
be composable with other adaptations.
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� Configurable: As mentioned earlier, adaptation often consists of a generic and
a specific part. For example, the adaptation type, changing operation names, has
a generic part, i.e. replacing the selector in the message with another name and
a specific part, i.e. which selectors should be replaced with what names. For
the adaptation technique to be useful and reusable, the technique has to provide
sufficient configurability of the specific part.

� Reusable: A problem of traditional adaptation techniques is that both the gen-
eric and the specific part are not reusable. A new technique should address this
and provide reusability of the adaptation type and particular instances of the ad-
aptation type, i.e. both the generic and the specific part.

� Efficient: All forms of component reuse, be it as-is or otherwise, require the
reuser to construct a mental model of the functionality provided by the compon-
ent. The larger and complex the mental model that the software engineer has to
construct, the less efficient the actual reuse of the component will be.

2.2 White-box Adaptation Techniques

Copy-Paste When an existing component provides some similarity with a compon-
ent needed by the software engineer, the most effective approach may be to just copy
the code of that part of the component that is suitable to be reused in the component
under development. After copying the code, the software engineer will often make
changes to it to make it fit the context of the new component and additional function-
ality will be defined or copied from other sources.

Although the copy-paste technique provides some reuse, it obviously has many dis-
advantages, among others the fact that multiple copies of the reused code are existing
and that the software engineer has to intimately understand the reused code. However,
from our discussions with professional software engineers and students, we were sur-
prised to see how often this technique is applied, especially when time pressure or other
factors may force for a ”quick-and-dirty” approach.

Inheritance A second technique for white-box adaptation and reuse is provided by
inheritance. Inheritance as provided by, e.g. Smalltalk-80 and C++, makes the state and
behaviour of the reused component available to the reusing component. Depending on
the language model, all internal aspects or only part of the aspects become available
to the reusing component. Inheritance provides the important advantage that the code
remains in one location. However, one of the main disadvantages of inheritance is
that the software engineer generally must have detailed understanding of the internal
functionality of a superclass when overriding superclass methods and when defining
new behaviour using behaviour defined in the superclass.

2.3 Black-box Adaptation Techniques

Different from white-box adaptation techniques, black-box adaptation techniques reuse
a component but do not require the software engineer to understand the internals of
the component. The component is accessed through its externally visible interface
and its internal structure is fully encapsulated. Black-box adaptation techniques are
only concerned with adapting the interface of the component, rather than the internal
structure of the component.
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Aggregation When defining a large component with much behaviour, one can define
existing components that provide part of the required behaviour as part of the compon-
ent, i.e. aggregation. Although aggregation is more oriented towards reuse than to-
wards adaptation, the newly developed code in the aggregating component enables the
reuse of components that otherwise might not have matched the application. However,
aggregation is not a pure adaptation technique, butalsosuitable for component adapt-
ation.

Wrapping Wrapping also declares one or more components as part of an encapsu-
lating component but this component only has functionality for forwarding, with minor
changes, requests from clients to the wrapped components. There is no clear bound-
ary between wrapping and aggregation, but wrapping is used to adapt the behaviour
of the enclosed component whereas aggregation is used to compose new functionality
out of existing components providing relevant functionality. An important disadvant-
age of wrapping is that it may result in considerable implementation overhead since
the complete interface of the wrapped component needs to be handled by the wrapper,
including those interface elements that need not be adapted. Also, others, e.g. [7], have
identified that wrapping may lead to excessive amounts of adaptation code and serious
performance reductions.

2.4 Evaluating Conventional Techniques

In Table 1, an overview of the conventional adaptation techniques is presented that
indicates how well each technique fulfils the specified requirements. From the table,
one can identify that some requirements are dealt with well by the black-box techniques
but not so well by the white-box techniques and visa versa.

The copy-paste technique, as well as inheritance, is transparent since the reused
and adaptation behaviour are merged in a single entity. However, on the other re-
quirements, the white-box adaptation techniques do not score so well. The black-box
adaptation techniques are not transparent, since they encapsulate the adapted compon-
ent. Obviously, these techniques are black-box by definition and wrapping is even
composable since a wrapped component can again be wrapped by another wrapper ad-
apting different aspects of the original component. Configurability and reusability are
not well supported by these techniques since no distinction between generic behaviour
and component-specific behaviour is made. Due to this, it is not possible to separate
the generic aspects and apply them for a different component.

Requirement Copy-Paste Inheritance Aggregation Wrapping

transparent + + - -
black-box - - + +

composable - - - +
configurable - - - -

reusable - - +/- +/-
efficient - + + -

Table 1: Conventional adaptation techniques versus the identified problems and re-
quirements
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Concluding, none of the conventional component adaptation techniques fulfils the
requirements that are required for effective component-based software engineering.
Therefore, one may deduce alternative approaches are required. In this paper we pro-
pose superimposition as a novel technique to component adaptation.

3 Component Adaptation through Superimposition

We proposesuperimpositionas a novel technique to adapt components in a component-
based system. The notion underlying superimposition is that a component and the
functionality adapting the component are two separate entities on the one hand and
need to be very tightly integrated on the other hand. We believe that, in addition to a
set of reusable components, a set of reusable component adaptation types is required.
These adaptation types should be configurable and composable with each other to allow
for complex component adaptations. In the next section, several types of component
adaptation are identified and presented.

3.1 Component Adaptation Types

During our work on component adaptation, we have identified three typical categories
of component adaptation, i.e. component interface changes, component composition
and component monitoring. In the sections below, each of these categories is discussed
in more detail.

Changes to Component Interface A typical situation in component-based system
construction is when a component in principle could be reused in the system at hand,
but its interface does not match the interface expected by the system. In such situations,
the interface of the component needs to be adapted to match the expected interface.
Below, some typical examples of component interface adaptation are presented.

� Changing operation names: Perhaps the most typical problem when reusing
a component is that the names of some of the operations provided by the com-
ponent do not match the expected interface. This problem has been identified by
many software engineers. TheAdapterdesign pattern [4] has been defined to ad-
dress this but its implementation suffers from several problems as we identified
in [1].

� Restricting parts of the interface: A second change to the component inter-
face that a component may require is the exclusion of a part of the interface. In
the reusing context, a part of the interface may not be relevant or even counter-
productive (e.g. for typing reasons) it would be accessible by clients of the com-
ponent. Adaptation of the component should then restrict access to the excluded
operations.

� Client- and state-based restriction: In systems where a component is used by
clients of various types, the component may need to act in several roles, see e.g.
[11]. This requires the component to present a tailored interface to each client
type, i.e. each client has only access to that part of the interface that it requires.
This we refer to as client-based interface restriction. In addition, parts of the
interface of the component may be accessible or restricted based on thestateof
the component.
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Component Composition Components are intended for composition to form larger
structures. Sometimes, the components have to composed such that the resulting struc-
ture seems a single component from the system’s perspective. Below, three types of
component adaptation relevant for component composition are discussed.

� Delegation of requests: The easiest way for a component to providing required
services not available within the component itself is to delegate a request for such
a service to another component that is able to provide the requested service. To
achieve this, the component needs to be extended with behaviour that delegates
certain requests to other components.

� Component composition: In cases where two components need to be more
structurally integrated, the two components can be aggregated in a encapsulating
component. However, the encapsulating component needs to delegate requests to
the contained components such that the requirements of the system are fulfilled.

� Acquaintance selection and binding: No component is an island, i.e. virtually
all components require other components, acquaintances, to provide them with
services in order to be able to deliver the functionality needed by the system.
However, since the designers of reusable components are unable to make all but
minimal assumptions about the context in which the component will operate, the
binding of the acquaintances required by the component is often performed in
an ad-hoc manner, e.g. when the component is instantiated. As we identified in
[2], the traditional acquaintance binding omits several important aspects. Com-
ponent adaptation should allow for flexible, expressive specification of the way
acquaintances are selected and bound.

Component Monitoring Component monitoring implies that other components are
in some form notified or invoked when certain conditions at the monitored compon-
ent occur. Three examples of monitoring are described below. The latter types are
specialisations of the earlier ones.

� Implicit invocation : This type actually is the general adaptation type for com-
ponent monitoring. The concept of implicit invocation is concerned with no-
tifying relevant components, either directly by message sending or indirectly
through event generation, whenever certain conditions or actions take place at
the monitored component.

� Observer notification: TheObserverpattern [4] provides this type of behaviour
but it presumes that the software engineer knows, when defining an object, that it
will be observed by other objects. In component-based system construction, the
reused components sometimes need to be observed, but generally the component
is not prepared for this. Therefore, the observer pattern functionality needs to be
superimposed on the component so it can be used as an observed component.

� State monitoring: In some cases, dependent components do not want to be
notified for every state change in the observed component, but only when the
component state exceeds certain boundaries. The conventional observer pattern
behaviour is not prepared for this, but using superimposition it is well feasible
to implement this behaviour. This allows the software engineer reusing the com-
ponent to specify in what state regions the dependent components need to be
specified.
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Figure 1: The layered object model

4 Superimposition using the Layered Object Model

Since traditional object and component models are unable to implement component
adaptation through superimposition, more advanced models are required. One such
model is thelayered object model(LayOM ) that we have been working on for several
years. LayOM provides direct language support for superimposition and we have
implemented most of the types of component adaptation in the previous section as
part of the language using layer types.

The layered object model is an extended component object model, i.e. it defines
in addition to the traditional object model elements, additional parts such as layers,
states and categories. In Figure 1, an exampleLayOM object is presented. The layers
encapsulate the component, so that messages send to or by the component object have
to pass the layers. Each layer, when it intercepts a message, converts the message
into a passive message object and evaluates the contents to determine the appropriate
course of action. Layers can be used for various types of functionality, either pro-
actively or in reply to a received message. Layer classes have, among others, been
defined for the representation of relations between classes and objects, design patterns
[1], acquaintance handling [2] and superimposing behaviour.

A statein LayOM is an abstraction of the internal state of the object. InLayOM ,
the internal state of a component is referred to as theconcrete state. Based on the
component’s concrete state, the software engineer can define an externally visible ab-
straction of the concrete state, referred to as theabstract stateof a component. An
acquaintanceis an expression that defines a set of components that are treated simil-
arly by the component. This set of components treated as equivalent by the component
we denote asacquaintances.

Layersare the entities that provide superimposition functionality to components.
Individual instances of components can be extended with layers. Since layers intercept
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messages sent to and from the component, layers are able to superimpose certain func-
tionality on the component. An example is theAdapterlayer type, shown below. An
instance of classAdapteeis declared and a layer of typeAdapteris added to object.
The layer will intercept the messages sent to the object and change certain message
selectors so that the component can interpret them.

// object declaration
adaptedAdaptee : Adaptee with layers

adapt : Adapter(accept mess1 as newMessA,
accept mess2, mess3 as newMessB);

end;

A second example is theObserverlayer type. Below an instance of classPoint is
shown that is extended with an Observer layer that will notify interested objects when
certain methods of the object are invoked.

aPoint : Point with layers
st : Observer(notify after on setX on aspect "X-axis",

notify after on setY on aspect "Y-axis",
notify after on moveTo on aspect "Location");

end;

Due to reasons of space, the facilities for component adaptation provided byLayOM
are only discussed very brief. We refer to [1, 2] and to the indicated WWW page for
more information.

5 Related Work

The notion of adapting reusable components to match the requirements of the applic-
ation at hand is not extensively studied in the component-based software engineering
community. Some object models providebeforeandafter facilities that allow the soft-
ware engineer to add pre- and post-behaviour to the execution of an operation in a
component. In general, however, adapting components using the existing component
object models do not fulfil the requirements identified in section 2.1.

The notion of superimposition has earlier primarily been used in the context of
distributed systems, e.g. [3] and [8]. There it is used to indicate the additional, super-
imposing control over some algorithm.

Since superimposition is a novel technique, no existing implementations of super-
imposition exist besides the layered object model. However, meta-object protocols [9]
can be viewed as types of superimposing behaviour for object-oriented systems. In
general, reflective languages such as CLOS are suitable to implement superimposition.

6 Conclusion

Component-based software engineering is becoming increasingly important as a means
to efficiently create applications from reusable components. Most traditional approaches
assume that components are reused ”as-is” in these applications, but in practice ”as-is”
reuse is very unlikely to occur and most components need to be adapted to match the
requirements of the application. Component adaptation techniques should be transpar-
ent, black-box, composable, configurable, reusable and efficient to use. Conventional
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techniques for adapting components can be categorised into white-box and black-box.
Examples of the former are copy-paste and inheritance, whereas aggregation and wrap-
ping are examples of black-box adaptation techniques. These approaches do not fulfil
most of the identified requirements.

To deal with the problems and to meet the requirements that were identified, a new
component adaptation technique,superimposition, was introduced. An object super-
imposition S of B over O is defined as the additional overriding behaviour B over the
behaviour of a component object O. Different from, e.g. inheritance, a single unit of su-
perimposed behaviour can change several aspects of the basic component’s behaviour.
One of our conclusions is that, in addition to a set or reusable components, component-
based software engineering requires a set of reusable component adaptation types. To
exemplify this, several types of adaptation behaviour are presented, categorised into
component interface adaptation, component composition and component monitoring.

Superimposition is implemented as a language construct in the layered object model
(LayOM ) through the notion of layers.LayOM is an extended component object
model that, next to instance variables and methods, contains parts such as states, cat-
egories and layers. The extended expressiveness ofLayOM provides the software
engineer with powerful component adaptation types through superimposition.
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Lemminkäisenkatu 14A, 20520 Turku, Finland
mbuechi@abo.fi

Emil Sekerinski
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We exhibit the benefits of using formal methods for constructing and docu-
menting component software. Formal specifications provide concise and com-
plete descriptions of black-box components and, herewith, pave the way for full
encapsulation. Specifications using abstract statements scale up better than pre-
postconditions and allow for ‘relative’ specifications because they may refer to
other components. Nondeterminism in specifications permits enhancements and
alternate implementations. A formally verifiable refinement relationship between
specification and implementation of a component ensures compliance with the
published specification. Unambiguous and complete contracts are the foundation
of any component market.

1 Introduction

The separation of specifications/interfaces and implementations of components is a
prerequisite for the establishment of component software. It alleviates the necessity
to distribute source code, thereby protects the implementation know-how and avoids
overspecification. Overspecification basically prohibits future enhancements and al-
ternate implementations. Furthermore, separate specifications enable the component
integrator to understand the functionality without having to examine the source code.

The lack of easily and quickly understandable, concise, and complete specifica-
tions is the chief reason, why the advantages of the separation between specifications
and implementations are not commonly exploited. Most current interface-description
languages (IDLs) are limited to expressing syntactical aspects such as number, names,
and types of parameters only. For example, the C library routinesstrcpyandstrcat
have the same interface (signature) and are, therefore, up to their name — a vague hint
at the functionality — indistinguishable. The IDLs completely ignore the behavior of
components which is usually given as incomplete, ambiguous, partly overspecific, and
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often outdated textual description1. Incompleteness forces the component integrator to
derive additional properties by trial and error which might be invalidated in future ver-
sions of the component. Ambiguity often remains undetected in an informal setting and
causes mysterious errors; if noticed, forces the integrator to make unfounded assump-
tions. Overspecification unnecessarily restricts future enhancements. Incompleteness,
ambiguity, and overspecification hinder alternate implementations — the ground stone
of any component market. Without the possibility of automated consistency verifica-
tion, informal descriptions are rarely kept up to date. Due to this deficiencies, program-
mers request components as source code. Overwhelmed with implementation details
— in addition to the aforementioned problems of this approach —, they then often
choose to reinvent the wheel rather than reuse the badly specified existing components.

Formal specifications can solve these problems. The creator of a component can
test, whether based solely on the specification the component may be appropriately
used. Ambiguities can be detected by consistency proofs. Overspecification can more
easily be detected in a concise formal language. Formal verification, here in the form
of refinement proofs, guarantees that the implementation actually behaves as specified.
Furthermore, a specification which is created before the component is implemented,
can facilitate a structured development and, thereby, create more general, robust and
efficient components and often also helps to save costs. “When quality is pursued,
productivity follows,” K. Fujino, as quoted in [18]. For a recent overview of formal
methods success stories see [8, 16].

The adaptation of formal specifications has been slow because of difficult notations
which differ too much from implementation languages and lack of tool support, but
also due to ignorance and prejudice. We aim for a lightweight approach to formal
methods, based on a rigorous and general formalism, but without an overwhelmingly
rich expressiveness of the language, modeling, and analysis in favor of lower costs in
terms of time, know-how, and money. We deviate from the classic dogmatic view on
formal methods, without abandoning the foundations.

Section 2 makes a plea for formal specifications as contracts, Sect. 3 shows why
nondeterminism is also relevant for practitioners. Refinement between specifications
and implementations to ensure compliance and refinement between different versions
of a specifications are the topics of Sect. 4. Section 5 points to related work and Sect.
6 draws the conclusions.

2 A Plea for Formal Contracts

The buyer of a microprocessor or another chip usually requests a detailed description
in form of a data sheet and, quite commonly, also an executable specification in form
of a VHDL program. These descriptions form a contract, if a sale takes place. They
describe all relevant information for deployment, such as form factor, voltage, and
signal delay in a standard way, that does not require interpretation or understanding
of the physics required to build the chip. Contrast this with the typical description
of an ActiveX software component: Incomplete plain textual descriptions augmented
with a formal part that merely describes the number and types of parameters. The
customer has no possibility to verify in advance whether the desired part meets the
requirements. He often spends hours of trial and error to find out how the component
must be used. He relies on testing of a few cases as the only way to gain confidence.

1We denote by interface the syntactical aspects only and by contract both the interface and the behavioral
specification.
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Obligations Benefits
Client Ensure precond. Assume postcond.
Server Ensure postcond. Assume precond.

Figure 1: Obligations and benefits from pre- and postconditions

Nobody and nothing guarantee that he uses only functionality which will continue to
exist in future versions. Hence, there is an urgent need for better contracts! A good
contract is clear, complete, and concise. A bad contract is ambiguous, misses important
points, lays down irrelevant details, and is unnecessarily long. That current contracts,
respectively in our terminology interfaces with textual addition, are too weak has also
been acknowledged at WCOP’96 [26]. The lack of standardized contracts for software
components is due to the high degree of freedom compared to hardware, the immaturity
of the field, the difficulties in automated verification, and the — partly unnecessary
— complexity and ill-definedness of common programming languages, which further
complicates verification.

Jézéquel and Meyer [11] recently argued that the crash of the Ariane 5 [2] was
due to a reuse specification error. A poorly documented limitation in a component
originally designed for the Ariane 4 with different physical requirements caused the
error. Jézéquel and Meyer conclude, that reuse without a contract is sheer folly. Yet,
contracts are the most important non-practice in component software. Clearly, white-
box components do not solve these problems for large systems as they overwhelm the
designer with details, rather than providing suitable abstractions.

A simple and popular form of contracts is that of assumptions, called preconditions,
and promises, called postconditions. If a component is used in a correct manner, it has
to satisfy its contract, i.e. establish the promised postcondition. If, however, its precon-
ditions are not met, it has no obligations whatsoever and is free to behave arbitrarily
(Fig. 1). If a system consisting of several components fails do perform the requested
job, the failure can be attributed either to a component not fulfilling its contract or to
the integration, i.e., even if all components behave as specified the whole system does
not perform correctly. Without formal contracts, locating such errors is much more
involved.

Pre- and postconditions that are only checked at runtime help to locate errors, but
do not prevent them as static analysis does. A program can still fail at a customer’s site
with input values which have not been tested. Programmers annotate their programs
with pre-and postconditions in order to make them more reliable. During test runs, they
are checked at run-time, but for the production version, these checks are often disabled
for efficiency reasons. This is like having lifeboats on a ship for a test cruise but
getting rid of them for a transatlantic cruise with passengers because of the additional
load. Static analysis, on the other hand, allows only the removal of lifeboats which
will provably never be used. Because of the deficiencies of run-time only checking,
programmers are not inclined to use specifications at all.

Pre- and postconditions being predicates, they cannot contain calls to other meth-
ods, except pure functions. This means that using pre- and postconditions one has to
reinvent the wheel afresh for each method, rather than being able to build upon other
specifications. Specifications in form of abstract statements are not affected by this
scalability problem. Consider the partial specification of componentBuffer using ab-
stract statements:
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component Buffer : : :

b : set of Item
print(d: Device) = for all x in b do d.print(x) end

end Buffer

If we were to specify the same component using pre- and postconditions, we would
have to expand the definition of the base typeDevice’s print method incurring a number
of disadvantages. The specification of howprint ultimately sets the pixels on a device
would be rather lengthy and not of our interest here. We loose the information that a
method ofd is invoked. Reasoning about the program, we cannot use the knowledge
that d is of (behavioral) subtype ofDevice with a more deterministic specification.
Pre-postcondition specifications contradict encapsulation and specialization.

Specifications by abstract statements come close to contracts as proposed by Helm
et al. [10]. Contracts of Helm et al. specify “behavioral dependencies” between objects
in terms of method calls and other constructs. Contracts are expressed in a special pur-
pose language and then have to be linked to the underlying programming language. By
contrast, we like to see abstract statements as a moderate extension of the underlying
programming language for expressing contracts.

Changes to the specification of theprint method, e.g. improved version decreasing
nondeterminism, are not automatically reflected in the specification ofBuffer. Pre-
postconditions do not support ‘relative’ specifications in the sense of relying on previ-
ous specifications. The loss of self-containedness of abstract statement specifications
can easily be compensated by a specification browser supporting in place expansion or
hypertext-like facilities. Abstract statements also lend themselves to grey-box specific-
ations, which reveal parts of the internals, such as call-sequences [6].

The process of writing a formal specification often leads to more generally use-
ful, easier to integrate, and longer-lived components. Rough edges, special cases, and
anomalies resulting from implementation difficulties and lack of overview during im-
plementation can often be detected and eliminated by a specification.

For example, the above specification ofDevice states that for all elements inb,
the methodprint is called in an arbitrary order. No element is printed twice, since a
set contains an element at most once. If this is desired, we should have used a bag
(multiset) rather than a set. If we like that the elements are printed always in the same
order, we should have used a sequence rather than a set and an iteration inprint. The
specification also states that printing an empty buffer is a no–op rather than an error.

By writing the specification, or at least parts of it, before starting the implementa-
tion, one can benefit from the commonly advocated advantages of a structured devel-
opment process [22]. Cliff Jones [13] argues that formalism employed to justify early
data structure and design decisions which helps avoid the most costly errors is the most
important application of formal methods. Specifications written after the implement-
ation tend to lay down irrelevant details of the specific implementation and lack the
desired degree of abstraction. However, as with frameworks, an iterative approach is
usually preferred over the waterfall model in order to get very general components. The
number of iterations can be reduced by formal specifications which help to eliminate
implementation quirks.

For some reasons forced to use a component that comes without a formal contract, it
might even be worthwhile to write a specification of it as it is perceived and used. Such
a ‘contract assumption’ can greatly simplify testing and reduce the time to evaluate the
suitability of new and alternate versions of the component.

A component should not only formally specify its own contract, but also the (min-
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imal) contracts of its required components. A calendar component might require a
database component which satisfies a certain contract [3, 27]. The component integ-
rator can choose such a component, or — in a more dynamic scenario — the calendar
component can ‘shop’ for the desired component at runtime. Formal specifications of
required and existing components simplify also the creation of wrappers/adaptors.

3 Nondeterminism: Avoiding Overspecification

Nondeterminism is an approach to deliberately leave a decision open, to abandon the
exact predictability of future states. As such, nondeterminism appears to be neither
commonly desirable nor is it used in implementation languages. On the other hand,
nondeterminism is a fundamental tool for specifications to avoid laying down unneces-
sary details2.

A nondeterministic specification leaves more choice for the implementation, which
can be used for optimizations. Even if this degree of freedom is not used in the en-
visaged first implementation, it greatly increases the likelihood that future enhance-
ments and alternate implementations can be made compliant with the specification.
The earlier specification of the componentBuffer is an example.

Nondeterminism often enhances the comprehensibility of specifications because
the reader does not have to wonder why something has to be exactly in a certain way,
when other choices would be as good. Many things are actually nondeterministic and
should be acknowledged and specified as such.

Nondeterminism from an outside perspective often stems form information hiding,
where the actual implementation is deterministic. A SQL database query without any
sorting options returns an arbitrarily sorted list of records; a square root function re-
turns an arbitrary value satisfying the specified precision. Both implementations are
deterministic, but the outcomes are determined by hidden state components and imple-
mentation details.

Nondeterminism can also be present in the implementation. This occurs typically
when the implementation is concurrent, for example by distributed objects. Given
only the specification, it does not matter for a user of the component if and when the
nondeterminism is resolved. This way, a large variety of implementations become valid
refinement of the specification.

We can also interpret nondeterminism as ‘free will’ of a component which can in
no way be influenced from the outside. Writing a combined specification consisting of
existing components and a custom ‘glue component’ which we implement ourselves,
we have to distinguish between two forms of nondeterminism. Nondeterminism within
existing components which is beyond our control, called demonic nondeterminism, and
nondeterminism in our custom component which we can control in our favor, called
angelic nondeterminism. In this sense, we can consider program execution as a game,
the rules of which are given by the specification [5]. Demonic choices are moves made
by an opponent (the existing component), and angelic choices are our moves. The
combined specification is correct, if we can make moves such that we can achieve the
desired goal, no matter what the opponent does. Hence, such a combined specification
can help to decide whether a given component is suitable to solve a certain task.

2Nondeterministic constructs would leave more choices for compiler optimizations also. This could
be beneficial especially in the case of portable executable formats and just-in-time compilers, where static
optimizations for a specific architecture are not applicable.
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Figure 2: Refinement relationships

4 Refinement: Ensuring Compliance with Specification

Employing formal specifications, we want to make sure that the implementation actu-
ally complies with its specification or, more precisely, is a refinement thereof [5]. A
statementT refines a statementS, if considering the observable input-output behaviour,
the output ofT for a given input would be possible withSas well. Taking the possib-
ility of nondeterminism into account, we formally define thatSv T (S is refined byT)
as

Sv T
def
= 8q:wp(S;q)�wp(T;q)

whereq is a set of states andwp(X;q) denotes the weakest precondition ofq with
respect to statementX, i.e., the set of states from whichX is guaranteed to terminate in
a state ofq. Refinement is reflexive, transitive, and antisymmetric [5].

A componentD is a refinement of componentC, if the observations we can can
make when usingD would be possible withC as well. LetS[C] be a statement using
componentC. Formally, we defineCvD (C is refined byD) by:

CvD
def
= 8S:S[C]v S[D]

If an implementation of a component constitutes a refinement of its specification,
any client designed according to the specification will work with the implementation.
This is exactly what is implied by the above definition. On the other hand, two imple-
mentations of a component which are both refinements of the same specification might
not be in a refinement relationship to each other (Fig. 2 a). Hence, it is important that
clients only rely on properties guaranteed by the specification. Testing cannot uncover
reliance on unspecified implementation features, only formal analysis can.

Nierstrasz and Tsichritzis [23] remark that encapsulation is violated if clients of
a software component must be aware of implementation details not specified in the
contract in order to make correct use of a component. In particular, if changes in
the implementation that respect the original contract may affect clients adversely, then
encapsulation is violated. Clients which rely only on properties specified in the contract
never fall into this trap. However, a contract may be too weak so that the corresponding
components can not be used intelligently.

Unfortunately, fully automatic proving of refinements similar to type checking per-
formed by a compiler does not seem to be feasible in the foreseeable future. Because
of this, contracts are approximated by interfaces, guaranteeing only syntactic compat-
ibility. The B-Toolkit [4] and Atelier-B [25], two environments for the B method [1],
show, however, that semiautomated refinement proofs are feasible for industrial applic-
ations. Automatic proofs of refinement are an absolute necessity for components which
at runtime shop for other components satisfying a required contract.
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Instead of a full refinement proof, automatic test data generation from the spe-
cification, approximate reasoning with upper and lower bounds, finite state analysis
with binary decision diagrams based on equivalence classes, and relative debugging
can be employed to gain confidence in the correctness and to isolate parts meriting
formal proofs [7, 12, 9]. In relative debugging, an alternative to a full refinement proof
stemming from the field of scientific computing [21], the specification and the imple-
mentation are executed in lockstep and their states are compared after each statement
according to a mapping relation.

If we want to better a component, we have to incorporate the improvements into the
specification. Otherwise, they cannot be used by any clients which are only allowed
to rely on features guaranteed by the specification. An advanced component should
also be usable by an old client, which knows nothing about the improvements. If the
new specification is a refinement of the old specification and the new implementation
refines the new specification, then by transitivity of refinement it also refines the old
specification. Hence, refinement is also an important relationship between different
versions of a component’s contract. However, an implementation of the new specific-
ation does not necessarily refine an implementation of the old specification (Fig. 2 b).
In a world where progress is acceptable only if it is compatible with the current state,
refinement is a crucial relationship.

We have not addressed performance, but the separation of specifications and im-
plementations, which are refinements thereof, permits the replacement of inefficient
components by efficient components which adhere to the same specification without
any modification to the clients. It also allows for several components providing the
same functionality which are tuned for different usages, e.g., set implementations as
arrays and as lists. We could even specify an advanced set component as a refine-
ment of the basic set component which provides a meta level method for controlling
performance-relevant mapping decisions [14]. An implementation of the advanced set
component might package the two set implementations into a single component and se-
lect the actual data structure according to the preferences set through the meta method.

5 Related Work

The Interface Specification Language (ISL), a pure extension of the CORBA IDL, de-
veloped in the Component-Based Software Engineering project at CSTaR Software En-
gineering Lab supports the descriptions of pre-/postconditions of operations, invariants
and protocols of interfaces [15]. ISL opts for featurism, including multiple inheritance
across components, rather than simplicity as we promote it. ISL is a sublanguage of
the Architecture Specification Language, which also includes the Glue Specification
Language and the Configuration Specification Language.

Participants in the Composable Software Systems project at Carnegie Mellon try
to specify not only functional behavior of components, but also reliability, perform-
ance, and security aspects [24]. They call concepts similar to refinement behavioral
subtyping for classes [17] and matching for components [27].

Bertrand Meyer propagates design by contract for component software, albeit of a
less formal nature [19, 20]. The Object Systems Group at the University of Geneva
under Nierstrasz and Tsichritzis have researched a number of applications of semi-
formal methods to component software [23].
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6 Conclusions

We have argued that only formal contracts paired with refinement can guarantee full
encapsulation of software components, which is the base for improved and alternate
implementations. Formal contracts lead to a more structured development, more or-
thogonal and, hence, longer-lived and more generally useful components, often at a
lower cost.

Nondeterminism is a necessity for providing freedom of implementation. Refine-
ment guarantees that implementations adhere to their specifications and that new ver-
sions are plug-compatible. Abstract statements do not have the scalability problems of
pre-postcondition specifications because they allow for external calls.

Formal methods are needed to compensate the loss of the closed-world assump-
tion and the impossibility to test a component in all possible environments. They are,
however, no universal panacea nor is their application very simple, but we regard them
as a necessity for the establishment of component software.

The paper presented at the workshop (http://www.abo.fi/˜mbuechi/) also contains
sections on the specification of invariants and temporal properties and on the design of
specification languages, which are left out of this version.
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ponents. In M. Mühlhaeuser, editor,Special Issues in Object-Oriented Program-
ming, pages 159–165. dpunkt Verlag Heidelberg, 1997. ISBN 3-920993-67-5.

[4] B-Core. B-Toolkit. England, 1995.

[5] R. J. R. Back and Joackim von Wright.Refinement Calculus: A Systematic Intro-
duction. Springer Verlag, to appear 1997.
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With the emergence of the Object Management Group’s CORBA (Common
Object Request Broker Architecture) and comparable platforms heterogeneous and
distributed computing is facilitated. Providing location-, language-, and platform-
transparency, CORBA promotes the independent development of software com-
ponents and standardizes the interaction between components. However, the design
of entire software architectures for distributed component-oriented software sys-
tems with complex client-server relationships is still a major problem. In this con-
tribution we consider an approach to describe the architecture of distributed soft-
ware systems. This approach is based on a component model of software which
contains additional information about distribution. Rather than describing the dis-
tribution properties within a component most of these properties are stated with the
use relation between components which may be local or remote. We sketch how
this design description can be transformed into a distributed object-oriented imple-
mentation according to OMG’s CORBA standard. We discuss how a performance
model can be derived systematically from an architecture description. Thus the
design of complex, hierarchically structured distributed software systems can be
assessed wrt. response time of remote operation invocations, for example1.

1 Introduction and related work

In constructing software systems various development stages are passed (cf. figure 1).
While general experience shows (cf. B. Boehms spiral model) that these stages are
visited more than once it is important to assess designs i.e. software architectures quite
early on (cf. [8]). The role of the software architecture for a long-lived product should
not be underestimated (cf. [7], [14]).

In this paper, we present our architectural framework for developing component-
oriented distributed systems which fits well into the entire development cycle shown
in figure 1. We sketch how distributed architectures can easily be designed using our
architecture description languageΠ. The step to implement a distributed architecture is
realized by transforming software components inΠ to distributed objects according to
the Object Management Group’s standard CORBA (Common Object Request Broker
Architecture). Since the resulting implementation structure corresponds to the design
structure, knowledge about the execution of the distributed system may feedback giving
new insights at the design and requirements stage.

1This work is partly funded by the DFG project QUAFOS, contract MU1158/2-1.
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Related research w.r.t. self-contained and independent software components is
done in many places. A prominent example is ROI (Regis Orb Implementation), an in-
tegration of the architecture description language REGIS/DARWIN with IONA Tech-
nologies CORBA implementation ORBIX (cf. [3]). In contrast to Regis/Darwin,Π has
a richer language for describing semantic properties in interfaces.

Architectural support on top of CORBA is also provided in [12] using design pat-
terns and application frameworks (cf. [6], [1]). As patterns and frameworks are often
specialized w.r.t. sets of horizontal functionalities or vertical areas of application do-
mains, our approach is more general. Our approach is based on formally specifying
software architecture while patterns and frameworks are less rigorously founded.

In chapter 2 we show how the design of distributed component-oriented software
systems can be described using the Architecture Description LanguageΠ. It is also
briefly shown howΠ and CORBA are integrated. We introduce our concept for simu-
lation-based evaluation of the design architecture in chapter 3.

2 The Architecture Description LanguageΠ
In this chapter we will presentΠ, our architecture description language (ADL), which
supports the design of distributed component-oriented software systems. It provides
concepts for separating the development of distributed independent software compon-
ents from the interconnection and configuration of such components: although com-
ponent dependency requirements can be stated with a single independent component,
the explicit connection structure can be defined at a different point in the design pro-
cess.

According to [9], [10] a softwarecomponentis a unit which provides its clients
with services specified by its interface and encapsulates local structures that implement
these services. Furthermore, it may use services of other components to realize the ex-
ported ones. Each component encapsulates one or more Abstract Data Types (ADTs),
hence an object-based structuring of the whole architecture is enforced. Collections of
components connected via use relations are calledconfigurations. Also, configurations
have in principle the same interfaces to their environment as single components and
thus may be used as components hierarchically.

In Π, each component is described by four sections (cf. figure 2). Theexport section
gives an abstract image of the component’s realization; the abstract data types stated
here are public and may be used by other components. Thebody sectiondescribes
the realization of a component; here, the construction of the exported abstract data
types is encapsulated. According to the concept of formal import, only requirements to

Requirements Stage

Implementation

Design(Architecture)

Figure 1: Stages of development.
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Figure 2: Sections of a component inΠ.

imported abstract data types are specified in theimport section. While configurations
of components are built, the import section has to be actualized with export sections
of potential server components via use relations. Finally, in thecommon parameters
sectionabstract data types are stated which are imported and exported unchanged.

Π is a multi-formalism language and single views can be seen as overlapping par-
tial specifications of a component. Each section can be specified by four views: the
type viewdescribes the component’s invariant properties (according to execution of
operations) by means of algebraic specification techniques, theimperative viewdefines
imperative operation signatures and algorithms, theconcurrency viewspecifies pos-
sible orderings of operation executions, theinteraction viewencapsulates information
according to distribution of components.

Due to the fact that inΠ each component specification is parameterized by its
formal import it can be used with different parameter actualizations. A component
developed and viewed in isolation is some kind of component template in contrast to
the same component used within the specific context of the other components. Differ-
ent instantiations of a component which can be connected via use relations are called
component incarnationsand the isolated component template is calledConcurrently
Executable Module(CEM). Thus, our approach takes an open world perspective: ac-
cording to the concept of formal import a clear distinction can be made between the
independent development of self-contained CEMs and the connection of component
incarnations. During the development of a single CEM only requirements to imported
services are described, the actual mapping from a component incarnation’s require-
ments to services offered by potential server incarnations is made within the compon-
ent connections. However, within a configuration of component incarnations not all
open imports have to be actualized, but can be connected to the import requirements of
the entire configuration in order to allow other components to be linked to the config-
uration at a different time. For generating an implementation or a performance model
from the design architecture a closed world assumption is still nedded, but future work
will address dynamically evolving systems also at the implementation stage.

Now we present a very simple introductory example from the area of Computer
Supported Cooperative Work (CSCW): let us consider a software component repres-
enting a group of people engaged in a common task. Thus we have to specify a CEM
GROUPfor representing groups of people. In its export section an abstract data type
Group is stated, including the constantnew_group for constructing objects of type
Group as well as operations onGroup (e.g., inserting members). WhileGROUP’s
export section describes the service the CEM offers to its environment,GROUP’s body
section encapsulates the realization of the abstract data typeGroup and declares it as
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the module secret. Assuming the ADTGroup is constructed as a list of group mem-
bers, the CEMGROUPneeds an ADT for lists as well as an ADT for group members in
order to realize the exported ADTGroup . In GROUP’s import section, requirements
to an ADT List for lists of members are described (e.g., the constantsnew_list
for creating empty lists and operations onList ). In GROUP’s common parameters
section the ADTMember for representing group members is stated (e.g., the con-
stantnew_member for creating new group members and operations onMember for
changing member properties). The ADTMember has to be specified inGROUP’s
common parameters section, because potential users ofGROUPmust also have access
to Member (e.g., for inserting members into a group). Note that the CEMLIST in
isolation represents generic lists; it is parameterized by the ADTElement for list
elements inLIST ’s common parameters section. Only within the use relation between
LIST andMember, the ADTElement is actualized with the ADTMember and the
CEM LIST finally exports lists of members. Figure 3 shows three exemplary CEM
incarnations for groups, members and lists.

A distributed software system can now be described as a configuration of distrib-
uted components which communicate via local or remote use relations (cf. [11]). For
each remote use relation between two distributed components, a communication pro-
tocol and functional as well as non-functional attributes for this protocol can be spe-
cified. Further, non-functional requirements regarding remote use relations and the
performance of potential server components can be stated with a client component.
The remote use relation is only valid for that component, if its performance attributes
satisfy the component’s performance requirements.

In our CSCW example presented in figure 3, let us assume that the components
GROUPandLIST are located on the same host (becauseLIST represents the internal
realization ofGROUP) while GROUPandMEMBERare distributed. ThusGROUPand
LIST are connected via a local use relation whileGROUPand MEMBERas well as
LIST andMEMBERare connected via remote use relations.

So far we have shown how an architecture of distributed components can be de-
scribed with theΠ language. No we will sketch how this design can be transformed into
a distributed implementation compliant to OMG’s CORBA standard (cf. [12], [13]).
We have chosen CORBA for the implementation of the design, because component
models inΠ and CORBA resemble closely and can easily be integrated and CORBA
represents a standard for the interaction of distributed objects. The standard allows to
deal with openess and evolving systems.

Within CORBA the systems which actually perform service requests are called
object implementations. Client objects and object implementations are isolated com-
ponents, they communicate via interface descriptions. Interfaces are defined using the
Interface Definition LanguageIDL. IDL is a definition language, it is independent from
the actual programming language, its platform and the location of the objects as well.

Now we discuss the CORBA representation of aΠ CEM at a very abstract level.
The public abstract data types specified in the export section of the CEM are described
in anexport IDL-module. Theobject implementationsfor this export IDL-module rep-
resent the body section of the CEM. Further, animport IDL-moduleexists for stating
the formal import of the CEM as CORBA provides no means for structured descriptions
of imported services. If the CEM is described in its context, i.e. it is an incarnation
connected with other incarnations via actual use relations, the mapping from formal
to actual import is done within the implementation objects for the import IDL-module
(this is the CORBA counterpart of a use relation). Our concept forΠ/CORBA integra-
tion provides no explicit representation for the common parameters section in CORBA;
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Figure 3: Distributed software architecture inΠ.

common parameter ADTs are described implicitly by specifying them both in the ex-
port and the import IDL-module. Details regarding ourΠ/CORBA integration concept
can be found in [11].

Although the architecture design of distributed components can be transformed to
an implementation of distributed objects, no performance-related information of a com-
ponent’s interaction view is exploited. Therefore, in the next chapter we will present
our concept for evaluating software architectures with emphasis on performance-related
system properties.

3 Performance Evaluation of the Distributed Architec-
ture Design

In addition to functional requirements, also non-functional requirements (e.g., response
time, throughput, etc.) have essential impact on the design of distributed systems. This
is true a priori, i.e. the analysis and assessment of a components’ performance should
be possible while the entire design architecture is still unfinished, as well as a posteriori,
i.e. measuring the efficiency of the components’ implementations.

Using theΠ language, the functional behaviour of distributed components and their
connections can be described as well as performance-related attributes of this architec-
ture. For functional as well as performance-related evaluation, we use the Queuing
Specification and Description Language QSDL ([2], [4]). The transformation of a
QSDL-specification to an executable program for simulation and validation of the spe-
cified system is performed automatically by the tool QUEST that has been developed at
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Figure 4: QSDL-systems for the CSCW example.

the University of Essen. By executing the simulator, stochastic performance measures
can be gained.

We have identified interfaces between the component model inΠ and the system
specification in QSDL using ViewPoints a method engineering and integration frame-
work. Thus performance requirements of a software system identified in its component
model can be evaluated in its corresponding QSDL-system. Finally, the simulation res-
ults can be transferred back to theΠ world also by means of the ViewPoint framework.
Details according to the ViewPoint framework can be found in [5], while ourΠ/QSDL
integration concept is described in [4]. In this paper, we only want to sketch the QSDL
concepts at a very abstract level and show the QSDL representation of our CSCW
example.

The starting point is the formal description of a system’s behaviour in SDL, the
Specification and Description Language of the ITU ([2]). Such a specification is usu-
ally called an SDL-system. An SDL-system consists of subsystems - calledblocks-
which contain communicatingprocesses. These processes are described using exten-
ded finite state machines. An SDL-system may serve as basis for functional validation
and simulation. The aspect of performance evaluation, however, is the objective of
QSDL (Queuing SDL, cf. [4]). The QSDL approach is based on the adjunction of time
consuming machines that model the congestion of processes for limited resources.Ma-
chinesare building blocks providing a waiting room, a number of servers, a scheduling
strategy, and in particular a set of services. Each service provided by a machine has a
service specific speed value. The processes may request the services provided by the
machines. Further, by addingworkload modelsand a mapping of workload to machines
a performance model can be generated.

Returning to our CSCW example, the component incarnationsGROUPandMEMBER
are distributed while the component incarnationLIST is local toGROUP. Now we will
investigate the QSDL representation ofGROUP, MEMBER, and the remote use relation
between them (cf. figure 4).

38



Globally, aΠ component incarnation can be represented by a QSDL block. The
component’s implementation in the body section can be described by the internal pro-
cesses of the QSDL block. The component’s interfaces can be represented by sig-
nalroutes entering and leaving the block. Communication protocols used by remote
component connections have to be modelled as separate QSDL blocks. Finally,Π data
types are represented by QSDL data types which are used as signal parameters and
Π operations are described by QSDL procedures. Remote operation calls inΠ are
realized by signal transfers of the corresponding QSDL-procedures where the input
parameters of the operation call are mapped on the signal parameters of QSDL. The
output parameter of an operation call has to be modelled by a returning signal from the
remote procedure to the calling unit; this returning signal has as its signal parameter
the output parameter of the operation call.

Within a QSDL specification, measurement of performance-related system prop-
erties is done with the help of thesensorconcept. A sensor can be placed anywhere
in the QSDL-system and collects information about system events during the simula-
tion of the QSDL-system (e.g., a counter for signal throughput of a signalroute or the
state distribution of a process). QSDL provides a standard sensor library for the most
usual performance attributes and also allows individual user-defined sensors. Finally,
the evaluation results can be visualized using the QUEST tool.

In Π, the concept for a remote use relation’s performance attributes is adapted
to QSDL’s sensor concept and the interaction view’s performance requirements are
sensors extended by a compare operator and a concrete value (e.g., response time� 10
ms). Thus bidirectional relations of performance-related system properties betweenΠ
and QSDL can be identified: performance attributes grasped in the architecture design
can be evaluated and also the results of the evaluation may feedback to new insights in
the development cycle’s requirements stage.

4 Conclusions

In this paper we sketched how distributed component-oriented software architectures
can be designed and evaluated based on a concept of independently created and in-
terconnected software components. We covered some important aspects of the design
stage of the development cycle with the architecture specification languageΠ and used
the OMG standard CORBA for the implementation stage. We closed the gap between
design and implementation by providing an integration concept forΠ and CORBA.

We also discussed how performance-relatedrequirements regarding distributed com-
munication can be integrated into theΠ design model. Such a design model may
be analysed quantitatively in order to gain information about the distributed system’s
functional and non-functional behaviour. This information may either justify design
decisions or may lead to changes in the design architecture.

However, no direct relations between the CORBA implementation and the QSDL
performance model exist. Always theΠ design architecture lies at the center of the
design information flow. Thus the CORBA implementation of a design may help to
identify sensible measures for performance-related system properties which then can
be described in a software component’s interaction view and finally evaluated within
the QSDL performance model. Also, the results of a performance evaluation in QSDL
may not only lead to changes in the design model but also in the CORBA implementa-
tion (e.g., a more efficient ORB realization).

39



5 Further Work

While tool support is realized for implementing localΠ specifications in the target
language C, we have almost completed the automated transformation from distributed
Π specifications to OMG/IDL and the target language C++ for object implementa-
tions including runtime support. We use Sun SparcStations with Solaris and SunSoft’s
CORBA realization NEO. While tool support exist for both theΠ-language and QSDL
separately, we are also researching on implementing ourΠ/QSDL integration concept.

For developing large dynamic evolving systems it is also important to overcome
the closed world assumption not only at design stage, but also within the distrib-
uted CORBA implementation and the QSDL performance model. Currently we are
researching how to use dynamic invocation within the architecture’s CORBA imple-
mentation in order to access newly added objects at run-time. While the evaluation of
a QSDL-system always requires an environement (at least an abstract description of a
load generator), QSDL-processes can be created dynamically.
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Current interface descriptions are poor in describing components, because they
only provide an external view on a component and they do not lay down how
components interact with each other. Suggestions to improve component interface
descriptions at last year’s workshop are reconsidered and reuse contracts are put
forward as a solution that goes one step further.

1 Introduction

One of the major issues at last year’s Workshop on Component-Oriented Programming
was the need for more information about how a component relies on its context, than
traditionally provided by the current state of the art interface description languages.

Murer, Scherer and W¨urtz [4] stated that useful interoperability information is com-
monly published in additional documentation, since current interface description lan-
guages are not equipped with this capacity. Because such (informal) documentation
is insufficient to manage interoperability and version control on a reasonable level,
they introduce 3 levels of interoperability information. The Interface level provides an
IDL-like interface of the component and addresses how components fit together struc-
turally. The Originator level enhances the interface level information with information
about which types and versions of components can work together. The Semantic level
provides a complete description of a component’s functionality. Murer, Scherer and
Würtz argue that the second layer is necessary because it can be used to unveil inter-
operability issues which are investigated at development time, but rarely retained after-
wards. These issues cannot be dealt with by the third level because there does not exist
a technique for the complete description of semantic interoperability of components.

Ólafsson and Bryan [5] argued that, apart from the provided interface, a component
interface description should also state the “required interfaces”. A required interface is
the interface of an acquaintance component that is required to enable a component to
interact with that acquaintance component.

AlthoughÓlafsson and Bryan argue that required interfaces are essential to under-
stand the architecture of a component-based system, we claim that they in fact contain
too little information to get a good understanding of the architecture, since an interface
does not say what actually happens when one of its methods is invoked. For instance,
an interface does not state the call-backs to the originating component. In our opinion,
what is crucial in order to get a good understanding, is a description of the interaction
structure, or the software contracts in which components participate. For this reason re-
quired interfaces are also insufficient to support component composition correctly, for
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they allow the composition of components that have compatible provided and required
interfaces, but not the correct interaction behavior.

While Murer, Scherer and W¨urtz store the information on interaction structure in
a separate layer, we believe that it should be part of the interface of a component,
so that it can be used to make the architecture clear, to help developers in adapting
components to particular needs, and to verify component composition based on their
interface instead of auxiliary (and perhaps informal) documentation.

At last year’s workshop on Composability Issues in Object Orientation (CIOO ’96),
Lucas et al. argued that clear composition interfaces are needed to be able to compose
components [3]. These composition interfaces should provide all the necessary inform-
ation for the composition, while hiding the unimportant implementation details. Lucas
et al. introduced reuse contracts (for inheritance) [6] as such composition interfaces.

In this paper, reuse contracts are applied to the domain of components. It will be
shown that reuse contracts are not interface descriptions to which components have to
comply exactly. Instead they can be adapted by means of reuse operators. These reuse
operators state how a reuse contract is adapted. By comparing reuse operators applied
to a reuse contract, conflict detection can be performed and composability of compon-
ents can be validated. This capacity makes reuse contracts more than just enhanced
interface descriptions.

2 Reuse Contracts

Essentially, a reuse contract is an interface description for a set of collaborating parti-
cipant components. It states the participants that play a role in the reuse contract, their
interfaces, their acquaintance relations, and the interaction structure between acquaint-
ances. Reuse contracts employ an extended form of Lamping’s specialisation clauses
[1] to document the interaction structure. While Lamping’s specialisation clauses only
document the self sends of an operation, specialisation clauses in reuse contracts docu-
ment all inter-operation dependencies. In their most basic form, specialisation clauses
in reuse contracts just list the operation signatures, without type information or se-
mantic information, such as the order in which operations are invoked.

Formally, a reuse contract is defined as a set of participant descriptions, where each
participant description consists of a unique name, an acquaintance clause (the set of the
participant’s acquaintances), and an interface description. An interface description is a
set of operation signatures consisting of a unique name (within the interface descrip-
tion) and a specialisation clause. A specialisation clause is a set of unique acquaintance
names each with a set of operation names attached to them.

Since such formal specifications are hard to read, a visual representation of re-
use contracts was developed. A participant is depicted by a rectangle containing the
participant’s name and interface. An acquaintance relationship is depicted by a line
connecting two participants. Invoked operations, together with the operations that in-
voke them, are notated along this line. For clarity, the line can also be annotated with
the name of the acquaintance relationship. As a shortcut, self-invocations are notated
in the interface of a component, instead of along an acquaintance relation with itself.

Figure 1 shows a reuse contract for navigation in a web browser. The
handleClick operation on the WebBrowser component invokes the
mouseClick operation on theWebDocument component. TheWebDocument
component invokes itsresolveLink operation when the mouse was clicked
on a link (the details of the detection of the link is of no importance here). The
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WebBrowser

handleClick
getURL

handleClick [mouseClick]
WebDocument

mouseClick [resolveLink]
resolveLink

resolveLink [getURL]
doc

Navigation contract

Figure 1: Example Reuse Contract

resolveLink operation invokes thegetURL operation on theWebBrowser
component in order to get the contents of the web page pointed to by the link. For
simplicity, no arguments of operations are shown here.

A reuse contract documents the assumptions each participant makes about its ac-
quaintances. For instance, in figure 1 theWebBrowser can safely assume that the
WebDocument may invokegetURL when it invokesmouseClick . When a com-
ponent developer builds a component, he can rely on these assumptions to implement
the component according to the participant descriptions. However, requesting that a
component is fully compliant with the interface and interaction structure descriptions,
would make reuse contracts too constraining, and consequently too impractical to use.
Instead, components may deviate from the reuse contract, but the component developer
has to document how they deviate exactly, so that this information can be used later on
to perform conflict checking.

Therefore, reuse contracts are subject to so-called reuse operators, actions that ad-
apt participants and the interaction structure between these participants. In practice, a
developer performs several adaptations at once in order to reuse a component. A few
basic reuse operators were identified into which such adaptations can be decomposed
[2]. More general adaptations are aggregations of the basic reuse operators. Each re-
use operator has an associated applicability rule, that is, a reuse operator can only be
applied when certain conditions apply. Applying a reuse operator on a reuse contract
results in a new reuse contract, called the derived reuse contract.

Typical reuse operators on reuse contracts are extension and refinement, and their
inverse operations, cancellation and coarsening. These operators come in two flavors:
one flavor handles the operations on a participant, while the other flavor handles the
operation on the context of a reuse contract, being the set of participants and their
acquaintance relationships. A participant extension adds new operation descriptions to
one or more participants in a reuse contract. The newly added operations do not refer to
operations already present in the participants. A context extension adds new participant
descriptions to a reuse contract. The acquaintance clauses of the new participants only
contain names of participants that are added by the same extension. A participant
refinement adds extra operation invocations to the specialisation clauses of already
existing operations. A context refinement adds extra acquaintance relationships to a
reuse contract.

The top of figure 2 shows how a web browser component with a history to store the
already viewed URLs changes the original reuse contract given in figure 1. This new
reuse contract is the result of applying the following reuse operators to the original re-
use contract: a participant extension to add the operationaddURLtoHistory to the
interface of the browser component and a participant refinement to add the operation
addURLtoHistory to the specialisation clause ofgetURL . Note that the browser
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component’s name has changed toHistoryWebBrowser . This is achieved through
a renaming operation.

The bottom of figure 2 shows another adaptation of the original reuse contract.
The rationale behind this adaptation is that the a new document component, called
PDFViewerPluginDocument , only contains links that point to places within the
PDF document and the targets of these links can thus be retrieved by the component
itself. This retrieval is achieved with a new operationgotoPage instead of deleg-
ating this responsibility to the browser component through the operationgetURL .
Therefore the original navigation reuse contract is adapted as follows: a participant
coarsening removes the invocation ofgetURL from the specialisation clause of
resolvelink , a participant extension adds the new operationgotoPage to the
interface ofPDFViewerPluginDocument , and a participant refinement adds the
invocation ofgotoPage to the specialisation clause ofresolvelink . A renaming
operation is also required to change the name of the document component.

HistoryWebBrowser

handleClick
getURL [addURLtoHistory]
addURLtoHistory

handleClick [mouseClick]
WebDocument

mouseClick [resolveLink]
resolveLink

resolveLink [getURL]
doc

Navigation contract for browsers with history

WebBrowser

handleClick
getURL

handleClick [mouseClick]
PDFViewerPluginDocument

mouseClick [resolveLink]
resolveLink [gotoPage]
gotoPage

doc

Navigation contract for PDF viewer documents

WebBrowser

handleClick
getURL

handleClick [mouseClick]
WebDocument

mouseClick [resolveLink]
resolveLink

resolveLink [getURL]
doc

Navigation contract

renaming
WebDocument -> PDFViewerPluginDocument

participant coarsening
PDFViewerPluginDocument.resolveLink [- getURL]

participant extension
PDFViewerPluginDocument.gotoPage

participant refinement
PDFViewerPluginDocument.resolveLink [+ gotoPage]

renaming
WebBrowser -> HistoryWebBrowser

participant extension
HistoryWebBrowser.addURLtoHistory

participant refinement
HistoryWebBrowser.getURL [+ addURLtoHistory]

Figure 2: Two adaptations of the original reuse contract

3 Component Composition

When a reuser now wants to combine theHistoryWebBrowser with
the PDFViewerPluginDocument , he runs into trouble, because his ap-
plication will not behave correctly. Since link resolving is done by the
PDFViewerPluginDocument instead of by theHistoryWebBrowser , the
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HistoryWebBrowser ’s history will not be updated when the user clicks on a link
in aPDFViewerPluginDocument .

With standard interface definitions, this problem would not have been de-
tected until the application was running, becauseHistoryWebBrowser and
PDFViewerPluginDocument have compatible provided and required interfaces.

With reuse contracts however, this problem is detected when the two compon-
ents are composed. By comparing the reuse operators that were used to derive the
two reuse contracts in figure 2, one can easily determine what inhibits composition of
HistoryWebBrowser andPDFViewerPluginDocument . The top reuse con-
tract is derived by applying a combination of an extension and a refinement on the
original reuse contract. The extension adds the operationaddURLtoHistory to the
interface of the browser component, while the refinement adds an invocation of this op-
eration to the specialisation clause of the operationgetURL . The bottom reuse contract
is a coarsening of the original reuse contract: the invocation ofgetURL was removed
from the specialisation clause of the document component. Based on this comparison
we can conclude thatgetURL andaddURLtoHistory have becomeinconsistent
operations[2][6]: HistoryWebBrowser assumes thatgetURL will be invoked, so
that the history can be updated (throughaddURLtoHistory ), while this assumption
is broken byPDFViewerPluginDocument .

This example illustrates but one of many problems that may inhibit component
composition. As the example shows, composition problems are in fact evolution prob-
lems. Reuse contracts are derived from an original reuse contract through an evolution
step which is recorded in a reuse operator.

Consider the diagram in figure 3. We call the reuse contract corresponding to the
original ensemble of components thebase (reuse) contract, the reuse contract corres-
ponding to the first modification thederived (reuse) contractand the reuse contract
corresponding to the second modification theexchanged base contract.

Base (reuse)
contract

Exchanged
base contract

Modifier
Mexch

Modifier
Mder

Derived (reuse)
contract

Derived  contract
after exchange

Rbase Rexch

Rder Rnew

Figure 3: Base Reuse Contract Exchange

By examining the effect of applying modifierMder to the exchanged base contract, a
table of possible conflicts can be derived. For some conflicts, checking the applicability
rules of the reuse operators is enough to detect conflicts, while for other conflicts extra
information aboutMder andMexch is required. A complete list of conflicts can be found
elsewhere [2]. The problem of inconsistent operations in the example is but one of
many.
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4 Ongoing Work

Although we believe that reuse contracts can greatly enhance the current component
interface description languages, we have not yet integrated reuse contracts in an envir-
onment supporting such specifications. Currently, we employ reuse contracts mainly
in a Smalltalk development environment. The reuse contracts are stored in a reposit-
ory separate from the Smalltalk class repository. We have conducted an experiment to
incorporate reuse contracts in Java interfaces. For now, this experiment restricts itself
to reuse contracts for inheritance [6], however. The Java compiler was extended to
support the specification and the checking of reuse contract related information, such
as specialisation clauses and reuse operators.

5 Conclusion

In this paper we have presented reuse contracts as enhanced component interface de-
scriptions. Since we believe that the interaction structure between a component and
its acquaintances is crucial to get a good understanding of the component architecture,
and to ensure correct composition, reuse contracts not only provide the interface of
a component, but they also document what interface a component requires from its
acquaintances and what interaction structure is required for correct inter-component
behavior.

Component evolution is an integral part of the reuse contract approach. Reuse
operators define relations between reuse contracts and their derivations. When reuse
contracts are evolved in parallel, the applied reuse operators can be compared to per-
form conflict detection. When conflicts occur, this indicates that some components
cannot be composed.
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Component-oriented programming, which amortizes development cost on sev-
eral systems, is becoming increasingly important in the software-intensive industry
that is facing today both economical and technical challenges. However, there
is currently little guidance for software developers on how to compose software
components in order to produce running applications. We believe that the develop-
ment of domain-specific software architectures (DSSA) provides a way to integ-
rate properly software components developed by different organizations. A DSSA
takes into account the domain of applications under consideration and provides the
computational framework necessary to solve typical problems of the domain. The
purpose of this paper is to present an architectural approach that permits the devel-
opment and exploitation of DSSAs. This approach builds on a model of dynamic
control that permits to select and configure software components both statically
and dynamically.

1 Introduction

The industry of software-intensive systems is facing today both economical and tech-
nical challenges. On one hand, shrinking budgets and sharp competition require to
reduce significantly development and maintenance costs, shorten time-to-market, and
improve predictability in terms of cost and development time. On the other hand, the
size and complexity of systems have dramatically increased in the past few years. Soft-
ware control is replacing electronic control as the most flexible means to meet market
needs, and is enhancing noticeably systems capabilities. Studies show that software
size has thus been multiplied in average by 10 in the last five years in many companies
specialized in software-intensive systems [1]. This has brought considerable problems
in terms of suitability, efficiency, scalability and portability. Component-oriented pro-

gramming, which amortizes development cost on several systems, is therefore becom-
ing increasingly important. The key paradigm of this approach is megaprogramming
[2], that is the ability to define a system by putting together software components. This
approach enables industrial companies to evolve their new and existing systems into
software product families. These are groups of similar products addressing a same busi-
ness domain and sharing common assets, including requirements, design, source code
and test cases. This approach is tremendously reuse promoting and permits effective
capitalization on a given domain. However, component-oriented programming raises

51



several important issues. In particular, unguided composition of software components
is unlikely to produce applications able to meet pre-determined requirements. A soft-
ware application is not a simple collection of specialized components, but a coherent
organization built to tackle a given domain. We therefore believe that the definition of
domain-specific software architectures (DSSA) permits more effective composition. A
DSSA takes into account the domain under consideration and provides the computa-
tional framework necessary to solve typical problems of the domain. It describes the
type of components that can be integrated in the system, their possible connections,
and the rationale under their collaboration. The purpose of this paper is to present an

architectural approach that permits the development and exploitation of DSSAs. This
approach builds on a model of dynamic control that permits to select and configure
software components both statically and dynamically. We will show that it permits
the integration of software components developed in separate projects, while ensuring
overall architectural coherence. This approach is developed and experimented in vari-
ous domains including real-time mission planning and updating in the avionics domain.

2 Domain-specific software architecture

2.1 Software architecture

Software architecture brings a design level which is not concerned with code and data
structure but with the global structure of a system, its main constituents and the way
they communicate, synchronize and share functionalities [3]. Its purpose is to organize
the large-grained objects (or components) of a system, to explain their relationships
and evolutions, and to bring solutions for their implementation. It is today widely
acknowledged that many of the life-cycle concerns of software applications are actually
tackled at the architecture level. An architecture provides an understandable support
for discussions between the various stakeholders of the system under construction. It
provides many other advantages[4]:

� it reduces risk, cost, and time-to-market,

� it increases predictability, reliability, quality,

� it provides early identification of potentially very large reuse opportunities, and

� it brings new possibilities for early analysis and validation that reduce risk and
cost.

The software architecture field has received wide attention recently. Research is today
conducted in different areas in order to permit easier building and validation of software
architectures. This includes works on design patterns [5] [6], object-oriented frame-
works, the definition of expressive notations for representing architectural designs, the
use of formal techniques for early architectural validation, and the development of
design methods.

2.2 Architectural models for DSSA

Domain-specific software architecture [7] is a subdomain of software architecture where
a reference architecture, partly abstract, is developed in a well understood domain. A
DSSA comprises:
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� A reference architecture which describes a general computational framework. It
is a starting point for building a family of applications that solve a particular
problem domain.

� A software component library which contains reusable chunks of domain expert-
ise.

� An application configuration method for selecting and configuring components
within the architecture to meet particular application requirements.

The motivations for developing a DSSA are the same as those for using software ar-
chitecture plus the desire to develop and reuse a pool of components (assets) pluggable
in the architecture, and to generate new applications by selection/composition of com-
ponents based on application requirements. A DSSA therefore provides a framework
for top-down design, because all the components and interconnections are predeter-
mined. It provides the foundations for components interoperability. Generic archi-

tectural models have been proposed recently to support the development of DSSAs.
GenVoca [8] is a domain-independent model for defining scalable families of hier-
archical systems as compositions of reusable components. A reference architecture in
GenVoca is made ofrealms, that is sets of reusable components that export and import
standardized components organized into semantics layers, and design rules to identify
(and then preclude) illegal components combination. An application is obtained by
combining subsystems, that is combinations of components of the same realms. This
approach, which makes the assumption that a system can be expressed as a combina-
tion of primitive components (it is actually an equation), is limited to specific domains.
Rapide [9] constitutes a more general approach. Rapide is a computer language for

defining and executing models of system architecture. An architecture is defined by a
set of modules and their interconnections, with no restriction on their organization. All
communication between modules is explicitly defined by connections between module
interfaces. Interfaces specify both the operations a module provides and, in addition,
the operations it requires from other modules. In this approach, components commu-
nicate directly. Selected components can introduce new requirements for capabilities
other component implementations will need to satisfy. The integration of components
is therefore not straightforward and depends on the current system’s configuration. In

the next section, we present an alternative approach for the design and development of
DSSAs. This approach is based on a dynamic control model where components are
kept independent and where communication is made through a shared data structure.

3 Blackboard-based control

We have been developing and experimenting with a domain-independent control model
that permits to:

� define DSSAs made of independent software components cooperating through
shared knowledge bases,

� select and configure software components both statically and dynamically.
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Our approach builds on a model of dynamic control [10] where a system has (a) a
repertoire of independent domain and control components that are described in term
of their resource requirements and result properties; (b) a control plan expressing its
desirable behavior; (c) a meta-controller that chooses at each point in time the currently
enabled component, domain or control, that best matches the current control plan.

3.1 Components

Domain and control components are kept in a library. Domain components are con-
cerned with the solving of a particular problem. They retrieve data from the knowledge
base and write their contribution to the problem solving in it. Control components deal
with the management of the system control plan. They can replace the current plan,
postpone it, refine it,etc...Each component has a set of triggering conditions that can
be satisfied by particular kinds ofevents, that is global changes in the system result-
ing from external inputs or previously executed components. Global changes occur in
a shared knowledge base which is accessible by all the components. When an event
satisfies a component’s triggering conditions, the component is enabled and its para-
meters bound to variable values from the triggering situation. A given component will
be enabled, and therefore executable, whenever events satisfying its triggering condi-
tions occur, regardless of its relative utility in achieving the current goals. Conversely,
at each point in time, many competing components will be enabled and the system
must choose among them to control its own goal-directed behavior. To support this
control decisions, each component has an interface that describes the kinds of events
that enable it, the variables to be bound in its enabling context, the task it performs, the
type of method it applies, its required resources (e.g, computation, perceptual data), its
execution properties (e.g, speed, complexity, completeness), and its results properties.

3.2 Control plan

A control plan describes the system’s intended behavior as a temporal graph of plan
steps, each of which comprises a start condition, a stop condition, and an intended
activity in the form of a tuple (task, parameters, constraints). Control plans do not refer
explicitly to any particular component in the system’s repertoire. They only describe in-
tended behaviors in terms of the desired task, parameter values, and constraints. Thus,
at each control cycle, the system has a plan of intended action, which intentionally
describes an equivalence class of desirable behaviors and in which currently enabled
specific components may have graded degrees of memberships.

3.3 Meta-controller

In our model, the meta-controller makes no difference between domain components
and control components. Both are managed the same way. The meta-controller at-
tempts to follow the current control plan by executing the most appropriate enabled
components. Specifically, the meta-controller configurates and executes the enabled
component that: (a) is capable of performing the currently planned task with the spe-
cified parameterization; and (b) has a description that matches the specified constraints
better than any other enabled component that also satisfy (a). If the selected enabled
component is a control component, the control plan is updated. Otherwise, a domain
component is executed in order to contribute to the problem solving process. This gen-

54



eric architectural model supports the development of a wide variety of DSSAs. The
dynamic control model provides a framework in which appropriate sets of compon-
ents can be selected and configured at both design time and run time. The integra-
tion of components is actually very simple since components are considered independ-
ently and are only characterized by their own properties. At run-time, if useful new
application-relevant component should become available, the new components can be
substituted for old ones or added to the knowledge base alongside the old ones, without
interrupting system operations. The architecture’s event-based enabling of compon-
ents, its plan-based meta-control choices among competing components, and its ef-
fort to retrieve necessary knowledge from the shared knowledge base are not prepro-
grammed to require any particular components. They operate on whatever components
are available in the component library at run-time. In the other hand, the approach
does not guarantee the delivering of a solution to a given problem, since appropriate
components might be missing.

4 Domain of Experiments

We have been developing DSSAs in several domains. In particular, our approach has
been applied to autonomous office robots in two applications: office surveillance and
office delivery. Detailed results about these experiments can be found in [11]. We
are now conducting experiments on the planning and real-time updating of aircraft
missions. We give in this section a brief description of the purposes and main features
of such a system, and explain why it has been chosen as a viable domain for the building
of a DSSA. The primary goal of a mission planning system is to provide the aircraft’s

automatic pilot with a multi-dimension trajectory. Anominaltrajectory is computed
off-line before the mission starts. As the mission progresses, the goal of the mission
planning system is to check the consistency between the expected plane position as
given by the nominal trajectory and its actual position. If some deviation is detected,
the system has to analyze the discrepancy and generate a new trajectory fulfilling the
mission goals as well as possible. Mission planning systems involve two important sets

of software components:

� Computing modules calculating various dimensions of a trajectory,

� Plans expressing various ways to react to unexpected events.

Numerous components are available. This is due to the multiple ways to compute a
trajectory. A trajectory can be formed in order to meet different requirements like
speed, fuel preservation, or discretion. It can also be expressed along different dimen-
sions. Also, calculating algorithms vary in function of the target plane (or helicopter).
Similarly, many different reaction plans are available depending on the pilot’s profile,
mission objectives, planes characteristics,etc....

This domain is ideally suited for the development of a DSSA for several reasons :

� The domain is well understood and the basic avionics technology and operating
environment are relatively stable,

� There are several existing systems and a need for many new applications,
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� Common abstractions and features can be identified across different existing sys-
tems,

� Domain-specific components are available and variability can be expressed at
the architectural level with a variation in components.

Strategies necessary to react to unexpected components have been encapsulated in con-
trol components which transform them into control plans. Algorithms specialized in
trajectory calculations have been wrapped up in domain-specific components. Accord-
ing to the principles previously presented, the architecture supports both design time
and run-time configuration. At design time, one can select the strategies and calculat-
ing algorithms required to tackle an application, characterized by a specific plane and
specific mission objectives. At run-time, new components can be integrated in order to
provide new reactions to a given situation or new ways to compute a trajectory, or to
replace components.

5 Conclusion

Reusable software components have been a persistent, but elusive goal of the software
engineering community. We believe that this is partly due to a lack of architectural
perspectives. Reuse has to be prepared at the very beginning of software development
when setting the architectural foundations of a system. The general DSSA approach

aims to factor large classes of applications into reusable reference architectures and
components. It provides a coherent computational framework where software com-
ponents can be plugged with confidence. Our generic architectural model permits the
design and implementation of DSSAs in many domains. It makes use of the basic
blackboard organization in order to enable the integration and interoperation of diverse
components. The additional features of the dynamic control model provide the ne-
cessary additional support for flexible run-time configuration and meta-control. This
approach has been successfully applied to diverse domains like autonomous robots and
monitoring systems and is now used for the planning and real-time updating of aircraft
missions. It has allowed us to integrate smoothly legacy code with newly developed
components and to select and configure them for specific applications.

Bibliography

[1] ROADS. Esprit Project. Information Technologies RTD Programme, Domain 1 :
Software Technologies, 1996.

[2] B.W. Boehm and W.L. Scherlis,Megaprogramming, Proceedings of the DARPA
Software Technology Conference, April 1992.

[3] D.E. Perry and A.L. Wolf, ‘Foundations for the study of software architecture,
ACM SIGSOFT Software Engineering Notes, vol. 17, no 4, 1992.

[4] D. Garlan and M. Shaw,An introduction to software architecture, Advances in
Software Engineering and Knowledge Engineering. New York: World Scientific,
Vol. I, 1993.

56



[5] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides,Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995.

[6] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael
Stal,Pattern-oriented Software Architecture: A System of Pattern, Wiley & Sons.

[7] E. Mettala,Presentation at ISTO Software Technology Community Meeting, June,
1990.

[8] D. Batory, V. Singhal, J. Thomas, S. Dasari, B. Geraci, and M. Sirkin,The Gen-
Voca Model of Software-System Generators, IEEE Software, September 1994.

[9] D. Luckham, J. Kenney, L. Augustin, J. Vera, D. Bryan, and W. Mann,Specific-
ation and Analysis of System Architecture Using Rapide, IEEE Transactions on
Software Engineering, vol. 21, number 4, April 1995.

[10] B. Hayes-Roth,A blackboard architecture for control, Artificial Intelligence,
num. 26, 1985.

[11] B. Hayes-Roth, P. Lalanda, P. Morignot, M. Balanovic and K. Pfleger,A domain-
specific software architecture for adaptative intelligent system, IEEE Transactions
on Software Engineering, 1995.

57



58



The Fragile Base Class Problem and
Its Impact on Component Systems

Leonid Mikhajlov
Turku Centre for Computer Science
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In this paper we study applicability of the code inheritance mechanism to the
domain of open component systems in light of so-calledfragile base class prob-
lem. We present five requirements restricting code inheritance that are sufficient
to circumvent the problem. We propose a system architecture based ondiscip-
lined inheritanceand present three check lists for component framework designers,
component framework developers, and its users.

1 Introduction

One of the most important characteristic features of open component systems is the late
integration phase. End users obtain components from the software market and integrate
them into their system. In general, parties developing the components are unaware of
each other as well as of the end users that are going to integrate these components.

The component oriented paradigm stemmed from the main principles of object ori-
entation. Such concepts as encapsulation and subtyping are intrinsic to component
development. One of the key ideas in object-oriented development is the construction
of new objects by incremental modification of existing ones. Apparently, the possib-
ility of constructing new components by reusing previously designed ones is highly
desirable. The primary reuse mechanism employed in object-oriented languages is
(code) inheritance. Whether the inheritance mechanism can be used in component sys-
tem development and whether it can extend over component boundaries is unclear and
requires close consideration.

In this paper we consider the so-calledfragile base class problemand its influence
on application of inheritance over component boundaries. At first glance the problem
might appear to be caused by inadequate system specification or user assumptions of
undocumented features. We consider an example which demonstrates that this is not
the case and that the problem can be very concealed.

We abstract the essence of the problem into a flexibility property and explain why
unrestricted code inheritance violates this property. We present orthogonal examples
suggesting five restrictions for disciplining inheritance. In [8], we have proved that
these requirements are sufficient.
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We propose a disciplined approach to inheritance which allows safe implement-
ation reuse and provides high degree of flexibility. We present three check lists, for
component framework designers, component framework developers and its extenders.
By verifying that every requirement in the corresponding list holds, all parties can make
sure that they successfully avoid the fragile base class problem.

2 The Fragile Base Class Problem

The fragile base class problem becomes apparent during maintenance of open object-
oriented systems. Imagine that a customer has obtained a certain component frame-
work consisting of a collection of classes. In this framework inheritance is employed
as the primary implementation reuse mechanism. The customer willing to make slight
modifications to the functionality provided by a framework class inherits from it and
overrides several methods. So far everything works fine and objects generated from the
resulting class are perfectly substitutable for original ones generated from the frame-
work class. When framework developers release a new version of their system, natur-
ally they claim that the new version of the system is fully compatible with the previous
one. Unfortunately, soon after obtaining the new version of the framework, the cus-
tomer discovers that some custom extensions are invalidated. The following example,
adopted from [15], illustrates the presented scenario. In this example a classBagbe-
longs to a framework,CountingBagis its custom extension, andBag0 is a revision of
theBag.

Bag = class CountingBag= class
b : bag of char inherits Bag

n : int

init b= b := bj jc init b= n := 0;super.init
add(val x : char) b= add(val x : char) b=

b := b [ bjxjc n := n+1;super.add(x)
addAll(val bs : bag of char) b=

beginvaryjy2 bs�
while bs 6= bj jc do

self.add(y);
bs:= bs�bjyjc

od
end

cardinality( res r : int) b= cardinality( res r : int) b=
r := jbj r := n

end end

Bag0 = class
b : bag of char

init b= b := bj jc
add(val x : char) b= b := b [ bjxjc
addAll(val bs : bag of char) b= b := b [ bs
cardinality( res r : int) b= r := jbj

end

It is easy to notice that ifBag0 is used as the base class forCountingBag, the resulting
class returns the incorrect number of elements in the bag.

Apparently, inheritance is responsible for the problem. Different kinds of problems
connected to inheritance have been widely discussed in the literature [13, 17, 5]. The
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source of these problems can be traced back to the fact that inheritance violates encap-
sulation [13]. In a closed system (at least in theory) encapsulation can be compromised
in order to achieve the desired degree of flexibility. Correctness of the resulting system
can be verified on the integration phase. Since in open systems it is impossible to con-
duct a global integrity check, it becomes impossible to guarantee the overall correctness
of the system. Therefore, the fragile base class problem is of particular importance for
open component systems. If this problem were not considered at the design stage, it is
too late to try to amend it during exploitation.

The problem of safe modification of base classes in presence of independent ex-
tensions deserves a separate name. We have encountered the name fragile base class
problem in the technical literature describing component standards [19, 4]. Although
we noticed slight deviations from our understanding of the problem, we think that this
name expresses the essence of the problem rather well.

3 Failure of the Ad-Hoc Inheritance Architecture

Let us analyze the reasons for failure in modifying a system relying on ad-hoc code in-
heritance. Assume that we have a base classC and an extension classD inheriting from
it. We say thatD is equivalent to(M mod C)

1, whereM corresponds to the extending
part of the definition ofD and the operatormod combinesM with the inherited partC.
We refer to suchM as amodifier[18]. The model of single inheritance employing the
notion of modifiers was proved by Cook and Palsberg in [2] to correspond to the form
of inheritance used in object-oriented systems.2 For example, in our previous example
M has the form:

M = modifier
n : int

init b= n := 0;super.init
add(x : char) b= n := n+1;super.add(x)

end

Therefore, we have thatC belongs to the component framework, while(M modC)

represents a custom extension of this system. When system developers state that the
new version of their system is fully compatible with the previous one, they essentially
say thatC0 is a refinementof C. We say that some classC is refined byanother class
C0 if the externally observable behavior of objects generated byC0 is the externally ob-
servable behavior of objects generated byC or its improvement. In other words, objects
generated byC0 must be substitutable for objects generated byC in any possible con-
text.3 Ensuring substitutability of the custom extension(M mod C) for the framework
classC amounts to verifying thatC is refined by(M modC).

Under these two conditions all participating parties, i.e. framework developers and
its extenders rely on the following property:

if C is refined by C0 andC is refined by(M mod C)

thenC is refined by(M modC0
)

1We readmod as modifies.
2In their paper modifiers are referred to as wrappers. We prefer the term modifier, because the term

wrapper is usually used in the context of object aggregation.
3Readers familiar with the notion of behavioral subtyping [7, 1] can think of class refinement as behavi-

oral subtyping. We give a formal definition of class refinement in [8].
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Further on we refer to it as theflexibility property. Unfortunately, this flexibility
property does not hold in general, as demonstrated by our example. This consideration
brings us to the question, how we can redesign the system architecture so that the
flexibility requirement would hold.

4 Disciplined Inheritance

In this section we suggest a component framework architecture based ondisciplined
inheritancewhich relies on inheritance for implementation reuse. We represent every
class in the framework by two, an interface definition class augmented with specific-
ations of the intended functionality and its default implementation. We refer to the
augmented interface class as a specification class. We assume that the default imple-
mentation remains completely hidden behind the specification class. Therefore, the
user of the framework can rely only on the information provided by the specification
class. When reusing the framework, the user derives an extension class from an appro-
priate framework class. However, what the user sees is just the specification class. This
specification class is too abstract to be executed and at run time is substituted with its
default implementation.

The formal study undertaken in [8] brought us to formulation of five sufficient re-
quirements disciplining the inheritance mechanism which allow us to circumvent the
fragile base class problem. We justify these requirements by means of orthogonal ex-
amples, each violating the flexibility property in a different manner. In these examples
C is a base class,M is a modifier andC0 is a revision ofC. Due to space limitations we
omit the proof of sufficiency of these requirements which is presented in [8].

Let us briefly introduce the used terminology. When an extension class invokes its
base class method, we say that anup-call has occurred; when a base class invokes a
method from a class derived from it, we refer to such an invocation as adown-call. A
call of a method from another method in the same class is referred to as aself-call. We
refer to an invocation of a base class method by an extension class as asuper-call.

“No cycles” requirement: An implementation class and a modifier should not jointly
introduce new cyclic method dependencies.Cyclic method dependencies can appear
due to the presence ofself-recursionin the implementation class and the modifier. A
class (modifier) is said to be self-recursive if methods of this class (modifier) call other
methods of the same class (modifier). Due to dynamic binding such method calls of
the base class may be redirected to methods of the modifier. Since at run time the
specification class is substituted with its default implementation, which might have a
different structure of self-recursion, a cyclic method dependency may occur leading to
non-termination. Consider the following example:

C = class M = modifier C0 = class
x := 0 x := 0

m b= x := x+1 m b= self.n
n b= x := x+1 n b= self.m nb= x := x+1

end end end

“No implementation class self-calling assumptions” requirement:Implementation
class methods should not make any additional assumptions about the behavior of the
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other methods in itself. Only the behavior described in the specification class must
be taken into consideration.If this requirement is violated, caller methods in the im-
plementation class can assume properties inferred from implementations of the callee
methods in the same class. Such assumptions may be broken if the modifier overrides
these callee methods. This requirement can be justified by the following example:

C = class M = modifier
m(val x : Real; res r : Real) b= m(val x : Real; res r : Real) b=

pre x� 0
post r 02 = x

r :=�px

n(val x : Real; res r : Real) b=
pre x� 0
post r 04 = x

end end

C0 = class
m(val x : Real; res r : Real) b=

r :=
p

x

n(val x : Real; res r : Real) b=
self.m(x; r);self.m(r; r)

end

“No specification class down-calling assumptions” requirement:Methods of a mod-
ifier should disregard the fact that specification class self-calls can get redirected to
the modifier itself. In this case bodies of the corresponding methods in the specific-
ation class should be considered instead, as if there were no dynamic binding. This
requirement is similar to the previous one, except that now the modifier can make extra
assumptions that can be violated by an implementation class. In the following example
fpg is an assertion statement, which skips if the predicatep is true and aborts other-
wise.

C = class M = modifier C0 = class
x := 0 x := 0

l b= fx� 0g;x := 5 l b= x := 5 l b= fx� 0g;x := 5
m b= self.l mb= fx� 0g;self.l
n b= x := 5;self.m nb= self.m nb= x := 5;self.m

end end end

“Conditional access to specification class state” requirement:If a specification
class allows access to its instance variables to a modifier class, then its implement-
ation class should not change the data representation of the specification class. Other-
wise, the modifier may only access the state of its base class through calling base class
methods. If the instance variables of the specification class are directly accessible to
its extensions, they are implicitly a part of the interface of the specification class [13].
In this case it becomes impossible for an implementation class to provide an alternative
data representation. This requirement can be justified by the following example:
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C = class M = modifier C0 = class
x := 0 x := 0;y := 0

m b= x := x+1 m b= y := y+1;x := y
n b= x := x+2 n b= x := x+2 n b= y := y+2;x := y

end end end

“No modifier invariant function” requirement: A modifier should not bind values
of its instance variables with values of the specification class instance variables to
generate an invariant. When creating a modifier, its developer usually intends it for
a particular base class. A common practice is an introduction of new variables in the
modifier and binding their values with the values of the base class instance variables.
Such a binding can be achieved even without explicitly referring to the base class vari-
ables. We can say that such a modifier carries aninvariant functionwhich is applied
during the modifier application and returns an invariant of the resulting class. The fol-
lowing example demonstrates that, in general, such an invariant function can lead to
problems.

C = class M = modifier
x := 0 y := 0

l( res r : int) b= r := x
m b= x := x+1;self:n m b= y := y+1;super:m

n b=

beginvarr�
self:l(r)

end
n b=

beginvarr�
super:l(r);fr = yg

end
end end

C0 = class
x := 0

l( res r : int) b= r := x
m b= self:n;x := x+1

n b=

beginvarr�
self:l(r)

end
end

5 Application

From the above requirements we derive three check lists for component framework
designers, component framework developers, and its extenders. By verifying that every
item in a list holds, all parties can make sure that they successfully avoid the fragile
base class problem. First we present thecheck list for framework designers:

1. The framework designers should decide whether they want to fix the data rep-
resentation of the framework class. In some languages [16] this decision can
be expressed by putting the declaration of the instance variables in aprivateor
protectedsection of the class definition. Private attributes are only accessible by
methods of the same class, while protected attributes can be accessed by the ex-
tension class as well. When instance variables of the specification class appear in
the protected section, implementation class must have the same data representa-
tion. When instance variables of the specification class are declared in the private
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section, implementation class can change the data representation. If future exten-
sions are expected to require more freedom in modifying the class state than is
allowed by the class client interface, the class can provide a number of low-level
state modifying methods. Since having these methods as a part of the class client
interface may be inappropriate, we suggest declaring them as protected [13].

2. Specification class method bodies must indicate allselfmethod calls.

Now let us consider thecheck list for framework implementors:

1. The implementation class can change the data representation of the specification
class only if it is declared as private.

2. A method of the implementation class may self-call only those methods that are
self-called by its counterpart in the specification class.

3. When verifying that some method of the implementation is a refinement of a
matching method in the specification, instead of considering the bodies of the
self-called methods, one should consider the bodies of the corresponding meth-
ods in the specification.

And finally let us consider the followingcheck list for framework extenders:

1. A method of an extension class may only self-call those methods that are self-
called by its counterpart in the specification class, or it may make up-calls to
these methods. Plus, an extension method may always make up-calls to its coun-
terpart in the specification class.

2. When verifying that some method of the extension is a refinement of a matching
method in the specification, one should disregard the fact that due to dynamic
binding the base class can make down calls to the extension class methods. One
should consider that the base class calls its own methods instead.

3. The extension class may not establish an invariant binding values of inherited
instance variables with values of its own instance variables.

6 Related Work and Conclusions

We have discussed the fragile base class problem and its impact on component sys-
tems. The name fragile base class problem was introduced while discussing component
standards [19, 4] since it has critical significance for component systems. Modification
of the components by their developers should not affect component extensions of their
users in any respect. Firstly recompilation of derived classes should be avoided if
possible [4]. This issue constitutes a syntactic aspect of the problem. While being ap-
parently important, that problem is only a technical issue. Even if recompilation is not
necessary, component developers can make inconsistent modifications. Such inconsist-
ent base class modifications constitute a semantic aspect of the problem, which is the
focus of our study. This aspect of the problem was recognized by COM and Oberon/F
developers [19, 11]. They see the root of the problem in inheritance violating data
encapsulation and choose to abandon inheritance, by employing the forwarding ar-
chitecture. Although solving the problem this approach comes at the cost of reduced
flexibility.
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We discuss how disciplined inheritance enables consistent modifications of base
classes, although encapsulation is violated. To discipline inheritance, we formulate
five requirements. In [8], we formalize the problem in an extension of refinement
calculus [3, 9, 10] and prove that these requirements are sufficient. In fact only the “no
direct access to base class state” requirement was known from the literature. The other
requirements have emerged while attempting to formally prove the property ensuring
safety of base class modification.

Consideration of these requirements allows us to formulate an architectural ap-
proach based on disciplined inheritance combining flexibility of an ordinary inherit-
ance architecture with safety of a forwarding architecture. We have presented three
check lists for framework designers, framework developers and framework users to
be used as guidelines for constructing component systems employing inheritance and
avoiding the fragile base class problem.

Other papers consider the question of ensuring the substitutability of the classes
created by inheritance from some base classes for these base classes [1, 7, 14]. This
problem constitutes only a part of the fragile base class problem and as such is one of
the flexibility property premises.

The fragile base class problem in our formulation (although they do not refer to it
by this name) is considered by Steyaert et al. in [15] and by Kiczales and Lamping in
[6]. The first paper is most closely related to our work. The authors introducereuse
contracts“that record the protocol between managers and users of a reusable asset”.
Acknowledging that “reuse contracts provide only syntactic information” they claim
that “this is enough to firmly increase the likelihood of behaviorally correct exchange
of parent classes”. In our opinion such syntactic reuse contracts are insufficient to
guard against the fragile base class problem.

The objective of the paper by Kiczales and Lamping is to develop a methodology
for informally specifying a framework, so that the specification would accurately de-
scribe its functionality and provide the framework user with appropriate leeway for
extending and reusing it. However, their recommendations are based only on empirical
expertise. We believe that such methodology should be grounded on a mathematical
basis and developing such methodology constitutes the ultimate goal of our research.

Effects of disciplining inheritance the way we propose on component and object-
oriented languages and systems require separate consideration and constitute the sub-
ject of our future research. The other research direction is in generalizing the results
by weakening the restrictions we have imposed on the inheritance mechanism.
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The emerging technologies such as software components and the Internet chal-
lenge the way software is produced and marketed. The social, technical and organ-
izational aspects of the software business change significantly compared to the tra-
ditional understanding. Discussions about software components are often mainly
limited to the technical aspects of interoperability. The purpose of this position
paper is to motivate for a broader interdisciplinary discussion about components
including technical aspects, but also organizational, social and even marketing as-
pects. We investigate these various aspects to develop the concept of a software
engineering environment capable to face the outlined challenge.

1 Introduction

Software components [1] are a promising paradigm shift and could answer the soft-
ware crisis by attacking the conceptual essence of the difficulties inherent in the nature
of the software [2]. Compared to other engineering disciplines where components are
used successfully and decide the business success, software component technology is
not yet mature. Discussions about components are often mainly limited to the tech-
nical aspects [6] of interoperability. Contrarily, industry reports to be more challenged
by organizational or social aspects when using components in large software projects.
Cox [3] argues that the difficulties we have long experienced in the software field in-
cluding our efforts to reuse software components are the result of a ”technocentric”
view of software development. I agree and provocatively add that component research
issues do not differ significantly from object research issues from a technical point of
view. The specific nature and challenge of components become only visible if we ac-
cept software production and markets to happen in a complex socio-technical system.
Thus, to take full advantage and to evolve the paradigm shift we need to go beyond ob-
jects. The investigations should encompass technical but also social, organizational and
market issues. This also allows to distinguish components from objects in an attempt
to gain a more specific focus on what components are all about.

The emerging technologies such as software components [4] and the Internet will
have an increasing impact on the way software is produced and marketed. Tradi-
tional approaches of the software business are substituted or complemented by vari-
ous new approaches closely related to the underlying emerging technology. Although
the changes are triggered by technical issues the software component business is not
restricted to a technical challenge. Technical aspects like interoperability issues are
certainly critical for a successful deployment of the component business. But the sig-
nificantly changing organizational and social aspects facing the problem of the de-
centralized management of software processes and products shared world-wide among
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heterogeneous organizations are also a difficult task. Even marketing aspects tightly
correlated with the emerging technologies should be investigated carefully to establish
the various new business opportunities.

We are interested in components developed and composed across organization
boundaries. We believe that developing high quality interoperating software compon-
ents in a global context involving different autonomous organizations is as much an
organizational and social challenge as it is a technical one. This paper intends to motiv-
ate for a broader interdisciplinary discussion about components and outlines technical
aspects, but also organizational, social and even marketing aspects of software compon-
ents. We investigate these various aspects in the GIPSY (Generating Integrated Process
support SYstems) project to develop the concept of a software engineering environ-
ment capable to support the development and maintenance of high quality software
components. Thus, our concerns are issues that are relevant for software engineering
environments.

2 Component Technology

This section discusses software components and the Internet as the emerging technolo-
gies that will change the way software is produced and marketed. The Internet should
be mentioned shortly as the complementary technology to software components play-
ing two important roles. It is the enabling technology for global co-operations and for
new marketing opportunities in the component business.

The repeated attempts to define a ’component’ indicates that the software compon-
ent technology is still far away to be mature. Everybody agrees that components are
for composition. However, controversies arise on any attempt to go much further. Last
year’s workshop proposes a component definition [6] outlining its technical and organ-
izational challenge: ”A component is a unit of composition with contractually specified
interfaces and explicit context dependencies only. A component can be deployed in-
dependently and is subject to composition by third parties.” Components are products
that are delivered with third-party composition in mind. Thus, components should be
constructed as context independent as possible to be suitable for independent extension
or composition. A dilemma is threatening the reuse and composition of components.
The more a component is independent of a specific interoperability context the more
it can be reused in other contexts. But, a component that is totally independent of any
context can not be reused because it needs to work in a context to be composable. This
contradiction challenges the design of reusable components.

Improved composition techniques are a critical issue for the successful deployment
of components. Defining, providing and finding useful interoperability information be-
come a severe problem. If we think about interoperability in a global context there is
an important issue: How can developers, as well as users manage interoperability is-
sues of a huge amount of components developed worldwide by independent providers?
The current general way to describe interoperability information is to provide the com-
ponent’s interface definition and some additional informal documentation. This level
of information is obviously not detailed enough to manage interoperability issues on
a reasonable level. Unfortunately, component descriptions enhanced with semantic
information are restricted to specific types of components.

Therefore we should think about little steps towards an improved interoperability
management by introducing intermediate levels between the two extremes, the syn-
tactic interface and full semantics. These approaches could be based on recent prom-
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ising trends to distinguish functional and non-functional aspects of a component and
to cope with every aspect separately [7]. A rather pragmatic non-technical approach is
to focus on information inherent with the development process. During the develop-
ment process of a component, the developer needs to investigate how and with which
other types of components his component interoperates. Therefore, the information
about which versions of other components a component requires or interoperates with
is inherent in the corresponding development process. We propose to retain this in-
formation and publish it in an appropriate form. The idea is to encourage developers to
make as much information available as possible about the contextual assumptions they
based their development on [5].

The promising idea of a hybrid approach is to use whatever notation is most appro-
priate and least general-purpose for the description of every single component within
a system. Appropriate means that the notation should allow to describe the structure
and behaviour of a certain component as complete and as abstract as possible. A user
can learn as much as possible about the structure and behaviour of a component by
reading such a description. This implies that the least general notation that is barely
sufficient for the task should ideally be employed. E.g., if the model of a system part
is based on a finite state machine, we should take a finite state machine notation to
describe this component rather then using the more ’powerful’ programming language
C. The composition of two components representing a finite state machine can be done
on a higher level then the composition of two C programs. Such a hybrid approach
enables improved composition at least in certain areas of a component-based system.
It also allows to use more domain-specific languages that even can be used by domain
engineers to develop families of applications that are easily specified.

3 Organization

To understand the software component business we should carefully observe other en-
gineering disciplines where components play a key role. Car manufacturers for ex-
ample are managing a complex network of enterprises delivering the various compon-
ents of a car just in time to be put together to the final product. The various nodes of
this network have to co-operate tightly on a high level to assure a high quality work
including the areas of development, production, maintenance and marketing. There-
fore, enterprises weaken their boundaries and appear as one unitary organization from
the viewpoint of an external observer and build a so-called ’virtual organization’ [8].
This flexible and dynamic organization concept has many advantages, single nodes can
for example be exchanged by alternative enterprises. The organizational and social as-
pects of such a heterogeneous virtual organization are an immense challenge since the
organizations differ typically in many aspects such as location, technology, methods,
culture, policy, strategy, skill, quality and more.

The analogy to the software component business is obvious: Different component
producers need to co-operate tightly on a high level to assure proper component in-
teroperability by sharing and linking their development processes resulting in tightly
co-operating virtual organizations. But compared to the car manufacturer there are two
major differences that make virtual organization within the software component busi-
ness much more challenging to manage. The car manufacturer keeps its organizational
structure quite stable once developed and the applied composition techniques are more
advanced. Within the software component business the product has a more dynamic
nature and virtual organizations are formed more dynamically. Component producers
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form a virtual organization with the goal of building a configuration of properly inter-
operating components. In fact, for every client that likes to use a set of interoperat-
ing components, there is a virtual organization of component producers co-operating
to meet this specific requirement. As a vision, the development efforts of many indi-
vidual component producers together may be regarded as one large global development
process consisting of many linked processes. Managing such a software process on a
high level across enterprise boundaries within a virtual organization is an enormous
challenge since the various process parts are managed decentralized and linked into the
global context of the virtual organization.

Besides components Java also popularized concepts like ’write once, run every-
where’ and the distribution of software components across the Internet. Components
are collected from different nodes of the global Internet and configured on the client
machine to support a certain task. Everyone knows the problem of hyperlinks in the
World Wide Web pointing to nowhere. The obvious reason for that is the decentralized
management of link configurations by every web participant not controlled by any or-
ganization or policy. Whereas web surfers are just upset about the missing links, the
consequences in the component business are more dramatic. If a client intents to collect
a configuration of components from different locations of the web, every component
should be available at the right version and the configuration should be confirmed from
the virtual organization of the involved component producers as a stable package of
properly interoperating components. Missing versions and incorrectly configured sets
of components can not be accepted within the software component business. Versions
and configurations need to be available, persistence and stable. Assigning expire dates
to components and valid configurations should be considered. In addition, versions
of compilers and runtime systems should also be kept, especially if we think about
software only compiled and distributed on demand.

The consequences seem to be significant, if we focus on the responsibility of
providing component interoperability. If a producer for example releases a new ver-
sion of an operating system, everyone hopes (’plug and pray’ mentality) that actual
software versions running on top of the new release of the operating system still work
properly. In fact, every software running on top of an operating system is invalidated
after a new release of the operating system until the component producer establishes
a new link from its component to the new version of the operating system confirming
proper interoperability. The complex network of component versions, configurations
and dependencies updated decentralized is difficult to control. This world-wide global
configuration management system for products is a severe organizational challenge.
Introducing a simple version concept to Java is definitely a first step to face the chal-
lenge [9]. There are also new business opportunities like third party configuration
dealers (e.g. ’virtual software house’) managing and offering stable configurations.

4 People

People are the most critical resource in building software systems efficiently and effect-
ively and decide its success. Humphrey [10] puts an emphasis on two basic require-
ments that decides successful software development - a well defined, quality based pro-
cess and the best technical people. He considers identifying, motivating and organizing
innovative people as a critical task. As in no other engineering discipline, highly skilled
and motivated people can be more productive by factors than people with inferior edu-
cation and poor motivation. Highly skilled and motivated people, communication and
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its consequent, organization are critical for success [2]. Whereas skill and motivation
can be improved with an appropriate human resource management (e.g. with a devel-
opment oriented human resource management [11]) enabling communication within
a virtual organization is a severe challenge. Communication among the involved het-
erogeneous organizations that differ in various aspects such as culture, policy, strategy,
skill, methods and others require simple communication mechanism. Therefore, differ-
ent organizations cooperating tightly to produce high quality software within a virtual
organization must share a common understanding of organization. Many projects fail
because they lack organization and communication before they hit technological limit-
ations.

5 Facing The Challenge

As outlined above, the decentralized management of products and processes and or-
ganization forms within a virtual organization represents a severe challenge with a
significant impact on the concepts of supporting tools. The difficulty mainly comprises
the heterogeneity of the virtual organization, since the participating autonomous organ-
izations vary in many respects including various locations, cultures, policies, strategies,
methods and more.

We are investigating the concept for a software engineering environment (SEE)
framework capable to support the global software process within a virtual organiza-
tion aimed to produce high quality software. We believe that the outlined significantly
changing challenge force the requirements for a SEE to be revised compared to tra-
ditional concepts. A SEE should more support between the nodes of the organization
than within the nodes where autonomy is particularly preserved. There is a strong
need for a common understanding of organization to be shared among the particip-
ating organizations. Thus, a SEE should enable communication about organization
rather than forcing the various nodes to use sophisticated models. We concentrate our
investigations on two distinct layers with different requirements. On the engineering
layer we focus on the specification and generation of highly integrated tool compon-
ents supporting formal languages. Compiler-compiler technology is extended by the
object-oriented paradigm to a tool specification technique providing powerful decom-
position, extension and import mechanisms [5]. This allows for a fast transformation of
formal methods to describe components and their composition into supporting tools.
The use of formal methods makes a program independent of its developer context.
This is vital for the development of high quality software across organization bound-
aries. The proposed flexible approach is also appropriate to support hybrid approaches
as mentioned above since various tools are needed to support the increasing number of
involved languages.

Whereas the engineering layer requires sophisticated techniques enabling detailed
tool descriptions, the requirements for the organizational layer are rather different. On
the organizational layer the SEE should provide a simple mechanism to enable organ-
izational integrity. Organizational integration includes two aspects; one is the common
understanding of the structure and evolution of product, process and organization form
shared among all development process participants (users and tools); the other is the
management of relationships among the different organizational structures (e.g. an-
swering the question of which part of the product is the result of which process steps
and who was the executing developer). Keeping track and understand the evolution of
process and product is essential for process improvement within iterative and explorat-
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ive development methods. We believe organizational integrity to be the most important
design issue of a SEE aimed to face the outlined challenge.

A promising and rather obvious approach to handle organizational integration is to
achieve structural unity among the three main organizational structures [11]. It means
using similar structures to manage the organizational aspects of product, process and
organization form. This also allows to represent structural aspects and to establish
relations among the three structures in a simple way. We use a simple 3D model to
represent structure (2 dimensions) and evolution (3rd dimension) of a software product
and its process. Development processes of different components that interoperate in
a certain way are linked together. The links are established on different layers with
respect to the history dimension, thus indicating which versions of the components in-
teroperate. Whereas this approach promises a rather easy way to obtain organizational
integrity, its limitations are also clear. To gain structural unity each structure has to
sacrifice some of its specific characteristics. The resulting shared structure should be
very simple. We claim that gaining organizational integrity by sacrifying sophisticated
but aspect-specific structures is the better choice than vice versa to provide powerful
methods to face the challenge outlined in the section above.

6 Markets

All aspects of the traditional software business such as software engineering, mainten-
ance, distribution and marketing are challenged by the emerging technologies. Because
of the impact of the emerging technologies on component marketing aspects a tight co-
operation between component development and marketing is required to establish the
various new business opportunities triggered by the technology shift. The emerging
technology gives highly skilled small competitors the chance to compete on the global
market. Components allow small competitors to provide a solution for a specific need,
there is no need for a single provider to offer an integrated all inclusive product. Such
monolithic products can be substituted by competitive configurations of components
provided by virtual organizations dynamically built among small providers. The Inter-
net is the perfect platform for cooperation and marketing to reach the global market
with only low investment. The component market may transform the producer-driven
software market into a customer-driven one. Some potential new business opportunit-
ies that could be built on top of the simple model introduced above are outlined in the
following.

An electronic product catalogue with interoperability, version and configuration in-
formation about components could be built on top of the model introduced above and
could be an important part of a virtual software house of components on the World
Wide Web (software offers, catalogue, on-line consulting, distribution, updating, pay-
per-use and more). Such an interactive catalogue could be provided with the outlined
method. Attractive 3-dimensional navigation through virtual software stores may be
performed in order to find consistent combinations of components. Once a user has
determined a configuration of components to be valid, it can be automatically down-
loaded and installed.

Managing components, in particular finding out whether a given set of components
is consistent, is often a difficult task. Here, software agents may be envisaged that
roam over the global network of linked processes to search for this information, as
consistency checking can be performed automatically according to fixed rules. A user
may check the consistency of a specific set of components, i.e. those currently on
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his machine, or a set assembled by himself, possibly containing components of many
different developers. This technique could be used by value-added resellers and system
integrators to provide and guarantee available, stable and maintained configurations of
properly interoperating components.

An interesting business opportunity is a virtual organization (task force) of highly
skilled information technology experts that is only built dynamically to work on a cer-
tain project. The experts represent as subcontractors the nodes of the virtual organiza-
tion whereas the network is organized by the management and main contractor of the
virtual organization. There is no static organization, experts become only part of the
virtual organization if their specific skill is required in an ongoing project. The man-
agement acquires new projects, it establishes or maintains contacts to potential subcon-
tractors and manages their competence and availability. The management also leads the
projects including the assignments of appropriate experts to the projects. These highly
skilled task forces are an effective and efficient way to work on software projects based
on the idea of bringing people with the appropriate skills to the concrete projects in a
flexible way. The challenge is to organize such task forces and to lead these sophist-
icated organization forms. The model introduced could be an approach to supporting
such virtual organizations.

7 Conclusions and Outlook

All aspects of the traditional software business are significantly challenged by emer-
ging technologies such as software components, Java or the Internet. There are major
changes of the social, technical and organizational aspects of the software component
business compared with traditional approaches, especially, if the focus is put on the
use and development of components within virtual organizations. The decentralized
management of products, processes shared among heterogeneous virtual organizations
is challenging but essential for the development and marketing of high quality software
components in a global context. To face the challenge future SEEs need to provide
more support between groups across organizational boundaries and less within groups
where skill and motivation of group members decide the success and not a sophistic-
ated tool. The software engineering environment community should carefully consider
these changing aspects for the concept of SEEs.

A simple model needs to be defined enabling organizational integration within vir-
tual organizations, which encompasses the common understanding of the structure and
evolution of product, process and organization form shared among all process parti-
cipants (users and tools). We propose a similar 3D model to represent the structure and
evolution of a software product and its process. This leads to the structural unity of
product, process and organization form, which we believe to provide organizational in-
tegrity. This simple model could be the underlying concept of future SEEs supporting
software process and configuration management within virtual organizations. A closer
coupling of product, process and organization form is an important topic that will be
supported by future practical large-scale software engineering environments.
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The use of component–oriented systems in a workflow system solves several
problems of today’s workflow systems like e. g. lacking adaptability. For that pur-
pose, however, both systems must be modified and coupled in a two level system.
In this paper several modifications are proposed that will improve the systems’ co-
operation, like the creation of interfaces and the provision of a process context, as
well as the introduction of interactively changeable views in the application.

1 Introduction

Workflow systems and component–oriented systems have similar assignments and use
similar technical approaches to facilitate the development of applications. But they
differ in the application domain and in the magnitude of the application. Workflow
systems control enterprise–wide applications that consists of activities. Component–
oriented systems control local applications that consists of software building blocks.
This paper is going to show how both systems can benefit from each other.

First, basic concepts and terms of workflow management are introduced. Some
definitions in the area of component–oriented programming follow. In section 3 several
problems are described with which today’s workflow systems are confronted. These
problems motivate the use of component–oriented programming in workflow systems.
A pure combination of both systems does not result directly in the desired success. The
newly emerging inadequatenesses are explained in detail in section 6. In the following
section a coupling of the systems instead of a combination is demanded. This is proved
by proposing an approach for each itemized problem how the problem can be solved
by a modified workflow system and a modified component–oriented system. In the last
section all essential ideas are summed up.

2 Workflow Management Systems

This section introduces essential concepts and terms [WfM96] of workflow manage-
ment, as well as terms of component–oriented programming.

A workflow management system(WFMS) is a software system for the coordination
and cooperative execution of business processes in distributed heterogeneous computer
environments. The objectives of a WFMS are in a first phase the modelling of the struc-
ture of an enterprise and of the sequence of all business procedures, and in a second
phase the controlling, supervising and recording of the execution of all modelled pro-
cesses.
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A sequence of business procedures is modelled in abusiness process. All sequen-
tial or parallel relationships between process steps are specified in business process
models. It is determined for each step which work objects (data and documents) and
which human, technical and organizational resources are necessary for the execution.
A business process is modelled as a graph with process steps as nodes and control and
data flow relationships as edges. An executable process model is calledworkflow.

A process step, also calledactivity, is a piece of continuous work executed by one
person. Theactor of an activity can use an interactive application program to fulfil
the objective of the activity. As an alternative, manual activities without computer
assistance might also be possible as well as automated activities which do not need
human interaction.
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Figure 1: Model of a business process

Figure 1 shows a model of a business process which is used in IBM’s workflow
system ”FlowMark” [LR94] and in Surro [SB96a]. All activities are connected by
control flow connectors. Each activity has an input and an output container used for
input and output data. The transport of data is controlled by data flow connectors.
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Figure 2: The inner structure of an activity

Figure 2 shows the inner structure of an activity. The input data container consists
of a set of variables which are set in the beginning by data flow connectors. The applic-
ation can read data from the input container and write data into the output container.
Incoming control flow connectors are evaluated in the start condition. If this condition
is true, the activity waits for the occurrence of an event. When the event has occurred
or no event was specified, the precondition is tested. If it is true, the activity is assigned
to an actor and an entry is put on his work list. The actor can then start the program
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associated with the activity. The application processes the data in the input container
and writes output data. The workflow system can test with the postcondition if the task
of the activity has been accomplished successfully. If this is not the case, the activity is
return to the same actor.

The central component of a workflow system is the workflow engine. It reads the
workflow specification, instantiates the workflow, dispatches the scheduled activities
to the actors and transports data and documents to them. Application data and doc-
uments, as well as workflow management data, are stored in a database or document
management system. The engine uses an organization module, which knows the whole
organizational structure of the enterprise, to cast a role, e. g. that of a clerk to a real
person. This module can also be used as a generalized resource planner. The specific-
ation of the business process and the organizational structure are created with a visual
workflow editor. A workflow information system shows several views on the actual
state of the workflow system and allows to view even the history of the processing. An
activity manager is used as an actor’s user interface to the workflow system. The actor
uses this program to start workflows and activities allocated to him.

Workflow systems are mainly used in enterprises with highly structured business
processes which are executed very often. Users of a workflow system are actors in-
corporated in the process and work managers who model the business process. Work
managers must have programming skills. They remain, however, specialists for the
business process, not for the programming.

Programs which are assembled using components can be executed in activities. Be-
cause this domain is of great importance some terms ofcomponent–oriented program-
ming (COP) are described in the following to clarify how the terms are used in this
paper:

Componentsare reusable software building blocks which can be assembled or dis-
assembled in an application without violating its integrity. There are atomic and com-
posed components. Atomic components offer functionality of one specific domain,
i. e. functionality must be distributed among components in a way that interfaces are of
minimal size.

A component modelspecifies an architecture which enables components to interact
and consists of a set of protocols. Components are instances of one component model.

A component–oriented systemis an architecture for a software system which
provides the infrastructure for components. An implementation of this architecture
consists of an application development environment and a runtime environment for
components. Acomponent–based systemuses components only in the development
environment. In the runtime environment (respectively the compiled application) com-
ponents do not exist anymore.

The termcomponent–oriented applicationdefines an application which is built us-
ing components as building blocks and is used to distinguish itself from applications
conventionally built.

3 Problem Description

The use of current workflow systems reveals some problems. In this section all those
problems are discussed which can be solved or reduced using component–oriented
programming.
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Adaptability Problem in Activities
Before the emergence of workflow systems, business processes were realized with big
monolithic business applications. In order to preserve marketability, business processes
must be adaptable to the actual market situation. E.g. customers requests can result in
the need for adapting business processes or the management wants to increase pro-
ductivity by improving the process. These requests for change must be implemented
by programmers of business application vendors. Hence, adaption is costly, time–
consuming and expensive.

These facts have resulted in the development of workflow systems. Hereby, busi-
ness processes are divided into a function–oriented part — the work steps — and a
process–oriented part — the relationship between the steps. One step in the work of an
actor is used as a criterion for splitting the business application into activities. These
relationships are described in the workflow specification modelling the business pro-
cess. Because of the more abstract representation of the workflow, the user can adapt
the workflow more easily than programmers can adapt their monolithic business ap-
plication.

Workflow systems, however, only allow adaption in the process–oriented part. If
the function oriented part has also to be changed, the old problem arises: adaption in
applications has to be implemented expensively by the vendor.

Heterogenous System Environments
Workflow systems are used in a very heterogenous infrastructure of computer equip-
ments, which is grown by and by. Hence, workflows have to be platform independent.
The specification is already platform independent, but the applications are not. There-
fore, an activity needs one platform specific application for each platform. Every ap-
plication used in a workflow system needs to exist in several portations: one application
for each platform. Alternatively, applications with similar functionality have to exist
for each platform. If a lot of different programs exist several problems arise, like op-
erating errors while interacting with the application, missing functions or incompatible
data formats. Altogether, this approach is unsatisfying, costly and expensive.

Incomplete Reuse of Workflows
The reuse of workflows in a different enterprise requires the possibility of adapting
the workflow by the user and the possibility to run the applications on all used plat-
forms. As a consequence of the two subsections above reuse of workflows is not really
possible.

Unspecific Applications
Workflow systems are especially useful when workflows are executed often. Therefore,
the applications should be accommodated very well to their operation area in order to
achieve high productivity. But customized applications must be bought expensively
from software vendors. Instead, generic standard applications are often used. But these
applications can only be limited incompletely to their task domain. The user is allowed
to do much more than he should. The workflow system has only few possibilities to
check what is done in activities. The incomplete adaption to the task domain makes
the task more costly and error prone than necessary. For example, automation of mini
control flows can usually not be done in this generic applications.

No Mutual Profit of Services
Standard applications have no knowledge about their use in a workflow system. So
they cannot use services offered by the workflow system. Vice versa, the workflow
system sees activities as black boxes. It is not able to control the applications in the
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activities. As a consequence of this lacking arrangement, services may be implemented
twice.

4 Combining Workflow and Component Systems

An approach is to use component–oriented programming for the development of ap-
plications in activities. Workflow systems are a large and rewarding application domain
because the complexity of program logic in activities is typically low and often sim-
ilar. It turns out quickly that today’s systems are not prepared satisfactorily for that
use if they are not modified for that purpose. So, the combination of these unmodified
systems shows the problems mentioned above in a different perspective:

� A simple combination does not eliminate the problem of lacking mutual profit.

� Now, the user has the possibility to create customized applications with compon-
ents providing standard functions. Unfortunately for every new adaption (like a
different color) a new additional application is needed. In addition, applications
cannot be customized dependent on the task domain (e. g. a certain activity in a
process).

� The problem of heterogenous system environments is not solved if the compon-
ents remain platform dependent.

� Reuse will be possible when the problems of heterogeneity and adaptation will
be solved.

� The applications in the activities can be adapted by the user if component–
oriented systems are used. This is not valid for a component–based system! In-
deed the possibility to adapt applications is not supported very well from today’s
component systems. The user cannot adapt an application easily:

� Functionality dealing with the cooperation of components can only be
gathered with difficulty. Events and callbacks are used as a communica-
tion technique. The code of these callbacks is spread over all components.
Therefore, the user must accumulate the knowledge of the structure of a
component–application in a reengineering phase by himself. There is no
support by the system. Moreover, often only one structuring element ex-
ists, the hierarchy of GUI–widgets (controls).

� The replacement and addition of components is not supported in an ad-
equate way by today’s component systems. There are no integrity checks
whether all required interfaces and preconditions are met when using a new
component. The user has to test it by himself.

� The glue code is necessary for the creation of callbacks and allows the co-
operation of components. Glue code is usually written in the same language
with which the component is implemented, and not in a language which is
tailored to user skill. Such a language should be easy–to–learn, easy–to–
understand and easy–to–use. Most of all the code must be interactively
testable.
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5 Coupling Workflow and Component–Oriented
Systems

The combined use of unmodified systems solves the problems mentioned only partly.
Therefore, it has to be examined if it would not be more successful not only to combine
but also to couple both systems. In such a coupling both systems can be modified
and enhanced with additional functionality to solve these problems. Objective of the
coupling is to allow transfer and adjustment of similar technologies for a redundance–
free partitioning of responsibilities and to allow a highly effective cooperation. The
coupling results in a two level system where each single system can be used on its
own, too.

In the following subsections, a solution is proposed for each problem mentioned.
Also, some technical aspects concerning implementation aspects are discussed.

To: No Mutual Profit of Services
Both systems must be modified in a way that they offer their services in public inter-
faces. Double implementations can be avoided if it is defined which system implements
the service and which system uses the service. A replacement of one system is only
possible when these interfaces are standardized.

An example for such an API are controlling functions for components. A controlled
abort, a resume, as well as storing and loading of component states are important func-
tions to support error handling of the workflow system [SB96b].

An example for the distribution of functionality is the transport of software. With
the help of internet protocols a workflow system can transport and install applications
at the actor’s computer [SB96a]. This functionality can also be used for the transport
of components, just like the loading of java applets in a html–page.

A more advanced example for distribution is the realization of persistent ap-
plications. Workflows are persistent because activities are considered atomar units.
Component–oriented applications are generally not persistent, but in the application
domain of workflow management persistent applications are desirable because an actor
may want to change his working place within a running activity. For that purpose com-
plete persistence is not necessary, all what is needed are some persistent states. Hence,
a component–oriented application can be divided into activities such, that the work-
flow system is able to support the persistence. The component system does not need to
implement it, too.

To: Unspecific Applications
Component–oriented applications need to be aware of the surrounding process to be
able to customize to a specific task. This can be achieved with a process context.

A process contextis a logical storage used by components to store and retrieve
data. The workflow system provides and manages different contexts. Contexts can
be defined through conditions. For example, a person can form a context, but also a
workflow instance or an activity in a workflow template. The concept of a process
context allowscontext sensitiveapplications.

A component can store the attributes’ values, configuration scripts or other data in
the context. For example, a context sensitive command history can be implemented.
Default values in data entries are another example. Thus, an actor can use the old data
he had typed in last time using this application.

A context database can be compared with the X–resource database, with the restric-
tion that only one context exists which is identified via the application name or class.
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The data container concept can also be seen as a primitive process context.

To: Heterogenous System Environments
The problem of heterogeneity can be overcome if the component system and the
components are implemented in a platform independent programming language. The
object–oriented language Java was designed for that purpose. But a number of other
languages exist which also possess that property, like Tcl/Tk [Ous94] or Python
[WvA96].

Proprietary component models like ActiveX and OpenDoc, as well as platform
dependent components can be used in a component system through proxy components
or bridges. A proxy delegates all accesses to the proper component which runs in a
component system on a remote node. This should be transparent to any user of the
system.

To: Adaptability Problem in Activities
Analogous to the modelling of workflows, application must be modelled to allow easy–
to–use adaption for the users.

The user can change an application built with components on three adaption levels:
The first level is limited to changes of the component attributes. On the second level
glue code used for the component communication can be adapted to change the co-
operative behaviour of the component–application. These two levels can be controlled
by the process context. On a third level the user can replace and add whole components
and change the structure of the component–application.

To perform this adaption work the user needs easy–to–use editor tools. Editors
for component attributes can be found in many existing component systems. Editors
for the glue code consist of conventional programming editors. No editor exist for the
communication structure. Here, graphical methods are necessary to describe the func-
tionality of the whole application on a level of high abstraction. Tools for a structural
change can be found in interface builders common to all component systems, but the
structure of the application is identical to the hierarchy of the GUI–elements.

Adaptations made by the user have to be stored. The scope of adaptations may
differ. Global adaptations are valid for all users, while local adaptations are only visible
in a certain context.

The understanding of a component–application’s functionality can be improved by
the introduction of views. Aviewshows a certain aspect of the application. The user
can use a view to change something interactively in the component–application. The
following views has been identified up to now:

� The GUI–view shows layout and structure of the GUI–hierarchy.

� The structure view shows the hierarchy of components in form of a tree.

� The model view visualizes the functionality of (composed) components. A
model of a component abstracts from implementation details and facilitates the
understanding for the user. Now, the user can make adaptations at the design
level instead of the implementation level by giving access to the glue code.

An open question remains as to which visualization models are suitable for
the user group. The research domain visual programming and object–oriented
design can give a stimulus to that. Enhanced state charts [Har88] would be one
possibility currently being considered.
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6 Related Work

Leymann proposes in [Ley95] a method to build business applications in an object–
oriented manner through removing all flow dependencies from business objects. Flow
control will be managed by a dedicated control object. Adler [Adl95] calls this coordin-
ation model process planner. He had implemented control objects with the help of tcl
scripts. Leymann uses a workflow system as a control object and calls this method
“heavyweight scripting” in contrast to “lightweight scripting” found in typical script
languages like tcl, perl, rexx, etc. The workflow system Surro [SB96a] realizes this
concept. The workflow engine uses an ORB to call business object methods in an
activity. Therefore, Surro can be seen as a component–oriented system with business
objects as components. These conceptintegratesa workflow system and a component
system into a single level system. For each activity a corresponding component exists
and the engine is used as a central control unit.

The flexibility of such business applications benefits from process modelling. But
it results also in bad scalability. Using small components increases the number of
components and consequently the expenditure of the centralized workflow engine. The
engine has to handle each component as an activity. Therefore, only a small number of
complex components are used as business objects which model typically real entities
of the business domain, like application forms or business accounts.

Consequently, the integration concept seems not to be adequate for small compon-
ents. System requirements of workflow and component systems are too different to be
combined in a single level system.

7 Conclusion

In today’s workflow systems the adaptability of workflows ends at platform depend-
ent activities. This results in bad reusability. Furthermore, control over applications
is minimal and applications cannot use workflow services. Therefore, potential for
automatism is not used.

A first approach to improvement is to use component–orientedsystems in activities.
But a simple combination of unmodified systems does not succeed satisfactorily. There
is a need for higher coupling.

The creation of a two level system–coupling requires several modifications in both
systems. The following modifications have been proposed in this paper. The introduc-
tion of interfaces will allow redundance–free partitioning of system tasks. The intro-
duction of a process context will enable the use of highly specific applications (context
sensitive applications). By using interactive editable views, modelling the functionality
of an application built of components, the user can more easily adapt these applications.

Integration of both systems into a single level system results in bad scalability. In
the next project steps the approaches mentioned will be enhanced and evaluated in a
prototype.
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Composition of program components must be expressed in some language,
and late compositioncan be achieved by an interpreter for the composition lan-
guage. The point taken here is that a suitable notion of component is obtained by
identifying it with the semantics of a generalised notion of a structured command.
Consequently experiences from programming language design, specification and
implementation apply.

Composition of statements in structured-programming languages depends on
principles that can be generalised and applied to a rich family of components. A
particular component can be considered as defining objects or a commands accord-
ing to convenience.

A description language including type information provides sufficient means
to describe component interaction according to the underlying abstract notion of
components. Actual compositions can be type checked before execution.

1 Introduction

An application program may contain aninterpreter that mapscommandsinto com-
putations which are characteristic for the program’s application domain. The set of
acceptable commands is called thecommand language.Typically an interpreter is pro-
grammed to operate in a cyclic fashion: read a command, perform the computation,
repeat. The termcommand language interfaceis used to describe this situation.

Interpretation seems also to be relevant for late composition of independently de-
veloped components: some expression is needed to indicate an actual composition and
the set of possible expressions forms a language. A useful notion ofcomponentsis
obtained by focusing on a particular form of commands. A component essentially ex-
presses the semantics of a command. Ultimately one might want both an interpreter for
that language as well as a compiler to combine components tighter than possible with
an interpreter.

Checked integration of independently contributed components requires formal de-
scriptions of the components. This corresponds to the description of syntax for com-
mands of ordinary programming languages. Use of a type system in the formal descrip-
tion provides the basis for checking an actual composition before executing it. The set
of possible descriptions forms a description language and the set of languages that may
be described constitutes a language family.

The various tasks involved in the construction of a command language interface can
best be compared to the design of a programming language and the implementation of
a corresponding compiler/interpreter. In itself the design of a decent programming
language is no simple task and neither is the construction of an interpreter or compiler.
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Figure 1: System structure

Tools exist for the construction part, but these are targeted primarily at computing
science specialists.

This paper describes an effort to generate interpreters for composition languages.
It is partly justified by the view that a portable interpreter construction tool with its
language family may form a standard for a component market. Figure 1 shows the
overall structure of the intended system, Figure 2 gives a view on the design space, and
Figure 3 summarises the project achievements.

The generation process requires the availability of components in object module
form and a description of each component. The generated interpreter dynamically
combines components in accord with the way components might be combined static-
ally in an ordinary program.

The paper is organised as follows: Section 2 introduces the language family with
emphasis on use, Section 3 focuses on component descriptions, Section 5 contains
various observations for discussion, and Section 6 relate this to some work of others.

2 Weak abstraction languages

A family of languages, calledweak abstraction languages, has been identified and
a tool for generating interpreters for them has been developed. The languages are
intended to describe combination of commands with their semantics written in another
language. In principle the components that implements the semantics may be written
in different languages.

The notation for simple commands is closely related to other structured languages.
Most weak abstraction languages will probably contain familiar commands for branch-
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ing and repetition like if- and while-statements.
An example:

program f

listpackage a;
induction(1::2::3::4::nil) f

a.split(problem) f0g fhd+result(tl) g

gg

This is a small program that uses three components: a statement-like component
program f... g, a class-likelistpackage to introduce the type of lists with poly-
morphic operations on them, and finallyinduction with traits that makes it both
class- and statement-like.

Members oflistpackage is used to constructs a value1::2::3::4::nil .
The membersplit is used to branch on a current list-value calledproblem : one
way for an empty list and another for one that can be decomposed into the its head and
tail (hd andtl respectively).

The independent componentslistpackage and induction interact as de-
scribed in thef. . .g part of theinduction command: the operationsplit from
listpackage is used to break down a currentproblem (i.e. a list of integers),
whereas the operationresult obtained frominduction is used to compute the
inductively determined solution to a subproblem.

The example is a small toy program, primarily of academic interest. However, its
basic principles have been used in serious applications like a compiler and a document
preparation system.

Each language can be characterised semantically as a particular set of higher-order,
polymorphic functions that can be freely combined within the limits determined by a
type system. Syntactically the languages unify the notions of statements and objects,
and they help users not to be aware of their function definitions.

A language is identified by a set ofsignatures, i.e. formal descriptions of com-
mands, that typically determines an imperative, strongly typed, structured language.
Each command has a semantics given by a component.
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1. The family ofweak abstraction languageshas been identified.

2. A description languagedescribes introduction of type names, component and
operator signatures, and operator classes.

3. A translatormaps source language commands and expressions into an internal
representation with type information added.

4. A code generatorlexically encodes the internal representation of commands and
expressions.

5. An abstractcontroller interprets encoded commands as socket calls.

6. A dispatcher generatorgenerates socket routines, i.e. interfaces to the applica-
tion’s semantics for the commands.

7. A skeleton generatorcan map signatures to empty semantics routines.

Figure 3: Summary of project achievements

3 Description of weak abstraction languages

Usually a language is described by a set of production rules that form the grammar
of the language. A weak abstraction language is essentially described by a number of
signatureswhich can be conceived as it grammar.

The termweak abstractionderives from an analogy between programs and proofs
in formal logic. The principles applied here are by that analogy closely related to what
is calledweak existencein a higher-order logic. Abstract data structures and existence
are related by the analogy, and thus justifies the adjectiveweak.

The important fact about weak abstraction is that a programmer’s notion of an
abstract data structure can be expressed in some languages without special constructs
devoted to that purpose. Interested readers may look at the references [4, 5].

A signature is similar to the description of a routine in a typed, polymorphic pro-
gramming language. It associates a name with a number oftypes, placesandpartsthat
must be filled in when it is used in a command. Types are filled in automatically. The
others may be filled in withvaluesor command sequences.A signature in a bracket
describes a part.

Consider the description of thelistpackage -component used above:

SIG listpackage OF W
[ Scope OF 1 List

[nil OF A: A List]
[ :: OF A(A,A List): A List]
[split OF U,A( v :A List)

[ NilCase :U]
[ ConsCase(hd:A,tl:A List):U]: U

]: W
]: W;
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Copy a language core to a new development directory.

Add signatures to a file and generate empty semantics.

Modify the semantics and generate a system.

Test for adequacy.

Figure 4: System development steps

The italics font is used for readability only. Parts similar to those of ordin-
ary structured statements have names. Uses oflistpackage may have the form
listpackage f... g with further details given in the . . . part, namedScope in the
description. The members::, nil andsplit may be used in theScope -part of a
command.

A special rule applies whenlistpackage is used last in another command, as
in program flistpackage f... gg. It may then be expressed as a declaration of
a named object:program flistpackage L;... g . This is how the notions of
statements and objects are unified.

A powerful type system is used in the description language. The unaryList type-
constructor is introduced bylistpackage . It allows new types to be formed, soA
List denotes the type of lists with elements of typeA.

Types are used in component descriptors only, but can appear in error messages.
Type variability is supported: the:: operator may be applied to operands that can be
said to be of typesA andA List , for anyA.

The other essential part of the initial example is theinduction statement, which
has the description:

SIG induction OF DATA,V ( value :DATA)
[ justification (problem:DATA)

[result( subproblem :DATA):V]:V
]:V;

The signature emphasises the adequacy of deeper nesting. Note how the use of fonts
alternate with the level of nesting. Names in italics are relevant for the semantics and
very useful in an informal explanation:

Provided thejustification , for some intendedf , computes
f (0) whenproblem =0 and
f (problem ), assumingresult (i) = f (i) for 0<= i<problem

theninduction( value ) fjustification gwill compute
f (value ).

This applies whenDATA denotesinteger . Note that the namesproblem and
result relate toinduction as members do to classes. Likewisenil, :: and
split can be considered members of a classlistpackage , and in one branch of
split membershd andtl show up — also like members. This is a general mechan-
ism that is calledimplicit name introduction.
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4 System development discipline

When a system can be identified with an interpreter for a particular weak abstraction
language, an effective system development discipline can be provided. System and lan-
guage design become closely connected: useful components correspond to semantics
of useful commands.

The construction of interpreters for composition of components has been auto-
mated. Figure 4 indicates the steps needed to extend an actual system by adding
new components. Once developed and tested within one system a component can be
transfered to another in object module form.

As mentioned in Figure 3 semantics routines can be plugged into sockets and tools
exists to generate both the base containing the socket interface and empty semantics
routines that fit into the sockets. It means that a particular language can be tested as
soon as it has been described formally, i.e. programs can be expressed and considered
as pseudocode in an early phase. Furthermore, the tests become more and more mean-
ingful as the individual components are developed.

Very few systems will probably be developed from scratch since most will contain
some commands and operators of general interest, e.g. if- and while-commands as well
as ordinary arithmetic, so incremental development is assumed to dominate.

The prototype interpreter construction tool that has been developed depends on
components implemented in GNU C and is itself implemented in GNU C. Use of GNU
C for the implementation ensures high portability.

Some sophisticated language mechanisms are needed both for the interpreter and
for component implementation, but the actual C extensions in GNU C suffice.

5 Discussion

As illustrated a component may be considered (and defined as) class-like when that
point of view seems adequate. A component’s signature is similar to a template but
signatures is a more powerful notion.

Some find that the notion ofobject-orientationinvolves a notion ofinheritance,
which is absent here because only componentcompositionis considered. It seems a bit
surprising that object-orientation has an essential characterisation in terms of ‘imple-
mentation’ rather than use.

A supplier may contribute to a system with a precompiled component in object-
module form accompanied by a signature for it. Integration will be straightforward
according to the description of system development.

A fixed number of component definitions is assumed in the described system.
Modification of a component involves re-integration of the entire system. Further in-
vestigations are needed if modification, removal or addition of a component should be
allowed on the fly.

The essential concepts that have been used in this work are the use of types as para-
meters in general and the use of routines as parameters. The notion oftype completion
has been used to relieve a user from giving types explicitly in commands.

The techniques used for composition of components combine the mechanisms of
structured statement composition and implicit name introduction (ordinarily associated
only with abstract data structures.) Both mechanisms can be explained simply in terms
of higher-order constructs. The techniques are well understood and acceptable with
respect to efficiency.
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Late composition of components via an interpreter is particularly interesting when
it conforms to general programming language principles, becauseearly composition
then should be an alternative choice. It will provide the freedom either to pay com-
position costs once for a fixed composition, or to pay it repeatedly for the sake of
flexibility. In both cases a supplier might be able to contribute the same component in
object module form only so that the choice can be left to the composer.

6 Related work

Any program that takes text as input can be considered an interpreter, although often
with a very primitive input language, similar in nature perhaps to assembly languages.
No sharp dividing line seems useful to distinguish those with a flexible command lan-
guage. One conclusion could be that language interpretation should be essential know-
ledge for all programmers of systems that take text as inputs.

One example of a set of tools to provide a command language interface is Tcl [3].
The kind of languages it supports are not precisely representative for established views
on programming language design. Its success, not the least to define the language Tk
for the application domain of building graphical user interfaces, witnesses to the value
of having a command language interface for an application domain.

An interpreted, general programming language may of course be used to develop
application systems. This may lead to nice systems provided the language is seen as
pleasing, that the possible cost of changing existing programming habits is not con-
sidered too high, and that the resulting programs meet the users’ expectations with
respect to performance. The application area of Tk has been approached in this way by
using the languages Scheme [1] and ML [2] as interfaces to the semantics underlying
Tk.

The form of signatures presented has its roots in the design of a general program-
ming language that has been described in [5, 6].
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The design of components for open systems has led to the study of new systems
and their properties, like the ‘independently extensible’ systems. Most of these
systems try to facilitate the design of components by incorporating new features,
services and utilities that solve the basic problems of open systems: heterogen-
eity, partial knowledge of the components, and dynamic changes in the system’s
configuration. However, our approach is not focused on the system, but on the
components themselves. The present paper defines the properties that components
of those systems should have, and introduces a components’ design methodology
based on the modular addition of properties.

1 Introduction

There is now an increasing interest in the study of Open Systems, and in particular in
the Independently Extensible systems [20] as the base for a component market. In this
market users are able to buy or rent reusable components off the shelf and compose
them to build their applications.

Extensible systems allow new functionality to be added at run time. Independently
Extensible systems allow extensions of the system to be developed by different people
in ignorance of each other [21]. In these systems, the key are the software components,
individual units that can be reused by any end-user to build up his system. Usually
users are third parties willing to compose them without modifications. The study of
the properties that systems should have to allow late composition of components is an
active area of research, and Component-Oriented Programming (COP) is proving to be
a natural extension of Object-Oriented Programming (OOP) for these types of systems.

Regarding the components, each one can be considered as anindividual unit, with
a job to do: itsgoal. In order to achieve it, the component needs to adapt to the envir-
onment of its future user, use the particular resources and services of that system, and
be able to deliver its own services to it. Since systems are open, distributed and hetero-
geneous, the component must face up to the particular problems of these environments:
new servers and services may appear, disappear or stop working without previous no-
tification; the component needs to coordinate with other components whose interface
is unknown; and of course, delays and errors in the communication medium cannot
be underestimated or ignored. There is no longer a global vision of the system; every
component has its own local vision of it, probably different from other components’
vision.
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So far, most of the efforts have been invested in improving the systems, incorpor-
ating the services and facilities that allow components to run on them more easily and
to adapt to their changes. Examples of these systems are Hector [2] or ASX [19], or
component architectures as JavaTM Beans [15] or Aglets [14]. In them, the system de-
veloper can count on a good set of tools that allow a better design and implementation
of components. However, all the facilities not directly offered by the system have to
be taken over by the components themselves, which forces each designer to add them
to its components in an individual fashion and therefore with no guarantee of modu-
larity, portability, or openness. In general, system restrictions must be incorporated, if
possible, separately from the component’s code. Hardwiring time or other constraints
into the component’s code may bring undesirable results, as mentioned for instance
in [4, 18].

2 Our Proposal

Our approach is not so much focused on the system itself, but on the components. We
need to incorporate the desired properties to them, in a modular and independent fash-
ion. This leads to a a methodology for the design of components, whereby components
can be designed to concentratejust on their goal (i.e. their computational aspects)
without taking into account other particular issues of the systems they will run on.
When an end-user buys or rents a component to build up his application, he may buy
as well some add-on properties to the component, like time control if his application
is time-critical, robustness if his running environment is unsafe, or durability if he pre-
tends to update the component from time to time. In this way, components are designed
independently from the systems they will run on, and the components they will com-
pose with. Later, the appropriated properties to cope with the system’s requirements
can be added to them.

With this in mind, our proposed solution is based on a tripartite structure
“components/add-on properties/systems” instead of the standard pair “compon-
ents/systems”. Systems have just to provide he supporting infrastructure for compon-
ents to work and interoperate among themselves. The add-on properties are abilities
that components can incorporate to adapt to the systems. Separating these concerns
allows a modular and independent addition of properties to components, contributing
to a simpler design.

We have identified three properties: Autonomy, Robustness and Competitiveness.
Each one deals with specific problems of the open and extensible systems, like dynamic
re-configuration, error detection and recovery, maintainability and adaptability.

We have also simplified the system’s requirements since many of the system’s ser-
vices can be now incorporated into the add-on properties. Nevertheless, this does not
mean that properties do not have be designed without taking into account the final sys-
tem’s features. In case the end-user system incorporates some features that are part of
a property’s function (i.e. service trading or time control), the property should make
use of them in order not to duplicate jobs or responsibilities. For instance, the property
of Independence for a component running in a CORBA platform should make use of
the system’s trading services [12], but we ought to be able as well to add this property
to a component running on a system without these services.

The contribution of this paper is twofold. On one hand we have identified some
basic properties that allow components to achieve their goals in open and changing
environments. On the other hand we introduce an architecture to define and implement
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properties in a modular and independent fashion. To support the model we have built a
general framework that allows the definition, design and implementation of properties,
that can be added to components by specialization. The framework not only permits
the definition of new properties but also the modification of existing ones.

3 The Properties

The aim of this section is to describe, in a brief and informal way, the properties that
components need in order to cope with the problems of open and distributed systems.
We have identified three major ones: Autonomy, Robustness and Competitiveness.
Autonomycan be defined as the ability of a component to take its own decisions in
an independent way (however, by autonomous we do not mean self-sufficient or self-
reliant). Robustnessguarantees reliability and secure access. AndCompetitiveness
provides the component with a general philosophy of survival in terms of a resistance
and durability.

Being such a general and complex abilities, the key idea is to define them in terms
of the composition of “smaller” basic properties. Thus, we can define the property of
Autonomy as the composition of other three properties:

� Independence: The component should be self-governed, able to discover the
services it needs and free to decide the solutions to hire in each situation.

� Adaptability: The component should be able to accommodate to different inter-
faces and protocols, and to changes in the requirements. It has to be composible,
flexible, versatile and extensible.

� Self-Protection: The component should protect itself against external failures
and unforeseen circumstances. The component cannot depend on the rest of the
components’ behavior and well-functioning.

Robustnessis achieved through the composition of three basic properties:

� Integrity: The component has to offer a robust behavior under a variety of cir-
cumstances, different inputs and different uses of its interface, valid or invalid
ones. This property may check not only pre-conditions on the incoming mes-
sages, but also verify (and put right) the order in which they are received and the
time interval between them.

� Secure Access: Every access to and from the component must be authorized.
Unlawful entries and illegal outputs have to be detected and banned. Signatures
can be added and later checked using this property, and encryption mechanisms
can be used.Laws [16] can be not only defined with this property, but also
enforced.

� High Availability: The component should protect itself against failures in the
processes or machines executing it.

Finally, Competitivenesscan be expressed in terms of other two basic properties:

� Best Effort/Least Losses: The component should try its best to satisfy its users in
terms of response time, functionality and quality of the services provided [22],
whilst maintaining its suffering and losses to a minimum when servicing re-
quests.
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� Durability: The component has to incorporate mechanisms to be able to be re-
newable, keep itself updated and improve over time.

4 The Model and its Implementation

4.1 Components

In general, components can be seen as encapsulation of programs. The “capsule” ab-
stracts the program functionality, offers a common interface to the program services,
hides their implementation and allows the composition and coordination of compon-
ents.

The idea we use to implement each property is by adding “layers” to the capsule.
Each layer acts as an activewrapperthat captures and modifies the program’s inputs
and outputs, offering to the outside world an interface with the given property. Please
note that in our scheme the behavior of a layer is not passive or merely computational
as if it were a filter: as a result of an incoming message the layer may send one or more
messages to the system, wait for their responses and build up from them the message
that will be finally passed to the component. Besides, the layers can be “composed” so
the component can have multiple properties or abilities simultaneously.

4.2 Communication Mechanisms

To implement this scheme we need a system’s computational model that allow com-
ponents to communicate, and define the minimum requirements to do so. We have
chosen a very simple one that just contains the functionality required for our purposes.
Having a simple and general model will facilitate its implementation in most of the
known systems and platforms: Linda [6], Actors [1], CORBA [13] or Infospheres [8].

At a low level, our model is based on processes that communicate using message
queues (mailboxes). Each component is a multi-threaded process with states. Each
state is defined by a set of assignments of values to the variables of the component.
The communication between components is asynchronous, and achieved by sending
messages to mailboxes.

Each component belongs to itsdomain: the address of the machine (or net of ma-
chines) where it lives. We shall use Internet domains as valid component domains, and
name them accordingly. Thus, a component may be running for instance on the domain
“@lcc.uma.es ”. This allows the easy integration of our model with the WWW and
the usage of some of its services, like name servers.

Each mailbox will have a unique global address (mb@domain), given by its name
“mb” and its domain name “@domain”. If the domain is omitted, the current domain
name is used. If the mailbox name is omitted, we refer toall mailboxes currently at
that domain. This mechanism allows sending broadcast messages to a domain.

There are two basic communication primitives:Send andReceive . The first
one sends a message to a mailbox address, and the second one reads a message from
a mailbox. Receive is a blocking operation in case the mailbox is empty, while
Send is non-blocking. It is important to note that this model allows the use of formal
reasoning methods, similar to the ones outlined in [7].
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4.3 Controllers

Controllers are the special processes thatwrap the component and modify its behavior.
They intercept all incoming and outgoing events by accessing its message queues, and
treat them according to their strategy. They are somehow analogous to the object dec-
orators or object adapters [10], to meta-actors [1], or to filters [4].

To specify controllers we need to define the messages they deal with and the opera-
tions they use to handle these messages. We have defined a general scheme that can be
gradually specialized: firstly to specify the controllers that implement each property,
and then to particularize them when being added to a precise component in a given
system. The more basic scheme of a controller is as follows1:

public class Controller {
...
// operations
public void Deliver(Msg m){ // Captures outgoing messages.

Outq.Queue(m);
}
public void Received(Msg m){ // Captures incoming messages.

Inq.Queue(m);
}
public void TimeoutExp(Msg m){ // Captures timeout conditions.
}

}

The first method is invoked by the system every time the component wants to send a
message out to a mailbox. MethodReceived is invoked on the receipt of a message
and TimeoutExp allows the controller to know that a sent out message does not
get an answer when expected. In general, properties do not need to deal with time;
however, they can be aware of these situations with this mechanism.

Once the controller has dealt with an incoming message, its result is put back to
the component’s incoming message queue (Inq ). Analogously, the controller queues
in the outgoing messages queue (Outq ) the result of the treatment done to an outgoing
message. In case of having several controllers chained together (due to a composition
of properties), the end of eachInq.Queue operation causes the invocation of method
Received in the next controller and, analogously, the end of eachInq.Queue op-
eration causes the invocation ofDeliver in the next controller.

4.4 A Framework for Adding Properties

Based on this scheme we have developed a framework for designing, implementing
and composing the defined properties. Its structure is the following:

On one hand there is the communication basic model, that can be used by any
component. Apart from sending and receiving messages, the model incorporates the
possibility of attaching controllers to mailboxes.

To add a property to a given component it is enough to specialize its controller and
attach it to the component mailbox. The framework handles the controllers’ composi-
tion and all message passing among them.

Every controller specifies the messages it deals with, and implements the three
methods above according to its strategy. Some of its classes may be abstract (in Java’s
terminology), and specialization is achieved through inheritance and parametrization.

1We have used Java [3] to implement the first version of our architecture.
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As an example, controllers of the property of Independence manage a weighed list of
known solutions (pairs service/provider). Although the list and its operations are fully
defined in the framework, the component’s preferences (i.e. weights) and its known
solutions must be configured when initially instantiating the controller.

5 Implementing the Properties

The extension of this paper does not allow the detailed description of the properties
defined in section 3. However, we shall briefly mention here the underlying ideas
supporting the implementation of each one.

Independence: The controllers of this property incorporate three mechanisms:i) a
weighed list of known solutions;ii ) broadcast queries about available services in
the system; andiii ) the use of publicity to advertise component’s new services
or changes in existing ones. These controllers behave as “service brokers” or
“traders”, but with additional intelligence: they know their component’s prefer-
ences (in the form of weight functions) and use them to decide the services to
contract in each situation.

Adaptability: The problem of adaptability is an integral part of open systems, and
can be decomposed into two problems: interoperability and extensibility. The
controllers of this property behave as “dynamic adapters”, able not only to adapt
their components to different interfaces, but to search in the system for other
adapters to new interfaces.

Self-Protection: The controllers of this property are in charge of watching that the
component never waits for a event that will never happen. To achieve this task,
they have the information about how long the component can wait for each mes-
sage, and manage all pending events.

Integrity: To implement this property, the controllers manage a list of valid conditions
for the incoming and outgoing messages. They do all the checkings and also the
calling to the rejection procedures in case of invalid entries.

Secure Access:All accesses to and from the component are checked and authorized
by the controllers according to the laws they know. Apart from the laws that the
controllers handle, they can also search for “local advise” in certain cases; this
mechanism allows the implementation of the local and adaptive nature of some
laws, since they may vary from system to system. The controllers may be also
in charge of adding security mechanisms (signatures, encryption).

High Availability: This property is achieved by the clonation of the component (one
or more times), and the monitoring of the availability and activity of the com-
ponent all the time. The controller may be also in charge of saving/restoring the
component’s state when these mechanisms are available.

Best Effort/Least Losses: In case the component offers several method bodies to deal
with a message, the controller should decide the body to call in order to minimize
the associated cost and to optimize both the response time and the quality of the
service.
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Durability: The controller should allow the component’s maintainability and updating
processes, diverting all component’s events to its designated substitute during
these operations.

6 Related Work

The idea that originated this work was born from the original papers from Tokoro and
Takashio [22], and from Minsky and Leichter [16]. The former one mention real time,
asynchrony and autonomy as key issues in open and distributed systems, but only deal
with the first two concepts in their paper, without paying attention to autonomy. On
the other hand, the law-governed architectures are introduced in [16], a one-property
scheme that we have extended and generalized to give birth to our general model.

The use of a Component Framework as a “whitebox component that reveals part
of its internal configuration, establishes configuration rules, and may enforce some of
these rules” [21] fits like a glove to our proposed model. It is not the typical framework
for the development of open and distributed systems and applications, as in the case
of Hector [2], ASX [19], Java Beans [15] for stationary systems, or Aglets [14] for
mobile ones. Our framework goes in a different direction: it provides the support to
our methodology for designing components.

Regarding the properties, there exist a lot of literature about them in the field of
Artificial Intelligence, where heated discussions take place about the precise definition
of autonomous agents and their properties [9]. However, apart from various informal
definitions we do not know of any work in that or any other field that formally defines
them.

Neither the layered model or the communication mechanism based on mailboxes
try to be a novelty, but to be functional, general and simple enough to be implemen-
ted without major problems in other systems. Layered models are well known and
widely used: apart from the “Home Processes” for Linda [16] and the time control for
objects [22] in the two aforementioned papers, we can also cite the time control for
actors [18], the Composition Filter model [4], the layered Object Model LayOM [5],
COM’s aggregation or the usage of message handler procedures in the Oberon-2 [17]
system. It is important to mention that our layers are not mere filters with delay cap-
abilities at most, but more active, able to interrogate the system’s components and to
take decisions based on the component’s preferences, more in the style of software ad-
apters [10]. The model of processes that capture and modify the communication events
of the components is completely reflective, as meta-actors [1] or filters [4] are. Finally,
the only special concept used in the communication mechanism is the broadcast facility
for domains, in the line of the ideas of Gehani [11] and ActorSpaces [1].

7 Conclusions

COP aims at producing software components for a component market and for late com-
position. While most of the efforts are now put on the development of better systems
that facilitate the design and composition of components, we have focused on the com-
ponents themselves and presented here a component framework that supports a design
methodology based on the late addition of properties to components. Components are
then designed to achieve only their core functionality, leaving the rest of the concerns
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to the add-on properties that will be incorporated at a later stage if needed. This not
only simplifies their design but makes them more reusable.

A set of basic properties has been defined, each one dealing with a specific problem
in open systems. Besides, a general model for defining and specifying properties has
been introduced. Having such a framework not only offers a platform to formally define
components’ properties, but it also allows to reason about them.

Currently the properties mentioned here have been specified and a prototype of the
complete framework in Java with their main strategies is almost ready. We have chosen
Java and the Internet as its first platform because of its wide use, the facilities it offers,
and for being a good example of a real open system in which to test our model.
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Normal class-based code inheritance across component boundaries creates a
dependency between the involved components. To avoid this, a specification of
the inherited class must be part of the respective component’s contract and the in-
heriting class must be specified with reference to this specification only. With this,
inheritance can be replaced by object composition without sacrificing the possibil-
ity of static analysis, yet being more flexible.

1 Introduction

One of the distinguishing properties of component-oriented programming is the notion
of late composition. This is to say, that component manufacturing and component
compostion are two separate steps, carried out one after the other. During component
manufacturing, other components are refered to by interfaces, or contracts, only. Actual
implementations are selected at composition time [12].

Object-oriented programming is a foundation technology for components. A typ-
ical component will specify a couple of classes or objects. To access services, other
components will obtain objects from the providing component and send requests to
them. In a running system, the hierarchy of components is complemented by a mesh of
objects. These objects and the references between them are constructed, changed, and
destructed at run time.

Object reuse and modification is a key tool for component reuse. In this paper we
investigate language support for inheritance across component boundaries under the
aspect of late composition.

We do, however, not discuss the semantical problems of inheritance, such as the
fragile base class problem. We are interested solely in technical support of late com-
position. The semantical problems of inheritance can be treated separately, since our
proposals apply also to various kinds of disciplined inheritance. In the extreme, the
compiler may restrict the power of inheritance to that of forwarding.

2 Object Composition versus Class Composition

Two notions of classes and inheritance exist in the object-oriented programming com-
munity. Many programming languages and their underlying models areclass-based
(e.g. Eiffel, C++, Java, or Smalltalk). Others, such as Cecil [5] or Self [16] are
prototype-based.

105



Class-based approaches abstract from the many instances of objects by grouping
them into classes. All the objects of one class have the same attributes, accept the same
messages, and exhibit the same behavior. Every new object is created as an instance of
some specified class, and it will remain an object of this class throughout its life time.

With prototype-based approaches, objects are created by cloning an existing object,
the prototype, and modifying the clone. Here, classes are sometimes seen as a dynamic
equivalence relation that can be infered at run time. By modifying an object’s state, or
structure, objects can be migrated from one class to another at run time. This approach
has the advantage of being more flexible. It allows to change an object’s behaviour or
to assign class membership via predicates on the state [4].

The flip side of this flexibility is that static checking and reasoning becomes almost
impossible. It may not even be clear, which messages a given object accepts, unless
its complete history is examined. In a modular environment, this makes static analysis
very difficult. Still, in a closed system, complete flow analysis may allow to make up
for this [1], but in an extensible system this is not possible anymore [15].

With object-oriented programming, it is common to express composition and reuse
by means ofinheritance. In short, some inheriting entity inherits from one or several
inherited entities by copying their implementation. Additionally, the inheriting entity
may specify some modifications of the copied material. In principle, inheritance is
equivalent to copying and modifying source code.

The above two views on object-orientation use inheritance between different kinds
of entities. Class-based approaches support inheritance between classes, whereas
prototype-based approaches support inheritance between objects. The latter is, for in-
stance in Self [16], implemented through reference to aparent object, to which the
handling of unknown messages is delegated.

Class-based approaches fix the inheritance relations at compile time. Since inherit-
ance relates to implementation, class-based inheritance fixes the implementation to be
inherited at compile time, i.e. before composition time in a component-oriented con-
text. This makes state-of-the-art class-based inheritance unsuitable across components,
because we want to delay the selection and binding of the base-class implementation
until composition time.

We can conclude that, depending on the school you follow, you will get from
object-oriented programming either support of static analysis or the possibility to com-
pose implementations later than at compile time, but not both. A question of interest
is, whether a middle ground can be found, on which you get both static analysis and
late composition of implementations. Such a middle ground would be necessary for
component-oriented programming to allow for inheritance across components.

3 Contracts

On the component level, the above dilemma between static analysis and late composi-
tion is well known. There, the answer is the definition of contracts, which specify the
obligations component providers must meet and the expectations component clients
may have. For every component, it must be documented according to which contracts
it offers or requires services. Two components can be composed, if one offers ser-
vices that are requested by the other component according to the same contract. Each
component can be analysed separately, based on the contracts it participates in. At
composition time, one only needs to check whether the two components actually claim
to stick to the same contract. If they don’t, the composition can be rejected.

106



In short: at compile time only specifications are bound, whereas implementations
are bound at composition time. The contract provides the necessary separation of the
specification from the implementation.

The practical effect of this separation is that static reasoning is still possible, be-
cause the yet unknown partner can be substituted by the contract. Still, bindings
between implementations are established only at composition time, retaining full flex-
ibility of selecting components to the composer. Thus, with components, we managed
to eat the cake and have it too.

4 Class Composition With Contracts

The same technique can be used with inheritance. Instead of refering to an implement-
ation, the inheriting class refers to a contract only. The contract states what to expect
from the inherited class; the inheriting class can be statically analysed. We get the
safety we want.

Only when an object is instantiated, the binding to a concrete base class imple-
mentation must be established. Any class meeting the required contract can be bound.
Like with component composition, the contract can be used to check at composition
time, whether the specific composition is feasible. In addition to safety, we get the late
composition we want.

Note that it is because of the separation between specification and implementation
that the semantical problems of inheritance become so acute with component-oriented
programming. The inheriting class must simply be able to cooperate withany base
class that meets the specification. In this paper, however, we postulate specifications to
be detailed enough and/or one of the many approaches to disciplined inheritance to be
in place.

Class inheritance with contracts is implemented in IBM’s SOM and in modular
object-oriented programming languages, such as Modular Smalltalk [19] or Oberon-2
[9], an extended version of Oberon [18]. These languages feature separate constructs
for modules and classes. Modules are separately compilable, similar to Modula-2. It is
possible to compile several modules implementing the same interface. This allows for
alternative implementations of the same specification.

In Oberon-2, for instance, classes are implemented as record types. The latter are
extensible inside as well as outside the module in which they are defined. Furthermore,
procedures can be bound to such record types. Such type-bound procedures resemble
methods. In an extending type, they can be redefined, otherwise they are inherited from
the base type.

Exported record types resemble contracts for classes, because module interfaces
contain only link information to be exploited at binding time. To avoid confusion,
note that the contract syntactically consists only of signatures. However, we postulate
some semantics being attached, e.g. as a comment, i.e. we use types in the spirit of
behavioural types [8]. This semantics specification just happens not to be checked by
the compiler.

New classes can be specified, programmed, and compiled refering to a base type.
This happens whenever a record type is extended in a separate module, because com-
pilation relies on the imported module’s interface. The implementation is bound at load
time only and therefore needs not to be selected earlier.

With modular object-oriented programming, only one component (module) per
contract can be used in a running system. As a consequence, all classes meeting a
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given contract have the same implementation. It is just that this implementation is
selected very late.

Still, this has been used effectively for system refactoring, done one module at a
time, as long as the module’s interface had not to be changed. In some cases of mod-
ules implementing device drivers, alternate implementations of a single contract were
provided to allow adoption to different hardware. (These modules seldomly actually
define classes, but they could do so.)

5 Can We Go Further?

Can we get rid of the aforementioned restriction and support different implementations
of a contract simultaneously? One could allow several modules implementing the same
interface to coexist in a running system. This would collide with some assumptions
being generally made about modules. Also, we would need to find a way to refer to
the different module implementations. Currently, identifications are made by refering
to the module name, i.e., the contract, which is implemented by exactly one module.

Another, probably better, approach could be based on separating subclassing from
subtyping, as for instance done in Sather [11]. Types would be employed as contracts
whereas classes would be bound as implementations later. At component manufac-
turing time, subclasses would be specified by refering to a type instead of to a class.
(Sather does not support this to avoid the semantical problems of inheritance. It rather
defines class inheritance to be exactly equivalent to textual inclusion and application of
text editing operators. Obviously, this binds an implementation at compile time.)

With this, the base classes to be used with an object would need to be specified
at object allocation time; the allocation procedure would need to accept the respective
additional parameters.

To make this useful, we would have to turn classes into first order objects. Other-
wise, the programmer of a component that contains a creation statement would have to
wire in which implementation to use. This would again create a dependency between
components, this time between those containing the creation statement and implement-
ing the base class.

6 Object Composition With Contracts

This can be taken one step further by composing objects instead of classes: one can
specify a base object instead of a base class when allocating an object.

If a contract is used to specify statically the properties required from the parent
object, and if the parent object is bound for ever when the refering object is created,
static analysis is possible to exactly the same degree as before, i.e. as with class-
based inheritance with contracts. Though each object may be of a class of its own
now, the same information as before is available from the object itself and the contract
specifying the parent.

To retain the full amount of static information as with class inheritance, we must
prohibit to re-assign the parent or base object. Otherwise, unexpected changes of state
and/or behaviour of the composed object could occur.

This construction is indeed on a middle ground between static class inheritance and
full dynamic inheritance as used with prototype-based object-orientation. Compared
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to the former, we gain flexibility, even more than with class composition based on con-
tracts. Compared to prototype-based object-orientation, we get more static information
because of two restrictions. First, only objects satisfying the required specification can
be used as a parent. Second, the parent, once assigned, cannot be changed anymore.

Still, we get much of the flexibility of prototype-based object-orientation. For in-
stance, the user can interactively specify a parent object to be wrapped. An example are
wrappers for editors that add some functionality. The user can compose these graphic-
ally. For instance, a normal text editor can be extended to send notifications about text
changes to other users. Note that this wrapper would work withany text editor that
implements the required contract. Other applications of such wrappers can be found
within the BlackBox component framework [10].

We take it as strong support of our proposal that it implements the formal model
used by Cook and Palsberg to describe inheritance [6]. There, inheriting classes are
specified aswrappersthat only refer to the base class’ signature. A concrete base class
is bound at instantiation time only.

An implementation inbetween our proposal and Self was proposed as ”Delegation
Through a Pointer” to be added to C++ [14]. Compared to Self, the pointer to the parent
object is typed. Viewing types as approximations for specifications again, we see that
one of our two restrictions applies. The parent has to meet a certain specification. In
contrast to our’s, Stroustrup’s proposal would still allow to re-assign the parent object.

An implementation that fixes the parent object can be found in Modula-3 [3]. Its
allocation procedure allows to specify a list of methods to be bound to the new object.
However, the base object’s class (i.e. its implementation) is fixed statically by the type
of the variable passed toNEW. Thus, Modula-3 does not allow a dynamic selection of
the parent object at run time. In this sense, it is less flexible than our construction.

In the rest of this section we sketch a simple implementation for proof of concept.
More efficient implementations may be possible, in particular to shortcut in deeply
nested compositions. One way to approach this problem can be found in Microsoft’s
COM aggregation.

The wrapping (inheriting) object can refer to the parent (inherited) object. Method
calls, not handled by the wrapper, are forwarded to the parent. Cecil [5] translates an
inheritance-like syntax to such object composition. To achieve the same kind of self-
recursiveness as with inheritance, this scheme can be enhanced to delegation by passing
an extra self parameter as shown in [7]. [13] shows that delegation is as powerful
as inheritance. With our proposal, the extra parameter needs not to be visible to the
programmer. The compiler would generate what elsewhere the programmer would
need to do explicitly.

A contract may specify how to access instance variables of a base class. The com-
piler would translate such access to superclass variables to dereferential access of the
parent object’s variables. Further, the compiler could easily enforce certain restrictions,
e.g. granting access to subclasses but not to clients.

The benefit of compiling inheritance into delegation is that objects can be composed
instead of classes without losing the possibility of static analysis. For the latter, the
compiler asserts that the reference to the parent object cannot be changed after creation.

It would further be possible, that the compiler enforces some kind of restricted
inheritance to avoid the semantic problems caused by inheriting an invisible imple-
mentation (see above). In the extreme, the run time data structure could support plain
forwarding only, but the programmer can still use the more convenient inheritance nota-
tion. Such an approach is also attractive for a programming language to be compiled
to Microsoft COM’s aggregation.
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Support of
Static Analysis

Flexibility

full implementation can be analyzed

analysis based only on interfaces
implementing object may change at run time

interface can change at run time

1 2 3 4 5
1: bind when compiling
2: bind according to specification when loading modules
3: bind according to specification when creating objects (aggregates)
4: bind according to contract and rebind any time
5: bind anything any time

Figure 1: Static Analysis versus Flexibility

7 Summary

To be applicable as a foundation technology for component-oriented programming,
object-oriented programming with inheritance must support a middle ground between
class-based and prototype-based object-orientation. Traditional class-based object-
orientation is not flexible enough, unless class specifications rather than implementa-
tions are bound at component manufacturing time. On the other hand, prototype-based
object-orientation is too flexible, thereby prohibiting effective static analysis.

As the above middle ground we suggest syntactical support for inheritance but
using only a specification of the base class together with an implementation as object
composition ”under the hood”. The compiler would have to hide the details of the latter
to assert that the objects are not composed arbitrarily. In particular, the parent object
must match the specification. Also, the compiler would have to prohibit that the parent
object is re-assigned, once the composed object has been created.

This scheme allows for full static analysis, limited only by the amount of inform-
ation stated with the specification of the inherited object. It gives the best possible
flexibility, since the selection of the inherited code is delayed not only until component
composition time, but until object generation time. The latter allows even the user to
pick the code to be bound (see Fig. 1).

Our proposal allows both to compose objects using delegation, somehow restricted
delegation, or plain forwarding. Delegation has the same power as class-inheritance.
Depending on the future solutions to the semantical problems of inheritance and encap-
sulation, restrictions up to plain forwarding may become appropriate. Our suggestion
can be adopted as needed.
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[9] Mössenb¨ock, H.: The Programming Language Oberon-2. Structured Programming
12:4, 1991.

[10] The Oberon/F User’s Guide. Oberon microsystems, Inc., Basel, CH,
(http://www.oberon.ch/customers/omi), 1994.

[11] Szyperski, C., Omohundro, S., Murer, S.: Engineering a Programming Language:
The Type and Class System of Sather. In Proc. International Conference on Pro-
gramming Languages and System Architectures, LNCS 782, March 1994.

[12] Szyperski, C.A., Pfister, C.: Proc. first international Workshop on Component-
Oriented Programming (WCOP’96). In M. M¨uhlhäuser (ed.), Special Issues in
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