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Abstract

The ability to summarize procedures is fundamental to building
scalable interprocedural analyses. For sequential programs, proce-
dure summarization is well-understood and used routinely in a va-
riety of compiler optimizations and software defect-detection tools.
However, the benefit of summarization is not available to multi-
threaded programs, for which a clear notion of summaries has so
far remained unarticulated in the research literature.

In this paper, we present an intuitive and novel notion of proce-
dure summaries for multithreaded programs. We also present a
model checking algorithm for these programs that uses procedure
summarization as an essential component. Our algorithm can also
be viewed as a precise interprocedural dataflow analysis for mul-
tithreaded programs. Our method for procedure summarization is
based on the insight that in well-synchronized programs, any com-
putation of a thread can be viewed as a sequence of transactions,
each of which appears to execute atomically to other threads. We
summarize within each transaction; the summary of a procedure
comprises the summaries of all transactions within the procedure.
We leverage the theory of reduction [17] to infer boundaries of these
transactions.

The procedure summaries computed by our algorithm allow reuse
of analysis results across different call sites in a multithreaded pro-
gram, a benefit that has hitherto been available only to sequential
programs. Although our algorithm is not guaranteed to terminate
on multithreaded programs that use recursion (reachability analy-
sis for multithreaded programs with recursive procedures is unde-
cidable [18]), there is a large class of programs for which our al-
gorithm does terminate. We give a formal characterization of this
class, which includes programs that use shared variables, synchro-
nization, and recursion.

Categories and Subject Descriptors: D.1.3: Concurrent program-
ming, parallel programming; D.2.4: Software/program verification

General Terms: Reliability, security, languages, verification

Keywords: Concurrent programs, pushdown systems, model
checking, interprocedural dataflow analysis, procedure summaries,
transactions, reduction
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1 Introduction

Sequential programs with finite-domain variables and recursive
procedures are infinite-state systems due to unbounded stack depth.
In spite of the potentially infinite state space of these programs, as-
sertion checking is decidable for them. A common technique for
analyzing such programs is CFL reachability [21, 19] (or equiva-
lently, pushdown model checking [22, 10]), where the key idea is
to build procedure summaries. The summary of a procedure P con-
tains the state pair

�
s � s � � if in state s, there is an invocation of P that

yields the state s � on termination. Summaries enable reuse—if P
is called from two different places with the same state s, the work
done in analyzing the first call is reused for the second. This reuse
is the key to scalability of interprocedural analyses. Additionally,
summarization avoids direct representation of the call stack, and
guarantees termination of the analysis even if the program has re-
cursion.

Assertion checking for multithreaded programs with finite-domain
variables and recursive procedures is undecidable [18]. Most ap-
proaches to the analysis of such programs either restrict the interac-
tion between synchronization and procedure calls [1, 9, 6], or per-
form dataflow-style overapproximations [20], or use abstractions to
capture the behavior of each thread [4, 12]. In this paper, we take
a radically different approach to solve this problem. We perform
model checking directly on the multithreaded program. However,
in order to gain reuse and scalability in our analysis, we present a
novel method to compute procedure summaries even in the pres-
ence of multiple threads. Since the assertion checking problem is
undecidable for multithreaded programs with procedures, we can-
not guarantee termination of our algorithm on all cases. However,
our algorithm terminates for a large class of multithreaded pro-
grams that includes programs with shared variables, synchroniza-
tion, and recursion.

Our model checking algorithm for multithreaded programs has two
levels. The first level performs reachability analysis and maintains
an explicit stack for each thread. The second level computes a sum-
mary for each procedure. During the reachability analysis at the
first level, whenever a thread makes a procedure call, we invoke
the second level to compute a summary for the procedure. This
summary is returned to the first level, which uses it to continue the
reachability analysis.

The most crucial aspect of this algorithm is the notion of procedure
summaries in multithreaded programs. A straightforward general-
ization of a (sequential) procedure summary to the case of multi-
threaded programs could attempt to accumulate all state pairs

�
s � s � �

obtained by invoking this procedure in any thread. But this simple-



minded extension is not that meaningful, since the resulting state s �
for an invocation of a procedure P in a thread might reflect updates
by interleaved actions of concurrently executing threads. Clearly,
these interleaved actions may depend on the local states of the other
threads. Thus, if

�
s � s � � is an element of such a summary, and the

procedure P is invoked again by some thread in state s, there is no
guarantee that the invoking thread will be in state s � on completing
execution of P.

We present a robust and intuitive notion of procedure summaries
for multithreaded programs. This notion is based on the insight that
in well-synchronized programs, any computation of a thread can be
viewed as a sequence of transactions, each of which appears to exe-
cute atomically to other threads. While analyzing the execution of a
transaction by a thread, interleavings with other threads need not be
considered. Our key idea is to summarize procedures within such
transactions. Two main technical difficulties arise while performing
transaction-based summarization of procedures:

� Transaction boundaries may not coincide with procedure
boundaries. A transaction may begin in a procedure foo and
end half-way inside a procedure bar called from foo. Con-
versely, a transaction may begin in a procedure foo and con-
tinue even after foo returns. One way to summarize such
transactions is to have a stack frame as part of the state in
each summary. However, this solution not only complicates
the algorithm but also makes the summaries unbounded even
if all state variables have a finite domain. Our summaries do
not contain stack frames. If a transaction begins in one proce-
dure context and ends in another procedure context, we break
up the summary into smaller sub-summaries each within the
context of a single procedure. Thus, our model checking algo-
rithm uses a combination of two representations—states with
stacks and summaries without stacks.

� A procedure can be called from different phases of a trans-
action —the pre-commit phase or the post-commit phase. We
need to summarize the procedure differently depending on the
phase of the transaction at the call site. We solve this problem
by instrumenting the source program with a boolean variable
representing the transaction phase, thus making the transac-
tion phase part of the summaries.

We present a formal characterization of a class of multithreaded
programs on which our summarization-based model checking al-
gorithm is guaranteed to terminate. We show that if every call to a
recursive procedure is contained entirely within a transaction, our
algorithm will terminate with the correct answer.

To detect transactions in multithreaded programs, we leverage the
theory of reduction [17]. Reduction views a transaction as a se-
quence of actions a1 ������� � am � x � b1 ������� � bn such that each ai is a right
mover and each bi is a left mover. A right mover is an action
that commutes to the right of every action by another thread; a left
mover is an action that commutes to the left of every action by an-
other thread. Thus, to detect transactions we need to detect right
and left movers. In this paper, we abstract away from the problem
of detecting movers and instead focus on the algorithm for sum-
marization assuming that right and left movers are provided by a
separate analysis [15, 14, 13].

To summarize (!), we present a novel two-level model checking
algorithm for multithreaded programs with (recursive) procedures.
This algorithm uses transaction-based procedure summarization as
a core component. We present a formal characterization of a class
of programs on which our algorithm is guaranteed to terminate.
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Figure 1. Transaction

This class includes a number of realistic programs that use shared
variables, synchronization, and procedures. In recent years, flow-
sensitive and context-sensitive analyses have been used to check fi-
nite state properties of sequential programs in a scalable way using
summarization as an essential component [3, 5]. Our work is a first
step in bringing these analyses to bear on multithreaded programs
as well.

2 Overview

We illustrate our ideas using examples that use mutexes to protect
accesses to shared variables. We first make some general observa-
tions about such programs.

� The action acquire(m), where m is a mutex, is a right mover.
Once it happens, there is no enabled action of another thread
that may access m. Hence, this action can be commuted to the
right of any action of another thread.

� The action release(m) is a left mover. At a point when it is
enabled but has not happened, there is no enabled action of
another thread that may access m. Hence, this action can be
commuted to the left of any action of another thread.

� An action that accesses only local variables is both a left
mover and a right mover, since this action can be commuted
both to the left and the right of actions by the other threads.

� An action that accesses a shared variable is both a left mover
and right mover, as long as all threads acquire the same mutex
before accessing that variable.

A transaction is a sequence of right movers, followed by a single
atomic action with no restrictions, followed by a sequence of left
movers. A transaction can be in two states: pre-commit or post-
commit. A transactions starts in the pre-commit state and stays
in the pre-commit state as long as right movers are being executed.
When the atomic action (with no restrictions) is executed, the trans-
action moves to the post-commit state. This atomic action is called
the committing action. The transaction stays in the post-commit
state as long as left movers are being executed until the transaction
completes.

We illustrate a transaction with an example. Figure 1 shows an ex-
ecution of a concurrent program. A thread performs the following
sequence of four operations: (1) acquires a lock (the operation acq
in the first execution trace), (2) reads a variable x protected by that
lock into a local variable t (t=x), (3) updates that variable (x=t+1),
and (4) releases the lock (rel). Suppose that the actions of this
method are interleaved with arbitrary actions E1, E2, E3 of other
threads. We assume that the environment actions respect the lock-
ing discipline of accessing x only after acquiring the lock.

Since the acquire operation is a right mover, it is commuted to the
right of the environment action E1 without changing the final state
s3, even though the intermediate state changes from s2 to s �2. The
read operation is the committing action. The write and release oper-
ations are left movers and are commuted to the left of environment



bool available[N];
mutex m;

int getResource() {
int i = 0;

L0: acquire(m);
L1: while (i < N) {
L2: if (available[i]) {
L3: available[i] = false;
L4: release(m);
L5: return i;

}
L6: i++;

}
L7: release(m);
L8: return i;
}

Figure 2. Resource allocator with coarse-grained locking

actions E2 and E3. Finally, after performing a series of commute
operations, we get the execution at the bottom of the diagram in
which the actions of the first thread happen without interruption
from the environment. Note that in this execution the initial and
final states are the same as before. Thus, the sequence of opera-
tions performed by the first thread constitute a transaction. This
transaction is in the pre-commit state before the read of x and in the
post-commit state afterwards.

We illustrate different aspects of our summarization-based model
checking algorithm using four examples. The first example illus-
trates a simple case where the transaction boundary and the pro-
cedure boundary coincide. The second example illustrates summa-
rization where a procedure body contains several transactions inside
it. The third example illustrates that our algorithm terminates and
validates the program assertions even in the presence of unbounded
recursion. The fourth example illustrates our summarization tech-
nique when a procedure is called from different transactional con-
texts.

Example 1

Consider the resource allocation routine shown in Figure 2. There
are N shared resources numbered 0 ������� � ��� 1. The j-th entry in the
global boolean array available is true iff the j-th resource is free
to be allocated. A mutex m is used to protect accesses to available.
The mutex m has the value 0 when free, and 1 when locked. The
body of getResource acquires the mutex m, and then searches for
the first available resource. If a free resource is found at index i,
it sets available[i] to false and releases the mutex. If no free
resource is found, then it releases the mutex. In both cases, it returns
the final value of i. Thus, the returned value is the index of a free
resource if one is available; otherwise, it is N. There is a companion
procedure freeResource for freeing an allocated resource, but we
have not shown that in the figure. We assume that the multithreaded
program consists of a number of threads that nondeterministically
call getResource and freeResource.

Since acquire(m) is a right mover, release(m) is a left mover,
and all other actions in getResource are both right and left movers,
the entire procedure is contained in a single transaction. Sup-
pose N = 2. We use � a0 � a1 � to denote the contents of available,
where a0 and a1 respectively denote the values of available[0]
and available[1]. The summary of getResource consists of a
set of edges of the form

�
pc � i � m ��� a0 � a1 � ���� �

pc � � i � � m � ��� a �0 � a �1 � � ,

bool available[N];
mutex m[N];

int getResource() {
int i = 0;

L0: while (i < N) {
L1: acquire(m[i]);
L2: if (available[i]) {
L3: available[i] = false;
L4: release(m[i]);
L5: return i;

} else {
L6: release(m[i]);

}
L7: i++;

}
L8: return i;
}

Figure 3. Resource allocator with fine-grained locking

where the tuple
�
pc � i � m ��� a0 � a1 � � represents the values of the pro-

gram counter and variables i, m, and available in the pre-store of
the transaction and the tuple

�
pc � � i � � m � ��� a �0 � a �1 � � denotes the corre-

sponding values in the post-store of the transaction. The computed
summary of getResource consists of the following edges:

� 	�
 � 0 � 0 ��� 0 � 0 � ���� � 	� � 2 � 0 ��� 0 � 0 � �� 	�
 � 0 � 0 ��� 0 � 1 � ���� � 	�� � 1 � 0 ��� 0 � 0 � �� 	�
 � 0 � 0 ��� 1 � 0 � ���� � 	�� � 0 � 0 ��� 0 � 0 � �� 	�
 � 0 � 0 ��� 1 � 1 � ���� � 	�� � 0 � 0 ��� 0 � 1 � �

All edges in this summary begin at the label L0 and terminate at
one of the two labels—L8 or L5—both of which are labels at which
getResource returns. Thus, the summary matches the intuition
that the procedure body is just one transaction. The first edge sum-
marizes the case when no resource is allocated; the remaining three
edges summarize the case when some resource is allocated. There
is no edge beginning in a state with ��� 1 since from such a state,
the execution of the transaction blocks. Once this summary has
been computed, if any thread calls getResource, the summary can
be used to compute the state at the end of the transaction, without
re-analyzing the body of getResource, thus providing reuse and
scalability.

Example 2

Let us consider a modification to the resource allocator. The new
program is shown in Figure 3. We have made the locking more
fine-grained by using an array m of mutexes and protecting the j-
th entry in available with the j-th entry in m. Now, the body
of the procedure getResource is no longer contained entirely in a
single transaction. In fact, there is one transaction corresponding
to each iteration of the loop inside it. Again, suppose N = 2. Now,
the summary contains edges of the form

�
pc � i ��� m0 � m1 � ��� a0 � a1 � �����

pc � � i � ��� m �0 � m �1 � ��� a �0 � a �1 � � , where � m0 � m1 � denotes the contents of
m in the pre-store and � m �0 � m �1 � denotes the contents of m in the post-
store. The computed summary of getResource consists of the fol-
lowing edges:

� 	�
 � 0 ��� 0 � 0 � ��� 0 � 0 � ���� � 	�� � 1 ��� 0 � 0 � ��� 0 � 0 � �� 	�
 � 0 ��� 0 � 0 � ��� 0 � 1 � ���� � 	�� � 1 ��� 0 � 0 � ��� 0 � 1 � �� 	�
 � 0 ��� 0 � 0 � ��� 1 � 0 � ���� � 	�� � 0 ��� 0 � 0 � ��� 0 � 0 � �� 	�
 � 0 ��� 0 � 0 � ��� 1 � 1 � ���� � 	�� � 0 ��� 0 � 0 � ��� 0 � 1 � �



int g = 0;
mutex m;
void foo(int r) {
L0: if (r == 0) {
L1: foo(r);

} else {
L2: acquire(m);
L3: g++;
L4: release(m);

}
L5: return;
}

void main() {
int q = choose({0,1});

M0: foo(q);
M1: acquire(m)
M2: assert(g >= 1);
M3: release(m);
M4: return;
}

P = � main() � || � main() �
Figure 4. Summarization enables termination

� 	�� � 1 ��� 0 � 0 � ��� 0 � 0 � ���� � 	� � 2 ��� 0 � 0 � ��� 0 � 0 � �� 	�� � 1 ��� 0 � 0 � ��� 0 � 1 � ���� � 	�� � 1 ��� 0 � 0 � ��� 0 � 0 � �� 	�� � 1 ��� 0 � 0 � ��� 1 � 0 � ���� � 	� � 2 ��� 0 � 0 � ��� 1 � 0 � �� 	�� � 1 ��� 0 � 0 � ��� 1 � 1 � ���� � 	�� � 1 ��� 0 � 0 � ��� 1 � 0 � �
This summary contains three kinds of edges. The first two edges
correspond to the transaction that starts at the beginning of the pro-
cedure, i.e., at label L0 with � � 0, goes through the loop once, and
ends at L1 with ��� 1. The next two edges correspond to the trans-
action that again starts at the beginning of the procedure, but ends
with the return at label L5 during the first iteration through the loop.
The last four edges correspond to the transaction that starts in the
middle of the procedure at label L1 with � � 1, and returns either
at label L5 or L8. Note that edges of the first and third kind did
not exist in the summary of the previous version of getResource,
where all edges went from entry to exit.

Example 3

The previous two examples illustrated summaries and the reuse
afforded by them. In a number of programs, summaries enable
our model checking algorithm to terminate where the naive model
checking algorithm without summaries will not terminate. Con-
sider the example in Figure 4. The program P consists of two
threads, each of which starts execution by calling the main pro-
cedure. The main procedure has a local variable q which is initial-
ized nondeterministically. Then main calls foo with q as the actual
parameter. The procedure foo has an infinite recursion if the pa-
rameter r is 0. Otherwise, it increments global g and returns. After
returning from foo, the main procedure asserts that (g >= 1). All
accesses to the shared global g are protected by a mutex m. The
initial value of g is 0.

The stack can grow without bound due to the recursion in procedure
foo. Hence, naive model checking does not terminate on this ex-
ample. However, the body of foo consists of one transaction, since
all action sequences in foo consist of a sequence of right movers
followed by a sequence of left movers. A summary edge for foo is
of the form

�
pc � r� m � g ���� �

pc � � r � � m � � g � � , whose meaning is similar
to that of a summary edge in the previous examples. The summary
for foo consists of the following edges:

� 	�
 � 1 � 0 � 0 ���� � 	�� � 1 � 0 � 1 �� 	�
 � 1 � 0 � 1 ���� � 	�� � 1 � 0 � 2 �
There is no edge beginning in a state with � � 0 since from such
a state, the execution of the transaction never terminates. Using
summaries, we avoid reasoning about the stack explicitly inside foo
and also avoid exploring the unbounded recursion in foo.

int gm = 0, gn = 0;
mutex m, n;
void bar() {
N0: acquire(m);
N1: gm++;
N2: release(m);
}

void foo1() {
L0: acquire(n);
L1: gn++;
L2: bar();
L3: release(n);
L4: return;
}

void foo2() {
M0: acquire(n);
M1: gn++;
M2: release(n);
M3: bar();
M4: return;

}

P = � foo1() � || � foo2() �
Figure 5. Summarization from different transactional contexts

The body of main has two transactions. The first transaction be-
gins at label M0 and ends at label M1, consisting of essentially the
call to foo. The second transaction begins at label M1 and ends at
label M4. A summary edge for main has the form

�
pc � q � m � g � ���

pc � q � � m � � g � � . The summary for main consists of the following
edges:

� ��
 � 1 � 0 � 0 ���� � ��� � 1 � 0 � 1 �� ��
 � 1 � 0 � 1 ���� � ��� � 1 � 0 � 2 �
� ��� � 1 � 0 � 1 ���� � ��� � 1 � 0 � 1 �� ��� � 1 � 0 � 2 ���� � ��� � 1 � 0 � 2 �

Using these summaries for procedures foo and main, our model
checking algorithm is able to terminate and correctly conclude that
P is free of assertion violations. The algorithm begins with an
empty stack for each thread. When a thread calls main, since the
body of main is not contained within one transaction, the algorithm
pushes a frame for main on the stack of the calling thread. However,
when a thread calls foo, no frame corresponding to foo is pushed
since the entire body of foo is contained within a transaction. In-
stead, foo is summarized and its summary is used to make progress
in the model checking.

Example 4

Consider the example in Figure 5. Here, two shared variables gm
and gn are protected by mutexes m and n respectively. Procedure
bar accesses the variable gm, and is called from two different proce-
dures foo1 and foo2. In foo1, the procedure bar is called from the
pre-commit state of the transaction, since no mutexes are released
prior to calling bar. In foo2, the procedure bar is called from the
post-commit state of the transaction, since mutex n is released prior
to calling bar. The summary for bar needs to distinguish these
two calling contexts. In the case of the call from foo1, the entire
body of foo1 including the call to bar() is part of the same trans-
action. In the case of the call from foo2, there are two transactions,
one from label M0 to M3, and another from label M3 to M4. We distin-
guish these two by instrumenting the semantics of the program with
an extra bit of information that records the phase of the transaction.
Then, each summary edge provides the pre and post values not only
of program variables but also of the transaction phase. More details
are given Section 4.



3 Multithreaded programs

The store of a multithreaded program is partitioned into the global
store Global and the local store Local of each thread. The set Local
of local stores has a special store called wrong. The local store of
a thread moves to wrong on failing an assertion and thereafter the
failed thread does not make any other transitions.

Domains

t � u � Tid � �
1 ��������� n �

g � Global
l � Local

ls � Locals � Tid � Local
f � Frame
s � Stack � Frame 	

ss � Stacks � Tid � Stack
State � Global 
 Locals 
 Stacks

A multithreaded program
�
g0 � ls0 � T � T � � T � � consists of five com-

ponents. g0 is the initial value of the global store. ls0 maps each
thread id t  Tid to the initial local store ls0

�
t � of thread t. We model

the behavior of the individual threads using three relations:

T � Tid � �
Global � Local ��� �

Global � Local �
T ��� Tid � Local � �

Local � Frame �
T ��� Tid � �

Local � Frame ��� Local

The relation T models thread steps that do not manipulate the stack.
The relation T

�
t � g � l � g � � l � � holds if thread t can take a step from a

state with global store g and local store l, yielding (possibly mod-
ified) stores g � and l � . The stack is not accessed or updated during
this step. The relation T � �

t � l � l � � f � models steps of thread t that
push a frame onto the stack. This step does not access the global
store, is enabled when the local store is l, updates the local store
to l � , and pushes the frame f onto the stack. Similarly, the rela-
tion T � �

t � l � f � l � � models steps of thread t that pop a frame from the
stack. This step also does not access the global store, is enabled
when the local store is l and the frame at the top of the stack is f ,
updates the local store to l � , and pops the frame f from the stack.

The program starts execution from the state
�
g0 � ls0 � ss0 � where

ss0
�
t � � ε for all t  Tid. At each step, any thread may make a

transition. The transition relation � t � State � State of thread t is
defined below. For any function h from A to B, a  A and b  B,
we write h � a : � b � to denote a new function such that h � a : � b � �

x �
evaluates to h

�
x � if x �� a, and to b if x � a.

Transition relation � t

T � t � g � ls � t ��� g � � l � �
� g � ls � ss ��� t � g � � ls � t : � l � � � ss �

T ��� t � ls � t ��� l � � f �
� g � ls � ss ��� t � g � ls � t : � l � � � ss � t : � ss � t ��� f � �

ss � t ��� s � f T � � t � ls � t ��� f � l � �
� g � ls � ss ��� t � g � ls � t : � l � � � ss � t : � s � �

The transition relation �!� State � State of the program is the dis-
junction of the transition relations of the various threads.

� �#" t � � t

4 Model checking with reduction

Transactions occur in multithreaded programs because of the pres-
ence of right and left movers. Inferring which actions of a program
are right and left movers is a problem that is important but orthogo-
nal to the contribution of this paper. In this section, we assume that
right and left movers are available to us as the result of a previous
analysis (see, e.g. [15, 14]). We use this information to derive a
model checking algorithm that uses transactions but does not per-
form any summarization of procedures. We will use the intuition
developed in this section to derive a second model checking algo-
rithm in Section 5 that performs procedure summarization as well.

Let RM � LM � T be subsets of the transition relation T with the
following two properties for all t �� u:

1. If RM
�
t � g1 � l1 � g2 � l2 � and T

�
u � g2 � l3 � g3 � l4 � , there is

g4 such that T
�
u � g1 � l3 � g4 � l4 � and RM

�
t � g4 � l1 � g3 � l2 � .

Further, RM
�
u � g2 � l3 � g3 � l4 � iff RM

�
u � g1 � l3 � g4 � l4 � , and

LM
�
u � g2 � l3 � g3 � l4 � iff LM

�
u � g1 � l3 � g4 � l4 � .

2. If T
�
u � g1 � l1 � g2 � l2 � and LM

�
t � g2 � l3 � g3 � l4 � , there is g4

such that LM
�
t � g1 � l3 � g4 � l4 � and T

�
u � g4 � l1 � g3 � l2 � . Fur-

ther, RM
�
u � g1 � l1 � g2 � l2 � iff RM

�
u � g4 � l1 � g3 � l2 � , and

LM
�
u � g1 � l1 � g2 � l2 � iff LM

�
u � g4 � l1 � g3 � l2 � .

The first property states that a right mover action in thread t com-
mutes to the right of an action of a different thread u. Moreover,
the action by thread u is a right mover (resp. left mover) before
the commute operation iff it is a right mover (resp. left mover) after
the commute operation. Similarly, the second property states the re-
quirement on a left mover in thread t. Our analysis is parameterized
by the values of RM and LM and only requires that they satisfy these
two properties. The larger the relations RM and LM, the longer the
transactions our analysis infers. Therefore, these relations should
be as large as possible in practice.

As mentioned before, a transaction is a sequence of right movers
followed by a single action followed by a sequence of left movers.
In order to minimize the number of explored interleavings and to
maximize reuse, we would like to infer transactions that are as long
as possible. In order to implement this inference, we introduce
in each thread a boolean local variable to keep track of the phase
of that thread’s transaction. Note that this instrumentation is done
automatically by our analysis, and not by the programmer. The
phase variable of thread t is true if thread t is in the right mover (or
pre-commit) part of the transaction; otherwise the phase variable is
false. We say that the transaction commits when the phase variable
moves from true to false. The initial value of the phase variable for
each thread is true.

p � p �$ Boolean% � % �  Local# � Local � Boolean%
s � % s �& Locals# � Tid � Local#

The initial value of the global store of the instrumented program re-
mains g0. The initial value of the local stores changes to

%
s0, where%

s0
�
t ��� � ls0

�
t � � true � for all t  Tid. We instrument the transition

relation T , T � , and T � to generate new transition relations U , U � ,
and U � that update the phase appropriately.

U � Tid � �
Global � Local# ��� �

Global � Local# �
U � � Tid � Local# � �

Local# � Frame �
U � � Tid � �

Local# � Frame ��� Local#



Ruleset 1: Model checking with reduction
(INIT)

Σ � g0 � � s0 � ss0 �

(STEP) �
u �� t � N � u � g � � s � u � �

Σ � g � ls � ss � U � t � g � � s � t ��� g � � � � �
Σ � g � � � s � t : ��� � � � ss �

(PUSH) �
u �� t � N � u � g � � s � u � �

Σ � g � � s � ss � U ��� t � � s � t ��� � � � f �
Σ � g � � s � t : ��� � � � ss � t : � ss � t ��� f � �

(POP) �
u �� t � N � u � g � � s � u � �

Σ � g � � s � ss � U � � t � � s � t ��� f � � � � ss � t ��� s � f
Σ � g � � s � t : ��� � � � ss � t : � s � �

U
�
t � g ��� l � p � � g � ��� l � � p � � � def��

T
�
t � g � l � g � � l � ��

p � � �
RM

�
t � g � l � g � � l � � � �

p ��� LM
�
t � g � l � g � � l � � � �

U � �
t ��� l � p � ��� l � � p � � � f � def��

T � �
t � l � l � � f ��

p � � p

U � �
t ��� l � p � � f ��� l � � p � � � def��

T � �
t � l � f � l � ��

p � � p

In the definition of U , the relation between p � and p reflects the
intuition that if p is true, then p � continues to be true as long as it
executes right mover actions. The phase changes to false as soon as
the thread executes an action that is not a right mover. Thereafter,
it remains false as long as the thread executes left movers. Then, it
becomes true again as soon as the thread executes an action that is
a right mover and not a left mover.

For each thread t, we define three sets:

R
�
t � � L �

t � � N �
t � � Global � Local#

These sets respectively define when a thread is executing in the
right mover part of a transaction, the left mover part of a trans-
action, and outside any transaction. For example, in the first exe-
cution of Figure 1, let t be the identifier of the thread executing the
transaction. Then, the states 	 s2 � s3 
  R

�
t � , 	 s4 � s5 � s6 � s7 
  L

�
t � ,

and 	 s1 � s8 
  N
�
t � . These three sets can be any partition of�

Global � Local# � satisfying the following two conditions:

C1. R
�
t � ��	 �

g ��� l � p � �� l ��	 ls0
�
t � � wrong 
 � p 
 .

C2. L
�
t � �

�� � �
g ��� l � p � �

l ��	 ls0
�
t � � wrong 
 � � p

��
g � � l � � T

�
t � g � l � g � � l � �� LM

�
t � g � l � g � � l � �

� �
� �

Condition C1 says that thread t is in the right mover part of a
transaction only if the local store of t is neither its initial value
nor wrong and the phase variable is true. Condition C2 says that
thread t is in the left mover part of a transaction only if the local
store of t is neither its initial value nor wrong, the phase variable
is false, and all possible enabled transitions are left movers. Since

�
R

�
t � � L �

t � � N �
t � � is a partition of

�
Global � Local# � , once R

�
t �

and L
�
t � have been picked according to C1 and C2, the set N

�
t � is

implicitly defined.

We write R
�
t � g � % � whenever

�
g � % �  R

�
t � , L

�
t � g � % � whenever�

g � % �  L
�
t � , and N

�
t � g � % � whenever

�
g � % �  N

�
t � . Finally, using

the values of N
�
t � for all t  Tid, we model check the multithreaded

program by computing the least fixpoint of the set of rules in Rule-
set 1. This model checking algorithm schedules a thread only when
no other thread is executing inside a transaction.

Conditions C1 and C2 are not quite enough for the model checking
algorithm to be sound. The reason is the following. If a transaction
in thread t commits but never finishes, the shared variables modi-
fied by this transaction become visible to other threads. However,
the algorithm does not explore transitions of other threads from any
state after the transaction commits. Therefore, we add a third con-
dition C3 which states that every committed transaction must finish.
In order to state this condition formally, we extend the transition re-
lation � t from Section 3 to the program store augmented with the
phase variable in the natural way.

C3. Suppose
�
g � % �  L

�
t � , Σ

�
g � % s � ss � , and

%
s

�
t � � %

. Then, there
is g � , % s � , and ss � such that

�
g � � % s � �

t � �� N
�
t � and

�
g � % s � ss � ���t�

g � � % s � � ss � � .

Our analysis is correct for any partition
�
R

�
t � � L �

t � � N �
t � � of�

Global � Local# � satisfying conditions C1, C2, and C3. The
smaller the value of N

�
t � , the larger the transactions inferred by

the analysis. Therefore, an implementation of our analysis should
pick a value for N

�
t � that is as small as possible. We can now state

our soundness theorem for the model checking algorithm presented
above.

THEOREM 1. Let
�
g0 � % s0 � U � U � � U � � be the instrumented mul-

tithreaded program. Let Σ be the least fixpoint of the rules
in Ruleset 1. Let the conditions C1, C2, and C3 be satis-
fied. If

�
g0 � ls0 � ss0 ����� �

g � ls � ss � and ls
�
t ��� wrong, then there is�

g � � % s � � ss � � and p such that Σ
�
g � � % s � � ss � � and

%
s � �

t ��� � wrong � p � .
Proof (Sketch) Suppose

�
g0 � ls0 � ss0 � ��� �

g � ls � ss � through some
sequence of actions of various threads and ls

�
t � � wrong. First,

we extend this sequence to complete all committed but unfinished
transactions using condition C3. Then, one by one, we commute
each action in an uncommitted transaction to the right and drop it.
Eventually, we will get an execution sequence σ with only com-
pleted transactions and with the property that σ goes wrong if the
original sequence goes wrong. Therefore σ goes wrong as well. In
σ, the transactions of a thread could have interleaved actions of an-
other thread. The order in which transactions commit is a total order
on the transactions in σ. We denote this total order by � . We can
transform σ into an equivalent execution σ � (by appropriately right-
commuting right movers, and left-commuting left movers), such
that σ � has the following properties: (1) for every thread t, no ac-
tion of a different thread t � occurs in the middle of a transaction of
thread t, (2) the transactions in σ � commit in the order � . From the
properties of right and left movers, we get that σ � also goes wrong.
Since σ � schedules each transaction to completion, the states along
σ � will be explored by the rules in Ruleset 1. A similar proof has
been carried out with more detail in an earlier paper [15]. �
Although this algorithm is sound, it might not terminate if a thread
calls a recursive procedure (even if all variables take values from a
finite domain). In the next section, we use the concepts developed
in this section to derive a model checking algorithm that uses proce-



Ruleset 2: Level I—Reachability
(INIT)

Ω � g0 � � s0 � ss0 �

(STEP)
Ω � g � � s � ss �

�
u �� t � N � u � g � � s � u � �

Sum � t � g � � s � t ��� g � � � � �
Ω � g � � � s � t : ��� � � � ss � ps � t : � p � � �

(PUSH)
Ω � g � � s � ss �

�
u �� t � N � u � g � � s � u � �

Sum � � t � g � � s � t ��� g � � � � � f �
Ω � g � � � s � t : ��� � � � ss � t : � ss � t ��� f � �

(POP)
Ω � g � � s � ss �

�
u �� t � N � u � g � � s � u � �

ss � t ��� s � f Sum � � t � g � � s � t ��� f � g ��� � � �
Ω � g � � � s � t : ��� � � � ss � t : � s � �

(CFL START)
Ω � g � � s � ss �

�
u �� t � N � u � g � � s � u � �

P � t � g � � s � t ��� g � � s � t � �
dure summarization and may thus terminate in a lot of cases where
the algorithm of this section might not.

5 Model checking with summarization

In this section, we describe our two-level model checking al-
gorithm. The algorithm operates on the instrumented multi-
threaded program defined in Section 4. It also uses the partitions	 �

R
�
t � � L �

t � � N �
t � � � t  Tid 
 defined in Section 4. The algorithm

maintains the following relations for performing summarization.

Relations

P
�

Tid 
 � Global 
 Local# �

 � Global 
 Local# �

Sum
�

Tid 
 � Global 
 Local# �

 � Global 
 Local# �

Sum � �
Tid 
 � Global 
 Local# �


 � Global 
 Local# �

 Frame

Sum � �
Tid 
 � Global 
 Local# �


 Frame

 � Global 
 Local# �

Mark
�

Tid 
 � Global 
 Local# �

5.1 Algorithm

Our model checking algorithm operates in two levels. The first-
level reachability algorithm is similar to the algorithm in the previ-
ous section and maintains a set of reachable states Ω. But it does
not use U , U � and U � directly. Instead, it calls into a second-
level summarization algorithm that uses U , U � and U � to compute
four relations—P, Sum, Sum � and Sum � . Of these four relations,
the last three play roles similar to U , U � and U � and are used to
communicate results back to the first-level algorithm. Ruleset 2
gives the rules for the first-level reachability algorithm and Rule-
set 3 gives the rules for the second-level summarization algorithm.

Ruleset 3: Level II—Summarization
(CFL STEP)

P � t � g1 � � 1 � g2 � � 2 � U � t � g2 � � 2 � g3 � � 3 ��� N � t � g2 � � 2 �
P � t � g1 � � 1 � g3 � � 3 �

(CFL PUSH)
P � t � g1 � � 1 � g2 � � 2 � U � � t � � 2 � � 3 � f ��� N � t � g2 � � 2 �

P � t � g2 � � 3 � g2 � � 3 �
(CFL POP)

P � t � g1 � � 1 � g2 � � 2 � U � � t � � 2 � � 3 � f ��� N � t � g2 � � 2 �
Sum � � t � g2 � � 3 � f � g3 � � 4 �

P � t � g1 � � 1 � g3 � � 4 �
(CFL SUM � )

P � t � g1 � � 1 � g2 � � 2 � U � � t � � 2 � f � � 3 ��� N � t � g2 � � 2 �
Sum � � t � g1 � � 1 � f � g2 � � 3 �

(CFL SUM)
P � t � g1 � � 1 � g2 � � 2 � N � t � g2 � � 2 �

Sum � t � g1 � � 1 � g2 � � 2 � Mark � t � g1 � � 1 �
(CFL SUM � )

P � t � g1 � � 1 � g2 � � 2 � U � � t � � 2 � � 3 � f ��� N � t � g2 � � 2 �
Mark � t � g2 � � 3 �

Sum � � t � g1 � � 1 � g2 � � 3 � f � Mark � t � g1 � � 1 �

Let us refer to elements of
�
Global � Local# � as nodes. Then, the

relations P, Sum, Sum � and Sum � are all edges since they connect
a pair of nodes. The relation Mark is a subset of nodes. We refer
to the relations Sum, Sum � and Sum � as summary edges. These
summary edges are computed by the summarization rules (Rule-
set 3). The reachability rules and the summarization rules commu-
nicate with each other in the following way. The rule (CFL START)
creates an edge in P for a thread t when every other thread is out-
side a transaction. Once summarization has been initiated via (CFL
START) from the first level, it continues for as long as a transac-
tion lasts, that is, until the condition N

�
t � g2 � % 2 � becomes true of a

target state
�
g2 � % 2 � . The summary edges, Sum, Sum � , and Sum � ,

generated by summarization are used by the reachability rules to do
model checking, via the rules STEP, PUSH and POP in Ruleset 2.

The edges in P correspond to both “path edges” and “summary
edges” in the CFL reachability algorithm for single-threaded pro-
grams [19]. The rule (CFL STEP) is used to propagate path edges
within a single procedure, and the rules, (CFL PUSH) and (CFL
POP) are used to propagate path edges across procedure boundaries.
These rules have analogs in the CFL reachability algorithm.

Figure 6 and Figure 7 illustrate how the rules work in two situations
involving function calls. In these figures we assume a fixed thread
identifier t, and nodes of the form

�
g � % � describe the global and lo-

cal stores of thread t. A path edge
�
g � % � P //

�
g � � % � � indicates

that P
�
t � g � % � g � � % � � is true; at a call the edge

�
g � % � U ��� f �

//
�
g � � % � �

indicates that U � �
t � % � % � � f � is true, and at a return the edge

�
g � % � U 	
� f �

//
�
g � � % � � indicates that U � �

t � % � f � % � � is true; edges la-

beled with Sum, Sum � and Sum � are interpreted similarly. We ex-
plain how to infer some edges from other edges in the figures; the
inferred edges are dashed.
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where
– P

�
t � g2 � % 3 � g2 � % 3 � is inferred by (CFL PUSH)

– P
�
t � g2 � % 3 � g3 � % 4 � is inferred by (CFL STEP)

– Sum � �
t � g2 � % 3 � f � g3 � % �2 � is inferred by (CFL SUM � )

– P
�
t � g1 � % 1 � g3 � % �2 � is inferred by (CFL POP)

Figure 6. Application of (CFL-POP)

In Figure 6 a caller is being summarized from state
�
g1 � % 1 � to the

point of call at state
�
g2 � % 2 � by the path edge P

�
t � g1 � % 1 � g2 � % 2 � .

At the call, indicated by the edge U � �
t � % 2 � % 3 � f � , a self-loop

P
�
t � g2 � % 3 � g2 � % 3 � on the entry state

�
g2 � % 3 � of the callee is inferred

to start off a new procedure summary. After some computation
steps in the callee a return point

�
g3 � % 4 � is reached, and the sum-

mary edge Sum � �
t � g2 � % 3 � g3 � % �2 � is inferred, which connects the en-

try state of the callee to the state immediately following the return
in the caller. Finally, the path edge P

�
t � g1 � % 1 � g3 � % �2 � is inferred to

connect the original state
�
g1 � % 1 � to the state following the return.

It is important to note that the rules are designed to handle the com-
plications that arise from a transaction terminating inside a func-
tion. Due to such a transaction, a summary edge may end before
the return point or begin after the entry point of a callee. The rules
ensure that, if a summary for a function is only partial (i.e., it does
not span across both call and return), then the reachability level will
execute both the call and return actions, via the PUSH and POP rules.
These situations could involve scheduling other threads before, dur-
ing, or after the call, as defined by the reachability relation Ω.

Figure 7 illustrates inference of a partial summary for a function
in which a transaction begins at the entry state (at

�
g2 � % 3 � ) but

ends (at
�
g3 � % 4 � ) before a return point. The end of the transac-

tion is indicated by the fact that N
�
t � g3 � % 4 � is true. A partial

summary up to the transaction boundary is cached in the edge
Sum

�
t � g2 � % 3 � g3 � % 4 � , which is inferred by rule (CFL SUM). Because

this summary does not span across the entire call, the reachability
algorithm must execute the call. This is ensured by the inference of
Mark

�
g2 � % 3 � at the same time that the fact Sum

�
t � g2 � % 3 � g3 � % 4 � is

inferred by (CFL SUM). The fact Mark
�
g2 � % 3 � allows the inference

of Sum � �
t � g1 � % 1 � g2 � % 3 � f � , which in turn is used by the reachability

rule (PUSH) to execute the call. After executing the call, the partial
summary edge Sum

�
t � g2 � % 3 � g3 � % 4 � is available to the reachability

level, via rule (STEP).

At state
�
g3 � % 4 � a new transaction summary begins via (CFL
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where
– P

�
t � g2 � % 3 � g2 � % 3 � is inferred by (CFL PUSH)

– Sum
�
t � g2 � % 3 � g3 � % 4 � is inferred by (CFL SUM)

– Mark
�
t � g2 � % 3 � is inferred by (CFL SUM)

– Sum � �
t � g1 � % 1 � g2 � % 3 � f � is inferred by (CFL SUM � )

– Sum
�
t � g3 � % 4 � g4 � % 5 � is inferred by (CFL SUM)

– Sum � �
t � g4 � % 5 � f � g5 � % �2 � is inferred by (CFL SUM � )

Figure 7. Partial procedure summaries

STEP) (there is a self-loop P
�
t � g3 � % 4 � g3 � % 4 � which is not shown

for simplicity). The summary continues until the new trans-
action ends at

�
g4 � % 5 � . At that point, the summary edge

Sum
�
t � g3 � % 4 � g4 � % 5 � is inferred by rule (CFL SUM). Finally, the

summary Sum � �
t � g4 � % 5 � f � g5 � % �2 � is inferred for the transition from�

g4 � % 5 � across the return point at
�
g5 � % 6 � , via rule (CFL SUM � ).

To summarize (!), a summary edge (either Sum, Sum � , or Sum � )
is computed by the summarization algorithm under any one of the
following three conditions:

� When a transaction ends at an edge P
�
t � g1 � % 1 � g2 � % 2 � (indi-

cated by N
�
t � g2 � % 2 � ), the rule (CFL SUM) is used to generate

a Sum edge. In addition, we mark the start-state of the call
using Mark

�
t � g1 � % 1 � .

� Whenever a start state of a call is marked, the rule (CFL
SUM � ) generates a Sum � edge at every corresponding call
site, and also propagates the marking to the caller. This mark-



ing can result in additional Sum � edges being generated by
iterated application of the rule (CFL SUM � ).

� When a procedure return is encountered, a Sum � edge is gen-
erated by rule (CFL SUM � ).

5.2 Correctness

The correctness of our algorithm depends on conditions C1 and C2
from Section 4. However, since this algorithm computes the least
fixpoint over a different set of equations, the condition C3 is mod-
ified to the following condition C3’. In order to state condition
C3’, we define the relation P

�
t � g1 � % 1 � g2 � % 2 � �

Sum
�
t � g1 � % 1 � g3 � % 3 �

to hold if and only if there exists a proof tree using Ruleset 3 at
whose root is an application of (CFL STEP) with P

�
t � g1 � % 1 � g2 � % 2 �

among its premises and at one of whose leaves is an applica-
tion of (CFL SUM) with Sum

�
t � g1 � % 1 � g3 � % 3 � among its conclu-

sions. We define P
�
t � g1 � % 1 � g2 � % 2 � �

Sum � �
t � g1 � % 1 � f � g3 � % 3 � and

P
�
t � g1 � % 1 � g2 � % 2 � �

Sum � �
t � g1 � % 1 � g3 � % 3 � f � analogously (with ap-

plications of (CFL SUM � ) and (CFL SUM � ) at the leaves, respec-
tively).

C3’. If P
�
t � g1 � % 1 � g2 � % 2 � and L

�
t � g2 � % 2 � , then one of the following

conditions must hold:
1. P

�
t � g1 � % 1 � g2 � % 2 � �

Sum
�
t � g1 � % 1 � g3 � % 3 �

for some g3 � % 3.

2. P
�
t � g1 � % 1 � g2 � % 2 � �

Sum � �
t � g1 � % 1 � f � g3 � % 3 �

for some g3 � % 3 � f .

3. P
�
t � g1 � % 1 � g2 � % 2 � �

Sum � �
t � g1 � % 1 � g3 � % 3 � f �

for some g3 � % 3 � f .

THEOREM 2. Let
�
g0 � % s0 � U � U � � U � � be the instrumented mul-

tithreaded program. Let Ω be the least fixpoint of the rules in
Rulesets 2 and 3. Let the conditions C1, C2, and C3’ be satis-
fied. If

�
g0 � ls0 � ss0 ����� �

g � ls � ss � and ls
�
t ��� wrong, then there is�

g � � % s � � ss � � and p such that Ω
�
g � � % s � � ss � � and

%
s � �

t ��� � wrong � p � .
Proof (Sketch) The proof of this theorem depends on the fol-
lowing lemmas.

Lemma 1: If Σ
�
g � % s � ss � and

%
s

�
t � � � wrong � p � , then there

is
�
g � � % s � � ss � � such that Σ

�
g � � % s � � ss � � ,

%
s � �

t � � � wrong � p � , and�
g � � % s � �

u � �  N
�
u � for all u  Tid.

Lemma 2: If Σ
�
g � % s � ss � and

�
g � % s �

u � �  N
�
u � for all u  Tid, then

Ω
�
g � % s � ss � .

Lemma 3: If Σ
�
g � % s � ss � and

�
g � % s �

t � � � N
�
t � , then there are g � and% � such that P

�
t � g � � l � � g � % s �

t � � .

Lemma 4: The condition C3’ implies the condition C3.

Lemma 3 is used to prove Lemma 4. Due to Lemma 4 and the
preconditions of our theorem, the preconditions of Theorem 1 are
satisfied. If

�
g0 � ls0 � ss0 ����� �

g � ls � ss � and ls
�
t � � wrong, then from

Theorem 1, we get
�
g � � % s � � ss � � and p such that Σ

�
g � � % s � � ss � � and%

s � �
t � � � wrong � p � . From Lemma 1, we get

�
g � � � % s � � � ss � � � such that

Σ
�
g � � � % s � � � ss � � � ,

%
s � � �

t � � � wrong � p � , and
�
g � � � % s � � �

u � �  N
�
u � for all

u  Tid. From Lemma 2, we get Ω
�
g � � � % s � � � ss � � � . �

5.3 Termination

In this section, we present sufficient conditions for the least fix-
point Ω of the rules in Rulesets 2 and 3 to be finite, in which case

int g = 0, x = 0, y = 0;
mutex m;

void foo (int r) {
L0: if (r == 0) {
L1: x = 1;
L2: y = 1;
L3: foo(r);

} else {
L4: acquire(m);
L5: g++;
L6: release(m);

}
L7: return;
}

void main() {
int q = choose({0,1});

M0: foo(q);
M1: acquire(m)
M2: assert(g >= 1);
M3: release(m);
M4: return;
}

P = � main() � || � main() �
Figure 8. Nonterminating example

our summarization-based model checking algorithm will terminate.
These conditions are satisfied by a variety of realistic programs that
use shared variables, synchronization, and recursion.

In our notation, a frame f  Frame corresponds to a procedure call
and essentially encodes the values to which the local variables (e.g.,
the program counter) should be set, once the procedure call returns.
A frame f is recursive if and only if there is a transition sequence�
g0 � % s0 � ss0 � ��� �

g � % s � ss � and a thread t such that f occurs more
than once in the stack ss

�
t � . A frame f is transactional if and only

if for all transition sequences
�
g0 � % s0 � ss0 � ��� �

g � % s � ss � and for all
t  Tid, if f occurs on the stack ss

�
t � , then

�
g � % s �

t � � � N
�
t � . If f

is transactional, then in any execution, after a thread t pushes f on
the stack, execution continues with all states outside N

�
t � until f

is popped.

THEOREM 3. Suppose the domains Tid, Global, Local, and
Frame are all finite. If every recursive frame f  Frame is trans-
actional, then the set of reachable states Ω is finite, and the model
checking algorithm based on Rulesets 2 and 3 terminates.

Proof (Sketch) Because the sets Global, Local, Tid and Frame
are finite, it immediately follows that the relations P, Sum, Sum � ,
Sum � , and Mark computed by the summarization rules in Rule-
set 3 are finite. Consider first the summarization rules acting on
a sequence of transitions following the push of a recursive frame
f . The rule (CFL SUM) cannot be applied to any premise of the
form P

�
t � g � % � g � � % � � . The reason is that f is transactional, and there-

fore
�
g � � % � � � N

�
t � . Hence, no facts of the form Mark

�
t � g � % � or

Sum
�
t � g � % � g � � % � � can be deduced due to any pair

�
g � � % � � . Because

no such fact Mark
�
t � g � % � can be deduced, the rule (CFL SUM � ), in

turn, cannot be applied to any premise of the form P
�
t � g � % � g � � % � � ,

and hence no fact of the form Sum � �
t � g � % � g � � % � � f � can be deduced.

Consider next the reachability rules for the set Ω acting on a se-
quence of states following the push of a recursive frame f . By the
argument above, no facts of the form Sum

�
t � g � % � g � � % � � and no facts

of the form Sum � �
t � g � % � g � � % � � f � can be deduced. It follows that

only the reachability rules (INIT), (STEP), and (POP) can be ap-
plied. Because none of these rules push frames on the stacks, only
finitely many facts of the form Ω

�
g � % s � ss � can be deduced from

the push of a recursive frame. Since only the set Stacks can be
infinite on a program and non-recursive frames can generate only
finitely many distinct stacks, it follows that only finitely many facts
Ω

�
g � % s � ss � can be deduced from a program all of whose recursive

frames are transactional. �



Figure 8 shows an example program on which our two-level algo-
rithm does not terminate. Here, the procedure foo is both recursive
and not transactional due to the accesses it makes to the global vari-
ables x and y. As a result, Sum � edges are returned by the summa-
rization algorithm for the recursive call inside procedure foo, and
consequently the reachability algorithm does not terminate.

5.4 Single-threaded programs

In a single threaded program, we can make the set N
�
1 � for the sin-

gle thread contain just the initial state of the program, and the states
in which the thread has gone wrong. Suppose the program does
not reach an error state. Then, the rule (CFL SUM) can never be ap-
plied and the summarization rules will never generate Sum or Sum �
edges. Consequently, the reachability rules will never explore states
in which the stack is non-empty, and the model checking algorithm
with summarization specializes to CFL reachability. The summary
of a procedure contains only Sum � edges and is identical to the
summary produced by the CFL reachability algorithm.

6 Related work

Recently, several papers have used the idea of reduction to develop
analyses for concurrent programs. Flanagan and Qadeer devel-
oped a type system leveraging the ideas of reduction and transac-
tions to verify atomicity in multithreaded programs [15, 14]. Their
type system was inspired by the Calvin-R static checking tool [16].
Calvin-R supports modular verification of multithreaded programs
by annotating each procedure with a specification; this specifica-
tion is related to the procedure implementation via an abstraction
relation that combines the notions of simulation and reduction. Re-
cently, Flanagan and Freund have also developed a dynamic atom-
icity checker called Atomizer for multithreaded Java programs [11].

A number of dataflow techniques have been devised to analyze pro-
grams with both concurrency and procedure calls. Duesterwald and
Soffa use a system of dataflow equations to check if two statements
in a concurrent program can potentially execute in parallel [7].
Their analysis is conservative and restricted to Ada rendezvous con-
structs. Dwyer and Clarke check properties of concurrent programs
by dataflow analysis, but use inlining to flatten procedure calls [8].
Flow-insenstive analyses are independent of the ordering between
program statements and can be generalized easily to multithreaded
programs with procedure calls. Rinard presents a survey of tech-
niques for analysis of concurrent programs [20].

Ramalingam proved the undecidability of assertion checking with
both concurrency and procedure calls [18]. The proof is by re-
duction from the undecidable problem of checking the emptiness
of the intersection of two context-free languages. Bouajjani, Es-
parza, and Touili present an analysis that constructs abstractions of
context-free languages [4]. The abstractions are chosen so that the
emptiness of the intersection of the abstractions is decidable. Their
analysis is sound but incomplete due to overapproximation in the
abstractions. In contrast, our work operates on the concrete mul-
tithreaded program and uses summaries to gain reuse, scalability,
and termination in a number of cases.

Alur and Grosu have studied the interaction between concurrency
and procedure calls in the context of refinement between STATE-
CHART programs [1]. At each step of the refinement process, their
system allows either the use of nesting (the equivalent of proce-
dures) or parallelism, but not both. Also, recursively nested modes
are not allowed. In contrast, we place no restrictions on how par-

allelism interacts with procedure calls, and allow recursive proce-
dures.

For restricted models of synchronization, such as fork-join synchro-
nization, assertion checking is decidable even with both concur-
rency and procedure calls. Esparza and Podelski present an algo-
rithm for this restricted class of programs [9].

Counter machines and variants of Petri nets have been used to
check assertions on concurrent programs with unbounded number
of threads [6, 2]. However, these methods handle procedure calls
by inlining.

7 Conclusions

We have presented a novel model checking algorithm to check as-
sertions on multithreaded programs with procedure calls. Inspired
by procedure summarization in sequential programs, our algorithm
attempts to use summaries to obtain reuse and scalability. Our algo-
rithm functions in two levels. The first level performs reachability
analysis and maintains an explicit stack for each thread. The sec-
ond level computes a summary for each procedure. Under certain
conditions (stated precisely in Theorem 3), we guarantee that our
two-level algorithm will terminate even in the presence of recursion
and concurrency. We are currently implementing our algorithm in a
new model checker called ZING being developed at Microsoft Re-
search.
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