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ABSTRACT 

 
We briefly review the mathematics in the coding engine of JPEG 2000, a state-of-the-art image compression system. We 

focus in depth on the transform, entropy coding and bitstream assembler modules. Our goal is to pass the readers a good 
understanding of the modern scalable image compression technologies without being swarmed by the details. 
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1. INTRODUCTION 
 
Compression is a process that creates a compact data representation for storage and transmission purposes. Media 

compression usually involves the utilization of special compression tools because media is different from the generic data. 
Generic data file, such as a computer executable program, a Word document, must be compressed losslessly. Even a single 
bit error may render a data file useless. On the other hand, distortion is tolerable in the media compression process; as it is the 
content of the media that is of paramount importance, rather than the exact bit. Since the size of the original media, whether it 
is an image, a sound clip, or a movie clip, is mostly very large, it is essential to compress the media at a considerably high 
compression ratio. Such high ratio compression is usually achieved through two mechanisms: 1) to ignore the media 
components that are less perceptible, and 2) to use entropy coding to explore information redundancies exist in the source 
data.  

Conventional media compression solution focuses on one function: to turn a media into a compact bitstream 
representation, whose compression ratio is determined at the time the compressed bitstream is formed. Yet, different 
applications may have different requirements of the compression ratio and tolerance of the compression distortion. A publish 
application may require a compression scheme with very little distortion, while a web application may tolerate relatively 
large distortion in exchange of a smaller compressed media. Recently, a category of media compression algorithms termed 
scalable compression emerges to offer the ability to trade between the compression ratio and distortion after the compressed 
bitstream has been generated. In scalable compression, a media is first compressed into a master bitstream, where a subset of 
the master bitstream may be extracted to form an application bitstream with a higher compression ratio. With scalable 
compression, a compressed media can be effortlessly tailored for applications with vastly different compression ratio and 
quality requirement, which is particularly valuable in media storage and transmission.  

In the following part of the paper, we focus in depth on image compression, in particular the JPEG 2000 image 
compression standard, to illustrate the important mathematics in a modern scalable media compression algorithm. The paper 
is organized as follows. The basic concepts of the scalable image compression and its applications are discussed in Section 2. 
JPEG 2000 and its development history are briefly reviewed in Section 3. The transform, quantization, entropy coding, and 
bitstream assembler modules are examined in details from Section 4-7. For the readers who are interested in further details, 
they may refer to [1][2][3].  

 
2. IMAGE COMPRESSION 

 
Digital images are used every day. A digital image is essentially a 2D data array x(i,j), where i and j index the row and 

column of the data array, and each of the data point x(i,j) is referred as a pixel. For the gray image, each pixel is of an 
intensity value G. For color image, each pixel consists of a color vector (R, G, B), which represent the intensity of the red, 
green and blue components, respectively. Because it is the content of the digital image that matters the most, the underlying 
2D data array may undergo big changes, and still convey the content to the user. An example is shown in Figure 1, where the 
original image Lena is shown at left as a 2D array of 512x512. Operations may be performed on the original image so that it 
is suited for a particular application. For example, when the display space is tight, we may subsample the original image to a 
smaller image of size 128x128, as shown in the upper-right of Figure 1. Another possible operation is to extract a rectangular 



region of the image starting from coordinate (256,256) to (384,384), as shown at the middle-right. The entire image may also 
be compressed into a compact bitstream representation, e.g. by JPEG, as shown in the bottom-right. In each case, the 
underlying 2D data array is changed tremendously. Nevertheless, the primary content of the image, the face of the girl 
remains legible to the user.  
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Figure 1 Digital image and image manipulation. 

Among the operations, the compression creates a compact representation of the image data. It is an essential operation for 
image storage and transmission. In this paper, we focus our attention on JPEG 2000, which is a next generation image 
compression standard. JPEG 2000 distinguishes itself from older generation of compression standard, such as JPEG, not only 
by higher compression ratio, but also by an array of new functionalities. The most noticeable one among them is the scalable 
functionality. From a compressed JPEG 2000 bitstream, it is possible to extract a subset of the bitstream that decodes to an 
image of lower quality (with higher compression ratio), lower-resolution, and/or smaller spatial region. In other words, 
instead of manipulating the image in the space domain as shown in Figure 1, we may manipulate the image directly on the 
compressed domain, and form a new bitstream that suits the application better.  

Scalable image compression has important applications in image storage and delivery. Let us first examine the application 
of digital photography. Right now, digital cameras on the market all use non-scalable image compression technologies, 
mainly JPEG. A camera with a fixed amount of the memory can accommodate a small number of high quality, high-
resolution images, or a large number of low quality, low-resolution images. Unfortunately, image quality and resolution 
setting has to be determined before the shooting of photos. This leads to painful trade off between removing lovely photos to 
make space for new exciting shots, and shooting photos with poor quality and resolution setting. With scalable image 
compression, it is possible for the digital cameras to adjust the image quality and resolution after the photo is shot. One can 
always shot images at the highest possible quality and resolution setting to his heart content. When the camera memory is 
filled to its capacity, the compressed bitstream of existing shots may be truncated to smaller size to leave room for the 
upcoming shots. Thus, one may also choose to cut down resolution and quality of some photos resolution, while keep others 
still in high resolution and quality setting. In this way, through dynamically trading between the number of images and the 
image quality, the use of precious camera memory is wisely-decided, and the quality of the shot is maximized.  

Another important application of the scalable image compression is for web browsing. As the resolution of the digital 
camera and the digital scanner becomes higher and higher, high-resolution digital image becomes a reality. It is very pleasing 
to view a high-resolution image, however, to see it over web, it is equally painful to wait for the long compressed bitstream to 
be delivered. Before scalable image compression technology is available, it is common practice to generate multiple copies of 
the compressed bitstream with different spatial region, resolution and compression ratio, and put all copies on web server to 
accommodate possible network situations. As a result, these multiple copies of the bitstream for the same media file cause 
headaches in media management, and also wastes valuable server space. A better solution is to simply put a scalable master 
bitstream of the compressed image on the server. During image browsing, the user may specify a region of interest (ROI) 
with a certain spatial and resolution constraint. The browser only downloads a subset of the compressed media bitstream 
covering the current ROI, and the download can be performed in a progressive fashion so that a coarse view of the ROI can 
be rendered very quickly and then gradually refined as more and more bits are arrived. Therefore, with scalable image 
compression, it is possible to browse large image quickly and on demand over the Internet, as shown with the Vmedia project 
[25].   
 

3. JPEG 2000 
 
We first present a historical overview of the development of JPEG 2000. In the early 1990s, a number of new image 

compression algorithms, such as CREW (compression with reversible embedded wavelets) [5] and EZW (embedded zerotree 



wavelet) [6], emerged to provide not only superior compression performance, but also a new set of features unseen before. 
Based on industrial demand, JPEG 20001 research and development effort was initiated in 1996. A call for technical 
contributions was issued in Mar. 1997[17]. The first evaluation is performed in November 1997 in Sydney, Australia, where 
24 algorithms were submitted and evaluated. Based on the evaluation, it was decided to create a JPEG 2000 “verification 
model” (VM) which would lead to a reference implementation for the following standard process. The first VM (VM0) is 
based on the wavelet/trellis coded quantization (WTCQ) algorithm submitted by SAIC and the University of Arizona 
(SAIC/UA)[18]. At the November 1998 meeting, the algorithm EBCOT (embedded block coding with optimized truncation) 
was adopted into VM3, and the entire VM software was re-implemented in an object-oriented manner. The document 
describing the basic JPEG 2000 decoder (part I) reached “Committee draft” (CD) status in December 1999. JPEG 2000 
finally became an “International standard” (IS) in December 2000.  

JPEG 2000 standardizes the decoder and the bitstream syntax. Nevertheless, information on the encoder implementation 
is provided to assure a reasonable performance encoder. We choose to describe JPEG 2000 from the encoder perspective 
since it can be more easily understood.  
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Figure 2 Operation flow of JPEG 2000. 
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Figure 3 Operation flow of JPEG. 

The operation flow of a typical JPEG 2000 encoder can be shown in Figure 2. The first module is component and tile 
separation, whose function is to cut the image into manageable chunks and to decorrelate the color components. Huge 
original images, e.g., aero-photography images, are separated into spatially non-overlapping tiles of equal size. For multi-
component (color) images, a component transform is performed to decorrelate the components. For example, a color image 
with RGB (red, green and blue) components can be transformed to the YCrCb (Luminance, Chrominance red and 
Chrominance blue) or RCT (reversible component transform) component space. Each tile of each component is then 
processed separately. The data are first transformed into the wavelet domain, and are then quantized. After that, the quantized 
coefficients are regrouped to facilitate localized spatial and resolution access. Each subband of the quantized coefficients is 
divided into non-overlapping rectangular blocks. Three spatially co-located rectangles (one from each subband at a given 
resolution level) form a packet partition. Each packet partition is further divided into code-blocks, each of which is 
compressed into an embedded bitstream with a recorded rate-distortion curve. The embedded bitstream of the code-blocks are 
assembled into packets, each of which represents a quality increment of one resolution level at one spatial location. 
Collecting packets from all packet partitions of all resolution level of all tiles and all components, we form a layer that is one 
quality increment of the entire image at full resolution. The final JPEG 2000 bitstream may consist of multiple layers. 

                                                           
1 Acronyms are popular in industrial standard groups. Explanation of the acronyms involved are as follows: 
JPEG: Joint Photographic Experts Group. This is a group of experts nominated by national standards bodies and major 
companies to work to produce standards for continuous tone image coding. The official title of the committee is “ISO/IEC 
JTC1 SC29 Working Group 1”, which often appears in the reference document.  
ISO: International Standard Organization. 
IEC: International Electrotechnical Commission. 
JTC: Joint Technical Committee. 
SC: Sub Committee. 
 



For comparison purposes, we show the operation flow of a conventional JPEG encoder in Figure 3. Compare JPEG 2000 
with JPEG, there are a number of noticeable differences: 

1) Transform module: wavelet vs. DCT. 
JPEG uses 8x8 discrete cosine transform (DCT), while JPEG 2000 uses a wavelet transform with lifting implementation. 
The wavelet transform provides not only better energy compaction (thus higher coding gain), but also the resolution 
scalability. Because the wavelet coefficients can be separated into different resolutions, it is feasible to extract a lower 
resolution image by using only the wavelet coefficients at that resolution and up.  
2) Block partition: space domain vs. wavelet domain.  
JPEG partitions the image into 16x16 macroblocks in the space domain, and then applies the transform, quantization and 
entropy coding operation on each block separately. Since blocks are independently encoded, annoying blocking artifact 
becomes noticeable whenever the coding rate is low. On the contrary, JPEG 2000 performs the partition operation in the 
wavelet domain. Coupled with the wavelet transform, there is no blocking artifact in JPEG 2000.  
3) Entropy coding module: run-level coefficient coding vs bitplane coding. 
JPEG encodes the DCT transform coefficients one by one. The resultant block bitstream can not be truncated. JPEG 2000 
encodes the wavelet coefficients bitplane by bitplane. The generated bitstream can be truncated at any point with graceful 
quality degradation. It is the bitplane entropy coder in JPEG 2000 that enables the bitstream scalability.  
4) Rate control: quantization module vs. bitstream assembly module. 
In JPEG, the compression ratio and the amount of distortion is determined by the quantization module. In JPEG 2000, the 
functionality of the quantization module is simply to convert the float coefficient of the wavelet transform module into 
integer coefficient for further entropy coding. The compression ratio and distortion is determined by the bitstream 
assembly module. That is also the reason that by reassemble the bitstream, the JPEG 2000 compressed bitstream can be 
quickly converted to a bitstream of higher compression ratio without entropy coding and transform.  
 
In the following, we examine the transform, quantization & packet formation, code-block entropy coding and bitstream 

assembler modules of JPEG 2000 in details.  
 

4. WAVELET TRANSFORM 
4.1. Introduction 
 

Most existing high performance image coders in application are transform based coders, and they exist for a very good 
reason: the transform coder provides good compression performance with reasonable complexity. In the transform coder, the 
image pixels are converted from the space domain to the transform domain through a linear orthogonal or bi-orthogonal 
transform. The transform decorrelates the pixels and compacts the energy into a small number of coefficients, results in 
efficient coding of the transform coefficients. Since most of the energy is compacted into a few large transform coefficients, 
we may adopt entropy coding scheme that easily locates those coefficients and encodes them. Because the transform 
coefficients are decorrelated, the subsequent quantizer and entropy coder can ignore the correlation among the transform 
coefficients, and model them as independent random variables.  

The optimal transform of an image block can be derived through Karhunen-Loeve (K-L) decomposition. However, K-L 
transform lacks fast computation, and the transform is content dependent. It is thus not suited for the compression purposes. 
Popular transforms adopted in image coding include block based transform, such as DCT, and wavelet transform. DCT 
transform can be quickly computed, and achieves good energy compaction as well as coefficient decorrelation. The widely 
used JPEG image compression standard is a DCT based coding algorithm. However, the DCT is calculated on block of pixels 
independently, therefore, coding error causes discontinuity between the blocks which leads to annoying blocking artifact. On 
the contrary, the wavelet transform operates on the entire image (or a tile of a component in the case of large color image), 
which offers better energy compaction than the DCT, and no blocking artifact after coding. Moreover, the wavelet transform 
decomposes the image into an L-level dyadic wavelet pyramid, as shown in Figure 4. Thereby, The resultant wavelet 
coefficient can be easily scaled in resolution: by not using the wavelet coefficients at the finest M-levels, we may reconstruct 
an image that is 2M times smaller than the original one in both the horizontal and vertical direction. The multi-resolution 
nature of the wavelet transform is just ideal for resolution scalability.  
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Figure 4 Wavelet transform.  

 
4.2. Wavelet Transform by Lifting.  
 

Wavelet is a signal representation that the low pass coefficients represent slow changing long data segment, and the high 
pass coefficients represent localized change in short data segment. It provides an elegant framework in which both short term 
anomaly and long term trend can be analyzed on equal footing. For theory of wavelet and multi-resolution analysis, we refer 
the reader to [7]-[9]. 

The framework of a one-dimensional wavelet transform can be shown in Figure 5. We present both the signal and filter 
with their z-transform. The original signal X(z) goes through a low and high pass analysis FIR (finite impulse response) filter 
pair G(z) and H(z), and the results in both routes are sampled by a factor of 2. To reconstruct the original signal, the low and 
high pass coefficients γ(z) and λ(z) are upsampled by a factor of 2 and pass through another pair of synthesis FIR filters G’(z) 
and H’(z). Although IIR (infinite impulse response) filter can also be used, the infinite response leads to infinite data 
expansion, which is an undesired drawback. According to the filter bank theory, if the filters satisfy:  
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The aliasing caused by the subsampling will be cancelled, and the reconstructed signal Y(z) will be exactly the same as the 
original.  
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Figure 5 Framework of a one dimensional wavelet transform. 

A wavelet transform implemented in the fashion of Figure 5 with FIR filters is called convolutionary implementation, as 
the signal is convoluted with the filter bank. Note that only half the samples are kept, and the other half of the filtered 
samples are thrown away. Clearly this is not efficient, and it would be better to do the subsampling before the filtering 
operation. This leads to an alternative implementation of the wavelet transform termed lifting approach, which turns out that 
all FIR wavelet filters can be factored into lifting step. We explain the basic idea in the follows. For those interested in 
getting a deeper understanding, we refer to [10]-[12]. 

We first explain the basics of Laurent polynomial. Let the z-transform of a FIR filter H(z) be represented by a Laurent 
polynomial or Laurent series, which is a normal polynomial plus possible negative components: 
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Let the degree of a Laurent polynomial h be defined as:   



 pqh −= . (3) 

The length of a filter is thus equal to the degree of its associated polynomial plus one. The sum or difference of two 
Laurent polynomials is again a Laurent polynomial and the product of two Laurent polynomials of degree a and b is a 
Laurent polynomial of degree a+b. Exact division is in general not possible, but division with remainder is. This means that 
for any two Laurent polynomials a(z) and b(z)  0, with |a(z)|  |b(z)| there will always exist a Laurent polynomial q(z) with 
|q(z)| = |a(z)| - |b(z)|, and a Laurent polynomial r(z) with |r(z)| < |b(z)| so that: 
 )()()()( zrzqzbza += . (4) 

This division is not necessarily unique. A Laurent polynomial is invertible if and only if it is of degree zero, i.e. if it is in 
the form of zp. 

Considering the fact that a subsampling operation is performed at the forward wavelet, and an upsampling operation is 
performed at the inverse wavelet, we may split the z-transform of the signal/filter in even and odd parts: 
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The even/odd parts are the z-transform of subsampled signal at even/odd index. They can be converted to and from the 
original z-transform with the following equations: 
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With (6), we may rewrite the wavelet filtering and subsampling operation using the even/odd parts of the signal and filter 
as: 
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The above equation can be written in a matrix form as: 
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where P(z) is the polyphase matrix: 
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 The forward wavelet now becomes the left part of Figure 6. Note that with polyphase matrix, we perform the 
subsampling (split) operation before the signal is filtered, which saves computation compare with the operation in Figure 5, 
where the subsampling is performed after the signal is filtered. We move on to the inverse wavelet transform. It can be easily 
derived that the odd/even subsampling of the reconstructed signal can be obtained through: 
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where P’(z) is a dual polyphase matrix: 
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The wavelet transform is invertible if the two polyphase matrices are inverse of each other, i.e., 
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If we constraint that the determinant of the polyphase matrix be 1, i.e., 1)()()()( =− zGzHzGzH oeeo
, not only the 

polyphase matrices are invertible, but also the inverse filter have the following simple relationship with the forward filter: 
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which implies that the inverse filter is related to the forward filter by the following: 
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Such filter pair (g,h) is called complementary filter pair. We may now redraw the forward and inverse wavelet transform 
using polyphase matrix shown in Figure 6. 
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Figure 6 One stage wavelet filter using polyphase matrices. 

With the Laurent polynomial and polyphase matrix, we can factor a wavelet filter into the lifting steps. Starting with a 
complementary filter pair (g,h), let us assume that the degree of filter g is larger than that of filter h. We seek a new filter gnew 
which satisfies: 
 ).()()()( 2 zgztzhzg new+=  (15) 

where t(z) is a Laurent polynomial. Both t(z) and gnew(z) can be calculated through long division[10], which is originally 
developed to find the greatest common divisor, yet can be extend to Laurent polynomials. The new filter gnew is 
complementary to filter h, as the polyphase matrix satisfies:  
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It is obvious that the determinant of the new polyphase matrix Pnew(z) also equals 1. By performing the operation 
iteratively, it is possible to fact the polyphase matrix into a sequence of lifting steps: 
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The resultant lifting wavelet can be shown in Figure 7. 
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Figure 7 Multi-stage forward lifting wavelet using polyphase matrices. 

The lifting wavelet can be directly inversed as each stage matrix in (17) can be directly inversed: 
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We may show the inverse lifting wavelet using polyphase matrices in Figure 8. Compare Figure 8 with Figure 7, we note 
that only the direction of the data flow has changed.  
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Figure 8 Multi-stage inverse lifting wavelet using polyphase matrices. 

4.3. Bi-orthogonal 9-7 Wavelet and Boundary Extension. 
 

The default wavelet filter used in JPEG 2000 is the bi-orthogonal 9-7 wavelet. It is a 4-stage lifting wavelet, with lifting 
filters s1(z)=f(a,z), t1(z)=f(b,z), s2(z)=f(c,z), t0(z)=f(d,z), where f(p,z) is a dual lifting step in the form of: 
 ,),( 1 ppzzpf += −  (19) 
and p=a, b, c and d are lifting parameters at each stage. For better illustration, we redraw this wavelet filter in Figure 9, 
where the input data is expanded as …x0, x1, 

…, x8
…, and the lifting operation is performed from right to left, stage by stage. At 



this moment, we assume that the data is of infinite length, and will discuss boundary extension later. The input data are first 
partitioned into two groups corresponding to even and odd indices. During each lifting stage, only one of the group is 
updated. In the first lifting stage, the odd index data point x1, x3, 

… are updated. The operation corresponds to the filter s1(z) in 
Figure 7: 
 x’

2n+1 = x2n+1 + a * ( x2n + x2n+2 ),  (20) 
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Figure 9 Bi-orthogonal 9-7 wavelet. 

where a and x’
2n+1 is the first stage lifting parameter and outcome, respectively. The circle in Figure 9 illustrate one of such 

operation performed on x’
1. The second stage lifting, which corresponds to the filter t1(z) in Figure 7, update the data at even 

indices: 
 x”2n = x2n + b * ( x’2n-1 + x’2n+1 ),  (21) 
where we refer the second stage lifting parameter and outcome as b and x”

2n, respectively. The third and fourth stage lifting 
can be performed in similar fashions: 
 Hn = x’2n+1 + c * ( x”2n + x”2n+2 ),  (22) 
 Ln = x”2n + d * ( Hn-1 + Hn ).  (23) 
where Hn and Ln are the resultant high and low pass coefficients. The value of the lifting parameters a, b, c and d are shown 
in Figure 9.  

Shown by Figure 8, we may simply inverse the data flow, and derive the inverse lifting of the 9-7 bi-orthogonal wavelet 
can be shown in Figure 10. 
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Figure 10 Forward and inverse lifting (9-7 floating wavelet). 



Since the actual data in an image transform is finite in length, boundary extension is a crucial part of every wavelet 
decomposition scheme. For symmetrical odd-tap filter (the bi-orthogonal 9-7 wavelet is in this category), symmetrical 
boundary extension can be used. The data are symmetrically reflected along the boundary, with the boundary points 
themselves not involved in the reflection. An example boundary extension with four data points x0, x1, x2 and x3 is shown in 
Figure 11. Because both the extended data and the lifting structure are symmetrical, all the intermediate and final results of 
the lifting are also symmetrical with regard to the boundary points. With such an observation, we do not even need to actually 
extend the data. It is sufficient to double the lifting parameters of the branches that are pointing toward the boundary, as show 
in the middle of Figure 11. Thus, the boundary extension can be performed without additional computational complexity. The 
inverse lifting can again be derived by inversing the data flow, as shown in the right of Figure 11. Again, the parameters of 
branches that are pointing toward the boundary points are doubled.  
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Figure 11 Symmetrical boundary extension of bi-orthogonal 9-7 wavelet on 4 data points. 

4.4. Two-Dimensional Wavelet Transform 
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Figure 12 2D wavelet transform. 

To apply wavelet transform to a 2D array, such as an image, it is a common practice to apply the wavelet transform in the 
horizontal and vertical direction separately. This approach is called 2D-separable wavelet transform. It is possible to design a 
2D non-separable wavelet, which directly uses the 2D filtering and subsampling operation, however, the computational 
complexity will be greatly increased, while the additional coding gain is very limited. A sample one scale 2D-separate 
wavelet transform is shown in Figure 12. The 2D data array of the image is first filtered in the horizontal direction, which 
results in two subbands, - a horizontal low and a horizontal high pass subband. Each subband then passes through a vertical 
wavelet filter. The image is thus decomposed into four subbands, - subband LL (low pass horizontal and vertical filter), LH 
(low pass vertical and high pass horizontal filter), HL (high pass vertical and low pass horizontal filter) and HH (high pass 
horizontal and vertical filter). Since the wavelet transform is a linear transform, we may switch the order of the horizontal and 
vertical wavelet filter, yet still reach the same effect. By further decomposing the subband LL with another 2D wavelet, we 
may derive a multi-scale dyadic wavelet pyramid. A sample dyadic wavelet pyramid of 5-levels is shown in Figure 4. There 
are three subbands for each of the level from scale 2 to 5, where each subband contains coefficients of the vertical edge (the 
LH subband), the horizontal edge (the LH subband) and the diagonal edge (the HH subband). There are four subbands in 
scale 1, where the additional LL subband contains the global low pass information. The multi-scale dyadic wavelet is ideal 
for multi-resolution representation. By using only the wavelet coefficients at the finest M-levels, and performing an M-scale 



inverse wavelet, we may reconstruct the LL subband of the M-level, which can be considered as a lower resolution 
representation of 2M subsampling of the original image.  

 
4.5. Line Based Lifting 
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Figure 13 Line based lifting wavelet (bi-orthogonal 9-7 wavelet) 

A trick in implementing the 2D wavelet transform is line based lifting, which avoids the buffering of the entire 2D image 
during the vertical wavelet lifting operation. The concept can be shown in Figure 13, which is very similar to Figure 9, except 
each circle now represents a line of image. In stead of performing the lifting stage by stage, as in Figure 9, line based lifting 
computes the vertical low and high pass lifting one line at a time. The operation can be described below as: 
Step 1. Initialization - phase 0. 

Three lines of coefficients x0, x1 and x2 are processed. Two lines of lifting operations are performed, and intermediate 
results x’1  and x”0 are generated. 
Step 2. Initialization - phase 2.  

Two additional lines of coefficients x3 and x4 are processed. Four lines of lifting operations are performed. The outcomes 
are the intermediate results x’3  and x”4, and the first line of low and high pass coefficients L0  and H0. 
Step 3. Repeated processing.  

During the normal operation, the line based lifting module reads in two lines of coefficients, performs four lines of lifting 
operations, and generates one line of low and high pass coefficients.  
Step 4. Flushing.  

When the bottom of the image is reached, symmetrical boundary extension is performed to correctly generate the final 
low and high pass coefficients.  

 
For 9-7 bi-orthogonal wavelet, with line based lifting, only 6 lines of working memory are required to perform the 2D 

lifting operation. By eliminating the need to buffer the entire image during the vertical wavelet lifting operation, the cost to 
implement 2D wavelet transform can be greatly reduced.  



 
5. QUANTIZATION & PARTITIONING 
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Figure 14 Quantization module. 

After the wavelet transform, all wavelet coefficients are uniformly quantized by the following: 

 











=

δ
m,n

m,nnm

s
ssignw )(, , (24) 

where sm,n is the transform coefficients, wm,n is the quantization result, δ is the quantization step size, sign(x) returns the sign 
of coefficient x, and  x  operation obtains the largest integer that is less or equal than x. The effect of quantization can be 
shown in Figure 14.  

The quantization process of JPEG 2000 is very similar to that of a conventional coder, such as JPEG. However, the 
functionality is very different. In a conventional coder, the quantization process determines the allowable distortion of the 
transform coefficients, as the quantization result is losslessly encoded. In JPEG 2000, the quantized coefficients are 
embedded coded, thus additional distortion can be introduced in the following entropy coding steps. The main functionality 
of the quantization module is thus to map the coefficients from floating representation into integer so that they can be more 
efficiently processed by the entropy coding module. The image coding quality is not determined by the quantization step size 
δ, but by the subsequent bitstream assembler. The default quantization step size in JPEG 2000 is thus rather fine, e.g., 
δ=1/128. 

The quantized coefficients are partitioned into packets. Each subband is divided into non-overlapping rectangles of equal 
size. Three rectangles corresponding to the same space location at the directional subbands HL, LH, HH of each resolution 
level comprise a packet. The packet partition provides spatial locality as it contains information needed for decoding image of 
a certain spatial region at a certain resolution.  

The packets are further divided into non-overlapping rectangular code-blocks, which are the fundamental entities in the 
entropy coding operation. By operating the entropy coder on relatively small code-blocks, the original and working data of 
the entire code-blocks can reside in the cache of the CPU during the entropy coding operation, thus greatly improves the 
encoding and decoding speed. In JPEG 2000, the default size of a code-block is 64x64.  
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Figure 15 A sample partition and code-blocks. 

A sample partition and code-blocks are shown in Figure 15. We mark the partition with solid thick lines. The partition 
contains quantized coefficients at spatial location (128,128) to (255,255) of the resolution 1 subbands LH, HL and HH. It 
corresponds to the resolution 1 enhancement of the image with spatial location (256,256) to (511, 511). The partition is 
further divided into 12 64x64 code-blocks, which are shown as numbered blocks in Figure 15.  

 
6. BLOCK ENTROPY CODING 

45 0 0 0
-74 -13 0 0

21 0 4 0
14 0 23 23

0 0 0 0
3 0 4 0

0 3 5 0
0 0 0 0

0 1 -1 0
-4 33 0 -1

0 0 1 0
0 0 0 0

-4 5 0 0
-18 0 0 19

4 0 23 0
-1 0 0 0

BITSTREAM

D

R

R-D CURVE

45 0 0 0
-74 -13 0 0

21 0 4 0
14 0 23 23

0 0 0 0
3 0 4 0

0 3 5 0
0 0 0 0

0 1 -1 0
-4 33 0 -1

0 0 1 0
0 0 0 0

-4 5 0 0
-18 0 0 19

4 0 23 0
-1 0 0 0

45 0 0 0
-74 -13 0 0

21 0 4 0
14 0 23 23

0 0 0 0
3 0 4 0

0 3 5 0
0 0 0 0

0 1 -1 0
-4 33 0 -1

0 0 1 0
0 0 0 0

-4 5 0 0
-18 0 0 19

4 0 23 0
-1 0 0 0

BITSTREAM

D

R

R-D CURVE

D

R

R-D CURVE

 
Figure 16 Block entropy coding. 

Each code-block is then independently encoded through a sub-bitplane entropy coder. The output bitstream of the entropy 
coder has the embedding property that the bitstream can be truncated at any point and still be decodable. In JPEG 2000, the 
output of the block entropy coder not only includes the embedded bitstream, but also includes a rate-distortion (R-D) curve 
that measures the distortion of the code-block at certain rate points, as shown in Figure 16. The entropy coder also measures 
both the coding rate and distortion during the encoding process. The coding rate is derived directly through the length of the 
coding bitstream at certain instances, e.g., at the end of each sub-bitplane. The coding distortion is obtained by measuring the 
distortion between the original coefficient and the reconstructed coefficient at the same instance. 

To explain the sub-bitplane entropy coder, we examine three key parts of the coder: the coding order, the context, and the 
arithmetic MQ-coder.  

 
6.1. Embedded Coding  
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Figure 17 Coefficients and binary representation. 



Let each quantized coefficient wm,n be represented in the binary form as: 
 ±b1b2 

…bn (25) 
where b1 is the most significant bit (MSB), and bn is the least significant bit (LSB), and ± represents the sign of the 
coefficient. Let a group of bits at the same significance level of all coefficients be a bitplane. For example, bit b1 of all 
coefficients forms the most significance bitplane of the code-block. By coding the more significant bits of all coefficients 
first, and coding the less significant bits later, the output compressed bitstream is said to have the embedding property, as a 
lower rate bitstream can be obtained by truncating a higher rate bitstream, which results in a partial decoding of all 
coefficients.  A sample binary representation of the coefficient can be shown in Figure 17. Since representing bits in a 2D 
block results in a 3D bit array which is very difficult to draw, we only show the binary representation of a column of 
coefficients as a 2D bit array in Figure 17. However, keep in mind that the true bit array in a code-block is 3D.  

The bit array that represents the quantized coefficient consists both bits and sign of the coefficient. Moreover, the bits in 
the bit array are statistically different. Let bM be a bit in a coefficient x which is to be encoded. If all more significant bits in 
the same coefficient x are ‘0’s, the coefficient x is said to be insignificant (because if the bitstream is terminated at this point 
or before, coefficient x will be reconstructed to zero), and the current bit bM is to be encoded in the mode of significance 
identification. Otherwise, the coefficient is said to be significant, and the bit bM is to be encoded in the mode of refinement. 
We distinguish between significance identification and refinement bits because the significance identification bit has a very 
high probability of being ‘0’, and the refinement bit is usually equally distributed between ‘0’ and ‘1’. The sign of the 
coefficient needs to be encoded immediately after the coefficient turns significant, i.e., a first non-zero bit in the coefficient is 
encoded. For the bit array in Figure 17, the significance identification and the refinement bits are shown with different shades 
in Figure 18.  
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Figure 18 Embedded coding of bit array. 

6.2. Context 
 
It is pointed out[14][21] that the significant identification bits, refinement bits and signs are not statistically equal among 

themselves either. For example, if a quantized coefficient xi,j is of large magnitude, its neighbor coefficients may be of large 
magnitude as well. This is because a large coefficient locates an anomaly (e.g., a sharp edge) in the smooth signal, and such 
anomaly usually causes a cluster of large wavelet coefficients in the neighborhood as well. To account for such statistical 
difference, we entropy encode the significant identification bits, refinement bits and signs with context, each of which is a 
number derived from already coded coefficients in the neighborhood of the current coefficient. The bit array that represents 
the data is thus turned into a sequence of bit-context pairs, as shown in Figure 19, which is subsequently encoded by a context 
adaptive entropy coder. In the bit-context pair, it is the bit information that is actually encoded. The context associated with 
the bit is determined from the already encoded information. It can be derived by the encoder and the decoder alike, provided 
both use the same rule to generate the context. Bits in the same context are considered to have similar statistic properties, so 
that the following entropy coder can measure the probability distribution within each context and efficiently compress the 
bits.  
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Figure 19 Coding bits and contexts. Note that the context is derived from information of the already coded bits. 

In the following, we describe the contexts that are used in the significant identification, refinement and sign coding of 
JPEG 2000. For the rational of the context design, we refer to [2][19]. To determine the context of significant identification 
bit, a two step process is performed: 
Step 1. Neighborhood statistics.  

For each bit of the coefficient, the number of significant horizontal, vertical and diagonal neighbors are counted as h, v 
and d, as shown in Figure 20. 
Step 2. Lookup table. 

According to the direction of the subband that the coefficient is located (LH, HL, HH), the context of the encoding bit is 
indexed through one of the three tables shown in Table 1. A total of nine context categories are used for significance 
identification coding. The table lookup process reduces the number of contexts and enables probability of the statistics within 
each context to be quickly obtained.  
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Figure 20 Number of significant neighbors: horizontal (h), vertical (v) and diagonal (d). 

Table 1 Context for the significance identification coding. 

LH Subband (also used for LL)
(vertically high-pass)

HL Subband
(horizontally high-pass)

HH Subband
(diagonally high-pass)

h v d context h v d context d h+v context

2 x x 8 x 2 x 8 ≥3 x 8

1 ≥1 x 7 ≥1 1 x 7 2 ≥1 7

1 0 ≥1 6 0 1 ≥1 6 2 0 6

1 0 0 5 0 1 0 5 1 ≥2 5

0 2 x 4 2 0 x 4 1 1 4

0 1 x 3 1 0 x 3 1 0 3

0 0 ≥2 2 0 0 ≥2 2 0 ≥2 2

0 0 1 1 0 0 1 1 0 1 1

0 0 0 0 0 0 0 0 0 0 0

LH Subband (also used for LL)
(vertically high-pass)

HL Subband
(horizontally high-pass)

HH Subband
(diagonally high-pass)

h v d context h v d context d h+v context

2 x x 8 x 2 x 8 ≥3 x 8

LH Subband (also used for LL)
(vertically high-pass)

HL Subband
(horizontally high-pass)

HH Subband
(diagonally high-pass)

h v d context h v d context d h+v context

2 x x 8 x 2 x 8 ≥3 x 8

1 ≥1 x 7 ≥1 1 x 7 2 ≥1 7

1 0 ≥1 6 0 1 ≥1 6 2 0 6

1 0 0 5 0 1 0 5 1 ≥2 5

1 ≥1 x 7 ≥1 1 x 7 2 ≥1 7

1 0 ≥1 6 0 1 ≥1 6 2 0 6

1 0 0 5 0 1 0 5 1 ≥2 5

0 2 x 4 2 0 x 4 1 1 4

0 1 x 3 1 0 x 3 1 0 3

0 0 ≥2 2 0 0 ≥2 2 0 ≥2 2

0 2 x 4 2 0 x 4 1 1 4

0 1 x 3 1 0 x 3 1 0 3

0 0 ≥2 2 0 0 ≥2 2 0 ≥2 2

0 0 1 1 0 0 1 1 0 1 1

0 0 0 0 0 0 0 0 0 0 0  
 



To determine the context for sign coding, we calculate a horizontal sign count h and a vertical sign count v. The sign 
count takes a value of -1 if both horizontal/vertical coefficients are negative significant; or one coefficient is negative 
significant, and the other is insignificant. It takes a value of +1 if both horizontal/vertical coefficients are positive significant; 
or one coefficient is positive significant, and the other is insignificant. The value of the sign count is 0 if both 
horizontal/vertical coefficients are insignificant; or one coefficient is positive significant, and the other is negative significant.  

With the horizontal and vertical sign count h and v, an expected sign and a context for sign coding can then be calculated 
according to Table 2. 

Table 2 Context and the expected sign for sign coding. 

H -1 -1 -1 0 0 0 1 1 1 Sign count 
V -1 0 1 -1 0 1 -1 0 1 

Expected sign - - - - + + + + + 
Context 13 12 11 10 9 10 11 12 13 

 
To calculate the context for the refinement bits, we measure if the current refinement bit is the first bit after significant 

identification, and if there is any significant coefficients in the immediate eight neighbors, i.e., h+v+d>0. The context for the 
refinement bit can be tabulated in Table 3. 

 
Table 3 Context for the refinement bit. 

Context Description 
14 Current refinement bit is the first bit after significant identification and there is no 

significant coefficient in the eight neighbors  
15 Current refinement bit is the first bit after significant identification and there is at 

least one significant coefficient in the eight neighbors 
16 Current refinement bit is at least two bits away from significant identification. 

 
 
6.3. MQ-coder: Context Dependent Entropy Coder.  
 

Through the aforementioned process, a data array is turned into a sequence of bit-context pairs, as shown in Figure 19. All 
bits associated with the same context are assumed to be independently identical distributed (i.i.d). Let the number of contexts 
be N, and let there be ni bits in context i, within which the probability of the bits to take value ‘1’ be pi. Shannon’s 
information theory [15][16] indicates that the entropy of such bit-context sequence can be calculated as: 

 [ ]∑
−

=
−−−−=

1

0
22 )1(log)1(log

N

i
iiiii ppppnH . (26) 

The task of the context entropy coder is thus to convert the sequence of bit-context pairs into a compact bitstream 
representation with length as close to the Shannon limit as possible, as shown in Figure 21. Several coders are available for 
such task. The coder used in JPEG 2000 is the MQ-coder. In the following, we focus the discussion on three key aspects of 
the MQ-coder: the general arithmetic coding theory, fixed point arithmetic implementation and probability estimation. For 
more details, we refer to [22][23]. 
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Figure 21 Input and output of the MQ-coder. 
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Figure 22 Probability interval subdivision. 

6.3.1 The Elias Coder  
The basic theory of the MQ-coder can be traced to the Elias Coder[24], or recursive probability interval subdivision. Let 

S0S1S2
…Sn be a series of binary bits that is sent to the arithmetic coder. Let Pi be the probability that the bit Si be ‘1’. We may 

form a binary representation (the coding bitstream) of the original bit sequence by the following process: 
Step 1. Initialization.  

Let the initial probability interval be (0.0, 1.0). We denote the current probability interval as (C, C+A), where C is the 
bottom of the probability interval, and A is the size of the interval. At the initialization, we have C=0.0 and A=1.0.  
Step 2. Probability interval subdivision.  

The binary symbols S0S1S2
…Sn are encoded sequentially. For each symbol Si, the probability interval (C, C+A) is 

subdivided into two sub-intervals (C, C+A·(1-Pi)) and (C+A·(1-Pi), C+A). Depending on whether the symbol Si is ‘1’, one of 
the two sub-intervals is selected. That is: 
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Step 3. Bitstream output.  
Let the final coding bitstream be referred as k1k2…km, where m is the compressed bitstream length. The final bitstream 

creates an uncertainty interval where the lower and upper bound can be determined as: 
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As long as the uncertainty interval (B,D) is contained in the probability interval (C, C+A), the coding bitstream uniquely 
identifies the final probability interval, and thus uniquely identifies each subdivision in the Elias coding process. The entire 
binary symbol strings S0S1S2

…Sn can thus be recovered from the compressed representation. It can be shown that it is possible 
to find a final coding bitstream with length: 
   1log2 +−≤ Am , (29) 
to represent the final probability interval (C, C+A). Notice A is the probability of the occurrence of the binary strings 
S0S1S2

…Sn, and the entropy of the original symbol stream can be calculated as: 

 ∑−=
nSSS

AAH
L10

2log . (30) 

The arithmetic coder thus encodes the binary string within 2 bits of its entropy limit, no matter how long the symbol string is. 
This is very efficient.  
 
6.3.2 The Arithmetic Coder: Finite Precision Arithmetic Operation.  

Implementation of the Elias coding requires infinite precision arithmetic operations, which is unrealistic in the real 
applications. Using finite precision, the arithmetic coder is developed from Elias coding. Observing the fact that the coding 
interval A becomes very small after a few operations, we may normalize the coding interval parameter C and A as: 
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where L is a normalization factor determines the magnitude of the interval A, Ax and Cx are fixed-point integers representing 
values between (0.75,1.5) and (0.0, 1.5), respectively. Bits k1k2…km are the output bits that are already been determined (in 
reality, certain carry over operations have to be handled to derive the true output bitstream). By representing the probability 
interval with the normalization L and fixed-point integers Ax and Cx, it is possible to use fixed-point arithmetic and 
normalization operations for the probability interval subdivision operation. Moreover, since the value of Ax is close to 1.0, we 
may approximate Ax·Pi with Pi, the interval sub-division operation (27) can then be calculated as: 
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which can be done quickly without any multiplication operation. The compression performance suffers a little bit, as the 
coding interval now has to be approximated with a fixed-point integer, and Ax·Pi is approximated with Pi. However, 
experiments show that the degradation in compression performance is less than 3%, which is well worth the saving in 
implementation complexity.  
 
6.3.3 Probability Estimation.  

In the arithmetic coder, it is necessary to estimate the probability of ‘1’ (Pi ) of each binary symbol Si. This is where the 
context comes into play. Within each context, it is assumed that the symbols are independently identically distributed (i.i.d.). 
We may then estimate the probability of the symbol within each context through observing the past behaviors of symbols in 
the same context. For example, if we observe ni symbols in context i, with oi symbols to be ‘1’, we may estimate the 
probability of symbols to take value ‘1’ in context i through Bayesian estimation as: 
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In the MQ-coder[22], the probability estimation is implemented through a state transition machine. It may estimate the 
probability of the context more efficiently, and may take into consideration the non-stationary characteristic of the symbol 
string. Nevertheless, the principle is still to estimate the probability based on past behavior of the symbols in the same 
context.  
 
 
6.4. Coding Order: Sub-bitplane Entropy Coder.  
 

In JPEG 2000, because the embedded bitstream of a code-block may be truncated, the coding order, which is the order 
that the data array is turned into bit-context pair sequence, is of paramount importance. A sub-optimal coding order may 
leave important information lost after the coding bitstream is truncated, and lead to severe coding distortion. It turns out that 
the optimal coding order is first to encode those bits with the steepest rate-distortion slope, i.e., the largest coding distortion 
decrease per bit spent [21]. Just as the statistic properties of the bits are different in the bit array, their contribution of the 
coding distortion decrease per bit is also different.  

Let us consider a bit bi in the ith most significant bitplane, where there are a total of n bitplane. If the bit is a refinement 
bit, before the coding of the bit, the uncertainty interval of the coefficient is (A,A+2n-i). After the refinement bit has been 
encoded, the coefficient lies either in (A,A+2n-i-1) or (A+2n-i,A+2n-i-1). Let the bit be equally probable to be ‘0’ and ‘1’, the 
entropy of the refinement bit is: 
 .1bitRREF = . (34) 

 
If we further assume that the value of the coefficient is uniformly distributed in the uncertainty interval, we may calculate the 
expected distortion before and after the coding as: 
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It can then be easily derived that the expected rate-distortion slope for the refinement bit is: 
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If the bit is a significance identification bit, before the coding of the bit, the uncertainty interval of the coefficient ranges 
from -2n-i to 2n-i. After the bit has been encoded, if the coefficient becomes significant, it lies in (-2n-i, -2n-i-1) or (+2n-i-1, +2n-i) 
depending on the sign of the coefficient. If the coefficient is still insignificant, it lies in (-2n-i-1, 2n-i-1). We assume the 
probability that the coefficient becomes significant is p, the average number of bits to encode the significant identification bit 
can be calculated as: 
 ).(1log)1(log)1( 22 pHppppppRSIG +=⋅+−−−−= . (37) 
where H(p)=-(1-p)log2(1-p)-plog2p is the entropy of the binary symbol with the probability of ‘1’ be p. In (37), we account 
for the one bit which is needed to encode the sign of the coefficient if it becomes significant. We note that if the coefficient is 
still insignificant, the reconstructed coefficient before and after coding will be both 0, which leads to no distortion decrease 
(coding improvement). The coding distortion only decreases if the coefficient becomes significant. Assuming the coefficient 
is uniformly distributed within the significance interval (-2n-i, -2n-i-1) or (+2n-i-1, +2n-i), we may calculate the coding distortion 
decrease as: 
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We may then derive the expected rate-distortion slope for the significance identification bit coding as: 
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From (36) and (39), we may arrive at the following conclusions: 

Conclusion 1. The more significant bit should be encoded earlier.  
A key observation is, within the same coding category (significance identification/refinement), one more significance 

bitplane translates into 4 times more contribution in distortion decrease per coding bit spent. Therefore, the code-block 
should be encoded bitplane by bitplane.  
Conclusion 2. Within the same bitplane, we should first encode the significance identification bit with a higher probability of 
significance.  

It can be easily proven that the function H(p)/p monotonically increases as the probability of significance decreases. As a 
result, the higher probability of significance, the higher contribution of distortion decrease per coding bit spent.  
Conclusion 3. Within the same bitplane, the significance identification bit should be encoded earlier than the refinement bit 
if the probability of significance is higher than 0.01.  

It is observed that the insignificant coefficients with no significant coefficients in its neighborhood usually have a 
probability of significance below 0.01, while insignificant coefficients with at least one significant neighbor usually have a 
higher probability of significance. The entropy coder in JPEG 2000 thus encodes the code-block bitplane by bitplane, from 
the most significant bitplane to the least significant bitplane; and within each bitplane, the bit array is further ordered into 
three sub-bitplanes: the predicted significance (PS), the refinement (REF) and the predicted insignificance (PN).  

 
Using the data array in Figure 18 as an example, we illustrate the block coding order of JPEG 2000 with a series of sub-

figures in Figure 23. Each sub-figure shows the coding of one sub-bitplane. The block coding order of JPEG 2000 is as 
follows: 
Step 1. The most significant bitplane. (PN sub-bitplane of b1, shown in Figure 23(a)) 

First, the most significant bitplane is examined and encoded. Since at first, all coefficients are insignificant, all bits in the 
MSB bitplane belong to the PN sub-bitplane. Whenever a bit ‘1’ is encountered, which renders the corresponding coefficient 
non-zero, the sign of the coefficient is encoded immediately afterwards. With the information of the already coded bits and 
the signs of the significant coefficients, we may figure out an uncertain range for each coefficient. The reconstruction value 
of the coefficient can also be set, e.g., at the middle of the uncertainty range. The outcome of our sample bit array after the 
coding of the most significant bitplane is shown in Figure 23(a). We show the uncertain range and the reconstruction value of 
each coefficient under columns “value” and “range” in the sub-figure, respectively. As the coding proceeds, the uncertainty 
range shrinks, and brings better and better representation to each coefficient.  
Step 2. The PS sub-bitplane of b2 (Figure 23(b))  

After all bits in the most significant bitplane have been encoded, the coding proceeds to the PS sub-bitplane of the second 
most significant bitplane (b2). The PS sub-bitplane consists of bits of the coefficients that are not significant, but has at least 
one significant neighbor. The corresponding sub-bitplane coding is shown in Figure 23(b). In this example, coefficients w0 
and w2 are the neighbors of the significant coefficient w1, and they are encoded in this pass. Again, if a bit ‘1’ is encountered, 
the coefficient becomes significant, and its sign is encoded right after. The uncertain ranges and reconstruction value of the 
coded coefficients are updated according to the newly coded information.  
Step 3. The REF sub-bitplane of b2 (Figure 23(c)) 



The coding then moves to the REF sub-bitplane, which consists of the bits of the coefficients that are already significant 
in the past bitplane. The significant statuses of the coefficients are not changed in this pass, and no sign of coefficients is 
encoded.  
Step 4. The PN sub-bitplane of b2 (Figure 23(d)) 

Finally, the rest of the bits in the bitplane are encoded in the PN sub-bitplane pass, which consists of the bits of the 
coefficients that are not significant and have no significant neighbors. Sign is again encoded once a coefficient turns into 
significant.  

Steps 2-4 are repeated for the following bitplanes, with the sub-bitplane coding ordered being PS, REF and PN for each 
bitplane. The block entropy coding continues until certain criteria, e.g., the desired coding rate or coding quality has been 
reached, or all bits in the bit array have been encoded. The output bitstream has the embedding property. If the bitstream is 
truncated, the more significant bits of the coefficients can still be decoded. An estimate of each coefficient is thus obtained, 
albeit with a relatively large uncertain range.  
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Figure 23 Order of coding: (a) Bitplane b1, sub-bitplane PN, then Bitplane b2, sub-bitplanes (b) PS, (c) REF and (d) PN.  

 
7. BITSTREAM ASSEMBLER 

 
The embedded bitstream of the code-blocks are assembled by the bitstream assembler module to form the compressed 

bitstream of the image. In JPEG 2000, the block entropy coder not only produces an embedded bitstream for each code-block 
i, but also records the coding rate Rk

i and distortion Dk
i at the end of each sub-bitplane, where k is the index of the sub-

bitplane. The bitstream assembler module determines how much bitstream of each code-block is put to the final compressed 
bitstream. It determines a truncation point ni for each code-block so that the distortion of the entire image is minimized upon 
a rate constraint: 
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Since there are a discrete number of truncation points ni, the constraint minimization problem of equation (40) can be 
solved by distributing bits first to the code-blocks with the steepest distortion per rate spent. The process of bit allocation and 
assembling can be performed as follows: 
Step 1. Initialization.  

We initialize all truncation points to zero: ni=0.  
Step 2. Incremental bit allocation. 

For each code block i, the maximum possible gain of distortion decrease per rate spent is calculated as: 
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We call Si as the rate-distortion slope of the code-block i. The code-block with the steepest rate-distortion slope is selected, 
and its truncation point is updated as: 
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A total of i
n

i
n ii

new

RR −  bits are sent to the output bitstream. This leads to a distortion decrease of i
new

i n
i

n DD − . It can be 

easily proved that this is the maximum distortion decrease achievable for spending i
n

i
n ii

new

RR −  bits. 
Step 3. Repeating step 2 until the required coding rate B is reached.  

 
The above optimization procedure does not take into account the last segment problem, i.e., when the coding bits 

available is smaller than i
n

i
n ii

new

RR −  bits. However, in practice, usually the last segment is very small (within 100 bytes), so 
that the residual sub-optimally is not a big concern. 

Following exactly the optimization procedure above is computational complex. The process can be speeded up by first 
calculating a convex hull of the R-D slope of each code-block i, as follows: 
Step 1. Set S={k} which is the set of all truncation points.  
Step 2. Set p=0,  
Step 3. For k=1, 2, 3, …, 

If S∈k , set 
i

p
i

k
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k

i
p

i
k
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DD
S

−
−= , if p 0 and S ki  S pi , point p is removed from set S, go to step 2)  

otherwise, set p=k and repeat step 3) 
 
Once the R-D convex hull is calculated, the optimal R-D optimization becomes simply the search of a global R-D slope λ, 
where the truncation point of each code-block is determined by: 

 )(maxarg λ>= i
k

k
i Sn . (43) 

Put the truncated bitstream of all code-blocks together, we obtain a compressed bitstream associated with each R-D slope λ. 
To reach a desired coding bitrate B, we just search the minimum slope λ whose associated bitstream satisfies the rate 
inequality (40). The R-D optimization procedure can be illustrated in Figure 24.   
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Figure 24 Bitstream assembler: for each R-D slope λ, a truncation point can be found at each code-block. The slope λ 
should be the minimum slope that the allocated rate for all code-blocks is smaller than the required coding rate B. 

To form a compressed image bitstream with progressive quality improvement property, so that we may gradually improve 
the quality of the received image as more and more bitstream arrives, we may design a series of rate points, B(1), B(2),…, B(n). A 
sample rate point set is 0.0625, 0.125, 0.25, 0.5, 1.0 and 2.0 bpp (bit per pixel). For an image of size 512x512, this 



corresponds to a compressed bitstream size of 2k, 4k, 8k, 16k, 32k and 64k bytes. First, the global R-D slope λ(1) for rate 
point B(1) is calculated. The first truncation point of each code-block n(1)

i is thus derived. These bitstream segments of the 
code-blocks of one resolution level at one spatial location is grouped into a packet. All packets that consist of the first 
segment bitstream form the first layer that represents the first quality increment of the entire image at full resolution. Then, 
we may calculate the second global R-D slope λ(2) corresponding to the rate point B(2). The second truncation point of each 
code-block n(2)

i can be derived, and the bitstream segment between the first n(1)
i and the second n(2)

i truncation points 
constitutes the second bitstream segment of the code-blocks. We again assemble the bitstream of the code-blocks into 
packets. All packets that consist of the second segment bitstreams of the code-blocks form the second layer of the 
compressed image. The process is repeated until all n layers of bitstream are formed. The resultant JPEG 2000 compressed 
bitstream is thus generated and can be illustrated with Figure 25.  
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Figure 25 JPEG 2000 bitstream syntax2. 

 
 

8. PERFORMANCE OF JPEG 2000 
 
In the final, we briefly demonstrate the compression performance of JPEG 2000. We compare JPEG 2000 with the 

traditional JPEG standard. The test image is the Bike standard image (gray, 2048x2560). Three modes of JPEG 2000 are 
tested, and are compared against two modes of JPEG. The JPEG modes are progressive (P-DCT) and sequential (S-DCT) 
both with optimized Huffman tables. The JPEG-2000 modes are single layer with the bi-orthogonal 9-7 wavelet (S-9,7), six 
layer progressive with the bi-orthogonal 9-7 wavelet (P6-9,7), and 7 layer progressive with the (3,5) wavelet (P7-3,5). The 
JPEG-2000 progressive modes have been optimized for 0.0625, 0.125, 0.25, 0.5, 1.0, 2.0 bpp and lossless for the 5x3 
wavelet. The JPEG progressive mode uses a combination of spectral refinement and successive approximation. We show the 
performance comparison in Figure 26. 

                                                           
2 Explanation of the acronyms: 
SOC: start of image (codestream) marker. 
SOT: start of tile marker. 
SOS: start of scan marker. 
EOI: end of image marker.  



 
Figure 26 Performance comparison: JPEG 2000 versus JPEG (courtesy of Prof. Marcellin, et. al, [1]). 

 
JPEG-2000 results are significantly better than JPEG results for all modes and all bitrates on this image. Typically JPEG-

2000 provides only a few dB improvement from 0.5 to 1.0 bpp but substantial improvement below 0.25 bpp and above 1.5 
bpp. Also, JPEG-2000 achieves scalability at almost no additional cost. The progressive performance is almost as good as the 
single layer JPEG-2000 without the progressive capability. The slight difference is due solely to the increased signaling cost 
for the additional layers (which changes the packet headers). It is possible to provide “generic rate scalability” by using 
upwards of fifty layers. In this case the “scallops” in the progressive curve disappear, but the overhead may be slightly 
increased. 
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