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This paper presents a study that uses extensive analysis of real
security vulnerabilities to drive the development of: 1) runtime
techniques for detection/masking of security attacks and 2) formal
source code analysis methods to enable identification and removal
of potential security vulnerabilities. A finite-state machine (FSM)
approach is employed to decompose programs into multiple ele-
mentary activities, making it possible to extract simple predicates
to be ensured for security. The FSM analysis pinpoints common
characteristics among a broad range of security vulnerabilities:
predictable memory layout, unprotected control data, and pointer
taintedness. We propose memory layout randomization and control
data randomization to mask the vulnerabilities at runtime. We also
propose a static analysis approach to detect potential security
vulnerabilities using the notion of pointer taintedness.
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I. INTRODUCTION

Security vulnerabilities are constantly discovered and
exploited in computer systems. In-depth analysis of these
vulnerabilities enables us to identify and extract their fun-
damental characteristics. This understanding can then guide
the development of generic solutions, applicable to a broad
range of vulnerabilities, making us less reliant on highly
customized techniques aimed at protecting against specific
types of vulnerabilities.
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This paper combines an analysis of data on security vul-
nerabilities (published in Bugtraq and CERT databases) with
a focused examination of source code to model security vul-
nerabilities and associated attacks. The insights gained are
used to devise two generic solutions: measurement-driven
mechanisms for runtime detection and/or masking of secu-
rity attacks that exploit residual vulnerabilities in the appli-
cation code and formal-reasoning-driven techniques for au-
tomated (or semiautomated) identification and removal of
vulnerabilities.

Our first step was to develop a finite-state machine (FSM)
modeling methodology to depict and analyze a significant
portion of the security vulnerabilities reported in CERT
Advisories and Bugtraq databases. In our approach, each
vulnerable program is decomposed into multiple elementary
activities, each corresponding to a pair of predicates: the
predicate that is expected to be implemented to ensure
security and the predicate that is actually implemented in
the program. A security vulnerability is thus represented
as a predicate pair mismatch. The FSM methodology is
exemplified by analyzing a wide spectrum of vulnerabilities,
including stack buffer overflow, integer overflow, heap over-
flow, file race condition, and format-string vulnerabilities.
Decomposing vulnerable programs into multiple elementary
activities offers a formalism for analyzing the program im-
plementation. The approach enables pinpointing of common
characteristics among different categories of vulnerabilities.

FSM-based analysis of vulnerabilities indicates that most
exploits (e.g., format-string, integer overflow, heap over-
flow and buffer overflow) succeed because of predictable
program memory layout or unprotected control data. The
vulnerabilities susceptible to these types of exploits are
defined as unauthorized control information tampering
(UCIT). Our survey of the CERT advisories indicates that
UCIT vulnerabilities account for 65% of advisory entries.
We use memory layout randomization (MLR) and control
data randomization (CDR) to mask UCIT vulnerabilities.

0018-9219/$20.00 © 2006 IEEE

PROCEEDINGS OF THE IEEE, VOL. 94, NO. 2, FEBRUARY 2006

407



Both techniques effectively break an attacker’s ability to
exploit the vulnerabilities, and both incur only small runtime
overhead. These techniques do not require modification
of application source code; they are implemented either
by modifying the dynamic program loader (MLR) or by
enhancing the existing C compiler (CDR). Both techniques
are proven to be effective against real-world attacks.

Further data analysis provides evidence that a program-
ming flaw, namely, pointer taintedness, is a common cause
of vulnerability. A pointer is tainted when its value can be de-
rived directly or indirectly from user input. Since pointers are
internal to applications, they should be transparent to users.
Thus, a taintable pointer is a potential security vulnerability.
We have shown that the semantic of pointer taintedness can
be formally defined using equational logic, which allows the-
orem-proving techniques to be applied on program source
code to detect potential vulnerabilities. This technique has
been applied to examine commonly used C-library functions
to formally derive the security preconditions that must be met
to ensure their vulnerability-free implementation.

Although the techniques we have implemented currently
target programs written in C, they aim at uncovering residual
security vulnerabilities and defeating attacks due to low-level
memory errors. Therefore, the observations and techniques
discussed in this paper are generically applicable to any pro-
gram exposed to memory-related vulnerabilities.

To the best of our knowledge, this research represents
a unique study, which exploits extensive analysis of real
security vulnerabilities to drive the development of run-
time detection and masking techniques. We believe that
an in-depth understanding of the nature of vulnerabilities
can significantly improve the effectiveness, efficiency, and
general applicability of protection mechanisms. This paper
extends our earlier work on analysis of vulnerability re-
ports and MLR [30]. The extensions include: 1) analysis of
complex vulnerabilities using the FSM model; 2) implemen-
tation and evaluation of mechanisms for control data (e.g.,
function pointers and return addresses) randomization; and
3) use of pointer taintedness analysis to uncover security
vulnerabilities in applications.

II. RELATED WORK

Security vulnerability analysis. Several studies have
proposed classifications to abstract observed vulnerabilities
into easy-to-understand classes. Representative examples
include protection analysis [4], RISOS [3], Landwehr’s
taxonomy [2], Aslam’s taxonomy [1], and the Bugtraq
classification. Similarly, taxonomies for intrusions have
been proposed. Examples include Lindqvist’s intrusion
classification [5] and the Microsoft STRIDE model [6].
In addition to providing taxonomies, [1] and [5] perform
statistical analysis of actual vulnerability data, based on the
proposed taxonomies. Several studies focus on modeling
attacks and intrusions in order to evaluate various security
metrics. Michael and Ghosh [9] employ an FSM model
constructed using system call traces. By training the model
using normal traces, the FSM is able to identify abnormal
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program behaviors and thus detect intrusions. In [8], an
FSM-based technique to automatically construct attack
graphs is described. The approach is applied in a networked
environment consisting of several users, various services,
and a number of hosts, and a symbolic model checker is
used to formally verify the system’s security. Recent studies
have proposed stochastic models to evaluate security metrics
quantitatively. Ortalo et al. [7] developed a Markov model
to describe intruder behavior and evaluate system security
in terms of mean effort to failure (METF). However, there
is little work on modeling of discovered security vulner-
abilities to capture how and why an implementation fails
to achieve the desired level of security. Our research uses
actual vulnerability reports and code inspection to derive
simple predicates, which are then used to generate FSM
models.

Static vulnerability avoidance techniques and runtime
vulnerability masking techniques. Many static detection
techniques have been developed based on the recognition of
existing categories of security vulnerabilities. Techniques
such as [10] and [11] can check security properties if vul-
nerability analysts are able to specify them as annotations
in the code. Domain-specific techniques require less human
effort, but each technique detects only a specific type of
vulnerability. Static detection techniques, such as [13], have
been proposed to detect buffer overflow vulnerabilities.
Runtime techniques [14]-[18] either insert special checking
code at compile time or instrument the runtime environ-
ment to dynamically detect possible security attacks. Most
of these techniques aim at providing protection against
specific types of attacks, e.g., StackGuard [16] against
stack-smashing buffer overflow attacks, or FormatGuard
[15] against format-string attacks.

Randomization-based techniques. Forrest [27] proposes
protecting computer systems by introducing diversity into a
system. The paper suggested several ways to do this, such as
extending gcc to pad each stack frame by a random amount,
thus thwarting stack-smashing attacks. Address Space
Layout Randomization (ASLR) by PaX [28] implements an
idea similar to that of memory layout memorization (MLR),
but there are three important differences between the two.

1) MLR is implemented entirely in the user-space dy-
namic program loader, while ASLR requires changes to
the Linux kernel. User-space implementation does not
require reinstallation or even reboot of the operating
system and hence is easier to use and deploy.

2) MLR overcomes the challenges of randomizing the
global offset table (GOT) entries,! a frequent target of
many attacks, while ASLR does not.

3) While our study shows that MLR has a small overhead
only at process initialization time, the performance im-
pact of ASLR is yet to be evaluated. The idea of en-
coding control data using a random key is implemented
independently in CDR [26] and PointGuard [29].

IThe GOT entry is a function pointer to a specific function. Usually, in po-
sition-independent code, e.g., shared libraries, all absolute symbols must be
located in the GOT, leaving the code position-independent. A GOT lookup
is performed to decide the callee’s entry when a library function is called.
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Fig. 1. Security vulnerabilities in CERT advisories (2000-2003).

III.  MEASUREMENT-DRIVEN ANALYSIS OF SECURITY
VULNERABILITIES USING MODELING

A. Categorization of Vulnerabilities

Bugtraq database and CERT advisories are major data
sources in our study. As of 30 November 2002, the Bug-
traq database included 5925 reports on software-related
vulnerabilities [19]. Details on the distribution of vulnera-
bilities across different categories can be found in [22]. This
classification broadly defines the most common causes of
security vulnerabilities, but it does not precisely indicate the
programming flaws leading to these categories.

Obtaining the information on programming flaws requires
an in-depth analysis of the vulnerability reports together
with a close examination of the associated application code.
CERT advisories are a suitable source on which to perform
such a labor-intensive analysis, since CERT includes only
the most significant vulnerabilities in the field. We have con-
ducted analysis on the 107 CERT advisories from 2000 to
2003. Fig. 1 gives a breakdown of the leading programming
flaws causing the vulnerabilities. Buffer overflow is a result
of writing to an unchecked buffer; format-string vulnera-
bilities are caused by incorrect invocations of print f-link
functions; integer overflow is due to interpreting extremely
large signed integers as negatives; heap corruption is due to
the corruption of heap structure or to freeing a buffer twice;
globbing vulnerabilities result from incorrect invocation of
LibC function glob(). These categories collectively account
for 65% of the advisories.

Although the categories indicated in Fig. 1 correspond
to different vulnerabilities, they share a common charac-
teristic: all of them allow attackers to tamper with control
data (e.g., function pointers or return addresses) to take
control of the system, usually by forcing the system to ex-
ecute the attacker’s malicious code. We call these program
flaws UCIT vulnerabilities. Detecting and masking UCIT
vulnerabilities require identification and understanding of
their fundamental characteristics. Toward this end, an FSM
model is constructed for each vulnerability category. The

models enable extracting the underlying system and appli-
cation deficiencies leading to UCIT vulnerabilities, which
are: 1) predictability of memory layout; 2) unprotected
control data; and 3) the possibility of pointer taintedness.
Sections IV and V introduce techniques to defeat UCIT
vulnerabilities based on the extracted properties. In the rest
of this section, we present the FSM-based approach for
analyzing a security vulnerability.

B. Security Vulnerability Characteristics

In-depth analysis of the vulnerability reports in the Bug-
traq database and CERT advisories and of the associated ap-
plication source codes leads to the following observations.

*  Exploitation of a security vulnerability must pass
through multiple elementary activities, at any one of
which the exploit can be foiled. We illustrate this ob-
servation using data from three signed integer overflow
vulnerabilities given in Table 1. Here the analysts
have used three different activities as reference points
to classify the same type of vulnerability into three
categories. Thus, #3163 has been classified as an input
validation error, #5493 as a boundary condition error,
and so on. The existence of three categories for the
signed integer overflow vulnerability suggests that
the code executions of the corresponding applications
contain at least three elementary activities: 1) get an
input integer; 2) use the integer as the index to an
array; and 3) execute code referred to by a function
pointer or a return address. Analysis of other types of
vulnerabilities, including stack buffer overflow, heap
corruption, and format-string vulnerabilities leads to
the same observation.

* Exploiting a vulnerability involves multiple vulnerable
operations on several objects. Let us consider again ex-
ample #3163, a Sendmail debugging function signed
integer overflow. This vulnerability involves two op-
erations: first, manipulate the input integer (the object
of this operation), consisting of elementary activity 1
(get an input integer) and elementary activity 2 (use the
integer as the index to an array); second, manipulate
the function pointer (the object of this operation), con-
sisting of elementary activity 3 (execute code referred
to by a function pointer).

e For each elementary activity, the vulnerability data
analysis and corresponding code inspections allow us
to define a predicate, which if violated, results in a secu-
rity vulnerability. For example, in vulnerability #3163,
an integer index x is assumed to be in the range [0,100],
but the implementation only checks to guarantee that
x < 100, hence the problem (vulnerability): allowing x
to be a negative index and underflow an array. The cor-
rect predicate to eliminate this vulnerability would be
0 <z < 100.

C. State Machine Approach to Vulnerability Analysis

Based on the observations discussed in the previous sec-
tion, an FSM characterization of the vulnerable operations
is developed. The goal of this FSM is to reason whether the
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Table 1
Examples of Ambiguity Among Vulnerability Categories

Vulnerability Description Elementary Activity Assigned Category
#3163 Sendmail Debugging Function Signed A negative input integer accepted as an array ~ Get an input integer Input validation error
Integer Overflow* index
#5493 FreeBSD System Call Signed Integer A negative value supplied for the argument Use the integer as the index Boundary condition

Buffer Overflow

#3958 rsync Signed Array Index Remote Code
Execution

allowing exceeding the boundary of an array

A remotely supplied signed value used as an
array index, allowing the corruption of a

to an array c€rror

Execute code referred by a Access validation error

function pointer or a return

function pointer or a return address address

* Each vulnerability reported to Bugtraq is assigned a unique ID, e.g., the report of vulnerability #3163 can be accessed from

http://www.securityfocus.com/bid/3163.

SPEC check
state

SPEC_ACPT
Fig. 2. Primitive FSM (pFSM).

implemented operation, or more precisely each elementary
activity within the operation, satisfies the derived predicate.
To this end, we take three steps.

1) Represent each elementary activity as a primitive FSM
(pFSM) expressing a predicate for accepting an input
object. The predicate is first checked with respect to the
specification and then with respect to the implementa-
tion.

2) Model an operation on an object as a series of pFSMs.

3) Cascade the operations to model the vulnerable imple-
mentation.

While our objective here is to reason that a vulnerability (vi-
olation of a derived predicate) is not present in the imple-
mentation, we shall see that the process of this reasoning can
uncover a previously unknown vulnerability.

1) Primitive FSM (pFSM): The pFSM consists of four
transitions and three states, as shown in Fig. 2. The tran-
sitions SPEC_ACPT and SPEC_REJ depict, respectively,
the specification predicates of accepting and rejecting an
object (e.g., request). The transition IMPL_REJ represents
the condition under which the implementation rejects what
should be rejected according to the specification. This
transition depicts the expected or correct behavior, i.e., the
implementation conforms to the specification. A dotted tran-
sition IMPL_ACPT represents the condition under which an
object that should be rejected according to the specification
is accepted in the implementation. This transition is a hidden
path representing a vulnerability. Three states are identified:
1) the SPEC check state, where an object is checked against
the specification; 2) the reject state X—transition to this
state indicates that the object is insecure according to the
specification; and 3) the accept state )—transition to this
state indicates that the object is considered secure.
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IMPL_REJ

Reject State

IMPL_ACPT

Accept State

2) FSM Model of a Heap Corruption Vulnerability: Null
HTTPD is a multithreaded web server for Linux and Win-
dows platforms. Null HTTPD 0.5 heap overflow is modeled
as a series of four pFSMs, as shown in Fig. 3(a). pFSM, and
pFSM,, depict the buffer manipulation in the function Read-
POSTData (the function source code is shown in Fig. 3(b)),
which allocates a buffer (PostData, source code Line 1) and
copies a user-specified string from a socket (source code Line
4), which is marked as input in Fig. 3(a). One of the input
parameters (contentLen) provides the length of input, which
according to the specification should be a nonnegative in-
teger. However, Null HTTPD allocates (by calling calloc in
source code line 1) a buffer for PostData with size 1024 +
content Len without checking whether contentLen is non-
negative. A buffer overflow occurs when the attacker pro-
vides a negative contentLen (e.g., contentLen = —800)
to make PostData a buffer with only 224 bytes. This results
in buffer overflow (denoted by pFSM, ) because Null HTTPD
always copies at least 1024 bytes arriving from the socket to
PostData (source code Line 4).

As indicated earlier, each elementary activity offers an
independent opportunity for checking. If the checks corre-
sponding to the predicates depicted by pFSM; and pFSM,
[in Fig. 3(a)] are not in place, the impact of this vulnerability
is further analyzed using pFSM;, which describes the oper-
ation manipulating the heap layout [as shown in the left of
Fig. 3(a)]. The buffer PostData is allocated on the heap, fol-
lowed by a free memory chunk (chunk B). Free chunks are
organized as a double-linked-list by GNU-libc. The begin-
ning few bytes of each free chunk are used as the forward
link (fd) and the backward link (bk) of the double-linked
list. In this case, since free chunks A, B, and C are in the
list, B— fd = A, B—bk = C. The predicate defined
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Operation 1:

Read postdata from socket to
an allocated buffer PostData @

X 9 1: PostData = calloc(contentLen
+1024,sizeof(char)); x=0; rc=0;
2: pPostData= PostData;

IR v 3:do {
: FSM 7 /
get (contentLen , input) p 1 S &‘ i o Lt 4:  rc=r ecv(sock, pPostData.
contentLen is an integer, O, 4 pFSM, JEEDY iz TOM Ml SOCKRTTO .
input is an text string to be (,”l"’m\ @ Calloc PostData[1024+ contentLen ) I~ f{’ PostData by recv() call . 1024.0
read from a socket @ 1 = ¢ L 5 if (I‘C==- 1 ) {
length(input) <= Size( PostData)? 6: c]oseconnect(sid, 1 );
B->fd=&addr_firee-(offset of field bk) 7: return;
->fd=&addr_fi-ee-(offset of field by
Heap Layout Operation 2: B->bk=Mcode 8: }
— 4 . —roe
Free chunk A ) e B->fd and B->bk 9:  pPostDatat=re;
ree chun B->bk=C e 10: X+=rc;
e anged? X
Sallocis calleg L 11: } while ((rc==1024) &&
() 5 < .
T PFSM, ‘,"'When buf is freed, execute (x<contentLen));
i | B>fd and B->bk 7 Bfibk=Bbk
Allocate and free the buffer PostData unchanged?
Free chunk B
fd=A —
bk=C — 1 .GOT entry of function
,, I— Operation 3: frree points to MCode 2\
o . >
Free chunk C Load addr_free to addr_free changed? @
the memory during //
Manipulate the program initialization addr_firee pF! SM4 A
ba
GOT entry of Lnshaned ,’l’ixecute addr_free when
Note: addr_fiee is the GOT functon jree function free is called
oo . i _——-’
entry of function firee (e addr free) /@
Mecode is executed /\
(a) (b)

Fig. 3. (a) NULL HTTPD heap overflow vulnerabilities. (b) Source code, reading input.

in pFSM, provides a check so that B— fd and B—bk are
not changed (i.e., pPFSM, does not transit to the reject state)
due to the overflow of the buffer PostData described in the
pFSM; and pFSM,. However, when PostData is freed, the
actual implementation does not check the pointer B—fd and
B—bk, causing the transition from the reject state to the ac-
cept state (the hidden or dotted transition in pFSM,), which
allows the attacker to write an arbitrary value to an arbitrary
memory location. Specifically, in this example, the attacker
exploits this vulnerability and overwrites the GOT entry of
the function free() so that it points to the location of malicious
code MCode. The attack succeeds because when PoseData is
freed, the assignment B—fd—bk = B—bk is executed, but the
values of B—fd and B—bk are overwritten by the attacker.

pFSM, depicts the manipulation of the GOT entry of
free() (i.e., addr_free). When HTTPD is started, addr_free
is loaded to the memory. Finally, when free() is called, the
value of addr_free is used as the function pointer to free().
Following the predicate depicted by pFSM,, the system
should check whether the value of addr_free is unchanged
since it was loaded to the memory. If this is not the case (i.e.,
the addr_free has been tampered with), the program should
not call to the location indicated by the corrupted addr_free.
However, the corresponding implementation of Sendmail
does not perform the check on the addr_free and accepts any
value of it. As a result, the program again makes the dotted
transition, and control jumps to the malicious code (Mcode)
when free() is called.

In summary, this model consists of three operations. The
first operation encompasses two activities, each described by
an independent pFSM (pFSM; and pFSM,, ). Operation 2 and

operation 3 each consist of a single pFSM. Cascading these
four pFSMs allows us to reason through all the vulnerable
code.

3) Common Types of pFSMs: The FSM approach enables
a detailed modeling/analysis of several types of security
vulnerabilities: buffer overflow, race condition, signed in-
teger, and format-string vulnerabilities [22]. Vulnerabilities
including access validation errors, input validation errors,
and failures to handle exceptional conditions can also be
modeled.

The operations involved in each vulnerability can be mod-
eled as a series of pFSMs, each corresponding to an elemen-
tary activity. Since pFSMs are critical to the analysis, it is
meaningful to ask: Are there a few pFSMs that allow us to
model the bulk if not all of the studied vulnerabilities? Our
analysis shows that the pFSMs of studied vulnerabilities can
be categorized into three types.

1) Object type check. This is a predicate to verify whether
the input object is of the type that the operation is de-
fined on. Examples of object type check errors include
vulnerabilities reported in CERT Advisory CA-1994-06
and Bugtraq #3163, where the UNIX rwall service fails
to check whether the file type is a terminal or a nonter-
minal file, and Sendmail fails to check whether the input
represents an integer or a long integer.

2) Content and attribute check. This is a predicate to verify
whether the content and the attributes of the object meet
the security guarantee. For example, an HTTP daemon
should verify that the request does not contain substring
“../”, a program should verify that format directives are
not embedded in the strings to be printed, and the length
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of a input string should be less than the size of the re-
ceiving buffer.

3) Reference consistency check. This is a predicate to
verify whether the binding between an object and
its reference is preserved from the time the object is
checked to the time the operation is applied on the
object. Examples include the return address referring to
the parent function code, the function pointer referring
to a function code, and a filename referring to a file.
Several conditions may result in violating reference
consistency, including stack overflow, signed integer
overflow, heap overflow, format-string, and file race
conditions.

Building FSM models for vulnerabilities makes it possible
to identify simple common predicates that must be met to
ensure vulnerability-free implementation. These predicates
drive development of the detection and masking techniques
discussed in Sections IV-VI.

IV. RUNTIME MASKING OF SECURITY VULNERABILITIES
USING RANDOMIZATION

Several ad hoc protection mechanisms have been proposed
for preventing or detecting attacks that exploit subclasses of
UCIT vulnerabilities; for example, StackGuard [16] against
stack-smashing buffer overflow attacks and FormatGuard
[15] against format-string attacks. However, the relatively
new class of vulnerabilities, e.g., heap buffer overflow,
integer overflow, and double-free, do not as yet have ef-
fective protection solutions. Given that there are many
different types of vulnerabilities, a generic mechanism is
clearly preferable. We propose MLR and CDR, two generic
mechanisms for defending against a large class of UCIT
vulnerabilities.

A. Common Characteristic of Attacks

Randomization defense mechanisms are based on a
common characteristic of attacks that exploit UCIT security
vulnerabilities. The modus operandi in all these attacks is the
same: an intruder launches an attack by sending malicious
messages/data to the system running the vulnerable appli-
cation(s). Messages and data here broadly refer to various
forms of external input that an application can receive, e.g.,
network messages, console input, command line options, or
environment variables. Using the malicious messages/data,
the attacker attempts to accomplish two things: 1) inject
malicious code and 2) change existing control information
(e.g., return addresses and function pointers) to point to the
malicious code.

Let m be the address at which the malicious code is to be
placed, and let p be the address of the target application’s
control information (return address or function pointer). The
goal of the attacker is to overwrite the value at p so that the
control information now points to the memory address m,
where the malicious code/data is located. Table 2 shows a list
of representative attacks, the vulnerabilities they exploit, the
location (m) where the malicious code/data is to be placed,
the control information at address p that needs to be changed,
and the values that need to be determined for a successful
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Table 2
Different Types of Attacks

Attack Vulnerability m P Value

stack-smashing unchecked stack ra m|p
stack buffer buffer

return-to-library ~ unchecked stack ra m& p*
stack buffer buffer

malloc-heap unchecked heap  heap folra m&p
buffer buffer

format-string fmt string format olra m&p
validation string

integer-overflow  unchecked env. folra m&p
signed integer variables

double-free released heap folra m&p
memory buffer

fp - Function pointer; ra - Return address

“Here the attacker needs to change p to point to a function in a program’s
shared library and force that function to use the malicious data at m;
therefore, the attacker needs to determine both m and the address of the
library function.

0xc0000000
0x40000000
end of data

0x0

(o)
[}
S | 0x08048000

stack 2 data

0
0
@
o
©

Fig. 4. Memory layout for Linux process (dotted regions are unmapped).

attack. In a stack-smashing attack, the intruder only needs to
determine one address, either m or p, while in others such
as a malloc-based heap attack or integer overflow attack, the
attacker needs to determine both m and p.

To launch a successful attack, an intruder must correctly
determine the runtime values of m or p or both. This is usu-
ally achieved in the following way: 1) identify the versions
of the application and operating system; 2) configure a pilot
system to mimic the target system; and 3) craft and test the
attack using the pilot system. A successful test run allows the
attacker to obtain the values of p and/or m.

An attacker can determine these addresses correctly at a
remote site even before the target application is running be-
cause process memory layouts on all modern operating sys-
tems are well known. Once an application is compiled, the
locations of code, static data, shared libraries, and heap can
be statically determined most of the time. Fig. 4 shows the
process image on a default compilation of the Linux oper-
ating system. The starting addresses of the code, static data,
bss, and heap are fixed once the application executable is gen-
erated. The locations of the user stack and shared libraries
are determined by the kernel at process initialization time,
but the kernel uses standard locations, as shown. Exploiting
this predictable memory layout property, attackers can easily
break into a system.
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B.  Memory Layer Randomization (MLR)

The idea behind MLR is to randomize the runtime
locations of critical data elements in an application so that it
is virtually impossible for an attacker to correctly determine
the runtime locations of the necessary data elements shown
in Table 2. In a stack-smashing attack, the attacker can easily
find the value m (the address of vulnerable stack buffer
where the malicious code is placed) in a regular system. In a
system with MLR, however, the location of the stack is de-
termined at runtime, and the attacker can no longer statically
find its value. Hence, the attack is defeated. The remainder
of this section discusses the design and implementation of
MLR.

1) Randomizable Memory Regions: The goal of MLR is
to transparently and randomly relocate memory regions at
process initialization time so that existing applications can
run without recompilation. We have identified two types of
memory regions: position-independent and position-depen-
dent. A position-independent region can be freely placed in
the virtual address space at process-loading time without re-
strictions. Simple relocation of a position-dependent region
could cause a chain of broken references from the program
code.

Position-independent regions include user stack, shared
libraries, and user heap. The location of the user stack is
set up by the operating system kernel before an application
begins to execute. The application addresses data on the
stack through the stack pointer register (on Linux/IA-32, it
is the esp register) and an offset value. The actual location of
the stack is irrelevant as long as the stack pointer is correctly
initialized. Shared libraries, also known as dynamically
linked libraries, are compiled as position-independent code
(PIC). The library functions are invoked by the program
using base register plus offset, and they can be loaded
anywhere in a program’s address space as long as the
base register is correct. User heap is managed by dynamic
memory management functions, such as malloc() and free().
At runtime, malloc() determines the beginning of the heap
via the brk() system call. A program accesses the heap using
pointers returned by malloc(), hence the program does not
make any assumptions about the runtime location of the
heap.

Random relocation of a position-dependent region would
invariably violate its correctness. Techniques for such relo-
cation must be region-specific. We have implemented an al-
gorithm in MLR to relocate the GOT, a position-dependent
region that is a frequent target of attacks. The GOT is a table
of function pointers that is used by all dynamically loaded li-
braries. Once a program is compiled, the GOT is fixed at a lo-
cation inside the program’s static data segment. The program
code (i.e., the procedural linkage section) directly references
the GOT. Our algorithm uses binary rewriting technique to
make the changes consistent. Due to space limit, the GOT
relocation algorithm is not presented here. Interested readers
can find the technical details in [25]. We present the algo-
rithm for position-independent region below.

2) Relocation of Position Independent Region: In modern,
UNIX-based operating systems (Linux, FreeBSD, and So-
laris), the memory layout of an application process is deter-
mined by the compile-time link editor, the operating system
kernel, and the runtime dynamic program loader. The com-
pile-time link editor determines the memory addresses of
the program code, static initialized data, and static uninitial-
ized data (BSS). The operating system kernel determines the
starting address for the program heap, stack, and dynamic
program loader. The dynamic program loader determines the
memory location for shared libraries.

One way to randomly relocate the stack, heap, and
shared libraries is to modify the execve() system call.
When the kernel calculates and sets the base addresses
for these position-independent regions, a random offset is
added/subtracted to the base value. This approach, however,
requires modification, recompilation, and reinstallation of
the operating system. MLR implements the relocation algo-
rithm in the dynamic program loader. When the operating
system kernel hands over control to the dynamic program
loader, the base addresses for the stack, heap, and loader
have been set up. The modified loader changes these base
execution environment settings before any other code is
executed.

Before the kernel transfers control to the dynamic pro-
gram loader, it places information about the execution en-
vironment on top of the user stack: the environment vari-
able strings, an auxiliary information vector, the command-
line option strings, a vector of pointers to environment vari-
able strings, a vector of pointers to the command-line op-
tion strings, and the number of command-line arguments. To
randomly relocate the user stack, the modified loader must
preserve this information and the integrity of the pointers.
The relocation is performed in the following steps: 1) create
a new stack segment at a random location below the cur-
rent stack using the mmap system call; 2) copy the content
of the old stack to the newly allocated stack, adjusting the
pointers in the auxiliary, environment, and command-line
pointer vectors; 3) set the stack pointer register to the top
of the new stack; and 4) free the old stack using the munmap
system call. After these steps, the original stack allocated by
the operating system kernel no longer exists; the application
program will instead use the new stack randomly relocated
by MLR.

MLR randomly relocates the user heap by growing the
initial heap with a random amount of space using the brk()
system call. To randomize the location of shared libraries,
MLR creates a randomized memory mapping immediately
following the dynamic program loader. When the loader
maps the shared libraries used by the program into virtual
memory, the mapping forces the libraries to be loaded at a
location following the randomized region. Although random
relocations for both heap and shared libraries require extra
virtual memory address space, no extra physical memory
space is needed. Operating systems usually allocate physical
page frames only when the virtual memory page is accessed.
Since the program is not aware of the added heap space and
the memory mapping, no access should be made to these
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Table 3
Evaluation Results Against Real Attacks

Program Attack Type No MLR MLR
Traceroute double free local shell crash
Sendmail integer overflow local shell crash
Ghttpd stack smashing remote shell crash
rpc.statd format string remote shell crash
null httpd heap overflow remote shell crash

memory regions, and hence no physical page frame should
be needed.

3) Effectiveness and Performance Evaluation: The ef-
fectiveness of MLR was tested using publicly available
vulnerable programs and attacks against them.2 The selected
applications are widely used in the open-source Linux op-
erating system. Table 3 shows the vulnerable programs and
attacks used in our experiments. Without MLR, the attacks
succeed in obtaining a remote or local shell. With MLR in
place, the attacks cause the target vulnerable program to
crash, and therefore the intruder is stopped from causing
further damage to the target system. The results also demon-
strate the general applicability of MLR in defeating different
types of attacks, including double-free, integer overflow and
malloc-based heap overflow, for which no good solutions
exist to date.

The performance overhead of MLR is measured using
a large set of applications. Since MLR is implemented at
process initialization, we measure the time between the ap-
plication program’s entry to the execve() system call and the
run-time system’s handing over of control to the program’s
entry point. The overhead numbers show that MLR only
introduces minor program-startup overhead (2%—9%). The
memory overhead of MLR is essentially the size of the GOT
for the program. The additional memory space required
is quite small, ranging from less than 200 bytes for small
applications (e.g., traceroute) to around 3.5 KB for very
large applications, e.g., the Netscape web browser (details
can be found in [25]).

4) Possible Attacks Against MLR: Brute Force Attack. An
attacker can try to guess the random offset used by MLR. The
probability that an attacker guesses correctly is a function
of the range of possible random offsets used by MLR. The
larger the range, the lower the chance that it can be guessed.
The current MLR implementation uses the range between 0
and 8192K. Each time an attacker makes a wrong guess, the
application will be restarted, which results in a new random
memory layout. The problem can be further alleviated by
monitoring mechanisms: when a critical application keeps
crashing, an alarm can be raised.

Information Disclosure Attack. Additional vulnerabilities
can cause a program to leak runtime memory layout informa-
tion. For example, information on a program’s stack, such as
return addresses and frame pointers, can be used to derive the

2[Online]. Available: http://www.securityfocus.com
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initial starting address of a stack that has been randomized by
MLR. The FTP SITE EXEC bug [20] is such a vulnerability
for the specific version of wu-ftp 2.6.0. In this case, the re-
mote FTP client can send a malicious input string to force
the vulnerable FTP server to output contents of its runtime
stack. When the threat exists, it is caused by an additional
vulnerability that MLR is not designed to protect.

C. Control Data Randomization (CDR)

While MLR defeats attacks by making the address space
unpredictable, CDR protects otherwise unprotected control
data information. We define control data as program data that
facilitate runtime program control flow transfer. There are
two types of control data: function pointers (used for indirect
function calls or indirect jumps), and return addresses (for
resuming program flow after a function invocation). Control
data are stored in a program’s writable data regions (e.g.,
stack, heap, and data segment) and are modified dynamically
as specified by program semantics. The fact that these data
are in writable data regions is exploited by many security
attacks.

In CDR, when a control datum is defined, it is encoded
using a random key before being stored in its memory
location. When the control datum is used, it is decoded
(using the same random key) to its original form and stored
in a temporary location for use. The in-memory value of
the control datum, once defined, remains in encoded form
throughout its lifetime. The CDR mechanism does not pre-
vent an attacker from overwriting a control datum, but rather
detects an incorrect value when the datum is used for control
flow transfer. Without knowledge of the randomization key,
the value chosen by the attacker will be decoded into a
random address value. Control flow transfer to a random
memory address will lead to a memory access violation,
which will be detected by the underlying memory protection
mechanism.

1) Function Pointer Randomization: The CDR approach
requires that all function pointers be encoded at the time of
definition and decoded at the time of use. This is not always
necessary, since some cases of encoding and decoding can
be eliminated without affecting the protection provided by
CDR. We distinguish three types of function pointers defini-
tions and uses.

1) Function pointers defined by function symbol name. The
initial value of the function pointer is assigned from a
function symbol name, e.g., fptr = printf. The func-
tion symbol name print f will be translated to an imme-
diate value by the compile time linker. CDR transforms
fptr = printf into fptr = k& print f, where k is the
randomization key, and @ is the bit-wise exclusive-OR
currently used for encoding.

2) Function pointers used for control flow transfer. When
a function pointer is used for direct control flow transfer,
as in (* fptr)(...), the compiler translates the C state-
ment into machine-code-like call * fptr or jmp* fptr.
Since the value stored for fptr in memory is always
in its encoded form, CDR performs the control flow
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transfer by transforming the machine code into call
(*fptr ® k), or jmp (* fptr @ k).

3) Function pointers defined or used for value propaga-
tion. A function pointer can be defined using the value
of another function pointer; similarly, the value of a
function pointer can be used to define another func-
tion pointer, e.g., fptr = fptr’. Since fptr’ is already
stored in its encoded form in memory, it is sufficient to
copy the value of fptr’ to fptr without encoding/de-
coding operations.

Function pointer initialization in declaration requires spe-
cial handling. There are two basic types of function pointer
variables: automatic and global/static. An automatic func-
tion pointer is declared inside the body of a function, and
its storage is allocated on the runtime stack. Initialization of
automatic pointers is done at runtime through compiler-gen-
erated code, alongside which CDR generates the encoding
code. Storage for global or static function pointers is allo-
cated in a program’s static data segment, and their initial
values are stored in the binary executable file at static linking
time. Since no code is generated for the initialization and the
encoding key is generated at runtime, CDR generates addi-
tional assembly code when parsing initialized global/static
function pointers inside a variable declaration (which might
be a scalar or an aggregate such as a structure, union, or
array). The added code tags the variable and places the ad-
dress of the variable in a special data section. CDR instru-
ments the linker so that these special address sections from
different object files are merged into a single read-only sec-
tion. CDR also inserts a code section and schedules it to be
executed at process initialization time. This piece of code
goes through the list of addresses recorded in the special sec-
tion and uses the dynamically generated random key to en-
code the initialized function pointers.

2) Randomizing Function Return Address: CDR im-
plements the return address randomization in the register
transfer level (RTL—the intermediate representation used
by the compiler) code generation phase of the compiler by
changing the function prologue/epilogue generation section
of the compiler. The added RTL code loads the return ad-
dress (top of the stack) into one of the registers, performs,
and writes the encoded return address back on the top of the
stack. The return address decoding is similar to the encoding
procedure, except that it is implemented in the function
epilogue generation section of the compiler.

3) The Randomization Key: The integrity of a CDR algo-
rithm relies on the secrecy of the randomization key. There
are two issues in protecting the secrecy of the key value:
when to generate and how to store the key. Two approaches
are proposed.

1) Per-compilation key—The value of the random key is
generated at compile time and embedded directly in the
application binary code as an immediate value. Em-
bedding the key in the code instead of the data seg-
ment can reduce the number of data memory accesses.
It also simplifies the encoding algorithms for initialized
global/static function pointers, as the key is known at
compile time and the encoded values can be directly
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Fig. 5. Performance for SPEC-INT 2000.

stored in the executable by the compile time linker.
The disadvantage is that the key is known and fixed
throughout the life of the software.

2) Per-process key—The key regeneration mechanism is
embedded in the executable and is run at process ini-
tialization time. This method increases the level of se-
curity with a slight decrease in runtime performance, as
the CDR code needs to access memory each time to re-
trieve the key. CDR currently uses the per-process, key
regeneration approach.

For the per-process approach, the random key is regular
memory data and needs to be stored in the address space
of a program. The attacker can try to overwrite the key by
exploiting the same vulnerability used to change the control
data. We thwart this attack by allocating the key in a read-
only data section. When generating the key, we change the
memory protection attribute of the section to writable, write
the key, and change the section back to read-only after the
key is initialized.

4) Implementation and Evaluation: CDR is implemented
by changing the C compiler, gcc, and the compile-time
linking procedure currently used on Linux/[A-32 systems.
The compiler is augmented to analyze the source code to
determine the places where control data encoding/decoding
is needed. Once the locations are determined, the compiler
generates code to be executed at runtime for control data
encoding and decoding. The compile-time linking proce-
dure is instrumented with code to: 1) merge CDR data
sections from the object files into a single read-only section
and 2) generate the runtime key and encode global/static
function pointers. The modified compiler has successfully
compiled the GNU C library suite glibc-2.2.3.

To assess performance impact, we compiled the
SPEC2000 integer benchmark using the modified com-
piler and linking the C library we compiled above. The
results are shown in Fig. 5. Three sets of experiments were
run: the base set with no CDR instrumentation, CDR instru-
mentation only for return address, and CDR instrumentation
for both return address and function pointers. The overhead
in the CDR for both return address and function pointers
case is between 1% and 5%. Comparing this with the CDR
for return address only, we find that the major portion of
the incurred performance overhead is due to randomization
of the return address. This is because in applications there
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are relatively fewer uses of function pointers than function
invocations.

The effectiveness of CDR was tested using a set of at-
tacks similar to the one used to evaluate the MLR approach.
Without CDR instrumentation, the attacks succeeded in get-
ting a remote/local shell prompt. CDR instrumentation foiled
the attacks by crashing the target application.

V. UNCOVERING SECURITY VULNERABILITIES USING
POINTER TAINTEDNESS ANALYSIS

MLR and CDR techniques are runtime solutions that mask
vulnerabilities by interfering with the attacker’s ability to
predict the memory layout of programs and overwrite control
data. In this section, we examine the vulnerabilities from the
program semantic perspective to develop techniques for au-
tomated uncovering of security vulnerabilities at the source
code level.

A. Pointer Taintedness

We introduce the notion of pointer taintedness as a basis
for reasoning about security vulnerabilities. This notion is
based on the observation that a common cause of UCIT
vulnerabilities is the fact that a pointer value (including
return address) can be tainted, by which we mean derived
directly or indirectly from user input. Since pointers are
internal to applications, they should be transparent to users.
By analyzing the application source code, the potential for
pointers to be tainted can be determined and, hence, possible
vulnerabilities can be identified. In [24], we illustrated
how pointer taintedness can cause most types of security
vulnerabilities. For example, format-string vulnerability is
due to the taintedness of argument pointers of print f-like
functions, heap corruption vulnerability is due to taintedness
of the free-chunk, doubly linked list of heap management
system, and stack buffer overflow is due to the taintedness
of return addresses or frame pointers. Pointer taintedness al-
lows attackers to arbitrarily specify the memory locations to
read, write, or transfer control to, and thus usually indicates
a pathological program behavior caused by security attacks.

Our analysis of vulnerability internals suggests that
reasoning about pointer taintedness requires a thorough ex-
amination of program memory layout. Therefore, a memory
model aware of the notion of taintedness is necessary in the
code-analysis technique. The next section gives the work-
flow of pointer taintedness analysis; Section V-C defines
the formal semantics of pointer taintedness using a memory
model, and Section V-D shows a theorem-proving approach
to reasoning about security vulnerabilities in library func-
tions based on the defined semantics. Although the analysis
tool is implemented for programs written in the C language,
the underlying principle of pointer taintedness is applicable
to reasoning about any program written in a type-unsafe
language.

B. Workflow of Pointer Taintedness Analysis

Pointer taintedness analysis encompasses three basic
steps, as illustrated in Fig. 6: 1) parsing—a C-source code
of a given library function is automatically translated into
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corresponding formal representation expressed using a
notation required by a selected theorem prover (the Maude
theorem prover [21] is used in our study); 2) theorem gen-
eration—for each code line of the target function, where a
pointer p is dereferenced, a theorem of the form “ p is not
tainted” is generated; and 3) theorem proving—a prover
(the Maude in our case) is used to establish proofs of the
generated theorems. If all theorems are proved to be valid
unconditionally, the function has no possibility of pointer
taintedness. Otherwise, the theorem prover identifies a set
of preconditions that must hold to avoid pointer taintedness
at runtime. These preconditions constitute security specifi-
cations of the target function.

C. Formal Definition of Pointer Taintedness

The formal semantic used to reason about pointer tainted-
ness is based on the programming semantic of Goguen and
Malcolm [12], which defines instructions, variables, and ex-
pressions. This semantic is extended with memory model,
which defines memory locations and addresses as well as a
set of operations to enable evaluating content and taintedness
attributes for each memory location.

We define a Store to be a snapshot of the entire memory
state at a point in the program’s execution. The execution
of a program instruction is defined as a function taking two
arguments, a Store and an instruction, and producing another
Store. Two operations, fetch and location-taintedness, are
formally defined on a Store. The fetch operation F'tch(S,T)
gives the content of the address I in store S; the loca-
tion-taintedness operation LocT'(S,I) returns a Boolean
value indicating whether the content of the specified address
is tainted. We also define two operations, evaluation and ex-
pression-taintedness, for expressions based on the fetch and
location-taintedness operations. The evaluation operation
Ewval(S, E) gives the result of evaluating the expression
FE under store S; the expression-taintedness operation
ExpT(S, E) indicates whether expression F contains any
data from a tainted location. Table 4 gives the semantics of
a subset of the supported statements. These are sufficient
to analyze a wide variety of program constructs in the C
language.

Formal specifications of statements other than the mov
statement are fairly straightforward and similar to the
definitions given in [12]. The semantic of mov is defined
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Table 4
Semantics of Statements

Statement Semantics

mov [E1] <- E2

result of the expression E1.

if T then P1 If the condition T is true, execute P1.

else P2 fi Otherwise, execute P2.

while T do P od If the condition T is true, execute P; repeat until T
is false.

goto L1 Go to the code line with the label L1.

Move the evaluation result of the expression E2 to
the memory location addressed by the evaluation

by axioms that assert the facts: 1) after executing the mov
statement, the content in the memory location addressed by
El is equal to the evaluation result of E2 before executing
the mov statement; 2) after executing the mov statement, the
taintedness of the memory location addressed by El is iden-
tical to the expression taintedness E2 before executing the
mov statement. A more detailed description of the semantic
definitions of program statements is given in [23].

D. Extracting Security Specifications From Library
Source Code

Having defined the memory model and the semantics
of program statements, we can examine the possibility of
pointer taintedness and extract security specifications or
preconditions for a given library function.

Pointer taintedness analysis was applied to several func-
tions, including strcpy (a string copying), print f (a printing
function), free (a memory deallocation function), and socket
reading functions of Apache HTTP daemon and NULL
HTTP daemon. The results show that pointer taintedness
analysis uncovers vulnerabilities such as buffer overflow,
format-string vulnerability, and heap corruptions present in
those functions. The details of the approach and an example
of the analysis can be found in [23].

VI. CONCLUSION

This paper presents a measurement-driven approach that
combines in-depth analysis of security vulnerabilities with
development of runtime and static techniques to protect
programs from a wide spectrum of vulnerabilities. The
analysis starts with FSM modeling to depict vulnerabilities
and associated attacks. The results drive development of
runtime mechanisms to foil malicious attacks. Predictable
memory layout, unprotected control data, and the possibility
of pointer taintedness are identified as primary causes of a
large class of system and application vulnerabilities.

MLR and CDR are proposed to provide runtime vulner-
ability masking. These techniques have shown low runtime
overhead and high protection coverage. The pointer-tainted-
ness analysis technique is also proposed to enable detection
(and subsequent removal) of vulnerabilities using automated
source code examinations. This technique has been applied
to extract security preconditions for commonly used C li-
brary functions.
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