Defining the Java Virtual Machine as Platform
for Provably Correct Java Compilation

Egon Bérger! and Wolfram Schulte?

! Universita di Pisa, Dipartimento di Informatica, I-56125 Pisa, Italy
boerger@di.unipi.it
2 Universitat Ulm, Fakultét fiir Informatik, D-89069 Ulm, Germany
wolfram@informatik.uni-ulm.de

Abstract. We provide concise abstract code for running the Java Vir-
tual Machine (JVM) to execute compiled Java programs, and define a
general compilation scheme of Java programs to JVM code. These def-
initions, together with the definition of an abstract interpreter of Java
programs given in our previous work [3], allow us to prove that any com-
piler that satisfies the conditions stated in this paper compiles Java code
correctly. In addition we have validated our JVM and compiler specifi-
cation through experimentation.

The modularity of our definitions for Java, the JVM and the compilation
scheme exhibit orthogonal language, machine and compiler components,
which fit together and provide the basis for a stepwise and provably cor-
rect design—for—reuse. As a by-product we provide a challenging realistic
case study for mechanical verification of a compiler correctness proof.

1 Introduction

Every justification showing that a proposed compiler behaves well is relative to
a definition of the semantics of source and target language. In our previous work
[B] we have developed a platform independent, rigorous yet easily manageable
definition for an interpreter of Java programs, which captures the intuitive un-
derstanding Java programmers have of the semantics of their code. In this paper
we provide a mathematical (read: rigorous and platform independent) yet prac-
tical model of an interpreter for the Java Virtual Machine, which formalizes the
concepts presented in the JVM specification [6], as far as they are needed for
the compilation of Java programs. We also extract from the JVM specification
the definition of a scheme for the compilation of Java to JVM code and prove
its correctness.

Main Theorem. Fvery compiler that satisfies the conditions listed in this paper
compiles Java programs correctly into JVM code.

We split the JVM and the compilation function into an incremental sequence
of four machines and functions—whose structure corresponds to the conservative
extension relation among the modular components we exhibited for Java [3]—
and define the JVM at two levels of abstraction: a ground model with an abstract

Lubo§ Brim et al. (Eds.): MFCS’98, LNCS 1450, pp. 17-35] 1998.
© Springer-Verlag Berlin Heidelberg 1998

18 Egon Borger and Wolfram Schulte

class file and abstract instructions, and a refined model where the abstract in-
structions are implemented by concrete JVM instructions. The structure of our
Java machine is carried over mutatis mutandis to the basic structure of the ab-
stract interpreter we are defining here for the JVM as target machine for Java
compilation.

In sections 2 to 5 we define the sequence of successively extended JVM ma-
chines JVMz, JVM¢, JVMp and JVM¢ for the compilation of programs from
the imperative core Javar of Java and its extensions Javac (by classes, eg. pro-
cedures), Javap (by object-oriented features, eg. class instances) and Javag (by
exceptions). We discuss here only the single threaded JVM, although our ap-
proach could easily include also multiple threads (see our multi-agent Java model
with threads in [3]). We skip those language constructs which can be reduced by
standard program transformation techniques to the core constructs dealt with
explicitly in our Java models. We still do not consider Java packages, compila-
tion units, visibility of names, strings, arrays, input/output, loading, linking and
garbage collection. These features are the object of further refinements of the
JVM model presented here. For proof details, the instruction refinement, an
extensive bibliography and the discussion of related work we refer the interested
reader to an extended version of this paper [I].

2 JVMz and the Compilation of Javar Programs

For the specification of Java, the JVM and the proof machinery, we use Ab-
stract State Machines (ASMs). ASM specifications have a simple mathematical
foundation [5], which justifies their intuitive understanding as “pseudo code”
over abstract data. We define the basic JVM, called JVMz, which is used as the
target for compiling Java’s statements and expressions over primitive types. We
prove that JVMz executes the compilation of Javaz programs correctly.

The following grammars recall the syntax of Javaz [3] and introduce the
corresponding instruction set JVMz:

Ezxp = Lit Instr = const (Lit)
Uop Exp uapply (Uop)
Exp Bop Exp bapply (Bop)
load (Varnum x Typ)

|
|
| Var
|
|

while (Exp) Stm
{Stm™}

|
|
|
Var = Exp | store (Varnum x Typ)
Exp? Exp: Exp: | dup(Typ)
| pop (Typ)
Stm = ; | ifZero (Lab)
| Ezp; | goto (Lab)
| Lab: Stm | label (Lab)
| break Lab;
| continue Lab; Varnum == Nat
| if (Ezp) Stmelse Stm Code == Instr*
|
|

Defining the Java Virtual Machine 19

The JVM7 instruction set bears a close resemblence to a traditional stack ma-
chine like the P-machine. JVM7 provides instructions to load constants, to apply
various unary and binary operators, to load and store a variable, to duplicate
and to remove values, and to jump unconditionally or conditionally to a label.
Variable locations in the JVM are represented by natural numbers. A JVMz
program is a sequence of instructions.

The universes Lit, Uop, Bop, Var, Typ, Lab contain Java literals, unary and
binary operators, variables, primitive types and labels, respectively. With the
exception of Var, these universes are also used in the JVMz.

2.1 The Machine JVMz for Imperative Code

The JVM is a typed word-oriented stack-machine running the given bytecode
code : Code. As a consequence the central dynamic part of a JVMz state consists
of a program counter pc, a local variable environment loc and an operand stack
opd. The following declarations show their formalization: the first column defines
the used types, the second column defines the state, and the third column de-
fines the condition on the initial state. (We consider sequences as isomorphic to
functions having an interval of natural numbers starting at 0 as their domain.)

Pc == Nat pc : Pc pc = nextynias (0, code)
Loc == Varnum — Word loc : Loc loc =0
Opd == Word* opd : Opd opd = €

The close analogy between the abstract and concrete program counters in Javaz
and JVMz, the memories for local variables and for intermediate values, and their
initializations reflects the refinement process, which applied to the machine Javar
yields JVMz. This correspondence will guide the justification of the correctness
of this first step towards an implementation of Java on the JVM.

Local variables and the operand stack store values of the abstract universe
Word. Words are supposed to hold at least 32-bit quantities. Java’s values, which
occupy at most 32-bits, are represented on the level of the JVM as single Words.
Java’s 64-bit values are mapped to multiple consecutive locations in the local
environment and on the operand stack in an implementation dependent way.
We define JVM values (Val) as sequences of Words, i.e. Val == Word*. A valid
word sequence has length one (32-bit) or two (64-bit). The JVM implements
values and operations on Java datatypes as follows. Booleans are represented
as integers: 0 is used for false, and 1 for true. Operations working on boolean,
byte, short or char are not supported by the JVM. Instead, upon retrieving the
value of a boolean, byte, char or short, it is automatically cast into an int. When
writing a value to a boolean, byte, char or short variable, an int is passed and
the JVM truncates it to the relevant size.

For the JVM7z we use two static code traversing functions next and jump,
which yield the next statement to be executed and the next statement after the
given labeled statement, respectively. Both functions are defined using an aux-

20 Egon Borger and Wolfram Schulte

iliary function next,,.p» that skips label instructions. (The expression ¢z | p(z)
denotes the uniquely determined object = that satisfies p(z).)

next(pc, code) = nextuniar (pc + 1, code)
Jump(l, code) = nextuniqr (L pc | code(pc) = label (1))
neztuniab (pe, code) = min{pc’ | pc’ > pc AVI| code(pc’) # label (1)}

We also use the following JVMz macros, where the homonymy with Javar
macros reflects the refinement relations on which our correctness proof is based.

proceed == pc := next(pc, code)
goto(l) == pc := jump(l, code)
pc is instr == code(pc) = instr

The following rules define the semantics of the JVMz instructions.

if pc is const (lit)

then
opd := lit - opd
proceed

if pc is uapply (®)A

(v, opd") = split(A(®), opd)
then

opd := O v - opd’

proceed
if pc is bapply (®)A

(v2, v1, 0pd’) = split(A(®), opd)A

(® € DiwMods) = (v2 # 0)
then

opd := v1 @ va - opd’

proceed
if pc is dup (¢)A

(v, opd’) = split(t, opd)
then

opd :=v-v-opd’

proceed
if pc is pop (¢)A

(v, opd’) = split(t, opd)
then

opd = opd’

proceed

if pcis load (z, t)
then
if sizeof (t) = 1 then
opd := loc(z) - opd
else if sizeof (t) = 2 then
opd := loc(z) - loc(z + 1) - opd
proceed
if pc is store (z, t)A
(v, opd’) = split(t, opd)
then
opd := opd’
if sizeof (t) = 1 then
loc(z) := v(0)
else if sizeof (t) =
loc(z +1) :=v(1
loc(z) := v(0)
proceed
if pcis goto (1) then
goto(1)

2 then
)

if pc is ifZero (I)A
w - opd’ = opd
then
opd = opd’
if w = 0 then goto(l)
else proceed

A const instruction pushes the JVM value lit (one or two words) on the operand
stack. An unary (binary) operator changes the value(s) on top of the operand
stack. The unary (binary) operators are assumed to have the same meaning as in
Java (i.e. ©® (®)), although they may operate on extended domains. In order to
abstract from the different value sizes, we use the function split : (Typ*, Opd) —
(Val*, Opd), which given a sequence of n types and the operand stack, takes
the top n values from the operand stack, such that the ith value has the size

Defining the Java Virtual Machine 21

of the ith type. The function A(op) returns the argument types of op. The
instructions dup and pop duplicate and remove the top stack value, respectively.
A load instruction loads the value stored under the location z on top of the
stack. If the type of z is a double or long, the next two locations are pushed on
top of the stack. A store instruction stores the top (two) word(s) of the operand
stack in the local environment at offset z (and z + 1). A goto instruction causes
execution to jump to the next instruction determined by the label. The ifzero
instruction is a conditional goto. If the value on top of the operand stack is 0,
execution continues at the next instruction determined by the label, otherwise
execution proceeds.

The abstract nature of the JVMz instructions is reflected in their param-
eterization by types and operators. It allows us to restrict our attention to a
small set of JVM instructions (or better instruction classes) without losing the
generality of our model with respect to the JVM specification [6]. The extended
version of this paper [I] shows how to refine these parameterized instruction to
JVM’s real ones.

2.2 Compilation of Javar Programs to JVMz Code

This section defines the compiling function from Javary to JVMz code. More
efficient compilation schemes can be introduced but we leave optimizations for
further refinement steps.

The compilation € : Fxp — Code of (occurrences of) Javaz expressions to
JVM7 instructions is standard. The resulting sequence of instructions has the
effect of storing the value of the expression on top of the operand stack.

To improve readability, we use the following conventions for the presentation
of the compilation: We suppress the routine machinery for a consistent assign-
ment of (occurrences of) Java variables z to JVM variable numbers Z. Similarly,
we suppress the trivial machinery for label generation. Label providing func-
tions lab;, i € Nat, are defined on occurrences of expressions and statements,
are supposed to be injective and to have disjoint ranges. Functions 7 defined on
occurrences of variables and expressions return their type. We abbreviate: ‘Let

e be an occurrence of exp in £(e) = ... by ‘E(e as exp) =...".
E(lit) = const (lit)
E(oe) = Ee-uapply (O)
E(er ® er) = Ee - Eez-bapply (V)
E(z) = load (z,7 (z))
E(x = e) =Ee-dup (7 (e)) - store (7,7 (z))
E(eas ei?ex: e3:) = Eer -ifZero (labi(e))-

Eey - goto (laba(e)) - Label (labi(e)) - Ees - label (laba(e))

Also the compilation § : Stm — Code of Javaz statements to JVMz in-
structions is standard. The compilation of break lab; and continue lab; uses the
auxiliary function target : Stm x Lab — Stm. This function provides for occur-

22 Egon Borger and Wolfram Schulte

rences of statements and labels the occurrence of the enclosing labeled statement
in the given program.

SG) =e
S(e;) = Ee-pop (7 (e))
SH{s1..-$m}) =8s1-...-Ssm

S(s as if (e) sy else sp) = Ee-ifZero (labi(s)) -
Ss1-goto(labz(s)) - 1label(labi(s

)) - Ss2 - label(labz(s))
S(s as while (e) s1) = label (lab:(s)) - Ee- ifZero (labz(s)) -
Ss1-goto (laby(s)) - Llabel (labz(s)
S(saslab: s1) = label (labi(s)) - Ss1 - label (laba(s))
S(s as continue lab;) = goto (laby (target(s, lab)))
S(s as break lab;) = goto (labz(target(s, lab)))

Correctness Theorem for Javar /JVMz. Via the refinement relation and under
the assumptions stated above, the result of executing any Javas program in the
machine Javaz is equivalent to the result of executing the compiled program on
the machine JVMz.

3 JVMe¢ and the Compilation of Class Code

In this section we extend the basic JVMz machine to the machine JVM¢, which
handles class (also called static) fields, class methods and class initializers. JVM¢
thus stands for a machine that supports modules, module-local variables and
procedures. We add the clauses for compiling class field access, class field assign-
ment, class method calls and return statements to the definition of the Javaz
compilation function.

The following grammar shows the extension of the syntax of Javaz to the
syntax of Javac. Furthermore, we define the corresponding JVM¢ instructions:

Exp == ... Instr n= L.
| FieldSpec | getstatic (FieldSpecx
| FieldSpec = Ezp Typ)
| MethSpec(Ezp™) | putstatic (FieldSpecx
Typ)
Stm = ... | invokestatic (MethSpec)
| return; | return(Typ)
| return Exp;
Fety == (Typ™ x Typ)
Init ::= static Stm FieldSpec == (Class x Field)

MethSpec == (Class x Meth x Fcty)

JVM¢ provides instructions to load and store class fields, and to call and to
return from class methods. Both grammars are based on the same abstract
definition of field and method specifications. Field specifications consist of a class
and a field name, because Java and the JVM allow fields in different classes to
have the same name. Method specifications additionally have a functionality (a

Defining the Java Virtual Machine 23

sequence of argument types and a result type, which can be void), because Java
and the JVM support classes with methods having the same name but taking
different parameter types.

Field and method specifications use the abstract universes Class, Field and
Method. Class is assumed to stand for fully qualified Java class names, Field
and Method for identifiers.

3.1 The Machine JVM¢ for Class Code

JVM and Java programs are structured into classes, which establish the pro-
gram’s execution environment. For a general, high-level definition of a provably
correct compilation scheme from Java to JVM Code, we can abstract from many
data structure specifics of the particular JVM class format. This format is called
class file in the JVM specification [6].

Our abstract class file refines in a natural way the class environment of Javac,
providing for every class its kind (whether it is a class or an interface), its
superclass (if there is any), a list of the interfaces the class implements, and a
table for fields and methods. Class files do not include definitions for fields or
methods provided by any superclass.

Env == Class — ClassDec
ClassKind ::= AClass | AnInterface
ClassDec == (kind : ClassKind x super : [Class] x ifaces : Class™ x

fTab : Field — FieldDec x mTab : (Meth X Fcty) — MethDec)

In JVM¢ fields and methods can only be static. Fields have a type and
optionally a constant value. If a method is implemented in the class, the method
body defines its code.

FieldDec == (fKind : MemberKind x fTyp : Typ X fConstVal : [Val])
MethDec == (mKind : MemberKind x mBody : [Code])
MemberKind := Static

In JVM¢ we have a fixed environment env : Env, defined by the given pro-
gram. The following functions operate on this environment. The function mCode
retrieves for a given method specification the method’s code to be executed. The
function fInitVal yields for a given field specification the field’s constant value,
provided it is available; otherwise, the function returns the default value of the
field’s type (where default : Typ — Val).

mCode(c, m, f) = mBody(mTab(env(c))(m,[))
fInitVal(c,f) = case fTab(env(c))(f) of (=,—, val) : val
(— [Typ, []) : default(fTyp)

The function supers calculates the transitive closure of super. The function
cfields returns the set of all fields declared by the class.

supers : Class — Class™
cfields : Class — P FieldSpec

24 Egon Borger and Wolfram Schulte

For these functions the homonymy to Javac functions shows the data refinement
relation in going from Javac to JVMe.

Due to the presence of method calls in JVM¢ we have to embed the one
single JVMz frame (pc, loc, opd) into the JVMc frame stack frames, enriched
by a fourth component which always holds the dynamic chain of method spec-
ifications. This embedding defines the refinement relation between JVMz and
JVMc. We refine the static function code, so that it always denotes the code
stored in the environment under the current method specification mspec. The
current class, method and functionality are denoted by cclass, cmeth and cfcty,
respectively, where mspec = (cclass, ecmeth, cfcty).

pes ;. Pc* pe == top(pcs)

locs : Loc* loc == top(locs)

opds : Opd* opd == top(opds)
mspecs : MethSpec™ mspec == top(mspecs)
frames == (pcs, locs, opds, mspecs) code == mCode(mspec)

Before a class can be used its class initializers must be executed. At the JVM
level class initializers appear as class methods with the special name <clinit>.
Initialization must be done lazily, i.e. when a class is first used in Java, and
when a reference is resolved in the JVM. Resolution is the process of checking
symbolic references from the current class to other classes and interfaces. Since
Java’s notion of class initialization does not correspond to the related class res-
olution notion of the JVM, we name the initialization related functions and sets
differently. A class can be in one of three states. We introduce a dynamic function
res, which records the current resolution state. A class is resolved, if resolution
for this class is in progress or done.

res : Class — ResolvedState
ResolvedState ::= Unresolved | Resolved | InProgress
resolved(state) = state € {InProgress, Resolved}

The JVM specification [6] uses symbolic references, namely field and method
specifications, to support binary compatibility, cf. [4]. As a consequence, the
calculation of field offsets and of method offsets is implementation dependent.
Therefore, we keep the class field access abstract and define the storage function
for class fields to be the same in Javac and JVM¢, namely

glo : FieldSpec — Val.

The runs of JVMg start with calling the class method main of a distinguished
class Main being part of the environment. However, before main is executed,
its class Main has to be initialized. Therefore, the frame stack initially has two
entries: the main method at the bottom and the <clinit> method on the top.
All classes are initially unresolved and all fields are set to their initial values.
This initialization also refines the corresponding conditions imposed on Javac:

pes = start(clinit’) - start(main’) res = {(¢, Unresolved) | ¢ € dom(env)}
locs =¢€-€ glo = {(fs, fInitVal(fs)) | ¢ € dom(env),
opds =¢€-¢€ fs € cfields(c)}

mspecs = clinit’ - main’

Defining the Java Virtual Machine 25

The method specifications clinit’ and main’ denote the class methods <clinit>
and main of class Main. The macro start returns the first instruction of the code
of the given method specification.

clinit’ == proc(Main, <clinit>) start(ms) == nextunias (0, mCode(ms))
main’ == proc(Main, main) proc(c, m) == (¢, m, (¢,void))

The following rules for JVM¢ define the semantics of the new JVM instruc-
tions, provided the class of the field or method specification is already resolved.
A getstatic instruction loads the value (one or two words), stored under the
field specification in the global environment, on top of the operand stack. A
putstatic instruction stores the top (two) word(s) of the operand stack in the
global environment at the given field specification. An invokestatic instruc-
tion pops the arguments from the stack and sets pc to the next instruction. The
arguments of the invoked method are placed in the local variables of the new
stack frame, and execution continues at the first instruction of the new method.
A return instruction is ‘inverse’ to invokestatic. It pops a value from the top
of the stack and pushes it onto the operand stack of the invoker. All other items
in the current stack are discarded. (If the return type is void, split returns the
empty sequence as its value.)

if pc is getstatic ((¢, f), t)A if pc is invokestatic (¢, m, (s, t))A
resolved(res(c)) resolved(res(c)) A (ti, ..., ty) = tsA
then (Un,. .., v1, 0pd") = split(tn,. .., t1,0pd)
opd := glo(c,f) - opd then
proceed call(next(pe, code), vy - ... - vy,
if pc is putstatic ((c, f), t)A opd’, (¢, m, (ts,1)))
resolved(res(c))A if pc is return (£)A
(v, opd”) = split(t, opd) (v, opd”) = split(t, opd)
then then
opd := opd’ return(v)
glo(c,f)=w
proceed

The macros call and return update the frames as follows:

call(pc, loc, opd, mspec) == return(v) ==
let pco - pes’ = pes if len(pcs) = 1 then
opdo - opds’ = opds in pes(0) == undef
pcs := start(mspec) - pc - pcs’ else let opdy - opd; - opds’ = opds in
locs := loc - locs pcs := pop(pcs)
opds = ¢-opd - opds’ locs = pop(locs)
MSPECS := MSPec - MSPECS opds := (v-opdi)- opds’

mspecs := pop(mspecs)

Execution starts in a state in which no class is resolved. A class is resolved,
when it is first referenced. Before a class is resolved, its superclass is resolved
(if any). Interfaces are not resolved at this time, although this is not specified
in Java’s language reference manual [4]. On the level of the JVM resolution
leads to three rules. First, resolutions starts, i.e. the class method <clinit> is
implicitely called, when the class referred to in a get-, put- or invokestatic

26 Egon Borger and Wolfram Schulte

instruction is not resolved. Second, the class initializer records the fact that class
initialization is in progress and calls the superclass initializer recursively. Third,
after having executed the class initializer, it is recorded that the class is resolved.

if (pc is putstatic ((¢,—),—) V if res(cclass) = Unresolved
pc is getstatic ((¢,—),—) V then
pc is invokestatic (¢, —,_)) A res(cclass) := InProgress
—resolved(res(c)) if supers(cclass) # € A

then —resolved(res(super(cclass))
call(pe, 0, opd, proc(c, <clinit>)) then

call(pc, 0, opd,
proc(super(cclass),<clinit>))
if pcis return (t) A cmeth =<clinit>
then
res(cclass) := Resolved

Firing the second rule depends on the condition that the current class is
Unresolved—this is the reason why we called the initializer in the first rule.
To suppress the simultaneous firing of other rules we strengthen the macro ‘is’:

pc is instr == code(pc) = instr A resolved(res(cclass))
This guarantees that an instruction can only be executed, if the current class is

resolved. Opposite to the second rule, the third rule fires simultaneously with
the previously presented rule for the return instruction.

3.2 Compilation of Javac Programs to JVM¢ Code

The compilation of Javaz expressions is extended by defining the compilation of
class field access, class field assignment, and by the compilation of calls of class
methods.

E(fspec) = getstatic (fspec, 7 (fspec))
E(fspec = e) = Ee-dup (7 (e)) - putstatic (fspec, T (fspec))
E(mspec(er,...,en)) =Eer-... - Eey - invokestatic (mspec)

We add the clause for return statements to the Javay compilation.

S(returne;) = Ee-return (7 (e))
S(return;) = return (void)

To compile a class initializer (the Init phrase) means to compile its statement
as the body of the static <clinit> method.

The extension of Javaz/JVMz to Javac/JVMc is conservative, i.e. purely
incremental. For the proof of the Correctness Theorem for Javac/JVMc it ther-
fore suffices to extend the theorem from Javaz/JVMz to the new expressions
and statements occurring in Javac/JVMe.

Defining the Java Virtual Machine 27

4 JVMp and the Compilation of Javap Programs

In this section we extend the machine JVM¢ to JVMp. This machine handles the
object-oriented features of Java programs, namely instances, instance creation,
instance field access, instance method calls with late binding, type casts and
null pointers. We add the corresponding new phrases to the definition of the
compilation function.

We recall the grammar for the new expressions of Javap and define the
corresponding JVMp instructions:

Exp = ... Instr .= ...
| this | new(Class)

| new ConstrSpec (Ezp™) | getfield (FieldSpec x Typ)
| ConstrSpec (Exp™) | putfield (FieldSpec x Typ)
| Ezp.FieldSpec |

| |

\

|

dup _(Typ")
Exp.FieldSpec = Ezp invokeinstance (MethSpecx
Ezp.MethSpec{ CallKind }(Exp™) CallKind)
Ezp instanceof Class | instanceof (Class)
| (Class) Exp | checkcast (Class)
ConstrSpec == (Class x Typ™) CallKind ::= Constr | Nonvirtual

| Virtual | Super

Javap uses constructor specifications to uniquely denote overloaded instance
constructors. JVMp provides instructions to allocate a new instance, to access
or assign its fields, to duplicate values, to invoke instance methods and to check
instance types. Javap and JVMg use the universe CallKind, to distinguish the
particular way in which instance methods are called.

4.1 The Machine JVMy for Object-Oriented Code

JVMp uses the same abstract class file as JVM¢. However, instance fields and
instance methods—in opposite to class fields and class methods—are not static
but dynamic. So we extend the universe MemberKind as follows:

MemberKind ::= ... | Dynamic

The JVM specification [6] fixes the class file. However, the specification does
not explain how instances are stored or instance methods are accessed. So we
extend the signature of JVM¢ in JVMp in the same way as the signature of Javac
is extended in Javap. We introduce the following static functions (homonymy
with Javap functions) that look up information in the global environment:

dfields : Class — P FieldSpec
dlookup : Class x MethSpec — Class
compatible : Class x Class — Bool

The function dfields determines the instance fields of a class and of all its
superclasses (if any). The function dlookup returns the first (super) class for
the given method specification, which implements this method. The expression

28 Egon Borger and Wolfram Schulte

compatible(my Type, tar Type) returns true if myType is assignment compatible
with tarType [4]. Note that at the JVM level, there is no special lookup function
for constructors. Instead, Java’s constructors appear in the JVM as instance
initialization methods with the special name <init>.

JVMp and Javap have the same dynamic functions for memorizing the class
and the instance field values of a reference. In both machines they are initially
empty. References can be obtained from the abstract universe Ref, which is
assumed to be a subset of Word. (Likewise, we also assume that null is an
element of Word.)

classOf : Ref — Class classOf =
dyn : Ref x FieldSpec — Val dyn =

The following rules define the semantics of the new instructions of JVMp,
provided that the involved class is resolved.

if pc isnew (c)A if pc is invokeinstance ((¢,m, (&s,t)),k)A
resolved(res(c)) resolved(res(c)) A (t1,...tn) = tsA
then (Vny ..., 1,7, 0pd") =
extend Ref by r split(tn, ..., t, c), opd)A\
classOf (r) :==¢ r # null
vary fs over dfields(c) then
dyn(r, fs) := fInitVal(fs) call(next(pe, code), T - vy - ... vn,
opd :=r- opd opd’, (c’,m, (ts, t))
proceed where
if pc is getfield ((c, f), t)A ¢’ = case k of
resolved(res(c))A Constr tc
r-opd’ = opdA Nonwvirtual : cclass
r # null Virtual : dlookup(classOf (1),
then m, (ts, t))
opd := dyn(r, (c,f)) - opd’ Super : dlookup(super(cclass),
proceed m, (ts, t))
if pc is putfield ((c, f), t)A if pc is instanceof (¢)A
resolved(res(c))A resolved(res(c))A
(v,r, opd") = split(t, c, opd) A r-opd’ = opd
r # null then
then opd := (1 # nullA
opd := opd’ compatible(classOf (1), ¢) - opd’
dyn(r,(c,f)) ==v proceed
proceed if pc is checkcast (¢)A
if pc is dup _(¢1, t2)A resolved(res(c))A
(v2, v1, opd") = split(tz, t1, opd) r-opd’ = opd A
then (r = null V compatible(classOf (1), c))
opd := vz - vy - U2 - opd’ then
proceed proceed

A new instruction allocates a fresh reference using the domain extension update
of ASMs. The classOf the reference is set to the given class, the class instance
fields are set to default values, and the new reference is pushed on the operand
stack. A getfield instruction pops the target reference from the stack, retrieves

Defining the Java Virtual Machine 29

the value of the field identified by the given field specification from the dynamic
store and pushes one or two words on the operand stack. A putfield instruction
pops a value and the target reference from the stack and sets the dynamic store at
the point of the target reference and the given field specification to the popped
value. A dup_ instruction duplicates the top value and inserts the duplicate
below the top value on the stack. An invokeinstance instruction pops the
arguments and the target reference (which denotes the instance whose method
is being called) from the stack and sets pc to the next instruction. The method’s
implementing class is being located. If the call kind is

Constr, the method specification denotes a constructor; its code is located
in the given class. (The given method m must be <init>.)

— Nonvirtual, the method specification denotes a private method; its code is
located in the current class. (The given class ¢ must be cclass.)

— Virtual, the implementing class is looked up dynamically, starting at the
class of the target reference.

— Super, the method is looked up dynamically, starting at the superclass of
the current class. (The given class ¢ must be super(cclass).)

Once a method has been located, invoke calls the method: The arguments for the
invoked method are placed in the local variables of the new stack frame, placing
the target reference r (denoting this in Java) in loc(0). Execution continues
at the first instruction of the new method. An instanceof instruction pops a
reference from the operand stack. If the reference is not null and assignment
compatible with the required class, the integer 1 is pushed on the operand stack,
otherwise 0 is pushed. A checkcast instruction checks that the top value on the
stack is an instance of the given class.

If the class ¢ of a field or method specification or if the explicitly given
class ¢ of a new, an instanceof or a checkcast instruction is not resolved, the

JVM first resolves c, i.e. calls ¢’s <clinit> method, before the instruction is
executed.

if (pcisnew (¢) V pcisputfield ((¢,-),—) V pcisgetfield ((¢,—),—) V
pe is invokeinstance ((¢,—,—),—) V pcis instanceof (¢) V pc is checkcast (c)) A
—resolved(res(c))

then
call(pc, B, opd, proc(c, <clinit>))

4.2 Compilation of Javap Programs to JVM»n Code

Since there are no new statements in Javap, only the compilation of Javac
expressions has to be extended to the new Javap expressions. The reference
this is implemented as the distinguished local variable number 0.

30 Egon Borger and Wolfram Schulte

&(this) = load (0, 7 (this))
E(new (c,ts) (e1,...,en)) =mnew(c)-dup(c)-Eer-...-Een-
invokeinstance ((¢, <init>, (ts, void)), Consir)
E((c,ts) (e1,-.-,€n)) = load (0,7 (this))-Eer-...-Een -
invokeinstance ((¢, <init>, (ts, void)), Constr)
E(e.fspec) = Ee-getfield (fspec, T (fspec))
E(e1.fspec = e2) =CEe-Eea-
dup (7 (e1),7 (e2)) - putfield (fspec, T (fspec))
E(e.mspec{k}(e1,...,en)) =Ee-Eer-...-Eey - invokeinstance (mspec, k)
&(einstanceof ¢) = £e-instanceof (¢)
E((c)e) = £e- checkcast (¢)

Due to the conservativity of the extension of Javac/JVMe to Javap/JVMop,
for the proof of the Correctness Theorem for Javap/JVMe it suffices to ex-
tend the theorem from Javac/JVMe to the new expressions occurring in
Javao/JVMO.

The definitions of class initialization for Javap in [4] and resolution for JVMe
in [6] do not match because instanceof and class cast expressions in Java do
not call the initialization of classes. In opposite, the JVM effect is to execute the
initialization of the related class if it is not initialized yet. Under the assumption
that also in Java these instructions trigger class initialization, these instructions
preserve the theorem for Javap/JVMo.

5 JVMg¢ and the Compilation of Exception Treatment

In this section we extend JVMp to JVMg¢ that handles exceptions. We add the
compilation of the new Javag statements and refine the compilation of jump and
return statements.

The following grammars list the new statements of Javag and the new JVM¢
instructions. JVM¢ provides instructions to raise an exception, to jump to and
to return from subroutines embedded in methods.

Stm = ... Instr = ...
| throw Ezp; | athrow
| tryStm catch(Typ, Var, Stm)* | jsr(Lab)
| tryStmfinally Stm | ret (Varnum)

5.1 The JVM¢ Machine for Executing Exceptions

The JVM supports try/catch or try/finally by exception tables that list the
exceptions of a method. When an exception is raised this table is searched for
the handler. Exception tables refine the notion of method body as follows:

MethDec == (mKind : MemberKind x mBody : [Code x Exception™])
Ezception == (from, to, handle : Lab x catchTyp : [Class])

The labels from and to define the range of the protected code; handle starts
the exception handler for the optional type catchTyp. If no catchTyp is given

Defining the Java Virtual Machine 31

(as is the case for finally statements), any exception is caught. We refine the
function mCode from JVM¢ and introduce a new function mFEzcs, which returns
the exceptions of the given method specification.

mCode(c, m, f) = fst(mBody(mTab(env(c))(m,f)))
mExcs(c, m, f) = snd(mBody(mTab(env(c))(m,f)))

If a class initializer raised an exception, which is not handled within the
method, Java and therefore the JVM require that the method’s class must be
labeled as erroneous. So we extend the domain of ResolvedState in the same way
as we did for Java:

ResolvedState ::= ... | Error

If the thrown exception is not an Error or one of its subclasses, then Javag and
JVM¢ throw an ExceptionInInitializerError. If a class should be resolved
but is marked as erroneous, Java and therefore implicitely the JVM require that
a NoClassDefFoundError is reported.

We formalize the run-time system search for a handler of an exception by a
recursively defined function catch. This function first searches the active method
using catch’. If no handler is found (the exception handler list is empty), the cur-
rent method frame is discarded, the invoker frame is reinstated and catch is called
recursively. A handler is found if the pc is protected by some brackets from and
to, and the thrown exception is compatible with the catchType. In this case the
operand stack is reduced to the exception and execution continues at the address
of the exception handler. When catch’ returns from a <clinit> method, the
method has thrown an uncaught exception; according to the strategy presented
above the method’s class must be labeled as erroneous.

catch(r, ((pc - pes, loc - locs, opd - opds, mspec - mspecs), res)) =
catch’ (mEzcs(mspec)) where
catch'(e) =
if pcs = e then
((undef - pcs, loc - locs, opd - opds, mspec - mspecs), res)
else let (¢, m,_) = mspec
res’ = if m =<clinit> then res & {(c, Error)} else res in
catch(r, ((pes, locs, opds, mspecs), res’)
catch' ((from, to, handle, catchTyp) - excs) =
if jump(from, mCode(mspec)) < pc < jump(to, mCode(mspec))A
(catchTyp =[] V compatible(classOf (), catchTyp)) then
((jump(handle,mCode(mspec)) -pcs, loc -locs, r -opds, mspec -mspecs),res)
else catch'(excs)

The following rules define the semantics of JVMg¢ instructions. The athrow
instruction pops a reference from the stack and throws the exception represented
by that reference. The jsr instruction is used to implement Java’s finally
clause. This instruction pushes the address of the next instruction on the operand
stack and jumps to the given label. This requires that the universe Pc (called

32 Egon Borger and Wolfram Schulte

ReturnAddress in the JVM specification) is embedded in Word. The address,
which is put on top of the stack, is used by ret to return from the subroutine,
wherefore the return address first has to be stored in a local variable.

if pc is athrow A if pc is jsr (lab)
r-opd = opdA then
r % null opd := next(pc, code) - opd
then pec := goto(lab)
(frames, res) := catch(r, (frames, res))
if pcisret (z) if res(cclass) = Error
then then
pc := loc(x) fail(NoClassDefFoundError)

If the current class is erroneous, the last rule throws a NoClassDefFoundError
using the macro fail(c). This macro replaces the following instruction sequence:

new (¢),dup, invokeinstance ((¢, <init>, (¢, void)), Constr), athrow

Whether or not the constructor is called is semantically irrelevant, as long as
the constructors only call superclass constructors.

We refine in the obvious way rules that raise run-time exceptions. A typ-
ical representative of this rule kind is the refinement of bapply. It throws an
ArithmeticException, if the operator is an integer or long division or remainder
operator and the right operand is 0.

if pc is bapply (®) A (0, v1, opd’) = split(A(®), opd) A (® € DivMods)
then
fail(ArithmeticException)

JVMg throws a NullPointerException if the target reference of a
getfield, putfield or invokeinstance instruction is null, or if the reference
of the athrow instruction is null. The machine throws a ClassCastException,
if the reference on top of stack is neither null nor assignment compatible with
the required type.

5.2 Compilation of Javag Statements to JVM¢ Instructions

Since there are no new expression in Javag, only the compilation of Javap state-
ments has to be extended to the compilation of the new Javag statements.

For try/catch statements, the compiled try clause is followed by a jump to
the end of the compiled statement. Next the handlers are generated. Each han-
dler stores the exception into the ‘catch’ parameter, followed by the code of the
catch clause and a jump to the end of the compiled statement. For try/finally
statements s, the try clause is compiled followed by a call to the embedded sub-
routine, which is generated for the finally clause. The subroutine first stores
the return address into a fresh variable ret(s), and finally calls ret (ret(s)). The
handler for exceptions that are thrown in the try clause starts at labs(s). The
handler saves an exception of class Throwable, which is left on the operand
stack, into the fresh local variable exc(s), calls the subroutine, and rethrows the

Defining the Java Virtual Machine 33

exception. Variable providing functions exc, ret and also val that is used below,
return for occurences of statements fresh variable numbers. This means that any
returned variable number must be unused when the exception, return address or
return value is stored, and this variable definition must reach its corresponding
use.

S(throwe;) = £e - athrow

S(s as try spcatch (c1, 21, 81) - - (Comy Tm, Sm)) =
label (laby(s)) - Sso - goto (labs(s)) - 1abel (labz(s)) -
label (labs+1) - store (T, c1) - Ss1 - goto (labs(s)) - .. .-
label (labs4m) - store (Tm, cm) - Ssm - goto (labs(s)) -
label (labs(s))

S(s as try s; finally sp) =
label (laby(s)) - Ss1 - jsr (laba(s)) - goto (laba(s)) -
label (labz(s)) - store (ret(s),ReturnAddress) - Ssy - ret (ret(s)) -
label (labs(s)) - store (exc(s), Throwable) - jsr (laba(s)) -

load (exc(s), Throwable) - athrow -

label (laba(s))

If a jump statement is nested inside a try clause of a try/finally statement and
its corresponding target statement contains try/finally statements, then all
finally clauses between the jump statement and the target have to be executed
in innermost order. The compilation uses the function takeFinallyUntilTarget :
Stm x Lab — Stm*, which given an occurrence of a statement and a label,
returns in innermost order all occurrences of try/finally statements up to the
target statement. For returne the compiler stores the result of the compiled
expression e in a fresh temporary variable val. The compiler then generates
code to jump to all outer finally statements in this method using the static
function takeFinally : Stm — Stm™*. Thereafter, the local variable val is pushed
back onto the operand stack and the intended return instruction is executed.

S(s as break lab;) = let (s1,. .., sm) = takeFinallyUntilTarget(s, lab) in
jsr (laba(s1)) - ... jsr (lab2(sm)) - goto (labz(target(s, lab)))

S(s as continue lab;) = let (s1,..., sm) = takeFinallyUntilTarget(s, lab) in
jsr (laba(s1)) - ... jsr (laba(sm)) - goto (laby (target(lab, s)))

S(s asreturne;) = let (s1,..., sm) = takeFinally(s) in
Ee - store (val(s), T (e))-
jsr (laba(s1)) - ... jsr (lab2(sm)) - Load (val(s),7 (e)) - return (7 (e))

S(s as return;) = let (s1,...,sm) = takeFinally(s) in
jsr (lab2(s1)) - .. .- jsr (lab2(sm)) - return (void)

In the generation of an exception table inner try phrases are concatenated before
the outer ones. This guarantees that exceptions are searched in innermost order.

34 Egon Borger and Wolfram Schulte

X (s as try so catch (1,21, 81), -
XS()

(Cm7 Tm Sm)) -

(lab1(s), laba(s), labs+1,¢1) - Xsp-...-
(labi(s), laba(s), labssm, cm) - Xsm

l

X (s as try s1 finally s2) = Xs1 -(labi(s), laba(s), labs(s),[]) - X's2
X({s1.--n}) =Xs1-...-Xsp

X (if (e) s1 else sp) =Xs-Xs2

X (while (e) s) =Xs

X(lab : s) =Xs

X() =€

If during execution of a class initializer an exception is thrown and this
is not an Error or one of its subclasses, then Javag and JVMg throw an
ExceptionInInitializerError. We refine the compilation of the phrase Init
as follows:

S(statics) =
S(try scatch (Exception, z,
throw new (ExceptionInInitializerError, (¢,void)) ();))

Due to the conservativity of the extension of Javap/JVMe to Javag/JVMg,
for the proof of the Correctness Theorem for Javag/JVMg it suffices to extend
the theorem from Javap/JVMpe to expression and statement execution in finally
and error handling code, and to prove the following

Ezxception Lemma. The execution of code in Javag and the execution of the cor-
responding compiled code in JVMg produce exceptions at corresponding values
of the program counters in Javag and JVMg¢, for the same reasons, with the
same failure classes (if any) and trigger the same exception handling.

6 Conclusion

We have presented implementation independent, rigorous yet easy to understand
abstract code for the JVM as target machine for compilation of Java programs.
Our definition captures faithfully the corresponding explanations of the Java
Virtual Machine specification [6] and provides a practical basis for the mathe-
matical analysis and comparison of different implementations of the machine. In
particular it allowed us to prove the correctness of a general scheme for com-
piling Java programs into JVM code. Additionally, we have validated our work
by a successful implementation in the functional programming language Haskell.
The extended version of this paper [I] includes the proof details, the instruction
refinement, an extensive bibliography and the discussion of related work. In an
accompanying study [2] we refine the present JVM model to a defensive JVM,
where we also isolate the bytecode verifier and the resolution component (includ-
ing dynamic loading) of the JVM. This JVM can be used to execute compiled
Java code as well as any bytecode that is loaded from the net.

Defining the Java Virtual Machine 35

Acknowledgment. We thank Ton Vullinghs for comments on this work. The
first author thanks the IRIN (Institut de Recherche en Informatique de Nantes,
Université de Nantes & Ecole Centrale), in particular the Equipe Génie logiciel,
M¢éthodes et Spécifications formelles for the good working environment offered
during the last stage of the work on this paper.

References

1]

E. Borger and W. Schulte. Defining the Java Virtual Machine as platform for
provably correct Java compilation. Technical report, Universitat Ulm, Fakultat fiir
Informatik. Ulm, Germany, 1998.

E. Borger and W. Schulte. A modular design for the Java VM architecture. In
E. Borger, editor, Architecture Design and Validation Methods. Springer LNCS, to
appear, 1998.

E. Borger and W. Schulte. A programmer friendly modular definition of the seman-
tics of Java. In J. Alves-Foss, editor, Formal Syntaz and Semantics of Java(tm),
Springer LNCS, to appear. 1998.

J. Gosling, B. Joy, and G. Steele. The Java(tm) Language Specification. Addison
Wesley, 1996.

Y. Gurevich. Evolving algebras 1993: Lipari guide. In E. Borger, editor, Specifica-
tion and Validation Methods. Oxford University Press, 1995.

T. Lindholm and F. Yellin. The Java(tm) Virtual Machine Specification. Addison
Wesley, 1996.

	Introduction
	$unhbox voidb @x hbox {JVM}_{cal I}$/ and the Compilation of $unhbox voidb @x hbox {Java}_{cal I}$/ Programs
	The Machine $unhbox voidb @x hbox {JVM}_{cal I}$/ for Imperative Code
	Compilation of $unhbox voidb @x hbox {Java}_{cal I}$/ Programs to $unhbox voidb @x hbox {JVM}_{cal I}$/ Code

	$unhbox voidb @x hbox {JVM}_{cal C}$/ and the Compilation of Class Code
	The Machine $unhbox voidb @x hbox {JVM}_{cal C}$/ for Class Code
	Compilation of $unhbox voidb @x hbox {Java}_{cal C}$/ Programs to $unhbox voidb @x hbox {JVM}_{cal C}$/ Code

	$unhbox voidb @x hbox {JVM}_{cal O}$/ and the Compilation of $unhbox voidb @x hbox {Java}_{cal O}$/ Programs
	The Machine $unhbox voidb @x hbox {JVM}_{cal O}$/ for Object-Oriented Code
	Compilation of $unhbox voidb @x hbox {Java}_{cal O}$/ Programs to $unhbox voidb @x hbox {JVM}_{cal O}$/ Code

	$unhbox voidb @x hbox {JVM}_{cal E}$/ and the Compilation of Exception Treatment
	The $unhbox voidb @x hbox {JVM}_{cal E}$/ Machine for Executing Exceptions
	Compilation of $unhbox voidb @x hbox {Java}_{cal E}$/ Statements to $unhbox voidb @x hbox {JVM}_{cal E}$/ Instructions

	Conclusion

