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the UBiqUitY OF  the Internet means a plethora 
of online public databases and an indispensable 
resource for retrieving up-to-date information. But 
it also poses a significant risk to user privacy, since a 
malicious database owner may monitor user queries 
and infer what the user is after. Indeed, in cases 
where user intentions are to be kept secret, users are 
often cautious about accessing public databases. 
For example, investors querying a stock-market 
database for the current market value of certain 
stocks might prefer not to reveal their interest in the 
stocks because it could inadvertently influence their 
price. Alternatively, companies might want to search 
for certain patents without revealing the patents’ 
identities. 

Private information retrieval (PIR) schemes are 
cryptographic protocols designed to safeguard the 
privacy of database users. They allow clients to retrieve 
records from public databases while completely 
hiding the identity of the retrieved records from 
database owners. The possibility of retrieving 

database records without revealing 
their identities to the owner of the da-
tabase may seem beyond hope. Note, 
however, that a trivial solution is avail-
able: When users want a single record, 
they can ask for a copy of the whole 
database. This solution involves enor-
mous communication overhead and 
is likely to be unacceptable. It turns 
out7 that for users who want to keep 
their privacy fully protected (in the 
“information-theoretic” sense), this 
trivial solution is optimal. 

Fortunately, the negative result 
applies only to databases stored on a 
single server, rather than those repli-
cated across several servers. In 1995, 
Chor et al.7 came up with PIR schemes 
that enable private retrieval of records 
from replicated databases, with a non-
trivially small amount of communica-
tion. In such protocols, users query 
each server holding the database. The 
protocol ensures that each individual 
server (by observing only the query it 
receives) gets no information about 
the identity of the items of user in-
terest. Chor et al.’s seminal paper7 
triggered an important and extensive 
body of follow-up work.1,3,4,8,12,18,21,23,24 

Computational PIR. PIR schemes 
discussed here are often called “infor-
mation theoretic” because they pro-
vide an absolute guarantee that each 
server participating in protocol execu-
tion gets no information about what 
users are after. PIR has also been stud-
ied in a computational setting.6,10,15,16 

Computational PIR schemes are 
similar to their information-theoretic 
counterparts but provide a weaker 
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Cryptographic protocols safeguard the  
privacy of user queries to public databases. 
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    user privacy is at risk whenever  

owners of publicly available network 
resources are able to trace, record,  
and mine user activity. 

    the digital ecosystem involves not  
only such threats to personal privacy  
but also promising cures. 

     information-theoretic protocols 
decompose each user's query into 
several subqueries, ensuring they 
include no information about the  
user's intent. I
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rately. This encoding strategy allows 
efficient random-access retrieval of 
the information, since one must de-
code only the portion of data in which 
one is interested. Unfortunately, this 
strategy yields poor noise resilience, 
since, when even a single block (out 
of possibly tens of thousands) is com-
pletely corrupted, some information 
is lost. In view of this limitation it 
would seem preferable to encode the 
whole message into a single codeword 
of an error-correcting code. Such a 
solution improves the robustness to 
noise but is hardly satisfactory, since 
one needs to look at the whole code-
word in order to recover any particular 
bit of the message (at least when using 
classical error-correcting codes). Such 
decoding complexity is prohibitive for 
today’s massive data sets. 

LDCs simultaneously provide ef-
ficient random-access retrieval and 
high noise resilience by allowing re-
liable reconstruction of an arbitrary 
bit of the message from looking at 
only a small number of randomly cho-
sen codeword bits. Local decodabil-
ity comes at the price of certain loss 
in terms of code efficiency. Specifi-
cally, LDCs require longer codeword 
lengths than their classical counter-
parts. Though LDCs were discussed 
in the literature2,19 in the early 1990s, 

the first formal definition of LDCs was 
given in 2000 by Katz and Trevisan.13 
Further work on the efficiency of LDCs 
was covered in.3,4,8,12,14,18,24 

Outline. Computational and infor-
mation theoretic PIR schemes rely on 
different sets of techniques. The main 
focus in this article is information-
theoretic schemes, reserving the term 
PIR for information-theoretic proto-
cols. In the following section we make 

guarantee. Specifically, they ensure 
only that a server cannot get any in-
formation about user intent unless it 
solves a certain computationally hard 
problem (such as factoring a large 
random integer). Providing privacy 
or security guarantees based on com-
putational hardness assumptions is 
common in modern cryptography. In 
contrast to information-theoretic PIR 
schemes, computational PIR proto-
cols with low communication over-
head exist (under standard assump-
tions), even when a database is stored 
on a single server (see the figure here). 
However, for typical real-life parame-
ters, known computational protocols 
are less efficient than known informa-
tion-theoretic ones. 

Locally decodable codes. PIR 
schemes are intimately related to a 
special class of error-correcting codes 
called “locally decodable codes,” or 
LDCs, that, on their own, are objects 
of interest. All recent constructions of 
information-theoretic PIR schemes 
work by first constructing LDCs, then 
converting them to PIRs. 

Error-correcting codes help en-
sure reliable transmission of infor-
mation over noisy channels, as well 
as reliable storage of information 
on a medium that may be partially 
corrupted over time or whose read-
ing device is subject to errors. Such 
codes allow one to add redundancy, 
or bit strings, to messages, encoding 
them into longer bit strings, called 
“codewords,” in a way that the mes-
sage can still be recovered even if a 
certain fraction of the codeword bits 
are corrupted. In typical applications 
of error-correcting codes the message 
is first partitioned into small blocks, 
each of which is then encoded sepa-

the notions of information-theoretic 
PIR and LDCs more concrete, explain-
ing the relationship between them. 
Later, we demonstrate how nontrivial 
PIR is possible, offering an exposition 
of one of the simplest and earliest 
schemes. We then present the most 
basic PIR protocol of the current gen-
eration. Finally, we discuss computa-
tional PIR protocols and an early sin-
gle-server scheme due to Kushilevitz 
and Ostrovsky.15 

Preliminaries 
Beginning with a (slightly informal) 
definition of PIR schemes, we model 
the database as an n-bit string x that 
is replicated between a small num-
ber k of non-communicating servers 
S1,…,Sk. The user holds an index i (an 
integer between 1 and n) and is in-
terested in obtaining the value of the 
bit xi. To achieve this goal, the user 
tosses several random coins, queries 
each server, and receives replies from 
which the desired bit xi is computed. 
The query to each server is distributed 
independently of i; therefore, each 
server gets no information about what 
the user is after. 

Note that user queries are not nec-
essarily requests for particular indi-
vidual bits or sets of database bits. 
Rather, they specify functions comput-
ed by the servers; for example, a query 
may specify a set of indices between 1 
and n, and the server’s response may 
be the XOR of the database bits stored 
at these indices. 

Historically, the main parameter 
of interest in PIR schemes was com-
munication complexity, or a function 
of n measuring the total number of 
bits communicated between user and 
servers, maximized over all choices of 
x in {0, 1}n, i in 1 to n, and the user’s 
random coin tosses. 

The most efficient two-server PIR 
protocols available today have com-
munication complexity of O(n1/3). 
These protocols, which are due to 
Chor et al.,7 have never been improved 
upon. However, PIR schemes involv-
ing three or more servers have seen 
improvement.1,4,7,8,12,24 The best-known 
are due to Efremenko8 and Itoh and 
Suzuki.12 Efremenko’s three-server 
PIR schemes require f (n) bits of com-
munication, where f (n) is a certain 
function that grows slower than any 

two-server information-theoretic PiR scheme. to retrieve a database record, the user 
queries two servers, each of which stores a copy of the database, but individual queries 
carry no information about what the user is after. the desired record is obtained from  
the servers’ combined responses. 

answer1 answer2

query1 query2
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the protocol 
ensures that every 
individual server  
(by observing  
only the query  
it receives) gets  
no information 
about the identity  
of the items  
of user interest.

polynomial in n but faster than any 
power of the logarithm of n. The best 
lower bound for the communication 
complexity of two-server PIR is 5 log 
n due to Wehner and de Wolf.21 Clos-
ing the gap between upper and lower 
bounds for PIR communication com-
plexity is a major open problem. 

Now we address a more detailed 
treatment of LDCs that have three 
parameters: k, d, and e. A (k, d, e)-LDC 
encodes n-bit messages x to N-bit 
codewords C(x), such that for every i 
between 1 and n the bit xi can be re-
covered with probability 1 – e by a 
randomized decoding procedure that 
reads only k codeword bits, even after 
the codeword C(x) is adversarially cor-
rupted in up to dN locations. Here, the 
probability is only over the decoder’s 
random coin tosses. 

We illustrate the notion of LDCs 
by presenting a (2, d, 2d)-(Hadamard) 
LDC that encodes n-bit messages to 
2n-bit codewords. In what follows, let 
[n] denote the set {1,…,n}. 

Hadamard code. Every coordinate 
in the Hadamard code corresponds 
to one (of 2n) subsets of [n] and stores 
the XOR of the corresponding bits of 
the message x. Let y be an (adversari-
ally corrupted) encoding of x. Given 
an index i Є [n] and y, the Hadamard 
decoder picks a set S in [n] uniformly 
at random and outputs the XOR of the 
two coordinates of y corresponding to 
sets S and S ∆ {i}. (Here, ∆ denotes the 
symmetric difference of sets (such as 
{1, 4, 5} ∆ {4} = {1, 5}, and {1, 4, 5} 
∆ {2} = {1, 2, 4, 5}). It’s not difficult 
to verify that both decoders’ queries 
go to uncorrupted locations if y dif-
fers from the correct encoding of x in 
at most d fraction of coordinates than 
with probability 1 – 2d. In such cases, 
the decoder correctly recovers the i-th 
bit of x. 

The Hadamard code allows for a 
super-fast recovery of the message 
bits (such as, given a codeword cor-
rupted in 0.1 fraction of coordinates, 
one is able to recover any bit of the 
message with probability 0.8 by read-
ing only two codeword bits) at a price 
of very large codeword length. Design-
ing LDCs with optimal, or smallest 
possible, codeword length is a major 
challenge. 

The definition of LDCs implies 
that every bit xi of the message can 

be recovered from many different k-
tuples of codeword bits. Note that 
such k-tuples cannot all belong to a 
small (o(N)-size) subset S of codeword 
coordinates, since corrupting the co-
ordinates in S could lead to the high 
probability of a decoding error. Thus 
the distribution of every individual 
query of the decoder must be some-
what close to a uniform distribution 
on the codeword bits. Indeed, many 
known LDCs have decoders whose 
individual queries are distributed per-
fectly uniformly; such LDCs are called 
“perfectly smooth.” 

There is a strong relationship be-
tween LDCs and PIR schemes. Short 
LDCs yield efficient PIR schemes and 
vice versa. Here, we demonstrate the 
flavor of this relationship, presenting 
a general procedure that obtains a k-
server PIR scheme from any perfectly 
smooth k-query LDC. 

Let C be a perfectly smooth LDC 
encoding n-bit messages to N-bit 
codewords. At the preprocessing 
stage, servers S1,…,Sk encode the n-
bit database x with the code C. Next, 
a user interested in obtaining the i-th 
bit of x tosses random coins and gen-
erates a k-tuple of queries (q1,…,qk), 
such that xi can be computed from 
C(x)q1,…,C(x)qk. For every j in [k], the 
user sends the query qj to the server Sj. 
Each server Sj responds with a one-bit 
answer C(x)qj. The user combines the 
servers’ responses to obtain xi. 

Verifying that the protocol is pri-
vate is straightforward, since for every 
j in [k] the query qj is uniformly dis-
tributed over the set of codeword co-
ordinates; the total communication is 
given by k(logN + 1). 

Early PiR Scheme 
Let d be a small integer. Our goal here 
is to demonstrate how nontrivial PIR 
is possible by presenting a simple 
(d+1)-server scheme with O(n1/d) com-
munication to access an n-bit data-
base. The key idea behind this scheme 
is polynomial interpolation in a finite-
field setting. 

We begin with some technical back-
ground. Let p > d be a prime. It is well 
known that addition and multiplica-
tion of numbers {0,…, p–1} modulo p 
satisfy the standard identities that one 
is used to over the real numbers. That 
is, numbers {0,…, p–1} form a finite 
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rupted codeword and outputting the 
XOR of the values in these coordinates. 

For i in [n], let ei denote a binary 
n-dimensional vector, whose unique 
non-zero coordinate is i. Observe that 
every linear LDC admits a combinato-
rial description. That is, to define a 
linear LDC it is sufficient to specify for 
every i in [n]: 

A set  ˲ Ti of coordinates of C(ei) that 
are set to 1. Such sets completely spec-
ify the encoding, since for any mes-
sage x, C(x) = ∑i:xi=1 C(ei); and 

A family  ˲ Qi of k-size subsets of 
codeword coordinates that can be 
read by a decoding algorithm while 
reconstructing the i-th message bit. 

Not every collection of sets Ti and 
families Qi yields an LDC. Certain 
combinatorial constraints must be 
satisfied. The basic rationale for these 
constraints is the following: 

The decoding must be correct in 1. 
case no codeword bits have been cor-
rupted. This implies that for every i, j 
in [n] and any k-set S in Qi the size of S 
∩ Tj must be odd if i = j and even oth-
erwise; and 

The distribution of individual 2. 
queries of the decoding algorithm 
must be close to uniform. This im-
plies that for every i in [n], the union 
of the k-sets in Qi must be large rela-
tive to the number of codeword coor-
dinates. 

Step 2. Design a collection of sets Ti 
and families Qi that satisfy these con-
straints. This is where most of the tech-
nical work occurs. The construction is 
supported by a strong geometric intu-
ition. We consider a bijection between 
the set of codeword coordinates and 
a set of m-dimensional vectors over a 
finite field of cardinality k. We choose 
sets Ti to be unions of certain paral-
lel hyperplanes in the m-dimensional 
linear space over Fk and families Qi to 
be certain families of lines. (Note that 
lines over Fk have only k points.) We 
use basic algebra to argue about the 
intersection sizes. 

Computational PiR 
Computational PIR schemes are at-
tractive because they avoid the need to 
maintain replicated copies of a data-
base and do not compromise user pri-
vacy against colluding servers. Here, 
we share a high-level overview (the 
basic version) of the Kushilevitz and 

field with respect to these operations. 
This field is denoted by Fp. In what fol-
lows we deal with polynomials defined 
over finite fields. Such polynomials 
have all algebraic properties that one 
is used to with polynomials over the 
real numbers. Specifically, a univari-
ate polynomial over Fp of degree d is 
uniquely determined by its values at 
any d + 1 points. 

Let m be a large integer. Let E1,…,En 
be a certain collection of n vectors 
over Fp of dimension m. The collec-
tion is fixed and independent of the 
n-bit database x. We assume the collec-
tion is known to both the servers and 
the user. On the preprocessing stage 
of the PIR protocol, each of (d + 1) 
servers represents the database x by 
the same degree d polynomial f in m 
variables. The key property of  such 
a  polynomial is that for every i in 
[n] : f (Ei) = xi. In order to ensure that 
such a polynomial f exists we choose 
m to be reasonably large compared to 
n. Setting m = O(n1/d) suffices. 

Now suppose the user wants to re-
trieve the i-th bit of the database and 
knows the collection of vectors E1,…
,En. The user’s goal is thus to recover 
the value of the polynomial f (held by 
the servers) at Ei. Obviously, the user 
cannot explicitly request the value of f 
at Ei from any of the servers, since such 
a request would ruin the privacy of the 
protocol; that is, some server will get 
to know which database bit the user 
is after. Instead, the user obtains the 
value of f(Ei) indirectly, relying on the 
rich structure of local dependencies 
between the evaluations of a low-de-
gree polynomial f at multiple points. 
Specifically, the user generates a ran-
domized collection of m-dimensional 
vectors P1,…,Pd+1 over Fp such that: 

Each of the vectors 1. Pl is individu-
ally uniformly random and thus pro-
vides no information about Ei; and 

The values of any degree 2. d poly-
nomial (including the polynomial f) 
at P1,…,Pd+1 determine the value of the 
polynomial at Ei. 

The user sends each server one of 
the vectors P1,…,Pd+1. The servers then 
evaluate the polynomial f at the vec-
tors they receive and return the values 
they obtain back to the user. The user 
combines the values f(P1),…,f(Pd+1) to 
get the desired value f(Ei). The proto-
col is perfectly private, and the com-

munication amounts to sending (d + 
1) vectors of dimension m to the serv-
ers and a single value back to the user. 
Here, we elaborate on how vectors 
P1,…,Pd+1 are chosen. 

The user picks an m-dimensional 
vector V uniformly at random and 
for every l between 1 and d+1 sets Pl 
= Ei+lV. Clearly, every individual vec-
tor Pl is uniformly random. To see 
that values of f(P1),…,f(Pd+1) determine 
the value of f(Ei) consider a univariate 
polynomial g(l) = f(Ei + lV). Note that 
the degree of g is at most d. Therefore 
the values of g at d + 1 points deter-
mine the polynomial g uniquely. It 
remains to notice that g(l) = f(Pl) and 
g(0) = f(Ei) = xi. 

This PIR scheme is a classical ex-
ample of PIR schemes. The ideas be-
hind it can be traced back to Babai et 
al.2 The idea of obtaining PIR schemes 
and LDCs through polynomials was 
used extensively thereafter.1,3,7 The 
most powerful constructions in this 
framework are due to Beimel et al.4; 
see also Woodruff and Yekhanin.23 

modern LDCs and PiRs 
In 2007, the author of the current ar-
ticle proposed a new approach to de-
signing LDCs and PIR schemes,24 lead-
ing to development of today’s most 
effective codes and schemes.8,12,18 The 
new constructions are not based on 
polynomials; their key technical in-
gredient is a design of a large family 
of sets with restricted intersections. 
Here, we offer a bird's-eye view of the 
construction of LDCs. Such codes are 
easily turned into PIR schemes. 

Let k be a small integer. Here, we 
design a binary k-query LDC C that 
encodes n-bit messages to codewords. 
This construction involves two steps: 
The first is a reduction to a problem 
of constructing a certain family of 
sets with restricted intersections; the 
second is an algebraic construction of 
the desired family. 

Step 1. Construct an F2-linear code 
C, so: 

C ˲  is an F2-linear map. For any two 
messages x1, x2 in Fn

2 we have C(x1 + x2) 
= C(x1) + C(x2), where the sums of vec-
tors are computed modulo two in each 
coordinate; and 

The decoding algorithm proceeds  ˲

by tossing random coins, reading a cer-
tain k-tuple of coordinates of the cor-
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Ostrovsky scheme that relies on the 
standard hardness assumption15—the 
“quadratic residuosity assumption.” 

Let m be a positive integer. A num-
ber a is called a “quadratic residue,” 
or QR, modulo m, if there exists an 
integer x such that x2 = a mod m. Oth-
erwise, a is called a “quadratic non-
residue,” or QNR, modulo m. The QR 
assumption states that it is computa-
tionally hard to distinguish numbers 
that are QRs modulo m from those 
that are not, unless one knows the fac-
torization of m. 

The protocol. The server stores the 
n-bit database x in a square matrix of 
size s by s for s = √n. 

    x 1 1… x 1 j
… x 1 s

x i 1… x i j… x i s

x s 1… x s j… x s s

...

...

...

...

...

...

a
1

bi

as

...

...

Suppose the database user is in-
terested in obtaining the value xij for 
some i, j between 1 and s. The user 
would select a large integer m together 
with its factorization at random and 
generate s – 1 random QRs a1,…,ai–1, 
ai+1,…,as modulo m, as well as a single 
random QNR bi. The user would then 
send the string a1,…,ai−1, bi, ai+1,…,as 
and the integer m to the server. 

The QR assumption implies that 
the server cannot distinguish bi from 
integers {al} and thus observes only 
a string of s random-looking integers 
u1,…,us modulo m (one per each row 
of the database). The server responds 
with s integers p1,…, ps (one per each 
column of the database). Here each ph 
is equal to a product of integers ul for all 
l such that xlh = 1; formally, ph = ∏l | xlh=1 

ul 
mod m. 

Verifying that the value of pj is go-
ing to be a QR modulo m if xij = 0 and 
is going to be a QNR modulo m is not 
hard if xij = 1, since a product of two 
QRs is a QR and the product of a QR 
with a QNR is a QNR. The user need 
only check whether pj is a QR, which is 
easy, since the user knows the factor-
ization of m. 

The total amount of communica-
tion in this PIR scheme is roughly O(
√n). Better protocols are available; see 
Gentry and Ramzan10 and Lipmaa16 
for the most efficient computational 
PIR schemes. 
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Conclusion 
With nearly 15 years of development, 
the PIR field has grown large and deep, 
with many subareas and connections 
to other fields. For more details, see 
Ostrovsky and Sketch17 for a survey of 
computational PIR and Trevisan20 and 
Yekhanin25 for a survey of information 
theoretic PIR; see also Gasarch.9 

Here, we have concentrated on a 
single (the most studied) aspect of 
PIR schemes—their communications 
complexity. Another important aspect 
of PIR schemes is the amount of com-
putation servers must perform in or-
der to respond to user queries.5,11,23 We 
are hopeful that further progress will 
lead to the wide practical deployment 
of these schemes. 
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