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Abstract

This monograph presents the main mathematical ideas in convex opti-

mization. Starting from the fundamental theory of black-box optimiza-

tion, the material progresses towards recent advances in structural op-

timization and stochastic optimization. Our presentation of black-box

optimization, strongly influenced by the seminal book of Nesterov, in-

cludes the analysis of the Ellipsoid Method, as well as (accelerated) gra-

dient descent schemes. We also pay special attention to non-Euclidean

settings (relevant algorithms include Frank-Wolfe, Mirror Descent, and

Dual Averaging) and discuss their relevance in machine learning. We

provide a gentle introduction to structural optimization with FISTA (to

optimize a sum of a smooth and a simple non-smooth term), Saddle-

Point Mirror Prox (Nemirovski’s alternative to Nesterov’s smoothing),

and a concise description of Interior Point Methods. In stochastic op-

timization we discuss Stochastic Gradient Descent, mini-batches, Ran-

dom Coordinate Descent, and sublinear algorithms. We also briefly

touch upon convex relaxation of combinatorial problems and the use of

randomness to round solutions, as well as random walks based methods.
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Introduction

The central objects of our study are convex functions and convex sets

in Rn.

Definition 1.1 (Convex sets and convex functions). A set X ⊂
Rn is said to be convex if it contains all of its segments, that is

∀(x, y, γ) ∈ X × X × [0, 1], (1− γ)x+ γy ∈ X .

A function f : X → R is said to be convex if it always lies below its

chords, that is

∀(x, y, γ) ∈ X × X × [0, 1], f((1− γ)x+ γy) ≤ (1− γ)f(x) + γf(y).

We are interested in algorithms that take as input a convex set X and

a convex function f and output an approximate minimum of f over X .

We write compactly the problem of finding the minimum of f over X
as

min. f(x)

s.t. x ∈ X .

1



2 Introduction

In the following we will make more precise how the set of constraints X
and the objective function f are specified to the algorithm. Before that

we proceed to give a few important examples of convex optimization

problems in machine learning.

1.1 Some convex optimization problems for machine learning

Many fundamental convex optimization problems for machine learning

take the following form:

min
x∈Rn

m∑
i=1

fi(x) + λR(x), (1.1)

where the functions f1, . . . , fm,R are convex and λ ≥ 0 is a fixed

parameter. The interpretation is that fi(x) represents the cost of

using x on the ith element of some data set, and R(x) is a regular-

ization term which enforces some ”simplicity” in x. We discuss now

major instances of (1.1). In all cases one has a data set of the form

(wi, yi) ∈ Rn × Y, i = 1, . . . ,m and the cost function fi depends only

on the pair (wi, yi). We refer to Hastie et al. [2001], Schölkopf and

Smola [2002] for more details on the origin of these important problems.

In classification one has Y = {−1, 1}. Taking fi(x) =

max(0, 1 − yix
>wi) (the so-called hinge loss) and R(x) = ‖x‖22

one obtains the SVM problem. On the other hand taking

fi(x) = log(1+exp(−yix>wi)) (the logistic loss) and againR(x) = ‖x‖22
one obtains the logistic regression problem.

In regression one has Y = R. Taking fi(x) = (x>wi − yi)
2 and

R(x) = 0 one obtains the vanilla least-squares problem which can be

rewritten in vector notation as

min
x∈Rn

‖Wx− Y ‖22,

where W ∈ Rm×n is the matrix with w>i on the ith row and

Y = (y1, . . . , yn)>. With R(x) = ‖x‖22 one obtains the ridge regression

problem, while with R(x) = ‖x‖1 this is the LASSO problem.
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In our last example the design variable x is best viewed as a matrix,

and thus we denote it by a capital letter X. Here our data set consists

of observations of some of the entries of an unknown matrix Y , and we

want to ”complete” the unobserved entries of Y in such a way that the

resulting matrix is ”simple” (in the sense that it has low rank). After

some massaging (see Candès and Recht [2009]) the matrix completion

problem can be formulated as follows:

min. Tr(X)

s.t. X ∈ Rn×n, X> = X,X � 0, Xi,j = Yi,j for (i, j) ∈ Ω,

where Ω ⊂ [n]2 and (Yi,j)(i,j)∈Ω are given.

1.2 Basic properties of convexity

A basic result about convex sets that we shall use extensively is the

Separation Theorem.

Theorem 1.1 (Separation Theorem). Let X ⊂ Rn be a closed

convex set, and x0 ∈ Rn \ X . Then, there exists w ∈ Rn and t ∈ R
such that

w>x0 < t, and ∀x ∈ X , w>x ≥ t.

Note that if X is not closed then one can only guarantee that

w>x0 ≤ w>x, ∀x ∈ X (and w 6= 0). This immediately implies the

Supporting Hyperplane Theorem:

Theorem 1.2 (Supporting Hyperplane Theorem). Let X ⊂ Rn

be a convex set, and x0 ∈ ∂X . Then, there exists w ∈ Rn, w 6= 0 such

that

∀x ∈ X , w>x ≥ w>x0.

We introduce now the key notion of subgradients.
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Definition 1.2 (Subgradients). Let X ⊂ Rn, and f : X → R. Then

g ∈ Rn is a subgradient of f at x ∈ X if for any y ∈ X one has

f(x)− f(y) ≤ g>(x− y).

The set of subgradients of f at x is denoted ∂f(x).

The next result shows (essentially) that a convex functions always

admit subgradients.

Proposition 1.1 (Existence of subgradients). Let X ⊂ Rn be

convex, and f : X → R. If ∀x ∈ X , ∂f(x) 6= ∅ then f is convex. Con-

versely if f is convex then for any x ∈ int(X ), ∂f(x) 6= ∅. Furthermore

if f is convex and differentiable at x then ∇f(x) ∈ ∂f(x).

Before going to the proof we recall the definition of the epigraph of

a function f : X → R:

epi(f) = {(x, t) ∈ X × R : t ≥ f(x)}.

It is obvious that a function is convex if and only if its epigraph is a

convex set.

Proof. The first claim is almost trivial: let g ∈ ∂f((1− γ)x+ γy), then

by definition one has

f((1− γ)x+ γy) ≤ f(x) + γg>(y − x),

f((1− γ)x+ γy) ≤ f(y) + (1− γ)g>(x− y),

which clearly shows that f is convex by adding the two (appropriately

rescaled) inequalities.

Now let us prove that a convex function f has subgradients in the

interior of X . We build a subgradient by using a supporting hyperplane

to the epigraph of the function. Let x ∈ X . Then clearly (x, f(x)) ∈
∂epi(f), and epi(f) is a convex set. Thus by using the Supporting

Hyperplane Theorem, there exists (a, b) ∈ Rn × R such that

a>x+ bf(x) ≥ a>y + bt,∀(y, t) ∈ epi(f). (1.2)
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Clearly, by letting t tend to infinity, one can see that b ≤ 0. Now let

us assume that x is in the interior of X . Then for ε > 0 small enough,

y = x+εa ∈ X , which implies that b cannot be equal to 0 (recall that if

b = 0 then necessarily a 6= 0 which allows to conclude by contradiction).

Thus rewriting (1.2) for t = f(y) one obtains

f(x)− f(y) ≤ 1

|b|
a>(x− y).

Thus a/|b| ∈ ∂f(x) which concludes the proof of the second claim.

Finally let f be a convex and differentiable function. Then by defi-

nition:

f(y) ≥ f((1− γ)x+ γy)− (1− γ)f(x)

γ

= f(x) +
f(x+ γ(y − x))− f(x)

γ

→
γ→0

f(x) +∇f(x)>(y − x),

which shows that ∇f(x) ∈ ∂f(x).

In several cases of interest the set of contraints can have an empty

interior, in which case the above proposition does not yield any informa-

tion. However it is easy to replace int(X ) by ri(X ) -the relative interior

of X - which is defined as the interior of X when we view it as subset of

the affine subspace it generates. Other notions of convex analysis will

prove to be useful in some parts of this text. In particular the notion

of closed convex functions is convenient to exclude pathological cases:

these are the convex functions with closed epigraphs. Sometimes it is

also useful to consider the extension of a convex function f : X → R to

a function from Rn to R by setting f(x) = +∞ for x 6∈ X . In convex

analysis one uses the term proper convex function to denote a convex

function with values in R ∪ {+∞} such that there exists x ∈ Rn with

f(x) < +∞. From now on all convex functions will be closed,

and if necessary we consider also their proper extension. We

refer the reader to Rockafellar [1970] for an extensive discussion of these

notions.
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1.3 Why convexity?

The key to the algorithmic success in minimizing convex functions is

that these functions exhibit a local to global phenomenon. We have

already seen one instance of this in Proposition 1.1, where we showed

that ∇f(x) ∈ ∂f(x): the gradient ∇f(x) contains a priori only local

information about the function f around x while the subdifferential

∂f(x) gives a global information in the form of a linear lower bound on

the entire function. Another instance of this local to global phenomenon

is that local minima of convex functions are in fact global minima:

Proposition 1.2 (Local minima are global minima). Let f be

convex. If x is a local minimum of f then x is a global minimum of f .

Furthermore this happens if and only if 0 ∈ ∂f(x).

Proof. Clearly 0 ∈ ∂f(x) if and only if x is a global minimum of f .

Now assume that x is local minimum of f . Then for γ small enough

one has for any y,

f(x) ≤ f((1− γ)x+ γy) ≤ (1− γ)f(x) + γf(y),

which implies f(x) ≤ f(y) and thus x is a global minimum of f .

The nice behavior of convex functions will allow for very fast algo-

rithms to optimize them. This alone would not be sufficient to justify

the importance of this class of functions (after all constant functions

are pretty easy to optimize). However it turns out that surprisingly

many optimization problems admit a convex (re)formulation. The ex-

cellent book Boyd and Vandenberghe [2004] describes in great details

the various methods that one can employ to uncover the convex aspects

of an optimization problem. We will not repeat these arguments here,

but we have already seen that many famous machine learning prob-

lems (SVM, ridge regression, logistic regression, LASSO, and matrix

completion) are immediately formulated as convex problems.

We conclude this section with a simple extension of the optimality

condition ”0 ∈ ∂f(x)” to the case of constrained optimization. We state

this result in the case of a differentiable function for sake of simplicity.
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Proposition 1.3 (First order optimality condition). Let f be

convex and X a closed convex set on which f is differentiable. Then

x∗ ∈ argmin
x∈X

f(x),

if and only if one has

∇f(x∗)>(x∗ − y) ≤ 0, ∀y ∈ X .

Proof. The ”if” direction is trivial by using that a gradient is also

a subgradient. For the ”only if” direction it suffices to note that if

∇f(x)>(y − x) < 0, then f is locally decreasing around x on the line

to y (simply consider h(t) = f(x + t(y − x)) and note that h′(0) =

∇f(x)>(y − x)).

1.4 Black-box model

We now describe our first model of ”input” for the objective function

and the set of constraints. In the black-box model we assume that

we have unlimited computational resources, the set of constraint X is

known, and the objective function f : X → R is unknown but can be

accessed through queries to oracles:

• A zeroth order oracle takes as input a point x ∈ X and

outputs the value of f at x.
• A first order oracle takes as input a point x ∈ X and outputs

a subgradient of f at x.

In this context we are interested in understanding the oracle complexity

of convex optimization, that is how many queries to the oracles are

necessary and sufficient to find an ε-approximate minima of a convex

function. To show an upper bound on the sample complexity we

need to propose an algorithm, while lower bounds are obtained by

information theoretic reasoning (we need to argue that if the number

of queries is ”too small” then we don’t have enough information about

the function to identify an ε-approximate solution).
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From a mathematical point of view, the strength of the black-box

model is that it will allow us to derive a complete theory of convex

optimization, in the sense that we will obtain matching upper and

lower bounds on the oracle complexity for various subclasses of inter-

esting convex functions. While the model by itself does not limit our

computational resources (for instance any operation on the constraint

set X is allowed) we will of course pay special attention to the

computational complexity (i.e., the number of elementary operations

that the algorithm needs to do) of our proposed algorithms.

The black-box model was essentially developped in the early days

of convex optimization (in the Seventies) with Nemirovski and Yudin

[1983] being still an important reference for this theory. In the recent

years this model and the corresponding algorithms have regained a lot

of popularity, essentially for two reasons:

• It is possible to develop algorithms with dimension-free or-

acle complexity which is quite attractive for optimization

problems in very high dimension.
• Many algorithms developped in this model are robust to noise

in the output of the oracles. This is especially interesting for

stochastic optimization, and very relevant to machine learn-

ing applications. We will explore this in details in Chapter

6.

Chapter 2, Chapter 3 and Chapter 4 are dedicated to the study of

the black-box model (noisy oracles are discussed in Chapter 6). We do

not cover the setting where only a zeroth order oracle is available, also

called derivative free optimization, and we refer to Conn et al. [2009],

Audibert et al. [2011] for further references on this.

1.5 Structured optimization

The black-box model described in the previous section seems extremely

wasteful for the applications we discussed in Section 1.1. Consider for

instance the LASSO objective: x 7→ ‖Wx− y‖22 + ‖x‖1. We know this

function globally, and assuming that we can only make local queries
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through oracles seem like an artificial constraint for the design of

algorithms. Structured optimization tries to address this observation.

Ultimately one would like to take into account the global structure

of both f and X in order to propose the most efficient optimization

procedure. An extremely powerful hammer for this task are the

Interior Point Methods. We will describe this technique in Chapter 5

alongside with other more recent techniques such as FISTA or Mirror

Prox.

We briefly describe now two classes of optimization problems for

which we will be able to exploit the structure very efficiently, these

are the LPs (Linear Programs) and SDPs (Semi-Definite Programs).

Ben-Tal and Nemirovski [2001] describe a more general class of Conic

Programs but we will not go in that direction here.

The class LP consists of problems where f(x) = c>x for some c ∈
Rn, and X = {x ∈ Rn : Ax ≤ b} for some A ∈ Rm×n and b ∈ Rm.

The class SDP consists of problems where the optimization vari-

able is a symmetric matrix X ∈ Rn×n. Let Sn be the space of n × n
symmetric matrices (respectively Sn+ is the space of positive semi-

definite matrices), and let 〈·, ·〉 be the Frobenius inner product (re-

call that it can be written as 〈A,B〉 = Tr(A>B)). In the class SDP

the problems are of the following form: f(x) = 〈X,C〉 for some

C ∈ Rn×n, and X = {X ∈ Sn+ : 〈X,Ai〉 ≤ bi, i ∈ {1, . . . ,m}} for

some A1, . . . , Am ∈ Rn×n and b ∈ Rm. Note that the matrix comple-

tion problem described in Section 1.1 is an example of an SDP.

1.6 Overview of the results

Table 1.1 can be used as a quick reference to the results proved in

Chapter 2 to Chapter 5. The results of Chapter 6 are the most relevant

to machine learning, but they are also slightly more specific which

makes them harder to summarize.

In the entire monograph the emphasis is on presenting the algo-

rithms and proofs in the simplest way. This comes at the expense

of making the algorithms more practical. For example we always
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assume a fixed number of iterations t, and the algorithms we consider

can depend on t. Similarly we assume that the relevant parameters

describing the regularity of the objective function (Lipschitz constant,

smoothness constant, strong convexity parameter) are know and can

also be used to tune the algorithm’s own parameters. The interested

reader can find guidelines to adapt to these potentially unknown

parameters in the references given in the text.

Notation. We always denote by x∗ a point in X such that f(x∗) =

minx∈X f(x) (note that the optimization problem under consideration

will always be clear from the context). In particular we always assume

that x∗ exists. For a vector x ∈ Rn we denote by x(i) its ith coordinate.

The dual of a norm ‖ · ‖ (defined later) will be denoted either ‖ · ‖∗ or

‖·‖∗ (depending on whether the norm already comes with a subscript).

Other notation are standard (e.g., In for the n× n identity matrix, �
for the positive semi-definite order on matrices, etc).
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f Algorithm Rate # Iterations Cost per iteration

non-smooth
Center of

Gravity
exp(−t/n) n log(1/ε)

one gradient,

one n-dim integral

non-smooth
Ellipsoid

Method
R
r exp(−t/n2) n2 log(R/(rε))

one gradient,

separation oracle,

matrix-vector mult.

non-smooth,

Lipschitz
PGD RL/

√
t R2L2/ε2 one gradient,

one projection

smooth PGD βR2/t βR2/ε
one gradient,

one projection

smooth
Nesterov’s

AGD
βR2/t2 R

√
β/ε one gradient

smooth

(arbitrary norm)
FW βR2/t βR2/ε

one gradient,

one linear opt.

strongly convex,

Lipschitz
PGD L2/(αt) L2/(αε)

one gradient,

one projection

strongly convex,

smooth
PGD R2 exp(−t/Q) Q log(R2/ε)

one gradient,

one projection

strongly convex,

smooth

Nesterov’s

AGD
R2 exp(−t/

√
Q)

√
Q log(R2/ε) one gradient

f + g,

f smooth,

g simple

FISTA βR2/t2 R
√
β/ε

one gradient of f

Prox. step with g

maxy∈Y ϕ(x, y),

ϕ smooth
SP-MP βR2/t βR2/ε

MD step on X
MD step on Y

c>x,

X with F

ν-self-conc.

IPM νO(1) exp(−t/
√
ν)

√
ν log(ν/ε)

Newton direction

for F on X
Table 1.1 Summary of the results proved in this monograph.
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Convex optimization in finite dimension

Let X ⊂ Rn be a convex body (that is a compact convex set with

non-empty interior), and f : X → [−B,B] be a continuous and convex

function. Let r,R > 0 be such that X is contained in an Euclidean ball

of radius R (respectively it contains an Euclidean ball of radius r). In

this chapter we give two black-box algorithms to solve

min. f(x)

s.t. x ∈ X .

2.1 The center of gravity method

We consider the following very simple iterative algorithm: let S1 = X ,

and for t ≥ 1 do the following:

(1) Compute

ct =
1

vol(St)

∫
x∈St

xdx. (2.1)

(2) Query the first order oracle at ct and obtain wt ∈ ∂f(ct). Let

St+1 = St ∩ {x ∈ Rn : (x− ct)>wt ≤ 0}.

12
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If stopped after t queries to the first order oracle then we use t queries

to a zeroth order oracle to output

xt ∈ argmin
1≤r≤t

f(cr).

This procedure is known as the center of gravity method, it was dis-

covered independently on both sides of the Wall by Levin [1965] and

Newman [1965].

Theorem 2.1. The center of gravity method satisfies

f(xt)−min
x∈X

f(x) ≤ 2B

(
1− 1

e

)t/n
.

Before proving this result a few comments are in order.

To attain an ε-optimal point the center of gravity method requires

O(n log(2B/ε)) queries to both the first and zeroth order oracles. It can

be shown that this is the best one can hope for, in the sense that for

ε small enough one needs Ω(n log(1/ε)) calls to the oracle in order to

find an ε-optimal point, see Nemirovski and Yudin [1983] for a formal

proof.

The rate of convergence given by Theorem 2.1 is exponentially fast.

In the optimization literature this is called a linear rate for the following

reason: the number of iterations required to attain an ε-optimal point

is proportional to log(1/ε), which means that to double the number of

digits in accuracy one needs to double the number of iterations, hence

the linear nature of the convergence rate.

The last and most important comment concerns the computational

complexity of the method. It turns out that finding the center of gravity

ct is a very difficult problem by itself, and we do not have computation-

ally efficient procedure to carry this computation in general. In Section

6.7 we will discuss a relatively recent (compared to the 50 years old

center of gravity method!) breakthrough that gives a randomized algo-

rithm to approximately compute the center of gravity. This will in turn

give a randomized center of gravity method which we will describe in

details.

We now turn to the proof of Theorem 2.1. We will use the following

elementary result from convex geometry:
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Lemma 2.1 (Grünbaum [1960]). Let K be a centered convex set,

i.e.,
∫
x∈K xdx = 0, then for any w ∈ Rn, w 6= 0, one has

Vol
(
K ∩ {x ∈ Rn : x>w ≥ 0}

)
≥ 1

e
Vol(K).

We now prove Theorem 2.1.

Proof. Let x∗ be such that f(x∗) = minx∈X f(x). Since wt ∈ ∂f(ct)

one has

f(ct)− f(x) ≤ w>t (ct − x).

and thus

St \St+1 ⊂ {x ∈ X : (x−ct)>wt > 0} ⊂ {x ∈ X : f(x) > f(ct)}, (2.2)

which clearly implies that one can never remove the optimal point

from our sets in consideration, that is x∗ ∈ St for any t. Without loss

of generality we can assume that we always have wt 6= 0, for otherwise

one would have f(ct) = f(x∗) which immediately conludes the proof.

Now using that wt 6= 0 for any t and Lemma 2.1 one clearly obtains

vol(St+1) ≤
(

1− 1

e

)t
vol(X ).

For ε ∈ [0, 1], let Xε = {(1 − ε)x∗ + εx, x ∈ X}. Note that vol(Xε) =

εnvol(X ). These volume computations show that for ε >
(
1− 1

e

)t/n
one has vol(Xε) > vol(St+1). In particular this implies that for ε >(
1− 1

e

)t/n
, there must exist a time r ∈ {1, . . . , t}, and xε ∈ Xε, such

that xε ∈ Sr and xε 6∈ Sr+1. In particular by (2.2) one has f(cr) <

f(xε). On the other hand by convexity of f one clearly has f(xε) ≤
f(x∗) + 2εB. This concludes the proof.

2.2 The ellipsoid method

Recall that an ellipsoid is a convex set of the form

E = {x ∈ Rn : (x− c)>H−1(x− c) ≤ 1},
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where c ∈ Rn, and H is a symmetric positive definite matrix. Geomet-

rically c is the center of the ellipsoid, and the semi-axes of E are given

by the eigenvectors of H, with lengths given by the square root of the

corresponding eigenvalues.

We give now a simple geometric lemma, which is at the heart of the

ellipsoid method.

Lemma 2.2. Let E0 = {x ∈ Rn : (x− c0)>H−1
0 (x− c0) ≤ 1}. For any

w ∈ Rn, w 6= 0, there exists an ellipsoid E such that

E ⊃ {x ∈ E0 : w>(x− c0) ≤ 0}, (2.3)

and

vol(E) ≤ exp

(
− 1

2n

)
vol(E0). (2.4)

Furthermore for n ≥ 2 one can take E = {x ∈ Rn : (x−c)>H−1(x−c) ≤
1} where

c = c0 −
1

n+ 1

H0w√
w>H0w

, (2.5)

H =
n2

n2 − 1

(
H0 −

2

n+ 1

H0ww
>H0

w>H0w

)
. (2.6)

Proof. For n = 1 the result is obvious, in fact we even have vol(E) ≤
1
2vol(E0).

For n ≥ 2 one can simply verify that the ellipsoid given by (2.5)

and (2.6) satisfy the required properties (2.3) and (2.4). Rather than

bluntly doing these computations we will show how to derive (2.5) and

(2.6). As a by-product this will also show that the ellipsoid defined by

(2.5) and (2.6) is the unique ellipsoid of minimal volume that satisfy

(2.3). Let us first focus on the case where E0 is the Euclidean ball

B = {x ∈ Rn : x>x ≤ 1}. We momentarily assume that w is a unit

norm vector.

By doing a quick picture, one can see that it makes sense to look

for an ellipsoid E that would be centered at c = −tw, with t ∈ [0, 1]

(presumably t will be small), and such that one principal direction
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is w (with inverse squared semi-axis a > 0), and the other principal

directions are all orthogonal to w (with the same inverse squared semi-

axes b > 0). In other words we are looking for E = {x : (x−c)>H−1(x−
c) ≤ 1} with

c = −tw, and H−1 = aww> + b(In − ww>).

Now we have to express our constraints on the fact that E should

contain the half Euclidean ball {x ∈ B : x>w ≤ 0}. Since we are also

looking for E to be as small as possible, it makes sense to ask for E
to ”touch” the Euclidean ball, both at x = −w, and at the equator

∂B ∩ w⊥. The former condition can be written as:

(−w − c)>H−1(−w − c) = 1⇔ (t− 1)2a = 1,

while the latter is expressed as:

∀y ∈ ∂B ∩ w⊥, (y − c)>H−1(y − c) = 1⇔ b+ t2a = 1.

As one can see from the above two equations, we are still free to choose

any value for t ∈ [0, 1/2) (the fact that we need t < 1/2 comes from

b = 1−
(

t
t−1

)2
> 0). Quite naturally we take the value that minimizes

the volume of the resulting ellipsoid. Note that

vol(E)

vol(B)
=

1√
a

(
1√
b

)n−1

=
1√

1
(1−t)2

(
1−

(
t

1−t

)2
)n−1

=
1√

f
(

1
1−t

) ,
where f(h) = h2(2h−h2)n−1. Elementary computations show that the

maximum of f (on [1, 2]) is attained at h = 1 + 1
n (which corresponds

to t = 1
n+1), and the value is(

1 +
1

n

)2(
1− 1

n2

)n−1

≥ exp

(
1

n

)
,

where the lower bound follows again from elementary computations.

Thus we showed that, for E0 = B, (2.3) and (2.4) are satisfied with the

following ellipsoid:{
x :

(
x+

w/‖w‖2
n+ 1

)>(n2 − 1

n2
In +

2(n+ 1)

n2

ww>

‖w‖22

)(
x+

w/‖w‖2
n+ 1

)
≤ 1

}
.

(2.7)
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We consider now an arbitrary ellipsoid E0 = {x ∈ Rn : (x −
c0)>H−1

0 (x− c0) ≤ 1}. Let Φ(x) = c0 +H
1/2
0 x, then clearly E0 = Φ(B)

and {x : w>(x− c0) ≤ 0} = Φ({x : (H
1/2
0 w)>x ≤ 0}). Thus in this case

the image by Φ of the ellipsoid given in (2.7) with w replaced by H
1/2
0 w

will satisfy (2.3) and (2.4). It is easy to see that this corresponds to an

ellipsoid defined by

c = c0 −
1

n+ 1

H0w√
w>H0w

,

H−1 =

(
1− 1

n2

)
H−1

0 +
2(n+ 1)

n2

ww>

w>H0w
. (2.8)

Applying Sherman-Morrison formula to (2.8) one can recover (2.6)

which concludes the proof.

We describe now the ellipsoid method. From a computational per-

spective we assume access to a separation oracle for X : given x ∈ Rn, it

outputs either that x is in X , or if x 6∈ X then it outputs a separating

hyperplane between x and X . Let E0 be the Euclidean ball of radius R

that contains X , and let c0 be its center. Denote also H0 = R2In. For

t ≥ 0 do the following:

(1) If ct 6∈ X then call the separation oracle to obtain a separat-

ing hyperplane wt ∈ Rn such that X ⊂ {x : (x−ct)>wt ≤ 0},
otherwise call the first order oracle at ct to obtain wt ∈
∂f(ct).

(2) Let Et+1 = {x : (x − ct+1)>H−1
t+1(x − ct+1) ≤ 1} be the

ellipsoid given in Lemma 2.2 that contains {x ∈ Et : (x −
ct)
>wt ≤ 0}, that is

ct+1 = ct −
1

n+ 1

Htw√
w>Htw

,

Ht+1 =
n2

n2 − 1

(
Ht −

2

n+ 1

Htww
>Ht

w>Htw

)
.

If stopped after t iterations and if {c1, . . . , ct}∩X 6= ∅, then we use the

zeroth order oracle to output

xt ∈ argmin
c∈{c1,...,ct}∩X

f(cr).
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The following rate of convergence can be proved with the exact same

argument than for Theorem 2.1 (observe that at step t one can remove

a point in X from the current ellipsoid only if ct ∈ X ).

Theorem 2.2. For t ≥ 2n2 log(R/r) the ellipsoid method satisfies

{c1, . . . , ct} ∩ X 6= ∅ and

f(xt)−min
x∈X

f(x) ≤ 2BR

r
exp

(
− t

2n2

)
.

We observe that the oracle complexity of the ellipsoid method is much

worse than the one of the center gravity method, indeed the former

needs O(n2 log(1/ε)) calls to the oracles while the latter requires only

O(n log(1/ε)) calls. However from a computational point of view the

situation is much better: in many cases one can derive an efficient

separation oracle, while the center of gravity method is basically al-

ways intractable. This is for instance the case in the context of LPs

and SDPs: with the notation of Section 1.5 the computational com-

plexity of the separation oracle for LPs is O(mn) while for SDPs it is

O(max(m,n)n2) (we use the fact that the spectral decomposition of a

matrix can be done in O(n3) operations). This gives an overall complex-

ity of O(max(m,n)n3 log(1/ε)) for LPs and O(max(m,n2)n6 log(1/ε))

for SDPs.

We also note another interesting property of the ellipsoid method:

it can be used to solve the feasability problem with a separation oracle,

that is for a convex body X (for which one has access to a separation

oracle) either give a point x ∈ X or certify that X does not contain a

ball of radius ε.



3

Dimension-free convex optimization

We investigate here variants of the gradient descent scheme. This it-

erative algorithm, which can be traced back to Cauchy [1847], is the

simplest strategy to minimize a differentiable function f on Rn. Start-

ing at some initial point x1 ∈ Rn it iterates the following equation:

xt+1 = xt − η∇f(xt), (3.1)

where η > 0 is a fixed step-size parameter. The rationale behind (3.1)

is to make a small step in the direction that minimizes the local first

order Taylor approximation of f (also known as the steepest descent

direction).

As we shall see, methods of the type (3.1) can obtain an oracle

complexity independent of the dimension. This feature makes them

particularly attractive for optimization in very high dimension.

Apart from Section 3.3, in this chapter ‖ · ‖ denotes the Euclidean

norm. The set of constraints X ⊂ Rn is assumed to be compact and

convex. We define the projection operator ΠX on X by

ΠX (x) = argmin
y∈X

‖x− y‖.

The following lemma will prove to be useful in our study. It is an easy

19
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x

y

‖y − x‖

ΠX (y)

‖y −ΠX (y)‖

‖ΠX (y)− x‖

X

Fig. 3.1 Illustration of Lemma 3.1.

corollary of Proposition 1.3, see also Figure 3.1.

Lemma 3.1. Let x ∈ X and y ∈ Rn, then

(ΠX (y)− x)>(ΠX (y)− y) ≤ 0,

which also implies ‖ΠX (y)− x‖2 + ‖y −ΠX (y)‖2 ≤ ‖y − x‖2.

Unless specified otherwise all the proofs in this chapter are taken

from Nesterov [2004a] (with slight simplification in some cases).

3.1 Projected Subgradient Descent for Lipschitz functions

In this section we assume that X is contained in an Euclidean ball

centered at x1 ∈ X and of radius R. Furthermore we assume that f is

such that for any x ∈ X and any g ∈ ∂f(x) (we assume ∂f(x) 6= ∅),
one has ‖g‖ ≤ L. Note that by the subgradient inequality and Cauchy-

Schwarz this implies that f is L-Lipschitz on X , that is |f(x)−f(y)| ≤
L‖x− y‖.

In this context we make two modifications to the basic gradient de-

scent (3.1). First, obviously, we replace the gradient ∇f(x) (which may



3.1. Projected Subgradient Descent for Lipschitz functions 21

xt

yt+1

gradient step

(3.2)

xt+1

projection (3.3)

X

Fig. 3.2 Illustration of the Projected Subgradient Descent method.

not exist) by a subgradient g ∈ ∂f(x). Secondly, and more importantly,

we make sure that the updated point lies in X by projecting back (if

necessary) onto it. This gives the Projected Subgradient Descent algo-

rithm which iterates the following equations for t ≥ 1:

yt+1 = xt − ηgt, where gt ∈ ∂f(xt), (3.2)

xt+1 = ΠX (yt+1). (3.3)

This procedure is illustrated in Figure 3.2. We prove now a rate of

convergence for this method under the above assumptions.

Theorem 3.1. The Projected Subgradient Descent with η = R
L
√
t

sat-

isfies

f

(
1

t

t∑
s=1

xs

)
− f(x∗) ≤ RL√

t
.

Proof. Using the definition of subgradients, the definition of the

method, and the elementary identity 2a>b = ‖a‖2 + ‖b‖2 − ‖a − b‖2,
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one obtains

f(xs)− f(x∗) ≤ g>s (xs − x∗)

=
1

η
(xs − ys+1)>(xs − x∗)

=
1

2η

(
‖xs − x∗‖2 + ‖xs − ys+1‖2 − ‖ys+1 − x∗‖2

)
=

1

2η

(
‖xs − x∗‖2 − ‖ys+1 − x∗‖2

)
+
η

2
‖gs‖2.

Now note that ‖gs‖ ≤ L, and furthermore by Lemma 3.1

‖ys+1 − x∗‖ ≥ ‖xs+1 − x∗‖.

Summing the resulting inequality over s, and using that ‖x1−x∗‖ ≤ R
yield

t∑
s=1

(f(xs)− f(x∗)) ≤ R2

2η
+
ηL2t

2
.

Plugging in the value of η directly gives the statement (recall that by

convexity f((1/t)
∑t

s=1 xs) ≤
1
t

∑t
s=1 f(xs)).

We will show in Section 3.5 that the rate given in Theorem 3.1 is

unimprovable from a black-box perspective. Thus to reach an ε-optimal

point one needs Θ(1/ε2) calls to the oracle. In some sense this is an

astonishing result as this complexity is independent of the ambient

dimension n. On the other hand this is also quite disappointing com-

pared to the scaling in log(1/ε) of the Center of Gravity and Ellipsoid

Method of Chapter 2. To put it differently with gradient descent one

could hope to reach a reasonable accuracy in very high dimension, while

with the Ellipsoid Method one can reach very high accuracy in reason-

ably small dimension. A major task in the following sections will be to

explore more restrictive assumptions on the function to be optimized

in order to have the best of both worlds, that is an oracle complexity

independent of the dimension and with a scaling in log(1/ε).

The computational bottleneck of Projected Subgradient Descent is

often the projection step (3.3) which is a convex optimization problem

by itself. In some cases this problem may admit an analytical solution
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(think of X being an Euclidean ball), or an easy and fast combinato-

rial algorithms to solve it (this is the case for X being an `1-ball, see

Duchi et al. [2008]). We will see in Section 3.3 a projection-free algo-

rithm which operates under an extra assumption of smoothness on the

function to be optimized.

Finally we observe that the step-size recommended by Theorem 3.1

depends on the number of iterations to be performed. In practice this

may be an undesirable feature. However using a time-varying step size

of the form ηs = R
L
√
s

one can prove the same rate up to a log t factor.

In any case these step sizes are very small, which is the reason for

the slow convergence. In the next section we will see that by assuming

smoothness in the function f one can afford to be much more aggressive.

Indeed in this case, as one approaches the optimum the size of the

gradients themselves will go to 0, resulting in a sort of ”auto-tuning” of

the step sizes which does not happen for an arbitrary convex function.

3.2 Gradient descent for smooth functions

We say that a continuously differentiable function f is β-smooth if the

gradient ∇f is β-Lipschitz, that is

‖∇f(x)−∇f(y)‖ ≤ β‖x− y‖.

In this section we explore potential improvements in the rate of con-

vergence under such a smoothness assumption. In order to avoid tech-

nicalities we consider first the unconstrained situation, where f is a

convex and β-smooth function on Rn. The next theorem shows that

Gradient Descent, which iterates xt+1 = xt − η∇f(xt), attains a much

faster rate in this situation than in the non-smooth case of the previous

section.

Theorem 3.2. Let f be convex and β-smooth on Rn. Then Gradient

Descent with η = 1
β satisfies

f(xt)− f(x∗) ≤ 2β‖x1 − x∗‖2

t− 1
.

Before embarking on the proof we state a few properties of smooth

convex functions.
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Lemma 3.2. Let f be a β-smooth function on Rn. Then for any x, y ∈
Rn, one has

|f(x)− f(y)−∇f(y)>(x− y)| ≤ β

2
‖x− y‖2.

Proof. We represent f(x)− f(y) as an integral, apply Cauchy-Schwarz

and then β-smoothness:

|f(x)− f(y)−∇f(y)>(x− y)|

=

∣∣∣∣∫ 1

0
∇f(y + t(x− y))>(x− y)dt−∇f(y)>(x− y)

∣∣∣∣
≤
∫ 1

0
‖∇f(y + t(x− y))−∇f(y)‖ · ‖x− y‖dt

≤
∫ 1

0
βt‖x− y‖2dt

=
β

2
‖x− y‖2.

In particular this lemma shows that if f is convex and β-smooth,

then for any x, y ∈ Rn, one has

0 ≤ f(x)− f(y)−∇f(y)>(x− y) ≤ β

2
‖x− y‖2. (3.4)

This gives in particular the following important inequality to evaluate

the improvement in one step of gradient descent:

f

(
x− 1

β
∇f(x)

)
− f(x) ≤ − 1

2β
‖∇f(x)‖2. (3.5)

The next lemma, which improves the basic inequality for subgradients

under the smoothness assumption, shows that in fact f is convex and

β-smooth if and only if (3.4) holds true. In the literature (3.4) is often

used as a definition of smooth convex functions.



3.2. Gradient descent for smooth functions 25

Lemma 3.3. Let f be such that (3.4) holds true. Then for any x, y ∈
Rn, one has

f(x)− f(y) ≤ ∇f(x)>(x− y)− 1

2β
‖∇f(x)−∇f(y)‖2.

Proof. Let z = y − 1
β (∇f(y)−∇f(x)). Then one has

f(x)− f(y)

= f(x)− f(z) + f(z)− f(y)

≤ ∇f(x)>(x− z) +∇f(y)>(z − y) +
β

2
‖z − y‖2

= ∇f(x)>(x− y) + (∇f(x)−∇f(y))>(y − z) +
1

2β
‖∇f(x)−∇f(y)‖2

= ∇f(x)>(x− y)− 1

2β
‖∇f(x)−∇f(y)‖2.

We can now prove Theorem 3.2

Proof. Using (3.5) and the definition of the method one has

f(xs+1)− f(xs) ≤ −
1

2β
‖∇f(xs)‖2.

In particular, denoting δs = f(xs)− f(x∗), this shows:

δs+1 ≤ δs −
1

2β
‖∇f(xs)‖2.

One also has by convexity

δs ≤ ∇f(xs)
>(xs − x∗) ≤ ‖xs − x∗‖ · ‖∇f(xs)‖.

We will prove that ‖xs − x∗‖ is decreasing with s, which with the two

above displays will imply

δs+1 ≤ δs −
1

2β‖x1 − x∗‖2
δ2
s .
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Let us see how to use this last inequality to conclude the proof. Let

ω = 1
2β‖x1−x∗‖2 , then1

ωδ2
s+δs+1 ≤ δs ⇔ ω

δs
δs+1

+
1

δs
≤ 1

δs+1
⇒ 1

δs+1
− 1

δs
≥ ω ⇒ 1

δt
≥ ω(t−1).

Thus it only remains to show that ‖xs−x∗‖ is decreasing with s. Using

Lemma 3.3 one immediately gets

(∇f(x)−∇f(y))>(x− y) ≥ 1

β
‖∇f(x)−∇f(y)‖2. (3.6)

We use this as follows (together with ∇f(x∗) = 0)

‖xs+1 − x∗‖2 = ‖xs −
1

β
∇f(xs)− x∗‖2

= ‖xs − x∗‖2 −
2

β
∇f(xs)

>(xs − x∗) +
1

β2
‖∇f(xs)‖2

≤ ‖xs − x∗‖2 −
1

β2
‖∇f(xs)‖2

≤ ‖xs − x∗‖2,

which concludes the proof.

The constrained case

We now come back to the constrained problem

min. f(x)

s.t. x ∈ X .

Similarly to what we did in Section 3.1 we consider the projected gra-

dient descent algorithm, which iterates xt+1 = ΠX (xt − η∇f(xt)).

The key point in the analysis of gradient descent for unconstrained

smooth optimization is that a step of gradient descent started at x will

decrease the function value by at least 1
2β‖∇f(x)‖2, see (3.5). In the

constrained case we cannot expect that this would still hold true as a

step may be cut short by the projection. The next lemma defines the

”right” quantity to measure progress in the constrained case.

1The last step in the sequence of implications can be improved by taking δ1 into account.
Indeed one can easily show with (3.4) that δ1 ≤ 1

4ω
. This improves the rate of Theorem

3.2 from
2β‖x1−x∗‖2

t−1
to

2β‖x1−x∗‖2
t+3

.
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Lemma 3.4. Let x, y ∈ X , x+ = ΠX

(
x− 1

β∇f(x)
)

, and gX (x) =

β(x− x+). Then the following holds true:

f(x+)− f(y) ≤ gX (x)>(x− y)− 1

2β
‖gX (x)‖2.

Proof. We first observe that

∇f(x)>(x+ − y) ≤ gX (x)>(x+ − y). (3.7)

Indeed the above inequality is equivalent to(
x+ −

(
x− 1

β
∇f(x)

))>
(x+ − y) ≤ 0,

which follows from Lemma 3.1. Now we use (3.7) as follows to prove

the lemma (we also use (3.4) which still holds true in the constrained

case)

f(x+)− f(y)

= f(x+)− f(x) + f(x)− f(y)

≤ ∇f(x)>(x+ − x) +
β

2
‖x+ − x‖2 +∇f(x)>(x− y)

= ∇f(x)>(x+ − y) +
1

2β
‖gX (x)‖2

≤ gX (x)>(x+ − y) +
1

2β
‖gX (x)‖2

= gX (x)>(x− y)− 1

2β
‖gX (x)‖2.

We can now prove the following result.

Theorem 3.3. Let f be convex and β-smooth on X . Then Projected

Gradient Descent with η = 1
β satisfies

f(xt)− f(x∗) ≤ 3β‖x1 − x∗‖2 + f(x1)− f(x∗)

t
.
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Proof. Lemma 3.4 immediately gives

f(xs+1)− f(xs) ≤ −
1

2β
‖gX (xs)‖2,

and

f(xs+1)− f(x∗) ≤ ‖gX (xs)‖ · ‖xs − x∗‖.

We will prove that ‖xs − x∗‖ is decreasing with s, which with the two

above displays will imply

δs+1 ≤ δs −
1

2β‖x1 − x∗‖2
δ2
s+1.

An easy induction shows that

δs ≤
3β‖x1 − x∗‖2 + f(x1)− f(x∗)

s
.

Thus it only remains to show that ‖xs−x∗‖ is decreasing with s. Using

Lemma 3.4 one can see that gX (xs)
>(xs − x∗) ≥ 1

2β‖gX (xs)‖2 which

implies

‖xs+1 − x∗‖2 = ‖xs −
1

β
gX (xs)− x∗‖2

= ‖xs − x∗‖2 −
2

β
gX (xs)

>(xs − x∗) +
1

β2
‖gX (xs)‖2

≤ ‖xs − x∗‖2.

3.3 Conditional Gradient Descent, aka Frank-Wolfe

We describe now an alternative algorithm to minimize a smooth convex

function f over a compact convex set X . The Conditional Gradient

Descent, introduced in Frank and Wolfe [1956], performs the following

update for t ≥ 1, where (γs)s≥1 is a fixed sequence,

yt ∈ argminy∈X∇f(xt)
>y (3.8)

xt+1 = (1− γt)xt + γtyt. (3.9)

In words the Conditional Gradient Descent makes a step in the steep-

est descent direction given the constraint set X , see Figure 3.3 for an
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xt

yt

−∇f(xt)
xt+1

X

Fig. 3.3 Illustration of the Conditional Gradient Descent method.

illustration. From a computational perspective, a key property of this

scheme is that it replaces the projection step of Projected Gradient

Descent by a linear optimization over X , which in some cases can be a

much simpler problem.

We now turn to the analysis of this method. A major advantage of

Conditional Gradient Descent over Projected Gradient Descent is that

the former can adapt to smoothness in an arbitrary norm. Precisely let

f be β-smooth in some norm ‖·‖, that is ‖∇f(x)−∇f(y)‖∗ ≤ β‖x−y‖
where the dual norm ‖ · ‖∗ is defined as ‖g‖∗ = supx∈Rn:‖x‖≤1 g

>x. The

following result is extracted from Jaggi [2013].

Theorem 3.4. Let f be a convex and β-smooth function w.r.t. some

norm ‖ · ‖, R = supx,y∈X ‖x− y‖, and γs = 2
s+1 for s ≥ 1. Then for any

t ≥ 2, one has

f(xt)− f(x∗) ≤ 2βR2

t+ 1
.

Proof. The following inequalities hold true, using respectively β-

smoothness (it can easily be seen that (3.4) holds true for smoothness

in an arbitrary norm), the definition of xs+1, the definition of ys, and
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the convexity of f :

f(xs+1)− f(xs) ≤ ∇f(xs)
>(xs+1 − xs) +

β

2
‖xs+1 − xs‖2

≤ γs∇f(xs)
>(ys − xs) +

β

2
γ2
sR

2

≤ γs∇f(xs)
>(x∗ − xs) +

β

2
γ2
sR

2

≤ γs(f(x∗)− f(xs)) +
β

2
γ2
sR

2.

Rewriting this inequality in terms of δs = f(xs)− f(x∗) one obtains

δs+1 ≤ (1− γs)δs +
β

2
γ2
sR

2.

A simple induction using that γs = 2
s+1 finishes the proof (note that

the initialization is done at step 2 with the above inequality yielding

δ2 ≤ β
2R

2).

In addition to being projection-free and ”norm-free”, the Condi-

tional Gradient Descent satisfies a perhaps even more important prop-

erty: it produces sparse iterates. More precisely consider the situation

where X ⊂ Rn is a polytope, that is the convex hull of a finite set of

points (these points are called the vertices of X ). Then Carathéodory’s

theorem states that any point x ∈ X can be written as a convex combi-

nation of at most n+ 1 vertices of X . On the other hand, by definition

of the Conditional Gradient Descent, one knows that the tth iterate xt
can be written as a convex combination of t vertices (assuming that x1

is a vertex). Thanks to the dimension-free rate of convergence one is

usually interested in the regime where t� n, and thus we see that the

iterates of Conditional Gradient Descent are very sparse in their vertex

representation.

We note an interesting corollary of the sparsity property together

with the rate of convergence we proved: smooth functions on the sim-

plex {x ∈ Rn+ :
∑n

i=1 xi = 1} always admit sparse approximate mini-

mizers. More precisely there must exist a point x with only t non-zero

coordinates and such that f(x) − f(x∗) = O(1/t). Clearly this is the

best one can hope for in general, as it can be seen with the function
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f(x) = ‖x‖22 since by Cauchy-Schwarz one has ‖x‖1 ≤
√
‖x‖0‖x‖2

which implies on the simplex ‖x‖22 ≥ 1/‖x‖0.

Next we describe an application where the three properties of Con-

ditional Gradient Descent (projection-free, norm-free, and sparse iter-

ates) are critical to develop a computationally efficient procedure.

An application of Conditional Gradient Descent: Least-
squares regression with structured sparsity

This example is inspired by an open problem of Lugosi [2010] (what

is described below solves the open problem). Consider the problem of

approximating a signal Y ∈ Rn by a ”small” combination of dictionary

elements d1, . . . , dN ∈ Rn. One way to do this is to consider a LASSO

type problem in dimension N of the following form (with λ ∈ R fixed)

min
x∈RN

∥∥Y − N∑
i=1

x(i)di
∥∥2

2
+ λ‖x‖1.

Let D ∈ Rn×N be the dictionary matrix with ith column given by di.

Instead of considering the penalized version of the problem one could

look at the following constrained problem (with s ∈ R fixed) on which

we will now focus:

min
x∈RN

‖Y −Dx‖22 ⇔ min
x∈RN

‖Y/s−Dx‖22 (3.10)

subject to ‖x‖1 ≤ s subject to ‖x‖1 ≤ 1.

We make some assumptions on the dictionary. We are interested in

situations where the size of the dictionary N can be very large, poten-

tially exponential in the ambient dimension n. Nonetheless we want to

restrict our attention to algorithms that run in reasonable time with

respect to the ambient dimension n, that is we want polynomial time

algorithms in n. Of course in general this is impossible, and we need to

assume that the dictionary has some structure that can be exploited.

Here we make the assumption that one can do linear optimization over

the dictionary in polynomial time in n. More precisely we assume that

one can solve in time p(n) (where p is polynomial) the following prob-

lem for any y ∈ Rn:

min
1≤i≤N

y>di.
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This assumption is met for many combinatorial dictionaries. For in-

stance the dictionary elements could be vector of incidence of spanning

trees in some fixed graph, in which case the linear optimization problem

can be solved with a greedy algorithm.

Finally, for normalization issues, we assume that the `2-norm

of the dictionary elements are controlled by some m > 0, that is

‖di‖2 ≤ m,∀i ∈ [N ].

Our problem of interest (3.10) corresponds to minimizing the func-

tion f(x) = 1
2‖Y − Dx‖

2
2 on the `1-ball of RN in polynomial time in

n. At first sight this task may seem completely impossible, indeed one

is not even allowed to write down entirely a vector x ∈ RN (since this

would take time linear in N). The key property that will save us is that

this function admits sparse minimizers as we discussed in the previous

section, and this will be exploited by the Conditional Gradient Descent

method.

First let us study the computational complexity of the tth step of

Conditional Gradient Descent. Observe that

∇f(x) = D>(Dx− Y ).

Now assume that zt = Dxt − Y ∈ Rn is already computed, then to

compute (3.8) one needs to find the coordinate it ∈ [N ] that maximizes

|[∇f(xt)](i)| which can be done by maximizing d>i zt and −d>i zt. Thus

(3.8) takes time O(p(n)). Computing xt+1 from xt and it takes time

O(t) since ‖xt‖0 ≤ t, and computing zt+1 from zt and it takes time

O(n). Thus the overall time complexity of running t steps is (we assume

p(n) = Ω(n))

O(tp(n) + t2). (3.11)

To derive a rate of convergence it remains to study the smoothness

of f . This can be done as follows:

‖∇f(x)−∇f(y)‖∞ = ‖D>D(x− y)‖∞

= max
1≤i≤N

∣∣∣∣d>i
 N∑
j=1

dj(x(j)− y(j))

∣∣∣∣
≤ m2‖x− y‖1,
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which means that f is m2-smooth with respect to the `1-norm. Thus

we get the following rate of convergence:

f(xt)− f(x∗) ≤ 8m2

t+ 1
. (3.12)

Putting together (3.11) and (3.12) we proved that one can get an ε-

optimal solution to (3.10) with a computational effort of O(m2p(n)/ε+

m4/ε2) using the Conditional Gradient Descent.

3.4 Strong convexity

We will now discuss another property of convex functions that can

significantly speed-up the convergence of first-order methods: strong

convexity. We say that f : X → R is α-strongly convex if it satisfies the

following improved subgradient inequality:

f(x)− f(y) ≤ ∇f(x)>(x− y)− α

2
‖x− y‖2. (3.13)

Of course this definition does not require differentiability of the

function f , and one can replace ∇f(x) in the inequality above by

g ∈ ∂f(x). It is immediate to verify that a function f is α-strongly

convex if and only if x 7→ f(x)− α
2 ‖x‖

2 is convex. The strong convexity

parameter α is a measure of the curvature of f . For instance a linear

function has no curvature and hence α = 0. On the other hand one

can clearly see why a large value of α would lead to a faster rate: in

this case a point far from the optimum will have a large gradient,

and thus gradient descent will make very big steps when far from the

optimum. Of course if the function is non-smooth one still has to be

careful and tune the step-sizes to be relatively small, but nonetheless

we will be able to improve the oracle complexity from O(1/ε2) to

O(1/(αε)). On the other hand with the additional assumption of

β-smoothness we will prove that gradient descent with a constant

step-size achieves a linear rate of convergence, precisely the oracle

complexity will be O(βα log(1/ε)). This achieves the objective we

had set after Theorem 3.1: strongly-convex and smooth functions

can be optimized in very large dimension and up to very high accuracy.
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Before going into the proofs let us discuss another interpretation of

strong-convexity and its relation to smoothness. Equation (3.13) can

be read as follows: at any point x one can find a (convex) quadratic

lower bound q−x (y) = f(x)+∇f(x)>(y−x)+ α
2 ‖x−y‖

2 to the function

f , i.e. q−x (y) ≤ f(y),∀y ∈ X (and q−x (x) = f(x)). On the other hand for

β-smoothness (3.4) implies that at any point y one can find a (convex)

quadratic upper bound q+
y (x) = f(y) +∇f(y)>(x− y) + β

2 ‖x− y‖
2 to

the function f , i.e. q+
y (x) ≥ f(x),∀x ∈ X (and q+

y (y) = f(y)). Thus in

some sense strong convexity is a dual assumption to smoothness, and in

fact this can be made precise within the framework of Fenchel duality.

Also remark that clearly one always has β ≥ α.

3.4.1 Strongly convex and Lipschitz functions

We consider here the Projected Subgradient Descent algorithm with

time-varying step size (ηt)t≥1, that is

yt+1 = xt − ηtgt, where gt ∈ ∂f(xt)

xt+1 = ΠX (yt+1).

The following result is extracted from Lacoste-Julien et al. [2012].

Theorem 3.5. Let f be α-strongly convex and L-Lipschitz on X .

Then Projected Subgradient Descent with ηs = 2
α(s+1) satisfies

f

(
t∑

s=1

2s

t(t+ 1)
xs

)
− f(x∗) ≤ 2L2

α(t+ 1)
.

Proof. Coming back to our original analysis of Projected Subgradient

Descent in Section 3.1 and using the strong convexity assumption one

immediately obtains

f(xs)− f(x∗) ≤ ηs
2
L2 +

(
1

2ηs
− α

2

)
‖xs − x∗‖2 −

1

2ηs
‖xs+1 − x∗‖2.

Multiplying this inequality by s yields

s(f(xs)−f(x∗)) ≤ L2

α
+
α

4

(
s(s−1)‖xs−x∗‖2−s(s+1)‖xs+1−x∗‖2

)
,
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Now sum the resulting inequality over s = 1 to s = t, and apply

Jensen’s inequality to obtain the claimed statement.

3.4.2 Strongly convex and smooth functions

As will see now, having both strong convexity and smoothness allows

for a drastic improvement in the convergence rate. We denote Q = β
α

for the condition number of f . The key observation is that Lemma 3.4

can be improved to (with the notation of the lemma):

f(x+)− f(y) ≤ gX (x)>(x− y)− 1

2β
‖gX (x)‖2 − α

2
‖x− y‖2. (3.14)

Theorem 3.6. Let f be α-strongly convex and β-smooth on X . Then

Projected Gradient Descent with η = 1
β satisfies for t ≥ 0,

‖xt+1 − x∗‖2 ≤ exp

(
− t

Q

)
‖x1 − x∗‖2.

Proof. Using (3.14) with y = x∗ one directly obtains

‖xt+1 − x∗‖2 = ‖xt −
1

β
gX (xt)− x∗‖2

= ‖xt − x∗‖2 −
2

β
gX (xt)

>(xt − x∗) +
1

β2
‖gX (xt)‖2

≤
(

1− α

β

)
‖xt − x∗‖2

≤
(

1− α

β

)t
‖x1 − x∗‖2

≤ exp

(
− t

Q

)
‖x1 − x∗‖2,

which concludes the proof.

We now show that in the unconstrained case one can improve the

rate by a constant factor, precisely one can replace Q by (Q+ 1)/4 in

the oracle complexity bound by using a larger step size. This is not a

spectacular gain but the reasoning is based on an improvement of (3.6)

which can be of interest by itself. Note that (3.6) and the lemma to

follow are sometimes referred to as coercivity of the gradient.
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Lemma 3.5. Let f be β-smooth and α-strongly convex on Rn. Then

for all x, y ∈ Rn, one has

(∇f(x)−∇f(y))>(x−y) ≥ αβ

β + α
‖x−y‖2 +

1

β + α
‖∇f(x)−∇f(y)‖2.

Proof. Let ϕ(x) = f(x) − α
2 ‖x‖

2. By definition of α-strong convexity

one has that ϕ is convex. Furthermore one can show that ϕ is (β−α)-

smooth by proving (3.4) (and using that it implies smoothness). Thus

using (3.6) one gets

(∇ϕ(x)−∇ϕ(y))>(x− y) ≥ 1

β − α
‖∇ϕ(x)−∇ϕ(y)‖2,

which gives the claimed result with straightforward computations.

(Note that if α = β the smoothness of ϕ directly implies that

∇f(x) − ∇f(y) = α(x − y) which proves the lemma in this case.)

Theorem 3.7. Let f be β-smooth and α-strongly convex on Rn. Then

Gradient Descent with η = 2
α+β satisfies

f(xt+1)− f(x∗) ≤ β

2
exp

(
− 4t

Q+ 1

)
‖x1 − x∗‖2.

Proof. First note that by β-smoothness (since ∇f(x∗) = 0) one has

f(xt)− f(x∗) ≤ β

2
‖xt − x∗‖2.

Now using Lemma 3.5 one obtains

‖xt+1 − x∗‖2 = ‖xt − η∇f(xt)− x∗‖2

= ‖xt − x∗‖2 − 2η∇f(xt)
>(xt − x∗) + η2‖∇f(xt)‖2

≤
(

1− 2
ηαβ

β + α

)
‖xt − x∗‖2 +

(
η2 − 2

η

β + α

)
‖∇f(xt)‖2

=

(
Q− 1

Q+ 1

)2

‖xt − x∗‖2

≤ exp

(
− 4t

Q+ 1

)
‖x1 − x∗‖2,
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which concludes the proof.

3.5 Lower bounds

We prove here various oracle complexity lower bounds. These results

first appeared in Nemirovski and Yudin [1983] but we follow here the

simplified presentation of Nesterov [2004a]. In general a black-box pro-

cedure is a mapping from ”history” to the next query point, that is it

maps {x1, g1, . . . , xt, gt} (with gs ∈ ∂f(xs)) to xt+1. In order to simplify

the notation and the argument, throughout the section we make the

following assumption on the black-box procedure: x1 = 0 and for any

t ≥ 0, xt+1 is in the linear span of g1, . . . , gt, that is

xt+1 ∈ Span(g1, . . . , gt). (3.15)

Let e1, . . . , en be the canonical basis of Rn, and B2(R) = {x ∈ Rn :

‖x‖ ≤ R}. We start with a theorem for the two non-smooth cases

(convex and strongly convex).

Theorem 3.8. Let t ≤ n, L,R > 0. There exists a convex and L-

Lipschitz function f such that for any black-procedure satisfying (3.15),

min
1≤s≤t

f(xs)− min
x∈B2(R)

f(x) ≥ RL

2(1 +
√
t)
.

There also exists an α-strongly convex and L-lipschitz function f such

that for any black-procedure satisfying (3.15),

min
1≤s≤t

f(xs)− min
x∈B2( L

2α)
f(x) ≥ L2

8αt
.

Proof. We consider the following α-strongly convex function:

f(x) = γ max
1≤i≤t

x(i) +
α

2
‖x‖2.

It is easy to see that

∂f(x) = αx+ γconv

(
ei, i : x(i) = max

1≤j≤t
x(j)

)
.
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In particular if ‖x‖ ≤ R then for any g ∈ ∂f(x) one has ‖g‖ ≤ αR+ γ.

In other words f is (αR+ γ)-Lipschitz on B2(R).

Next we describe the first order oracle for this function: when asked

for a subgradient at x, it returns αx+γei where i is the first coordinate

that satisfies x(i) = max1≤j≤t x(j). In particular when asked for a

subgradient at x1 = 0 it returns e1. Thus x2 must lie on the line

generated by e1. It is easy to see by induction that in fact xs must lie

in the linear span of e1, . . . , es−1. In particular for s ≤ t we necessarily

have xs(t) = 0 and thus f(xs) ≥ 0.

It remains to compute the minimal value of f . Let y be such that

y(i) = − γ
αt for 1 ≤ i ≤ t and y(i) = 0 for t+ 1 ≤ i ≤ n. It is clear that

0 ∈ ∂f(y) and thus the minimal value of f is

f(y) = −γ
2

αt
+
α

2

γ2

α2t
= − γ2

2αt
.

Wrapping up, we proved that for any s ≤ t one must have

f(xs)− f(x∗) ≥ γ2

2αt
.

Taking γ = L/2 and R = L
2α we proved the lower bound for α-strongly

convex functions (note in particular that ‖y‖2 = γ2

α2t
= L2

4α2t
≤ R2 with

these parameters). On the other taking α = L
R

1
1+
√
t

and γ = L
√
t

1+
√
t

concludes the proof for convex functions (note in particular that ‖y‖2 =
γ2

α2t
= R2 with these parameters).

We proceed now to the smooth case. We recall that for a twice differ-

entiable function f , β-smoothness is equivalent to the largest eigenvalue

of the Hessian of f being smaller than β at any point, which we write

∇2f(x) � βIn,∀x.

Furthermore α-strong convexity is equivalent to

∇2f(x) � αIn, ∀x.
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Theorem 3.9. Let t ≤ (n − 1)/2, β > 0. There exists a β-smooth

convex function f such that for any black-procedure satisfying (3.15),

min
1≤s≤t

f(xs)− f(x∗) ≥ 3β

32

‖x1 − x∗‖2

(t+ 1)2
.

Proof. In this proof for h : Rn → R we denote h∗ = infx∈Rn h(x). For

k ≤ n let Ak ∈ Rn×n be the symmetric and tridiagonal matrix defined

by

(Ak)i,j =


2, i = j, i ≤ k
−1, j ∈ {i− 1, i+ 1}, i ≤ k, j 6= k + 1

0, otherwise.

It is easy to verify that 0 � Ak � 4In since

x>Akx = 2
k∑
i=1

x(i)2−2
k−1∑
i=1

x(i)x(i+1) = x(1)2+x(k)2+
k−1∑
i=1

(x(i)−x(i+1))2.

We consider now the following β-smooth convex function:

f(x) =
β

8
x>A2t+1x−

β

4
x>e1.

Similarly to what happened in the proof Theorem 3.8, one can see here

too that xs must lie in the linear span of e1, . . . , es−1 (because of our

assumption on the black-box procedure). In particular for s ≤ t we

necessarily have xs(i) = 0 for i = s, . . . , n, which implies x>s A2t+1xs =

x>s Asxs. In other words, if we denote

fk(x) =
β

8
x>Akx−

β

4
x>e1,

then we just proved that

f(xs)− f∗ = fs(xs)− f∗2t+1 ≥ f∗s − f∗2t+1 ≥ f∗t − f∗2t+1.

Thus it simply remains to compute the minimizer x∗k of fk, its norm,

and the corresponding function value f∗k .
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The point x∗k is the unique solution in the span of e1, . . . , ek of

Akx = e1. It is easy to verify that it is defined by x∗k(i) = 1 − i
k+1 for

i = 1, . . . , k. Thus we immediately have:

f∗k =
β

8
(x∗k)

>Akx
∗
k −

β

4
(x∗k)

>e1 = −β
8

(x∗k)
>e1 = −β

8

(
1− 1

k + 1

)
.

Furthermore note that

‖x∗k‖2 =
k∑
i=1

(
1− i

k + 1

)2

=
k∑
i=1

(
i

k + 1

)2

≤ k + 1

3
.

Thus one obtains:

f∗t − f∗2t+1 =
β

8

(
1

t+ 1
− 1

2t+ 2

)
=

3β

32

‖x∗2t+1‖2

(t+ 1)2
,

which concludes the proof.

To simplify the proof of the next theorem we will consider the lim-

iting situation n → +∞. More precisely we assume now that we are

working in `2 = {x = (x(n))n∈N :
∑+∞

i=1 x(i)2 < +∞} rather than in

Rn. Note that all the theorems we proved in this chapter are in fact

valid in an arbitrary Hilbert space H. We chose to work in Rn only for

clarity of the exposition.

Theorem 3.10. Let Q > 1. There exists a β-smooth and α-strongly

convex function f : `2 → R with Q = β/α such that for any t ≥ 1 one

has

f(xt)− f(x∗) ≥ α

2

(√
Q− 1√
Q+ 1

)2(t−1)

‖x1 − x∗‖2.

Note that for large values of the condition number Q one has(√
Q− 1√
Q+ 1

)2(t−1)

≈ exp

(
−4(t− 1)√

Q

)
.

Proof. The overall argument is similar to the proof of Theorem 3.9.

Let A : `2 → `2 be the linear operator that corresponds to the infinite
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tridiagonal matrix with 2 on the diagonal and −1 on the upper and

lower diagonals. We consider now the following function:

f(x) =
α(Q− 1)

8
(〈Ax, x〉 − 2〈e1, x〉) +

α

2
‖x‖2.

We already proved that 0 � A � 4I which easily implies that f is α-

strongly convex and β-smooth. Now as always the key observation is

that for this function, thanks to our assumption on the black-box pro-

cedure, one necessarily has xt(i) = 0,∀i ≥ t. This implies in particular:

‖xt − x∗‖2 ≥
+∞∑
i=t

x∗(i)2.

Furthermore since f is α-strongly convex, one has

f(xt)− f(x∗) ≥ α

2
‖xt − x∗‖2.

Thus it only remains to compute x∗. This can be done by differentiating

f and setting the gradient to 0, which gives the following infinite set

of equations

1− 2
Q+ 1

Q− 1
x∗(1) + x∗(2) = 0,

x∗(k − 1)− 2
Q+ 1

Q− 1
x∗(k) + x∗(k + 1) = 0,∀k ≥ 2.

It is easy to verify that x∗ defined by x∗(i) =
(√

Q−1√
Q+1

)i
satisfy this

infinite set of equations, and the conclusion of the theorem then follows

by straightforward computations.

3.6 Nesterov’s Accelerated Gradient Descent

So far our results leave a gap in the case of smooth optimization: gra-

dient descent achieves an oracle complexity of O(1/ε) (respectively

O(Q log(1/ε)) in the strongly convex case) while we proved a lower

bound of Ω(1/
√
ε) (respectively Ω(

√
Q log(1/ε))). In this section we

close these two gaps and we show that both lower bounds are attain-

able. To do this we describe a beautiful method known as Nesterov’s

Accelerated Gradient Descent and first published in Nesterov [1983].
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For sake of simplicity we restrict our attention to the unconstrained

case, though everything can be extended to the constrained situation

using ideas described in previous sections.

3.6.1 The smooth and strongly convex case

We start by describing Nesterov’s Accelerated Gradient Descent in the

context of smooth and strongly convex optimization. This method will

achieve an oracle complexity of O(
√
Q log(1/ε)), thus reducing the com-

plexity of the basic gradient descent by a factor
√
Q. We note that this

improvement is quite relevant for Machine Learning applications. In-

deed consider for example the logistic regression problem described

in Section 1.1: this is a smooth and strongly convex problem, with a

smoothness of order of a numerical constant, but with strong convexity

equal to the regularization parameter whose inverse can be as large as

the sample size. Thus in this case Q can be of order of the sample size,

and a faster rate by a factor of
√
Q is quite significant.

We now describe the method, see Figure 3.4 for an illustration. Start

at an arbitrary initial point x1 = y1 and then iterate the following

equations for t ≥ 1,

ys+1 = xs −
1

β
∇f(xs),

xs+1 =

(
1 +

√
Q− 1√
Q+ 1

)
ys+1 −

√
Q− 1√
Q+ 1

ys.

Theorem 3.11. Let f be α-strongly convex and β-smooth, then Nes-

terov’s Accelerated Gradient Descent satisfies

f(yt)− f(x∗) ≤ α+ β

2
‖x1 − x∗‖2 exp

(
− t− 1√

Q

)
.

Proof. We define α-strongly convex quadratic functions Φs, s ≥ 1 by
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xs

ys

ys+1

xs+1

− 1
β∇f(xs)

ys+2

xs+2

Fig. 3.4 Illustration of Nesterov’s Accelerated Gradient Descent.

induction as follows:

Φ1(x) = f(x1) +
α

2
‖x− x1‖2,

Φs+1(x) =

(
1− 1√

Q

)
Φs(x)

+
1√
Q

(
f(xs) +∇f(xs)

>(x− xs) +
α

2
‖x− xs‖2

)
.(3.16)

Intuitively Φs becomes a finer and finer approximation (from below) to

f in the following sense:

Φs+1(x) ≤ f(x) +

(
1− 1√

Q

)s
(Φ1(x)− f(x)). (3.17)

The above inequality can be proved immediately by induction, using

the fact that by α-strong convexity one has

f(xs) +∇f(xs)
>(x− xs) +

α

2
‖x− xs‖2 ≤ f(x).

Equation (3.17) by itself does not say much, for it to be useful one

needs to understand how ”far” below f is Φs. The following inequality

answers this question:

f(ys) ≤ min
x∈Rn

Φs(x). (3.18)
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The rest of the proof is devoted to showing that (3.18) holds true, but

first let us see how to combine (3.17) and (3.18) to obtain the rate given

by the theorem (we use that by β-smoothness one has f(x)− f(x∗) ≤
β
2 ‖x− x

∗‖2):

f(yt)− f(x∗) ≤ Φt(x
∗)− f(x∗)

≤
(

1− 1√
Q

)t−1

(Φ1(x∗)− f(x∗))

≤ α+ β

2
‖x1 − x∗‖2

(
1− 1√

Q

)t−1

.

We now prove (3.18) by induction (note that it is true at s = 1 since

x1 = y1). Let Φ∗s = minx∈Rn Φs(x). Using the definition of ys+1 (and

β-smoothness), convexity, and the induction hypothesis, one gets

f(ys+1) ≤ f(xs)−
1

2β
‖∇f(xs)‖2

=

(
1− 1√

Q

)
f(ys) +

(
1− 1√

Q

)
(f(xs)− f(ys))

+
1√
Q
f(xs)−

1

2β
‖∇f(xs)‖2

≤
(

1− 1√
Q

)
Φ∗s +

(
1− 1√

Q

)
∇f(xs)

>(xs − ys)

+
1√
Q
f(xs)−

1

2β
‖∇f(xs)‖2.

Thus we now have to show that

Φ∗s+1 ≥
(

1− 1√
Q

)
Φ∗s +

(
1− 1√

Q

)
∇f(xs)

>(xs − ys)

+
1√
Q
f(xs)−

1

2β
‖∇f(xs)‖2. (3.19)

To prove this inequality we have to understand better the functions

Φs. First note that ∇2Φs(x) = αIn (immediate by induction) and thus

Φs has to be of the following form:

Φs(x) = Φ∗s +
α

2
‖x− vs‖2,
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for some vs ∈ Rn. Now observe that by differentiating (3.16) and using

the above form of Φs one obtains

∇Φs+1(x) = α

(
1− 1√

Q

)
(x− vs) +

1√
Q
∇f(xs) +

α√
Q

(x− xs).

In particular Φs+1 is by definition minimized at vs+1 which can now be

defined by induction using the above identity, precisely:

vs+1 =

(
1− 1√

Q

)
vs +

1√
Q
xs −

1

α
√
Q
∇f(xs). (3.20)

Using the form of Φs and Φs+1, as well as the original definition (3.16)

one gets the following identity by evaluating Φs+1 at xs:

Φ∗s+1 +
α

2
‖xs − vs+1‖2

=

(
1− 1√

Q

)
Φ∗s +

α

2

(
1− 1√

Q

)
‖xs − vs‖2 +

1√
Q
f(xs). (3.21)

Note that thanks to (3.20) one has

‖xs − vs+1‖2 =

(
1− 1√

Q

)2

‖xs − vs‖2 +
1

α2Q
‖∇f(xs)‖2

− 2

α
√
Q

(
1− 1√

Q

)
∇f(xs)

>(vs − xs),

which combined with (3.21) yields

Φ∗s+1 =

(
1− 1√

Q

)
Φ∗s +

1√
Q
f(xs) +

α

2
√
Q

(
1− 1√

Q

)
‖xs − vs‖2

− 1

2β
‖∇f(xs)‖2 +

1√
Q

(
1− 1√

Q

)
∇f(xs)

>(vs − xs).

Finally we show by induction that vs − xs =
√
Q(xs − ys), which con-

cludes the proof of (3.19) and thus also concludes the proof of the

theorem:

vs+1 − xs+1 =

(
1− 1√

Q

)
vs +

1√
Q
xs −

1

α
√
Q
∇f(xs)− xs+1

=
√
Qxs − (

√
Q− 1)ys −

√
Q

β
∇f(xs)− xs+1

=
√
Qys+1 − (

√
Q− 1)ys − xs+1

=
√
Q(xs+1 − ys+1),
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where the first equality comes from (3.20), the second from the induc-

tion hypothesis, the third from the definition of ys+1 and the last one

from the definition of xs+1.

3.6.2 The smooth case

In this section we show how to adapt Nesterov’s Accelerated Gradient

Descent for the case α = 0, using a time-varying combination of the

elements in the primary sequence (ys). First we define the following

sequences:

λ0 = 0, λs =
1 +

√
1 + 4λ2

s−1

2
, and γs =

1− λs
λs+1

.

(Note that γs ≤ 0.) Now the algorithm is simply defined by the follow-

ing equations, with x1 = y1 an arbitrary initial point,

ys+1 = xs −
1

β
∇f(xs),

xs+1 = (1− γs)ys+1 + γsys.

Theorem 3.12. Let f be a convex and β-smooth function, then Nes-

terov’s Accelerated Gradient Descent satisfies

f(yt)− f(x∗) ≤ 2β‖x1 − x∗‖2

t2
.

We follow here the proof of Beck and Teboulle [2009].

Proof. Using the unconstrained version of Lemma 3.4 one obtains

f(ys+1)− f(ys)

≤ ∇f(xs)
>(xs − ys)−

1

2β
‖∇f(xs)‖2

= β(xs − ys+1)>(xs − ys)−
β

2
‖xs − ys+1‖2. (3.22)

Similarly we also get

f(ys+1)− f(x∗) ≤ β(xs − ys+1)>(xs − x∗)−
β

2
‖xs − ys+1‖2. (3.23)
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Now multiplying (3.22) by (λs−1) and adding the result to (3.23), one

obtains with δs = f(ys)− f(x∗),

λsδs+1 − (λs − 1)δs

≤ β(xs − ys+1)>(λsxs − (λs − 1)ys − x∗)−
β

2
λs‖xs − ys+1‖2.

Multiplying this inequality by λs and using that by definition λ2
s−1 =

λ2
s−λs, as well as the elementary identity 2a>b−‖a‖2 = ‖b‖2−‖b−a‖2,

one obtains

λ2
sδs+1 − λ2

s−1δs

≤ β

2

(
2λs(xs − ys+1)>(λsxs − (λs − 1)ys − x∗)− ‖λs(ys+1 − xs)‖2

)
.

=
β

2

(
‖λsxs − (λs − 1)ys − x∗‖2 − ‖λsys+1 − (λs − 1)ys − x∗‖2

)
(3.24)

Next remark that, by definition, one has

xs+1 = ys+1 + γs(ys − ys+1)

⇔ λs+1xs+1 = λs+1ys+1 + (1− λs)(ys − ys+1)

⇔ λs+1xs+1 − (λs+1 − 1)ys+1 = λsys+1 − (λs − 1)ys. (3.25)

Putting together (3.24) and (3.25) one gets with us = λsxs − (λs −
1)ys − x∗,

λ2
sδs+1 − λ2

s−1δ
2
s ≤

β

2

(
‖us‖2 − ‖us+1‖2

)
.

Summing these inequalities from s = 1 to s = t− 1 one obtains:

δt ≤
β

2λ2
t−1

‖u1‖2.

By induction it is easy to see that λt−1 ≥ t
2 which concludes the proof.
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Almost dimension-free convex optimization in
non-Euclidean spaces

In the previous chapter we showed that dimension-free oracle com-

plexity is possible when the objective function f and the constraint

set X are well-behaved in the Euclidean norm; e.g. if for all points

x ∈ X and all subgradients g ∈ ∂f(x), one has that ‖x‖2 and ‖g‖2
are independent of the ambient dimension n. If this assumption is not

met then the gradient descent techniques of Chapter 3 may lose their

dimension-free convergence rates. For instance consider a differentiable

convex function f defined on the Euclidean ball B2,n and such that

‖∇f(x)‖∞ ≤ 1, ∀x ∈ B2,n. This implies that ‖∇f(x)‖2 ≤
√
n, and thus

Projected Gradient Descent will converge to the minimum of f on B2,n

at a rate
√
n/t. In this chapter we describe the method of Nemirovski

and Yudin [1983], known as Mirror Descent, which allows to find the

minimum of such functions f over the `1-ball (instead of the Euclidean

ball) at the much faster rate
√

log(n)/t. This is only one example of

the potential of Mirror Descent. This chapter is devoted to the descrip-

tion of Mirror Descent and some of its alternatives. The presentation

is inspired from Beck and Teboulle [2003], [Chapter 11, Cesa-Bianchi

and Lugosi [2006]],Rakhlin [2009], Hazan [2011], Bubeck [2011].

In order to describe the intuition behind the method let us abstract

48
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the situation for a moment and forget that we are doing optimization

in finite dimension. We already observed that Projected Gradient

Descent works in an arbitrary Hilbert space H. Suppose now that we

are interested in the more general situation of optimization in some

Banach space B. In other words the norm that we use to measure

the various quantity of interest does not derive from an inner product

(think of B = `1 for example). In that case the Gradient Descent

strategy does not even make sense: indeed the gradients (more formally

the Fréchet derivative) ∇f(x) are elements of the dual space B∗ and

thus one cannot perform the computation x− η∇f(x) (it simply does

not make sense). We did not have this problem for optimization in a

Hilbert space H since by Riesz representation theorem H∗ is isometric

to H. The great insight of Nemirovski and Yudin is that one can still

do a gradient descent by first mapping the point x ∈ B into the dual

space B∗, then performing the gradient update in the dual space,

and finally mapping back the resulting point to the primal space B.

Of course the new point in the primal space might lie outside of the

constraint set X ⊂ B and thus we need a way to project back the

point on the constraint set X . Both the primal/dual mapping and the

projection are based on the concept of a mirror map which is the key

element of the scheme. Mirror maps are defined in Section 4.1, and

the above scheme is formally described in Section 4.2.

In the rest of this chapter we fix an arbitrary norm ‖ · ‖ on Rn,

and a compact convex set X ⊂ Rn. The dual norm ‖ · ‖∗ is defined as

‖g‖∗ = supx∈Rn:‖x‖≤1 g
>x. We say that a convex function f : X → R

is (i) L-Lipschitz w.r.t. ‖ · ‖ if ∀x ∈ X , g ∈ ∂f(x), ‖g‖∗ ≤ L, (ii) β-

smooth w.r.t. ‖ · ‖ if ‖∇f(x)−∇f(y)‖∗ ≤ β‖x−y‖,∀x, y ∈ X , and (iii)

α-strongly convex w.r.t. ‖ · ‖ if

f(x)− f(y) ≤ g>(x− y)− α

2
‖x− y‖2, ∀x, y ∈ X , g ∈ ∂f(x).

We also define the Bregman divergence associated to f as

Df (x, y) = f(x)− f(y)−∇f(y)>(x− y).

The following identity will be useful several times:

(∇f(x)−∇f(y))>(x− z) = Df (x, y) +Df (z, x)−Df (z, y). (4.1)
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4.1 Mirror maps

Let D ⊂ Rn be a convex open set such that X is included in its closure,

that is X ⊂ D, and X ∩ D 6= ∅. We say that Φ : D → R is a mirror

map if it safisfies the following properties1:

(i) Φ is strictly convex and differentiable.

(ii) The gradient of Φ takes all possible values, that is ∇Φ(D) =

Rn.

(iii) The gradient of Φ diverges on the boundary of D, that is

lim
x→∂D

‖∇Φ(x)‖ = +∞.

In Mirror Descent the gradient of the mirror map Φ is used to map

points from the ”primal” to the ”dual” (note that all points lie in Rn so

the notions of primal and dual spaces only have an intuitive meaning).

Precisely a point x ∈ X ∩D is mapped to ∇Φ(x), from which one takes

a gradient step to get to ∇Φ(x) − η∇f(x). Property (ii) then allows

us to write the resulting point as ∇Φ(y) = ∇Φ(x) − η∇f(x) for some

y ∈ D. The primal point y may lie outside of the set of constraints

X , in which case one has to project back onto X . In Mirror Descent

this projection is done via the Bregman divergence associated to Φ.

Precisely one defines

ΠΦ
X (y) = argmin

x∈X∩D
DΦ(x, y).

Property (i) and (iii) ensures the existence and uniqueness of this pro-

jection (in particular since x 7→ DΦ(x, y) is locally increasing on the

boundary of D). The following lemma shows that the Bregman diver-

gence essentially behaves as the Euclidean norm squared in terms of

projections (recall Lemma 3.1).

Lemma 4.1. Let x ∈ X ∩ D and y ∈ D, then

(∇Φ(ΠΦ
X (y))−∇Φ(y))>(ΠΦ

X (y)− x) ≤ 0,

which also implies

DΦ(x,ΠΦ
X (y)) +DΦ(ΠΦ

X (y), y) ≤ DΦ(x, y).

1Assumption (ii) can be relaxed in some cases, see for example Audibert et al. [2014].



4.2. Mirror Descent 51

D

Rn
X

xt

xt+1

yt+1

projection (4.3)

∇Φ(xt)

∇Φ(yt+1)
gradient step

(4.2)

∇Φ

(∇Φ)−1

Fig. 4.1 Illustration of Mirror Descent.

Proof. The proof is an immediate corollary of Proposition 1.3 together

with the fact that ∇xDΦ(x, y) = ∇Φ(x)−∇Φ(y).

4.2 Mirror Descent

We can now describe the Mirror Descent strategy based on a mirror

map Φ. Let x1 ∈ argminx∈X∩D Φ(x). Then for t ≥ 1, let yt+1 ∈ D such

that

∇Φ(yt+1) = ∇Φ(xt)− ηgt, where gt ∈ ∂f(xt), (4.2)

and

xt+1 ∈ ΠΦ
X (yt+1). (4.3)

See Figure 4.1 for an illustration of this procedure.

Theorem 4.1. Let Φ be a mirror map κ-strongly convex on X ∩ D
w.r.t. ‖ · ‖. Let R2 = supx∈X∩D Φ(x) − Φ(x1), and f be convex and

L-Lipschitz w.r.t. ‖ · ‖. Then Mirror Descent with η = R
L

√
2κ
t satisfies

f

(
1

t

t∑
s=1

xs

)
− f(x∗) ≤ RL

√
2

κt
.
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Proof. Let x ∈ X ∩D. The claimed bound will be obtained by taking a

limit x→ x∗. Now by convexity of f , the definition of Mirror Descent,

equation (4.1), and Lemma 4.1, one has

f(xs)− f(x)

≤ g>s (xs − x)

=
1

η
(∇Φ(xs)−∇Φ(ys+1))>(xs − x)

=
1

η

(
DΦ(x, xs) +DΦ(xs, ys+1)−DΦ(x, ys+1)

)
≤ 1

η

(
DΦ(x, xs) +DΦ(xs, ys+1)−DΦ(x, xs+1)−DΦ(xs+1, ys+1)

)
.

The term DΦ(x, xs) −DΦ(x, xs+1) will lead to a telescopic sum when

summing over s = 1 to s = t, and it remains to bound the other term

as follows using κ-strong convexity of the mirror map and az − bz2 ≤
a2

4b , ∀z ∈ R:

DΦ(xs, ys+1)−DΦ(xs+1, ys+1)

= Φ(xs)− Φ(xs+1)−∇Φ(ys+1)>(xs − xs+1)

≤ (∇Φ(xs)−∇Φ(ys+1))>(xs − xs+1)− κ

2
‖xs − xs+1‖2

= ηg>s (xs − xs+1)− κ

2
‖xs − xs+1‖2

≤ ηL‖xs − xs+1‖ −
κ

2
‖xs − xs+1‖2

≤ (ηL)2

2κ
.

We proved

t∑
s=1

(
f(xs)− f(x)

)
≤ DΦ(x, x1)

η
+ η

L2t

2κ
,

which concludes the proof up to trivial computation.



4.3. Standard setups for Mirror Descent 53

We observe that one can rewrite Mirror Descent as follows:

xt+1 = argmin
x∈X∩D

DΦ(x, yt+1)

= argmin
x∈X∩D

Φ(x)−∇Φ(yt+1)>x (4.4)

= argmin
x∈X∩D

Φ(x)− (∇Φ(xt)− ηgt)>x

= argmin
x∈X∩D

ηg>t x+DΦ(x, xt). (4.5)

This last expression is often taken as the definition of Mirror Descent

(see Beck and Teboulle [2003]). It gives a proximal point of view on

Mirror Descent: the method is trying to minimize the local linearization

of the function while not moving too far away from the previous point,

with distances measured via the Bregman divergence of the mirror map.

4.3 Standard setups for Mirror Descent

”Ball setup”. The simplest version of Mirror Descent is obtained

by taking Φ(x) = 1
2‖x‖

2
2 on D = Rn. The function Φ is a mirror map

strongly convex w.r.t. ‖ · ‖2, and furthermore the associated Bregman

Divergence is given by DΦ(x, y) = 1
2‖x− y‖

2
2. Thus in that case Mirror

Descent is exactly equivalent to Projected Subgradient Descent, and

the rate of convergence obtained in Theorem 4.1 recovers our earlier

result on Projected Subgradient Descent.

”Simplex setup”. A more interesting choice of a mirror map is given

by the negative entropy

Φ(x) =
n∑
i=1

x(i) log x(i),

on D = Rn++. In that case the gradient update ∇Φ(yt+1) = ∇Φ(xt) −
η∇f(xt) can be written equivalently as

yt+1(i) = xt(i) exp
(
− η[∇f(xt)](i)

)
, i = 1, . . . , n.

The Bregman divergence of this mirror map is given by

DΦ(x, y) =
∑n

i=1 x(i) log x(i)
y(i) (also known as the Kullback-Leibler
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divergence). It is easy to verify that the projection with respect to this

Bregman divergence on the simplex ∆n = {x ∈ Rn+ :
∑n

i=1 x(i) = 1}
amounts to a simple renormalization y 7→ y/‖y‖1. Furthermore it is

also easy to verify that Φ is 1-strongly convex w.r.t. ‖ · ‖1 on ∆n (this

result is known as Pinsker’s inequality). Note also that for X = ∆n

one has x1 = (1/n, . . . , 1/n) and R2 = log n.

The above observations imply that when minimizing on the sim-

plex ∆n a function f with subgradients bounded in `∞-norm, Mirror

Descent with the negative entropy achieves a rate of convergence of

order
√

logn
t . On the other the regular Subgradient Descent achieves

only a rate of order
√

n
t in this case!

”Spectrahedron setup”. We consider here functions defined on ma-

trices, and we are interested in minimizing a function f on the spectra-

hedron Sn defined as:

Sn =
{
X ∈ Sn+ : Tr(X) = 1

}
.

In this setting we consider the mirror map on D = Sn++ given by the

negative von Neumann entropy:

Φ(X) =

n∑
i=1

λi(X) log λi(X),

where λ1(X), . . . , λn(X) are the eigenvalues of X. It can be shown that

the gradient update ∇Φ(Yt+1) = ∇Φ(Xt) − η∇f(Xt) can be written

equivalently as

Yt+1 = exp
(

logXt − η∇f(Xt)
)
,

where the matrix exponential and matrix logarithm are defined as

usual. Furthermore the projection on Sn is a simple trace renormal-

ization.

With highly non-trivial computation one can show that Φ is 1
2 -

strongly convex with respect to the Schatten 1-norm defined as

‖X‖1 =

n∑
i=1

λi(X).



4.4. Lazy Mirror Descent, aka Nesterov’s Dual Averaging 55

It is easy to see that for X = Sn one has x1 = 1
n In and R2 = log n. In

other words the rate of convergence for optimization on the spectrahe-

dron is the same than on the simplex!

4.4 Lazy Mirror Descent, aka Nesterov’s Dual Averaging

In this section we consider a slightly more efficient version of Mirror

Descent for which we can prove that Theorem 4.1 still holds true. This

alternative algorithm can be advantageous in some situations (such

as distributed settings), but the basic Mirror Descent scheme remains

important for extensions considered later in this text (saddle points,

stochastic oracles, ...).

In lazy Mirror Descent, also commonly known as Nesterov’s Dual

Averaging or simply Dual Averaging, one replaces (4.2) by

∇Φ(yt+1) = ∇Φ(yt)− ηgt,

and also y1 is such that ∇Φ(y1) = 0. In other words instead of going

back and forth between the primal and the dual, Dual Averaging simply

averages the gradients in the dual, and if asked for a point in the

primal it simply maps the current dual point to the primal using the

same methodology as Mirror Descent. In particular using (4.4) one

immediately sees that Dual Averaging is defined by:

xt = argmin
x∈X∩D

η
t−1∑
s=1

g>s x+ Φ(x). (4.6)

Theorem 4.2. Let Φ be a mirror map κ-strongly convex on X ∩ D
w.r.t. ‖ · ‖. Let R2 = supx∈X∩D Φ(x) − Φ(x1), and f be convex and

L-Lipschitz w.r.t. ‖ · ‖. Then Dual Averaging with η = R
L

√
κ
2t satisfies

f

(
1

t

t∑
s=1

xs

)
− f(x∗) ≤ 2RL

√
2

κt
.

Proof. We define ψt(x) = η
∑t

s=1 g
>
s x + Φ(x), so that xt ∈

argminx∈X∩D ψt−1(x). Since Φ is κ-strongly convex one clearly has that
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ψt is κ-strongly convex, and thus

ψt(xt+1)− ψt(xt) ≤ ∇ψt(xt+1)>(xt+1 − xt)−
κ

2
‖xt+1 − xt‖2

≤ −κ
2
‖xt+1 − xt‖2,

where the second inequality comes from the first order optimality con-

dition for xt+1 (see Proposition 1.3). Next observe that

ψt(xt+1)− ψt(xt) = ψt−1(xt+1)− ψt−1(xt) + ηg>t (xt+1 − xt)
≥ ηg>t (xt+1 − xt).

Putting together the two above displays and using Cauchy-Schwarz

(with the assumption ‖gt‖∗ ≤ L) one obtains

κ

2
‖xt+1 − xt‖2 ≤ ηg>t (xt − xt+1) ≤ ηL‖xt − xt+1‖.

In particular this shows that ‖xt+1−xt‖ ≤ 2ηL
κ and thus with the above

display

g>t (xt − xt+1) ≤ 2ηL2

κ
. (4.7)

Now we claim that for any x ∈ X ∩ D,

t∑
s=1

g>s (xs − x) ≤
t∑

s=1

g>s (xs − xs+1) +
Φ(x)− Φ(x1)

η
, (4.8)

which would clearly conclude the proof thanks to (4.7) and straightfor-

ward computations. Equation (4.8) is equivalent to

t∑
s=1

g>s xs+1 +
Φ(x1)

η
≤

t∑
s=1

g>s x+
Φ(x)

η
,

and we now prove the latter equation by induction. At t = 0 it is

true since x1 ∈ argminx∈X∩D Φ(x). The following inequalities prove the

inductive step, where we use the induction hypothesis at x = xt+1 for

the first inequality, and the definition of xt+1 for the second inequality:

t∑
s=1

g>s xs+1+
Φ(x1)

η
≤ g>t xt+1+

t−1∑
s=1

g>s xt+1+
Φ(xt+1)

η
≤

t∑
s=1

g>s x+
Φ(x)

η
.
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4.5 Mirror Prox

It can be shown that Mirror Descent accelerates for smooth functions

to the rate 1/t. We will prove this result in Chapter 6 (see Theorem

6.3). We describe here a variant of Mirror Descent which also attains

the rate 1/t for smooth functions. This method is called Mirror Prox

and it was introduced in Nemirovski [2004a]. The true power of Mirror

Prox will reveal itself later in the text when we deal with smooth

representations of non-smooth functions as well as stochastic oracles2.

Mirror Prox is described by the following equations:

∇Φ(y′t+1) = ∇Φ(xt)− η∇f(xt),

yt+1 ∈ argmin
x∈X∩D

DΦ(x, y′t+1),

∇Φ(x′t+1) = ∇Φ(xt)− η∇f(yt+1),

xt+1 ∈ argmin
x∈X∩D

DΦ(x, x′t+1).

In words the algorithm first makes a step of Mirror Descent to go from

xt to yt+1, and then it makes a similar step to obtain xt+1, starting

again from xt but this time using the gradient of f evaluated at yt+1

(instead of xt), see Figure 4.2 for an illustration. The following result

justifies the procedure.

Theorem 4.3. Let Φ be a mirror map κ-strongly convex on X ∩ D
w.r.t. ‖ · ‖. Let R2 = supx∈X∩D Φ(x) − Φ(x1), and f be convex and

β-smooth w.r.t. ‖ · ‖. Then Mirror Prox with η = κ
β satisfies

f

(
1

t

t∑
s=1

ys+1

)
− f(x∗) ≤ βR2

κt
.

2Basically Mirror Prox allows for a smooth vector field point of view (see Section 4.6), while
Mirror Descent does not.
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D

Rn
X

xt

yt+1

y′t+1

projection

xt+1

x′t+1

∇Φ(xt)

∇Φ(y′t+1)

∇Φ(x′t+1)

−η∇f(yt+1)−η∇f(xt)

∇Φ

(∇Φ)−1

Fig. 4.2 Illustration of Mirror Prox.

Proof. Let x ∈ X ∩ D. We write

f(yt+1)− f(x) ≤ ∇f(yt+1)>(yt+1 − x)

= ∇f(yt+1)>(xt+1 − x) +∇f(xt)
>(yt+1 − xt+1)

+(∇f(yt+1)−∇f(xt))
>(yt+1 − xt+1).

We will now bound separately these three terms. For the first one, using

the definition of the method, Lemma 4.1, and equation (4.1), one gets

η∇f(yt+1)>(xt+1 − x)

= (∇Φ(xt)−∇Φ(x′t+1))>(xt+1 − x)

≤ (∇Φ(xt)−∇Φ(xt+1))>(xt+1 − x)

= DΦ(x, xt)−DΦ(x, xt+1)−DΦ(xt+1, xt).

For the second term using the same properties than above and the
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strong-convexity of the mirror map one obtains

η∇f(xt)
>(yt+1 − xt+1)

= (∇Φ(xt)−∇Φ(y′t+1))>(yt+1 − xt+1)

≤ (∇Φ(xt)−∇Φ(yt+1))>(yt+1 − xt+1)

= DΦ(xt+1, xt)−DΦ(xt+1, yt+1)−DΦ(yt+1, xt) (4.9)

≤ DΦ(xt+1, xt)−
κ

2
‖xt+1 − yt+1‖2 −

κ

2
‖yt+1 − xt‖2.

Finally for the last term, using Cauchy-Schwarz, β-smoothness, and

2ab ≤ a2 + b2 one gets

(∇f(yt+1)−∇f(xt))
>(yt+1 − xt+1)

≤ ‖∇f(yt+1)−∇f(xt)‖∗ · ‖yt+1 − xt+1‖
≤ β‖yt+1 − xt‖ · ‖yt+1 − xt+1‖

≤ β

2
‖yt+1 − xt‖2 +

β

2
‖yt+1 − xt+1‖2.

Thus summing up these three terms and using that η = κ
β one gets

f(yt+1)− f(x) ≤ DΦ(x, xt)−DΦ(x, xt+1)

η
.

The proof is concluded with straightforward computations.

4.6 The vector field point of view on MD, DA, and MP

In this section we consider a mirror map Φ that satisfies the assump-

tions from Theorem 4.1.

By inspecting the proof of Theorem 4.1 one can see that for arbi-

trary vectors g1, . . . , gt ∈ Rn the Mirror Descent strategy described by

(4.2) or (4.3) (or alternatively by (4.5)) satisfies for any x ∈ X ∩ D,

t∑
s=1

g>s (xs − x) ≤ R2

η
+

η

2κ

t∑
s=1

‖gs‖2∗. (4.10)

The observation that the sequence of vectors (gs) does not have to come

from the subgradients of a fixed function f is the starting point for the

theory of Online Learning, see Bubeck [2011] for more details. In this
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monograph we will use this observation to generalize Mirror Descent

to saddle point calculations as well as stochastic settings. We note that

we could also use Dual Averaging (defined by (4.6)) which satisfies

t∑
s=1

g>s (xs − x) ≤ R2

η
+

2η

κ

t∑
s=1

‖gs‖2∗.

In order to generalize Mirror Prox we simply replace the gradient ∇f
by an arbitrary vector field g : X → Rn which yields the following

equations:

∇Φ(y′t+1) = ∇Φ(xt)− ηg(xt),

yt+1 ∈ argmin
x∈X∩D

DΦ(x, y′t+1),

∇Φ(x′t+1) = ∇Φ(xt)− ηg(yt+1),

xt+1 ∈ argmin
x∈X∩D

DΦ(x, x′t+1).

Under the assumption that the vector field is β-Lipschitz w.r.t. ‖ · ‖,
i.e., ‖g(x)− g(y)‖∗ ≤ β‖x− y‖ one obtains with η = κ

β

t∑
s=1

g(ys+1)>(ys+1 − x) ≤ βR2

κ
. (4.11)



5

Beyond the black-box model

In the black-box model non-smoothness dramatically deteriorates the

rate of convergence of first order methods from 1/t2 to 1/
√
t. However,

as we already pointed out in Section 1.5, we (almost) always know the

function to be optimized globally. In particular the ”source” of non-

smoothness can often be identified. For instance the LASSO objective is

non-smooth, but it is a sum of a smooth part (the least squares fit) and a

simple non-smooth part (the `1-norm). Using this specific structure we

will propose in Section 5.1 a first order method with a 1/t2 convergence

rate, despite the non-smoothness. In Section 5.2 we consider another

type of non-smoothness that can effectively be overcome, where the

function is the maximum of smooth functions. Finally we conclude this

chapter with a concise description of Interior Point Methods, for which

the structural assumption is made on the constraint set rather than on

the objective function.

61
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5.1 Sum of a smooth and a simple non-smooth term

We consider here the following problem1:

min
x∈Rn

f(x) + g(x),

where f is convex and β-smooth, and g is convex. We assume that

f can be accessed through a first order oracle, and that g is known

and ”simple”. What we mean by simplicity will be clear from the

description of the algorithm. For instance a separable function (i.e.,

g(x) =
∑n

i=1 gi(x(i))) will be considered as simple. The prime example

being g(x) = ‖x‖1. This section is inspired from Beck and Teboulle

[2009].

ISTA (Iterative Shrinkage-Thresholding Algorithm)

Recall that Gradient Descent on the smooth function f can be written

as (see (4.5))

xt+1 = argmin
x∈Rn

η∇f(xt)
>x+

1

2
‖x− xt‖22.

Here one wants to minimize f + g, and g is assumed to be known and

”simple”. Thus it seems quite natural to consider the following update

rule, where only f is locally approximated with a first order oracle:

xt+1 = argmin
x∈Rn

η(g(x) +∇f(xt)
>x) +

1

2
‖x− xt‖22

= argmin
x∈Rn

g(x) +
1

2η
‖x− (xt − η∇f(xt))‖22.

The algorithm described by the above iteration is known as ISTA (Iter-

ative Shrinkage-Thresholding Algorithm). In terms of convergence rate

it is easy to show that ISTA has the same convergence rate on f + g

than Gradient Descent on f . More precisely with η = 1
β one has

f(xt) + g(xt)− (f(x∗) + g(x∗)) ≤ β‖x1 − x∗‖22
2t

.

1We restrict to unconstrained minimization for sake of simplicity. One can extend the
discussion to constrained minimization by using ideas from Section 3.2.
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This improved convergence rate over a Subgradient Descent directly on

f + g comes at a price: in general computing xt+1 may be a difficult

optimization problem by itself, and this is why one needs to assume that

g is simple. For instance if g can be written as g(x) =
∑n

i=1 gi(x(i))

then one can compute xt+1 by solving n convex problems in dimension

1. In the case where g(x) = λ‖x‖1 this one-dimensional problem is

given by:

min
x∈R

λ|x|+ 1

2η
(x− x0)2, where x0 ∈ R.

Elementary computations shows that this problem has an analytical

solution given by τλη(x0), where τ is the shrinkage operator (hence the

name ISTA), defined by

τα(x) = (|x| − α)+sign(x).

FISTA (Fast ISTA)

An obvious idea is to combine Nesterov’s Accelerated Gradient Descent

(which results in a 1/t2 rate to optimize f) with ISTA. This results in

FISTA (Fast ISTA) which is described as follows. Let

λ0 = 0, λs =
1 +

√
1 + 4λ2

s−1

2
, and γs =

1− λs
λs+1

.

Let x1 = y1 an arbitrary initial point, and

ys+1 = argminx∈Rn g(x) +
β

2
‖x− (xs −

1

β
∇f(xs))‖22,

xs+1 = (1− γs)ys+1 + γsys.

Again it is easy show that the rate of convergence of FISTA on f + g

is similar to the one of Nesterov’s Accelerated Gradient Descent on f ,

more precisely:

f(yt) + g(yt)− (f(x∗) + g(x∗)) ≤ 2β‖x1 − x∗‖2

t2
.

CMD and RDA

ISTA and FISTA assume smoothness in the Euclidean metric. Quite

naturally one can also use these ideas in a non-Euclidean setting. Start-
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ing from (4.5) one obtains the CMD (Composite Mirror Descent) al-

gorithm of Duchi et al. [2010], while with (4.6) one obtains the RDA

(Regularized Dual Averaging) of Xiao [2010]. We refer to these papers

for more details.

5.2 Smooth saddle-point representation of a non-smooth
function

Quite often the non-smoothness of a function f comes from a max op-

eration. More precisely non-smooth functions can often be represented

as

f(x) = max
1≤i≤m

fi(x), (5.1)

where the functions fi are smooth. This was the case for instance with

the function we used to prove the black-box lower bound 1/
√
t for non-

smooth optimization in Theorem 3.8. We will see now that by using

this structural representation one can in fact attain a rate of 1/t. This

was first observed in Nesterov [2004b] who proposed the Nesterov’s

smoothing technique. Here we will present the alternative method of

Nemirovski [2004a] which we find more transparent. Most of what is

described in this section can be found in Juditsky and Nemirovski

[2011a,b].

In the next subsection we introduce the more general problem of

saddle point computation. We then proceed to apply a modified version

of Mirror Descent to this problem, which will be useful both in Chapter

6 and also as a warm-up for the more powerful modified Mirror Prox

that we introduce next.

5.2.1 Saddle point computation

Let X ⊂ Rn, Y ⊂ Rm be compact and convex sets. Let ϕ : X × Y →
R be a continuous function, such that ϕ(·, y) is convex and ϕ(x, ·) is

concave. We write gX (x, y) (respectively gY(x, y)) for an element of

∂xϕ(x, y) (respectively ∂y(−ϕ(x, y))). We are interested in computing

min
x∈X

max
y∈Y

ϕ(x, y).
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By Sion’s minimax theorem there exists a pair (x∗, y∗) ∈ X × Y such

that

ϕ(x∗, y∗) = min
x∈X

max
y∈Y

ϕ(x, y) = max
y∈Y

min
x∈X

ϕ(x, y).

We will explore algorithms that produce a candidate pair of solutions

(x̃, ỹ) ∈ X ×Y. The quality of (x̃, ỹ) is evaluated through the so-called

duality gap2

max
y∈Y

ϕ(x̃, y)−min
x∈X

ϕ(x, ỹ).

The key observation is that the duality gap can be controlled similarly

to the suboptimality gap f(x)− f(x∗) in a simple convex optimization

problem. Indeed for any (x, y) ∈ X × Y,

ϕ(x̃, ỹ)− ϕ(x, ỹ) ≤ gX (x̃, ỹ)>(x̃− x),

and

−ϕ(x̃, ỹ)− (−ϕ(x̃, y)) ≤ gY(x̃, ỹ)>(ỹ − y).

In particular, using the notation z = (x, y) ∈ Z := X × Y and g(z) =

(gX (x, y), gY(x, y)) we just proved

max
y∈Y

ϕ(x̃, y)−min
x∈X

ϕ(x, ỹ) ≤ g(z̃)>(z̃ − z), (5.2)

for some z ∈ Z. In view of the vector field point of view developed in

Section 4.6 this suggests to do a Mirror Descent in the Z-space with

the vector field g : Z → Rn × Rm.

We will assume in the next subsections that X is equipped with a

mirror map ΦX (defined on DX ) which is 1-strongly convex w.r.t. a

norm ‖ · ‖X on X ∩DX . We denote R2
X = supx∈X Φ(x)−minx∈X Φ(x).

We define similar quantities for the space Y.

5.2.2 Saddle Point Mirror Descent (SP-MD)

We consider here Mirror Descent on the space Z = X × Y with the

mirror map Φ(z) = aΦX (x) + bΦY(y) (defined on D = DX × DY),

where a, b ∈ R+ are to be defined later, and with the vector field

g : Z → Rn × Rm defined in the previous subsection. We call the

2Observe that the duality gap is the sum of the primal gap maxy∈Y ϕ(x̃, y)−ϕ(x∗, y∗) and
the dual gap ϕ(x∗, y∗)−minx∈X ϕ(x, ỹ).
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resulting algorithm SP-MD (Saddle Point Mirror Descent). It can be

described succintly as follows.

Let z1 ∈ argminz∈Z∩D Φ(z). Then for t ≥ 1, let

zt+1 ∈ argmin
z∈Z∩D

ηg>t z +DΦ(z, zt),

where gt = (gX ,t, gY,t) with gX ,t ∈ ∂xϕ(xt, yt) and gY,t ∈ ∂y(−ϕ(xt, yt)).

Theorem 5.1. Assume that ϕ(·, y) is LX -Lipschitz w.r.t. ‖ · ‖X , that

is ‖gX (x, y)‖∗X ≤ LX , ∀(x, y) ∈ X × Y. Similarly assume that ϕ(x, ·)
is LY -Lipschitz w.r.t. ‖ · ‖Y . Then SP-MD with a = LX

RX
, b = LY

RY
, and

η =
√

2
t satisfies

max
y∈Y

ϕ

(
1

t

t∑
s=1

xs, y

)
−min

x∈X
ϕ

(
x,

1

t

t∑
s=1

ys

)
≤ (RXLX +RYLY)

√
2

t
.

Proof. First we endow Z with the norm ‖ · ‖Z defined by

‖z‖Z =
√
a‖x‖2X + b‖y‖2Y .

It is immediate that Φ is 1-strongly convex with respect to ‖ · ‖Z on

Z ∩ D. Furthermore one can easily check that

‖z‖∗Z =

√
1

a

(
‖x‖∗X

)2
+

1

b

(
‖y‖∗Y

)2
,

and thus the vector field (gt) used in the SP-MD satisfies:

‖gt‖∗Z ≤

√
L2
X
a

+
L2
Y
b
.

Using (4.10) together with (5.2) and the values of a, b and η concludes

the proof.

5.2.3 Saddle Point Mirror Prox (SP-MP)

We now consider the most interesting situation in the context of this

chapter, where the function ϕ is smooth. Precisely we say that ϕ is
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(β11, β12, β22, β21)-smooth if for any x, x′ ∈ X , y, y′ ∈ Y,

‖∇xϕ(x, y)−∇xϕ(x′, y)‖∗X ≤ β11‖x− x′‖X ,
‖∇xϕ(x, y)−∇xϕ(x, y′)‖∗X ≤ β12‖y − y′‖Y ,
‖∇yϕ(x, y)−∇yϕ(x, y′)‖∗Y ≤ β22‖y − y′‖Y ,
‖∇yϕ(x, y)−∇yϕ(x′, y)‖∗Y ≤ β21‖x− x′‖X ,

This will imply the Lipschitzness of the vector field g : Z → Rn × Rm

under the appropriate norm. Thus we use here Mirror Prox on the

space Z with the mirror map Φ(z) = aΦX (x) + bΦY(y) and the vector

field g. The resulting algorithm is called SP-MP (Saddle Point Mirror

Prox) and we can describe it succintly as follows.

Let z1 ∈ argminz∈Z∩D Φ(z). Then for t ≥ 1, let zt = (xt, yt) and

wt = (ut, vt) be defined by

wt+1 = argmin
z∈Z∩D

η(∇xϕ(xt, yt),−∇yϕ(xt, yt))
>z +DΦ(z, zt)

zt+1 = argmin
z∈Z∩D

η(∇xϕ(ut+1, vt+1),−∇yϕ(ut+1, vt+1))>z +DΦ(z, zt).

Theorem 5.2. Assume that ϕ is (β11, β12, β22, β21)-smooth.

Then SP-MP with a = 1
R2
X

, b = 1
R2
Y

, and η =

1/
(
2 max

(
β11R

2
X , β22R

2
Y , β12RXRY , β21RXRY

))
satisfies

max
y∈Y

ϕ

(
1

t

t∑
s=1

us+1, y

)
−min

x∈X
ϕ

(
x,

1

t

t∑
s=1

vs+1

)

≤ max
(
β11R

2
X , β22R

2
Y , β12RXRY , β21RXRY

) 4

t
.

Proof. In light of the proof of Theorem 5.1 and (4.11) it clearly suf-

fices to show that the vector field g(z) = (∇xϕ(x, y),−∇yϕ(x, y))

is β-Lipschitz w.r.t. ‖z‖Z =
√

1
R2
X
‖x‖2X + 1

R2
Y
‖y‖2Y with β =

2 max
(
β11R

2
X , β22R

2
Y , β12RXRY , β21RXRY

)
. In other words one needs

to show that

‖g(z)− g(z′)‖∗Z ≤ β‖z − z′‖Z ,
which can be done with straightforward calculations (by introducing

g(x′, y) and using the definition of smoothness for ϕ).
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5.2.4 Applications

We investigate briefly three applications for SP-MD and SP-MP.

5.2.4.1 Minimizing a maximum of smooth functions

The problem (5.1) (when f has to minimized over X ) can be rewritten

as

min
x∈X

max
y∈∆m

~f(x)>y,

where ~f(x) = (f1(x), . . . , fm(x)) ∈ Rm. We assume that the functions

fi are L-Lipschtiz and β-smooth w.r.t. some norm ‖ · ‖X . Let us study

the smoothness of ϕ(x, y) = ~f(x)>y when X is equipped with ‖ · ‖X
and ∆m is equipped with ‖ · ‖1. On the one hand ∇yϕ(x, y) = ~f(x), in

particular one immediately has β22 = 0, and furthermore

‖~f(x)− ~f(x′)‖∞ ≤ L‖x− x′‖X ,

that is β21 = L. On the other hand ∇xϕ(x, y) =
∑m

i=1 yi∇fi(x), and

thus

‖
m∑
i=1

y(i)(∇fi(x)−∇fi(x′))‖∗X ≤ β‖x− x′‖X ,

‖
m∑
i=1

(y(i)− y′(i))∇fi(x)‖∗X ≤ L‖y − y′‖1,

that is β11 = β and β12 = L. Thus using SP-MP with some mirror

map on X and the negentropy on ∆m (see the ”simplex setup” in

Section 4.3), one obtains an ε-optimal point of f(x) = max1≤i≤m fi(x)

in O

(
βR2
X+LRX

√
log(m)

ε

)
iterations. Furthermore an iteration of SP-

MP has a computational complexity of order of a step of Mirror Descent

in X on the function x 7→
∑m

i=1 y(i)fi(x) (plus O(m) for the update in

the Y-space).

Thus by using the structure of f we were able to obtain a much bet-

ter rate than black-box procedures (which would have required Ω(1/ε2)

iterations as f is potentially non-smooth).
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5.2.4.2 Matrix games

Let A ∈ Rn×m, we denote ‖A‖max for the maximal entry (in abso-

lute value) of A, and Ai ∈ Rn for the ith column of A. We consider

the problem of computing a Nash equilibrium for the zero-sum game

corresponding to the loss matrix A, that is we want to solve

min
x∈∆n

max
y∈∆m

x>Ay.

Here we equip both ∆n and ∆m with ‖ · ‖1. Let ϕ(x, y) = x>Ay. Using

that ∇xϕ(x, y) = Ay and ∇yϕ(x, y) = A>x one immediately obtains

β11 = β22 = 0. Furthermore since

‖A(y − y′)‖∞ = ‖
m∑
i=1

(y(i)− y′(i))Ai‖∞ ≤ ‖A‖max‖y − y′‖1,

one also has β12 = β21 = ‖A‖max. Thus SP-MP with the ne-

gentropy on both ∆n and ∆m attains an ε-optimal pair of mixed

strategies with O
(
‖A‖max

√
log(n) log(m)/ε

)
iterations. Furthermore

the computational complexity of a step of SP-MP is dominated by

the matrix-vector multiplications which are O(nm). Thus overall the

complexity of getting an ε-optimal Nash equilibrium with SP-MP is

O
(
‖A‖maxnm

√
log(n) log(m)/ε

)
.

5.2.4.3 Linear classification

Let (`i, Ai) ∈ {−1, 1} × Rn, i ∈ [m], be a data set that one wishes to

separate with a linear classifier. That is one is looking for x ∈ B2,n such

that for all i ∈ [m], sign(x>Ai) = sign(`i), or equivalently `ix
>Ai > 0.

Clearly without loss of generality one can assume `i = 1 for all i ∈ [m]

(simply replace Ai by `iAi). Let A ∈ Rn×m be the matrix where the

ith column is Ai. The problem of finding x with maximal margin can

be written as

max
x∈B2,n

min
1≤i≤m

A>i x = max
x∈B2,n

min
y∈∆m

x>Ay. (5.3)

Assuming that ‖Ai‖2 ≤ B, and using the calculations we did in Sec-

tion 5.2.4.1, it is clear that ϕ(x, y) = x>Ay is (0, B, 0, B)-smooth with
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respect to ‖ · ‖2 on B2,n and ‖ · ‖1 on ∆m. This implies in particular

that SP-MP with the Euclidean norm squared on B2,n and the negen-

tropy on ∆m will solve (5.3) in O(B
√

log(m)/ε) iterations. Again the

cost of an iteration is dominated by the matrix-vector multiplications,

which results in an overall complexity of O(Bnm
√

log(m)/ε) to find

an ε-optimal solution to (5.3).

5.3 Interior Point Methods

We describe here Interior Point Methods (IPM), a class of algorithms

fundamentally different from what we have seen so far. The first

algorithm of this type was described in Karmarkar [1984], but the

theory we shall present was developped in Nesterov and Nemirovski

[1994]. We follow closely the presentation given in [Chapter 4, Nesterov

[2004a]]. Other useful references include Renegar [2001], Nemirovski

[2004b].

IPM are designed to solve convex optimization problems of the form

min. c>x

s.t. x ∈ X ,

with c ∈ Rn, and X ⊂ Rn convex and compact. Note that, at this

point, the linearity of the objective is without loss of generality as

minimizing a convex function f over X is equivalent to minimizing a

linear objective over the epigraph of f (which is also a convex set). The

structural assumption on X that one makes in IPM is that there exists

a self-concordant barrier for X with an easily computable gradient and

Hessian. The meaning of the previous sentence will be made precise in

the next subsections. The importance of IPM stems from the fact that

LPs and SDPs (see Section 1.5) satisfy this structural assumption.

5.3.1 The barrier method

We say that F : int(X )→ R is a barrier for X if

F (x) −−−−→
x→∂X

+∞.
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We will only consider strictly convex barriers. We extend the domain

of definition of F to Rn with F (x) = +∞ for x 6∈ int(X ). For t ∈ R+

let

x∗(t) ∈ argmin
x∈Rn

tc>x+ F (x).

In the following we denote Ft(x) := tc>x + F (x). In IPM the path

(x∗(t))t∈R+ is referred to as the central path. It seems clear that the

central path eventually leads to the minimum x∗ of the objective func-

tion c>x on X , precisely we will have

x∗(t) −−−−→
t→+∞

x∗.

The idea of the barrier method is to move along the central path by

”boosting” a fast locally convergent algorithm, which we denote for

the moment by A, using the following scheme: Assume that one has

computed x∗(t), then one uses A initialized at x∗(t) to compute x∗(t′)

for some t′ > t. There is a clear tension for the choice of t′, on the one

hand t′ should be large in order to make as much progress as possible on

the central path, but on the other hand x∗(t) needs to be close enough

to x∗(t′) so that it is in the basin of fast convergence for A when run

on Ft′ .

IPM follows the above methodology with A being Newton’s method.

Indeed as we will see in the next subsection, Newton’s method has a

quadratic convergence rate, in the sense that if initialized close enough

to the optimum it attains an ε-optimal point in log log(1/ε) iterations!

Thus we now have a clear plan to make these ideas formal and analyze

the iteration complexity of IPM:

(1) First we need to describe precisely the region of fast con-

vergence for Newton’s method. This will lead us to define

self-concordant functions, which are ”natural” functions for

Newton’s method.

(2) Then we need to evaluate precisely how much larger t′ can be

compared to t, so that x∗(t) is still in the region of fast con-

vergence of Newton’s method when optimizing the function

Ft′ with t′ > t. This will lead us to define ν-self concordant

barriers.
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(3) How do we get close to the central path in the first place? Is it

possible to compute x∗(0) = argminx∈Rn F (x) (the so-called

analytical center of X )?

5.3.2 Traditional analysis of Newton’s method

We start by describing Newton’s method together with its standard

analysis showing the quadratic convergence rate when initialized close

enough to the optimum. In this subsection we denote ‖ · ‖ for both the

Euclidean norm on Rn and the operator norm on matrices (in particular

‖Ax‖ ≤ ‖A‖ · ‖x‖).
Let f : Rn → R be a C2 function. Using a Taylor’s expansion of f

around x one obtains

f(x+ h) = f(x) + h>∇f(x) +
1

2
h>∇2f(x)h+ o(‖h‖2).

Thus, starting at x, in order to minimize f it seems natural to move in

the direction h that minimizes

h>∇f(x) +
1

2
h>∇f2(x)h.

If ∇2f(x) is positive definite then the solution to this problem is given

by h = −[∇2f(x)]−1∇f(x). Newton’s method simply iterates this idea:

starting at some point x0 ∈ Rn, it iterates for k ≥ 0 the following

equation:

xk+1 = xk − [∇2f(xk)]
−1∇f(xk).

While this method can have an arbitrarily bad behavior in general, if

started close enough to a strict local minimum of f , it can have a very

fast convergence:

Theorem 5.3. Assume that f has a Lipschitz Hessian, that is

‖∇2f(x) −∇2f(y)‖ ≤ M‖x − y‖. Let x∗ be local minimum of f with

strictly positive Hessian, that is ∇2f(x∗) � µIn, µ > 0. Suppose that

the initial starting point x0 of Newton’s method is such that

‖x0 − x∗‖ ≤
µ

2M
.
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Then Newton’s method is well-defined and converges to x∗ at a

quadratic rate:

‖xk+1 − x∗‖ ≤
M

µ
‖xk − x∗‖2.

Proof. We use the following simple formula, for x, h ∈ Rn,∫ 1

0
∇2f(x+ sh) h ds = ∇f(x+ h)−∇f(x).

Now note that ∇f(x∗) = 0, and thus with the above formula one

obtains

∇f(xk) =

∫ 1

0
∇2f(x∗ + s(xk − x∗)) (xk − x∗) ds,

which allows us to write:

xk+1 − x∗

= xk − x∗ − [∇2f(xk)]
−1∇f(xk)

= xk − x∗ − [∇2f(xk)]
−1

∫ 1

0
∇2f(x∗ + s(xk − x∗)) (xk − x∗) ds

= [∇2f(xk)]
−1

∫ 1

0
[∇2f(xk)−∇2f(x∗ + s(xk − x∗))] (xk − x∗) ds.

In particular one has

‖xk+1 − x∗‖

≤ ‖[∇2f(xk)]
−1‖

(∫ 1

0
‖∇2f(xk)−∇2f(x∗ + s(xk − x∗))‖ ds

)
‖xk − x∗‖.

Using the Lipschitz property of the Hessian one immediately obtains

that(∫ 1

0
‖∇2f(xk)−∇2f(x∗ + s(xk − x∗))‖ ds

)
≤ M

2
‖xk − x∗‖.

Using again the Lipschitz property of the Hessian (note that ‖A−B‖ ≤
s ⇔ sIn � A − B � −sIn), the hypothesis on x∗, and an induction

hypothesis that ‖xk − x∗‖ ≤ µ
2M , one has

∇2f(xk) � ∇2f(x∗)−M‖xk − x∗‖In � (µ−M‖xk − x∗‖)In �
µ

2
In,

which concludes the proof.
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5.3.3 Self-concordant functions

Before giving the definition of self-concordant functions let us try to

get some insight into the ”geometry” of Newton’s method. Let A be a

n× n non-singular matrix. We look at a Newton step on the functions

f : x 7→ f(x) and ϕ : y 7→ f(A−1y), starting respectively from x and

y = Ax, that is:

x+ = x− [∇2f(x)]−1∇f(x), and y+ = y − [∇2ϕ(y)]−1∇ϕ(y).

By using the following simple formulas

∇(x 7→ f(Ax)) = A>∇f(Ax), and ∇2(x 7→ f(Ax)) = A>∇2f(Ax)A.

it is easy to show that

y+ = Ax+.

In other words Newton’s method will follow the same trajectory in the

”x-space” and in the ”y-space” (the image through A of the x-space),

that is Newton’s method is affine invariant. Observe that this property

is not shared by the methods described in Chapter 3.

The affine invariance of Newton’s method casts some concerns on

the assumptions of the analysis in Section 5.3.2. Indeed the assumptions

are all in terms of the canonical inner product in Rn. However we just

showed that the method itself does not depend on the choice of the

inner product (again this is not true for first order methods). Thus

one would like to derive a result similar to Theorem 5.3 without any

reference to a prespecified inner product. The idea of self-concordance

is to modify the Lipschitz assumption on the Hessian to achieve this

goal.

Assume from now on that f is C3, and let ∇3f(x) : Rn×Rn×Rn →
R be the third order differential operator. The Lipschitz assumption on

the Hessian in Theorem 5.3 can be written as:

∇3f(x)[h, h, h] ≤M‖h‖32.

The issue is that this inequality depends on the choice of an inner

product. A natural idea to fix this issue is to replace the Euclidean

metric on the right hand side by the metric given by the function f
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itself at x, that is:

‖h‖x =
√
h>∇2f(x)h.

Observe that to be clear one should rather use the notation ‖ ·‖x,f , but

since f will always be clear from the context we stick to ‖ · ‖x.

Definition 5.1. Let X be a convex set with non-empty interior, and

f a C3 convex function defined on int(X ). Then f is self-concordant

(with constant M) if for all x ∈ int(X ), h ∈ Rn,

∇3f(x)[h, h, h] ≤M‖h‖3x.

We say that f is standard self-concordant if f is self-concordant with

constant M = 2.

An easy consequence of the definition is that a self-concordant func-

tion is a barrier for the set X , see [Theorem 4.1.4, Nesterov [2004a]].

The main example to keep in mind of a standard self-concordant func-

tion is f(x) = − log x for x > 0. The next definition will be key in order

to describe the region of quadratic convergence for Newton’s method

on self-concordant functions.

Definition 5.2. Let f be a standard self-concordant function on X .

For x ∈ int(X ), we say that λf (x) = ‖∇f(x)‖∗x is the Newton decrement

of f at x.

An important inequality is that for x such that λf (x) < 1, and x∗ =

argmin f(x), one has

‖x− x∗‖x ≤
λf (x)

1− λf (x)
, (5.4)

see [Equation 4.1.18, Nesterov [2004a]]. We state the next theorem

without a proof, see also [Theorem 4.1.14, Nesterov [2004a]].

Theorem 5.4. Let f be a standard self-concordant function on X ,

and x ∈ int(X ) such that λf (x) ≤ 1/4, then

λf

(
x− [∇2f(x)]−1∇f(x)

)
≤ 2λf (x)2.
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In other words the above theorem states that, if initialized at a point

x0 such that λf (x0) ≤ 1/4, then Newton’s iterates satisfy λf (xk+1) ≤
2λf (xk)

2. Thus, Newton’s region of quadratic convergence for self-

concordant functions can be described as a ”Newton decrement ball”

{x : λf (x) ≤ 1/4}. In particular by taking the barrier to be a self-

concordant function we have now resolved Step (1) of the plan described

in Section 5.3.1.

5.3.4 ν-self-concordant barriers

We deal here with Step (2) of the plan described in Section 5.3.1. Given

Theorem 5.4 we want t′ to be as large as possible and such that

λFt′ (x
∗(t)) ≤ 1/4. (5.5)

Since the Hessian of Ft′ is the Hessian of F , one has

λFt′ (x
∗(t)) = ‖t′c+∇F (x∗(t))‖∗x∗(t).

Observe that, by first order optimality, one has tc + ∇F (x∗(t)) = 0,

which yields

λFt′ (x
∗(t)) = (t′ − t)‖c‖∗x∗(t). (5.6)

Thus taking

t′ = t+
1

4‖c‖∗x∗(t)
(5.7)

immediately yields (5.5). In particular with the value of t′ given in

(5.7) the Newton’s method on Ft′ initialized at x∗(t) will converge

quadratically fast to x∗(t′).

It remains to verify that by iterating (5.7) one obtains a sequence

diverging to infinity, and to estimate the rate of growth. Thus one needs

to control ‖c‖∗x∗(t) = 1
t ‖∇F (x∗(t))‖∗x∗(t). Luckily there is a natural class

of functions for which one can control ‖∇F (x)‖∗x uniformly over x. This

is the set of functions such that

∇2F (x) � 1

ν
∇F (x)[∇F (x)]>. (5.8)
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Indeed in that case one has:

‖∇F (x)‖∗x = sup
h:h>∇F 2(x)h≤1

∇F (x)>h

≤ sup
h:h>( 1

ν
∇F (x)[∇F (x)]>)h≤1

∇F (x)>h

=
√
ν.

Thus a safe choice to increase the penalization parameter is t′ =(
1 + 1

4
√
ν

)
t. Note that the condition (5.8) can also be written as the

fact that the function F is 1
ν -exp-concave, that is x 7→ exp(− 1

νF (x)) is

concave. We arrive at the following definition.

Definition 5.3. F is a ν-self-concordant barrier if it is a standard

self-concordant function, and it is 1
ν -exp-concave.

Again the canonical example is the logarithmic function, x 7→ − log x,

which is a 1-self-concordant barrier for the set R+. We state the next

(difficult) theorem without a proof.

Theorem 5.5. Let X ⊂ Rn be a closed convex set with non-empty

interior. There exists F which is a (c n)-self-concordant barrier for X
(where c is some universal constant).

A key property of ν-self-concordant barriers is the following inequality:

c>x∗(t)−min
x∈X

c>x ≤ ν

t
, (5.9)

see [Equation (4.2.17), Nesterov [2004a]]. More generally using (5.9)

together with (5.4) one obtains

c>y −min
x∈X

c>x ≤ ν

t
+ c>(y − x∗(t))

=
ν

t
+

1

t
(∇Ft(y)−∇F (y))>(y − x∗(t))

≤ ν

t
+

1

t
‖∇Ft(y)−∇F (y)‖∗y · ‖y − x∗(t)‖y

≤ ν

t
+

1

t
(λFt(y) +

√
ν)

λFt(y)

1− λFt(y)
(5.10)
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In the next section we describe a precise algorithm based on the ideas

we developed above. As we will see one cannot ensure to be exactly on

the central path, and thus it is useful to generalize the identity (5.6)

for a point x close to the central path. We do this as follows:

λFt′ (x) = ‖t′c+∇F (x)‖∗x
= ‖(t′/t)(tc+∇F (x)) + (1− t′/t)∇F (x)‖∗x

≤ t′

t
λFt(x) +

(
t′

t
− 1

)√
ν. (5.11)

5.3.5 Path-following scheme

We can now formally describe and analyze the most basic IPM called

the path-following scheme. Let F be ν-self-concordant barrier for X .

Assume that one can find x0 such that λFt0 (x0) ≤ 1/4 for some small

value t0 > 0 (we describe a method to find x0 at the end of this sub-

section). Then for k ≥ 0, let

tk+1 =

(
1 +

1

13
√
ν

)
tk,

xk+1 = xk − [∇2F (xk)]
−1(tk+1c+∇F (xk)).

The next theorem shows that after O
(√

ν log ν
t0ε

)
iterations of the

path-following scheme one obtains an ε-optimal point.

Theorem 5.6. The path-following scheme described above satisfies

c>xk −min
x∈X

c>x ≤ 2ν

t0
exp

(
− k

1 + 13
√
ν

)
.

Proof. We show that the iterates (xk)k≥0 remain close to the central

path (x∗(tk))k≥0. Precisely one can easily prove by induction that

λFtk (xk) ≤ 1/4.

Indeed using Theorem 5.4 and equation (5.11) one immediately obtains

λFtk+1
(xk+1) ≤ 2λFtk+1

(xk)
2

≤ 2

(
tk+1

tk
λFtk (xk) +

(
tk+1

tk
− 1

)√
ν

)2

≤ 1/4,
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where we used in the last inequality that tk+1/tk = 1+ 1
13
√
ν

and ν ≥ 1.

Thus using (5.10) one obtains

c>xk −min
x∈X

c>x ≤ ν +
√
ν/3 + 1/12

tk
≤ 2ν

tk
.

Observe that tk =
(

1 + 1
13
√
ν

)k
t0, which finally yields

c>xk −min
x∈X

c>x ≤ 2ν

t0

(
1 +

1

13
√
ν

)−k
.

At this point we still need to explain how one can get close to

an intial point x∗(t0) of the central path. This can be done with the

following rather clever trick. Assume that one has some point y0 ∈ X .

The observation is that y0 is on the central path at t = 1 for the problem

where c is replaced by −∇F (y0). Now instead of following this central

path as t→ +∞, one follows it as t→ 0. Indeed for t small enough the

central paths for c and for −∇F (y0) will be very close. Thus we iterate

the following equations, starting with t′0 = 1,

t′k+1 =

(
1− 1

13
√
ν

)
t′k,

yk+1 = yk − [∇2F (yk)]
−1(−t′k+1∇F (y0) +∇F (yk)).

A straightforward analysis shows that for k = O(
√
ν log ν), which corre-

sponds to t′k = 1/νO(1), one obtains a point yk such that λFt′
k

(yk) ≤ 1/4.

In other words one can initialize the path-following scheme with t0 = t′k
and x0 = yk.

5.3.6 IPMs for LPs and SDPs

We have seen that, roughly, the complexity of Interior Point Methods

with a ν-self-concordant barrier is O
(
M
√
ν log ν

ε

)
, where M is the com-

plexity of computing a Newton direction (which can be done by com-

puting and inverting the Hessian of the barrier). Thus the efficiency of

the method is directly related to the form of the self-concordant bar-

rier that one can construct for X . It turns out that for LPs and SDPs
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one has particularly nice self-concordant barriers. Indeed one can show

that F (x) = −
∑n

i=1 log xi is an n-self-concordant barrier on Rn+, and

F (x) = − log det(X) is an n-self-concordant barrier on Sn+.

There is one important issue that we overlooked so far. In most in-

teresting cases LPs and SDPs come with equality constraints, resulting

in a set of constraints X with empty interior. From a theoretical point

of view there is an easy fix, which is to reparametrize the problem as

to enforce the variables to live in the subspace spanned by X . This

modification also has algorithmic consequences, as the evaluation of

the Newton direction will now be different. In fact, rather than doing

a reparametrization, one can simply search for Newton directions such

that the updated point will stay in X . In other words one has now to

solve a convex quadratic optimization problem under linear equality

constraints. Luckily using Lagrange multipliers one can find a closed

form solution to this problem, and we refer to previous references for

more details.



6

Convex optimization and randomness

In this chapter we explore the interplay between optimization and

randomness. A key insight, going back to Robbins and Monro [1951],

is that first-order methods are quite robust: the gradients do not have

to be computed exactly to ensure progress towards the optimum.

Indeed since these methods usually do many small steps, as long

as the gradients are correct on average, the error introduced by the

gradient approximations will eventually vanish. As we will see below

this intuition is correct for non-smooth optimization (since the steps

are indeed small) but the picture is more subtle in the case of smooth

optimization (recall from Chapter 3 that in this case we take long

steps).

We introduce now the main object of this chapter: a (first order)

stochastic oracle for a convex function f : X → R takes as input a point

x ∈ X and outputs a random variable g̃(x) such that E g̃(x) ∈ ∂f(x).

In the case where the query point x is a random variable (possi-

bly obtained from previous queries to the oracle), one assumes that

E (g̃(x)|x) ∈ ∂f(x).

The unbiasedness assumption by itself is not enough to obtain

81
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rates of convergence, one also needs to make assumptions about the

fluctuations of g̃(x). Essentially in the non-smooth case we will assume

that there exists B > 0 such that E‖g̃(x)‖2∗ ≤ B2 for all x ∈ X ,

while in the smooth case we assume that there exists σ > 0 such that

E‖g̃(x)−∇f(x)‖2∗ ≤ σ2 for all x ∈ X .

The two canonical examples of a stochastic oracle for Machine

Learning are as follows.

Let f(x) = Eξ`(x, ξ) where `(x, ξ) should be interpreted as the loss

of predictor x on the example ξ. We assume that `(·, ξ) is a (differen-

tiable1) convex function for any ξ. The goal is to find a predictor with

minimal expected loss, that is to minimize f . When queried at x the

stochastic oracle can draw ξ from the unknown distribution and report

∇x`(x, ξ). One obviously has Eξ∇x`(x, ξ) ∈ ∂f(x).

The second example is the one described in Section 1.1, where one

wants to minimize f(x) = 1
m

∑m
i=1 fi(x). In this situation a stochastic

oracle can be obtained by selecting uniformly at random I ∈ [m] and

reporting ∇fI(x).

Observe that the stochastic oracles in the two above cases are quite

different. Consider the standard situation where one has access to a

data set of i.i.d. samples ξ1, . . . , ξm. Thus in the first case, where one

wants to minimize the expected loss, one is limited to m queries to the

oracle, that is to a single pass over the data (indeed one cannot ensure

that the conditional expectations are correct if one uses twice a data

point). On the contrary for the empirical loss where fi(x) = `(x, ξi)

one can do as many passes as one wishes.

6.1 Non-smooth stochastic optimization

We initiate our study with Stochastic Mirror Descent (S-MD) which is

defined as follows: x1 ∈ argminX∩D Φ(x), and

xt+1 = argmin
x∈X∩D

ηg̃(xt)
>x+DΦ(x, xt).

1We assume differentiability only for sake of notation here.
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In this case equation (4.10) rewrites

t∑
s=1

g̃(xs)
>(xs − x) ≤ R2

η
+

η

2κ

t∑
s=1

‖g̃(xs)‖2∗.

This immediately yields a rate of convergence thanks to the following

simple observation based on the tower rule:

Ef
(

1

t

t∑
s=1

xs

)
− f(x) ≤ 1

t
E

t∑
s=1

(f(xs)− f(x))

≤ 1

t
E

t∑
s=1

E(g̃(xs)|xs)>(xs − x)

=
1

t
E

t∑
s=1

g̃(xs)
>(xs − x).

We just proved the following theorem.

Theorem 6.1. Let Φ be a mirror map 1-strongly convex on X ∩ D
with respect to ‖ · ‖, and let R2 = supx∈X∩D Φ(x) − Φ(x1). Let f be

convex. Furthermore assume that the stochastic oracle is such that

E‖g̃(x)‖2∗ ≤ B2. Then S-MD with η = R
B

√
2
t satisfies

Ef
(

1

t

t∑
s=1

xs

)
−min

x∈X
f(x) ≤ RB

√
2

t
.

Similarly, in the Euclidean and strongly convex case, one can di-

rectly generalize Theorem 3.5. Precisely we consider Stochastic Gra-

dient Descent (SGD), that is S-MD with Φ(x) = 1
2‖x‖

2
2, with time-

varying step size (ηt)t≥1, that is

xt+1 = ΠX (xt − ηtg̃(xt)).
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Theorem 6.2. Let f be α-strongly convex, and assume that the

stochastic oracle is such that E‖g̃(x)‖2∗ ≤ B2. Then SGD with ηs =
2

α(s+1) satisfies

f

(
t∑

s=1

2s

t(t+ 1)
xs

)
− f(x∗) ≤ 2B2

α(t+ 1)
.

6.2 Smooth stochastic optimization and mini-batch SGD

In the previous section we showed that, for non-smooth optimization,

there is basically no cost for having a stochastic oracle instead of an

exact oracle. Unfortunately one can show that smoothness does not

bring any acceleration for a general stochastic oracle2. This is in sharp

contrast with the exact oracle case where we showed that Gradient De-

scent attains a 1/t rate (instead of 1/
√
t for non-smooth), and this could

even be improved to 1/t2 thanks to Nesterov’s Accelerated Gradient

Descent.

The next result interpolates between the 1/
√
t for stochastic smooth

optimization, and the 1/t for deterministic smooth optimization. We

will use it to propose a useful modification of SDG in the smooth case.

The proof is extracted from Dekel et al. [2012].

Theorem 6.3. Let Φ be a mirror map 1-strongly convex on X ∩ D
w.r.t. ‖ · ‖, and let R2 = supx∈X∩D Φ(x)−Φ(x1). Let f be convex and

β-smooth w.r.t. ‖ · ‖. Furthermore assume that the stochastic oracle is

such that E‖∇f(x)− g̃(x)‖2∗ ≤ σ2. Then S-MD with stepsize 1
β+1/η and

η = R
σ

√
2
t satisfies

Ef
(

1

t

t∑
s=1

xs+1

)
− f(x∗) ≤ Rσ

√
2

t
+
βR2

t
.

2While being true in general this statement does not say anything about specific func-
tions/oracles. For example it was shown in Bach and Moulines [2013] that acceleration
can be obtained for the square loss and the logistic loss.
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Proof. Using β-smoothness, Cauchy-Schwarz (with 2ab ≤ xa2 + b2/x

for any x > 0), and the 1-strong convexity of Φ, one obtains

f(xs+1)− f(xs)

≤ ∇f(xs)
>(xs+1 − xs) +

β

2
‖xs+1 − xs‖2

= g̃>s (xs+1 − xs) + (∇f(xs)− g̃s)>(xs+1 − xs) +
β

2
‖xs+1 − xs‖2

≤ g̃>s (xs+1 − xs) +
η

2
‖∇f(xs)− g̃s‖2∗ +

1

2
(β + 1/η)‖xs+1 − xs‖2

≤ g̃>s (xs+1 − xs) +
η

2
‖∇f(xs)− g̃s‖2∗ + (β + 1/η)DΦ(xs+1, xs).

Observe that, using the same argument than to derive (4.9), one has

1

β + 1/η
g̃>s (xs+1 − x∗) ≤ DΦ(x∗, xs)−DΦ(x∗, xs+1)−DΦ(xs+1, xs).

Thus

f(xs+1)

≤ f(xs) + g̃>s (x∗ − xs) + (β + 1/η) (DΦ(x∗, xs)−DΦ(x∗, xs+1))

+
η

2
‖∇f(xs)− g̃s‖2∗

≤ f(x∗) + (g̃s −∇f(xs))
>(x∗ − xs) + (β + 1/η) (DΦ(x∗, xs)−DΦ(x∗, xs+1))

+
η

2
‖∇f(xs)− g̃s‖2∗.

In particular this yields

Ef(xs+1)− f(x∗) ≤ (β + 1/η)E (DΦ(x∗, xs)−DΦ(x∗, xs+1)) +
ησ2

2
.

By summing this inequality from s = 1 to s = t one can easily conclude

with the standard argument.

We can now propose the following modification of SGD based on

the idea of mini-batches. Let m ∈ N, then mini-batch SGD iterates the

following equation:

xt+1 = ΠX

(
xt −

η

m

m∑
i=1

g̃i(xt)

)
.
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where g̃i(xt), i = 1, . . . ,m are independent random variables (condi-

tionally on xt) obtained from repeated queries to the stochastic oracle.

Assuming that f is β-smooth and that the stochastic oracle is such that

‖g̃(x)‖2 ≤ B, one can obtain a rate of convergence for mini-batch SGD

with Theorem 6.3. Indeed one can apply this result with the modified

stochastic oracle that returns 1
m

∑m
i=1 g̃i(x), it satisfies

E‖ 1

m

m∑
i=1

g̃i(x)−∇f(x)‖22 =
1

m
E‖g̃1(x)−∇f(x)‖22 ≤

2B2

m
.

Thus one obtains that with t calls to the (original) stochastic oracle,

that is t/m iterations of the mini-batch SGD, one has a suboptimality

gap bounded by

R

√
2B2

m

√
2

t/m
+
βR2

t/m
= 2

RB√
t

+
mβR2

t
.

Thus as long as m ≤ B
Rβ

√
t one obtains, with mini-batch SGD and t

calls to the oracle, a point which is 3RB√
t
-optimal.

Mini-batch SGD can be a better option than basic SGD in at least

two situations: (i) When the computation for an iteration of mini-batch

SGD can be distributed between multiple processors. Indeed a central

unit can send the message to the processors that estimates of the gra-

dient at point xs has to be computed, then each processor can work

independently and send back the average estimate they obtained. (ii)

Even in a serial setting mini-batch SGD can sometimes be advanta-

geous, in particular if some calculations can be re-used to compute

several estimated gradients at the same point.

6.3 Improved SGD for a sum of smooth and strongly convex
functions

Let us examine in more details the main example from Section 1.1.

That is one is interested in the unconstrained minimization of

f(x) =
1

m

m∑
i=1

fi(x),

where f1, . . . , fm are β-smooth and convex functions, and f is α-

strongly convex. Typically in Machine Learning contexts α can be as
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small as 1/m, while β is of order of a constant. In other words the con-

dition number Q = β/α can be as large as Ω(m). Let us now compare

the basic Gradient Descent, that is

xt+1 = xt −
η

m

m∑
i=1

∇fi(x),

to SGD

xt+1 = xt − η∇fit(x),

where it is drawn uniformly at random in [m] (independently of

everything else). Theorem 3.6 shows that Gradient Descent requires

O(mQ log(1/ε)) gradient computations (which can be improved to

O(m
√
Q log(1/ε)) with Nesterov’s Accelerated Gradient Descent),

while Theorem 6.2 shows that SGD (with appropriate averaging)

requires O(1/(αε)) gradient computations. Thus one can obtain a low

accuracy solution reasonably fast with SGD, but for high accuracy

the basic Gradient Descent is more suitable. Can we get the best

of both worlds? This question was answered positively in Le Roux

et al. [2012] with SAG (Stochastic Averaged Gradient) and in Shalev-

Shwartz and Zhang [2013a] with SDCA (Stochastic Dual Coordinate

Ascent). These methods require only O((m + Q) log(1/ε)) gradient

computations. We describe below the SVRG (Stochastic Variance

Reduced Gradient descent) algorithm from Johnson and Zhang [2013]

which makes the main ideas of SAG and SDCA more transparent.

We also observe that a natural question is whether one can obtain a

Nesterov’s accelerated version of these algorithms that would need

only O((m +
√
Q) log(1/ε)). This question is addressed for SDCA in

Shalev-Shwartz and Zhang [2013b].

To obtain a linear rate of convergence one needs to make ”big steps”,

that is the step-size should be of order of a constant. In SGD the step-

size is typically of order 1/
√
t because of the variance introduced by

the stochastic oracle. The idea of SVRG is to ”center” the output of

the stochastic oracle in order to reduce the variance. Precisely instead

of feeding ∇fi(x) into the gradient descent one would use ∇fi(x) −
∇fi(y) +∇f(y) where y is a centering sequence. This is a sensible idea
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since, when x and y are close to the optimum, one should have that

∇fi(x) − ∇fi(y) will have a small variance, and of course ∇f(y) will

also be small (note that ∇fi(x) by itself is not necessarily small). This

intuition is made formal with the following lemma.

Lemma 6.1. Let f1, . . . fm be β-smooth convex functions on Rn, and

i be a random variable uniformly distributed in [m]. Then

E‖∇fi(x)−∇fi(x∗)‖22 ≤ 2β(f(x)− f(x∗)).

Proof. Let gi(x) = fi(x)− fi(x∗)−∇fi(x∗)>(x− x∗). By convexity of

fi one has gi(x) ≥ 0 for any x and in particular using (3.5) this yields

−gi(x) ≤ − 1
2β‖∇gi(x)‖22 which can be equivalently written as

‖∇fi(x)−∇fi(x∗)‖22 ≤ 2β(fi(x)− fi(x∗)−∇fi(x∗)>(x− x∗)).

Taking expectation with respect to i and observing that E∇fi(x∗) =

∇f(x∗) = 0 yields the claimed bound.

On the other hand the computation of ∇f(y) is expensive (it requires

m gradient computations), and thus the centering sequence should be

updated more rarely than the main sequence. These ideas lead to the

following epoch-based algorithm.

Let y(1) ∈ Rn be an arbitrary initial point. For s = 1, 2 . . ., let

x
(s)
1 = y(s). For t = 1, . . . , k let

x
(s)
t+1 = x

(s)
t − η

(
∇f

i
(s)
t

(x
(s)
t )−∇f

i
(s)
t

(y(s)) +∇f(y(s))
)
,

where i
(s)
t is drawn uniformly at random (and independently of every-

thing else) in [m]. Also let

y(s+1) =
1

k

k∑
t=1

x
(s)
t .
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Theorem 6.4. Let f1, . . . fm be β-smooth convex functions on Rn and

f be α-strongly convex. Then SVRG with η = 1
10β and k = 20Q satisfies

Ef(y(s+1))− f(x∗) ≤ 0.9s(f(y(1))− f(x∗)).

Proof. We fix a phase s ≥ 1 and we denote by E the expectation taken

with respect to i
(s)
1 , . . . , i

(s)
k . We show below that

Ef(y(s+1))− f(x∗) = Ef

(
1

k

k∑
t=1

x
(s)
t

)
− f(x∗) ≤ 0.9(f(y(s))− f(x∗)),

which clearly implies the theorem. To simplify the notation in the fol-

lowing we drop the dependency on s, that is we want to show that

Ef

(
1

k

k∑
t=1

xt

)
− f(x∗) ≤ 0.9(f(y)− f(x∗)). (6.1)

We start as for the proof of Theorem 3.6 (analysis of Gradient Descent

for smooth and strongly convex functions) with

‖xt+1 − x∗‖22 = ‖xt − x∗‖22 − 2ηv>t (xt − x∗) + η2‖vt‖22, (6.2)

where

vt = ∇fit(xt)−∇fit(y) +∇f(y).

Using Lemma 6.1, we upper bound Eit‖vt‖22 as follows (also recall that

E‖X − E(X)‖22 ≤ E‖X‖22, and Eit∇fit(x∗) = 0):

Eit‖vt‖22
≤ 2Eit‖∇fit(xt)−∇fit(x∗)‖22 + 2Eit‖∇fit(y)−∇fit(x∗)−∇f(y)‖22
≤ 2Eit‖∇fit(xt)−∇fit(x∗)‖22 + 2Eit‖∇fit(y)−∇fit(x∗)‖22
≤ 4β(f(xt)− f(x∗) + f(y)− f(x∗)). (6.3)

Also observe that

Eitv>t (xt − x∗) = ∇f(xt)
>(xt − x∗) ≥ f(xt)− f(x∗),

and thus plugging this into (6.2) together with (6.3) one obtains

Eit‖xt+1 − x∗‖22 ≤ ‖xt − x∗‖22 − 2η(1− 2βη)(f(xt)− f(x∗))

+4βη2(f(y)− f(x∗)).
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Summing the above inequality over t = 1, . . . , k yields

E‖xk+1 − x∗‖22 ≤ ‖x1 − x∗‖22 − 2η(1− 2βη)E
k∑
t=1

(f(xt)− f(x∗))

+4βη2k(f(y)− f(x∗)).

Noting that x1 = y and that by α-strong convexity one has f(x) −
f(x∗) ≥ α

2 ‖x− x
∗‖22, one can rearrange the above display to obtain

Ef

(
1

k

k∑
t=1

xt

)
− f(x∗) ≤

(
1

αη(1− 2βη)k
+

2βη

1− 2βη

)
(f(y)− f(x∗)).

Using that η = 1
10β and k = 20Q finally yields (6.1) which itself con-

cludes the proof.

6.4 Random Coordinate Descent

We assume throughout this section that f is a convex and differentiable

function on Rn, with a unique3 minimizer x∗. We investigate one of

the simplest possible scheme to optimize f , the Random Coordinate

Descent (RCD) method. In the following we denote ∇if(x) = ∂f
∂xi

(x).

RCD is defined as follows, with an arbitrary initial point x1 ∈ Rn,

xs+1 = xs − η∇isf(x)eis ,

where is is drawn uniformly at random from [n] (and independently of

everything else).

One can view RCD as SGD with the specific oracle g̃(x) =

n∇If(x)eI where I is drawn uniformly at random from [n]. Clearly

Eg̃(x) = ∇f(x), and furthermore

E‖g̃(x)‖22 =
1

n

n∑
i=1

‖n∇if(x)ei‖22 = n‖∇f(x)‖22.

Thus using Theorem 6.1 (with Φ(x) = 1
2‖x‖

2
2, that is S-MD being SGD)

one immediately obtains the following result.

3Uniqueness is only assumed for sake of notation.
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Theorem 6.5. Let f be convex and L-Lipschitz on Rn, then RCD

with η = R
L

√
2
nt satisfies

Ef
(

1

t

t∑
s=1

xs

)
−min

x∈X
f(x) ≤ RL

√
2n

t
.

Somewhat unsurprisingly RCD requires n times more iterations than

Gradient Descent to obtain the same accuracy. In the next section, we

will see that this statement can be greatly improved by taking into

account directional smoothness.

6.4.1 RCD for coordinate-smooth optimization

We assume now directional smoothness for f , that is there exists

β1, . . . , βn such that for any i ∈ [n], x ∈ Rn and u ∈ R,

|∇if(x+ uei)−∇if(x)| ≤ βi|u|.

If f is twice differentiable then this is equivalent to (∇2f(x))i,i ≤ βi. In

particular, since the maximal eigenvalue of a matrix is upper bounded

by its trace, one can see that the directional smoothness implies that f

is β-smooth with β ≤
∑n

i=1 βi. We now study the following ”aggressive”

RCD, where the step-sizes are of order of the inverse smoothness:

xs+1 = xs −
1

βis
∇isf(x)eis .

Furthermore we study a more general sampling distribution than uni-

form, precisely for γ ≥ 0 we assume that is is drawn (independently)

from the distribution pγ defined by

pγ(i) =
βγi∑n
j=1 β

γ
j

, i ∈ [n].

This algorithm was proposed in Nesterov [2012], and we denote it by

RCD(γ). Observe that, up to a preprocessing step of complexity O(n),

one can sample from pγ in time O(log(n)).



92 Convex optimization and randomness

The following rate of convergence is derived in Nesterov [2012], using

the dual norms ‖ · ‖[γ], ‖ · ‖∗[γ] defined by

‖x‖[γ] =

√√√√ n∑
i=1

βγi x
2
i , and ‖x‖∗[γ] =

√√√√ n∑
i=1

1

βγi
x2
i .

Theorem 6.6. Let f be convex and such that u ∈ R 7→ f(x+ uei) is

βi-smooth for any i ∈ [n], x ∈ Rn. Then RCD(γ) satisfies for t ≥ 2,

Ef(xt)− f(x∗) ≤
2R2

1−γ(x1)
∑n

i=1 β
γ
i

t− 1
,

where

R1−γ(x1) = sup
x∈Rn:f(x)≤f(x1)

‖x− x∗‖[1−γ].

Recall from Theorem 3.2 that in this context the basic Gradient De-

scent attains a rate of β‖x1−x∗‖22/t where β ≤
∑n

i=1 βi (see the discus-

sion above). Thus we see that RCD(1) greatly improves upon Gradient

Descent for functions where β is of order of
∑n

i=1 βi. Indeed in this case

both methods attain the same accuracy after a fixed number of iter-

ations, but the iterations of Coordinate Descent are potentially much

cheaper than the iterations of Gradient Descent.

Proof. By applying (3.5) to the βi-smooth function u ∈ R 7→ f(x+uei)

one obtains

f

(
x− 1

βi
∇if(x)ei

)
− f(x) ≤ − 1

2βi
(∇if(x))2.

We use this as follows:

Eisf(xs+1)− f(xs) =

n∑
i=1

pγ(i)

(
f

(
xs −

1

βi
∇if(xs)ei

)
− f(xs)

)

≤ −
n∑
i=1

pγ(i)

2βi
(∇if(xs))

2

= − 1

2
∑n

i=1 β
γ
i

(
‖∇f(xs)‖∗[1−γ]

)2
.
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Denote δs = Ef(xs) − f(x∗). Observe that the above calculation can

be used to show that f(xs+1) ≤ f(xs) and thus one has, by definition

of R1−γ(x1),

δs ≤ ∇f(xs)
>(xs − x∗)

≤ ‖xs − x∗‖[1−γ]‖∇f(xs)‖∗[1−γ]

≤ R1−γ(x1)‖∇f(xs)‖∗[1−γ].

Thus putting together the above calculations one obtains

δs+1 ≤ δs −
1

2R2
1−γ(x1)

∑n
i=1 β

γ
i

δ2
s .

The proof can be concluded with similar computations than for Theo-

rem 3.2.

We discussed above the specific case of γ = 1. Both γ = 0 and

γ = 1/2 also have an interesting behavior, and we refer to Nesterov

[2012] for more details. The latter paper also contains a discussion of

high probability results and potential acceleration à la Nesterov. We

also refer to Richtárik and Takác [2012] for a discussion of RCD in a

distributed setting.

6.4.2 RCD for smooth and strongly convex optimization

If in addition to directional smoothness one also assumes strong con-

vexity, then RCD attains in fact a linear rate.

Theorem 6.7. Let γ ≥ 0. Let f be α-strongly convex w.r.t. ‖ · ‖[1−γ],

and such that u ∈ R 7→ f(x+ uei) is βi-smooth for any i ∈ [n], x ∈ Rn.

Let Qγ =
∑n
i=1 β

γ
i

α , then RCD(γ) satisfies

Ef(xt+1)− f(x∗) ≤
(

1− 1

Qγ

)t
(f(x1)− f(x∗)).

We use the following elementary lemma.
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Lemma 6.2. Let f be α-strongly convex w.r.t. ‖ · ‖ on Rn, then

f(x)− f(x∗) ≤ 1

2α
‖∇f(x)‖2∗.

Proof. By strong convexity, Hölder’s inequality, and an elementary cal-

culation,

f(x)− f(y) ≤ ∇f(x)>(x− y)− α

2
‖x− y‖22

≤ ‖∇f(x)‖∗‖x− y‖ −
α

2
‖x− y‖22

≤ 1

2α
‖∇f(x)‖2∗,

which concludes the proof by taking y = x∗.

We can now prove Theorem 6.7.

Proof. In the proof of Theorem 6.6 we showed that

δs+1 ≤ δs −
1

2
∑n

i=1 β
γ
i

(
‖∇f(xs)‖∗[1−γ]

)2
.

On the other hand Lemma 6.2 shows that(
‖∇f(xs)‖∗[1−γ]

)2
≥ 2αδs.

The proof is concluded with straightforward calculations.

6.5 Acceleration by randomization for saddle points

We explore now the use of randomness for saddle point computations.

That is we consider the context of Section 5.2.1 with a stochastic

oracle of the following form: given z = (x, y) ∈ X × Y it outputs

g̃(z) = (g̃X (x, y), g̃Y(x, y)) where E (g̃X (x, y)|x, y) ∈ ∂xϕ(x, y), and

E (g̃Y(x, y)|x, y) ∈ ∂y(−ϕ(x, y)). Instead of using true subgradients as

in SP-MD (see Section 5.2.2) we use here the outputs of the stochastic

oracle. We refer to the resulting algorithm as S-SP-MD (Stochastic Sad-

dle Point Mirror Descent). Using the same reasoning than in Section

6.1 and Section 5.2.2 one can derive the following theorem.
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Theorem 6.8. Assume that the stochastic oracle is such that

E (‖g̃X (x, y)‖∗X )2 ≤ B2
X , and E

(
‖g̃Y(x, y)‖∗Y

)2 ≤ B2
X . Then S-SP-MD

with a = BX
RX

, b = BY
RY

, and η =
√

2
t satisfies

E

(
max
y∈Y

ϕ

(
1

t

t∑
s=1

xs, y

)
−min

x∈X
ϕ

(
x,

1

t

t∑
s=1

ys

))
≤ (RXBX+RYBY)

√
2

t
.

Using S-SP-MD we revisit the examples of Section 5.2.4.2 and Section

5.2.4.3. In both cases one has ϕ(x, y) = x>Ay (with Ai being the ith

column of A), and thus ∇xϕ(x, y) = Ay and ∇yϕ(x, y) = A>x.

Matrix games. Here x ∈ ∆n and y ∈ ∆m. Thus there is a quite

natural stochastic oracle:

g̃X (x, y) = AI , where I ∈ [m] is drawn according to y ∈ ∆m, (6.4)

and ∀i ∈ [m],

g̃Y(x, y)(i) = Ai(J), where J ∈ [n] is drawn according to x ∈ ∆n.

(6.5)

Clearly ‖g̃X (x, y)‖∞ ≤ ‖A‖max and ‖g̃X (x, y)‖∞ ≤ ‖A‖max, which

implies that S-SP-MD attains an ε-optimal pair of points with

O
(
‖A‖2max log(n+m)/ε2

)
iterations. Furthermore the computa-

tional complexity of a step of S-SP-MD is dominated by drawing

the indices I and J which takes O(n + m). Thus overall the com-

plexity of getting an ε-optimal Nash equilibrium with S-SP-MD is

O
(
‖A‖2max(n+m) log(n+m)/ε2

)
. While the dependency on ε is

worse than for SP-MP (see Section 5.2.4.2), the dependencies on

the dimensions is Õ(n + m) instead of Õ(nm). In particular, quite

astonishingly, this is sublinear in the size of the matrix A. The

possibility of sublinear algorithms for this problem was first observed

in Grigoriadis and Khachiyan [1995].

Linear classification. Here x ∈ B2,n and y ∈ ∆m. Thus the stochastic

oracle for the x-subgradient can be taken as in (6.4) but for the y-

subgradient we modify (6.5) as follows. For a vector x we denote by x2
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the vector such that x2(i) = x(i)2. For all i ∈ [m],

g̃Y(x, y)(i) =
‖x‖2

x(j)
Ai(J), where J ∈ [n] is drawn according to

x2

‖x‖22
∈ ∆n.

Note that one indeed has E(g̃Y(x, y)(i)|x, y) =
∑n

j=1 x(j)Ai(j) =

(A>x)(i). Furthermore ‖g̃X (x, y)‖2 ≤ B, and

E(‖g̃Y(x, y)‖2∞|x, y) =

n∑
j=1

x(j)2

‖x‖22
max
i∈[m]

(
‖x‖2

x(j)
Ai(j)

)2

≤
n∑
j=1

max
i∈[m]

Ai(j)
2.

Unfortunately this last term can be O(n). However it turns out that

one can do a more careful analysis of Mirror Descent in terms of local

norms, which allows to prove that the ”local variance” is dimension-

free. We refer to Bubeck and Cesa-Bianchi [2012] for more details on

these local norms, and to Clarkson et al. [2012] for the specific details

in the linear classification situation.

6.6 Convex relaxation and randomized rounding

In this section we briefly discuss the concept of convex relaxation, and

the use of randomization to find approximate solutions. By now there

is an enormous literature on these topics, and we refer to Arora and

Barak [2009] for further pointers.

We study here the seminal example of MAXCUT. This problem

can be described as follows. Let A ∈ Rn×n+ be a symmetric matrix of

non-negative weights. The entry Ai,j is interpreted as a measure of

the ”dissimilarity” between point i and point j. The goal is to find a

partition of [n] into two sets, S ⊂ [n] and Sc, so as to maximize the

total dissimilarity between the two groups:
∑

i∈S,j∈Sc Ai,j . Equivalently

MAXCUT corresponds to the following optimization problem:

max
x∈{−1,1}n

1

2

n∑
i,j=1

Ai,j(xi − xj)2. (6.6)

Viewing A as the (weighted) adjacency matrix of a graph, one can

rewrite (6.6) as follows, using the graph Laplacian L = D − A where

D is the diagonal matrix with entries (
∑n

j=1Ai,j)i∈[n],

max
x∈{−1,1}n

x>Lx. (6.7)
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It turns out that this optimization problem is NP-hard, that is the

existence of a polynomial time algorithm to solve (6.7) would prove

that P = NP. The combinatorial difficulty of this problem stems

from the hypercube constraint. Indeed if one replaces {−1, 1}n by the

Euclidean sphere, then one obtains an efficiently solvable problem (it

is the problem of computing the maximal eigenvalue of L).

We show now that, while (6.7) is a difficult optimization problem,

it is in fact possible to find relatively good approximate solutions by

using the power of randomization. Let ζ be uniformly drawn on the

hypercube {−1, 1}n, then clearly

E ζ>Lζ =
n∑

i,j=1,i 6=j
Ai,j ≥

1

2
max

x∈{−1,1}n
x>Lx.

This means that, on average, ζ is a 1/2-approximate solution to

(6.7). Furthermore it is immediate that the above expectation bound

implies that, with probability at least ε, ζ is a (1/2 − ε)-approximate

solution. Thus by repeatedly sampling uniformly from the hypercube

one can get arbitrarily close (with probability approaching 1) to a

1/2-approximation of MAXCUT.

Next we show that one can obtain an even better approximation ra-

tio by combining the power of convex optimization and randomization.

This approach was pioneered by Goemans and Williamson [1995]. The

Goemans-Williamson algorithm is based on the following inequality

max
x∈{−1,1}n

x>Lx = max
x∈{−1,1}n

〈L, xx>〉 ≤ max
X∈Sn+,Xi,i=1,i∈[n]

〈L,X〉.

The right hand side in the above display is known as the convex (or

SDP) relaxation of MAXCUT. The convex relaxation is an SDP and

thus one can find its solution efficiently with Interior Point Meth-

ods (see Section 5.3). The following result states both the Goemans-

Williamson strategy and the corresponding approximation ratio.

Theorem 6.9. Let Σ be the solution to the SDP relaxation of
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MAXCUT. Let ξ ∼ N (0,Σ) and ζ = sign(ξ) ∈ {−1, 1}n. Then

E ζ>Lζ ≥ 0.878 max
x∈{−1,1}n

x>Lx.

The proof of this result is based on the following elementary geo-

metric lemma.

Lemma 6.3. Let ξ ∼ N (0,Σ) with Σi,i = 1 for i ∈ [n], and ζ =

sign(ξ). Then

E ζiζj =
2

π
arcsin (Σi,j) .

Proof. Let V ∈ Rn×n (with ith row V >i ) be such that Σ = V V >. Note

that since Σi,i = 1 one has ‖Vi‖2 = 1 (remark also that necessarily

|Σi,j | ≤ 1, which will be important in the proof of Theorem 6.9). Let

ε ∼ N (0, In) be such that ξ = V ε. Then ζi = sign(V >i ε), and in

particular

E ζiζj = P(V >i ε ≥ 0 and V >j ε ≥ 0) + P(V >i ε ≤ 0 and V >j ε ≤ 0

−P(V >i ε ≥ 0 and V >j ε < 0)− P(V >i ε < 0 and V >j ε ≥ 0)

= 2P(V >i ε ≥ 0 and V >j ε ≥ 0)− 2P(V >i ε ≥ 0 and V >j ε < 0)

= P(V >j ε ≥ 0|V >i ε ≥ 0)− P(V >j ε < 0|V >i ε ≥ 0)

= 1− 2P(V >j ε < 0|V >i ε ≥ 0).

Now a quick picture shows that P(V >j ε < 0|V >i ε ≥ 0) = 1
πarccos(V >i Vj)

(recall that ε/‖ε‖2 is uniform on the Euclidean sphere). Using the fact

that V >i Vj = Σi,j and arccos(x) = π
2 − arcsin(x) conclude the proof.

We can now get to the proof of Theorem 6.9.

Proof. We shall use the following inequality:

1− 2

π
arcsin(t) ≥ 0.878(1− t), ∀t ∈ [−1, 1]. (6.8)

Also remark that for X ∈ Rn×n such that Xi,i = 1, one has

〈L,X〉 =

n∑
i,j=1

Ai,j(1−Xi,j),
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and in particular for x ∈ {−1, 1}n, x>Lx =
∑n

i,j=1Ai,j(1−xixj). Thus,

using Lemma 6.3, and the facts that Ai,j ≥ 0 and |Σi,j | ≤ 1 (see the

proof of Lemma 6.3), one has

E ζ>Lζ =

n∑
i,j=1

Ai,j

(
1− 2

π
arcsin (Σi,j)

)

≥ 0.878
n∑

i,j=1

Ai,j (1− Σi,j)

= 0.878 max
X∈Sn+,Xi,i=1,i∈[n]

〈L,X〉

≥ 0.878 max
x∈{−1,1}n

x>Lx.

Theorem 6.9 depends on the form of the Laplacian L (insofar as

(6.8) was used). We show next a result from Nesterov [1997] that ap-

plies to any positive semi-definite matrix, at the expense of the constant

of approximation. Precisely we are now interested in the following op-

timization problem:

max
x∈{−1,1}n

x>Bx. (6.9)

The corresponding SDP relaxation is

max
X∈Sn+,Xi,i=1,i∈[n]

〈B,X〉.

Theorem 6.10. Let Σ be the solution to the SDP relaxation of (6.9).

Let ξ ∼ N (0,Σ) and ζ = sign(ξ) ∈ {−1, 1}n. Then

E ζ>Bζ ≥ 2

π
max

x∈{−1,1}n
x>Bx.

Proof. Lemma 6.3 shows that

E ζ>Bζ =

n∑
i,j=1

Bi,j
2

π
arcsin (Xi,j) =

2

π
〈B, arcsin(X)〉.
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Thus to prove the result it is enough to show that 〈B, arcsin(Σ)〉 ≥
〈B,Σ〉, which is itself implied by arcsin(Σ) � Σ (the implication is true

since B is positive semi-definite, just write the eigendecomposition).

Now we prove the latter inequality via a Taylor expansion. Indeed recall

that |Σi,j | ≤ 1 and thus denoting by A◦α the matrix where the entries

are raised to the power α one has

arcsin(Σ) =

+∞∑
k=0

(
2k
k

)
4k(2k + 1)

Σ◦(2k+1) = Σ +

+∞∑
k=1

(
2k
k

)
4k(2k + 1)

Σ◦(2k+1).

Finally one can conclude using the fact if A,B � 0 then A ◦ B � 0.

This can be seen by writing A = V V >, B = UU>, and thus

(A ◦B)i,j = V >i VjU
>
i Uj = Tr(UjV

>
j ViU

>
i ) = 〈ViU>i , VjU>j 〉.

In other words A ◦ B is a Gram-matrix and, thus it is positive semi-

definite.

6.7 Random walk based methods

Randomization naturally suggests itself in the center of gravity method

(see Section 2.1), as a way to circumvent the exact calculation of the

center of gravity. This idea was proposed and developed in Bertsimas

and Vempala [2004]. We give below a condensed version of the main

ideas of this paper.

Assuming that one can draw independent points X1, . . . , XN uni-

formly at random from the current set St, one could replace ct by

ĉt = 1
N

∑N
i=1Xi. Bertsimas and Vempala [2004] proved the following

generalization of Lemma 2.1 for the situation where one cuts a convex

set through a point close the center of gravity. Recall that a convex set

K is in isotropic position if EX = 0 and EXX> = In, where X is a

random variable drawn uniformly at random from K. Note in particular

that this implies E‖X‖22 = n. We also say that K is in near-isotropic

position if 1
2 In � EXX> � 3

2 In.

Lemma 6.4. Let K be a convex set in isotropic position. Then for any

w ∈ Rn, w 6= 0, z ∈ Rn, one has

Vol
(
K ∩ {x ∈ Rn : (x− z)>w ≥ 0}

)
≥
(

1

e
− ‖z‖2

)
Vol(K).
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Thus if one can ensure that St is in (near) isotropic position, and ‖ct−
ĉt‖2 is small (say smaller than 0.1), then the randomized center of

gravity method (which replaces ct by ĉt) will converge at the same

speed than the original center of gravity method.

Assuming that St is in isotropic position one immediately obtains

E‖ct − ĉt‖22 = n
N , and thus by Chebyshev’s inequality one has P(‖ct −

ĉt‖2 > 0.1) ≤ 100 n
N . In other words with N = O(n) one can ensure

that the randomized center of gravity method makes progress on a

constant fraction of the iterations (to ensure progress at every step one

would need a larger value of N because of an union bound, but this is

unnecessary).

Let us now consider the issue of putting St in near-isotropic posi-

tion. Let Σ̂t = 1
N

∑N
i=1(Xi− ĉt)(Xi− ĉt)>. Rudelson [1999] showed that

as long as N = Ω̃(n), one has with high probability (say at least prob-

ability 1−1/n2) that the set Σ̂
−1/2
t (St− ĉt) is in near-isotropic position.

Thus it only remains to explain how to sample from a near-isotropic

convex set K. This is where random walk ideas come into the picture.

The hit-and-run walk is described as follows: at a point x ∈ K, let

L be a line that goes through x in a direction taken uniformly at

random, then move to a point chosen uniformly at random in L ∩ K.

Lovász [1998] showed that if the starting point of the hit-and-run

walk is chosen from a distribution ”close enough” to the uniform

distribution on K, then after O(n3) steps the distribution of the last

point is ε away (in total variation) from the uniform distribution

on K. In the randomized center of gravity method one can obtain

a good initial distribution for St by using the distribution that was

obtained for St−1. In order to initialize the entire process correctly

we start here with S1 = [−L,L]n ⊃ X (in Section 2.1 we used

S1 = X ), and thus we also have to use a separation oracle at iterations

where ĉt 6∈ X , just like we did for the Ellipsoid Method (see Section 2.2).

Wrapping up the above discussion, we showed (informally) that to

attain an ε-optimal point with the randomized center of gravity method
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one needs: Õ(n) iterations, each iterations requires Õ(n) random sam-

ples from St (in order to put it in isotropic position) as well as a call

to either the separation oracle or the first order oracle, and each sam-

ple costs Õ(n3) steps of the random walk. Thus overall one needs Õ(n)

calls to the separation oracle and the first order oracle, as well as Õ(n5)

steps of the random walk.
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P. Richtárik and M. Takác. Parallel coordinate descent methods for

big data optimization. Arxiv preprint arXiv:1212.0873, 2012.

H. Robbins and S. Monro. A stochastic approximation method. Annals

of Mathematical Statistics, 22:400–407, 1951.

R. Rockafellar. Convex Analysis. Princeton University Press, 1970.

M. Rudelson. Random vectors in the isotropic position. Journal of



6.7. Random walk based methods 107

Functional Analysis, 164:60–72, 1999.

B. Schölkopf and A. Smola. Learning with kernels. MIT Press, 2002.

S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent

methods for regularized loss minimization. Journal of Machine

Learning Research, 14:567–599, 2013a.

S. Shalev-Shwartz and T. Zhang. Accelerated mini-batch stochastic

dual coordinate ascent. In Advances in Neural Information Process-

ing Systems (NIPS), 2013b.

L. Xiao. Dual averaging methods for regularized stochastic learning

and online optimization. Journal of Machine Learning Research, 11:

2543–2596, 2010.


	Introduction
	Some convex optimization problems for machine learning
	Basic properties of convexity
	Why convexity?
	Black-box model
	Structured optimization
	Overview of the results

	Convex optimization in finite dimension
	The center of gravity method
	The ellipsoid method

	Dimension-free convex optimization
	Projected Subgradient Descent for Lipschitz functions
	Gradient descent for smooth functions
	Conditional Gradient Descent, aka Frank-Wolfe
	Strong convexity
	Lower bounds
	Nesterov's Accelerated Gradient Descent

	Almost dimension-free convex optimization in non-Euclidean spaces
	Mirror maps
	Mirror Descent
	Standard setups for Mirror Descent
	Lazy Mirror Descent, aka Nesterov's Dual Averaging
	Mirror Prox
	The vector field point of view on MD, DA, and MP

	Beyond the black-box model
	Sum of a smooth and a simple non-smooth term
	Smooth saddle-point representation of a non-smooth function
	Interior Point Methods

	Convex optimization and randomness
	Non-smooth stochastic optimization
	Smooth stochastic optimization and mini-batch SGD
	Improved SGD for a sum of smooth and strongly convex functions
	Random Coordinate Descent
	Acceleration by randomization for saddle points
	Convex relaxation and randomized rounding
	Random walk based methods


