
Proc. ACSAC ’06

KLASSP: Entering Passwords on a Spyware Infected
Machine Using a Shared-Secret Proxy

Dinei Florêncio and Cormac Herley
Microsoft Research
One Microsoft Way

Redmond, WA

ABSTRACT
In this paper we examine the problem of entering sen-
sitive data, such as passwords, from an untrusted ma-
chine. By untrusted we mean that it is suspected to be
infected with spyware which snoops on the user’s activ-
ity. Using such a machine is obviously undesirable, and
yet roaming users often have no choice. They are in
no position to judge the security status of internet cafe,
airport lounge or business center machines. Either mal-
ice or negligence on the part of an administrator means
that any such machine can easily be running a keylog-
ger. The roaming user has no reliable way of determin-
ing whether it is safe, and has no alternative to typing
the password.

We consider whether it is possible to enter data to
confound spyware assumed to be running on the ma-
chine in question. The difficulty of mounting a collu-
sion attack on a single user’s password makes the prob-
lem more tractable than it might appear. We explore
several approaches. In the first, we show how the user
can embed a password in random keystrokes to confuse
spyware, while leaving the actual login unaffected. In
the second we employ a proxy server to strip random
keys. In the third we again employ a proxy that inverts
a key mapping performed by the user. We examine also
several potential attacks.

1. INTRODUCTION
Attacks that target user information on client work-

stations are certainly not new. Spyware is a very di-
verse phenomenon [16] and includes a broad range of
techniques that snoop on user activity, deploy Trojan
downloaders, or infest with adware. However, the last
few years have seen a surge in various ploys targeting
information that can be directly exploited for financial
gain. The popular and technical presses contain many
accounts of the growth of this problem.

Keylogging is one of the most insidious threats to
a user’s personal information. Passwords, credit card
numbers, and other sensitive or personally identifying
information are potentially exposed. Writing a keylog-
ger is a trivially easy task [11], there are numerous free-

ware offerings, and many of them make efforts to con-
ceal their presence. For example, they will not show
up in a process list. The incidence of keyloggers in-the-
wild is growing rapidly. Keylogging is more worrisome
in many respects than the related threat of phishing.
In phishing the attacker lures the victim into typing
a password into a malicious web-site. The social en-
gineering aspect of the attack is important, since the
attacker generally does not have any code (beyond pos-
sible browser scripts) running on the victims machine.
In the problem of spyware, or keylogging, by contrast,
the attacker is assumed to have compromised the ma-
chine in use.

Enterprize users can most likely trust their desktop
systems provided their network administrators main-
tain good firewall and anti-virus regimes. Knowledge-
able home users who keep their systems updated are
probably almost as well protected. However home users
who are less proficient, or confused, or who leave their
systems unpatched are at greater risk. Roaming users
who use their own laptops are subject to wireless and
network snooping attacks, but are no more at risk from
spyware if their perimeter defenses are good. However
roaming users who use unfamiliar machines are in the
worst case of all: the spyware infection status of public
machines must be regarded as unknown. Safety requires
knowing that the administrator is both competent and
trustworthy. As things stand, a roaming user has no
reliable way to determine if a machine is running a key-
logger or not. In this environment every session on such
a machine must be assumed to be logged. We call out
system KLASSP: KeyLogger Avoidance using a Shared
Secret Proxy.

1.1 The Problem and Limitations of Our Ap-
proaches

The problem we address is to determine what a user
can do when she must login to a password protected ac-
count from an untrusted machine. One answer is that
she should never do so. This is a simple advice, but un-
satisfactory, and millions upon millions ignore it every
day. If this advice were followed internet cafes, business
centers and airport kiosks would have no customers.

1



Proc. ACSAC ’06

Clearly, this is not the case. While every machine is
an untrusted machine to some degree, and every user
is at risk, we are principally interested in those most
at risk: roaming users of public machines. Furthermore
— while all data typed by the user may be sensitive —
we are principally interested in protecting passwords.
We assume that preventing a password falling into the
wrong hands is more important than protecting the rest
of the data from a login session. This last fact is im-
portant, since the solutions we explore will require ad-
ditional steps or effort on the user’s part when enter-
ing the password; this effort may be well worthwhile to
protect a password, but not ordinary search queries for
example.

We make several requirements of the solutions in or-
der to be useful.

• No change to the login server. The techniques we
explore must work with existing login servers; i.e.
we don’t expect that login servers are going to alter
anything.

• No change to the browser or client software envi-
ronment. We do not assume that the roaming user
has installation privileges.

• User cares most about obscuring her password; it
matters less if other activity is captured.

• A roaming user is unlikely to login more than once
or twice to the same account from the same un-
trusted machine. We further assume that collusion
among spyware infected machines is unlikely. For
example a keylogger on a machine in the airport
in San Francisco is unlikely to be able to collude
with one running on an internet cafe machine in
Milan.

The general approach we use is to obscure the pass-
word typed by the user, and employ a Proxy to map
the typed keystrokes to the actual password. We have
two general approaches. The first resembles a winnow-
ing and chaffing [14] algorithm, where the actual pass-
word is typed in the clear, but embedded in random
keystrokes. This makes the attackers job of extracting
the actual password extremely hard. The second ap-
proach involves mapping the keys of the password us-
ing a mapping agreed in advance with the proxy server;
this is described in Section 3.4. In the next section we
describe previous and related work.

2. RELATED WORK
Much of the recent work on desktop computer secu-

rity has been directed at securing the perimeter. Com-
mercial anti-virus technologies attempt to detect files
with malicious payloads. More recently there have been
anti-spyware offerings that attempt to address the prob-
lem of code that maliciously spies and reports on a

user’s activity. Some commercial offerings attempt sig-
nature based identification of spyware applications on
desktop machines. For an excellent overview of the
range of threats and the technologies employed against
them see [18]. Excellent systematic studies of spyware
in the wild using honeypot techniques are [16, 20]. An
interesting analysis of the difficulty of ensuring the in-
tegrity of user key and mouse events is given in [10]. We
refer interested readers to [11, 18] for excellent accounts
of the difficulties of this field.

Rather than have users key their passwords some web
sites have experimented with on-screen keyboards as a
method of secure data entry. These schemes can be
attacked by having the keylogger do a screen capture
at each mouse click event. The problem of password
phishing has attracted lots of attention recently [15, 12,
9, 6]. Generally the target of a phishing attack is the
password or other sensitive information such as credit
card number of the victim. In contrast to the spyware
case the machine being used is not generally compro-
mised. Rather the user is directed to a web page that
manipulates them into willingly typing their password
into a malicious site (in the belief that the site is be-
nign).

Password management systems are one approach to
helping users with the risks and difficulties associated
with managing multiple passwords. We distinguish be-
tween those that store the passwords on the client, e.g.
[15, 9], and those that store in the cloud [8]. An early in-
the-cloud example, proposed by Gaber et al. [8], used
a master password when a browser session was initi-
ated to access a web proxy, and unique domain-specific
passwords were used for other web sites. Since users au-
thenticated themselves by typing the master password,
this clearly offers no defence against keyloggers. The
same is true of other in-the-cloud password protected
management systems such as Passport, where the user
authenticates herself using a master password.

There are several client based password management
systems. These are interesting, but less relevant to the
problem of protecting roaming users. Ross et al. [15]
propose a solution that, like [8], uses domain-specific
passwords for web sites. A browser plug-in hashes the
password salted with the domain name of the request-
ing site. Halderman et al. [9] also propose a system
to manage a user’s passwords. Passwords both for web
sites and other applications on the user’s computer are
protected. While client password management schemes
can help with the problem of phishing they are of lit-
tle help if a keylogger captures the password, and of-
fer roaming users no protection. Using bookmarklets
(i.e. Javascript functions that can be stored as favorites
in the browser) Zarate [1] describes how to automat-
ically populate password fields, with domain specific
passwords by typing only a master password. This of

2



Proc. ACSAC ’06

course would not help roaming users.
The surge of spyware and keyloggers is a somewhat

recent phenomenon, so there have been relatively few
works on protecting the roaming users of untrusted ma-
chines. An interesting work by Tan et al. [19] ad-
dresses the question of minimizing the chances that a
password entered using an on-screen keyboard is cap-
tured by an observer. This work addresses the “shoul-
der surfing” risk rather than the risk that the machine
itself is running spyware, but has interesting analysis
of the usability of various alternative password entering
mechanisms.

The closest work to the system we propose here is the
Impostor system of Pashalidis and Mitchell [13], which
specifically addresses the question of entering passwords
on compromised machines. This is a password man-
agement system where roaming users can access their
credentials. Rather than have users authenticate them-
selves by typing a master password, a challenge response
authentication is used. The user is assigned a large
string that forms the secret. When requesting access
the user is challenged to provide characters from ran-
domly selected positions in the string, and is authen-
ticated only if she responds correctly. In this way the
user reveals only a small portion of the secret string
to any compromised machine. A replay attack is not
possible, since the challenge positions change each time
the user contacts the proxy. In common with our sys-
tem and [8] Impostor also runs as a Man-In-The-Middle
(MITM) proxy, and the user must direct their browser
to the proxy. The are several points of difference be-
tween KLASSP and [13]. First we do not store the
user’s password. This has the effect that KLASSP user
must trust the proxy machine only when the alterna-
tive is trusting an internet café. More importantly, it
removes the burden of maintaining up to date password
information at the proxy. As with most password man-
agement systems the Impostor user must update their
passwords at the proxy whenever one changes. By con-
trast the KLASSP user need register only once by giving
(userid, url) pairs, and these seldom change. Since users
are likely to use a proxy only when using untrusted ma-
chines (presumably a small portion of their total logins
for most users), we believe that reducing the burden of
maintaining the account is a key advantage. Also, a spy-
ware attacker that discovers the secret used by Impostor
gains access to all of the accounts managed, while an
attacker who gains access to the KLASSP secret gains
access only to accounts where he also observes a success-
ful login. Second, Impostor requires that the user carry
a piece of paper with the secret string. Of the meth-
ods we describe only that of Section 3.4 requires the
user to carry something. Using the method of Section
3.2 the user need merely be able to distinguish picture
uploaded by her from randomly chosen other images.

Knowing the secret string allows access to all of the ac-
counts maintained by the Impostor proxy. By contrast,
knowing the KLASSP shared secret is worth little unless
the attacker observes a login session. This reduces the
required complexity of the shared secret considerably.

Cheswick [5] examines the use of Challenge-Response
authentication mechanisms to evade spyware. The ad-
vantage of such systems is that a spy who observes a
successful login session cannot perform a replay attack:
the challenge will be different for each event and ob-
serving a single response helps the attacker very lit-
tle. Cheswick reviews a number of approaches from the
point of view of usability. The most secure approaches
require a user to carry a hardware device or a piece
of paper. The tradeoff between usability and security
remains an open question.

Several one time password systems exist that limit the
phisher’s ability to exploit any information he obtains.
SecureID from RSA gives a user a password that evolves
over time, so that each password has a lifetime of only
a minute or so. This solution requires that the user be
issued with a physical device that generates the pass-
word. One time passwords can be based on an SKEY
approach [17]. This solution requires considerable in-
frastructure change on the server side, and has not seen
any significant deployment to general users.

Florêncio and Herley [7] describe a simple trick that
users can employ to confound keyloggers by obfuscat-
ing their passwords. We review the method in Section
2.1, and an elaboration of it forms the basis of one of
our approaches. Due to the relevance of that trick to
KLASSP, we give a brief overview of that trick.

2.1 Embedding the Password in Random Keys
Extracting a password from a sequence of keystrokes

is generally not hard. For example, here is a sequence
of keys typed while the browser had focus:

hotmail.comsarahj7@hotmail.com<tab>snoopy2
(1)

Clearly, the first characters were typed into the address
bar to navigate to the hotmail login page; the next
characters give out the userid and password of this user.

In [7] we show one way to make the attacker’s job
harder: embedding the actual password in a sequence
of random keys, typed outside the text field of the login
page. Instead of the password snoopy2 the keylogger
now gets, for example:

laspqm5nsdgsos8gfsodg4dpuouuyhdg2 (2)

The password is now embedded in random keys, making
extracting it a lot harder. Note however that the server
is not confused by the extra characters; the browser will
differentiate between the legitimate characters (typed
when the password field has focus) and the random
characters (typed somewhere else), and only forward

3



Proc. ACSAC ’06

Figure 1: The basic design. All traffic from the browser
on the untrusted machine flows through a MITM proxy.
The user enters the password using an obscuring method;
it is unobscured at the proxy. Once login is established
the proxy reverts to a passive rôle.

the legitimate ones to the server.
This simply trick evades most current keyloggers. Un-

fortunately, as explained in [7], it is not a general so-
lution: keyloggers could be modified to log additional
information (e.g., mouse clicks or screen shots), that
would allow the attacker to recover the original pass-
word.

3. USING A MITM PROXY
While the method of [7] has a number of weaknesses,

the idea of embedding the actual password (signal) in
a large number of random keystrokes (noise) is a valu-
able one. The problem is that all of the information
the keylogger needed was present (albeit hard to get
at) on the compromised machine (this is also true of
on-screen keyboards and alternative login approaches).
Simply taking a screenshot at each keystroke would al-
low capturing of the password. Equally, an attacker
who instals a spyware plug-in in the browser would see
all of the encrypted traffic, including passwords, in the
clear.

To avoid leaving the password in any accessible form
on the untrusted machine we now explore the possibil-
ity of logging in via a MITM proxy. All traffic between
the user’s browser and the end login server will flow
through the proxy as in Figure 1. Our goal is that
the user will enter an obscured version of the password,
and the proxy will unobscure before passing to the lo-
gin server. Thereafter the proxy reverts to a passive
rôle, but remains in the middle. We’ll explore two main
approaches to obscuring the password: obfuscating it
by embedding it in random characters, and mapping it
using a simple encryption table. The key challenges in
designing an obscuring method achieving a good trade-
off between usability and security.

It is worth emphasizing that the proxy does not act
as a password management system; i.e. the user’s pass-
word is not stored on the proxy (recall from Section 2
that password management systems offer no protection
against keyloggers).

3.1 Obscuring Using a Prompt Table

As with the client embedding case in Section 2.1 the
key question is how the proxy can determine which keys
belong to the true password, and which are random ad-
ditions. One possible solution is that the proxy prompts
the user when a password key should be typed. For ex-
ample, suppose the proxy displayed a prompt at every
key typed by the user: a 0 meaning that the next key
should be randomly chosen, and a 1 meaning that it
should be the next key of the password. This can eas-
ily be accomplished using JavaScript on the proxy login
page. The problem is that this is too easily defeated.
If the spyware does a screen capture at each keystroke
it will see the prompts, and it is a simple matter to
then determine which keys belong to the password and
which are fake. Anything we display on the untrusted
machine must be assumed to be visible to the spyware.

Our scheme works as follows. The user sets up an
account with the KLASSP server. She is assigned a
shared-secret. For example, a simple shared-secret would
be a symbol that will act as her prompt, and a position
in a symbol table where she will look for it. She also
enters the userids of the accounts that she may be ac-
cessing via the proxy server. Note that, after registra-
tion, access to the KLASSP webserver is not password
protected: when the user is using the proxy to login (for
example) to hotmail the userid sarahj7@hotmail.com
combined with the target login domain suffices to uniquely
identify her. This enables the proxy to determine the
unique prompt symbol and symbol table position for
that user.

Suppose we have M symbols and N positions in the
table. When entering the password the entire sym-
bol table will be refreshed every time a key is entered.
When the user sees her assigned symbol in her assigned
position she types the next key of her password; other-
wise she types a random key. Now, even assuming that
the spyware does a screencapture at every keystroke it
is not obvious which keys are which. The evolution of
the sample symbol table is shown in Figure 2. At each
key the table changes. When the user sees the assigned
symbol appear in the assigned position she types the
next key of the password; otherwise she types a ran-
dom key. After the last key of the password the user
clicks a submit button to indicate that the password is
complete (recall that neither the password nor its length
are stored at the proxy).

3.1.1 Analysis

To prevent spyware from determining which symbol
and which position in the table prompts the user to en-
ter a true password key we must be careful of the statis-
tics of the symbol changes. If we assume the average
password is 8 characters long, and that an average of
k random characters between successive keys is accept-
able, then a total of (k + 1)8 characters will be typed.

4



Proc. ACSAC ’06

(a) ♣ ♣ ♠ ♦ ♥ ♣ ⊕ ♠ ♠ ⊕

(b) ♠ ♥ ♠ ♥ ⊕ ♦ ♣ ⊕ ♦ ♠

(c) ♦ ♠ ⊕ ♥ ♥ ♣ ♦ ♣ ⊕ ♥

(d) ⊕ ♦ ♦ ♠ ⊕ ♥ ⊕ ♥ ♥ ♠

Figure 2: Symbol table as the user types, where the table
is of size N = 10 and there are M = 5 symbols: ♣, ♦, ♥, ♠
and ⊕. The line (a) represents the prompt for the first
key, (b) for the second and so on. A user who has been
assigned position 7 and the symbol ♦ would type random
characters for the first, second and fourth prompt and a
true password key at the third. The sequence she sees is
⊕♣♦⊕· · · .

The assigned symbol must appear in the assigned posi-
tion 8 times. Any other symbol should appear the same
number of times over the course of the (k + 1)8 char-
acters. Hence, we can allow only M = k + 1 distinct
symbols to avoid compromising the scheme statistically.

Since the spyware does not know which position is as-
signed to the user there will be a total of N(k + 1) pos-
sible passwords for the spyware to check. If we assume
that an average of k = 4 random characters between
successive password keys is acceptable, and a table of
size N = 100 is not too large this leaves us with 500
passwords that the spyware must consider. We will ex-
amine in Section 3.3.1 what level of security this pro-
vides from an entropy point of view.

3.1.2 Other Shared-Secrets

In the simple shared secret example the size of the se-
cret space equals the size of the table times the number
of symbols; i.e. N(k + 1). We wish to have the largest
possible shared secret space to prevent entropy or brute
force attacks on the password (as in Section 3.3.1) while
making the proxy use-model simple. Too large a table
becomes difficult to display. There are a number of sim-
ple possibilities to expand the shared-secret space with-
out enlarging the table. The first we employ is asking
the user to look for her assigned symbol in two different
positions: if it occurs in either she types the password
key, and if not she types a random key. This increases
the number of shared secrets to N2(k + 1) where N is
the table size. Using again four random characters on
average between true passwords keys, and a size 100 ta-
ble this increases the shared-secret space to 50000. In
general if the user scans p positions for the symbol at
each character we can achieve a space of size Np(k+1).

A second possibility is to fix a single position, but
have the user look for a sequence of symbols rather
than a single assigned symbol. For example, for an
8-character password the user might be instructed to

look for the sequence ♣♠♦♥♣♠♦♣. That is she types
the first character of the password on seeing ♣for the
first time, the second on seeing ♠, and so on. The
shared-secret space now becomes N(k+1)8 for a length
8 password, which gives 39e6 possibilities for k = 4 and
a table of size 100.

3.2 Obscuring Using Known Images
There is a large number of possible passwords if we

use the prompt table and one of the shared secrets of
Section 3.1.2. However, entering the password becomes
harder and more error prone as the size of the possible
password space increases. We now explore the possibil-
ity of prompting the user with images with which they
are familiar.

At registration time the user uploads a number of im-
ages, at least equal to the length of the longest password
she will use, say L. These are her own personal images.
They can be pictures of friends, objects, travel scenes;
they can be taken by her personally or obtained else-
where, the only requirement is that she be able to dis-
tinguish her images from other randomly chosen ones.
Using this scheme the login procedure is much as in Sec-
tion 3.1, but instead of being presented with a prompt
table she is shown a new image after every keystroke.
The images are chosen randomly from a collection of
5L, where L are the images that she uploaded, and 4L
are images with which she has no association. On seeing
an image she types the next character of her password
if the image is one of hers, and a random character
otherwise. It has been our experience that users en-
ter passwords more accurately and reliably using this
method than using the prompt table approach.

3.2.1 Analysis

Assuming that an attacker has no cues to help him
determine which images are the users there are (k +1)p

possible passwords where p is the password length.
Obviously all 5L of the images must be stripped of all

metadata that might allow an attacker to classify which
L belong to the user. Further, the same 4L random
images should be used over and over again as the user
logs in many time. In a community of a large number
of users employing this login method each user might
be assigned the L images from each of 4 other users.

3.3 Attacks
The methods explored in Sections 3.1 and 3.2 rely

upon the insertion of random characters to confuse a
keylogger. This implies that the actual passwords char-
acters are still all present, allowing an attacker to use
entropy or collusion to try and recover the password.
We now analyze these attacks.

3.3.1 Entropy Attacks

5



Proc. ACSAC ’06

Using the fact that actual passwords chosen by users
commonly have low entropy, an attacker may be able to
narrow the search space for correct password by exam-
ining only the low entropy possibilities. For example,
the choice snoopy2 appears much more likely a pass-
word than sdgsdio.

Given that a spyware attacker will have as many pass-
words to try as the size of the shared-secret space we
cannot afford to make his task even simpler. For this
reason we favor the shared-secrets introduced in Section
3.1.2, which essentially avoid the attacker using second
order entropy analysis. By using that, we increase the
probability that low entropy passwords will withstand
attack. An important exception exists for passwords
that are numeric; i.e. consist of numbers only. If we
assume that in numeric PINs all 10 digits are equally
likely, and that the randomly typed characters are also
numeric, the entropy attack gains very little. Thus a
much simpler shared-secret can be employed for nu-
meric passwords, since the attacker’s main option would
appear to be to attempt login.

3.3.2 Collusion/Averaging Attack

When trying to extract signal from noise multiple in-
dependent measurements can help reduce the noise. It
is for this reason that we assumed that collusion among
spyware machines was unlikely. For example the em-
bedded string in (1) was:

laspqm5nsdgsos8gfsodg4dpuouuyhdg2. (3)

On another occasion for the same user logging into the
same account the string might be

wqsasdfnk4olou3dnsodgsjap1yheyjedrd2. (4)

As more embedded strings are gathered the password
keys are the only thing constant as everything else changes.
A simple dynamic programming approach will likely re-
veal the password if it has access to even two of the
embedded strings. For this reason spyware has a far
simpler task if the first login attempt is unsuccessful
and the user types it a second time. Equally, if a user
realizes that she typed a random key instead of a pass-
word key and backspaces to correct it, she generally
gives away one key of the password.

3.3.3 Man in the Middle Attack

A natural line of attack is for the spyware author to
set up a login server, claim to be a user whose userid
has already been captured, type a series of keys and
watch to see which are relayed from the proxy to the
login server. This would be enough to reveal which
symbol and position in the table were assigned to that
user. This doesn’t work, since the proxy will relay the
sarahj7@hotmail.com password only to hotmail and
so on. Since the user enumerates the userid and do-
mains she will be using, the attacker cannot induce the

proxy to relay any information for that userid to any
other domain.

3.4 Obscuring by Mapping Password Keys
In Sections 3.1 and 3.2, we obscured the password

by inserting random keys. While that will certainly
make recovering the password harder, the amount of
randomness that can be inserted is limited by the fact
that the password characters are still typed in the clear.
A much stronger method to obscure the password is to
perform a random mapping of the keys, and do the
reverse mapping at the proxy. We will now examine
this alternative.

In this approach, we assume at registration time the
user gets a printed table that she will be use to encrypt
(map) the password. The idea is that, since passwords
are usually short, we can use a character-by-character
encryption table, and ask the user to do the encryption
herself.

More specifically, before a trip, the user goes to the
KLASSP webserver site, and ask for an encryption ta-
ble, similar to the one presented in Figure 3. Each table
is random and a new table is generated for each user,
each time. Each table has an ID number. Note that
since we assume no collusion, she can print a table at
one current (unsafe) internet cafe for use in her next
(also unsafe) location. When logging in from an unsafe
location, she goes to the proxy site, and types the de-
sired target site (e.g., www.BigBank.com), and the ID.
Figure 4 shows a simple version of the user interface.
The proxy shows the target page in the lower frame.
When the proxy detect that the focus is in a password
field, the top frame instructs the user on which column
in the table to use for entering the next password char-
acter. According to the user’s choice, a new column in
the table is used for every new session (recommended)
or for every character (for maximum security). If the
same table is used for too many sessions, the user may
exhaust the table; if so the the last entry is used as
many times as required. Note that re-using the last en-
try is simply a last-resort effort; the user should obtain
a new table before the current one is exhausted.

If the user is using the one column per character ap-
proach, breaking the encryption is essentially impos-
sible, since any key will be mapped to any key with
same probability. Even if we use the same column for
the whole session, only a few characters will have been
typed, and no significant statistical information can be
obtained to try and break the encryption table. Only
when the last column is being used repeatedly (i.e., af-
ter the one time pad is exhausted, and until the user
obtain a new one) there is any possibility of breaking
the encryption. In this case, while the user is still safe
from a direct decryption attack for several many char-
acters, more efficient attacks are possible, as described

6



Proc. ACSAC ’06

TABLE ID: 734955
1 2 3 4 5 6 7 8 9 10

A r 5 s h 2 k l s F f
B f r F s f J u 5 r T
C 7 ) 5 3 h T k g A i
D G 5 o P L y z Z d x
...

...
...

...
...

...
...

...
...

...
...

Figure 3: A segment of sample encryption table, show-
ing the mapping for characters A-D. Each column cor-
responds to a particular random mapping. For example,
if instructed by the proxy to use column 6, and the next
password character is “D”, the user would type “y” in-
stead.

below.

3.4.1 Attacks and possible solutions

The use of a one-time key removes the opportunity
for any direct attack on the keys. Nevertheless, a few
other attacks are still possible, if we assume the attacker
has complete control over the compromised machine. In
particular, a two-men-in-the middle attack, intercepting
the keys before it reaches the proxy as well as on the
way out would be very insidious. More specifically, a
DNS redirection sends the keystrokes to redirect of the
original proxy to a hacker site. The site then intercepts
and changes the target site (e.g., from BigBank.com
to FakeBank.com). The modified site will then receive
the clear password. This attack can be avoided as long
as the user remember to check the SSL certificate of
the proxy. If the user is willing to declare in advance
which domains will be visited (during the registration
phase) this problem is avoided as the proxy will not
send keystrokes to any site not on that list, or that is
not known to be safe.

Another point of attack is by exhausting the keys in
the table. More specifically, the compromised computer
could change the typed characters so that you cannot
login at the site. As the users keeps trying to login, the
keys will be exhausted. The last key is then used for
any subsequent entry. After the user leaves, the attacker
can then submit the same keystrokes to a fake site and
get the password in the clear. A solution similar to the
one proposed above would also circumvent this attack.
We could also instruct the user not to keep using the
table once it reaches the last entry (note: we allow the
user to keep using it, since is most likely still safer then
typing the password in the clear).

4. IMPLEMENTATION
We now address some of the issues related to imple-

mentation of the proxy. This architecture illustrated
in Figure 5 is common to each of the methods of ob-
scuring the password described in Section 3. We first
describe the sequence of events, and the flow of connec-
tions between the user’s browser, the KLASSP proxy,

Figure 4: Sample screen capture of the proxy server in-
terface. The upper frame tells the user which column of
the table to use for the next character. The lower frame
is the actual site to which the user is logging in.

the KLASSP webserver and the end login server.
In our implementation we rely on running Javascript

scripts in the user’s browser. We use ASP.Net script-
ing to handle the the actions to be performed at the
web server. We use JScript scripting in the KLASSP
proxy to alter certain requests and responses between
the client browser and the login server.

4.1 Sequence of Events

1. User sets browser to point at the proxy

2. User navigates to the KLASSP webserver, enters
the userid and url (e.g. www.bigbank.com/login
and gets Shared Secret prompts

3. User enters obscured password, using one of the
methods in Section 3, and submits to the KLASSP
webserver

4. The KLASSP webserver server extracts the pass-
word

5. Browser is auto-transferred to request the the url

6. Proxy intercepts response and populates login form
with userid and “roguepwd”

7. User receives pre-populated actualLogin page and
clicks submit button.

7



Proc. ACSAC ’06

8. Proxy intercepts request and replaces “roguepwd”
with pwd XOR salt from the database. It deletes
the entire record (userid, pwd XOR salt, actual-
Login) from the database

9. Login proceeds and proxy reverts to MITM rôle.

4.2 User Experience
To use the service a user first points the browser at the

proxy server. In both Internet Explorer and Firefox this
is done in the Connection Settings tab of the options
menu. By entering the IP address of the proxy we are
sure that all connections flow through the proxy. Note
that this does not require any installation or privileges
that are not available to all users. For example a user
at an internet café will be able to do this (even guest
accounts on a Windows system have this privilege).

The user next navigates to KLASSP webserver and
enters the obscured password using one of the shared
secret methods described in Section 3. When the ob-
scured password has been uploaded to the webserver the
user’s browser automatically opens www.bigbank.com/
login. The user need type nothing further and merely
clicks the submit button and login proceeds.

4.3 KLASSP webserver
The KLASSP webserver acts as the visible compo-

nent. The user is first asked for the address actualLogin
of the login site, and her userid at that site. At this
point the webserver retrieves the shared secret for that
user. The user now enters the obscured password using
one of the shared secret methods described in Section
3. For the methods of Sections 3.1 and 3.2 all of the
images are downloaded to the browser at once to avoid
the possible delay of a roundtrip to the server at each
keystroke. The images are labeled in the order in which
they will be displayed, and thus reveal nothing of the
shared secret. Using the onkeydown event handler a
new image is displayed every time the use types a key.
With the method of Section 3.4 no action is needed until
the user submits.

In any of the three cases, when the user clicks the
“Submit” button on the entire obscured password string
gets uploaded to the webserver. This will be the pass-
word embedded in junk characters, or an encrypted ver-
sion of the password, depending on the entry method.
The webserver extracts the true password from the ob-
scured string and stores it temporarily for retrieval by
the proxy. The password is XORed with a user-specific
salt that was assigned at registration time.

The last action of the webserver is to instruct the
user’s browser to open actualLogin: using the onclick
event for the “Submit” button we can use, for example
the Javascript command http://www.bigbank.com/login.

4.4 KLASSP proxy

Recall that all connections for the browser pass through
the proxy. As our foundation we used the Fiddler de-
bugging proxy version 2.0.5.0 [2], which allows inter-
ception of all sessions, including those that are SSL en-
crypted. Fiddler also provides a Jscript scripting mech-
anism that allows filtering and altering requests and
responses. While we have used Fiddler, we point out
that several other debugging proxies also allow modifi-
cation of requests and responses; see, for example Paros
[3] and BurpSuite [4].

Observe from Figure 5 that, while it sits as a MITM
in all of the actions of the browser, it is only after
the obscured password has been uploaded to the web-
server that the proxy starts to play a vital rôle. When
the user retrieves the page actualLogin (e.g. http:
//www.bigbank.com/login) the request and response
both flow through the proxy (Steps 5 and 6). Recall,
that actualLogin is the target login page, and thus
contains a both a userid and password form field. At
this point the proxy scripts populate these fields before
passing them to the browser. The userid is populated
with the actual userid which has been deposited in the
database, while the password field is populated with the
string “roguepwd.” To replace the password we merely
search for an replace the string type=‘‘password’’
with type=‘‘password’’ value=‘‘roguepwd’’. This
is done in the onBeforeReponse handler provided by
Fiddler; this handler allows us to edit responses coming
back from a server befire they are passed to the browser.
To replace the userid value, we do similarly. However,
the userid is merely a text field, and there may be sev-
eral on the page, so the string type=‘‘text’’ is not suf-
ficient to indicate that we have found the right one. The
userid field has an id that can be different for different
sites; for example at PayPal it is id=‘‘login email’’
and at WellsFargo it is id=‘‘SSN’’. Rather than man-
ually determine the string for each possible login site
we maintain a cumulative list of the id of the userid
fields for all of the login sites encountered so far. We
find that the number of distinct labels is far fewer than
the number of sites (e.g.the id “SSN” is common). If
any of these labels is found we replace, for example
id=‘‘login email’’ with id=‘‘login email’’
value=‘‘ userid ’’, where userid is the actual userid
retrieved from the database. If this fails, and the userid
field has a label we have not previously encountered,
we enter the userid as value for every text field on the
page. This will have the effect of populating every text
field, including Search and any others present with the
userid. Since only the login form will be submitted,
these extra entries in other form fields will be ignored
when the user submits the login form. Note that by
populating the login form fields in the HTML response
from the login server we avoid the difficulties of the
Javascript same-origin policy.

8



Proc. ACSAC ’06

Figure 5: The sequence of steps logging in using the KLASSP proxy. See Section 4.1

Thus when actualLogin opens on the user’s machine
it is pre-populated with the correct userid, but a rogue
value password. Obviously we could not place the ac-
tual password in the page returned to the user, as this
would deliver the unobscured password. The reason
for the rogue value password is that many login pages
perform scripting checks to prevent submission of the
form if the password field is empty. The user now clicks
the submit button on actualLogin. This request again
flows through the proxy, and on this step the proxy re-
places the rogue value password with the password re-
trieved from the database (XORed once again with the
user specific salt). This is done in the onBeforeRequest
handler provided by Fiddler, which allows editting of
requests as they are passwed from browser to server.
From this point on the proxy merely acts as a MITM
between the user’s browser and the end site. It main-
tains an SSL connection to the user and another to the
end site.

4.5 Certificates
When a browser is SSL connected it displays certifi-

cate information to the user. Generally this will give
details of which Certificate Authority (CA) issued, and
the details of the recipient institution. When our proxy
is running as a MITM it also must act as a CA, and
all of the certificates will show up as being issued by
the proxy. The user will get warnings that about this,
but can merely click “OK” to proceed. The only way
of preventing this is to explicitly declare the proxy as
a trusted issuer of certificates for that browser. This
is a simple process, but has several steps. On an in-
ternet kiosk machine the user may not have privilege
to declare the proxy CA trusted. Thus we view the
certificate warnings as an unavoidable annoyance. The
number of certificate warnings displayed to the user de-
pends on the site being visited and the browser; it can

as few as one, or as many as seven.

4.6 Registration
To use the service the user must register to establish

the shared secret to be used to obscure and un-obscure
the password. This is a separate service also hosted
by the web server. At registration the user is assigned
a shared secret, a position and symbol in the case of
Section 3.1, and encryption table in the case of Section
3.4, or uploads personal images in the case of Section
3.2. The user also specifies the urls of the institutions
where she will login, and her userids at each of these
institutions. Any of the pairs userid and url uniquely
identifies the user. This allows the web server to retrieve
the correct shared secret without having to ask the user
to authenticate herself (typing a password to get access
to the service would defeat the whole purpose).

4.7 Burden of maintenance and Trust
A difference between our system and an in-the-cloud

password management system is that the passwords do
not have to be maintained on the server. We believe
this carries two advantages. First, the burden of main-
tenance on the user is lower. Using a credential man-
agement system (CMS), the user must maintain all of
the credentials; if she changes her PayPal password, she
must then also update the record at the CMS. The user
of our system by contrast is not required to maintain
anything. She registers for the service once, and is as-
signed a shared secret. If she employs the image based
interface she uploads images once. She need maintain
nothing, and can still use the service after a gap of
months or years so long as she can successfully distin-
guish her L images from the 4L randomly assigned ones.

Secondly, a CMS must be trusted much more than our
system. A rogue employee at a CMS might have access
to all of the credentials of all of the users of the system.

9



Proc. ACSAC ’06

A rogue employee at a service running our system by
contrast would have to wait for passwords as they come
in one at a time. The user of a CMS must trust the
service entirely with all of the credentials she uploads.
This is true whether she subsequently uses the service
or not. The user of our system must trust the system
with only the passwords of sites that she logs into, and
she does this only when the alternative is trusting an
internet kiosk machine.

4.8 Self-Hosting
In-the-cloud password management systems such as

Passport and LPWA have been hosted by large servers
and served many users. There is no reason, however,
that the entire KLASSP system cannot be hosted on a
machine maintained by the user herself, and dedicated
to serving only her. Exactly such a self-host model is
employed by Impostor [13]. Using this approach a user
who has a fixed IP address on her home machine might
host both proxy and webserver there, and login to Big-
Bank using her home machine as a MITM proxy. This
entirely obviates the need to trust any intermediary,
and removes the single point of attack that a popular
centralized webserver might represent.

5. CONCLUSION
We have presented a new approach to entering a pass-

word on a spyware infected machine. We use a shared
secret to obscure the password as typed, and a proxy
to map back to the actual password. Obscuring the
password can be done in various ways. We investigate
two possible solutions. The first solution insert random
characters between the true password characters by us-
ing a pre-agreed secret prompt. The secret prompt can
be either a symbol and position in a table, or images up-
loaded by the user. The second solution employs man-
ual encryption using a pre-printed table. In either case,
a proxy is the used to compute the actual password, ei-
ther by stripping the random keys in the first solution,
or by inverting the key mapping in the second case. The
second is more secure, but requires that the user carry
and consult a printed substitution table.

To the question of whether one can enter passwords
securely from a compromised machine thus the answer
appears to be a qualified “Yes.” The qualification is
that each of the schemes we presented burdens the user
with a more involved interface than the conventional
web login. Nonetheless we think they are the most
promising directions for simple password entry from un-
trusted machines. The difficulty of mounting a collusion
attack on a password entered on a public machine makes
this problem far more tractable that it appears on the
first glance.

Acknowledgements: The authors thank Nikita Pandey
for assistance in implementing a version of the proxy.

6. REFERENCES
[1] http://labs.zarate.org/passwd/.
[2] http://www.fiddlertool.com.
[3] http://www.parosproxy.org.
[4] http://www.portswigger.net/proxy.
[5] W. Cheswick. Johnny Can Obfuscate: Beyond

Mother’s Maiden Name. In Proc. Usenix HotSec,
2006.

[6] R. Dhamija and J. D. Tygar. The battle against
phishing: Dynamic security skins. Symp. on
Usable Privacy and Security, 2005.

[7] Dinei Florêncio and Cormac Herley. How To
Login From an Internet Café without Worrying
about Keyloggers. Symp. on Usable Privacy and
Security, 2006.

[8] E. Gaber, P. Gibbons, Y. Matyas, and A. Mayer.
How to make personalized web browsing simple,
secure and anonymous. Proc. Finan. Crypto ’97.

[9] J. A. Halderman, B. Waters, and E. Felten. A
convenient method for securely managing
passwords. Proceedings of the 14th International
World Wide Web Conference (WWW 2005).

[10] H. Langweg. With Gaming Technology towards
Secure User Interfaces . ACSAC, 2002.

[11] S. McClure, J. Scambray, and G. Kurtz. Hacking
Exposed. McAfee, fifth edition, 2005.

[12] P. Oorschot and S. Stubblebine. Countering
identity theft through digital uniqueness, location
cross-checking, and funneling. Financial
Cryptography, 2005.

[13] A. Pashalidis and C. J. Mitchell. Impostor: A
single sign-on system for use from untrusted
devices. Proceedings of IEEE Globecom, 2004.
http://impostor.sf.net.

[14] R. Rivest. Chaffing and Winnowing:
Confidentiality without Encryption. 1998. http:
//theory.lcs.mit.edu/∼rivest/chaffing.txt.

[15] B. Ross, C. Jackson, N. Miyake, D. Boneh, and
J. C. Mitchell. Stronger password authentication
using browser extensions. Proceedings of the 14th
Usenix Security Symposium, 2005.

[16] S. Saroiu, S. D. Gribble, and H. M. Levy.
Measurement and Analysis of Spyware in a
University Environment. Proc. NSDI, 2004.

[17] B. Schneier. Applied Cryptography. Wiley, second
edition, 1996.

[18] E. Skoudis and L. Zeltser. Malware: Fighting
Malicious Code. Prentice Hall, 2004.

[19] D. Tan, P. Keryana, and M. Czerwinski.
Spy-resistant keyboard: more secure password
entry on public touch screen displays. CHISIG’05.

[20] Y.-M. Wang, D. Beck, X. Jiang, and R. Roussev.
Automated Web Patrol with Strider
HoneyMonkeys. MSR Tech Report, 2005.

10


