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This paper proposes a novel technique for estimating the fundamental matrix by

transforming the image points in projective space. We therefore only need to perform

nonlinear optimization with one parameterization of the fundamental matrix, rather

than considering 36 distinct parameterizations as in previous work. We also show

how to preserve the characteristics of the data noise model from the original image

space.
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1. INTRODUCTION

Two perspective images of a single rigid object/scene are related by the so-called epipolar
geometry, which can be described by a 3�3 singular matrix known as fundamental matrix.
Robust and accurate estimation of the fundamental matrix is very important in many
applications of 3D computer vision, and has been the focus of many researchers [4, 5, 6, 7].
Previous work on nonlinear estimation of the fundamental matrix requires the consideration
of 36 distinct parameterizations to account for the fact that an epipole may be at infinity and
an element of the epipolar transformation may be equal to 0. This leads to a cumbersome
implementation of the optimization procedure.

This work proposes a novel technique for estimating the fundamental matrix. Instead
of using 36 maps to parameterize the fundamental matrix, we transform the image points
in projective space, and in turn we only need to perform nonlinear optimization with
one parameterization of the fundamental matrix. We also show how to preserve the
characteristics of the data noise model from the original image space.

2. PARAMETERIZATION OF THE FUNDAMENTAL MATRIX

This section reviews the parameterization of the fundamental matrix.
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2.1. Epipolar geometry
The epipolar geometry exists between any two camera systems. For a point m i in the

first image, its correspondence in the second image, m 0

i, must lie on the epipolar line in
the second image. This is known as the epipolar constraint. Algebraically, in order form i

and m0

i to be matched, the following equation must be satisfied:

em0T
i F emi = 0 ; (1)

where F, known as the fundamental matrix, is a 3� 3 matrix of rank 2 (i.e., det(F) = 0),
defined up to a scale factor; emi and em0

i are homogeneous coordinates of points m i and
m

0

i, i.e., emi = [mT
i ; 1]

T and em0

i = [m0T
i ; 1]T .

2.2. Parameterization based on the epipolar transformation
There are several possible parameterizations for the fundamental matrix [4], e.g., we can

express one row (or column) of the fundamental matrix as the linear combination of the
other two rows (or columns). One possibility is the following:

F =

2
4 a b �ax� by

c d �cx� dy

�ax0 � cy0 �bx0 � dy0 F33

3
5 (2)

with F33 = (ax+ by)x0 + (cx+ dy)y0 :

Here, x and y are the coordinates of the first epipole, x 0 and y0 are the coordinates of the
second epipole, and a, b, c and d, defined up to a scale factor, parameterize the epipolar
transformation mapping an epipolar line in the first image to its corresponding epipolar line
in the second image.

However, this parameterization does not work if an epipole is at infinity. This is because
in that case at least one of x; y; x0 and y0 has a value of infinity. In order to overcome
this problem, INRIA group [1, 7] has proposed to use in total 36 maps to parameterize the
fundamental matrix, as summarized below.

2.3. 36 maps to parameterize the fundamental matrix
Let us denote the columns of F by the vectors c1, c2 and c3. The rank-2 constraint on

F is equivalent to the following two conditions:

9�1; �2 such that cj0 + �1cj1 + �2cj2 = 0 (3)

6 9� such that cj1 + �cj2 = 0 (4)

for j0; j1; j2 2 f1; 2; 3g, where �1; �2 and � are scalars. Condition (4), as a non-existence
condition, cannot be expressed by a parameterization: we shall only keep condition (3) and
so extend the parameterized set to all the 3�3-matrices of rank strictly less than 3. Indeed,
the rank-2 matrices of, for example, the following forms:

[c1 c2 �c2] and [c1 03 c3] and [c1 c2 03]

do not have any parameterization if we take j0 = 1. A parameterization of F is then given
by (cj1 ; cj2 ; �1; �2). This parameterization implies to divide the parameterized set among
three maps, corresponding to j0 = 1, j0 = 2 and j0 = 3.
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If we construct a 3-vector such that �1 and �2 are the j1
th and j2

th coordinates and 1 is
the j0th coordinate, then it is obvious that this vector is the eigenvector ofF, and is thus the
epipole in the case of the fundamental matrix. Using such a parameterization implies to
compute directly the epipole which is often a useful quantity, instead of the matrix itself.

To make the problem symmetrical and since the epipole in the other image is also worth
being computed, the same decomposition as for the columns is used for the rows, which
now divides the parameterized set into 9 maps, corresponding to the choice of a column
and a row as linear combinations of the two columns and two rows left. A parameterization
of the matrix is then formed by the two coordinates x and y of the first epipole, the two
coordinates x0 and y0 of the second epipole and the four elements a, b, c and d left by
ci1 , ci2 , lj1 and lj2 , which in turn parameterize the epipolar transformation mapping an
epipolar line of the first image to its corresponding epipolar line in the second image. The
parameterization shown in (2) corresponds to the case i0 = 3 and j0 = 3.

At last, to take into account the fact that the fundamental matrix is defined only up to a
scale factor, the matrix is normalized by dividing the four elements (a; b; c; d) by the largest
in absolute value. We have thus in total 36 maps to parameterize the fundamental matrix.

3. A NOVEL TECHNIQUE FOR ESTIMATING THE FUNDAMENTAL
MATRIX

As said in the last section, in order to deal with all possibilities, we have to consider 36
distinct parameterizations, and this is a burden in implementing the optimization procedure.
In this section, we propose to transform the image points in a projective space and work
only with one parameterization such as (2) while ensuring the value of a is largest so we
can set a = 1.

The idea is to find a projective transformation in each image, denoted byP andP 0, such
that in the transformed image space the first element of the fundamental matrix has the
largest value and the epipoles are not at infinity. Let the image points in the transformed
space be

ebmi = P ~mi and ebm0

i = P
0 ~m0

i ; (5)

then the fundamental matrix in the transformed space is given by

bF = P
0�T

FP
�1 : (6)

Given an initial estimate of matrix F0 obtained for example with Hartley’s normalized
8-point algorithm [3], we compute the epipoles ee0 and ee0

0
. The matricesP andP0 are 3�3

permutation matrices determined as follows:

1. Initialize P and P0 to be identity matrices.

2. Find the position of the largest element of F0, denoted by (i0; j0). (Index of a vector
or a matrix starts with 0 as in C++)

3. If j0 6= 0, permute rows 0 and j0 of matrix P and permute elements 0 and j0 of
epipole ee0.

4. If i0 6= 0, permute rows 0 and i0 of matrix P0 and permute elements 0 and i0 of
epipole ee0

0
.

5. If jee0[1]j > jee0[2]j, permute elements 1 and 2 of epipole ee0 and permute rows 1 and
2 of matrix P.
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6. If jee0
0
[1]j > jee0

0
[2]j, permute elements 1 and 2 of epipole ee0

0
and permute rows 1 and

2 of matrix P0.

Steps 3 and 4 ensure that the first element of the fundamental matrix in the transformed
space has the largest value, while steps 5 and 6 ensure that the epipoles are not at infinity.
Note that P�1 = P

T and P0�1 = P
0T because they are permutation matrices. The reader

is referred to [2, page 109] for efficiently representing a permutation matrix with an integer
vector.

We can now use the parameterization (2) to estimate bF from the transformed image pointsebmi and ebm0

i. The fundamental matrix in the original image space is given by F = P
0T bFP.

4. PRESERVING INFORMATION OF THE ORIGINAL NOISE
DISTRIBUTION

Points are detected in the original image space. All nonlinear optimization criteria
(see [7]) are derived from the noise distribution of these points. One reasonable assumption
is that the image points are corrupted by independent and identically distributed Gaussian
noise with mean zero and covariance matrices given by

�mi
= �m0

i
= �2 diag (1; 1) ; (7)

where � is the noise level, which is usually unknown. This assumption is clearly no longer
reasonable in the transformed image space. In the following, we show how to estimate
the transformed fundamental matrix while preserving information of the original noise
distribution, and we will illustrate this by using the gradient-weighted criterion.

From (1), (5) and (6), we see that the transformed fundamental matrix and the original
image points are related by

fi � em0T
i P

0T bFP emi = 0 : (8)

The least-squares technique produces an optimal solution if each term has the same vari-
ance. Therefore, we can estimate the transformed fundamental matrix by minimizing the
following weighted sum of squares (the chi-square �2):

min
bF

X
i

f2i =�
2

fi
; (9)

where �fi is the variance of fi, and its computation is given below.
Let us introduce the notation

Z = diag (1; 1; 0) ;

then from (7), the covariances of the homogeneous coordinates of the image points are
given by

�
emi

= �
em

0

i
= �2Z : (10)

Under first order approximation, the variance of f i is then given by

�2fi =

�
@fi
@ emi

�T

�
emi

@fi
@ emi

+

�
@fi
@ em0

i

�T

�
em

0

i

@fi
@ em0

i

= �2 (̂lTi PZP
T
l̂i + l̂

0T
i P

0
ZP

0T
l̂
0

i)
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where l̂0i = bF ebmi and l̂i = bFT ebm0

i are epipolar lines in the transformed image space. Since
multiplying each term by a constant does not affect the minimization, the problem (9)
becomes

min
bF

X
i

( ebm0T

i
bF ebmi)

2

l̂Ti PZP
T l̂i + l̂0Ti P

0ZP0T l̂0i

: (11)

The denominator is simply the gradient of f i. The minimization can be conducted by
means of, for example, the Levenberg-Marquardt algorithm.

5. EXPERIMENTAL RESULT

In this section, we show an example with real data as displayed in Fig. 1. The automatic
robust image-matching algorithm described in [8] was used to find point matches across
the two views. 217 matches have been found, which are shown in Fig. 1. The matching
algorithm also provides an estimate of the fundamental matrix based on the least-median-
squares (LMedS) technique. This estimate is used as the initial guess for the experiment
described in this section.

FIG. 1. Automatically matched points and four pairs of epipolar lines. A point match is indicated by a green
line segment, with one end, indicated by a red dot, being the point in the current image, and the other end being
the matched point in the other image.

TABLE 1

Comparison of different methods, in pixels

epipolar distances epipole 1 epipole 2
Method image 1 image 2 (u, v) (u, v)

Initial 0.587 0.582 �918 �11272 �169 �3319
Method 1 0.471 0.467 �2797 �26210 �315 �4104
Method 2 0.504 0.499 �682 �8430 �140 �2915
Method 3 0.469 0.465 22973 189570 �497 �5308

We have compared four methods, all based on the gradient-weighted criterion.

� Method 1: only one parameterization of the fundamental matrix, as shown in (2), is
used.
� Method 2: the novel technique described in Sect. 3 is used; however, the original data

noise information is not preserved.
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� Method 3: the novel technique together with the preservation of the original noise
information as described in Sect. 4 is used.

� Method 4: 36 distinct parameterizations, as described in [7], are used.

Not surprisingly, Method 4 produced exactly the same result as Method 3, and the results
are therefore not shown. The comparison of the other three methods is shown in Table 1,
where we show the average distances from a point to its corresponding epipolar line in
each image, and the position of both epipoles. The first row displays the results provided
by the LMedS technique during image matching. We see that Method 1 gives quite a good
result, but it is also clear that the parameterization used has difficulty to represent epipoles
located far away from the image. Method 2 does not produce very good result because it
does not take into account appropriately the original noise information. Method 3 gives the
best result.

6. CONCLUSION

In this paper, we have proposed a novel technique for estimating the fundamental matrix.
We transform the image points in the projective space, and therefore only need to perform
nonlinear optimization with one parameterization of the fundamental matrix, rather than
considering 36 maps of parameterization as in previous work. In addition, we have
presented a method for preserving the characteristics of the data noise model from the
original image space. The implementation of the proposed technique is much easier than
with the previous approach, and the same quality has been obtained.
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