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Transit tomography using probabilistic time geography: planning
routes without a road map

Quanzeng Youa and John Krummb*

aDepartment of Computer Science, University of Rochester, Rochester, NY, USA; bMicrosoft
Research, Microsoft Corporation, Redmond, WA, USA

(Received 29 August 2014; accepted 2 September 2014)

Vehicle routing usually depends on a road map, and road maps are expensive to
create and maintain. While crowdsourcing road maps from logged GPS data has
proven effective, the limited availability of GPS data limits their coverage area.
To overcome this limitation, we show how to use location data from geotagged
tweets, which cover much of the world, to compute routes directly without
making a road map. We compensate for the wide spacing of tweets’ latitude/
longitude points by using probabilistic time geography, which explicitly models
the uncertain location of someone traveling between measured locations. In our
formulation, each pair of temporally adjacent tweets contributes an estimate of
the driving time along hypothesised roads in a regular grid. We show how to
compute these estimates as expected values based on probabilistic Brownian
bridges. We can compute routes on this regular grid using traditional A* search.
Our experiments demonstrate that our computed routes match well with routes
computed on the actual road network using a commercial router. Furthermore,
we show that our computed routes vary sensibly with changes in traffic between
rush hour and weekends. We also apply the same technique to compute
reasonable airplane routes.

Keywords: road maps; vehicle routing; probabilistic time geography; Brownian
bridge; geotagged Twitter

1. Introduction

People often face the problem of creating a travel plan between two places. This can be a

simple drive in a vehicle or a more complex plan that involves multiple modes of

transportation, including a personal vehicle, walking, public transportation and flights.

While such multi-modal route planners are available (Pajor 2009), a more attractive

alternative is to take advantage of what other people have done. This is because people

optimise for many different criteria when planning a trip (Ben-Akiva et al. 1984), and an

automatic planner may not be able to represent the richness of a plan’s positives and

negatives, such as scenery and safety. Even if there is no record of a person making

precisely the desired trip, it may be possible to piece together parts of other trips from

others into a complete plan. Because it is based on previously recorded trips, the plan
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would naturally incorporate collective preferences that may be hard to capture in a

traditional trip planner.

One barrier to creating a collective trip planner is the lack of a large, publicly available

collection of recorded trips. There are focused sets of GPS logs available, but these are

usually limited to a small area (e.g. Brush et al. 2010; Laurila et al. 2012). GPS loggers

tend to exhaust the battery of a cell phone in around 6 h (Lin et al. 2010; Paek et al. 2010),

which makes it difficult to collect continuous location data from regular people. Taxis and

package delivery companies often collect GPS data, but these data are limited to a single

mode of transportation, and it is sometimes expensive.

Our solution is to use location updates from social media such as Twitter. Advantages

of these data are its wide coverage and availability. Twitter data are clearly valuable for

understanding geography, as shown by the stunning heat maps made from geotagged

tweets described in a Twitter corporate blog (Rios 2013), but the locations from each

individual are usually widely spaced in time. This makes it difficult to infer the exact path.

However, Figure 1 shows that simply connecting the dots of the geotagged tweets of many

users gives a rough picture of a region’s major roads. Geotagged tweets are continually

refreshed, so they reflect new changes in feasible routes.

The wide spacing of these location measurements is the main challenge of using tweets

to make travel plans. To manage the wide spacing in a principled way, we use probabilistic

time geography, which gives a reasonable guess, and associated uncertainty, of the user’s

location between tweets. We refer to our technique as ‘transit tomography’, because

tomographic reconstruction makes estimates of an interior (travel routes) from widely

spaced penetrations (tweet sequences).

While our ultimate goal is to construct multi-modal trip plans, this paper has the more

modest goal of computing driving routes. We do this without the benefit of a road map in

order to show that we can suggest routes based only on observations of collective

behaviours. Inferring driving routes has the advantage of easy ground truth comparisons in

the form of regular route engines. Extrapolating to multi-modal routes, we would hope to

avoid the gathering and maintenance of transportation schedules and routes, instead using

the collective behaviours of what people actually do.

Our technique starts with a regular grid of candidate road segments, placed

indiscriminately on the map. We then look at pairs of sequential location measurements

from Twitter to estimate the traversal time of each candidate road segment. Applying

simple A* search on these candidate road segments gives the route, which we compare to

routes from a commercial routing program.

Besides Twitter, our techniques are appropriate for any type of widely spaced

geotagged data, such as from the Chinese microblogging site Sina Weibo (http://weibo.

com), geotagged photos from Flickr (http://www.flickr.com/), and location check-ins from

Foursquare (https://foursquare.com/), Facebook (https://www.facebook.com/) and

Googleþ (https://plus.google.com/). We describe our input data from Twitter in the

next section. Following that, we define our set of candidate road segments, describe how

we use probabilistic time geography with tweets, evaluate our results by computing routes

and conclude with a description of previous work.

2. Twitter data

Even though less than 1% of tweets are geotagged (Graham and Stephens 2012), there are

so many tweets that the geotagged ones form a dense map (Rios 2013). Crucially for us,
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tweets also come with a user ID and a timestamp. This means we can make a rough

trajectory of each user by sorting their tweets by their post time and then connecting the

corresponding latitude/longitude points with straight line segments in sequence. Our

fundamental unit of data is a measurement pair, which is two geotagged tweets from the

same person that are temporally adjacent. Since we are looking for pairs that correspond to

roads, we keep only those pairs that are greater than 100m apart, which helps to ensure

that the difference in endpoints is due to more than just measurement noise. This value is

fairly arbitrary, and we did not experiment with other values. We also keep only pairs

whose speed is less than 80miles per hour, where the speed is computed from the locations

and timestamps of the pair’s endpoints. This helps bias the tweet pairs to favour those

from moving vehicles. Finally, we use only tweet pairs that were no more than 24 h apart.
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Figure 1. Drawing lines between geotagged tweets around Seattle, WA gives a rough map of the
major roads.
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After filtering in this way, we retain 36.5% of the original pairs that we extracted.

Of course, not all the measurement pairs represent pure motion. We know that someone

might linger at a location before or after tweeting, making their apparent speed slower than

their actual speed. Their route between the endpoints is likely not a straight line.

We designed our techniques to be robust to these conditions. The measurement pairs we

used were tweets recorded in 2012 from the area around Seattle, WA, USA shown in

Figure 1. This covers an area of about 1781 km2.

3. Candidate roads

A map of tweet pairs, such as Figure 1, shows that they generally follow the major roads,

especially after we filter to keep pairs representing vehicle speeds. One way to infer routes

would be to link these pairs together to generate roads. However, this would make it

difficult to account for the uncertainty in the subject’s location between pairs of tweets.

Instead of generating roads, we hypothesised a dense network of candidate roads made up

of relatively short segments. Then we computed how much support each candidate

segment had from the surrounding tweet pairs. We will explain this computation in the

next section.

The candidate roads are a simple grid made of nearly equal-sized triangles that

tessellate the earth. This is the hierarchical triangular mesh (HTM) (Szalay et al. 2005).

The HTM tessellates the sphere hierarchically by first dividing the north and south

hemispheres into four, equal size, spherical triangles each. In each hemisphere, one corner

of each triangle is at the pole, and their bases are on the equator. To generate a higher

resolution grid, each triangle is tiled into four smaller triangles by connecting the mid-

points of the edges of the original triangle. We used the grid shown in Figure 2, where the

M
on
o
P
ri
n
t;

C
ol
ou
r
O
n
li
n
e

Figure 2. These are candidate roads from the HTM. Each edge is about 245m long.

TLBS 963180—17/9/2014—HARI.S—494888———Style 2

Q. You and J. Krumm4

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192



length of each edge is approximately 245m. In the area we examined, shown in Figure 1,

there are 132,884 triangular edges and 44,590 vertices. Each of these edges is a candidate

road. In fact, each edge is actually two candidate roads, because we assume the edges are

directional, and we treat each direction independently. In addition, we assume that edges

that touch at a common endpoint are connected, meaning that a vehicle could move from

the end of one edge to the beginning of any connected edge. After we set the default travel

time of each candidate road to infinity, we use probabilistic time geography to compute

expected travel times for candidate roads that are near tweet pairs.

4. Probabilistic time geography

A pair of location measurements taken at different times gives a clue to a person’s location

between the measurements, but with uncertainty. We cannot infer the actual route by

simply connecting the measurements with a straight line segment. Indeed, doing this with

tweets shows some paths that slash across the map unrealistically, as seen in Figure 1.

Probabilistic time geography is a way of extrapolating or interpolating a location in

time from one or more time-stamped location measurements. It uses probability to

represent the inherent uncertainty in an entity’s location at times beyond or between the

measurements. The models generally assume some type of random motion. The paper by

Winter and Yin (2010) gives an introduction and recent research for probabilistic time

geography where only the starting point is known, leading to an extrapolation in time.

In cases where we have a pair of measurements, like ours, probabilistic time geography

interpolates between the points (Winter and Yin 2010). In all cases, the resulting

probability density function can be written as p(x,t), where x ¼ (x,y) are spatial

coordinates of the moving person and t represents time.

A simple form of probabilistic time geography is the Brownian bridge, which assumes

Brownian motion between points (x,y,t) ¼ (xa,ya,0) and (x,y,t) ¼ (xb,yb,T). This means the

entity was observed at location xa ¼ (xa,ya) at time 0 and then again at location xb ¼ (xb,yb)

at time T. This model is explained in Horne et al. (2007), where it is applied to animal

tracking. Expressed as a probability density function, the Brownian bridge is

pxa;xb;T ðx; tÞ ¼
1

2ps 2ðtÞT exp 2
ðx2mxðtÞÞ2þðy2myðtÞÞ2

2s 2ðtÞ
h i

if 0 , t , T

0 otherwise

8<
: ; ð1Þ

where

mxðtÞ ¼ xa þ t

T
ðxb 2 xaÞ;

myðtÞ ¼ ya þ t

T
ðyb 2 yaÞ;

s2ðtÞ ¼ tðT 2 tÞ
T

s2
m:

For every t [ ½0; T�, this is a Gaussian density function with mean location ðmxðtÞ;myðtÞÞ.
The mean location is a linear interpolation from ðxa; yaÞ at time 0 to ðxb; ybÞ at time T with

constant speed. The variance of the Gaussian, s2ðtÞ, is zero at times 0 and T , rising to a

maximum of s2
mT=4 at time T=2, and staying non-negative over ½0; T�. The diffusion
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coefficient, s2
m, controls the spread of the density function, and can be estimated from data.

Figure 3 shows an example of Brownian bridge over ðx; yÞ with the time variable

integrated out, i.e. pxa;xb ðxÞ ¼
Ð T
0
pxa;xb;T ðx; tÞdt. The Brownian bridge represents our high

confidence in the person’s location at the measured endpoints, but also represents our

uncertainty in the middle. It is intuitively appealing because the uncertainty in the middle

of the trajectory is larger when the points are farther apart in time, representing the

possibility that the person has used the time to roam off the straight-line path. While

normal human travel may not conform to Brownian motion, the model is a general way to

express the uncertainty in location between measurements, especially since we assume we

have no knowledge of the road network.

5. Road integrals

At this point, we have a grid of candidate roads and a group of Brownian bridges from

measured location pairs. Based on the data, we want to investigate each candidate road.

We start by computing a weight that indicates how much support the candidate road has

from the Brownian bridges of nearby location measurement pairs.

Each candidate road slices through the Brownian bridges, as illustrated in the example

in Figure 4. This shows a Brownian bridge from a pair of location measurements along

with a nearby candidate road. Since the road is near the Brownian bridge, we believe the

person might have used the road to travel between the two measured locations.

A candidate road that is positioned near many, high-density Brownian bridges is more

likely to be an actual road. We can quantify this by computing the probability that the

person responsible for the Brownian bridge moved from one end of the candidate road

segment to the other over some time period between the two location measurements. As an

example computation, we can compute the probability that at any time the person was in a
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Figure 3. This is a Brownian bridge density function with time integrated out. The two (x, y)
endpoints are at the two peaks: (23, 23) and (3, 3).
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small 2D region A1 around the start of the road segment, which is at x1 ¼ ðx1; y1Þ:

p1 ¼
ð
x1[A1

ðT
0

pxa;xb;T x1; y1; t
� �

dt dx1: ð2Þ

This example computation integrates over all time t [ ½0; T� between the two

measurements, and it integrates over the small region A1 to give a scalar probability

based on the Brownian bridge.

Moving beyond this example, we are actually interested in computing the probability

that the person was at the start of the candidate road segment at x1 ¼ ðx1; y1Þ at some time

t1 [ ½0; T� and then at the end of the road segment at x2 ¼ ðx2; y2Þ at some time later

t2 [ ½t1; T�. The probability density function for this event is

pxa;xb;T ðx1; t1; x2; t2Þ ¼ pxa;xb;T ðx1; t1Þpxa;xb;T ðx2; t2 x1; t1j �
¼ pxa;xb;T ðx1; t1Þpx1;xb;T2t1 ðx2; t2 2 t1Þ:

ð3Þ

The second multiplicand of Equation (3) is a Brownian bridge that starts at x1 and ends at

xb, with a duration of T 2 t1. Recall that xa and xb are the ends of the Brownian bridge, and

x1 and x2 are the ends of the candidate road segment. We show in the appendix that

Equation (3) is a proper probability density function.

To compute the numerical probability of this traversal from x1 to x2, we look at the case

where the person starts in a small region A1 centred at x1 and later arrives in a small region

A2 centred at x2. This probability is

p12 ¼
ð
x1[A1

ðT
0

ð
x2[A2

ðT
t1

pxa;xb;T x1; t1; x2; t2
� �

dt2 dx2 dt1 dx1: ð4Þ

We begin simplifying this integral by assuming that the Brownian bridges are nearly

constant in regions A1 and A2, giving

p12 < A1j j A2j jw12; ð5Þ

Figure 4. This is an example of a candidate road segment and a nearby Brownian bridge.
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where Aij j is the area of Ai and

w12 ¼
ðT
0

pxa;xb;T x1; t
� �ðT

t1

px1;xb;T2t1 x2; y2; t2 2 t1
� �

dt2 dt1: ð6Þ

Using the numbers in the example from Figure 4, and s2
m ¼ 100, numerically

integrating Equation (6) in MATLABw gives w12 ¼ 1.8573 £ 1026.

Since our ultimate goal is to compute routes by minimising travel time, we can use

integrals of these types to compute the expected travel time from region A1 at one end of

the candidate road to region A2 at the other end. This expected value is based on the

probability density function of the trip event from Equation (3) normalised by the total

probability of making this trip, i.e.

p*xa;xb;T
ðx1; t1; x2; t2Þ ¼

pxa;xb;T ðx1; t1; x2; t2Þ=p12 if x1 [ A1; x2 [ A2 and t2 . t1

0 otherwise

(

ð7Þ

The normalisation with p12 ensures that p*xa;xb;T
ðx1; t1; x2; t2Þ integrates to one over all

ðx1; t1; x2; t2Þ. Recall that p12 represents the probability of starting in A1 at t1 [ ½0; T� and
later arriving in A2 at t2 [ ½t1; T�.

The travel time is t2 2 t1, so the expected travel time from one end of the road segment

to the other is given by Equation (8).

E½t2 2 t1� ¼
ð
x1[A1

ðT
0

ð
x2[A2

ðT
t1

t2 2 t1ð Þp* x1; t1; x2; t2
� �

dx2 dt2 dx1 dt1

¼ 1

p12

ð
x1[A1

ðT
0

pxa;xb;T x1; t
� �

�
ð
x2[A2

ðT
t1

t2 2 t1ð Þpx1;xb;T2t1 x2; y2; t2 2 t1
� �

dx2 dt2 dx1 dt1

<
A1j j A2j j

A1j j A2j jw12

ðT
0

pxa;xb;T x1; t
� �ðT

t1

t2 2 t1ð Þpx1;xb;T2t1 x2; y2; t2 2 t1
� �

dt2 dt1

<
1

w12

ðT
0

pxa;xb;T x1; t
� �ðT

t1

t2 2 t1ð Þpx1;xb;T2t1 x2; y2; t2 2 t1
� �

dt2 dt1:

ð8Þ

Here, we have made the same assumption about the flatness of the Brownian bridge in

regions A1 and A2. If we evaluate the integral in Equation (8) numerically using the

example in Figure 4 and s2
m ¼ 100, we get E½t2 2 t1� ¼ 2:0176. This is a reasonable

value, since the total travel time between the two location measurements is T ¼ 10, and

the road segment is about 35% as long as the distance between the two measurements.

We note that we can reverse the indices on the road segment’s endpoints to get a travel

time going in the opposite direction on the candidate road.

The above explains how we compute an expected travel time for one candidate road

segment from one pair of location measurements. We can do this computation for every
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road and measurement pair, leading to robust estimates of travel time, as we explain in the

next section.

6. Travel time and route computation

For our test region around Seattle, WA, USA, we have over 500,000 measurement pairs

from Twitter and 265,768 candidate road segments. (Each of the 132,884 line segments

forming the triangular grid actually represents two candidate roads, one in each direction.)

Ideally, every Brownian bridge from each measurement pair can be used to compute a

travel time for each candidate road, giving multiple travel time estimates. The numerical

integrals for computing w12 (Equation (6)) and E½t2 2 t1� (Equation (8)) run slowly,

however, so we computed travel times for each road segment from a maximum of 300

nearest measurement pairs that are within 4200m of the road segment. We further

increased the speed using the spatial index built into SQL Serverw, and we ran our

MATLABw numerical integrals on a cluster of 200 CPU cores. From the list of expected

travel speeds for each road candidate, we recorded the minimum, maximum, and the 98th,

95th and 50th percentiles. The high percentiles are attractive, since they represent faster

movement from one end of the road to the other. These likely come from tweet pairs where

the user did not linger long between departing and arriving. Taking less than the maximum

speed (e.g. 95th percentile) helps eliminate speeds from Twitter bots that appear to move

arbitrarily quickly between locations. None of the candidate road segments are eliminated.

Each one is a candidate for routing. For candidate segments that are not in range of any

measurement pairs, we set their default time cost to infinity, so they will not be chosen as a

part of a route. Algorithm 1 summarises the steps we use to compute the traversal

probabilities w12 and expected travel times.

Once we have all the travel times, we can compute a route over our road network using

traditional A* search for a given start and end location on the map, seeking to minimise

travel time.

Algorithm 1 Traversal probabilities and expected travel times using probabilistic time geography

Input: (1) N measurement pairs (e.g. Tweets) ½ðxi; yi; tiÞ; ðxj; yj; tjÞ�, where xk is the latitude, yk is the
longitude and tk is the post time of one tweet; (2) P available compute cluster nodes; (3) sm; (4) edge
length of triangle in grid a; (5) threshold k (to limit the number of candidate measurement pairs for
each triangle edge)
Output: Traversal probabilities W and expected travel times T between the end points of all the
triangle edges
1. Create triangle on the given area where each triangle edge has length a
2. Build spatial index for all measurement pairs using SQL SERVER
3. Equally split the edges of all the triangles into P disjoint groups g1; g2; . . . ; gP
4. Distribute the P groups on P nodes
5. for each p ¼ 1 to P do
6. for e in do
7. Find the k nearest measurement pairs to edge e
8. Calculate k pairs of expected travel probabilities We and time Te between nodes of e using
Equations (6) and (8) respectively
9. end for
10. end for
11. Collect the results from P nodes
12: Output W and T
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One of the few ‘magic numbers’ we need for our method is the value of s2
m for the

Brownian bridge. This value governs the uncertainty of the vehicle’s location as it moves

between the measured endpoints of its route. In their animal tracking work, Horne et al.

(2007) give a principled method for determining s2
m. For our work, we tried various values

and noticed that the best results were for s2
m ¼ 100 and fairly insensitive to changes on

either side of this value. We used this value for all our experiments.
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Figure 5. These are examples of the routes we computed compared to routes from a major mapping
site. The green paths are from the mapping site, and the blue paths are our routes. The left side shows
routes that match well, and the right side shows routes that match poorly.
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7. Vehicle routing experiments

Our goal was to compute vehicle routes from Twitter data that match routes computed

from the road network. To test this ability, we created 10,000 ground truth routes between

random endpoints using the Bingw Maps route engine. Specifically, we chose endpoints at

random from all the road intersections in our test area. The resulting routes are given as a

Figure 5. Continued.
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polyline of latitude–longitude pairs. For each ground truth route, we also computed a

corresponding route with the same endpoints using our candidate roads and our 95th

percentile computed driving speeds. Note that we computed our test routes without any

knowledge of the actual road network, relying only on our candidate grid of roads and their

expected travel times computed from Twitter data.

Figure 5 shows a few of the routes we computed and their corresponding ground truth.

The map on the left shows routes that matched well. At first glance, one of the remarkable

features of the computed routes is that they do not cut through bodies of water, which

would often give a more direct route. Instead, our routes tend to stay near the actual ground

truth route. This is despite the fact that we do not explicitly eliminate any candidate roads

from our network, including those that lie on the water. We also note that the original data

from Figure 1 show several tweet pairs that slash across the map along no actual road, but

our router was not distracted by these impossible paths.

The map on the right in Figure 5 also shows some poor matches between the ground

truth routes and our computed routes. Two of the mistaken routes cut across the water

where there is no ferry service, although they do seem to be taking feasible boat routes.

This is because our method makes no attempt to distinguish boat traffic from car traffic,

and thus our method chooses a water route as the most efficient.

To quantify the quality of our computed routes, we compared themwith the ground truth

routes using the Fréchet distance. This measure of similarity is commonly used to compare

two geometric trajectories. It is often described as theminimum length of a leash that would

connect a human walking on one trajectory and a dog on the other. Each may move at any

speed or stop, but cannot go backwards. Over our 10,000 test routes, the average Fréchet

distance between them and our computed routes was 4.4 km, and the median was 2.4 km.

On average, the Fréchet distance was about 6.2% of the ground truth route length, and the

median was 4.4%, meaning the error in our computed routes was relatively low. For routes

Figure 6. The Fréchet error between our computed routes and ground truth goes up with the length
of the route and then stays approximately constant after a route length of 130 km. The error bars
show ^1 standard deviation.

TLBS 963180—17/9/2014—HARI.S—494888———Style 2

Q. You and J. Krumm12

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576



between 0 and 10 km, the average Fréchet distancewas 0.6 km, and the error generally grew

with longer routes. This trend is shown in Figure 6.We attribute this increase in deviation to

the fact that longer routes give more opportunity for deviation.

This experiment shows that our computed routes are close to routes computed in the

normal way. This is a positive outcome, as long as we assume that drivers follow the routes

computed by a mapping program. This may be true in general, but we know that drivers

often deviate. We know, for instance, that drivers choose different routes depending on

traffic conditions. One of the advantages of our approach is that we compute routes based

on how people really travel in the world, based on their own opinions of what makes the

best route. We checked one route to see if our method was sensitive to gross differences in

time. The resulting routes are shown in Figure 7 for a route starting in the upper left of the
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Figure 7. Our computed routes vary depending on the time periods of the Twitter data.
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map and ending towards the lower right. The ground truth route, computed from Bingw

Maps, is fairly well reproduced by the route computed from all the Twitter data. However,

if we use only Twitter data from rush hours (weekdays between 6 a.m. and 10 a.m. and

between 5 p.m. and 8 p.m.), we see a different route that uses a toll bridge over the central

lake rather than the untolled bridge to the south. If we use Twitter data from weekends

only, we get a completely different route that avoids all major bridges, curving over the

north end of the lake. While we cannot yet say our computed routes match what people

actually do under different conditions, we do know that our method is sensitive to the time

of day and day of the week, and it seems to give reasonable routes under various conditions

in this example.

M
on
o
P
ri
n
t;

C
ol
ou
r
O
n
li
n
e

Figure 9. Our computed flight paths are close to the great circle path for cross-oceanic routes.
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Figure 8. These line segments show tweet pairs that qualified as airplane trips based on speed and
distance.
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Up to this point, we have concentrated on ground-based transportation (and

inadvertently on water-based transportation). Recalling our long-term goal of multi-

modal travel plans, we also tested our technique for air travel, where our goal is to infer

popular airline routes. These could eventually be linked to the driving routes discovered

previously to create a multi-modal plan, e.g. a terrestrial vehicle to the airport, followed by

an airplane trip, and then another terrestrial vehicle to the destination. We found airline

routes bymaking two changes to our process. The first change is that we use tweet pairs that

are more likely to represent air travel. We require that the endpoints of each pair must be at

least 100 km apart and that the average speed be at least 150miles per hour. This leaves us

with less than 0.15% of our original tweet pairs, but still enough to compute routes. A subset

of the qualifying tweet pairs is shown in Figure 8. The other change involves our triangular

grid. We enlarge it to cover the world and we make it coarser to save computation. The

approximate length of a triangle edge for our road routes was 245m, but the length was

about 62 km for our coarser, worldwide air travel network. Other than this, all our

computations are the same. Figure 9 shows six air travel routes computed this way: London

to NewYork, Seattle to NewYork, Seattle to Rochester, NY, Seattle to LosAngeles, Tokyo

to Seattle and Tokyo to Los Angeles. Most of the routes approximate the great circle route,

except for the two east–west routes in the USA. These two routes are likely affected by

shorter tweet pairs, which can divert the direct route towards intermediate airports.

8. Related work

Our goal is to find routes based on how people move around. One of the first mentions of

this idea comes from an urban legend in Boston, MA, USA. The story is that the city chose

its chaotic street layout by paving the paths that had been established by wandering cows.

While the story is not true (Dias 2004), the idea is close to ours: watch travellers moving

and then piece together parts of their routes into new routes. (This suggests future work

where cows are using Twitter.) Animals also played a central role in the work of Horne

et al. (2007), who described the use of Brownian bridges to study the movement of black

bears whose location samples were usually 7 h apart. From this they could find places

where bears were likely to cross a road. In the world of humans, other work has collected

location data to assess the dynamics of local populations. An example is CitySensee,

which shows how the popularity of different sections of a city vary with time, helping

people find nightlife. Skyhook’s Geospatial Insights product gives customers access to

recorded population data in 100m £ 100m tiles by hour. Their data come from users of

their WiFi/cell tower location service. Our work is not aimed at where people go, but

rather what routes they use to get there. Efficient routing was the goal of the ClearFlow

project from Microsoft Research (Markoff 2008). It used GPS data from regular drivers to

help infer traffic conditions on roads without traffic sensors. Similarly, Wazeq has

developed a business around gathering GPS data from its users, from which it can generate

time-efficient driving routes. In our work, we compute routes without any knowledge of

the road network. More closely related is Walkie-Markie (Shen et al. 2013). This project

was aimed at inferring walking paths through a building. The paths were generated by

dead reckoning from inertial sensors carried by the building’s occupants. Since this suffers

from drift, their algorithm resets the dead reckoning locations at virtual landmarks, which

were the locations of signal strength maxima from the building’s WiFi access points. Our

work differs in that we have no data between our location measurements and that we are

working outside with Twitter data from thousands of users.
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Another related area is that of building road maps from GPS data. These maps have a

graph representation of the road network, including edge weights that approximate the cost

of driving along each road segment. Cartographers traditionally construct these maps with

a combination of latitude–longitude trajectories and aerial images, both from dedicated

mobile platforms. Researchers have shown how to automate this process using GPS

trajectories from everyday drivers (Biagioni and Eriksson 2012; Cao and Krumm 2009;

Davics et al. 2006; Edelkamp and Schrödl 2003; see Biagioni and Eriksson 2012 for an

excellent survey) or publicly accessible aerial imagery (e.g. Seo et al. 2012). For GPS

trajectories, automation is especially important, because the resulting maps can reflect

changes in the road network in a timely way.

While automatically producing a road graph from GPS traces is feasible, efforts to

date are limited in scope to relatively small areas, such as a subsection of a city. (Hybrid

efforts such as Google Mapse and OpenStreetMap (Haklay and Weber 2008) still

require manual editing.) This is because the techniques developed so far use densely

sampled GPS data (e.g. Cao and Krumm 2009) uses a 1-s sampling interval), and there

are no publically available, dense GPS data-sets that cover much larger areas.

In addition, building a map does not fully represent people’s implicit travel preferences

as we do with our technique.

9. Summary

Location data from social media sites such as Twitter is attractive for computing travel

routes because of its freshness and wide coverage. However, the logged locations are

generally widely separated, making it difficult to determine the intermediate route. We use

probabilistic time geography, specifically Brownian bridges, to give a probability

distribution of intermediate locations. We introduced a principled method to project the

probability onto a candidate grid of roads and compute expected travel times. Using the

grid as a graph, we can plan routes using a conventional A* search. Our computed routes

matched well with routes computed from a regular router. Furthermore, we showed how

our computed routes vary between rush hours and weekends, and we also computed air

travel routes.

Perhaps the most surprising aspect of our method is its simplicity. Although our graph

of candidate roads covered the region indiscriminately, we did not have to adjust it by

eliminating rarely used edges, such as those on the water. Instead, the computed travel

times were enough to guide the routes onto nearly the correct paths without any knowledge

of the underlying road network.

The simplicity of our method invites future work aimed at creating a full travel plan.

We already showed that we can distinguish air travel from surface travel using speed and

distance thresholds. We could likely distinguish ground and water travel with a map of

rivers, lakes and oceans. Furthermore, we could distinguish different modes of travel

based on the source of the data: Buses, taxis and trains often have dedicated GPS loggers

on board, and there are specialised websites where people upload their walks, hikes, runs

and bicycle rides. With routes from multiple modes of travel, it will be possible to plan

multi-modal trips, such as a taxi to the airport, a flight, and then a train to the final

destination. Another challenge is to describe a travel plan to a user. We have shown how to

compute the geometry of a trip, but people need higher level directions, especially when

switching transit modes.
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Appendix

Theorem. pxa ;xb;T ðx1; t1; x2; t2Þ in Equation (3) is a legitimate probability density function.

Proof. According to the definition of probability function, we need to prove that Equation (3)
satisfies both non-negativity and that the integral over all possible values equals 1.

1. Non-negativity
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Since we have

pxa;xb;T ðx1; t1; x2; t2Þ ¼ pxa;xb ;T ðx1; t1Þpx1 ;xb;T2t1 ðx2; t2 2 t1Þ;

by the definition of pxa ;xb;T ðx; tÞ in Equation (1) the two factors are both nonnegative
everywhere.

2. The probability density function integrates to 1.ð
pxa;xb;T ðx1; t1; x2; t2Þdx1dt1dx2dt2

¼
ð
x1

1

T

ðT
0

N ðx1Þ; ðmðt1Þ;sðt1ÞÞ
� � ð

x2

1

T 2 t1

ðT
t1

N ðx2Þ; ðmðt2Þ;sðt2ÞÞ
� �

dx1dt1dx2dt2

¼
ð
x1

1

T

ðT
0

N ðx1Þ; ðmðt1Þ;sðt1ÞÞ
� � ð

x2

1

T 2 t1

ðT
t1

N ðx2Þ; ðmðt2Þ;sðt2ÞÞ
� �

dx1dt1dx2dt2

¼
ð
x1

1

T

ðT
0

N ðx1Þ; ðmðt1Þ;sðt1ÞÞ
� � 1

T 2 t1

ðT
t1

ð
x2

N ðx2Þ; ðmðt2Þ;sðt2ÞÞ
� �

dx2

� �
dt2

� �
dx1dt1

¼ 1

T

ð
x1

ðT
0

N ðx1Þ; ðmðt1Þ;sðt1ÞÞ
� � 1

T 2 t1

ðT
t1

dt2

� �
dx1dt1

¼ 1

T

ð
x1

ðT
0

N ðx1Þ; ðmðt1Þ;sðt1ÞÞ
� �

dx1dt1 ¼ 1

T

ðT
0

ð
x1

N ðx1Þ; ðmðt1Þ;sðt1ÞÞ
� �

dx1dt1

¼ 1:

Thus pxa ;xb;T ðx1; t1; x2; t2Þ satisfies both properties. Therefore, it is a legitimate probability
density function. A
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