
A Methodological Note on Setting-up Logging and Replay
Mechanisms in InfoVis Systems

Nathalie Henry
INRIA Saclay – Île-de-France

Université Paris-Sud &
University of Sydney
+33 1 69 15 34 86

Nathalie.Henry@lri.fr

Niklas Elmqvist
INRIA Saclay – Île-de-France

INRIA, Bât 490
Université Paris-Sud, Orsay, France

+33 1 69 15 61 97
Elm@lri.fr

Jean-Daniel Fekete
INRIA Saclay – Île-de-France

INRIA, Bât 490
Université Paris-Sud, Orsay, France

+33 1 69 15 64 94
Jean-Daniel.Fekete@inria.fr

ABSTRACT
Information Visualization needs longitudinal studies to assess the
usefulness, usability, and, more generally, the value of its tech-
niques. However, most of the longitudinal studies conducted so
far have involved human resources to collect and analyze
evidences. Automatic logging and session replay mechanisms can
help answering questions while limiting human collection and
analysis of data. In this article, we describe how to set up these
mechanisms in InfoVis systems with a minimal effort.

Categories and Subject Descriptors
H.5.2 [User Interfaces]: User-Centered Design;
H.5.m [Information Interfaces and Presentation e.g. HCI]:
Computer Mediated Communication

General Terms
Design, Experimentation, Human Factors, Verification.

Keywords
Logging, information visualization, longitudinal user studies.

1. INTRODUCTION
The number of novel information visualization (InfoVis)
techniques and visual exploration systems is constantly
increasing. However, there is still no simple solution on how to
evaluate them. Controlled experiments performed in laboratories
with groups of recruited users can help validate a few aspects of a
technique, but this remains only a partial validation, on small sets
of simple tasks and datasets and in very specific “clean room”
conditions.
The real challenge faced by our community is to understand how
users manipulate InfoVis systems in situ to discover insights and
understand their own data. Catherine Plaisant [1] underlined the
challenge of InfoVis systems evaluation, explaining that discovery
occurs over a long period of time and often answers questions you
did not know you had. Following this line, several researchers
proposed insight-based evaluation [2,3] performed through
longitudinal studies with real users.

In the last BELIV workshop, Ben Shneiderman and Catherine
Plaisant [4] proposed a methodology to perform Multiple In-depth
Longitudinal Case Studies (MILCS). Conducting this kind of
study is long and difficult since it is mainly done through human
observation and analysis.

Automatic logging may be one way to avoid or reduce the need
for human intervention, and has proved useful for several domains
of computer science as well as in other sciences. Logging consists
of recording information on “interesting events” that occur during
the life of a running program so as to be able to analyze it later.
High-level sensemaking concepts such as insights and their
context of discovery are not feasible to collect directly because
they require human interpretation. However, collecting the
sequence of actions performed on the system and replaying the
whole work session might help the experimenter understand how
the discovery happened and what led to a successful exploration.

Techniques for logging concrete events produced by programs
and signals are relatively straightforward. However, they often
require the modification of a large quantity of code if the need for
logging was not anticipated during the design of the system.
Moreover, additional programming is often required to be able to
replay a previous session recorded on the system. In this position
paper, we present our solution to set up logging and replay
mechanisms in InfoVis systems implemented in Java. Our goal is
to minimize both the amount of code to modify and the
implementation time.

2. INFOVIS SYSTEMS IN JAVA
We designed and implemented a number of visualization
techniques with the InfoVis Toolkit [5], implemented in Java.
Recently, we developed NodeTrix [6], a simple visualization
technique to support community discovery in social networks.

2.1 Evaluating NodeTrix
NodeTrix is an interactive visualization technique for graphs. It
merges the traditional node-link representation of graphs with
visual adjacency matrices to represent communities. We selected
this example as it contains only a small set of functionalities:
modifying the visual layout of the representation (changing node
and community positions), attributing visual variables to the
graphical objects (nodes, links, communities) and editing
community contents (by adding or removing nodes).

Even with this simple visualization technique, implementing the
logging and replay mechanisms a posteriori implies the
modification of a large quantity of code. A logging function has
to be added for each action on a graphical object to change its
position or its representation (color or size for example) or to edit
communities. In addition to the time needed to integrate the
logging mechanisms, they might also degrade the clarity of the
code by adding variables and functions solely dedicated to

Position paper

logging. To solve this problem, and implement logging with a
minimal cost, we used aspect-oriented programming.

2.2 Logging with AspectJ
Aspect-oriented programming [5] is a paradigm for separating the
different concerns of a program into sets of functions that overlap
as little as possible. Thus, the program is decomposed into a
maximum of “aspects”, keeping each of them clear and easy to
maintain. For example, a simple InfoVis technique could be
divided into three aspects: one for the creation of graphical
objects, one to manage user interaction and a third one to handle
the logging. The particularity of logging is that it affects all other
aspects, as it is required to log all actions of the system.

AspectJ is the name of the Java implementation of Aspect-
oriented programming and is easy to integrate in programming
environments [8]. Aspects can be added to any java programs and
creating and using a logging aspect does not require any
modification of the code. The principle is to write a separate file,
in which each function of the system to log and the corresponding
action to perform are described. The logging functions do not
appear in the original program as the instructions are directly
added to the executable version of the program.

In our case, we decided to generate a textual log for each user
actions performed on NodeTrix. A simple example to log the
name and content of a community follows:

 pointcut createCommunity():
 call(int createCommunity(String,IntArrayList));

 before(): createCommunity(){
 WriteLog("Community creation at"
 + System.currentTimeMillis();
 }

 after(String name, IntArraylist members)
 returning (int cIndex):
 call(int createCommunity(String,IntArrayList))
 && args(name,members){
 WriteLog("Community #"+ cIndex +"("+name+")"
 +"contains "+ members.size() +"members.");
 }

2.3 Replaying with Jython
To replay actions of a previous session, we use the scripting
functionality of Jython. Jython is a Python interpreter written in
Java [9]. The strength of Jython is to provide instructions directly
executable by a running Java program. Thus, it offers the
possibility to query the system interactively (already used in the
Guess InfoVis tool [10]) and to replay previous logs if they use
the Python syntax.

Using a Python interpreter inside an existing Java program allows
for Java objects to be transferred and used exactly as they are in
the original Java program. Therefore, replaying a log only
requires writing instructions instead of a standard textual log. A
simple example replaying how the user created a basic community
follows:

 //In the java program (visualization class)
 PythonInterpreter pi = new PythonInterpreter();
 // pass the object visualization
 pi.set("visualization", this);
 pi.execfile(scriptFile);

 // In the scriptFile
 // log of java operations performed on the system
 visualization.circularLayout();
 int cIndex = visualization.createCommunity(“c1”);
 visualization.addMember(cIndex,2);
 visualization.addMember(cIndex,3);
 visualization.moveCommunity(cIndex,20,20);

3. CONCLUSION
Longitudinal studies help evaluating InfoVis systems. This
position paper explains how to set-up logging and replay
mechanisms in InfoVis systems written in Java using AspectJ for
logging without modifying a line of code of an existing program
and using Jython for replaying recorded sessions. These
technologies greatly simplify the implementation of logging and
sessions replay; they should encourage InfoVis system designers
to undertake longitudinal evaluations.

4. REFERENCES
[1] C. Plaisant. The challenge of information visualization

evaluation. In Proc. of the ACM conference on Advanced
Visual Interfaces (AVI), pp 109–116, Gallipoli, Italy, 2004.

[2] C. North. Toward measuring visualization insight. IEEE
Computer Graphics Applications, 26(3): 6–9, 2006.

[3] C. Plaisant, J-D. Fekete, and G. Grinstein. Promoting insight-
based evaluation of visualizations: From contest to
benchmark repository. IEEE TVCG, 14(1): 120–134, 2008.

[4] B. Shneiderman and C. Plaisant. Strategies for evaluating
information visualization tools: multi-dimensional in-depth
long-term case studies. In Proc. of the AVI workshop
BELIV’06, pp 1–7, New York, NY, USA, 2006.

[5] J-D. Fekete. The InfoVis Toolkit. In Proc. of the IEEE
Symposium on Information Visualization (InfoVis’04), pp
167–174, 2004.

[6] N. Henry, J-D. Fekete and M. J. McGuffin. NodeTrix: A
Hybrid Visualization of Social Networks. In IEEE TVCG
(Proc. of IEEE InfoVis’07), 13(6): 1302-1309, 2007.

[7] G. Kiczales J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J-M. Loingtier, and J. Irwin. Aspect-Oriented Programming.
In Proc of the European Conference on Object-Oriented
Programming, 1241, pp 220–242,1997.

[8] AspectJ. http://www.eclipse.org/aspectj/
[9] Jython. http://www.jython.org/Project/

[10] E. Adar. Guess: a language and interface for graph
exploration. In Proc. of the SIGCHI conference on Human
Factors in Computing Systems (CHI’06), pp 791–800, New
York, NY, USA, 2006.

Position paper

