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Preface 

The structures that we call computer systems continue to grow in complexity, in 
size, and in diversity. This book is linked firmly to the nature of this growth. The 
book is about the upper levels of computer structure: about instruction sets, which 
define a computer system at the programming level; and about organizations of 
processors, memories, switches, input-output devices, controllers, and communica- 
tion links, which provide the ultimate functioning system. These levels are just 
emerging into well-defined systems levels-with developed symbolic techniques of 
analysis and synthesis and accumulated engineering know-how, all expressed in a 
crystallized representation. These aspects of computer systems have always existed, 
of course, but only in rudimentary form. The classical four-box picture of a com- 
puter (arithmetic unit, memory, input-output, and control) is certainly an effective 
organization of components to process information. But multiple-processors hier- 
archies of memories and remote communications force the top level of organization 
into a distinct level, requiring analysis and rational design. Similarly, the 25 instruc- 
tions of the IBM 701 computer (developed around 1953) is certainly an instruction 
set-indeed one worthy of study. But processors with dozens of registers and 
almost unlimited logical circuitry, again force the instruction set to become a topic 
of rational analysis and design. 

This book is tied to the emergence of these upper levels of organization: eight 
years ago (a computer engineer’s half dozen) would have been too early to write 
this book; eight years hence would be too late. Eight years ago the diversity and 
complexity of computer structures was not sufficient to justify the attention this 
book provides. This book would have been too thin. Eight years hence textbooks will 
exist that treat these levels systematically. This book will then appear too descriptive. 

But right now, as these aspects of computer structure are emerging, and with 
systematic treatment still precluded, there is a need to make available material on 
these levels for systematic reference and study. Our choice has been to present a 
large set of examples, which illustrate the various design options and structural 
possibilities, both in instruction sets and in overall configurations. These examples 
are descriptions of actual computer systems, taken from the technical literature or 
from technical reports and manuals. Descriptions of actual systems are to be much 
preferred over idealized abstractions. The latter can reflect the real issues only after 
successful systematization. 

Not only are the chapters about actual computers, they present much detail. The 
complexity of computers resides in part in their size and the multiplicity of their 
parts-e.g., to their having 200 instructions rather than 20, or having to service 
50 Teletypes rather than 2. It seems essential to describe computer systems in their 
entirety, rather than via simplified vignettes. Again, this view stems from the existing 
state of the art. Eight years hence, it will not necessarily hold. 

We fall from grace on all the above principles, providing occasionally descrip- 
tions of paper machines and partial descriptions of partial systems. But our feeling 
that detail and reality is important remains. This is why this book is so large; and f i t  
for study rather than for reading. 

V 
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The book presents a large number of examples. Variation needs to be presented 
along all the major dimensions that instruction sets and system configurations 
currently exhibit. Thus, as a glance at the table of contents will show, the examples 
in the book are hardly picked at random. The variation is empirical. It exists in the 
population of computers that have actually been built. This characteristic of the 
book stems, again, from our assessment that the upper levels of computer structure 
are still in an essentially descriptive and empirical state of development. However, 
as the book documents, ample variation occurs in existing computer systems. The 
evidence presented here should finally lay to rest the remarks-once echoed almost 
universally and still heard occasionally-that nothing has happened in computer 
structure since the von Neumann machine. 

Dimensions of variations imply a framework, for dimensions do not by them- 
selves arise from a population of systems. They require the aid, witting or not, of a 
conceptual framework. As the first three chapters of the book testify, we have most 
wittingly created a framework, and have had no hesitation in imposing it throughout 
the book. However, in keeping with our view already expressed, this framework is 
primarily descriptive. It has come inductively from the common lore, from our own 
experiences as designers, and from the effort of putting this book together. This 
attempt at systematization has given rise to two notations: one for instruction sets 
(ISP) and the other for configurations of major components (PMS). But, again, these 
notations are primarily descriptive. 

So much for what the book actually tries to provide. What are our goals for it? 
The first is educational. There are three distinct populations of professionals whose 
education is to be served by this book: the computer engineer, who will design 
physical computer systems; the computer scientist, who is concerned primarily 
with the programming level and with various abstract views of information processing; 
and the electrical engineer, who sees computer systems simply as one part of a 
larger tech no logy. 

For all of these, we see no sense in talking of elementary versus advanced treat- 
ments of computer structure. There is surely “less” versus “more,” but consistent 
with our view of the current art, no vertical stratification of education is possible 
in instruction sets and device configurations. It is sufficient, in the present day, for 
these aspects of computer systems to become accepted as worthy of study in their 
own right. 

This book will hardly make easy fare for undergraduate students, who do not 
have an instructor somewhat skilled in the art that is being taught. However, this 
book is meant for study. A good instructor can, we feel, develop an excellent course 
(or part thereof) in computer structures, taking this book as the basic material. In 
addition to the three introductory chapters, Chapter 5 (on the DEC PDP-8), by 
providing a complete example of a computer system with descriptions at all systems 
levels, helps to tie the aspects of computer structure discussed in this book to the 
view students will pick up from a traditional course in logical design. 

It goes without saying that for the computer engineer and designer, the material 
of this book should be fully assimilated. In designing a new computer system, or 
subsystem thereof, he should be familiar with all that this book has to offer-the 
design choices, the structural variations possible, the experiments of the past and 
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the design needs they attempted to satisfy. Given that systematic analysis does not 
yet exist, there is no substitute for extensive, critical understanding of the existing 
examples of designed systems. We assume the student of computer engineering 
comes to this book with a working knowledge of logical design. He should find it 
possible to realize many of the systems described in this book at the next lower 
levels of logic structure. 

For the computer scientist, the levels of computer structure discussed in this book 
constitute a substantial part of what he should know about the physical devices that 
underlie his science. As we pass downward from these levels to lower ones-to 
register-transfer systems, sequential logic circuits, combinatory circuits, continuous 
circuits and on down-the relevance of each level gradually fades. The levels of this 
book, along with the register-transfer level constitute the main aspects of computer 
structure that the computer scientist must understand. It does not matter that they 
are, as yet, basically empirical and descriptive. The computer scientist undoubtedly 
will not be able to carry through the design of the systems described in this book 
in terms of the lower logic levels, but this is not necessary for an appropriate grasp 
of these upper levels of computer structure. Indeed, this is what it means for distinct 
systems levels to exist. 

For the electrical engineer, this book undoubtedly presents more examples than 
he cares to know (or needs to). But an appropriate sampling, plus the overview 
presented in the first three chapters, is appropriate to give him some insight into 
the elaborate growth that has occurred on top of the basic digital technology created 
within electrical engineering. 

The student of systems engineering may also find the material presented here 
useful, as an example of a class of complex systems which has evolved several 
distinct levels of representation. Again, the book undoubtedly presents too massive 
a dose of detail for him, but the overview in the first chapters, plus a sampling 
throughout the space of computer systems, should prove highly instructive. 

We have goals for the book in addition to the educational ones. We think the book 
can serve as a useful reference for the practicing computer engineer. The time is 
past when every computer engineer knows about all computer systems because he 
has lived through all of computer history. That position is now reserved for those of 
us who are past forty (and still active). For the rest, a source book that provides the 
cumulated design experience of the field is a useful substitute, especially so if it 
contains enough detail so that a designer can reasonably evaluate the actual com- 
puter systems that embody a particular design alternative. 

Behind the goal of the book as a guide for the practicing computer designer 
lies the feeling that the field of computer engineering needs to develop a sense of 
history and of looking to the past for guidance. The fantastic advance in basic logic 
technology-in speed, cost, and reliability- makes each day seem an absolutely 
new one. But, of course, it is not. Many alternative designs have been tried out in 
past systems, in ways relevant to current design. Thus, we have the goal of saving 
some of the past in a form accessible to the future needs of computer design. This 
goal is mixed with a certain archival feeling. Many of the systems in this book have 
never been documented, other than in manuals and various elementary how-to 
programming books. 
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A final goal comes from our feelings as computer scientists that the variety of 
computer systems is a phenomena worthy of study in its own right. This book carries, 
therefore, an invitation to taxonomy-to asking how to classify the diversity of 
forms of computer systems that are coming into existence. Taxonomic endeavors 
usually take place in a field of natural systems, particularly biological systems. It 
may seem strange that a domain of artificial systems calls for taxonomic activity. 
But the demand for empirical classification exists whenever there is a population of 
significant size and rich structure. Rudimentary classification efforts have occurred 
for many populations of artifacts-for ships, for aircraft, for houses. This book 
should amply confirm that computer systems are complex and diverse enough- 
and undergoing enough continual proliferation and evolution-to command sig- 
nificant taxonomic endeavor. 

Enough is said in the first two chapters about the new notations introduced in 
the book, so that nothing substantive need be added here. We apologize for inflicting 
new notation on the reader. We feel that good notations are really quite important 
for the aspects of computer structure described in this book. Much would be gained 
by the whole field of computers-by users, programmers, engineers, planners, 
buyers, sellers, manufacturers, students, and scientists-if relatively uniform 
notations came into common use. Although we have no illusions about the perfec- 
tion of the notations we have introduced, we would be most happy if they cause a 
rise in concern for standard notations and nomenclature. 

A large number of distinct systems are described in substantial detail. We have 
redescribed many of the systems in the common notation introduced in the book. 
The accuracy of all these descriptions is a major problem. Even where the papers 
are reproduced from the literature, this problem of accuracy remains-although 
then it is not ours alone. Even though we have taken pains to obtain accurate in- 
formation on the systems and to portray them faithfully in our various descriptions 
and figures, there is no way we can be responsible for their ultimate accuracy. The 
PMS and ISP figures, in particular, cannot be guaranteed to be accurate representa- 
tions of the systems they purport to describe. Ultimately, one would like to have 
simulation languages for such notations and to verify (up to the usual criteria of a 
debugged program) that a system given by, say, an ISP description, simulates the 
behavior of the target machine. But that day is still far off. 

Our most fundamental acknowledgment is to the contributors to this volume, 
not only for the articles they have written, but for the computers they have designed 
and built, thereby creating a population of fascinating artifacts worthy of study. An 
additional reason for reprinting their articles rather than simply describing their 
computer systems is the importance of having available the views of the designers 
themselves about the nature of their systems. 

The research on the basic ideas underlying the notations was supported by 
Advanced Research Projects Agency of the Office of the Secretary of Defense 
(F 44620-67-C-0058) and is monitored by the Air Force Office of Scientific Research. 

We would like to extend an acknowledgment to the organizations that have 
produced all of these computers, oftentimes it would seem in defiance of the laws 
of economics. Perhaps, as the old saw has it, a computer manufacturer is simply a 
computer’s way of breeding another computer. This might account for the tenacity 
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shown by computer manufacturers in spawning the vast numbers of computer 
systems that provide our field of study. Within this general acknowledgment, we 
would like to extend a very specific one to all the people in these organizations who 
heiped make information available to us-the manuals, photographs, dates, etc., 
that this book has demanded in such great quantity. 

We are indebted to the students who have read and criticized the various PMS 
and ISP figures: Richard Dove, Wayne Kohl, Michael Knudsen, Paul Mobus, and 
Charles Pfferkorn. Ken Fitzgerald and Anita Jones of IBM were kind enough to 
read the introduction to the IBM System/360. 

Professor David L. Parnas initially reviewed the text and contents, thus providing 
many helpful suggestions. Our other colleagues, especially Professors Angel Jordan, 
Alan Perlis, Herbert Simon and Everard M. Williams deserve a special thanks for 
their patience and encouragement. 

Finally,wewould liketo thankthosewhowerea partof themachinethat assembled 
the book: the editors of McGraw-Hill; Mrs. Mary Ross who assembled the bibliog- 
raphy, figures, and contributor articles; Mrs. Mildred Sisko who typed the PMS and 
ISP Appendix; and especially Mrs. Dorothy Josephson who not only typed nearly all 
drafts of the book, but also the final PMS figures, and ISP Appendices. 

C. Gordon Bell 
Allen Newel1 
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The structure of computers 





Chapter 1 

This book presents many examples of computer systems. It presents 
them in enough detail so that meaningful engineering study and 
analysis are possible. Most of these examples are presented by 
using the original descriptions of them in the technical literature. 
Others have been redescribed by us, especially where the original 
descriptions existed only in technical manuals. In both cases there 
are considerable discussion and analysis of the computer struc- 
tures: what problems they were intended to solve, what solutions 
were adopted, and how these solutions have fared. Yet the em- 
phasis has remained on detailed descriptions precise enough so 
that the systems themselves are available for independent study. 

Why should one want to produce such a book? Collections of 
reprintings from the technical literature are common in many 
science and engineering fields, e.g., “Programming Systems and 
Languages” [Rosen, 19671. We have departed from this tradi- 
tional exercise in two ways, both of which seem important to us. 
First, we have presented substantial amounts of detail: in effect, 
block diagrams of computer structures and the equivalents of 
programming manuals. These constitute neither good reading nor 
a way of communicating the “essential ideas” in the field. Second, ? 

we have introduced a system of notation and have used it not only 
in the parts we ourselves have written but also to provide addi- 
tional (sometimes redundant) descriptions of computer systems in 
the reprinted articles. Why should there be a book like this? The 
reasons are several and require some background discussion. 

opment of this science and technology of computers (one of us 
also likes to build computers). To understand why this particular 
book seems to us to be the right way to push this development 
at  this particular time requires characterizing the current state 
of computer-systems technology. 

A computer system is complex in several ways. Figure 1 shows 
the most important. There are at  least four levels of system descrip- 
tion, possibly five, that can be used for a computer. These are not 
alternative descriptions in the sense that anything said one way 
can be said another. On the contrary, each level arises from ab- 
straction of the levels below it. Each does a job that the lower 
levels could not perform became of the unnecessary detail they 
would be forced to carry around. 

A system (at any level) is characterized by a set of components, 
of which certain properties are posited, and a set of ways of com- 
bining components to produce systems. When formalized appro- 
priately, the behavior of the systems is determined by the behavior 
of its components and the specific modes of combination used. 

I -  -, i I ‘ L  ‘ 1  

I ,  . f . L Y  - , A ,  i ’ . Computer systems / I I  r ,  

Computer systems are one example of man’s more complex arti- 
ficial systems.l They have existed as successful engineering prod- 
ucts long enough to undergo radical evolution and to give rise 
to a number of basic, unique technologies. They are sufficiently 
complex that they have given rise to a science, that is, to a con- 
tinuing, institutionalized endeavor to understand what sort of beast 
has been brought forth.2 Our fundamental interest is in the devel- 

& 
IWe need not argue that they are his most complex system. That view 
is myopic. Setting aside quasi-natural systems, such as cities and economies, 
it is still the case that a modern aircraft carrier is more complex than a 
modern computer by any reasonable measure. 
2Here uniqueness can be claimed, perhaps, since few other artifactual 
systems (again, excluding the quasi-natural ones) provide new phenomena 
that require sustained scientific investigation to understand them. There 
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certainly is no science of aircraft carriers. But there is a computer science. Fig. 1. Hierarchy of levels: computer structure. 



4 Part 1 1 The structure of computers 

Elementary circuit theory is an almost prototypic example. The 
components are R’s, L’s, C’s, and voltage sources. The mode of 
combination is to run wires between the terminals of components, 
which corresponds to an identification of current and voltage at 
these terminals. The algebraic and differential equations of circuit 
theory provide the means whereby the behavior of a circuit can 
be computed from the properties of its components and the way 
the circuit is constructed. 

There is a recursive feature to most system descriptions. A 
system, composed of components structured in a given way, may 
be considered a component in the construction of yet other sys- 
tems. There are, of course, some primitive components whose 
properties are not explicable as the resultant of a system of the 
same type. For example, a resistor is not to be explained by a 
subcircuit but is taken as a primitive. Sometimes there are no 
absolute primitives, it being a matter of convention what basis 
is taken. For example, one can build logical design systems from 
many different primitive sets of logical operations (AND and NOT, 
NAND, OR and NOT, etc.). 

A system level, as we have used the term in Fig. 1, is charac- 
terized by a distinct language for representing the system (that 
is, the components, modes of combination, and laws of behavior). 
These distinct languages reflect special properties of the types of 
components and of the way they combine. Otherwise, there would 
be no point in adopting a special representation. Nevertheless, 
these levels exist in the system analyst’s way of describing the same 

Structure Behavior 
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Fig. 2. Electronic-circuit level: inverter circuit. 

physically existing system. The fact that the languages are highly 
distinct makes it possible to be confident about the existence of 
different system levels. Where we are fuzzy, as in the existence 
of an additional intermediate level, it is because new representa- 
tions have not yet congealed into distinct formal languages. As 
we noted, within each level there exists a whole hierarchy of 
systems and subsystems. However, as long as these are all described 
in the same language, e.g., a subroutine hierarchy, all given in 
machine-assembly language, they do not constitute separate sys- 
tem levels. 

With this general view, let us work through the levels of com- 
puter systems, starting at the bottom. Each level in Fig. 1 actually 
has two languages or representations associated with it: an alge- 
braic one and a graphical one. These are isomorphic to each other, 
the same entities, properties, and relations being given in both. 

The lowest level in Fig. 1 is the circuit level. Here the com- 
ponents are R’s, L’s, C’s, voltage sources, and nonlinear devices. 
The behavior of the system is measured in terms of voltage, current, 
and magnetic flux. These are continuously varying quantities asso- 
ciated with various components, and so there is continuous be- 
havior through time. The components have a discrete number of 
terminals, whereby they can be connected to other components. 
Figure 2 shows both an algebraic and graphical description of 
an inverter circuit, as well as an algebraic and graphical descrip- 
tion of its behavior. We note that its structure is specified first 
as a circuit (a directed graph), with symbols for the arcs and nodes. 
The particular circuit still is an abstraction because the transistor 
Q1, the resistor R, and the stray capacitors C ,  are given only token 
values. The structure can be described symbolically by first writing 
the relationship describing each of the components (i.e., Ohm’s 
law, Faraday’s law, etc.) and then the equation which describes 
the interconnection of the components (i.e., Kirchhoffs laws). We 
observe the behavior of the circuit (probably using an oscilloscope) 
by applying an input ei(t) and observing an output e,(t). Alterna- 
tively, if we solve the equations which specify the structure, we 
obtain expressions which describe the behavior explicitly. 

The circuit level is not in fact the lowest level that might be 
used in describing a computer system. The devices themselves 
require a different language, either that of electromagnetic theory 
or of quantum mechanics (for the solid-state devices). It is usually 
an exercise in a course on Maxwell’s equations to show that circuit 
theory can be derived as a specialization under appropriately 
restricted boundary conditions. Actually, even at its level of ab- 
straction, circuit theory is not quite adequate to describe computer 
technology since there are a number of mechanical devices which 
must be represented. Magnetic tapes and drums are most likely 
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to come to mind first, but card readers, card punches, and Teletype 
terminals are other examples. These devices obey laws of motion 
and are analyzed in units of mass, length, and time. 

The next level is the logic level. It is unique to digital technol- 
ogy, whereas the circuit level (and below) is what digital technol- 
ogy shares with the rest of electrical engineering. The behavior 
of a system is now described by discrete variables which take on 
only two values, called 0 and 1 (or + and - , true and false, high 
and low). The components perform logical functions: AND, OR, 
NOT, NAND, etc. Systems are constructed in the same way as 
at  the circuit level, by connecting the terminals of components, 
which thereby identify their behavioral values. The laws of bool- 
ean algebra are used to compute the behavior of a system from 
the behavior and properties of its components. 

‘The previous paragraph described combinatorial circuits whose 
outputs are directly related to the inputs at  any instant of time. 
If the circuit has the ability to hold values over time (store infor- 
mation), we get sequential circuits. The problem that the com- 
binatorial-level analysis solves is the production of a set of outputs 
at time t as a function of a number of inputs at the same time t. 
As described in textbooks, the analysis abstracts from any trans- 
port delays between input and output; however, in engineering 
practice the analysis of delays is usually considered to be still part 
of the combinatorial level. In Fig. 3 we show a combinatorial 
network formed from combinatorial elements which realize three 
boolean output expressions, O,, O,, and O,, as a function of the input 
boolean variables A and B. Note that in the symbolic representa- 
tion of the structure we can write an expression that reflects the 
structure of the combinatorial network, but, on reduction, the 
boolean equations no longer reflect the actual structure of the 
combinatorial circuit but become a model to predict its behavior. 

The representation of a sequential switching circuit is basically 
.\the same as that of a combinatorial switching circuit, although 
-. one needs to add memory components, such as a delay element 

(which produces as output at  time t the input at  time t - T). Thus 
the equations that specify structure must be difference equations 
involving time. Again, there is a distinction (even in representa- 
tion) between synchronous circuits and asynchronous circuits, 
namely, whether behavior can be represented by a sequence of 
values at integral time points ( t  = 1, 2, 3, . . .) or must deal in 
continuous time. But this is a minor variation. Figure 4 gives a 
sequential logic circuit in both an algebraic and a graphical form 
and shows also the representation of the behavior of the system. 

Now it is clear that logic circuits are simply a subspecies of 
general circuits. Indeed, to design the logic components one con- 
structs circuit-level descriptions of them. For instance, Fig. 5 

., 

I , c .  

shows a circuit for a NAND (or NOR) gate plus a table of its 
behavior. It is evident that its behavior corresponds to that of the 
NAND gate only if certain restrictions hold; namely, that one does 
not look at the voltage (which is identified as the behavior variable 
in the logic circuit) during certain periods when it is transient 
(“settling down,” to use the common phrase). Thus the logic level 
is an instance of the circuit level only in the same sense that the 
circuit level is an instance of Maxwell’s equations-as a limiting 
case in which certain features are deliberately ignored. 

One buys a great deal from the specialization to logic circuits, 
since one can compute the behavior of circuits at the logic level 
that are extremely complex at the circuit level. The techniques 
for doing so use an entirely different mathematical apparatus. In 
general, we cross into another level when the representation at 
the previous level provides information that is no longer relevant. 
A lower level is concerned with explaining the behavior of a 
certain structure, whereas the next highest level takes the lower 
level as given (a primitive). The higher level is concerned not about 
internal behavior but only how primitives are combined. 

A glance at Fig. 1 shows that we have described only the lower 
part of the logic level. There is another part, called the register- 
transfer level (or RT level). This is still an uncertain level, a matter 

-. 

I! Time, t 

or. alternatively, 

Fig. 3. Combinatorial-switching-circuit sublevel of the logic level: realiza- 
tion of three logic expressions. 
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Fig. 4. Sequential-switching-circuit sublevel of the logic level: computa- 
tion of x + 1 from serial input string x. 

we will discuss after we have finished describing it. The com- 
ponents of an RT system are registers and functional transfers 
between registers. A register is a device that holds a set of bits.’ 
The behavior of the system is given by the time course of values 
of these registers, i.e., their bit sets. 

The system undergoes discrete operations, whereby the values 
of various registers are combined according to some rule and then 
are stored in another register (thus “transferred’)). The law of 
combination may be almost anything, from the simple unmodified 
transfer (A t B) to logical combination (A t B A C) to arithmetic 
(A t B + C). Thus a specification of the behavior, equivalent to 
the boolean equations of sequential circuits or the differential 
equations of the circuit level, is a set of expressions (often called 
productions) which give the conditions under which such transfers 
will be made. In Fig. 6 we give a picture of an RT system to 
compute the sum of integers. The figure includes the specification 

‘This assumes that the elementary state variable of the system holds a bit 
(i.e., one of two values, such as 0 or 1). This need not be; sometimes the 
elementary variable holds a decimal digit (one of 10 values) or a character 
(one of, say, 48 values). For present purposes we can talk in terms of 
bits, without losing anything thereby. 

of its behavior and a table that shows the resulting behavior over 
time. Here the graphical structure of the system includes registers 
(N, I, S), transfers (S c S + l), data operators (S + 1, I > N, etc.). 
The flowchart shows the behavior of the control with time. 

The register-transfer level is still uncertain because there is 
substantial agreement neither on the exact language to be used 
for the level nor on the techniques of analysis and synthesis that 
go with it. As we will note below, for both the circuit level and 
the logic-circuit level there exist well-defined representations, 
guaranteed, so to speak, by standard textbooks and college courses 
that teach these levels. Standard texts on digital computers make 
only informal vse of the RT $vel. 

We have indeed a systems level in emergence here. If one 
restricts the transfer operations to boolean operations and thinks 
of a register as simply a set of 1-bit memories, one can write a 
set of logic equations for any register-transfer system. Furthermore, 
if one considers the role of logic design in digital computers, this 
has encompassed both sequential circuits and the register-transfer 

e e Table 4 o f  NAND 
Table of NOR Inputs 

behavior 
Inputs 

behavior 

1 1 1  0 0 0  

NOR logic element 1 1 0 0 NAND logic element O O ’ 
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Fig. 5. Change of representation at the circuit level combinatorial- 
switching sublevel boundary. 
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level. The practicing logic designer (by now an institutionalized 
position, on a par with that of circuit designer) has sequential and 
combinatorial circuits as his basic analytic tools, and he attempts 
to design systems on the register-transfer level (e.g., central proc- 
essors) with these as tools. The register-transfer level has emerged 
from the informal attempts to create a notation closer to the job 
to be done. 

Recently there have been a number of efforts to construct 
formalized register-transfers systems. Most of them are built 
around the construction of a programming system or language that 
permits computer simulation of systems on the RT level. Although 
there is agreement on the basic components and types of opera- 
tions, there is much less agreement on the representation of the 
laws of the system (corresponding to tKe production system in Fig. 
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Fig. 6. Register-transfer sublevel of the logic level: computation of the 
sum of integers. 
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Fig. 7. State-system representation of the logic level: computation of 
x + 1 from serial input string x. 

6) or on the way to represent the dynamic behavior (correspond- 
ipg to the behavior table in the figure). 

There is another representation used at  the logic level, the 
state-system representation, but it has been put at one side in Fig. 
1. The state system is the most general representation of a discrete 
system avai1able.l A system is represented as capable of being in 
one of N abstract states at any instant of time. (For digital systems, 
N is finite or enumerable.) Its behavior is specified by a transition 
function that takes as arguments the current state and the current 
input and determines the next state (and the concomitant output). 
A digital computer is, in principle, representable as a state system, 
but the number of states is far too large to make it useful to do 
so. Instead, the state system becomes a useful representation in 
dealing with various subparts of the total machine, such as the 
sequential circuit that controls a magnetic tape. Here the number 
of states is small enough to be tractable. Thus, we have placed 
state systems at one side as an auxiliary to the logic level. In Fig. 
7 we give the common representations of the state system. Co- 

lThere have been energetic attempts to apply the state-system approach 
to control systems of a more general nature [Zadeh and Desoer, 19831, 
although they do not concern us here. 
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incidently, we use the representations of Fig. 7 for the sequential 
switching circuit of Fig. 4. That is, Fig. 7 may be viewed as an 
abstraction of the physical system in Fig. 4. To the logic designer 
the state system is a useful abstraction of a logic design. A design 
usually passes through the following problem representations: 

1 

2 

The problem exists in a natural language. 

The problem is converted to a state diagram (output as 
a function of state, and input). 

The state diagram is represented as a state table and 
output table. 

States are assigned (physical memory elements are used). 

The excitation table and output tables are formed. 

The excitation and output logic equations are written 
(constrained by the actual logic elements). 

The sequential circuit is drawn. 

3 

4 

5 

6: 

7 

Let us go to the next higher level, the program leoel. This 
not only is a unique level of description for digital technology (as 
was the logic level) but is uniquely associated with computers, 
namely, with those digital devices that have a central component 
that interprets a programming language. There are many uses of 
digital technology, especially in instrumentation and digital con- 
trols, which do not require such an interpretation device and 
hence have a logic level but no program level. 

The components of the program level are a set of memories 
and a set of operations. The memories hold data structures which 
represent things both inside and outside the memory, e.g., num- 
bers, payrolls, molecules, other data structures, etc. The operations 
take various data structures as inputs and produce new data struc- 
tures, which again reside in memories. Thus the behavior of the 
system is the time pattern of data structures held in its memories. 
The unique feature of the program level is the representation it 
provides for combining components, that is, for specifying what 
operations are to be executed on what data structures. This is the 
program, which consists of a sequence of instructions. Each in- 
struction specifies that a given operation (or operations) be exe- 
cuted on specified data structures. Superimposed on this is a control 
structure that specifies which instruction is to be interpreted next. 
Normally this is done in the order in which the instructions are 
given, with jumps out of sequence specified by branch instructions. 
Again, Fig. 8 shows a simple program, the data structures, and 
the behavior. 

Two things separate the logic level from the program level. 
First, computer systems at the logic level are parallel devices, with 

all components active simultaneously. At the program level, com- 
puters are represented essentially as serial devices. Second, the 
program level, but not the logic level, is essentially linguistic in 
nature. At the program level things can be named, abbreviations 
can be used, decisions can be made, instructions are interpreted 
- all concepts that are strikingly absent from physical systems. 
Of course, they are not “really” absent since one can give a full 
description of the operation of a program at the logic level. But 
one does so by carrying in mind the set of physical behaviors 
discovered for computers that make them show the appropriate 
linguistic behavior at the program level. Thus, one does not “go 
to ALPHA if accumulator is negative’; one has a logic circuit that 
transfers the contents of the address field of the instruction register 
to the program counter, ANDing that transfer with the sign of 
the accumulator, so that it does not take place if the accumulator 
is not negative. Such a translation reveals how distinct is the 
system boundary between the register-transfer level and the pro- 
gram level. The size of the gap is also revealed in the ability of 
people to become expert programmers without knowing anything 
about any representations below the programming level. 

The program level constitutes an entire technology in its own 
right, and one that carries within it most of the emergent charac- 
teristics of computer systems that make them worthy of a science. 
Among the programming languages alone, there are levels of lan- 
guage which are so distinct from each other as to constitute system 
levels fully as important as the ones exhibited in Fig. 1. Never- 
theless, from the viewpoint of someone basically concerned with 
hardware systems, these can all be accounted a single level, at 
least for the present. The one aspect of programming systems that 
should be of most concern, that of operating systems, is still in 
such a fragmented state that it does not even begin to be a distinct 
system level. 

One peculiarity of the program level is that there exists no 
universal representation for it, as there does for the circuit or 
logic-circuit level (and, it is to be hoped, soon for the register- 
transfer level). Each machine has its own machine language (and 
its own assemblers and command languages built on those ma- 
chine languages). Each of these languages forms a complete sys- 
tem at the program level, applicable only to the machine in 
question. There is no universal machine language, although there 
is much in common at a conceptual level between all existing 
machine languages. There has existed a long-standing attempt 
within the programming field to develop an UNCOL (for Uni- 
versal Computer Oriented Language) [Steel, 19611 that would 
play this role, but it has never been successful. The reasons are 
not far to seek. The role of the machine language is to be inter- 
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preted by the machine in order to produce behavior. It is not free 
to have arbitrarily desirable properties from our human viewpoint, 
since its details affect the efficient operation of the computer too 
much - how much space is devoted to the program, how much 
time is saved by a special order oriented to matrix multiply, etc. 
UNCOL was also attempting to fill the same role as machine 
languages, being one from which to compile a machine code for 
an arbitrary machine. Another reason why there has been no 
universal programming representation is that each particular 
machine language is a language, and so a universal description 
would seem to be a description of a class of languages. This is 
by no means impossible, as the wide use of notations such as 
Backus Normal Form (BNF) sh0w.l Nevertheless, it has contrib- 
uted to the lack of any universal notation. 

We now move to the fourth and last level. In Fig. 1 it is called 

I-I+l, 

the P ~ ~ - & x w a y - % ~  S h e 4  for-4kert. The 
name is not recognized, nor is any other, since the level exists 
only informally. Nevertheless, its existence is hardly in doubt. It 
is the view one takes of a computer system when one considers 
only its most aggregate behavior. It then consists of central proc- 
essors, core memories, tapes, disks, input/output processors, com- 
munication lines, printers, tape controllers, busses, Teletypes, 
scopes, etc. The system is viewed as processing a medium, infor- 
mation, which can be measured in bits (or digits, characters, words, 
etc.). Thus the components have capacities and flow rates as their 
operating characteristics. All details of the program are sup- 
pressed, although many gross distinctions of encoding and infor- 

'We will propose a notation later. See also the work by F. Haney in his 
Generalized Instruction System (GIS) [Haney, 19681. 
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Fig. 8. Programming level: computation of the sum of integers. 



10 Part 1 I The structure of computers 

mation type remain, depending on the analysis. Thus one may 
distinguish program from data, or file space from resident monitor. 
One may remain concerned with the fact that input data are in 
alphameric and must be converted into binary, or are bit-serial 
and must be converted to bit-parallel. 

We might characterize this level as the “chemical engineering 
view of a digital computer,” which likens it more to a continuous- 
process petroleum-distilling plant than to a place where complex 
FORTRAN programs are applied to matrices of data. Indeed, this 
system level is more nearly an abstraction from the logic level 
than from the program level, since it returns to a simultaneously 
operating flow system. 

One might question whether there is a distinct systems level 
here. In the early days of computers almost all computer systems 
could be represented as in the diagram in M.I.T.’s Whirlwind 
computer programming manual in Fig. 9: with classic boxes of 
memory (storage), control, arithmetic, and input/output. Actually, 
this view of the computer in 1953 was considerably advanced; 
few texts on the logic design of computers in the 1960s have such 
a detailed model. This model has secondary memory (magnetic 
tape and drums in the Whirlwind’s case). The most interesting 
aspect of the model, which text writers omit, is any kind of switch- 
ing (the bus of Fig. 9). The bus provides a communication path 
to link the other components. Certainly the pushbuttons (actually 
the console) is novel for such a model. Compare this with the 
diagram of a modern computer system in Fig. 10, which shows 
a two-processor UNIVAC 1108, the level of abstraction being 
the same as in Fig. 9. The arithmetic element of Fig. 9 has disap- 

Di f fe rence  

L A  u u 

Fig. 9. Automatic digital computation. (From the Whirlwind Computer 
Manual, M.I.T. By permission of the publishers.) 

peared and is replaced by a processor (a combined control and 
arithmetic element) in Fig. 10. The central control of Fig. 9 is now 
distributed throughout the remaining components. The control in 
Fig. 10 is a combined unit for transforming a serial character- 
information stream into words. It also manages the transmission 
of a word vector between the primary memory and a terminal 
or a secondary memory. The Resource Allocation Diagram is in- 
troduced in Fig. 10 to describe the allocation (use), hence be- 
havior, of the PMS components as a function of time. Chapter 2 
describes these figures more fully. 

Another indication of the emergence of the PMS level lies in 
the models used in most operations-research types of studies on 
computer systems. Again, in the early 1960s these were practi- 
cally nonexistent. Now, with the advent of multiprogramming, 
multiprocessing, and time sharing, and the imminent arrival of 
computer networks, there are substantial numbers of such studies. 
The level of abstraction is always one that considers only flows 
and stocks of information, measured in bits (or an equivalent), 
perhaps divided into several subtypes. The concerns are bottle- 
necks, capacities, total flow rates, queuing problems, buffer sizes, 
and the like. All this indicates a system level above both the logic 
level and the program level. 

There is no uniform language for representation at this level 
and even, as we noted, no standard name. We have used the term 
PMS in analogy to the use of RT for the register-transfer level. 
Processors, memories, and switches are the main kinds of com- 
ponents out of which systems at this level are built. If one names 
a number of components at the PMS level, as we did previously, 
one finds few switches in the list. “Busses” in our list would be 
one, although many would think first of their data transfer charac- 
teristics. But, as this book amply shows, what makes the PMS level 
both interesting and complex is the existence of switches which 
govern the pattern of information flow through the system. One 
reason why they seem buried is their association with other com- 
ponents as addressing systems. There are other components besides 
processors, memories, and switches, namely, links, transducers, and 
controls. But the first three, P, M, and S, seem appropriate to 
characterize the level. 

It is not known whether there will be yet other systems levels, 
say one above the PMS level, as networks come into existence. 
The simplicity of the top level argues against it, but that may only 
show our narrow vision. It is important to realize that these levels 
are not sacrosanct. They depend strongly on physical technology. 
Thus, as we move toward integrated circuitry, there may emerge 
representations other than register-transfer diagrams, and the lat- 
ter may never develop into a clear systems level. One could even 

-. 
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imagine something happening to the circuit level, as continuous 
distributions became more important (although the use of equiva- 
lent circuits is well embedded in the engineering culture). We are 
not concerned with predicting any particular changes. We wish 
only to emphasize that the system-levels diagram of Fig. 1 is a 
reflection both of current technology and of our ways of analyzing 
given physical systems. As such, these levels have a certain im- 
permanency about them. 

What is the problem? 

The systems levels we have just described correspond to the tech- 
nologies that are available for the analysis and synthesis of com- 
puter systems. Each of these levels exists, in fact, precisely to the 
extent that a technology has become well developed. Thus both 
the circuit level and the lower half of the logic level (combinato- 
rial and sequential circuits) are highly polished technologies. They 
are what one learns today, if one wants to become a computer en- 
gineer. Textbooks exist, courses are taught, and there is a flourish- 
ing, cumulative technical literature. As we progress up the systems 
levels, matters become progressively worse. The register-transfer 
level is not yet well established, although there is considerable 

current activity in the area, and the next few years may see its 
universal establishment. Although programming is certainly well 
defined, each machine is a king in his own court, with no common 
technology of the program level that is relevant to the design of 
computer systems. The latter phrase must be added since we are 
taking a very specialized viewpoint here. We do not consider the 
world of programming research at all, it being entirely divorced 
from computer-systems design.l Finally, at the top, there is practi- 
cally no consensus on the nature of the systems level. 

There is nothing very surprising about this state of affairs. It 
reflects accurately the fundamental fact that only in the past few 
years have computer systems become complex enough for the 
higher levels to emerge as distinct systems levels. When most 
computers could be described in the diagram of Fig. 9-and such 
a diagram was reprinted innumerable times in the first decade- 
there was no need to haire a technology at the PMS level. When 
registers were so expensive that one could count the registers of 
a processor on the fingers of one hand (no thumbs allowed), one 
did not need a register-transfer language in order to describe the 

'This is not entirely true. Each level must provide coupling with adjacent 
levels. A major issue in computer-design is the trade-off between hardware 
and software. 
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flows. In both cases, an informal block diagram conveyed all the 
information adequately. 

The question of the programming level is somewhat different, 
since this level has existed as a formal language from the very start. 
Here the key aspect, it seems to us, is that, since well-defined 
languages existed, there was little pressure to find a better one. 
The fact that such languages were completely idiosyncratic to the 
machine, since they emerged as a product of the design itself, 
simply did not worry anyone overly much. Each language provided 
a design framework one could work into, and this seemed to suffice. 
It led, it is true, to the game of “We have another bit left in the 
mode field of the instruction-got another mode you’d like?” 
But this has only made computer designers feel that creating an 
order code was something of an art. 

Thus we feel that the increased complexity of computer systems 
is making these higher system levels of increasing importance. 
Since this is only the second decade of the serious development 
of computer systems, these upper levels are not in very good shape. 
For instance, textbooks devote very little attention to the area. 
Textbooks (especially good ones) tend to be technique-oriented, 
giving most attention to what is known. (When we were students 
we always used to wonder why there were no mathematics texts 
which told you about the problems that were not solvable in closed 
form.) Thus the present need for some material at these higher 
levels constitutes a major motivation for this book. 

There is a second feature of the current scene that enters into 
our motivation for this book. Around 1,000 different computer 
systems have been built. This represents a substantial amount of 
pragmatic experimentation. This is especially true at the program- 
ming level and PMS level, and also to some extent a t  the register- 
transfer level. Many things have been tried, many found worth- 
while, and many found wanting. A good deal of reinvention goes 
on. Thus we are concerned that this history of experimentation 
not be lost. I t  is true that, if the underlying technology changes 
enough, the experience may become largely irrelevant, but this 
does not appear to us to be an imminent development. 

We will admit also to a third concern, which does not stem 
from our role as computer engineers concerned with design, but 
from our role as computer scientists, fascinated with the phenom- 
ena of computers. The variety of about 1,000 computers represents 
the beginning of a proliferation of a species. It is not under biologi- 
cal control but rather under economic and intellectual control. 
Nevertheless, it is in every sense of the word an evolutionary 
population. We find ourselves feeling a little like naturalists must 
have felt when confronted with the proliferation of the organic 
world. We were at one time tempted to call this book “Computer 

Botany” and at another “Computer Taxonomy.” We feel that the 
attempt to gather, document, and classify these existing computers 
is a worthy endeavor in its own right. One might think that all 
this material is easily available. But the record fades rapidly, 
especially when much of it exists only as manufacturers’ manuals 
and papers in assorted proceedings. 

The main reasons for producing this book and for its particular 
character are by now evident. There is a need for material on the 
upper levels of computer systems, both for teaching new students 
of computer science and engineering and for making the past 
record available for professional designers. Since the technologies 
are not well developed for the upper levels, it is not possible to 
write a textbook, making use only of well-accepted techniques, 
nJtations, and results. Instead, one settles for making available a 
collection of examples of systems, so that they can be studied and 
analyzed directly. 

Notations 

It remains to say a word about two notations we have introduced, 
both about our motivations for doing so and about their character. 
Some, but not all, of this is already implicit in the foregoing ac- 
count. 

We started simply to produce a set of readings in computer 
systems, motivated by the lack of detailed examples we could use 
in a course one of us (GB) was giving on computer design. As noted, 
we felt the need to expose the students to real examples of complex 
computer structures. As we gathered material we became im- 
pressed (depressed is actually a better term) with the diversity of 
ways of describing these higher levels. Even more, the amount 
of clumsy description-downright verbosity-even in purely 
technical manuals acted as a further depressant. The thought of 
putting such a congeries of descriptions between hard covers for 
one person to peruse and study was almost too much to contem- 
plate. Gradually, we began to rewrite and condense many of the 
descriptions. As we did so, a set of common notations developed. 
Becoming aware of what was happening, we devoted a substantial 
amount of attention and effort to creating notational systems that 
have some consistency and, we hope, some chance of doing the 
job required. These are the PMS descriptive system for the PMS 
level (sic) and the ISP (Instruction-set processor) descriptive sys- 
tem for the program level. Each of these requires some comment 
on its nature and the role we think it should play. 

The PMS descriptive‘system is meant to provide a notation 
for the top level of computer systems. Figure 10 is given in this 
notation. On the surface it is largely self-explanatory, given the 
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mnemonics of P for processor, M for memory, S for switch, T for 
transducer (hence also terminal), and K for control (since C is for 
computer). There is also L for link, but in most computer struc- 
tures it is unnecessary to distinguish a separate link component, 
except to show connectivity. (It does become appropriate if com- 
munication delays exist.) 

There is an issue about whether this small set of components 
is an appropriate set of primitives, but the issue is not of major 
proportions. The real issues in the development of the notation 
come from the stress of two opposite forces. On the one hand, one 
wants extremely compact notations for expressing computer sys- 
tems. The systems are large in any event, and if there is much 
extra notational freight in the way of fixed formats, forced writing 
of what is already known and assumed, etc., then the notation will 
be neither useful nor used. On the other hand, there is a tremen- 
dous variety and quantity of information that potentially must be 
capable of being written into a description: word size, capacity, 
flow, operation rate, data-types, variations of operation rate for 
different classes of instructions, parity checking, technology, and 
on and on. Thus one needs a notation that responds to both these 
demands-and without being hopelessly complex and difficult to 
learn. Our attempt at a solution involves a basically simple lan- 
guage with comprehensive (and we think natural) ways of sys- 
tematic abbreviation and abstraction. 

The ISP descriptive system is meant to provide a uniform way 
of describing instruction sets, that is, of giving the information 
contained in a programming manual. It must provide the instruc- 
tion format, the registers referenced by the instructions, the rules 
of interpretation of the instruction, and the semantics of each 
instruction in the processor's repertoire. It must be able to do this 
for any existing computer, plus the expected extensions into the 
future. Its homeliest virtue is to make it possible to read the 
descriptions of the forty-odd computer systems described in this 
book, without having to fight a new notation for each system, and 
still to know in detail what the instructions really do. 

Our attempt at a solution turns out not to be a generalized 
sort of instruction. Rather, it is very similar in flavor to a register- 
transfer scheme. The differences lie in being able to suppress all 
timing information and all detail that is not essential to under- 
standing the instructions. ISP is not a variety of UNCOL, in which 
one can program; rather it is a language in which one can describe 
what any particular instruction set does. We thus avoid many of 
the pitfalls of the UNCOL-like efforts. 

There is a price to be paid for introducing new notations, for 
they must be learned. We feel that the two systems we have 
introduced here are natural enough to require almost no learning 

for superficial use (e.g., looking at Fig. 10) and only modest 
amounts for full exploitation. They seem to us vastly preferable 
to the array of ad hoc notations that we were faced with initially 
(and with which we almost faced the reader). Still we are aware 
of the price. 

A word should be said about antecedents. The PMS descriptive 
system is close to the way computer scientists talk informally about 
the top level of computer systems; no one effort in the environment 
stands out as a predecessor. Some notations, such as CPU (for 
central processing units), have become widespread. We clearly 
have assimilated them. Our modifications, such as Pc instead of 
CPU, are dictated entirely by the attempt to build a consistent 
notation over the whole range of computer systems. With respect 
to ISP, we have been heavily influenced by the work on register- 
transfer languages.' The one that we used most as a kernel from 
which to grow ISP was the work of Darringer and Parnas [Dar- 
ringer, 19691. In particular, their decision to work within the 
framework of ALGOL suited our own sensibilities, even though 
the final version of ISP departs from a sequential algorithmic 
language in a number of respects. 

Finally, a word should be said about innocence and aspirations. 
We are putting PMS and ISP forward as two notations. They are 
that. But they also imply a particular view of digital processing. 
Thus they are not entirely innocent. It would be appropriate to 
explore fully this view and to justify the particular decompositions 
and definitions used. This is not to say that these views are pecu- 
liarly ours. They are implicit in the informal use of similar descrip- 
tive systems. However, the attempt to formalize a notation makes 
them more accessible. We accept the obligation to perform such 
an exploration. But this volume is not the place to do so, for that 
would turn it into something between a treatise and a textbook. 
For this book, it is appropriate to take these notations at face 
value. We have a companion volume in preparation that attempts 
the other job. This is an aspiration. 

We have other aspirations as well. Notations in the computer 
world should turn into working tools. There are many tasks, such 
as the communicative one of this book, where the notation by itself 
is useful. Others are easy to imagine: writing specifications for new 
machines; being sure what the computer salesmen are selling; 
standardization of programming manuals, so that learning about 
a new machine is easier; etc. But there are other tasks where the 

'We have not been influenced in a direct way by the work of Iverson 
[Falkoff, Iverson, and Sussenguth, 19641 in the sense of patterning our 
notation after his. Nevertheless, his creation of a full description of the 
IBM System/30 in APL stands as an important milestone in moving 
toward formal descriptions of machines. 
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notations must become formal programming languages, so that 
analysis and synthesis procedures can be carried on automatically 
in their terms. As we have noted, the development of ISP and PMS 
germinated from purely notational issues. We have not let our 
aspirations to turn them into simulation languages delay our use 
of them for purely descriptive purposes. Thus we accept the obli- 
gation also to develop them as operational tools. That is also an 
aspiration and cannot be dealt with anywhere within this book. 

Plan of the book 

We now have enough background to explain the structure of the 
book. Two other chapters complete the introductory part. Chapter 
2 provides an exposition of the PMS and ISP descriptive systems. 
As we have just noted, this does not attempt to explore seriously 
the view of digital processing implicit in these notations, although 
it does provide a small amount of motivation. A summary of the 
language conventions and parameter values is given at the end 
of the book in the appendix. 

Chapter 3 provides a description of the space of computer 
systems. One can view all computer systems as occupying a space 
whose dimensions are the various important systems features. 
Many features of the actual systems are relatively locked together. 
For example, word size and number of instructions in the reper- 
toire covary; no 12-bit machine has 200 instructions but several 
with over 32 bits do. Thus the number of significant dimensions 
of variation is much less than the total number of features of 
computer systems. Such a space provides a basic frame in which 
to choose representative computer systems for inclusion in the 
book. We hope Chap. 3 will also justify our feeling that there is 
a diversity and proliferation of computer systems that is worthy 
of serious study. 

The remainder of the book is divided into five parts (2 to 6, 
with the introduction constituting Part l), and each part into 
sections. Each chapter gives a description of a computer system 

that is an instance of the part and section. Usually a chapter 
describes only one computer or computer system, although there 
are a few exceptions in Part 6 on computer families. 

A word needs to be said about the “Virtual” Table of Contents. 
Many of the example computers are relevant to more than one 
part and section. Physically, they have to be located at one place. 
But we have permited multiple entries in the Contents, so that, 
for instance, Chap. 33 on the IBM 1800 appears in Sec. 1 of 
Part 2 as an example of a one-address ISP, in Sec. 1 of Part 4 as 
a terminal control, and finally in Sec. 2 of Part 5 as an example 
of a PMS with one central processor and multiple input/output 
processors (1 Pc, multi-Pio); physically it is located in the latter 
section. By using different type faces we hope the reader will not 
become confused between virtual and actual. 

There is little point in outlining the content of the various parts 
and sections here. This is better done at the end of Chap. 3 after 
the computer space has been laid out. 
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The PMS and ISP descriptive systems 

The task of this chapter is to provide an introduction to the PMS 
descriptive system for the top computer-system level and to the 
ISP descriptive system for the program level. We take the view 
that informal notations exist and are in use. PMS and ISP are an 
attempt to tidy up  these notations-to make them consistent and 
more powerful. Thus we depend on the reader already to under- 
stand implicitly much of the notation and how it is to be used. 
In consequence, there is no attempt in this chapter to provide 
a formal treatment of the whole system. The appendix 1, at  the 
end of the book contains a complete summary of the notation 
rules, including the component attributes and values, and their 
abbreviations (i.e., the main technical vocabulary). We will pro- 
vide a brief discussion of the conceptual view underlying the two 
systems, since it is an appropriate way to make the notation 
understandable. But this is informal and heuristic. 

The two descriptive systems are not independent. There is a 
common set of notational conventions for abbreviating, for giving 
parameter values, and so on. (The Appendix separates them.) 
Likewise, there exists, in effect, an ISP description for every PMS 
component, or, conversely, ISP statements imply particular PMS 
component structures. A natural way is to present PMS first, which 
will also serve to introduce the main notational devices. Then we 
will give ISP. Finally, we will add more comments on the rela- 
tionship between PMS and ISP. 

PMS level of description 

Digital systems can be characterized most generally as systems 
that at any time exist in one of a discrete set of states and that 
undergo discrete changes of state with time. This is a highly ab- 
stract view. Nothing is said about what physical state corresponds 
to a system state; nothing is said about what laws of physics trans- 
form the system from one state to another. The states are given 
abstract labels: S,, S,, . . . . The transitions are provided by a 
state-transition table with many entries of the form: If the system 
is in state Si and the input is Ij, then the system is transformed 
to state S, and evokes output 0,. (Alternatively, a state diagram 
has the same information.) The virtue of this "state-system" 
view is that it truly seems to capture what we mean by a dis- 
crete (or digital) system. Its disadvantage lies in this same com- 
prehensiveness, which makes it impossible to deal with large 

systems because of their immense number of states (of the order 
of 10'O ' O  states for a big computer).' 

Existing digital computers can be viewed as discrete state 
systems that are specialized in three ways. These three speciali- 
zations make possible a much more compact and useful description 
of these systems, the one that we call the PMS description. 

First, the state is realized by a medium, called information, 
which is stored in memories. Thus, a core store of N words each 
of 32 bits is a digital device that can exist in one of 232N states. Sim- 
ilarly, all the states of a processor are made explicit in a set 
of registers: an accumulator, an address register, an instruction 
register, status register, etc. Each holds a specified number of bits. 
No permanent information is kept in digital devices except as 
encoded in bits in a memory. There are two qualifications to this 
blanket statement. First, the basic unit of information need not 
be the bit; it could be any base: One can have ternary machines, 
decimal machines, etc. Second, the sequential logic circuits that 
carry out operations in the system have intermediate states. But 
this is a strictly temporary affair while the operation is occurring, 
for example, the intermediate, inaccessible, partial results during 
a multiply operation. At the end-when the smoke has cleared, 
so to speak-all information carried over to the next operation 
has been encoded into bits in memories somewhere. At the PMS 
level we care only about the end result of such operations. 

The second specialization of the general state-system view is 
that current digital computer systems consist of a small number 
of discrete subsystems linked together by flows of information. 
There is a distinct component called the memory, another called 
the central processor, another called the ,card reader, etc. This 
is analogous to the lumped-parameter specialization at  the circuit 
level. Thus the natural representation of a digital computer system 
is as a graph which has component systems at  the nodes and 
information flows as branches. Now, in fact, the discrete character 
of digital encoding in bits prevents there being any truly continu- 
ous digital devices (in analogy to the continuously distributed 
parameter circuits). But one can have distributed networks with 
very small components. Such iterated arrays are a topic of much 

'As we noted in Fig. 1 of Chap. 1, we actually describe some parts of 
the control mechanisms of computers by state-system diagrams; however, 
these are exceedingly small pieces. An example may be seen in Fig. 7 on 
page 7. 
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current investigation, as the possibility of manufacturing them by 
integrated-circuit techniques has emerged. These distributed net- 
works look very different from the computer systems of today, 
although they are still digital systems. Thus, the representation 
as a flow network with functionally specialized nodes is a real 
specialization. 

The third specialization of the general state-system viewpoint 
is that associated with each component in a digital system is a 
small number of discrete operations for changing its own state or 
the state of neighboring components. All transitions must occur 
through the application of these few operations, which are evoked 
as a function of the current state of the component. The total 
behavior of the system is built up from the repeated execution 
of the operations as the conditions for their execution become 
realized by the results of prior operations. The general state-system 
view is more general. The state-transition table for a system may 
exhibit an arbitrary pattern of immediate state transitions, without 
regard to how such transition would be physically realized. 

To summarize, within this specialized view one wants a way 
of describing a system of an interconnected set of components, 
which are individual devices that have associated with them a set 
of operations that work on a medium of infomation, measured 
in bits (or some other base). 

The major complication in this picture is the amount of detail 
involved in describing actual computers. It takes a whole manual, 
for instance, to describe the operations of a major computer, such 
as the IBM 7090. Thus the descriptive system must permit very 
compressed descriptions. It must also permit description of only 
those aspects of the components that are of interest, ignoring the 
rest. And what is of interest at the PMS level? Besides a description 
of the gross structure of a computer system, it is primarily the 
analysis of the amounts of information held in various components, 
the flows of information between components, and the distribution 
of the control that accomplishes these flows. 

Thus a PMS-level description is analogous to the chemical 
engineer’s diagram of a refinery in which he is interested in various 
kinds of liquid and gas flow. He has to account for matter and 
energy loss with the system at various stages involving the trans- 
duction of materials from one form to another. A specific chemical 
plant’s external performance is measured in terms of its production 
flow rate for a given cost. With computers, external performance 
is concerned with the economical accomplishment of discrete 
tasks, but at the PMS level this translates into operation rates and 
cost of operations. 

For the PMS level we ignore all the fine structure of informa- 
tion processing and consider a system consisting of components 

that work on a homogeneous medium called information. Infor- 
mation comes in packets, called i-units (for information units), and 
is measured in bits (or equivalent units, such as characters). I-units 
have the sort of hierarchical structure indicated by the phrase: A 
record consists of 300 words; a word consists of 4 bytes; a byte 
consists of 8 bits. A record, then, contains 300 X 4 X 8 = 
9,600 bits. Each of these numbers-300, 4, 8-is called a length, 
since one often thinks of an i-unit as a spatial sequence of 
the next lower i-units of which it is composed. For example, 
one speaks of “word length” and of a record being “300 words 
long.” 

Other than being decomposable into a hierarchy of factors, 
i-units have no other structure at  the PMS level. They do have 
a referent, that is, a meaning. Thus it is possible to say of an 
i-unit that it refers to an employer’s payroll, to the pressure of 
a boiler, or to a prime number satisfying certain conditions. To 
do so, of course, the i-units encode the information necessary to 
make the reference. At the PMS level we are not concerned with 
what is referred to, but only with the fact that certain components 
transform i-units but do not modify their meaning. In fact, these 
meaning-preserving operations are the most basic information- 
processing operations of all, and they provide the basic classi- 
fication of computer components. 

PMS primitives 

In PMS there are seven basic component types, each distinguished 
by the kinds of operations it performs: 

Memory, M .  A component that holds or stores information 
(i.e., i-units) over time. Its operations are reading i-units out 
of the memory and writing i-units into the memory. Each 
memory that holds more than a single i-unit has associated with 
it an addressing system by means of which particular i-units 
can be designated or selected. A memory can also be consid- 
ered as a switch to a number of submemories. The i-units are 
not changed in any way by being stored in a memory. 

Link, L .  A component that transfers information (i.e., i-units) 
from one place to another in a computer system. It has fixed 
ports. The operation is that of transmitting an i-unit (or a 
sequence of them) from the component at  one port to the 
component at  the other. Again, except for the change in spatial 
position, there is no change of any sort in the i-units. 

Control, K .  A component that evokes the operations of other 
components in the system. All other components are taken to 
consist of a set of discrete operations, each of which, when 
evoked, accomplishes some discrete transformation of state. 
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With the exception of a processor, P, all other components are 
essentially passive and require some other active agent (a K) 
to  set them into small episodes of activity. 

Switch, S.  A component that constructs a link between other 
components. Each switch has associated with it a set of possible 
links, and its operations consist of setting some of these links 
and breaking others. 

Transducer, T. A component that changes the i-unit used to 
encode a given meaning (i.e., a given referent). The change may 
involve the medium used to encode the basic bits (e.g., voltage 
levels to magnetic flux, or voltage levels to holes in a paper 
card), or it may involve the structure of the i-unit (e.g., bit-serial 
to bit-parallel). Note that T’s are meaning-preserving but not 
necessarily information-preserving (in number of bits), since the 
encoding of the (invariant) meaning need not be equally opti- 
mal. 

Data-operation, D. A component that produces i-units with 
new meanings. It is this component that accomplishes all the 
data-operations, e.g., arithmetic, logic, shifting, etc. 

Processor, P. A component that is capable of interpreting a 
program in order to execute a sequence of operations. It consists 
of a set of operations of the types already mentioned-M, L, 
K, S, T, and D-plus the control necessary to obtain instruc- 
tions from a memory and interpret them as operations to be 
carried out. 

Throughout PMS (and ISP, too) an operation is taken to  mean 
a transformation of bits from one specific memory to another. For 
instance, it is an operation to transmit a word of information from 
memory M to memory M’; it is a different operation to transmit 
a word from memory M’ to M”. Similarly, it is an operation to 
add the contents of memory M to that of M’ and a different 
operation to add the contents of M’ to M”. 

The reason for emphasizing this point is that one often talks 
as if addition were an operation, ignoring the specific locus of the 
operands. In a discussion of computer systems, an operation must 
include specification of the locus of its operands. The reason is 
that the physical devices that realize operations are always local- 
ized in space. If, for instance, we wish to have a physical device 
that corresponds to addition on operands anywhere in some mem- 
ory, we must couple the physical device that adds with other 
devices that either transmit information to and from the memory 
to the adder or (more exotic) that modify the adder to have differ- 
ent cells of memory as its terminals. Thus the symbol + is to be 
taken as an incomplete specification of an operation. 

Computer model (in PMS) 

Components of the seven types can be connected to make stored- 
program digital computers, abbreviated by C. For instance, the 
classical configuration for a computer is 

C : = Mp-Pc-T-X 

Here Pc indicates a central processor and Mp a primary memory, 
namely, one which is directly accessible from a P and holds the 
program for it. T is a transducer connected to  the external environ- 
ment, represented by X. (The colon-equals (: =) indicates that C 
is the name of what follows to the right.) Thus a computer is 
a central processor connected to its primary memory on the one 
hand and to a transducer on the other, which is what an input/ 
output device is. 

Actually the classic diagram had four components, since it 
decomposed the Pc into a control (K) and an arithmetic unit or 
data-operation (D): 

b~p- K - T ~ M S ~ - X  o r  M ~ - D - - T / M S - X  

D I ‘.\I; 
where the solid information-carrying lines are for instructions and 
their data, and the dotted lines signify control. 

Often logic operations were lumped with control, instead of 
with data operations, but this no longer seems to  be the appro- 
priate way to decompose the system functionally. 

If we associate local control of each component with the ap- 
propriate component, we get 

L J 

where the solid lines carry the information in which we are inter- 
ested, and the dotted lines carry information about when to evoke 
operations on the respective components. The solid information- 

‘The ‘ ‘ I ”  expresses mutually exclusive alternatives. Here, a T or Ms exists 
at the periphery. 
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carrying lines between K and Mp are instructions. Now, suppress- 
ing the K’s, then lumping the processor state memory, the data 
operators, and the control of the data-operations, and processor 
state memory to form a central processor, we again get 

Mp-Pc-T-X 

Computer systems can be described in PMS at varying levels 
of detail. For instance, in the diagrams above we did not write 
in the links (L’s) as separate components. These would be of inter- 
est only if the delays in transmission were significant to the dis- 
cussion at hand or if the i-units transmitted by the L were different 
from those available at its terminals. Since this is not usually the 
case in current computers, one indicates simply that two com- 
ponents (e.g., an Mp and a Pc) are connected together. Similarly, 
often the encoding of information into i-units is unimportant; then 
there is no reason to show the T’s. The same statement holds for 
K’s. Sometimes one wants to show the locus of control, say when 
there is one control for many components, as in a tape controller, 
but often this is not of interest. Then there is no reason to show 
K’s in a PMS diagram. 

As a somewhat different case, D’s never occur in PMS diagrams 
of computers, since in the present design technology D’s occur 
only as subcomponents of P’s. If we were to make PMS-type 
diagrams of analog computers, D’s would show extensively as 
multipliers, summers, integrators, etc. There would be few mem- 
ories and variable switches. The rather large patchboard would 
be represented as a very elaborate manually fixed switch. 

Components are often decomposable into arrangements of 
other components. Thus, most memories are composed of a 
switch-the addressing switch-and a number of submemories. 
Thus a memory is recursively defined. The decomposition stops 
with the unit memory, which is one that stores only a single i-unit 
and hence requires no addressing. Likewise, a switch is often 
composed of a cascade of one-way to n-way switches. For example, 
the switch that addresses a word on a multiple-headed disk might 
look like 

- S (random)-S (random)-S ( I  i near)-S (cyclic)-M (word) 
\ \ \ \ 

The first S(random) selects a specific Ms.disk,drive,unit; the sec- 
ond S (random) is a switch with random addressing that selects the 
head (hence the platter and side); S(1inear) is a switch with linear 
accessing that selects the track; and S(cyc1ic) is a switch with 
cyclic addressing that finally selects the M(word) along the circular 

track. Note that the switches are realized by differing technologies. 
The first two S(random)’s are generally electronic (AND-OR gates) 
with selection times of 10 - 100 microseconds or perhaps electro- 
mechanical (relay). The S(1inear) is the electromechanical action 
of a stepping motor or a pneumatic-driven, servomechanism- 
controlled arm which holds the read-write heads; the selection 
time for a new track is 50 - 500 milliseconds. Finally, the S(cyclic) 
is determined by the rotation time of the disk and requires from 
16 - 60 milliseconds, depending on the speed (3,600 - 1,000 

We can write such decompositions of a component into sub- 
components either when we actually know the structure of the 
component or even when we know only the behavior. For example, 
we could write a memory as random access (M.random) even if 
it was, in fact, cyclic, as long as its behavior as far as the larger 
system was concerned took no account of its cyclic character, 
accepting the average access time as the random-access time. 

When people speak of the control element of a computer, they 
often refer mainly to the processors-not to the control of a disk 
or magnetic tape, which, however, can often be more complex. 
When we suppress detail, the control often disappears from a PMS 
diagram. Similarly, when we agglomerate primitive components 
(as we did above when combining Mp and K(Mp) to be just Mp) 
into the physically distinct subparts of a computer system, a sepa- 
rate control, K, often occurs. The functionally and physically 
separate controll has evolved in the past decade. These controls, 
often as big as a Pc, can be computers with stored control pro- 
grams. When we decompose a compound control, we find data- 
operations (D) for calculating addresses or for error detection and 
error correction data; transducers (T) for changing logic signal 
levels and information flow widths; memory (M) as it is used in 
D, T, K, and for buffering; and finally a large control (K) which 
coordinates the activities of all the other primitives. 

It should be clear from the above discussion that components 
are named according to the function they perform and that they 
can be composed of many different types of components. Thus, 
a control (K) may have memory (M) as a subcomponent, and a 
memory M may have a transducer (T) as well as a switch (S) as 
subcomponents. All these sibcomponents exist to accomplish the 
total function of the component and do not make the component 
also some other type. For instance, the M that does a transduction 
(T) from voltages on its input wires to magnetism in its cores and 
a second transduction from magnetism to voltages on its output 
wires does not thereby become a transducer as far as the total 
‘A variety of names for K s  are used: controller, adapter, channel, buffer, 
interface, etc. 

r’pm). 
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system functioning is concerned. To the rest of the system all the 
M can do is to remember i-units, accepting and delivering them 
in the same form (voltages). In the Appendix at the end of this 
book we define for each type both a simple component and a 
compound component, reflecting in part this fact that complex 
subsystems can be put together to perform a single function from 
the viewpoint of the total system. For example, a typewriter may 
have 4-6 simple information transduction channels. 

PMS notation 

In the above discussions we used various notations to designate 
additional specifications for a component, for example, Mp for a 
functional classification, and S(cyclic) for a type of access function. 
There are many other additional specifications one wants to give- 
so many that it makes no sense to enumerate them all in advance. 
A fixed position notation, such as standard function notation, 
F(x,y,z), where the first, second, and third argument places have 
fixed interpretation, is not suitable. Instead we agree on a single 
general way of providing additional specifications. If X is a com- 
ponent, we can write 

X(a,:v,;a,:v,; . . .) 
to indicate that X is further specified by attribute a, having value 
vl, attribute a2 having value v2, etc. Each parameter (as we call 
the pair a:v) is well defined independently of whatever other 
parameters are given; hence there is no significance to the order 
in which they are written or the number which have to be written. 

According to this notation we should have written M(function: 
primary) or S(access-function:random) rather than Mp or S(ran- 
dom). This shows immediately the price paid for the general 
convention: It requires an excessive amount of writing (which 
would be even more apparent if a large number of parameters 
were given), and the extra information seems to be redundant in 
some cases. We compensate for these disadvantages by several 
conventions for abbreviating and abstracting parameters. All these 
conventions are listed in the Appendix. Let us illustrate them by 
showing some alternative ways of writing Mp: 

M(functi0n:primary) Complete specification. 

M(primary) 

M.primary 

Drop the attribute “function,” since 
it can be inferred from the value. 

Use the value outside the parentheses, 
concatenated with a dot. 

Use an explicitly given abbreviation, 
namely, primary/p (only if it is not 
ambiguous). 

Drop the concatenation marker (the 
dot), if it is not needed to recover the 
two parts (all components are given 
by a single capital letter-here M). 

Each of these rules corresponds to a natural tendency to abbreviate 
when redundant information is given; each has as its condition 
that recovery must be possible. 

In the full description in the appendix each component is 
defined and given a large number of parameters, Le., attributes 
with their domain of values. Throughout, we use the slash (/) to 
introduce abbreviations or aliases as we go.’ Thus p is introduced 
as an abbreviation for “primary” by writing primary/p when 
“primary” is given as one of the values of the attribute “function” 
of a memory with respect to processors (see page 607). The list 
of parameters in the Appendix does not exhaust those aspects of 
a component that one might want to talk about. For instance, there 
are many distinct dimensions for any component in addition to 
the information dimension: packaging, physical size, physical lo- 
cation, energy use, cost, weight, style and color, reliability, main- 
tainability, etc. Furthermore, each of these dimensions includes 
an entire set of parameters, just as the information dimension 
breaks out into the set of parameters we have given in the Appen- 
dix. Thus the descriptive system is an open one, and new param- 
eters are definable at any occasion. 

The very large number of parameters provides one of the major 
challenges to creating a viable scheme to describe computer sys- 
tems. We have responded to this in part by providing automatic 
ways in which one can compress the descriptions by appropriate 
abbreviation while still avoiding a highly cryptic encoding of each 
separate aspect. Abstraction is another major area in which some 
conventions can help to handle the large numbers of parameters. 
It often happens that one has only imperfect information about 
an attribute, or one wishes to give its value only approximately 
or partially. For instance, one attribute of a processor is the time 
taken by its operations. This attribute can be defined with a com- 
plex value: 

Pc(operation-times: add:4 ps, store:4 p, load:4 ps, 

multiply:16 ps, . . .) 

That is, the value is a list of times for each separate operation. 
However, one might wish to give only the range of these numbers; 

‘There is no difficulty in distinguishing this use from the use of the slash 
as a division sign; the latter takes priority, since it is the more specific 
use of the slash. 
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this is done without introducing a new attribute (i.e., operation- 
time-range) simply by indicating that the value is a range: 

Pc(operation-time: 4 -16 ps) 

Similarly, one could have given typical times or average times 
(under some assumed frequency mix of instructions): 

Pc(operation-time: 4 ps) 
Pc(operation-time: average: 8.1 ps) 

The primary advantage of this notational convention, which per- 
mits descriptions of values to be used in place of actual values 
whenever desired, is that it keeps the number of attributes that 
have to be defined much smaller than otherwise. 

A PMS example using the DEC PDP-8 

Let us now describe the PMS structure of an actual, though 
small, general-purpose computer, the DEC LINC-8, which is a 
PDP-8 with a LINC processor. Figure 1 gives the detailed PMS 
diagram. In explaining it, we will concentrate on making the 
notation clear rather than on discussing substantive features of the 
system (which are described in Chap. 5). A simplified PMS diagram 
of the system shows its essential structure: 

P.disp1ay-T- 

PC (‘L I NC) MS- 

L 

This shows the basic Mp-Pc-T-X structure of a C with the addition 
of a secondary memory (Ms) and two processors, one of which, 
Pc(’LINC), has its own Ms. Two switches are used: the 1/0 Bus 
which permits access to all the devices, and the Data Break to 
Mp via Pc for high-data-rate devices. There are many other 
switches in the actual system, as one can see from Fig. 1; for 
example, Mp is really one to eight separate modules connected 
by a switch S to Pc. Also there are many T’s connected to the 
input/output switch, Sio, which we collapsed as a single T, and 
similarly for S(’ Data Break). 

Consider the Mp module. The specifications assert that it is 
made with core technology, that its word size is 13 bits (12 data 
bits plus one other with a different function); that its size is 4,096 

words; and that its operation time is 1.5 ps. We could have written 
the same information as 

M(functi0n:primary; techno1ogy:core; operation-time: 1.5 p s ;  
size: 4096 w; word: (12 + 1) b) 

In Fig. 1 we wrote only the values, suppressing the attributes, since 
moderate familiarity with memories permits an immediate infer- 
ence about what attributes are involved. For example, it is com- 
mon knowledge that computer memories store information in 
words; therefore 4096 w must be the number of words in the 
memory. As another example, we did not specify the function of 
the additional bit in the word when we wrote (12 + 1) b. An 
informed reader will assume this to be a parity bit, since this is 
the common reason for having an extra bit in a word. If the extra 
bit had some unusual function, we would have needed to define 
it. That is, in the absence of additional information, the most 
common interpretation is to be assumed. 

In fact, we could have been even more cryptic and still com- 
municated with most readers: 

M.core(1.S ps/w; 4 kw; 12 b) 

This corresponds to the phrase “A 12-bit, 1.5-ps, 4k core store,” 
which is intelligible to any computer engineer. The 4 kw stands 
for 4 x 1,024 = 4,096, which again is known to computer 
engineers; however, if someone less informed took it to be 4 X 
1,000 = 4,000, no real harm would be done. 

Consider the magnetic tapes for Pc. Since there are eight 
possible tapes that make use of the same controller, K, through 
a switch S, we label them #0 through #7. Actually, # is an 
abbreviation for index, which is an attribute like any other, whose 
values are integers. Since the attribute is a unique character, we 
do not have to write #:3 (although we could). The additional 
parameters give information about the physical attributes of the 
encoding. These are alternative values, and any tape has only one 
of them. We use a vertical bar ( I ) to indicate this (as in BNF 
notation for grammars). Thus, 75 1 112 in/s says that one can have 
a tape with a speed of 75 inches per second or one with 112 inches 
per second, but not a tape which can be switched dynamically 
to run at either speed. 

For many of the components no further information is given. 
Thus, knowing that M.magnetic,tape is connected to a control 
and from there to the Pc tells generally what that K does. It 
is a “tape controller” which evokes all the actions of the tape, 
such as read, write, rewind; therefore these actions do not have 
to be done by Pc. The fact that there is only one K for many Ms’s 
implies that only one tape can be accessed at a time. Other infor- 
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Multiplexor; 

radial: 
from: 7 P , K ;  

I T. consol e - 
Mp @0;7)  !.-S2-Sdc?.-S4- - 

- K5- TCTeletype; IO char/s; 8 b/char; 64 char)- 

paper tape; (reader; 300 char/s)I (punch: - 
100 char/s): 8 b/char 3 

1 K--,[ 

"164 char/col 3 
"I 30 us/point; .01 1.005 in/point 3 

K-T incremental point plot; 300 point/s; .01 4 c i n/poi nt 
K-T(card; reader: 2001800 card/min) + 

K-T(card; punch; 100 card/min) + 

line; printer; 300 line/min; 120 col/line: - 
CRT: display: area: IO x IO in215 x 5 in2; + 

K- T(liqht; pen)8 

K- T(Dataphone; 1.2 - 4 . 8  k b / s ) -  

K(#l : IO)-L(analog; output; 0 - -10 volts)+ 
K-S-L(#0:63; analog: input; 0 - -10 volts)- 

-K- S- K(#0:63; Teletype; 110, 180 b/s)- 

f12,l parity) b/w 
2 P(disp1ay; '338) T(#0:3; CRT: display: area: IO x IO in )-, 

T(#0:3; light: pen)> 
T(#0:3: push buttons: console)+ 
T.console 

T(#0:15; knobs, analog; input)+ 

T(CRT: display: 5 x 5 in2)+ 
T(digita1; input. output)- 

T('Data Terminal Panel: digital; input, output)- 

'Mp(core; 1.5 p/w; 4096 w: (12 + I )b )  

"S('Memory Bus) 

3Pc(l - 2  w/instruction: data: w, i,bv; 12 b/w: M.proc~ssor statei2; - 3 1 )  w: technolooy: transistors; 

4S(tl/0 Bus; from: Pc; to; 64 K) 

'K(I .- 4 instructions; M.buffer(l char-2 w)) 

antecedents: PDP-5; descpndants; PDP-85, PDP-81 ,  PDF-L) 

Fig. 1. DEC LINC-8-PDP-8 PMS diagram. 
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mation could be given, although that just provided is all that is 
usual in specifying a controller in an overall description of a sys- 
tem. (The next level of detail goes to  the structure of the actual 
operations and instructions and belongs to the ISP level, not the 
PMS level.) 

We have used several different ways of saying the same thing 
in Fig. 1 in order to show the range of descriptive notations. Thus 
the 64 Teletypes are shown by describing a single connection 
through a switch and putting the number of links in the switch 
above the connecting line. 

Consider, finally, the Pc in Fig. 1. We have given a few param- 
eters: the data-types, the processor state, the descendants, etc. 
These few parameters hardly define a processor. Several other 
important parameters are easily inferred from the Mp. The basic 
operation time in a processor is a small multiple of the read time 
of its Mp. Thus it is predictable that Pc stores and reads informa- 
tion in 2 x 1.5 p s  (one for instruction fetch, one for data fetch). 
Again, where this is not the case (as in the CDC 6600) it is neces- 
sary to say so. Similarly, the word size in the Pc is the same as 
the word size of the Mp: 12 data bits. More generally, the Pc must 
have instructions that take care of evoking all the components of 
the PMS structure. These instructions do not see the switches and 
controls as distinct entities; rather, they speak directly to the oper- 
ation of the M’s and T’s connected via these switches and controls. 

Other summary parameters could have been given for the Pc. 
None of them would come close to specifying its behavior 
uniquely, although to those knowledgeable in computers still more 
can be inferred from the parameters given. For instance, knowing 
both the data-types available in a Pc and the number of instruc- 
tions, one can come very close to predicting exactly what the 
instructions are. Nevertheless, the way to describe a Pc in full 
detail is not to add larger and larger numbers of summary param- 
eters. It is more direct and more revealing to develop a description 
at the level of instructions, which is the ISP description. 

Let us end this introduction to the PMS descriptive system by 
returning to a critical item in its design philosophy. A descriptive 
scheme for systems as complex and detailed as digital computers 
must have the ability to range from extremely complete to highly 
simplified descriptions. It must permit highly compressed descrip- 
tions as well as extensive ones and must permit the selective 
suppression or amplification of whatever aspects of the computer 
system are of interest to the user. PMS attempts to fulfill these 
criteria by providing simple conventions for detailed description 
with additional conventions that permit abbreviation and abstrac- 
tions, almost without limit. The result is a notation that may seem 
somewhat fluid, especially on first contact in such a brief intro- 

duction as this. But once assimilated, PMS seems to allow some 
of the flexibility of natural language within enough notational 
controls to enhance communication considerably. 

ISP level of description 

The behavior of a processor is completely determined by the 
nature and sequence of its operations. This sequence is completely 
determined by a set of bits in Mp, called the program, and a set 
of interpretation rules that specify how particular bit configura- 
tions evoke the operations. Thus, if we specify the nature of the 
operations and the rules of interpretation, the actual behavior of 
the processor depends solely on the particular program in Mp (and 
also on the initial state of data). This is the level at which the 
programmer wants the processor described-and which the pro- 
gramming manual provides-since he himself wishes to determine 
the program. Thus the ISP (Instruction-set processor) description 
must provide a scheme for specifying any set of operations and 
any rules of interpretation. 

Actually, the ISP descriptive scheme need only be general 
enough to cover some broad range of possibilities adequate for 
past and current generations of machines along with their likely 
descendants. As we saw earlier when discussing the PMS level, 
there are certain restrictions that can be placed on the nature of 
a computer system, specializing it from the more general concept 
of a discrete state system. It processes a medium, called informa- 
tion; it is a system of discrete components linked together by 
information transfers; and each component is characterized by a 
small set of operations. These assumptions are built into the PMS 
descriptive scheme in an integral way. Similarly, for the ISP level 
we can add two more such restrictions, which will in turn provide 
the shape of its descriptive scheme. 

The first specialization is that a program can be conceived as 
a distinct set of instructions. Operationally, this means that some 
set of bits is read from the program in Mp to a memory within 
P, called the instruction register, M.instrnction/M.i. This set of 
bits then determines the immediately following sequence of oper- 
ations. Only a single operation may be determined, as in setting 
a bit in the internal state of the P; or a substantial number of 
operations may be determined, as in a “repeat” instruction that 
evokes a search through Mp. In a typical one- or two-address 
machine the number of operations per instruction ranges from two 
to five. In any event, after this sequence of operations has occurred, 
the next instruction to be fetched from Mp is determined and 
obtained. Then the entire cycle repeats itself. 
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The cycle of activity we have just described is called the inter- 
pretation cycle, and the part of the P that performs it is called 
the interpreter. The effect of each instruction can be expressed 
entirely in terms of the information held in memories at the end 
of the cycle (plus any changes made to the outside world). During 
execution, operations may have internal states of their own as 
sequential circuits which are not represented as bits in memories. 
But by the end of the interpretation cycle, whatever effect is to 
be carried on to a later time has been staticized in bits in some 
mem0ry.l 

The second additional specialization is on the data-operations. 
A processor’s total set of operations can be divided into two parts. 
One part contains those necessary to operate other components 
given in the PMS diagram: links, switches, memories, transducers, 
etc. The operations associated with these components and the 
extent to which they can be indirectly controlled from P are highly 
restrained by the basic nature of the components and their con- 
trols. The second part contains those operators associated with a 
processor’s D component. So far we have said nothing at all about 
them, except to exclude them completely from all PMS com- 
ponents except P. These are the operations that produce bit pat- 
terns with new meaning-that do all the “real” processing or 
changing of informatiom2 If it were not for data-operations, the 
system would merely transmit information. As we noted in our 
original definitions (page 17) a 1’ (including a D) is the only com- 
ponent capable of directly changing information. A P can create, 
modify, and destroy information in a single operation. As we noted 
earlier, D’s are like the primitive components in an analog com- 
puter. Later, when we express instruction sets as simple arithmetic 
expressions, the D’s are the primitive operators, for example, 

‘This description holds true for a P with a single active control (the inter- 
preter). Some P s  (e.p., the CDC %OO) have several active controls and 
get involved in “overlapping” several instructions and in reordering opera- 
tions according to the data and devices available. With these, a more 
complex statement is required to express the same general restriction we 
have been stating for simple P’s: that the program can be decomposed into 
a sequence of bit sets (the instructions), each of which has local control 
over the behavior of the P for a limited period of time, with all interinstruc- 
tion effects being staticized as bits in M’s. 
21n principle, this view that only 11 components do “real” processing is 
false. It can be shown that a universal Turing machine can be built from 
M, S, L, and K components. The key operation is the write operation into 
M, which suffices to construct arbitrary bit patterns under suitably con- 
trolled switches. Hence arbitrary data Operations can be built up, The stated 
view is correct in practice in that the data-operations provided in a P are 
highly efficient for their bit transformations. Only the foolish add integers 
in a modern computer by table look-up. 

+, -, X ,  /, x 2”, A, V, @, concatenation, etc., which are evoked 
by the instruction-set-interpreter part of a processor. 

The specialization is that all the data-operations can be char- 
acterized as working on various datu-types. For example, there 
is a data-type called the signed integer, and there are data-opera- 
tions that add two signed integers, subtract them, multiply them, 
take their absolute value, test for which of the two is greater, etc. 
A data-type is a compound of two things: the referent of the bit 
pattern (e.g., that this set of bits refers to an integer in a certain 
range) and the representation in the bit pattern (e.g., that bit 31 
is the sign, and bits 30 to 0 are the coefficients of successive 
powers of 2 in the binary representation of the integer). Thus 
a processor may have several data-types for representing numbers: 
unsigned integers, signed integers, single precision floating point, 
double precision floating point, etc. Each of these is a distinct 
data-type, because it requires distinct operations to process it. On 
occasion, operations for several data-types may all be encoded into 
a single instruction with a data-type subfield that selects whether 
the data are fixed or floating point. The operations are still sepa- 
rate, no matter how packaged, and so their data-types remain 
distinct. 

With these two additional specializations-instructions and 
data-types-we can define an ISP description of a processor. A 
processor is completely described at the ISP level by giving its 
instruction set and its interpreter in terms of its operations, data- 
types, and memories. 

Let us concentrate first on the instruction set, leaving the 
interpreter until later. The effect of each instruction is described 
by an instruction-expression, which has the form 

condition + action-sequence 

The condition describes when the instruction will he evoked, and 
the action-sequence describes what transformations of data take 
place between what memories. The right arrow (+) is the control 
action (of a K) of evoking an operation. 

Recall that all operations in a computer system result in modi- 
fications of hits in memories. Thus each action in a sequence 
ultimately has the form 

memory-expression t data-expression 

The left arrow (t) is the transmit operation of a link and corre- 
sponds to the ALGOL assign operation. The left side must describe 
the memory location that is affected; the right side must describe 
the information pattern that is to be placed in that memory loca- 
tion. The details of data expressions and memory expressions are 
patterned on standard mathematical notation and are communi- 
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cated most easily by examples. The same is true of the condition, 
which is a standard expression involving boolean values and rela- 
tions among memory contents. 

Before we get to the examples, let us note two features of the 
action sequence. The first is that each action in the sequence may 
itself be conditional, Le., of the form, “condition + action-se- 
quence.” The second is that some actions are sequentially de- 
pendent on each other, because the result of one is used as an 
input to the other; on other occasions a set of actions are inde- 
pendent and can occur in parallel. The normal situation is the 
parallel one. Thus, in the action sequence 

Y, t x , ;  Y, t x,; Y, t x,; Y, t x ,  
all the transfers of information may be considered simultaneous. 
In particular, all the X’s have their values defined by the situation 
before the transfer. For example, if A and B are two registers, then 

( A t B ;  B t A )  

exchanges the contents of A and B. When sequence is required, 
the term “next” is used: thus 

(A t B; next B t A) 

transfers the contents of B to A and then transfers it back to B, 
leaving both A and B holding the original contents of B (and so 
this contrived example is essentially just A t B). 

An ZSP example using the DEC PDP-8 

The memories, operations, instructions, and data-types all need 
to be declared for a processor. Again these are most easily ex- 
plained by example, although full definitions are given in the 
Appendix at  the end of the book. Consequently, let us examine 
the ISP description of the Pc of the PDP-8, given in Fig. 2 (the 
PDP-8 is explained fully in Chap. 5). Throughout the book the 
ISP descriptions of computers follow a more highly structured 
format than the ISP notation requires, in order to help the reader 
see the similarities among the computers. 

Processor state. We first need to specify the memories of the Pc 
in detail, providing names for the various bits. Thus, 

AC(0:ll) the accumulator 

is a memory called AC, with 12 bits, labeled at 0 and 11 from 
the left. Comments are given in italics’-in this case that AC is 

‘There are a few features of the notation, such as the use of italics, which 
are not easily carried over into current computer character sets. Thus, the 
ISP of Fig. 2 is a publication language. 

called the accumulator (by the designers of the PDP-8). AC corre- 
sponds to an actual register in the Pc. However, the ISP does not 
imply any particular implementation, and names may be assigned 
to various sets of bits purely for descriptive convenience. The colon 
is used to denote a range or list of values. Alternatively, we could 
have listed each bit, separating the bit names by commas, as 

AC(0,1,2,3,4,5,6,7,8,9,10,11) 

Having defined a second memory, L (which has only a single bit), 
one could define a combined register, LAC, in terms of L and 
AC as 

LAC(L,0:11): = LOAC 

The colon-equal (:=) is used for definition, and the middle square 
box (0) denotes concatenation. Note that the bit named L of 
register LAC merely happens to correspond to the 1-bit L register. 

Primary memory state. In dealing with addressed memory, either 
Mp or various forms of working memory within the processor, we 
need to indicate multidimensional arrays. Thus 

Mp[0:7777,] (0: 11) 

gives primary memory as consisting of 10000, (Le., base 8) words 
of 12 bits each, being addressed as indicated. Such an address does 
not necessarily reflect the switching structure through which the 
address occurs, though it often will. (Needless to say, it reflects 
only addressing space, and not how much actual M is available 
in a PMS structure.) In general, only memory within the processor 
will occur as operands of the processor’s operators. The one ex- 
ception is primary memory (Mp), which was defined as a memory 
external to a P but directly accessible from it. 

In writing memories it is natural to use base 10 for all numbers 
and to consider the basic i-unit of the memory to be a bit. This 
is always assumed unless otherwise indicated. Since we used base 
8 numbers above for specifying the addressing range, we indicated 
the change of number base by a subscript, in standard fashion. 
If a unit of information other than the bit were to be used, we 
would subscript the angle brackets. Thus 

Mp[0:7777,](0: 1)64 

reflects the same memory. The choice carries with it, of course, 
some presumption of organization in terms of base 64 characters, 
but this would show up  in the specification of the operators (and 
is not true, in fact, of the PDP-8). We can also have multi- 
dimensional memories (Le., arrays), though no examples occur in 



Chapter 2 I The PMS and ISP descriptive systems 25 

OP 
I I  

Fig. 2.  These add the extra dimensions with an extra pair of brack- 
ets, for example, 

i p p a g e d d d r e s s 
1 1 1 l l 1  

M[a:b][c:d]. . . [g:h](x:y) 

The PDP-8 memory might better be described as: 

Mp[0:7][0:31][0: 127]( 0: 11) 

representing 8 memory fields with 32 pages per field, 128 words 
per page, and 12 bits per word. 

Instruction f o m a t .  It is possible to have several names for the 
same set of bits; e.g., having defined instruction(0:ll) we define 
the format of the instruction as follows: 

op(0:2) : = instruction(0:2) 
indirect,bit/ib : = instruction(3) 
page,O,bit/p: = instruction(4) 
page,address(0:6) : = instruction(5:ll) 

The colon-equal (: =) is used to allow us to assign names to various 
parts of the instruction. In effect, we are making a definition which 
is equivalent to the conventional diagram for the instruction: 

Notice that in page-address the names of all the bits have been 
shifted, e.g., page-address(4) : = instruction(9). 

The Appendix gives the permissible alphabet of symbols for 
ISP. In general, a “name” can be any combination of uppercase 
and lowercase letters and numerals, not including names which 
would be considered numbers (integers, mixed numbers, fractions, 
etc.). A compound name can be sequences of names separated by 
spaces ( ). In order to make certain compound names more reada- 
ble, a space symbol (-) may optionally be used to signify the 
non-printing character. Periods (.) and hyphens (-) are also used. 

The instruction set. With all the registers defined, we can give 
the instructions. These are shown on the second page of Fig. 2 
(there are some unexplained parts left on the bottom of the first 
page, to which we will return). The second page is actually a single 
expression, named Instruction-execution, which consists of a list 
of instructions. They are listed vertically down the page for ease 
of reading. Each instruction consists of a condition and an action 

sequence, separated by the condition arrow (+). In this case the 
condition is an expression of the form (op = octal digit). Recall 
that op is instruction(0:2), and so this expresses the condition that 
the operation code of the machine have a particular value. Each 
condition has been given a name in passing; e.g., “and” is the name 
of (op = 0). This provides the correspondence between the opera- 
tion code and the mnemonic name of the operation code. If this 
correspondence had been established elsewhere, or if we did not 
care what numerical operation code the “and” instruction is, we 
could have written 

and + (AC t AC A M[z]) 

We would not have known what condition the name “and” stood 
for but could have surmised (with little difficulty) that it was 
simply an equality test on the operation code. We will do this 
on a number of the ISP descriptions later in the book. Most gener- 
ally the form of an instruction is written as 

two’s complement add/tad(: = op = 1) + 
(LOAC t L O A C  + M[z]) 

Here, we simultaneously define the action of the tad instruction, 
its name, an abbreviation for the name, and the conditions for tad’s 
execution. The parentheses are, in effect, a remark to allow an 
inline definition. For example, the above single ISP statement is 
equivalent to 

two’s complement add/tad+ (LOAC +- LOAC + M[z]) 

followed by 

tad := (op = 1) 

All the instructions in the list constitute the total instruction 
repertoire of the Pc. Since all the conditions are disjoint, one and 
only one condition will be satisfied when a given instruction is 
interpreted; hence one and only one action sequence will occur. 
Actually, all operation codes might not be present, and so there 
would be some illegal op codes that would evoke no action se- 
quence. The act of selection is usually called operation decoding. 
Again, ISP implies no particular mechanism by which this is car- 
ried out. Normally a logic circuit works directly on the op part 
of the instruction register, and the way op codes are assigned is 
significant for the complexity of this decoding circuit. Thus, some- 
times one exhibits the instructions in a two-dimensional decoding 
diagram that makes it evident what these bit patterns are (see Fig. 
2 in Chap. 5) ,  rather than in a linear list. 

It might be wondered why we do not in general introduce some 
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Pc S ta t e  
A C 4 :  I I >  

L 

P C 4 :  1 I >  

Run 

I n t e  r r u p t  ,s t a  t e  

IO$ulse,l; I 0 4 u l s e J ;  I0 ,pu lseA 

Mp S ta te  
&tended memory i s  not included. 

M [ O : 7 7 7 7 8 ] 4 : l  I >  

Page,O[O:177 I 4 : l  I >  := M [ O : 1 7 7  ] & : I  I >  

A u t o , i n d e x [ O : 7 ] 4 : l l >  := P a g e g [ l O  : I 7  ] 4 : l l >  8 8  

8 8 

Accumulator 

Link bit/AC extension for  overf low and carry 

Program Counter 

1 when Pc i s  i n t e rpre t ing  in s t ruc t ions  or "running" 

1 when Pc can be interrupted;  under programmed control 

I O  pulses  to IO devices 

special  array o f  d i r e c t l y  addressed memory reg i s t e r s  

special  array when addressed i n d i r e c t l y , i s  incremented by 1 

1'c Console S ta t e  
Keys f o r  s t a r t ,  s top,  continue, examine (load from memory), and deposi t  ( s to re  i n  memory) are not  included. 

Oata  s w i t c h e s a : l l >  

Ins t ruc t ion  Format 

i n s t r u c t i o n / i d l : l l >  

o p c o  : 2> 

P a g e J Q  i t / p  

i n d i r e c t , b i t / i b  

p a g e , a d d r e s s 4  : 6> 
this,page<0:4> 

PC'<O: I I >  

I 0,se 1 e c  t<O : 5> 
i o,pl ,b i t 

i o,p2,b i t 

i o d 4 , b i t  

s ma 

s z a  

s n l  

:= i 4 : 2 >  

:= i<3> 
:= i<4> 
:= i<5:11> 

:= PC'<O:4> 

:= (PC<O:I I> - 1 )  

:=  i<3:8> 
:= i<lI> 

:= i < I O >  

:= id> 

:= i<5> 
:= i<6> 
:= i<D 

data entered v i a  console 

op code 
0, d i rec t ;  1 i n d i r e c t  memory r e f e r e m e  

0 seZects page 0; 1 s e l e c t s  t h i s  page 

s e l e c t s  a T or  Ms device 

these 3 b i t s  control the s e l e c t i v e  generation o f  -3 v o l t s ,  
0 . 4  ks pulses  t o  1/0 devices 

p b i t  f o r  s k ip  on minus AC,  operate 2 gy.oup 

u. b i t  f o r  s k ip  on zero AC 

+ b i t  f o r  s k ip  on non zero Link 

E f f ec t i ve  Address Calculation Process 

r<0:11> := ( 

-,i b + 2"; 

i b  A (IO < z" < 17 ) --f (M[z" ]  + M [ z " ]  + 1 ;  n e x t ) ;  

i b  3 M[z"]) 
8 -  8 

z'<O:11> := (7 i b  + z " ;  i b  + M [ z " ] )  

z"<O: I I >  := (page,O,bi t 4 this,pageopage,address; 

-,page,O,b i t + Oopage,address) 

LI microcoded i n s t r u c t i o n  or i n s t r u c t i o n  b i t l s )  w i th in  an i n s t r u c t i o n  

e f f e c t i v e  

auto indexing 

d i rec t  address 

Fig. 2. DEC PDP-8 ISP description. 
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I n s t r u c t i o n  I n t e r p r e t a t i o n  Process 
Run A ( In ter rupt , request  h I n t e r r u p t - s t a t e )  --f ( 

i n s t r u c t i o n  c M [ P C I ;  PC cPC + I ;  nex t  

i n s t r u c t i o n - e x e c u t i o n )  ; 

Run A I n t e r r u p t - r e q u e s t  A I n t e r r u p t - s t a t e  + ( 

M[O] t PC; I n t e r r u p t - s t a t e  t 0 ;  PC t 1 )  

I n s t r u c t i o n  S e t  and I n s t r u c t i o n  Execution Process 

I n s t r u c t i o n - e x e c u t i o n  := ( 

and (:= op = 0) --f (AC t A C  A M [ z l ) ;  

t a d  ( :=  op = I )  + (LOAC c LOAC + M[z l ) ;  

i s z  ( : =  op = 2 )  + (M[z ' l  + M [ z l  + 1 ;  n e x t  

(M [z ' l  = 01 + @ C  e P C  t 111; 
dca (:= op = 3)  --f (ME21 t AC; AC t 0); 

jms (:= op = 4)  --f (M[zl c.PC; nex t  PC c z  + 1 ) ;  

jmp (:= op = 5 )  + (PC + z); 
i o t  (:= op = 6) + ( 

i o - p l - b i t  --f IO-pulse-1 c I ;  n e x t  

io,p2,bit + I0,pulse-2 c I ;  nex t  

io,ph,bit i IO,pulse,lt c I ) ;  

o p r  (:= op = 7)  +Operate,execution 

) 

no i n t e r r u p t  i n t e r p r e t e r  

f e t c h  
execute  

i n t e r r u p t  i n t e r p r e t e r  

l o g i c a l  and 

two 's  complement add 

index  and s k i p  if zero  

depos i t  and c l e a r  AC 

jwnp t o  subroutine 

jWI0 
p i n  ou t  t r a n s f e r ,  microurogrammed t o  generate up t o  3 pu lses  

t o  an i o  device addressed by I0,select  

t h e  operate i n s t r u c t i o n  i s  de f ined  below 
end I n s t r u c t i o n  execut ion  

Operate I n s t r u c t i o n  S e t  
The microprogramed operate i n s t r u c t i o n s :  operate group 1, operate group 2, and extended a r i t h m e t i c  are d e f i n e d  as a separate 

i n s t r u c t i o n  s e t .  

Operate-execut ion := ( 

c l a  ( : =  i<4> = 1 )  + (AC c 0) ;  

op r - l  ( : =  io> = 0) + ( operate group 3 

c11 (:= i<5 = 1 )  + (L 0 ) ;  n e x t  p c l e a r  l i n k  

cma (:= id> = 1 )  + (AC C -  AC); u. complement AC 

cml ( : =  i<;r> = I )  + (L +7 L) ;  nex t  IL complement L 

i a c  (:= i<lI> = 1 )  --f ( L m c  C L ~ C  + 1 ) ;  n e x t  u. increment AC 
r a l  (:= i d : I O >  = 2 )  + (LWC + L m C  x 2 { r o t a t e ) ) ;  p r o t a t e  l e f t  
r t ~  (:= i<8:10> = 3) + (LOAC ~ L O A C  x 2' ( r o t a t e 3 ) ;  

r a r  (:= i<8:10> = 4) + (LOAC CLOAC / 2 ( r o t a t e ) ) ;  

r t r  ( :=  i<8:10> = 5 )  + (LOAC cLOAC / Z 2  ( r o t a t e l ) ) ;  

c l e a r  AC. Connnon t o  a l l  o.oerate i n s t r u c t i o n s .  

u, r o t a t e  twice  l e f t  

u r o t a t e  r i g h t  
p r o t a t e  twice  r i g h t  

o p r 3  (:= i<3 ,1 I>  = 10) i ( operate group 2 

s k i p  c o n d i t i o n  62 (id> = 1 )  --f (PC +PC + I ) ;  nex t  

s k i p  c o n d i t i o n  := ( ( m a  A (AC < 0 ) )  v (sza A (AC = 0 ) )  v ( s n l  A L)) 
u AC,L  s k i p  t e s t  

n s r  ( := i - ' 9  = 1 )  + (AC < -  AC v Data s w i t c h e s ) ;  

h l t  ( : =  i < 1 0 3 =  1 )  - (Run t o ) ) ;  
w "or" switches 
)I h a l t  or s top  
opt ional  FA1 d e s c r i p t i o n  EAE (:= i 4 , 1 1 >  = 1 1 )  -tEAF,instruction~xecution) 
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additional conventions into the language, e.g., list the instructions 
in a table with their mnemonic names in a special column, rather 
than write the whole affair as an expression. (In fact, if you ex- 
amine the first page of Fig. 2, you will note that the entire descrip- 
tion of the PDP-8 Pc is a single expression.) The reason is that 
although many processors fit such a format very well, not all do 
so, e.g., microprogrammed machines. By making the ISP descrip- 
tion a general expression for evoking action-sequences, we obtain 
the generality we need to cover all the variations. We will have 
two examples with the PDP-8 itself: the microprogrammed feature 
and the fact that the interpretive cycle simply becomes part of 
the total expression for the behavior of the processor. 

Let us now consider the action-sequence. We use standard 
mathematical infix notation. Thus we write 

AC t AC A M[z] 

This indicates that the word in Mp at address z is ANDed with 
the accumulator and the result left in the accumulator. It is as- 
sumed that the operation designated hy A is well understood. (The 
c, of course, is the transmit operation.) Each processor will have 
a basic set of operations that work on data-types of the machine. 
Here the data-type is simply the 12-hit word viewed as an array 
of hits. 

Operators need not involve memories actually within the Pc 
(the processor state). Thus, 

expresses a change in a word in Mp directly. That this must be 
mechanized in the PDP-8 by means of some register in Pc is 
irrelevant to the ISP description. 

We also use functional notation; for example, 

AC t abs(AC) 

replaces the contents of the AC with its absolute value. When 
an action has an unspecified function or operation we generally 
write 

A+f(A,B, . . . )  or A t u B  or A t B b C  

for function, unary operation, and binary operation, respectively. 

Efective-address calculation process. In the examples just given 
we used z as the address in Mp. This is the effective address and 

is defined as a conditional expression (in the manner of ALGOL 
or LISP): 

z (0 : l l )  := ( -, ib + z”; 
ib A (10, Q z” < 17,) + (M[z”] t M[z”] + 1); next 
ib + M[z”]) 

The right arrow (+) is analogous to the conditional sign used in 
the main instruction, equivalent to the “ i f .  . . then . . .” of 
ALGOL. The parentheses are used to indicate grouping in the 
usual fashion. However, we arrange expressions on the page to 
make reading easier. 

As the expression for z shows, we permit conditionals within 
conditionals and also the nesting of definitions (z is defined in terms 
of z”). Again, we should emphasize that the structure of such 
definitions may reflect the underlying hardware organization, hut 
it need not. When describing existing processors, as in this book, 
the ISP description often reflects the hardware. But if one were 
designing a processor, the ISP expressions would he stated as 
design objectives for the RT structure, and the latter might differ 
considerably. 

Special note should he taken of the opr instruction (op = 7) 
in Fig. 2, since it provides a microprogramming feature. There 
are two separate options depending on instruction(3) being 0 or 
1. But common to both is the operation of clearing the AC (or 
not), associated with instruction(4). Then, within one option 
(instruction(3) = 0) there are a series of independently executable 
actions (following the clearing of L); within the other (instruc- 
tion(3) = l),  there are three independently settable control ac- 
tions. The nested conditionals and the use of “next” to force se- 
quential behavior make it easy to see exactly what is going on 
(in fact a good deal easier than describing it in natural language, 
as we have been doing). 

The instruction interpreter. We now have all the instructions 
defined for the PDP-8, including the effective-address computation 
(z). It remains to define the interpreter. From a hardware point 
of view, an interpreter consists of the mechanisms for fetching a 
new instruction, for decoding that instruction and executing the 
operations so designated, and for determining the next instruction. 
A substantial amount of this total job has already been taken care 
of in the part of the ISP that we have just explained. Each instruc- 
tion carries with it a condition that amounts to one fragment of 
the decoding operation. Likewise, any further decoding of the 
instruction that might he done in common by the interpreter 
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(rather than by the individual operation circuits) is implied in the 
expressions for each instruction, and by the expression for the 
effective address. The only thing that is left is to fetch the next 
instruction and to execute it. 

In a standard machine, there is a basic principle that defines 
operationally what is meant by the “next instruction.” Normally 
the current instruction address is incremented by 1, but other 
principles are used (e.g., on a processor with a cyclic Mp). In 
addition, several specific operations exist in the repertoire that can 
affect what program is in control. The basic principle acts like 
a default condition: If nothing specific happens to determine 
program control, the normal “next” instruction is taken. Thus, in 
the PDP-8 we get an interpretation process that is essentially the 
classic fetch-execute cycle (ignoring interrupts): 

Run + (instruction t M[PC]; PC c PC + 1; next fetch 
Instruction-execution) execute 

The sequence is evoked so long as Run is true (i.e., its bit value 
is 1). The processor will simply cycle through the sequence, fetch- 
ing and then executing the instruction. In the PDP-8 there exists 
a halt operation that sets Run to be 0, and the console keys can, 
of course, stop the computer. It should be noted that the ISP 
descriptions in this book do not, generally, include console behavior. 

A state diagram (Fig. 3) is useful to represent the behavior of 
the instruction-interpretation process. As an instruction is inter- 
preted, the system moves from state to state. Any of the states 
can be null, in which case a simple transition is to be made to 
the successor of the null state. The K(instruction interpreter) con- 

f e t c h  
(read) 

Determines the 

instruct ion q 

operotion 
calculation decoding 

i“ 
\ 

Request 
operond 
f rom Mp 

/ 

?rand 

Multiple 
operands 

-L PCZ PC2 

operotion 
specif ied 

calculotion 
(0v.r) 

operand 
store 
(write) 

i i  
Restore 

results 

operond 
address 

calculation 
(ov. w: 

Return for s t r i n g  
Instruction complete or vector  da ta  fetch next instructioh 

’Mp control led s t a t e  
‘Pc control led s t a t e  

Note: Any s t a t e  may be null 

S t a t e  name 
soq/oq 
saq/oq 
so. o/a.o 
sav.r/ov.r 
sav.r/av r 
so/o 
sov.w/ov.w 
sav.w/ov w 

Time in a s t o t e  
toq 
t a q  
ta.0 
tov. r 
tav. r 
t o  
tav. w 
tav. w 

Meaning 
Operation t o  determine the inst ruct ion q 
Access ( t o  Mp) fo r  t h e  i n s t r u c t i o n  q 
Operat ion t o  decode t h e  operotion o f  q 
Operation t o  determine t h e  variable address v 
Access ( t o  Mp) read t h e  variable v 
Operat ion specif ied in q 
Operation t o  determine t h e  variable address v 
Access ( t o  Mp) t o  w r i t e  voriable v 

Fig. 3. ISP interpretation state diagram. 
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trols these movements according to the information in the instruc- 
tion. Which states are null and which of multiple alternative 
transitions occur depend on the instruction being interpreted. 

Within each state, various operations are carried out, under 
the control of subordinate K’s. Note that the upper states in Fig. 
3 are controlled by the Mp whereas the lower ones are controlled 
by the Pc. We have tried to use a simple mnemonic scheme to 
label these states: o for operation, q for instruction, a for access, 
r for read, and w for write. Similarly, we prefix the state with t 
to indicate the time duration of the state, and we may prefix the 
state by s. 

Figure 3 is somewhat more detailed than is usual. We will use 
it in Chap. 3 to describe a number of different processors. However, 
the figure simplifies the familiar fetch-execute cycle: 

Fetch: {oq, aq} 
t.fetch = toq + taq 

Execute: (00, ov.r, av.r, 0, ov.w, av.w} 
t.execute = too + t0v.r + tav.r + . . . + t0v.r 

+ tav.r + . . . + to + t0v.w + tav.w 

Consider, by way of example, the tad instruction of the PDP-8, 
using the general state diagram of Fig. 3. From the ISP, the net 
effect is 

Run + (instruction t M[PC]; PC t PC + 1; next 
tad (: = op = 1) + (LU AC +LO AC + M[z])) 

where 

z(0: 11) : = (specijies the effective-address calculation process) 

The state diagram has more detail to explain the computer’s 
behavior with respect to timing and its temporary registers. (Note 
a complete state diagram for the physical PDP-8 is given in Fig. 
11 of Chap. 5.) The actual state table appears on page 31. 

Notice again that the ISP description does not determine the 
way the processor is to be organized to achieve this sequencing 
or to take advantage of the fact that many instructions lead to 
similar sequences. All it does is specify unambiguously what oper- 
ations must be carried out for a program in Mp. The 1SP descrip- 
tion does specify the actual format of the instruction and how it 
enters into the total operation, although sometimes indirectly. For 
example, in the case of the and instruction (op = 0), the definition 
of AC shows that the AC does not depend on the instruction, and 
the definition of z shows that z depends on other fields of the 

instruction (indirect-bit, page,O,bit, page-address). Likewise, the 
form of the ISP expression shows that AC and PC both enter into 
the instruction implicitly. That is, in the ISP description all de- 
pendence on memory is exp1icit.l 

Data-types and data-operations 

This completes the description of the ISP for the PDP-8. For more 
complex machines the number of data-types and the operations 
on them are much more extensive. Then the data-types may be 
declared independently of the instruction set, in the same manner 
as we declared memory. 

In fact, the one major piece of organization in the structure 
of processors at the ISP le,vel that has not appeared in our example 
involves the data-types. Each data-type has a set of operations 
that are proper to it. Add, subtract, multiply, and divide are all 
proper to any numerical data-type, as well as absolute value and 
negation. Not all of these need exist in a computer just because 
it has the data-type, since there are several alternative bases, as 
well as some levels of completeness. For instance, notice that the 
PDP-8 first of all does not have multiply and divide (unless one 
has its special option), thus having a relatively minimal level of 
arithmetic operations, and second, it does not have a subtract 
operation, using a two’s complement add, which permits negation 
( -  AC) to be accomplished by complementation (TAC) followed 
by add 1. Still, the options are rather few, provided one has de- 
cided to include a given data-type in the repertoire. In the Ap- 
pendix at  the end of the book are given with each of the data-types 
(or classes thereof) the sets of operations that are proper to that 
data-type. 

The PDP-8, for example, does not have several data representa- 
tions for what is, externally considered, the same entity. An oper- 
ator that does a floating add and one that does an integer add 
are not the same. However, we will denote both by the same 
symbol (in this case, + ), indicating the difference parenthetically 
after the expression. Alternatively, the specification of the data 
type can be attached to the data. Thus, in the IBM 7094 we have 
the instructions 

‘This is not correct, actually. In physically realizing an ISP description, 
additional memories may be utilized (they may even be necessary). It can 
be said that in the ISP description these memories are implicit. However, 
a consistent and complete description of an ISP can be made without use 
of these additional memories whereas with, say, a single-address machine 
it does not seem possible to describe each instruction without some refer- 
ence to the implicit memories-as we see in the effective-address calcula- 
tion procedures where definitions look much like registers. 
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Stutes Time 

soq [ toq 

I S P  effect Operational description 

MA t PC; Calculate the address of the instruction, q, and calculate the address of the next 
instruction, q + 1. The address is stored in the address register, MA,  used 
to control the access. 

PC c PC + 1 

Sfetch 1 1 taq 1 ME tM[MA] saq 

s0v.r I 
Sexecute 

sav.r 

so 
Y 

Fetch the data from memory location, M[MA] (i.e., essentially M[PC]), and place 
the result in a buffer (temporary) register. 

t0v.r MA t f ( M B , I R )  Calculate the address of the data. 

~~ 

tav.r M B  t M[MA] Fetch the data from Mp. 

to L 0 A C t L  0 AC + M E  Do the operation specified by the instruction. 

so0 7 ] too ] IR tMB(O:2) 1 Calculate and decode the instruction 

Add -+ (AC t AC + M[e]); 
Add and carry logical word/ACL + ( 

AC t AC + M[e] {unsignedinteger}); 
Floating add/FAD -+ (AC c AC + M[e] {sf}); 
Unnormalized floating add/UFA -+ (AC c AC + M[e] {suf}); 
Double-precision floating add/DFAD + ( 

ACMQ t ACMQ + M[e]OM[e + 11 {df}); 
Double-precision unnormalized floating add/DUFA + ( 

ACMQ t ACMQ + M[e] 0 M[e + 11 {duf}) 

The first one, without a special indicator of data-type, is taken 
to be integer addition; the next, unsigned integer; the next, single 
precision floating point; the next, unnormalized single precision 
floating point; the next, double precision floating point; and the 
last, unnormalized double precision floating point. Although there 
are often clues that could be used to infer which form of addition 
is being defined (e.g., double precision takes two words) we label 
all but the integer operation. 

We use braces { } to differentiate which operation is being 
performed in the above examples. Thus, above, the data-type is 
enclosed in braces and refers to all the memory elements (oper- 
ands) of the expression. Alternatively, we use braces as a modifier 
on any memory to signify the information meaning. For example, 
a fixed point to floating point data-conversion operation would be 
given as 

AC{floating} t AC{fixed} 

We also use braces as a modifier for the operation-type. For exam- 
ple, shifting (left or right) can be a multiplication or division by 
a base, but it is not always an arithmetic operation. In the PDP-8, 
for instance, we have 

L 0 AC t L 0 AC x 2 {rotate} 

where the end bits L and AC(l1) are connected when a shift 
occurs (the operator is also referred to as a circular shift). 

In general, the nature of the operations used in processors are 
sufficiently familiar to the computer professional that no definitions 
are required, and they can all be taken as primitive. It is necessary 
only to have agreed upon conventions for the different data repre- 
sentations used. The Appendix provides the basic abbreviations. 
In essence, a data-type is made up recursively of a concatenation 
of subparts, which themselves are data-types. This concatenation 
may be an iteration of a data-type to form an array. Fig. 4 shows 
the structure of various data-types and how each is built from more 
primitive data-types. 

If required, an operation can be defined in terms of other 
(presumably more primitive) operations. It is necessary first to 
define the data format explicitly (including perhaps some addi- 
tional memory). Variables for the operands are permitted in the 
natural way. For example, binary single-precision floating-point 
multiplication on a 36-bit machine could be defined in terms of 
the data fields as follows: 
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t' 

Stacks  Linked Vec to r  n e l e m e n t s ( l i n e o r  l is t .  

M a t r i x - n  x m  e lemen ts  (Zd imen .  
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\ / 
I/ 

Double f l o o t i n g  Complex 
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' ? o r e  normally considered 
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Fig. 4. Common data-types recognized by processor hardware. 

sf mantissa/mantissa : = (0:27) 

sf exponent/exponent : = (28:35) 
sf exponent-sign : = (28) 

sf sign/sign : = (0) 

x l : =  x2 x x3{sf}:= ( 
x l  mantissa : = x2 mantissa x x3 mantissa; 
x l  exponent : = x2 exponent + x 3  exponent; 
next x l  : = normalize (xl) {sf}) 

where normalize is 

x l : =  normalize(x2) {sf} := ( 
( x l  mantissa = 0) -+ (xl exponent : = 0); 
((xi? mantissa # 0) A (x2(0) = x2( 1))) + ( 

x l  mantissa := xi? mantissa x 2; 
x l  exponent : = x2 exponent - 1; next 
x l  : = normalize(x2) {sf})) 

Three additional aspects need to be noted with respect to data- 
types: two substantive and one notational. First, not everything 
one does with an item of data makes use of all the properties of 
its data-type. For example, numbers have to be moved from place 
to place. This operation is not a numerical operation and does 
not depend on the item being a number. In fact, for the purpose 
of data transmission, the item is only a word (assuming it fits into 
a single word) and can be treated as such. Second, one can often 
embed one kind of operation in another, so as to coalesce data- 
types. We saw this to a small extent in the example above of the 
PDPS arithmetic operations. A more pervasive example is encod- 
ing the Mp addresses into the same integer data-type as is used 
for regular arithmetic. Then there need be no separate data-type 
for addresses.' The upshot of both these aspects can be seen 
below where we present an outline structure of data-types that 
shows how one data-type can be embedded in another for various 
purposes. 

Data-types embedded in other data-types for common operations 
word 

integer 
fraction 
mixed 
unsigned integer 
address integer 

boolean (single bit) 
integer sign (divide or multiply by two operations) 
field 

single precision unnormalized floating 

boolean vector 

single precision floating 

double word 
double precision integer 

fraction 
mixed 

double precision unnormalized floating point 
double precision floating point 

character string 
digit string 

'However logical such a course may seem, it is not always done this way. 
For example, the IBM 7090 (and other members of that family) have a 
15-bit address data-type and a 36-bit integer data-type, with separate 
operations for each. 
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The notational aspect is our use in ISP of a mnemonic abbre- 
viation scheme for data-types. We have already used sf for single 
precision floating point. More generally, as Table 1 shows, an 
abbreviation is made up  of a letter giving the precision, a letter 
giving the name, and a letter giving the length. A full treatment 
can be found in the Appendix. 

The simple naming convention does not take into account all 
that is known about a data-type. The information carrier for the 
data is only partially included in the length characteristic. Thus 
the carrier should also include the data base and the sign conven- 
tion for representing negative numbers. The common sign con- 
ventions are sign magnitude, true complement (i.e., two’s comple- 
ment for base 2) ,  and radix-1 complement (i.e., one’s complement 
for base 2) .  

For each of the data-types the processor must have the implied 
operators. In fact, being able to represent a particular entity is 
useful only if particular transformations can be carried out on the 
entity. The most primitive operation is data movement (i.e., trans- 
mission). Data movement can be thought of as a complex operation 
consisting of accessing (locating), reading, and writing. Data-types 
which represent numbers require the ability to perform the arith- 
metic operations +, -, X, /, abs ( ), sqrt, max, min, etc. The 
address integer is a special case of an arithmetic quantity, and 
often only additive arithmetic operations (+ and - )  are available 
for it. Boolean scalars (or vectors) require some subset of the 16 
logical operations (sufficient subsets are l, A or l, V). When 
character strings are represented, the concatenation, deletion, and 
transmission operations are required. Alternatively, we can look 
to string processing languages like SNOBOL or COMIT to see the 
operations they require. If the strings also represent numeric quan- 
tities, then the arithmetic operations are necessary. Almost all 
arithmetic and symbolic data require relational operations be- 
tween two quantities, yielding a boolean result (true or false). 
These relational operators are = and #, but for arithmetic quanti- 
ties includes >, >, <, <. The more complex structured data- 
types (e.g., vectors and arrays) also have a range of certain primi- 
tive operations such as scalar accessing and transmission. Typical 
operations of vectors are search and element-by-element compare 
operations. 

Relationship between PMS and ZSP 

In the introduction to this chapter we discussed briefly the rela- 
tionship between PMS and ISP. With the two described, we can 
now be more precise. There are really two questions here. First, 
where do these two descriptive systems fit in with respect to the 
general hierarchical view of computer structures discussed in 

Table 1 Abbreviations used to name data-types 

Precision Data-type-name Length-type 

fractional/f boolean/b * sca I a r 
quarter/q 
half/h 

“single/s 
double/d 
triple/t 

sign vector/v 
decimal digit/digit/d matrix 
octal digit/octal/o array 
character/char/ch/c string/st 
byte/by 

quad r u ple/q syllable 
word/w multiple/m 

+integer (eq. 10) signed integer/i 
unsigned integer/ui 
fraction/fr 
fixed / m ixed / mx 
floating/real/f 
unnormalized-floating/uf 
complex real/complex/cx 

Examples: 
w word 
bv boolean vector 
i integer 
sfr single precision fraction 
mx mixed 
di double integer 
10d 10 decimal digit (scalar) 
3.ch 3 character (scalar) 
chst character string 
sf single precision floating 
suf single precision unnormalized floating 
df double precision floating 
duf double precision unnormalized floating 

*May be optionally omitted from name 

Chap. 1. Second, what is the relationship between a PMS diagram 
of a processor and the ISP of that same processor. The questions 
are related, but each is best answered separately. 

With respect to the first question, the PMS system describes 
the topmost system level (recall Fig. 1 of Chap. l), above the 
programming, logic, and circuit levels. It lacks a characteristic that 
all these other levels share, namely, that of providing a complete 
description of the computer’s performance. The programming 
manual (with timing) tells everything that is significant about the 
performance of the computer (if it runs error-free). The same is 
true of the full description at the register-transfer level, the logic- 
circuit level, and on down to the electrical circuit level. But the 
PMS level is only an approximate description, from which only 
certain aspects of the system’s performance can be calculated. 
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The ISP does not constitute a distinct system level. Rather, it 
describes the interface between two levels, the register-transfer 
level and the programming level. It is used to define the compo- 
nents of the programming level-instructions, operations, and 
seqnences of instructions-in terms of the next lower level. In 
principle, and usually in fact, the language of the lower level is 
used to describe the components and modes of connections, one 
level up. In many ways ISP is a register-transfer language (in 
symbolic rather than graphical form-but as we noted in Chap. 
1, there appear always to be two such isomorphic notations at 
each system level). However, ISP has been extended by allowing 
the instruction-expression to be a general linguistic expression for 
a computation, just as if ISP were FORTRAN or ALGOL. This 
is what permits us to talk of ISP as not necessarily determining 
the exact set of physical registers and transfer paths. The instruc- 
tion-expressions describe the functions to be performed without 
entirely committing to the RT structure. 

If the ISP is the interface language between the RT and pro- 
gramming levels, what is its relationship to PMS, which is one 
level above? Every PMS component has associated with it a set 
of operations and a control structure for getting those operations 
executed in connection with the arrival of various external signals. 
As we noted earlier in the chapter, there is an ISP description 
for each operation in its context of control. That is, ISP is the 
interface language for describing all PMS components in terms 
of the register-transfer level, not just P. It happens that only one 
of these PMS components, the processor, carries with it an entire 
new systems level-the programming level. All the other compo- 
nents have no analog of the programming level and interface 
directly to the register-transfer level (or even in simple cases to 
the logic-circuit level). Precisely because of the simplicity, we have 
not bothered to develop ISP descriptions of other components of 
components other than processors. 

The second question, namely, the relation between the ISP and 
PMS descriptions of the same processor, arises from the ability 
to represent PMS components recursively as PMS structures made 
up from more elementary PMS components. Thus, Mp(32 kw, 16 b) 
can be considered as compounded of 32k memories, M(l w, 16 b), 
with an addressing switch, %random. Indeed, if one carries this 
to the limit, where the M’s are single bit memories (flip-flops), 
the S’s are one bit gates, a couple of specific K’s are defined for 
AND and OR, etc., then it is possible to draw a PMS diagram 
isomorphic to any logic circuit. Thus, a processor (P) can be rep- 
resented as a PMS involving M’s, K’s, D’s, s’s, etc., and at varying 
levels of detail. Since we also have a description of this same P 
in ISP, it is appropriate to consider the correspondence. 

First of all, every memory in the ISP description corresponds 
to a memory in the PMS description. The data operations in ISP 
imply corresponding D’s in PMS and every occurrence of transmit 
(c) implies a corresponding link between the M’s and D’s on the 
right hand side and the M on the left, being written into. That 
the instructions of the ISP are evoked only under certain condi- 
tions implies that a control (Koperation-decode) exist in the PMS 
structure. Similarly, the simple, two-state stored-program model 
(instruction-fetch, instruction-execute) for the interpreter implies 
an interpreter control (Kinterpreter). The action-sequence of each 
instruction, if it contains any semi-colons or next’s, requires addi- 
tional K and possibly additional M (if the structure involves em- 
bedded operations such as (A + B) x (C + D)). Thus for every 
ISP component there is an implied component in the PMS struc- 
ture of the processor. 

The PMS diagram model for a computer shown initially on page 
17 has the “natural units” implied by the ISP description (with 
the exception of the instruction format part) as suggested on page 
24. The data-operations D are therefore implied each time an 
operation is written. Each process implies a control which we 
lump into the single K of the figure. The model also shows both 
the arrival of instructions and the flow of data between the proc- 
essor (P) and memory (Mp). 

There are several memories within Pc which are not explicitly 
shown on page 17. These include temporary memory within D 
and the K for carrying out complex arithmetic operations. The 
interpreter control has temporary memory, of course. Finally, 
other kinds of memories have been omitted to simplify the model. 
In multiprogrammed computers a mapping control and memory 
would be used, and in pipeline or highly parallel processors there 
would be temporary memory for various buffering (e.g., instruc- 
tions and data). The Appendix lists the various memories of the 
processor. 

K(P), the control for the processor above, controls data move- 
ment among the Mp and M.processor,state and evokes the data- 
operations of D. Functionally, K(P) can be broken into several 
parts, each of which is responsible for a part of the overall instruc- 
tion interpretation and execution process, and each corresponds 
to a part of the ISP description. This decomposition is allowed 
in PMS, and if we did so, each component would contain an 
independent control for its own domain, e.g., a K(D), K(Mp), 
K(1nstruction-set interpreter). More elaborate processor structures 
imply having controls for functions like multiprogram mapping. 
The K(1nstruction-set interpreter) is the supervisory component 
which causes other processor K’s to be utilized in a complex 
processor. In an ISP description of a C, the interpreter usually 
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selects only the next instruction and then after decoding (or exam- 
ining it) proceeds to have the instruction executed by K(instruction 
execution). 
Resource Allocution. At the PMS level the concept of resources, 
their uses and allocation, becomes a major focus of analysis. This 
is obvious by now in multiprogramming and multiprocessing sys- 
tems where many programs share the same Mp and hence must 
be allocated space. But this holds equally well at all levels of 
detail. 

By giving a resource allocation diagram along with the state 
diagram (Fig. 5 )  we show the relationship of resources, their func- 
tion, and time for the instruction-interpretation process. In Fig. 
5 the add instruction for a simple 1 accumulator computer con- 
sisting of 1Pc-2Mp is given. The interpretation for Fig. 5 in ISP 
is as follows: 

Calculates the address of instruction q in state soq. 
t, - to = toq. 
PC + PC + 1; next aduunce the program counter 

The instruction is fetched (accessed) from Mp in state saq. 
t, - t, = taq. 
M.instruction t Mp[PC]; next 

The operation o to be performed and the address part, v, 
for the data in M.instruction to be added to A are obtained 
in state so0 + s0v.r. t, - t, = too + t0v.r 
M.address t Minstruction (v); next 

The data Mp[v] are fetched in state sav.r. t, - t, = tav.r 
M.temporary t Mp[M.address]; next 

The operation part o of the instruction is carried out on 
A; that is, the actual addition is performed on the data 
previously accessed in the state so. t, - t, = to. 
A t M.temporary + A; next 

In the state diagram, each state represents the time spent for 
a given activity. The two states at the top of the state diagram 
(Fig. 5 )  are waiting for primary memory accesses, and the three 
lower states represent processor activity waits. If we were to 
specialize the state diagram for the conventional 1 address/ 
instruction computer, we would need one additional state, repre- 
senting operand storage, sav.w, and this would occur after state, 
so. Note that we have ignored the operation decoding state, s0.0. 
Of course, conditional state transformation paths have to be added 
to describe all instructions (e.g., a complement-the-accumulator 
instruction has only states soq, saq, and so). Similarly, we could 

Instruction Data operand 
fetch from fetch from 

Mpt l  1 Mp # 0 

\ ~ I 
Instruction Data Instruction 

address address execution 
calculation calculation (operation on 

1 J’ t -  time spent in a state 

processor state) 

I t.cycle 

data fetch 

The instruction being 
interpreted IS 

Mp # 1 tad - ( A - A t M [ z l ) ;  

to t l  f2 

Instruction execution 

30 

Instruction Data address 
address colculotion colculotion 

Fig. 5. State and resource allocation diagram for a 1Pc-2Mp add instruc- 
tion-interpretation process. 

make a more general state diagram to handle the different proc- 
essors (e.g., multiple addresses/instruction, stack, and general reg- 
isters), as shown in Fig. 4. At the PMS level, a derivative of the 
state diagram, the resource allocation diagram is more useful be- 
cause it relates to the physical structure. 

A resource allocation diagram expresses the above instruction 
activity in terms of the time each unit is occupied with a particular 
activity. In this diagram a slightly more complex computer struc- 
ture with two primary memories has been assumed. In the case 
of the add instruction, the long memory-cycle time suggests that 
two memories can be used so that an operand be fetched while 
the instruction memory restoration occurs. These diagrams show 
the time various resources are utilized; thus performance and 
utilization can be measured. 

Resource allocation diagrams can express other time scales. 
Interest in operating-system software analysis is often in the ac- 
tivities on a longer time scale of the resources utilization as a 
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function of various programs and subprograms. They may show 
Mp memory occupancy in a multiprogrammed environment. Some 
other time scales of particular interest are the instruction(s), short 
instruction sequences or subprograms, and the program times. The 
first two time scales are influenced predominantly by the hardware, 
and the latter time scale is influenced by software and the ex- 
ternal environment. 

The resource allocation diagrams also can describe the utiliza- 
tion of the C’s resources over time (e.g., throughout the instruc- 
tion-interpretation process) and provide a basis for more detailed 
analysis and design. 

The design problem at the PMS-ISP interface is mainly one 
of resources scheduling. 

1 A fixed set of operations have to be performed on the jobs 
(here, a job is an instruction). 

Each instruction may create a few other small but definitive 
subjobs. 

There can be a fixed set of operators which handle various 
parts of the operations. 

Jobs (or instructions) enter P sequentially. 

2 

3 

4 

We may ask: 

1 

2 

How many operators of each type do we have? 

What is the scheduling policy for assigning instructions to 
the operators? 

How many instructions can be in P at one time, and in what 
order must the processing be performed? How are the jobs 
interlocked? 

3 

We do not attempt to answer the above questions but intend 
only to show the relationship of the various parts which define 
the problem. ISP implies a certain structure (conversely, PMS 
behavior is specified in terms of the ISP language). A particular 
ISP structure and a program denote a certain path through a state 
space as specified by a state diagram. Finally, the physical re- 
sources (in PMS) are constrained to operate according to the state 
diagram as expressed by using a resources allocation diagram. The 

resource allocation diagram can then be used to evaluate the 
structure’s performance (in PMS) at a higher level (e.g., the number 
of instructions/second it executes). 

I 
S t a t e  diaaram \ ,,,(behayj 

ISP (descr ip t ion  
and progrom)  

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - . 
RT(  description \ behavior ) 

RT level 

Summary 

The ISP descriptions of computers are usually given as an appendix 
to a chapter. We organize the description into the following units: 

I’ State 

P Console State 

Memory 
Declaration 

Instruction Format 
Data-type Formats and Special Data 

Effective-address Calculation Process 
Operation Definitions 

Process 

Interpreter and Instruction Interpretation Process 

Formats and 
Operators 

the Instruction- Instruction-set and Instruction Execution 
set Execution [ 

The above description format conveys a rather narrow-minded 
view of the ISP structure of computer systems. However, almost 
all present computers fit easily into such a format. We do not 
presume to say whether it will suffice for future ISPs. 

With the introduction given here and with the definitions and 
example in the Appendix at the end of the book, it should be 
possible to understand all the PMS diagrams and ISP descriptions 
used throughout the book. 



Chapter 3 

The computer space 

Introduction 

The preceding two chapters have provided a view of a computer 
system as an organized hierarchy of many levels: physical devices, 
electronic circuits, logic circuits, register-transfer systems, pro- 
grams, and PMS systems. We must remember that these are levels 
of description for what, after all, remains the same physical system. 
Each higher level describes more of the total system, but with 
a loss of detail. As this is an engineered system, great care is taken 
that each level represent adequately all the behavior necessary 
to determine the performance of the system. In natural systems 
too there are often many levels of description (e.g., in biological 
systems, from the molecule to the organelle to the cell to the 
tissue to the organ to the organism). 

However, in natural systems we usually depend on statistics 
to eliminate the details of lower levels and permit aggregation, 
and they always do so imperfectly. In computer systems, on the 
other hand, the aggregation is intended to be perfect. It fails, of 
course, and so both error detection and error correction exist as 
fundamental activities in computer systems. But these imperfec- 
tions are ascribed to the system itself and not to our description 
of it, which is just the opposite from how we treat natural systems. 
Only the PMS level of description is natural, in the sense of not 
being the intended result of the design. This is because perform- 
ance is defined ultimately at the programming level. The aggrega- 
tions and simplifications that go into a PMS description (e.g., 
measuring power by bits per second) are approximations, just as 
they are for any natural system (e.g., measuring the productivity 
of the economy by gross national product). 

We have provided descriptive systems for the top levels of the 
hierarchy: the PMS level and the ISP level, the latter defining the 
basic components of the programming level in terms of the RT 
level just below. These are the two descriptions that are of most 
concern in the overall design of a computer system. We did not 
define the lower levels, because they go beyond the focus of this 
book. Neither did we define the program level, partly because 
there exists no uniform description (no common programming 
language) and partly because the computer designer works mostly 
at the interface, defining the instruction set. This latter is what 
the ISP pr0vides.l 

'An increasingly popular view is that the program and RT levels (with 
ISP in between) are one, thus erasing the difference between hardware 

PMS and ISP permit the description of an indefinite number 
of computer systems-indeed, all that come within the scope of 
the current design art. (They might even be taken as a definition 
of what that current art is.) Some lo4 - lo5 individual computer 
systems have in fact come into existence, each of which can be 
described in PMS and ISP. They are not all radically individual. 
There are about lo3 types of computer systems represented, if 
we define two systems with the same Pc to be of the same type. 
(By exercising various options, a single computer type could take 
on lo5 different forms.) 

Of these thousand-odd types, we present in this book just 40.2 
What sort of total population do we have here? What does our 
miniscule sample look like when compared with the whole? More 
fundamentally, what are the significant aspects of the computer 
systems that should be used in a comparison or classification? These 
are the questions we will try to deal with in this chapter. We can 
be neither comprehensive nor elegant. There has simply not yet 
been done the necessary study on which to base an adequate 
taxonomy of computer systems. Hut we can present a rough picture 
based on the common lore of the field, filled in with our own 
predilections. 

For any system, either an entire computer, C, or a component, 
such as P, M, or S, it is convenient to distinguish its function, its 
performance, and its structure. The system is designed to operate 
in some task environment; to accomplish such tasks is its function. 
How well it does these tasks is its performance. Evaluation of 
performance is normally restricted to these tasks. Although it is 
always noteworthy when a system can perform adequately outside 
its specified domain (e.g., when a business computer is also a good 
control computer), it is rarely worth noting when a system cannot 
perform those tasks it was not built to perform. Thus, function 
denotes scope, and performance denotes an evaluation within that 
scope. 

Structure denotes those aspects of the system that allow it to 
perform. This includes descriptions of its subcomponents and how 
they are organized. Performance of subcomponents often may be 
considered structure as far as the whole system is concerned, 
especially if the performance can be taken as given. For example, 
early digital transmission-oriented telephone lines came in two 
capacities, -200 bits/sec and -2,000 bits/sec. From the view- 
point of the telephone system, these are performance measures; 

and software. The boundary appears to us not quite so invisible. We take 
the important task to be drawing the boundary in the right place for any 
specific design. 
2Counting each of the families in Part 6 as one computer. The IBM Sys- 
tem/360 is actually a series. 
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from the viewpoint of a computer system with remote terminals, 
these are structural parameters. 

Typically, design proceeds in a context in which the function 
of the to-be-developed system is taken as given and certain struc- 
tures are available; the problem is to construct a structure that 
achieves adequate performance. 

These terms apply to any designed system. For example, con- 
sider automotive vehicles. Function is a classification by use: cars 
to carry people, trucks to carry goods, racers to win competitions, 
antiques to satisfy nostalgia and collectors’ pride. Performance is 
those aspects of behavior relevant to function: maximum speed, 
power-to-weight ratio, cargo capacity, run versus not run for an 
antique, and so on. Structure is such things as number of wheels, 
shape of the vehicle, stroke volume, and gear ratios. Structure 
determines performance, although from the standpoint of design, 
of course, causality runs the other way: from function to perform- 
ance to structure. 

There are, then, three main ways to classify or describe a 
computer system: according to its function, its performance, or 
its structure. Each consists in turn of a number of dimensions. It 
is useful to think of all these dimensions as making up a large space 
in which any computer system can be located as a point. In such 
a space all the thousand computer types built to date constitute 
a sparse scatter, clustering (it is to be hoped) in various regions 
that make sense functionally and economically. The 40 computer 
types in this book sample this larger scatter in some way, to give 
a picture both of the entire space and of the part already explored. 

How many dimensions are there in this computer space? In- 
definitely many, if one wants to locate a computer with ultimate 
precision. In fact, if one wants to go all the way, one might as 
well give the PMS and ISP descriptions (and down through the 
RT, logic, circuit, and device levels). The virtue of thinking of 
such a space is to abstract to a small number of dimensions, and 
to select those that are most relevant. Of the functions, one wants 
those that most influence the design; of the performance, one 
wants those that make the largest difference; of structure those 
that not only affect performance but represent possible design 
choices by the computer engineer. In addition, one wants dimen- 
sions along which there is significant variation. Those aspects of 
computer systems which are common to all, such as the use of 
binary devices, though of supreme interest are not part of the 
computer space. 

What are the dimensions of the computer space? As we re- 
marked earlier, there is no sufficiently comprehensive theory of 
computer systems to tell us. Considerable lore has grown LIP from 
experience to date in designing machines. But at some point one 
must simply propose a set of dimensions and let them justify 

themselves after the fact. Table 1 gives our set for function and 
structure. Table 3 (page 52) gives our set for performance. 
Table 1 gives only a single dimension for computer system func- 
tion and 19 for computer structure; Table 3 gives 8 for per- 
formance. However, the dimensions are not all independent. Many 
of the structure dimensions are highly (though not perfectly) 
correlated. Thus, in Table 1 we have put the structure dimen- 
sions in seven horizontal groups, with the one at the left-hand 
side being the most relevant. (In the first structure group, we 
have also added two temporal dimensions, since a strong correla- 
tion with time exists.) For performance, the dimensions form a 
tree structure, where the higher dimensions are essentially aggre- 
gate summaries of the lower ones. Finally, there is a general 
correlation between overall performance and the various structure 
dimensions, in Table 1, with increasing performance as one moves 
down the dimensions. We have left off two important dimensions 
because we do not have values; these are reliability (mean time 
between failures per operation) and physical size density (e.g., 
bits/ft3), both of which increase with generation. 

With each dimension we have indicated the range of possible 
values. For some (Pcspeed, for example) this is a numerical quan- 
tity. However, for most, the range is a discrete set of design 
choices, which may or may not have a simple ordering. Clearly, 
these discrete values are selections from a meaningful subspace 
of design choices, but mostly we do not know how to construct 
that subspace. The values given are those that have arisen in 
practice, and they serve to classify the computers in the book. 
Obtaining a more rational subspace is a task for future research. 

The body of the chapter will be taken up  with a discussion 
of each of these dimensions, where we will discuss further their 
definition, the basis for their selection, and the reasons behind the 
arrangements of Tables 1 and 3. We give the entire set of 
dimensions here at the beginning, both for later reference and to 
emphasize the view of a single computer space in which com- 
puter systems can be located. We will refer to Tables 1 and 3 
from now on simply as the computer space or, more narrowly, 
as the computer structure space, the computer performance 
space, etc. 

History 

Like all systems subject to variation and selection, computers have 
evolved through time. So striking and rapid has been this evolution 
that the concept of “generation” has become firmly embedded in 
the computer engineering culture (to say nothing of the marketing 
culture and the view of the lay public). It is at best an ambiguous 
term, having none of the sharpness of its root term in biological 
evolution, where it is possible to draw a strict genealogical tree. 
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Nevertheless, the term is useful in stressing that the history of 
computer systems is not just a story of particular men discovering 
or building particular things, but of a somewhat more impersonal 
and widespread series of advances that have changed computer 
systems radically. 

The generations are best defined solely in terms of logic tech- 
nology: The first generation is that of vacuum tubes (1945 - 1958), 
the second generation is that of transistors (1958 - 1966), and the 
third generation is that of integrated circuits ( 1 9 6 6 ~ ) .  In fact, 
current usage describes hybrid logic technology machines, such 
as the IBM System/360, as third generation, and so this extension 
must he included. What will be called fourth generation is yet 
to emerge; most likely it will he medium and large scale integrated 
circuits with possibly integrated circuit primary memory. 

It is a measure of American industry’s generally ahistorical view 
of things that the title of “first” generation has been allowed to 
be attached to a collection of machines which were some genera- 
tions removed from the beginnings by any reasonable accounting. 
Mechanical and electromechanical computers existed prior to 
electronic ones. Furthermore, they were the functional equivalents 
of electronic computers and were realized to be such. They were 
also separated by a wide gap in performance and structure, both 
from each other and from vacuum tube machines. Thus, by rea- 
sonable reckoning, we are currently in the fifth generation of com- 
puters, not the third. But usage is now too well established to 
change. 

Actually, it was not always viewed thus. Figure 1 reproduces 
a genealogical tree of the early computers prepared by the Na- 

Present ’ generation 

First 
generation 

> Predecessors 

5 Roots 

. . . .’ I 

Fig. 1. The “family tree” of computer design. The remarkable growth of electronic computing systems in the Western world began primarily through 
government support of research and development in the universities. The need for data-processing facilities of increased capacity inspired further 
support for their development in  both educational institutions and private industry. The current generation of computers is predominantly the 
result of development by private industry. The tree lists many of the machines developed in these ways. At the roots are the contributions of many 
existing technologies to  the rapid growth from electromechanical t o  electronic systems. Some of the milestones are ENIAC (Electronic Numerical 
Integrator and Computer), the first electronic computer; EDVAC (Electronic Discrete Variable Automatic Computer), the first internally stored- 
program computer and first acoustic delay-line storage; MADM (Manchester Automatic Digital Machine), the first index registers (6 lines) and first 
cathode-raytube electrostatic storage; MTC (Memory Test Computer), the first core-storage computer. (Courtesy of National Science Foundation.) 
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Table 1 The computer-space dimensions 

Computer function 

Scientific 
Business 
Control 
Communications 

File control 
(switchinglstore and forward) 

Terminal 
Time sharing 

Logic Historical Cost/operation 
technologq Generation date Pc.speed (sec) ($/hit 1s) 

Mechanical 
Electromechanical 1930 10-1 1000 
(Fluidics) (1970) 1 0 - 2  
Vacuum tube first 1945 10-3 10 
Transistor second 1958 10-5 -1 
Hybrid 1964 10-6 
Integrated/lC third 1966 10-7 0.1 
Medium to large- fourth? 197? 10-8 0.01 

scale integrated/ 
MSI - LSI 

Word size Base Data-types 

8 b  binary word 
decimal integer1 address (integer) 

bitlbit vector 
instruction 
floating point 

I 12 b 

24 b 
32 b 
48 b character 
6 4 b  character string 

16  b 3 1  
? '  

character (6b) word vector 
character (8b) vector 

matrix 
array 
lists, stacks 

Addresses/instruction M.processor state (excluding program counter) 

0 address (stack) stack 
1 address 1 Accumulator 
1 + x (index) address 
1 + g (general register) address 
2 address 
3 address no explicit state 
n + 1 address 
Language determined 
Compound 
Microprogrammed 

accumulator and index registers 
general registers array 
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PMS structure Switching Processor function 

1 Pc 

1Pc-nPio n:m (time-multiple x) Pc (no io) 
1 Pc-nPio-P(display) Pi0 
2C (duplex) 2:n (dual-duplex) P.display 
nPc( mu1 t i  processing) 
nPc-P(array1 special algorithm) P.array 
nPc(paralle1 processing) P.vector move 
C (network) P.algorithm 
Network n /2 :n /2  (non-hierarchy) P.language 

Accessing algorithm Mp.size Ms.size Mp.speed (b /s )  Ms.speed (b/s) 

l :n (duplex) P.microprogram 
lPc(interrupt) Pc 

n:m (cross-point) 

Linear (stack) 
Linear (queue) 
Bilinear 
Cyclic-random 
Cyclic 
Random 
Content 
Associative 

tape (large) 
disk (medium) magnetic card (large)l 

drum (large) drum (small) photostore (large) > 106 
core (medium) core (smaller) > 1 0 7  
f i lm (small) > 108 
integrated circuit > 109 

r > 105 

M p  concurrency lnterprocess communication 

1 program subroutines and traps 
1 program with interrupts interrupts 
1 program with multiple concurrent 

subprograms (for example, 1Pc-nPio) 
Monitor or fixed program(M) + 1 program 
m + n swapped programs 
m + n programs (multiprogramming) 

interprocessor interrupts 

extracodes (programmed operators for 
monitor calls) 

No relocation 
1 segment 
2 segments (pure, impure) 
>2 segments 
Pages 

Fixed length, paged segments 
Multiple-length paged segments 

m + n segments with shared programs intersegment communication 

Variable-length segments 
Named segments 

Processor concurrency 
< -  

Serial by bit 
Parallel by word 
Multiple instruction streams, 1Pc 
Multiple data streams (arrays) 
1 instruction buffer 
n instruction buffer 
Look-aside memories 
Pipeline processing 
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tional Science Foundation in 1959. Notice that the Harvard Mark 
machines, which were constructed from relays (hence electro- 
mechanical) are accorded the place of honor as first generation 
(but Babbage is nowhere to be seen). 

It is not appropriate to provide here an adequate history of 
computer technology. The early story has often been told, starting 
with Babbage and early mechanical calculators, through Hollerith 
punched cards, on to the relay calculators a t  Bell Laboratories 
and Harvard, up to the birth of electronic machines with ENJAC, 
and finally to the stored-program concept with the von Neumann 
machine at the Institute for Advanced Studies (IAS), EDSAC at 
Cambridge University, and EDVAC at the University of Pennsyl- 
vania (with the contemporary developments by ZUSE in Germany 
often left out). And there have been a few scattered attempts to 
tell some of the story of the last three generations. But to date 
no really satisfactory historical account has been given. This is 
due in part to recency and in part to the difficulties of evaluating 
and sorting out the significant developments of a very complex 
technology undergoing rapid growth. 

What is appropriate here is to view the evolution of computer 
systems as measured by the dimensions of computer space and 
to localize the examples of this book in relation to calendar time 
and other computers. The concept of generation has led others 
to attempt the same thing by constructing a family tree, Fig. 1 
being but one example. But the relationships between computers 
is not nearly as simple as such a tree implies. We prefer to plot 
a straightforward t ime chart,’ as shown in Fig. 2, in  which we group 
the machines by manufacturer and within each group, by ac- 
knowledged family relationship (for example, 701-704-709-etc.). 
There is clearly relatively closer kinship within a company than 

‘Whereas we have checked the Time Chart numerous times for accuracy, 
we make no claim about the nuniber of errors it still has. We have relied 
on the following source data: (1) Original papers. These are mostly shown 
on the chart as “p”. Normally the reader can infer that the work pre- 
sented in a paper occurs prior to the actual publication. There are notable 
exceptions (e.g., the core memory, and Atlas papers) which were first pub- 
lished to lay claims to certain ideas. (2) Historical reviews. Primary his- 
torical papers include: Rosen [1969] and Serrell [1962]. Secondary his- 
torical review papers include: Bowden [1953], Campbell [1952], Chase 
[1952], Nisenoff [l966], and Samuel [1957]. (3 )  Encyclopedia. (4) Computer 
surveys. Two sources have been used: The Adams Associates Computer 
Characteristics Quarterly, published since 1960 [Adams, 1960; Adams 
Assoc., 1966, 1967, and 1968); and Martin H. Weik’s four Surtieys of 
Domestic Electronic Digital Computer Systems [Weik, 1955; Weik, 1961 
(third); and Weik, 1964 (fourth)]. The Adams’ Charts give the date of 
first delivery, and the Weik Survey gives the date the computer was first 
operating. (5) Manufacturer, organization or person supplied dates. In a 
few cases we have asked directly for sDecific oeerational and delivery 

between companies. One advantage of such a time chart is its 
depiction of the life history of a single system, showing how long 
it takes for computer systems to go from paper through prototype 
to production. 

Not all computer types are shown on the chart, there being 
about 250 out of the estimated 1,000 types. Lack of space (and 
of perseverance) accounts for the omissions. The major United 
States manufacturers, as well as some minor ones, and all ma- 
chines of substantial historical interest are represented. All the 
machines discussed in this book are gathered together on a sep- 
arate line (though they also occur elsewhere, if appropriate). 
Foreign machines are omitted, unless they are described in this 
book. In addition, the machines of many early minor manufac- 
turers are missing (ALWAC, ELECOM, etc.). 

The second part of the time chart arranges many computers 
by word size, to give the reader our classification. Unfortunately, 
only a few samples are given, owing to space limitations. Thus, 
the density on the graph does not indicate the true density of 
existing machines. Many small computers, which are dedicated to 
a particular task, are beginning to be built and a comparatively 
small number of very large computers have been built. On the 
bottom fine line we place the machines in this book. 

The third part of the time chart deals with technology by 
listing events along various dimensions that have been significant 
in the evolution of computers. Besides the dimensions in the 
computer space we have also added some dimensions describing 
software systems. Although we have not been able t o  deal with 
the programming level in this book (except for the ISP interface), 
its development is clearly as important as that of the hardware, 
and there exists strong mutual interaction between the two. 

The fourth (and final) part of the time chart gives selected 
technological events leading up to the development of the com- 
puter. It includes the early work of Babbage, desk calculators, 
and the Bell Labs and Harvard calculators. 

Many stories can be read from the chart. For example, note 
that the early Bell Telephone Laboratories relay calculator was 
used remotely at Dartmouth in 1940, about 20 years prior to 
remote use of time-shared computers. Note also that successful 
manufacturers tend to have a small number of computer families, 
but add members as the technology dictates. (We omit the exodus 
of computer companies.) We hope the reader gets as much en- 
joyment from browsing the chart as we have (even after we put 
it together!). 

The computer space in Table 1 and the time chart in Fig. 2 
provide an overall framework. We are now ready to consider each 
of the dimensions individually, starting with those of system func- 

information. tion, then the performance, and finally structure. 
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Fig. 2a. Time chart: computers by originator. 
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Function 

The most striking fact about function is the existence of only a 
single dimension, and with only a few values. Perhaps we have 
taken a simplistic view of the functions that computers perform, 
but we think our computer space represents reality: To wit, tkere 
is remarkably little shaping of computer structure to fit the func- 
tion to he performed. 

At the root of this lies the general-purpose nature of computers, 
in which all the functional specialization occurs at  the time of 
programming and not at  the time of design. However, it might 
seem that specialized environments would not require all the gen- 
erality, so that functional adaptation would still be possible. But 
this appears not to be so for two reasons. First, the level of opera- 
tions of the Pc (as defined in the ISP) is too basic to reflect the 
kind of specialization offered by the environment (think of infor- 
mation-transfer or conditional-transfer operations). Second, all 
environments ultimately require a variety of tasks in addition to 
the main specialized task. These include at  least language com- 
pilation or assembly, readable formatted output, debugging aids, 
and other utility routines. By the time these have been added, a 
substantial requirement for generality has been generated. 

However, this is not the whole story. A second part is the differ- 
ence between the computer type and the specific configuration 

assembled for a task. The latter is often carefully specialized to 
the function to be performed. But this is mostly the amount of 
Mp, the amount of types of Ms, and the number and types of T's. 
Within limit?, these are all items that can be attached to any type 
of computer (i.e., to any Pc) and are handled in an environment- 
independent way. Thus there is little specialization of computer 
types, but great specialization of particular configurations. That 
this should be the case indicates something about the nature of 
the functional specialization-that it can be expressed adequately 
in gross PMS terms, as more bits of storage and more data rate. 

There is still more to the story. Some functional specialization 
exists, as indicated in the dimension. This depends primarily on 
two kinds of things beyond the reach of the configurational adapta- 
tion described above. The first consists of demands for reliability, 
ruggedness, small size, etc. These have strong effects on design, 
but below the ISP and PMS levels. The second consists of demands 
for large amounts of processing power. One response to this again 
affects design at the lower levels of logic, devices, and circuitry 
and has little impact on design at  the ISP and PMS level. But 
response is also possible in terms of the data-types that are built 
into the ISP. Large machines have data-types that are appropriate 
to their tasks (with operations to match), and these affect the 
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design. In fact, this effect is the substance of the functional spe- 
cialization shown in the computer-space dimension. 

Finally, there is one last part of the story, and it is the most 
interesting of all. Various groups of computer engineers have felt 
strongly from time to time that functional specialization should 
exist, and they have set out to create such machines. These efforts 
have often produced machines that were different from the exist- 
ing main line of computers, i.e., were appropriately specialized. 
But the net effect of almost all such attempts has been that the 
new idea was seen to be good in general for all computers and 
was taken back into the main line of computers. Thus, what started 
out to be a functional separation turned out to be simply a way 
to produce rapid development of a more universally applicable 
computer. A classic example is the expansion of input/output 
facilities in creating a functionally specialized business machine, 
which simply led to better 1/0 facilities for all computers. We 
will have more to say about such examples as we discuss the values 
along the dimension. 

Computer-system function 

Scientific. The first machines were clearly designed for scientific 
calculations. In fact, Aberdeen Proving Grounds funded the early 
work on the ENIAC for the computation of ballistic firing tables. 
And the image used frequently by the early computer designers 
was the computer as a statistical clerk, the arithmetic unit being 
the desk calculator, the memory the work sheet, and the program 
the instructions that the mathematician gave to the clerk. 

From a design standpoint, scientific computation has posed two 
striking requirements. The first is the great accuracy of the num- 
bers, which has led to word lengths of 36 to 60 bits (11 to 18 
decimal digits of significance) and arises from the propagation of 
roundoff error during repeated arithmetic operations. The second 
is the emphasis on fast arithmetic operations, i.e., for arithmetic 
power. In the early machines the standard rule for estimating 
computation times was to count the number of multiplications in 
a program; all else could be neglected. The arithmetic unit has 
developed to where the floating point multiply is hardly more 
expensive than floating point add. This requirement on fast arith- 
metic, however, has really been directed at the logical design level, 
not at the ISP or PMS level. Thus, the main effect a t  the ISP is 
the adoption of long word lengths, floating point data-types (in 
addition to integers), and an extensive repertoire of arithmetic 
operations in the ISP. The main PMS effect is the emphasis on 
the classic “statistical clerk” PMS design. 

The press for increased arithmetic processing has led in recent 
times to the development of various forms of Pc concurrency, as 

in the look-ahead of Stretch (Chap. 34) and the n-instruction buffer 
of the CDC 6600 (Chap. 39). This might be considered a unique 
functional specialization for scientific computation. It is too early 
to tell, but it is our impression that, although the needs for sci- 
entific computation initiated the exploration of concurrency and 
parallelism, we will eventually see them in all computers above 
a certain power, whatever the task domain. Physical limits on 
component speed and signal propagation will make these tech- 
niques universally attractive. 

A better case for permanent specialization can be made in the 
special algorithm computers, which compute the fast Fourier 
transform or do vector operations. Here we finally have systems 
whose whole design is responsive to a narrow class of problems. 
This may extend to the very special kinds of Pc parallelism exhib- 
ited by the ILLIAC IV (Chap. 27), although there is substantial 
generality in such systems. 

Business. In the early days of electronic computing it was felt by 
many that there was a major functional separation between busi- 
ness computing and scientific c0mputing.l Scientific problems were 
“large computing-small input/output”; business problems were 
“small computing-large input/output.” Certainly most of the 
existing computers, designed for scientific computation, had poor 
input/output facilities. The IBM 701, for example, used the Pc 
to control everything dynamically, actually catching the bits from 
running tapes on the fly (by executing well-timed small loops). 
These design efforts for business computers resulted in the IBM 
702 (and subsequently the IBM 705,708, and 7080). This machine 
had two major innovations for IBM: It used characters, and it had 
a PMS structure that permitted more flexible and voluminous 
input/output. The latter feature was immediately incorporated 
into scientific computers, e.g., into the 709, and then into all large 
scientific computers as separate inpnt/output control (either Kio 
or Pio), for it was realized that there were also demands on input/ 
output for scientific calculation. Thus the bifurcation was tempo- 
rarily halted. 

The specialization to characters as a basic type (as opposed 
to long words) was already present in the IBM 702 but did not 
have its effect until 5 years later with the development of the IBM 
1401 (Chap. 18). The latter machine was adapted to business, both 
in being character-based and in being small enough so that small 
businesses could afford it. It was extremely successful (many thou- 
sands were produced) and certainly represents a successful func- 

‘Such feelings are still extant, but we are concerned here not with the 
validity of the feelings but with what they led to at a particular period 
of computer development. 
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tional specialization for business. However, it is interesting that 
the specialization has not been maintained, for the IBM Sys- 
tem/360 (Chaps. 43 and 44) is again a single machine, although 
it has in essence two internal ISP’s, one centered around characters 
and the other around floating point data-types, that is, a business 
and a scientific specialization residing side by side.l 

Control. The third functional value is a computer used for control 
in real time. Examples are process-control computers, aerospace 
computers, and laboratory instrument-control computers. The role 
of the computer is to act as a sophisticated control (K) in some 
larger physical process, and thus it plays a subordinate role. Their 
relatively late arrival was due to the high cost and unreliability 
of early computers, as well as to the lack of necessary interface 
equipment. 

The functional specialization is seen most strongly in the word 
size, which reflects the appropriate numerical data-type. The 
numbers used in control processes are generated by physical de- 
vices and are rarely better than 0.1 percent accurate. Since elab- 
orate arithmetic calculations are not called for, the numbers, and 
hence the word size, can be around 12 bits. Most control com- 
puters have been 12 to 18 bits/word. A second specialization, again 
reflecting appropriate data-types, is that all control computers are 
binary and have boolean operations. This arises because many of 
the external conditions to be sensed and effected are binary in 
nature. 

About the only other functional specialization of control com- 
puters is the interrupt2 capability to allow them to respond to 
many potentially simultaneous external conditions in real time. 
This provides apparent parallelism, though still using a sequential 
processor. This is another possible example of functional speciali- 
zation leading to reunification rather than divergence, for it has 
again been widely accepted that all general-purpose computers 
must have good interrupt capabilities. However, in actuality, 
interrupts, though not existing in early computers, were developed 
to obtain good input/output facilities, not for control computers. 

Chapters 7 and 29 give examples of aerospace computers, and 
Chap. 33 describes the IBM 1800, which is specifically designed 
for process control. As these examples show, a complex ISP is not 

lThe story above has been told exclusively in terms of IBM machines. 
Although this does not distort the picture too strongly in terms of total 
movements of the field, since IBM dominated the market, concurrent 
developments were taking place throughout the field. UNIVAC I was the 
first computer built by a manufacturer and did not have the idiosyncrasies 
we ascribe to IBM; on the other hand, the marketing effort for it was nil. 
*Apparently introduced in the UNIVAC 1103. 

necessarily required. This in part reflects the fact that control 
computers may retain their programs over their whole lifetime, 
so that programming and reprogramming is less important. (It is 
not absent, however, and so this is not a very strong functional 
adaptation.) 

Communication. The functional specialization of communication 
could be taken as a subfunction of a control computer. The function 
is mainly to behave as a switch. In a message-switching application 
the computer transfers messages from terminals (and links) into 
primary (and sometimes secondary) memories and then transfers 
them to other terminals (and links). In message switching, messages 
are first stored and then forwarded. The computer in a telephone 
exchange functions as a very sophisticated switch control. Here 
the computer reads the off-the-hook signal, detects the dialed 
numbers, rings the dialed parties, and finally sets the switches to 
connect the telephones together. In some instances, when it an- 
swers information inquiries about new telephone numbers or re- 
routes calls to other phones, it functions as a memory. Thus a 
communications computer is functionally a switch or a control 
for a switch. 

The main distinction between control computers and commu- 
nications computers is that the task environment of the latter, 
since it consists of digitally encoded messages (even in the case 
of the voice telephone exchange), can be handled directly by the 
communications computer. That is, the communications computer 
can do the work of transshipment and storage as well as control. 

There are no pure examples of communications computers in 
this book. However, the Pio’s serve essentially the same function 
within a single computer (Part 4, Sec. l), and they can profitably 
be examined from this viewpoint. 

File Control. We list this as a separate specialization only because 
a number of computers have been built to do exactly this task. 
The specialization is easily described: It is a communication com- 
puter with the messages being characters (since they are built for 
business), and with the large memory (the file) being considered 
to be part of the system. There are no examples of file-control 
computers in this book, but the early IBM 305 and UNIVAC file 
computers serve this function. An IBM 1800 is used as the control 
for a 1012-bit photo-optical memory, for example. 

Terminal. Since it is possible to obtain a separate computer system 
whose only function is to run a display, we have listed this as a 
separate functional specialization. In fact, it is better viewed (and 
almost always occurs) as a component of a larger computer system, 
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i.e., as a special Pio. The DEC 338 is such a P.display and is 
described both later in this chapter and in detail in Chap. 25. 

Time-sharing. The requirement to have a large number of users 
in simultaneous conversational interaction with a single large 
machine has bred a new specialization, that of the time-sharing 
computer. All the computers described above can be time-shared 
(even if they do not have interrupts or inherent multiprogram- 
ming). However, the emphasis on this mode of operation with the 
particular timing and flexibility requirements of human users doing 
general computing at  consoles in multiple software systems has 
led to a number of innovations in design. The most important 
is the virtual-memory techniques for achieving multiprogramming 
(described in Part 3, Sec. 6). There is also substantially increased 
complexity of PMS structure to handle the integration of large 
files, swapping memories, and the huge software systems that seem 
to be endemic to time-sharing systems. It is still too early to tell 
whether any of the design responses will produce permanent spe- 
cialization or will again simply be the first instigation of design 
features that will become universally used. 

In summary, we see that there is functional specialization and 
that it translates mostly into total size of the machine and into 
the data-types available. Many of the other design aspects created 
in response to functional specialization have instead become the 
common property of all machines. 

Performance 

For a device that does a complex job, it is meaningless to ask for 
a single precise index of performance. It is like asking for the 
average speed of a given model of car over its lifetime without 
specifying who will own it, where he will drive it, and what sort 
of terrain he will encounter along the way. Notice that the diffi- 
culty is as much in the complexity of the task environment as in 
the complexity of the internal workings of the machine. Specify 
everything about the environment, and the performance can often 
be given in a single figure. It may be hard to determine, but at 
least it is well defined. If you know the terrain and road conditions 
perfectly and how the car was driven, then from the structure of 
the car it is possible to figure out the instantaneous velocity and 
from this to construct the average speed. 

To put this in terms of computers, given a particular configura- 
tion for a computer system, given a particular program, and given 
a particular set of input data, it is possible to determine all aspects 
of the performance: how long it took, how much space was used, 
whether it was correct, and so on. But we are not interested in 

such specifics. We want to know how well the computer system 
performs, given some vague notion of the kind of task-programs 
and data-that will be used with it. Although we know that we 
cannot have adequate measures, we believe that there is something 
that can be said about the performance-that tells us that a CDC 
6600 is many times more powerful in actual performance than a 
PDP-8. 

An interesting way to look at the problem of specifying perform- 
ance is to play a simple game: We will give you a number, say 
4. You are to give the best description of computer systems involv- 
ing only that many parameters (equivalently, dimensions or attri- 
butes). That is, what is the best description of a computer that 
can be stated in four numbers? The game is easier to play if we 
speak of the dimensions, rather than the information content of 
the description (in bits, say).’ \lie have still not defined “best,” 
of course. It can be taken to mean the best prediction of the 
relative ordering of the computer system; better on the index 
means better on the same task.2 

To start at the beginning, what single number would you give 
to characterize a computer’s power? Such a question makes most 
people uncomfortable, since strong feelings exist for at least two 
kinds of numbers, dealing with speed and memory, respectively. 
If forced, we would probably settle for something related to proc- 
essing speed. The cycle time of the primary memory is a possibility 
because for simple machines it determines (limits) the operation 
rate. It is a structural parameter, but that is no reason to avoid 
it as a performance index. The average number of instructions per 
second, or operations per second, is a better indicator. Since the 
latter does not take into account the size of the word being proc- 
essed, perhaps average bits processed per second is the best single 
number. (We measure this number at the processor, and it may 
include both the instruction and data streams.) 

To take an average we must adopt some weightings. The sim- 
plest scheme is simply to add all the instruction (or operation) 
times and divide by their number. This is equivalent to weighting 
them equally, the rare ones and the common ones. If we want 
to do better than that we need some data. Several sets of relative 
frequencies, of instruction types, called “mixes,” have been used 
in the literature. Table 2 gives four examples. The Gibson mix is 

‘It is not fair, of course, to invent tricks to encode many conceptually 
independent dimensions into a single one, just to beat the limit. On the 
other hand, composite dimensions, such as average operation time, are 
perfectly acceptable. 
2Definitional precision is not appropriate, since we are not attempting to 
deal seriously with the technical questions of indices, only to illustrate the 
issues. 
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Table 2 Instruction-mix weights for evaluating computer power 

Arbuckle [1966] Gibson‘ Knight (scientijic) Knight (commercial) 

Fixed + / - 
X 

Floating + / - 
Floating x 
Floating + 
Load/store 

- 
. . .  
. . .  
9.5 
5.6 
2.0 

28.5 

6 
3 
1 

25 (move) 
Indexing 22.5 
Conditional branch 13.2 20 
Compare . . .  24 
Branch on character . . .  10 
Edit . . .  4 
1/0 initiate . . .  7 
Other 18.7 . . .  

‘Published reference unknown.  
‘Extra weight for either indirect addressing or index registers. 

probably the best known. The best source for such data comes 
from instruction counts of running programs. 

Knight takes the view (Fig. 3) that a single number can be used 
to indicate power, and his formula has been evaluated for some 
300 computers [Knight, 19661. His formula is the product of 
three factors: processing time, memory size (in words), and word 
length. The formula was derived (roughly) to measure power so 
that technological change could be modeled. Applying the formula 
is like measuring automotive-vehicle power as a product of speed, 
weight, and the number of wheels. (Such an indicator is roughly 
proportional to a car’s momentum.) Thus, although it is a reason- 
able single-number indication for power, a computer buyer could 
not use it directly. 

Taking averages, as in the case of mixes, suggests a more sophis- 
ticated approach. A collection of programs, called a “bench mark,” 
is developed that does a variety of different tasks. Then the one 
number is the time it takes to do this collection. Such a bench 
mark generates its own frequencies of occurrence of the primitive 
instructions. It brings in a number of additional dimensions that 
affect performance: the instruction code, the size of Mp, pro- 
gramming skill, input/output devices, etc. It also carries with it 
an implicit frequency of different kinds of task demands (how 
much of the set involves compiling, how much number crunching, 
how much I/O, etc.). 

There are severe practical problems in carrying out such meas- 
urements on many computers, since the problems must be coded 
and run on all the systems. It is somewhat easier if the task set 

10(25)* 
6 
2 

10 

25(45)2 
1 

72 74 

is restricted to programs coded in a procedure-oriented language, 
such as FORTRAN, where all computers accept FORTRAN. 
Nevertheless, although it has often been done to compare two 
systems, only occasionally has it been done for even a modest 
number. We feel that for a general-purpose computer the com- 
piler-derived bench mark is a reasonable single-performance 
number. Much actual use will be with the compiler, and good 
compilers produce code to rival hand coding, so that special fea- 
tures of the machine are utilized. Cox [1968] compares several, 
using hand coding and compilers for several tasks. 

There is a difficulty with the bench-mark scheme that is inher- 
ent in its strongest advantage, that of doing a total problem and 
thus integrating all features of the computer. The number obtained 
depends not only on the type of computer, for example, an IBM 
704, but on the exact configuration, for example, 16 kwords of Mp 
versus 32 kwords, and even on the operating system and the soft- 
ware (which version of FORTRAN). Thus, although the number 
perhaps comes closest to an adequate single-performance figure, 
it becomes much less of a parameter characterizing the structure 
of the computer than one characterizing a contingent total system. 

Let us underscore again the distinction between the computer 
type and the particular configuration (possibly including basic 
software) assembled in a particular installation. Computer systems 
are designed with certain forms of variability. To s p e c i ~  a CDC 
1604 is to specify many things, such as the ISP of the Pc, the cycle 
time of Mp, the K’s used to control secondary memories (Ms), and 
interfaces to the external world. But it leaves open many other 
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~'i ir i i ihl i~s~nttr ihutes  of each computing system 

P 
L 
T 
t, 

= the computing power of the nfh computing system 
= the word lengths (in bits) 
= the total number of words in memory 
= the time for the Central Processing Unit to perform 1 million operations 
= the time the Central Processing Unit stands idle waiting for 1/0 to take 

A, = the time for the Central Processing Unit to perform 1 fixed point addition 
A, = the time for the Central Processing Unit to perform 1 floating point addition 
M = the time for the Central Processing Unit to perform 1 multiply 
D = the time for the Central Processing Unit to perform 1 divide 
L = the time for the Central Processing Unit to perform 1 logic operation 
B = the number of characters of 1/0 in each word 
KI1 = the Input transfer rate (characters per second) of the primary 1/0 system 
Kol = the Output transfer rate (characters per second) of the primary I/O system 
KIP = the Input transfer rate (characters per second) of the secondary 1/0 system 
KO2 = the Output transfer rate (characters per second) of the secondary 1/0 

SI = the start time of the primary 1/0 system not overlapped with compute 
HI = the stop time of the primary 1/0 system not overlapped with compute 
Sz = the start time of the secondary 1/0 system not overlapped with compute 
Ha = the stop time of the secondary 1/0 system not overlapped with compute 
R1 = 1 + the fraction of the useful primary 1/0 time that is required for non- 

place 

system 

overlap rewind time 

CP 

c3 

c4 

CS 

P 

W I l  

W O l  

~ ~ 

Semi-constant factors Values 

Scientific Commercial 
Symbol Description computation computation 

WF the word factor 
a. fixed word length memory 1 1 

memory 2 2 
b. variable word length 

c1 weighting factor representing 
the percentage of the 
fixed add operations 
a. computers without index 

registers or indirect 
addressing 10 25 

b. computers with index 
registers or indirect 
addressing 25 45 

Fig. 3. Knight's functional model algorithm to calculate P for any com- 
puter system. (Courtesy of Datamation, vol. 12, no. 9, September, 1966, 
page 42.) 

weighting factor that indicates 
the percentage of 
floating additions 

the percentage of 
multiply operations 

the percentage of 
divide operations 

the percentage of 
logic operations 

percentage of the 1/0 that 
uses the primary 1/0 system 
a. systems with only a 

primary 1/0 system 
b. systems with a primary and 

secondary 1/0 system 

weighting factor that indicates 

weighting factor that indicates 

weighting factor that indicates 

number of input words per 
million internal operations 
using the primary 
1/0 system 
a. magnetic tape 1/0 system 
b. other 1/0 systems 

number of output words per 
million internal operations 
using the primary 
1/0 system 

per million internal 
operations using the 
secondary 1/0 system 

number of times separate data 
is read into or out of the 
computer per million operations 

overlap factor 1-the fraction 
of the primary 1/0 system's 
time not overlapped with 
compute 
a. no overlap-no buffer 
b. read or write with com- 

pute-single buffer 
c. read, write and com- 

pute-single buffer 
d. multiple read, write and 

compute-several buffers 
e. multiple read, write 

and compute with 
program interrupt - 
several buffers 

overlap factor 2-the fraction 
of the secondary 1/0 
system's time not over- 
lapped with compute 

number of input/output words 

the exponential memory 
weighting factor 

10 0 

6 1 

2 0 

72 74 

1 .O 1.0 

variable variable 

20,000 100,000 
2,000 10,000 

the values are the 
same as those given 
above for WI1 

the values are the 
same as those given 
above for WI1 

4 20 

1 1 

.85 .a5 

.7 .7 

.60 .60 

.25 .55 

values are the same 
as those given above 
for OL1, a through e 

.5 ,333 
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things, e.%., the types and sizes of Ms and the size of Mp. On 
some computers it can even leave open part of the ISP (e.g., 
the multiply/divide options on many small machines), or the speed 
of the Pc and Mp (e.g., in the IBM System/360). 

When we ask questions about computer systems, we should be 
clear whether we are talking about a computer “type,” such as 
CDC 1604, or whether we are talking about a particular installa- 
tion, with all the variability specified. It is possible to describe 
either with PMS and ISP, provided we recognize that the diagrams 
for the types represent maximal possibilities for assembling par- 
ticular systems. This is how almost all the PMS and ISP diagrams 
in this book were prepared. From the point of view of our “number 
game,” if we are talking about computer types, we might prefer 
numbers that do not depend on the particular configuration. 

If two numbers were available for describing performance, 
what would they be? Clearly there are several directions to go. 
One could fractionate the bench mark, so that one has a bench 
mark for arithmetic-rich tasks and a bench mark for others (a 
composite of compiling and data processing). One could decom- 
pose the processing rate into, say, operations per second and word 
size (from which bits per second can be recaptured approximately). 
Alternatively, one could retain only a single number for processing 
rate and add a measure of the memory available, e.g., size of Mp 
(in bits). Of the three we would choose the latter, especially if 
we were talking about a particular installation rather than com- 
puter types, for which Mp size remains variable. 

We can continue this game through several numbers. Table 3 
shows some of our choices. Various parameters drop out or change 
only when they are decomposed into other parameters from which 
they can be recovered. Thus, initially Mp must be measured into 
bits, but when the word size is given, Mp is more reasonably 
measured in words. One of the reasons for exposing such a list 
is to emphasize its judgmental and approximate character. There 
is as yet no way to validate such proposals for brief descriptions. 

Table 3 Performance parameters specification 
(as a function of an allowable number of parameters) 

If we had bench marks, which are themselves only approximations 
at measuring performance, we might look at how well the param- 
eters in Table 3 predict the bench marks. But there remain the 
difficulties of how to take into account the additional aspects of 
the total system (e.g., compiler efficiency) that are implied in the 
bench mark. Alternatively, one might want to construct a mixed 
description of bench-mark numbers and measurements of the kind 
in Table 3. Then the relationship between bench marks and these 
other measurements would become an indirect measure of the 
efficiency of the rest of the system. 

We have discussed performance in a crude and cavalier way, 
but this accurately reflects the state of the art. There are no precise 
measures for performance. There are precise structure and per- 
formance measures of individual components (e.g., memory size, 
and speed and word length, and processor instruction times). When 
designers (and users) are faced with obtaining a certain total 
performance for a given cost, the only method is that of the bench 
mark, because the task is such a significant variable. If performance 
is to be increased, unless the task is sufficiently trivial, it is difficult 
to predict what effect changing even the most direct structural 
variables will have (e.g., memory speed). 

Structure 

We now turn from function and performance, which provide 
design constraints and objectives, to the dimensions of structure, 
which provide the space in which the design is actually cast. A 
structural dimension is one in which the designer can attain any 
of the values along the dimension by relatively direct means. Thus 
a machine is completely specified by listing all its values along 
the structural dimensions. From this, the system’s function and 
its performance within that function can be determined. 

What dimensions should be selected for structure? The view- 
point is distinctly different from that of performance, where one 

Number of 
parameters 
allowed: 1 2 3 4 5 

Parameters: Pc(i.rate:(b/s)), - Pc(operation-rate:(op/s))-+ 
Mp(size:(b))- Pc(i.width(b)) > 

-Ms(i.(words)) BT > > 
Ms(size:(b)) Mp(i .(words)) 
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averages and combines many features to summarize effective out- 
put. This tends to obscure structure. For structure, one wants 
maximally independent aspects which are easily obtained if se- 
lected as a design choice. For example, if the computer designer 
had only a single dimension to describe a computer, he would 
undoubtedly select the logic technology used in the Pc and Ks.  
This tells him a good deal about many aspects of the computer's 
structure. In fact, the technology and the average bits processed 
per second by the Pc are correlated, and so each can be used to 
predict the other, though only imperfectly. If one is interested 
in performance, effective bits per second is preferred; if one is 
interested in design, technology is preferred. 

The computer space in Table 1 presents our choice of the major 
structure dimensions. There is even less means to validate the 
choice of dimensions here than there is for performance. Never- 
theless, there are a few hallmarks. Perhaps the most important 
is redundancy (the opposite side of the coin from independence, 
mentioned above). Several dimensions of structure may covary, 
so that giving any one of them is tantamount to giving the others. 
This covariation need not come from physical dependence; it may 
arise from the nature of an appropriate design and good engineer- 
ing practice. Such a cluster of covarying dimensions is likely to 
indicate an important dimension (which one among the correlates 
is to be used is a secondary matter). Table 1 is organized in terms 
of such clusters, with one of each selected as the main representa- 
tive and placed at the left. 

A second hallmark derives from the hierarchical nature of 
computer systems. Generally a description of a system consists of 
the union of the description of its parts, plus a description of the 
interconnections. This is the basic style of PMS, for example. But 
there are a few features that affect the total system, Le., affect 
many components. These are usually rather important. Technology 
is a prime example. 

Yet a third clue is that the dimensions discriminate the actual 
population of computers. If all machines had single-address in- 
structions, for instance, there would be no sense in using number 
of addresses per instruction as a dimension. Any computer engineer 
who had studied machines a t  all would know this to be true of 
all computers. Thus one looks for dimensions that spread the 
machines out evenly into a substantial number of categories. 

If the dimensions of the space are known, a computer is sup- 
posed to be defined by a single point. For most existing computers 
this is actually the case. However, if a computer system were 
complicated enough, say consisting of several processors, each built 
with different technologies and having a different number of ad- 
dresses per instruction, then such a representation would not be 

possible. For instance, the Rice University computer uses vacuum 
tubes, transistors, and integrated-circuit logic. But such complexi- 
ties are rare; time and good engineering practice work against 
it. If it were necessary to consider such cases, then additional 
dimensions (e.g., for secondary and tertiary logic) could be added, 
or several points in the space for a given computer could be 
used. 

The computer-structure space is thus our choice of the seven 
most important dimensions. It is our response, so to speak, to 
playing the number game, given only seven descriptors. They are 
arranged in order of importance, although clearly no simple way 
exists to validate such an order. But, if we were to have only three 
attributes to describe the structure of a computer system, we 
would pick logic technology, word size, and PMS structure (i.e., 
what processors exist with what functions). 

At this point we are ready to proceed through the space, de- 
scribing the various dimensions and discussing how the computer 
systems in this book illustrate various points along them. We take 
up each major dimension separately. A few of the correlated 
dimensions are accorded separate sections, but most are discussed 
along with the main dimension. 

Technology 

Computers are constrained by the physical technology from which 
they are constructed. It is not just that new technologies provide 
greater speed, size, and reliability at less cost, although of course 
they do that. But technologies dictate the kinds of structures that 
can be considered and thus come to shape our whole view of what 
a computer is. For instance, the emergence of the PMS system 
level is due to advances in technology. Prior to transistor technol- 
ogy, it did not make sense to think of elaborate PMS structures. 
The costs of the various parts were too high and the reliabilities 
were too low. When, occasionally, such a machine was in fact 
designed, it invariably proved too far ahead of its time to succeed. 
An example in this book might be the RW-40, described in 1960 
(Chap. 38). A more classic example is the Analytic Engine of 
Babbage, which he designed in 1844 and was never able to com- 
p1ete.l The technology of the time was entirely mechanical, and 
its crude state accounts for a large share of the failure. Thus the 
technology is by all odds the most important single attribute to 
know about the computer system. 

Many technologies go into making up a computer. Each type 
of component typically uses a different one. In current (so-called 

'Thus, the first real digital computer established the precedent of failing 
by a large margin to meet the expected dates of completion and full 
operation. 
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third-generation) machines the Pc may use hybrid- and inte- 
grated-circuit technology for its logic, thin-film technology for the 
Pc generalized registers, core technology for the Mp, electro- 
mechanical technology for tapes and disks (with integrated circuits 
for logic), mechanical technology for card punches and type- 
writers, and even manual technology for mounting tapes and disk 
packs. The existence of all these technologies poses major issues 
of systems balance, issues which are only imperfectly resolved. For 
example, it remains true in the current generation that input/ 
output is not in balance with the internal structures. This is due 
to the crude state of terminal technology, so that it appears to 
cost too much to provide an appropriate solution.’ 

The heterogeneity of technologies is not a consequence of 
cost/benefit analysis; rather, each represents the forefront tech- 
nology for the type of device shown. (There is, of course, cost/ 
performance exchange for any component, but this is usually 
within a technology.) Thus there is a sense in which the leading 
technology can be used to represent them all. This is the technol- 
ogy used for the logic level and is the one listed in the computer 
space. If it is known that transistor logic is used in the Pc of 
a computer, it is a safe prediction that Ms is electromechanical, 
Mp is core, Tio is electromechanical printers and punches, etc. 
This reflects the fact that technology develops and hence be- 
comes locked with calendar time. Thus a prediction is from 
logic technology to date and then to all other things known to 
be current at that date. 

This correlation of date with technology is given in the com- 
puter space along with the generation. I t  can also be seen in the 
time chart. The correspondences must be taken as very rough only. 
The technologies are listed in increasing power (and decreasing 
cost). The dates run in exactly the same order. The one exception 
is fluidics, which has been introduced very recently and is a special 
technology for ruggedness, reliability, and direct external coupling 
in certain control systems. (Small fluidic computers are at the early 
prototype stage.) 

Alongside the technology dimension we list the dimensions: 
Pc speed (operations per second), and cost (dollars per million op- 
erations), all of which vary directly (or inversely) with logic tech- 
nology. In general, costs are extremely difficult to determine, espe- 

Although beside the point of the current discussion, one reason why these 
imbalances appear to be “permanent” is that the time constant for change 
in the technology is of the same order as the time constant for human beings 
(i.e., systems analysts, programmers, and users) to understand the imbal- 
ance. Before system imbalance is diagnosed and solved, the terms of the 
problem change, inducing new imbalances. 

cially when technological costs are of interest rather than market 
costs (which reflect numerous other factors). Nevertheless the 
effect of technology on costs has been so striking (while simulta- 
neously pushing up performance along all other dimensions) that 
it seemed necessary to give a measure of cost in Table 1, no matter 
how crude. 

We have indicated only a few of the dimensions that are corre- 
lated with technology. In fact, the only dimensions in Table 1 that 
are independent of technology are the word length and the Pc 
addresses/instruction. All the rest show dependence on technol- 
ogy. For some, such as memory speed and size, there is a direct 
correlation. For others, such as PMS structure and Pc concurrency, 
the development of more complex versions-the leading edge, so 
to speak-depends on technology, but there is free use of all 
versions that are in existence at any given time. There are still 
other dimensions of importance, not shown in Table 1, that have 
also changed with technology, e.g., electric-power consumption. 

One way to see both what varies and what is independent of 
technology is to compare selected machines. For instance, Whirl- 
wind (Chap. 6), a first-generation system, and the IBM 1800 (Chap. 
33), a third-generation system, have reasonably similar ISP descrip- 
tions, if one ignores index registers, which were not invented at the 
time of Whirlwinds design. However, they have very different 
PMS structures. In Whirlwind, the early system, transferred infor- 
mation between Tio’s and Ms was under program control of the 
Pc. The existing Pc registers and transfer gates were used because 
it was too expensive to have separate ones. In the 1800, which 
uses hybrid circuits, it is economical to have additional subsystems 
devoted to special functions; hence there are many Pio’s operating 
independently of the main Pc. It was not cost alone that limited 
the complexity of first-generation vacuum-tube systems. The large 
physical size of tubes introduced substantial transmission delays; 
their large power consumption added dependency on a cooling 
system; and their limited life and deteriorating nature constrained 
the number of tubes that could be used in a system requiring high 
reliability. 

The IBM 700 scientific series (701, 704, 709, 7090, 7040, 7044, 
7094 I and 11) offers another comparison, where there is an evolv- 
ing structure over time, hence across technologies, but where for 
reasons of compatibility the ISP’s have remained almost constant 
(except for the 701). Again we see radical increases both inperform- 
ance (Pc speed increases by a factor of 5 from the 701 to the 704 
and another 10 to the 7094 11) and PMS complexity. But various 
other features, though not affecting compatibility, were locked in 
with the ISP and remained fairly constant. For example, Mp size 
went to 32 kw (kilowords) early in the series with the 704; and 
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it took a jerry-rigged modification to get 64 kw on a 7094 toward 
the end of the lifetime of the series (see Chap. 41, page 517). 

Throughout this section we have referred to technology as the 
dominant factor in the computer. Does this mean that computer 
development waits upon new fundamental windfalls? We have 
been lucky in getting the transistor and, to a lesser degree, the 
integrated circuit from external efforts. However, core memories 
were invented for the computer and resulted because of need. 
Read-only memories have also resulted both from development 
at the circuit level and from pressure above, requiring the mem- 
ories to be developed. All the electromechanical secondary mem- 
ories (Le., magnetic tape, drums, disks, and photostores) have 
resulted from the computer's needs. Thus, although technology 
is dominant, the computer often forces the development. 

The Pc operation rate is strongly correlated with logic tech- 
nology, as we have indicated in the computer space. Our discussion 
about technology and generations is also about operation rate. The 
principal reason for the higher operation rate is because of faster 
logic technology. Technology also has a secondary effect on in- 
creasing speed. More reliable devices allow large computers to 
be built. Smaller devices allow higher device densities, thus de- 
creasing stray capacitance and inductance and shortening trans- 
mission delays. Smaller components also allow increased inter- 
connection density. 

Operation rate is also relatively highly correlated with total 
performance. If we hold the structure and concurrency constant, 
the simplest way to increase performance is by increasing the clock 
rate. The increase in the performance/cost ratio over the past two 
decades of computer evolution has made their primary gains 
through higher operation rates. The two 16-bit computers already 
mentioned, Whirlwind (Chap. 6) and the IBM 1800 (Chap. 33), 
provide a nice comparison of the evolution. With a difference of 
10 years and two generations, their cost ratio is -1O:l  whereas 
performance is -1:5 and the internal clock rates are also -1:5.l 

Znformation structure: word length, information base, 
and data-types 

All computers structure their information in a hierarchy of units, 
which we defined as an i-unit in Chap. 2. For example, the IBM 
System/360 starts with the bit; then the byte, which is 8 bits; then 
the word, which is 4 bytes; then the record, which is a variable 
number of words. In between, playing minor roles, are decimal 

'However, it is not as dramatic an example as we could find. By picking 
a better third-generation example we might get a cost ratio of -1OO:l and 
a performance ratio of -1:lO. 

digits (4 bits), the halfword, and the double word. A number of 
features of the design are related to this hierarchical organization 
of data. Before we consider them, we need to characterize the 
organization itself. One characteristic of this organization, the 
word length (in bits), gives most of the information, the rest of 
the hierarchy adding only a little. 

Let us see why this is so. At the bottom there is the bit, encoded 
in two-state devices. Although other numbers of states are possible, 
and ternary (three-state) machines have been proposed occasion- 
ally, digital technology has developed exclusively to handle binary 
information. There are several reasons for this. The first is the 
requirement for high reliability and high signal-to-noise ratios in 
the basic devices. Generally a basic n-state device (that is, one 
not built up from other k-state devices) is realized by breaking 
a continuous physical dimension, such as voltage, current, or 
magnetic flux, into n discrete levels or regions. Reliability and 
signal-to-noise ratio then depend on keeping adequate separation. 
This is easiest to do with two states (e.g., in the limit they become 
on-off devices) and becomes progressively more difficult as n in- 
creases. The second reason is the simplicity of the logical design 
for binary representations. A basic device for combining two 
ternary digits must deal with 3 x 3 = 9 configurations, rather than 
2 x 2 = 4 configurations for the binary case. This also gets worse 
as n increases. 

A final reason-the coup de grace, so to speak-is that no one 
has ever found striking advantages for the resulting processing 
structure in having more than two states. Thus there are no com- 
pelling reasons to suffer the first two disadvantages. In short, what 
might have been an important dimension on which to distinguish 
computers, namely, the number of states in the basic encoding, 
turns out instead to be one of the great uniformities in digital 
technology. 

Information base. That the physical devices deal ultimately in bits 
does not imply that the information processing must be organized 
in terms of bits. It is possible to select an arbitrary base (one with 
any number of states) and construct the entire ISP in its terms. 
A base unit is represented physically, of course, as a set of bits. 
If one wanted a base 13 machine, for example, one would have 
to use at least 4 bits (with 16 states) to encode it. But no operations 
at the ISP level would refer to anything but base units and data 
structures built up from sets of base units, and there would be 
no way to manipulate directly the bits that represented the base. 
Thus, using a base other than binary obtains whatever advantages 
might accrue to n-state units, without any of the disadvantages 
at the device level. 
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Computers have been built with a variety of different bases, 
the main ones being binary, decimal, and character. The character 
has shifted between a 6-bit character and an 8-bit character 
(byte).’ The arguments for bases other than binary (which repre- 
sents the natural base of the computer) all hinge on the alphabets 
used externally by human beings and the desire to avoid conver- 
sions into a different representation inside the computer. With 
universal acceptance of higher languages, such as FORTRAN and 
ALGOL, this argument has also lost much of its force. In fact, 
all third-generation machines are binary. Nevertheless, in the fifties 
there was much controversy over which base to use, and the 
machines presented in this book exhibit all three bases. 

There is little difference between binary and decimal com- 
puters in their ISP organization. However, there is a great differ- 
ence between these two and character machines. The latter are 
designed for handling text and are constructed to deal with varia- 
ble-length strings of characters. Correspondingly, they deempha- 
size numerical computation. Both these decisions affect the ISP 
considerably. Thus, in the computer space we indicate the base 
dimension along with the word-length dimension. The two to- 
gether make up a single dimension. 

Word length. Let us now examine the role of word length. The 
word is the first major information unit above the base. It is defined 
as n bits for a binary computer or n digits for a decimal computer 
(character machines being excluded as not having a fixed word 
length). Sometimes there are intermediate units, but they always 
play a minor role and we can disregard them at this stage. As we 
noted earlier, the main determinant of word length has been the 
function of the total system: large word lengths for arithmetic 
systems, small word lengths for control systems (and character 
strings for business). Thus, only within narrow limits is the word 
length a free design choice. 

However, the interesting thing about word length is not so 
much its determinant as the way it affects other aspects of the 
total system design. This starts with a design decision that the 
unit of information transfer between components will be a word. 
As soon as this becomes the case, then registers in various com- 
ponents must hold a word, since that is what arrives or is to be 
transmitted. Thus the word becomes the information unit of the 
Mp, and most of the registers of the Pc hold one word. The instruc- 
tion is designed to fit into one word, since that is the number 
of bits that is obtained “at once” and hence can be used to effect 
the next time increment of processing. 

‘Seven bits have been proposed for communication purposes but have never 
been made the basis of a machine, as far as we know. 

Once these basic features are set, others follow. An integer 
number of any smaller units, such as the character, should fit into 
a word, since otherwise a set of words will not provide a homoge- 
neous sequence of subunits. (That is, only five 6-bit characters fit 
into 32 bits, so that a set of 32-bit words filled with 6-bit characters 
has a number of 2-bit holes in it. This can complicate algorithms 
that deal with long character strings.) The constraint of compati- 
bility is not so strong with Ms, since speeds are slow enough to 
permit conversion algorithms (either hardware or software). Still, 
the system is simpler (and therefore usually will work better) if 
incommensurabilities of information units do not exist. Thus, to 
pick an example, the number of parallel tracks on magnetic tapes 
tends to divide evenly into the word length. IBM tapes for the 
700 series of 36-bit machines have six data tracks; for the Sys- 
tem/360, which has a 32-bit word, the tapes have eight data tracks. 

There is an interesting correlation between the word length 
of a computer and the number of data-types that it makes availa- 
ble. As we saw in Chap. 2, the operations in a computer can be 
classified according to the type of data they operate upon. Each 
data type tends to have a certain set of operations appropriate 
to it (for example, + , -, X, and / for numbers) and the decision 
to include a data-type carries with it the decision to include 
its operations, Thus the number of operations tends to grow with 
the number of data-types. The total amount of hardware in a 
computer grows as the word size (because data paths are word- 
parallel2) and also as the number of operations. Thus machines 
with large word size tend to be large machines and have many 
data-types and many operations, (“Large” as an adjective for 
machines invariably means big and expensive, hence-given eco- 
nomics-capable of doing large amounts of processing.) 

There are two additional, somewhat independent, features that 
support the relationship between word size, number of data-types, 
and size of computer. First, with a large system there will already 
be available many of the pieces necessary to add additional oper- 
ations. That is, the marginal cost of a new operation goes down 
as the system grows. Therefore, given a large system, there is a 
tendency to add more operations, The number of operations per 
data-type is not easy to increase; rather, one adds new data-types. 
Second, with small word lengths, one cannot define many worth- 
while data-types that will fit into a word, and multiple-word data- 
types are left to the programmer to define with software. With 
large word lengths there are many different worthwhile data-types 
that fit into the word, for instance, decompositions of the word 
into partial words, or into character strings. Each of these requires 

The issue of bit-serial versus bit-parallel is discussed subsequently. 
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additional operations, since the initial data-types involve the entire 
word or some large part of it (i.e., the word, address, and integer 
operations). 

In sum, the word length stands as an indicator of many aspects 
of the machine. It not only tells something about the basic organi- 
zation of many components but indicates how big the computer 
is, both in number of data-types and number of operations. Figure 
2 shows time lines of well-known computers with their word 
length, with a special time line for the ones in this book. Five 
groups are suggested in the figure which classify these c0mputers.l 
The classes overlap, and to separate a computer into one of two 
classes requires more knowledge (e.g., the number of data-types). 
For example, the 24-bit SDS 9300 and CDC 3200 appear in the 
same class with the 36-bit IBM 7090 just because both machines 
have floating point hardware and, in fact, perform comparably for 
arithmetic tasks. 

The one design choice that makes word length have few of the 
consequences just described is making a computer bit-serial rather 
than bit-parallel. In many machines information transfers are con- 
ducted on a single bit stream (especially Pc-Mp transfers). Coinci- 
dent with this is the construction of operations on a bit-by-bit 
basis. This works well for arithmetic and logical operations. Time 
is traded for hardware. The cost of the system becomes independ- 
ent of word length, but the processing rates go down correspond- 
ingly. This design decision was an extremely important one when 
logic was expensive and unreliable. It has become less so in the 
current era, where processors and transfer paths are relatively few 
in number while both the cost and the reliability of components 
have improved. However, as large parallel processors are con- 
sidered (- lo3 P’s), bit-serial processors again become a serious 
design alternative. (See the serial computers of Part 3, Sec. 2.) 

In summary, word length is an important dimension, and we 
find many characteristics either proportional to or inversely pro- 
portional to it. To be sure, these relations hold only for current 
design practice, as we have seen with the bit-serial designs. The 
main-line computers in Part 2 are ordered according to increasing 
word length. 

Data-types. We have presented the number of data-types as being 
correlated with word length and also with computer size through 
the effect on number of operations. Although far from perfect, 
there is a rough order in which specific data-types are included 
in a computer. We have listed the main types in such an order 
in the data-type dimension of the computer space. (See Chap. 2 

‘The class number is essentially [log,(Mp word length) - 21. 

for their definitions.) To be located at a point on this dimension 
(say at floating point) means to have all the data types below it 
on the dimension, (i.e., word, address, integer, boolean.) Occa- 
sionally machines which violate this have arisen. Decimal ma- 
chines do not generally have boolean data-types, and there has 
been some attempt at machines with only floating point, i.e., 
without a separate integer type (e.g., the CDC G202). 

The reason behind this cumulation of data-types in a fixed order 
is that certain general tasks must be performed by any computer. 
It must transmit data between the Pc and Mp, and this trans- 
mission has nothing to do with the meaning or content of the data; 
thus there is always the “unit of transmission,” which is the word 
(except on character machines). Next, all computers manipulate 
addresses to achieve generality (e.g., to compile), providing for a 
second data-type. Next come integers, since almost all algorithms 
make use of arithmetic (this could conceivably be absent in some 
communications computers), and on up to floating point numbers, 
multiple precision, and vector and string operations. At each stage 
the uses are more specialized so that lower ones cannot be elimi- 
nated, except for a few cases such as handling addresses as regular 
integers. 

Addresses per instruction and processor state 

The number of addresses in an instruction has been a traditional 
way of describing processors (i.e., their ISP’s) and hence the com- 
puter systems containing these  processor^.^ We use it in Parts 2 
and 3 to separate the different processors. 

Originally the dimension was simple: one-, two-, three-, and 
four-address machines were constructed. It has become somewhat 
more complex. A “one plus one” machine has one address for data 
and one for determining the next instruction, and is to be distin- 
guished from a two-address machine, which uses both addresses 
for data. Index registers and so-called general registers provide 
instruction schemes which lie somewhere between one- and two- 
address organizations. When processors admit several instruction 
formats or variable-length instructions, matters become even more 
complicated. 

A correlated dimension in the computer space is the amount 
of processor state, that is, the number of bits that exist in the 
processor, as described in the ISP. This is the amount of informa- 
tion that can be held at the end of one instruction to provide the 
processing context for the next instruction. It consists of a number 
of status and mode bits (in modern machines packaged into regis- 

Originally the Bendix G-20. 
3Although used mostly to describe Pc’s, the description applies to any 
processor. 
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ters, but in earlier machines simply scattered around in the proc- 
essor), the next instruction address, the accumulator and other 
arithmetic registers, the index registers, and other general registers 
making up a “scratch-pad’ memory. It is a simpler descriptor of 
the ISP than addresses per instruction, since it is independent of 
the number and variety of instruction formats. It is easy to define 
processor state generally for any ISP, but difficult to define ad- 
dresses per instruction. 

The processor state is not the total number of bits in the proc- 
essor, since there may be registers in the physical system that are 
used within the interpretation of one instruction but which carry 
no information between instructions. Address registers for obtain- 
ing operands from Mp are the most common such “underground” 
or “temporary” registers, but there can be others. We implied this 
distinction by defining processor state in terms of the ISP rather 
than the physical processor. 

The correlation between the processor state and the number 
of addresses per instruction is not simple, since it rests on two 
separate issues. For the first, note that larger programs perform 
transformations on the state of Mp (or even Ms or Tio’s) and are 
not concerned with the state of the processor. Processor state 
enters only because, in decomposing the total algorithm into a 
series of small steps, it is not possible (or efficient) to make each 
step a transformation from Mp to Mp. Basically, this happens 
because the instruction does not hold enough information to spec- 
ify the Mp-to-Mp transformations. For example, if one wants to 
add two numbers, two operands are required, and an instruction 
must contain at least two addresses; if it does not, then an inter- 
mediate state (i.e., processor state) must be created to hold the 
information while the additional instructions are fetched. Thus, 
one-address organizations require the most processor state, with 
less for two- and three-address organizations, This consideration 
stops at three (two operands and a result) because only a few 
elementary operations are more than binary. The processor state 
cannot be eliminated entirely, however, since there must be at 
least an instruction address (a program register) to maintain con- 
tinuity of the program. 

~ The second source of correlation between processor state and 
instructions per address comes from differential access time to 
processor registers and to Mp. As long as there is an appreciable 
differential, substantial gain, processing power can be obtained 
from increasing processor state. This derives, again, from the struc- 
ture of algorithms which generate intermediate results that are 
used almost immediately afterward and then are of no further 
interest. Rapid temporary storage and retrieval are beneficial 
under these conditions. Thus, working against higher address 

organization is the extra time to store in Mp results that need only 
temporary storage. Thus, also, index registers and general registers 
almost always imply increased processor state, although they need 
not do so logically (that is, the registers could exist in Mp and 
still have their effect on the instruction format). 

With interrupts and multiprogramming the processor state 
gains additional significance, since it is the amount of information 
that has to be saved and restored when switching programs. 
For example, in the Honeywell H-800, an early three-address 
computer, the processor state per program consisted only of the 
program counter and index registers, and when io-halts occurred 
during processing, the Pc was switched immediately to another 
program. Eight programs could run concurrently (by having a total 
processor state of 64 program registers). In present computers with 
general-register state, often 25 - 100 words must be stored, which 
implies an appreciable time for switching contexts. 

We can now consider briefly the different organizations accord- 
ing to addresses per instruction. To show the common similarities, 
we give in Fig. 4 a state diagram that can be used for all processors. 
In common is the basic idea of the stored program: Fetch an 
instruction, determine what the instruction is to do, then execute 
it (the fetch-execute cycle). Other than this, only a part of the 
state diagram will be applicable to a given processor type. 

As shown in the computer space, the addresses-per-instruction 
dimension starts with zero addresses, then one address, then one 
plus indexing, one plus general registers, and on up  to two, three, 
and variable addresses. However, from an expository viewpoint 
one should follow a different course, starting with single-address 
machines, then indexing, then two- and three-address machines, 
then general registers, and finally the zero-address and variable- 
address organizations. This not only puts the more common 
organizations first but makes it easy to relate the organizations 
to each other. 

P(l address) and P(l + index address). These Pc’s constitute most 
first-, second-, and simple third-generation computers. The earliest 
outline of the structure was the IAS computer (Chap. 4), which 
has come to be known as the von Neumann computer. Although 
fundamentally like the IAS computer, EDSAC’s adaptation ap- 
pears to be the closest prototype to this class. Although EDSAC 
is not described, it influenced M.I.T.’s Whirlwind I significantly 
(Chap. 6). 

A significant change to the IAS machine was the addition of 
the index register (called B-tubes) in the Manchester University 
machine in the early 1950s. The evolution can be seen by compar- 
ing the first and third generations using Whirlwind (Chap. 6) and 
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Fig. 4. ISP interpretation state diagram. 

the IBM 1800 (Chap. 33) or looking at the IBM 701-7094 evolution 
in Part 6, Sec. 1. Index registers are motivated by the frequent 
occurrence, in 1 address systems, of circuitous address calcula- 
tions that involve first computing the address (e.g., the index of 
an array in Mp) and then planting it just ahead in the instruc- 
tion stream in order to make use of it as an address. Providing 
a set of index registers introduces a second address into the in- 
struction, even though of extremely limited function. Thus we 
classify processors with indexing as having (1 + x) addresses 
per instructi0n.l An alternative view of index registers suggests 
that they double the number of data-types by allowing operations 
on vector data elements rather than just scalars. 

'Indirect addressing, on the other hand, does not add to the addresses per 
instruction; rather, it introduces a second operation per instruction. 

For the 1 address processor, the processor state (Mps) typically 
consists of the program counter (instruction location counter), an 
Accumulator/AC, a Multiplier-Quotient register/MQ (the exten- 
sion of AC), and one or more Index registers/X/XR. 

With only one address in the instruction, the one arithmetic 
register, A, must be used for temporary results. Thus an effective- 
address integer (z) is computed as a function of the address part 
(v part) of the instruction (9) and the index registers. This process 
is typically 

z := v + X[j] 

where X[j] is the jth index registers as specified in the instruction. 
There are several forms for the transmission operators between 

A and Mp. 
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A t z  loud immediate 
A + MpExI load direct 
A t Mp[Mp[x]] load indirect 
M[x] c A store direct 
Mp[Mp[z]] t A store indirect 

In indirect operations a convention may be required to determine 
what address in Mp[z] is to be used. 

Similarly, the binary operations (+, -, X, /, A, V, 0, con- 
catenation, etc.) are generally of the form’ 

A t A b M p [ z ]  

Rarely do we find the symmetrical operation form 

For unary operations (-,, -, abs, sin, cos, etc.) the most com- 
mon forms are 

A t u A  
A t u  Mp[z] 

Rarely do we find 

MP[ZI + MP[ZI 
Mp[z] t u  A 

In both the above cases, exclusion of the operations that place 
results in Mp[z] stems from the added cost of including the sym- 
metrical function and the marginal utility of such a function, 
which stems from the result of applying u not being available for 
further processing. 

The transmission, unary, and binary operators account for al- 
most all operations in these computers. If we allow A to stand 
for any part of the Mps, rather than just the accumulator, then 
the instructions not included above are input/output data trans- 
mission, e.g., 

M p c T  and T c M p  

and conditional execution 

(branch if zero AC) -+ ((AC = 0) -+ (P c z)) 

Having index registers requires operations to process them. At 
a minimum they must be loaded and stored (usually from and to 
Mp), Le., 

Mp[z] t X store index 

X c Mp[z] load index register 

Any of the addressing modes suggested above can be used for an operand: 
that is, I immediate, Mp[z] direct, and Mp[MP[z]] indirect. 

But simple operations on an X are also desirable; for example, 

X t X +  1 

Here X is used to point to (access) the next element in a vector. 
More complex operations can be carried out by placing X in the 
A register, via the program steps: 

A t X  load A with I< 
A c f(A) manipulate A 
X t A  load X with A 

An operation to add k to X would then be 

A t X ;  next 
A c A  + k; next 
X t A  

instead of 

Mp[z] t X; next 
A +- Mp[z]; next 
A t A + k; next 
Mp[z] c A; next 
x +- Mp[zI 

which assumes no transmission paths between X and A. Ideally 
we would like to perform any operation directly on X as simply 

X c X + k  

From this begins the idea that X should look like the main arith- 
metic register, A. This is, no doubt, one evolutionary path to 
general-register processors. 

Part 2, Sec. 1 is devoted entirely to 1 address computers in 
the first three generations. They were the “main line” of computer 
development. 

P(2  address) and P ( 3  address). The computers in Part 3, Sec. 1 
have instructions which contain multiple addresses per instruc- 
tion. The addresses (v) specify operands in Mp (Fig. 4). The Mps 
decreases as the number of addresses per instruction increases, 
since the operands need not be held temporarily between instruc- 
tions (Le., each instruction performs a complete operation). 

The instruction form for the 3 address computer is 

where b is a binary operator, and vl, v2, and vB are the addresses 
specifying the operands. In the case of unary operations, u, v2 is 
usually blank. In the case of a binary operation and a three-address 
computer, the states are oq, aq, 00, ov.r, av.r, ov.r, av.r, 0, ov.w, 
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av.w (Fig. 4). MIDAC (Chap. 14) and Strela (Chap. 15) are typical 
three-address computers. 

A 2 address computer does not necessarily require more proc- 
essor state than a 3 address computer, since the operations can 
correspond to 

and 

However, sometimes extra Mps is usual. The RW-400 (Chap. 
38) has an accumulator, and operations generally terminate with 
results both in primary memory, Mp[v,], and in the accumulator. 
The branch on accumulator instructions allows results to be 
checked directly without referring to Mp. An especially nice 
instruction in 2 address computers is the transmission instruction 
(a special-case unary operation): Mp[v,] t Mp[vl]. 

The IBM 1401 (Chap. 18) has two registers, Laddress  and 
B-address, which hold v1 and v2 and can be loaded by the v1 and 
v2 parts of the instruction. These registers point to (address) oper- 
ands and do not contain data. The remaining processor state is 
the Instruction-address. The 1401 has instructions with no 
address parts, and these instructions take as operand addresses 
the values of Laddress  and B-address as of the previous in- 
struction. The 1401 instruction-interpreter state diagram is given 
in Chap. 18 (Fig. 3) .  The state-diagram specialization (Fig. 4) 
is roughly: 

oq, aq, 00 {ov.rl,av.r1,0v.r2,av.r2,0,0v.w2,av.w2}. . . 
{ ov.rl,av.r1,0v.r2,av.r2,0,0v.w2,av.w2} 

where the sequence delimited by the { .  . . }  is the operation on 
a character; because the 1401 operates on variable-length strings, 
it is repeated until the end of the string. 

P(n + 1 address). Processors with n + 1 addresses deviate only 
slightly from the u-address processors above. The final, or +1, 
address explicitly specifies the address of the next instruction. As 
such, it can be used with any instruction set. There are two reasons 
why + 1  addressing is used. First, freedom is provided in the 
placement of each instruction within the program address space. 
Second, the next instruction address can be calculated in parallel 
with the execution of the current instruction. 

For computers with cyclic memories (Part 3,  Sec. 2), the + 1  
address allows both data and the next instruction to be specified 
independently, providing the opportunity to arrange the program 
and data in an optimum fashion. Since each instruction completion 
time depends on the location of data, it is desirable that the next 

instruction location be variable rather than the implicit next ad- 
dress used for most processors. This is almost universal practice 
in computers with Mp.cyclic (see LGP-30 in Chap. 16 for an 
exception). 

Microprogrammed processors may use the + 1 address to locate 
the next instruction, and there may be several such next addresses. 
Microprogram subroutines tend to be short (intrinsic to interpret- 
ing an instruction set), and there are many jump addresses. The 
increased speed from not having to compute the next instruction 
address is worth the added space cost. The IBM System/360 Model 
30 (Chap. 32) shows the use of multiple (+1) addresses and if 
classified according to our scheme would be at least a €'(micro- 
program; 3 + 1 address). 

P(generaZ register). The general register processor has a small array 
of registers that can be used for multiple functions. These have 
fast access compared with the Mp, so that it pays to do as much 
processing as possible within them. Since the general register array 
is small, it  requires only a small address (3 to 8 bits). Thus the 
instruction format contains fields for one (or more) general regis- 
ters. There must still exist addressing for Mp, though this never 
exceeds a single address. Thus we classify general registers ma- 
chines as (1 + g) addresses per instruction. 

The organization of a (1 + g) system can vary from something 
very close to a (1 + x) organization, in which essentially every 
instruction involves some Mp information, to an organization in 
which the only Mp instructions are transfers between Mp and Mps 
(the processor state holding the general registers), and there is a 
two- or three-address instruction set involving only Mps (see the 
CDC 6600 in Chap. 39). That is, from a data point of view the 
Mps acts like a directly addressable Mp. 

The processor state of a general register processor is invariably 
held entirely within the general register array (rather than having 
additional independent registers). This is due in part to an already 
available mechanism (the array) and in part to the need for pro- 
gram switching, which is somewhat simplified by having all the 
Mps held in a single homogeneous memory. 

The general registers typically perform a variety of functions: 

1 Arithmetic registers (accumulator and the accumulator ex- 
tension for the multiplier-quotient). 

2 Index registers. 

3 A second index register or base register; if the program 
addresses (v) are short, a base register is needed to address 
any area of Mp. 

4 Subroutine linkage registers. 
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5 Program flag (sense) registers for boolean variables. where 

6 Stack pointer (P may have multiple simultaneously active b are binary operators ( +  - ,, , l A , l etc,) 

7 

8 

u are unary operators (7 I - I ahs( ) 1 - a b (  ) I etc.) 

G is the general-register array 
g, g,, g,, g, are instruction parts specifying a general register, G 
v, vl, v,, v3 are Mp addresses specified as a function of instruction and 
general registers (for example, v := (address + G[g]) or v := (ad- 

stacks). 

Address pointers to data arrays and lists. 

Temporary data storage for intermediate results. 

9 Temporary program storage for short program loops. 

The power of a general register processor is obtained because 
the registers can serve many functions. Thus the operations on 
these registers can be extensive, because the operations need not 
be duplicated in other parts of the structure. For example, special 
operations for index registers are not necessary because the opera- 
tions for integers apply universally to both the accumulator and 
index registers. Of course, such generality requires compromises. 
The stack computer is faster for problems which can utilize stacks, 
whereas the general register Pc must utilize Mp for the stack(s) 
and does not have the encoding efficiency of a pure stack processor 
(see below). In addition, the assignment (and reassignment) of 
general registers is most crucial, since they are a scarce resource 
with many uses. A general register organization allows processors 
with a high degree of parallelism to be constructed, since several 
instruction subsequences can be executed concurrently. 

The actual number of registers is rather critical and depends 
not only on the algorithms of tasks coded but also on the technol- 
ogy. In multiprogramming and interrupt computers, the program 
switching time increases with the number of registers. Thus the 
upper bound on the number of registers is both cost and program 
switching time. 

We would expect to find instructions which produced the fol- 
lowing affects. 

Addresseslinstruction 

dress + G[g,] + G[g,]) in the IBM System/360). 

General registers can be thought of as an outgrowth (generali- 
zation) of the 1 + x processors, as we have already suggested. 
Alternatively, they can be thought of as evolving from a 2 or 3 
address structure. The UNIVAC 1103A, a 2 address processor 
(Chap. 13), was no doubt a forerunner of the general register 
UNIVAC 1107 and 1108. Pegasus (Chap. 9) is, we think, about the 
earliest computer to use general registers (1956). In Part 2, Sec. 
2 we discuss four general registers computers. 

P.stack (0 addresses per instruction). From a PMS viewpoint the 
P.stack is built around having a first-in-last-out memory (Mstack) 
as part of the processor state. Conceptually, it is built around the 
fact that computations can often be sequenced so that no explicit 
names (Le., addresses) are required for temporary results. All 
operations are performed on the top of the stack. As each partial 
result is computed, it is pushed down in the stack and appears 
again to participate as an operand at exactly the appropriate point 
in later calculation. Thus the stack operates as an implicit memory 
for all intermediate products and not only are transfers between 
P and Mp avoided but space in the instruction for Mp addresses 
is eliminated. 

Instructions in such a system consist only of operations, since 
all their operands are in the stack. Thus the instruction format 
is that of zero addresses per instruction. There must, of course, 
be some addressing of Mp (just as in a general-register organiza- 
tion). However, the addresses for Mp themselves sit in the stack 
so that the instruction contains only the transfer (load or store) 
operation, not the address. There still must exist some way of 
getting fresh data in the stack, and all P.stacks have at least one 
operation that loads an address written in the program stream onto 
the top of the stack. 

Why there should be this happy correspondence between cal- 
culations and memory to be performed and stack memories re- 
quires a little explication. I t  rests fundamentally on the phrase 
structuring of calculation in which each partial result is required 
at one and only one point, so that each subcomputation can be 
nested in the program (and hence its result nested in the stack) 
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in the same order as it will occur as operand to the one operation 
that uses it. 

There are several arguments against a Pstack. Multiple stacks 
are often required. Part of the power of a P.stack is derived from 
having higher-speed Mps for the stack. Yet only the top few (2 - 8) 
registers of the stack can be in Mps. When M.stack overflows into 
Mp, the speed of operations can become much worse than not 
having a stack at  all. A simpler implementation, for example, 
P.general,registers, is as fast and perhaps more general. Another 
difficulty with the stack is the inability to access other than the 
top. If full addressing is provided, then the organization has be- 
come almost general register. Yet another difficulty arises from 
inhomogeneity of data-types, especially if several of them are 
packed into a single word (the width of the stack). Thus, for in- 
stance, in one stack machine (the Burroughs B 5000 in Chap. 22) 
there is a completely separate nonstack ISP for string manipula- 
tion. 

A simple numerical computation is given in Table 4 as a com- 
parison of the P.stack, P . l  address, and P.general,registers. Here, 
the Pstack is probably shown at  its best as there are no array- 
indices calculations or program-flow manipulations involving 
testing, etc. The criteria we measure are the algorithm encoding 
space and the problem running time. 

The kinds of instructions interpreted by a P.stack are typically: 

Interpreter state 
Operation sequence Example 

Load oq, aq, 00, ov.r, av.r M.stack-top t Mp[v] 
Store oq, aq, 00, ov.w, av.w Mp[v] t M.stack-top 
Unary operation oq, aq. 00. o(u) M.stack-top t u M.stack-top 
Binary operation O q ,  aq,  00, o(b) M.stack-top c M.stack-top b 

M .  stack-top- 1 

Variable numbers of addresses per instruction. Although there are 
a few operations that require the specification of three or more 
addresses, these are of such low frequency that no machine has 
ever been built (or seriously proposed, for that matter) that has 
more than three data addresses and one next-instruction address. 
(Some of the microprogrammed processors have more than one 
next-instruction address, and they often do several operations in 
parallel in one instruction.) 

However, there have been developed processors that can have 
a variable number of operands. Most of these involve the use of 
an instruction that is larger than a single Mp word. Thus, bringing 
in the first word of an instruction, which contains the operation 
code, determines how many additional operands are needed and 

hence how many additional words to obtain from Mp. (In a char- 
acter-based system this may require several reads per operand; 
in a word-based system this may be one or two operands per read.) 
The gain in such a system is the higher average density of opera- 
tions per instruction, bought at  the price of extra Mp accesses. 

Most such variable-address processors have a mixture of one, 
two, and three addresses per instruction-simply a mix of the types 
already considered. The fundamental limit to such variability is 
the processor state (plus the additional within-instruction tempo- 
rary state). This, of physical necessity, must be finite, and the 
number of addresses must yield an amount of information that is 
less than this total state. Otherwise the processor cannot hold onto 
it to process it.l Thus the various processors which claim to operate 
from a higher language (see the P.languages of Part 4, Sec. 4)  must 
in fact either translate into another simpler programming lan- 
guage, as does the FORTRAN machine (Chap. 31), or become an 
interpreter which processes a small amount of a language state- 
ment before the rest. 

PMS structure 

The idea that there is significant higher organization to computers 
is relatively new. Texts on logical design of computers develop 
a model based on an arithmetic section, input/output devices, a 
memory for holding instructions and data, and a single control 
to force the other components to interact. A PMS diagram of an 
early model is given in Fig. 5 (X represents an external agent, 
usually a man). The Whirlwind I manual-model figure (page 10) 
used in Chap. 1 was rather highly developed because it had a 

secondary memory and switching. Figure 6 is a PMS diagram 
which reflects this more accurate model. Often computer designers 
lump the devices at the periphery and call them all input/output; 
these devices are both input/output terminals (T) and secondary 
memories (Ms). 

'If it processes a large amount of information, but in pieces (i.e., sequen- 
tially in real time), it is not really executing a single instruction based on 
all the addresses but has decomposed the total computation, just as a 
single address organization has. 

Fig. 5. Early model of a stored program digital computer PMS diagram. 
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Table 4 Comparison of stack, general registers, and accumulator Pc for evaluating the expression: f = (a - b)/(c - d x e) 

Pcstuck [stack contents] Pcgeneral register Pc. 1 address 

Push a [a] Load G[1], a Load d 
Push b [.a, b] Subtract G[1], b Multiply e 
Subtract [a - b] Load G[2], d Inverse subtract c1 
Push c [a - b, c] 
Push d [a - b, c, d] 
Push e [a - b, c, d ,  e] 
Multiply [a - b, c, d x e] 
Subtract [a - b, c - d x e] 
Divide [(a - b)/(c - d x e)] 
Pop f [ ] - stores stack at 

Multiply G[2], e 
Inverse subtract G[2], c1 
Divide G[1], G[2] 
Store G[1], f 

Store temporary 
Load a 
Subtract b 
Divide temporary 
Store f 

location, f 

Program size: 
Address integer/ai 
Operation parts/o 

6 ai 
4 0  

Number of Mp refer- 
ences for data: 

Program size for 
hypothetical example 4 x 6  

6 x (18 + 1) 

machines: 138 
Program size in bits 
among specific C’s: 

B850 1 3: 168 

6 ai + 8 ai(gr) 
7 0  

8 ai 
8 0  

6 x (18 + 6 + 42) 
1 x (6 + 2 x 49 
182 192 
IBM System /360:208(above1) IBM 7090:288(above1) 

:224(actual) 360(actual) 
+ base register overhead 

8 x (18 + 6 )  

(0 - 192)* 

‘Not an instruction in the specific.example machines. 

2Assume 16 general registers. 

3The Burroughs Corporation 88501 Pc.stack (discontinued) 

4Not completely true, since Systern/360 has only a 12-bit address and uses base registers. Some overhead should be assumed. Worst case (but not unreasonable) IS 

6 x 32 or 192-bit overhead. 

If we separate each component according to its function, assign 
control (K) to each element, and finally introduce the processor 
(P), we get the structure of Fig. 7 .  Of course, a large part of P 
is a data operator (D). The processor has the behavioral properties 
attributed to the structure of Fig. 5. If we include the control 
within each component, we get Fig. 8 from Fig. 7. 

To consider larger structures, consisting of several Mp’s, P’s, 
Ms’s, and T’s, one might think to expand the system as shown in 
Fig. 9, in which we connect everything through a single switch. 
If the central S has sufficient power for multiple conversations, 
this indeed provides maximum generality. However, although 

Fig. 6. Early computer model (with Ms and S) PMS diagram. Fig. 7. General computer model (with distributed control) PMS diagram. 
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designs have been proposed for such a system, technology and 
economics have so far prohibited their actual realization. Instead, 
there has developed the general latticelike structure shown in 
Fig. 10. Each switch in this structure connects components on one 
side with components on the opposite side (the S interconnecting 
the P’s being the exception). 

The lattice structure of Fig. 10 is hierarchical in the sense that 
the Mp’s form the inner core and one travels out toward the 
periphery in moving from left to right. With this movement there 
is a general decrease in data rate, being highest through the Mp-P 
switch and lower as one moves to the right. 

The model has five switches (S). One switch connects the com- 
puter’s peripheral devices with the external environment (human 
beings, other processes, etc.). Three switches appear alike in the 
way they interconnect Mp-P, P-K, and K-(T I Ms), respectively. 
However, they are usually quite different. We would expect any 
P to connect with any Mp. We probably would expect to have 
only one or two Pio’s connected to a given set of K’s. Most cer- 
tainly one or two K’s would manage a given set of Ms’s or T’s. 
Thus the structure nearest the periphery becomes more like a tree, 
rather than a lattice (examples are provided in Figs. 11 and 12). 
The last switch in Fig. 10, unlike the above four, provides inter- 
communication among the processors. In any multiprocessor struc- 
ture (even 1Pc-nPio) there must be communication among the 
processors. A switch of this type is organized as a nonhierarchy 
and appears like a conventional telephone exchange, since any P 
can call another. On the other hand, the amount of communica- 
tion (measured in bits) is rather low. 

The P’s and (usually) Mp’s have their controls associated with 
them, and we have not bothered to show such K’s in the diagram. 
The K’s that are shown provide control for the T’s and Ms’s. These 
are separated in the figure because they are separated in current 
computer systems and made into identifiable physical components. 
Under current technology they are expensive devices, so that one 
K per T or Ms is not economical. Therefore, each K needs to be 

P 

I 

P P P . . .  

T - X  

Ms M5 Ms.. . 
I 

X 

Fig. 9. General computer model (with multiple components) P M I  
diagram. 

U 
periphery 

lX(hurnan /computer /network lrnechanical process) 
where 

P i 0  := -Pia- 1 - Kio-  

K := ~ ~ I I I - K -  I - K - K -  
T ;= -T-l-K-T- 

Ms := k M s -  1 - K - M s -  

Fig. 10. General computer model (multiprocessors) PMS diagram. 

~ T . c o n s o l e  - 

Mp-Pc- 

K-Strn 

-€::- K-Sfx 

rT- 

Fig. 8. General computer model (without K) PMS diagram. Fig. 11. Tree-structured computer (1Pc) PMS diagram. 
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shared among a set of T’s and Ms’s. (That is, one purchases a single 
magnetic-tape controller for, say, four magnetic tapes.) The shared 
K also explains why only one of a given class of devices (e.g., 
magnetic tapes) can operate at a time. As technology changes 
(especially costs), these separate K s  may disappear. 

Nearly all the computers discussed in this book fit the lattice 
model of Fig. 10. However, it is not unlikely that structures will 
be or have been built that do not conveniently fit it. For example, 
NOVA (Chap. 26) does not fit the model nicely, although the more 
complex ILLIAC IV arithmetic-computer portion (Chap. 27) does. 

The values along the PMS structure dimension of the computer 
space have been generated from the general model and laid out 
in the order of their evolution. This evolution is strictly from less 
complex to more. The seemingly more complex network structures, 
such as the duplexed computers, are not necessarily as complex 
as a single multiprocessor computer. Duplex computers have been 
used for some time. The slow evolution to the parallel processor 
structure is due primarily to limitations in technology. A struc- 
tured computer with a distributed control is more expensive than 
a tightly integrated design with shared function. In addition, 
multiprogramming-a question of software-must be present to 
allow multiprocessing. 

The PMS structure plays only a minor role in obtaining multi- 
processing and parallel processing. The classical debate about 
building large computers has always been resolved by building 
a single large processor (e.g., the CDC 6600 and Stretch, Chaps. 
39 and 34). Proponents of multiprocessors say that one can always 
add several large processors to a structure and increase the per- 

Mp MP ~ ’ ~ ~ ~ -  S IK --S r TT: 
K i o  Ms 

P i 0  

u 
I a t t  i ce  rne rno rv -Drocesso r  T- X 

I 
. .  

/ 
s w i t c h i n g  

c o m p u t e r  b o u n d a r y  
( p e r i p h e r y )  

Fig. 12. Tree-structured computer (1Pc-2Pio and lattice Mp-P switch) 
PMS diagram. 

formance of a one-processor structure. In Part 6, Sec. 3,  when we 
discuss the IBM System/:360, we advocate multiprocessing. 

Today there is no parallel processing in the form suggested 
in Chap. 37. We include a discussion of parallel processing on the 
bet that it will come in the future. Part 5 is dedicated to moving 
along the PMS structure dimension. 

The simple 1 Pc structure shown in Fig. 11 is a tree. Although 
there are no values on the information rates, the nature of the 
fixed1 and time-multiplexed switches indicates that perhaps the top 
two T’s, one Ms, and one of the bottom T’s can all be active at 
a given time. In Fig. 12 a 1 Pc, 2 Pi0 computer is given. Here 
we note that the control of one secondary memory is by a Kio 
rather than the Pio. (The Kio cannot fetch its next instruction from 
Mp and must rely on Pc for control.) Note that there is necessarily 
a lattice connection between the 2 Mp and the Pc, 2 Pio, and 
Kio. The special cases of P.displays multiprocessors, P(array I wired 
algorithm), and parallel processing are all realized from the general 
model of Fig. 10. 

Switching 

A principal issue of a computer design at the PMS level is switch- 
ing (as we indicated in the preface). Unfortunately, we do not 
illuminate switching problems in this book except to provide 
examples. The switching dimension of the computer space is cor- 
related with PMS structure, as we have just seen. To have a more 
complex structure, more complex intercommunication (switching) 
is required. Figure 13 shows the various logical switches, together 
with some of the more common implementations. The switch 
parameters are also given in the Appendix of this book. Each of 
the switching issues will be discussed in turn as they apply to 
various parts of the structural model (Fig. 10). The reader should 
note that Fig. 13 has relatively primitive switches. More complex 
switches can be formed by cascading (connecting) the primitives 
together. (A noncomputer example is the manner in which tele- 
phone exchanges are constructed and interconnected together.) 

Processor-memory switching. Only recently, with the advent of 
multiple processors, has memory-processor switching become an 
important problem. But the Mp-P switch makes multiprocessing 
possible, and it is a determining factor in both performance and 
reliability. 

The structure of the processor-memory switch for computers 
which have multiple memories and multiple processors is a lattice 
if simultaneous memory/processor dialogues are allowed. A cross- 

‘A relative value for the attribute that denotes the time a switch is closed. 
Fixed usually denotes a time duration such that more than 1 i-unit is 
transmitted. 
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Fig. 13. Logical and physical switch structures PMS diagrams. 
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Fig. 13. (Continued) 
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Fig. 13. (Continued) 

point switch provides redundancy and is used to form the lattice 
structure. To vary from the full-duplex/duplex switch (for 
m-memories and one processor, or p-processors and one memory) 
requires more components to be devoted to the switching, to 
buffering, and to arbitration control. Hence duplex switches are 
used on most multiprocessor computers. The processor-memory 
switching possibilities can be seen nicely in Fig. 13. The im- 
portant switch parameters are the number of memories, the num- 
ber of processors, and the number of simultaneous processor- 
memory dialogues. In current designs P always originates the 
dialogue, which is generally taken to mean the reading or writ- 
ing of a given word in Mp. The range of complexity is roughly 

S(nul1; 1M; 1P; concurrency: 1)I 
S(simplex1 I half-duplex2 I full-duplex3; (mM; 1P)I(lM; pp); 

concurrency: 1) I 
S(time-multiplex cross-point; mM; pP; concurrency: 1) I 
S(cross-point; mM; pP; concurrency: min(m,p)) 

An %duplex can be used to increase the number of processors 
which can be connected to the memory system while not having 
to provide additional switch points on each memory. For example, 
in the CDC 3600 [Casale, 19621 a basic S(8M; 4P; concur- 
rency: 4) is expanded by placing another S(1M; 6P; concurrency: 1) 
in series to give a possible overall S(8M; 24P; concurrency: 4). 
This scheme was used to provide multiple processor accesses to the 
memories. 

Processor-control switching. The first switching problem developed 
with the need to communicate with several input/output devices. 
This switching is hierarchical in nature; one (or two) processors 

'A switch which allows communication in one direction between two 
ports. 
Z A  switch which allows communication in either direction but only one 
direction at a time. 
3A switch which allows concurrent communication between two ports. 
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maintain control of many K s  by giving a K a single instruction 
task. At the completion of the task the K signals the processor 
that the task has been completed. 

The switch provides a link between processor and controls for 
the secondary memory or the terminals and is parameterized by 
the number of processors, the number of controls, the number of 
simultaneous conversations, and who originates the dialogue. In 
these switches the control of information transmission is always 
by the processor. The evolution has been approximately as follows: 

1 S(nul1; 1P; 1K; concurrency: 1; initiator: P) 
P and K are connected during data transfers. 

S(simp1ex I half-duplex I full-duplex/duplex; 1P; 1K; 
concurrency: 1; initiator: P, K) 
Each K operates independently because it can return or 
request communication with P when control task is com- 
pleted. 

S(dua1-duplex; 2P; 1K; concurrency: 2; initiator: P, K) 
Duplex paths from dual P’s to each K for reliability. 

S(cross-point; pP; kK; concurrency: min (p,k) initiator: P,K) 
General case of multiple P’s and K’s with communication 
among the components. 

2 

3 

4 

The early machines used the first structure, and concurrent 
operation of controls was possible only by starting several controls 
and by very carefully programming the timing for the data trans- 
fers. Two conditions occurred to cause this: The buffering for a 
T or an Ms was associated with the processor, and the control 
could not signal the processor. Although rather trivial to imple- 
ment, the idea (item 2 above) of allowing a K to signal the proc- 
essor did not occur until after the idea of arithmetic processor 
traps were incorporated into processors. The interrupt was used 
as the method by which a K communicated its desire to converse 
with a P. The early IBM 709 provided a separate, independent 
processor for handling the communication with input/output 
equipment. Simultaneous processor-to-input/output or secondary- 
memory dialogues could take place (provided the devices were 
connected to the right processor). In most of the early computers, 
part of the control function (data buffering) was associated with 
the Pc, and, as such, only one device could operate at a time. This 
stemmed from the comparatively high cost of registers, so that 
links were established for a fixed period of time during a com- 
plete block transfer of data. 

In some of the military computers a duplicate set of K’s is 
provided for reliability. The more elaborate switching structures 
(types 3 or 4 above) are rarely used between Pio’s and K’s; thus 

to work on a peripheral requires the use of the rest of the com- 
puter. The S. dual-duplex is becoming more common; it provides 
a method of off-line operation for maintaining better component 
utilization and a more reliable structure. 

Control-terminal and control-secondary-memory switching. The 
switches which link a control with a particular terminal or second- 
ary memory are generally fairly straightforward. Normally, a fixed 
duplex switch is used. However, a dual-duplex switch is used if 
multiple access paths to the component are required. The switch 
links a secondary memory to a control during the transmission 
of relatively long information units (e.g., records). A typical ex- 
ample of such a switch is the bus structure used when magnetic 
tape units connect to a common control. Only one of the units 
operates at a time (although all can be rewinding simultaneously). 
The switches are far less interesting than those above. Because 
they are nearer the periphery, failure in them does not imply a 
failure in the complete system. 

Processor function 

The emergence of complex PMS structures is coincident with the 
development of functionally specialized processors. In the simple 
computers of Figs. 5 to 9 there is place only for Pc. In the general 
lattice there can be a Pc specialized to perform no input/output 
operations; one or more Pio’s specialized to communicate with 
the T’s and Ms’s and even to organize information in Mp for 
transshipment; additional Pio’s specialized to handle graphic dis- 
plays (hence P.display); and even P’s specialized to work on spe- 
cific data-types (for example, P.array) or specific algorithms (e.g., 
the fast Fourier transform). In addition, any of these processors 
may be realized by microprogramming, which is to say, by having 
its ISP interpreted by a specialized P.microprogram. 

Although the existence of various functionally specialized 
processors is coupled most closely with the PMS structure dimen- 
sion, the processors themselves are defined primarily by the data- 
types they can process. In this they agree entirely with the com- 
puter-system-function dimension. Possibly the processor-function 
dimension should be considered simply an extension of the com- 
puter-system-function dimension. On the other hand, the inclusion 
of microprogrammed processors really extends the PMS structure 
dimension to where a P can be seen as a cascade of two P’s. 

The processor-function dimension in the computer space is laid 
out in an evolutionary way, so that its correspondence with PMS 
structure is clear. P.microprogram is put at the beginning of the 
dimension ahead of Pc, not because it occurs earlier in evolu- 
tionary development, but because it extends the PMS dimension 
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down into the processor. Any of the P’s along the dimension can 
be attained by a P.microprogram. 

As an actual dimension characterizing a total computer it must 
be viewed cumulatively (similarly to the data-type dimension). 
Thus, if a computer has a Pio, it also has a Pc, and if it has a P.array 
it also ha5 the prior ones. There are numerous exceptions to this, 
such as small Pc’s with €‘.displays (hence with no Pio’s). This 
evolutionary ordering does not correspond to complexity or num- 
ber of data-types in the P. Pc and P.array are the most complex; 
Pi0 and P.vector,move are least. 

We will make a few brief comments on each functional type, 
taking them in the order of the dimension. 

Microprogram processor (P.microprogram). The term microprogram- 
ming was introduced initially in “The Best Way to Design an 
Automatic Calculating Machine” (Wilkes, 1951~). We use “micro- 
programmed” to mean that an ISP is defined by an interpreter 
program residing in an internal Mp, processed by an internal 
processor (the €‘.microprogram). Thus the structure is really an 
external processor (ISP) being defined by the computer formed as 

P : = Mp(interna1; read-only)-P.microprogram 

The operations that microprogram processors perform are 
primitive in comparison with other processors. The task of the 
microprocessor is to interpret the instructions of the ISP it is 
realizing. This involves mostly data transfers among the registers 
of the processor state (Mps) plus simple boolean tests. Although 
it must handle all the data-types of the larger ISP, it does so only 
as bit fields to be extracted and transferred from one register to 
another. The complex data operations (e.g., multiplication) are 
carried out by other units (D’s). In fact, if a complex instruction 
set were to be used for the P.microprogram, the external processor 
might as well be implemented directly in hardware. In very 
minimal P’s, for example, C(PDP-8) in Chap. 5, the ISP is essen- 
tially already at the level of a microprogram ISP, as shown by the 
inclusion of instruction that can be microcoded. 

The long lag between the idea of microprogramming and its 
more widespread adoption is due to several reasons. Early ISP’s 
were comparatively straightforward, so that a microprogram ap- 
proach was not economically justified. The interpretation overhead 
time is higher than with the hardwired approach, and unless 
complex functions are realized this time becomes objectionable. 
In addition, suitable read-only memories were not developed until 
the mid 1060s (though it is imclear whether this is came or effect). 
An additional feature of using a P.microprogram is the ability to 

realize several ISP’s within a single physical processor. IBM has 
exploited this feature extensively in the System/360 (Part 6, 
Sec. 3), which is by far the most ambitious use of microprogram- 
ming. One can argue that without the additional payoff, which 
was used to ease the transition to a new incompatible computer 
system by providing emulation of the old system, the micropro- 
gramming would be marginal. 

Several P.microprogram design approaches have emerged: 
Kampe (Chap. 29) presents a design based on a short word; the 
internal processor is very much like a conventional processor. At 
the other extreme, the IBM System/360 (Chap. 32) is based on 
a long word which allows multiple operations to be coded in 
parallel. (The parallel operations are necessary to gain an accept- 
able performance level.) Thompson Ram0 Wooldridge called their 
AN/UYK a “stored logic” computer, and it provided the ability 
to use primary memory for defining the ISP. The IBM System/36O 
Model 25 (page 567) also iises this approach. The Hewlett-Packard 
desk calculator (Chap. 20) shows the use of microprogramming 
on a relatively circumscribed, but complex, task. 

Central processors (Pc). These processors interpret an instruction 
set for manipulating arithmetic, logical, and symbolic data-types. 
In all simple systems it is the only processor and thus does all 
tasks. The growth of processor specialization can be described in 
terms of relieving the Pc of simpler functions that require sub- 
stantial processing time but do not make full use of the devices 
within the Pc, such as the arithmetic units. Crucial to this issue 
is the time it takes the Pc to switch from one task to another (recall 
the discussion on Mps, the processor state), since many of the jobs 
that are extracted to specialized processors are demand jobs, such 
as input/output. 

With the removal of tasks from the Pc, it becomes more spe- 
cialized. A very pure example of this is the Pc of the CDC 6600 
(Chap. 39), which has no input/output instructions of any kind 
in the Pc. That is, not only has the control and management of 
communication and transmission with the T’s and Ms’s been re- 
moved from the Pc, but the act of initiation has been removed 
as well and placed in the Pio’s. Thus, the 6600 Pc is just an 
engine for working on the arithmetic, logical, and symbolic (ad- 
dress) data-types. 

The mixture of operations to be performed in most complex 
algorithms prevents specialization of the Pc from going very far, 
e.g., from there being a P.arithmetic, for with every switch be- 
tween capabilities distributed in distinct P’s there must be inter- 
communication of the components, which introduces an overhead 
cost in processing time. 
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lnput/output processors (Pio). The Pi0 specializes in the manage- 
ment of peripherals (secondary memories and terminals). They are 
also called peripheral processors, data channels, and channels1 
The tasks a Pi0 and its subordinate peripherals perform are the 
transmission of information between Ms and Mp; the transmission 
of information between some extra computer real-time system 
(e.g., human); and the transmission of information outside the C, 
via a T to some other information media (e.g., a card reader, card 
punch, line printer, etc.). All the above tasks are similar and often 
are considered the same, though in principle they can be quite 
different. A task in this environment is the management of some 
quanta of information, whether it be one bit or character, a voice 
message, or a record or file from magnetic disk or magnetic tape. 
Thus a Pi0 does not usually change any information; it is merely 
an interpreter for moving information. There are three exceptions: 
Computation is required for error and correction and/or detection; 
computation is required if recoding and reformatting are done; 
and computation is required when search operations are carried 
out on Ms without Pc intervention. 

To accomplish the above tasks requires a fairly simple instruc- 
tion set. Typically it contains jump (branch); data transmission 
within Mp to initialize process variables; simple counting ability, 
e.g., to control error retries; subroutine calling; interrupt process 
handling; initializing KMs or KT; testing the state of KMs or KT; 
and sometimes code conversion (data in one code format is con- 
verted to another code). Thus substantial arithmetic and logic 
facility is not needed. Part 4, Sec. 1 provides a detailed discussion 
of Pio's. 

Display processors (P.display). The P.display is a complex Pi0 that 
processes information for display terminals. The data-type is a 
representation of a complex graphic object, e.g., lines, points, 
curves, and spatially localized text. The representations vary con- 
siderably from system to system, using various list pointers and 
vector encodings. The operations on the data-types include the 
maintenance of the display (due to the short-term persistence of 
the CRT); the selective modification of the representation under 
commands from the T.display or the Pc, such as adding or deleting 
a line, inserting text, etc.; the control of T.inputs such as key- 
boards, light pens, joysticks; and the performance of more complex 
spatial transformations, such as translation, rotation, scale change, 
and determination of hidden lines. 

'These terms are usually used without distinguishing between a Pin and 
a Kin, that is, whether the device interprets a sequential program (and 
thus is capable of sustained independent activity) or only decodes a single 
instruction. 

The €'.display is a good example of a highly complex but spe- 
cialized data-type for which there are substantial local operations 
to perform, that is, where no interaction is needed with a complex 
algorithm (that requires the Pc). Users of displays wish to correct, 
modify, and transform the display in geometrically simple ways 
(in effect, edit and view) between processing of the graphic infor- 
mation by complex algorithms. Thus the graphic display is a prime 
candidate for the development of a specialized processor. 

The DEC 338 (Chap. 25) is typical of these processors, being 
neither the simplest nor the most complex (e.g., it does not have 
rotation or hidden line elimination instructions). 

Array processors (P.array). The array processor might be considered 
a more general Pc. It has been proposed or discussed in the litera- 
ture for some time. (See bibliography for Chap. 27, page 329.) The 
information unit processed is an array of one (vector) or two 
(matrix) dimensions. Instructions are provided to operate on these 
data. The specification of algorithms for a P.array is based on the 
assumption that an operation can be carried out in parallel for 
array elements. Actually, both serial (sequential) and parallel 
(concurrent) execution can be implemented. Both structures have 
the same logical characteristics, from an ISP viewpoint, and may 
differ only in execution rate. The three array processors, ILLIAC 
IV (Chap. 27), NOVA (Chap. %), and the IBM 2038 (page 577), 
are discussed in Part 4, Sec. 2 (page 315). 

Vector-moue processors. The vector-move processor is a special-case 
P.array. It is capable only of moving a word vector at some loca- 
tion in Mp to some other location within Mp. Because of its limited 
instruction set, such a P is found only in computers which require 
constant Mp shuffling. This condition arises either because of a 
hierarchy of Mp speeds or because the programs must have a 
particular structure before they can be interpreted by the proc- 
essor. A time-shared computer might require such a processor for 
multiprogram memory management. It is therefore common to find 
block (vector) transmission instructions in a Pc. The IBM Sys- 
tem/360 has Pio(Storagc channel) for this function (page 577). 

Special algorithm processors (P.aZgorithm). Only a small number 
of special algorithm processors have been specified and/or imple- 
mented. High performance is almost guaranteed by hardwiring and 
through specialization. The time to fetch the algorithm (instruc- 
tion fetch time) and many of the references to Mp for temporary 
data are eliminated by hardwiring. A hardwired algorithm can 
easily outperform a stored program by a factor of 10 - 100. The 
lack of these processors in systems stems mainly from lack of 
market demand. 
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It is not clear that the special algorithm processors meet our 
criteria for being a processor, because of the rather limited func- 
tions they perform. In fact, some so-called processors are just K’s, 
or D’s since they have no instruction location counter and inter- 
pret only a single instruction at  a time, requesting each new 
instruction from a superior component. 

Algorithms which have been hardwired (or proposed) include 
the fast Fourier transform using the Cooley-Tukey algorithm; 
cross-correlation, autocorrelation, and convolution processing; 
polynomial and power-series evaluation; floating-point array 
processing; and neural network simulation.’ 

Language processors (P.Zanguage). Laqguage P’s interpret a lan- 
guage that has been designed to some external criteria, such as 
a procedure-oriented language (ALGOL or FORTRAN) or a list 
language (IPL-VI). Thus complexity takes the form of a complex 
data-type for the “instruction,” rather than a complex data-type 
for processing (e.g., floating complex numbers). If such processors 
were extended to do all the things a Pc also does, then they would 
become more complex than a Pc. However, to date, most of them 
are experimental and focus exclusively on language interpretation. 

In Part 4, Sec. 4, several examples are presented. It is worthy 
of note that of the three P.1anguage.s only EULER (chap. 32) has 
been implemented in hardware using a P.microprogram. 

Memory access 

The most useful classification of memories is according to their 
accessing algorithm.2 These are queue (i.e., access according to 
first-in-first-out discipline); stack (i.e., access according to first- 
in-last-out discipline); linear (e.g., a tape with forward read and 
rewind); bilinear (e.g., a tape with forward and backward read); 
cyclic (e.g., a drum); random (e.g., core); and content and associa- 
tive. All these memories are explicitly addressed except the stack 
and queue, which deliver an implicitly specified i-unit on each 
read. 

Memory size and basic operation times (Le., the time constants 
in the access algorithm) are important too, of course. But once 
a distinction is made between Mp and Ms, then for any given 
technological era there have existed characteristic sizes and speeds 

‘Chasm: A Macromodular Computer for Analog Neuron Models [Molnar, 
19671. 
‘Access for writing should be distinguished from access for reading. Mem- 
ories are conceivable with arbitrarily different read and write access algo- 
rithms (e.g., random read and cyclic write). However, in general, the two 
access algorithms are tightly coupled, and normally only the read access 
algorithm is given. 

for memories of a specified access algorithm. Where there has 
been variation, either it has been linear with size (e.g., buying 
two boxes of magnetic core Mp versus buying one) or there has 
been a narrow range of cost/performance tradeoff (as in data rate 
for magnetic tapes, in which modest increases in density and tape 
speed can be bought for substantially increased dollars). Table 5 
shows the relative price, size, and performance of various mem- 
ories. The memory-size versus information-rate plot (Fig. 14) shows 
the clustering of memories and their suitability for a particular 
function. 

From a technology standpoint, Mp’s have been constrained to 
either cyclic- or random-access memories (although one can easily 
construct any type from random-access memories). In Part 2, Sec. 1 
we have not separated the machines according to whether they 
used cyclic- or random-access memories. The early first-generation 
computers used cyclic-access memories. Part 3, Sec. 2 presents 
only the cyclic-access memories. 

Similarly, Ms’s have been constrained to be cyclic or linear, 
although quasi-random access has been achieved with some disks 
and magnetic-card memories (random by block and linear or cyclic 
within a block). Any Ms’s can be part of almost any computer 
structure. Thus there is no large effect of Ms structure on the main 
design features of computer systems, and they are not discussed 
to any extent in the remainder of the book. Our discussion of 
memory type below deals exclusively with Mp and Mps. 

Stack and queue memories (M.stack, M.queue). Data elements in 
a stack and queue are not accessed explicitly, as we noted above. 
The stack has some rather unique properties that aid in the com- 
pilation and evaluation of nested arithmetic expressions. Although 
there are no machines employing stacks exclusively for primary 
memory, there are stacks in some arithmetic processors. Part 3, 
Sec. 5 is devoted to processors with stack memories (i.e., with 
stacks in the processor state). 

The IPL-VI machine (Chap. 30) is the only computer in the 
book to have its entire memory organized as a list of stacks. 
Although no hardware exists that inherently behaves as a stack 
or queue,3 it can be simulated by a random-access memory. A shift 
register capable of shifting in either of two directions is a stack. 

Cyclic-access memories (Mp.cyclic). Nearly all the first-generation 
(vacuum tube) computers had Mp.cyclic. The Mpxyclic acoustic, 
magnetostrictive delay line, and magnetic drum provided an in- 

3Small (10 - 1,000 word) queue- and stack-accessed memories are espe- 
cially easy to build with large-scale integrated-circuit technology. 
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Table 5 Memory characteristics 

Memory size Memmy performance 

Module Modules/ Access Data 
Access size computer time rate 

M e m y  module Function method (bits) sec (bits/sec) Cost/bit( $)I 

Punched paper card 

Magnetic card 

Magnetic tape 

Moving-head disk pack 

Fixed-head disk 

Drum 

Bulk core memory 

High-speed core or 

Integrated circuit 
thin-film memory 

(scratch-pad memory) 

Integrated circuit 

Read only 
(content addressable) 

(capacitor, inductor) 

permanent, random + (500 - 1,000)/ 
archival linear card; - 

1,000 card/unit 
secondary, linear + 3 x 109 

archival constant + 
secondary, 

archival 

secondary, 
files swapping 

secondary, 
files swapping 

secondary, 
swapping 

primary and/or 
secondary, 
swapping 

primary 

primary, 
processor 
state 

primary, cache 

processor 
instruction-set 
definition 

cyclic 
linear 

linear + 
cyclic 

cyclic 

cyclic 

random 

random 

random 

content, 

random 
random 

2 x 10s 

2 x 108 

5 x 101 

(1 - 5) x 107 

107 

105 - io6 
103 - 105 

2 x 105 

(1 - 5) x 105 

1-2 

1-4 

1 - 16 
1 - 16 
1 - 40 
1 - 10 
1-8 

1 - 16 
1 

1-2 

1 

io0 - 103 104 2 x 10-6 + 
2 x 10-1 

1.5 x 10-8 + 0.4 x lo6 10-1 - 100 
5 x 10-5 

100 - 102 0.4 - 4 x 106 2 x 10-7 + 
10-4 

10-1 - 100 2.5 x 106 3 x 10-6 + 
10-4 

10-3 106 - 101 -10-2 

(5 - 30) x 10-3 io6 - 107 10-3 

0.02 - 0.05 (2 - 10) x 10-6 106 - 108 
0.05 - 0.25 (0.2 - 2) x 10-6 107 - 10s 

-10-7 109 0.25 - 1.0 

1-3 109 -10-7 

10-6 - 10-7 10s - 109 10-3 - 10-2 

'The f i rs t  componen t  is the  m e m o r y  media (e.g., a disk pack),  and t h e  second componen t  is the  t ransducer (e.g., a disk drive) 

expensive, simple, producible memory. By the second generation 
the cost of Mp.random (though still more expensive than an 
Mp.cyclic) was about equal to the processor logic. The incremental 
cost for an Mp.random in a large system was then small, whereas 
the performance gain could be a factor of up to 3,000 (access time 
of 10 microseconds versus 30 - 30,000 microseconds). Some of the 
first-generation machines were reimplemented using transistors 
(the LGP-30 became the LGP-21). Only a few new cyclic 
access machines were introduced in the second generation. Most 
notable was the low-cost Packard-Bell PB-250 using transistor logic 
and magnetostrictive delay lines (a derivative of the Bendix G-15 
and NPL ACE). 

Nearly all these computers use some form of n + 1 addressing. 

The memory is organized on a digit-by-digit serial basis for a word 
(e.g., ZEBRA with binary and IBM 650 with decimal). Hence, the 
arithmetic or logic function hardware is implemented for only a 
single digit. An operation is done for the entire word by iterating 
over all digits in time; thus the cost of a serial computer is nearly 
independent of its word length. 

Because of the cyclic and synchronous nature of these Mp's, 
it is difficult to synchronize them with secondary memories and 
terminals (which are also synchronous). The very early machines 
had no large secondary memories. In some cases, where magnetic 
tape was used, it was added at very low performance (low density, 
low speed, and, therefore, low data rates) so that synchronization 
was not a problem. In other cases a small random-access core 
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Fig. 14. Memory size versus effective information rate. 

memory was added to provide synchronization between the two 
memories (for example, IBM 650). 

Rundoni-uccess memories (Mp.randon~). Random-access memories 
were used late in the first generation, and they have remained 
the predominant memory during the second and third generations. 
It is unlikely that their popularity will decline unless content- 
addressable memories can be  constructed sufficiently cheaply (if 
then). The earliest first-generation random-access memories were 

electrostatic and depended on maintaining a charge on plates of 
an array of capacitors. The most common was the Williams tube 
(invented by F. H. Williams at the University of Manchester) 
which works in essence like a CRT, with the beam used to charge 
a capacitor array at  the tube face [Williams and Kilburn, 19491. 
Other schemes included an array of capacitors which were selected 
by digital logic (Pilot, Chap. 35). 

Late in the first generation Forrester [1951] invented the core 
memory, which rapidly became the predominant primary-memory 
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component. It is unlikely that it will be replaced in the near 
future; the most likely candidate is large-scale integrated-circuit 
arrays of flip-flops. 

The random-access memory seems nearly perfect for the Mp’s 
of present computers. Of course, enthusiasm for this memory may 
be based on not knowing how computers would have developed 
if we had not had them. However, with little or no effort an 
M.random can be a stack, a queue, a linear, a cyclic, and even 
(within limits) a content or associative memory. It is an organiza- 
tion which is very hard to beat. 

Content-addressable and associative memories. It is posdde to 
conceive of many exotic accessing capabilities, and numerous 
proposals have been made involving either theoretical structures 
or experimental prototypes. Since no particular varieties have 
become widespread, terminology is still variable. Content- 
addressable memories are usually taken to mean a collection of 
cells of predetermined size (i.e., a fixed i-unit) such that if one 
presents as “address” the contents of a predetermined part of the 
cell (the tag or content address) then the contents of the entire 
cell will be retrieved. An associative memory is usually taken to 
mean a system such that, when presented with an item of informa- 
tion, it delivers one or more “associated” items of information. 
The principle of association is variable, yielding different kinds 
of associative memories. Content-addressable memories provide 
a form of association, as do all memories, in fact. Thus the term 
“associative memory” tends to denote forms of association different 
from familiar ones-forms that presumably have less sharp con- 
straints imposed by the structure of memory (as opposed to the 
structure of the information in the memory). 

No examples exist of a computer with a content-addressable 
memory as its primary-memory structure. However, both the IBM 
360 Models 67 (page 571) and Model 85 (page 574) use 8 and 
-1,000-word content-addressable memories, respectively, to in- 
crease performance (in both cases they are transparent to the 
program). The CDC 6600 instruction buffer is in effect a small 
content-addressable memory. In the above three cases, the con- 
tent-addressable memories vary in size and position in the struc- 
ture; however, the pattern of use is common. There is a large but 
slower Mp.random behind the content-addressable memory. The 
purpose of the fast small content-addressable memory is to hold 
local, current data so that an access will not have to be made to 
the random-access memory. 

Small prototype associative addressable M’s have been con- 
structed, but they are normally based on random-access memories 
nnder the control of special hardware. There are immediate uses 

for content-addressable memories with a large information-content 
address. For example, the read-only memories for microprogram 
processors use long words principally because content-addressable 
memories are not available. Ideally a microprogrammed processor 
would like to look at  a fairly large processor state to determine 
what action is to be taken in the microprogram. It is interesting 
to speculate about the evolution of computers if a content- 
addressable memory had been developed in place of the random- 
access memory. 

M p  concurrency 

Multiprogramming is the simultaneous existence of multiple, 
independent programs within Mp being processed sequentially or 
in parallel by one or more processors. Multiprogramming provides 
each user program with a memory space independent of other 
users. It may provide, in addition, the sharing by several users (for 
independent use, not for communication) of a block of Mp, which 
thus does not have to be duplicated. For example, operating sys- 
tems software, including compilers, assemblers, loaders, and edi- 
tors, can be usefully shared. 

The ability to have multiple programs gives rise to a corre- 
sponding problem of communication between programs. We have 
defined this as a correlated dimension in the computer space 
(interprogram communication) and will discuss it in the next sec- 
tion. The issues it raises are just the opposite from those raised 
by the requirement for multiple programs, which are discussed 
in this section. Here we are concerned with protecting one pro- 
gram from another-with assuring that no unjustified communica- 
tion will occur-and with obtaining appropriate space in Mp so 
that multiple programs can run. 

The requirement for protection is obvious. If two independent 
programs are to be resident in Mp at the same time, they must 
not have access to each other’s space. Not only would such access 
(especially for writing) have disastrous consequences when the 
programs are running, but they would be entirely unpredictable 
and undebuggable from the viewpoint of the programmer of each 
individual program. Thus this requirement is absolute; i.e., it must 
be highly reliable. This implies a hardware solution, although 
purely software schemes are possible in special cases. 

The requirement for appropriate space is somewhat more sub- 
tle. Certainly there must be enough space in Mp for all the pro- 
grams that are to be resident simultaneously. It must be possible 
to find that space, assign it to a new program, and make it available 
again when that program is finished. But what kind of space will 
do? Must it be a single interval of Mp, large enough for the total 
program with data? Arid if the program is assembled or compiled 
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in Mp and is removed temporarily to make room for another 
program, must it be brought back into the exact same addresses 
into which it was originally assembled? 

The key issue resides in the kind of intercommunications that 
hold within a program and its data, for these determine how and 
in what way a program is interconnected and depends on the 
specific Mp addresses that it occupies. These connections are of 
two kinds: explicit addresses present in the program and data and 
implict relations between addresses due to addressing algorithms 
(e.g., that programs are laid sequentially in Mp, or that the ele- 
ments of an array are to be accessed by indexing and hence must 
occupy consecutive addresses). Again, although some purely soft- 
ware solutions to the space issue exist, hardware is involved in 
a fundamental way. 

Thus, the two main questions of program concurrencyl- 
protection and space assignment-imply basic design features of 
a computer system. It might seem that they imply separate fea- 
tures and should be separate dimensions in the computer space. 
In fact, each proposal for how to solve the space-assignment prob- 
lem also contains a particular proposal for the protection problem. 
Thus we treat them as a single dimension. 

Virtual-address space and Mp mapping. Before considering various 
solutions to Mp concurrency (Le., the values along the dimension), 
let us introduce two concepts in terms of which all current solu- 
tions can be understood. Consider a particular program, PRO- 
GRAM-1, one of many that might wish to reside in the Mp. PRO- 
GRAM-1 assumes a set of addresses, some explicitly and some 
implicitly, in the addressing algorithm it uses. PROGRAM-1 re- 
quires a memory space that has addresses that satisfy all these 
requirements, the implicit and explicit ones. Other than that it 
does not care how these addresses are realized. Let us call this 
address space required by PROGRAM-1 its virtual memory, Mv. 
Thus, each program has its own virtual memory. (You might think 
of this as having its own Mp, except, as we shall see, this Mp may 
be many times bigger than any actual Mp and still be entirely 
feasible.) 

Actually to run PROGRAM-1 requires that it be placed in the 
real Mp in such a way that the real addresses of Mp containing 
it satisfy all the requirements, that is, that it  be a faithful image 
of the virtual memory. Thus there must be some memory mapping 
that maps the actual addresses into the actual memory. Once 
PROGRAM-1 is placed in Mp there must be some process that 
takes each virtual address (as it occurs to be processed in an 

‘See also Randell and Kuehner [1968]. 

instruction) and finds the actual address in Mp, so that the correct 
contents can be obtained. 

This might seem simply a complicated and abstract way to view 
matters, but it becomes essential as soon as we realize that the 
computer can have hardware memory mappings other than the 
familiar direct-addressing structure of Mp. Furthermore, if this 
mapping is given the right properties, it may solve some of the 
space-assignment and protection problems for Mp concurrency. 
What we have really done is to divorce the addressing required 
by the programs from that provided by the physical computer, 
so that we can redesign it (via the memory mapping) to meet new 
design requirements that were not apparent when the original 
random-addressing schemes were created. 

Let us make the notion of memory mapping more precise. The 
program contains virtual addresses, z (that is, symbols in the pro- 
gram that denote addresses are taken to denote addresses in Mv). 
During the execution of the program, whenever there is a refer- 
ence to an address z (either explicitly via an address calculation 
or implicitly via, say, getting the next instruction), a computation 
occurs on z to obtain the actual address in Mp. This computation 
is part of the Pc, just as is an automatic indexing or indirect- 
addressing calculation. It takes as input not just the virtual address 
z but information on where the program is located in Mp. The 
latter information is called the map, and a program’s map infor- 
mation is determined when it is placed into Mp on a given run. 
Thus, using our ISP notation, and calling the address calculation 
f, we get 

Mv[z] : = Mp[f(z,map)] 

That is, the information in virtual memory at virtual address z 
is the same as the information in actual memory at address 

This whole scheme is built to permit programs to be placed 
in Mp’s in various ways, e.g., relocated or scattered around, and 
still make it possible to run the program. Any such scheme brings 
a solution to the protection problem, namely, that for some values 
of z the above calculation cannot take place or is invalid (i.e., there 
is no mapping for z). This can correspond to a violation of protec- 
tion, which can then be prevented. All calculations may even be 
permissible, but f is so arranged that it never produces an address 
in anyone else’s part of Mp. 

The memory map is part of each user’s program. With many 
users, it must reside in Mp, since there will not be enough space in 
Mps to hold a large amount of mapping information. However, 
when a program is being executed, some part of the mapping 
information becomes part of the Mps (Le., at least the Mp address 

f(z,map). 



78 Part 1 I The structure of computers 

of the rest of the map). In addition, the map may contain special 
access control information, such as whether a part may be read, 
read as data, written, or read as program. The map can also collect 
statistical information concerning whether a part of the program 
has been used or has been changed (written). 

Random-access memories for Mp constrain the mapping by 
requiring linear addresses of the form Mp[O:p], since the mapping 
calculation must be economical (as it is performed with very high 
frequency). We would not consider a map structure which provides 
every word in Mv to be mapped into an arbitrary word in Mp, 
for this would require a map exactly the same size as Mv. With 
many programs in Mp, there would be little room for anything 
but maps. Similarly, the amount of processing in f, the calculation, 
must be very minimal. These two aspects constrain the mapping 
scheme strongly. 

The constraint to linear addresses appears to force the structure 
of virtual memory to consist of a multidimensional array. This can 

Table 6 Memory-allocation methods 

be one-dimensional, Mv[O:n], or two-dimensional, Mv[O:s][O:m]. It 
could be of higher dimension, but the need seems not to have been 
felt (since within any single dimension one can have multi- 
dimensional arrays as one normally does in a regular Mp). How- 
ever, the two-dimensional array, which also is called segmented 
addresses, since it can be taken as a discrete collection of s + 1 
segments each of m + 1 linear addresses, has advantages in terms 
of the mappings; namely, segments can be placed disjointly in Mp 
without fear that virtual-address calculations will cross from one 
segment to another. 

With this introduction to the problems of multiprogramming 
we will look at some of the hardware schemes. Table 6 provides 
a summarization of them, including a brief description of how each 
scheme operates. 

No special mapping hardware. If no hardware exists in the Pc to 
accomplish a memory address mapping, then when the address 

Hurrlioare designution 
(cinaizged in order uf t n c r m w i g  
hardiLcire coinplerity) 

Method of’ memory allocation 
among multiple users 

Limits of particular 
method (example of use) 

Xo relocation Mr 5 ,Mp; 
Conventional computer-no memory-al- No special hardware. Completely done by inter- 

location hardware pretive programming. 

1 + 1 users. Protection bit for each A protection bit is added to each memory cell. 
The bit specifies whether the cell can be 
written or accessed. 

memory cell 

1 + 1 users. Protection bit for each A protection bit is added for each page. (See 
memory page. above scheme.) 

Page-locked memory Each block of memory has a user number which 
must coincide with the currently active user 
number. 

Completely interpretive programming 
required. Very high cost in time is paid 
for generality. (JOHNNIAC interpret- 
ing JOSS). 

Only 1 special user + 1 other user is al- 
lowed. User programs must be writ- 
ten at special locations or with special 
conventions. or loaded or assembled 
into place. The time to change bits if 
a user job is changed makes the 
method nearly useless. No memory 
allocation by hardware. (IBM 1800) 

No memory allocation by hardware. (SDS 
Sigma 2) 

Not general. Expensive. Memory reloca- 
tion must be done by conventions or 
by relocation software. A fixed, small 
number of users are permitted by the 
hardware. No memory allocation by 
hardware. A program cannot be moved 
until it is r u n  to completion. (IBM 
System/360) 
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Relocation and protection: Mu 5 Mp: 
One protection count and one field reg- 

ister (addresses formed and checked 
by logical operations) 

All programs are written as though their origin 
were location 0. The count register deter- 
mines the number of high-order bits to be 
examined. The field register is then com- 
pared for identity with the requested address. 

One set of protection and relocation reg- 
isters (base address and limit regis- 
ters). Also called boundary registers. 

Two sets of protection and relocation reg- 
isters. Two segments. 

n 2 3 sets of protection and relocation 
registers. 

Mapping, Mu 2 M p :  
Memory page mapping 

Memory page/segmentation mapping 

Indirect references through a descriptor 
table to segments. 

All programs written as though their origin were 
location 0. The relocation register specifies 
the actual location of the user, and the pro- 
tection register specifies the number of 
words allowed. 

Similar to above. Two discontiguous physical 
areas of memory can be mapped into a homo- 
geneous virtual memory. 

Similar to above. More similar t o  page mapping. 

For each page (26 to 21' words) in a user's vir- 
tual memory, corresponding information is 
kept concerning the actual physical location 
i n  primary or seconaary memory. If the 
map is in primary memory, i t  may be desir- 
able to  have "associative registers" at the 
processor-memory interface to remember 
previous reference to virtual pages, and their 
actual locations. Alternatively, a hardware 
map may be placed between the processor 
and memory to transform processor virtual 
addresses into physical addresses. 

Additional address space is provided beyond a 
virtual memory above by providing a seg- 
ment number. This segment number ad- 
dresses or selects the  page tables. This al- 
lows a user an almost unl imited set of ad- 
dresses. Both segmentation and page map 
look-up is provided in hardware. May be 
thought of as two-dimensional addressing. 

All data are considered part of a descriptor 
array which is referred to by a number. A 
descriptor table indexed by the descriptor 
number is used to locate the array in Mp 
and give its size. 

Memory allocation blocks must be in 
power of 2. Unless blocks are the 
same size, the memory utilization can 
be poor. Although faster than the fol- 
lowing scheme (which requires a hard- 
ware adder), the inflexibil i ty of loca- 
tion and size makes i t  restrictive. 
(IBM 7040) 

As users enter and leave, primary-mem- 
ory holes form, requiring the moving 
of users. Pure procedures can be im- 
plemented only by moving impure part 
adjacent to pure part. (CDC 6600, 
PDP-6) 

Similar t o  above. Simple, pure proce- 
dures with one data array area can be 
implemented. (UNIVAC 1108, PDP-10) 

Has not been used in any conventional 
computer. 

Relatively expensive. Not as general as 
following method for implementing 
pure procedures. (Atlas, CDC-3500, 
SDS-940) 

Expensive. Little experience to  judge 
effectiveness. (GE 645, IBM 360/67) 

An indirect reference must be made to 
the description table in Mp. (B 5500) 



80 Part 1 1 The structure of computers 

z is encountered in the program, the information at Mp[z] will 
be obtained. There are still, however, two different ways to obtain 
the effect of a virtual memory. 

First, one can operate interpretively, with a software system 
taking the place of hardware. That is, the programs of all the users 
are in a nonmachine language (e.g., a higher procedure-oriented 
language), and each access in the language is processed by the 
software interpreter before an access is made to Mp. It is clear 
that all the logical power of a memory mapping is available with 
this scheme. The only drawback is the loss of efficiency from the 
interpretation, which may range from a factor of 5 to 100. Conse- 
quently this scheme is used only in special circumstances, such 
as multiuser time-shared conversational algebraic languages. 

The second scheme is to modify the code at the time it is placed 
in the Mp for a given run, so that all addresses in the code corre- 
spond to the actual Mp addresses used. That is, an assembly or 
translation operation is performed each time the program is placed 
in Mp. The advantage of this scheme is that no further address 
calculations are necessary. There are three disadvantages. Assem- 
bly operations are expensive so that, although the scheme is tolera- 
ble if the program is brought in once and run to completion, it 
is not tolerable if programs are continually being swapped in and 
out of Mp. In addition, the program must be laid into continuous 
intervals of Mp corresponding to predetermined segments of the 
program, for assembly occurs on a static representation of the 
program and cannot unravel the potential effect of address algo- 
rithms. Finally, the size of Mv (i.e., the addresses used externally) 
must be not greater than Mp. 

Relative to these software schemes-one interpretive and very 
expensive and one involving assembly (Le., compilation) and load- 
ing-the hardware schemes to be described appear as address 
interpreters, where the cost of continuous interpretation has been 
made tolerable. 

Protection for words or pages hardware. There are three schemes 
in Table 6 that provide a means of protecting one part of Mp 
against references from other programs. The rationale for these 
designs is that there will be only two users (or user classes), one 
user being superior and assumed perfect (its program debugged). 
References to Mp via the imperfect program to a perfected and 
superior part of Mp are forbidden. These schemes provide no 
method of hardware mapping, and physical addresses are the same 
as virtual addresses. In the simplest scheme, as in the IBM 1800 
(Chap. 33), a protect bit is added to every word in Mp, that is, 

Mp[O: 2lS - 1](0: (w - l) ,  protect-bit) 

Every reference Mv[z] takes place as 

Mv[z] : = (7Mp[z](protect,bit) + Mp[z]; 
Mp[z](protect-bit) + protection violation t 1) 

That is, any reference to a word with a protect bit causes an error. 
The other two schemes protect on the basis of blocks of words. 

Protection and relocating register(s) hardware. A protection and 
relocation register mechanism is used in four schemes of Table 
6. These provide either one concatenated, one additive, two addi- 
tive, or n additive register pairs for mapping a single program into 
one, one, two, or n nonadjacent blocks in Mp. The authors know 
of no schemes where more than three registers are used; this would 
really be akin to using a more general page map. Generally, these 
schemes restrict Mv 5 Mp. 

An additive protection and relocation register pair is shown 
in Fig. 15 in which four users are occupying a Mp[0:7999]. Each 
user program is written to occupy a continuous address space in 
a virtual Mv. Thus in ISP, when Pc is running programs for user-j, 
which address Mv[z], with z varying from 0 to vj - 1 the map- 
ping uses actual memory. The action is 

Mv[z] : =((z < Protection) -+ Mp[z + Relocation]; 
z 2 Protection + (Protection violation t 1)) 

Protection and Relocation are the two registers that specify map- 
ping. The implementation of this scheme generally takes the form 
of adding the contents of the relocation register after all address 
calculations have taken place. Thus, in PMS we might think of 
the structure 

Mp-K(ad&ess translation)-Pc. 

M(l Protection,Relocation) 

Page-map hardware. Figure 16 shows the memory allocation using 
a page map. Note that, of the 4,096 words it is possible to define 
by the map, the range 1,024 to 2,047 is actually undefined. Along 
with the map containing the addresses to words in actual Mp, it 
is desirable to have accessor protection control information. Such 
information might specify: 

1 No restrictions (any form of reading or writing can take 

2 Read only as data. 
3 Read only as a program. 
4 Writing. 
5 Undefined. 

place). 
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6 Defined but located in Ms. 
7 This page has been written in (to know whether a copy in 

Ms has to be updated). 
8 This page has been accessed. 

This scheme is essentially a generalization of n protect/relocate 
registers hut includes more control bits, suggested above, and 
restricts each block to he the same size. Note that Mv can he 
greater than Mp. In addition, parts of the virtual memory may 
remain unused. 

There are two ways the above scheme is usually implemented: 

1 A complete map is first considered as a conventional, ex- 
plicitly addressed M whose addresses correspond to the 
virtual-address pages. At a given page-memory address the 
contents of the map specifies the address in Mp. The map 
is similar to an indirect reference. However, the map is 
usually about 10 times faster and about 1/1,000 the size, 
since it keeps track only of pages, not words. The PMS 
structure is 

Mp-M.map-Pc 

2 The map is retained in Mp and referenced by a protection 
and relocation register which are set for the particular active 
user. In order to avoid making references to Mp for each 
word reference to Mv by a Pc, a small, fast M(content ad- 
dress) is placed between Pc and Mp. The PMS structure is 

L(data) - 

t K(address translation) t L(addresses) t 
I 

M(content address; 8 - 16 words) 

Pc 

MenLorii-segmentation hardware. Figure 9 (page 574) in the intro- 
duction to the IBM System/360 shows the logical mapping process 
for a segmented memory. There is provision for a very large two- 
dimensional virtual-address space. This scheme is discussed exten- 
sively in the literature [Arden et al., 1966; Dennis, 1965; Gibson, 
19661. The physical implementation is similar to that of paging. 
Note that two levels of mapping are provided: the segment map 
and the page maps. The two levels facilitate the sharing of a single 
segment by two jobs. 

The Hurroughs R 5000 (Chap. 22) and the later R 8500 have 
a mapping that is more closely integrated into the Pc because they 

Relocation r ' E 3  
- ,/ k--Z-21 

Protection H + 
u q  

Table of user location information 

3 
0 i  2 2 

User-memory'' addresses in 1,000s of 
words 

Hardware registers,I7 ----'I ,, 
when user 2 is 
running 

\ 

"Absolute memory'' addresses in 1,000s of words 

Fig. 15. Memory allocation using a boundary (relocation and protection) 
register. 

provide a variable-sized address space (not paged) within a seg- 
ment. The segments are named, and a large number of segments 
exist. 

lntetprogram communication 

The dimension of interprogram communication is completely cor- 
related with the multiprogramming dimension as we have previ- 
ously noted. To have a problem of intercommunication, there must 
be a structure of components that require communication. At the 
simplest level the dimension is represented by a single program, 
and there is no need for intercommunication. Variables of the 

r,,,,,, 

( 2 - 4 )  2 0 4 8 - 4 0 9 5  for  

Map locoting u s e r , ~ j k  
v i r t d  memory in 

"absolute" memory 

0-1023 for y 

Absolute memory 

Fig. 16. Memory allocation using a page allocation map. 
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program are completely accessible to the whole program, and the 
address space is essentially uniform. 

The second value of the dimension, subroutine calling, produces 
a hierarchy of communication contexts. There is not a fixed num- 
ber of levels to the hierarchy, since each subroutine may call others 
ad izuuseum. When subroutines are present, address names and 
values within the subroutine become addresses which are local 
to that part of the subprogram. Such a structuring is apparent 
when looking at the higher-level languages such as FORTRAN, 
ALGOL, and PL/I, where there are explicit statements for con- 
trolling the names (addresses) that are available to each of the 
parts of the program. The concept of subroutine structure has been 
with us almost from the first programs. 

The next value of the dimension relates to signaling within a 
single process. It is akin to subroutines embedded in hardware. 
These are called extracodes and were perhaps first suggested for 
the Atlas (Chap. 23).  Each extracode can be looked at as just a 
call to a specific subroutine. The variables of the user (caller’s) 
program are made available to the called (extracode defined) 
program. The calling usually is accompanied by a context shift, 
in which a completely different program (one that is used by any 
number of calling programs) takes command to interpret the in- 
struction. This scheme is used in systems which are controlled by 
a special software monitor. When a function such as the input 
or output of a file is required, the main program issues a call to 
the monitor to make the transfer. (In theory, the monitor knows 
about conditions in the system and has the capability to perform 
the complex function.) A central monitor control can then begin 
to run another program if the request is one which would normally 
halt the computer. This form of communication is useful to supply 
extra facilities to users and to have a method of knowing what 
the users are doing (e.g., so that equipment will be better utilized). 

As more complex program structures are directly represented 
by the hardware, the intercommunication complexity also in- 
creases beyond the simple subroutine call. If a segmented-memory 
scheme is used, the problem of communicating between the seg- 
ments can be solved in a range of ways. The value of the range 
would be somewhere between ignoring the problem with the 
hardware and providing methods for naming of addresses between 
the communicating segments. 

In the above cases, the communication among the various 
programs or parts of programs is done explicitly by one program 
to another program. The instruction trap does not fit this view 
so nicely. Here, conditions occurring within a single process which 
are not explicitly called cause another part of the program to be 

called. Typical conditions which cause traps are arithmetic results 
outside expected range or erroneous program conditions (e.g., 
trying to call someone else’s program). The trap causes a change 
in context that is synchronized with the process causing it. Trap- 
ping is a form of program interruption; a trap is an intraprocess 
interrupt as distinct from interprocess interrupts. 

Intercommunication between two independent processes (being 
carried out by two independent components) is usually accom- 
plished by using the program interrupt. The interrupting process 
requests that a program interrupt occur in a component (inter- 
ruptee). The interrupter’s request is acknowledged by the inter- 
ruptee, and a change of process state occurs in the interruptee; 
a new process is then run in the interruptee on behalf of the 
interrupter. The program interrupt is used among processors in 
a multiprocessor system and between 1Pc and nPio’s. A control 
K may also use the program-interrupt request to communicate 
with its superior Pi0 or Pc. For example, a Pi0 does not usually 
have the logical capability to execute an algorithm which would 
decide that action is to be taken for various error conditions. 

Usually the interruptee is equipped with certain logic which 
is capable of arranging priorities of requesting interrupters. The 
typical kinds of interrupt requests are component faults (e.g., 
parity error), a timer has counted down, and various task comple- 
tions (e.g., a program has completed, a tape unit has rewound, 
a disk arm has stopped moving, a certain record has been found 
on tape, a buffer is full). 

State diagrams would show how each of the communication 
methods above are similar to one another. A typical interrupt state 
diagram is shown in Fig. 17. There are four states: normal process 
interpretation, process state saving, interrupt process interpreta- 
tion, and process state restoration. The sequence is as follows: 

Normal instruction interpretation is occurring in the inter- 
ruptee. 

The interrupter requests an interrupt. 

After some delay, t.acknowledgment, a state is reached in 
which part of the interruptee’s process state is saved. 

After t.acknowledgment + tsave, a program is running in 
the interruptee in response to the interrupter. 

The interrupt program is run for t.interrupt. 

At the completion of the interrupt program, the original 
process state is restored in the interrupter. 

After t.restore, normal processing resumes in the inter- 
rupter. 
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The significant attributes of the system are the various times re- 
quired to move from state to state. These times are directly related 
to the amount of process state which must be saved (and restored) 
when switching context. 

The intercommunication problem is probably the least under- 
stood dimension in the computer space. It is rather intimately 
related to the ISP, in that the various calling methods (implicitly 
and explicitly) depend on the ISP. Also, the amount of processor 
state (a function of the ISP) affects the response time for making 
context transitions. Most interrupt systems allow several inde- 
pendent classes and/or sources of interrupters. The classes are 
arranged in priority so that lower-level interrupters are ignored 
until higher-level interrupt programs are run to completion (see 
Chap. 42 on the SDS 910-9300 series). The design problems as- 
sociated with intercommunication are not those of implementa- 
tion but of knowing what should be implemented. The PMS 
structure part and the corresponding register-transfer implementa- 
tions for intercommunication are, by comparison, straightforward. 

Processor concurrency 

Concurrency (parallelism) in the processor is the number of events 
or logical operations that are happening at a given time. If the 
basic logic technology is held constant, decreasing the processing 
time (increasing the power) requires increasing the number of 
parallel operations. An exact measure of parallelism can be made 
in terms of the number of n-bit operations made per clock pulse. 
The parallelism in a structure is also a measure of its complexity; 
to have a highly parallel structure implies control structure to- 
gether with multiple data paths (and operations) which can be 
concurrently evoked. 

Processor parallelism is also necessary to overcome Mp speed 
technological boundaries. Thus it is difficult to isolate completely 
the processor from the memory. 

Flynn [ 19661 categorized high-speed processors by whether 
there are single or multiple instruction streams and whether each 
stream has single or multiple data streams. The CDC 6600 and 
IBM Stretch are examples of a single instruction stream and a 
single data stream. An ILLIAC IV processor has a single instruc- 
tion stream with multiple data streams. Thus, the single instruction 
stream and multiple data stream are a form of array processing 
in which an instruction performs an operation on multiple data 
elements. 

The CDC 6600 main processor has multiple instructions of a 
single stream in the fetch, buffering, and decoding process at a 
given time. In addition, instructions are being executed in parallel 

Interrupt request 
f rom interruptor, 

Interpret 
instruct ion in Mp 
(interpretation in 

in ter rupted state1 

No in ter rupt  
request 

t restore Interrupt 
program execution 

Fig. 17. State diagram for the interrupt process. 

by the 10 parallel data-operations. The 6600 has functionally differ- 
ent data operators, although a system could exist in which these 
operators are the same, or, if the operator were much faster, a 
single unit could be used sequentially. Depending on the utiliza- 
tion of the 10 data units, there could be a computer with several 
processors which share a common set of data-operations. The 6600’s 
peripheral processors are implemented in a mode whereby several 
instructions streams are processed in parallel by a single processor. 
The simplicity of the shared processor for multiprocessing or 
parallel processing thereby provides still another form of parallel- 
ism. The following subsections discuss particular forms of paral- 
lelism. At one end of the dimension there is the most primitive 
structure, a serial processor, and a t  the other end there are pipe- 
line processors. 

Serial processors. At the most elementary level only one bit of an 
n-bit word is operated on at a given time. There is no concurrency, 
and even the most trivial operations on n bits requires a time of 
n. The bit-serial processor was used in the first generation because 
the cyclic primary memories to which it connected were funda- 
mentally bit-serial (see page 73) .  Although the processor memory 
could be made to operate on a parallel basis where words were 
available in one unit of time, such a tradeoff was not worthwhile 
because of the relatively long access time to Mp. The word lengths 
for serial processors tended to be relatively long, because the cost 
is independent of word length (see page 216). 

Parallel-b y-word processors. The simple parallel-by-word processor 
is the most common processor of the first to third generation. This 
occurred in part because Mp became parallel by word. Within 
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the processor we assume that almost every internal register- 
transfer operation requires one or more clock times. (A simple 
multiply operation usually takes between n/2 and 2n clock times.) 
We do not mean to rule out multiple simultaneous internal opera- 
tions within the processor, but they are exceptions. With only a 
view of a processor's registers, it is easy to tell if multiple opera- 
tions are possible. Most of these processors do only one operation 
at a time. As a rule, the simple processor is locked to the primary- 
memory cycle time (usually core). Approximately 2 - 10 events 
(clock times) are available within the processor. For example, the 
PDP-8 (Chap. 5 )  has four events, and the IBM 7090 (Chap. 41) 
has 10 events. A precise measure of parallelism would count the 
number of operations per clock time for given program conditions. 

Multiple instruction streams, 1 Pc. The only example of this 
structure in the book is the CDC 6600. Opportunities for such 
a structure are possible with the parallel computer suggested by 
Lehmann (Chapter 37). 

Multiple datu streams. The most obvious implementation of 
multiple data streams with one or more instruction streams is 
the array processor. Part 4, Section 2 is devoted to these struc- 
tures. 

1-Instruction buffer. The 1-instruction buffer is a form of looking 
ahead in the instruction-interpretation cycle and is about the 
simplest form of parallelism in a parallel-by-word processor. A 
single register is assigned the role of holding the next instruction 
to be interpreted. The IBM 7094 Instruction Backup Register 
(Chap. 41) is typical of this case. In the 7094 two instructions are 
fetched at a time. More generally the next instruction would be 
fetched during the execution of the current instruction. 

n-Instruction buffering. Multiple instruction buffering is a general- 
ization of the 1-instruction buffer above. It can take several forms 
depending on the algorithms used to fetch the next instruction 
(i.e., the look-ahead) and the organization of the memory holding 
the instructions. Stretch (Chap. 34) and the CDC 6600 (Chap. 39) 
use instruction buffers. A small, restricted content-addressable 
memory holds a block of instructions. In the simplest case of these 
computers a block of memory, relative to the instruction counter, 
is kept in the local instruction buffer memory. 

Look-aside buffering (sluve) memories. Look-aside is a more general 
form of instruction buffering because both instructions and com- 
monly accessed data tend to migrate to the faster look-aside 

memory. This scheme is discussed for the IBM System/360 Model 
85 (page 574). The look-aside memory suggested by Wilkes 
[1965] is a content-addressable memory for retaining the active 
(most recently used) memory words. 

Pipeline processing. Pipeline (assembly-line) concurrency is the 
name given to a system of multiple functional units, each of which 
is responsible for partial interpretation and execution of the in- 
struction stream. A pipeline processor has several partially com- 
pleted instructions in process at  one time. Each processor stage 
operates on a specific part of the instruction, e.g., instruction fetch, 
effective-address calculation, operand fetching, execution of opera- 
tion specified by the instruction, and results storing. A PMS dia- 
gram for a pipeline processor is given in Fig. 19. Thus there is 
a separate functional unit for each state suggested by the state 
diagram of Fig. 4. There must be interlocks so that sequence is 
preserved, i.e., so that results are not used until they are available. 
Figure 18 shows a time/function diagram of a pipeline processor. 
There are at least three instructions being interpreted simultane- 
ously. Although we have not extended Fig. 18, we would expect 
the processor in the sketch to operate on about eight instructions 
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Fig. 19. Example of processor parallelism by spatially independent control function (pipeline processing) PMS 
diagram. 

at one time. Note that the processor sometimes completes later 
instructions first. In this model there is only one instruction fetch- 
ing, one operand fetching, and one operand storing unit, while 
there are multiple data operation units. The particular number 
of each type of unit is obviously not fixed for all structures but 
depends heavily on the memory system, the number of instruction 
streams, and the ISP. 

A processor may require many data-operation units in order 
to avoid bottlenecks. Each unit is independent and may be 
functionally capable of carrying out only selected tasks. Multiple 
data-operations are normally desirable in a pipeline processor 
so that several operations can be carried out at  a time, since 
most of the processing time within the processor is spent on the 
operations (e.g., multiplication, division, shifting, etc.) 

Conclusions 

You now have our view of the important aspects of the stored- 
program computer. We have tried to organize the parameters as 
dimensions so that a computer can be  viewed as a point (or points) 

in a multidimensional space. The previous discussion has enumer- 
ated the values of one dimension, while (in effect) holding the 
values of other dimensions constant. The dimensions are highly 
correlated, especially with cost and evolutionary time. We have 
been brief in presenting the dimensions because the book is pri- 
marily about computer examples. However, one should he able 
to recognize the dimensions and values when they are encountered 
within the context of a particular computer. 

The remainder of the book is organized around these dimen- 
sions. The examples lose the identity of dimensions because they 
are descriptions of points in the space (computers). Furthermore, 
the descriptions themselves are not especially organized around 
these dimensions but are based on the designer’s own view of his 
machine. 
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PART 2 

The Instruction-set Processor: main-line computers 

To have a "main line" of computers is to have a family that predominates through 
the generations. Predominance can probably best be measured by the percentage 
of distinct computers produced within the family, as opposed to outside it. Members 
of the family need not all be identical; especially evolution over time can be tolerated. 
But it must be the case that there is at any moment a "standard" design which 
is seen as emerging from the just prior "standard" design. 

Within these definitions there indeed has been a main line in computer systems. 
It is based on the Burks, Goldstine, and von Neumann memorandum, reprinted as 
Chap. 4. The most striking characteristic is the evolution from 1 address organization 
(l) ,  through index-register (1 + x) to general-register (1 + g) organization. Left 
outside the main line have been multiple-address organizations, character machines, 
and stack machines. This seems to  be an appropriate description, even though a 
character machine (variable-length character string), the IBM 1401, probably holds 
the record for number of machines produced (when each model of the IBM Sys- 
tem/360 is counted as a separate computer). 

A second characteristic feature has been the PMS structure, which has evolved 
from a single P to a Pc-nPio structure. This has not been uniform within the family, 
since it applies only to the larger members; the small machines, such as the PDP-8 
(Chap. 5), have no separate Pio's. It might seem that all computer systems, both 
within and without the family, have evolved in this same way. But this disregards 
the history of computer development. For a while, in the early fifties, there were 
seen to be two main lines of potential development: scientific computers, featuring 
large computation and small input/output, and business computers, featuring small 
computation and large input/output. The latter started to develop into the Pc-nPio 
structure (with the IBM 702) but, instead of a separate line developing, scientific 
computers (with the IBM 704 and UNIVAC computers) adopted the more powerful 
input/output structure. Again, despite its success, the 1401 has not bred a new 
generation of computer systems in its image, either within IBM (where one might 
argue that the overriding consideration was to  have a uniform series) or by IBM's 
competitors. 

A third characteristic of the main line is the use of binary as opposed to decimal 
as the basic radix of the machine. This affects both the arithmetic and whether logi- 
cal processing (on bit vectors) can be done. The issue seems almost settled in the 
third generation, with smaller machines being binary and larger machines having 
multiple data-types. The last serious venture into a large pure decimal machine was 
the UNIVAC LARC, delivered in 1960. In retrospect, the difference in organizations 
between binary and decimal machines seems small enough so that we have included 
them all in the same section. 

There are a number of striking features that are characteristic of the main line 
but do not differentiate it from any of the alternatives that have actually been 
produced. These features include the stored-program concept; the use of sequential 

a7 



88 Part 2 1 The instruction-set processor: main-line computers 

instructions of the operator-operand variety; the use of the word as an information 
unit, within the range of 12 to  64 bits; and a processor state of less than 100 words. 
Alternative organizations are conceivable, though they have clearly not seemed 
practical to computer designers. For instance, in the early fifties there was an at- 
tempt to construct an electronic plugboard machine, after the fashion of the ENIAC 
and the IBM CPC (Card Programmed Calculator). And we see in the new programmed 
desk calculators (Part 3, Sec. 4) yet another organization that is rather far from 
the main line (but because of low cost may yet be a part of the future main line). 
These desk calculators, by the way, are decimal, rather than binary. 



Section 1 

Processors with one address per 
instruction 

This section is principally concerned with the ISP. It is the 
largest section in the book, reflecting the dominance of the 
one-address organization during the first two generations. 
Machines with index registers are included, but not machines 
with general registers, which are discussed in Sec. 2. Some 
processors store two single-address instructions per word, fol- 
lowing the pattern of the IASl (von Neumann) machine (Chap. 
4). In machines with short word lengths, one single-address 
instruction is stored in one or two words, for example, in the 
16-bit IBM 1800 (Chap. 33) and in the 12-bit PDP-8 (Chap. 5). 
The evolution of these machines can be seen by comparingfirst- 
and third-generation machines (e.g., Whirlwind and the IBM 
1800). In general, the section is arranged by increasing word 
length, alternatively complexity and performance. 

Preliminary discussion of the logical design of an electronic 
computing instrument 

This article (Chap. 4) is important for historical as well as tech- 
nical reasons. It is one of a series' written in 1946 prior to 
building the first fully stored-program computer. Although its 
authors were not engineers, it is written with the caution of 
those responsible for the implementation of a rather significant 
development task. The major problems for the computer are 
identified, the alternatives analyzed, and a rationale for each 
decision is given. If computer designers were all required to 
analyze and describe their machines in such a fashion prior 
to building them, there would be fewer, but better, computers. 
Some of the especially enjoyable aspects of the discussion in- 
clude: 

Institute for Advanced Study, Princeton University, Princeton, N.J. 

'The articles in the series were: 

1 Selection of word length and number base. 

2 Discussion of the instructions needed. 

3 Concern for the input/output structure and the idea of 
displays (now almost a reality). 

4 Rationale for not including floating-point arithmetic 
(caution about the technology). 

5 The lack of necessity for the rather trivial binary-decimal 
conversion hardware and the idea of cost effectiveness. 

6 Analysis of the addition, multiplication, and division 
hardware implementation. (This description includes a 
nice, one-page discussion of the average carry length for 
addition.) 

It is difficult to say which machines have been influenced 
by this memorandum since the idea of data and instructions 
stored together in a homogeneous primary memory is so basic 
to all computers. The idea of the single-address instruction set 
and format is at the heart of all the machines discussed in this 
section. However, it did not have index registers. Many of the 
machines with long word length, like IAS, use the two-instruc- 
tions-per-word format. 

Subsequent machines built with only minor variations in- 
clude ORDVAC; ILLIAC I at the University of Illinois with a 40-bit 
electrostatic memory and vacuum-tube logic; AVIDAC, ORACLE, 
MANIAC I, WEIZAC, SILLIAC, BESK, DASK, CSIRAC, and 
JOHNNIAC at the RAND Corporation with a 40-bit core memory 
and transistor logic [Gruenberger, 19681. Other similar com- 
puters include the IBM 701 with a 36-bit word, electrostatic 
memory and vacuum-tube logic; and the CDC 1604, with a 
48-bit word, core memory, and transistor logic (possibly in- 
fluenced by MANIAC 1 1 ) .  

On the Principles of Large Scale Computing Machines (1946) [Goldstine and 
von Neumann, 1963al. 
Preliminary Discussion of the Logical Design of an Electronic Computing 

The DEC pDp-8 

The PDP-8 is included as Chap. 5 to illustrate the effects Of 
Instrument, pt. I, vol. l(1946) [Burks, Goldstine. and von Neumann, 19631. 
Planning and Coding of Problems for an Electronic Computing Instrument, 
Dt. 11.  vols. 1.2.3 (1947-19481 rGoldstme and von Neumann, 19636, 1963c, 

a 12.bit word length, it is given in detail using a ~yop .down~~  
approach in Order that the student may thoroughly understand 

1963dl. it by simulating it, interpreting it, writing microprograms that 
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emulate it, making incremental modifications to it, and com- 
pletely redesigning it.' 

The PDP-8, although not the first 12-bit computer, achieved 
a status that made it the first standard for small, low cost 
dedicated computers. There is an active market now for com- 
puters in this size and price range to which the marketing 
culture has responded with the names microcomputer, mini- 
computer and midicomputer for 8- to  12-, 12- to 16- and 16- 
to  24-bit word-length computers, respectively.2 

The PDP-8 has a nearly minimal processor state because 
the address and ISP integers are 12 bits. Twelve bits is just large 
enough to represent data from external physical process 
environments (analog signals) and also just right to address a 
4096 word memory. System software (editors, assemblers, 
compilers, etc.) can surprisingly all f i t  into this sized m e m ~ r y . ~  
The processor state is only 26 bits, and the predecessor PDP-5 
had a hardwired state of only 14 bits. 

The PDP-8 is also discussed in Part 5, Sec. 2, page 396. 

K-T(CRT; d i s p l a y ;  a rea :S2 i lO2  in2)-, 

K -T ( I  i g h t ;  pen)> 

K - T ( f i l m ;  camera),' 

64 bs/w;  12 n 2048 w ;  

800-IO00 f t ;  30 i n / s e c ;  (2+1 

i ndex )  b / cha r ;  100 c h a r / i n  

' M ( t o g g l e  s w i t c h ;  8 ~ s / w ;  3 2  w ;  16 b/w) 

'Pc(50 kop/s ;  16 b/w; I i n s t r u c t i o n / w ;  1 a d d r e s s / i n s t r u c t i o n ;  

M.processor  s t a t e ( 3  w); t echno logy :  vacuum tube ;  1948-  

1966) 

3 8 ( f i x e d ;  f rom: Pc; t o :  8 K; concu r rency :  1 )  

4Mp(*O:I;  co re ;  8 vs/w;  1024 w ;  16 b/w; taccess :  2 a s )  

The Whirlwind I computer 

Whirlwind I is based on Wilkes' EDSAC at Manchester Univer- 
sity. Chapter 6 describes the computer and gives a brief descrip- 
tion of vacuum-tube logic and electrostatic storage-tube tech- 
nology. The PMS structure of Whirlwind I with core memory is 
given in Fig. 1. 

The Memory Test Computer (MTC) of M.I.T.'s Lincoln Labora- 
tory was the first computer to use a core memory. MTC was 
built to test the memory which Whirlwind I received in August, 
1953. Subsequent modifications included the addition of an- 
other 2,048-word magnetic-core memory in September, 1953. 

The machine's construction and technology are outstanding. 
It has effective marginal checking and preventive-maintenance 
test facilities. At the time the machine was dismembered and 
moved from M.I.T., it had a use time availability of greater than 
95 percent. Although Whirlwind I left M.I.T. in 1960, the ma- 
chine was reassembled and was operational as late as 1966. 

The machine's PMS structure is a simple 1 Pc. The K to Mp 
block transfers are via the Pc on a one-at-a-time, programmed 
basis. A single data transfer can be initiated to a particular 
device, thus providing some opportunity for input/output and 
processing concurrency. The simple structure is due to the high 

'Perhaps also because of one of the  au thor 's  (GB) obvious a t tachmen t  

*See the  computers in th is  size range Chapter  3, Flgure 2, page 43. 

3Conce~vably a corollary to  Parkinson's law: Programs expand to f i l l  every word in 
t h e  pr imary m e m o r y  of a computer .  

Fig. 1. Whirlwind I PMS diagram. 

register costs of the vacuum-tube technology; thus only a single 
central processor register is provided to hold (or buffer) data 
during a K transmission to a T or Ms. Appendix 1 of Chap. 6, 
which is from the programming manual, gi,ves its instruction 
set. 

The IBM 1800 

The IBM 1800(Chap. 33) is a third-generation, 16-bit computer. 
It is discussed in Part 5, Sec. 2, page 396. 

Some aspects of the logical design of a control computer: 
a case study 

Chapter 7 presents the aerospace computer Apollo designed by 
M.I.T.'s Instrumentation Laboratory. It is presented in contrast 
to the general-purpose 16-bit computers, Whirlwind (Chap. 6) 
and the IBM 1800 (Chap. 33). The Apollo computer uses a 
M(read only) because it is obviously a problem to reload pro- 
grams. Kampe's SD-2 (Chap. 29) and Apollo (Chap. 7) are both 
controllers and have other similar design constraints. The IBM 
1800 is also used for control purposes. In fact, the computers 
in this section up to and including the 24-bit SDS 910-9300 
series are all designed for control environments. However, all 
the latter machines have a goal of generality not present in the 
Apollo. 
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The SDS 910-9300 series 

The SDS 910-9300 computers are illustrative of typical, second- 
generation, 24-bit computers. The computers are discussed in 
Part 6, Sec. 2, page 542. Chapter 42 also attempts to show 
how implementation affects performance for the series. 

The LGP-30 and LGP-21 

The LGP-30 and later LGP-21 is presented in Chap. 16 and dis- 
cussed in Part 3, Sec. 2, page 216. 

IBM 650 instruction logic 

The IBM 650 (Chap. 17) is a one plus one address computer. 
Its attributes as a cyclic-memory computer, though hardly ap- 
parent at the ISP level, are discussed in Part 3, Sec. 2, page 
216. 

The IBM 7094 I, II 

Part 6, Sec. 1 shows the evolution of the IBM 36-bit scientific 
computers. The IBM 7094 I I  (Chap. 41) is presented for many 
reasons (page 517). Among them are its effect on the later IBM 
System/360 and its position as the standard large scientific 
computer of the late fifties and early sixties. 

The UNIVAC system 

The YNIVAC system, first delivered in March, 1951, was later 
known as UNIVAC I. UNIVAC (UNIVersal AutomaticComputers) 
was the second computer1 to be manufactured by the Eckert- 
Mauchly Computer Corporation, subsequently a division of 
Remington-Rand.2 

UNIVAC is a single-address, decimal computer with 12 digits/ 
word. Two instructions are stored per word. In effect, UNIVAC 
is a decimal version of the IAS computer. The Mp consists of 
1,000 words, made up of 10 words/delay line. Each delay line 
requires 404 microseconds to recirculate. 

UNIVAC is significant because it was the most important 
computer during the early 1950s. Its performance record is 
discussed in Chap. 8. The UNIVSERVO magnetic-tape system 
was rather advanced for 1950, considering performance, error 
checking, and buffering. Particularly nice is the ability to parti- 
tion the input/output system for off-line printing and key 
punching. 

One-level storage system 

The 48-bit Atlas was developed at Manchester University and 
subsequently manufactured by Ferranti Corp. (now part of Inter- 
national Computers and Tabulators). The development began 
about 1960, and the paper was written in 1962. The importance 
of Atlas with respect to current and future machines is dis- 
cussed in Part 3, Sec. 6, page 274. 

The engineering design of the Stretch computer 

The IBM Stretch (also called the IBM Model 7030) single- 
address computer (Chap. 34) is one of the earliest computers 
built to provide maximum computing power subject to no ap- 
parent cost, size, and producibility constraints. A discussion 
of its importance is given in Part 5, Sec. 2, page 396. 

l T h e  Eckert-Mauchly BINAC was apparent ly t h e  f i r s t  computer  t o  be manu-  

* Eckert.Mauchly Computer  Corporat ion was init ial ly independent  of Reming ton -  

factured by  a corporat ion.  

Rand.  



Chapter 4 

Preliminary discussion of the logical 
design of an electronic computing 
instrument1 

Arthur W. Burks / Herman  H .  Goldst ine / 
John von N e u m a n n  

PART I 

1. 

1.1. Inasmuch as the completed device will be a general-purpose 
computing machine it should contain certain main organs relating 
to arithmetic, memory-storage, control and connection with the 
human operator. It is intended that the machine be fully automatic 
in character, i.e. independent of the human operator after the 
computation starts. A fuller discussion of the implications of this 
remark will be given in Sec. 3 below. 

It is evident that the machine must be capable of storing 
in some manner not only the digital information needed in a given 
computation such as boundary values, tables of functions (such 
as the equation of state of a fluid) and also the intermediate results 
of the computation (which may be wanted for varying lengths of 
time), but also the instructions which govern the actual routine 
to be performed on the numerical data. In a special-purpose 
machine these instructions are an integral part of the device and 
constitute a part of its design structure. For an all-purpose machine 
it must be possible to instruct the device to carry out any compu- 
tation that can be formulated in numerical terms. Hence there 
must be some organ capable of storing these program orders. There 
must, moreover, be a unit which can understand these instructions 
and order their execution. 

Conceptually we have discussed above two different 
forms of memory: storage of numbers and storage of orders. If, 
however, the orders to the machine are reduced to a numerical 
code and if the machine can in some fashion distinguish a number 
from an order, the memory organ can be used to store both num- 

Principal components of the machine 

1.2. 

1.3. 

‘From A. H. Taub (ed.), “Collected Works of John von Neumann,” vol. 5, 
pp. 34-79, The Macmillan Company, New York, 1963. Taken from 
report to U. S. Army Ordnance Department, 1946. See also Bibliography 
Burks, Goldstine and von Neumann, 1962a, 1962b, 1963; and Goldstine and 
von Neumann 1963a, 1963h, 1963c, 1963d. 

bers and orders. The coding of orders into numeric form is dis- 
cussed in 6.3 below. 

If the memory for orders is merely a storage organ there 
must exist an organ which can automatically execute the orders 
stored in the memory. We shall call this organ the Control. 

Inasmuch as the device is to be a computing machine 
there must be an arithmetic organ in it which can perform certain 
of the elementary arithmetic operations. There will be, therefore, 
a unit capable of adding, subtracting, multiplying and dividing. 
It will be seen in 6.6 below that it can also perform additional 
operations that occur quite frequently. 

The operations that the machine will view as elementary are 
clearly those which are wired into the machine. To illustrate, the 
operation of multiplication could be eliminated from the device 
as an elementary process if one were willing to view it as a prop- 
erly ordered series of additions. Similar remarks apply to division. 
In general, the inner economy of the arithmetic unit is determined 
by a compromise between the desire for speed of operation-a 
non-elementary operation will generally take a long time to per- 
form since it is constituted of a series of orders given by the 
control-and the desire for simplicity, or cheapness, of the ma- 
chine. 

1.6. Lastly there must exist devices, the input and output 
organ, whereby the human operator and the machine can com- 
municate with each other. This organ will be seen below in 4.5, 
where it is discussed, to constitute a secondary form of automatic 
memory. 

1.4. 

1.5. 

2. 
2.1. It is clear that the size of the memory is a critical considera- 
tion in the design of a satisfactory general-purpose computing 

First remarks on the memory 
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machine. We proceed to discuss what quantities the memory 
should store for various types of computations. 

In the solution of partial differential equations the storage 
requirements are likely to be quite extensive. In general, one must 
remember not only the initial and boundary conditions and any 
arbitrary functions that enter the problem but also an extensive 
number of intermediate results. 

2.2. 

a For equations of parabolic or hyperbolic type in two inde- 
pendent variables the integration process is essentially a 
double induction. To find the values of the dependent vari- 
ables at time t + At one integrates with respect to x from 
one boundary to the other by utilizing the data at time t 
as if they were coefficients which contribute to defining the 
problem of this integration. 

Not only must the memory have sufficient room to store 
these intermediate data but there must be provisions 
whereby these data can later be removed, i.e. a t  the end 
of the ( t  + At)  cycle, and replaced by the corresponding 
data for the (t + 2At) cycle. This process of removing data 
from the memory and of replacing them with new informa- 
tion must, of course, be done quite automatically under the 
direction of the control. 

For total differential equations the memory requirements 
are clearly similar to, hut smaller than, those discussed in 
(a) above. 

Problems that are solved by iterative procedures such as 
systems of linear equations or elliptic partial differential 
equations, treated by relaxation techniques, may be ex- 
pected to  require quite extensive memory capacity. The 
memory requirement for such problems is apparently much 
greater than for those problems in (a) above in which one 
needs only to store information corresponding to the in- 
stantaneous value of one variable [tin (a) above], while now 
entire solutions (covering all values of all variables) must 
he stored. This apparent discrepancy in magnitudes can, 
however, be somewhat overcome by the use of techniques 
which permit the use of much coarser integration meshes 
in this case, than in the cases under (a). 

b 

c 

2.3. It is reasonable at this time to build a machine that can 
conveniently handle problems several orders of magnitude more 
complex than are now handled by existing machines, electronic 
or electro-mechanical. We consequently plan on a fully automatic 
electronic storage facility of about 4,000 numbers of 40 binary 
digits each. This corresponds to a precision of T 4 0  - 0.9 x 
i.e. of about 12 decimals. We believe that this memory capacity 
exceeds the capacities required for most problems that one deals 

with at present by a factor of about 10. The precision is also safely 
higher than what is required for the great majority of present day 
problems. In addition, we propose that we have a subsidiary 
memory of much larger capacity, which is also fully automatic, 
on some medium such as magnetic wire or tape. 

3. First remarks on the control and code 

3.1. It is easy to see by formal-logical methods that there exist 
codes that are in abstracto adequate to control and cause the 
execution of any sequence of operations which are individually 
available in the machine and which are, in their entirety, con- 
ceivable by the problem planner. The really decisive considera- 
tions from the present point of view, in selecting a code, are more 
of a practical nature: simplicity of the equipment demanded by 
the code, and the clarity of its application to the actually impor- 
tant problems together with the speed of its handling of those 
problems. It would take us much too far afield to discuss these 
questions at all generally or from first principles. We will therefore 
restrict ourselves to analyzing only the type of code which we 
now envisage for our machine. 

There must certainly be instructions for performing the 
fundamental arithmetic operations. The specifications for these 
orders will not be completely given until the arithmetic unit is 
described in a little more detail. 

It must be possible to transfer data from the memory to 
the arithmetic organ and back again. In transferring information 
from the arithmetic organ back into the memory there are two 
types we must distinguish: Transfers of numbers as such and trans- 
fers of numbers which are parts of orders. The first case is quite 
obvious and needs no further explication. The second case is more 
subtle and serves to illustrate the generality and simplicity of the 
system. Consider, by way of illustration, the problem of interpola- 
tion in the system. Let us suppose that we have formulated the 
necessary instructions for performing an interpolation of order n 
in a sequence of data. The exact location in the memory of the 
(n + 1) quantities that bracket the desired functional value is, of 
course, a function of the argument. This argument probably is 
found as the result of a computation in the machine. We thus need 
an order which can substitute a number into a given order-in 
the case of interpolation the location of the argument or the group 
of arguments that is nearest in our table to  the desired value. By 
means of such an order the results of a computation can be in- 
troduced into the instructions governing that or a different com- 
putation. This makes it possible for a sequence of instructions to 
be used with different sets of numbers located in different parts 
of the memory. 

3.2. 

3.3. 
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To summarize, transfers into the memory will be of two sorts: 
Total substitutions, whereby the quantity previously stored is 
cleared out and replaced by a new number. Partial substitutions 
in which that part of an order containing a memory location- 
number-we assume the various positions in the memory are 
enumerated serially by memory location-numbers-is replaced by 
a new memory location-number. 

It is clear that one must be able to get numbers from 
any part of the memory at any time. The treatment in the case 
of orders can, however, be more methodical since one can at  least 
partially arrange the control instructions in a linear sequence. 
Consequently the control will be so constructed that it will nor- 
mally proceed from place n in the memory to place ( n  + 1) for 
its next instruction. 

The utility of an automatic computer lies in the possi- 
bility of using a given sequence of instructions repeatedly, the 
number of times it is iterated being either preassigned or depend- 
ent upon the results of the computation. When the iteration is 
completed a different sequence of orders is to be followed, so we 
must, in most cases, give two parallel trains of orders preceded 
by an instruction as to which routine is to be followed. This choice 
can be made to depend upon the sign of a number (zero being 
reckoned as plus for machine purposes). Consequently, we intro- 
duce an order (the conditional transfer order) which will, depend- 
ing on the sign of a given number, cause the proper one of two 
routines to be executed. 

Frequently two parallel trains of orders terminate in a common 
routine. It is desirable, therefore, to order the control in either 
case to proceed to the beginning point of the common routine. 
This unconditional transfer can be achieved either by the artificial 
use of a conditional transfer or by the introduction of an explicit 
order for such a transfer. 

Finally we need orders which will integrate the input- 
output devices with the machine. These are discussed briefly in 
6.8. 

We proceed now to a more detailed discussion of the 
machine. Inasmuch as our experience has shown that the moment 
one chooses a given component as the elementary memory unit, 
one has also more or less determined upon much of the balance 
of the machine, we start by a consideration of the memory organ. 
In attempting an exposition of a highly integrated device like a 
computing machine we do not find it possible, however, to give 
an exhaustive discussion of each organ before completing its 
description. It is only in the final block diagrams that anything 
approaching a complete unit can be achieved. 

3.4. 

3.5. 

3.6. 

3.7. 

The time units to be used in what follows will be: 

1 p e c  = 1 microsecond = 10F  seconds 
1 msec = 1 millisecond = lop3 seconds 

4. The memory organ 

4.1. Ideally one would desire an indefinitely large memory ca- 
pacity such that any particular aggregate of 40 binary digits, or 
word (cf. 2.3), would be immediately available-Le. in a time 
which is somewhat or considerably shorter than the operation time 
of a fast electronic multiplier. This may be assumed to be practical 
at  the level of about 100 psec. Hence the availability time for a 
word in the memory should be 5 to 50 psec. It is equally desirable 
that words may be replaced with new words at about the same 
rate. It does not seem possible physically to achieve such a capac- 
ity. We are therefore forced to recognize the possibility of con- 
structing a hierarchy of memories, each of which has greater 
capacity than the preceding but which is less quickly accessible. 

The most common forms of storage in electrical circuits are 
the flip-flop or trigger circuit, the gas tube, and the electro- 
mechanical relay. To achieve a memory of n words would, of 
course, require about 40n such elements, exclusive of the switching 
elements. We saw earlier (cf. 2.2) that a fast memory of several 
thousand words is not at  all unreasonable for an all-purpose instru- 
ment. Hence, about lo5 flip-flops or analogous elements would be 
required! This would, of course, be entirely impractical. 

We must therefore seek out some more fundamental method 
of storing electrical information than has been suggested above. 
One criterion for such a storage medium is that the individual 
storage organs, which accommodate only one binary digit each, 
should not be macroscopic components, but rather microscopic 
elements of some suitable organ. They would then, of course, not 
be identified and switched to by the usual macroscopic wire con- 
nections, but by some functional procedure in manipulating that 
organ. 

One device which displays this property to a marked degree 
is the iconoscope tube. In its conventional form it possesses a linear 
resolution of about one part in 500. This would correspond to a 
(two-dimensional) memory capacity of 500 x 500 = 2.5 x lo5. 
One is accordingly led to consider the possibility of storing elec- 
trical charges on a dielectric plate inside a cathode-ray tube. 
Effectively such a tube is nothing more than a myriad of electrical 
capacitors which can be connected into the circuit by means of 
an electron beam. 

Actually the above mentioned high resolution and concomitant 
memory capacity are only realistic under the conditions of tele- 
vision-image storage, which are much less exigent in respect to 
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the reliability of individual markings than what one can accept 
in the storage for a computer. In this latter case resolutions of 
one part in 20 to 100, i.e. memory capacities of 400 to 10,000, 
would seem to be more reasonable in terms of equipment built 
essentially along familiar lines. 

At the present time the Princeton Laboratories of the Radio 
Corporation of America are engaged in the development of a 
storage tube, the Selectron, of the type we have mentioned above. 
This tube is also planned to have a non-amplitude-sensitive switch- 
ing system whereby the electron beam can be directed to a given 
spot on the plate within a quite small fraction of a millisecond. 
Inasmuch as the storage tube is the key component of the machine 
envisaged in this report we are extremely fortunate in having 
secured the cooperation of the RCA group in this as well as in 
various other developments. 

An alternate form of rapid memory organ is the acoustic feed- 
back delay line described in various reports on the EDVAC. (This 
is an electronic computing machine being developed for the 
Ordnance Department, U.S. Army, by the University of Pennsyl- 
vania, Moore School of Electrical Engineering.) Inasmuch as that 
device has been so clearly reported in those papers we give no 
further discussion. There are still other physical and chemical 
properties of matter in the presence of electrons or photons that 
might be considered, but since none is yet beyond the early dis- 
cussion stage we shall not make further mention of them. 

We shall accordingly assume throughout the balance of 
this report that the Selectron is the modus for storage of words 
at electronic speeds. As now planned, this tube will have a capac- 
ity of 2’* = 4,096 =: 4,000 binary digits. To achieve a total elec- 
tronic storage of about 4,000 words we propose to use 40 Selec- 
trons, thereby achieving a memory of 212 words of 40 binary digits 
each. (Cf. again 2.3.) 

There are two possible means for storing a particular 
word in the Selectron memory-or, in fact, in either a delay line 
memory or in a storage tube with amplitude-sensitive deflection. 
One method is to store the entire word in a given tube and then 
to get the word out by picking out its respective digits in a serial 
fashion. The other method is to store in corresponding places in 
each of the 40 tubes one digit of the word. To get a word from 
the memory in this scheme requires, then, one switching mech- 
anism to which all 40 tubes are connected in parallel. Such a 
switching scheme seems to us to be simpler than the technique 
needed in the serial system and is, of course, 40 times faster. We 
accordingly adopt the parallel procedure and thus are led to con- 
sider a so-called parallel machine, as contrasted with the serial 
principles being considered for the EDVAC. (In the EDVAC the 
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peculiar characteristics of the acoustic delay line, as well as various 
other considerations, seem to justify a serial procedure. For more 
details, cf. the reports referred to in 4.1.) The essential difference 
between these two systems lies in the method of performing an 
addition; in a parallel machine all corresponding pairs of digits 
are added simultaneously, whereas in a serial one these pairs are 
added serially in time. 

To summarize, we assume that the fast electronic memory 
consists of 40 Selectrons which are switched in parallel by a com- 
mon switching arrangement. The inputs of the switch are con- 
trolled by the control. 

Inasmuch as a great many highly important classes of 
problems require a far greater total memory than 212 words, we 
now consider the next stage in our storage hierarchy. Although 
the solution of partial differential equations frequently involves 
the manipulation of many thousands of words, these data are 
generally required only in blocks which are well within the 212 
capacity of the electronic memory. Our second form of storage 
must therefore be a medium which feeds these blocks of words 
to the electronic memory. It should be controlled by the control 
of the computer and is thus an integral part of the system, not 
requiring human intervention. 

There are evidently two distinct problems raised above. One 
can choose a given medium for storage such as teletype tapes, 
magnetic wire or tapes, movie film or similar media. There still 
remains the problem of automatic integration of this storage 
medium with the machine. This integration is achieved logically 
by introducing appropriate orders into the code which can instruct 

the machine to read or write on the medium, or to move it by 
a given amount or to a place with given characteristics. We discuss 
this question a little more fully in 6.8. 

Let us return now to the question of what properties the sec- 
ondary storage medium should have. It clearly should be able to 
store information for periods of time long enough so that only a 
few per cent of the total computing time is spent in re-registering 
information that is “fading off.” It is certainly desirable, although 
not imperative, that information can be erased and replaced by 
new data. The medium should be such that it can be controlled, 
i.e. moved forward and backward, automatically. This considera- 
tion makes certain media, such as punched cards, undesirable. 
While cards can, of course, be printed or read by appropriate 
orders from some machine, they are not well adapted to problems 
in which the output data are fed directly back into the machine, 
and are required in a sequence which is non-monotone with re- 
spect to the order of the cards. The medium should be capable 
of remembering very large numbers of data at a much smaller price 
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than electronic devices. I t  must be fast enough so that, even when 
it has to be used frequently in a problem, a large percentage of 
the total solution time is not spent in getting data into and out 
of this medium and achieving the desired positioning on it. If this 
condition is not reasonably well met, the advantages of the high 
electronic speeds of the machine will be largely lost. 

Both light- or electron-sensitive film and magnetic wires or 
tapes, whose motions are controlled by servo-mechanisms inte- 
grated with the control, would seem to fulfil our needs reasonably 
well. We have tentatively decided to use magnetic wires since we 
have achieved reliable performance with them at pulse rates of 
the order of 25,00O/sec and beyond. 

Lastly our memory hierarchy requires a vast quantity of 
dead storage, i s .  storage not integrated with the machine. This 
storage requirement may be satisfied by a library of wires that 
can be introduced into the machine when desired and at that time 
become automatically controlled. Thus our dead storage is really 
nothing but an extension of our secondary storage medium. It 
differs from the latter only in its availability to the machine. 

We impose one additional requirement on our secondary 
memory. It must be possible for a human to put words on to the 
wire or other substance used and to read the words put on by 
the machine. In this manner the human can control the machine's 
functions. It is now clear that the secondary storage medium is 
really nothing other than a part of our input-output system, cf. 
6.8.4 for a description of a mechanism for achieving this. 

There is another highly important part of the input- 
output which we merely mention at this time, namely, some 
mechanism for viewing graphically the results of a given compu- 
tation. This can, of course, be achieved by a Selectron-like tube 
which causes its screen to fluoresce when data are put on it by 
an electron beam. 

For definiteness in the subsequent discussions we assume 
that associated with the output of each Selectron is a flip-flop. 
This assemblage of 40 flip-flops we term the Selectron Register. 

4.6. 
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5. The arithmetic organ 

5.1. In this section we discuss the features we now consider 
desirable for the arithmetic part of our machine. We give our 
tentative conclusions as to which of the arithmetic operations 
should be built into the machine and which should be pro- 
grammed. Finally, a schematic of the arithmetic unit is described. 

In a discussion of the arithmetical organs of a computing 
machine one is naturally led to a consideration of the number 
system to be adopted. In spite of the longstanding tradition of 
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building digital machines in the decimal system, we feel strongly 
in favor of the binary system for our device. Our fundamental unit 
of memory is naturally adapted to the binary system since we do 
not attempt to measure gradations of charge at a particular point 
in the Selectron but are content to distinguish two states. The 
flip-flop again is truly a binary device. On magnetic wires or tapes 
and in acoustic delay line memories one is also content to recog- 
nize the presence or absence of a pulse or (if a carrier frequency 
is used) of a pulse train, or of the sign of a pulse. (We will not 
discuss here the ternary possibilities of a positive-or-negative- 
or-no-pulse system and their relationship to questions of reliability 
and checking, nor the very interesting possibilities of carrier fre- 
quency modulation.) Hence if one contemplates using a decimal 
system with either the iconoscope or delay-line memory one is 
forced into a binary coding of the decimal system-each decimal 
digit being represented by at least a tetrad of binary digits. Thus 
an accuracy of ten decimal digits requires at least 40 binary digits. 
In a true binary representation of numbers, however, about 33 
digits suffice to achieve a precision of lolo. The use of the binary 
system is therefore somewhat more economical of equipment than 
is the decimal. 

The main virtue of the binary system as against the decimal 
is, however, the greater simplicity and speed with which the 
elementary operations can be performed. To illustrate, consider 
multiplication by repeated addition. In binary multiplication the 
product of a particular digit of the multiplier by the multiplicand 
is either the multiplicand or null according as the multiplier digit 
is 1 or 0. In the decimal system, however, this product has ten 
possible values between null and nine times the multiplicand, 
inclusive. Of course, a decimal number has only log,,2 - 0.3 times 
as many digits as a binary number of the same accuracy, but even 
so multiplication in the decimal system is considerably longer than 
in the binary system. One can accelerate decimal multiplication 
by complicating the circuits, but this fact is irrelevant to the point 
just made since binary multiplication can likewise be accelerated 
by adding to the equipment. Similar remarks may be made about 
the other operations. 

An additional point that deserves emphasis is this: An important 
part of the machine is not arithmetical, but logical in nature. Now 
logics, being a yes-no system, is fundamentally binary. Therefore 
a binary arrangement of the arithmetical organs contributes very 
significantly towards producing a more homogeneous machine, 
which can be better integrated and is more efficient. 

The one disadvantage of the binary system from the human 
point of view is the conversion problem. Since, however, it is 
completely known how to convert numbers from one base to 
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another and since this conversion can be effected solely by the 
use of the usual arithmetic processes there is no reason why the 
computer itself cannot carry out this conversion. It might be 
argued that this is a time consuming operation. This, however, 
is not the case. (Cf. 9.6 and 9.7 of Part 11. Part I1 is a report issued 
under the title Planning and Coding of Problems for a n  Electronic 
Computing Instrument.’) Indeed a general-purpose computer, used 
as a scientific research tool, is called upon to do a very great 
number of multiplications upon a relatively small amount of input 
data, and hence the time consumed in the decimal to binary 
conversion is only a trivial percentage of the total computing time. 
A similar remark is applicable to the output data. 

In the preceding discussion we have tacitly assumed the de- 
sirability of introducing and withdrawing data in the decimal 
system. We feel, however, that the base 10 may not even be a 
permanent feature in a scientific instrument and consequently will 
probably attempt to train ourselves to use numbers base 2 or 8 
or 16. The reason for the bases 8 or 16 is this: Since 8 and 16 
are powers of 2 the conversion to binary is trivial; since both are 
about the size of 10, they violate many of our habits less badly 
than base 2. (Cf. Part 11, 9.4.) 

Several of the digital computers being built or planned 
in this country and England are to contain a so-called “floating 
decimal point”. This is a mechanism for expressing each word as 
a characteristic and a mantissa-e.g. 123.45 would be carried in 
the machine as (0.12345,03), where the 3 is the exponent of 10 
associated with the number. There appear to be two major pur- 
poses in a “floating” decimal point system both of which arise from 
the fact that the number of digits in a word is a constant, fixed 
by design considerations for each particular machine. The first of 
these purposes is to retain in a sum or product as many significant 
digits as possible and the second of these is to free the human 
operator from the burden of estimating and inserting into a prob- 
lem “scale factors”-multiplicative constants which serve to keep 
numbers within the limits of the machine. 

There is, of course, no denying the fact that human time is 
consumed in arranging for the introduction of suitable scale fac- 
tors. We only argue that the time so consumed is a very small 
percentage of the total time we will spend in preparing an inter- 
esting problem for our machine. The first advantage of the floating 
point is, we feel, somewhat illusory. In order to have such a floating 
point one must waste memory capacity which could otherwise be 
used for carrying more digits per word. It would therefore seem 
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References in this chapter are all to this report. 

to us not at all clear whether the modest advantages of a floating 
binary point offset the loss of memory capacity and the increased 
complexity of the arithmetic and control circuits. 

There are certainly some problems within the scope of our 
device which really require more than 2-40 precision. To handle 
such problems we wish to plan in terms of words whose lengths 
are some fixed integral multiple of 40, and program the machine 
in such a manner as to give the corresponding aggregates of 40 
digit words the proper treatment. We must then consider an addi- 
tion or multiplication as a complex operation programmed from 
a number of primitive additions or multiplications (cf. $9, Part 
11). There would seem to be considerable extra difficulties in the 
way of such a procedure in an instrument with a floating binary 
point. 

The reader may remark upon our alternate spells of radicalism 
and conservatism in deciding upon various possible features for 
our mechanism. We hope, however, that he will agree, on closer 
inspection, that we are guided by a consistent and sound principle 
in judging the merits of any idea. We wish to incorporate into 
the machine-in the form of circuits-only such logical concepts 
as are either necessary to have a complete system or highly con- 
venient because of the frequency with which they occur and the 
influence they exert in the relevant mathematical situations. 

On the basis of this criterion we definitely wish to build 
into the machine circuits which will enable it to form the binary 
sum of two 40 digit numbers. We make this decision not because 
addition is a logically basic notion but rather because it would 
slow the mechanism as well as the operator down enormously if 
each addition were programmed out of the more simple operations 
of “and”, “or”, and “not”. The same is true for the subtraction. 
Similarly we reject the desire to form products by programming 
them out of additions, the detailed motivation being very much 
the same as in the case of addition and subtraction. The cases for 
division and square-rooting are much less clear. 

It is well known that the reciprocal of a number a can be 
formed to any desired accuracy by iterative schemes. One such 
scheme consists of improving an estimate X by forming X’ = 
2X - ax2. Thus the new error 1 - uX’ is (1 - ax)?-, which is the 
square of the error in the preceding estimate. We notice that in 
the formation of X’, there are two bona fide multiplications-we 
do not consider multiplication by 2 as a true product since we 
will have a facility for shifting right or left in one or two pulse 
times. If then we somehow could guess l / a  to a precision of 2-5, 
6 multiplications-3 iterations-would suffice to give a final result 
good to 2-40. Accordingly a small table of Z4 entries could be used 
to get the initial estimate of l /a.  In this way a reciprocal l /a  

5.4. 
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could be formed in 6 multiplication times, and hence a quotient 
b/a  in 7 multiplication times. Accordingly we see that the question 
of building a divider is really a function of how fast it can be made 
to operate compared to the iterative method sketched above: In 
order to justify its existence, a divider must perform a division in 
a good deal less than 7 multiplication times. We have, however, 
conceived a divider which is much faster than these 7 multipli- 
cation times and therefore feel justified in building it, especially 
since the amount of equipment needed above the requirements 
of the multiplier is not important. 

It is, of course, also possible to handle square roots by iterative 
techniques. In fact, if X is our estimate of all2, then X' = 
yz (X  + a / X )  is a better estimate. We see that this scheme involves 
one division per iteration. As will be seen below in our more detailed 
examination of the arithmetic organ we do not include a square- 
rooter in our plans because such a device would involve more 
equipment than we feel is desirable in afirst model. (Concerning the 
iterative method of square-rooting, cf. 8.10 in Part 11.) 

The first part of our arithmetic organ requires little dis- 
cussion at this point. It should be a parallel storage organ which 
can receive a number and add it to the one already in it, which 
is also able to clear its contents and which can transmit what it 
contains. We will call such an organ an Accumulator. It is quite 
conventional in principle in past and present computing machines 
of the most varied types, e.g. desk multipliers, standard IBM 
counters, more modern relay machines, the ENIAC. There are of, 
course, numerous ways to build such a binary accumulator. We 
distinguish two broad types of such devices: static, and dynamic 
or pulse-type accumulators. These will be discussed in 5.11, but 
it is first necessary to make a few remarks concerning the arith- 
metic of binary addition. In a parallel accumulator, the first step 
in an addition is to  add each digit of the addend to the corre- 
sponding digit of the augend. The second step is to perform the 
carries, and this must be done in sequence since a carry may 
produce a carry. In the worst case, 39 carries will occur. Clearly 
it is inefficient to allow 39 times as much time for the second 
step (performing the carries) as for the first step (adding the digits). 
Hence either the carries must be accelerated, or use must be made 
of the average number of carries or both. 

We shall show that for a sum of binary words, each of 
length n, the length of the largest carry sequence is on the average 
not in excess of 210g n. Let p,(o) designate the probability that 
a carry sequence is of length u or greater in the sum of two binary 
words of length n. Then clearly p,(o) - p,(o + 1) is the proba- 
bility that the largest carry sequence is of length exactly o and 
the weighted average 
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n 

a, = 1 o [ p n ( 4  - p,(o + 111 
L'=o 

is the average length of such carry. Note that 

r , = O  

since p,(o) = 0 if o > n. From these it is easily inferred that 

n 

a, = 2 p,(o) 
u = l  

We now proceed to show that p,(v) 5 min[l, ( n  - o + 1)/2"+l]. 
Observe first that 

Indeed, p,(o) is the probability that the sum of two n-digit numbers 
contains a carry sequence of length 20. This probability obtains 
by adding the probabilities of two mutually exclusive alternatives: 
First: Either the n - 1 first digits of the two numbers by them- 
selves contain a carry sequence of length zo. This has the proba- 
bility P,-~(G). Second: The n - 1 first digits of the two numbers 
by themselves do not contain a carry sequence of length 20. In 
this case any carry sequence of length 20 in the total numbers 
(of length n) must end with the last digits of the total sequence. 
Hence these must form the combination 1, 1. The next v - 1 digits 
must propagate the carry, hence each of these must form the 
combination 1, 0 or 0, 1. (The combinations 1, 1 and 0, 0 do not 
propagate a carry.) The probability of the combination 1, 1 is x, 
that one of the alternative combinations 1, 0 or 0, 1 is '/. The 
total probability of this sequence is therefore y4('/2)"-' = (%)"+l. 

The remaining n - o digits must not contain a carry sequence 
of length 20. This has the probability 1 -p,-"(o). Thus the 
probability of the second case is [ l  - p , - , ( ~ ) ] / 2 " + ~ .  Combining 
these two cases, the desired relation 

obtains. The observation that p,(u) = 0 if II > n is trivial. 

We see with the help of the formulas proved above that 
p,(v) - p,-,(v) is always S 1 / Z v + l ,  and hence that the sum 
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is not in excess of (n - o + l)/2v+1 since there are n - o + 1 
terms in the sum; since, moreover, each p,(o) is a probability, it 
is not greater than 1. Hence we have 

Finally we turn to the question of getting an upper bound on 
a, = ~ ; = ~ p , ( v ) .  Choose K so that 2K 5 n 5 eK+l. Then 

This last expression is clearly linear in 1~ in the interval 
2K 5 n 5 2 K + 1 ,  and it is = K  for n = Z K  and = K  + 1 for 
n = 2K+1, i.e. it is Z21og n at  both ends of this interval. Since 
the function 210g n is everywhere concave from below, it follows 
that our expression is s210g n throughout this interval. Thus 
a, 5 210g n. This holds for all K ,  i.e. for all n, and it is the in- 
equality which we wanted to prove. 

For our case n = 40 we have a, 5 log,40 - 5.3, i.e. an average 
length of about 5 for the longest carry sequence. (The actual value 
of u4(, is 4.62.) 

Having discussed the addition, we can now go on to the 
subtraction. It is convenient to discuss at  this point our treatment 
of negative numbers, and in order to do that right, it is desirable 
to make some observations about the treatment of numbers in 
general. 

Our numbers are 40 digit aggregates, the left-most digit being 
the sign digit, and the other digits genuine binary digits, with 
positional values 2-l, 2-*, . . . , 2-39 (going from left to right). Our 
accumulator will, however, treat the sign digit, too, as a binary 
digit with the positional value 2O-at least when it functions as 
an adder. For numbers between 0 and 1 this is clearly all right: 
The left-most digit will then be 0, and if 0 at this place is taken 
to represent a + sign, then the number is correctly expressed with 
its sign and 39 binary digits. 

Let us now consider one or more unrestricted 40 binary digit 
numbers. The accumulator will add them, with the digit-adding 
and the carrying mechanisms functioning normally and identically 
in all 40 positions. There is one reservation, however: If a carry 
originates in the left-most position, then it has nowhere to go from 
there (there being no further positions to the left) and is “lost”. 
This means, of course, that the addend and the augend, both 
numbers between 0 and 2, produced a sum exceeding 2, and the 
accumulator, being unable to express a digit with a positional 
value 2l, which would now be necessary, omitted 2. That is, the 
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sum was formed correctly, excepting a possible error 2. If several 
such additions are performed in succession, then the ultimate error 
may be any integer multiple of 2. That is, the accumulator is an 
adder which allows errors that are integer multiples of 2-it is 
an adder modulo 2. 

It should be noted that our convention of placing the binary 
point immediately to the right of the left-most digit has nothing 
to do with the structure of the adder. In order to make this point 
clearer we proceed to discuss the possibilities of positioning the 
binary point in somewhat more detail. 

We begin by enumerating the 40 digits of our numbers (words) 
from left to right. In doing this we use an index h = 1, . . . , 40. 
Now we might have placed the binary point just as well between 
digits j and i + 1, i = 0, . . . , 40. Note, that i = .0 corresponds 
to the position at the extreme left (there is no digit h = i = 0); 
j = 40 corresponds to the position at the extreme right (there is 
no position h = i + 1 = 41); and j = 1 corresponds to our above 
choice. Whatever our choice of j ,  it does not affect the correctness 
of the accumulator’s addition. (This is equally true for subtraction, 
cf. below, but not for multiplication and division, cf. 5.8.) Indeed, 
we have merely multiplied all numbers by 2i-I (as against our 
previous convention), and such a “change of scale” has no effect 
on addition (and subtraction). However, now the accumulator is 
an adder which allows errors that are integer multiples of 2i it 
is an adder modulo 2j. We mention this because it is occasionally 
convenient to think in terms of a convention which places the 
binary point at the right end of the digital aggregate. Then j = 40, 
our numbers are integers, and the accumulator is an adder modulo 
24”. We must emphasize, however, that all of this, i.e. all attribu- 
tions of values to j ,  are purely convention-Le. it is solely the 
mathematician’s interpretation of the functioning of the machine 
and not a physical feature of the machine. This convention will 
necessitate measures that have to be made effective by actual 
physical features of the machine-i.e. the convention will become 
a physical and engineering reality only when we come to the 
organs of multiplication. 

We will use the convention i = 1, i.e. our numbers lie in 0 and 
2 and the accumulator adds modulo 2. 

This being so, these numbers between 0 and 2 can be used to 
represent all numbers modulo 2. Any real number x agrees modulo 
2 with one and only one number X between 0 and 2-0r, to be 
quite precise: 0 5 X < 2. Since our addition functions modulo 2, 
we see that the accumulator may be used to represent and to add 
numbers modulo 2. 

This determines the representation of negative numbers: If 
x < 0, then we have to find the unique integer multiple of 2, 2s 
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(s  = 1, 2 ,  . . .) such that 0 5 T < 2 for F = x + 2s (Le. - 2s 5 
x < 2(1 - s)), and represent x by the digitalization of X 

In this way, however, the sign digit character of the left-most 
digit is lost: It can be 0 or 1 for both x 2 0 and x < 0, hence 
0 in the left-most position can no longer be associated with the 
+ sign of x. This may seem a bad deficiency of the system, but 
it is easy to remedy-at least to an extent which suffices for our 
purposes. This is done as follows: 

We usually work with numbers x between - I  and 1-or, to 
be quite precise: - 1 x < 1. Now the X with 0 5 X < 2, which 
differs from x by an integer multiple of 2, behaves as follows: If 
x 2 0, then 0 x < 1, hence X = x, and so 0 s X < 1, the left- 
most digit of X is 0. If x < 0, then - 1 s x < 0, hence Z = x + 2, 
and so 1 5 X < 2, the left-most digit of li: is 1. Thus the left-most 
digit (of 3 is now a precise equivalent of the sign (of x): 0 corre- 
sponds to + and 1 to - . 

Summing up: 
The accumulator may be taken to represent all real numbers 

modulo 2, and it adds them modulo 2. If x lies between - 1 and 
1 (precisely: -1 5 x < 1)-as it will in almost all of our uses of 
the machine-then the left-most digit represents the sign: 0 is + 
and 1 is - . 

Consider now a negative number x with -1 5 x < 0. Put 
x = - y ,  0 < y 1. Then we digitalize x by representing it as 
x + 2 = 2 - y = 1 + (1 - y). That is, the left-most (sign) digit 
of x = -y  is, as it should be, 1; and the remaining 39 digits are 
those of the complement of y = -x = 1x1, i.e. those of 1 - y. 
Thus we have been led to the familiar representation of negative 
numbers by complementation. 

The connection between the digits of x and those of -x is now 
easily formulated, for any x 5 0. Indeed, -x is equivalent to 

2 -  x = ((21 - 2-39) - 
39 

i = O  
x} + 2-39 = (2: 2-i - + 2-39 ) 

(This digit index i = 1, . . . , 39 is related to our previous digit 
index h = 1, . . . , 40 by i = h - 1. Actually it is best to treat 
i as if its domain included the additional value i = 0-indeed 
i = 0 then corresponds to h = 1, i.e. to the sign digit. In any case 
i expresses the positional value of the digit to which it refers more 
simply than h does: This positional value is 2-i = 2-‘h-1’. Note 
that if we had positioned the binary point more generally between 
i and i + 1, as discussed further above, this positional value would 
have been 2-(h-j). We now have, as pointed out previously, j = 1.) 
Hence its digits obtain by subtracting every digit of x from 1-by 
complementing each digit, i.e. by replacing 0 by 1 and 1 by 

0-and then adding 1 in the right-most position (and effecting 
all the carries that this may cause). (Note how the left-most 
digit, interpreted as a sign digit, gets inverted by this procedure 
as it should be.) 

A subtraction x - y is therefore performed by the accumulator, 
Ac, as follows: Form x + y’, where y’ has a digit 0 or 1 where 
y has a digit 1 or 0, respectively, and then add 1 in the right-most 
position. The last operation can be performed by injecting a carry 
into the right-most stage of Ac-since this stage can never receive 
a carry from any other source (there being no further positions 
to the right). 

In the light of 5.7 multiplication requires special care, 
because here the entire modulo 2 procedure breaks down. Indeed, 
assume that we want to compute a product xy, and that we had 
to change one of the factors, say x, by an integer multiple of 2, 
say by 2.  Then the product (x + 2)y obtains, and this differs from 
the desired xy by 2y. 214, however, will not in general be an integer 
multiple of 2, since y is not in general an integer. 

We will therefore begin our discussion of the multiplication 
by eliminating all such difficulties, and assume that both factors 
x, y lie between 0 and 1. Or, to be quite precise: 0 5 x < 1, 

To effect such a multiplication we first send the multiplier x 
into a register AR, the Arithmetic Register, which is essentially just 
a set of 40 flip-flops whose characteristics will be discussed below. 
We place the multiplicand y in the Selectron Register, SR (cf. 4.9) 
and use the accumulator, Ac, to form and store the partial prod- 
ucts. We propose to multiply the entire multiplicand by the 
successive digits of the multiplier in a serial fashion. There are, 
of course, two possible ways this can be done: We can either start 
with the digit in the lowest position-position 2-39-0r in the 
highest position-position 2-1-and proceed successively to the 
left or right, respectively. There are a few advantages from our 
point of view in starting with the right-most digit of the multiplier. 
We therefore describe that scheme. 

The multiplication takes place in 39 steps, which correspond 
to the 39 (non-sign) digits of the multiplier x = 0, El,&, . . . , 
[39 = (0&c2, . . . , &9), enumerated backwards: (39, . . . , &&. 
Assume that the k - 1 first steps (k = 1, . . . , 39) have already 
taken place, involving multiplication of the multiplicand y with 
the k - 1 last digits of the multiplier: [39, . . . , &,; and that we 
are now at the kth step, involving multiplication with the kth last 
digit: [40-k. Assume furthermore, that Ac now contains the quantity 
p,-,, the result of the k - 1 first steps. [This is the (k - 1)st partial 
product. For k = 1 clearly p ,  = 0.1 We now form 2p, = pk-l + 

5.8. 

0 5 y < l 1 .  

&-,y, i.e. 
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That is, we do nothing or add y, according to whether .$40--k = 0 
or 1. We can then form p ,  by halving 2p,. 

Note that the addition of (1) produces no carry beyond the 2" 
position, i.e. the sign digit: 0 5 p ,  < 1 is true for h = 0, and if 
it is true for h = k - 1, then (1) extends it to h = k also, since 
0 y, < 1. Hence the sum in (1) is 2 0  and <2, and no carries 
beyond the 2" position arise. 

Hence p ,  obtains from 2p, by a simple right shift, which is 
combined with filling in the sign digit (that is freed by this shift) 
with a 0. This right shift is effected by an electronic shifter that 
is part of Ac. 

Now 

Thus this process produces the product xy, as desired. Note that 
this xy is the exact product of x and y. 

Since x and y are 39 digit binaries, their exact product xy is 
a 78 digit binary (we disregard the sign digit throughout). How- 
ever, Ac will only hold 39 of these. These are clearly the left 39 
digits of xy. The right 39 digits of xy are dropped from Ac one 
by one in the course of the 39 steps, or to be more specific, of 
the 39 right shifts. We will see later that these right 39 digits of 
xy should and will also be conserved (cf. the end of this section 
and the end of 5.12, as well as 6.6.3). The left 39 digits, which 
remain in Ac, should also be rounded off, but we will not discuss 
this matter here (cf. loc. cit. above and 9.9, Part 11). 

To complete the general picture of our multiplication tech- 
nique we must consider how we sense the respective digits of our 
multiplier. There are two schemes which come to one's mind in 
this connection. One is to have a gate tube associated with each 
flip-flop of AR in such a fashion that this gate is open if a digit 
is 1 and closed if it is null. We would then need a 39-stage counter 
to act as a switch which would successively stimulate these gate 
tubes to react. A more efficient scheme is to build into AR a shifter 
circuit which enables AR to be shifted one stage to the right each 
time Ac is shifted and to sense the value of the digit in the right- 
most flip-flop of AR. The shifter itself requires one gate tube per 
stage. We need in addition a counter to count out the 39 steps 
of the multiplication, but this can be achieved by a six stage binary 
counter. Thus the latter is more economical of tubes and has one 
additional virtue from our point of view which we discuss in the 
next paragraph. 

The choice of 40 digits to a word (including the sign) is prob- 
ably adequate for most computational problems but situations 
certainly might arise when we desire higher precision, i.e. words 
of greater length. A trivial illustration of this would be the com- 
putation of T to more places than are now known (about 700 
decimals, i.e. about 2,300 binaries). More important instances are 
the solutions of N linear equations in N variables for large values 
of N .  The extra precision becomes probably necessary when N 
exceeds a limit somewhere between 20 and 40. A justification of 
this estimate has to be based on a detailed theory of numerical 
matrix inversion which will be given in a subsequent report. It 
is therefore desirable to be able to handle numbers of 39k digits 
and signs by means of program instructions. One way to achieve 
this end is to use k words to represent a 39k digit number with 
signs. (In this way 39 digits in each 40 digit word are used, but 
all sign digits excepting the first one, are apparently wasted; cf. 
however the treatment of double precision numbers in Chapter 
9, Part 11.) It is, of course, necessary in this case to instruct the 
machine to perform the elementary operations of arithmetic in 
a manner that conforms with this interpretation of k-word com- 
plexes as single numbers. (Cf. 9.8-9.10, Part IT.) In order to be 
able to treat numbers in this manner, it is desirable to keep not 
39 digits in a product, but 78; this is discussed in more detail in 
6.6.3 below. To accomplish this end (conserving 78 product digits) 
we connect, via our shifter circuit, the right-most digit of Ac with 
the left-most non-sign digit of AR. Thus, when in the process of 
multiplication a shift is ordered, the last digit of Ac is transferred 
into the place in AR made vacant when the multiplier was shifted. 

5.9. To conclude our discussion of the multiplication of posi- 
tive numbers, we note this: 

As described thus far, the multiplier forms the 78 digit product, 
xy, for a 39 digit multipler x and a 39 digit multiplicand y. We 
assumed x 2 0, y 2 0 and therefore had xy 2 0, and we will only 
depart from these assumptions in 5.10. In addition to these, how- 
ever, we also assumed x < l, y < l, i.e. the x, y have their binary 
points both immediately right of the sign digit, which implied the 
same for xy. One might question the necessity of these additional 
assumptions. 

Prima facie they may seem mere conventions, which affect only 
the mathematician's interpretation of the functioning of the ma- 
chine, and not a physical feature of the machine. (Cf. the cor- 
responding situation in addition and subtraction, in 5.7.) Indeed, 
if r had its binary point between digits and i + 1 from the left 
(cf. the discussion of 5.7 dealing with this j ;  it also applies to k 
below), and y between k and k + 1, then our above method of 
multiplication would still give the correct result xy, provided that 
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the position of the binary point in xy is appropriately assigned. 
Specifically: Let the binary point of xy be between digits 1 and 
I + 1.  x has the binary point between digits i and i + 1, and its 
sign digit is 0, hence its range is 0 5 x < 2i-l. Similarly y has the 
range 0 5 y < ek-l, and xy has the range 0 5 xy < 2z-1. Now the 
ranges of x and y imply that the range of xy is necessarily 
0 I - xy < 21-l ek-l = 21+k-2. Hcnce 1 = i + k - 1. Thus it might 
seem that our actual positioning of the binary point-immediately 
right of the sign digit, i.e. i = k = 1-is still a mere convention. 

It is therefore important to realize that this is not so: The 
choices of i and k actually correspond to very real, physical, engi- 
neering decisions. The reason for this is as follows: It is desirable 
to base the running of the machine on a sole, consistent mathe- 
matical interpretation. It is therefore desirable that all arithmeti- 
cal operations be performed with an identically conceived posi- 
tioning of the binary point in Ac. Applying this principle to x and 
y gives i = k. Hence the position of the binary point for xy is given 
by j + k - 1 = 2j - 1. If this is to be the same as for x, and y, 
then 21 - 1 = 1, i.e. i = 1 ensues-that is, our above positioning 
of the binary point immediately right of the sign digit. 

There is one possible escape: To place into Ac not the left 39 
digits of xy (not counting the sign digit 0), but the digits i to i + 38 
from the left. Indeed, in this way the position of the binary point 
of xy will be (2j - 1) - ( j  - 1) = j ,  the same as for x and y. 

This procedure means that we drop the left i - 1 and right 
40 + i digits of xy and hold the middle 39 in- Ac. Note- that posi- 
tioning of the binary point-means that x < 2i-l, y < 2i-l and xy 
can only be used if xy < 21-l. Now the assumptions secure only 
xy < 223-2. Hence xy must be 2j-l times smaller than it might be. 
This is just the thing which would be secured by the vanishing 
of the left i - 1 digits that we had to drop from Ac, as shown 
above. 

If we wanted to use such a procedure, with those dropped left 
i - 1 digits really existing, i.e. with j #  1, then we would have 
to make physical arrangements for their conservation elsewhere. 
Also the general mathematical planning for the machine would 
be definitely complicated, due to the physical fact that Ac now 
holds a rather arbitrarily picked middle stretch of 39 digits from 
among the 78 digits of xy. Alternatively, we might fail to make 
such arrangements, but this would necessitate to see to it in the 
mathematical planning of each problem, that all products turn 
out to be 2i-l times smaller than their a priori maxima. Such an 
observance is not at all impossible; indeed similar things are un- 
avoidable for the other operations. [For example, with a factor 
2 in addition (of positives) or subtraction (of opposite sign quanti- 
ties). Cf. also the remarks in the first part of 5.12, dealing with 

keeping “within range”.] However, it involves a loss of significant 
digits, and the choice i = 1 makes it unnecessary in multiplication. 

We will therefore make our choice i = 1, i.e. the positioning 
of the binary point immediately right of the sign digit, binding 
for all that follows. 

We now pass to the case where the multiplier x and 
the multiplicand y may have either sign + or -, i.e. any combi- 
nation of these signs. 

It would not do simply to extend the method of 5.8 to include 
the sign digits of x and y also. Indeed, we assume - 1 5 x < 1, 
- 1 s y < 1, and the multiplication procedure in question is defi- 
nitely based on the 2 0  interpretations of x and y. Hence if x < 0, 
then it is really using x + 2, and if y < 0, then it is really using 
y + 2. Hence for x < 0, y 2 0 it forms 

5.10. 

(x + 2)y = xy + 2y 

for x 2 0, y < 0 it forms 

x(y + 2) = xy + 2x 

(x + 2)(y + 2) = xy + 2x + 2y + 4 

for x < 0, x < 0, it forms 

or since things may be taken modulo 2, xy + 21 + 214. Hence 
correction terms -2y, -2x would be needed for x < 0, y < 0, 
respectively (either or both). 

This would be a possible procedure, but there is one difficulty: 
As xy is formed, the 39 digits of the multiplier x are gradually 
lost from AR, to be replaced by the right 39 digits of xy. (Cf. the 
discussion at the end of 5.8.) Unless we are willing to build an 
additional 40 stage register to hold x, therefore, x will not be 
available at the end of the multiplication. Hence we cannot use 
it in the correction 2x of xy, which becomes necessary for y < 0. 

Thus the case x < 0 can be handled along the above lines, but 
not the case y < 0. 

It is nevertheless possible to develop an adequate procedure, 
and we now proceed to do this. Throughout this procedure we 
will maintain the assumptions - 1 5 x < 1, - 1 5 y < 1. We 
proceed in several successive steps 

First: Assume that the corrections necessitated by the possi- 
bility of y < 0 have been taken care of. We permit therefore 
y $ 0. We will consider the corrections necessitated by the possi- 
bility of x < 0. 

Let us disregard the sign digit of x, which is 1, i.e. replace it 
by 0. Then x goes over into x’ = x - 1 and as - 1 x < 0, this 
d will actually behave like (x - 1) + 2 = x + 1. Hence our 
multiplication procedure will produce x‘y = (x + l ) y  = xy + y, 
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and therefore a correction - y  is needed at  the end. (Note that 
we did not use the sign digit of x in the conventional way. Had 
we done so, then a correction -2y would have been necessary, 
as seen above.) 

We see therefore: Consider x 5 0. Perform first all necessary 
steps for forming x'y(y 5 0), without yet reaching the sign digit 
of x (i.e. treating x as if it were 20) .  When the time arrives at  
which the digit to of x has to become effective-Le. immediately 
after became effective, after 39 shifts (cf. the discussion near 
the end of 5.8)-at which time Ac contains, say, jZl (this corresponds 
to the p, ,  of 5.8), then form 

This is xy. (Note the difference between this last step, forming 
p ,  and the 39 preceding steps in 5.8, forming p,, p, ,  . . . , p39.) 

Second: Having disposed of the possibility x < 0, we may now 
assume x 2 0. With this assumption we have to treat all y 0. 
Since y 2 0 brings us back entirely to the familiar case of 5.8, we 
need to consider the case y < 0 only. 

Let y' be the number that obtains by disregarding the sign digit 
of y' which is 1, i.e. by replacing it by 0. Again y' acts not like 
y - 1, but like ( y  - 1) + 2 = y + 1. Hence the multiplication 
procedure of 5.8 will produce xy' = x(y + 1) = xy + x, and there- 
fore a correction x is needed. (Note that, quite similarly to what 
we saw in the first case above, the suppression of the sign digit 
of y replaced the previously recognized correction -2x by the 
present one - x.) As we observed earlier, this correction - x  cannot 
be applied at  the end to the completed xy' since at that time x 
is no longer available. Hence we must apply the correction - x  
digitwise, subtracting every digit at  the time when it is last found 
in AR, and in a way that makes it effective with the proper posi- 
tional value. 

Third: Consider then x = 0, tl, t,, . . . , t39 = (E1, t2 . . . t3J. 
The 39 digits c1 . . . t39 of x are lost in the course of the 39 shifts 
of the multiplication procedure of 5.8, going from right to left. 
Thus the operation No. k + 1 (k = 0, 1, . . . , 38, cf. 5.8) finds 
t39-k in the right-most stage of AR, uses it, and then loses it 
through its concluding right shift (of both Ac and AR). After this 
step 39 - (k + 1) = 38 - k further steps, i.e. shifts follow, hence 
before its own concluding shift there are still 39 - k shifts to come. 
Hence the positional values are 23y-k times higher than they will 
be at  the end. <39-k should appear at  the end, in the correcting 
term -x ,  with the sign - and the positional value 2--(39-k3. Hence 
we may inject it during the step k + 1 (before its shift) with the 

- - 

sign - and the positional value 1. That is to say, -t3,-k in the 
sign digit. 

This, however, is inadmissible. Indeed, <39-k might cause carries 
(if t39-k = l), which would have nowhere to go from the sign digit 
(there being no further positions to the left). This error is at its 
origin an integer multiple of 2, but the 39 - k subsequent shifts 
reduce its positional value 239-k times. Hence it might contribute 
to the end result any integer multiple of 2-(38-kJ-and this is a 
genuine error. 

Let us therefore add 1 - &-, to the sign digit, i.e. 0 or 1 if 
& - k  is 1 or 0, respectively. We will show further below, that with 
this procedure there arise no carries of the inadmissible kind. 
Taking this momentarily for granted, let us see what the total 
effect is. We are correcting not by - x  but by cz?l 
2-i - x = 1 - - x. Hence a final correction by - 1 + 2-39 is 
needed. Since this is done at the end (after all shifts), it may be 
taken modulo 2. That is to say, we must add 1 + 2-39, i.e. 1 in 
each of the two extreme positions. Adding 1 in the right-most 
position has the same effect as in the discussion at the end of 5.7 
(dealing with the subtraction). It is equivalent to injecting a carry 
into the right-most stage of Ac. Adding 1 in the left-most position, 
i.e. to the sign digit, produces a 1, since that digit was necessarily 
0. (Indeed, the last operation ended in a shift, thus freeing the 
sign digit, cf. below.) 

Fourth: Let us now consider the question of the carries that 
may arise in the 39 steps of the process described above. In order 
to do this, let us describe the kth step (k = 1, . . . , 39), which 
is a variant of the kth step described for a positive multiplication 
in 5.8, in the same way in which we described the original kth 
step loc. cit. That is to say, let us see what the formula (1) of 5.8 
has become. It is clearly 2p, = p , - ,  + (1 - ( 4 0 - k )  + t4"-,y', i.e. 

That is, we add 1 (y's sign digit) or y' (y without its sign digit), 
according to whether <4n-k = 0 or 1. Then p ,  should obtain from 
2p, again by halving. 

Now the addition of (2) produces no carries beyond the 2" 
position, as we asserted earlier, for the same reason as the addition 
of (1) in 5.8. We can argue in the same way as there: 0 5 p ,  < 1 
is true for h = 0, and if it is true for h = k - 1, then (1) extends 
it to h = k also, since 0 5 Y ' ~  5 1. Hence the sum in (2) is 2 0  
and <2, and no carries beyond the 2" position arise. 

Fifth: In the three last observations we assumed y < 0. Let 
us now restore the full generality of y 5 0. We can then describe 
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the equations (1) of 5.8 (valid for y 2 0) and (2) above (valid for 
y < 0) by a single formula, 

2 p k  = pk-1 + Yp 

(3) 
= y’s sign digit for 540-k = 0 
= y without its sign digit for 540-k = 1 YL [ 

Thus our verbal formulation of (2) applies here, too: We add y’s 
sign digit or y without its sign, according to whether <40-k = 0 
or 1. All p k  are 2 0  and < 1, and the addition of (3) never originates 
a carry beyond the 2 O  position. p k  obtains from 2 p ,  by a right 
shift, filling the sign digit with a 0. (Cf. however, Part 11, Table 
2 for another sort of right shift that is desirable in explicit form, 
i.e. as an order.) 

For y 2 0, xy is p,,, for y < 0, xy obtains from p,, by injecting 
a carry into the right-most stage of Ac and by placing a 1 into 
the sign digit in Ac. 

Sixth: This procedure applies for x 2 0. For x < 0 it should 
also be  applied, since it makes use of x’s non-sign digits only, but 
at the end y must be subtracted from the result. 

This method of binary multiplication will be illustrated in some 
examples in 5.15. 

5.11. To complete our discussion of the multiplicative organs 
of our machine we must return to a consideration of the types 
of accumulators mentioned in 5.5. The static accumulator operates 
as an adder by simultaneously applying static voltages to its two 
inputs-one for each of the two numbers being added. When 
steady-state operation is reached the total sum is formed complete 
with all carries. For such an accumulator the above discussion is 
substantially complete, except that it should be remarked that such 
a circuit requires at most 39 rise times to complete a carry. 
Actually it is possible that the duration of these successive rises 
is proportional to a lower power of 39 than the first one. 

Each stage of a dynamic accumulator consists of a binary 
counter for registering the digit and a flip-flop for temporary 
storage of the carry. The counter receives a pulse if a 1 is to be 
added in at  that place; if this causes the counter to go from 1 
to 0 a carry has occurred and hence the carry flip-flop will be 
set. It then remains to perform the carries. Each flip-flop has 
associated with it a gate, the output of which is connected to the 
next binary counter to the left. The carry is begun by pulsing all 
carry gates. Now a carry may produce a carry, so that the process 
needs to be repeated until all carry flip-flops register 0. This can 
be detected by means of a circuit involving a sensing tube con- 
nected to each carry flip-flop. It was shown in 5.6 that, on the 
average, five pulse times (flip-flop reaction times) are required for 
the complete carry. An alternative scheme is to connect a gate 

tube to each binary counter which will detect whether an incom- 
ing carry pulse would produce a carry and will, under this cir- 
cumstance, pass the incoming carry pulse directly to the next 
stage. This circuit would require at  most 39 rise times for the 
completion of the carry. (Actually less, cf. above.) 

At the present time the development of a static accumulator 
is being concluded. From preliminary tests it seems that it will 
add two numbers in about 5 psec and will shift right or left in 
about 1 psec. 

We return now to the multiplication operation. In a static 
accumulator we order simultaneously an addition of the multi- 
plicand with sign deleted or the sign of the multiplicand (cf. 5.10) 
and a complete carry and then a shift for each of the 39 steps. 
In a dynamic accumulator of the second kind just described we 
order in succession an addition of the multiplicand with sign 
deleted or the sign of the multiplicand, a complete carry, and a 
shift for each of the 39 steps. In a dynamic accumulator of the 
first kind we can avoid losing the time required for completing 
the carry (in this case an average of 5 pulse times, cf. above) at  
each of the 39 steps. We order an addition by the multiplicand 
with sign deleted or the sign of the multiplicand, then order one 
pulsing of the carry gates, and finally shift the contents of both 
the digit counters and the carry flip-flops. This process is repeated 
39 times. A simple arithmetical analysis which may be carried out 
in a later report, shows that at each one of these intermediate 
stages a single carry is adequate, and that a complete set of carries 
is needed at the end only. We then carry out the complement 
corrections, still without ever ordering a complete set of carry 
operations. When all these corrections are completed and after 
round-off, described below, we then order the complete carry 
mentioned above. 

It is desirable at this point in the discussion to consider 
rules for rounding-off to n-digits. In order to assess the charac- 
teristics of alternative possibilities for such properly, and in par- 
ticular the role of the concept of “unbiasedness”, it is necessary 
to visualize the conditions under which rounding-off is needed. 

Every number x that appears in the computing machine is an 
approximation of another number x’, which would have appeared 
if the calculation had been performed absolutely rigorously. The 
approximations to which we refer here are not those that are 
caused by the explicitly introduced approximations of the numeri- 
cal-mathematical set-up, e.g. the replacement of a (continuous) 
differential equation by a (discrete) difference equation. The effect 
of such approximations should be evaluated mathematically by the 
person who plans the problem for the machine, and should not 
be a direct concern of the machine. Indeed, it has to be handled 

5.12. 
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by a mathematician and cannot be handled by the machine, since 
its nature, complexity, and difficulty may be of any kind, depend- 
ing upon the problem under consideration. The approximations 
which concern us here are these: Even the elementary operations 
of arithmetic, to which the mathematical approximation-formula- 
tion for the machine has to reduce the true (possibly transcenden- 
tal) problem, are not rigorously executed by the machine. The 
machine deals with numbers of n digits, where n, no matter how 
large, has to be a fixed quantity. (We assumed for our machine 
40 digits, including the sign, i.e. n = 39.) Now the sum and differ- 
ence of two n-digit numbers are again n-digit numbers, but their 
product and quotient (in general) are not. (They have, in general, 
2n or w-digits, respectively.) Consequently, multiplication and 
division must unavoidably be replaced by the machine by two 
different operations which must produce n-digits under all condi- 
tions, and which, subject to this limitation, should lie as close as 
possible to the results of the true multiplication and division. One 
might call them pseudo-multiplication and pseudo-division; how- 
ever, the accepted nomenclature terms them as multiplication and 
division with round-off. (We are now creating the impression that 
addition and subtraction are entirely free of such shortcomings. 
This is only true inasmuch as they do not create new digits to 
the right, as multiplication and division do. However, they can 
create new digits to the left, i.e. cause the numbers to “grow out 
of range”. This complication, which is, of course, well known, is 
normally met by the planner, by mathematical arrangements and 
estimates to keep the numbers “within range”. Since we propose 
to have our machine deal with numbers between - 1  and 1, 
multiplication can never cause them to “grow out of range”. 
Division, of course, might cause this complication, too. The plan- 
ner must therefore see to it that in every division the absolute 
value of the divisor exceeds that of the dividend.) 

Thus the round-off is intended to produce satisfactory n-digit 
approximations for the product xy and the quotient x/y of two 
n-digit numbers. Two things are wanted of the round-off: (1) The 
approximation should be good, i.e. its variance from the “true” 
xy or x/y should be as small as practicable; (2) The approximation 
should be unbiased, i.e. its mean should be equal to the “true” 
xy or x/y. 

These desiderata must, however, be considered in conjunction 
with some further comments. Specifically: (a) x and y themselves 
are likely to be the results of similar round-offs, directly or in- 
directly inherent, i.e. x and y themselves should be viewed as 
unbiased n-digit approximations of “true” x’ and y’ values; (b) by 
talking of “variances” and “means” we are introducing statistical 
concepts. Now the approximations which we are here considering 

are not really of a statistical nature, but are due to the peculiarities 
(from our point of view, inadequacies) of arithmetic and of digital 
representation, and are therefore actually rigorously and uniquely 
determined. It seems, however, in the present state of mathe- 
matical science, rather hopeless to try to deal with these matters 
rigorously. Furthermore, a certain statistical approach, while not 
truly justified, has always given adequate practical results. This 
consists of treating those digits which one does not wish to use 
individually in subsequent calculations as random variables with 
equiprobable digital values, and of treating any two such digits 
as statistically independent (unless this is patently false). 

These things being understood, we can now undertake to dis- 
cuss round-off procedures, realizing that we will have to apply 
them to the multiplication and to the division. 

Let x = (.t1 . . . t,) and y = (.ql . . . q,) be unbiased approxi- 
mations of x’ and y’. Then the “true” xy = (.tl . . . . . . t2,) 
and the “true” x/y = (.a1 . . . W,W,+~W,+~ . . . ) (this goes on ad 
infinitum!) are approximations of x’y’ and x’/y’. Before we discuss 
how to round them off, we must know whether the “true” xy and 
x/y are themselves unbiased approximations of x’y’ and x’/y’. xy 
is indeed an unbiased approximation of x’y’, i.e. the mean of xy 
is the mean of x( = x’) times the mean of y( = y’), owing to the 
independence assumption which we made above. However, if x 
and y are closely correlated, e.g. for x = y, i.e. for squaring, there 
is a bias. It is of the order of the mean square of x - x’, i.e. of 
the variance of x. Since x has n digits, this variance is about 1/22n 
(If the digits of x’, beyond n are entirely unknown, then our original 
assumptions give the variance 1/12.22n.) Next, x/y can be written 
as x.y-l, and since we have already discussed the bias of the 
product, it suffices now to consider the reciprocal y-’. Now if 
y is an unbiased estimate of y’, then y-l is not an unbiased estimate 
of y’-’, i.e. the mean of y’s reciprocal is not the reciprocal of y’s 
mean. The difference is - Y - ~  times the variance of y, i.e. it is 
of essentially the same order as the bias found above in the case 
of squaring. 

It follows from all this that it is futile to attempt to avoid biases 
of the order of magnitude 1/22n or less. (The factor Y12 above may 
seem to be changing the order of magnitude in question. However, 
it is really the square root of the variance which matters and 
d(Y12 - 0.3 is a moderate factor.) Since we propose to use n = 39, 
therefore 1/278(-3 x is the critical case. Note that this 
possible bias level is l/23y(-2 x 10-12) times our last significant 
digit. Hence we will look for round-off rules to n digits for 
the “true” xy = (.tl . . . t,[,+l . . . t2,) and x/y = (.wl . . . 
W,W,+~W,+~ . . . ). The desideratum (1) which we formulated 
previously, that the variance should be small, is still valid. The 
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desideratum (2), however, that the bias should be zero, need, 
according to the above, only be enforced up to terms of the order 

The round-off procedures, which we can use in this connection, 
fall into two broad classes. The first class is characterized by its 
ignoring all digits beyond the nth, and even the nth digit itself, 
which it replaces by a 1. The second class is characterized by the 
procedure of adding one unit in the (n  + 1)st digit, performing 
the carries which this may induce, and then keeping only the n 
first digits. 

When applied to a number of the form ( .vl  . . . V , V , + ~ U , + ~  . . . ) 
(ad infinitum!), the effects of either procedure are easily estimated. 
In the first case we may say we are dealing with ( .vl ,  . . . , u,-’) 

plus a random number of the form (.O . . . , O v , ~ , + ~ v , + ~  . . . ), 
i.e. random in the interval 0, 1/2%-’. Comparing with the rounded 
off ( .v1v2 . . . z~,-~l), we therefore have a difference random in the 
interval - l/2%, 1/2,. Hence its mean is 0 and its variance y3 22n. 
In the second case we are dealing with ( . v l  . . . v,) plus a random 
number of the form (.O . . . 0 0 ~ , + ~ v , + ~  . . . ), i.e. random in the 
interval 0, 1/2,. The “rounded-off” value will be (.v, . . . v,) in- 
creased by 0 or by 1/2,, according to whether the random number 
in question lies in the interval 0, 1/2,+’, or in the interval 1/2,+l, 
1/2,. Hence comparing with the “rounded-off” value, we have 
a difference random in the intervals 0, 1/2,+’, and 0, --1/2,+l, 
i.e. in the interval - 1/2,+l, 1/2,+’. Hence its mean is 0 and its 
variance ( y12)22n. 

If the number to be rounded-off has the form (.vl . . . 
V , V , + ~ V , + ~  . . . v,,,) ( p  finite), then these results are somewhat 
affected. The order of magnitude of the variance remains the same; 
indeed for large p even its relative change is negligible. The mean 
difference may deviate from 0 by amounts which are easily esti- 
mated to be of the order 1/2, * 1 / 2 P  = 1/2”+P. 

In division we have the first situation, x/y = (.wl . . . 
W ~ W , + ~ W , + ~  . . . ), i.e. p is infinite. In multiplication we have the 

second one, xy = (.& . . . [n.$n+l . . . &,), i.e. p = n. Hence for the 
division both methods are applicable without modification. In 
multiplication a bias of the order of 1/22n may be introduced. We 
have seen that it is pointless to insist on removing biases of this 
size. We will therefore use the unmodified methods in this case, 
too. 

It should be noted that the bias in the case of multiplication 
can be removed in various ways. However, for the reasons set forth 
above, we shall not complicate the machine by introducing such 
corrections. 

Thus we have two standard “round-off ” methods, both unbiased 
to the extent to which we need this, and with the variances 

1/22,, 

1/3 - 22n, and (1/2)22n, that is, with the dispersions (1 /~ ‘3 ) (1 /2~)  
= 0.58 times the last digit and (1/2~‘3)(1/2,) = 0.29 times the 
last digit. The first one requires no carry facilities, the second one 
requires them. 

Inasmuch as we propose to form the product x’y’ in the accu- 
mulator, which has carry facilities, there is no reason why we 
should not adopt the rounding scheme described above which has 
the smaller dispersion, i.e. the one which may induce carries. In 
the case, however, of division we wish to avoid schemes leading 
to  carries since we expect to form the quotient in the arithmetic 
register, which does not permit of carry operations. The scheme 
which we accordingly adopt is the one in which w, is replaced 
by 1. This method has the decided advantage that it enables us 
to write down the approximate quotient as soon as we know its 
first (n  - 1) digits. It will be seen in 5.14 and 6.6.4 below that 
our procedure for forming the quotient of two numbers will always 
lead to a result that is correctly rounded in accordance with the 
decisions just made. We do not consider as serious the fact that 
our rounding scheme in the case of division has a dispersion twice 
as large as that in multiplication since division is a far less frequent 
operation. 

A final remark should be made in connection with the possible, 
occasional need of carrying more than n = 39 digits. Our logical 
control is sufficiently flexible to permit treating k (=2 ,  3, . . . ) 
words as one number, and thus effecting n = 3%. In this case the 
round-off has to be handled differently, cf. Chapter 9, Part 11. The 
multiplier produces all 78 digits of the basic 39 by 39 digit multi- 
plication: The first 39 in the Ac, the last 39 in the AR. These must 
then be  manipulated in an appropriate manner. (For details, cf. 
6.6.3 and 9.9-9.10, Part 11.) The divider works for 39 digits only: 
In forming x/y, it is necessary, even if x and y are available to 
39k digits, to use only 39 digits of each, and a 39 digit result will 
appear. It seems most convenient to use this result as the first step 
of a series of successive approximations. The successive improve- 
ments can then be obtained by various means. One way consists 
of using the well known iteration formula (cf. 5.4). For k = 2 one 
such step will be needed, for k = 3, 4, two steps, for k = 5, 6, 
7, 8 three steps, etc. An alternative procedure is this: Calculate 
the remainder, using the approximate, 39 digit, quotient and the 
complete, 39k digit, divisor and dividend. Divide this again by 
the approximate, 39 digit, divisor, thus obtaining essentially the 
next 39 digits of the quotient. Repeat this procedure until the full 
39k desired digits of the quotient have been obtained. 

We might mention at this time a complication which 
arises when a floating binary point is introduced into the machine. 
The operation of addition which usually takes at most ylo of a 

5.13. 
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multiplication time becomes much longer in a machine with 
floating binary since one must perform shifts and round-offs as well 
as additions. It would seem reasonable in this case to place the 
time of an addition as about y3 to '/z of a multiplication. At this 
rate it is clear that the number of additions in a problem is as 
important a factor in the total solution time as are the number 
of multiplications. (For further details concerning the floating 
binary point, cf. 6.6.7.) 

We conclude our discussion of the arithmetic unit with 
a description of our method for handling the division operation. 
To perform a division we wish to store the dividend in SR, the 
partial remainder in Ac and the partial quotient in AR. Before 
proceeding further let us consider the so-called restoring and 
non-restoring methods of division. In order to be able to make 
certain comparisons, we will do this for a general base m = 2, 
3, . . . .  

Assume for the moment that divisor and dividend are both 
positive. The ordinary process of division consists of subtracting 
from the partial remainder (at the very beginning of the process 
this is, of course, the dividend) the divisor, repeating this until 
the former becomes smaller than the latter. For any fixed positional 
value in the quotient in a well-conducted division this need be 
done at  most m - 1 times. If, after precisely k = 0,1, . . . , m - 1 
repetitions of this step, the partial remainder has indeed become 
less than the divisor, then the digit k is put in the quotient (at 
the position under consideration), the partial remainder is shifted 
one place to the left, and the whole process is repeated for the 
next position, etc. Note that the above comparison of sizes is only 
needed at  k = 0, 1, . . . , m - 2, i.e. before step 1 and after steps 
1, . . . , m - 2. If the value k = m - 1, Le. the point after step 
m - I ,  is at all reached in a well-conducted division, then it may 
be taken for granted without any test, that the partial remainder 
has become smaller than the divisor, and the operations on the 
position under consideration can therefore be concluded. (In the 
binary system, m = 2, there is thus only one step, and only one 
comparison of sizes, before this step.) In this way this scheme, 
known as the restoring scheme, requires a maximum of m - 1 com- 
parisons and utilizes the digits 0, 1, . . . , m - 1 in each place in the 
quotient. The difficulty of this scheme for machine purposes is that 
usually the only economical method for comparing two numbers 
as to size is to subtract one from the other. If the partial remainder 
r, were less than the dividend d, one would then have to add d 
back into r, - d in order to restore the remainder. Thus at every 
stage an unnecessary operation would be performed. A more sym- 
metrical scheme is obtained by not restoring. In this method (from 
here on we need not assume the positivity of divisor and dividend) 
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one compares the signs of rn and d; if they are of the same sign, 
the dividend is repeatedly subtracted from the remainder until 
the signs become opposite; if they are opposite, the dividend is 
repeatedly added to the remainder until the signs again become 
like. In this scheme the digits that may occur in a given place 
in the quotient are evidently kl, k 2 ,  . . . , k ( m  - l), the posi- 
tive digits corresponding to subtractions and the negative ones to 
additions of the dividend to the remainder. 

Thus we have 2(m - 1) digits instead of the usual m digits. 
In the decimal system this would mean 18 digits instead of 10. 
This is a redundant notation. The standard form of the quotient 
must therefore be restored by subtracting from the aggregate of 
its positive digits the aggregate of its negative digits. This requires 
carry facilities in the place where the quotient is stored. 

We propose to store the quotient in AR, which has no carry 
facilities. Hence we could not use this scheme if we were to 
operate in the decimal system. 

The same objection applies to any base m for which the digital 
representation in question is redundant-i.e. when 2(m - 1) > m. 
Now 2(m - 1) > m whenever m > 2, but 2(m - 1) = m for 
m = 2. Hence, with the use of a register which we have so far 
contemplated, this division scheme is certainly excluded from the 
start unless the binary system is used. 

Let us now investigate the situation in the binary system. We 
inquire if it is possible to obtain a quasi-quotient by using the 
non-restoring scheme and by using the digits 1, 0 instead of 1, 
-1. Or rather we have to ask this question: Does this quasi- 
quotient bear a simple relationship to the true quotient? 

Let us momentarily assume this question can be answered 
affirmatively and describe the division procedure. We store the 
divisor initially in Ac, the dividend in SR and wish to form the 
quotient in AR. We now either add or subtract the contents of 
SR into Ac, according to whether the signs in Ac and SR are 
opposite or the same, and insert correspondingly a 0 or 1 in the 
right-hand place of AR. We then shift both Ac and AR one place 
left, with electronic shifters that are parts of these two aggregates. 

At this point we interrupt the discussion to note this: multipli- 
cation required an ability to shift right in'both Ac and AR (cf. 
5.8). We have now found that division similarly requires an ability 
to shift left in both Ac and AR. Hence both organs must be able to 
shift both ways electronically. Since these abilities have to be 
present for the implicit needs of multiplication and division, it is just 
as well to make use of them explicitly in the form of explicit orders. 
These are the orders 20,21 of Table 1, and of Table 2, Part 11. It will, 
however, turn out to be convenient to arrange some details in the 
shifts, when they occur explicitly under the control of those orders, 
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differently from when they occur implicitly under the control of a 
multiplication or a division. (For these things, cf. the discussion of 
the shifts near the end of 5.8 and in the third remark below on one 
hand, and in the third remark in 7.2, Part 11, on the other hand.) 

Let us now resume the discussion of the division. The process 
described above will have to be repeated as many times as the 
number of quotient digits that we consider appropriate to produce 
in this way. This is likely to be 39 or 40; we will determine the 
exact number further below. 

In this process we formed digits .$ = 0 or 1 for the quotient, when 
the digit should actually have been ti = - 1 or 1, with 5; = 2[: - 1. 
Thus we have a difference between the true quotient z (based on 
the digits t i )  and the quasi-quotient z' (based on the digits ti), but 
at the same time a one-to-one connection. It would be easy to 
establish the algebraical expression for this connection between z' 
and z directly, but it seems better to do this as part of a discussion 
which clarifies all other questions connected with the process of 
division at the same time. 

We first make some general remarks: 
First: Let x be the dividend and y the divisor. We assume, of 

course, - 1 x < 1, - 1 5 y < 1. It will be found that our pres- 
ent process of division is entirely unaffected by the signs of x and 
y, hence no further restrictions on that score are required. 

On the other hand, the quotient z = x/y must also fulfil 
- 1 5 z < 1. It seems somewhat simpler although this is by no 
means necessary, to exclude for the purposes of this discussion 
z = - 1, and to demand I z I < 1. This means in terms of the 
dividend x and the divisor y that we exclude x = - y and assume 

Second: The division takes place in n steps, which correspond 
to the n digits ti, . . . , .$; of the pseudo-quotient z', n being yet to 
be determined (presumably 39 or 40). Assume that the k - 1 first 
steps (k = 1, . . . , n) have already taken place, having produced 
the k - 1 first digits: ti, . . . , ek-l; and that we are now at the 
kth step, involving production of the kth digit; &. Assume 
furthermore, that Ac now contains the quantity rk-l ,  the result 
of the k - 1 first steps. (This is the (k - 1)st partial remainder. 
For k = 1 clearly r,, = x.) We then form rk = 2rk-1 7 y, accord- 
ing to whether the signs of rk-l and y do or do not agree, i.e. 

rk = 2rk-,By 
is - if the signs of rk-l and y do agree ' [ is + if the signs of rk-,  and y do not agree 

1x1 < Y. 

Let us now see what carries may originate in this procedure. 
We can argue as follows: lrhl < / y l  is true for h = 0( Ir,l = 

I x I < I y I), and if it is true for h = k - 1, then (4) extends it to 
h = k also, since rk-l  and 0 y have opposite signs. The last point 
may be elaborated a little further: because of the opposite signs 

Hence we have always I rk 1 < I y I ,and therefore afortiori I rk I < 1, 
i.e. -1 < rk < 1. 

Consequently in equation (4) one summand is necessarily > - 2 ,  
<2, the other is 21, <1, and the sum is >-1, <l. Hence we 
may carry out the operations of (4) modulo 2, disregarding any 
possibilities of carries beyond the 2 O  position, and the resulting 
rk will be automatically correct (in the range >-1, <1). 

Third: Note however that the sign of rk- l ,  which plays an 
important role in (4) above, is only then correctly determinable 
from the sign digit, if the number from which it is derived is 2 - 1, 
<l. (Cf. the discussion in 5.7.) This requirement however is met, 
as we saw above, by rk-l, but not necessarily by 2rkpI .  Hence the 
sign of rk-l (Le. its sign digit) as required by (4), must be sensed 
before rk-l is doubled. 

This being understood, the doubling of rk-l may be performed 
as a simple left shift, in which the left-most digit (the sign digit) 
is allowed to be lost-this corresponds to the disregarding of 
carries beyond the 2 O  position, which we recognized above as being 
permissible in (4). (Cf. however, Part 11, Table 2, for another sort 
of left shift that is desirable in explicit form, i.e. as an order.) 

Fourth: Consider now the precise implication of (4) above. 
5; = 1 or 0 corresponds to LE = - or +, respectively. Hence 
(4) may be written 

rk  = 2rk-1 + (1 - 2t;)y 

i.e. 

l)rk-l + ( 2 - k  - 2-(k-1)[!) 2 - k r  - 2 - ( k -  
k y  k -  

Summing over k = 1, . . . , n gives 

i.e. 

This makes it clear, that Z = - 1 + + 2-" corre- 
sponds to true quotient z = x/y and 2-"rn, with an absolute value 
<2-" I y I 5 2-", to the remainder. Hence, if we disregard the term 
-1 for a moment <i&, . . . , <A, 1 are the n + 1 first digits of 
what may be used as a true quotient, the sign digit being part 
of this sequence. 
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Fifth: If we do not wish to get involved in more complicated 
round-off procedures which exceed the immediate capacity of the 
only available adder Ac, then the above result suggests that we 
should put n + 1 = 40, n = 39. The ti, . . . , ti9 are then 39 digits 
of the quotient, including the sign digit, but not including the 
right-most digit. 

The right-most digit is taken care of by placing a 1 into the 
right-most stage of Ac. 

At this point an additional argument in favor of the procedure 
that we have adopted here becomes apparent. The procedure 
coincides (without a need for any further corrections) with the 
second round-off procedure that we discussed in 5.12. 

There remains the term -1. Since this applies to the final 
result, and no right shifts are to follow, carries which might go 
beyond the 2O position may be disregarded. Hence this amounts 
simply to changing the sign digit of the quotient 3: replacing 0 
or 1 by 1 or 0, respectively. 

This concludes our discussion of the division scheme. We wish, 

however, to re-emphasize two very distinctive features which it 
possesses: 

First: This division scheme applies equally for any combina- 
tions of signs of divisor and dividend. This is a characteristic of 
the non-restoring division schemes, but it is not the case for any 
simple known multiplication scheme. It will be remembered, in 
particular, that our multiplication procedure of 5.9 had to contain 
special correcting steps for the cases where either or both factors 
are negative. 

Second: This division scheme is practicable in the binary sys- 
tem only; it has no analog for any other base. 

This method of binary division will be illustrated on some 
examples in 5.15. 

5.15. We give below some illustrative examples of the opera- 
tions of binary arithmetic which were discussed in the preceding 
sections. 

Although it presented no difficulties or ambiguities, it seems 
best to begin with an example of addition. 

Binary notation Decimal notation (fractional form) 
Augend 0010110011 179/5 12 
Addend 0011010111 215/512 

Sum 0110001010 394/512 
(Carries) 1111 111 

In what follows we will not show the carnes any more. 
We form the negative of a number (cf. 5 7). 

Complement: 

Binary notation 
0.101 110100 
1.010001011 

1 

A subtraction (cf. 5.7): 

1.01000 1 100 

Binary notation 
Subtrahend 0011010111 
Minuend 0110001010 

Decimal notation (fractional form) 
372/512 

-1 +140/512 

Decimal notation (fractional form) 
21 5/51 2 
394/5 12 

Complement of subtrahend 1.1001 01000 
I -1 +297/512 

Difference 0.0101 1001 1 179/512 
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Some multiplications (cf. 5.8 and 5.9): 

Binary notation 

Mu It i pl icand 
Multiplier 0.011 

0.101 

Section 1 I Processors with one address per instruction 

Decimal notation (fractional form) 

5/8 
3/8 

0101 
0101 

0 

Product 0001111 

Binary notation 

Mu It i pl icand 1.101 
Multiplier 1011 

0101 
0101 
1 

101111 
Correction lt 1 1  

1.1 10111 
Correction 2$ (Complement of the multiplicand). 0.010 

1 
0.001 11 1 

A division (cf. 5.14): 

Binary notation 

Divisor 1011000 
Dividend 0001111 

0011110 
1011000 
1.1 101 10 
1.101 100 
0.100111 

1 
0.010100 
0.101000 
1.01 1000 
0.000000 
0.000000 
1.011000 
1.011000 
0.110000 
0.1001 11 

1 
1.01 1000 

Quotient (uncorrected) 0 10011 
” (corrected) 1100111 

Q.D.3 

0 

1 

~ 

15/64 

Decimal notation (fractional form) 

- 3/8 
- 5/8 

Decimal notation (fractional form) 

15/64 
- 5/8 

1 

-1 + 39/64 = -25/64 

t For the sign of the multiplicand $ For the sign of the multiplier. 5 Quotient digit 
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Note that this deviates by YG4, i.e. by one unit of the right-most 
position, from the correct result -"/. This is a consequence of 
our round-off rule, which forces the right-most digit to be 1 under 
all conditions. This occasionally produces results with unfamiliar 
and even annoying aspects (e.g. when quotients like 0:y or y:y 
are formed), but it is nevertheless unobjectionable and self- 
consistent on the basis of our general principles. 

6. The control 

6.1. It has already been stated that the computer will contain 
an organ, called the control, which can automatically execute the 
orders stored in the Selectrons. Actually, for a reason stated in 
6.3, the orders for this computer are less than half as long as a 
forty binary digit number, and hence the orders are stored in the 
Selectron memory in pairs. 

Let us consider the routine that the control performs in direct- 
ing a computation. The control must know the location in the 
Selectron memory of the pair of orders to be executed. It must 
direct the Selectrons to transmit this pair of orders to the Selectron 
register and then to itself. It must then direct the execution of 
the operation specified in the first of the two orders. Among these 
orders we can immediately describe two major types: An order 
of the first type begins by causing the transfer of the number, 
which is stored at a specified memory location, from the Selectrons 
to the Selectron register. Next, it causes the arithmetical unit to 
perform some arithmetical operations on this number (usually in 
conjunction with another number which is already in the arith- 
metical unit), and to retain the resulting number in the arith- 
metical unit. The second type order causes the transfer of the 
number, which is held in the arithmetical unit, into the Selectron 
register, and from there to a specified memory location in the 
Selectrons. (It may also be that this latter operation will permit 
a direct transfer from the arithmetical unit into the Selectrons.) 
An additional type of order consists of the transfer orders of 3.5. 
Further orders control the inputs and the outputs of the machine. 
The process described at the beginning of this paragraph must 
then be repeated with the second order of the order pair. This 
entire routine is repeated until the end of the problem. 

It is clear from what has just been stated that the control 
must have a means of switching to a specified location in the 
Selectron memory, for withdrawing both numbers for the compu- 
tation and pairs of orders. Since the Selectron memory (as tenta- 
tively planned) will hold 212 = 4,096 forty-digit words (a word is 
either a number or a pair of orders), a twelve-digit binary number 
suffices to identify a memory location. Hence a switching mecha- 
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nism is required which will, on receiving a twelve-digit binary 
number, select the corresponding memory location. 

The type of circuit we propose to use for this purpose is known 
as a decoding or many-one function table. It has been developed 
in various forms independently by J. Rajchman [Rajchman, 19431 
and P. Crawford [Crawford, Is??]. It consists of n flip-flops which 
register an n-digit binary number. It also has a maximum of 2n 
output wires. The flip-flops activate a matrix in which the inter- 
connections between input and output wires are made in such a 
way that one and only one of 2" output wires is selected (Le. has 
a positive voltage applied to it). These interconnections may be 
established by means of resistors or by means of non-linear ele- 
ments (such as diodes or rectifiers); all these various methods are 
under investigation. The Selectron is so designed that four such 
function table switches are required, each with a three digit entry 
and eight (23) outputs. Four sets of eight wires each are brought 
out of the Selectron for switching purposes, and a particular loca- 
tion is selected by making one wire positive with respect to the 
remainder. Since all forty Selectrons are switched in parallel, these 
four sets of wires may be connected directly to the four function 
table outputs. 

Since most computer operations involve at least one 
number located in the Selectron memory, it is reasonable to adopt 
a code in which twelve binary digits of every order are assigned 
to the specification of a Selectron location. In those orders which 
do not require a number to be taken out of or into the Selectrons 
these digit positions will not be used. 

Though it has not been definitely decided how many operations 
will be built into the computer (Le. how many different orders 
the control must be able to understand), it will be seen presently 
that there will probably be more than Z5 but certainly less than 
26. For this reason it is feasible to assign 6 binary digits for the 
order code. It thus turns out that each order must contain eighteen 
binary digits, the first twelve identifying a memory location and 
the remaining six specifying an operation. It can now be explained 
why orders are stored in the memory in pairs. Since the same 
memory organ is to be used in this computer for both orders and 
numbers, it is efficient to make the length of each about equivalent. 
But numbers of eighteen binary digits would not be sufficiently 
accurate for problems which this machine will solve. Rather, an 
accuracy of at least or 2 F 3  is required. Hence it is preferable 
to make the numbers long enough to accommodate two orders. 

As we pointed out in 2.3, and used in 4.2 et seq. and 5.7 et 
seq., our numbers will actually have 40 binary digits each. This 
allows 20 binary digits for each order, i.e. the 12 digits that specify 
a memory location, and 8 more digits specifying the nature of the 
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operation (instead of the minimum of 6 referred to above). It is 
convenient, as will be seen in 6.8.2. and Chapter 9, Part 11, to 
group these binary digits into tetrads, groups of 4 binary digits. 
Hence a whole word consists of 10 tetrads, a half word or order 
of 5 tetrads, and of these 3 specify a memory location and the 
remaining 2 specify the nature of the operation. Outside the 
machine each tetrad can be expressed by a base 16 digit. (The 
base 16 digits are best designated by symbols of the 10 decimal 
digits 0 to 9, and 6 additional symbols, e.g. the letters a to f. Cf. 
Chapter 9, Part 11.) These 16 characters should appear in the 
typing for and the printing from the machine. (For further details 
of these arrangements, cf. Zoc. cit. above.) 

The specification of the nature of the operation that is involved 
in an order occurs in binary form, so that another many-one or 
decoding function is required to decode the order. This function 
table will have six input flip-flops (the two remaining digits of the 
order are not needed). Since there will not be 64 different orders, 
not all 64 outputs need be provided. However, it is perhaps 
worthwhile to connect the outputs corresponding to unused order 
possibilities to a checking circuit which will give an indication 
whenever a code word unintelligible to the control is received 
in the input flip-flops. 

The function table just described energizes a different output 
wire for each different code operation. As will be shown later, 
many of the steps involved in executing different orders overlap. 
(For example, addition, multiplication, division, and going from 
the Selectrons to the register all include transferring a number from 
the Selectrons to the Selectron register.) For this reason it is 
perhaps desirable to have an additional set of control wires, each 
of which is activated by any particular combination of different 
code digits. These may be obtained by taking the output wires 
of the many-one function table and using them to operate tubes 
which will in turn operate a one-many (or coding) function table. 
Such a function table consists of a matrix as before, but in this 
case only one of the input wires are activated. This particular table 
may be referred to as the recoding function table. 

The twelve flip-flops operating the four function tables used 
in selecting a Selectron position, and the six flip-flops operating 
the function table used for decoding the order, are referred to as 
the Function Table Register, FR. 

Let us consider next the process of transferring a pair 
of orders from the Selectrons to the control. These orders first go 
into SR. The order which is to be used next may be transferred 
directly into FR. The second order of the pair must be removed 
from SR (since SR may be used when the first order is executed), 
but cannot as yet be placed in FR. Hence a temporary storage 
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is provided for it. The storage means is called the Control Register, 
CR, and consists of 20 (or possibly 18) flip-flops, capable of re- 
ceiving a number from SR and transmitting a number to FR. 

As already stated (til), the control must know the location of 
the pair of orders it is to get from the Selectron memory. Normally 
this location will be the one following the location of the two 
orders just executed. That is, until it receives an order to do 
otherwise, the control will take its orders from the Selectrons in 
sequence. Hence the order location may be remembered in a 
twelve stage binary counter (one capable of counting 212) to which 
one unit is added whenever a pair of orders is executed. This 
counter is called the Control Counter, CC. 

The details of the process of obtaining a pair of orders from 
the Selectron are thus as follows: The contents of CC are copied 
into FR, the proper Selectron location is selected, and the contents 
of the Selectrons are transferred to SR. FR is then cleared, and 
the contents of SR are transferred to it and CR. CC is advanced 
by one unit so the control will be prepared to select the next pair 
of orders from the memory. (There is, however, an exception from 
this last rule for the so-called transfer orders, cf. 3.5. This may 
feed CC in a different manner, cf. the next paragraph below.) First 
the order in FR is executed and then the order in CR is transferred 
to FR and executed. It should be noted that all these operations 
are directed by the control itself-not only the operations specified 
in the control words sent to FR, but also the automatic operations 
required to get the correct orders there. 

Since the method by means of which the control takes order 
pairs in sequence from the memory has been described, it only 
remains to consider how the control shifts itself from one sequence 
of control orders to another in accordance with the operations 
described in 3.5. The execution of these operations is relatively 
simple. An order calling for one of these operations contains the 
twelve digit specification of the position to which the control is 
to be switched, and these digits will appear in the left-hand twelve 
flip-flops of FR. All that is required to shift the control is to transfer 
the contents of these flip-flops to CC. When the control goes to 
the Selectrons for the next pair of orders it will then go to the 
location specified by the number so transferred. In the case of the 
unconditional transfer, the transfer is made automatically; in the 
case of the conditional transfer it is made only if the sign counter 
of the Accumulator registers zero. 

In this report we will discuss only the general method 
by means of which the control will execute specific orders, leaving 
the details until later. It has already been explained (5.5) that when 
a circuit is to be designed to accomplish a particular elementary 
operation (such as addition), a choice must be made between a 
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static type and a dynamic type circuit. When the design of the 
control is considered, this same choice arises. The function of the 
control is to direct a sequence of operations which take place in 
the various circuits of the computer (including the circuits of the 
control itself). Consider what is involved in directing an operation. 
The control must signal for the operation to begin, it must supply 
whatever signals are required to specify that particular operation, 
and it must in some way know when the operation has been 
completed so that it may start the succeeding operation. Hence 
the control circuits must be capable of timing the operations. It 
should be noted that timing is required whether the circuit per- 
forming the operation is static or dynamic. In the case of a static 
type circuit the control must supply static control signals for a 
period of time sufficient to allow the output voltages to reach the 
steady-state condition. In the case of a dynamic type circuit the 
control must send various pulses at proper intervals to this circuit. 

If all circuits of a computer are static in character, the control 
timing circuits may likewise be static, and no pulses are needed 
in the system. However, though some of the circuits of the com- 
puter we are planning will be static, they will probably not all 
be so, and hence pulses as well as static signals must be supplied 
by the control to the rest of the computer. There are many advan- 
tages in deriving these pulses from a central source, called the 
clock. The timing may then be done either by means of counters 
counting clock pulses or by means of electrical delay lines (an RC 
circuit is here regarded as a simple delay line). Since the timing 
of the entire computer is governed by a single pulse source, the 
computer circuits will be said to operate as a synchronized system. 

The clock plays an important role both in detecting and in 
localizing the errors made by the computer. One method of check- 
ing which is under consideration is that of having two identical 
computers which operate in parallel and automatically compare 
each other’s results. Both machines would be controlled by the 
same clock, so they would operate in absolute synchronism. It is 
not necessary to compare every flip-flop of one machine with the 
corresponding flip-flop of the other. Since all numbers and control 
words pass through either the Selectron register or the accumu- 
lator soon before or soon after they are used, it suffices to check 
the flip-flops of the Selectron register and the flip-flops of the 
accumulator which hold the number registered there; in fact, it 
seems possible to check the accumulator only (cf. the end of 6.6.2). 
The checking circuit would stop the clock whenever a difference 
appeared, or stop the machine in a more direct manner if an 
asynchronous system is used. Every flip-flop of each computer will 
be located at a convenient place. In fact, all neons will be located 
on one panel, the corresponding neons of the two machines being 

placed in parallel rows so that one can tell a t  a glance (after the 
machine has been stopped) where the discrepancies are. 

The merits of any checking system must be weighed against 
its cost. Building two machines may appear to be expensive, but 
since most of the cost of a scientific computer lies in development 
rather than production, this consideration is not so important as 
it might seem. Experience may show that for most problems the 
two machines need not be operated in parallel. Indeed, in most 
cases purely mathematical, external checks are possible: Smooth- 
ness of the results, behavior of differences of various types, validity 
of suitable identities, redundant calculations, etc. All of these 
methods are usually adequate to disclose the presence or absence 
of error in toto; their drawback is only that they may not allow 
the detailed diagnosing and locating of errors at all or with ease. 
When a problem is run for the first time, so that it requires special 
care, or when an error is known to be present, and has to be 
located-only then will it be necessary as a rule, to use both 
machines in parallel. Thus they can be used as separate machines 
most of the time. The essential feature of such a method of check- 
ing lies in the fact that it checks the computation at every point 
(and hence detects transient errors as well as steady-state ones) 
and stops the machine when the error occurs so that the process 
of localizing the fault is greatly simplified. These advantages are 
only partially gained by duplicating the arithmetic part of the 
computer, or by following one operation with the complement 
operation (multiplication by division, etc.), since this fails to check 
either the memory or the control (which is the most complicated, 
though not the largest, part of the machine). 

The method of localizing errors, either with or without a dupli- 
cate machine, needs further discussion. It is planned to design all 
the circuits (including those of the control) of the computer so 
that if the clock is stopped between pulses the computer will 
retain all its information in flip-flops so that the computation may 
proceed unaltered when the clock is started again. This principle 
has already demonstrated its usefulness in the ENIAC. This makes 
it possible for the machine to compute with the clock operating 
at any speed below a certain maximum, as long as the clock gives 
out pulses of constant shape regardless of the spacing between 
pulses. In particular, the spacing between pulses may be made 
indefinitely large. The clock will be provided with a mode of 
operation in which it will emit a single pulse whenever instructed 
to do so by the operator. 13y means of this, the operator can cause 
the machine to go through an operation step by step, checking 
the results by means of the indicating-lamps connected to the 
flip-flops. It will be noted that this design principle does not 
exclude the use of delay lines to obtain delays as long as these 
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are only used to time the constituent operations of a single step, 
and have no part in determining the machine’s operating repeti- 
tion rate. Timing coincidences by means of delay lines is excluded 
since this requires a constant pulse rate. 

The orders which the control understands may be divided 
into two groups: Those that specify operations which are per- 
formed within the computer and those that specify operations 
involved in getting data into and out of the computer. At the 
present time the internal operations are more completely planned 
than the input and output operations, and hence they will be 
discussed more in detail than the latter (which are treated briefly 
in 6.8). The internal operations which have been tentatively 
adopted are listed in Table 1. It has already been pointed out that 
not all of these operations are logically basic, but that many can 
be programmed by means of others. In the case of some of these 
operations the reasons for building them into the control have 
already been given. In this section we will give reasons for building 
the other operations into the control and will explain in the case 
of each operation what the control must do in order to exe- 
cute it. 

In order to have the precise mathematical meaning of the 
symbols which are introduced in what follows clearly in mind, 
the reader should consult the table at the end of the report for 
each new symbol, in addition to the explanations given in the text. 

Throughout what follows S(x) will denote the memory 
location No. x in the Selectron. Accordingly the x which appears 
in S(x) is a 12-digit binary, in the sense of 6.2. The eight addition 
operations [S(x)+ Ac+, S(x)+ Ac--, S(x)+ Ah+, S(x)-t Ah-, 

involves the following possible four steps: 

6.6. 

6.6.1. 

S(X)+ Ac + M, S(X)-+ Ac - M, S(X) + Ah + M, S(X)+ Ah - MI 

First: Clear SR and transfer into it the number at S(x). 
Second: Clear Ac if the order contains the symbol c; do not 

clear Ac if the order contains the symbol h. 
Third: Add the number in SR or its negative (Le. in our present 

system its complement with respect to 2l) into Ac. If the order does 
not contain the symbol M, use the number in SR or its negative 
according to whether the order contains the symbol + or - . If the 
order contains the symbol M, use the number in SR or its negative 
according to whether the sign of the number in SR and the symbol 
+ or - in the order do or do not agree. 

Fourth: Perform a complete carry. Building the last four addi- 
tion operations (those containing the symbol M) into the control 
is fairly simple: It calls only for one extra comparison (of the sign 
in SR and the + or - in the order, cf. the third step above), and 
it requires, therefore, only a few tubes more than required for the 
first four addition operations (those not containing the symbol M). 

These facts would seem of themselves to justify adding the opera- 
tions in question: plus and minus the absolute value. But it should 
be noted that these operations can be programmed out of the other 
operations of Table 1 with correspondingly few orders (three for 
absolute value and five for minus absolute value), so that some 
further justification for building them in is required. The absolute 
value order is frequently in connection with the orders L and R 
(see 6.6.7), while the minus absolute value order makes the detec- 
tion of a zero very simple by merely detecting the sign of - J N J  . 
(If - JNI 2 0, then N = 0.) 

The operation of S(x) .+ R involves the following two 
steps: 

6.6.2. 

First: Clear SR, and transfer S(x) to it. 
Second: Clear AR and add the number in the Selectron register 

into it. The operation of R + Ac merits more detailed discussion, 
since there are alternative ways of removing numbers from AR. 
Such numbers could be taken directly to the Selectrons as well 
as into Ac, and they could be transferred to Ac in parallel, in 
sequence, or in sequence parallel. It should be recalled that while 
most of the numbers that go into AR have come from the Selec- 
trons and thus need not be returned to them, the result of a 
division and the right-hand 39 digits of a product appear in AR. 
Hence while an operation for withdrawing a number from AR is 
required, it is relatively infrequent and therefore need not be 
particularly fast. We are therefore considering the possibility of 
transferring at least partially in sequence and of using the shifting 
properties of Ac and of AR for this. Transferring the number to 
the Selectron via the accumulator is also desirable if the dual 
machine method of checking is employed, for it means that even 
if numbers are only checked in their transit through the accumu- 
lator, nevertheless every number going into the Selectron is 
checked before being placed there. 

6.6.3. The operation S(x) x R --f Ac involves the following six 
steps: 

First: Clear SR and transfer S(x) (the multiplicand) into it. 
Second: Thirty-nine steps, each of which consist of the two 

following parts: (a) Add (or rather shift) the sign digit of SR into 
the partial product in Ac, or add all but the sign digit of SR into 
the partial product in Ac-depending upon whether the right-most 
digit in AR is 0 or 1-and effect the appropriate carries. (b) Shift 
Ac and AR to the right, fill the sign digit of Ac with a 0 and the 
digit of AR immediately right of the sign digit (positional value 
2-l) with the previously right-most digit of Ac. (There are ways 
to save time by merging these two operations when the right-most 
digit in Ar is 0, but we will not discuss them here more fully.) 

Third: If the sign digit in SR is 1 (Le. -), then inject a carry 
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into the right-most stage of Ac and place a 1 into the sign digit 
of Ac. 

Fourth: If the original sign digit of AR is 1 (Le. -), then sub- 
tract the contents of SR from Ac. 

Fifth: If a partial carry system was employed in the main 
process, then a complete carry is necessary at the end. 

Sixth: The appropriate round-off must be effected. (Cf. Chapter 
9, Part 11, for details, where it is also explained how the sign digit 
of the Arithmetic register is treated as part of the round-off 
process.) 

It will be noted that since any number held in Ac at the begin- 
ning of the process is gradually shifted into AR, it is impossible 
to accumulate sums of products in Ac without storing the various 
products temporarily in the Selectrons. While this is undoubtedly 
a disadvantage, it cannot be eliminated without constructing a.n 
extra register, and this does not at this moment seem worthwhile. 

On the other hand, saving the right-hand 39 digits of the answer 
is accomplished with very little extra equipment, since it means 
connecting the 2-39 stage of Ac to the 2-1 stage of AR during the 
shift operation. The advantage of saving these digits is that it 
simplifies the handling of numbers of any number of digits in the 
computer (cf. the last part of 5.12). Any number of 39k binary 
digits (where k is an integer) and sign can be divided into k parts, 
each part being placed in a separate Selectron position. Addition 
and subtraction of such numbers may be programmed out of a 
series of additions or subtractions of the 39-digit parts, the carry- 
over being programmed by means of Cc+ S(x) and Cc'+ S(x) 
operations. (If the 2" stage of Ac registers negative after the addi- 
tion of two 39-digit parts, a carry-over has taken place and hence 
2-39 must be added to the sum of the next parts.) A similar proce- 
dure may be followed in multiplication if all 78 digits of the 
product of the two 39-digit parts are kept, as is planned. (For the 
details, cf. Chapter 9, Part 11.) Since it would greatly complicate 
the computer to make provision for holding and using a 78 digit 
dividend, it is planned to program 39k digit division in one of the 
ways described at the end of 5.12. 

The operation of division Ac i S(x) + R involves the 
following four steps: 

6.6.4. 

First: Clear SR and transfer S(x) (the divisor) into it. 
Second: Clear AR. 
Third: Thirty-nine steps, each of which consists of the following 

three parts: (a) Sense the signs of the contents of Ac (the partial 
remainder) and of SR, and sense whether they agree or not. (b) 
Shift Ac and AR left. In this process the previous sign digit of 
Ac is lost. Fill the right-most digit of Ac (after the shift) with a 
0, and the right-most digit of AR (before the shift) with 0 or 1, 

depending on whether there was disagreement or agreement in 
(a). (c) Add or subtract the contents of SR into Ac, depending on 
the same alternative as above. 

Fourth: Fill the right-most digit of AR with a 1, and change 
its sign digit. 

For the purpose of timing the 39 steps involved in division a 
six-stage counter (capable of counting to 26 = 64) will be built 
into the control. This same counter will also be used for timing 
the 39 steps of multiplication, and possibly for controlling Ac when 
a number is being transferred between it and a tape in either 
direction (see 6.8.). 

The three substitution operations [At -+ S(x), Ap -+ S(x), 
and Ap' + S(x)] involve transferring all or part of the number held 
in Ac into the Selectrons. This will be done by means of gate tubes 
connected to the registering flip-flops of Ac. Forty such tubes are 
needed for the total substitutions, At + S(x). The partial substitu- 
tion Ap -+ S(x) and Ap' -+ S(x) requires that the left-hand twelve 
digits of the number held in Ac be substituted in the proper places 
in the left-hand and right-hand orders, respectively. This may be 
done by means of extra gate tubes, or by shifting the number in 
Ac and using the gate tubes required for At -+ S(x). (This scheme 
needs some additional elaboration, when the order directing and 
the order suffering the substitution are the two successive halves 
of the same word; i.e. when the latter is already in FR at the time 
when the former becomes operative in CR, so that the substitution 
effected in the Selectrons comes too late to alter the order which 
has already reached CR, to become operative at the next step in 
FR. There are various ways to take care of this complication, either 
by some additional equipment or by appropriate prescriptions in 
coding. We will not discuss them here in more detail, since the 
decisions in this respect are still open.) 

The importance of the partial substitution operations can 
hardly be overestimated. It has already been pointed out (3.3) that 
they allow the computer to perform operations it could not other- 
wise conveniently perform, such as making use of a function table 
stored in the Selectron memory. Furthermore, these operations 
remove a very sizeable burden from the person coding problems, 
for they make possible the coding of classes of problems in contrast 
to coding each individual problem separately. Because Ap -+ S ( x )  
and Ap' + S(x) are available, any program sequence may be stated 
in general form (that is, without Selectron location designations 
for the numbers being operated on) and the Selectron locations 
of the numbers to be operated on substituted whenever that se- 
quence is used. As an example, consider a general code for nth 
order integration of m total differential equations for p steps of 
independent variable t, formulated in advance. Whenever a prob- 

6.6.5. 
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lem requiring this rule is coded for the computer, the general 
integration sequence can be inserted into the statement of the 
problem along with coded instructions for telling the sequence 
where it will be located in the memory [so that the proper S(x) 
designations will be inserted into such orders as Cu + S(x), etc.]. 
Whenever this sequence is to be used by the computer it will 
automatically substitute the correct values of m, n, p and At, as 
well as the locations of the boundary conditions and the descrip- 
tions of the differential equations, into the general sequence. (For 
the details of this particular procedure, cf. Chapter 13, Part 11.) 
A library of such general sequences will be built up, and facilities 
provided for convenient insertion of any of these into the coded 
statement of a problem (cf. 6.8.4). When such a scheme is used, 
only the distinctive features of a problem need be coded. 

The manner in which the control shift operations 
[Cu + S(x), Cu' + S(x), Cc -+ S(x), and Cc' + S(x)] are realized has 
been discussed in 6.4 and needs no further comment. 

One basic question which must be decided before a 
computer is built is whether the machine is to have a so-called 
floating binary (or decimal) point. While a floating binary point 
is undoubtedly very convenient in coding problems, building it 
into the computer adds greatly to its complexity and hence a 
choice in this matter should receive very careful attention. How- 
ever, it should first be noted that the alternatives ordinarily con- 
sidered (building a machine with a floating binary point vs. doing 
all computation with a fixed binary point) are not exhaustive and 
hence that the arguments generally advanced for the floating 
binary point are only of limited validity. Such arguments overlook 
the fact that the choice with respect to any particular operation 
(except for certain basic ones) is not between building it into the 
computer and not using it at all, but rather between building it 
into the computer and programming it out of operations built into 
the computer. (One short reference to the floating binary point 
was made in 5.13.) 

Building a floating binary point into the computer will not only 
complicate the control but will also increase the length of a num- 
ber and hence increase the size of the memory and the arithmetic 
unit. Every number is effectively increased in size, even though 
the floating binary point is not needed in many instances. Further- 
more, there is considerable redundancy in a floating binary point 
type of notation, for each number carries with it a scale factor, 
while generally speaking a single scale factor will suffice for a 
possibly extensive set of numbers. By means of the operations 
already described in the report a floating binary point can be 
programmed. While additional memory capacity is needed for this, 
it is probably less than that required by a built-in floating binary 

6.6.6. 
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point since a different scale factor does not need to be remembered 
for each number. 

To program a floating binary point involves detecting where 
the first zero occurs in a number in Ac. Since Ac has shifting 
facilities this can best be done by means of them. In terms of the 
operations previously described this would require taking the given 
number out of Ac and performing a suitable arithmetical operation 
on it: For a (multiple) right shift a multiplication, for a (multiple) 
left shift either one division, or as many doublings (Le. additions) 
as the shift has stages. However, these operations are inconvenient 
and time-consuming, so we propose to introduce two operations 
( L  and R )  in order that this (i.e. the single left and right shift) 
can be accomplished directly. These operations make use of facili- 
ties already present in Ac and hence add very little equipment 
to the computer. It should be noted that in many instances a single 
use of L and possibly of R will suffice in programming a floating 
binary point. For if the two factors in a multiplication have no 
superfluous zeros, the product will have at most one superfluous 
zero (if '/z Y < 1, then y4 5 XY < 1). This is 
similarly true in division (if '/4 5 X < y2 and y2 _I Y < 1, then 
y4 < X/Y < 1). in addition and subtraction any numbers growing 
out of range can be treated similarly. Numbers which decrease 
in these cases, i.e. develop a sequence of zeros at the beginning, 
are really (mathematically) losing precision. Hence it is perfectly 
proper to omit formal readjustments in this event. (indeed, such 
a true loss of precision cannot be obviated by any formal proce- 
dure, but, if at all, only by a different mathematical formulation 
of the problem.) 

Table 1 shows that many of the operations which the 
control is to execute have common elements. Thus addition, sub- 
traction, multiplication and division all involve transferring a 
number from the Selectrons to SR. Hence the control may be 
simplified by breaking some of the operations up into more basic 
ones. A timing circuit will be provided for each basic operation, 
and one or more such circuits will be involved in the execution 
of an order. The exact choice of basic Operations will depend upon 
how the arithmetic unit is built. 

In addition to the timing circuits needed for executing the 
orders of Table 1, two such circuits are needed for the automatic 
operations of transferring orders from the Selectron register to CR 
and FR, and for transferring an order from CR to FR. In normal 
computer operation these two circuits are used alternately, so a 
binary counter is needed to remember which is to be used next. 
in the operations Cu' -+ S(x) and Cc + S(x) the first order of a pair 
is ignored, so the binary counter must be altered accordingly. 

The execution of a sequence of orders involves using the various 

X < 1 and '/z 

6.7. 
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Table 1 

Symbolization 

Complete Abbreviated Operation 

1 
2 
3 

4 

5 
6 
7 

9 
10 
11 

a 

12 

13 
14 
15 
16 
17 
la  

19 

20 
21 

S(x)  4 Ac+ 
S(x) 4 Ac- 
S(x) + AcM 

S(x) 4 Ac - M 

S ( x )  4 Ah+ 
S(x) + Ah- 
S ( x )  4 AhM 
S(x)-t Ah - M 
S(x) 4 R 
R + A  
S(x) x R + A 

A i S(x) + R 

cu + S(X) 
Cu’ + S(X) 
cc  + S(x) 
CC’ + S(X) 
At -+ S(x) 
Ap + S(x)  

Ap’ + S(x) 

L 
R 

X 

X- 

xM 

x - M  

xh 
xh - 
xhM 
x - hM 
xR 
A 
xx 

X i  

xc 
X C  

XCC 
XCC‘ 
XS 

XSP 

xSp’ 

L 
R 

Clear accumulator and add number located at position x in the Selectrons into it. 
Clear accumulator and subtract number located at position x in the Selectrons into it. 
Clear accumulator and add absolute value of number located at position x in the Selectrons 

Clear accumulator and subtract absolute value of number located at position x i n  the Selec- 

Add number located at position x in the Selectrons into the accumulator. 
Subtract number located at position x in the Selectrons into the accumulator. 
Add absolute value of number located at position x in the Selectrons into the accumulator. 
Subtract absolute value of number located at position x in the Selectrons into the accumulator. 
Clear register? and add number located at position x in the Selectrons into it. 
Clear accumulator and shift number held in register into it. 
Clear accumulator and multiply the number located at position x in the Selectrons by the num- 

ber in the register, placing the left-hand 39 digits of the answer in the accumulator and the 
right-hand 39 digits of the answer in the register. 

Clear register and divide the number in the accumulator by the number located in position x 
of the Selectrons, leaving the remainder in the accumulator and placing the quotient in the 
register. 

Shift the control to the left-hand order of the order pair located at position x in the Selectrons. 
Shift the control to the right-hand order of the order pair located at position x in the Selectrons. 
If the number in the accumulator is 2 0, shift the control as in Cu 4 S(x). 
If the number in the accumulator is 2 0, shift the control as in Cu’ 4 S(x). 
Transfer the number in the accumulator to position x in the Selectrons. 
Replace the left-hand 12 digits of the left-hand order located at position x in the Selectrons by 

Replace the left-hand 12 digits of the right-hand order located at position x in the Selectrons 

Multiply the number in the accumulator by 2, leaving it there. 
Divide the number in the accumulator by 2, leaving it there. 

into it. 

trons into it. 

the left-hand 12 digits in the accumulator. 

by the left-hand 12 digits in the accumulator. 

t Register means arithmetic register. 

timing circui ts in sequence. W h e n  a given timing c i rcu i t  has 

completed i t s  operation, it emits a pulse w h i c h  should go t o  the  
timing c i rcu i t  t o  b e  used next. Since this depends u p o n  the  part ic-  
u la r  operation be ing  executed, these pulses are rou ted  according 
t o  the signals received f rom the decoding and  recoding funct ion 

tables act ivated by the  six b inary  digits specifying a n  order. 
In this section we  wil l consider what  must b e  added t o  

the  control  so tha t  it can direct  the  mechanisms for gett ing data 

i n t o  and  ou t  o f  the  computer and  also describe the  mechanisms 

themselves. Three different kinds of  input-output mechanisms are 

planned. 

First: Several magnetic w i re  storage units operated by servo- 
mechanisms control led by the computer. 

6.8. 

Second: Some v iewing  tubes fo r  graphical portrayal  o f  results. 
Third: A typewr i te r  for  feeding data direct ly i n to  the com- 

puter, no t  t o  b e  confused with the  equipment used for prepar ing 
and printing f rom magnetic wires. As presently planned the  la t te r  

will consist o f  modif ied Teletypewri ter  equipment, cf. 6.8.2 and 
6.8.4. 

Since there already exists a way  o f  transferring numbers 
between the Selectrons and Ac, therefore Ac  may  b e  used for 

transferring numbers f rom and  t o  a wire. The  lat ter  transfer wi l l  
b e  done serially and  wil l make use o f  the  shi f t ing facil i t ies o f  Ac. 

Using A c  fo r  this purpose eliminates the  possibil i ty o f  comput ing  

a n d  reading f rom or  writing o n  the  wires simultaneously. However, 
simultaneous operation of the computer and the input-output 

6.8.1. 
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organ requires additional temporary storage and introduces a syn- 
chronizing problem, and hence it is not being considered for the 
first model. 

Since, at  the beginning of the problem, the computer is empty, 
facilities must be built into the control for reading a set of numbers 
from a wire when the operator presses a manual switch. As each 
number is read from a wire into Ac, the control must transfer it 
to its proper location in the Selectrons. The CC may be used to 
count off these positions in sequence, since it is capable of trans- 
mitting its contents to FR. A detection circuit on CC will stop 
the process when the specified number of numbers has been placed 
in the memory, and the control will then be shifted to the orders 
located in the first position of the Selectron memory. 

It has already been stated that the entire memory facilities of 
the wires should be available to the computer without human 
intervention. This means that the control must be able to select 
the proper set of numbers from those going by. Hence additional 
orders are required for the code. Here, as before, we are faced 
with two alternatives. We can make the control capable of exe- 
cuting an order of the form: Take numbers from positions p to 
p + s on wire No. k and place them in Selectron locations u to 
0 + s. Or we can make the control capable of executing some less 
complicated operations which, together with the already given 
control orders, are sufficient for programming the transfer opera- 
tion of the first alternative. Since the latter scheme is simpler we 
adopt it tentatively. 

The computer must have some way of finding a particular 
number on a wire. One method of arranging for this is to have 
each number carry with it its own location designation. A method 
more economical of wire memory capacity is to use the Selectron 
memory facilities to remember the position of each wire. For 
example, the computer would hold the number t ,  specifying which 
number on the wire is in position to be read. If the control is 
instructed to read the number at position p ,  on this wire, it will 
compare p ,  with t,; and if they differ, cause the wire to move 
in the proper direction. As each number on the wire passes by, 
one unit is added or subtracted to t ,  and the comparison repeated. 
When p ,  = t, numbers will be transferred from the wire to the 
accumulator and then to the proper location in the memory. Then 
both t ,  and p ,  will be increased by 1, and the transfer from the 
wire to accumulator to memory repeated. This will be iterated, 
until t ,  + s and p ,  + s are reached, at  which time the control 
will direct the wire to stop. 

Under this system the control must be able to execute the 
following orders with regard to each wire: Start the wire forward, 
start the wire in reverse, stop the wire, transfer from wire to Ac, 

and transfer from Ac to wire. In addition, the wire must signal 
the control as each digit is read and when the end of a number 
has been reached. Conversely, when recording is done the control 
must have a means of timing the signals sent from Ac to the wire, 
and of counting off the digits. The 26 counter used for multiplica- 
tion and division may be used for the latter purpose, but other 
timing circuits will be required for the former. 

If the method of checking by means of two computers operating 
simultaneously is adopted, and each machine is built so that it 
can operate independently of the other, then each will have a 
separate input-output mechanism. The process of making wires 
for the computer must then be duplicated, and in this way the 
work of the person making a wire can be checked. Since the wire 
servomechanisms cannot be synchronized by the central clock, a 
problem of synchronizing the two computers when the wires are 
being used arises. It is probably not practical to synchronize the 
wire feeds to within a given digit, but this is unnecessary since 
the numbers coming into the two organs Ac need not be checked 
as the individual digits arrive, but only prior to being deposited 
in the Selectron memory. 

Since the computer operates in the binary system, some 
means of decimal-binary and binary-decimal conversions is highly 
desirable. Various alternative ways of handling this problem have 
been considered. In general we recognize two broad classes of 
solutions to this problem. 

First: The conversion problems can be regarded as simple arith- 
metic processes and programmed as sub-routines out of the orders 
already incorporated in the machine. The details of these programs 
together with a more complete discussion are given fully in Chap- 
ter 9, Part 11, where it is shown, among other things, that the 
conversion of a word takes about 5 msec. Thus the conversion time 
is comparable to the reading or withdrawing time for a word- 
about 2 msec-and is trivial as compared to the solution time for 
problems to be handled by the computer. It should be noted that 
the treatment proposed there presupposes only that the decimal 
data presented to or received from the computer are in tetrads, 
each tetrad being the binary coding of a decimal digit-the infor- 
mation (precision) represented by a decimal digit being actually 
equivalent to that represented by 3.3 binary digits. The coding 
of decimal digits into tetrads of binary digits and the printing of 
decimal digits from such tetrads can be accomplished quite simply 
and automatically by slightly modified Teletype equipment, cf. 
6.8.4 below. 

Second: The conversion problems can be regarded as unique 
problems and handled by separate conversion equipment incor- 
porated either in the computer proper or associated with the 

6.8.2. 
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mechanisms for preparing and printing from magnetic wires. Such 
converters are really nothing other than special purpose digital 
computers. They would seem to be justified only for those com- 
puters which are primarily intended for solving problems in which 
the computation time is small compared to the input-output time, 
to which class our computer does not belong. 

It is possible to use various types of cathode ray tubes, 
and in particular Selectrons for the viewing tubes, in which case 
programming the viewing operation is quite simple. The viewing 
Selectrons can be switched by the same function tables that switch 
the memory Selectrons. By means of the substitution operation 
Ap -+ S(x) and Ap' + S(x), six-digit numbers specifying the abscissa 
and ordinate of the point (six binary digits represent a precision 
of one part in 26 = 64, i.e. of about 1.5 per cent which seems 
reasonable in such a component) can be substituted in this order, 
which will specify that a particular one of the viewing Selectrons 
is to be activated. 

As was mentioned above, the mechanisms used for 
preparing and printing from wire for the first model, at least, will 
be modified Teletype equipment. We are quite fortunate in having 
secured the full cooperation of the Ordnance Development Divi- 
sion of the National Bureau of Standards in making these modifi- 
cations and in designing and building some associated equipment. 

By means of this modified Teletype equipment an operator first 
prepares a checked paper tape and then directs the equipment 
to transfer the information from the paper tape to the magnetic 
wire. Similarly a magnetic wire can transfer its contents to a paper 

6.8.3. 

6.8.4. 

tape which can be used to operate a teletypewriter. (Studies are 
being undertaken to design equipment that will eliminate the 
necessity for using paper tapes.) 

As was shown in 6.6.5, the statement of a new problem on a 
wire involves data unique to that problem interspersed with data 
found on previously prepared paper tapes or magnetic wires. The 
equipment discussed in the previous paragraph makes it possible 
for the operator to combine conveniently these data on to a single 
magnetic wire ready for insertion into the computer. 

It is frequently very convenient to introduce data into a com- 
putation without producing a new wire. Hence it is planned to 
build one simple typewriter as an integral part of the computer. 
By means of this typewriter the operator can stop the computation, 
type in a memory location (which will go to the FR), type in a 
number (which will go to Ac and then be placed in the first 
mentioned location), and start the computation again. 

There is one further order that the control needs to 
execute. There should be some means by which the computer can 
signal to the operator when a computation has been concluded, 
or when the computation has reached a previously determined 
point. Hence an order is needed which will tell the computer to 
stop and to flash a light or ring a bell. 

6.8.5. 
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The DEC PDP-8 

Introduction' 

The PDP-8 is a single-address, 12-bit-word computer of the second 
generation. It is designed for task environments with minimum 
arithmetic computing and small Mp requirements. For example, 
it can be used to control laboratory devices, such as gas chromoto- 
graphs or sampling oscilloscopes. Together with special T's, it is 
programmed to be a laboratory instrument, such as a pulse height 
analyzer or a spectrum analyzer. These applications are typical 
of the laboratory and process control requirements for which the 
machine was designed. As another example, it can serve as a 
message concentrator by controlling telephone lines to which 
typewriters and Teletypes are attached. The computer occasion- 
ally stands alone as a small-scale general-purpose computer. Most 
recently it was introduced as a small-scale general-purpose time- 
sharing system, based on work at Carnegie-Mellon University and 
DEC. It is used as a KT(disp1ay) when it has a P(disp1ay; '338); 
this C is discussed in Chap. 25. The PDP-8 has achieved a produc- 
tion status formerly reserved for ZBM computers; about 5,000 have 
been constructed. 

PDP-8 differs from the character-oriented 8-bit computer in 
Chap. 10; it is not unlike the 16-bit computers, such as the IBM 
1800 in Chap. 33. The PDP-8 is typical of several 12-bit computers: 
the early CDC-160 series (1960), CDC-6600 Peripheral and Con- 
trol Processor (Chap. 39), the SDS-92, M.I.T. Lincoln Laboratory's 
Laboratory Instrument Computer LINC (1963), Washington Uni- 
versity's Programmed Console (1967), and the SCC 650 (1966). 

The PDP-5 (transistor, 1963), PDP-8 (l965), PDP-8/S (serial, 
1966) and PDP-8/1 (integrated circuit, 1968), PDP-R/L (integrated 
circuit, 1968) constitute a series of computers based on evolving 
technology. All of these have identical ISP's. Their PMS structures 
are nearly identical, and all components other than Pc and Mp 
are compatible throughout the series. The LINC-8-338 PMS struc- 
ture is presented in Fig. 1. A cost performance tradeoff took place 
in the PDP-8 (parallel-by-word arithmetic) and PDP-8/S (serial- 
by-bit arithmetic) implementations. A PDP-S/S is one-fifteenth of 
a PDP-8 at one-half the cost. The performance factors can be 
attributed to 8/1.5 or 5.3 for Mp speed and a factor of about 3 
for logical organization, even though the same 2-megahertz logic 
clock is used in both cases. The PDP-8 is about 6.7 times a PDP-5. 

'The initials in the title stand for Digital Equipment Corporation Pro- 
grammed Data Processor. 

The ISP of the PDP-8 Pc is about the most trivial in the book. 
It has only a few data operators, namely, +-, +, - (negate), 7, 
A, / 2, x 2, (optional) x , /, and normalize. It operates on words, 
integers, and boolean vectors. However, there are microcoded 
instructions, which allow compound instructions to be formed in 
a single instruction. 

The computer is straightforward and illustrates the levels dis- 
cussed in Chap. 1. We can easily look at it from the "top down." 
The C in PMS notation is 

C('PDP-8; techno1ogy:transistors; 12 b/w; 
descendants:'PDP-8/S, 'PDP-8/1, 'PDP-8/L; 
antecedents: 'PDP-5; 
Mp(core; #0:7; 4096 w; tc:1.5 p /w) ;  
Pc(Mps(2 - 4 w); 

instruction length:lI2 w 
address/instruction: 1; 
operations on data/od:( t ,  +, 7, A, -(negate), x 2, 
/ 2, +1) 
optional operations:( x , /, normalize); 
data-types:word, integer, boolean vector; 
operations for data access:4); 

P(disp1ay; '338); 
P(c; 'LINC); 
S('I/O BUS; 1 Pc; 64 K); 
Ms(disk, 'DECtape, magnetic tape); 
T(paper tape, card, analog, cathode-ray tube)) 

ISP 

The ISP is presented in Appendix 1 of this chapter (including the 
optional Extended Arithmetic Element/EAE). The 212-word Mp 
is divided into 32 fixed-length pages of 128 words each. Address 
calculation is based on references to the first page, Page-0, or to 
the current page of the Program Counter/PC. The effective- 
address calculation procedure provides for both direct and indirect 
reference to either the current page or the first page. This scheme 
allows a 7-bit address to specify local page addresses. 

A 215-word Mp is available on the PDP-8, but addressing 
greater than 212 words is comparatively inefficient. In the extended 
range, two 3-bit registers, the Program Field and Data Field 
Registers, select which of the eight 212-~ord  blocks are being 
actively addressed as program and data. 

There is an array of eight registers, called the Auto-index 
registers, which resides in Page-0. This array (Auto,index[O: 
11](0:7): = M[108:178](O:11)) possesses the useful property that 
whenever an indirect reference is made to it, a 1 is first added 

120 
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K- S- K(#0:63;  T e l e t y p e :  110, 180 b / s ) -  

( 1 2 , l  p a r i t y )  b/w 

T ( # 0 : 3 ;  CRT: d i s p l a y :  a r e a :  IO x I O  i n z ) - )  

T ( # 0 : 3 ;  l i g h t :  pen)> 

T ( # 0 : 3 ;  push b u t t o n s ;  c o n s o l e ) +  

T. conso I e 

Ms #0:1; L INCdape :  add ressab le  magnet ic  tape:  - 

-= P ( d i s p l a y :  ' 338 )  

T.consol  e - 
Mp fJ'0;7) !- S z - S - / c ~ S 4  10 cha r / s ;  8 b / cha r ;  64 c h a r ) -  

I 
K-T paper  tape ;  ( reader ;  300 c h a r / s ) )  (punch: - 

100 cha r / s ) :  8 b / cha r  3 
3 c 

"16b cha r / c o  I 3 
"1 30 u s / p o i n t :  .01 1.005 i n / p o i n t  3 

K-T inc remen ta l  p o i n t  p l o t :  300 p o i n t / s ;  .01 + c i n / p o i n t  

K-T(card; reader :  2001800 ca rd /m in )  t 

K-T(card; punch: 100 c a r d / m i n ) +  

l i n e :  p r i n t e r ;  300 l i n e / m i n :  120 c o l / l i n e :  + 

CRT: d i s p l a y :  a rea :  I O  x I O  i n215  x 5 i n 2 ;  + 

K- T ( 1 i q h t :  pen )>  

K- T(Dataphone; I . 2  4 . 8  k b / s ) -  

~ ( P ~ : ~ ~ ) - ~ ( a n a l o g ;  o u t p u t ;  0 - - 1 0  v o l t s ) +  

K-SS-L(#0:63; ana log :  i n p u t :  0 - -10 v o l t s ) +  

'Mp(core;  1.5 p / w ;  4096 w:  ( 1 2  + I )b )  

S ( ' Memory Bus) 

3Pc(1 - 2  w / i n s t r u c t i o n :  d a t a :  w,  i , b v :  12 b/w: M . p r o w s s o r  s t a t e f 2 i  -11) w: t echno looy :  t r a n s i s t o r s ;  

4S('l/0 Bus; f rom: Pc: t o :  64 K) 

"K I I  - 4 i n s t r u c t i o n s ;  M . b u f f e r ( l  c h a r - 2  w) )  

2 
an teceden ts :  PDP-5: descendants;  PDP-BS, PDP-81, PDF-L) 

Fig. 1. DEC LINC-8-338 PMS diagram. 



122 Part 2 I The instruction-set processor: main-line computers Section 1 1 Processors with one address per instruction 

to its contents. (That is, there is a side effect to referencing.) Thus, 
address integers in the register can select the next member of a 
vector or string for accessing. 

The instruction-set-execution definition can also be presented 
as a decoding diagram or tree (Fig. 2). Here, each block represents 
an encoding of bits in the instruction word. A decoding diagram 
allows one more descriptive dimension than the conventional, 
linear ISP description, revealing the assignment of bits to the 
instruction. Figure 2 still requires ISP descriptions for Mp, Mps, 
the instruction execution, the effective-address calculation, and 
the interpreter. Diagrams such as Fig. 2 are useful in the ISP 

design to determine which instruction numbers are to be assigned 
to names and operations and instructions which are free to be 
assigned (or encoded). 

There are eight basic instructions encoded by 3 bits, that is 
op(O:2) : = i(0:2), where instruction/i(O:ll). Each of the first six 
instructions (where 0 5 op < 6) have the 4 address operand deter- 
mination modes (thus yielding essentially 24 instructions). The first 
six instructions are: 

data transmission: deposit and clear-accumulator/dca 

tor/tad 
two’s complement add to the accumula- 

Principle oddressable 
inst ruct ions 

OP+ 0 ond - 

I 
Operate, opr 

Operate microcoded instructions 

o p r - 1  A i < j >  A t ime 11,2,3,41 
6 7 8 9 in 1 1  

r t l -  I K I  - I Tal- 

t ime 1 u f i q  
~ 1 ;  clo- sma- szo- snl- 

invert 
next 

0%- h l t -  

\ EAE A I < ] >  A t ime [1,2,31 

instruction) 

instruct ion i<O:ll> ! = op ib p page,oddress 

Instruct ion word format  

Extended arithmetic 
element, E A E ,  
inst ructions 

i 

Fig. 2. DEC PDP-8 instruction-decoding diagram. 
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binary arithmetic: two's complement add to the accumu- 
lator/tad 

binary boolean: 

program control: jump/set program counter/jmp 

and to the accumulator/and 

jump to subroutine/jms 
index memory and skip if results are 
zero/isz 

Note that the add instruction, tad, is used for both data trans- 
mission and arithmetic. 

The subroutine-calling instruction, jms, provides a method for 
transferring a link to the beginning (or head) of the subroutine. 
In this way arguments can be accessed indirectly, and a return 
is executed by a jump indirect instruction to the location storing 
the returned address. This straightforward subroutine-call mecha- 
nism, although inexpensive to implement, requires reentrant and 
recursive subroutine calls to be interpreted by software, rather 
than by hardware. A stack, as in the DEC 338 (Chap. 25), would 
be nicer. 

The input-output instruction/iot (:= op = 6) uses the re- 
maining 9 bits of the instruction to specify instructions to input/ 
output devices. The 6 io-select bits select 1 of 64 devices. The 
3 bits, io-pl-bit, io-p&-bit, io,p4,bit, command the selected 
device by conditionally providing three pulses in sequence. The 
instructions to a typical io device are: 

io-pl-bit -+ (IO,skip,flag[io select] + (PC t PC + 1)) 
testing a condition of an IO device output to a device input 
from a device 

io,p4,bit + (Output,data[io select] t AC) 

io-p2,bit + (AC c Input,data[io select]) 

There are three microcoded instruction groups selected by 
op = 7. The instruction decoding diagram (Fig. 2) and the ISP 
description (Appendix 1 of this chapter) show the microinstruc- 
tions which can be combined in a single instruction. These instruc- 
tions are: operate group 1 (: = (op = 7) A 1 i(3)) for operating on 
the processor state; operate group 2 (: = (op = 7 )  A (i(3,ll) = 
10,)) for testing the processor state; and the extended arithmetic 
element group (:= ((op = 7 )  A ( i (3 , l l )  = 11,))) for multiply, 
divide, etc. Within each instruction the remaining bits, (4:lO) or 
(4:11), are extended instruction (or opcode) bits; that is, the bits 
are microcoded to select instructions. In this way an instruction 
is actually programmed (or microcoded). For example, the instruc- 

tion set-link +L t l  is formed by coding the two microinstruc- 
tions, clear link, next, complement link. 

opr- 1 + (i(5) + L t 0; next 
i(7) -+L t 1 L )  

Thus, in operate group 1, the instructions clear link, complement 
link, and set link are formed by coding instruction(5,7) = 10, 01, 
and 11, respectively. The operate group 2 instruction is used for 
testing the condition of the Pc state. This instruction uses bits 5,  
6, and 8 to code tests for the accumulator. The AC skip conditions 
are coded (0 - 7) as never, always, =0, #0, <0, 2 0 ,  50, and >O. 
If all the nonredundant and useful variations in the two operate 
groups were available as separate instructions in the manner of 
the first seven (dca, tad, etc.), there would be approximately 
7 + 12(0pr-l) + lO(0pr-2) + 6(EAE) = 35 instructions in the 

The optional Extended Arithmetic Element/EAE includes 
additional Multiplier Quotient/MQ and Shift Counter/SC regis- 
ters and provides the hardwired operations multiply, divide, logi- 
cal shift left, arithmetic shift, and normalize. The EAE is defined 
on the last page of Appendix 1. 

The interrupt scheme 

External conditions in the input/output devices can request that 
Pc be interrupted. Interrupts are allowed if (Interrupt-state = 1). 
A request to interrupt clears Interrupt-state (Interrupt-state 
t 0), and Pc behaves as though a jump to subroutine 0 instruction, 
jms 0, had been given. A special iot instruction (instruction = 
6001,) followed by a jump to subroutine indirect to 0 instruction 
(instruction = 5200,) returns Pc to the interruptable state with 
Interrupt-state = 1. The program time to save M(processor 
state/ps) is 6 Mp accesses (9 microseconds), and the time to restore 
Mps is 9 Mp accesses (13.5 microseconds). 

Only one interrupt level is provided in the hardware. If multi- 
ple priority levels are desired, programmed polling is required. 
Most io devices have to interrupt because they do not have a 
program-controlled enable switch for the interrupt. For multiple 
devices approximately 3 cycles (4.5 ps) are required to poll each 
interrupter. 

PDP-8. 

PMS structure 

The PMS structure of the LINC-8-338 consisting of a Pc('LlNC), 
Pc('PDP-8), and P.display('338) is shown in Fig. 1. The PDP-8 is 
just a single Pc. The Pc('L1NC) is a very capable Pc with more 
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instructions than the main Pc. It is available in the structure to 
interpret programs written for the C('LINC), a computer devel- 
oped by M.I.T.'s Lincoln Laboratory as a laboratory instrument 
computer for biomedical and laboratory applications. Because of 
the rather limited ISP in Pc, one would hardly expect to find all 
the components present in Fig. 1 in an actual configuration. 

The S between the Mp and the Pc allows eight Mp's. This S 
is actually S('Memory Bus; 8 Mp; 1 Pc; (P requests); time-multi- 
plexed; 1.5 ps/w). Thus the switch makes Mp logically equivalent 
to a single Mp(32768 w). There are two other L's which are con- 
nected to the Pc, excluding the T.console. They are L('I/O Bus) 
and L('Data Break; Direct Memory Access). These links become 
switches when we consider the physical structure. Associated with 
each device is a switch, and the bus links all the devices; the 
L('I/O Bus) is really an S('I/O Bus). Each time a K connects to 
it, the S is included in the K. A simplified PMS diagram (Fig. 3) 
shows the structure and the logical-physical transformation. Thus, 
the 1/0 Bus is 

S('I/O Bus; duplex; bus; time-multiplexed, 1 Pc; 64 K; Pc 
controlled, K requests; t:4.5 ps/w) 

The S('I/O Bus) is the same for the PDP-5, 8, 8/S, 8/I, and 8/L. 
Hence, any K can be used on any of the above C's. The 1/0 Bus 
is the link to the K's for Pc-controlled data transfers. Each word 
transferred is designated by a Pc instruction. However, the 1/0 
Bus allows a K to request Pc's attention via the interrupt request 
signal. The Pc polls the K's to find the requesting K if multiple 
interrupt requests occur. A detailed structure of the Pc-Mp 
(Fig. 4) shows these L('I/O Bus, 'Data Break) connections to the 
registers and control in the notation used by DEC. This diagram 
is essentially a functional block diagram. 

The S('I/O Bus) in Fig. 1 is only an abstract representation of 

T.console- 
I 

I L ( ' D a t a  Break)  L 
--PK- Mp(#O: core) -  S- L-Pc-L ( I  I/O BUS) 

I 

L 
I .  

MP (k'71-S 2 1 .  u 
S('Mernory Bus) 

L 
L S - K -  

U 
S('I/O Bus) 

Fig. 3. DEC PDP-8 PMS diagram (simplified). 

the structure. Since it is a bus structure, the S can be expanded 
into L's and simple S's as shown in Fig. 3. The termination of the 
L in Pc is given in Fig. 3. The corresponding logic at a K is given 
in Fig. 5 in terms of logic design elements (AND's and OR's). 
(Fig. 5 also shows the S('I/O Bus) structure of Figs. 1 and 3). The 
operation of S('I/O Bus) shown in Fig. 5 starts when Pc sends 
a signal to select (or address) a particular K, using the IO-select 
(O:5) signals to form a 6-bit code to which K responds. Each 
K is hardwired to respond to a unique code. The local control, 
Kb], select signal is then used to form three local commands when 
ANDed with the three iot command lines from Pc, io-pl-bit, 
io,p2,bit, and io,p4,bit. Twelve data bits are transmitted either 
to or from Pc, indirectly under K s  control. This is accomplished 
by using the AND-OR gates in K for data input to Pc, and the 
AND gate for data input to K. The data lines are connected to AC 
as shown in Fig. 4. A single skip input is used so that Pc can 
test a status bit in K. A K communicates to Pc via the interrupt 
request line. Any K wanting attention simply ORs its request signal 
into the interrupt request signal. Program polling in Pc then selects 
the specific interrupter. Normally, the K signal causing an inter- 
rupt is also connected to the skip input. 

The L('Data Break; Direct Memory Access) provides a direct 
access path for a P or K to Mp via Pc. The number of access ports 
to memory can be expanded to eight by using the S('DMO1 Data 
Multiplexer). The S is requested from a P or K. The P or K supplies 
an Mp address, a read or write access request, and then either 
accepts or supplies data for the Mp accessed word. In the config- 
uration (Fig. l), P('L1NC) and P('338) are connected to S('DMO1) 
and make requests to Mp for both their instructions and data in 
the same way as the Pc. The global control of these processor 
programs is via the S('I/O Bus). The Pc issues start and stop com- 
mands, initializes their state, and examines their final state when 
a program in the other P halts or requires assistance. 

When a K is connected to L('Data Break) or to S('DMO1 Data 
Multiplexer), the K only accesses Mp for data. The most complex 
function these K's carry out is the transfer of a complete block 
of data between the Mp and an Ms or a T, for example, 
K('DECtape, disk). A special mode, the three-cycle data break, 
is controlled by Pc so that a K may request the next word from 
a queue in Mp. In this mode the next word is taken from the queue 
(block) in Mp, and a counter is reduced each time K makes a 
request. With this scheme, a word transfer takes three Mp cycles: 
one to add one to the block count, one to add one to the address 
pointer, and one to transmit the word. 

The DECtape was derived from M.I.T.'s Lincoln Laboratory 
LINCtape unit. Data are explicitly addressed by blocks (variable 
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Fig. 5. DEC PDP-8 S('I/O Bus) logic and PMS diagrams. 

but by convention 128 w). Thus information in a block can be 
replaced or rewritten at random. This operation is unlike queue- 
accessed tape (conventional IBM format magnetic tape) in which 
data can be appended only to the end of a file. 

The control for the T(te1ephone) links 64 Teletypes or type- 
writers to the Pc. The final K which connects to a line is on a 
bit-serial basis. Since a telephone line sends and receives informa- 

tion serially by bit, there are special input/output instructions in 
the Pc to sample the line and to convert the sampled bits to coded 
characters. There are 11 bits transmitted per character (although 
other codings use 7 ,  7.42, 7.5, and 10 bits per character). Of the 
11 bits, there are 3 control, 1 parity, and 7 information bits. The 
action of the Pc instruction, which is issued 5 x 11 (55) times for 
every character, is to control the line by forming the 7-bit charac- 
ters. The instruction is a good example of tradeoff in the hard- 
ware/software domain toward almost pure software; the only 
hardware state associated with a telephone line is a I-bit register 
to hold the state of the outgoing line, and a single AND gate to 
sample the incoming line state. This sampling process requires 
about 0.3 per cent of Pc-Mp capacity per active line (each of 
10 - 15 char/s). In general, the PDP-8 hardware controls are 
minimal-in turn fairly elaborate control programs must be used 
as part of them. 

Computer levels 

In this section we describe all the systems levels in the PDP-8 
computer from the top down. The reader should already have a 
sketchy knowledge of the PDP-8 because the registers and ISP 
have been exposed. Here, we wish to clarify how it operates. A 
map of the hierarchy is given in Fig. 6, starting from PMS to ISP 
and down through logic design to circuit electronics. These de- 
scription levels are subdivided to provide more organizational 
detail. For example, the register-transfer level has the more de- 
tailed registers, data operators, functional units, and macro logic 
of the processor, whereas the next logic level below has sequential 
and combinational networks, and the sequential and combinatorial 
elements. 

It should be apparent that the relationship of the various de- 
scription levels constitutes a tree structure where the organiza- 
tionally complex computer is the top node and each descending 
description level represents increasing detail (or smaller com- 
ponent size), until the final circuit element level is reached. For 
simplicity, only a few of the many possible paths through the 
structural description tree are illustrated. For example, the path 
showing mechanical parts is missing. The path shown proceeds 
from the PDP-8 computer to the processor and from there to the 
arithmetic unit or, more specifically, to the AC register of the 
arithmetic unit. Next, the macro logic implementing the register- 
transfer operations and functions for the jth bit of the AC is given; 
the flip-flops and gates needed for this particular implementation 
are shown. Finally, on the last segment of the path, come the 
electronic circuits and components of which flip-flops and NAND 
gates are constructed. 
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Fig. 6. DEC PDP-8 hierarchy of descriptions. 

Abstract representations 

Figure 6 also lists some of the methods used to represent the 
physical computer abstractly at the different description levels. 
As mentioned previously, only a small part of the PDP-8 descrip- 
tion tree is represented here. The many documents, schematics, 
diagrams, etc., which constitute the complete representation of 
even this small computer include logic diagrams, wiring lists, 
circuit schematics and printed-circuit board layout masks, pro- 
duction description diagrams, production parts lists, testing speci- 
fications, programs for testing and diagnosing faults, and manuals 
for modification, production, maintenance, and use. As the discus- 
sion continues down the abstract description tree, the reader will 
observe that the tree conveniently represents the constituent ob- 
jects of each level and their interconnection at the next highest 
level. Each level in the abstract-description tree will be described 
in order. 

The PMS level 

The simplified PMS structure in Fig. 3 has been reduced from 
Fig. 1. The computer is small enough so that the physical delinea- 
tion of the PMS components, such as K s  and S’s, is less pro- 
nounced than in larger systems. In fact, in the case of the 
S(’Memory Bus, II/O Bus), the S’s are actually within the K and 

Mp, as shown in Fig. 5. The implementation of these switches 
within the K and Mp was shown in Fig. 5. In Fig. 7 we present 
a more conventional functional diagram and the equivalent PMS 
diagram of the computer, with Pc decomposed into K, processor 
state (Mps), and D. The functional diagram has the same compo- 
nents of the characteristic elementary computer model, namely, 
K, D, M, and T(input, output). These figures give a somewhat 
general idea of what processes can occur in the computer, and 
how information flows, but it is apparent that at least another 
level is needed to describe the internal structure and behavior of 
the Mp and Pc. We should look at these primitives (although still 
together as a C) at the register-transfer level. 

Programming level (ZSP) 

The ISP interpretation is given in Appendix 1 of this chapter and 
is the specification of the programming machine. In addition, it 
constrains the physical machine’s behavior to have a particular 
ISP. The ISP has been discussed earlier in the chapter. 

Register-transfer level 

The C can also be represented at the register-transfer level by 
using PMS. Figure 4 (by DEC) shows the register-transfer level; 

Console 

Processor state 

Doto operations 
(arithmetic and Input-output, and 

memory logical ) secondary memory 

I 
I I 
L - - - - - - -  

Fig. 7. DEC PDP-8 function block and PMS diagrams. (a) Processor 
functional block diagram. (b)  Pc PMS diagram. 
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Fig. 8. DEC PDP-8 register-transfer-level PMS diagram. 

only registers, operations, and L's are important at this level. We 
still lack information about the conditions under which operations 
are evoked. Figure 8 is a PMS diagram of Pc-Mp registers. Here 
we show considerably more detail (although we do not bother with 
electrical pulse voltages and polarities) than in Fig. 4. We declare 
the Pc state (including the temporary register) within Pc. The 
figure also gives the permissible data operations, D, which are 
permitted on the registers. It should be clear from this that the 
logical design level for the registers and the operators can easily be 
reached. The K logic design cannot be reached until we use the 
programming level constraints (ISP), thus defining the conditions 
for evoking the data operators. 

The core memory. The Mp structure is given in Fig. 8. A more 
detailed block diagram which shows the core stack with its twelve 

64 x 64 1-bit core planes is needed. Such a diagram, though still 
a functional block diagram, takes on some of the aspects of a 
circuit diagram because a core memory is largely circuit-level 
details. The Mp (Fig. 9) consists of the component units: the two 
address decoders (which select 1 each of 64 outputs in the X and 
Y axis directions of the coincident current memory); selection 
switches (which transform a coincident logic address into a high- 
current path to switch the magnetic cores); the 12 inhibit drivers 
(which switch a high current or no current into a plane when 
either a 0 or 1 is rewritten); 12 sense amplifiers (which take the 
induced low sense voltage from a selected core from a plane being 
switched or not switched and transform it into a 1 or 0); and the 
core stack, an array M[0:7777,](0:11). Since this is the only time 
the Mp is mentioned, Fig. 9 also includes the associated circuit- 
level hardware needed in the core-memory operation, such as 
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power supplies, timing, and logic signal level conversion amplifiers. 
The timing signals are generated within Pc(K) and are shown 
together with Pc’s clock in Fig. 10. 

The process of reading a word from memory is: 

1 A 12-bit selection address is established on the MA(0:ll) 
address lines, which is 1 of 10000, (or 4096,,) unique num- 
bers. The upper 6 bits, (0:5) ,  select 1 of 64 groups of Y 
addresses and the lower 6 bits, (6:11), select 1 of 64 groups 
of X addresses. 

The read logic signal is made a 1. 

A high-current path flows via the X and Y selection 
switches. In each of the X and Y directions 64 x 12 cores 

2 

3 

have selection current. Only one core in each plane is 
selected since Ix = Iy = Iswitching/2, and the current at 
the selected intersection = Ix + Iy = Iswitching. 

4 If a core is switched to 0 (by having Iswitching amperes 
through it), then a 1 was present and is read at the output 
of the plane (bit) sense amplifiers. A sense amplifier receives 
an input from a winding that threads every core of every 
bit within a core plane [0:7777,]. All 12 cores of the selected 
word are reset to 0. The sense time at which the sense 
amplifier is observed is tms (memory strobe), and the strobe 
in effect creates hlB t M[MA]. 

5 The read current is turned off. 

- X =  Select - High c u r r e n t  signals 

I 
I 

I 

(01 t I s / 2 1 - 1 5 / 2 )  1 
Low level winding 
(Sense signals) 1 

L - - - - - - - -  - _ _ _ _ _ - -  2 
C u r r e n t  direct ion c o n t r o l s  F~~~ 

To 
MB data 
inputsC0 112 

Fig. 9. DEC PDP-8 four-wire coincident current (three dimensions) core-memory-logic block diagram. 
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Fig. 10. DEC PDP-8 clock and memory timing diagram. 

6 The write and inhibit logic signals are turned on. The bit 
inhibit signal is present or not, depending on whether a 0 
or 1, respectively, is written into a bit. 

A high-current path flows via the X and Y selection 
switches, but in an opposite direction to the read case (2 
above). If a 1 is written, no inhibit current is present, and 
the net current in the selected core is --switching. If a 
0 is written, the current is -1switching + (Iswitching/2) 
and the core remains reset. 

The inhibit and write logic signals are turned off, and the 
memory cycle is completed. 

7 

8 

Registers and operations. As Fig. 8 shows, the registers in the Pc 
cannot be uniquely assigned to a single function. In a minimal 
machine such as the PDP-8, functional separation is not economi- 
cal. Thus there are not completely distinct registers and transfer 
paths for memory, arithmetic, and program and instruction flow. 
(This sharing complicates understanding of the machine.) How- 
ever, Fig. 8 clarifies the structure considerably by defining all the 
registers in Pc (including temporaries). For example, the Memory 
Buffer/MB is used to hold the word being read from or written to 
Mp. MB also holds one of the operands for binary operations (for 
example, AC c AC A MB). MB is also used as an extension of 
the Instruction Register/IR during the instruction interpretation. 

The additional registers, not in the ISP, are: 

Memory Buffer/MB(O:ll) holds memory data, 
instruction, and oper- 
ands 

holds address of word 
in Mp being accessed 

Instruction Register/IR(O:2) holds the value of 
current instruction 
being performed 

Memory Address/MA(O:ll) 

State-register, 

Fetch/F : = (State-register = 0) 

Defer/D/Indirect 
:= (State-register = 1) 

Execute/E 
:= (State-register = 2) 

a ternary state register 
holding the major 
state of memory cycle 
being performed 

memory cycle to 
fetch instruction 

memory cycle to get 
address of operand 

memory cycle to fetch 
(store) operand and 
execute the instruc- 
tion 

Figure 8 has been concerned with the static definition (or 
declaration) of the information paths, the operations, and state. 
The ISP interpretation (Appendix 1) is the specification for the 
physical machine’s behavior. As the temporary hardware registers 
are added, a more detailed ISP definition could be given in terms 
of time and temporary registers. Instead, we give a state diagram 
(Fig. 11) to define the actual Pc which is constrained by both the 
ISP registers, the temporary registers implied by the implementa- 
tion, and time. The relationship among the state diagram, the ISP 
description, and the logic is shown in the hierarchy of Fig. 6. In 
the relationships of the figures, we observe that the ISP definition 
does not have all the necessary detail for fully defining a physical 
Pc. The physical Pc is constrained by actual hardware logic and 
lower-level details even at the circuit level. For example, a core 
memory is read by a destructive process and requires a temporary 
register (MB) to hold the value being rewritten. This is not repre- 
sentable within a single ISP language statement since we define 
only the nondestructive transfer t, but it can be considered as 
the two parallel operations MB t M[MA]; M[MA] c 0. The 
problem of explaining rewriting of core using ISP is also difficult, 
because explicit time is not in the ISP language (although we can 
define clock events, or at least relative time). 

The state diagram (Fig. 11) describes the implementation be- 
havior using the registers and register operations (Fig. 8) and the 
temporary registers declared above. 

The implementation is fundamentally Mp-timing-based, as we 
see from both the state diagram and the times when the four clock 
signals are generated (Fig. 10). Thus there are three (State-regis- 
ter = O,1,2) x 4 (clock), that is, 12 major states, in the implemen- 
tation. We use the IR to obtain two more states, F2b and F3b, 
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Fig. 11. DEC PDP-8 Pc state diagram. 

for the description. The State-register values 0, 1, and 2 corre- 
spond to fetching, deferring (indirect addressing, i.e., fetching an 
operand address), and executing (fetching or storing data, then 
executing) the instruction. The state diagram does not describe 
the Extended Arithmetic Element/EAE operation, the interrupt 
state, and the data break states (these add 12 more states). The 
initialization procedure, including the T.console state diagram, is 
also not given. One should observe that when t2 occurs at the 
beginning of the memory cycle, a new State-register value is 
selected. The State-register value is always held for the remainder 
of the cycle; Le., only the sequences (FO + F1+ F2 + F3 or 
DO + D1+ D2 -+ D3 or EO -+ E l  + E2 -+ E3) are permitted. 

Figure 8 alludes to Pc(K), that is, the sequential network used 
for controlling Pc. The inputs and the present state (including 
clocks) determine the operations to be issued on the registers. 

Q 
/tM2Bfb;IR-O; 

Stoteuregister-Ol; (to FOI 

p s  v dco v 
I S Z I - L I  
M [MAI-MEN. 

Logic design level (registers and data operations) 

Proceeding from the register-transfer and ISP descriptions, the 
next level of detail is the logic module. Typical of the level is the 
1-bit logic module for an accumulator bit, AC(j), illustrated in 
Fig. 12. The horizontal data inputs in the figure are to the logic 
module from AC(j), MB(j), IO Bus(j), and Data,switch(j). The 
vertical control signal inputs command the register operations (Le., 
the transfers); they are labeled by their respective ISP operations 
(for example, AC c MB A AC, AC c AC x 2 {rotate}). The 
sequential network Pc(K) (Fig. 8) generates these control signal 
inputs. 

Logic design level (Pc control, Pc(K) sequential network) 

The output signals from the Pc(K) (Fig. 8) can be generated in 
a straightforward fashion by formulating the boolean expressions 



132 Pari 2 1 The instruction-set processor: main-line computers Section 1 I Processors with one address per instruction 

Bus t o  each b i t  of AC 
r 

-AC<J> 
MB<J > 

AC<J> 

LAC-AC/2 ( r o t a t e  } ,  
'AC- AC x 2 { r o t  a + e  ) ,  LAC-Carry (AC,MB) 

'AC-AC t 1 is formed by AC<12> carry input 

Fig. 12. DEC PDP-8 AC(J) bit register-transfer logic diagram. 

'AC-0 :=  ( 

( t l  A (1R = 111) A (7 MB<3> A MB<4> A 7 MB<6>) A (State,register=O)) v 
( t l  A ( I R  = 111) A (MB<3> A _I MB<ll> A MB<4>) A (State-register=O)) v 
( t l  A ( I R  =111) A (MB<3> n MB<ll> A M B < ~ > ) A  (Stateuregis ter=O)) 'v  
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Fig. 13. DEC PDP-8 Pc(K) 'AC t 0 signal-logic equations and diagram. 
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'Note; This is  not an "ideal" sequential circuit element, because there IS no delay in the output. 

Fig. 14. DEC PDP-8 sequential-element circuit and logic diagrams. 
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-3 0 0 0  
- 3  0 0 1  
- 3  0 1  0 
-3 0 1  1 
-3 1 0 0  
-3 1 0 1  
-3 1 1 0  
0 1 1 1  

-15 VOI t S  

1 1 1 1  
1 1 1 0  
1 1 0 1  
1 1 0 0  
1 0 1  1 
1 0 1  0 
1 0 0  1 
0 0 0 0  

- 3volts 
-15vo1ts 

i Inputs 

lnoui 

NAND logic element 

Input 

NOR logic element 

Node 

Multiple input inverter circuit 

Table of circuit Table of NAND Table of NOR 
behavior behavior behavior 

Input 1 Output Input 1 Output Input I Output 
1 2 3  1 2 3  1 2 3  

0 0 0  
0 0 - 3  
0 - 3  0 
0 -3 -3 

-3 0 0 
-3 0 - 3  
-3 -3 0 
-3 -3 -3 

Fig. 15. DEC PDP-8 combinational element circuit and logic diagrams. 

directly from the state diagram in Fig. 11. For example, the 
AC t 0 control signal is expressed algebraically and with a com- 
binatorial network in Fig. 13. Obviously these boolean output 
control signals are functions which include the clock, the 
State-register, and the states of the arithmetic registers (for 
example, A = 0, L = 0, etc.). The expressions should be factored 
and minimized so as to reduce the hardware cost of the con- 
trol for the interpreter. Although we are rather cavalier about 
Pc(K), it constitutes about one-half the logic within Pc. 

Circuit level 

The final level of description is the circuits which form the logic 
functions of storage (flip-flops) and gating (NAND gates). Figures 
14 and 15 illustrate some of these logic devices in detail. 

In Fig. 14 a direct set and direct clear flip-flop, a sequential- 
logic element, is described in terms of circuit implementation, 
combinational logic equivalent, a table of its behavior, and its 
algebraic behavior. Note that this is not an ideal element, be- 
cause it has no delay and responds directly and immediately to 
an input. Some idealized sequential logic elements are used in 
the PDP-8 (but not illustrated), including the RS (Reset-Set), 
T(Trigger), JK, and D(De1ay). A delay in the flip-flops makes them 
behave in the same way as the ideal primitives in sequential- 
circuit theory. The outputs require a series delay, At, such that, 
if the inputs change at time t, the outputs will not change until 
t + At. In fact, the PDP-8 uses capacitor-diode gates at the flip- 
flop inputs to delay the inputs. 

Figure 15 illustrates the combinatorial logic elements used in 
the PDP-8. The circuit selection is limited to the inverter circuit 
with single or multiple inputs. These are more familiarly called 
NAND gates or NOR gates, depending on whether one uses posi- 
tive and/or negative logic-level definitions. 

Conclusion 

We could continue to discuss the behavior of the transistor as it 
is used in these switching-circuit primitives but will leave that 
to books on semiconductor electronics and physics. It is hoped 
that the student has gained a grasp of how to think about the 
hierarchical decomposition of computers into particular levels of 
analysis (and synthesis). 
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APPENDIX 1 DEC PDP-8 ISP DESCRIPTION 

Pr S t n t e  

A C d :  I I > ,  

L 

P C d :  I I >  

Run 

I n t e  r r u p t - s  t a t e  

Io -pu tse - l  ; I O S u l s e J ;  IO,pulse,4 

A p p e n d i x  1 

O E C  P D P - 8  ISP D e s c r i p t i o n  

Accnmulator 

L i n k  h i t / k C  eriensioq ;'or overylcw and carry 
Progr'an Counter 

I i~hev. ?c I s  i n t e m r e t i n g  ins t rur t ions  o r  "runn:ng" 

1 ohen fc can be i n t e r r u p t e d ;  under programmed control 

I3 pulses  t o  I O  ?evi?es 

I$ S t a t e  
Es tended  mernorg is not i r c l u d e  j. 

M[O:777i8l<0:ll> 
Page,O[O: 17i81d: I I >  :=  M [ O :  177 Id: I I >  

Auto,index[O: 7 l . a :  I I >  := Page-0 [IO , I 7  Id: I I >  8' 8 

s m c i a l  array of directlg addressed memory r e g i s t e r s  

s-pecial arrap when a ldressed i n d i r e c t l y ,  i s  incrernented bg 
8 

Fc ('o~soie YCtnte 
Keys for start, step, coy,t-'nue, ezmiv;e ( loa? frw memoc4), and deposii- ( s t o r e  i n  merory! are  not inc luded .  

Data s w i t c h e s d : l l >  

I n s t m e t i o n  Format 

i n s t r u c t i o n / i i 0 : l l >  

o p 4  : 2; 

i n d i  rect,b i t / i  b 

page,O,bi t / p  

page-add ress<O : 6> 

t h  i s,page<O: 4> 
P C ' < O :  I I >  

IO,select<O:5> 

io,pl,bit 

i o,pZ,b i t 

io,p4,b i t 

s ma 

s za 

sn  1 

data enterec' via console  

:= i 4 : 2 ;  op code 
: =  i<3; 0 ,  d i r e c t ;  : ind irec t  rnemcry redfererce 
: =  i<4> 0 se lec ts  page  0; 1 s e l e c t s  t h i s  page 
:= i<S:Il; 
:= P C ' d : 4 >  

: =  (PC<O:II> - 1 )  

: =  i<3:8> s e l e c t s  a 1" or ?.'s dev ice  
: =  i<lI> 

: =  i < I O >  

: =  id> 

:= i<5> w h i t  for> ski? on m".yus A?, operate  2 g ~ o u p  

:= i<6> h i t  r o r  s k i p  on ze?o AC 

: =  i<7> b i t  .+'or s k i p  ox n m  zero  Link  

t h e s e  3 bits con t ro l  the s e l e c t i v e  genera t ion  o f  - 3  v o l t s ,  
0 . 4  1~s p u l s e s  t o  I/O devi.-es 

F-'.'ectiue _ .  Ai:.iress ( ' n l c ~ , Z a t l c n  ,Process 

z<O:II> := ( 

7i b -> z " ;  

i b  A ( l o 8  c z" i 178) i (M[z"] +M[z"] + 1 ;  n e x t ) ;  

i b 2 M[z"]) 
z'<O:ll; :=  (- i b  i z " ;  i b  - iM [z " ] )  

z"<O:Il> := (page,O,bit i this,pageopage,address; 

,page,O,bi t -) Onpage-address) 

p microcoded i n s t r u c t i o n  or  i n s t r u c t i o n  b i t ( s )  wi th in  an i n s t r u c t i o n  
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APPENDIX 1 DEC PDP-8 ISP DESCRIPTION (Continued) 

n i .rterpri . tati(  n P'rocess 

Run A ( (n ter rupt , request  h I n t e r r u p t - s t a t e )  -> ( 

i n s t r u c t i o n  < - M [ P C ] ;  PC <-PC + I ;  n e x t  

i ns t ruc t i on ,execu t ion ) ;  

Run I n t e r r u p t - r e q u e s t  A I n t e r r u p t u s l a t e  -> ( 

M[O] <-PC; I n t e r r u p t u s t a l e  t o ;  PC <- I )  

ir ,stru. . t;o?. .;?t am/' ins t r .  t c t ion  E x e r ~ ~ t i o r .  rrocess 

I n s t r ~ c t i o n ~ e x e c u t i o n  := ( 

and (:= op = 0) i (AC t AC A M [ z ] ) ;  

t a d  ( : =  op = I )  - )  (LOAC c -  LOAC + M [ z l ) ;  

i s z  ( : =  op = 2 )  -) ( M [ r ' ]  <-M[r l  + I ;  n e x t  

( M [ z ' l  = 0 )  + (PC t P C  t I ) ) :  
dca (:= op = 3)  4 ( M l r l  c AC; AC t 0 ) ;  

jrns (:= op = 4) 4 (M[z]  + P C ;  next PC z + I ) ;  

jmp 

i o t  

( : =  op = 5 )  -) (PC t 2 ) ;  

(:= op = 6) 4 ( 
io,pl,bit - >  IO,pulse,l c I ;  n e x t  

io42,b i t  + IO,pulse,Z < -  I ;  nex t  

io,pb,bit - >  IO,pulse,b i- I ) ;  

opr ( : =  op = 7)  -,Operate,execution 

) 

l o g i c a l  a d  

two Is complement aJd 

ir.iiex and sk ip  if zero 

the operiitc i n s i r w e t i o n  is k0.w I below 
end I n s t r u c t i o n  e w c u t i o n  

r a t e  insti.uc: ions: operate grour I ,  operaie g m u p  2, and csi e arit ,*met;c ure ric'ined as a separate 

Operate,execution := ( 

c l a  (:= i<4> = I )  i (AC c- 0 ) ;  

opr,l ( : =  i<3> = 0 )  + ( operate groun I 

c11 ( :=  i<C = 1 )  -> ( L  <. 0 ) ;  n e x t  p clear. l i n k  

cma ( : =  id> = I )  -> (AC <-7 AC): u complernmt A C  

cml ( : =  i<7> = I )  + ( L  < - ?  L ) ;  nex t  IL compZernent L 
i a c  ( : =  i<II> = I )  -> ( L W C  r - L W C  + I ) ;  n e x t  u. ircrement PC 

r a l  ( := i<8:10> = 2 )  + (Ln4C + L m C  x 2 { r o t a t e ) ) ;  u r o t a t e  left 
r t l  

rar ( : =  i < E : l O >  = 4 )  --f (LOAC t L O A C  / 2 ( r o t a t e ) ) ;  u. ro ta te  r i g h t  
r t r  ( : =  i < 8 : l O >  = 5 )  + (LOAC t L O A C  / Z 2  { r o t a t e ] ) ) ;  

clear Lr. ( ' o v ~ n  LO a l l  operate <ns truc t ions .  

( : =  i < B : l O >  = 3 )  - ' (LoAC <-LOAC X 2' ( r o t a t e ? ) ;  u r o t a t e  t w i c e  l e f t  

u. r o t a t e  tw ice  raight 

o p r d  (:= i<3,11> = 10) + ( operate g r o u p  2 

li. PC',.- ship test 51.ip c o n d i t i o n  C ( i d >  = 1 )  -, (PC t P C  + 1 ) ;  n e x t  

s k i p  c o n d i t i o n  := ( ( m a  A (AC < 0)) v' ( s z a  A (AC = 0)) \ I  ( s n l  A L ) )  

11 ''rrr" switche? 
u h a l t  or stop 

n s r  ( : =  i<9 = 1 )  + (AC t AC V Data s w i t c h e s ) ;  

h l t  ( : =  i<IO:,= I )  -> (Run e 0 ) ) :  

FAE (:= i<3,lI> = 1 1 )  + EAF,instruction,execution) optinvln7 FA 
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APPENDIX 1 DEC PDP-8 ISP DESCRIPTION (Continued) 

KT and W s  Ztate  
Fach K map have ariy or a l l  of the  following registers. There can he U P  to 64 o p t i o n a l  P I S .  

I n p u t d a t a  [O :77 8 1 4 :  1 1> 

O ~ t p u t ~ a t a [ O : 7 7 ~ 1 4 : 1 1 >  64 outpul hu.f.fws 

I O d k i p f l a g  LO: 7781 
IO,interrupt,reques t [O: 77 1 1 s i p n i , f i e s  a reauest .  1.f interrunt,qtate = 1 ,  then ai 

64 innut b u f f e r s  

64 t e s t  conditions 

in terrunt  occurs. 8 

o,f a l l  reouests  .from each IO device ''or ,! 1 n t e r  rup t  ,reques t : = ( 

max( I0 - i  nterrupt,reques t [o :  n 8 3 ) )  

Extended Ari thmetic  Eiement, EAF (optional) 
Provides additional ari thmetic  ins t ruc t ions  (or operators)  inclucliw x, /, normalize, l op ica l  .shi,Ct and ari thmet?c shi.ft,. 

EAE S ta te  

M Q Q :  11> ? Q l t i r l i e r  Quotien i 

SC<D:L> S h i f t  rounter 
Ins t ruc t ion  Format and Data 

m d s d :  11> 

s a : & >  := rnds<7: l l> shift count Darameter 

Ins t ruc t ion  Se t  f o r  t'AE 

EAE,instruction&xecution := ( n e x t  

mqa ( : =  i<5>) + (AC t A C  v M Q ) ;  P.0 i n t o  P C  

sca ( :=  i<6>) + (AC c A C  V S C ) :  sc i n t o  Pc 
rnql ( :=  i<7;) 3 (MQ t A C ;  AC t o ) :  n e x t  AC into pdO, c lear  I C  

Note only  one o f  nmi, s h l ,  asr ,  l s r ,  muy, or &Vi can he p iven  at a time. 

i<8:10> = oom + ; IO ooerntion 
7 nmi "(mds t M [ P C ] ;  PC c P C  + 1 ) ;  n e x t  

muy ( :=  i<8:10> = 2 )  --f (LOACOMQ t MQ x mds; S C  t o )  mu 2 t i p  7 !.I 
d v i  (:= i<8: l O >  = 3 )  + (MQ t L o A C o M O / m d s ;  d i v  i r7e 

L o A C  c L o A C o M Q  mod mds: SC c 0) : 

nmi ( :=  i<8:10; = 4 )  + ( ACoMQ t n o r m a l i z e ( A C O M @ ) ;  nomal iae  (AC,M0) ?Y to .T 

SC t normal i ze-exponent  (ACOMQ))  ; 

s h l  ( : =  i<8: lO> = 5 )  + ( L o A C o M Q  t L o A C o M Q  x Z S + l :  SC t o ) ;  
a s r  ( :=  i<8:10> = 6 )  - ( L o A C o M Q  t L o A C o M Q  / 2'+l: SC <-O): 
I s r  ( :=  i<8:10> = 7)  + ( L o A C o M Q  t L o A C o M Q  / 2 s + 1 { l o q i c a l ) ;  

s h i , f t  left 
sh?:,ft r i g h t  

loqical s h i , f t  

sc +-0)  
1 eniJ i n s t r u c t i o n  execution 



Chapter 6 

The Whirlwind I computer1 

R .  R .  Everett 

Project Whirlwind is a high-speed computer activity sponsored 
at the Digital Computer Laboratory, formerly a part of the Servo- 
mechanisms Laboratory, of the Massachusetts Institute of Tech- 
nology (M.I.T.) by the Office of Naval Research (O.N.R.) and the 
United States Air Force. The project began in 1945 with the 
assignment of building a high-quality real-time aircraft simulator. 
Historically, the project has always been primarily interested in 
the fields of real-time simulation and control; but since about the 

7 most of its efforts have been devoted to the 
design and construction of the digital computer known as Whirl- 
wind I (WWI). This computer has been in operation for about 
1 year and an increasing proportion of project effort now is going 
into application studies. 

Applications for digital computers are found in many branches 
of science, engineering, and business. Although any modern gen- 
eral-purpose digital computer can be applied to all these fields, 
a machine is generally designed to be most suited to some particu- 
lar area. Whirlwind I was designed for use in control and simula- 
tion work such as air traffic control, industrial process control, and 
aircraft simulation. This does not mean that Whirlwind will not 
be used on applications other than control. About one-half the 
available computing time for the next year will be assigned to 
engineering and scientific calculation including research in such 
uses supported by the O.N.R. through the M.I.T. Committee on 
Machine Methods for Computation. 

These control and simulation problems result in a specialized 
emphasis on computer design. 

Short register length 

WWI has 16 binary digits and the control problems are usually 
very simple mathematically. Furthermore, the computer is almost 
always part of a feedback rather than an open-ended system. 
Consequently, roundoff errors are seldom troublesome and the 
register length can be shortened to something comparable to the 
sensitivity of the physical quantities involved, perhaps five decimal 
places or less. 

WWI has a register length of 16 binary digits including sign 
or about four and one-half decimals. The register length was 
lAIEE-IRE Conf., 70-74 (1951) 

chosen as the minimum that would provide a usable single-address 
order, in this case five binary digits for instruction and 11 binary 
digits for address. In a future machine we would probably increase 
this register length to 20 or 24 binary digits to get additional order 
flexibility; the increased numerical precision is less important. 

For scientific and engineering calculation, greater than 16-digit 
precision is often required. There is available a set of multiple- 
length and floating point subroutines which make the use of 
greater precision very easy. It is true that these subroutines are 
slow, bringing effective machine speed down to about that ob- 
tained by acoustic memory machines. It is much more efficient 
occasionally to waste computing time this way than continuously 
to waste a large part of the storage and computing equipment of 
the machine by providing an unnecessarily long register. 

High operating speed 

WWI performs 20,000 single-address operations per second. Con- 
trol and simulation problems require very high speeds. The neces- 
sary calculations must be carried out in real time; the more com- 
plex the controlled system is, the faster the computer must be. 
There is no practical upper limit to the computing speed that 
could be used if available. 

Where the problems are large enough, and these problems are, 
one high-speed machine is much better than two simpler machines 
of half the speed. Communication between machines presents 
many of the same problem that communication between human 
beings presents. 

Great effort was put into WWI to obtain high speed. The target 
speed was 50,000 single-address operations per second, and all 
parts of the machine except storage meet this requirement. The 
actual WWI present operating speed of 20,000 single-address 
operations per second is on the lower edge of the desired speed 
range. 

Large internal storage 

WWI now has 1,280 registers. A large amount of high-speed in- 
ternal storage is needed since it is not in general possible to use 
slow auxiliary storage because of the time factor. In many cases 
a magnetic drum can be useful since its access time is short com- 

137 
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Order type 

Numbers 

Basic pulse 

repetition 
frequency 

pared to the response times of real systems. Even with a drum 
there is considerable loss of computing and programming efficiency 
due to shuffling information back and forth between drum and 
computer. 

WWI is designed for 2,048 registers of storage. Until recently 
there has been available only about 300 registers. This number, 
while small, has been adequate for much useful work. Very re- 
cently a second bank of new-model storage tubes has been added. 
These new tubes operate at 1,024 spots per tube bringing the total 
WWI storage to 1,280 registers. These tubes have been in the 
computer and under test for 2 months and in active use for about 
2 weeks. In the next few months the tubes in the first bank will 
be replaced by new-model storage tubes bringing the total storage 
to 2,048. This number is on the lower end of what the project 
considers desirable. What the computer business needs, has 
needed, and will probably always need is a bigger, better, and 
faster storage device. 

Extreme reliability 

In a system where much valuable property and perhaps many 
human lives are dependent on the proper operation of the com- 
puting equipment, failures must be very rare. Furthermore, check- 
ing alone, however complete, is inadequate. It is not enough 
merely to know that the equipment has made an error. It is very 
unlikely that a man, presumably not too well suited to the work 
during normal conditions, can handle the situation in an emer- 
gency. Multiple machines with majority rule seem to be the best 
answer. Self-correcting machines are a possibility but appear to 
be too complicated to compete, especially as they provide no 
standby protection. 

The characteristics of the Whirlwind I computer may be re- 
capitulated as follows: 

Register length 

Speed 20,000 single-address operations per 

16 binary digits, parallel 

second 

Storage capacity Originally 256 registers 
Recently 320 registers 
Presently 1,280 registers 
Target 2,048 registers 

Single-address, one order per word 

Fixed point, 9’s complement 

1 megacycle 

2 megacycles (arithmetic element only) 

Tube count 5,000, mostly single pentodes 

Crystal count 11,000 

There are 32 possible operations, of which about 27 are as- 
signed. They are of the usual types: addition, subtraction, multi- 
plication, division, shifting by an arbitrary number of columns, 
transfer of all or parts of words, subprogram, and conditional 
subprogram. There are terminal equipment control orders and 
there are some special orders for facilitating double-length and 
floating-point operations. 

One way to increase the effective speed of a machine is to 
provide built-in facilities for operations that occur frequently in 
the problems of interest. An example is an automatic co-ordinate 
transformation order. The addition of such facilities does not affect 
the general-purpose nature of the machine. The machine retains 
its old flexibility but becomes faster and more suited to a certain 
class of problems. 

From March 14, 1951, at which time we began to keep detailed 
records, until November 22, 1951 a total of 950 hours of computer 
time were scheduled for applications use. The machine has been 
running on two shifts or a total of about 3,000 hours during this 
interval. The two-thirds time not used for applications has been 
used for machine improvement, adding equipment, and preventive 
maintenance. 

Of the 950 hours available, 500 have been used by the scientific 
and engineering calculation group, the rest for control studies. The 
limited storage available until recently has been admittedly a 
serious handicap to the scientific and engineering applications 
people. There has not been room in storage for the lengthy sub- 
routines necessary for convenient use of the machine. The largest 
part of their time has been spent in training, in setting up pro- 
cedures, and in preparing a library of subroutines. 

A partial list of the actual problems carried out by the group 
includes: 

An industrial production problem for the Harvard Eco- 
nomics School 

Magnetic flux density study for our magnetic storage work 

Oil reservoir depletion studies 

Ultra-high frequency television channel allocation investi- 
gation for Dumont 

Optical constants of thin metal films 

Computation of autocorrelation coefficients 

Tape generation for a digitally-controlled milling machine 
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The scientific and engineering applications time on Whirlwind 
I has been organized in a manner patterned after that originated 
by Dr. Wilkes at EDSAC. The group of programmers and mathe- 
maticians assigned to WWI assist users in setting up their own 
problems. Small problems requiring only a few seconds or minutes 
of computer time are encouraged. Applications time is assigned 
in 1-hour pieces two or three times a day. No program debugging 
is allowed on the machine. Program errors are deduced by the 
programmer from printed lists of results, storage contents, or order 
sequences as previously requested from the machine operator. The 
programmer then corrects his program which is rerun for him 
within a day or perhaps within a few hours. 

Every effort is made to reduce the time-consuming job of print- 
ing tabulated results. In many cases a user desires large amounts 
of tabulated data only because he doesn’t really know what an- 
swers he wants and so asks for everything. Such users are encour- 
aged to ask only for pertinent results in the form of numbers or 
curves plotted by the machine on a cathode-ray tube and auto- 
matically photographed. If these results prove inadequate or the 
user gets a better idea of his needs, he is allowed to rerun his 
program, again asking only for what appear to be significant re- 
sults. Figure 1 shows a sample curve plotted by the computing 
machine showing calibrated axes and decimal intercepts. 

*’ DIGIT TRAWFER BUS 

Fig. 1. Sample computer output. 

\I 

INPUT 

~ ~ 

Fig. 2. Simplified computer block diagram. - d bLi c13 v1 6 

OUTPUT 

WWI system layout 

Figure 2 shows the major parts of any computer such as WWI. 
The major elements of the computer communicate with each other 
via a central bus system. 

WWI is basically a simple, straightforward, standard machine 
of the all-parallel type. Unfortunately, the simple concept often 
becomes complicated in execution, and this is true here. WW’s 
control has been complicated by the decision to keep it completely 
flexible, the arithmetic element by the need for high speed, the 
storage by the use of electrostatic storage tubes, the terminal 
equipment by the diversity of input and output media needed. 

Control 

The WW control is divided into several parts, as shown in Fig. 3. 

Central control 

The central control of the machine is the master source of control 
pulses. When necessary the central control allows one of the other 
controls to function. In general there is no overlapping of control 
operation; except for terminal equipment control, only one of the 
controls is in operation at any one time. 

Storage control 

Storage control generates the sequence of pulses and gates that 
operate the storage tubes. Central control instructs the storage 
control either to read or to write. 

Arithmetic control 

Arithmetic control carries out the details of the more complex 
arithmetic operations such as multiplication and division. The 
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CONTROL 

r--------I 
I CENTRAL CONTROL I 
I 

ARITHMETIC 

TERMINAL 
EOUIP. 

Fig. 3. Control. 

setup of these operations plus the complete controlling of the 
simpler operations such as addition are carried out by central 
control. 

Terminal equipment control 

Terminal equipment control generates the necessary control 
pulses, delay times, and interlocks for the various terminal equip- 
ment units. 

Program counter 

The program counter which keeps track of the address of the next 
order to be carried out is considered as part of control. This is 
an 11-binary counter with provision for reading to the bus. 

Most of the functions of these subsidiary controls could be 
combined with the central control. The major reason they are not 
is that they were designed at different times. The arithmetic ele- 
ment and its control came first, followed by central control. At 
the time central control was designed, the necessary characteristics 
of storage control were unknown. In fact, the machine was de- 
signed so that any parallel high-speed storage could be used. The 
form of terminal equipment control was also unknown at this time. 
Since flexibility was a prime specification, it was felt preferable 
to build separate flexible controls for the various parts of the 
computer than to try to combine all the needed flexibility in one 
central control. 

In a new machine we would attempt to combine control func- 
tions where possible, hoping to have enough prior knowledge 

about component needs to eliminate subsidiary controls com- 
pletely. We would still insist on a large degree of control flexibility. 

Muster clock 

The master clock consists of an oscillator, pulse shaper and divider 
that generate 1- and 2-megacycle clock pulses, and a clock pulse 
control that distributes these clock pulses to the various controls 
in the machine. It is this unit that determines which of the sub- 
sidiary controls actually is controlling the machine. This unit also 
stops and starts the machine and provides for push-button opera- 
tion. 

Operation control 

The operation control, see Fig. 4, was designed for maximum 
flexibility and minimum number of operationdigits, and, conse- 
quently, minimum register length. It is of the completely decoding 

type. 
The operation switch is a 32-position crystal matrix switch that 

receives the 5-bit instruction from the bus and in turn selects one 
of 32 output lines corresponding to the 32 built-in operations. 

There are 120 gate tubes on the output of the operation control. 
Pulses on the 120 output lines go to the gate drivers, pulse drivers, 
and control flip-flops all over the machine; 120 is a generous 
number. The suppressors of these gate tubes are connected to 
vertical wires that cross the 32 output lines from the operation 
switch. Crystals are inserted at the desired junctions to turn on 
those gate tubes that are to be used for any operation. 

I 32-P:TlON 

SWITCH 

I I I I  

Fig. 4. Operation control. 
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The time pulse distributor consists of an 8-position switch 
driven from a three binary-digit counter. Clock pulses at the input 
are distributed in sequence on the eight output lines. The control 
grids of the output gate tubes are connected to these timing lines. 
The output of the operation control is thus 120 control lines on 
each of which can appear a sequence of pulses for any combination 
of orders at any combination of times. 

Central control 

The Central Control of the machine is shown in Fig. 5 .  The control 
switch is in the foreground with the operation matrix to the right. 

Electrostatic storage 

The electrostatic storage shown in Fig. 6 consists of two banks 
of 16 storage tubes each. There is a pair of 32-position decoders 

Fig. 6. View of electrostatic storage. 

set up by address digits read in from the bus. There is a storage 
control that generates the sequence of pulses needed to operate 
the gate generators, et cetera. A radio frequency pulser generates 
a high power 10-megacycle pulse for readout. 

Each digit column contains, besides the storage tubes, write 
plus and write minus gate generators and a signal plate gate 
generator for each tube. Ten-megacycle grid pulses are used for 
readout in order to get the required discrimination between the 
fractional volt readout pulses and the 100-volt signal plate gates. 
For each storage tube there is a 10-megacycle amplifier, phase- 
sensitive detector and gate tube, feeding into the program register. 
The program register is used for communicating with the storage 
tubes. Information read out of the tubes appears in the program 
register. Information to be written into the tubes must be placed 

Fig. 5. View of central control. LJ h, r \ (.L, \-v 4 in the program register. 
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m MULTIPLICAND 

w CLOCK I PULSE s 

Fig. 7. Arithmetic element. 

Arithmetic element 

The arithmetic element, see Fig. 7 ,  consists of three registers, a 
counter, and a control. 

The first register is an accumulator (AC) which actually consists 
of a partial-sum or adding register and a carry register. The accu- 
mulator holds the product during multiplication. 

The second or A-register holds the multiplicand during multi- 
plication. All numbers entering the arithmetic element do so 
through AR. 

The third or B-register holds the multiplier during multiplica- 
tion. The accnmulator and B-register shift right or left. A high-speed 
carry is provided for addition. Subtraction is by 9’s complement 
and end-around-carry. Multiplication is by successive additions, 
division by successive subtractions, and shift orders provide for 
shifting right or left by an arbitrary number of steps, with or 
without roundoff. 

The arithmetic element is straightforward except for a few 
special orders and the high speed at  which it operates. Addition 
takes 3 microseconds complete with carry; multiplication, 16 
microseconds average including sign correction. 

In Fig. 8 are shown several digits of the arithmetic element. 
The large panels are accumulator digits. Above the accumulator 
is the B-register, below it the A-register. 

Test control 

Test control, shown in Fig. 9, is used at  present both for operating 
and for trouble shooting the computer. The control includes: 

Power supply control and meters. 

Neon indicators for all flip-flops in the machine. 

Switches for setting up special conditions. 

Manual intervention switches. 

Oscilloscopes for viewing wave forms. A probe and amplifier 
system allows viewing any wave form in the computer on 
one scope at test control. 

Test equipment to provide synchronizing, stop, or delay 
pulses at any step of any order of a program, allowing 
viewing wave forms on the fly anywhere in the machine. 

An important part of the test facilities is the test storage, a 
group of 32 toggle-switch registers plus five flip-flop registers that 
can be inserted in place of any five of the toggle-switch registers. 
This storage has proved invaluable not only for testing control and 

Fig. 8. View of arithmetic element. . i d  ~\L.-I[ r c( 
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Fig. 9. View of test control. - L r  w w \ p G  

arithmetic element before electrostatic storage was available but 
also for testing electrostatic storage itself. When not in use for 
test purposes test storage earns its keep as part of the terminal 
equipment system. The toggle-switches hold a standard read-in 
program; the flip-flop registers are used as in-out registers for 
special purposes. 

Checking 

Logical checking facilities built into WWI are rather inconsistent. 
A complete bus transfer checking system has been provided, dupli- 
cate checking of some terminal equipment is permitted, but little 
else is thoroughly checked. We felt that it was worthwhile to 
thoroughly check some substantial portion of the machine. This 
portion would then serve as a prototype for studying the tube 
circuitry used throughout the machine. We did not feel it was 
worthwhile to check all the machine, a procedure that requires 
a great deal of added equipment and logical complexity plus a 
substantial loss in computing speed. 

Operating experience has shown us that it is not worthwhile 
to provide detailed logical checking of a machine. In a new 
machine we would leave out the transfer checking. The amount of 
information and security given by the detailed checking system is 
not enough to warrant the expense of building and maintaining it. 

This decision is based on the expectation that a computing 
machine should operate 95 per cent of total time or better and 
that the average time between random failures should be of the 
order of 5 to 10 hours or approximately IO9 operations. 

In our opinion the way to achieve the extremely high reliability 
needed in some real-time control problems is to provide three or 
more identical but distinct machines, thus obtaining error correc- 
tion as well as detection, plus such features as standby, safety, and 
damage control. Even so the failure probability of each machine 
must be kept low by proper design, marginal checking, and pre- 
ventive maintenance. 

Extremely high reliability means a reliability far beyond that 
achieved in existing machines and not conveniently represented 
as a per cent. Consider a system consisting of three machines, each 
operable 98 per cent of the time and each averaging 10 hours 
between random errors. 

One machine will be out of operation y2 hour per day. 
Two machines will be out of operation '/4 hour per month. 
All three machines will be out of operation 4 minutes per year. 

Furthermore undetected random errors might occur on the aver- 
age of once a year. Such reliability is needed in some systems. 

Our decision to omit detailed checking does not extend to 
checking devices intended to detect programming errors. Devices 
to check for overflow from the arithmetic element or for non- 
existent order configurations are necessary. Programmers make 
many mistakes. Techniques for dealing with programming errors 
are very important and need future development. 

Terminal equipment 

At the present time, Whirlwind is using the following terminal 
equipment: 

A photoelectric paper tape reader 

Mechanical paper tape readers and punches 

Mechanical typewriters 

Oscilloscope displays 5 to 16 inches in diameter with phos- 
phors of various persistencies including a computer-con- 
trolled scope camera 

Inputs from various analogue equipments needed for control 
studies 

Outputs to analogue equipment 

To be added during the next year: 

1 Magnetic Tape (units by Raytheon). One such unit is now 
being integrated with machine. 

Magnetic drums (units by Engineering Research Associates, 
Inc.). 

Many more analogue inputs and outputs. 

2 

3 
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This great complexity of terminal equipment requires a flexible 
switching system. There is a single in-out register (IOR) through 
which most of the data passes. 

There is a switch which is set up by an order to select the 
desired piece of terminal equipment. Other orders put data into 
IOR or remove data from IOR. The in-out control provides the 
necessary control pulses to go with each type of equipment. In 

general the computer continues to run during terminal equipment 
wait times; suitable interlocks are provided to prevent trouble. 
This complete equipment has not yet been fully installed. 

References 
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APPENDIX 1 WHIRLWIND I INSTRUCTION CODE' 

Note: In operations mr, mh, dv, sir, srr, srh, sf, the C(BR) is assumed to be 
the magnitude of the least significant part of AC + BR. For the ab and dm oper- 
ations, the BR is treated just as any storage register. 

Whirlwind I Instruction Code came from "Comprehensive System Manual, A 
System of Automatic Coding for the Whirlwind Computer," published by Massa. 
chusetts Institute of Technology, Digital Computer Laboratory, Cambridge, Mass. 



Some aspects of the logical design of 
a control computer: a case study1 

R. L. Alonso / H. Blair-Smith / A. L. Hopkins 

Summary Some logical aspects of a digital computer for a space vehicle 
are described, and the evolution of its logical design is traced. The intended 
application and the characteristics of the computer’s ancestry form a frame- 
work for the design, which is filled in by accumulation of the many decisions 
made by its designers. This paper deals with the choice of word length, 
number system, instruction set, memory addressing, and problems of multi- 
ple precision arithmetic. 

The computer is a parallel, single address machine with more than 
10,000 words of 16 bits. Such a short word length yields advantages of 
efficient storage and speed, but at a cost of logical complexity in connection 
with addressing, instriiction selection, and multiple-precision arithmetic. 

1. Introduction 

In this paper we attempt to record the reasoning that led us to 
certain choices in the logical design of the Apollo Guidance Com- 
puter (AGC). The AGC is an onboard computer for one of the 
forthcoming manned space projects, a fact which is relevant pri- 
marily because it puts a high premium on economy and modularity 
of equipment, and results in much specialized input and output 
circuitry. The AGC, however, was designed in the tradition of 
parallel, single-address general-purpose computers, and thus has 
many properties familiar to computer designers [Richards, 1955J, 
[Beckman et al., 19611. We will describe some of the problems 
of designing a short word length computer, and the way in which 
the word length influenced some of its characteristics. These 
characteristics are number system, addressing system, order code, 
and multiple precision arithmetic. 

A secondary purpose for this paper is t o  indicate the role of 
evolution in the AGC’s design. Several smaller computers with 
about the same structure had been designed previously. One of 
these, MOD 3C, was to have been the Apollo Guidance Computer, 
but a decision to change the means of electrical implementation 
(from core-transistors to integrated circuits) afforded the logical 
designers an unusual second chance. 

It is our belief, as practitioners of logical design, that designers, 
computers and their applications evolve in time; that a frequent 

‘ I E E E  Trans., EC-12 (6), 687-697 (December, 1963) 

reason for a given choice is that it is the same as, or the logical 
next step to, a choice that was made once before. 

A recent conference on airborne computers [Proc. Con..  Space- 
borne Computer Eng., Anaheim, Calif., Oct. 30-31, 19621 affords 
a view of how other designers treated two specific problems: word 
length and number system. All of these computers have word 
lengths of the order of 22 to 28 bits, and use a two’s complement 
system. The AGC stands in contrast in these two respects, and 
our reasons for choosing as we did may therefore be of interest 
as a minority view. 

2. Description of the AGC 

The AGC has three principal sections. The first is a memory, the 
fixed (read only) portion of which has 24,576 words, and the 
erasable portion of which has 1024 words. The next section may 
be called the central section; it includes, besides an adder and a 
parity computing register, an instruction decoder (So), a memory 
address decoder (S), and a number of addressable registers with 
either special features or special use. The third section is the 
sequence generator which includes a portion for generating various 
microprograms and a portion for processing various interrupting 
requests. 

The backbone of the AGC is the set of 16 write busses; these 
are the means for transferring information between the various 
registers shown in Fig. 1. The arrowheads to and from the various 
registers show the possible directions of information flow. 

In Fig. 1, the data paths are shown as solid lines; the control 
paths are shown as broken lines. 

M ~ ~ o T Y :  fired and erasable 

The Fixed Memory is made of wired-in “ropes” [Alonso and 
Laning, 19601, which are compact and reliable devices. The num- 
ber of bits so wired is about 4 x lo5. The cycle time is 12 p e c .  

The erasable memory is a coincident current system with the 
same cycle time as the fixed memory. Instructions can address 
registers in either memory, and can be stored in either memory. 

146 
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Fig. 1. AGC block diagram. 

The only logical difference between the two memories is the 
inability to change the contents of the fixed part by program steps. 

Each word in memory is 16 bits long (15 data bits and an odd 
parity bit). Data words are stored as signed 14 bit words using 
a one’s complement convention. Instruction words consist of 3 
order code bits and 12 address code bits. 

The contents of the address register S uniquely determine the 
address of the memory word only if the address lies between octal 
0000 and octal 5777, inclusive. If the address lies between octal 
6000 and octal 7777, inclusive, the address in S is modified by the 
contents of the memory bank register M B .  The modification con- 
sists in adding some integral multiplies of octal 2000 to the address 
in S before it is interpreted by the decoding circuitry. The memory 
bank register M B  is itself addressable; its address, however, is not 
modified by its own contents. 

Transfers in and out of memory are made by way of a memory 
local register 6. For certain specific addresses, the word being 
transferred into G is not sent directly, but is modified by a special 
gating network. The transformations on the word sent to G are 
right shift, left shift, right cycle, and left cycle. 

Central section 

The middle part of Fig. 1 shows the central section in block form. 
It consists of the address register S and the memory bank register 

M B  both of which were mentioned above. There is also a block 
of addressable registers called “central and special registers,” 
which will be discussed later, an arithmetic unit, and an instruc- 
tion decoder register SQ. 

The arithmetic unit has a parity generating register and an 
adder. These two registers are not explicitly addressable. 

The SQ register bears the same relation to instructions as the 
S register bears to memory locations; neither S nor SQ are ex- 
plicitly addressable. 

The central and special registers are A, Q, 2, LP, and a set of 
input and output registers. Their properties are shown in Table 1. 

Sequence generator 

The sequence generator provides the basic memory timing, the 
sequences of control pulses (microprograms) which constitute an 
instruction, the priority interrupt circuitry, and a number of scal- 
ing networks which provide various pulse frequencies used by the 
computer and the rest of the navigation system. 

Instructions are arranged so as to last an integral number of 
memory cycles. The list of 11 instructions is treated in detail in 
Sec. 6. In addition to these there are a number of “involuntary” 
sequences, not under normal program control, which may break 
into the normal sequence of instructions; these are triggered either 
by external events, or by certain overflows within the AGC, and 
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Table 1 Special and central registers 

Octal 
Register ( s )  address Purpose and/or properties 

A 0000 Central accumulator. Most instructions refer 
to A.  

0 0001 If a transfer of control (TC) occurred at L,  
( Q ) = L +  1. 

Z 0002 Program counter. Contains L + 1, where L 
is the address of the instruction presently 
being executed. 

LP 0003 Low product register. This register modifies 
words written into it by shifting them in a 
special way. 

IN 

OUT 

Several registers which are used for sampling 
either external lines, or internal computer 
conditions such as time or alarms. 

Several output registers whose bits control 
switches, networks, and displays. 

may be divided into two categories: counter incrementing and 
program interruption. 

Counter incrementing may take place between any two mem- 
ory cycles. External requests for incrementing a counter are stored 
in a counter priority circuit. At the end of every memory cycle 
a test is made to see if any incrementing requests exist. If not, 
the next normal memory cycle is executed directly, with no time 
between cycles. If a request is present, an incrementing memory 
cycle is executed. Each “counter” is a specific location in erasable 
memory. The incrementing cycle consists of reading out the word 
stored in the counter register, incrementing it (positively or nega- 
tively), or shifting it, and storing the results back in the register 
of origin. All outstanding counter incrementing requests are proc- 
essed before proceeding to the next normal memory cycle. This 
type of interrupt provides for asynchronous incremental or serial 
entry of information into the working erasable memory. The pro- 
gram steps may refer directly to a “counter” to obtain the desired 
information and do not have to refer to input buffers. Overflows 
from one counter may be used as the input to another. A further 
property of this system is that the time available for normal pro- 
gram steps is reduced linearly by the amount of counter activity 
present a t  any given time. 

Program interruption occurs between normal program steps 

rather than between memory cycles. An interruption consists of 
storing the contents of the program counter and transferring con- 
trol to a fixed location. Each interrupt line has a different location 
associated with it. Interrupting programs may not be interrupted, 
but interrupt requests are not lost, and are processed as soon as 
the earlier interrupted program is resumed. Calling the resume 
sequence, which restores the program counter, is initiated by 
referencing a special address. 

3. Word length 

In an airborne computer, granted the initial choice of parallel 
transfer of words within it, it is highly desirable to minimize the 
word length. This is because memory sense amplifiers, being high- 
gain class A amplifiers, are considerably harder to operate with 
wide margins (of temperature, voltages, input signal) than, say, 
the circuits made up of NOR gates. It is best to have as few of 
these as possible. Furthermore, the number of ferrite-plane inhibit 
drivers equals the number of bits in a word in this case. Similarly, 
the time required for a carry to propagate in a parallel adder is 
proportional to the word length, and in the present case, this factor 
could be expected to affect the microprogramming of instructions. 
The initial intent, then, was to have as short a word length as 
possible. 

Another initial choice is that the AGC should be a “common 
storage” machine, which means that instructions may be executed 
from erasable memory as well as from fixed memory, and that data 
(obviously constants, in the case of fixed memory) may be stored 
in either memory. This in turn means that the word sizes of both 
types of memory must be compatible in some sense; for the AGC, 
the easiest form of compatibility is to have equal word lengths. 
So-called “separate storage” solutions which allow different word 
lengths for instructions and data can be made to work [Walend- 
ziewicz, 19621 but they have a drawback in that three memories 
are then required: a data memory (erasable), and two fixed memo- 
ries, one for instructions and one for constants. In addition, we 
have found that separate storage machines are more awkward to 
program, and use memory less efficiently, than common storage 
machines. 

There are three principal factors in the choice of word length. 
These are: 

1 Precision desired in the representation of navigational vari- 
ables. 

Range of the input variables which are entered serially and 
counted. 

2 
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3 Instruction word format. Division of instruction words into 
two fields, one for operation code and one for address. 

As a start, the choice of word length (15 bits) for two previous 
machines in this series was kept in mind as a satisfactory word 
length from the point of view of mechanization; i.e., the number 
of sense amplifiers, inhibit drivers, the carry propagation time, etc., 
were all considered satisfactory. The act of “choosing” word length 
really meant whether or not to alter the word length, at the time 
of change from MOD 3C to the AGC, and in particular whether 
to increase it. The influence of the three principal factors will be 
taken up in turn. 

Precision of data words 

The data words used in the AGC may be divided roughly into 
two classes: data words used in elaborate navigational computa- 
tions, and data words used in the control of various appliances 
in the system. Initial estimates of the precision required by the 
first class ranged from 27 to 32 bits, 0(108”). The second class 
of variables could almost always be represented with 15 bits. The 
fact that navigational variables require about twice the desired 
15-bit word length means that there is not much advantage to 
word sizes between 15 and 28 bits, as far as precision of represen- 
tation of variables is concerned, because double-precision numbers 
must be used in any event. Because of the doubly signed number 
representation for double-precision words, the equivalent word 
length is 29 bits (including sign), rather than 30, for a basic word 
length of 15 bits. 

The initial estimates for the proportion of 15-bit vs 29-bit 
quantities to be stored in both fixed and erasable memories indi- 
cated the overwhelming preponderance of the former. It was also 
estimated that a significant portion of the computing had to do 
with control, telemetry and display activities, all of which can be 
handled more economically with short words. A short word length 
allows faster and more efficient use of erasable storage because 
it reduces fractional word operations, such as packing and editing; 
it also means a more efficient encoding of small integers. 

Range of input variables 

As a control computer, the AGC must make analog-to-digital 
conversions, many of which are of shaft angles. Two principal 
forms of conversion exist: one renders a whole number, the other 
produces a train of pulses which must be counted to yield the 
desired number. The latter type of conversion is employed by the 
AGC, using the counter incrementing feature. 

When the number of bits of precision required is greater than 
the computer’s word length, the effective length of the counter 

must be extended into a second register, either by programmed 
scanning of the counter register, or by using a second counter 
register to receive the overflows of the first. Whether programmed 
scanning is feasible depends largely on how frequently this scan- 
ning must be done. The cost of using an extra counter register 
is directly measured in terms of the priority circuit associated 
with it. 

In the AGC, the equipment saved by reducing the word length 
below 15 bits would probably not match the additional expense 
incurred in double-precision extension of many input variables. 
The question is academic, however, since a lower bound on the 
word length is effectively placed by the format of the instruction 
word. 

Instruction word format 

An initial decision was made that instructions would consist of 
an operation code and a single address. The straightforward 
choices of packing one or two such instructions per word were 
the only ones seriously considered, although other schemes, such 
as packing one and a half instructions per word, are possible 
[England, 19621. The previous computers MOD 3s and MOD 3C 
had a 3-bit field for operation codes and a 12-bit field for addresses, 
to accommodate their 8 instruction order codes and 4096 words 
of memory. In the initial core-transistor version of the AGC (i.e., 
MOD 3C), the 8 instruction order codes were in reality augmented 
by the various special registers provided, such as shift right, cycle 
left, edit, so that a transfer in and out of one of these registers 
would accomplish actions normally specified by the order code 
(see Sec. 6). These registers were considered to be more economical 
than the corresponding instruction decoding and control pulse 
sequence generation. Hence the 3 bits assigned to the order code 
were considered adequate, albeit not generous. Furthermore, as 
will be seen, it is possible to use an indexing instruction so as to 
increase to eleven the number of explicit order codes provided 
for. 

The address field of 12 bits presented a different problem. At 
the time of the design of MOD 3C we estimated that 4000 words 
would satisfy the storage requirements. By the time of redesign 
it was clear that the requirement was for lo5 words, or more, and 
the question then became whether the proposed extension of the 
address field by a bank register (see Sec. 7) was more economical 
than the addition of 2 bits to the word length. For reasons of 
modularity of equipment, adding 2 more bits to the word length 
would result in adding 2 more bits to all the central and special 
registers, which amounts to increasing the size of the nonmemory 
portion of the AGC by 10 per cent. 
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In summary, the 15-bit word length seemed practical enough 
so that the additional cost of extra bits in terms of size, weight, 
and reliability did not seem warranted. A 14-bit word length was 
thought impractical because of the problems with certain input 
variables, and it would further restrict the already somewhat 
cramped instruction word format. Word lengths of 17 or 18 bits 
would result in certain conceptual simplicities in the decoding 
of instructions and addresses, but would not help in the represen- 
tation of navigational variables. These require 28 bits, and so they 
must be represented to double precision in any event. 

4. Number representation 

Signed numbers 

In the absence of the need to represent numbers of both signs, 
the discussion of number representation would not extend beyond 
the fact that numbers in AGC are expressed to base two. But the 
accommodation of both positive and negative numbers requires 
that the logical designer choose among at least three possible forms 
of binary arithmetic. These three principal alternatives are: (1) 
one’s complement, (2) two’s complement, and (3)  sign and magni- 
tude [Richards, 19551. 

In one’s complement arithmetic, the sign of a number is re- 
versed by complementing every digit, and “end around carry” is 
required in addition of two numbers. 

In two’s complement arithmetic, sign reversal is effected by 
complementing each bit and adding a low order one, or some 
equivalent operation. 

Sign and magnitude representation is typically used where 
direct human interrogation of memory is desired, as in “post- 
mortem” memory dumps, for example. The addition of numbers 
of opposite sign requires either one’s or two’s complementation 
or comparison of magnitude, and sometimes may use both. No 
advantage is offered in efficiency with the possible exception of 
sign changing, which only requires changing the sign bit. A disad- 
vantage is engendered in magnetic core logic machines by the 
extra equipment needed for subtraction or conditional recomple- 
mentation. 

The one’s complement notation has the advantage of having 
easy sign reversal, which is equivalent to Boolean complementa- 
tion; hence a single machine instruction performs both functions. 
Zero is ambiguously represented by all zero’s and by all one’s, 
so that the number of numerical states in an n-bit word is 2” - 1. 

Two’s complement arithmetic is advantageous where end 
around carry is difficult to mechanize, as is particularly true in 
serial computers. An n-bit word has 2” states, which is desirable 

for input conversions from such devices as pattern generators, 
geared encoders, or binary scalers. Sign reversal is awkward, how- 
ever, since a full addition is required in the process. 

The choice in the case of the AGC was to use one’s complement 
arithmetic in general processing, and two’s complements for cer- 
tain input angle conversions. Since the only arithmetic done in 
the latter case is the addition of plus or minus one, the two’s 
complement facility is provided simply by suppressing end around 
carry and using the proper representation of minus one. The latter 
is stored as a fixed constant, so that no sign reversal is required. 

Modified one’s complement system 

In a standard one’s complement adder, overflow is detected by 
examining carries into and out of the sign position. These overflow 
indications must be “caught on the fly” and stored separately if 
they are to be acted upon later. The number system adopted in 
the AGC has the advantage of being a one’s complement system 
with the additional feature of having a static indication of over- 
flow. The implementation of the method depends on the AGC’s 
not using a parity bit in most central registers. Because of certain 
modular advantages, 16, rather than 15, columns are available in 
all of the central registers, including the adder. Where the parity 
bit is not required, the extra bit position is used as an extra column. 
The virtue of the 16-bit adder is that the overflow of a 15-bit sum 
is readily detectable upon examination of the two high order bits 
of the sum (see Fig. 2). If both of these bits are the same, there 
is no overflow. If they are different, overflow has occurred with 
the sign of the highest order bit. 

The interface between the 16-bit adder and the 15-bit memory 
is arranged so that the sign bit of a word coming from memory 
enters both of the two high order adder columns. These are de- 
noted S, and SI since they both have the significance of sign bits. 
When a word is transferred from the accumulator A to memory, 
only one of these two signs can be stored. Our choice was to store 
the S, bit, which is the standard one’s complement sign except 
in the event of overflow, in which case it is the sign of the two 
operands. This preservation of sign on overflow is an important 
asset in dealing with carries between component words of multi- 
ple-precision numbers (see Sec. 5). 

In a standard one’s complement system, a series of additions 
may result in subtotals which overflow, yet still produce a valid 
sum so long as the total does not exceed the capacity of one word. 
In a modified one’s complement system, however, where sign is 
preserved on overflow, this is no longer true; and the total may 
depend on the order in which the numbers are added; this is not 
a serious drawback, but it must be accounted for in all phases 
of logical design and programming. 
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- ~- 

MODIFIED S TANDAR D 
- 

S I 4 3 2 1  3 2 1 

EXAMPLE 1: Both operands positive; Sum positive, no overflow. Identical results 0 0 0 0 1 0 0 0 0 0 1  
in both systems. 0 0 0 1 1  0 0 0 0 1 1  

0 0 1 0 0  0 0 0 1 0 0  

EXAMPLE 2: Both operands positive; positive overflow. Standard result is nega- 0 1 0 0 1 
tive; Modified result is positive using Sz as sign of the answer. 0 1 0 1 1 
Positive overflow indicated by SI Sz. 1 0 1 0 0  

EXAMPLE 3: Both operands negative; Sum negative, no overflow. End around 1 1 1 1 0 
carry occurs. Identical results in both systems using either SI or S p  1 1 1 0 0 

1 1 0 1 0  as the sign of the answer. 
1 carry 

1 1 0 1 1  

0 0 1 0 0 1  
0 0 1 0 1 1  
0 1 0 1 0 0  

1 1 1 1 1 0  
1 1 1 1 0 0  
1 1 1 0 1 0  

1 1 1 0 1 1  
1 carry 

EXAMPLE 4: Both operands negative; negative overflow. Standard result is posi- 1 0 1 1 0 1 1 0 1 1 0  
tive; modified result is negative using S2 as the sign of the answer. 1 0 1 0 0 1 1 0 1 0 0  
Negative overflow indicated by SI . Sz. 0 1 0 1 0  1 0 1 0 1 0  

1 carry 1 carry 
0 1 0 1 1  1 0 1 0 1 1  

EXAMPLE 5: Operands have opposite sign; Sum positive. Identical results i . 1  both 1 1 1 1 0 1 1 1 1 1 0  
systems. 0 0 0 1 1  0 0 0 0 1 1  

0 0 0 0 1  0 0 0 0 0 1  

0 0 0 1 0  0 0 0 0 1 0  
1 carry 1 carry 

EXAMPLE 6: Operands have opposite sign; sum negative. Identical results in 1 1 1 0 0 1 1 1 1 0 0  
both systems. 0 0 0 0 1  0 0 0 0 0 1  

1 1 1 0 1  1 1 1 1 0 1  

Fig. 2. Illustrative example of properties of modified one’s complement system. 

5. Multiple precision arithmetic 

A short word computer can be effective only if the multiple- 
precision routines are efficient corresponding to their share of the 
computer’s word load. In the AGC’s application there is enough 
use for multiple-precision arithmetic to warrant consideration in 
the choice of number system and in the organization of the instruc- 
tion set. Although the limited number of order codes prohibits 
multiple-precision instructions, special features are associated with 
the conventional instructions to expedite multiple-precision opera- 
tions. 

Independent sign representation 

A variety of formats for multiple-precision representation are 
possible; probably the most common of these is the identical sign 

representation in which the sign bits of all component words agree. 
The method used in the AGC allows the signs of the components 
to be different. 

Independent signs arise naturally in multiple-precision addition 
and subtraction, and the identical sign representation is costly 
because sign reconciliation is required after every operation. For 
example, ( + 6, + 4) + ( - 4, - 6) = ( + 2 ,  - 2) ,  a mixed sign repre- 
sentation of (+ 1, + 8). Since addition and subtraction are the most 
frequent operations, it is economical to store the result as it occurs 
and reconcile signs only when necessary. When overflow occurs 
in the addition of two components, a one with the sign of the 
overflow is carried to the addition of the next higher components. 
The sum that overflowed retains the sign of its operands. This 
overflow is termed an interflow to distinguish it from an overflow 
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that arises when the maximum multiple-precision number is ex- 
ceeded. 

The independent sign method has a pitfall arising from the fact 
that every number has two representations, either one of which 
may occur as a sum. There are some numbers for which one of 
the representations exceeds the capacity of the most significant 
component. The overflow is false in the sense that the double- 
precision capacity is not exceeded, only the single word capacity 
of the upper component. Sign reconciliation can be used in this 
case to yield an acceptable representation. This problem can be 
avoided if all numbers are scaled so that none are large enough 
to  produce false overflows. Such a restriction is not necessary, 
however, since the false overflow condition arises infrequently and 
can be detected at  no expense in time. The net cost of reconcilia- 
tion is therefore very low. 

Multiplication and division 

For triple and higher orders of precision, multiplication and divi- 
sion become excessively complex, unlike addition and subtraction 
where the complexity is only linear with the order of precision. 

The algorithm for double-precision multiplication is directly 
applicable to numbers in the independent sign notation. False 
overflow does not arise, and the treatment of interflow is simplified 
by an automatic counter register which is incremented when 
overflow occurs during an add instruction. The sign of the counter 
increment is the same as the sign of the overflow; and the incre- 
ment takes place while one of the product components of next 
higher order is stored in that counter. 

Double-precision division is exceptional in that the independ- 
ent sign notation may not be used; both operands must be made 
positive in identical sign form, and the divisor normalized so that 
the left-most nonsign bit is one. 

Triple precision 

A few triple-precision quantities are used in the AGC. These are 
added and subtracted using independent sign notation with inter- 
flow and overflow features the same as those used for double- 
precision arithmetic. 

6. Instruction set 

Basic design criteria 

The implicit requirements for any von Neumann-type machine 
demand that facilities exist for: 

Storing in memory 

Negating (complementing) 

Combining two operands (e.g., addition) 

Address modification (more generally, executing as an in- 
struction the result of arithmetic processing) 

Normal sequencing (to each location from which an instruc- 
tion can be executed there corresponds one location whose 
contents are the next instruction) 

Conditional sequence changing, or transfer of control 

Input 

ou tput  

An instruction can, of course, provide several of these facilities. 
For instance, some computers have an instruction that subtracts 
the contents of a memory location from an accumulator and leaves 
the result in that memory location and in the accumulator; this 
instruction fulfills all of requirements 1-4 above. Requirement 5 
is met in a somewhat primitive manner if instructions can be 
executed from erasable memory, and is met elegantly by the use 
of index registers. Still another scheme, somewhat similar to one 
used in the Bendix G-20, is employed in the AGC. Requirement 
6 is usually fulfilled by having an instruction location counter 
which contains the address of the next instruction to be executed, 
and is incremented by one when an instruction is fetched. Alter- 
natively, each instruction may include the address of the next 
instruction, as is often done in machines having drum memories. 
In the AGC, as in most short-word computers, the former method, 
with one single-address instruction per word, is clearly the simplest 
and cheapest. Requirement 7 is generally met by examining a 
condition such as the s i p  of an accumulator and, if the condition 
is satisfied, either incrementing the instruction location counter 
(skipping), or using an address included in the instruction as that 
of the next instruction (conditional transfer of control). An uncon- 
ditional transfer of control is usual but not necessary, since any 
desired condition can be forced. Most machines have special 
input-output instructions to satisfy requirements 8 and 9. In the 
AGC, however, since input and output is through addressable 
registers, input is subsumed under fetching from memory, and 
output under storing in memory. Counter incrementing and pro- 
gram interruption aid these functions also. 

Further criteria 

The major goals in the AGC were efficient use of memory, reason- 
able speed of computing, potential for elegant programming, effi- 1 Fetching from memory 
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cient multiple precision arithmetic, efficient processing of input 
and output, and reasonable simplicity of the sequence generator. 
The constraints affecting the order code as a whole were the word 
length, one’s complement notation, parallel data transfer, and the 
characteristics of the editing registers. The ground rules governing 
the choice of instructions arose from these goals and constraints. 

a Three bits of an instruction word are devoted to operation 
code. 

b Address modification must be convenient and efficient. 

c There should be a multiply instruction yielding a double 
length product. 

d Treatment of overflow on addition must be flexible. 

e A Boolean combinatorial operation should be available. 

f No instruction need be devoted to input, output, or shifting. 

This list is by no means complete, but gives a good indication of 
what kind of computer the AGC has to be. In the following para- 
graphs the ways in which the instructions fulfill the above require- 
ments are described. 

Details of the instruction set 

In the listing that follows, L denotes the location of the instruction; 
K denotes the data address contained in the instruction. Paren- 
theses mean “content of,” and the leftward arrow means that the 
register named at the arrowhead is set to the quantity named to 
the right. 

L: TC K;  Transfer Control 
Q c L  + 1; go to K .  
This is the primary method of transferring control to any stated 

location, and thus meets part of requirement 7 .  The setting of the 
return address register Q renders complex subroutines feasible. TC 
Q may be used to return from a subroutine (with no other TC’s) 
because the binary number “L + 1” is the same as the binary word 
“TC L + 1,” by virtue of the TC code being all zeros. TC A 
behaves like an “execute” instruction, executing whatever instruc- 
tion is in A, because Q follows A in the address pattern, see 
Table 1. 

L: CCS K ;  Count, Compare, and Skip 
If ( K )  > +0, A c ( K )  - 1, no skip; if ( K )  = +0, A t +0, skip 
to L + 2;  if ( K )  < -0, A t  1 - (K), skip to L + 3; if ( K )  = 
-0, A t +0, skip to L + 4. 
This instruction fulfills the remainder of requirement 7 and 

provides several features. It is clear that in a machine with a 3-bit 

operation code there should be only one code devoted entirely to 
branching, if at all possible. It is inefficient to program a zero test 
using only a sigmtesting code; it is even more inefficient to pro- 
gram a sign test using only a zero-testing code. This instruction 
was therefore designed to test both types of conditions simultane- 
ously. It has to be a four-way branch, and since there is only one 
address per instruction, it follows that CCS must be a skipping- 
type branch. 

The function of ( K )  delivered to A is the diminished absolute 
value (DABS). It serves two primary purposes: to do most of the 
work in generating an absolute value, and to apply a negative 
increment to the contents of a loop-counting register, so that CCS 
has some of the properties of TIX in the IBM 704. 

L: INDEX K ;  Index using K 
Use ( L  + 1) + ( K )  as the next instruction. 
In a short-word machine where there is no room in the instruc- 

tion word to specify indexing or indirect addressing, this code 
meets requirement 5 in a way far superior to forming an instruction 
and placing it in A or in erasable memory for execution. INDEX 
operates on whole words, so that the operation code as well as 
the address may be modified. It may be used recursively (consider 
the implications of several INDEX’S in succession, assuming that 
no operation codes are modified). Finally, it permits more than 
8 operation codes to be specified in 3 bits, since overflow of the 
indexing addition is detectable. 

L: XCH K ;  Exchange 

This instruction meets requirements 1, 2, and 8. When K is 
in fixed memory, it is simply a data-fetching (clear and add) code. 
Its use with erasable memory aids efficiency by reducing the need 
for temporary storage. XCH is also an important input instruction 
in a machine where addressable counters, incremented in response 
to external events, are an input medium, because a counter can 
be read out and reset (to zero or any desired value) by XCH with 
no chance of missing a count. 

(A)*(K). 

L: CS K ;  Clear and Subtract 

CS is the primary means of sign-changing and logical negation, 
and so fulfills requirements 1 and 3. Since there is no clear and 
add instruction, it is the usual operation for nondestructive readout 
of erasable memory in simple data transfers, that is, when no 
addition or other arithmetic is required. Usually the programming 
can be arranged so that complementing during transfer is accept- 
able; otherwise the CS can be followed by CS A before storing. 

L: TS K ;  Transfer to Storage 
K +(A); if (A) includes ? overflow, A c 5 1 ,  skip to L + 2. 

A c - ( K ) .  
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This instruction is the primary means of transfers to memory 
and output, satisfying requirements 2 and 9. It is also the most 
convenient method of testing for overflow. Since A and the other 
central registers have two sign positions, overflow indication is 
retained in a central register. TS always stores (A) and tests 
whether overflow is present. If K is in erasable memory and is 
not a central register, the lower-order sign bit SI is not transmitted; 
this is the process or overflow correction. If positive overflow 
indication is present in A, TS skips over the next instruction and 
sets A t +1 (+1 denotes octal 000001); if negative overflow is 
present, TS skips over the next instruction and sets A t - 1 ( -  1 
denotes octal 177776); otherwise (A) are unchanged. The sequence 

TS K 
XCH ZERO (ZERO in fixed memory) 

suffices to store in K an overflow-corrected word of a multiple- 
precision sum and leave in A the interflow to the next higher-order 
part. TS A skips if either type of overflow is present, but leaves 
all 16 bits of (A) unchanged. 

Finally, a computed transfer of control may be achieved by 
TS Z because Z is the program counter; only the low-order 12 
bits of (A) are significant, being the address of the instruction to 
which control is transferred. Overflow in (A) in this case does not 
affect the transfer but sets A t 5 1 .  

L: AD K; Add 
A +(A)  + ( K ) ;  if the final (A) includes 2 overflow, 
OVCTR t (OVCTR) t l .  
Addition is the most frequently used combinatorial operation 

(requirement 4). The property of OVCTR is used chiefly in devel- 
oping double-precision products and quotients, partly because the 
additions in these processes are less susceptible to false overflow 
than are multiple-precision additions. 

L: MASK K ;  Mask 

This is the only combinatorial Boolean instruction, and may 
A t (A) n ( K ) .  

be used with CS to generate any Boolean function. 

Ex tracodes 

The AGC instruction set was carried over in large part from its 
ancestor, MOD 3C [Alonso et al., 19611. All instructions of MOD 
3C were retained in the AGC, modifications and additions being 
adopted where a substantial increase in computing power could 
be obtained at small cost. The MOD 3C instruction set was like 
the one described above for the AGC with two major exceptions: 
first, instead of a mask instruction, MOD 3C had a multiply in- 
struction. Second, the transfer to storage instruction did not in- 

clude the property of skipping on overflow, although it did have 
properties which aided masking. 

After the design of MOD 3C was completed, it was discovered 
that the INDEX instruction could be used to expand the instruc- 
tion set beyond eight instructions by producing overflow in the 
instruction word following the INDEX. For example, the addition 
of octal 47777 to the instruction word “CS K” in the course of 
an INDEX instruction will cause negative overflow, producing MP 
K ,  a multiply instruction with operand address K .  

In order to implement the extracodes in the AGC, it was 
necessary to provide a path from the high-order 4 bits of the adder 
to the unaddressable sequence selection register SQ. Part of this 
path is the unaddressable buffer register B ;  these requirements 
helped to suggest the benefits of retaining two sign bit positions 
in all the central registers. 

In principle, eight additional instruction codes can be obtained 
by causing overflow, but we did not feel obliged to use them all. 
Because every extracode must be indexed, the instructions chosen 
for this class had two properties to some degree: they are normally 
indexed, or they take long enough so that the cost of indexing 
without address modification is small. All the extracodes are com- 
binatorial, and therefore relate to requirement 4. 

L: M P  K ;  Mul t ip l y  
A t upper part, LP t lower part, of (A) - ( K ) ;  the two words 

of the product agree in sign, which is determined strictly by the 
sign bits of the operands. 

Experience with MOD 3C showed that it was worthwhile 
making a completely algebraic, self-contained multiply instruction, 
especially in doing double-precision multiplication whose oper- 
ands have independent signs. The AGC multiply is much faster 
than that of MOD 3C, being limited by adder carry propagation 
time rather than core-switching time. 

L: DV K ;  Div ide  
A t quotient, Q t - 1 remainder 1 ,  of (A)/(K); LP t nonzero 
number with the sign of the quotient. 
Many facets of AGC design originally adopted for other reasons 

combined to make a divide instruction inexpensive. The foremost 
of these is the nature of the editing registers, which are in the 
standard erasable memory and have no special wiring. The special 
properties of these registers are supplied by a shift or cycle of the 
word being written into the memory local register G, when the 
address of an editing register is selected. The central loop of DV 
selects such an address and inhibits memory operations, so that 
all the left shifts required in division are accomplished in the G 
register while the editing register itself remains unchanged. The 
microprogrammed nature of order construction makes a restoring 
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algorithm more efficient than a nonrestoring one. The quotient 
delivered to A has a sign determined according to normal algebraic 
rules by the signs of (A) and ( K ) ;  the same sign is available in LP 
to aid in determining the correct sign of the remainder from those 
of the divisor and quotient in case the quotient has been absorbed 
by subsequent processing. DV is not usually indexed, but it pays 
such large benefits in space and time, especially in double-pre- 
cision division, that the cost of extracode indexing is negligible. 
If the divisor is less in magnitude than the dividend, or is zero, 
the quotient has correct sign and, in general, maximum magnitude. 
No infinite loop results in any case. 

L: SU K ;  Subtract 
A c (A) - ( K ) ;  if the final (A) includes 2 overflow, 
OVCTR t (OVCTR) 21. 
The primary justification for this instruction is that it allows 

multiple-precision addition subroutines to be changed into multi- 
ple-precision subtract subroutines merely by changing the indexing 
quantity. There are occasions in the middle of involved calcula- 
tions where it is clumsy to construct a subtraction out of comple- 
mentations and additions, especially when the sign of an overflow 
is of interest. Since SU differs from AD only in that the operand 
from memory is read out of the complement side of the buffer 
register B rather than the direct side, its cost is virtually zero. 
This last is not necessarily true when using core-transistor logic, 
or two’s complement notation. 

7.  Expansion of memory addressing 

The AGC’s 12-bit address field is insufficient for specifying directly 
all the registers in its memory. This predicament seems increas- 
ingly to afflict most computers, either because indirect addressing 
is assumed as a necessary evil from the start or, as was our case, 
because our earliest estimates of memory requirements were wrong 
by a factor of two or three. The method of indirect addressing 
we arrived at uses a bank register MB, but with an important 
modification: the 5-bit number stored in M B  has no effect unless 
the address is in the range (octal) 6000 to 7777. The MB register 
contents are not interpreted as higher-order bits of the address; 
they are interpreted as integers which specify which bank of 1024 
words is meant in the event of the address part of the instruction 
being in the ambiguous range. The over-all map of memory is 
shown in Table 2. The unambiguous, fixed memory addresses 
domain has come to be known as “fixed-fixed.” 

It is interesting that this method of extending the addressing 
capability was not the result of trying to improve upon more 
conventional methods, but was almost a consequence of the phys- 

Table 2 Address part of an instruction word 

(Decimal) 

0-3071 
3072-4095 

Fixed and erasable memory: unambiguous addresses. 
Fixed memory, ambiguous address. Contents of MB 
used to resolve the ambiguity. Up to 32 such banks 
are possible. 

ical difference between fixed and erasable memory. Since all data 
other than constants are concentrated in the erasable memory, 
these had to be exempt from modification by the MB register. An 
alternative arrangement, whereby only the addresses of instruc- 
tions (as opposed to the addresses within an instruction word) are 
modified, would be deficient in that it would allow only instruc- 
tions to be stored in banks; there would be no way to refer to 
constants stored in banks, or to use bank addresses to store argu- 
ments of arithmetic operations. The possibility of using two bank 
registers is worthy of serious consideration [Casale, 19621, but it 
did not occur to us. 

In addition to the addresses in erasable, it is necessary to 
exempt the addresses of interrupting programs ( i e . ,  the addresses 
to which a program interrupt transfers control) from the influence 
of the MB register. It was clear that it would be valuable to have 
a large body of unambiguous addresses for use in executive and 
dispatcher programs. 

The most frequent and critical applications of bank changing 
are in the AGC’s interpretive mode. Most of the programs relevant 
to navigation are written in a parenthesis-free pseudocode notation 
for economy of storage. An interpretive program executes these 
pseudocode programs by performing the indicated data accesses 
and subroutine linkages. 

The format of the notation permits two macrooperators (e.g., 
“double-precision vector dot product”) or one data address to be 
stored in one AGC word. Thus data addresses appear as full 15-bit 
words, potentially capable of addressing up to 32,768 registers. 
Each such address is examined in the interpreter and the contents 
of the bank register are changed if necessary; preparation is also 
made for subsequent return if a subroutine call is being made. 

The structure of the interpretive program, and its relationship 
to the computer characteristics discussed in this paper will not 
be taken up here except to point out that parenthesis-free notation 
is particularly valuable in a short-word computer such as the AGC. 
It permits a very substantial expansion of the address and pseudo- 
operation fields without sacrificing efficiency in program storage 
[Muntz, 19621. 
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The conversion of a 15-bit address into a bank number and an 
ambiguous 12-bit address is as follows: the top 5 bits correspond 
directly to the desired bank number. The remaining lower-order 
10 bits, logically added to octal 6000, form the proper ambiguous 
address. If the 15-bit address is less than octal 6000, however, the 
address is in erasable or fixed-fixed memory. In this case the logical 
addition of octal 6000 is suppressed. 

It is possible to have a program in one bank call a closed 
subroutine in another bank, and then have control returned to the 
proper place in the bank of origin. This is done by means of a 
short bank switching routine which is in fixed-fixed memory. 

One potential awkwardness about this method of extending 

memory addresses is the possible requirement for a routine in one 
bank to have access to large amounts of data stored in another. 
There are many programming solutions to this problem, obviously 
at  a cost in operating speed; a better solution would be to have 
two bank registers. No problems of this nature have yet material- 
ized, however. 
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APPENDIX 1 

Name, Memory size 
a’ute (F = $xed Number Number of Purpose Features incorporated 
completed E = erasable) of hits instructions of design at this stage 

MOD 1, F:448 11 and parity 4 plus involuntary Feasibllity Prototype Counter increments, 
1960 E: 64 Interrupts, 

BACKGROUND FOR AGC DESIGN 

Core-Transistor Logic, 
Pulse rate outputs, 
Editing registers, 
Wired-in fixed memory, 
Interpretive programs. 

23 and parity 16 plus indirect Unmanned Space Probe “Extended Operation” subroutine 
linkages (only instance). 

MOD 2, about 4000 total 
not built 

MOD 3S, F: 3584 
1962 E: 512 

15 and parity 8 Earth Satellite 

MOD 3C, F: greater than 104 15 and parity 8 and involuntary Apollo Guidance 
1962 E: greater than 103 

AGC, F: greater than 104 15 and parity 11 and involuntary Apollo Guidance 
1963 E: greater than 103 

Modified one’s complement, 
Parallel adder, 
Addressable central registers. 

CCS, INDEX, MULTIPLY in- 
structions, 

Overflow counter, 
Bank switching. 

DV, SU, MSK instructions, 
Editing memory buffer, 
All transistor NOR logic instead of 

core-transistor logic, 
Extracodes, 
Parenthesis-free interpreter. 



The UNIVAC system1 

J .  Presper Eckert, Jr. / Jumes R .  Weiner 
H .  Frazer Welsh / Herbert F. Mitchell 

Organization of the UNIVAC system 

In March 1951, the first UNIVAC2 system formally passed its 
acceptance tests and was put promptly into operation by the 
Bureau of the Census. Since the UNIVAC is the first computer 
which can handle both alphabetic and numerical data to reach 
full-scale operation so far, its operating record and a review of 
the types of problems to which it has been applied provide an 
interesting milestone in the ever-widening field of electronic digi- 
tal computers. 

The organization of the UNIVAC is such that those functions 
which do not directly require the main computer are performed 
by separate auxiliary units each having its own power supply. Thus 
the keyboard to magnetic tape, punched card to magnetic tape 
and tape to typewritten copy operations are delegated to auxiliary 
components. 

The main computer assembly includes all of those units which 
are directly concerned with the main or central computer opera- 
tions. A block diagram of this arrangement is shown in Fig. 1. All 
of the elements shown are contained within the central computer 
casework except the supervisory control desk (SC) and the Uni- 
servos,2 to which the lines in the upper right section of the diagram 
connect. 

The supervisory control, in addition to all the necessary control 
switches and indicator lights, contains an input keyboard. Also 
cabled to the supervisory control is a typewriter which is operable 
by the main computer. By means of these two units, limited 
amounts of information can be inserted or removed either at the 
will of the operator or by the programmed instructions. 

The input-output circuits operate on all data entering or leav- 
ing the computer. The input and output synchronizers properly 
time the incoming or outgoing data for either the Uniservos (tape 
devices) or the supervisory control devices. The input and output 
registers (I and 0) are each 60 word (720 characters) temporary 
storage registers which are intermediate between the main com- 
puter and the input-output devices. 

The high-speed bus amplifier is a switching central through 

'AZEE-IRE Conf., 6-16, December, 1951. 
2Registered trade mark. 

which all data must pass during transfer between any arithmetic 
register and the main memory or between the memory and the 
input-output registers. The arithmetic registers are shown along 
the bottom of diagram each connected to the high speed bus 
system. 

The L-, F-, X - ,  and A-registers are each of one word or 12- 
character capacity and are directly concerned with the arithmetic 
operations. The V- and Y-registers are of 2- and 10-word capacity, 
respectively. They are used solely for multiple word transfers 
within the main memory. Associated with the arithmetic registers 
are the algebraic adder (AA), the comparator (CP), and the multi- 
plier-quotient counter (h4QC). 

Addition-subtraction instructions 

The addition-subtraction operations are performed in conjunction 
with the comparator since all niimerical quantities are absolute 
magnitudes with an algebraic sign attached. Before either an 
addition or subtraction is performed, the two quantities, one 
already in the A-register and the other either from the memory 
or from the X-register, depending upon the particular instruction, 
are compared for magnitude and sign. The adder inputs can then 
be switched so as always to produce a noncomplemented result 
for any operation. The choice of adder input arrangement is there- 
fore under the control of the comparator. The comparator also 
determines the proper sign for the result according to the usual 
algebraic rules. 

One additional function performed by the comparator for addi- 
tion and subtraction is to control the complementer. This deter- 
mination is based upon which operation (+, or -) is indicated, 
and, whether the signs are like or unlike. For a subtract instruction, 
the sign of the subtrahend is reversed before entering the com- 
parator. The comparator then compares the signs of the quantities 
in order to determine whether the two quantities are subtracted 
or added. 

Multiplication instruction 

The multiplication process requires the services of the adder, the 
comparator, the multiplier-quotient counter and the four arith- 
metic registers. During the first step of multiplication the X-reg- 
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ister receives the multiplier from the memory and the comparator 
determines the sign of the final product by comparing the signs 
of the multiplier and multiplicand. During the next three steps 
the multiplicand, which has been stored in the L-register by some 
previous instruction, is transferred three times to the A-register 
through the algebraic adder. The result, three times the multi- 
plicand, is then stored in the F-register. During the next 11 steps 
of multiplication, the successive multiplier digits, beginning with 
the least significant, are transferred from the X-register to the 
multiplier-quotient counter. The multiplier-quotient counter then 
determines whether each particular multiplier digit is less than 
three, or greater than or equal to three. 

If the former, the L-register releases the multiplicand to the 
A-register via the adder, and the multiplier-quotient counter is 
stepped downward one unit. If the multiplier digit is equal to or 
greater than three, the multiplier-quotient counter sends a signal 
to the F-register which releases three times the multiplicand to 
the A-register and the multiplier-quotient counter is stepped three 
times. Thus a multiplier digit of seven would be processed as two 
transfers from the F-register to the A-register and one transfer from 
the L-register to the A-register, or a total of three transfers. 

When the multiplier-quotient counter reaches zero, the next 
multiplier digit is brought in from the X-register, while the A-reg- 
ister, containing the first partial product, is shifted one position 
to the right. 

During the final step of multiplication, the sign is attached to 
the product which has been built up in the A-register. One of the 
several available multiplication instructions causes the least sig- 
nificant digits, as they are shifted beyond the limits of the A-reg- 
ister, to be transferred to the X-register where they replace the 
multiplier digits as they are moved to the multiplier-quotient 
counter. Thus 22 place products can be obtained as well as 11 
place. 

Division instruction 

The division operation is performed by a nonrestoring method. The 
divisor is stored in the L-register by some previous instruction and 
the dividend is brought from the memory and put in the A-register 
during the first step of the division instruction. As in multiplica- 
tion, the signs of the two operands are compared in the comparator 
at this time and the sign of the quotient is then stored in the 
comparator pending completion of the division operation. The 
principal stages of division consist of transferring the divisor from 
the L-register to the A-register through the complementer and 
adder as many times as required to produce a quantity less than 
zero in the A-register, the dividend having been first shifted one 

position to the left. The multiplier-quotient counter counts each 
transfer, thereby building up the first quotient digit. As soon as 
the quantity in the A-register, (neglecting its original sign) goes 
negative, the digit in the multiplier-quotient counter, not counting 
the transfer which causes the remainder to go negative, is trans- 
ferred to the X-register and the remainder in the A-register is 
shifted one place to the left. The divisor is then added to the 
A-register until the quantity becomes positive. This time the 
multiplier-quotient counter must give the complement of the 
number of transfers for the real quotient digit. Special comple- 
menting read-out gates provide this method of interpreting the 
multiplier-quotient counter. 

The X-register therefore collects the quotient, digit by digit, 
from the multiplier-quotient counter until the full 11 digits have 
been obtained. The quotient is then transferred to the A-register 
and the sign from the comparator (CP) is affixed during the final 
stage of the divide instruction. 

The other internal operations of the UNIVAC include many 
transfer instructions by which words may be moved among the 
registers and memory with and without clearing, the extraction 
instruction by which certain digits of a word may be extracted 
into another word according to the parity of the corresponding 
digits of an extractor word; shift instructions; and special control 
instructions such as breakpoint, transfer of control, (explained in 
subsequent paragraphs) and stop. 

Basic operating cycle 

The basic operating cycle of the UNIVAC is founded upon single 
address instructions which specify the memory location of one 
word. In the case of the arithmetic instructions which require two 
operands, one of the operands must be moved into the proper 
register by some previous instruction. In order to control the 
sequence of instructions, a special counter, called the control 
counter (CC), retains the memory location from which the succeed- 
ing instruction word is to be obtained. Each time a new instruction 
word is received from the memory, the quantity in the control 
counter is passed through the adder where a unit is added to it. 
Therefore the normal sequence is to refer to successive memory 
locations for successive instruction words. Initially the control 
counter is cleared to zero and the first group of instructions must, 
therefore, be placed in memory locations from zero upward. A 
transfer of control instruction enables the programmer to change 
the control counter reading whenever desired and thus shift from 
one sequence to another. After a transfer of control takes place, 
the new number in the control counter is increased by unity each 
time a new instruction word is obtained from the memory. 
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Transfer of control instructions 

The transfer of control instructions are of three types, the uncon- 
ditional transfer which changes the control counter reading with- 
out question, and two conditional instructions which require that 
either equality or a specific inequality exists between the words 
in the A-register and the L-register. In the former case the quan- 
tities must be identical for transfer of control to occur and in the 
latter the quantity in the A-register must be greater than the 
quantity in the L-register for the control counter reading to be 
changed. 

Since the UNIVAC can handle alphabetic as well as numerical 
data, these conditional transfer instructions are as useful for alpha- 
betizing as they are to determine if a certain iterative arithmetic 
process has been performed often enough to come within specified 
numerical tolerances. 

Control register 

Since six characters (intermixed alphabetic and numerical) are 
sufficient to specify an instruction and there are 12 characters per 
word, each instruction word can represent two independent in- 
structions. A 1-word register, called the control register (CR), has 
been provided which stores each instruction word as it comes from 
the memory. Thus one memory referral is sufficient for a pair of 
instructions and the control register stores both halves so that the 
second instruction is available as soon as the first has been com- 
pleted. 

The general term control circuits includes all those elements 
which work together to process the instruction routine. As each 
instruction word reaches the control register, the first half of it 
is passed immediately into the static register (SR). The static 
register drives the main function table and memory switch. The 
instruction digits are translated by the function table into the 
appropriate control signals for the instruction called for. The 
memory switch selects the location called for by the memory 
location digits and opens the proper memory channel to the high- 
speed bus system at the proper time. Since the memory is con- 
structed of 100 channels, each holding ten words, the memory 
switch is a combination of spatial and temporal selection. 

Cycle counter 

Implicit within each instruction, as translated by the function 
table, is an ending signal which causes the computer to move on 
to the next instruction. The key to this sequence is the cycle 
counter (CY), which is advanced by the ending pulse. The cycle 
counter is a 2-stage 4-position counter, which is connected into 

the function table. By virtue of this relation, CY develops signals 
in addition to those developed by the instruction, which, for ex- 
ample, can cause the control register to transfer the second half 
of the instruction word into the static register when the first half 
has been completed. Similarly, after the second half instruction 
is finished the cycle counter causes the reading of the control 
counter to pass into the memory location section of the static 
register and thus cause the next instruction word to be transferred 
from the memory to the control register. When the word reaches 
the control register, the cycle counter also causes the control 
counter reading to be increased by unity. The four cycles are 
designated by the first four Greek letters a (transfer CC to SR), 
,8 (transfer memory to CR), y (perform first instruction), and S 
(perform second instruction). 

Program counter 

The multistage instructions, such as multiplication, are guided 
through their various steps by the program counter (PC). The 
program counter has four stages or 16 positions. All multistage 
instructions can be performed within this number of steps. 

Checking circuits 

The checking circuits of the UNIVAC are of two main types, 
odd-even checkers and duplicated equipment with comparison 
circuits. The odd-even checker depends upon the design of the 
pulse code used within the computer. This code provides seven 
pulse positions for every character. Six of the seven positions are 
significant as the actual code while the seventh is the odd-even 
channel. If the number of pulses or ones within the first six chan- 
nels of any character is even, a one is placed in the seventh channel 
to make the total odd. Thus, the total number of ones across the 
seven channels is always odd. By means of a binary counter and 
a few gates, an odd-even checker has been constructed which 
examines every seven pulse group which passes through the high 
speed bus amplifier. In this connection, mention must be made 
of the periodic memory check which interrupts operation every 
five seconds to pass the entire contents of the memory over the 
high speed bus system and, consequently, through the odd-even 
checker. Any discrepancy is immediately signalled to the super- 
visory control and further operation ceases. 

The duplicated equipment type of checking consists of dupli- 
cating the most essential part of the arithmetic circuits and their 
controls and producing simultaneously independent results, which 
can then be compared for equality. For this type of checking, the 
A-, F-, X - ,  and L-registers, algebraic adder, comparator, multi- 
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plier-quotient counter, and the high speed bus amplifier are dupli- 
cated. 

The memory is not duplicated, but is checked by the periodic 
memory check mentioned previously. Various sections of the con- 
trol circuits are duplicated such as the program counter and cycle 
counter. 

Timing pulse generator and cycling unit 

The timing pulse generator and cycling unit ( C U )  are the source 
of the basic timing signals throughout the computer. The timing 
pulses occur at 2.25 megacycles per second. The cycling unit 
subdivides this rate into the character rate and word rate. The 
character rate is one seventh of the basic pulse rate since there 
are seven pulses for each character. There are 12 characters per 
word but space for a 13th character is included in a word time 
and is called the space between words. This time is used for 
switching purposes. 

The cycling unit, therefore, develops the word signals at 
y7 x yl3 or yS1 of the basic pulse rate. Within the cycling unit 
( C U )  are numerous duplications and comparisons to ensure com- 
plete reliability. 

Input-output circuits 

The operation of the input-output system is dovetailed as effi- 
ciently as possible with the operation of the arithmetic circuits. 
Whenever possible, parallel operations are allowed to proceed so 
as to minimize the time lost on internal operation while the slower 
input-output operations are taking place. 

The principal input-output instructions are handled in a man- 
ner identical to that for the internal operations, except that now 
the function table develops signals which bring the input-output 
control circuits into operation. The information supplied to the 
input-output control circuits by the function table includes the 
following: 

1 

2 

Which of the ten possible Uniservos is being called on 

Whether it is a read or write, that is, an input or output 
operation 

If it is “read,” the direction in which the tape is to move 3 

The input-output control circuits, therefore, begin by testing 
whether or not the Uniservo indicated now is in use or not. If 
it is already in use, everything else waits until that Uniservo is 
free. Next, the input-output control circuits test to determine 
whether the Uniservo selected last moved backward or forward. 

If the previous direction does not agree with the new direction 
called for, the input-output control circuits generate the proper 
signals to prepare the Uniservo to move in the opposite direction. 
If the instruction is to rewind a Uniservo, the input-output control 
circuits then direct the center drive of the selected Uniservo to 
rewind the tape to the beginning and stop. 

As soon as the instruction has proceeded to the point where 
the input-output control circuits need no further information from 
the function table, the instruction ending signal is generated 
and the internal circuits proceed to the next instruction, even 
while the reading, writing or rewinding continues. The UNIVAC 
can process an input, an output and several rewind operations 
while simultaneously carrying on internal computation. 

So far the method by which the words are transferred from 
the I-register to the memory has not been mentioned. This opera- 
tion is combined with certain read instructions in a manner not 
immediately obvious. There are two instructions which read from 
the tape to the I-register, one causing the tape to move forward, 
the other causing it to move backward. There are two other input 
instructions similar to those just mentioned, but they have the 
additional operation of first reading from the I-register to the 
memory and then reading a new group of 60 words from tape into 
the I-register. Thus the first type of input instruction reads from 
tape to the I-register only. It must be followed by the second type 
of instruction in order first to clear the I-register and then read 
in the second block of 60 words. 

The output instructions do not operate in this way but instead 
read directly from memory to the 0-register and then to the tape 
as one instruction. 

A third type of checking circuit occurs in the input-output 
control circuits which counts the number of characters transferred 
from the tape in each block. Since there must always be 720 
characters per block, the 720 checker signals any discrepancy to 
the supervisory control. 

One other phase of the input-output operation concerns the 
two supervisory control input-output instructions. One of them 
permits a single word to be typed in from the input keyboard and 
the other causes a single word to be typed out automatically. 

Auxiliary equipment 

The two principal auxiliary devices mentioned earlier were the 
Unityper,l which converts keyboard operations to tape recording, 
and the Uniprinter,l which converts magnetic recording to type- 
written copy. 

lRegistered trade mark. 



162 Part 2 I The instruction-set processor: main-line computers Section 1 I Processors with one address per instruction 

Unityper. A simple block diagram of the Unityper is shown in Fig. 
2. Each keyboard operation pulses the input to an encoding func- 
tion table which, in turn, drives the appropriate heads for record- 
ing the particular combination on the tape. Simultaneously, the 
same pulse triggers a motor delay flop which operates the tape 
motor for an interval sufficient to move the tape across the head 
for the distance required to record one character. However, there 
is a punched paper loop system associated with the Unityper for 
the purpose of providing the typist with various guideposts individ- 
ually set up for each problem. The loop control system serves three 
distinct control functions. First, it allows the programmer to set 
up various numbers of characters for the individual items being 
entered for a given problem. If the typist ever enters other than 
the specified number of characters, the loop control signals an 
error. Although the basic word length is 12 characters, the pro- 
grammer may subdivide or group the words to suit any length of 
item. The loop can then be punched with what are called “force 
check” punches. Whenever the typist completes a correctly en- 
tered item, she must operate a release key before entering the next 
item. If the forced check is released too early an error is created, 
or if an additional character is typed after the forced check should 
have been released, an error is similarly indicated. 

The second function of the loop is to control the erase opera- 
tion. The erase operation is the only way in which an error can 
be recalled. When the erase key is operated, the loop and tape 
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i ENCODING 
FUNCTION 

TABLE 

RECORDING 
HEAD 

I 
I I 

RELAYS 

Fig. 2. Simplified block diagram of Unityper. 

are both stepped backward until a stop punch (usually associated 
with each forced check) is encountered. Thus the entire erroneous 
item is erased, and at a much higher rate than that at which the 
backspace key can be operated. The backspace, incidentally, can- 
not cancel an error indication, but it can be used to correct a 
wrongly typed character if the typist recognizes it. 

The third function of the loop system is to enter, automatically, 
various fill-in characters. Under one such system of operation, the 
loop control records the characters only at the behest of the oper- 
ator. This function is useful where individual entries, such as 
personal names, do not fill out all of the space allotted. The other 
operation is fully automatic in which the loop assumes full control 
to record, for example, a group of fill-in characters later to be 
replaced by computed data within the central computer. 

The block diagram therefore shows the loop motor connected 
to the same delay flop that steps the tape motor. The same signal 
which moves the two motors also sets a second delay flop (DF2) 
which produces a delayed probing pulse. The probing pulse exam- 
ines the paper loop photoelectrically for the new combination. 
A third delay flop (DF3) produces another probing pulse after the 
relays associated with the loop photocells have had time to set 
up. If any automatic function is indicated by the photocells, the 
probing pulse passes through the interpreting relays, enters the 
encoding function table to generate the fill-in characters, and thus 
starts the cycle over again. All automatic functions take place at 
about 22 characters per second. 

Numerous odd-even checks are introduced in the Unityper to 
provide checks on tape and loop motion and on the recorded code 
combination. 

Uniprinter. The Uniprinter is shown in simplified block diagram 
in Fig. 3. Its operation is a simple cycle which is initiated by a 
start button. The start button triggers the motor flip-flop (MFF) .  
The motor pulls the tape across the reading head until a combina- 
tion is detected. The presence of pulses on any of the seven lines 
between the reading head and the relay decoding function table 
is sufficient to restore the motor flip-flop ( M F F )  and stop the tape 
motion. Simultaneously a print delay flop (DF1) is triggered. 
During the delay flop interval, the decoding relays are given time 
to set up. When the delay flop recovers, a pulse is sent through 
the relay table which reappears at one of the typewriter magnetic 
actuators. As the typebar reaches the platen, a printer action 
switch (PAS) is operated which pulses the motor flip-flop and starts 
a new search for the next character on the tape. The odd-even 
properties of the UNIVAC pulse code are utilized for checking 
purposes. 
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Fig. 3. Simplified block diagram of Uniprinter. 

Engineering aspects 

The entire UNIVAC system is constructed of circuits which are 
as conservative as is consistent with the desired reliability and 
speeds of operation. The circuits have been designed as building 
blocks and the entire computer is constructed around these blocks. 

One of the most important of these blocks is the pulse reshap- 
ing circuit which consists of a timing pulse gate and a fast acting 
flip-flop which generates the pulse envelope equivalent of the 
gated timing pulses. Two polarities of timing pulse are used, the 
one being capable of tripping the flip-flop into one state, the other 
polarity of tripping it to the other state. As a deteriorated pulse 
envelope is applied to the timing pulse gate input, either one or 
the other polarity of pulse is always gated. The flip-flop therefore 
produces a sharpened and correctly timed output waveform. 

The gating and switching circuits in the central computer are 
constructed of germanium crystal diodes, which include the main 
and subordinate function tables. 

The registers are all circulating delay type using a mercury 
tank of one, two, or ten word-times of delay, except the static 
register. The latter is composed of 27 flip-flops which are required 
to maintain the static signals applied to the function tables, for 
at least an entire word-time. 

The switching time allowed by the seven pulse-times of the 
space between words is, in general, not sufficient for a new func- 
tion table excitation to stabilize. Therefore the time-out system 
used successfully in the BINAC, also is employed in the UNIVAC. 
Whenever an ending pulse is generated, or any other pulse which 
indicates that a new set of control signals are required from the 

function table, an interval of one word-time is introduced to allow 
the function table signals to reach equilibrium. The time-out in- 
terval is controlled by a single fast-acting flip-flop. All gates 
attached to the function table signals which are critical as to 
opening and closing can be inhibited by the time-out flip-flop 
during time out. Regardless of the presence of the function table 
signals, the gate does not operate until the time-out flip-flop re- 
leases it. Thus, the burden of speed imposed by the short space 
between words has been shifted to a single flip-flop which can 
accommodate the needs of the entire computer. 

The UNIVAC uses the excess-three pulse code system which 
requires a second binary adder after the main binary adder in order 
to provide the excess-three correction after each addition. On the 
other side of the ledger, the complementing operation for sub- 
traction and division is very much simplified, since the substitution 
of ones for zeros and vice versa is sufficient to form a complement. 
The excess-three part of the pulse code occupies the four least 
significant digit positions. The next two positions beyond the 
excess-three digits are used as zone indicators. When these digits 
are both zero, the last four positions are interpreted as a numerical 
quantity; when nonzero, an alphabetic or punctuation symbol is 
indicated. The seventh channel is the check pulse channel. 

The adder is provided with an alphabetic bypass circuit which 
allows an alphabetic letter to enter one input and emerge un- 
scathed provided a numeral enters the other input. Thus additive 
numerical constants can be combined with instruction words to 
adjust the memory location part of an instruction without affecting 
the alphabetic instruction symbols. 

The power supply for the computer is separately housed. It 
can be placed any reasonable distance from the central computer. 
Almost all rectification is done by dry disc rectifiers. The power 
supply provides all a-c and d-c potentials to the central computer, 
supervisory control, directly-connected printer, and the Uniservos. 

A complete fusing system has been included which serves both 
as protection and as a short-circuit isolating means. Each section, 
of which there are 39, is locally fused, enabling the engineer to 
locate a short within only 12 chassis, rather than the total of 468. 

An automatic voltage monitoring system may be used to test 
every d-c voltage at the rate of one per second. A meter movement 
relay signals any discrepancy from standard. Similarly, overheat 
thermostats detect any unfavorable temperature condition in the 
bays or mercury tanks. 

Cooling for the power supply and central computer is provided 
by three blowers. Local cooling in the Uniservos is provided by 
small fans in each unit. The operating statistics of the UNIVAC 
are as follows: 
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Tape reading and recording: 
Pulse density: 120 per inch 
Tape speed: 108 inches per second 
Input block size: 60 words: 720 characters 
Tape width: ‘/z inch: 8 channels 

Internal operations: 
Memory capacity: 1,000 words; 12,000 characters 
Memory construction: 100 mercury channels; 10 words/ 
channel 

Access time: 
Average: 202 microseconds 
Maximum: 404 microseconds 

Word length: 
12 characters 
9 pulses 
(include space between words = 7 pulses) 

Basic pulse rate: 
2.25 megacycles 
Addition: 525 microseconds 
Subtraction: 525 microseconds 
Multiplication: 2,150 microseconds 
Division: 3,890 microseconds 
(All times shown include time for obtaining instructions and 
operands from memory) 

Applications of UNIVAC 

Types of problems for which UNIVAC is applicable 

True to its name, Universal Automatic Computer, the UNIVAC 
system is capable of handling data processing or calculation in 
virtually all fields of human endeavor. It is particularly well suited 
to applications requiring large volumes of input or output data, 
or both. 

For convenience and classification, applications of the UNIVAC 
will be treated under four headings: scientific, statistical, logistical, 
and commercial. The scientific problem usually, though not al- 
ways, has relatively small amounts of input and output data, with 
emphasis on computation. The statistical problem has relatively 
large volumes of input data with a small volume of output data 
and simple processing procedures. The commercial and logistical 
problems both have relatively large amounts of input and output 
data with processing requirements varying from slight to relatively 
great. A number of problems in each of these four fields have been 
studied and found suited for solution on the UNIVAC system. 
Several in each field have actually been processed on the com- 
puter. 

Scientific problems 

A general-purpose matrix algebra routine designed to add, sub- 
tract, multiply, and reciprocate matrices of orders up to 300 has 
been prepared and applied to a number of matrices. Inverses have 
been calculated for three different matrices of orders 40, 50, and 
44. The error matrices for the first two of these inverses also were 
calculated. In both, the largest error term was of the order of 1W8. 
A triple product matrix was formed from component matrices 
ranging from 5 by 40 to 40 by 40. A check product was obtained 
by reversing the sequence of multiplications, verifying the original 
product to within 2 units in the 11th place. The computer time 
required for these calculations was 1 hour and 15 minutes to 
calculate the inverse of order 50,45 minutes to determine its error 
matrix. The other calculations were proportionately shorter. In all 
of this work, magnetic tapes were used as temporary storage for 
the bulk of the matrix elements involved. The high speed of the 
tape reading units more than kept up with the computer’s need 
for data. No mathematical checks, other than the over-all check 
mentioned, were included in the computation, the self-checking 
features of the system making these completely unnecessary. 

A second computation-that of obtaining six different specific 
solutions to a system of 385 simultaneous equations-was com- 
pleted in 27 minutes on the computer. The system of equations 
arose from a second order nonlinear differential equation of gas 
flow through a turbine. The error terms resulting from the sub- 
stitution of the computed unknowns into the basic equation were 
of the order of 

The third example is that of a 2-dimensional Poisson equation, 
using a 22 by 22 mesh. Each iteration required 13 seconds and 
produced a maximum separation of successive surfaces of the order 
of 10-* after approximately 300 iterations. 

Statistical problems 

In the second major field of statistical computation, the Census 
problem has been a prime example. The Census problem produces 
a part of the Second Series Population on Tables for the 1950 
Decennial Census. 

The Second Series contains 30 types of tables covering the 
statistics of our population-age, sex, race, country of birth, edu- 
cation, occupation, employment, and income. These tables are to 
be compiled for every county, and for every city, rural farm, and 
rural nonfarm area within a county. 

The preparation of these tables by the UNIVAC system requires 
three major steps: 

1 Tabulation of each individual’s characteristics by groups of 
about 7,000 
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2 

3 

Arranging these groups by cities, counties 

Assembling from the tabulations the data required for each 
table 

The raw data were prepared in the form of a punched card 
for each individual in the United States. The data from these 
enumeration cards are then transcribed onto magnetic tape. From 
these tapes, the computer processes the data sequentially through 
the three steps, producing output tapes from which the tables are 
printed on Uniprinters. The only manual operations encountered 
in this entire procedure are the handling of the original punched 
cards, mounting and demounting tape reel (the equivalent of 9,700 
cards), and the removal of the printed tables from the Uniprinters. 

The most important feature of the present procedure is the elim- 
ination of handling and sorting tremendous quantities of punched 
cards. Each handling of the card stacks is a source of potential 
error and delay. The UNIVAC memory permits the simultaneous 
accumulation of the 580 tallies which describe our population 
for each local area being studied by the UNIVAC system. 

Commercial problems 

In the commercial field, the UNIVAC system has handled premium 
billing for a life insurance company. This program produces pre- 
mium notices, dividends, and commissions. In a particular example 
worked out, approximately 1,000,000 bills, 340,000 dividends, and 
100,000 commissions have to be produced monthly. The necessary 
information for processing a particular policy is contained in 240 
digits, or, in special cases, 480. This compactness is made possible 
by a logical system of 40 symbols, comprising both alphabetic and 
numeric characters, which denote over 90 definitions. The UNI- 
VAC processes the policies as directed by the symbols, policy 
dates, and policy numbers. 

The problem includes inserting over 250,000 changes each 
month before further handling is done. After this step, the policies 
to be processed are selected from a file of 1,500,000 items. Next, 
a list is produced of the cases which have symbols indicating that 
special notices must he sent to the policyholders. Following the 
calculation of dividends and commissions, additional lists are pro- 
duced: one group contains information pertaining to commissions 
and agents; another contains information regarding dividends; and 
finally, there is a listing of option changes for later insertion into 
the policy files. Policies requiring premium notices are then edited 
and the notices are automatically printed from the data contained 
on magnetic tapes. 

The UNIVAC time needed for a program of this proportion 
is about 135 hours a month. The average computer time per policy 
processed is less than 0.5 second. The average time for all change 

insertions, printing, calculations, and unityping is 9 seconds per 
item. 

Logistical problems 

In the field of logistics, five major studies have been conducted, 
four of these resulting in actual problems executed on the com- 
puter. 

The first is the type of computation in which the basic purpose 
is to determine quantitively whether a given operational or mobi- 
lization plan can be logistically supported. The ultimate desired 
is to find, by calculation, the optimum program for carrying out 
such plans. At the time of writing, only a small model has been 
actually run on UNIVAC, but full size models will be run within 
the next few weeks. Two computations have been executed, one 
a set of three tables of thousands of lines each, giving a detailed 
breakdown of machine deployment, fuel requirements, and over- 
haul requirements. The other problem was a computation of the 
amounts of critical raw materials required to construct a given 
number of each type of equipment, these requirements being 
phased by quarters over a 2-year period. The fourth problem, 
which was actually computed, was a sample of a similar calcu- 
lation in which every pound of critical raw material required each 
month for the ultimate construction of a complete building pro- 
gram was computed. 

The UNIVAC program which was prepared is capable of 
accommodating every type of equipment, individually tailored 
construction schedules, detailed hills of materials running into the 
millions of items and of determining the actual amounts of alloy 
elements based on thousands of tables of percentages for the many 
alloys employed. The demonstration showed that this computation 
for 400 pieces of equipment of a given type could be executed 
in three hours of computer time. The last problem in this field 
has not yet been run, but the study has shown that the entire 
gamut of stock control for a large supply office can be covered 
by the computer in approximately 3 weeks time. 

This program involves the maintenance of stock balances of 
hundreds of thousands of stock items for many service points and 
provides for the preparation of stock transfer orders, purchase 
requisitions, critical lists and summary reports. 

Performance record of the UNIVAC 

Acceptance tests 

The Acceptance Tests, prepared jointly by the Bureau of Standards 
and Bureau of Census, are fully discussed in the following paper 
by Dr. Alexander and Mr. McPhers0n.l However, a few comments 

lPaper not included in this book. See McPherson and Alexander [1951]. 
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concerning them from the engineering point of view are appro- 
priate. 

The Census computer was given two tests; the first, a test of 
its computational ability; the second, a test of its input-output 
system which particularly stressed the tape reading and recording 
abilities. 

The Central Computer Acceptance Test A consisted of two 
parts. During Part 1, every available internal operation, except 
input-output operations, was performed. Among these operations 
were addition, subtraction, comparisons, division, and three 
different types of multiplication operations. Each of the arith- 
metic operations handled a pair of 11-decimal digit quantities. 
Altogether there were about 2,500 operations in the routine, yet 
the entire routine required only 1.26 seconds to do. The routine 
was performed 808 times in 17 minutes making a total of about 
2,000,000 operations in all. 

The second part of Test A included the solution of a heat 
distribution equation, a short routine involving the input-output 
device and a sorting routine. The sorting routine arranged ten 
numerical quantities each containing 12 decimal digits in correct 
numerical order in about 0.2 second. All three routines took a total 
of 1% minutes to perform. They were performed twice for each 
test and when added to Part 1 made a total of 20 minutes for 
unit test A. 

The Acceptance Test B examined the input-output tape devices 
(Uniservos). During the first part of Test B, 2,000 blocks or about 
1.4 million digits, which included every available character 
(numeric and alphabetic) were recorded on a tape and then read 
back into the computer with the tape moving backward. The 
information read back was then compared with the original data 
read out. The recording operation required about 4 minutes while 
reading back and comparison required about 8 minutes. The sec- 
ond part of Test B consisted of recording and reading over one 
spot of tape for 700 passes in order to determine the readability 
of tape as it wears. This test required 13 minutes and when com- 
bined with Part 1, made a total of approximately 25 minutes for 
Test B. This test was repeated 19 times. 

The first test run passed in 6.6 hours (minimum theoretical 
time: 6.0 hours) and the second test was passed in 9.47 hours 
(minimum theoretical time: 7.45 hours). Of the 2.02 hours down 
time, 1.45 hours were accumulated at one time with the remaining 
0.58 hours spread over the rest of the test. 

The Uniprinter test required that a block of information (60 
words) be printed 200 times in tabular form. The minimum time 
for printing was five hours. The test was passed in 6.16 hours. 

The card-to-tape test required that ten good reels of tape be 
produced in 12 hours. There were certain restrictions as to reading 

accuracy and other criteria of reproducing ability which defined 
“good” reels. In 10 hours, the converter had prepared over 15 reels, 
14 reels had been tested, 11 of the 14 were found satisfactory and 
the converter was accepted for payment. 

Although the test was run on only one of two converters, the 
Bureau of Census put both card-to-tape machines into operation 
and after six months of use, the acceptance test was run on the 
second card-to-tape converter. This test differed to some extent 
from the first test in that the Census Bureau was satisfied with 
the reading ability of the machines and did not require a digit-by- 
digit verification of the information. However, a new stipulation 
was added that, after the engineers had checked the converter 
out preparatory to running the test, the converter was to be used 
in actual operation for eight hours before doing the remainder of 
the test with no engineering intervention between the two portions 
of the test. The first part was run on Friday, October 5, 1951; the 
device remained idle Saturday and Sunday and was turned on 
Monday morning to complete the test. It passed with flying colors, 
preparing ten acceptable reels (out of ten reels) plus two decks 
of check cards in slightly less than 7 hours. Both card-to-tape 
converters now are in Washington and the remainder of the system 
is in operation by the Bureau of the Census on the Eckert-Mauchly 
premises in Philadelphia. 

Reliability and factors affecting performance 

The first UNIVAC system now has been operating for approxi- 
mately 8 months. In that time, much has been learned about how 
UNIVACs should be operated and maintained. The situation has 
been somewhat complicated by having to shake down the equip- 
ment while in the customer’s possession; that is, there were certain 
faults in the system from both engineering and production stand- 
points which could only become apparent in the course of time 
and under actual operation conditions. For example, weak tubes 
or faulty solder joints did not reveal their presence at the time 
of installation. Another type of difficulty only became apparent 
under certain duty cycle conditions imposed by various types of 
problems. Because only certain problems present this particular 
duty cycle, these troubles remained in the machine causing inter- 
mittent stoppages until they could be tracked down. 

Patient isolation and elimination of such problems, most of 
which have occurred only with conditions of operation infre- 
quently encountered, is a powerful, though sometimes painful 
proving ground for the engineering group charged with such re- 
sponsibility. The experience and depth of judgment acquired by 
such a group in the course of performing such work have become 
unmistakably apparent in the already noted improved performance 
of following UNIVACs and generally advanced ability to predict 
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and realize performance in any large scale and complex apparatus 
of the same character. 

Some of the troubles encountered are interesting to study in 
detail. On a rather complicated routine requiring the use of a 
number of Uniservos, all ran smoothly for 15 minutes. At that time, 
one of the Uniservos executing a backward read somewhere in the 
middle of the reel, did not stop at the end of the block but con- 
tinued to run until it ran off the end of the tape. After much work, 
it was shown that a cycling unit signal was being overloaded 
because it was being used both by a multiplication instruction and 
the backward read which were occurring simultaneously. The 
input precessor loop was cleared as a result and the count of the 
pulses coming off the tape was thereby lost. Once the trouble was 
found, it was simple to remedy. 

Another rather interesting case occurred intermittently over 
an extended period. Normally when reading out of the memory, 
the contents should not be cleared. Occasionally, however, reading 
from the memory also caused the contents to be cleared. As the 
trouble only remained for a period of seconds or, at most, a few 
minutes, it was somewhat difficult to localize. Of course, parasitic 
oscillations of some sort were suspected and, in fact, the trouble 
was traced to the actual source on a logical basis; but the source, 
a high power cathode follower, showed no evidence of oscillation. 
Before the problem was remedied, various combinations of para- 
sitic suppressors were tried; the trouble would vanish for perhaps 
a week and then return. The oscillation finally cropped up during 
a maintenance shift, was found to be in the suspect tube at 100 
megacycles and was eliminated rather easily. 

Other types of troubles that have occurred include intermittent 
parasitic oscillations in other circuits, bounce in Uniservo relay 
circuits, various mechanical problems in Uniservos, time constants 
not consistent with the longest duty cycle signals, and various 
types of noise in the input circuits. The tubes, which initially were 
bothersome, have now stabilized to the point where two tubes 
per week (on the average) stop the computer during computation. 

All of the above troubles and others not discussed here have 
contributed to lost computing time on the UNIVAC. However, 
they cannot influence future operation because the reasons for 
them have been found and eliminated. The fact that these troubles 
will not occur in future UNIVACs cannot be emphasized too 
strongly. 

Under a contract with the Bureau of Census, Eckert-Mauchly 
Computer Corporation maintains the Census installation. This 
system is operated 24 hours a day, seven days a week, except for 
four 8-hour preventive maintenance shifts each week. This allows 
approximately 32 hours for regular maintenance and 136 hours 
for operation or 21 and 79 per cent respectively. Table 1 shows 

the engineering time spent on the computer system during typical 
weeks of operation. The figures are given both in hours and per- 
centages. Both nonscheduled engineering time as well as preven- 
tive maintenance time are shown. The sum of the two gives the 
total engineering time spent on the computer per week. It should 
be noted that this is actual engineering time and does not include 
time that the computer may have been shut down while waiting 
for an engineer to report. According to our maintenance contract, 
this must be within a half hour during regular working hours and 
within two hours at all other times. Attention should be given to 
the fact that the preventive maintenance time does not total 
exactly 32 hours each week. This is due in part to a half-hour 
period each morning devoted to checking and cleaning the 
mechanical portions of Uniservos. It is expected that this work 
will be taken over by the UNIVAC operators since the procedures 
and the techniques involved are quite simple. 

In addition, one extra shift was required the week ending June 
3 and three extra shifts the week ending October 7 ,  1951. These 
shifts were required to incorporate engineering changes which had 
been developed over a period of time and could not be incor- 
porated in the equipment during the normal preventive main- 

Table 1 

?btd 
Week Nomcheduled Precentiue engineering Rrcentuge of 

nonscheduled ending enginvering muintenunce tinw 
19.51 Z;lours Per Cent Hours Per Cent Hours Per Cent engineering 

- 

June 3 18.9 
26 20.5 

July 14 14.7 
21 19.4 
28 39.2 

Aug. 4 26.2 
Sept. 2 28.8 

9 16.1 
16 22.6 
23 42.3 
30 21.8 

Oct. 7 15.9 
14 14.0 
21 10.4 
28 20.8 

Nov. 4 40.4 
11 10.1 
18 30.5 
25 13.7 

Dec. 2 14.8 
9 19.6 

11.3 
12.2 
8.8 

11.6 
23.3 
15.6 
17.1 
9.6 

13.5 
25.2 
13.0 
9.5 
8.3 
6.2 

12.4 
24.0 

6.0 
18.2 
8.2 
8.7 

11.7 

40 23.8 
3 4  20.2 
33 19.6 
34.5 20.5 
34.5 20.5 
33 19.6 
34.5 20.5 
34.5 20.5 
33 19.6 
34.5 20.5 
34.5 20.5 
56 33.3 
34.5 20.5 
34.5 20.5 
33 19.6 
34.5 20.5 
34.5 20.5 
34.5 20.5 
34.5 20.5 
34.5 20.5 
34.5 20.5 

58.9 
54.5 
47.7 
53.9 
73.7 
59.2 
63.3 
50.6 
55.6 
76.8 
56.3 
71.9 
48.5 
44.9 
53.8 
74.9 
44.6 
65 
48 
49.3 
54.1 

35.1 14.8 
32 15.3 
28 10.9 
32 14.5 
43.8 29.4 
35.2 19.4 
37.7 21.6 
30 12.1 
33 16.7 
45.7 31.7 
33.5 16.3 
42.8 14.2 
28.9 10.5 
26.7 7.8 
32 15.4 
44.6 30.3 
26.5 7.6 
38.7 22 
28.6 10 
29.3 12.6 
32.2 14.7 
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tenance time. The nonscheduled engineering time has varied from 
as little as 10.1 hours or 6 per cent to 42.3 hours or 25 per cent. 
The last column in the Table shows the amount of nonscheduled 
engineering time as compared to the allowable operating time 
(total time less preventive maintenance time). Here there is a 
variation of from 7.6 to 31.7 per cent and an average for the weeks 
shown of 16.9 per cent. It is believed that these figures, while good 
for the first months of operation of a new piece of equipment, will 
show definite improvement over the next year. 

Although the opportunity to prove or disprove the following 
theory of operation has not presented itself, it is believed logical 
that optimum use of the UNIVAC equipment might be  obtained 
by means of scheduling preventive maintenance only at such times 
as it is indicated in the judgment of competent operators. In other 
words, there are many occasions preceding a scheduled main- 
tenance shift when the system is performing very well. At such 
times, it is extremely inefficient to shut down the operation in 
order to provide maintenance. For many reasons, however, it has 
been impossible to  operate and maintain the first system in this 
way. It is hoped that such operation will be possible in following 
installations. 

It should be realized that the UNIVAC system requires a super- 
visor of the same caliber as the one required for a large punched 
card installation. However, the large group of operating personnel 
would be replaced by a small group of well-trained extremely 
competent people thoroughly familiar with the details of the 
computer and associated equipment. The time spent in providing 
a high degree of training for these people is more than repaid in 
increased operating efficiency and consequently higher work out- 
put. For example, situations arise in the course of running a prob- 
lem where a correct operational decision can save hours of elapsed 
computation. Also, a competent operator will recognize malfunc- 
tions sufficiently early to prevent serious delays. He is capable of 
deciding whether to continue with machine operation or to stop 
to diagnose. The second UNIVAC system which is ready for 
installation in Washington, will be operated by a group of engi- 
neers who have been trained in operation and maintenance. This 
procedure, it is believed, will result in the UNIVAC system being 
of maximum benefit to the Air Comptroller’s Office. 

Evaluation of UNIVAC design 

Checking features 

Maintenance of the UNIVAC has been vastly simplified by use 
of duplicate arithmetic and control equipment and other checking 
methods. Many factors which would have led to undetected errors 

have, by virtue of duplication, immediately stopped the computer. 
Although checking by means of inverse operations can provide 
operational checks on the arithmetic circuits, there is some ques- 
tion as to whether it provides as good a check as duplication. 
However, in connection with odd-even codes, it may conceivably 
be comparable. It should be remembered, however, that this is 
from an operational standpoint and not a maintenance standpoint. 
When the control equipment is considered it is difficult to visualize 
a check that is as good as duplicated equipment. Other checks 

ed in UNIVAC include the periodic memory check, 
intermediate line function table checker, function table output 
checker, memory switch checker, and 720 checker. 

As explained earlier in the paper, the periodic memory check 
is accomplished by reading out of all memory channels sequen- 
tially and performing an odd-even check on each digit as it passes 
through the high speed bus amplifier. The period at which the 
check is repeated may be varied over a large interval. At present, 
it is set at 5 seconds, the check taking 52 milliseconds or about 
1 per cent of the computing time. 

The function table has a check at the very input by bringing 
in the check pulse in each character so that if an odd-even error 
occurs between the control register and the static register, no order 
will be set up and the computer will grind to a halt! If the input 
sets up  properly but an error occurs farther on in the table, but 
not ahead of the intermediate lines (the linear set into which the 
input combinations are decoded), the error is caught at this point. 
The intermediate lines are broken into groups in such a way that 
an error is indicated when more than one line is set up  in one 
group or the entire set. There is an exception to this in some groups 
where no error is indicated by this checker if more than one line 
is set up within the group. 

This has been allowed only in those cases where it has been 
shown that setting up  two or more lines will cause some other 
checker or checkers to indicate the trouble. 

If the error occurs beyond the intermediate lines, the output 
checker then comes into play. This checker makes an odd-even 
count on the number of gates used on each instruction: dummy 
lines having been added so that the count is normally always odd. 

The memory switch or tank selector checker ensures that one 
and only one memory channel is selected on any instruction. It 
checks each of the two digit positions separately indicating which 
if either, is in error. 

The 720 checker counts the digits coming off the tape and if 
there are either more or less than 720 in one block, the computer 
stops; by examining the indicators on the supervisory control 
console, the operator can determine the number of digits actually 
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read. By means of some rather simple manipulations, the operator 
can then reread the block without losing his place in the routine; 
and if the information is then read correctly, he may again start 
the computer on the routine. The same procedure may be followed 
if an odd-even error is made in reading from the tape. 

Many checks other than those mentioned before have been 
built into the UNIVAC. On the basis of operating experience, the 
engineers cannot recommend too strongly the use of built-in 
checking facilities. All in all, the faith that can be put into results 
obtained from an unchecked computer comparable in size to 
UNIVAC is in the writers’ opinion exceedingly low. 

More than this, however, the methods by which the UNIVAC 
is checked have been of extreme usefulness in trouble shooting. 
The duplication of circuits has amply repaid the increase of space 
and the number of components required by this checking system. 

General comments 

After evaluating UNIVAC performance over a period of eight 
months, the over-all picture of the UNIVAC design, in the minds 

of its designers, is extremely good. Certain phases of its design 
exceeded expectations, while of course, other phases were some- 
what disappointing. The first eight months of actual operation 
have taught more than years of experimentation with laboratory 
models. Many improvements have already been conceived of this 
experience and are continuing daily to increase reliability. 

The other major factor influencing computer design, cost, has 
been duly considered in the UNIVAC design; and it is being met 
with plans for a continuing full-scale production of UNIVAC sys- 
tems. As the production techniques are developed concurrently 
with the engineering design details, the UNIVAC becomes the 
realization of a hope which has long been in the minds of its 
designers: An economical, completely reliable commercial com- 
puter for performing the routine mental work of the world much 
as automatic machinery has taken over the routine mechanical 
work of the manufacturer. 
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Section 2 

Processors with a general register 
state 

The processors described in this section all have a processor 
state consisting of registers which are used for multiple (i.e., 
general) purposes. Perhaps a better name might be processors 
with a state consisting of a register array(s). The following 
machines are fairly similar in their ISP structure: Pegasus 
(Chap. 9), the DEC PDP-6,10, the SDS Sigma 5 and 7, and 
the UNIVAC 1107 and 1108. However, other computers includ- 
ing an 8-bit character computer (Chap. 10) and the CDC 6600 
(Chap. 39) also use arrays of registers. 

The general register organization appears as a compromise 
between the 1 and 2 address organizations. It avoids some of 
the extra instructions for shuffling data, inherent in a 1 address 
system, but avoids taking the space for a full additional address. 
The index register organization is also such a compromise, but 
one that is specialized to address calculations. The general 
register organization moves further toward a full 2 address 
organization without much additional cost. This assumes a 
small relative cost for a small amount of memory that is sig- 
nificantly faster than the larger Mp. 

The design philosophy of Pegasus, 
a quantity-production computer 

Chapter 9 describes Pegasus’s logical organization and the 
technology from which it was implemented. The technology 
includes vacuum tubes, a cyclic memory, and dynamic logic 
based on delay lines. Pegasus has the nicest ISP processor 
structure discussed in this section-perhaps in the book. It is 
included because it is probably the first machine to use an array 
of general registers as accumulators, multiplier-quotient regis- 
ters, index registers, etc. This ISP organization should be com- 
pared with the IBM System/360 (Chap. 43). Note that the 

multiple-register organization is independent of Mp.cyclic. This 
organization improves performance by generality. 

The structure of System/360 
Part I-outline of the logical structure 

The IBM System/360 is described in Part 6, Sec. 3, and is 
included mainly because of the very large number of such 
systems that have been built. 

An 8-bit-character computer 

This computer (Chap. 10) has been invented by the authors to 
show the composite features of a small character/word-oriented 
computer. In reality, 8-bit machines turn out to look either like 
16-bit machines, because the Mp size accessed is usually >28 
words, or like character-string processors. Because of the 
primitive nature of this machine, it is a possible alternative to 
the larger more complex microprogrammed processors for 
defining more complex ISP’s. 

Parallel operation in the Control Data 6600 

The CDC 6600, described in Chap. 39, has three arrays of eight 
registers each. Two of the arrays are used rather generally, and 
the third array is used to access words in Mp. The design of 
the CDC 6600 is a classic because of the computing power it 
provides. It is also worth studying as an example of a Pc 
assigned exclusively to data operation, with all concern with the 
larger PMS structure located in Pio’s. A discussion of it is given 
in Part 5, Sec. 4, page 470. 
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Chapter 9 

The design philosophy of Pegasus, 
a quantity-production computer1 

W. S. Elliott / C. E .  Owen / C. H .  Devonald 
B .  G. Maudsley 

Summary The paper gives an historical account of the development of 
the packaged method of construction of computers, and the advantages 
of this method are discussed. The packages used in the computer Pegasus 
are described from both an electronic and a mechanical point of view. The 
specification of the machine is given and the arguments which led to this 
specification are discussed. The detailed logical design procedure leading 
from the specification to the wiring lists is described. The method of 
maintenance and some reliability fipres are given. 

Introduction 

The development of standard plug-in unit circuits (‘packages’) for 
digital computers began in this country [England] in 1947, and 
some of the advantages of the method have been discussed in 
earlier papers [Elliott, 1951; Johnston, 1952; Elliott et al., 1952; 
Elliott et al., 19531. The advantages start in the design stage of 
a new computer project and follow through production and com- 
missioning to maintenance. 

In the design stage, what is known as ‘logical’ design is sepa- 
rated from engineering design. Once the packages have been 
designed by electronic engineers and the rules for their inter- 
connection have been laid down, the ‘logical designers’ (usually, 
but not necessarily, mathematicians) can begin organizing the 
packages into various computers to carry out different functional 
requirements. The electronic and mechanical design work invested 
in the packages is thus drawn on for more than one computer 
design, and each computer can be assembled from stock parts 
without further engineering effort. Design time and cost are there- 
fore much reduced. 

In production, whether we consider one design of computer 
or several designs using the same packages, costs and time are also 
much reduced. Quantity production lines for the relatively few 
types of standard package are set up, and are common to different 
computer designs, thus reducing inspection and planning costs. 
Standard cabinet work has been designed for Pegasus, and this 

‘PRJC. IEE,  pt. €3, vol. 103, supp. 2, pp. 188-196, 1956. 

too can be taken from stock or established production lines to make 
other computers. 

In commissioning a computer, because all the packages have 
been pretested, when power is first applied to the complete 
machine it is known that a large part is already fault-free. It 
remains to detect a few errors which may have been made in the 
interconnections. 

Perhaps an even more important consideration is ease and 
speed of maintenance. Test programmes will usually indicate the 
part of the machine in which a fault is occurring. Several monitor 
sockets are located on the front of each package, and by inspection 
the faulty package is speedily found and replaced. 

The package method has been criticized on the grounds of the 
cost and questionable reliability of plugs and sockets, and some 
redundancy of components. 

The authors believe that the many advantages far outweigh 
the cost of plugs and sockets. The present trend is to use copper- 
etched printed circuits, and these fall naturally into the plug-in 
unit idea, the plug contacts being part of the printed wiring; there 
has been no trouble in Pegasus from plugs and sockets. Component 
redundancy in Pegasus is about 10% of the diodes and a few 
resistors, the cost of redundant components being about 2 150. 

Electrical design of the packages 

Circuits used for arithmetic and switching operations 

Historical. A previous data-processing machine [Elliott et al., 
1952; Elliott e t  al., 1956bl used 330 kc/s serial-digital circuits; they 
had originally been designed for 1 Mc/s operation, but 330 kc/s 
waschosen to suit an anticipation-pulse cathode-ray-tube store. This 
frequency has been retained to the present time because it suits 
the magnetostriction delay-line store [Fairclough, 19561 and the 
magnetic-drum store [Merry and Maudsley, 19561. Experience 
with the data processor led to work (commenced in 1951) on a 
new set of circuits [Elliott et al., 19521, particular emphasis being 

171 



172 Part 2 1 The instruction-set processor: main-line computers Section 2 I Processors with a general register state 

laid on flexibility of use and ability to work without error in high 
electrical interference fields. These circuits form the basis of those 
in Pegasus. 

Operations to be carried out. The following well-known opera- 
tions are used to build up the logical structure of the computer: 

‘And.’ This operation, which may be carried out between 
two or more input serial trains of pulses, produces an output 
train in which pulses occur only when pulses are present 
at the same time on all inputs. 

‘Or.’ This operation produces an output train in which 
pulses occur at all times when a pulse is present on any 
of a number of inputs. 

‘Not.’ 1’s are changed into 0’s and 0’s into 1’s; this is 
achieved by inverting the pulse train. 

Digit Delay. The passing of a pulse train through a digit 
delay produces a pulse train similar to the input, but each 
pulse is one pulse position later in timing and restandard- 
ized in shape. 

(I 

b 

c 

d 

All operations in the computer, including addition, subtraction, 
and staticizing, are carried out by combinations of these elements. 
There is no circuit specifically for addition, and there are, in 
general, no flip-flops such as are often used for staticizing or storing 
a single digit. A similar philosophy was arrived at independently 
by the designers of SEAC and DYSEAC [Elbourne and Witt, 19531, 
bnt the detailed working out is considerably different. 

Digit wavefoms. The timing of digit pulses throughout the ma- 
chine is controlled by a common ‘clock’ waveform-a 3 micro- 
sec square wave (Fig. l a )  in which the positive-going portions 
define digit positions. 

The digit pulses, which are routed about the machine and ap- 
plied to logical circuits, are generally of the form shown in Fig. 
l h ;  as generated, they have their leading edges well in advance 
of the clock pulse and are of a greater amplitude. This means that 
considerable distortion of the pulse is tolerable, since only the 
portion which coincides with positive clock pulse is of conse- 
quence. Digit pulse trains are ‘clocked’ (‘and’ operation with clock) 
only at their entry into a storage system or into a digit-delay 
circuit. 

Inverted pulses are also employed: as an illustration, consider 
the operation ‘A and not B’. Pulses A and B (Fig. 1) are on two 
lines and are of the same nominal timing, and we wish to form 
A . B (symbolic representation of ‘A and not B’). To do this pulse 

B is inverted (forming B, or ‘not B’) and is used to gate pulse A 
and prevent its passage. The inverted pulse will be a little late 
on B, which also may have been later than A, as shown in Fig. 
IC; thus when A and B are ‘anded’ together a spike may be pro- 
duced, as shown in Fig. le. This spike, however, lies between clock 
pulses and so will be rejected on clocking. 

The pulse system used allows several logical operations to be 
performed in cascade without any loss in nominal timing, so easing 
the problem of logical design (particularly by permitting after- 
thoughts). The maximum number of logical operations performed 

m + 2  to + 3 v o l t s  

’ I  j I 
1 . 5 ~  sec , I 

-10 to -11 v o l t s  

Fig. 1. Basic waveforms. 
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Fig. 2. Digit-delay circuit. 

in cascade in Pegasus is five, though up to 12 could be performed 
in special circumstances. 

The logicul circuits. Each of the logical packages has more than 
one circuit unit. A circuit unit is defined as that part of a package 
which has input and output pins, and no connections to other parts 
of the package other than supplies. We may make the following 
generalizations: 

a 

h 

Each unit has an ‘and’ gate at its input. 

Each unit has a cathode-follower output (half a 12AT7 
valve). 

Each unit has an additional output via a germanium diode 
for making ‘or’ gate connections. 

c 

[Note: There are exceptions to (a) and ( c )  on one package type.] 

There are three possibilities for the part of the circuit unit 
between the input ‘and’ gate and the output cathode-follower, 
namely a digit delay (half a 12AT7 valve), an inverter (half a 
12AT7 valve), and a direct connection. Space does not permit a 
description of all the circuits, so it is proposed to deal only with 
the digit delay. 

The circuit is shown in Fig. 2, and some typical waveforms 
are shown in Fig. 3. The input circuit can be of two forms, namely 
a 3-input ‘and’ gate and two such gates with their outputs ‘or-ed’ 
together. In both cases there is a further gating with a clock pulse. 
The clocked digits from the gate input circuit are applied to the 
grid of VI, the anode voltage of which falls, so building up a 

current in L. When VI is cut off at the end of the digit, this current 
flows through diodes D, and charges up a storage condenser, C, 
which is discharged at the end of the next clock pulse by a ‘reset’ 
pulse applied through D,. The reset pulse supply is a common 
computer supply whose amplitude and phasing relative to the 
clock pulse is shown in Fig. 3. 

It will be noted that the reset pulse is also present at a time, 
just after V, is cut off, when the current in the inductor is about 
to charge the storage condenser. This merely has the effect of 
deferring the charging of C until the end of the reset pulse, the 

-10 vol ts  (C) 

approximate 

Fig. 3. Digit-delay waveforms. 
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current in the meantime continuing to flow through the diodes 
with little loss in the stored energy of L, since the voltage across 
L is low at this time. 

The output cathode-follower V, is caught at - 10 volts in the 
negative direction by a diode; this safeguards the crystal-diode 
circuits driven by it in the event of failure of the h.t. supply or 
V,, and it removes residual ripple on the bottom of the input 
waveform, and thus reduces the back voltage and hence leakage 
in diodes of gates driven by the output. 

The second output through a diode can be used in conjunction 
with similar outputs from other circuits and a resistor (pins 3 and 
4) to make an ‘or’ (up to about 16-way). 

In general, each output circuit has two available load resistors, 
disposed between direct and ‘or’ outputs according to a set of rules 
which are applied for each case. The number of units which can 
be driven by an output can vary between three and 16 according 
to circumstances; where more have to be driven than the rules 
allow, use is made of ‘booster’ cathode-followers available on one 
of the packages. 

Some examples of the use of the logical circuits 

Two examples will be given, the first being a simple arrange- 
ment-the staticixor-which is used frequently, and the second 
being a complicated arrangement-the adder/subtracter-which 
is used infrequently. The symbols used to indicate the circuit units 
are shown in Figs. 2c and 5h. 

The staficizor. The function of a staticizor is to remember the 
fact that a digit occurred at a particular time, for an indefinite 
period, the method generally used in Pegasus being shown in Fig. 
4. A digit delay with a twin ‘and’ gate input has its output con- 
nected to one of its inputs. It is turned on by gate 1, which causes 
a digit to circulate as long as the inputs to gate 2 remain positive. 

S t a t i c i z o r  is t u r n e d  
/ o f f  i f  e i ther  of t h e s e  

leads i s  n e g a t i v e  
S t a t i c i r o r  is s e t  if 
t h e s e  leads a r e  
p o s i t i v e  

r 
Fig. 4. The staticizor. 

X + Y  or X - Y  
(Delayed one 

C a r r y  Add S u b t r o c t  ( O )  
suppression 

Cathode I n v e r t e r  D i g i t  
AND G a t e  fol lower delay  ( b )  

Fig. 5. The adder/subtracter. 

It is normally turned off by an inverted pulse (a ‘0’ following a 
series of 1’s) on one of the gate 2 inputs. 

The adder/subtracter. Figure 5 shows an adder/subtracter unit 
with inputs X and Y and an output X + Y for the sum or X - Y 
for the difference. There are two further input control leads 
marked ‘add’ and ‘subtract’. If the ‘add’ lead is held positive 
while the ‘subtract’ lead is held negative, the unit acts as an adder. 
If the ‘subtract’ lead is held positive and the ‘add’ lead negative, 
the unit acts as a subtracter. Carry suppression is controlled by 
the lead marked ‘carry suppression’. Carries are allowed to propa- 
gate when this lead is held positive, so that a negative signal on 
this lead will snppress carry. 

Table 1 gives the digits appearing at the outputs of logical 
elements in the adder/subtracter unit for all combinations of input 
and carry digits when the unit is operating as an adder. 

Arrangement of circuits bused on packages 

It was required to base the logical circuits OII a standard size of 
package which could also be used for other circuits, e.g. a nickel- 
line 1-word store [Fairclough, 19561. A unit which could accom- 
modate three valves and had a 32-way plug was decided on; the 
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Table 1 
when set to add, for all combinations of the input and carry digits 

Digits at various internal points of the adder/subtracter unit 

Present Digits at internal points 

digit A B c D E F  
Inputs digits carry 

(Sum) (Next 
X Y  Z carry) 

0 0  
0 0  
0 1  
0 1  
1 0  
1 0  
1 1  
1 1  

0 1 0 1 0 0  
1 1 0 1 1 0  
1 1 0 1 1 0  
0 1 1 0 1 0  
1 1 0 1 0 1  
0 0 1 1 1 1  
0 0 1 1 1 1  
1 1 1 0 1 1  

Note.-A and Care  at the grids of the digit delay units. 

problem then was to arrange the various circuits in such a way 
as to enable a computer to be designed using a minimum total 
number of packages without too many types. Five types were 
arrived at and these are shown in Fig. 6. 

As an example of the factors involved, consider package types 

W W  NOTE Clock connections 
are not shown, they are 
implied whenever a delay 
symbol is used. 

( U )  

1 and 2.  The circuit units based on package type 1 can perform 
all the functions of those on type 2.  However, there are many uses 
for a digit-delay circuit with a single ‘and’ gate input (package 
type 2), and since three units of this kind (instead of two for a 
2- ‘and’-gate input delay) can be based on one package, a saving 
can be effected. In Pegasus this saving amounts to 32 packages, 
which is considered to be well worth an extra package type. 

In addition to the five logical packages, a further 16 types (three 
of which are peculiar to each computer) are required. The numbers 
used for the various functions are given below: 

Number 

Type 1 113 
Type 2 64 

Logical types Type 3 55 
Type 4 45 
Type 8 37 

61 
38 
17 
14 

Total 444 

i 
Nickel line 1 word store 
Drum-store packages (8 types) 
Input/output packages (3 types) 
Clock and reset waveforms (3 types) 

~ 

Fig. 6. Contents of logical packages. The arrowhead on an output lead denotes the presence of an OR crystal connection. 
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The magnetic-drum store and the circuit packages used with 
it are described in another paper [Merry and Maudsley, 19561, 
as is the nickel-line store [Fairclough, 19561. 

The mechanical design of the packages 

General form 

Each standard package consists of three main parts, namely the 
valve panel, the component panel and the plug. 

The valve panel is an aluminium pressing, there being three 
types-a 3-valve type, a 2-valve type and a blank. The package 
type number is marked on the panel by two dots according to 
the standard resistor colour code. 

The component panel houses up to 100 components, including 
small transformers, chokes and coils, the panel and the handle 
being made in one piece from sheet insulating material. This 
design provides a minimum resistance to airflow over the valves 
and gives ample protection to the valves against accidental dam- 
age. 

The plugs and sockets are used in multiples of eight connec- 
tions. Most of the packages have four plugs providing 32 connec- 
tions, but up to 64 are possible in each package. The plug contacts 
are made of brass and are heavily silver-plated. The socket uses 
a proprietary valve-holder contact, which can readily be replaced 
if damaged. 

SOCKETS 
/ PLUGS 

Fig. 7. Standard package. 

This combination of plug and socket has a consistently low 
contact resistance (0.003 ohm at 1 amp); the insertion and with- 
drawal force is about 4 oz per contact. 

The wiring of the packages 

At present packages are wired and soldered by hand. The wiring 
is point-to-point, and within the limitations of layout for efficient 
performance, wire lengths are standardized for mass production on 
automatic wire-cutting and stripping machines. The symmetry of 
the eyelet positions makes it possible to use components which 
are preformed to a standard pitch and would allow for automatic 
preforming and insertion of components. 

Experimental packages have been produced by photo-etched 
wiring and dip soldering. 

Specification of the computer Pegasus 

Summary specijication 

A detailed specification would cover the ground of the program- 
ming manual [Pegasus Programming Manual, Ferranti Ltd., 
London] and would be out of place here. 

Pegasus is a binary serial-digital computer. The word length 
is 42 binary digits, of which 39 digits are used for a number and 
its sign (negative numbers are represented by their complements 
with respect to two), one digit is used for a parity check and the 
other two are gap digits. The length of an order is 19 binary digits, 
so that one word may consist of two orders, the remaining digit 
being a ‘stop-go’ digit. If the ‘stop-go’ digit is a ‘V, the computer 
will stop before obeying the orders in the word, but will proceed 
unhindered if the digit is a ‘1’. 

There is a 2-level store, a magnetic drum holding 5120 words 
and an immediate-access or computing store of 55 single-word 
magnetostriction delay lines. 

An order is made up of seven N-digits, three X-digits, six F-digits 
and three M-digits, the N-digits being the most significant and the 
M-digits the least significant. The N-digits allow 128 addresses in 
the immediate-access store (of which only 63 are used). The reg- 
isters in this store are shown in Fig. 8. The X-digits refer to one 
of the accumulators, the registers corresponding to N-addresses 
0-7. Thus the order code is a 2-address code with one address 
referring to only a limited part of the store. The F-digits indicate 
the function of the order. A list of functions and their correspond- 
ing F values are given in the appendix of this chapter. The M-digits 
indicate a modifier for the order: they select one of the accumula- 
tors, and the modification process is to add certain parts of the 
contents of the selected accumulator to the order before it is 
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Fig. 8. Allocation of addresses in store. 

obeyed, the part chosen depending on the function of the order 
to be modified. Figure 9 gives a schematic representation of the 
modification process. The effect of modifying an order depends 
on the function of the order and can be to make the effective order 
length 22 digits. This extension is necessary when specifying an 
address in the main store. 

Transfers of information can take place between the computing 
store and the main store, and vice versa, either in single words 
or in blocks of eight words. For single-word transfers, only the 
register with address 1 in the computing store is involved. For 
block transfers the address on the drum of the first word of the 
block must be divisible by eight, and the registers in the computing 
store that are involved will be one of the discrete blocks indicated 
in Fig. 8. 

Input and output is by means of punched paper tape. An ‘exter- 
nal conditioning’ order is included in the code to enable a choice 
of input and output equipment to be made. In the standard 
machine, two tape readers are used. 

All stored information is checked (when read) by means of a 
parity digit, which is such that the total number of 1’s in any 
correctly stored word is odd. The input and output of decimal 
characters on tape can be checked by a similar process. 

The considerations which led to the 
specification and the logical design 

The main features of the design are 

a The use of a computing store from which all orders and 
numbers are taken while computing 

The provision of multiple accumulators 

The provision of special orders and facilities for dealing 
easily with ‘red tape’l 

b 

c 

The computing store. The use of a fast-access store from which 
all numbers and orders are taken increases the speed of the 
machine and eliminates the need for optimum programming. It 
is this computing store which makes it possible to use an inexpen- 
sive magnetic drum (with a relatively long access time) as the main 
store, and yet have a machine which is fast and relatively simple 
to programme. On the other hand, programmes have more ‘red 
tape’ and are not as simple as with single-level storage. 

Transfer between levels is in blocks of eight words; this is a 
simplification and saves time. One block holds a reasonable amount 
of programme and other blocks hold data. Four blocks in all (32 
words) would be just sufficient, and Pegasus was originally de- 
signed with this number. The design was subsequently modified 
to six blocks, which is quite adequate, in conjunction with the 
seven accumulators. Any further increase in the size of the com- 
puting store would be achieved by increasing the size, not the 
number, of blocks. As it is there is an economic balance between 
the usefulness and the cost of the computing store. 

“Red tape’ is an expression for the non-arithmetic orders in a programme. 

SHADED PORTION IS ADDED 
TO THE ORDER. THE FULL 
13 DlGlTS ALWAYS APPEAR 
I N  X REGISTERS I N  
SIGNIFICANCE SUCH THAT 
THE MOST S I O N I F I U N T  
DIGIT CORRESPONDS TO 
2-I (AND LEAST SIGNIFICANT 
TO 2-13.) 

FUNCTIONS 0 0 3 7  . . .... . ... 
FUNCTIONS 40.61- 

F U N C l l O N S  lO,lI,74.13 

fUNCTlONS 7 . ? , 1 3 , 1 6 , 7 1 ~  0 .  

Fig. 9. Order-modification process. 
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The procision of several accumulators. This is the most novel 
feature of the logical design of Pegasus. It is generally agreed that 
the simplest order code from the user’s aspect is the 3-address code 
with orders of the form, A + B+ C. An examination of this 
form of code, however, shows that in many cases two of the ad- 
dresses are the same, so that the order takes the 2-address form, 
A + H 4 A. A further examination shows that in a large propor- 
tion of cases the address A is confined to a very few addresses. 
This leads to the suggestion of a code of the form N + X-- t  X, 
where X covers only a small part of the store while N covers the 
whole store. This will have the advantage of yielding a reasonably 
short order. In Pegasus two such orders are incorporated in one 
word, leaving sufficient digits to specify a modification register (a 
Mancunian B-line) in each order. 

The extreme case of this code is, of course, the single-address 
code, where X is confined to one address, the accumulator. How- 
ever, experience had convinced the programmers collaborating in 
the design of Pegasus that, with single-address codes, a large 
number of orders are concerned 50kly with transfers of numbers 
from one register to another; the single accumulator is a restriction 
through which all numbers must pass and in which all operations 
have to be performed. 

In the Manchester University computer the B-lines serve two 
very valuable but distinct purposes: they allow order modification 
and rudimentary arithmetic (such as counting) to be done without 
disturbing the accumulator. It was felt that fuller arithmetic and 
logical facilities on these B-lines would have been extremely valu- 
able. The seven accumulators in Pegasus, used for modification 
and arithmetic, are a development of the B-line concept. 

Special facilities for dealing with ‘red tape’. The difficulties asso- 
ciated with the 2-level storage system have been greatly reduced 
by having an order-modification procedure which depends on the 
function of the order (Fig. 9). This method of modifying orders, 
used in conjunction with order 66 of the code (the unit-modify 
order), enables the counting through blocks of information to be 
done with relative ease. 

The use of the group-4 orders of the code enables counters to 
be set conveniently and a constant (up to 127) to be placed in 
an accumulator, the constant being the value of the N-digits of 
the order. Order 67 (the unit-count order) enables the counting 
of cycles of operations to be dealt with in a simple way. A jump 
to another part of the programme can be programmed to take 
place automatically when the required number of cycles has been 
performed. 

Having a large number of jump instructions greatly helps in 
organizing a programme. In particular, one order enables a jump 
to be made depending on the condition of an accumulator (being 
zero, for example), and another order on the complementary con- 
dition (being not zero). When only one of these orders is available 
it is necessary to think ahead to see whether or not the correct 
condition will be satisfied. Although the eight jump instructions 
included in the code were felt initially to be enough, it is now 
suggested by programmers that even more such orders would be 
helpful. 

The logical shift orders, 52 and 53, are also included to simplify 
‘red tape’. In particular, they are used for packing and unpacking 
words holding several items of information. 

As a result of including these various orders, the order code 
of Pegasus is quite large. It is worth remarking, however, that by 
a sensible grouping of the orders in the code the remembering 
of the code is a very simple task. A sensible arrangement of the 
code tends to reduce the amount of equipment needed to engineer 
it. For example, when the equipment for dealing with group 0 
of the code has been allocated, groups 1 and 4 require the addition 
of only three gates. 

Facilities for  checking programmes. The features mentioned above 
make the computer easier to programme, and there are other 
facilities in Pegasus that make it easier to check out and develop 
new programmes. These include causing the machine to stop 
obeying orders, either under programme control or when the 
programme is in error. In particular, the machine stops if an order 
for writing in the main store is reached and an overflow indicator 
is set. A further aid when testing new programmes is the automatic 
punching out of all main-store addresses appearing in block- 
transfer orders. When this information is examined an indication 
of the course of a programme is readily obtained. The punching 
can be inhibited by a switch when a return to full-speed running 
is needed. 

Machine rhythm 

The logical design of Pegasus is built around a nucleus that deals 
with the simple arithmetic orders, groups 0, 1 and 4, of the code. 
This nucleus contains the control section, i.e. the order register 
and order decoding equipment, and the mill in which these orders 
are executed. The design of this nucleus could not begin until a 
basic rhythm for dealing with the extraction from the computing 
store and the execution of such a pair was determined. When the 
outline of this nucleus was clear, the equipment for dealing with 
the remaining orders in the code was designed to fit it. 
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The following arguments led to the basic rhythm. Since the 
orders of groups 0, 1 and 4 are similar in many respects, for 
definiteness, it will be sufficient to consider a particular order, 11 
of the code, say. This is an order which takes two numbers from 
the computing store and replaces one of them by their sum. It 
would take a prohibitive amount of equipment to extract these 
numbers, add them together and have the least significant digit 
of the sum available for replacing in the store in the same digit 
time as the least significant digits of the two components taken 
out of the store. In practice, some four digit times at least would 
be needed for this sequence of operations. Thus, it would be im- 
possible to return the sum to the store in the same word as the 
operands are extracted without having an entry point to each 
register which is in a different timing from the normal circulation 
entry. To produce two such entry points to each register would 
mean more equipment associated with each register, which was 
considered an uneconomical use of extra equipment. Instead, it 
was decided to delay the sum so that it could enter the register 
in the computing store in the next word time in standard timing. 
This involves one common delaying circuit instead of one for every 
register. Such an order therefore takes two word times to execute. 
It may be argued that this second word time could be made to  
overlap with the first word time for the next order. Two reasons 
oppose this: the new contents of the register being changed might 
be required by the next order; and two different sets of equipment 
for selecting a storage register would be needed if numbers were 
to be extracted from one and replaced in another register in the 
same word time. 

Thus, the execution of a pair of orders taken from the comput- 
ing store requires four word times. The reasons for opposing the 
overlapping of the execution of two orders also oppose the extrac- 
tion of an order pair while the previous pair is being dealt with. 
Five word times are therefore needed for the process of extracting 
and obeying a pair of simple arithmetic orders. More time may 
be needed for some of the other orders in the code. 

The basic 3-beat rhythm is thus established: 

a 

h 

c Obey the second order. 

Extract the order pair from the computing store. 

Obey the first order of the pair. 

The duration of beat (a)  is one word time; beats (b )  and (c)  
are each two word times long for orders in groups 0, 1, 4 and 6 
of the code, but may be longer for other orders. 

Times for typical operations 

The times for the various arithmetic operations are: 

millisec 
Addition and subtraction . . . . . . . 0.3 
Multiplication . . . . . . . . . . . . . . 2.0 
Division . . . . . . . . . . . . . . . . . . 5.4 

These times include an allowance for the time to extract the 
orders. 

Some times for standard subroutines are: 

millisec 
Exponential function . . . . . . . . . . 29 
Sine function . . . . . . . . . . . . . . . 24 
Logarithmic function . . . . . . . . . . 34 

Finally, to give some indication of the time for a typical prob- 
lem, a set of 50 simultaneous equations (with a single right-hand 
side) takes about 10y4 min. Of this time, 3 min 8 sec is for input, 
7 min 17 sec is for calculation and 18 sec is for output. 

Realizing the specification 

The detailed logical design 

It would take too long to describe fully the detailed logical design. 
One aspect is worth mentioning, however, namely the avoidance 
of all ‘exceptions’ in the results of orders. As an example of an 
exception consider the overflow indicators, which should be set 
whenever the final result of an order is outside the permissible 
range of numbers. In multiplication this can occur only when both 
the multiplier and the multiplicand are - 1, and this is likely to 
occur very infrequently. Rather than provide equipment to sense 
this infrequent case, it  is easier to put a footnote in the program- 
ming manual, where the overflow indicator is described, pointing 
out the exception. It was felt, however, that such exceptions should 
be avoided even at the expense of extra equipment or extra com- 
plication. For this and other reasons concerned with facilitating 
machine use, the logic of Pegasus is quite complicated. 

The end-product of the detailed logical design is a series of 
diagrams with symbols corresponding to the circuit units of the 
packages, as shown, for example, in Fig. 5. The inputs and outputs 
of the units on these diagrams correspond to the pins of the sockets 
into which the packages plug. Thus, the wiring lists of connections 
of these pins can be produced from these logical diagrams. The 
first step in the production of these lists is to allocate a position 
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in the cabinets to each logical circuit in such a way as to reduce 
the amount of wire needed. When the layout has been completed, 
the last stage of producing the wire lists can proceed. 

General construction of machine 

The main units are shown in Fig. 10. 

The package frame. This unit is a simple light-alloy frame sup- 
porting diecast light-alloy frame racks to which the back socket 
panels are fixed. The packages slide into grooves in the rack and 
plug into sockets at the back, a polarizing feature preventing the 
insertion of a package upside down. If electrical or magnetic 

Section 2 I Processors with a general register state 

screening is necessary between any packages, a special metal plate 
is inserted in slots in the cast rack and is fixed by a single screw 
in the back panel. Coded aluminium strips containing coloured 
plastic studs which identify the position of each package are fixed 
to the front of each casting. 

Arrangement of the packages. There are 200 packages per cabinet, 
arranged in ten horizontal rows of 20 units per row. The metal 
valve panels are placed so that the edges almost touch. The com- 
ponent panel of each unit is in register with the unit in the corre- 
sponding position in each of the other rows, thereby providing 
vertical chimneys for cooling the components secured to these 

BAY I 
LOGlC PACKAGES 

\ I 

8 A V  2 
.OGlC PACKAGES BAY 3 

INPUT 
EQUIPMENT 

Fig. 10. Main units. 
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panels. Warm air from the main source of heat, the valves, is 
prevented by the valve panels from reaching the more tempera- 
ture-sensitive components, such as diodes, secured to the com- 
ponent panel. 

The back panel wiring. For locating long signal wires between 
sockets a system of plastic strips is used, which hold the wires 
at definite positions given by the instructions on the wiring lists. 
The exact route of every wire is predetermined, thus making 
wiring and inspection more reliable and fault finding and mainte- 
nance easier. 

Final assembly. The completely wired frame is assembled in its 
cabinet, which has already been fitted with the control and auxili- 
ary supply circuit unit, heater transformers, fuses, cooling assembly 
and cablefornis. The work of connecting the cableforms, heaters 
and earths can be done by relatively unskilled labour working to 
clearly written instructions and diagrams. 

The cooling system. Each cabinet has its own cooling system as 
an integral part of the construction; there is therefore no difficulty 
in cooling cabinets added to existing computers. Two axial-flow 
turbo blowers are mounted in the base beneath an airtight pressure 
chamber, each providing 300 ft3/min of air a t  a total pressure head 
of 1 in (water gauge). The maximum temperature rise is 10” C. 

The power supply. A separate cubicle houses metal rectifiers, shunt 
stabilizing valves and control circuits. The power is obtained from 
the mains through a motor-alternator set, the output of which is 
stabilized to 2%, the main purpose of this set being to act as a 
buffer against switching surges and other mains voltage variations. 
The valve heaters in the computer are energized from the stabi- 
lized alternator output, which is expected to extend the valve life. 

Maintenance 

General 

All digital computers so far have a fault rate which cannot be 
ignored. When the best has been done in the choice of components, 
circuits and mechanical construction, attention must be paid to 
the following points to get the best out of a machine: 

a Rapid fault location 

b Getting the machine working again as soon as possible after 
locating a fault 

c Preventive maintenance 

Fault location 

There are parity-checking circuits on both the main and the high- 
speed stores. Errors of a single digit in the stores stop the machine. 
The fault can then be  quickly located by examination of the 
monitors. 

For other faults the general method is to run a test programme 
(assuming the fault is not in the main control) which will indicate 
the area of the fault. Detailed examination can then be  carried 
out with the monitors. 

All outputs of circuit units are readily accessible at monitoring 
sockets on the front of each package, and in addition about 80 
points can be directly selected by switches from the monitoring 
position: these include all store lines and a number of key wave- 
forms. Fault-finding is normally a matter of tracing 0’s and 1’s 
through the machine with reference to logical diagrams rather 
than electronic circuit diagrams. 

A variety of triggers can be selected for the monitor time-bases, 
these including 

a Trigger at any word position within a drum revolution (128 
different times selectable by switches) 

Trigger at any word time of any selected order h 

These triggers and some other monitoring facilities are pro- 
duced by 19 standard packages and are found to be well worth 
the extra equipment. 

Fault repair 

Once a faulty package has been located, the machine can be got 
working again immediately by replacement of the package with 
a spare; repair of the faulty package can be done at leisure with 
the aid of a package tester. With this equipment a package can 
quickly be given a series of standard tests; each is selected by 
switches, and the performance is measured either by observation 
of meters or a built-in oscillograph. 

During commissioning not one case was found of the first 
machine doing other than what one would expect from the logical 
diagram (except for a very few cases of incorrect wiring). 

Preuentiue maintenance 

The machine h.t. supplies are reduced while the test programmes 
are being run. This marginal testing shows up incipient faults such 
as deterioration in valves, crystal diodes or resistors. The machine 
is at present kept in good running order down to 10% margins 
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30 
31 
32 
33 
34 
35 
36 
37 
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,Not allocated 

(the supplies are normally controlled to about 1% of nominal), 
although correct running at  about 20% reduction has been ob- 
served. 

for 55”/, hours’ running. The majority of package replacements are 
done during routine maintenance. 

The packaged method of construction of computers has proved 
to have great advantages in design, construction and operation. 

Conclusions 

The first machine has been computing regularly for only a few 
months and has been on regular preventive maintenance (about 
1 hour per day) for a few weeks. Error-free runs of over 30 hours 
are common, and at  the time of writing there has been no error 
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40 x‘ = c 
41 X ’ = X + C  

42 x’ = - e  

44 x ’ = c - - x  
45 x ’ = x & c  
46 X ’ = X ~ C  

43 = - 

APPENDIX 

.c = ~ 2 - 3 8  

The Pegasus Order Code 

00 x’ = n 
01 x ’ = x + n  
02 x‘ = -n 
03 x ‘ = x - n  
04 x ’ = n - x  
05 x’ = x & n 
06 x’ = x $ n  
07 Not allocated 

10 n’ = x 
11 n ’ = n + x  
12 n’ = -x 
13 n ’ = n - x  
14 n ’ = ~ - n  
15 n’ = n & x 

17 Not allocated 
16 n ’ = n f x  

this order assumes that any 
overflow is due to opera- 
tions in 7. Clears overflow I unless n‘ overflows 

23 (nq)’ = n + 2-3xy 

0 2 p’ /n  < 1 (unrounded 
division) 

25 -y2 5 p ’ / n  < ‘/z (rounded 
division) 

26 q‘ + 2-38(:) = x; -y2 5 p’/n < Y2 (rounded single- 

27 Not allocated 

n 
length division 

Note: x’ = x 
single-length arith- 

metical shifts 
50 x‘ = ZNx 
51 x’ = 2-lVx (rounded) 

53 Shift x down N places ] shifts 
52 Shift x up N places single-length logical 

Note: p ’  = p 
and q’ = q I i f N = O  

double-length arith- 
metical shifts I 54 ( p q ) ’  = 2N(pq) 

55 (py)’ 2-N(pq) (un- 
rounded) 
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56 (Normalize) ( p q ) ’  = 2p(pq); 

either (1) y4 5 ( p q ) ’  < ‘/z and I - 1 I p s N - 1  

57 Not allocated 

60 Jump to N if x = 0 
61 Jump to N if x # O  
62 Jump to N if x 2 0 
63 Jump to N if x < 0 
64 Jump to N if overflow staticizor clear; clear overflow staticizor. 
65 Jump to N if overflow staticizor set; clear overflow staticizor. 
66 (Unit-modify) x& = xm + 1. Jump to N if x& $ 0  (mod. 8) 
67 (Unit-count) x: = x, - 1. Jump to N if x: # 0 

70 Single word read to accumulator 1. 
71 Single word write from accumulator 1. 
72 Block read from main store 

1’ = s 
s‘ = 1 
u‘ = b 

73 Block write into main store 
74 External conditioning 

”]Not 76 allocated 

77 stop 

h‘ = u 

The notation used here is as follows: 
N is the first address (the register address) in an order. 
X is the accumulator specified in an order. 
n is the word in N before obeying the order. 
x is the word in X before obeying the order. 
p and q are the words in 6 and 7 before obeying the order. 
( p q )  = p + 2-38q, with 2 0. This is a double-length number. 
x‘, n’, p ’  and 9’ are the corresponding values after obeying the 

B is a block in the main store (the drum). 
U is a block in the computing store. 
P is the position number of a word within a block. 
OVR is the overflow indicator. 
xm is the modifier in X ,  i.e. an integer represented by the digits 

xc is the counter in X ,  i.e. an integer represented by the digits 

order. 

1 to 13 of x. 

14 to 38 of x. 
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An 8-bit-character computer 

10 101 50 SO1 

A-M[Ra A-M[Ra:R-R+L' M[RD]-A M[Ra-A; R+R+L' 

I r ,  ori srd a id  

(2-51 (2-51 (3) (31 
odl  S U I  br b l d  

(11 111 ( 2 )  (31 
cbr cbd C"r cnd 

(0' (11 (11 (11 

Q - i m  Q - R t i m  M [d]- R Q-M[d] 

R - R f L '  R- R - I.' P- R P-d,R-P 

f(r.i.N,Z,C+(P- f(s.d)l - 
( 2 )  (31 (2 )  (3) 

(11 (1) (11 (11 

ad odc sb sbc 
D!-A+R A'-A+ R t C A'-A - R A ' t A - R - C  

m u ,  muf d i i  d i f  
A'-AXR(i) A8-AxR(ffr) A'-A/R(I) A'-A / R (fr} 

111 ( 1 )  ( 1 )  (11 

Introduction 

We present in this chapter the result of an exercise to design an 
%bit computer. Although a rather trivial machine, it is not without 
interest, either as manipulator of variable-length character strings 
or as an interpreter of more complex computers in a role similar 
to a microprogrammed Pc. In the latter role a read-only memory 
could be used as Mp to speed up the Pc. 

This computer is typical of %bit character-oriented computers. 
Among the similar machines are the Interdata Model 3, the RCA 
1600, the IBM System/360 Model 25, and the Data Machines Inc. 
DMI 520/I. A processor of this type rarely stands alone but is used 
with a fixed program in the following ways: as a control in a larger 
C, as a control to a laboratory or other complex instrument, and 
as a microprogrammed processor to interpret an 1SP.l 

The processor must perform fixed-length operations on both 
%bit characters and 16-bit addresses. The address (double length) 
operations are necessary for performance reasons, because almost 
all programs operate on address integers. (For example, see the 
program on page 185.) Thus, extending (generalizing) the operation 
length to three and four characters is comparatively inexpensive. 
It should be noted that a processor might allow the operation 
length to be specified between 1 and perhaps 28 (256) characters 
for a much more general capability. We limit the directly addressa- 
ble Mp to 216 (or 65,384) characters. An alternative design might 
allow the maximum addressable Mp to be zz4 words, or, alter- 
natively, it could be variable. Although 24-bit operations are 
defined, their implementation might be expensive. Aligning the 
24-bit words on 32-bit-word boundaries would simplify the address 
calculation hardware. 

110 

111 

The ISP 

The basic information unit is the 8-bit character. Instructions are, 
in general, one character in length. However, both instructions 
and data formats are of variable length, instructions being 1, 2, 
3,4, and 5 characters long, and data being 1,2,3,  and 4 characters 
long. The Pc state contains -35 characters, which are organized 
to be dealt with as eight 8-, 16, 24-, or 32-bit registers (shown 

and or XO, cmpr 

(1) (11 (1) (1) 
A-A A R  A-A" R A-A@ R N.2-A-R 

Id  S t  sh i f t  SI. 

L- r A'-A X 2' B ' c R  R- A 
(0 ~ (1) ( 1 )  ( 1 1  

'The structure should be compared with the elaborate microprogrammed 
IBM System 3BO/Model 30 (Chap. 32). 

in the ISP description in Appendix 1 of this chapter). Of these 
registers, the first (register 0) is taken to be a special accumu- 
lator, A. 

The Pc state contains both operands and addresses to operands. 
The instructions to load or store register A, from or into Mp, with 
or without incrementing a general register, all use the general 
registers as a two-character address pointer. Any general register 
may be loaded or stored direct from or to Mp. The binary arith- 
metic and logical operations are with a register and the accumu- 
lator, and leave the result in the accumulator; i.e., they are of the 
form 

A t A b R[r] 

Inst ruct ion execution .= 
(oP=xxxyyz l  

Instructions Formots 

FOrmat Chorocler length __ Name ~ Behavior' 

0 4 7  
1 No parameters 0 

2 address 
Integer or relative 

l o p  I r T  5 I b 
0 7 15 

IOP I r 1 d J c 3 Direct address 
0 7  23 

0 7 -  15 23L--31Lp-z 
2-5 Immediate doto d 

m- - - ---I 1 r - - - 7 - - - 7  

' (  1 encloses instruction length in characters shown In formats toble 
'See Stote diogrom, Fig. 2 

Fig. 1. Instruction coding for an 8-bit-character computer. 

184 
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00100,011 

1 character r 

1010,1001 0000,0111 

Inst ruct ion lengths 

2 chorocters 3 Characters 

Inst ruct ion lengths 

2 chorocters 3 Characters 

o The operotton specified by the  instruction q 
0.q 
a q 
0.v Operation t o  determine variobles specified by Instruction q 
a.v Access to  obtain variables or return result variables 

Operation t o  determine location of inst ruct ion q 
Access t o  obtain instruction q 

Fig. 2. An 8-bit-character-computer instruction-interpretation state dia- 
gram. (a) No parameters; (b )  integer or relative address; (c) direct ad- 
dress; (d) immediate data. 

The general registers discussed above are similar to those of 
the general register processors. Since it is assumed that this type 
of processor might be used to interpret another ISP, the + 1 and 
- 1 instructions provide for both string and stack memory opera- 
tions. The instructions for a microprogrammed P and the 1/0 
devices are not defined. For example, a 16-way branch instruction 
which branched to one of 16 locations based on 4 bits of the 
accumulator might facilitate writing an interpreter. 

The ISP is given in Appendix 1 of this chapter. The Pc state 
is organized about a small scratch-pad memory, although Mp could 
be used instead. The instruction formats and the operation code 
assignments are shown in Fig. 1. 

The instructions behave as illustrated in the state diagram (Fig. 
2). For example, the instruction “hi 3, A907,,” is coded 

The instruction, xor 3,  with L = 2, is coded 

and the effect is 

R[0](0:23) t R[0](0:23) @ R[3](0:23) 

In these examples, the behavior of Iri and xor is specified in the 
state diagrams of Fig. Id and la ,  respectively. 

An open subprogram to perform the n-component vector 

(16-bit) addition’ +% +% is 

start sl 2 - 1 
lri 4, A 
Iri 5, B 
Iri 6, C 
lri 7, 2 x n 

loop la1 5 
st 3 
la1 6 
ad 3 
stl  4 
sul  7 
cnr 4, loop 

set register length = 2 
set up vector pointers to 

locutions A, B, C in Mp 

set up count ut 2n 
fetch B 
storc B temporarily 
fetch C 
add 
store in  A 
decrement n count 
brunch if negative n 

The above program loop is nine characters long. A program 
loop for the IBM Systern/360 is about 16 characters long. The 
setup is 13 characters, as opposed to 6 - 16 characters for the 
360. 

Conclusions 

We have violated our principle of showing “real” computers by 
designing this computer. We think it is typical of a small processor, 
but slightly more interesting. 

‘The length is specified by register L 
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APPENDIX 1 AN 8-BIT-CHARACTER COMPUTER ISP DESCRIPTION 

Appendix  1 

An 8 B i t  Charac te r  Computer I S P  D e s c r i p t i o n  

P c  S t a t e  
The fo l lowing  array of 8 general r e g i s t e r s ,  R, are mapped i n t o  t h e  f i r s t  8 x 
&:6 x i L + l l )  - I>. 

( I h I )  c e l l s .  The r e g i s t e r  length  i s  
The f i r s t  r e g i s t e r  o f  each array,  R [ O l i s  an accumulator, m d  has s p e c i a l  p r o p e r t i e s .  

R[O:71<0: (8 x L ' )  - I >  := M[O:7][0:L1<0:7> 

A 4 : ( 8  x L ' )  - I >  := R[O]63:(8 X L ' )  -1> 

:= M [ O : 7 1  [0:31<0:7> RQ[O : 7 1 4 :  31> 

AQ<0:31> := RQ[0]<0:31> 

RT[O: 71<0:23> := M [ O : 7 1  10:21<0:7> 
AT<O:23> := RT[01<0:23> 

R O [  0: 7 1 4 :  15> := M [ O : 7 1  [0:11<0:7> 

AD<0:15> := RD[Ol<O:15> 

R S E O :  7 1 G :  7> := M[0:71 [o:oIUl :7> 
AS<O:7> := R S [ O l < O : P  

General R e g i s t e r s  o f  length  IL+lI x 8 b i t s  

AccumuLator IgeneralZyJ 
Quadruple R e g i s t e r s  

Quadruple Accumulator 

T r i p l e  Regis ters  

T r i p l e  Accumulator 

Double R e g i s t e r s  

Double Accumulator 

S ingle  R e g i s t e r s  

S ingle  Accumulator 

The fo l lowing  f l a g s  are s e t  by t h e  r e s u l t  o f  a l l  a r i t h m e t i c  and l o g i c a l  i n s t r u c t i o n s  on t h e  Accumulator, A .  
t o  A t o  form A ' .  

These are connected 

N Negative resu2.t f l a g  

2 Zero f l a g ,  s e t  i f  t h e  r e g i s t e r  conta ins  a z e r o  

C 

A ' < N , Z , C , O : ( 8  X L ' )  -1> := N o Z O C O A < O : ( ~  x L ' )  -1> 

L<o: 1> 

Carry f l a g ,  s e t  i f  there  i s  a carry or borrow from b i t  0 o f  t h e  
a d d i t i o n  

2 b i t  r e g i s t e r  t o  i n d i c a t e  t h e  character length  of operations; 
1,2,3,4 f o r  S,D,T,Q 

L'<1>4 := L + l  

P<O : 1 5> Program counter 

Mp S t a t e  
M[O:17777781<0:h primary memory 

I n s t r u c t i o n  Format 

i [ 0 :41<0 : n 
op<0:4> := i [ 0 1 4  :4> 
r<O:2> := i [ O ] < 5 : h  

s < O : p  := i [ 1 ]  

&O :IS>:= i [ 1 : 2 ]  

i 6 0 : ( 8  x L ' )  - I >  := i [ l : L ' ] d ) : P  

1 t o  5 character i n s t r u c t i o n  

O p  Code 
r e g i s t e r  address 

signed i n t e g e r  f o r  s h i f t s  

address i n t e g e r  
var iable  length  innnediate data 

I n s t r u c t i o n  I n t e r p r e t a t i o n  Process 
( ( i n s t r u c t i o n [ O : 4 ] * J : D  c M [ P : P + k ] ;  P t P + 1 ) ;  n e x t  f e t c h  

((op = Oil*) v (op  = 1@11) v (op = 1001)) 4 (p t P t 2 ) )  

((op = 1 M O )  v (op = 1010))  + cp t p + I ) ;  
(op = 010$) 4 (P t P + L+ ] ) :  n e x t  

I n s t r u c t  ion-execut  i o n )  execute  
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Instruct ion Set and Instruct ion Execution Process 
I n s t r u c t i o n a x e c u t i o n  :* ( 
la (:= op = 0) + (A +MCRD[ r l l ) ;  toad A 

l a 1  (:= op = I )  i (A + M [ R D [ r ] ] ;  n e x t  R O [ r ]  t R O [ r l  + L ' ) ;  load A ,  Zncrement 

sa ( :=  op = 2 )  + ( M [ R D C r l I  +A); 
sa l  ( : =  op = 3 )  i (M[RD[r]]  + A ;  n e x t  R D [ r ]  + R O [ r ]  + L ' ) ;  

l r i  ( :=  op = 4 )  i ( R [ r ]  e im ) ;  

a r i  (:= op = 5 )  3 ( R [ r ]  t im + R [ r ] ) ;  

s r d  (:= op = 6) i (M[d] + R [ r ] ) ;  

I r d  ( : =  op = 7 )  i ( R [ r ]  t M [ d ] ) ;  

ad1 (:= op = OIOOO) + ( R [ r l  c R [ r ]  + L ' ) ;  

S U I  (:= op = OlOOl) 3 ( R [ r l  + R [ r ]  - L ' ) ;  

b r  (:= op = 01010) i (P + R [ r ] ) ;  

b l d  ( : =  op = OlOll) i (P c d ;  R [ r ]  + P ) ;  

c b r  ( :=  op = 01100) + ( (cond  # 0 )  i P  C P  + s ) ;  

cbd (:= op = OllOl) i ((cond  # 0) - t P  c d ) ;  

c n r  ( := op = OlllO) i ((cond  = 0 )  i P  t P  + 5 ) ;  

cnd (:= op = O l l l l )  + ((cond  = 0 )  + P  c d ) ;  

cond := ( r  h NoZoC) 

ad (:= op = 10000) i ( A '  + A  + R [ r ] ) ;  

adc (:= op = 10001) + ( A '  + A  + R [ r ]+  C); 
sb (:= op = 10010) i ( A '  + A  - R [ r ] ) ;  

sbc ( :=  op = lOOl1) 3 ( A '  ' -A - R [ r ]  - C); 
mui ( :=  op = 10100) 3 ( A '  <-A x R [ r ]  ( i } ) ;  

muf ( :=  op = 10101) 3 ( A '  c A  x R [ r ]  

d i i  (:= op = IOIIO) + ( A '  + A  / R [ r ]  

d i f  (:= op = IOllI) i ( A '  < - A  / R [ r ]  

and (:= op = 11000) i (A + A  A R [ r ] ) ;  

o r  (:= op = IlOOl) (A  + A  v R [ r ] ) ;  

xor ( : =  op = 11010) + (A e A  @ R [ r ] ) ;  

cmpr( := op = I i O l l )  i (No2 + A  - R [ r ]  

I d  

s t  (:= op = I l l O l )  + ( f d r l  + A ) ;  

s h i f t ( : =  op = 11110) i ( A '  + A x  2 ' ) ;  

s 1  

( : =  op = 11100) + ( A '  t R [ r l ) ;  

(:= op = 11111)  --f ( L  + r)  

1 

store A 

store A ,  increment 

load reg i s t e r  innnediate 

add reg i s t e r  innnediate 

s tore reg i s t e r  

load reg i s t e r  
add I to regis ter  

subtract I from regis ter  
branch return 
branch and l ink direct  

conditional branch re la t i ve  
conditional branch direct  

conditional not branch re la t i ve  

conditional not branch direct  

add 

add with carry 
suhtract 

subtract with carry 
integer multiply 

fract ion multiply 
integer divide 
fract ion divide 

logical and 
logical or 
exclusive or 

compare used t o  N and Z 

load 

s tore 
s h i f t  r igh t  or l e f t  

s e t  operation length 
end Instruction,execution 





The instruction-set processor level: 
variations in the processor 

In this part we discuss computers whose ISP’s are variations from the main-line 
computers in Part 2. These variations represent historical computers that have not 
remained viable in the judgment of the computer engineering community, responses 
to particular technology, and explorations that were either too advanced for their 
time or still exist as open options. 

Section 1, Processors with greater than 1 address per instruction, is mostly of 
historical and comparative interest. The general register organization with large Mp’s 
(hence large addresses) almost surely dominate them. 

Section 2, Processors constrained by a cyclic, primary memory, describes a 
response to a historical feature of Mp technology. The use of a drum, delay line, 
or disk was a matter of necessity rather than choice. When better random access 
core memories were available, the drum ceased to be a primary memory component. 

Section 3 presents processors for variable string data. These processors are no 
longer built in their original form. However, they were very successful for a while 
(IBM 1401). Furthermore, string data-types have been incorporated in later proc- 
essors. 

Section 4 presents two desk calculator computers. Although we too often dismiss 
these devices as mere desk calculators, they have facilities that qualify them as 
general purpose stored program computers. Unlike most computers, because of the 
production cost constraint, these calculator computers are all very cleverly designed. 

Section 5, Processors with stack memories, describes an organization that has 
never reached the main line state. Nevertheless, the idea of a stack memory is 
gradually being assimilated. For example, the DEC PDP-6 and PDP-10 computers 
use their general registers for stack pointer control, as suggested in Chap. 3, page 
62. 

In Sec. 6 the ideas of multiprogramming are presented. These ideas are recent 
and have not yet been adequately incorporated in main line designs. They undoubt- 
edly will be standard features in the next generation, although the exact form can- 
not yet be known. 
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Section 1 

Processors with greater than 1 
address per instruction 

Multiple-address instruction formats exist for several reasons. 
The addition of an explicit address to determine the next in- 
struction occurs with cyclic Mp's to make them efficient. Section 
2 is devoted to this case, and it will not be considered further 
here. These processors are known as n + 1 address. A second 
reason is that many operations have more than one operand 
(as in A + B or A V B), and it seems to be efficient encoding 
to put them all into an instruction. A third reason is that many 
operations need to be followed by writing the result in memory, 
to permit the Pc to be used for operations on other data. Thus, 
coupling each operation with the address where the result 
is to be stored seems to be advantageous. However, in evalu- 
ating complex arithmetic expressions, more instruction bits and 
memory references are required than in a single-address com- 
puter. Also, for unary operators one address field is unused. 
It seems fair to say that ISP organizations with two or three 
addresses have not proved themselves in competition with the 
main line of 1, (1 + index), or (1 + general register) organiza- 
tions. However, no definitive demonstration of their inefficiency 
under all technological conditions exists, and they are worth 
studying. 

For microprogrammed processors, multiple-address instruc- 
tions allow a high degree of parallelism to be obtained in a 
single instruction. Multiple-address formats survive in this form. 

The Pilot ACE 

The National Physics Laboratory's Pilot ACE is the first of 
several cyclic memory computers which have been designed to 
provide optimum coding of instructions. Subsequent machines 
which it influenced include the nearly identical English Electric 
Deuce, the Bendix G-15, and the Packard Bell PB-250.' The 
PMS structure does not strictly follow our lattice model (page 
65). The Deuce PMS structure is given in Fig. 1. A 32-word 
block in Mp.delay-line can be transferred to Ms.drum in one 
instruction (transfer time of 1,024 ps). Another capability of 

'H. D. Huskey was involved in the design of ACE, G-15, and PB.250; he was 
undoubtedly the idea carrier. 

ACE allows it to perform operations on vectors of up to 32 
elements in 1 instruction. 

The ACE structure (Chap. 11) has a common M which con- 
tains much of the processor state and Mp. Many of the locations 
used for processor state can store programs for direct execu- 
tion. The diagram on page 198 in Chap. 11 describes the in- 
struction execution process and implementation. 

Alan M. Turing is credited with the basic design of ACE 
(see introduction, page 193, and Turing's biography [Turing, 
19591). 

ZEBRA, a simple binary computer 

ZEBRA illustrates the organizational details of another serial 
arithmetic computer with Mp.cyclic. ZEBRA, like ACE, allows the 
user to construct instructions for the hardware which are almost 
directly interpreted. In both ACE and ZEBRA very little decoding 
is built into the machine; a large instruction set is available 
since the instructions are microcoded. In these computers the 
programming problem can be as complex as the user wishes, 
because a large number of different instructions can be micro- 

S-T.console - 

K-Ms moving head drum; 8192 w; 

32 b/w; 16 t r a c k s / p o s i -  

t i o n ;  32 w / t rack ;  16 p o s i -  

[t ions ] 
'Mp(delay l i n e ;  c y c l i c ;  32 - 1024 ps/w; 32 w; 32 b/w) 

'Pc(techno1ogy: vacuum tubes; 1955 - 1961; (2+1)  address/ I i n s t r u c t i o n ;  ances to rs :  NPL A C E )  

~~ ~ ~~ 

Fig. 1. English Electric Deuce PMS diagram. 
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coded. The LGP-30 (Chap. 16), by contrast, has only a basic 
instruction set. Hence a problem can be coded only one or two 
ways. ZEBRA'S performance of 60 percent memory-cycle utiliza- 
tion is rather outstanding and raises the possibility that ran- 
dom-access primary memories may not be necessary. 

UNIVAC scientific (1103A) instruction logic 

The UNIVAC 1103A (Chap. 13) is a two-address computer. The 
computer was designed initially by Engineering Research Asso- 
ciates (ERA) of St. Paul.' UNIVAC acquired ERA in 1952 as a 
scientific-computer division. The evolution of the 1103A later 
yielded the 1107 and 1108 general register processors. The 
reader should compare the 1103A with the IBM 704 series 
(Chap. 41). At the time both were used, it was not clear which 
computer was better. 

' A s  the third in a series that started with the ERA 1101 and 1102 
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The RW-400: a new polymorphic data system 

The RW-400 in Chap. 38 is a two-address, binary computer. It 
is discussed in Part 5, Sec. 4, page 470. 

Instruction logic of the MIDAC 

The University of Michigan's MIDAC (Michigan Digital Auto- 
matic Computer) is based on the National Bureau of Standards' 
SEAC (Standards' Electronic Automatic Computer). MIDAC, a 
three-address, binary computer, is presented in Chap. 14. 

Instruction logic of the Soviet Strela (Arrow) 

The Russian Strela is presented in Chap. 15. Since it is used 
only to illustrate a three-address organization, the chapter con- 
sists of only the instruction set. 



Chapter 11 

The Pilot ACE1 

J.  H .  Wilkinson 

Introduction General description 

A machine which was almost identical with the Pilot ACE was 
first designed by the staff of the Mathematics Division at the 
suggestion of Dr. H. D. Huskey during his stay at the National 
Physical Laboratory in 1947. It was based on an earlier design 
by Dr. A. M. Turing and its principal object was to provide experi- 
ence in the construction of equipment of this type. It was not 
intended that it would be used on an extensive programme of 
computation, but it was hoped that it would give practical experi- 
ence in the production of subroutines which would serve as a 
useful guide to the design of a full scale machine. An attempt to 
build the Pilot Model, during Dr. Huskey’s stay, was unsuccessful, 
but a year later after the formation of an Electronics Section at 
the NPL a combined team consisting of this section and four 
members of the Mathematics Division started on the construction 
of a Pilot Model, the design of which was taken over almost 
unchanged from the earlier version. The machine first worked, in 
the sense that it carried out automatically a simple sequence of 
operations, in May 1950 and by the end of that year it had reached 
the stage at which a successful Press Demonstration was held. The 
successful application of the machine to the solution of a number 
of problems made it apparent that, in spite of its obvious short- 
comings, it was capable of being converted into a powerful com- 
puter comparable with any then in existence and much faster than 
most. Accordingly a small programme of modifications was em- 
barked upon early in 1951, but the machine was not functioning 
satisfactorily again until November of that year. After a month 
of continuous operation it was transferred from the Electronics 
Section to Mathematics Division where it has since been in use 
on a 13-hour day. During its first year of full scale operation it 
achieved a 65% serviceability figure based on a very strict criterion. 
Its performance during its second year has so far been considerably 
better than this. 

The Pilot ACE is a serial machine using mercury delay line storage 
and working at a pulse repetition rate of 1 megacycle/sec. Its high 
speed store consists of 11 long delay lines each of which stores 
32 words of 32 binary digits each, with a corresponding circulation 
period of 1024 microseconds, 5 short lines storing one word each 
with a circulation period of 32 microseconds and two delay lines 
storing two words each. It was inevitable that in the design of 
a machine originally intended for experimental purposes, over- 
riding consideration should be given to the minimization of equip- 
ment rather than to making the machine logically satisfying as 
a whole. This is reflected to a certain extent in the code adopted 
for the machine and in its arithmetic facilities, which are in gen- 
eral fairly rudimentary. The design of the machine was also de- 
cisively influenced by the attempt to overcome the loss of speed 
due to the high access time of the long storage units. The machine 
in fact uses what is usually known as a system of “optimum 
coding.” 

Code of Pilot ACE 

The Pilot ACE may be said to have a “three-address code” though 
this form of classification is not particularly appropriate. Each 
instruction calls for the transfer of information from one of 32 
“sources” to one of 32 “destinations” and selects which of eight 
long delay lines will provide the next instruction. This third 
address is necessary because consecutive instructions do not occupy 
consecutive positions but are placed in such relative positions that, 
in so far as is possible, each instruction emerges during the minor 
cycle in which the current instruction is completed. An unusual 
feature of the instructions is that the transfers they describe may 
last for any number of consecutive minor cycles from one to thirty- 
two. The instruction word contains three other main elements 
which are known as the wait number, the timing number and the 

iAutmatic ~ i ~ i ~ ~ l  cmputat~on, ~ ~ t i ~ ~ ~ l  physical Laboratory, Teading. 
ton, England, pp. 5-14, March, 1953. 

characteristic which together determine when the transfer starts, 
when it stops and which instruction in the selected instruction 
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source is the next to be obeyed. The structure of the instruction 
word is as follows: 

Next instruction source Digits 2-4 

Source Digits 5-9 

Destination Digits 10-14 

Characteristic Digits 15-16 

Wait number Digits 17-21 

Timing number Digits 25-29 

Go digit Digit 32 

The remaining digits are spare. 
Coding of a problem takes place in two parts, in the first of 

which only the source, the destination and the period of transfer 
are specified, the last being a function of the characteristic, wait 
number and timing number. In the second part, the detailed cod- 
ing, the other elements are added. 

The sources and destinations 

Simplest among the sources and destinations are those associated 
with the short delay lines. The six one-word delay lines are each 
given numbers and these for reasons associated with the history 
of the machine are 11, 15, 16, 20, 26 and 27. They are usually 
referred to as Temporary Stores or TS’s because they are used to 
store temporarily those numbers which are being operated upon 
most frequently at each stage of a computation. In general TSn 
has associated with it a source, source n, and a destination, des- 
tination n. An instruction of the type 

15-16 

in the preliminary stage of the coding represents the transfer of 
a copy of the contents of TS15 via source 15 to TSl6 via the 
destination 16. After it has taken place both stores contain the 
number originally in TS15. The period of the transfer is not 
mentioned in the coding because a transfer of more than one minor 
cycle is irrelevant. Most transfers are for one minor cycle and 
hence the period of transfer is not specified unless it is greater 
than one minor cycle. Associated with the TS’s are a number of 
functional sources and destinations. TSl6 for instance has two 
other destinations 17 and 18 associated with it, in addition to 
destination 16. Any number transferred to destination 17 is added 
to the contents of TSl6 while any number transferred to  destina- 
tion 18 is subtracted from the contents of TS16. TS16 may be said 
to have some of the functions associated with the accumulator 

on an orthodox machine. The period of transfer to destinations 
17 and 18 is very important. Thus 

15-17 (n minor cycles) 

has the effect of adding the contents of TS15, n times to the 
contents of TS16. This prolonged transfer is used in this way to 
give small multiples (up to 32) of numbers. Similarly, we may have 

15-18 (n mc) 

The instruction 

16-17 (n mc) 

is of special significance because it has the effect of adding the 
content of TSl6 to itself for each minor cycle of the transfer, that 
is it gives multiplication by 271 or a left shift of n binary places. 

TS26 has associated with it a number of functional sources. 
Source 17 gives the ones complement of the number in TS26, 
Source 18, the contents divided by 2, and Source 19, the contents 
multiplied by 2. The instruction 

18-26 (n mc) 

thus has the effect of dividing the contents of TS26 by 2n, that 
is a right shift of n places. Similarly 

19-26 (n mc) 

gives a left shift of n places. 
There are two functional sources which give composite func- 

tions of the numbers in TS26 and TS27. These are Source 21 which 
gives the number 

TS26 & TS27 

and Source 22 which gives the number 

TS26 f TS27 

There are a number of sources which give constant numbers which 
are of frequent use in computation. These are Source 23 which 
gives the number which has a zero everywhere except in the 17th 
position, usually known as P17, Source 24 which gives P32, Source 
25 which gives P1, Source 28 which gives zero and Source 29 
which gives a number consisting of 32 consecutive ones. These 
sources are valuable because they provide numbers with an access 
time of one minor cycle and are thus almost as useful as several 
extra TS’s. 

The use of a number of TS’s with the arithmetic facilities 
distributed among them makes it possible to take advantage of 
the placing of instructions in appropriate positions in the long 
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storage units so that they emerge as required. The coding of a 
trivial example will illustrate the uses of the TS’s and their asso- 
ciated sources. It is required to build up  the successive natural 
numbers, their squares and their cubes simultaneously. It is natural 
to store the values in TS’s and we may suppose TS15 contains 
n, TS20, n2 and TS26, n3. 

Instruction Description 

1. 
2. 
3. 

4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 
14. 
15. 

28- 15 zero to TS15 i.e. 0 
28-20 zero to TS20 i.e. 02 initial values 
28-26 zero to TS26 i.e. 0 3  

26-16 TS16 contains n3 

20-17 (3rnc) TS16 contains n3 + 3n2 
15-17 (3rnc) TS16 contains n3 + 3 n 2  + 3 n  
25- 17 TS16 contains n3 + 3 n 2  + 3 n  + 1 
16-26 TS26 contains (n + 1)s 
20-16 TS16 contains n* 
15-17 (2rnc) TS16 contains n* + 2n 
25-17 TS16 contains n* + 2n + 1 
16-20 TS20 contains (n + 1)2 

15-16 TS16 contains n 
25-17 TS16 contains (n + 1) 
16-15 TS15 contains (n + 1) Next instruction (4) 

These 3 instructions set the 

- 

The instructions (1) to (3) set the initial conditions. The instruction 
(4) - (15) have the effect of changing the contents of 15, 20, 26 
from n, n2, n3 to (n + l), (n + 1)2, (n + l)3. As remarked earlier, 
each instruction selects the next instruction and here instruction 
(15) selects instruction (4) as the next instruction. In the prelimi- 
nary coding this is usually denoted by using an arrow; it must be 
catered for in the detailed coding by the correct choice of the 
timing number, as will be shown below. 

The branching of a programme is achieved by the use of two 
destinations, destination 24 and destination 25. If a transfer is made 
from any source to destination 24 then the next instruction is one 
or other of two according as the number transferred is positive 
or negative. Similarly if a transfer is made to destination 25 then 
the next instruction is one or other of two according as the number 
transferred is zero or non-zero. In the preliminary coding the 
bifurcation is denoted by the use of arrows, thus: 

In the detailed coding the effect is that if the number transferred 
to destination 24 is negative then the timing number is increased 

by 1. Similarly for destination 25; the two possible next instructions 
are consecutive in the store. 

The two double word stores are numbered DS12 and DS14. 
DS12 has only source 12 and destination 12 associated with it, 
but DS14 has, in addition to source 14 and destination 14, a 
number of functional sources and destinations. Source 13 gives the 
contents of DS14 divided by 2, while transfers to destination 13 
have the effect of adding the numbers transferred to DS14. In 
specifying transfers from, and to, the double length stores, the time 
of the transfer must be specified, i.e. whether it takes place in an 
even or an odd minor cycle or both. Thus the transfer 

12-14 (odd minor cycle) usually written 
12-14 (0) 

represents the transfer of the word in the odd positions of DS12 
to the odd position in DS14 while 

12-14 (2 minor cycles) 

represents the transfer of both words in 12 to the corresponding 
positions in 14. The operation 

13-14 (2n) 

gives us a method of shifting the contents of TS14 n places to the 
right while 

14-13 (2n) 

produces a shift of n places to the left. 
The machine is not equipped with a fully automatic multiplier. 

To multiply two numbers, a and b, together, a must be sent to 
TS20, b to DS14 odd, zero to DS14 even and a transfer (source 
irrelevant) made to destination 19. The product is then produced 
in DS14 in 2 milliseconds, but a and b are treated as positive 
numbers. Corrections must be made to the answer if a and b are 
signed numbers. To make multiplication fast, it has been made 
possible to perform other operations while multiplication is pro- 
ceeding. Thus the corrections necessary if a and b are signed 
numbers may be built up in TS16 during multiplication, and signed 
multiplication takes only a little over two millisecs. It is, of course, 
therefore, a subroutine but a very fast one. The amount of equip- 
ment associated with the multiplier is very small. The main part 
of the store consists of the long storage units known as DL1, DL2, 
. . . , DL11. Each of these has a source and a destination with the 
same number as the DL number. The words in each DL are 
numbered 0 to 31 and the nth word in DLM is usually denoted 
by DLM,. Transfers to and from long lines in the preliminary 
coding are denoted thus: 
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8,- 16 (transfer nth word of DL8 to TS16) 
8,-,-17 (add all the words from 8, to 8, i.e. n - m + 1 con- 

secutive words of DL8" to TS16) 

Detailed coding 

In the second stage of the coding the true instruction words are 
derived from the preliminary coding. This is a fairly automatic 
process and recent experience has shown that it can be carried 
out satisfactorily by quite junior staff. The timing of each instruc- 
tion is given relative to the position of that instruction in the store. 
This is an incidental feature of the code which arose from the 
attempts to minimize equipment. It would be dropped in any 
future machine in favour of an absolute timing system. If an in- 
struction occupies position m in a DL and has a wait number 
W and timing number T then the transfer always begins in minor 
cycle (m + W + 2) and the next instruction is always in minor 
cycle (m + T + 2) of the selected next instruction source. The 
period of transfer depends on the value of the characteristic. If 
the characteristic is zero then the transfer lasts for the whole 
period from (m + W + 2) to (m + T + 2), that is (T - W + 1) 
minor cycles. If the characteristic is one, then the transfer is for 
one minor cycle, that is minor cycle (m + W + 2). If the charac- 
teristic is three then the transfer is for two minor cycles 
(m + W + 2) and (m + W + 3). The characteristic value, two, 
is not used. The characteristic value zero gives a prolonged transfer 
which is peculiar to the Pilot ACE. The characteristics 1 and 3 
are analogous to the facility on EDSAC whereby full length or 
l/-length words may be transferred. On the Pilot ACE we transfer 
single or double length words. This facility is invaluable for double 
length, floating and complex arithmetic. In the above definitions 
the numbers (m + W + 2) etc. are to be interpreted modulo 32. 
In general, timing and wait numbers are simpler than they appear 
from the definitions because they are very frequently both zero, 
corresponding to a transfer for one minor cycle. The detailed 
coding of the problem given earlier will illustrate the procedure. 
All the instructions are in D L l  so that the next instruction source 
is always one. The key to the headings in the following table is: 

m.c. 

N.I.S. Next instruction source 

S Source 

D Destination 

C Characteristic 

W Wait number 

T Timing number 

Minor cycle position of instructions in DLI 
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The last column gives the position of the next instruction in DL1; 
it is given by (m + T + 2). The first 4 instructions occupy minor 
cycles, 0, 2 and 4, 6 and each takes two minor cycles, and gives 
a transfer for one minor cycle only. The next instruction occupies 
minor cycle number 8 and it requires a transfer lasting 3 minor 
cycles. The simplest and fastest way of getting this is to have 
W = 0 and T = 2 giving a transfer of (2 - 0 + 1) minor cycles. 
The next instruction is in position (8 + 2 + 2), that is minor cycle 
12, and so on. When we reach the instruction in minor cycle 31, 
viz. 25-17, a transfer for one minor cycle is required. The simplest 
way is to have W = 0 T = 0 and this makes the next instruction 
occupy position (31 + 0 + 2) i.e. position 33 which is position 1. 
If position 1 had been already occupied, a value of T could have 
been chosen in order to land in an unoccupied position. In order 
to ensure that a transfer of one minor cycle only took place, the 
characteristic could have been made 1. It should be appreciated 
that the choice of C, W and T is far from unique. Whenever 
possible T = 0 and W = 0 are chosen because this gives the 
highest speed of operation besides being simplest. The instruction 
occupying position 1 is of special interest because this is the last 
instruction of the cycle needed to build up a square and cube and 
it must select as its next instruction the first of the cycle, which 
is, in position number 6. This is achieved by making T = 3 (giving 
the next instruction in m.c. 1 + 3 + 2 = 6). This incidentally 
gives a transfer lasting four minor cycles but since it is a transfer 
from one TS to another and no functional source or destination 
is in use, the prolonged transfer produces no harmful effect. If a 
prolonged transfer had to be avoided then the characteristic could 
be taken as 1. It is seldom necessary to use any characteristic other 
than zero for transfers to and from TS's but when transfers are 
made to and from DL's, characteristic values of 1 or 3 are almost 
universal. All 12 instructions which comprise the repeated cycle 
of the computation take a total time of one major cycle exactly 
(32 minor cycles) the last instruction of the cycle having been 
specially designed to get back to the beginning of the cycle. This 
is in contrast to the position in a machine not using optimum 
coding, where 12 major cycles would be necessary quite apart from 
the fact that the multiplications by factors of 3 and 2, each of 
which uses one instruction, would normally need more than one 
instruction if a prolonged transfer were not available. Figure 1 
gives a simplified diagram of the machine. The sequence of events 
in obeying the instruction 

N S  D C W T  
2 16 - 2C 0 8 10 

occupying DL1, for example is as follows. Starting from the time 
when the last instruction was completed, the instruction from 
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Minor cycle Minor cycle 
position of Next position of 
instructions instruction Charac- Wait Timing next 
in DLl source Source Destination teristic no. no. instruction 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

1 
1 
1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

28 
16 
28 

28 

26 

20 

15 

25 

16 

20 

15 

25 

16 

15 

25 

15 
15 
20 

16 

16 

17 

17 

17 

26 

16 

17 

17 

20 

16 

17 

0 
0 
0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
0 
0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
3 
0 

0 

0 

2 

2 

0 

0 

0 

1 

0 

0 

0 

0 

DL1, will have passed into the special TS marked TS COUNT 
during minor cycle number 2. By the end of minor cycle number 
3,  S switch number 16 will be over and also N switch number 
2. The contents of TSl6 will be passing into HIGHWAY and those 
of DL2 into INSTRUCTION HIGHWAY. At the beginning of 
minor cycle number 12 (i .e.  2 + 8 + 2), D switch number 20 will 
go over, and TS20 will stop recirculating and the number on the 
HIGHWAY will pass into TS20. The transfer will continue until 
minor cycle 14 (i.e. 2 + 10 + 2 )  when the D switch number 20 
will switch back. At the beginning of minor cycle 14, the switch 
X on COUNT will go over and the number on INSTRUCTION 
HIGHWAY during this minor cycle, DL2,,, will pass into COUNT. 
At the end of minor cycle 14, the X switch will close again and 

DL2,, will be trapped in COUNT. The cycle of events is now 
complete. COUNT is associated with a counter and it is this 
counter which determines from the wait, timing, and characteristic 
numbers of the trapped instruction, when the D and X switches 
go over and back. 

Input and output 

The only part of the instruction word not described is the GO 
digit. If the GO digit is a one, the instruction is carried out at 
high speed, but if it is a zero the machine stops and does not 
proceed until a manual switch is operated. The GO digit is omitted 
in strategic instructions when a programme is being tested. It also 
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1s IS 
TS. 27 
DS 14 
os ta etc.  

c 

Fig. 1. Simplified diagram showing some sources, destinations, and 
next-instruction sources. 

serves a further purpose in synchronising the input and output 
facilities with the high speed computer. Input on the machine is 
by means of Hollerith punched cards. When cards are passed 
through the reader the numbers on the card may be read row by 
row as each passes under a set of 32 reading brushes. When a row 
of a card is under the reading brushes, the number punched on 
that row, regarded as a number of 32 binary digits, is available 
on source 0. In order to make certain that reading takes place 
when a row is in position and not between rows, transfers from 
source 0, have the GO digit omitted and it is arranged that the 
Hollerith reader has the same effect as operating the manual 
switch each time a row comes into position. The passage of a card 
through the reader is called for by a transfer from any source to 
destination 31. No transfer of information from the card takes place 
unless the appropriate instruction using source 0 is obeyed during 
the passage of the card. Output on the machine is also provided 
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by a Hollerith punch. The passage of a card through the punch 
is called for by a transfer from any source to destination 30. While 
a card is passing through the punch a 32 digit number may be 
punched on each row by a transfer to destination 28. Again syn- 
chronisation is ensured by omitting the GO digit in instructions 
calling for a transfer to destination 28, and arranging that the 
Hollerith punch effectively operates the manual switch as each 
row comes into position. The reader feeds cards a t  the rate of 200 
cards per minute and the punch, at the rate of 100 cards per 
minute. The speed of input for binary digits is 200 x 32 x 12 per 
minute or 1280 per second. The output speed is 640 digits per 
second. Data may be fed in and out in decimal, but it then requires 
conversion subroutines. The computation involved in the conver- 
sion is done between the rows of the card and up to 30 decimal 
digits per card may be translated. This speed of conversion is only 
possible because of the use of optimum coding. The facility for 
carrying out computation between rows of cards is used extensively 
particularly in linear algebra when matrices exceeding the storage 
capacity of the machine are involved. The matrices are stored on 
cards in binary form with one number on each of the 12 rows of 
each card, all the computation being done either between rows 
when reading or when punching. Times comparable with those 
possible with the matrices stored in the memory are often achieved 
in this way, when the computation uses a high percentage of the 
available time between rows. Up to 80% of this time may be safely 
used. 

Initial input 

The initial input of instructions is achieved by choosing destination 
0 in a special manner. When a transfer is made to destination 0, 
then the instruction transferred becomes the next to be obeyed 
and the next instruction source is ignored. Source 0 has already 
been chosen specially since it is provided from a row of a card. 
The instruction consisting of zeros has the effect of injecting the 
instruction punched on a row of a card into the machine as the 
next to be obeyed. The machine is started by clearing the store 
and starting the Hollerith reader which contains cards punched 
with appropriate instructions. Destination 0 is also used when an 
instruction is built up in an arithmetic unit ready to be obeyed. 

Miscellaneous sources and destinations 

Destination 29 controls a buzzer. If a non-zero number is trans- 
ferred to destination 29 the buzzer sounds. 

Source 30 is used to indicate when the last row of a card is 
in position in the reader or punch. This source gives a non-zero 
number only when a last row is in position. The operation of the 
arithmetic facilities on DS14 may be modified by a transfer to 
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destination 23. If a transfer with an odd characteristic is made 
from any source to destination 23 then, from then on, DS14 be- 
haves as though it were two single length accumulators in series. 
This means that carries are suppressed at the end of each of the 
single words. This condition persists until a transfer is made to 
destination 23 using an even characteristic, when DS14 behaves 
as an accumulator for double length numbers with their least 
significant parts in even minor cycles and more significant parts 
in odd minor cycles. 

The operation TS20 is modified by transfers to destination 21. 
If a transfer with an odd characteristic is made to destination 21 
then TS20 ceases to have an independent existence and from then 
on is fed continuously from DL10. Source 20 then gives the con- 
tents of DLl0 one minor cycle later than from source 10. TS20 
reverts to its former condition when a transfer with an even char- 
acteristic is made to destination 21. The facility is used to move 
the 32 words in DLlO round one position so that the word in minor 
cycle n is available in minor cycle (n + 1). 

Assessment of optimum coding 

A detailed assessment of the value of optimum coding is by no 
means simple. Roughly speaking, subroutines are on an average 
about 4 or 5 times as fast as on an orthodox machine using the 
same pulse repetition rate. In main tables a somewhat lower factor 
is usually achieved. The factor of 4 or 5 would be exceeded if less 
of the advantage given by optimum coding were used to overcome 
disadvantages due to the rudimentary nature of the arithmetic 
facilities on Pilot ACE. Even so, the bald statement of the average 
ratio of speeds does not do full justice to the value of optimum 
coding on the Pilot ACE. Its value springs as much from the fact 
that it has made possible the programmes in which computing 
is done between the rows of cards and also the high output speed 
of decimal numbers. The binary decimal conversion routines for 
punching out several decimal numbers simultaneously on a card 
and also decimal-binary conversion routines for reading several 
numbers, achieve a ratio of something like 14 to 1, and on a 
machine which is being used extensively for scientific computation 
on a commercial basis this is of immense importance. 

Future programme 

Engineered versions of the Pilot Model are now under construction 
by the English Electric Company. These machines will be similar 
to the Pilot Model but will have a little more high-speed store, 
an automatic divider, two quadruple length stores and a subtrac- 
tive input on the double length accumulator besides several minor 
modifications including a rationalization of the numbering of the 

stores! In addition a magnetic drum intermediate store with the 
equivalent of 32DL’s storage capacity will be added. A full scale 
machine will probably soon be under development employing a 
4 address code. Typical instructions will be of the form 

A k B  C 

and will select the next source of instruction. This code is more 
economical in instruction storage space and since all single word 
stores will then become complete accumulators with all facilities 
except multiplication on them, it will be possible to take much 
fuller advantage of optimum coding. 

Sources, destination and next instruction sources 

Sources Des tinations Next instr. sources 

0. Input 
1. DL1 
2. DL2 
3. DL3 
4. DL4 
5. DL5 
6. DL6 
7. DL7 
8. DL8 
9. DL9 

10. DLlO 
11. D L l l  
12. DS12 
13. DS14 + 2 
14. DS14 
15. TS15 
16. TS16 
17. TS26 
18. TS26 i 2 
19. TS26 x 2 
20. TS20 
21. TS26 & TS27 
22. TS26 $ TS27 
23. P17 

24. P32 
25. P1 
26. TS26 
27. TS27 
28. Zero 
29. Ones 

0. INSTRUCTION 0. D L l l  
1. DL1 1. DL1 
2. DL2 2. DL2 
3. DL3 3. DL3 
4. DL4 4. DL4 
5. DL5 5. DL5 
6. DL6 6. DL6 
7. DL7 7. DL7 
8. DL8 
9. DL9 

10. DLlO 
11. D L l l  
12. DS12 
13. DS14add 
14. DS14 
15. TS15 
16. TS16 
17. TS16add 
18. TS16 subtract 
19.t MULTIPLY 
20. TS20 
21. Modifies Source 20 
22. - 
23. Modifies Source 13, 

Destination 13 
24. DISCRIMINATE on sign 
25. DISCRIMINATE on zero 
26. TS26 
27. TS27 
28. Output 
29. BUZZER 

30. Last row of card 30 . t  PUNCH 
31. - 31. t  READ 

t Independent of source used. 
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Chapter 12 

ZEBRA, a simple binary computer1 

W. L. van der Poel 

Summary The computer ZEBRA is a computer based on the following 

15 bits 
A K Q L R I B C D E  V X ~ X Z X I  W 

test bits I /  
operation part 

ideas: 

1. 

2. 

3. 

4. 

5. 

6. 

5 bits 
0 0 0 0 0  
fast store 
address 

The logical structure of the arithmetic and control units of the 
machine have been simplified as much as possible; there is not even 
a built-in multiplier nor a divider. 

The separate bits in an instruction word are used functionally and 
can be put together in any combination. 

Conventional two stage operation (set-up, execution) has been aban- 
doned. Each unit time interval can be used for arithmetical opera- 
tions. 

A small number of fast access registers is used as temporary storage; 
at the same time these registers serve as modifier registers (B-lines). 

Optimum programming is almost automatically done to a very great 
extent. The percentage of word times effectively used is usually 
greater than 60%. 

An instruction can be repeated and modified while repeated by 
using an accumulator as next instruction source and the address 
counter as counter. This can be done without any special hardware. 

This has resulted in a machine which has a very simple structure and hence 
contains only a very moderate number of components, giving high relia- 
bility and easy maintenance. Because of the functional bit coding, the 
programming is extremely flexible. In fact the machine code is a sort of 
micro-programming. Full-length inultiplication or half-length mnltiplica- 
tion in half the time are just as easy, only require a different micro- 
programme. The minimum latency programming together with the effec- 
tive use of word times lost in other systems results in a very high speed 
of operation compared to the basic clock pulse frequency. 

Introduction 

In the Dr.  Neher Laboratory of the Dutch Postal & Telecom- 
munications Services the logical design of a computer called ZE- 
BRA has been developed, and this computer has been engineered 
and constructed by Standard Telephones & Cables Ltd, England. 
The  logical system is so different from most computers, that  it 
is worth while t o  devote a special lecture to  it. As time is limited, 

'Proc. ICIP, UNESCO, pp. 361-365, June, 1959. 

no technical details nor questions about dimensions or capacity 
will be discussed. They can all be found in the literature [van 
der Poel, 1956; van der Poel, 19521. 

The main idea of the machine is t o  economise as far as possible 
on the number of components by simplifying the logical structure. 
For example, multiplication and division are  not built in but must 
be programmed. Of course this system can only work with an 
appropriate internal code which has enough properties to execute 
basic arithmetic and logical routines effectively. In fact, the inter- 
nal machine code is more or less a system of microprogramming 
[Wilkes and Stringer, 19531. 
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Arithmetic Control 
unit 

store store 

Arithmetic I,] El 

store store 

Fig. 1. The main units of the computer. 

arithmetic unit or the control. In the same way the K-bit controls 
the interconnection of the fast store with the arithmetic unit or 
the control unit. These interconnections can be seen from Fig. 1. 

It will be seen that A and K can have 4 possible combinations: 

Case 1 .  A = 0, K = 0. This is called the adding jump (Fig. 2a). 

While a new instruction is coming into the control from the drum, 
the arithmetic unit can at the same time do an operation with 
the operand coming from the fast store. This is the fastest type 
of operation. When the following instruction is placed in the next 
location on the drum there is no waiting time, and 32 instructions 
of this type can be executed per revolution. (One revolution = 10 
ms, one word time = 312 ps.) 

Case 2. A = 0, K = 1. This is called the double jump (Fig. 2b). 

Both stores are now used for giving information to the control, 
i.e., making a jump. Since the fast store is used for the control, 
the instruction coming in from the drum is modified by the con- 
tents of a fast register. In this way the B-line facility, as it is often 
called, is realised. 

Case 3. A = 1, K = 0. This is called the double addition (Fig. 2c). 

Both stores are now connected to the arithmetic unit. The control 
must take care of itself using the address counter which is stepped 
up by 2 at a time, thus enabling this type of instruction to reach 
the number lying between the two successive instructions without 
any waiting time. Constants in particular will always be taken 
from optimum places on the drum. 

Case 4 .  A = 1, K = 1. This is called the jumping addition (Fig. 
2 4 .  

While the drum is used for the arithmetic unit the address counter 
is modified by a fast register. Control may thus be passed to any 
instruction, and not only to the next instruction. 

D- and E-bits 

The functional bits D and E control the direction of flow of infor- 
mation. 

D = 0 means: read from the drum. 

E = 0 means: read from the fast store. 

D = 1 means: write to the drum. 

E = 1 means: write to the fast store. 

A few possible instructions will be given below. In the written 
code a drum address will always be written with 3 or more digits 
and the absence of the A-bit will be indicated by the letter X. 
(This is necessary for the input programme to recognize the be- 
ginning of a new instruction.) 

A200.5 Add (200) (the contents of address 200) and (5) 
to the accumulator. Step the address counter 
by 2. 

Take next instruction from 200 (= jump to 200) 
and store contents of accumulator in 5. 

Jump to 200 and store previous contents of ad- 
dress counter in 5. This amounts to placing a link 
instruction for return from a sub-routine. 

Take next instruction from 200 but modify it with 
(5) thus making a variable instruction. 

X200E5 

X200KE5 

X200K5 

Arithmetic bits 

The remainder of the function bits have arithmetic meanings. We 
shall only briefly indicate their different actions. 

B: Do not use the A accumulator (most significant accumulator) 
but the B accumulator. 

IC) Id1 

Fig. 2. The possible combinations of the A- and K-bits. 



202 Part 3 1 The instruction-set processor level: variations in the processor 

C: Clear the accumulator specified by B after storing, or before 
addition. (In a serial machine like ZEBRA this is auto- 
matically the case, cf. Fig. 3.) 

I: Subtract instead of add. 

Q: Add one (unit in the least significant place) to the B-accu- 
mulator. 

L: Shift both accumulators one place to the left. 

R: Shift both accumulators one place to the right. The accu- 
mulators are always coupled together in shifting except 
when C is present. 

A few more examples will be given. 

A200BCE25 Store (B) in 5, clear B and add (200) 
to B. 

Jump to 200. Store (B) in 6, put - 1 in B 
(because of QIBC) and shift the A accumu- 
lator one place to the left. Shifting from B 
into A is prevented by the presence of C. 

Jump to 200. Shift A to the right. Copy (3) 
into B. As register 3 is just an address for 
the B accumulator itself, this means that 
A is shifted while B is static. 

Take the instruction from 200 and modify 
it with the contents of the B accumulator 
(= register 3) .  Put -1 in B afterwards. 

X2WQLIBCE6 

X200RBC3 

X200KSQIBC 

Drum s t o r e  Fast s to re  To s t o r e  

Fig. 3. Accumulator. 

Section 1 1 Processors with greater than 1 address per instruction 

As can be seen, many complicated operations can be composed 
by the elementary possibilities of the separate bits. 

The accumulator 

A simplified block diagram of one of the accumulators is shown 
in Fig. 3. 

Shifting is effected by looping the accumulator over one place 
less or one place more. In a double addition the contents of the 
drum store and the fast store are first added together in the pre- 
adder (possibly augmented by unity in the B accumulator, if Q 
is present) and this result is added into the accumulator (or sub- 
tracted in case of I). A clearing gate controlled by C interrupts 
the recirculation of the previous contents. 

The control unit 

The control unit has two shifting registers, the C-register which 
receives the next instruction to be executed and the D-register 
or counter. The block diagram is shown in Fig. 4. After a new 
instruction has come into C, it is taken over in parallel form into 
E in the interword time. It remains in E while the next instruction 
is coming into C. Let us explain the action of this control with 
a short programme. 

Examples of programmes 

100 X101E5 
101 AC102 
102 constant 
103 etc. 

The actions in the several registers are now: 

X1007 X101E5 X102 

.L 
const. X103E5 

Suppose Xl00 is in C at the start. 
This will take ( 100) into C. (C) + 2 -+ D. 

Another jump comes into C taking in (101) 
and storing (A) + 5. 
(C) + 2 -+ D gives X103E5. 

Note that the operational part is kept in the 
counter. The necessary constant from 102 is 
just becoming available. 

The next instruction is taken from 103 which 
is immediately following. The constant in 
A is stored to 5 by E5, and is still active 
after coming back from D. 
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D 

I f  

To s t o r e  

Fig. 4. Control unit. 

This is the most important aspect of the machine. An instruction 
in the address counter comes back after an A-instruction and can 
do something useful. To our surprise we found that in many more 
cases than we first suspected, the second action could be used 
effectively. In most other computers the time of access to the next 
instruction is lost because nothing can be done concurrently in 
the arithmetic unit. 

Another example of the action of the control is the jump to a 
sub-routine. Suppose that we have the following piece of pro- 
gramme: 

100 X200KE.5 Jump to sub-routine starting in 200. Place 
return jump in 5. 

102 etc. Sub-routine returns here. 

The action is as follows: 

( C )  (D) 

The instruction is taken from 100. x1007 
X200KE5 X102 X 2 0 0 K E 5 4  C and X l 0 0  + 2 +  D. Now 

K E 5  stores D in 5. Thus (5) = X102. 

The subroutine at 200 is executed and ends 
with XK5: jump to 5. 

(200) 

XK5 Take instruction from 5. 

XI02 
(102) etc. 

Now the main programme proceeds to 102 

By ending the sub-routine: 

220 X221K5 
221 - 1 

we can return not two but one location further on, i.e., X221K5 
takes as next instruction ( 5 )  - 1 = X101. Here 5 contains the 
instruction and the drum modifier. 

The test bits 

The digits V x4 x2 x1 will not be dealt with extensively but the 
different combinations of these 4 digits represent different types 
of test. When for example V1 is attached to an instruction, this 
instruction will be executed when (A) is negative, but will be 
skipped altogether when (A) is positive or zero. The harmless 
A-instruction will then be executed instead. The test can be at- 
tached to a jump, giving a conditional jump, as well as to an 
A-instruction, giving a conditional addition. 

The W-bit 

So far the digit W has not been mentioned. When W is present 
in an instruction the drum address is not used. The instruction 
is not kept waiting but is immediately executed and the drum is 
completely disregarded. With the help of this digit W, jumps can 
be made to instructions in the fast store, e.g., XK5W takes the 
instruction from 5 only, and the drum does not deliver any number. 
The use of this type of instruction has very peculiar consequences. 
Let us take the following example: 

100 XlOlKE6 (5) = ARW 
101 X8186KSRW 
102 etc. 

(6) = filled with return instruction 

The action is as follows: 

Take instruction from 100. 

XlOlKE6 X102 Jump to 101 and store return 
instruction X102 in 6.  

X8 186K5WR Do 1 right shift. \ 
4/2 a ARW X8188KSRW Do another right shift by  ARW. 

The drum address in D is 

counted up but is not active. 
The register address remains 
the same. Hence the instruc- 
tion in 5 is repeated. I 
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2-2 - a X8188K5RW The repeating instruction as 
well as the repeated instruction 
are both shifted one place to 1 

F3 * a ARW X8190K5RW the right. 

2 - 5  * a ARW XOOOK6RW As the drum address overflows 
into the fast store address the 
repeating instruction becomes 
X8192K5RW = XOOOK6RW 
taking the next instruction from 
6. 

2-4 a X8190K5RWb d 

1 
2-6 a XOOOK6RW 

2 Y . a  X102 As (6) = X102 the repetition 
returns to the main programme 
and the A accumulator is shifted 
over 7 places. 

The instruction ARW has thus been repeated p times when the 
drum address of the repeating instruction is 8192-213. This way 
of repeating an instruction has made it possible to do multipli- 
cation, division, block transfers, table look up  and many other 
small basic repetitive processes in a very simple way. There is no 
special hardware present in the machine to do the counting neces- 
sary for the repetition, as this counting is done by the normal 
address counter. 

As a last example we shall give a programme for the summa- 

Section 1 1 Processors with greater than 1 address per instruction 

tion of a block of locations from 200 to 300 in the store. This 
involves 101 locations. The programme reads: 

100 AlOlBC 
101 A200Q 

102 X103KE4C 

Put A200Q in B (B has address 3) .  

Put return jump X104 in 4. Clear A in 
advance. 

Repeat A200Q 101 times. Because A200Q 
is standing in B the Q augments the in- 
struction itself at every repetition. Hence 
successively (200), (201) etc. are added 
to A. At the end the sum is left in A and 
the programme proceeds at  104. 

103 X7990K3W 

104 etc. 

It is left to the reader to work out the action diagram. 
This example is not programmed for minimum waiting, but by 

supplying the repeating instruction X7990K3W with a Q it will 
step up  the repeated instruction A200Q by 2 every time. Now, 
once the first instruction has been located, all even locations follow- 
ing are emerging from the drum just at the right time. The odd 
numbered locations must be summed in a second, similar repeti- 
tion. 
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oc 
6 bits 

UNIVAC Scientific (1103A) 

U V 

15 bits 15 bits 

instruction logic1 

John W. Cam I l l  

The UNIVAC Scientific computer is a (35, 0, 0)2 binary machine, 
with option of (27, 8, 0). The arithmetic unit contains two 36-bit 
X (exchange) and Q (quotient) registers and one 72-bit A register 
(accumulator). Negative numbers are represented in one’s com- 
plement notation. 

Input-output is via high-speed paper tape reader and punch, 
direct card reader and punch, and Uniservo magnetic tape units, 
which may be connected to peripheral punched card readers and 
punches and a high-speed printer. In addition, information may 
be recorded on magnetic tape directly from keyboards by the use 
of Unitypers. Communication with external equipment is via an 
%bit (IOA) register and a S6-bit (IOB) register. Information sent 
to these registers controls magnetic tapes as well as other input- 
output equipment. The program address counter (PAK) contains 
the present instruction address. Storage is in up to 12,288 locations 
of magnetic core storage, along with a directly addressable drum 
of 16,384 locations. Instructions are of the two-address form, 
with six bits for the operation code and two fifteen-bit addresses 
(11 and v). 

The following information is taken from a Univac Scientific 
Manual [Univac Scientific Electronic Computing System Model 
1103A, Form EL3381. 

Definitions and conventions 

lnstruction word 

‘In E. M. Grabbe, S. Ramo, and D. E. Wooldridge (eds.), “Handbook of 
Automation, Computation, and Control,” vol. 2, chap. 2, pp. 77-83, John 
Wiley & Sons, Inc., New York, 1959. 
2Carr’s triplet notation for: fractional significant digits, digits in exponent, 
and digits to left of radix point. 

oc Operation code 
u First execution address 
v Second execution address 

For some of the instructions, the form jn or jk replaces the u ad- 
dress; for others the form k replaces the v address. 

j 
n 

k 

One-digit octal number modifying the instruction 
Four-digit octal number designating number of times in- 
struction is to be performed 
Seven-digit binary number designating the number of places 
the word is to be shifted to the left 

Address allocations (octal) 
00000-07777 4096 
00000-17777 8192 or 
00000-27777 12,288 36-bit words 

Q 31000-31777 1 36-bit word 
A 32000-37777 172-bit word 
M D  40000-77777 16,384 36-bit words 

Fixed addresses 

F, 00000 or 40001 
F, 00001 
F, 00002 
F, 00003 

Arithmetic section registers 

A 

A, 
A, 
Q 
X 36-bit exchange register 

72-bit accumulator with shifting properties 
Right-hand 36 bits of A 
Left-hand 36 bits of A 
36-bit register with shifting properties 

Note: Parentheses denote contents of. For example, (A) means 
contents of A (72-bit word in A); (Q) means contents of Q (36-bit 
word in Q). 

205 
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Input-output registers 
IOA 8-bit in-out register 
IOB 36-bit in-out register 
TWR 6-bit typewriter register 
HPR 7-bit high-speed punch register 

Word extension 

72-bit word whose right-hand 36 bits are the word at 
address u, and whose left-hand 36 bits are the same as 
the leftmost bit of the word at u. 

72-bit word whose right-hand 36 bits are the word at 
address u, and whose left-hand 36 bits are zero. 

72-bit word-right-hand 36 bits are in register Q, left- 
hand 36 bits are same as leftmost bit in register Q. 

same as D(Q) except left 36 bits are zero. 
D(AR), S(AR) are similarly defined. 

L(Q)(u) 72-bit word-left-hand 36 bits are zero, right-hand 
36 bits are the bit-by-bit product of corresponding 
bits of (Q) and word at address u. 
72-bit word-left-hand 36 bits are zero, right-hand 
36 bits are the bit-by-bit product of corresponding 
bits of the complement of (Q) and word at ad- 
dress v. 

L(Q’)(v) 

Transmit instructions 

11’ 
13 

12 

15 

16 

35 

36 

22 

Transmit Positive TPuv2: Replace (v) with (u). 
Transmit Negative TNuv: Replace (v) with the comple- 
ment of (u). 
Transmit Magnitude TMuv: Replace (v) with the absolute 
magnitude of (u). 
Transmit U-address TUuv: Replace the 15 bits of (v) desig- 
nated by vl:, through vZ9, with the corresponding bits of 
(u), leaving the remaining 21 bits of (v) undisturbed. 
Transmit V-address TVuv: Replace the right-hand 15 bits 
of (v) designated by vo through vI4, with the corresponding 
bits of (u), leaving the remaining 21 bits of (v) undisturbed. 
Add and Transmit ATuv: Add D(u) to (A). Then replace 
(v) with (AR). 
Subtract and Transmit STuv: Subtract D(LI) from (A). Then 
replace (v) with (AR). 
Left Transmit LTjkv: Left circular shift (A) by k places. 
If j = 0 replace (v) with (AL); if j = 1 replace (v) with (AR). 

‘Octal notation. 
Mnemonic notation 

Q-controlled instructions 

51 Q-controlled Transmit QTuv: Form in A the number 
L(Q)(u). Then replace (v) by (AR). 

52 Q-controlled Add QAuv: Add to (A) the number L(Q)(u). 
Then replace (v) by (AR). 
Q-controlled Substitute QSuv: Form in A the quantity 
L(Q)(u) plus L(Q’)(v). Then replace (v) with (AR). The 
effect is to replace selected bits of (v) with the corre- 
sponding bits of (u) in those places corresponding to 1’s 
in Q. The final (v) is the same as the final (AR). 

53 

Replace instructions 

21 Replace Add RAuv: Form in A the sum of D(u) and D(v). 
Then replace (11) with (AR). 
Replace Subtract RSuv: Form in A the difference D(u) 
minus D(v). Then replace (11) with (AR). 
Controlled Complement CCuv: Replace (AR) with (u) 
leaving (AL) undisturbed. Then complement those bits of 
(AR) that correspond to ones in (v). Then replace (u) with 

Left Shift in A LAuk: Replace (A) with D(u). Then left 
circular shift (A) by k places. Then replace (u) with (AR). 
If u = A, the first step is omitted, so that the initial content 
of A is shifted. 
Left Shift in Q LQuk: Replace (Q) with (u). Then left 
circular shift (Q) by k places. Then replace (u) with (0). 

23 

27 

(AR) .  

54 

55 

Split instructions 

31 Split Positive Entry SPuk: Form S(u) in A. Then left circu- 
lar shift (A) by k places. 
Split Negative Entry SNuk: Form in A the complement 
of S(ii). Then left circular shift (A) by k places. 
Split Add SAuk: Add S(u) to (A). Then left circular shift 
(A) by k places. 
Split Subtract SSuk: Subtract S(u) from (A). Then left 
circular shift (A) by k places. 

33 

32 

34 

Two-way conditional jump instructions 

46 

47 

Sign Jump SJuv: If A,, = 1, take (u) as NI. If A,, = 0, 
take (v) as NI. (NI means next instruction.) 
Zero Jump ZJuv: If (’4) is not zero, take (u) as NI. If (A) 
is zero, take (v) as NI. 
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44 Q-Jump QJuv: If Q35 = 1, take (u) as NI. If Q35 = 0, take 
(v) as NI. Then, in either case, left circular shift (Q) by 
one place. 

One-way conditional jump instructions 

41 Index Jump IJuv: Form in A the difference D(u) minus 
1. Then if A,, = 1, continue the present sequence of in- 
structions; if A,, = 0, replace (u) with (AR) and take (v) 
as NI. 
Threshold Jump TJuv: If D(u) is greater than (A), take (v) 
as NI; if not, continue the present sequence. In either case, 
leave (A) in its initial state. 
Equality Jump EJuv: If D(u) equals (A), take (v) as NI, 
if not, continue the present sequence. In either case leave 
(A) in its initial state. 

42 

43 

One-way unconditional jump instructions 

45 Manually Selective Jump MJjv: If the number j is zero, 
take (v) as NI. If j is 1, 2, or 3, and the correspondingly 
numbered MJ selecting switch is set to “jump,” take (v) 
as NI; if this switch is not set to “jump,” continue the 
present sequence. 
Return Jump RJuv: Let y represent the address from 
which CI was obtained, Replace the right-hand 15 bits of 
(u) with the quantity y plus 1. Then take (v) as NI. 
Interpret IP: Let y represent the address from which CI 
was obtained. Replace the right-hand 15 bits of (F,) with 
the quantity y + 1. Then take (F,) as NI. 

37 

14 

Stop instructions 

56 Manually Selective Stop MSjv: If j = 0, stop computer 
operation and provide suitable indication. If j = 1, 2, or 
3 and the correspondingly numbered MS selecting switch 
is set to “stop,” stop computer operation and provide 
suitable indication. Whether or not a stop occurs, (v) is 
NI. 
Program Stop PS-Stop computer operations and provide 
suitable indication. 

57 

External equipment instructions 

17 External Function EF-V: Select a unit of external equip- 
ment and perform the function designated by (v). 

76 External Read ERjv: If j = 0, replace the right-hand 8 bits 
of (v) with (IOA); if j = 1, replace (v) with (IOB). 
External Write EWjv: If j = 0, replace (IOA) with the 
right-hand 8 bits of (v); if j = 1, replace (IOB) with (v). 
Cause the previously selected unit to respond to the infor- 
mation in IOA or IOB. 
PRint PR-V: Replace (TWR) with the right-hand 6 bits of 
(v). Cause the typewriter to print the character corre- 
sponding to the 6-bit code. 
Punch PUjv: Replace (HPR) with the right-hand 6 bits 
of (v). Cause the punch to respond to (HPR). If j = 0, omit 
seventh level hole; if j = 1, include seventh level hole. 

77 

61 

63 

Arithmetic instructions 

71 

72 

73 

74 

Multiply MPuv: Form in A the 72-bit product of (u) and 
(v), leaving in Q the multiplier (u). 
Multiply Add MAuv: Add to (A) the 72-bit product of (u) 
and (v), leaving in Q the multiplier (u). 
Divide DVuv: Divide the 72-bit number (A) by (u), putting 
the quotient in Q, and leaving in A a non-negative re- 
mainder R. Then replace (v) by (Q). The quotient and 
remainder are defined by: (A), = (u) - (Q) + R, where 
0 5 R < I(u)I. Here (A)i denotes the initial contents 
of A. 
Scale Factor SFuv: Replace (A) with D(u). Then left cir- 
cular shift (A) by 36 places. Then continue to shift (A) until 
A,, # A,5. Then replace the right-hand 15 bits of (v) with 
the number of left circular shifts, k, which would be neces- 
sary to return (A) to its original position. If (A) is all ones 
or zeros, k = 37. If u is A, (A) is left unchanged in the 
first step, instead of being replaced by D(A,). 

Sequenced instructions 

75 Repeat RPjnw: This instruction calls for the next instruc- 
tion, which will be called NIuv, to be executed n times, 
its u and v addresses being modified or not according to 
the value of j. Afterwards the program is continued by the 
execution of the instruction stored at a fixed address F,. 
The exact steps carried out are: 

a Replace the right-hand 15 bits of (F,) with the 
address w. 

Execute NIuv, the next instruction in the program, 
n times. 

b 
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c If j = 0, do not change u and v. 
If j = 1, add one to v after each execution. 
If j = 2, add one to u after each execution. 
If j = 3, add one to u and v after each execution. 

The modification of the u address and v address is done 
in program control registers. The original form of the 
instruction in storage is unaltered. 

d On completing n executions, take (FJ, as the next 
instruction. F, normally contains a manually selec- 
tive jump whereby the computer is sent to w for 
the next instruction after the repeat. 

If the repeated instruction is a jump instruction, 
the occurrence of a jump terminates the repetition. 
If the instruction is a Threshold Jump or an Equality 
Jump, and the jump to address v occurs, (Q) is 
replaced by the quantity j, (n - r), where r is the 
number of executions that have taken place. 

e 

Floating point instructions 

64 

65 

66 

Add FAuv: Form in Q the normalized rounded packed 
floating point sum (u) + (v). 
Subtract FSuv: Form in Q the normalized rounded packed 
floating point difference (u) - (v). 
Multiply FMuv: Form in Q the normalized rounded 
packed floating point product (u) - (v). 

67 

01 

02 

03 

04 

05 
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Divide FDuv: Form in Q the normalized rounded packed 
floating point quotient (u) + (v). 
Polynomial Multiply FPuv: Floating add (v) to the floating 
product (Q)i (u), leaving the packed normalized rounded 
result in Q. 
Inner Product FIuv: Floating add to (Q)i the floating 
product (u) * (v) and store the rounded normalized packed 
result in Q. This instruction uses MC location F4 = 00003 
for temporary storage, where (FJf = (Q)i. The subscripts 
i and f represent “initial” and “final.” 
Unpack UPuv: Unpack (u), replacing (u) with ( u ) ~  and 
replacing ( v ) ~  with ( u ) ~  or its complement if (u) is negative. 
The characteristic portion of ( u ) ~  contains sign bits. The 
sign portion and mantissa portion of ( v ) ~  are set to zero. 
Note. The subscripts M and C denote the mantissa and 
characteristic portions. 
Normalize Pack NPuv: Replace (u) with the normalized 
rounded packed floating point number obtained from the 
possibly unnormalized mantissa in (u )~  and the biased 
characteristic in ( v ) ~ .  Note. It is assumed that (u )~  has the 
binary point between uZ7 and uZ6; that is, that ( u ) ~  is scaled 
by 2-27. 
Normalize Exit NEj-: If j = 1 normalize without rounding 
until a master clear or until the instruction is again exe- 
cuted with i = 0. 
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Chapter 14 

Instruction logic of the MIDAC1 

John W. Cam III 

The MIDAC, Michigan Digital Automatic Computer [Carr, 19561, 
was constructed on the basis of the design of the SEAC at  the 
National Bureau of Standards. Its instruction code is particularly 
of interest because it incorporates the index register concept into 
a three-address binary instruction. Numbers in this machine are 
(44, 0, 0)2 fixed points. The word length is 45 binary digits with 
serial operation. 

Word structure 

The data or address positions of an instruction are labeled the a ,  
j3, and y positions. Each contains twelve binary digits represented 
externally as three hexadecimal digits. Four binary digits, or one 
hexadecimal digit, are used to convey the instruction modification 
or relative addressing information. The next four binary digits or 
single hexadecimal digit represents the operation portion of the 
instruction. The final binary digit is the halt or breakpoint indi- 
cator for use with the instruction. 

For example, the 45-binary-digit word 

00000110010000001100100000010010l100000001011 

considered as an instruction would be interpreted as 

a P Y abcd Op halt 
000001100100 000011001000 o00100101100 0OOo 0101 1 

In external hexadecimal form this would be written 

064 0c8 12c 0 5 - 

The above binary word is the equivalent machine representation 
of the following instruction: “Take the contents of hexadecimal 
address 064, add to it the contents of hexadecimal address 0c8, 
and store the result in hexadecimal address 12c. There is no 
modification of the 12-binary-digit address locations given by the 

‘In E. M .  Grabbe, S. Ramo, and D. E. Wooldridge (eds.), “Handbook of 
Automation, Computation, and Control,” vol. 2, chap. 2, pp. 115-121, 
John Wiley & Sons, Inc., New York, 1959. 
2Carr’s triplet notation for: fractional significant digits, digits in exponent, 
and digits to left of radix point. 

instruction. Upon completion of the operation, stop the machine 
if the proper external switches are energized.” The binary com- 
bination represented by 5 is the operation code for addition. 

Data or addresses 

The addresses given by the twelve binary digits in each of the 
three locations designate in the machine the individual acoustic 
storage cells and blocks of eight magnetic drum storage cells. The 
addresses from 0 to 1023 (decimal) or 000 to 3FF (hexadecimal) 
correspond to acoustic storage cells. The addresses from 1024 to 
4095 (decimal) or 400 to FFF (hexadecimal) correspond to mag- 
netic drum storage blocks. In certain operations, however, the 
addresses 0 to 15 (decimal) or 0 to F (hexadecimal) represent 
input-output stations rather than storage locations. 

These twelve-binary-digit groups will in some cases be modified 
by the machine in order to yield a final twelve-binary-digit address. 
The method of processing will depend on the values of the instruc- 
tion modification digits. After modification, the final result will 
then be interpreted by the control unit as a machine address. 

In some instructions, namely those that perform change of 
control operations, which involve cycling and counting rather than 
simple arithmetic operations on numbers, the a and /3 positions 
in an instruction are not considered as addresses. In those cases, 
they are used instead as counters or tallies. In other instructions, 
which do not require three addresses, but only one or two, the 
p position is not considered as an address. In these cases, the 
oddness or evenness of the /3 address is used to differentiate be- 
tween two operations having the same operation code digits. That 
is, the parity of binary digit P22 is used as an extra function 
designator. 

Instruction modification digits 

The four binary digits P9-P6 are used as instruction modification 
or relative addressing digits. Their normal function is relatively 
simple; nevertheless, the possible exceptions to the general rule 
can make their behavior complicated. These four digits are labeled 
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the a, b, c, and d digits. Ordinarily the a digit is associated with 
the a position, the b digit with the position, and the c digit 
with the y position in an instruction. 

When binary digit P22 (or the p position) is used in an instnic- 
tion to represent extra operation information, the instruction 
modification digit b is ignored. In the case of input and output 
instructions, when the various address positions represent machine 
address locations on the drum, input-output stations, or block 
lengths, and modification of these addresses is not desired in any 
case, the corresponding relative addressing digits are ignored. 

The purpose of the instruction modification digits is to tell the 
machine whether or not to modify the twelve binary digits making 
up the corresponding address position in an instruction by addition 
of the contents of one or the other of two counters. In the normal 
case, if the a, b, or c digit is a zero, the twelve binary digits in 
the corresponding position are interpreted, unchanged, as the 
binary representation of the machine address of the number word 
to be processed by the instruction. 

If one or more of the a, b, or c digits is a one, the contents 
of one of two auxiliary address counters is added to the corre- 
sponding twelve binary digits to yield a final address usually differ- 
ent from that given by the original twelve-digit portion of the 
instruction word. The addresses are then said to be relative to the 
counter. 

The two counters involved in the address modification feature 
of the MIDAC are known as the instruction counter and the base 
counter. In the normal case, if the fourth instruction modification 
or d digit is a zero, the contents of the instruction counter will 
be added to the contents of the various twelve-digit addresses 
(dependent on the values of the a, b, and c digits) before further 
processing of the instruction. If the a digit is one and the d digit 
zero, the contents of the instruction counter will be added to the 
a address; similarly for b and d digits and P address, etc. 

If the d digit is a one, the contents of the base counter will 
be normally added to the contents of the twelve digits in the a ,  
b, and y positions (again dependent on the values of the a, b, and 
c digits), before further processing of the results. If the a digit is 
one and the d digit one, the contents of the base counter will be 
added to the a address, etc. 

marized as follows: 
The effect of the instruction modification digits may be sum- 

The contents of the two counters will he designated by C, 
(d = 0, 1). 

C, = contents of the instruction counter 
C, = contents of the base counter 
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Then the modified addresses a’, b’, and y’ are related to the a ,  
/I, and y addresses appearing in the instruction by the following: 

a’ = a + aC, p’ = + 1Xd y’ = y + cC, 
(a, b, c, d = 0, 1) 

In certain instructions addresses relative to one of the two 
counters may be prohibited. Thus, if in a particular instruction 
N may be relative only to the instruction counter, then for that 
instruction 

a’ = a + aC, 

no matter whether the d digit is a 0 or a 1. 

in the location whose address is a’, b’, or y’. 

The notation (a’), (b’), or ( y ’ )  is used to indicate the word stored 

Instruction counter 

The instruction counter is a twelve-binary digit (modulo 4096) 
counter which contains the binary representation of the address 
of the instruction which the control unit is processing or is about 
to process. In normal operation when no change of control opera- 
tion is being processed, the contents of the instruction counter 
is increased by one at  the completion of each instruction. Thus, 
normally the next instruction to be processed is stored in the 
acoustic storage cell immediately following the cell which contains 
the present instruction. 

A change of control operation is one which selects a next in- 
struction not stored in sequence in the acoustic storage. That is, 
a t  the completion of such instructions the contents of the instruc- 
tion counter is not increased by one, but instead is changed en- 
tirely. 

Base counter 

The base counter is a second twelve-binary-digit counter (modulo 
4096), physically identical to the instruction counter, which con- 
tains the binary representation of a base number or tally. Unlike 
the instruction counter, however, the base counter does not se- 
quence automatically, but remains unchanged until a change of 
base instruction is processed. This counter serves two primary 
purposes, dependent on the usage to which it is put: 

1 It may contain the address of the initial word in a group, 
thus serving as a base address to which integers representing 
the relative position of a given word in the group of words 
may be added by using the address modification digits. 
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2 It may contain a counter or tally which can be increased 
by a base instruction. This instruction makes use of the 
address modification digits to change the counter so as to 
count the number of traversals of a particular cycle of 
instructions. 

Instruction types 

Instructions used in MIDAC can be divided into three categories: 
change of information, change of control, and transfer of informa- 
tion. The first category can be further subdivided into arithmetic 
and logical instructions. In the arithmetic instructions are included 
addition, subtraction, division, various forms of multiplication; 
power extraction, number shifting; and number conversion instruc- 
tions. The sole logical instruction is extract, which modifies infor- 
mation in a nonarithmetic fashion. 

The transfer of information or data transfer instructions include 
transfers of individual words or blocks of words into and out of 
the acoustic storage and drum and magnetic tape control. 

The possible change of control instructions includes two com- 
parisons that provide different future sequences dependent on the 
differences of two numbers. In the compare numbers or algebraic 
comparison, the difference is an algebraic, signed one. In the 
compare magnitudes or absolute comparison, the difference is one 
between absolute values. Two other instructions, file and base, 
perform other tasks beside transferring control. The file instruction 
transfers control unconditionally. The file instruction files or stores 
the contents of the base or instruction counter in a specific address 
position of a particular word in the storage. The base or tally 
instruction provides a method for referring addresses automatically 
relative to the address given by the base counter, irrespective of 
its contents. The base instruction also gives a conditional transfer 
of control. 

The nineteen MIDAC instructions can be described function- 
ally as follows: 

Change of information 

Add. (a’) + (p’) is placed in y’. Result must be less than 
1 in absolute value. 

Subtract. (a’) - (p’) is placed in y’. Result must be less 
than 1 in absolute value. 

Multiply, Low Order. The least significant 44 binary digits 
of (a’) x (p’) are placed in y’. 

Multiply, High Order. The most significant 44 binary digits 
of (a’) x (p’) are placed in y’. 

5 

6 

7 

8 

9 

10 

11 

Multiply, Rounded. The most significant 44 binary digits 
of (a’) x (p’) k 1 2-45 are placed in y’. The 1 * 2-45 is 
added if (a’) x (p’) is positive, and subtracted if (a’) x (p’) 
is negative. 

Divide. The most significant 44 binary digits of (D’)/(a’) 
are placed in y’. (Note the inversion of order of a and p.) 
Result must be less than 1 in absolute value. 

Power Extract. The number n * 2-44 is placed in y’ where 
n is the number of binary 0’s to the left of the most signifi- 
cant binary 1 in (a’). The b digit is ignored; p may be any 
even number. If (a’) is all zeros, zero is placed in y’. 

Shift Number. The 44 binary digits immediately to the 
right of the radix point in (a’) * 2(P’)’2’‘ are placed in y’. 
The result, in y’, is the equivalent of shifting (a’) n places, 
where n - 2-44 = (p’) and 11 positive indicates a shift left, 
n negative a shift right. If In1 2 44, zero is placed in y’. 

Extract or Logical Transfer. Those binary digits in (y’), 
including the sign digit, whose positions correspond to 1’s 
in (p’) are replaced by the digits in the corresponding 
positions of (a’). 

Decimal to  Binary Conversion. This operation may be 
interpreted in two ways: (a)  (a’) is considered as a binary- 
coded-decimal integer times 2-44. It is converted to the 
equivalent binary integer times 2-37 and the result is 
placed in y’, or ( b )  (a’) is considered as a binary-coded- 
decimal fraction, D. It is converted into an intermediate 
binary fraction, Ri, such that Bi = D x loll x 2-37 and 
the result placed in y’. To obtain B, the true binary equiv- 
alent of D, Bi must be multiplied by x 237). How- 
ever, since this factor is greater than l and therefore can- 
not be represented in the machine, two operations must 
be performed. For example, 

B~ x (10-11 x 237 - 1) = B~ 
B = Bi + Bj 

Here the b digit is ignored, and p may be any eoen number. 

Binary-to-Decimal Conversion. (a’), considered as a binary 
fraction, is converted into the equivalent eleven-digit bi- 
nary-coded-decimal fraction. The result is placed in y’. The 
b digit is ignored, and /3 may be any odd number. 

Change of control 

12 Compare Numbers. y can be relative only to the instruc- 
tion counter. If (a’) 2 (p’), the contents of the instruction 
counter are increased by one as is normally done at the 
end of each instruction. If (a’) < (B’), the contents of the 
instruction counter are set to y’. 
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13 

14 

15 

Compare Magnitudes. y can be relative only to the instruc- 
tion counter. If I (a’) 1 2 I (p’) 1 ,  the contents of the instruc- 
tion counter are increased by one as is normally done at 
the end of each instruction. If I (a’) I < 1 (p’) 1 ,  the contents 
of the instruction counter is set to y’. 

Base or Tally. The d digit is ignored. a and p may be 
relative only to the base counter, y only to the instruction 
counter. If a’ 2 p’, the contents of the base counter are 
set to zero and the contents of the instruction counter 
increased by one as usual. If a’ < /3‘, the contents of the 
base counter are set to a’ and the contents of the instruc- 
tion counter to y’. (Note. The comparisons made here are 
of addresses themselves, not their contents.) 

File. p may be any odd number. a and y may be relative 
only to the instruction counter. 

If d = 0, the contents of the instruction counter in- 
creased by one is placed in the y position of (a’), and the 
instruction counter is set to y’. 

If d = 1, the contents of the base counter is placed in 
the a position of (a’), and the instruction counter is set 
to y’. In addition, if b = 1, the contents of the base counter 
is set to zero; if b = 0, the contents of the base counter 
is not changed. 

Transfer of information 

16 

17 
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16 Alphanumeric Read In. The a digit must be 1; the b digit 
is ignored. If p is in the range 0 to 7 (decimal) or 000 to  
007 (hexadecimal) a characters are read into the acoustic 
storage from input-output station /3. The first character 
read in is placed in y’, the second in y’ + 1, etc. Each 
character occupies the six most significant digit positions 
of the register into which it is read; the other positions 
are set to zero. This operation may not be used to read 
words from the drum into the acoustic storage. 

Alphanumeric Read Out. The a digit must be 1; the c digit 
is ignored. Starting with (p’), read out a consecutive char- 
acters from the acoustic storage to input-output station 
y ;  y must be in the range 0 to 7 (decimal) or 000 to 007 
(hexadecimal). This operation may not be used to read 
words from the acoustic storage onto the drum. 

Move Tape Forward. (a, b, c and d digits are ignored.) /3 
may be any even number; y must be in the range 0 to 15 
decimal (000 to OOF hexadecimal). The magnetic tape at 
input-output station y is moved forward n blocks where 

17 

18 

a - 1  
n=[T]  + 1  

that is, one plus the integral part of a - yx, or the number 
of blocks that include a words. 

19 Move Tape Backward. (a, b, c, and d digits are ignored.) 
/3 may be any odd number; y must be in the range 0 to 
15 decimal (000 to OOF hexadecimal). The magnetic tape 
at input-output station y is moved backward n blocks 
where 

Read In. The a digit must be 0; the b digit is ignored. 
If p is in the range 0 to 7 (decimal) or 000 to 007 (hexadeci- 
mal) a words are read into the acoustic storage from in- 
put-output station p. The first word read in is placed in 
y’, the second in y’ + 1, etc. If p is in the range 1024 to 
1791 decimal (400 to 6FF hexadecimal), a words are read 
into the acoustic storage from the drum starting with the 
first word in the drum block whose address is p. The first 
word is placed in y’, the second in y’ + 1, etc. 

Read Out. The a digit must be 0, the c digit is ignored. 
Starting with (p’), read out a consecutive words from the 
acoustic storage to input-output station y, if y is in the 
range 0 to 7 decimal (000 to 007 hexadecimal), or to the 
drum starting at the beginning of the drum block whose 
address is y, if y is in the range 1024 to 1791 decimal (400 
to 6FF hexadecimal). references: LeinA54. 

References 

CarrJ56. SEAC computer references: AinsE52; AlexS51; ElboR53; GreeS52, 
53; HaueR52; PikeJ52; SerrR62; ShupP53; SlutR51. DYSEAC computer 

a - 1  . = [ T I  + 1  

that is, one plus the integral part of a - yx, or the number 
of blocks that include a words. 



Chapter 15 

Instruction logic of the 
Soviet Strela (Arrow)l 

John W. Caw I I I  

A typical general purpose digital computer using three-address 
instruction logic is the Strela (Arrow) constructed in quantity 
under the leadership of Iu. la. Basilewskii of the Soviet Academy 
of Sciences, and described in detail by Kitov [1956]. This com- 
puter uses a (35, 6, 0)2 binary floating point number system. 
Its instruction word, of 43 digits, contains a six-digit operation 
code, and three 12-digit addresses, with one breakpoint bit. In 
octal notation, two digits represent the operation, four each the 
addresses, and one bit the breakpoint. This machine operates with 
up to 2048 words of high-speed cathode ray tube storage. 

Input-output is ordinarily via punched cards and punched 
paper tape. A “standard program library” is attached to the com- 
puter as well as magnetic tape units (termed “external accumula- 
tors” below). Note. This computer is different from both the BESM 
described by Lebedev [ 19561 and the Ural reported by Basilewskii 
[ 19571. Apparently, it is somewhat lower in performance than 
BESM. 

Since all arithmetic is ordinarily in floating point, “special 
instructions” perform fixed point computations for instruction 
modifications. 

Ordinarily instructions are written in an octal notation, but 
external to the machine operation symbols are written in a 
mnemonic code. The two-digit numerals are the octal instruction 
equivalent. 

Arithmetic and logical instructions 

01. + cy /3 y. Algebraic addition of (a) to (p)  with result 
in y. 

02. + a /3 y. Special addition, used for increasing ad- 
dresses of instructions. The command (a) or (/?) is added to the 
number (/3) or ( a )  and the result sent to the cell with address y .  

‘In E. M. Grahhe, S. Ramo, and D. E. Wooldridge (eds.), “Handbook of 
Automation, Computation, and Control,” vol. 2, chap. 2, pp. 111-115, 
John Wiley & Sons, Inc., New York, 1959. 
’Carr’s triplet notation for: fractional significant digits, digits in exponent, 
and digits to left of radix point. 

As a rule, the address of the instruction being changed corresponds 
to the address y. 

03. - a /3 y. Subtraction with signed numbers. From 
the number (a) is subtracted the number (p)  and the result sent 
to y. 

04. - ‘cy /3 y. Difference of the absolute value of two 
numbers I(a)I - I(P)I = (VI. 

05. X a /3 y. Multiplication of two numbers (a) and (/?) 
with result sent to y .  

06. A a /3 y. 1,ogical multiplication of two numbers in 
cells a and P. This instruction is used for extraction from a given 
number or instruction a part defined by the special number (p). 

07. V cy /3 y. Logical addition of two numbers (a)  and 
(p) and sending the result to  cell y.  This instruction is used for 
forming numbers and commands from parts. 

10. Sh a /3 y. Shift of the contents of cell a by the 
number of steps equal to the exponent of the (p). If the exponent 
of the (p) is positive then the shift proceeds to the left, in the 
direction of increasing value; if negative, then the shift is right. 
In addition, the sign of the number, which is shifted out of the 
cell, is lost. 

11. - cy /3 y. Special subtraction, used for decreasing 
the addresses of instructions. In the cell a is found the instruction 
to be transformed, and in cell p the specially selected number. 
Ordinarily addresses a and y are identical. 

12. # a /3 y. Comparison of two numbers (a) and (p)  
by means of digital additions of the numbers being compared 
modulo two. In the cell y is placed a number possessing ones in 
those digits in which inequivalence results in the numbers being 
compared. 

Control instructions 

13. C cy /3 0000. Conditional transfer of control either to 
instruction (a) or to instruction (p), depending on the results of 
the preceding operation. With the operations of addition, sub- 
traction, and subtraction of absolute values, it appraises the sign 
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of the result: for a positive or zero result it transfers control to 
the command (a), for negative results to the command (p). 

The result of the operation of multiplication is dependent on 
the relationship to unity. Transfer is made to the command (a) 
in the case where the result is greater than or equal to one, and 
to command (p), if it is smaller than one. 

For conditional transfer after the operation of comparison, 
transfer to the instruction (a )  is made in the case of equality of 
binary digits, and to (p) when there is any inequivalence. 

After the operation A (logical sequential multiplication) the 
conditional transfer command jumps to the instruction (a) when 
the result is different from zero, and to instruction (p)  when it 
is equal to zero. 

A forced comparison is given by 

c a a 0000 

The third address in this command is not used and in its place 
is put zero. 

14. 1 -0  a 0000 0000. This instruction is executed paral- 
lel with the code of the other operations, and guarantees bringing 
into working position in good time the zone of the external ac- 
cumulator (magnetic tape unit) with the address a.  

15. H 0000 0000 0000. This instruction executes an ab- 
solute halt. 

Group transfer instructions 

Special instructions for group transfer serve for the accomplish- 
ment of a transfer of numbers to and from the accumulators. In 
the second address in these instructions stands an integer, desig- 
nating the quantity of numbers in the group which must be trans- 
ferred. Group transfers always are produced in increasing sequence 
of addresses of cells in the storage. 

16. T, 0000 n y. The instruction T, guarantees transfer 
from a given input unit (with punched cards, perforated tape, etc.) 
into the storage. In the third address y of the instruction is indi- 
cated the initial address of the group of cells in the storage where 
numbers are to be written. With punched paper tape or punched 
cards the variables are written in sequence, beginning with the 
first line. 

17. T, 0000 n y. The instruction T, guarantees transfer 
of a group of n numbers from an input unit into the external 
accumulator in zone y. 

20. T, a n y. This instruction guarantees a line-by-line 
sequence of transfers of n numbers from zone a of the external 
accumulator into the cells of the storage beginning with the cell 
with address y .  
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21. T, a n 0000. This instruction guarantees the trans- 
fer to the input-output unit (to punched paper tape or punched 
cards) of a group of n numbers from the storage, beginning with 
address a. The record on punched paper tape or punched cards 
as a rule will begin with the first line and therefore a positive 
indication of the addresses of the record is not required. 

22. T, a n y. Instruction T, guarantees transfer of a 
group of n numbers from one place in the storage with initial 
address a into another place in the storage with initial address y. 

23. T, a n y. Instruction T, guarantees transfer of a 
group of n numbers from the storage with initial address a into 
the external accumulator with address y. 

24. T, a n 0000. Instruction T, serves for transfer of n 
numbers from the zone of the external accumulator with address 
a into the input-output unit. 

Instructions T, and T, cannot be performed concurrently with 
other machine operations. 

Standard subroutine instructions 

Certain instructions in the Strela, although written as ordinary 
instructions, are actually “synthetic” instructions which call on 
a subroutine for computation of the function involved. The amount 
of machine time (number of basic instruction cycles) for an itera- 
tive process depends on the required precision of the computed 
function. The figures given below are based on approximately 
ten-digit decimal numbers with desired precision one in the tenth 
place. 

25. D a /3 y. This standard subroutine serves for exe- 
cution of the operation of division: The number (a )  is divided into 
the number (p) and the quotient is sent to cell 7. 

The actual operation of division is executed in two steps: the 
initial obtaining of the value of the inverse of the divisor, by which 
the dividend is then multiplied. The computation of the inverse 
is given by the usual Newton formula, originally used with the 
EDSAC [Wilkes et al., 19521. 

Yn+1 = Y n P  - Y n 4  

For x = d * 2 P ,  where ‘/z < d < 1, the first approximation is taken 
as 2-P. The standard subroutine takes 8 to 10 instructions and can 
be executed in 18-20 machine cycles (execution time for one 
typical command). 

26. < a 0000 y.  This instruction guarantees obtaining 
the value & from the value x = (a )  and sending the result to 
cell y. Initially l /& is computed by the iteration formula 
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where the first approximation is taken as 

- Z‘P/Z’ 
0 -  

the bracket indicating “integral part of.” After this the result is 
multiplied by x to obtain 6. This standard subroutine contains 14 
instructions and is executed in 40 cycles. 

27. ex a 0000 y. This instruction guarantees formation 
of L for the value x = (a) and sending the result to cell y. The 
computation is produced by means of expansion of ex in a power 
series. The standard subroutine contains 20 instructions and is 
executed in 40 cycles. 

30. l n x  a 0000 y. This instruction guarantees forma- 
tion of the function In x for the value x = ( a )  and sending the re- 
sult to  location y. computation is produced by expansion of In x in 
series. The subprogram contains 15 instructions and is executed 
in 60 cycles. 

31. sinx a 0000 y. This instruction guarantees execu- 
tion of the function sin x and sending the result to location y. The 
computation is produced in two steps: initially the value of the 
argument is translated into the first quadrant, then the value of 
the function is obtained by a series expansion. The subroutine 
contains 18 instructions and is executed in 25 cycles. 

32. DB a n y. This instruction performs conversion of 
a group of n numbers, stored in locations a ,  a + 1, . . . from bi- 
nary-coded decimal into binary and sending of the result to loca- 
tions y. y + l , .  . . . The subroutine contains 14 instructions and 
is executed in 50 cycles (for each number). 

33. BD a n y. This instruction performs the conversion 
of a group of n numbers stored in locations a,  a + 1,. . . from the 
binary system into binary-coded decimal and sends them to loca- 
tions y, y + l , .  . . . The subroutine contains only 30 instructions 
and is executed with 100 cycles (for each number). 

34. MS a n y. This is an instruction for storage sum- 
ming. This instruction produces the formal addition of numbers, 
stored in locations beginning with address a, and the result is sent 
to  location y .  Numbers and instructions are added in fixed point. 
This sum may be compared with a previous sum for control of 
storage accuracy. 

References 

BasiI57; KitoA56; LebeS6; WilkM52. 



Section 2 

Processors constrained by a cyclic, 
primary memory 

These processors use one extra (the + 1) address to  specify 
the address of the next instruction. Obviously this address is 
used to  allow complete freedom in the location of both operands 
and next instructions in an optimum manner. The IBM 650, 
a 1 + 1 address computer, is the most straightforward to un- 
derstand. ACE and ZEBRA have subtle microcoded instructions 
to achieve powerful instruction sets. The LGP-30 and LGP-21 
have a simple 1 address instruction format; they interlace sev- 
eral logical addresses between the physical addresses to help 
with the optimum location of operands. 

The Olivetti Underwood Programma 101 desk calculator 

The Programma 101 is a desk calculator computer implemented 
with a cyclic Mp. The cyclic memory is not apparent from the 
user’s viewpoint because the response is adequate (less than 
0.1 sec for simple arithmetic operations). The Programma 101 
is discussed in Part 3, Sec. 4, page 235. 

ZEBRA, a simple binary computer 

The ZEBRA is presented in Chap. 12 and is discussed in Part 
3, Sec. 1, page 190. 

The LGPSO and LGP-21 

The LGP-30 (Chap. 16) is a first-generation, 31-bit computer 
with an Mp.cyclic and a very simple ISP. The computer appears 
to  be characteristic of small-scale drum computers in the first 
generation. We think of this class of computer as having very 
little power when compared, for example, with the IBM 701. 
However, the power is mostly related to the drum-based tech- 
nology, with 0.26 - 16.66 millisecond access times. 

The Pilot ACE 

The NPL Pilot ACE is presented in Chap. 11. Its relationship in 
the computer space is discussed in Part 3, Sec. 1, page 190. 

The UNIVAC system 

The UNIVAC I is described in Chap. 8. A discussion is given 
in Part 2, Sec. 1, page 91. 

The design philosophy of Pegasus, 
a quantityproduction computer 

The Pegasus cyclic memory, general register computer (Chap. 
9) is discussed in Part 2, Sec. 2, page 170. 

IBM 650 instruction logic 

The IBM 650 has a 1 + 1 address format and a very complete 
instruction set. Because of the long word length (10 decimal 
digits) we would consider it to have general utility. The 650’s 
high performance is achieved by using a fast drum (6 millisec- 
onds/revolution). The characteristics given in Chap. 17 present 
the machine as it was first introduced in 1954. Later versions 
provided options for floating point arithmetic and index regis- 
ters. A 96-word core buffer was also added for disk and mag- 
netic-tape buffering. The machine structure is a simple 1 Pc 
without concurrent processing and input/output transfer abil- 
ity. Although the 650 has a large word, it initially processed only 
fixed point integers. 

NOVA: a list-oriented computer 

The NOVA (Chap. 26) is a specialized computer for processing 
array data. It is discussed in Part 4, Sec. 2, page 315. 
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The LGP-30 and LGP-21 

The LGP-30 is a small computer with an Mp.drum. It is distinct 
from the first (and succeeding) generation computers using 
Mp.random,access and can be described by using the PMS dia- 
gram in Fig. l. The LGP-21, a direct descendant of the LGP-30, 
having the same ISP, is also described by Fig. 1. 

Since there is only one address/instruction, a method is needed 
for the optimal allocation of operands. Otherwise, each instruction 
might have to wait a complete drum (or disk) revolution each time 
a data reference is made. The LGP-30 provides for operand- 
location optimization by interlacing the logical addresses on the 
drum so that two adjacent addresses (e.g., 00 and 01) are separated 
by nine physical locations.' These spaces allow for operands to 
be located next to the instructions which use them. There are 64 
tracks, each with 64 words (sectors). Each word is accessed by 
a track address of 6 bits and a word address of 6 bits. The sequence 
of words (sectors) within a track is 00, 57, 50, 43, 36, 29, 22, 15, 
08, 01, 58, 51, 44, 37, . . . , 06, 63, 56, 49, 42, 35, 28, 21, 14, 
07,00. The time between two adjacent physical words is approxi- 
mately 0.260 millisecond, and the time between two adjacent 
addresses is 9 x 0.260 or 2.340 milliseconds. The actual maximum 
t.access is 16.66 rns2  

Half of the instruction (15 bits) is unused. It could be used for 
extra instructions, indexing, indirect addressing, or a second (+ 1) 
address to locate the next instruction, all of which increase the 
preformance. 

lThe LGP-21 has a space of 18 words. 
2The later LGP-21 appears to have a lower performance than the LGP-30 
by about a factor of 3. 

'LGP-30; technology: (113 vacuum tubes ) ,  ( I 3 5 0  d iodes ) ;  

power: 1500 wa t t s :  w e i g h t :  ROO pounds; number produced: 

3 2 0 -  490; t . d e l i v e r y :  September 1956; descendant: 'LGP-21: 

P c ( l  address; 1 i n s t r u c t i o n / w ;  da ta :  w , b v , i , f r ;  Mps(- 2 w ) ;  

opera t i ons :  (+. - .x  , / ,A,x  2 ) )  

Mp(drum; t . c y c l e :  260 us/w; t . access :  ( .260 - 16.6) ms; 

i . r a t e :  2.34 ms/w contiguous addresses: 4096 w; (31 , I  

space) b/w) 

T ( F l e x o w r i t e r ,  paper tape) 

LGP-21 ; technology: (460 t r a n s i s t o r s ) ,  (375 d iodes ) ;  power: 

300 wa t t s ;  we igh t :  90 pounds; number produced:-  150; 

t . d e l i v e r y :  December 1962; 

Mp( f i xed  head d i s k ;  c y c l i c ;  t . c y c l e :  400 us/w; t .access: 

(0 - 52) ms :  i . r a t e :  7.26 ms/w contiguous addresses: 

4096 w: (31.1 space) b/w) 

T (#1 :32 ;  F l e x o w r i t e r ,  paper tape, analog, CRT, card) , 

Fig. 1. LGP-30 and LGP-21 PMS diagrams. 

The ISP, given in Appendix 1 of this chapter, is about the most 
straightforward in the book. There are only 16 instructions, and 
the program state is less than two words. Although the perform- 
ance is limited because of an Mp.cyclic,access, an Mp.ran- 
dom-access would serve to make the ISP fairly similar to other 
faster computers, e.g., an IBM 701. 

217 



218 Part 3 1 The instruction-set processor level: variations in the processor Section 2 Processors constrained by a cyclic, primary memory 

APPENDIX 1 LGP-30 AND LGP-21 ISP DESCRIPTION 

Appendix 1 

LGP-30 and LGP-21 I S P  D e s c r i p t i o n  

p c  S ta te  
Ad) :  302 

C-48: 23,24 :29; 

OV 

Run 

pc Console S ta te  
0P4,8,16,32> 

TC 
I 

A c c m t a t o r  

Propram Counter reg i s t e r  
Overflow, LCP-21 only on LCP-30 machine stops i f  an overflow 

Break Point switches 
Transfer Control switch 

I 8% Sta te  
M [ O : 7 7 8 ~ ~ O : 7 7 8 ~ < O : 3 0 ~ ~  primar,u memory; 212 w ;  track and sector (word) 

I( Sta te  
The following Input Output devices do not have synchronization r'escription variables.  LCP-21 only. LCP-30 has a Flexowriter. 

Input-devi  ce LO: 31 1<1 : 6> 
s top  code condition s igni fy ing  input dev.ce has read a special code 

OutputJevice[O:31 ]<1:6> 

Ins t ruc t ion  Format 
i<0:30> 

opaJ : j>  := i 4 2 : 1 5 >  

t d : 5 >  := i<18:23> 

t ' a l : 4 > : =  t < l : 5 >  
s d : 5 >  := i Q 4 : 2 9 >  

s k i p  c o n d i t i o n  := t ( t 4 : 3 >  A 

Ins t ruc t ion  In terpre ta t ion  Process 

BP) # 0) 

Run - ( i  t M [ C ] ;  C t C  + I ;  next 

l n s t r u c t i o n g x e c u t i o n )  

Ins t ruc t ion  Set and Ins t ruc t ion  Execution Process 
I n s t r u c t  i o n g x e c u t  i o n  := ( 

2 (:= op = 0) - ( 
( t  = OOOOOe) - (Run to): 
s k i p  c o n d i t i o n  -(C t C  + 1 ) ;  

ia> + ( O V  + ( O V  t o ;  c t~ + 1 ) ) ) ;  

B ( : =  op = 1 )  + ( A  + - M [ t l [ ~ l ) :  

Y ( :=  op = 2 )  + (M[tl[s]<18:29>~-A<18:29>); 
R ( :=  op = 3 )  +(M[t ] [s1<18:29> C C  + 1 ) :  

I (:= op = 4 )  + ( 

7 iaJ> A ( t=62) + ( A  t A  x Z 6  [ l o g i c a l ) ) ;  

ia> A (t=62) - ( A  + A  x Z 4  [ l o g i c a l ] ) :  

7 i aJ>  A ( t f 62 )  --f (input,b,bit) : 

id> A ( t#62) + ( i n p u t h J i t ) ) :  

ins t ruc t ion  

operation code 
track se l ec t  b i t  on Mp 
innut-output s e l ec t ,  LCP-21 on ly  
sector se t ec t  h i t  of W 

f e t c h  

execute 

s t o p  
sense BP and t rans fer  
sense overflow and t rans fer  

bring f rom memory 

s tore  address 
s e t  re turn  address 
s h i f t s ,  and input 
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APPENDIX 1 LGP-30 AND LGP-21 ISP DESCRIPTION (Continued) 

6 
i n p u t d u b i t  := ( A  c A  x 2 ( l o g i c a l ) :  nex t  

k25:3CD t Input,device[ t ' l ;  nex t  

hA<o>V s top  code) + input,&bit) 

input,4,bit := (A + A x  Z4 { l o g i c a l ) ;  nex t  

A<27:3CD t I npu t  d e v i c e [ t ' l < l : b ;  nex t  

hA<O>V s top  code) + inputY4,bit) 

D (:= op = 5 )  + (0v.A t round(A / M C t l [ s l ) ) ;  

N ( :=  op = 6 )  + (A + A X  M [ t l [ s l  { s . i n t e q e r \ ) :  

M ( :=  op = 7) + (A t A  x M [ t l [ s l  { s . f r a c t i o n ) ) ;  

P ( : =  op = l o8 )  + ( 

i4> + (Output,device[t ' l<l:6> tA<D:5>) :  

i a> + (Ou tpu  t,dev i ce[ t ' ]<I : 6> c A<D : i>OlOO) ) : 

E ( : =  op = 118)  + (A + A  A M [ t l [ s ] ) ;  

u ( : =  op = 12) + (C t t o s ) ;  

T ( :=  op = 13) + (i<D + ( (A<CU V TC) + (C c t 0 s ) ) ;  

Ti<@ + (A<@ -f (C t t O s ) ) ) ;  

H ( : =  op = 14) + ( M [ t l [ S l  + A ) ;  

C (:= op = 1 5 )  + (MCtICsl + A ;  next  A t o ) ;  
A (:= op = 16)  + (OvoA + A  + M [ t ] [ s l ) ;  

5 ( : =  op = 17) + (OvoA + A  - M[ t l [ 51 )  

) 

input processes 

wait 

divide 

m u l t i p l l y ,  save right 
multipl,u, save l e f t  

print  6 b i t  

print 4 b i t  

extract 

unconditional transfer 
trans.fer control 

conditional transfer 
hold and store 
clear 
add 
subtract 
end Innstruction,execution 
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10 9 8 7 6 5 4 2 3 1 

Data Next Instruction OP. 
Code Address Address 

IBM 650 instruction logic1 

0 

Sign 

John W. Cam III 

The basic IBM 650 is a magnetic drum (10,0, 0)2 decimal computer Input-output instructions 
with one-plus-one address instruction logic. It has a storage of 1000 
or 2000 10-digit words (plus sign) with addresses 0000-0999 or 
0000-1999. More extended versions of the equipment have built-in 
floating point arithmetic and index accumulators, but the basic 
machine will be described here. There are three arithmetic regis- 
ters in addition to the standard program register and program 
counter. All information from the drum to the arithmetic unit 
passes through a signed 10-digit distributor. A twenty-digit ac- 
cumulator is divided into a lower and upper part, each of 10 digits 
with sign. Each of these is addressable (distributor 8001, lower 
accumulator 8002, and upper accumulator 8003). Each accumula- 
tor may be cleared to zero separately (in IBM 650 terminology, 
“reset”). The entire 20-digit register can be considered as a unit, 
or each part separately (but affecting the other in case of carries). 
The 10-digit instruction is broken down into the following form: 

One particular instruction, Table Look-Up, allows automatic table 
search for one particular element in a table, which can be stored 
with a corresponding functional value. Input-output is via 80-digit 
numerical punched cards. An “alphabetic device” allows limited 
alphabetical entry on cards. Only certain 10-word groups on the 
magnetic drum are available for input and output. The following 
information is taken from an IBM 650 manual [Type 650, Magnetic 
Drum Data-Processing Machine Manual of Operations]. Much of 
the input-output is handled via board wiring, which is not de- 
scribed in detail below. The two-digit pair represents the machine 
code. The BRD (Branch on Digit) operation is used with special 
board wiring to tell when certain specific card punches exist. 

iIn E. M. Grabhe, S. Ramo, and D. E. Wooldridge (eds.), “Handbook of 
Automation, Computation, and Control,” vol. 2, chap. 2, pp. 93-98, 
John Wiley & Sons, Inc., New York, 1959. 
Carr’s triplet notation for: fractional significant digits, digits in exponent, 

and digits to left of radix point. 

70 RD (Read). This operation code causes the machine to 
read cards by a two-step process. First, the contents of the 10 
words of read buffer storage are automatically transferred to one 
of the 20 (or 40) possible 10-word groups of read general storage. 
The group selected is determined by the D address of the Read 
instruction. Secondly, a card is moved under the reading brushes, 
and the information read is entered into buffer storage for the next 
Read instruction. 

71 PCH (Punch). This operation code causes card punch- 
ing in two steps. First the contents of one of the 20 (or 40) possible 
10-word groups of punch storage are transferred to punch buffer 
storage. The group selected is specified by the D address of the 
Punch instruction. Secondly, the card is punched with the infor- 
mation from buffer storage. 

69 LD (Load Distributor). This operation code causes the 
contents of the D address location of the instruction to be placed 
in the distributor. 

24 STD (Store Distributor). This operation code causes the 
contents of the distributor with the distributor sign to be stored 
in the location specified by the D address of the instruction. The 
contents of the distributor remain undisturbed. 

Addition and subtraction instructions 

I O  AU (Add to Upper). This operation code causes the 
contents of the D address location to be added to the contents 
of the upper half of the accumulator. The lower half of the ac- 
cumulator will remain unaffected unless the addition causes the 
sign of the accumulator to change, in which case the contents of 
the lower half of the accumulator will be complemented. Also, 
the units position of the upper half of the accumulator will be 
reduced by one. 

15 AL (Add to Lower). This operation code causes the 
contents of the D address location to be added to the contents 
of the lower half of the accumulator. The contents of the upper 
half of the accumulator could be affected by carries. 

11 SU (Subtract from Upper). This operation code causes 
the contents of the D address location to be subtracted from the 
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contents of the upper half of the accumulator. The contents of 
the lower half of the accumulator will remain unaffected unless 
the subtraction causes a change of sign in the accumulator, in 
which case the contents of the lower half of the accumulator will 
be complemented. Also, the units position of the upper half of 
the accumulator will be reduced by one. 

16 SL (Subtract from Lower). This operation code causes 
the contents of the D address location to be subtracted from the 
contents of the lower half of the accumulator. The contents of 
the upper half of the accumulator could be affected by carries. 

60 RAU (Reset and Add into Upper). This operation code 
resets the entire accumulator to plus zero and adds the contents 
of the D address location into the upper half of the accumulator. 

65 RAL (Reset and Add into Lower). This operation code 
resets the entire accumulator to plus zero and adds the contents 
of the D address location into the lower half of the accumulator. 

61 RSU (Reset and Subtract into Upper). This operation 
code resets the entire accumulator to plus zero and subtracts the 
contents of the D address location into the upper half of the 
accumulator. 

66 RSL (Reset and Subtract into Lower). This operation 
code resets the entire accumulator to plus zero and subtracts the 
contents of the D address location into the lower half of the 
accumulator. 

Accumulator store instructions 

20 STL (Store Lower in Memory). This operation code 
causes the contents of the lower half of the accumulator with the 
accumulator sign to be stored in the location specified by the D ad- 
dress of the instruction. The contents of the lower half of the 
accumulator remain undisturbed. 

It is important to remember that the D address for all store 
instructions must be 0000-1999. An 8000 series D address will not 
be accepted as valid by the machine on any of the store instruc- 
tions. 

21 STU (Store Upper in Memory). This operation code 
causes the contents of the upper half of the accumulator with the 
accumulator sign to be stored in the location specified by the 
D address of the instruction. If STU is performed after a division 
operation, and before another division, multiplication, or reset 
operation takes place, the contents of the upper accumulator will 
be stored with the sign of the remainder from the divide operation 
(Op-Code 14). The contents of the upper half of the accumulator 
remain undisturbed. 

22 STDA (Store Lower Data Address). This operation code 

causes positions 8-5 of the distributor to be replaced by the con- 
tents of the corresponding positions of the lower half of the ac- 
cumulator. The modified word in the distributor with the sign of 
the distributor is then stored in the location specified by the 
D address of the instruction. 

23 STIA (Store Lower Instruction Address). This operation 
code causes positions 4-1 of the distributor to be replaced by the 
contents of the corresponding positions of the lower half of the 
accumulator. The modified word in the distributor with the sign 
of the distributor is then stored in the location specified by the 
D address of the instruction. The contents of the lower half of 
the accumulator remain unchanged, and the sign of the accumu- 
lator is not transferred to the distributor. The modified word re- 
mains in the distributor upon completion of the operation. 

Absolute value instructions 

17 AABL (Add Absolute to Lower). This operation code 
causes the contents of the D address location to be added to the 
contents of the lower half of the accumulator as a positive factor 
regardless of the actual sign. When the operation is completed, 
the distributor will contain the D address factor with its actual 
sign. 

67 RAABL (Reset and Add Absolute into Lower). This 
operation code resets the entire accumulator to zeros and adds 
the contents of the D address location into the lower half of the 
accumulator as a positive factor regardless of its actual sign. When 
the operation is completed, the distributor will contain the D ad- 
dress factor with its actual sign. 

18 SABL (Subtract Absolute from Lower). This operation 
code causes the contents of the D address location to be subtracted 
from the contents of the lower half of the accumulator as a positive 
factor regardless of the actual sign. Wnen the operation is com- 
pleted, the distributor will contain the D address factor with its 
actual sign. 

68 RSABL (Reset and Subtract Absolute into Lower). This 
operation code resets the entire accumulator to plus zero and 
subtracts the contents of the D address location into the lower 
half of the accumulator as a positive factor, regardless of the actual 
sign. When the operation is completed, the distributor will contain 
the D address factor with its actual sign. 

Multiplication and division 

19 MULT (Multiply). This operation code causes the ma- 
chine to multiply. A 10-digit multiplicand may be multiplied by 
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a 10-digit multiplier to develop a 20-digit product. The multiplier 
must be placed in the upper accumulator prior to multiplication. 
The location of the multiplicand is specified by the D address of 
the instruction. The product is developed in the accumulator 
beginning in the low-order position of the lower half of the ac- 
cumulator and extending to the left into the upper half of the 
accumulator as required. 

14 DIV (Divide). This operation code causes the machine 
to divide without resetting the remainder. A 20-digit dividend may 
be divided by a 10-digit divisor to produce a 10-digit quotient. 
In order to remain within these limits, the absolute value of the 
divisor must be greuter than the absolute value of that portion of 
the dividend that is in the upper half of the accumulator. The 
entire dividend is placed in the 20-position accumulator. The 
location of the divisor is specified by the D address of the divide 
instruction. 

64 DIV RU (Divide and Reset Upper). This operation 
code causes the machine to divide as explained under operation 
code 14 (DIV). However, the upper half of the accumulator con- 
taining the remainder with its sign is reset to zeros. 

Branching instructions (decision operations) 

44 BRNZU (Branch on Non-Zero in Upper). This opera- 
tion code causes the contents of the upper half of the accumulator 
to be examined for zero. If the contents of the upper half of the 
accumulator is nonzero, the location of the next instruction to be 
executed is specified by the D address. If the contents of the upper 
half of the accumulator is zero, the location of the next instruction 
to be executed is specified by the I address. The sign of the ac- 
cumulator is ignored. 

45 BRNZ (Branch on Non-Zero). This operation code 
causes the contents of the entire accumulator to be examined for 
zero. If the contents of the accumulator is nonzero, the location 
of the next instruction to be executed is specified by the D address. 
If the contents of the accumulator is zero, the location of the next 
instruction to be executed is specified by the I address. The sign 
of the accumulator is ignored. 

46 BRMIN (Branch on Minus). This operation code causes 
the sign of the accumulator to be examined for minus. If the sign 
of the accumulator is minus, the location of the next instruction 
to be executed is specified by the D address. If the sign of the 
accumulator is positive, the location of the next instruction to be 
executed is specified by the I address. The contents of the accu- 
mulator are ignored. 

47 BROV (Branch on Overflow). This operation code 

Section 2 1 Processors constrained by a cyclic, primary memory 

causes the overflow circuit to be examined to see whether it has 
been set. If the overflow circuit is set, the location of the next 
instruction to be executed is specified by the D address. If the 
overflow circuit is not set, the location of the next instruction to 
be executed is specified by the I address. 

90-99 BRD 1-10 (Branch on 8 in Distributor Position 
1-10). This operation code examines a particular digit position 
in the distributor for the presence of an 8 or 9. Codes 91-99 test 
positions 1-9, respectively, of the test word; code 90 tests position 
10. If an 8 is present, the location of the next instruction to be 
executed is specified by the D address, If a 9 is present, the location 
of the next instruction to be executed is specified by the I address. 
The presence of other than an 8 or 9 will stop the machine. 

Shift instructions 

30 SRT (Shift Right). This operation code causes the con- 
tents of the entire accumulator to be shifted right the number of 
places specified by the units digit of the D address of the shift 
instruction. A maximum shift of nine positions is possible. A data 
address with units digit of zero will result in no shift. All numbers 
shifted off the right end of the accumulator are lost. 

31 SRD (Shift Round). This operation causes the contents 
of the entire accumulator to be shifted right the number of places 
specified by the units digit of the D address of the instruction. 
A 5 is added ( - 5  if the accumulator is negative) in the twenty-first 
(blind) position of the amount in the accumulator. A data address 
units digit of zero will shift 10 places right with rounding. 

35 SLT (Shift Left). This operation code causes the con- 
tents of the entire accumulator to be shifted left the number of 
places specified by the units digit of the D address of the instruc- 
tion. A maximum shift of nine positions is possible. A data address 
with a units digit of zero will result in no shift. All numbers shifted 
off the left end of the accumulator are lost. However, the overflow 
circuit will not be turned on. 

36 SCT (Shift Left and Count). This operation code causes 
(1) the contents of the entire accumulator to be shifted to the left 
until a nonzero digit is in the most significant place, (2) a count 
of the number of places shifted to be inserted in the two low-order 
positions of the accumulator. This instruction is to aid fixed-point 
scaling. 

Table look-up instructions 

84 TLU (Table Look-up). This operation code performs an 
automatic table look-up using the D address as the location of 
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the first table argument and the I address as the address of the 
next instruction to be executed. The argument for which a search 
is to be made must be in the distributor. The address of the table 
argument equal to, or higher than (if no equal exists) the argument 
given is placed in positions 8-5 of the lower accumulator. The 
search argument remains, unaltered, in the distributor. 

Miscellaneous instructions 

00 No-Op (No Operation). This code performs no opera- 
tion. The data address is bypassed, and the machine automatically 

refers to the location specified by the instruction address of the 
No-Op instruction. 

01 Stop. This operation code causes the program to stop 
provided the programmed switch on the control console is in the 
stop position. When the programmed switch is in the run position 
the 01 code will be ignored and treated in the same manner as 
00 (NO-Op). 

References 

Type 650 Magnetic Drum Data-Processing Machine Manual of Operations: 
HughE54; SerrR62. 



Section 3 

Processors for variable-length-string data 

Although only two computers are described in this section, the 
reader might refer to other computers in the book which handle 
variable-length strings. The IBM System/360 processes a string 
whose length is specified in the instruction. The Burroughs 
B 5000 has a very nice string data ISP (both simple and power- 
ful). 

Variable-length strings imply some method to specify at in- 
struction execution time the actual length of the character 
strings being processed. Which method is used has a substan- 
tial effect on the ISP of the resulting machine, and it is note- 
worthy that a wide variety of devices has been tried without any 
apparent consensus yet on the appropriate mechanism: 

1 An extra bit in each character to mark the string bound- 
ary (IBM 1401) 

2 A special terminal character to mark the string boundary 
(IBM 702) 

3 A field variable in the instruction to specify the string 
length (IBM System/360) 

4 A register variable in the processor to specify the string 
length (an 8-bit-character computer-Chap. 10) 

5 A fixed number of characters at the head of the string 

to specify the length (and data type) of the string (used 
extensively for variable-length records on tape and disk, 
though we know of no ISP that uses it) 

The IBM 1401 

The 1401 was IBM's most popular computer, measured by 
quantity produced, prior to the 1130/1800 and System/360. 
However, the authors of this book were unable to find any 
technical papers on its design or design philosophy. The 1401 
is based on earlier business-oriented computers (Fig. 1, page 
225). It evolved a great deal, as can be seen from the number 
of "features" which can be appended to improve it. Successors, 
the 1440 and 1460, are also improvements. It is assumed that 
early computers mainly influence successor computers within 
the same organization. 

An 8-bit-character computer 

An 8-bit-character computer (Chap. 10) has been suggested by 
the authors. It is a very restricted computer for processing 
string data and illustrates another approach to string defini- 
tions; the string length is specified by a variable in the proc. 
essor. 

224 



Chapter 18 

The IBM 1401 
The second-generation transistor-technology IBM 1401 has been 
included both because a large number' have been produced and 
because it differs from common fixed word length binary and deci- 
mal computers. IBM 1401s are used in business data-processing 
applications requiring variable-length character strings or fields 
and rather limited calculating ability. Two specific applications 
are as a card processor in making a transition from plugboard 
programmed calculators to full-scale automatic computations and 
for converting data from one medium to another, for example, from 
card to tape. The 1401 was little used by the scientific, engineer- 
ing, and scientific business data-processing communities, probably 
because of the limited Mp size, the low overall processing speed, 
and the lack of concurrent 1/0 operation in the smaller configura- 
tions. However, it did achieve considerable use as a stand-alone 
Cio in C('7090) installations, perhaps because of the speed and 
quality of the T('1403; line; printer). 

Although undoubtedly influenced by machines outside the IBM 
organization, the IBM 1401 is derived primarily from the IBM 702 
and 705, which are variable word length decimal machines. The 
relationship of the various IBM decimal computers to one another 
is shown in Fig. 1. (RCA's early computers2 also use a combination 
of fixed-length and variable-length 7-bit character strings and may 
have influenced the 1401.) 

The IBM 1401's ISP was the first to be adopted by another 
company. Honeywell defined its H-200 ISP to be a superset of the 
IBM 1401 ISP. The ISP of the H-200 is more complex and increases 
performance by organizing Mp by both characters and words. 

The IBM 1401, 1440, and 1460 are the only IBM computers 
to be completely character-string oriented. That is, both instruc- 
tions and data are stored in variable-length character strings; these 
strings are addressed by a pointer register to the string. The ad- 
dress integer is fixed at three characters. The encoding process 
for addresses is given in Appendix 1 of this chapter. The 3-char- 
acter address (3 x 6 bits) is assigned as 3 x 4 bcd characters for 
encoding addresses 0:999; 2 x 2 bits for selecting 16 x 1,000 
addresses; and 2 bits for selecting one of the three index registers. 

The IBM 1620 processes variable-length data strings, although 

'Up to 1966, more 1401s were produced than any other model. An esti- 
mated 7,500 1401s, 1,500 1401 G's (card-only system), 3,600 144Os, and 1,500 
1460s were produced. About 1,800 1620s were produced. 
2RCA 301, 501, and 601. 

the instruction length is a fixed 12-digit string corresponding to 
a word in Mp. The 1620, though not identical to the 1401, is 
almost a member of the same family. 

The 1401 evolved. Figure 1 shows the evolution of "features" 
which have created new computers. The 1401's optional features 
are mainly design afterthoughts; they sometimes increase perform- 
ance, sometimes make certain operations possible, and sometimes 
provide substantive change. There are approximately 19 features 
in the 1401: memory expansion beyond the anticipated 4,000 
characters and index registers required encoding the field bits of 
the A and B addresses; store A-Address and store B-Address register 
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Fig. 1. IBM decimal and character-string computer relationships. 
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instructions are necessary for subroutines-the Store Address Regis- 
ter Feature; Indexing Feature; Multiply-Divide Feature; High- 
Low-Equal Compare Feature; Read Release and Punch Release 
Feature; the Column Binary Feature; Early-Card-Read Feature; 
Processing Overlap Feature, etc. 

PMS structure 

The 1401 PMS structure (Fig. 2) is an early 1 Pc structure. The 
diagram does not show the S(fixed) Pc interconnection structure 
with the Ms and T. The Pc-(MslT) interconnection restricts the 
concurrency of T and Ms. The optional processing overlap feature 
provides a link to Mp to allow the T(card; read, punch) to be run 
concurrently with Pc processing. When any of the peripheral 
devices are operating without the processing overlap feature, the 
Pc is dedicated to be a data transmission link or K (as in earlier 
computers). The device K is connected directly to Pc. For example, 
Ms(disk, magnetic tape) data transfers use the main registers of 
the Pc and can tie it up full time during data transmission. By 
careful programming, several devices can be synchronized and 
thus run concurrently for communicating with Pc from a K. The 
Pc does not have an interrupt system. Thus the peripherals have 
no way of communicating with Pc. Subsequent models, the 1440 
and 1460, added interrupt capability and made it easier to control 
multiple simultaneous data transfers among the peripheral K's 
and Pc. 

T.consol*  

I M s ( ' l 4 0 5 ;  d i s k )  

Mp2- P!'T('1402; card;  reader,punch)- 

T ( ' 1 4 0 3  1'1404; l i n e ;  p r i n t e r ) +  

T ( ' 1 4 0 7  Console I n q u i r y  S t a t i o n ;  t y p e w r i t e r ) -  

T (paner tape; reader)+ 

Ms(#l  :6; magnet ic tape)- 

' P c ( s t r i n g ;  1 - 8 c h a r / i n s t r u c t i o n ;  M.processor s t a t e  

( 7 -  16 c h a r ) ;  technology; vacuum tubes; 1960-1965; 

descendants:1440, 1460) 

'Mp(core; 11 .5  ps/char;  4000 - 16000 char;  ( 7 , l  p a r i t y )  

b/char)  

Fig. 2. IBM 1401 PMS diagram. 

Section 3 I Processors for variable-length-string data 

ISP structure 

The IBM 1401 ISP is given in Appendix 1 of this chapter. Instruc- 
tion strings and data strings are delimited by the special F bit 
in a character. A character in Mp is of the form1 

C(check,F,B',A', 8, 4, 2, 1) 
An n-character string is C[O], C[1], . . . C[n - 11 
and would be stored in Mp[j:j + n - 11 

The first character (or head) of an instruction must contain the 
word-mark flag or F bit. The head .of the instruction, which is to 
be interpreted next, is held at  Mp[IJ, and. succeeding characters 
of the instruction are at Mp[I + 11, Mp[I + 21, etc. Correctly 
defined instructions are 1, 2, 4, 5,  7, and 8 characters long. Un- 
defined instruction lengths of up to 8 characters are also inter- 
preted without an error condition. The interpretation algorithm 
presented in the ISP description does not explain the action of 
instructions which have an incorrect length. Actually, the 1401 
Reference Manual does not go into details of general instruction 
interpretation but dwells on "correct" operation. Table 1 presents 
the correct instruction lengths and formats. If we take the instruc- 
tions in the table, the set is not variable in length but is fixed at 
these six sizes. The instruction set (not including the input/output 
instructions) is presented in Table 2. This table also provides a 
hint of the implementation, since the execution times are given 
in terms of memory cycles. 

The ISP state, unlike that of more conventional processors, has 
no temporary operand storage (e.g., accumulators). The ISP state 
has registers which point to operands. The state of the machine 
(see Appendix 1) is basically: Mp, the Instruction Location Counter, 
Indicators or miscellaneous bits, three 3-character blocks of Mp 
reserved for Index registers, and the two registers A-address and 
B-address which point to data operands. 

Instruction interpretation 

There are three principal state types in processing an instruction: 
o.q., when the instruction is being formed; o.v., when the operands 
are being accessed or the results are being stored in Mp; and 0, 

when the operation specified by the instruction is being carried 
out. Each state transition corresponds essentially to a memory 
access. The three instruction types of Fig. 3 each have their own 
particular states. Only types 1 and 2 process the variable-length 

'See Appendix 1 of this chapter for the meaning of the bits in a character. 
We have renamed the A arid B bits A' and B' to avoid confusion with 
the registers. 
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Table 1 IBM 1401 instruction formats 

1 C[OI no-op, halt, or single character to specify 
a chained instruction 

2 Wl (311 the d-character is used to specify addi- 
tional instruction information (e.g., 
select, card stacker) 

4 C[OI C[1, 2, 31 unconditional branch instruction or sin- 
gle address arithmetic; M[A] t f(M[A]) 

5 C[OI C[1, 2, 31 C[41 conditional branch instruction; C[4] se- 
lects a specific test 

7 C[Ol C[1, 2, 31 C[4. 5, 61 two address instruction; 
M[B] t M[B] b M[A]; (e.g., add, sub- 
tract) 

8 C[Ol C[1, 2, 31 C[4, 5, 61 W I  conditional branch based on Mp[B] char- 
acter; d-character is test character; 
(e.g., branch if character equal) 

Function of instruction characters: 
C[O] op code: always contains a word-mark flag or F bit. 
C[1, 2, 31 = branch address for 1-Address register or first operand address for the A-Address register. 
C[1] or C[4] or C[7] d-character; used as a single character for additional operation code information or a character for comparison, or to 
select a test. 
C[4, 5, 61 primary operand (B-Address register specification). 

character strings, { charstring}, and the state diagram accounts for 
strings on a character-at-a-time basis. For an add instruction 
Fig. 3 oversimplifies the execution because it implies that each 
character of the A and B operand is accessed, the addition is per- 
formed, and the result is restored according to the B-address 
register. A more complex description must account for A and B 
strings of unequal length, and the case of getting a number which 
must be recomplemented because it is the wrong sign. The re- 
complementation process requires a reverse scan to find the end 
of the B string and then a forward scan to recomplement each 
character of B. Figure 4 is a detailed state diagram of the add 
execution process. 

The states in the ISP description (Appendix 1) within the in- 
struction-interpretation process correspond to the three state types 
just described: the single-instruction character-fetch operation, the 
fetch-operand-addresses for the remainder of the instruction, and 
Instruction-execution. Instruction-execution is not given in any 
detail. For example, the execution of add is defined as “A”(:= 
op = 110001) + OvOM[B] c M[B] + M[A] {charstring};. The 
state diagram (Fig. 4) presents this execution in detail. Note that 
in the ISP description we omit telling the reader that the A and B 

address registers point to the next lowest variable-length string in 
M after an operation is performed. We allow the definition of a 
variable-string operation, for example, + { charstring}, to imply 
the action on the processor state. 

Some instructions can be defined with a single character, and 
these are called chained instructions. Chained instructions take 
the previous values of the pointer registers, the A and B address 
registers, as the operand addresses. The add instruction, for exam- 
ple, can be either 1 (chained), 4, or 7 characters; the forms of all 
instructions appear in Table 1. The 4-character add instruction 
places the A address field in both the A and B address registers; 
thus the effect is an instruction to double a string (add it to itself). 

Data 

An n-decimal-digit numeric data string is represented as 

C[n - 11, C[n - 21,. . . , C[l], C[0], C[M] - 

The underlined characters, C[n - 11 and C[M], have the flag bit 
present, that is, (C[n - 1](F) = 1) and (C[M](F) = 1). The n 
characters are stored in locations Mp[ jl, Mp[ j + 11, . . . , Mp[j + 

- 
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Table 2 IBM 1401 instruction set (excluding input, output) 

Section 3 I Processors for variable-length-string data 

Instruction 
OP Execution time 
Codet in memory cyclest 

Length Du tu 
(char.) tY Pe 

Add (no recornplernent) A LI + 3 + LA + LB 1, 4, 7 
Add (recomplement) A LI + 3 + LA + 4 L B  1, 4, 7 
Branch B LI + 1 4 
Branch if Bit Equals W LI + 2 8 
Branch if Character Equal B LI + 2 8 
Branch if Indicator On B LI + 1 5 
Branch if Word Mark and/or Zone V LI + 2 8 

Clear Word Mark M LI + 3 1, 4, 7 
Compare C LI + 1 + LA + LB 1, 7 
Divide (aver.)§ % LI f 2 + 7LRLQ + ~ L Q  7 
Halt LI + 1 1 
Load Characters to A Word Mark L L, + 1 + 2LA 4, 7 
Modify Address5 j# L, + 9 4, 7 

Move Characters and Edit E LI + 1 + LA + LB + L, 7 
Move Characters to  Record or Word Marks P LI + 1 + 2LA 7 
Move Characters and Suppress Zeros Z LI f 1 + 3LA 7 
Move and Insert Zeros§ X LI + 1 + 2zLA + ZLz 7 
Move Numeric D LI + 3 1, 7 
Move Zone Y LI + 3 1, 7 
Mu It i ply (aver.)§ 
No operation N Lr + 1 1 
Set Word Mark LI + 3 4, 7 
Store A-Address Registers Q LI + 5 4 
Store B-Address Registers H LI + 4 4 
Subtract (no recomplement) S LI + 3 + LA + LB 1, 4, 7 
Subtract (recornplernent) S LI + 3 + LA + 4LB 1, 4, 7 
Zero and Add ? LI + 1 + LA + LB 1, 4, 7 
Zero and Subtract ! LI + 1 + LA + LB 1,4,  7 

Clear Storage / LI + 1 + Lx 1,4,  7 

Move Characters to  A or B Word Mark M LI + 1 + 2Lw 4, 7 

@ LI + 3 + 2Lc + 5LCLM + 7LM 7 

?Alphanumeric code used to specify instruction. 
$M(t.cycle: 11.5 ps/char) 
§Optional-feature instructions. 

Abbreviations for symbols used in timing: 
La = length of the A-field (in characters) 
LB = length of the 6-field 
Lc = length of multiplicand field 
L, = length of instruction 

LM = length of multiplier field 
L, = length of quotient field 
LR = length of divisor field 
Ls = number of significant digits in divisor (excludes highorder Os and blanks) 
Lw = length of A- or B-field. whichever is shorter 
Lx = number of characters to be cleaned 
Ly = number of characters back to rightmost 0 in control field 
Lz 
Z = number of fields included in an operation 

number of Os inserted in a field 

char. string 
char. string 
3 char 
1, 3 char 
1, 3 char 
1, 3 char 
1, 3 char 
char. string 
1 char 
char. string 
char. string 

char. string 
3 char 
char. string 
char. string 
char. string 
char. string 
char. string 
1 char 
1 char 
char. string 

1 char 
3 char 
3 char 
char. string 
char. string 
char. string 
char. string 
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character for q 

Operotion 
complete 

Type 1. Type 2 :  
MCBl+f (MCAl,MCBl.~chor string}) MCBl~f (MCA1,Cchor .  string}) 

NOTE' The time in each state is roughly 1 memory cycle 
q The instruction q 
0.q Operation and memory access t o  determine instruction q,  a correct length 

instruction = 1. 2,4.5,7, and 8 characters 
OY Operation and memory access fetches t o  determine an operand 
0 Operation specified in the instruction q, requires no time 
0.v' Operand and memory access stores t o  restore result operand 

Fig. 3. IBM 1401 instruction-interpretation state diagram. 

n - 11. The values of the string are based on the bcd value of 
the 8, 4, 2, 1 bits of each digit. The magnitude of the integer is 

C[n - 11 x 10n-1 + C[n - 21 x IOn-' + . . . + C[O] x 10" 

and the sign is 
Sign := ((lC[O](A') A C[O](B'))+ -; 

l( lC[OI(A') A C[~I(B')) + +) 

A string is addressed (or accessed) via the A-address or B-ad- 
dress pointer registers. These point to the tail (or least significant 
digit), that is, C[0], of the string. The instruction-execution state 
diagram of a variable-string add is shown in Fig. 4. The state 
diagram assumes that A and B address registers are set up accord- 
ing to Fig. 3. Thus Fig. 4 is a more detailed description of states 
o.v, o.v, 0, and 0.v'. Each horizontal pair of states (Fig. 4) corre- 
sponds to a single scan of the states of type 1 instruction o.v, o.v, 0, 
0.v' in Fig. 3. Transition: among states 2 and 3 correspond to the 

character-by-character scan with string A and B being added 
together; the result string is placed in B. States 4 and 5 define 
the string addition, when string A is terminated; i.e., it is con- 
sidered to be zero. States 7 ,  8, 9, and 10 define the recomple- 
mentation process in which the B string has to be recomplemented. 
This condition occurs when the operand signs differ, and the 
A-field result is greater than the B field; the results are in ten's 
complement form. States 7 and 8 define the B-field scan (to return 
to find the least digit of B), and states 9 and 10 define the recom- 
plementation of each character. Thus an add operation may re- 
quire up to three scans of the B string. 

The 1401 ISP (Appendix 1 of this chapter) has four parts: State 
Declaration, Instruction-interpretation process, Instruction-exe- 
cution process, and Operand address-register calculation proc- 
ess. The Operand address-register calculation process is analogous 
to the Effective-address calculation in more conventional Pc's and 
is the most elaborate part of the instruction interpretation. The 
operand address registers A-address and B-address are part of the 
Pc state and must be retained between instructions. At the end 
of an instruction, these registers point to the character of the next 
lowest data string in Mp, that is, the character at C[n]. 

Implementation 

The 1401 has a small Pc state, and there are only a few registers 
in the implementations. Figure 5 shows the registers, interregister 
transfer paths, and data operations that make up the register- 

Initiol stote; operand 
oddressee in AuAddress 
and BuAddress registers 
pointing t o  A and B str8ngs 

COrry,M[E]-M[B] +M[A] t m r y ,  

chor string addition 

A string has terminated 

Not recomp-, M [E+l]<F>-. 
B string hor terminated 

8 Go to head 
Result string. B. 

and must be '1 -7 !o f  E s tmg 1 
M[EI<Ft-r(B+B-I)  has wrong slgn 

Fig. 4. IBM 1401 add-instruction-execution state diagram. 
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Section 3 I Processors for variable-length-string data 

1 1  

INHIBIT MIlVE 

ADDER 

STORAGE LOGIC 

I .  I 
I 4 4 4- I 

f t 1 f * 4- - 

I A A - AUX B B - AUX 0 

ADDRESS ADDRESS ADDRESS ADMIESS ADDRESS ADDRESS 
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1 
ADDRESS ~~~~~ OP 
MODIFIER REG DECODE 

f- 1 

f f f t 

I A A - AUX 
ADDRESS ADDRESS ADDRESS 

OP 
MODIFIER DECODE 

1401 P R O C E S S  O V E R L A P  

Fig. 5. IBM 1401 system data flow (registers structure). (Courtesy of International Business Machines Corporation.) 

c 

transfer level primitives of the complete computer together with 
several options. The options, of course, increase the complexity 
(and concurrency). Without the overlap feature, for example, 
all data are accessed in Mp via Pc's address registers. 

There are register pairs consisting of a 3-character memory 
address (access) register, and a 1-character data register. The 
memory-address, memory-data register pairs are A-address, 
A-data; B-address, B-data; 1-address, Operation/Op; Overlap- 
,address, Overlap,data/O. 

The implementation is straightforward, and the instruction 
times (Table 2) show the implementation at the register-transfer 
level. For example, as an instruction is being read by Pc, prior 
to instruction execution, each new character is taken in and ex- 
amined for the instruction-terminating flag bit. When the flag bit 
is present, the instruction is complete and ready to be executed. 
The character of the next instruction is not saved but is picked 
up again after the previous instruction has been executed. 
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APPENDIX 1 IBM 1401 ISP DESCRIPTION 

Appendix 1 

t B M  1401 ISP D e s c r i p t i o n  

The following description i s  a highly s impli f ied description of the IBM 1401. 
l i ne  corresponds t o  a three page description i n  the Reference Manual f o r  the 1401. 
t ions which transfer  character s tr ings t o  f i xed  blocks of  primary memory. 
ch.string/ch.s.  
B str ings a t  the end of the operations; t h i s  aspect of  the operation i s  not described--but implied i n  the s tr ing operations. 

Pc, Pc Console, and I O  Device Control States  
For example, the e d i t  instruct ion given below i n  onr 

I t  does not include the input-output inStrUc- 
The character s tr ings are denoted as character.string/ 

For the character.string operations the A,address/A and B,rrddress/B regis ters  contain a pointer t o  the next A and 

I [1:3]4 ' ,A' ,8.4.2,1> Laddress  regis ter ,  the instruct ion location pointer 
Laddress  regis ter  

Laddress  regis ter  

String Data pointer regis ters  A and B point t o  the least  s igni f icant  d i g i t  end of a variable length s tr ing i n  memory (see Mp 
State  de f in i t i on  below). 
Ech.6) 0perations.B i s  normally the re su l t  s tr ing,  and the length i s  defined by a word mark, F ,  the la s t  character of  the B 
str ing.  
a pointer t o  the most s igni f icant  d i g i t  of  the instruct ion.  
has two additional b i t s  check, and f i e l d .  The b i t s  of Mp are: 

Normally A and B are decreased by one and move t o  the more s igni f icant  end f o r  varinble length s tr ing 

I f  A s tr ing has a word mark, and i s  shorter than the B s tr ing,  then the remaining A str ing is taken t o  be a zero. I i s  
Although Pc regis ter  characters have the B',A',8,4,2,1 b i t s ,  the M 

Check/Parity,bit. 
W ~ / W o r d ~ a r k / F / F i e l ~ b i t .  
d i g i t  ( the la s t  d i g i t )  of  a variable length numeric integer s tr ing.  
B',A',8,4,2,1 b i t s .  
as a bed d i g i t .  
( A '  = 0) A (B' = I ) .  

The sum (modulo 2) + I ,  of  the F,B',A' ,8,4,2,1,  b i t s .  
This b i t  def ines  the beginning of each instruct ion.  The F b i t  also defines the most s igni f icant  

I f  numeric data i s  represented, the 8,4,2,1 b i t s  are used A 6 b i t  character i s  encoded i n  these b i t s .  
The sign i s  encoded with the least  s igni f icant  d i g i t .  For numeric data, a minus sign, -, i s  encoded b,u 

A l l  other combinations of  A ' , B '  represent a p l u s  sign, f. 

X R  [1 :31 [I : 3 la1 ,A ;8 ,4 .2 , l> i=  M[87;89,92;94,97~99]6',At,8.4.2,1> 3 three character optional inder regis ters  stored i n  Mp 

I nd i ca t o r s  (0 : 631 
There are a s e t  of 31 s tatus  b i t s  o f  the possible 64.  
are used by external ?c status  or I / O  s tatus .  
The ?e indicators assignment t o  P c  State  i s :  

logical b i t  array encoding F% S tate  (not including I,A, and B l  

They can be cleare? or s e t  under instruct ion control.  Some Indicators 
The indicators can be selected f o r  t e s t ing  bu the d character of an instruct ion.  

Uncond i t i ona l  := 1 a l q u s  a 1 

Sensegwi t c h d ,  B , C  ,D, E, F,G> 

Unequa I-compare B # A  

a s e t  of 7 covrsole keus 

Equa1,compare R - A  

Low-compare 

H i  ghdompare 

R <  A 

R >  A 
Overf low se t  b,g arithmetic overflow, cleared by a branch instruct ion i f  

it i s  s e t  

The indicator array i s  par t ia l l y  encoded below. 
I n d i c a t o r  [OOOOOO] := Uncond i t i ona l  

I n d i c a t o r  [I IOOOI] :=  Sense-swi tch<A> 

I nd i ca tor  (0 IO00 I ]  := Unequa1,compare 

I n d i c a t o r  [011001] := Overf low 

Mp State  

M[D:15999]<Check,F,B',A',8,4,2,1> 
address[X[ l  :31<B'  , A '  ,8,4,2,1>1<1:5>,, := ( 

primaru memoru 
Address encoding f o r  1 0.f 16000 from a 3 char value o f  repis- 

t e r  X .  Ivdexing described below. 
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X[?]<B' , A ' >  x 4000,, t 

X[l]<B1 , A ' >  x IOOO,, + 

x [I : ? 1 < R  , 4 , 7 ,  I>(bcd. s t r i  nq) ) 

I n s t r u c t i o n  Format 
op6 ,B t ,A ' ,8 ,4 ,2 .1>  i n s t r u c t i o n  r e g i s t e r  spec i , fy ivq  t h e  operation 

d L h a r 4 ,  B ' ,A ' , 8 ,4 ,2 ,1>  

d-char-present  

addi t ional  character u s i ~ d  t n  eome i n s t r u c t i o n s  
i n d i c a t e s  a d j h a r  i s  used i n  the  current  i n s t r u c t i o n  

a c t i v e  

A-address-present  

B a d d  res  sup r e  sen t  

i n d i c a t e s  an ins t ruc t ior i  s t r i n p  is s t i l l  being .fetched 
i n d i c a t e s  there  i s  an A address nar t  of an i n s t r u c t i o n  
i n d i c a t e s  there i s  a R (Iddress p a r t  of an i n s t r u c t i o n  

Vove, load, and s t o r e  i n s t r u c t i o n  types  contro l  the  i n i t i a l i z a t i o n  of A and E. 
mdve or load o r  s t o r e  A or B/mls := ((move characters and e d i t  = opl  v (load characters t o  A word mark = op l  v (move characters 
t o  A o r  B idords mark = op) v (move characters and suppress zeros = o p )  V (move numerical = O D )  V (move zone = opl V ( s t o r e  A 
address r e g i s t e r  = opl  v ( s t o r e  R address r e g i s t e r  = op l l  

l n s t r u c t i o n  I n t e r n r e t a t i o n  Process 

Run + (op c M [ I ]  : I I I + I ; n e x t  

Fe t ch-ope rand,a dd res  ses ; n e x t  

I n s t r u c t  i OnLexecut i o n )  

, f e tch  operation 

f e t c h  addresses ,for A and R 

execute 

Address Calculation Process 
The 1401 ca lcu la tes  e x p l i c i t  e f f e c t i v e  addresses b y  f i r s t  s e t t i n g  up the  A, and R address r i ig i s ters .  
i n  I n s t r u c t i o n ~ x e r u t i o n .  
( r e s p e c t i v e l y ) :  no char, d char, the I or A address, the  I o r  A address and d char, the  A and B address,  and t h e  I G P  A address 
and E address and d char. 

Operands are not f e t c h e d  
There are 1 ,2 ,4 ,5 ,7  and 8 character i n s t r u c t i o n s  which have the  o p  and t h e  , following operands 

The folloiuinp process d e f i n e s  the  operation , for correc t  lenpth i r s t m c t i o n s .  
Fetch-operand-addresses :=  ( 

d ~ h a r - p r e s e n t  + 0 :  

M[I]<D + ( a c t i v e  0 ) ;  1 char i n s t r u c t i o n  
--Y[I]<D + ( a c t i v e  t I ;  rnls + B + o ) ;  n e x t  proceed t o  p e t  an T or il adr7ress 

a c t i v e  + (d,char get -char ;  n e x t  A [ l ]  d-char; I or A address s e t  un or d-char 
d,char,,present t I ; n e x t  

~ m 1 s  + (@,[I] + A [ I ] ) ) :  n e x t  

a c t i v e  + (A[2] ge t - cha r ;  n e x t  m l s  + B[2] A[2] ) :  n e x t  

a c t i v e  + (A[?] + ge t -cha r ;  n e x t  A[?] ) :  n e x t  

a c t i v e  + (Adddressupresen t  ' - 1 ) ;  record alhether I or A address i s  present  
m l s  -f E[?] 

~ a c t i v e  -> (A-address-present - 0 ) ;  n e x t  

A-address-present + (d,char,present t 0 :  add index  r e g i s t e r  t o  I or A 

(A[2]<B',A'> # 0 )  + ( A  < - A  + XR[A[2]<B',A1? I ? . c h l ) ) ;  

7 M [ I ) < R  + (B 0 ) :  n e x t  F ad?ress s e t  up o r  d-char 

a c t i v e  + (d-char t ge t -cha r :  n e x t  B[l ]  t d-char: 

d-char-present  t 1 )  ; 

a c t i v e  + (B[2] + g e t - c h a r ) ;  n e x t  

a c t i v e  + (B[?] + g e t - c h a r ) :  n e x t  

a c t i v e  + (B,address,present t I ) ;  

a c t i v e  + (Baddressupresen t  t 0 ) ;  n e x t  

B,address,present --f ( 

record 1,ihether R addres:: is oresent  

add index  w g i s t e r  t o  B 

d-char-present  t 0 ;  

(El[2]<B1,A'> # 0) + ( B  c B  + X R [ B [ Z ] < B ' , A ' > ] (  3 .ch.J) ) ;  
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(7 M [1]6> A a c t i v e )  4 ( d L h a r  t get,char; 

(7 M [ l ] < h  A a c t i v e )  + Run t o ;  

f {nal  h c h a r  

d,char,present t 1 )  ; n e x t  

h a l t  i f  more than 8 char i n s t r u c t i o n  

) end Fetch,overanhaddresses 

g e t  character: 
A sub-process used to f e t c h  each new character i n  t h e  i n s t r u c t i o n .  T,f F is ,found i n  a charazter,  ?he process terminates.  

qet,char<B1,A',8,4,2,1> := ( 

7 M[l]<F> A a c t i v e  --t ( M [ I ] ;  I + I  + I ) :  
M [ I ] < R  + a c t i v e  e o ) ;  

value i s  present  character 
no value,  terminate 

rns t ruc t ion  S e t  and I n s t r u c t i o n  Ezecution Process 

l n s t r u c t i o n ~ x e c ~ t i o n  := ( 

character string/ch.s movement and c l e a r  memory: 
move characters to P o r  B biord ma?k - character s t r i n g  ich .s i  

moue characters and sutmress zero.$ 
"M" ( :=  op = IOOIOO) + (M[B] c M [ A ]  

"Z" ( :=  op = OllOOl) + (M[B] c M [ A ]  

[ ch .s ] ) ;  

(ch.z.1; nex t  

M[B] c f ( M [ B ] )  ( ch .s ) ) ;  

"L" (:= op IOOOll) + (M[B] c M [ A ]  (ch.51); load characters t o  A word mnrk 

"E" (:= op = IlOlOl) --t (M[B] c f ( M [ A ] , M [ B ] ,  { c h . s \ ) ) ;  moue characters and e d i t  

This  i n s t r u c t i o n  moues t h e  A f i e l d  s t r i n g  t o  t h e  B , f i e l d  s t r i n g  under contro l  of an e d i t  character stm'ng i n  the  o r i g i n a l  R f i e l d .  
"/" ( :=  op = OlOOOl) --f (M[B] c 0  (ch.s.mod.1001; 

-. Bdddress,present --f : 
B,address,present + I - A ) :  

character s t r i n g ,  { c h . s I ,  ar i thmet ic :  
"A" (:= op = 110001) + (Ov,M[B] +M[B] + M[A] ( ch .s l )  

".j" ( : =  op = 010010) + (Ov,M[B] c M [ B l  - M I A ]  {ch.s))  

, 1 1 1 1  . ( := op = 101010) + (M[B] e 0  - M [A] (ch.s)) 

"?"  ( :=  op = l l1010) + ( M [ B ]  e 0  + M[A] (ch.5)) 
I ,  I ,  ( :=  op = 0 0 1 1 0 0 )  + ( 0 v , M [ E ]  -M[B] x M[A] { c h . ~ ] ) ;  

"%" (:= op = OlIlOO) + ( O v , M [ E ]  t M [ B ]  / M[A] I ch .5 ) ) ;  

"#" (:= op = OOlOll) + (M[B] e M [ B ]  + M[A] (3.chl ;  

B c B  - 3 :  A + A  - 3 ) ;  
branches, h a l t ,  no-operation: 

"N" ( :=  op = 100101)+ ; 
* '." ( :=  op = l l l O l l ) +  (Run e o ;  

Laddressupresen t  + ; 

A,address,present + I * A ) ;  

, IB" ( : =  op = 110010) + ( 

(l B,address,present 

(1 B,address,present A 

d,char,present) + I c A ;  

d,char,present) + ( 

I n d i c a t o r  [f(d,char)] - ( I  + A ) ;  

I nd i c a t o r  [f (d,char) 1 t- 0 )  ; 

( B g d d r e s e p r e s e n t  A d-char-present) + ( 

B c B  - 1 ;  

(M [E] = d,char) + I t A ) ! :  

c l e a r  storage, ipnores t h e  
100 address 

c l e a r  storage 
c l e a r  storage ant'bnanch 

mark and moves t o  nex t  modulo 

add 

subtrac t  

zero and subtrac t  

zero  and add 
mul t ip ly ;  f u l l  l ength  p,roduct in U [B], spec ia l  harduare ODtion 

d i v i d e ;  auot ien t  and remainder both end U D  i n  M [ B l .  

vac'ifi, address 

no ooeration 

h a l t  

h a l t  and branch 

branch 

branch i . f  inc' icator on 

branch if char eaual 
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I,"" (:= op = 010101) + fB C B  - 1 ;  

M[B]d(d,char)> + (I + A ) ) ;  
'IC" ( :=  op = IlOOll) + ( 

I n d i c a t o r s  t M [ A ]  = M[B] [ c h . s ) ) :  

subroutine ca l l ing:  
"Q" (:= op  = 101000) -+ ( 

M[A - Z:A] ,A[1:3]; A + A  - 3 ) ;  
"H" (:= op = 1 1  1000) 4 ( 

M[A - 2:A] + B [ 1 : 3 ] ;  A ,A - 3 ) ;  

s ingle  character operations 
"," (:= op = O l l O l l )  --f ( M [ A ] < D c l ;  M [ B ] < P c l ;  

A + A  - 1 ;  B t B  - I ) ;  

I g , ,  (:= op = l l1100) -+ (M[A]<F> t o :  M[R]<F> t o ;  
A c A  - 1 ;  B t B  - I ) ;  

"0" (:= op = 110100) + (M[B]G3,4,2,1> t M [ A ] d , 4 , 2 , 1 > ;  

A + A  - 1 :  B t B  - 1 ) ;  

"Y" (:= op = 011000) + (M[B]<B',A'> tM[A]<Bl ,A '> ;  

A t A  - 1 ;  B t B  - I ) ;  

) 

branch if u o d  m a r k  and/or zona 

compare 

s tore  A address reg i s t e r  

s tore  B address reg i s t e r  

s e t  word mark 

c lear  word mark 

move nwnerical 

move zone 

end Instruction,-execution 



Section 4 

Desk calculator computers: 
keyboard programmable processors 
with small memories 

These stored program computers have interesting features. 
For example, the keyboard is utilized several ways: 

1 T.console mode; a conventional console for entering data 
in response to a stored program 

Program entry mode; a device for creating stored pro- 
grams 

Desk calculator mode; a part of the arithmetic (data) 
element by issuing direct instructions and thus obtaining 
results directly independent of a program 

2 

3 

Uses 2 and 3 are both internally and externally programmed. 
The data types are decimal (both fixed and floating) because 
of the intimate interface they require to the user. Some calcu- 
lators interpret nested (parenthesized) algebraic expressions. 

These calculators easily meet the definition for a stored- 
program computer. It is apparent their designers know a great 
deal about general purpose stored-program computers. The 
machines are cleverly designed and make efficient use of the 
hardware they possess. Eventually there may be more of these 
computers than conventional stored program computers. The 
reader should note that not all “electronic desk calculators” 
are computers; most are electronic versions of their mechanical 
or electromechanical ancestors. 

The OLlVETTl UNDERWOOD PROGRAMMA 101 desk calculator 

The Programma 101 (Chap. 19) is at the limit of what we call 
a stored program computer. It has a sufficient instruction set 
to be classified as a computer, but the storage for temporary 
data, constants, and programs is limited. The machine’s in- 
struction set is interesting because memory is not addressed 
explicitly. A jump, for example, is executed by scanning the 
program for a particular marker which was named in the jump 
instruction. The Programma 101 uses an Mp.cyclic. 

The program library for the Programma 101 is extensive and 
provides an indication of its capability. 

The Hewlett-Packard Model 9100A computing calculator 

The HP 9100A (Chap. 20), like the Programma 101 (Chap. 19), 
is a desk calculator. They are both stored program computers. 
Programma is designed for simpler accounting and statistical- 
tabulation tasks and has fixed-point decimal data. (Programma 
101 costs somewhat less.) The HP9100A operates on both fixed- 
and floating-point decimal data with scalar, rectangular, and 
polar coordinate vectors and is designed for engineering and 
scientific calculations. Thus, according to a measure based 
on data types and operators, the HP 9100A is about the most 
complete computer in the book. Its operations are given in the 
PMS diagram of Fig. 1. 

Mp(read,wri te;  co re ;  368 w; 6 b/w) 

T . consol  e (keyboard) c 

T.console(CRT; d i s p l a y ;  numeric;  decimal;  mixed, f l o a t i n g ) +  

; d a t a : ( s c a l a r ,  rec tangu la r  co -o rd ina te  v e c t o r ,  p o l a r  co- 

- 1  
o r d i n a t e  v e c t o r ) ;  f i x e d ,  f l o a t i n g ;  decimal;  operat ions:(+,  

-, x, /, cos, s i n ,  tan,  s i n - ‘ ,  COS 

tanh, s i n h - l ,  cosh-I ,  t a n h - I ,  I n ,  log,,, abs, e,  s q r t ,  

i n t e g e r  p a r t , { r e c t a n g u l a r  co -o rd ina te  v e c t o r )  c { p o l a r  co- 

o r d i n a t e  v e c t o r ) ,  { p o l a r  co -o rd ina te  v e c t o r ]  c { rec tangu la r  

co -o rd ina te  v e c t o r ) )  

t 
, t a n - ‘ ,  s i nh ,  cosh, 

c 6 b/program&tep 3 

-T.numer I i c g r i  n te r+  

-T. p I o t  ter-, 

-L .ex te rna l  dev i ce  - 
LT-M magnet ic ca rd ;  2 programs; 196 program&teps/prograrn; - 

i. !mi croprogramrned (H. processor s t a t e  (40 b)) 1 ’Pc := Mp(read on ly ;  512 w,  64 b /w)  

‘P.microprogrammed := P.rnicroprogrammed 
I 
Mp(contro1; read only; 800 ns/w; 

64 w ;  29 b/w) 

Fig. 1. Hewlett-Packard Model 9100A Computing Calculator PMS 
diagram. 

235 
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The implementation has approximately 36.2 kb of memory, 
including the read-only and read-write parts. The design is 
physically outstanding, and its use of microprogramming is 
superb. The reader should note there are two levels of M(read 
only). We could draw the PMS structure of Pc as a P.micro- 
programmed within a P.microprogrammed. HP rightfully re- 
gards the two ISP's (29-bit and 64-bit word) a.s proprietary and 
carefully avoids discussing these points in the article (Chap. 20). 
It might be noted that an IBM System/360 Model 30 requires 
about 2.9 milliseconds for a floating-point square root, whereas 
the HP 9100A requires 19 milliseconds. By way of evidence of 
its outstanding packaging, its cost is about five-eighths that 
of a PDP-8/1 for about the same amount of physical hardware. 
The cost difference, though trulydifficult to compare, is partially 
the result of a design from an instrument maker (Hewlett- 
Packard) versus a design from a computer manufacturer (DEC). 
The TV-like construction of the HP 9100A is an important les- 
son that computer manufacturers have not learned. In other 
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words, a Henry Ford has yet to emerge from the computer field. 
(Our guess is that he may come from Japan.) 

Whereas many computers in this book are included because 
they are typical of points in the computer space, the HP 9100A 
is included because it is innovative. It is worthy of note that 
only one of the engineers had some computer design experi- 
ence; Cochran, who did the programming, had prior experience 
with circuitry and instrumentation. Had he been a programmer 
by training, a larger Mp might have been required. By way of 
comparative evidence, the IBM 1800 floating-point arithmetic 
functions + ,  - ,  X ,  / ,  sin, cos, tan-', fl, log, exponential, 
tanh, binary to decimal, and decimal to binary require approxi- 
mately 1,425 16-bit words, or 23 kb. On the other hand, the 
FOCAL1 interactive calculator program for a 4,096-word PDP-8 
(49 kb) provides the user with all but polar-rectangular coordi- 
nates and hyperbolic functions, but it does have a complete 
program editing capability, text handling, control structure, and 
1,600-character Mp. 

'Similar in scope to Dartmouth's BASIC. 



Chapter 19 

The OLlVETTl Programma 101 desk 
calcu latorl 

The Programma 101 is manufactured by the Olivetti Underwood 
Corporation. The cost of Programma 101 is about $3,500 (in 1968). 
Several thousand are currently in use. Unlike conventional 
stored program computers it has instructions which can be exe- 
cuted directly as commands from a keyboard or instructions which 
can be stored in a program and interpreted by the processor. The 
processor uses the decimal representation for mixed numbers. The 
decimal point location is controlled manually. Although informa- 
tion is stored in character strings, the maximum length is 22 digits 
or 24 instructions for a register. A program can be up to 120 
characters long and is stored as a continuous string. The internal 
encoding of a character is 8 bits. There are no absolute addresses 
for instructions, and jump instructions are programmed by placing 
labels or references in the string to transfer to. The Programma 101 
is composed of the following elements. 

Memory. The memory stores nnmeric data and program instruc- 
tions. 

Keyboard. The keyboard has four functions: It is used for operator 
control of the calculator (power on, off, etc); in manual mode the 
instructions are executed immediately as in a conventional desk 
calculator (e.g., add); the keys write a program’s instructions in 
the memory, and the instructions are executed when the program 
is run; and numeric data may be entered to a running program. 

Printing unit. Serial printing is from right to left, at 30 characters 
per second; this unit prints all keyboard entries, programmed 
output, and instructions. 

Magnetic-card reader/recorder. This device permits instructions 
and constants for a program to be stored and retrieved from 
magnetic cards. 

Control and arithmetic units. The control unit is the administrative 
section of the computer. It receives the incoming information, 
determines the computation to be performed, and directs the 

lThe description is partially taken from the Programma 101 Programming 
Manual. 

arithmetic unit where to find the information and what operation 
to perform. 

The PMS diagram shown below is, of course, very simple. It 
conforms closely to the classic diagram of what a digital computer 
looks like: 

Mp-Pc T-M.magnetic-card- TT 
I LT.printer+ 
LT.keyboard + 

Primary memory and processor memory 

The memory has 10 registers; eight are for general storage and 
two are used exclusively for instructions. A character can have 
several meanings, depending on the register and its use. 

The two instruction registers, 1 and 2, each store 24 instruc- 
tions. An instruction is one character long. 

The eight storage registers, M, A, R, B, C ,  D, E, and F, have 
a capacity of 22 decimal digits, plus decimal point and sign. The 
sign and decimal point do not require character space. Alterna- 
tively, D, E, and F hold 24 instructions. M, A, and R are operating 
registers and take part in all arithmetic operations. They are 
considered to  be the arithmetic unit. 

The M register is the Median (or distributive) register. All 
keyboard figure entries are held in the M register and distributed 
to the other registers as instructed. 

The A register functions with the arithmetic unit to form the 
Accumulator. Arithmetic results are developed and retained in the 
A register. A result of up  to 23 digits can be produced in the A 
register. 

The R register retains the complete results in addition and 
subtraction, the complete product in multiplication, the remainder 
in division, and a remainder in square root. B, C ,  D, E, and F 
are storage registers. Each can be split into two registers, each 
with a capacity of 11 digits, plus decimal point and sign. When 
storage registers are split, the right portion of the split register 
retains its original designation, and the left side is identified with 
the corresponding lowercase letter. Thus these registers become 

237 
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b, B, c, C, d, D, e, F, f and F. The lowercase designation is 
obtained by first entering the corresponding uppercase letter and 
then depressing the "/" key, for example, c G C/. 

The registers D, E, and F or their splits have the additional 
capability of storing either instructions or constants to be used 
within programs. Thus they can store 1 signed 22-digit number, 
2 signed 11-digit numbers, 1 signed 11-digit number, and 11 
instructions, or 24 instructions. Programs of up to 120 instructions 
can be stored internally (Fig. 1). When registers D, E, and F and 
their splits are not used for instructions, they are free to store 
constants or intermediate results. 

The relationship of memory, keyboard, printer, and magnetic 
card is shown in Fig. 1. Registers are referenced explicitly. Pro- 
grams do not use explicit addresses in instruction. Thus, special 
marker characters are placed in the instructions to serve as jump 
reference addresses (program labels). 

Fig. 2. Programma 101. (Courtesy of Olivetti Underwood Corporation.) 

Structure 

The calculator parts are described briefly below. The parts corre- 
spond to both the numbers (Fig. 2) and the lettered keyboard (Fig. 
3) .  The following parts are, in effect, the console. Some of the keys 
are used for control of the calculator, and some can be used either 
as programmed instructions or as commands which are executed 
directly. The following section discusses their instruction function. 

The on-off key (1). This is a dual-purpose switch for both the 
on and off positions. (Note: The OFF position automatically clears 
all stored data and instructions.) 

The error (red) light (2). This lights when the computer is turned 
on and whenever the computer detects an operational error, e.g., 
exceeding capacity, division by zero. 

The general reset key (3 ) .  This key erases all data and instruc- 
tions from the computer and turns off the error light. 

The correct-performance (green) light (4). This light indicates 
the computer is functioning properly. A steady light indicates that 
the computer is ready for an operator decision; a flickering light 
indicates that the computer is executing programmed instructions 
and that the keyboard is locked. 

The decimal wheel (5). This determines the number of decimal 
places (0, 1,. , . , 15) to which computations will be carried out 
in the A register and the decimal places in the printed output, 

~ i ~ .  1. programma 101 functional block diagram. (Courtesy ,,f oli- 
vetti Underwood Corporation.) 

except for results from the R register. u p  to 22 decimal digits may 
be developed in, and printed from, the R register. 
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Fig. 3. Programma 101 keyboard. (Courtesy of Olivetti Underwood 
, Corporation.) 

' The record program switch (6) .  When this switch is off, the 
commands pressed on the keyboard are executed directly. When 
this switch is on, it directs the computer to store instructions either 
in the memory from the keyboard or onto a magnetic program 
card from the memory. 

The record program switch must be off to load instructions from 
a magnetic program card into the memory. 

The print program switch (7). When this switch is on (in), it 
directs the computer to print out the instructions stored in memory 
from its present location in the program to the next Stop instruc- 
tion (S), whenever the print key (20) is depressed. 

The magnetic program card (8).  This is a plastic card with a 
ferrous oxide backing, used to record programs for external storage. 
The card is inserted into a magnetic reader/writer (9) to record 
instructions and/or constants into or from the computer memory. 
Once inserted, the card may be removed from the computer (10) 
without disturbing the stored instructions. 

(Note: The magnetic-card reader/writer uses only half the 

magnetic card at a time; consequently, two sets of 120 instructions 
and/or constants may be stored on a single card.) 

The keyboard release key (11). This key reactivates a locked 
keyboard. If two or more keys are depressed simultaneously, the 
keyboard will lock to indicate a misoperation. Because the opera- 
tor does not know what entry was accepted by the computer, after 
touching the keyboard release key, the clear entry key (16) must 
be depressed and the complete figure reentered. 

Tape advance (12). This advances the printing paper tape. 
Tape release lever (13). This enables adjustment when changing 

tape rolls. 
The routine selection (keys V, W, Y, and 2). These keys direct 

the computer to the proper program or subroutine. 
The numeric keyboard (keys 0, 1,. . . , 9 , .  , -). This keyboard 

allows entry of a signed, mixed decimal number. Keyboard entries 
are automatically stored in the M register. 

The clear entry key. This key clears the entire keyboard entry. 
When keying in the program, a depression of the clear key will 
erase the last instruction that has been entered into the memory. 
The printing tape will be spaced. 

The start key ( S ) .  This key restarts the computer in programmed 
operation; it is used to code a stop instruction when keying in 
programs. 

The register address (keys A, B, C, D, E, F, and R). These keys 
identify the corresponding registers. The operating register M has 
no keyboard identification since the computer automatically re- 
lates all instructions to the M register unless otherwise instructed. 

The split key (/). This key combined with a register (for exam- 
ple, C/) divides that register into two equal parts. When storage 
registers are split, the right portion of the split register retains 
the original designation, and the left side is identified on the tape 
with the corresponding lowercase letter (for example, C/ G c). 

The print key ( 0 ). This key prints the contents of an addressed 
register. 

The clear key ("). This key clears the contents of an addressed 
register. When the computer is operated manually, a depression 
of this key will print the number in the register and clear it. 

The transfer keys (i, T, $). These keys perform transfer opera- 
tions between the storage registers and the operating registers. 

The arithmetic keys (-, + , x , t , 6). These keys perform 
their indicated arithmetic function. 

Keyboard and stored-program operations 

All the following keys can be used as direct instructions (Le., 
manually) if the record program switch is off. Alternatively, if the 
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record program switch is on, the keys specify the instruction to  
be  recorded in the program memory. Finally, the descriptions 
specify the instruction's behavior as it is executed within a pro- 
gram. 

Start S. The instruction S (used in creating a program) directs 
the computer to stop and release the keyboard for the entry of 
figures or the selection of a subroutine. After figure entry, the 
program is restarted by touching the start key (S). 

The program can also be restarted by touching a routine selec- 
tion key. When the S instruction stops the program, the computer 
may also be operated in the manual mode without disturbing the 
program instructions in the memory. Any figures entered on the 
keyboard before depression of start or an operation key will be 
printed automatically. 

Clear *. The clear operation ' directs the computer to clear 
the selected register. The M and R registers cannot he cleared 
with this instruction. 

When the computer is operated manually this key will cause 
it to print the contents of the selected register, r. (r t o )  
Data-transfer operations 

To A J. An instruction containing the operation J, directs the 
computer to transfer contents of the addressed register, r, to A 
while retaining them in the original register. The contents of M 
and R are not affected. The previous contents of A are destroyed. 

From M t. An instruction containing the operation t directs 
the computer to transfer the contents of M to the addressed regis- 
ter while retaining them in M. The contents of registers A and 
R are unaffected by this instruction. The original contents of the 
addressed register are destroyed. (r t M) 

Exchange $. An instruction containing the operation $ directs 
the computer to exchange the contents of the A register with the 
contents of the addressed register. The contents of M are not 
affected except by the exchange between A and M. The contents 
of the R register are not affected. (A t r ;  r + A )  

D-R exchange RS. The instruction RS directs the computer to 
exchange the contents of D (both D and d registers) with the 
contents of the R register. (D t R; R t D) 

This instruction has a special use in multicard programs to store 
temporarily the contents of the D (d,D) register in R, when a new 
card has to be read to continue the program. During this tem- 
porary storage no instruction affecting the R register should be 
executed. 

Decimal part to M /$. The instruction /t directs the computer 
to transfer the decimal portion of the contents of A to the M 

(A + r )  

register while retaining the entire contents in A. The original 
contents of the M register are destroyed. The R register is not 
affected by this instruction. (M t fraction,part(A)) 

Arithmetic operations 

All arithmetic operations are performed in the operating registers 
M, A, and R. An arithmetic operation is performed in two phases: 

The contents of the selected register are automatically 
transferred to the M register. The M register is selected 
automatically if no other register is indicated. 

The operation is carried out in the M, A, and R registers. 

1 

2 

Programma 101 can perform these arithmetic operations: +, 
-, X, i, fl, and absolute value. Figures are accepted and 
computed algebraically. A negative value is entered by depressing 
the negative key at any time during the entry of a figure. If there 
is no negative indication, the computer will accept the figure as 
positive. 

The subtract operation key is separate from the numeric key- 
board and is used exclusively for subtraction (not negation). 

Addition + . An instruction containing the operation + directs 
the computer to add the contents of the selected register (addend) 
to the contents of the A register (augend). Addition is executed 
in two phases: 

1 

2 

Transfer the contents of the selected register (addend) 
to M. 

Add the contents of M to the contents of A (augend) ob- 
taining in A the sum truncated according to the setting of 
the decimal wheel. The complete sum is in R. M contains 
the addend. (M t r; next R t A + M; next A t f(R,deci- 
mal-wheel)) 

Multiplication x . An instruction containing the operation x 
directs the computer to multiply the contents of the selected 
register (multiplicand) by the contents of the A register (multi- 
plier). 

1 

2 

Transfer the contents of the addressed register to M. 

Multiply the contents of M by the contents of A, obtaining 
in A the product truncated according to the setting of the 
decimal wheel. The complete product is in R. M contains 
the multiplicand. (M t r; next R t A x M; next A t f(R, 
decimal-wheel)) 
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Subtraction - . An instruction containing the operation - 
directs the computer to subtract the contents of the selected 
register (subtrahend) from the contents of the A register (minuend). 

1 Transfer the contents of the selected register (subtrahend) 
to M .  

Subtract the contents of M from the contents of A (minu- 
end), obtaining in A the difference truncated according to 
the setting of the decimal wheel. The complete difference is 
in R. M contains the subtrahend. (M t r; next R t A - M; 
next A t f(R,decimal,wheel)) 

2 

Division i . An instruction containing the operation i directs 
the computer to divide the contents of the selected register 
(divisor) into the contents of the A register (dividend). 

1 

2 

Transfer the contents of the addressed register to M. 

Divide the contents of M into the contents of A, obtaining 
in A the quotient truncated according to the setting of the 
decimal wheel. The decimally correct fractional remainder 
is in R. M contains the divisor. (M c r; next A t A - M; 
R c A  mod M) 

Syuare Root <. An instruction containing the operation \r 
directs the computer to: 

1 

2 

Transfer the contents of the selected register to M 

Extract the square root of the contents of M, as an absolute 
value, obtaining in A the result truncated according to the 
setting of the decimal wheel. The R register contains 
a nonfunctional remainder. At the end of the operation, 
M contains double the square root. (M c r ;  next 
M,R t sqrt(abs(M)) x 2; next A c f(M/2, decimal-wheel)) 

Absolute Value AI.  The absolute-value instruction A t  changes 
the contents of the A register, if negative, to positive. (A t abs(A) 

Jump operations 

The jump operation directs the computer to depart from the 
normal sequence of step-by-step instructions and jump to a pre- 
selected point in the program. 

These instructions provide both internal and external (manual) 
decision capability and are useful to create “loops” that allow 
repetitive sequences in a program to be  executed; routines or 
subroutines to be performed at the discretion of the operator; 
and automatically to “branch” to alternate routines or subroutines 
according to the value in the A register. 

The jump process consists of two related instructions or char- 
acters: 

1 The reference point or label, 1, is where the program begins 
or where the jump is to start. The sequence is restarted at 
this point. This label has no effect when interpreted. 

The jump instruction specifies the label for the instruction 
sequence. 

2 

There are two types of jump instructions: unconditional jumps 
and conditional jumps. 

Unconditional jumps. These jumps are executed whenever the 
instruction is read. The labels or reference points for unconditional 
jumps, L, and the corresponding jump instructions, j, are given 
as (L,j). The permissible jump labels and jump constructions are: 

(AV,V), (AW,W), (AY,Y), ( AZ,Z), (BV,CV), . . . , 
(BZ,CZ), (EV,DV), . . . , (EZ,DZ), (FV,RV), . . . , (FZ,RZ) 

All programs must begin with reference parts of an uncondi- 
tional jump instruction. Reference points AV, AW, AY, AZ are 
used so that these program sequences can be started by touching 
the routine selection keys V, W, Y, or Z. 

Conditional Jumps. If the contents of the A register are: 

Greater than zero: the program jumps to the corresponding 
reference point (label). 

Zero or less: the program continues with the next in- 
struction in sequence. 

The labels or reference points for conditional jumps, L, and 
the corresponding conditional jump instruction, cj, are given as 
(L,cj). The permissible jump labels and jump instructions are 

(aV,/V), . . . , (az,/z), (bV,cV), . . . , 
(bZ,cZ), (eV,dV), . . . , (eZ,dZ), (f V,rV), 
. . . , (fZ,rZ) 

Constants as instructions A/?. A one-digit constant can be gener- 
ated by a special instruction. The results of the instruction place 
the digit in M. The digit value of the constant must follow A/T. 

Instructions and data i n  the same register. An instruction can be 
considered to be data and, therefore, used as both a constant and 
an instruction. Another technique allows the computer to interpret 
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data as null instructions so that both data (for reading and writing) 
and instructions can be stored in the same register. 

ExawLpZes. A program to take values for the numbers A, B, C, and 
D from the keyboard and then print the value of the expression 
[(A + B) x C]/D would be written as follows: 

instruction 

+AV 
S 
J or JM1 
S 
+ M  
S 
X M  
S 
t M  
A 0  

-V 

comments 

label to allow the program to be started by key, V 
wait; enter A from keyboard into M 
A value goes to A register 
wait, enter B from keyboard 
a register contains A + B 
wait, enter C from keyboard 
a register X C  or (A + B) x C 
wait, enter D from keyboard 
a register has expression 
print A register 
jump back to  beginning label to recalculate ex- 
pression for new variables 

1 M is implied if left blank. 

The following program computes and prints n!. n is entered 
from the keyboard, where n 2 1, and an integer. The program is 
started by pressing key Z. 

Section 4 1 Desk calculator computers: keyboard processors with small memories 

comments 

program start, label 
stop, enter n from keyboard into M 
D t n; D holds n! or n x (n - 1) x 
A t n ; A h o l d s n , n - 1 , n - 1 ,  . . . ,  1 
label 
generate 1 in M 

A c A  - 1; ( n t n  - 1) 
test if n 2 0 
print result 
get next n from keyboard 
begin to update n!, label 
A holds n!; D holds n - 1 after execution 
A holds n x (n - 1) x 
D holds n!; A holds n - 1 after execution 
return to compute n - 2 

Conclusion 

Many algorithms have been written for Programma 101, being 
coded in impressively small space. The techniques have sometimes 
been borrowed from conventional computer programming. For 
example, multiple card programs operate by using chains in the 
same way as large FORTRAN programs. The significant fact to 
the reader is that the Programma 101 calculator is a nicely de- 
signed stored program computer. 



Chapter 20 

The HP Model 9100A computing 
calculator1 

Richard E. Monnier / Thomas E .  Osborne / 
David S. Cochran 

A new electronic calculator with computerlike capabilities operations on two numbers, one in X and one in Y, appear in the 

Many of the day-to-day computing problems faced by scientists 
and engineers require complex calculations but involve only a 
moderate amount of data. Therefore, a machine that is more than 
a calculator in capability but less than a computer in cost has a 
great deal to offer. At the same time it must be easy to operate 
and program so that a minimum amount of effort is required in 
the solution of typical problems. Reasonable speed is necessary 
so that the response to individual operations seems nearly instan- 
taneous. 

The HP Model 9100A Calculator, Fig. 1, was developed to fill 
this gap between desk calculators and computers. Easy interaction 
between the machine and user was one of the most important 
design considerations during its development and was the prime 
guide in making many design decisions. 

CRT display 

One of the first and most basic problems to be resolved concerned 
the type of output to be used. Most people want a printed record, 
but printers are generally slow and noisy. Whatever method is 
used, if only one register is displayed, it is difficult to follow what 
is happening during a sequence of calculations where numbers are 
moved from one register to another. It was therefore decided that 
a cathode-ray tube displaying the contents of three registers would 
provide the greatest flexibility and would allow the user to follow 
problem solutions easily. The ideal situation is to have both a CRT 
showing more than one register, and a printer which can be at- 
tached as an accessory. 

Figure 2 is a typical display showing three numbers. The X 
register displays numbers as they are entered from the keyboard 
one digit at a time and is called the keyboard register. The Y 
register is called the accumulator since the results of arithmetic 

_ _  
Y register. The Z register is a particularly convenient register to 
use for temporary storage. 

Numbers 

One of the most important features of the Model 9100A is the 
tremendous range of numbers it can handle without special atten- 
tion by the operator. It is not necessary to worry about where 
to place the decimal point to obtain the desired accuracy or to 
avoid register overflow. This flexibility is obtained because all 
numbers are stored in ‘floating point’ and all operations performed 
using ‘floating point arithmetic.’ A floating point number is ex- 
pressed with the decimal point following the first digit and an 
exponent representing the number of places the decimal point 
should be moved-to the right if the exponent is positive, or to 
the left if the exponent is negative. 

‘This chapter is a compilation of three articles [Monnier, 1968; Osborne, 
1968; Cochran, 19681, reprinted from Hewlett-Puckurd Journul, vol. 20, 
no. 1, pp. 3-9, 10-13, 14-16, September, 1968. 

Fig. 1. This new HP Model 9100A calculator is self-contained and is 
capable of performing functions previously possible only with larger 
computers. 

243 
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explained and key codes are listed. Some simple examples are 
provided to assist those using the machine for the first time or 
to  refresh the memory of an infrequent user. Most questions re- 
garding the operation of the Model 9100A are answered on the 
card. 

Data entry 

The calculator keyboard is shown in Fig. 4. Numbers can be 
entered into the X register using the digit keys, the v key or the 
ENTER EXP key. The ENTER EXP key allows powers of 10 to 
be entered directly which is useful for very large or very small 
numbers. 6.02 x loz3 is entered @ @ @ @ 0. If the 

ENTER EXP key is the first key of a number entry, a 1 is auto- 

Fig. 2. Display in fixed point with the decimal wheel set at 5. The Y 
register has reverted to floating point because the number is too large 
to be properly displayed unless the digits called for by the DECIMAL- 
DIGITS setting are reduced. 

4.398 364 291 x = .004 398 364 291 

The operator may choose to display numbers in FLOATING 
POINT or in FIXED POINT. The FLOATING POINT mode 
allows numbers, either positive or negative, from 1 x lopgg to 
9.999 999 999 x 10gg to be displayed just as they are stored in the 
machine. 

The FIXED POINT mode displays numbers in the way they 
are most commonly written. The DECIMAL DIGITS wheel allows 
setting the number of digits displayed to the right of the decimal 
point anywhere from 0 to 9. Figure 2 shows a display of three 
numbers with the DECIMAL DIGITS wheel set at 5. The number 
in the Y register, 5.336 845 815 x 105 = 533 684.5815, is too big 
to be displayed in FIXED POINT without reducing the DECI- 
MAL DIGITS setting to 4 or less. If the number is too big for 
the DECIMAL DIGITS setting, the register involved reverts 
automatically to floating point to avoid an apparent overflow. In 
FIXED POINT display, the number displayed is rounded, but full 
significance is retained in storage for calculations. 

To improve readability, 0’s before the displayed number and 
un-entered 0’s following the number are blanked. In FLOATING 
POINT, digits to the right of the decimal are grouped in threes. 

Pull-out instruction card 

A pull-out instruction card, Fig. 3, is located at the front of the 
calculator under the keyboard. The operation of each key is briefly 

Fig. 3. Pull-out instruction card is permanently attached to the calcula- 
tor and contains key codes and operating instructions. 
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Functions available from the keyboard 

The group of keys at the far left of the keyboard, Fig. 4, gives 
a good indication of the power of the Model 9100A. Most of the 
common mathematical functions are available directly from the 
keyboard. Except for @ the function keys operate on the number 

in X replacing it with the function of that argument. The numbers 

in Y and Z are left unchanged. @ is located with another group 

of keys for convenience but operates the same way. 
The circular functions operate with angles expressed in RADI- 

ANS or DEGREES as set by the switch above the keyboard. The 
sine, cosine, or tangent of an angle is taken with a single keystroke. 
There are no restrictions on direction, quadrant or number of 
revolutions of the angle. The inverse functions are obtained by 
using the 0 key as a prefix. For instance, two key depressions 

are necessary to obtain the arc sin x: @ @ . The angle obtained 
will be the standard principal value. In radians: 

Fig. 4. Keys are in four groups on the keyboard, according to their 
function. 

matically entered into the mantissa. Thus only two keystrokes 

@ @ suffice to  enter 1,000,000. The CHG SIGN key changes 

the sign of either the mantissa or the exponent depending upon 
which one is presently being addressed. Numbers are entered in 
the same way, regardless of whether the machine is in FIXED 
POINT or FLOATING POINT. Any key, other than a digit key, 
decimal point, CHG SIGN or ENTER EXP, terminates an entry; 
it is not necessary to clear before entering a new number. CLEAR 
X sets the X register to 0 and can be used when a mistake has 
been made in a number entry. 

Control and arithmetic keys 

ADD, SUBTRACT, MULTIPLY, DIVIDE involve two numbers, 
so the first number must be moved from X to Y before the second 
is entered into X. After the two numbers have been entered, the 
appropriate operation can be performed. In the case of a DIVIDE, 
the dividend is entered into Y and the divisor into X. Then the 

0 key is pressed causing the quotient to appear in Y, leaving 

the divisor in X. 
One way to transfer a number from the X register to the Y 

register is to use the double sized key, 0, at the left of the digit 
keys. This repeats the number in X into Y, leaving X unchanged; 

the number in Y goes to Z, and the number in Z is lost. Thus, 
when squaring or cubing a number, it is only necessary to follow 
0 with @ or Q 0. The 0 key repreats a number in Z 
to Y leaving Z unchanged, the number in Y goes to X, and the 
number in X is lost. The @ key rotates the number in the X 
and Y registers up and the number in Z down into X. @ rotates 
the numbers in Z and Y down and the number in X up into Z. 
@ interchanges the numbers in X and Y. Using the two ROLL 

keys and @, numbers can be placed in any order in the three 

registers. 

- _  -n < Sin-' x 5 
2 -  2 

0 5 Cos-' x 5 $7 

< Tan-' x < ?T 
2 2 
71 _ _  

The hyperbolic sine, cosine, or tangent is obtained using the 
@ key as a prefix. The inverse hyberbolic functions are obtained 
with three key depressions. Tanh-' x is obtained by @ @ @ . 
The arc and hyper keys prefix keys below them in their column. 

Log x and In x obtain the log to the base 10 and the log to 
the base e respectively. The inverse of the natural log is obtained 
with the e' key. These keys are useful when raising numbers to 
odd powers as shown in one of the examples on the pull-out card, 
Fig. 3. 

Two keys in this group are very useful in programs. 0 takes 
the integer part of the number in the X register which deletes 
the part of the number to the right of the decimal point. For 
example int(-3.1416) = -3. @ forces the number in the Y 
register positive. 

Storage registers 

Sixteen registers, in addition to X, Y, and Z, are available for 
storage. Fourteen of them, 0, 1, 2 ,  3 ,  4, 5,  6,  7, 8, 9, a, b, c, d, 
can be used to store either one constant or 14 program steps per 
register. The last registers, e and f, are normally used only for 
constant storage since the program counter will not cycle into 
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them. Special keys located in a block to the left of the digit keys 
are used to identify the lettered registers. 

To store a number from the X register the key @ is used. The 
parenthesis indicates that another key depression, representing the 
storage register, is necessary to complete the transfer. For example, 
storing a number from the X register into register 8 requires two 
key depressions: @ @ . The X register remains unchanged. To 
store a number from Y register the key @ is used. 

The contents of the alpha registers are recalled to X simply 
by pressing the keys a, b, c, d, e, and f. Recalling a number from 
a numbered register requires the use of the @ key to distinguish 

the recall procedure from digit entry. This key interchanges the 
number in the Y register with the number in the register indicated 
by the following keystroke, alpha or numeric, and is also useful 
in programs since neither number involved in the transfer is lost. 

The CLEAR key sets the X, Y, and Z display registers and the 
f and e registers to zero. The remaining registers are not affected. 
The f and e registers are set to zero to initialize them for use with 
the 0 and @ keys as will be explained. In addition the CLEAR 

key clears the FLAG and the ARC and HYPER conditions, which 
often makes it a very useful first step in a program. 

Coordinate transformation and complex numbers 

Vectors and complex numbers are easily handled using the keys 
in the column on the far left of the keyboard. Figure 5 defines 
the variables involved. Angles can be either in degrees or radians. 
To convert from rectangular to polar coordinates, with y in Y and 
x in X, press @. Then the display shows 0 in Y and R in X. In 

Y 

y = R sin 0 

Fig. 5. Variables involved in conversions between rectangular and polar 
coordinates. 

converting from polar to rectangular coordinates, 6' is placed in 

Y, and R in X, @ is pressed and the display shows y in Y and 
x in X. 

ACC+ and ACC- allow addition or subtraction of vector 
components in the f and e storage registers. ACC+ adds the 
contents of the X and Y register to the numbers already stored 
in f and e respectively; ACC- subtracts them. The RCL key 
recalls the numbers in the f and e registers to X and Y. 

Illegal operations 

A light to the left of the CRT indicates that an illegal operation 
has been performed. This can happen either from the keyboard 
or when running a program. Pressing any key on the keyboard 
will reset the light. When running a program, execution will 
continue but the light will remain on as the program is completed. 
The illegal operations are: 

Division by zero 
fi where x < 0 
In x where x 5 0; log n where x 5 0 
s i x 1  x where 1x1 > 1; c0s-I x where ( . X I  > 1 
cosh-' x where x < 1; tanh-' x where 1x1 > 1 

Accuracy 

The Model 9100A does all calculations using floating point arith- 
metic with a twelve digit mantissa and a two digit exponent. The 
two least significant digits are not displayed and are called guard 
digits. 

The algorithms used to perform the operations and generate 
the functions were chosen to minimize error and to provide an 
extended range of the argument. Usually any inaccuracy will be 
contained within the two guard digits. In certain cases some in- 
accuracy will appear in the displayed number. One example is 
where the functions change rapidly for small changes in the argu- 
ment, as in tan x where x is near 90". A glaring but insignificant 
inaccuracy occurs when an answer is known to be a whole number, 
but the least significant guard digit is one count low: 
2.000 000 000 N 1.999 999 999. 

Accuracy is discussed fnrther in the 'Internal Programming' 
section in this chapter. But a simple summary is: the answer result- 
ing from any operation or function will lie within the range of 
true values produced by a variation of i l  count in the tenth digit 
of the argument. 

Programming 

Problems that require many keyboard operations are more easily 
solved with a program. This is particularly true when the same 
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operations must be performed repeatedly or an iterative technique 
must be used. A program library supplied with the Model 9100A 
provides a set of representative programs from many different 
fields. If a program cannot be found in the library to solve a 
particular problem, a new program can easily be written since 
no special experience or prior knowledge of a programming lan- 
guage is necessary. 

Any key on the keyboard can be remembered by the calculator 
as a program step except STEP PRGM. This key is used to ‘debug’ 
a program rather than as an operation in a program. Many indi- 
vidual program steps, such as ‘sin x’ or ‘to polar’ are comparatively 
powerful, and avoid the need of sub-routines for these functions 
and the programming space such sub-routines require. Registers 
0, 1 ,  2, 3, 4, 5, 6, 7 ,  8, 9, a, b, c, d can store 14 program steps 
each. Steps within the registers are numbered 0 through d just 
as the registers themselves are numbered. Programs can start at 
any of the 196 possible addresses. However 0-0 is usually used for 
the first step. Address d-d is then the last available, after which 
the program counter cycles back to 0-0. 

Registers f and e are normally used for storage of constants only, 
one constant in each register. As more constant storage is required, 
it is recommended that registers d, then c, then b, etc., are used 
starting from the bottom of the list. Lettered registers are used 
first, for the frequently recalled constants, because constants stored 
in them are more easily recalled. A register can be used to store 
one constant or 14 program steps, but not both. 

Branching 

The bank on the far right of the keyboard, Fig. 4, contains program 

oriented keys. @ is used to set the program counter. The two 

sets of parentheses indicate that this key should be followed by 
two more key depressions indicating the address of the program 
step desired. As a program step, ‘GO TO’ is an unconditional 
branch instruction, which causes the program to branch to the 
address given by the next two program steps. The ‘IF’ keys in this 

group are conditional branch instructions. With @ @ , and@ 

the numbers contained in the X and Y registers are compared. 
The indicated condition is tested and, if met, the next two program 
steps are executed. If the first is alphameric, the second must be 
also, and the two steps are interpreted as a branching address. 
When the condition is not met, the next two steps are skipped 

and the program continues. @ is also a very useful conditional 

branching instruction which tests a ‘yes’ or ‘no’ condition inter- 
nally stored in the calculator. This condition is set to ‘yes’ with 
the SET FLAG from the keyboard when the calculator is in the 

display mode or from a program as a program step. The flag is 
set to a ‘no’ condition by either asking IF FLAG in a program 
or by a CLEAR instruction from the keyboard or from a program. 

Data input and output 

Data can be entered for use in a program when the machine is 
in the display mode. (The screen is blank while a program is 

running.) A program can be stopped in several ways. The @ key 

will halt the machine at any time. The operation being performed 
will be completed before returning to the display mode. As a 
program step, STOP stops the program so that answers can be 
displayed or new data entered. END must be the last step in a 
program listing to signal the magnetic card reader; when encoun- 
tered as a program step it stops the machine and also sets the 
program counter to 0-0. 

As a program step, PAUSE causes a brief display during pro- 
gram execution. Nine cycles of the power line frequency are 
counted-the duration of the pause will be about 150 ms for a 60 
Hz power line or 180 ms for a 50 Hz power line. More pauses 
can be used in sequence if a longer display is desired. While a 
program is running the PAUSE key can be held down to stop the 
machine when it comes to the next PAUSE in the program. PAUSE 
provides a particularly useful way for the user and the machine 
to interact. It might, for instance, be used in a program so that 
the convergence to a desired result can be observed. 

Other means of input and output involve peripheral devices 
such as an X-Y Plotter or a Printer. The PRINT key activates the 
printer, causing it to print information from the display register. 
As a program step, PRINT will interrupt the program long enough 
for the data to be accepted by the printer and then the program 
will continue. If no printer is attached, PRINT as a program step 
will act as a STOP. The FMT key, followed by any other keystroke, 
provides up to 62 unique commands to peripheral equipment. This 
flexibility allows the Model 9100A to be used as a controller in 
small systems. 

Sample program-N! 

A simple program to calculate N! demonstrates how the Model 
9100A is programmed. Figure 6 (top) shows a flow chart to com- 
pute N! and Fig. 6 (bottom) shows the program steps. With this 
program, 60! takes less than ‘/z second to compute. 

Program entry and execution 

After a program is written it can be entered into the Model 9100A 
from the keyboard. The program counter is set to the address of 
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Store N I np2 i 

Fig. 6. Flow chart of a program to  compute N! (top). Each step is shown 
(bottom) and the display for each register. A new value for N can be 
entered at the end of the program, since END automatically sets the 
program counter back to  0-0. 

the first program step by using the GO TO ( ) ( ) key. The RUN- 
PROGRAM switch is then switched from RUN to PROGRAM and 
the program steps entered in sequence by pushing the proper keys. 
As each step is entered the X register displays the address and 
key code, as shown in Fig. 7. The keys and their codes are listed 
a t  the bottom of the pull-out card, Fig. 3. Once a program has 
been entered, the steps can be checked using the STEP PRGM 
key in the PROGRAM mode as explained in Fig. 7. If an error 

Fig. 7. Program step address and code are displayed in the X register 
as steps are entered. After a program has been entered, each step can 
be checked using the STEP PRGM key. In this display, step 2-d is 36, 
the code for multiply. 

is made in a step, it can be corrected by using the key without 
having to re-enter the rest of the program. 

To run a program, the program counter must be set to the 
address of the first step. If the program starts at 0-0 the keys 

@ @ @ are depressed, or simply just @ since this key auto- 

matically sets the program counter to 0-0. CONTINUE will start 
program execution. 

Magnetic card reader-recorder 

One of the most convenient features of the Model YlOOA is the 
magnetic card reader-recorder, Fig. 8. A program stored in the 
Model YlOOA can be recorded on a magnetic card, Fig. 9, about 

Fig. 8. Programs can be entered into the calculator by means of the 
magnetic program card. The card is inserted into the slot and the 
ENTER button pressed. 
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Fig. 9. Magnetic programming card can record two 196-step programs. 
To prevent accidental recording of a new program over one to be saved, 
the corner of the card is cut as shown. 

the size of a credit card. Later when the program i s  needed again, 
i t  can be quickly re-entered using the previously recorded card. 
Cards are easily duplicated so that programs of common interest 

can be distributed. 
As mentioned earlier, the END statement i s  a signal t o  the 

reader to stop reading recorded information from the card in to  

the calculator. For this reason END should not be used in the 

middle of a program. Since most programs start at location 0-0 
the reader automatically initializes the program counter to  0-0 
after a card i s  read. 

The magnetic card reader makes it possible to handle most 
programs too long to  be held in memory at one time. The f i rs t  
entry of steps can calculate intermediate results which are stored 
in preparation for the next part of the program. Since the reader 

stops reading at the END statement these stored intermediate 
results are not disturbed when the next set of program steps is 
entered. The stored results are then retrieved and the program 
continued. Linking of programs i s  made more convenient i f each 

part can execute an END when it finishes to set the program 

counter t o  0-0. I t  i s  then only necessary to  press CONTINUE after 

each entry of program steps. 

Hardware design of the Model 9100A calculator 

A l l  keyboard functions in the Model 9100A are implemented by 
the arithmetic processing unit, Figs. 10 and 11. The arithmetic 

unit operates in discrete time periods called clock cycles. A l l  

Specifications of HP Model 9100A* 

The HP Model 9100A is a programmable, 
electronic calculator which performs opera- 
tions commonly encountered in scientific 
and engineering problems. Its log, trig and 
mathematical functionsareeach performed 
with a single key stroke, providing fast, 
convenient solutions to intricate equa- 
tions. Computer-like memory enables the 
calculator to store instructions and con- 
stants for repetitive or iterative solutions. 
The easily-readable cathode ray tube in- 
stantly displays entries, answers and inter- 
mediate results. 

Operations 
Direct keyboard operations include: 

Arithmetic: addition, subtraction, mul- 
tiplication, division and square-root. 

Logarithmic: log x, In x and eX. 
Trigonometric: sin x, cos x, tan x, 

sin-lx, cos-’x and tan-lx (x in de- 
grees or radians). 

Hyperbolic : sinh x, cosh x, tanh x, 
sinh-lx, cosh-lx, and tanh-lx. 

Coordinate transformation: polar-to- 
rectangular, rectangular-to-polar, 
cumulative addition and subtraction 
of vectors. 

Miscellaneous: other single-key opera- 
tions include-taking the absolute 
value of a number, extracting the 
integer part of a number, and enter- 
ing the value of ?r. Keys are also 
available for positioning and storage 
operations. 

Programming 
The program mode allows entry of 
program instructions, via the keyboard, 
into program memory. Programming 
consists of pressing keys in the proper 
sequence, and any key on the keyboard 
is available as a program step. Program 
capacity is 196 steps. No language or 
code-conversions are required. A self- 
contained magnetic card reader/re- 
corder records programs from program 
memory onto wallet-size magnetic 
cards for storage. It also reads programs 
from cards into program memory for 

repetitive use. Two programs of 196 
steps each may be recorded on each 
reusable card. Cards may be cascaded 
for longer programs. 

Average times for total performance of 
typical operations, including decimal- 
point placement: 

Speed 

add, subtract: 2 milliseconds 
multiply: 12 milliseconds 
divide: 18 milliseconds 
square-root: 19 milliseconds 
sin, cos, tan: 280 milliseconds 
In x: 50 milliseconds 
eX: 110 milliseconds 

These times include core access of 
1.6 microseconds. 

General 
Weight: Net 40 Ibs, (18,l kg.); shipping 

Power: 115or230V k 10%,50to60Hz, 

Dimensions: 8%“ high, 16” wide, 19” 

65 Ibs. (29,5 kg.). 

400 Hz, 70 watts. 

deep. 

*Courtesy of Loveland Division. 
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Fig. 10. Arithmetic processing unit block diagram. This system is a marriage of conventional, reliable diode-resistor logic to a 32,000-bit read-only 
memory and a coincident current core memory. 

operations are synchronized by the clock shown at the top center 
of Fig. 10. 

The clock is connected to the control read only memory (ROM) 
which coordinates the operation of the program read only memory 
and the coincident current core read/write memory. The former 

Fig. 11. Arithmetic unit assembly removed from the calculator. 

contains information for implementing all of the keyboard opera- 
tions while the latter stores user data and user programs. 

All internal operations are performed in a digit by digit serial 
basis using binary coded decimal digits. An addition, for example, 
requires that the least significant digits of the addend and augend 
be extracted from core, then added and their sum replaced in core. 
This process is repeated one BCD digit at a time until the most 
significant digits have been processed, There is also a substantial 
amount of ‘housekeeping’ to be performed such as aligning decimal 
points, assigning the proper algebraic sign, and floating point 
normalization. Although the implementation of a keyboard func- 
tion may involve thousands of clock cycles, the total elapsed time 
is in the millisecond region because each clock cycle is only 825 
ns long. 

The program ROM contains 512 64-bit words. When the pro- 
gram ROM is activated, signals (micro-instructions) corresponding 
t o  the bit pattern in the word are sent to the hard wired logic 
gates shown at the bottom of Fig. 10. The logic gates define the 
changes to occur in the flip flops at the end of a clock cycle. Some 
of the micro-instructions act upon the data flip flops while others 
change the address registers associated with the program ROM, 
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control ROM and coincident current core memory. During the 
next clock cycle the control ROM may ask for a new set of micro- 
instructions from the program ROM or ask to be read from or 
written into the coincident current core memory. The control 
ROM also has the ability to modify its own address register and 
to issue micro-instructions to the hard wired logic gates. This 
flexibility allows the control logic ROM to execute special pro- 
grams such as the subroutine for unpacking the stored constants 
required by the keyboard transcendental functions. 

Control logic 

The control logic uses a wire braid toroidal core read only memory 
containing64 29-bit words. Magnetic logic of this type is extremely 
reliable and pleasingly compact. 

The crystal controlled clock source initiates a current pulse 
having a trapezoidal waveform which is directed through one of 
64 word lines. Bit patterns are generated by passing or threading 
selected toroids with the word lines. Each toroid that is threaded 
acts as a transformer to turn on a transistor connected to the 
output winding of the toroid. The signals from these transistors 
operate the program ROM, coincident current core, and selected 
micro-instructions. 

Coincident current core read/write memory 

The 2208 (6 x 16 x 23) bit coincident current memory uses wide 
temperature range lithium cores. In addition, the X, Y, and inhibit 
drivers have temperature compensated current drive sources to 
make the core memory insensitive to temperature and power 
supply variations. 

The arithmetic processing unit includes special circuitry to 
guarantee that information is not lost from the core memory when 
power is turned off and on. 

Power supplies 

The arithmetic processing unit operates from a single -15 volt 
supply. Even though the power supply is highly regulated, all 
circuits are designed to operate over a voltage range of -13.5 
to -16.5. 

Display 

The display is generated on an HP electrostatic cathode ray tube 
only 11 inches long. The flat rectangular face plate measures 
3y4 x 4l3/,, inches. The tube was specifically designed to gener- 
ate a bright image. High contrast is obtained by using a low 
transmissivity filter in front of the CRT. Ambient light that usually 
tends to 'wash out' an image is attenuated twice by the filter, while 
the screen image is only attenuated once. 

All the displayed characters are 'pieces of eight.' Sixteen differ- 
ent symbols are obtained by intensity modulating a figure 8 pattern 
as shown in Fig. 12. Floating point numbers are partitioned into 
groups of three digits and the numeral 1 is shifted to improve 
readability. Zeros to the left of the most significant digit and 
insignificant zeros to the right of the decimal point are blanked 
to avoid a confusing display. Fixed point numbers are automati- 
cally rounded up according to the decimal wheel setting. A fixed 
point display will automatically revert to floating point notation 
if the number is too large to be displayed on the CRT in fixed 
point. 

Multilayer instruction logic board 

All of the hard wired logic gates are synthesized on the instruction 
logic board using time-proven diode-resistor logic. The diodes and 
resistors are located in separate rows, Fig. 13. All diodes are 
oriented in the same direction and all resistors are the same value. 
The maze of interconnections normally associated with the back 
plane wiring of a computer are located on the six internal layers 
of the multilayer instruction logic board. Solder bridges and acci- 
dental shorts caused by test probes shorting to leads beneath 
components are all but eliminated by not having interconnections 
on the two outside surfaces of this multilayer board. The instruc- 
tion logic board also serves as a motherboard for the control logic 
board, the two coincident core boards and the two flip flop boards, 
the magnetic card reader, and the keyboard. It also contains a 
connector, available at the rear of the calculator, for connecting 
peripherals. 

Flip flops 
The Model 9100A contains 40 identical J-K flip flops, each having 
a threshold noise immunity of 2.5 volts. Worst case design tech- 
niques guarantee that the flip flops will operate at 3 MHz even 
though 1.2 MHz is the maximum operating rate. 

I I /  \ I  

Fig. 12. Displayed characters are generated by modulating these figures. 
The digit 1 is shifted to the center of the pattern. 



Fig. 13. Printed-circuit boards which make up the arithmetic unit are, left to right at top, side board, control logic, flip flop, core and drivers, core 
sense amplifiers and inhibit, flip flop, and side board. Large board at the lower left is the multilayer instruction board, and the program ROM is at 
the right. The magnetic card reader and its associated circuitry are at the bottom. 14 I2 :I I , .. k 
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Program read only memory 

The 32,768 bit read only program memory consists of 512 64-bit 
words. These words contain all of the operating subroutines, stored 
constants, character encoders, and CRT modulating patterns. The 
512 words are contained in a 16 layer printer-circuit board having 
drive and sense lines orthogonally located. A drive line consists 
of a reference line and a data line. Drive pulses are inductively 
coupled from both the reference line and data line into the sense 
lines. Signals from the data line either aid or cancel signals from 
the reference line producing either a 1 or 0 on the output sense 
lines. The drive and sense lines are arranged to achieve a bit 
density in the ROM data board of 1000 bits per square inch. 

The program ROM decoder/driver circuits are located directly 
above the ROM data board. Thirty-two combination sense ampli- 
fier, gated-latch circuits are located on each side of the ROM data 
board. The outputs of these circuits control the hard wired logic 
gates on the instruction logic board. 

Side boards 

The program ROM printed circuit board and the instruction logic 
board are interconnected by the side boards, where preliminary 
signal processing occurs. 

The keyboard 

The keyboard contains 63 molded plastic keys. Their markings will 
not wear off because the lettering is imbedded into the key body 
using a double shot injection molding process. The key and switch 
assembly was specifically designed to obtain a pleasing feel and 
the proper amount of tactile and aural feedback. Each key operates 
a single switch having gold alloy contacts. A contact closure acti- 
vates a matrix which encodes signals on six data lines and generates 
an initiating signal. This signal is delayed to avoid the effects of 
contact bounce. An electrical interlock prevents errors caused by 
pressing more than one key at a time. 

Magnetic card reader 

Two complete 196 step programs can be recorded on the credit 
card size magnetic program card. The recording process erases 
any previous information so that a card may be used over and 
over again. A program may be protected against accidental erasure 
by clipping off the corner of the card, Fig. 9, page 249. The missing 
corner deactivates the recording circuitry in the magnetic card 
reader. Program cards are compatible among machines. 

Information is recorded in four tracks with a bit density of 200 
bits per inch. Each six-bit program step is split into two time- 

multiplexed, three-bit codes and recorded on three of the four 
tracks. The fourth track provides the timing strobe. 

Information is read from the card and recombined into six bit 
codes for entry into the core memory. The magnetic card reading 
circuitry recognizes the ‘END’ program code as a signal to end 
the reading process. This feature makes it possible to enter sub- 
routines within the body of a main program or to enter numeric 
constants via the program card. The END code also sets the 
program counter to location 0-0, the most probable starting loca- 
tion. The latter feature makes the Model 9100A ideally suited to 
‘linking’ programs that require more than 196 steps. 

Packaging and servicing 

The packaging of the Model BlOOA began by giving the HP indus- 
trial design group a volume estimate of the electronics package, 
the CRT display size and the number of keys on the keyboard. 
Several sketches were drawn and the best one was selected. The 
electronics sections were then specifically designed to fit in this 
case. Much time and effort were spent on the packaging of the 
arithmetic processing unit. The photographs, Figs. 11 and 14, 
attest to  the fact that it was time well spent. 

The case covers are die cast aluminum which offers durability, 
effective RFI shielding, excellent heat transfer characteristics, and 
convenient mechanical mounts. Removing four screws allows the 
case to be opened and locked into position, Fig. 14. This procedure 
exposes all important diagnostic test points and adjustments. The 
keyboard and arithmetic processing unit may be freed by removing 
four and seven screws respectively. 

Any component failures can be isolated by using a diagnostic 
routine or a special tester. The faulty assembly is then replaced 
and is sent to a service center for computer assisted diagnosis and 
repair. 

Reliability 

Extensive precautions have been taken to insure maximum relia- 
bility. Initially, wide electrical operating margins were obtained 
by using ‘worst case’ design techniques. In production all transis- 
tors are aged at 80% of rated power for 96 hours and tested before 
being used in the Model Y100A. Subassemblies are computer tested 
and actual operating margins are monitored to detect trends that 
could lead to failures. These data are analyzed and corrective 
action is initiated to reverse the trend. In addition, each calculator 
is operated in an environmental chamber at 55°C for 5 days prior 
to shipment to the customer. Precautions such as these allow 
Hewlett-Packard to offer a one year warranty in a field where 90 
days is an accepted standard. 
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Fig. 14. Internal adjustments of the calculator are easily accessible by 
removing a few screws and lifting the top. ~ ‘I 100 A 

Internal programming of the 9100A calculator 

Extensive internal programming has been designed into the HP 
Model 9100A Calculator to enable the operator to enter data and 
to perform most arithmetic operations necessary for engineering 
and scientific calculation with a single key stroke or single program 
step. Each of the following operations is a hardware subroutine 
called by a key press or program step: 

Basic arithmetic operations 
Addition 
Subtraction 
Multiplication 
Division 

Extended arithmetic operations 
Square root 
Exponential-ex 
Logarithmic-ln x, log x 
Vector addition and subtraction 
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Trigonometric operations 
Sin x, cos x, tan x 
Arcsin x, arccos x, arctan x 
Sinh x, cosh x, tanh x 
Arcsinh x, arccosh x, arctanh x 
Polar to rectangular and rectangular to 

polar coordinate transformation 

Miscellaneous 
Enter TI 

Absolute value of y 
Integer value of x 

In the evolution of internal programming of the Model 9100A 
Calculator, the first step was the development of flow charts of 
each function. Digit entry, Fig. 15, seemingly a trivial function, 
is as complex as most of the mathematical functions. From this 
functional description, a detailed program can be written which 
uses the microprograms and incremental instructions of the calcu- 
lator. Also, each program must be married to all of the other 
programs which make up the hard-wired software of the Model 
9100A. Mathematical functions are similarly programmed defining 
a step-by-step procedure or algorithm for solving the desired 
mathematical problem. 

The calculator is designed so that lower-order subroutines may 
be nested to a level of five in higher-order functions. For instance, 
the ‘Polar to Rectangular’ function uses the sin routine which uses 
multiply which uses add, etc. 

Addition and subtraction 

The most elementary mathematical operation is algebraic addi- 
tion. But even this is relatively complex-it requires comparing 
signs and complementing if signs are unlike. Because all numbers 
in the Model 9100A are processed as true floating point numbers, 
exponents must be subtracted to determine proper decimal align- 
ment. If one of the numbers is zero, it is represented in the calcu- 
lator by an all-zero mantissa with zero exponent. The difference 
between the two exponents determines the offset, and rather than 
shifting the smaller number to the right, a displaced digit-by-digit 
addition is performed. It must also be determined if the offset is 
greater than 12, which is the resolution limit. 

Although the display shows 10 significant digits, all calculations 
are performed to 12 significant digits with the two last significant 
digits (guard digits) absorbing truncation and round-off errors. All 
registers are in core memory, eliminating the need for a large 
number of flip-flop registers. Even with the display in ‘Fixed Point’ 
mode, every computed result is in storage in 12 digits. 
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Fig. 15. Flow chart of a simple digit entry. Some of these flow paths 
are used by other calculator operations for greater hardware efficiency. 

Multiplication 

Multiplication is successive addition of the multiplicand as deter- 
mined by each multiplier digit. Offset in the digit position flip-flops 
is increased by one after completion of the additions by each 
multiplier digit. Exponents are added after completion of the 
product. Then the product is normalized to justify a carry digit 
which might have occurred. 

Division 

Division involves repeated subtraction of the divisor from the 
dividend until an overdraft occurs. At each subtraction without 
overdraft, the quotient digit is incremented by one at the digit 
position of iteration. When an overdraft occurs, the dividend is 
restored by adding the divisor. The division digit position is then 
incremented and the process continued. Exponents are subtracted 
after the quotient is formed, and the quotient normalized. 

Square root 

Square root, in the Model YlOOA, is considered a basic operation 
and is done by pseudo division. The method used is an extension 
of the integer relationship. 

5 2 i  - 1 = n2 

In square root, the divisor digit is incremented at each iteration, 
and shifted when an overdraft and restore occurs. This is a very 
fast algorithm for square root and is equal in speed to division. 

Circular routines 

The circular routines (sin, cos, tan), the inverse circular routines 
(arcsin, arccos, arctan) and the polar to rectangular and rectangu- 
lar to polar conversions are all accomplished by iterating through 
a transformation which rotates the axes. Any angle may be repre- 
sented as an angle between 0 and 1 radian plus additional infor- 
mation such as the number of times m/2 has been added or sub- 
tracted, and its sign. The basic algorithm for the forward circular 
function operates on an angle whose absolute value is less than 
1 radian, but prescaling is necessary to indicate quadrant. 

To obtain the scaling constants, the argument is divided by 2m, 
the integer part discarded and the remaining fraction of the circle 
multiplied by 257. Then m / 2  is subtracted from the absolute value 
until the angle is less than 1 radian. The number of times m/2 
is subtracted, the original sign of the argument, and the sign upon 
completion of the last subtraction make up the scaling constants. 
To preserve the quadrant information the scaling constants are 
stored in the core memory. 

i = l  
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The algorithm produces tan 0.  Therefore, in the Model 9100A, 
cos 8 is generated as 

1 
d iTGx 
and sin8 as 

tan 8 
vTFi&z 

Sin0 could be obtained from the relationship sin8 = 
d-, for example, but the use of the tangent relationship 
preserves the 12 digit accuracy for very small angles, even in the 
range of 0 < 10-12. The proper signs of the functions are assigned 
from the scaling constants. 

For the polar to rectangular functions, cos 0 and sin 0 are com- 
puted and multiplied by the radius vector to obtain the X and 
Y coordinates. In performing the rectangular to polar function, 
the signs of both the X and Y vectors are retained to place the 
resulting angle in the right quadrant. 

Prescaling must also precede the inverse circular functions, 
since this routine operates on arguments less than or equal to 1. 
The inverse circular algorithm yields arctangent functions, making 
it necessary to use the trigonometric identity. 

If cos-l(x) is desired, the arcsin relationship is used and a scaling 
constant adds m/2 after completion of the function. For arguments 
greater than 1, the arccotangent of the negative reciprocal is found 
which yields the arctangent when m/2 is added. 

Exponential and logarithms 

The exponential routine uses a compound iteration .algorithm 
which has an argument range of 0 to the natural log of 10 (In 10). 
Therefore, to be able to handle any argument within the dynamic 
range of the calculator, it is necessary to prescale the absolute 
value of the argument by dividing it by In 10 and saving the integer 
part to be used as the exponent of the final answer. The fractional 
part is multiplied by In 10 and the exponential found. This number 
is the mantissa, and with the previously saved integer part as a 
power of 10 exponent, becomes the final answer. 
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The exponential answer is reciprocated in case the original 
argument was negative, and for use in the hyperbolic functions. 
For these hyperbolic functions, the following identities are used: 

e" - e-" sinh x = ___ 2 

Natural logarithms 

The exponential routine in reverse is used as the routine for natural 
logs, with only the mantissa operated upon. Then the exponent 
is multiplied by In 10 and added to the answer. This routine also 
yields these loglo and are hyperbolic functions: 

In x 
In 10 

Loglox = - 

cosh-l(x) = ln(x + d m )  
tanh-l(x) = l n p  

1 - x  

The sinh-l(x) relationship abdve yields reduced accuracy for 
negative values of x. Therefore, in the Model YlOOA, the absolute 
value of the argument is operated upon and the correct sign affixed 
after completion. 

Accuracy 

It can be seen from the discussion of the algorithms that extreme 
care has been taken to use routines that have accuracy commensu- 
rate with the dynamic range of the calculator. For example; the 
square root has a maximum possible relative error of 1 part in 
lo1" over the full range of the machine. 

There are many algorithms for determining the sine of an angle; 
most of these have points of high error. The sine routine in the 
Model 9100A has consistent low error regardless of quadrant. 
Marrying a full floating decimal calculator with unique mathe- 
matical algorithms results in accuracy of better than 10 displayed 
digits. 



Section 5 

Processors with stack memories 
(zero addresses per instruct ion) 

This section contains only computers which use a stack memory 
in their Pc and hence are denoted Pcstack. Although the im- 
plementation details differ, they are based on the common idea 
of a stack as described in Chap. 3, page 62. Several theory or 
language-based processors-IPL-VI and EULER-use a stack in 
Mp. However, for these language-based machines the stack is 

not the main design theme as it is with the other computers 
in Table 1. In fact, data in IPL-VI are organized (Chap. 30) about 
lists, which are a more general data structure than stacks. A 
stack permits push and pop operations to be performed on the 
top of the stack; a list permits push and pop operations to be 
performed on each cell of the list (they are then called insert 

Table 1 Pcstack computers 

Company or basis Disclosure Delivery Relative 
computer name autea date Ancestry power References 

English Electric KDF 9 /60 4/63 Georgec . . .  AllmR62, DaviG60, 

Burroughs (Paoli, Pa.) 
HambC62 

/6 1 AndeJ62 D825* 
D830* extended performance 

B 85OOe 4/66* developed at labora- 
D825 

tory producing D825, 
0830 

Burroughs (Pasadena, Calif.) 
B 5000 

B 5500  
B 6500 

B 7500  

Theory or language- 
based: 

IPL-VI 
EULER 
ALGOL 

I PL -vc  
Argonne Laboratory 

/62 

1/67/  20-30 

2/63 

11/64 
1 /68/ 

/67 

successor to B 5000  
B 5500  based wi th  
improved mult i-  and 
shared-programmed 
mapping 
extended performance 
B 6500  

language: IPL-IV, V 
language: EU LER(ALG0L + ) 
1anguage:ALGOL 

1 /2 AllrnR62. BartR61, 
Bock R63, Ca rlC63, 

1-1.78-1.98 LoneW61, HaucE68 
5-6 

10 

ShawJ58 
We beH 67, W I r t  N 66a, b 
AndeJ61 

language: IPL-V HodgD64 

a First edition of manual, or a paper, or the appearance in Adoms Computing Characteristics Quarterly. 
hStill evolving. B 8501 was discontinued in 1968. 
.George, University of New South Wales, interpreter using Polish notation and a stack. Circa 1957 [Hamblin, 19621. 
dProduced for command and control (military) applications. 
* B  8500 IS a system name: the Pc is a B 8501. 
‘Reported. Actual delivery unknown. 
p Dual processor. 

2 57 
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T.console - 
M p ( # 0 : 7 ) k 3  dc'(#A:B) 

I K i o ( # 1 : 4 ) - S 4  K-T(console; t y p e w r i t e r )  - 
K-T(#I :2; ca rd ;  reader )+  

K-T(#1:2; paper tape; reader )+  

K-T(card; punch)+ 

K-T(#I:Z l i n e ;  p r i n t e r ) +  

K-Ms(#I : 2 ;  drum) I K-Ms(#1:16; magnet ic tape) - 

'Mp(core; 4 p s / w ;  4096 w; (48.3) b/w) 

'Pc(stack;  12 b / s y l l a b l e ;  6 b/char;  da ta :  s i ,sf ,bv,w,char.  

s t r i n g ;  ( I  - 2)  s y l l a b l e / i n s t r u c t i o n ;  Mps(- 4 w)  an te -  

cedents: 'ALGOL language; descendants; ' 6  5000, B 6500, 

B 7500; technology: t r a n s i s t o r ;  -41961 ... 1963)) 

'S(from: 2 P c , ~  K; t o :  8 Mp; concurrency: 4) 

4S(from: 4 Kio;  t o :  KT,KMs; concurrency: 4) 

Fig. 1. Burroughs B 5000 PMS diagram. 
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and delete, respectively). Thus a list is like a nested set of 
overlapping stacks. EULER (Chap. 32) uses a stack to store 
temporary data and subroutine calls both when compiling and 
when interpreting the compiled program. However, the lan- 
guage-based machines can still be studied profitably with the 
stack in mind. 

The following comments will be directed to the P.stack com- 
puters manufactured by both English Electric and Burroughs. 
There are three basic P.stack computer families: B 5000 + B 
5500 4 B 6500/B 7500; D825 + D830 + B 8500; and KDF9. 
Each root member was made available at about the same time 
by Burroughs (Pasadena, Calif.), Burroughs (Paoli, Pa.), and 
English Electric. The IBM Corporation later responded with a 
proposed Pc.stack, but the machine never entered the produc- 
tion phase. 

The Pc.stack is a major alternative to the main line organi- 
zation of 1 address per instruction (augmented with index reg- 
isters or general registers). It tries to capitalize on the hierarchi- 
cal character of computation to avoid having to give memory 
shuffling instructions explicitly. In Chap. 3, page 64, we gave 
a comparison of a trivial computation using a stack and a 
general-register organization, in order to make clear the case 

.P~(#A)~ -T .conso le -  

-Pc(#B)3-S,consoIe- 

L ( 'Rea l  Time Device)-  

K ( # l  :4)-C4-S-K(#l :4)-S-K(#1 

- SET 

'Mp((core;  1.2 us/w) ] ( t h i n  f i l m ;  . 6  ps/w); 16 kw; 51 b/w) 

'S(32 Mp; 4(Pc,K,S); concurrency: 4) 
3 P ~ ( s t a ~ k ;  technology: i n t e g r a t e d  c i r c u i t s ;  .- 1969;  da ta :  s f , d f , i , c h a r . s t r i n g ,  

boolean v e c t o r ,  address i n t e g e r ;  4,6,8 b/char) 

4~ ( 'Data Communi c a t  ions Processor)  

' I d e n t i c a l  p e r i p h e r a l  s t r u c t u r e s  p o s s i b l e  w i t h  two switches 

6See Figures 3, 4, and 5 .  
' K i o ( ' I n p u t / O u t p u t  Mu1 t i p l e x o r )  

'Kio( 'Rea1 Time Adapter) 

Fig. 2. B 6500, B 7500 PMS diagram. 
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-L- K-S 

b .  1 K f o r  2 Ms(disk) 

-L-KK7S(2K; 5x1 
- L -  K 

c .  2 K f o r  5 Ms(d i sk )  

' L ( t o :  K io ( ' I npu t /Ou tpu t  M u l t i p l e x o r ) )  

K ( ' D i s k  Per iphe ra l  C o n t r o l l e r )  

' X  := (-K( 'E1ectronics Uni t ) -S---Ms(#1:5)4) 

46 m s :  (2161395) kby/s; 1 
Fig. 3. Burroughs B 6500, B 7500 Ms (disk) PMS diagrams. 

for stacks. However, we did not there attempt any analysis. It 
has been asserted [Amdahl et al., 1964al that the Pc.stack 
derives its power only from its having some fast-working mem- 
ory in the Pc, thus that it is dominated by the general-register 
organization. Our own feeling is that the compile and compiled 
program execution times for the Pc.stack are indeed impressive. 
However, no definitive analysis has been published, as far as 
we know. Pcstack iscertainly an organization that rates serious 
study by any computer designer. 

The PMS structure of the examples 

The PMS structure diagram of the B 5000 and B 6500/B 7500 
(Figs 1 to 5) should be compared with Burroughs own structure 
representation (Chap. 22, page 268). The D825 structure is 
similar; it is given in Chap. 36, page 447. All the Burroughs 
computers in Table 1 have the multiprocessor structure. 

Burroughs was probably the first computer company to take 
matters of the structure and organization seriously. The D825 
hardware and software were designed for military command 

and control applications which demand very high uptime and 
availability. As various computer components in the structures 
fail, continuous operation is possible at a reduced level through 
the fail-soft design. However, to our knowledge, no published 
account exists on how well this design works in practice from 
a performance and reliability viewpoint. The philosophy and 
details of the D825 software and hardware are discussed in 
Chap. 36. 

The structures in the B 6500, especially, allow Kio's to be 
freely assigned to any T or Ms, thereby achieving better equip- 
ment utilization. The S(16 Mp; 16 P) is probably overdesigned 
in the Burroughs B 6500 computers. These structures generally 
have a maximum 4(P + Kio), although the design is based on 
16(P + Kio). The Kio's (Chap. 22) may be overdesigned, too, 
since a K capable of controlling a simple T.card,reader can 
also control a complex Ms.disk or Ms.magnetic,tape. 

The PMS structure of the English Electric KDF9 (Fig. 6) 
is fairly simple. The 16 K's for direct memory access appear 

-L'-K2-S3- M #0:7; maqnetic tape; 

9 - 144 kchar/s;  6lR 
b/char;  200155618001 

1600 cha r / i n ;  ,forward 
and reverse motion I 

a. 1 K f o r  8 Ms(rnagnetic tape) 

S(2 K; IO Ms)-Ms(#0:9: magnetic tape)- 
- - L-K L-Ki- 
b .  2 K f o r  IO Ms(magnetic tape) 

- L -  K S(4 K; 16 Ms)-Ms(#0:15; magnetic tape)- 

- L- K 

- - L- L- K 

c .  4 K f o r  16 Ms(magnetic tape) 

'L ( t o :  K io  ( ' I nput/Output Mu1 t i p l  exo r ) )  

'K( 'Per iphera1 C o n t r o l l e r )  

3S(1K; 8 Ms; bus) 

Fig. 4. Burroughs B 6500, B 7500 Ms (magnetic tape) PMS diagrams. 
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-L'- K-T(console; keyboard, p r i n t e r &  

- L  __ K--(card; reader )  t 

-L __ K-T(card; punch) --f 

- L - K - T(paper tape; reader )  t 

- L __ K - T(paper tape: punch) * 
- L ~ K - T(CRT; d i s p l a y )  + 

- L- K - T ( l i n e ;  p r i n t e r )  --f 

' L  ( t o :  K i o (  'Small Pe r iphe ra l  Con t ro l  ) )  

Fig. 5. Burroughs B 6500, B 7500 peripheral K-T PMS diagrams. 

to be both overdesigned (or overly general) and there are too 
few of them. The limit of only 16(T + Ms) components is small, 
especially considering that the KDF9 is to be time-shared from 
several consoles. 

The ISP of the examples 

The comparison of Pc.stack, Pc.laddress, and Pc.general,reg- 
isters (page 64) makes the assumption that an unlimited 

+ - - K ( # I  )-S-Ms (magnetic tape ) -  

T ( t ypewr i  t e r ) -  

T(paper tape)- 

'Mp(core; 6 p s / w ;  4 - 32 kw; 48 b/w) 

2S(16 Mp; 16(P,K); concurrency: 1) 

3Pc (s tack ;  8 b / s y l l a b l e ;  0 - 1 a d d r e s s / i n s t r u c t i o n ;  6 b/char;  

technology: t r a n s i s t o r ;  data:  s y l l a b l e ,  char,  w ,  bv, s i ,  

d i ,  s f ,  d f ,  hw; 1-3 s y l l a b l e s / i n s t r u c t i o n ;  o p e r a t o r s :  +, 

-, x ,  /, A ,  v, @,+ i c h a r . s t r i n g 1 ,  Mp t s tack ,  s tack  t Mp; 

Mps ( 'Subrou t i  ne Jump Nes t ing  StoreCO; 7]<n: 1 ?> s tack:  

'Nest i nq Store[  0: l5]<0: 47> a?;thmetic stack; 
'Q-store[O:15]<0:17,18:31 ,32:48> &store i s  used f o r  
indexing, and contains a counter, an increment, and a 
modifier) 1 

Fig. 6. English Electric KDF9 PMS diagram. 
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hardware stack resides in Pc. The B 5500 has a local M.stack 
in Pc of 4 words. The size and number of stacks, and their 
use by software, are most important. The IPL-VI machine 
has any number of stacks since the front of each list is a stack. 
The KDF9 (Fig. 6) has two independent stacks: one for arith- 
metic expression evaluation and one for holding subroutine 
return addresses. The DEC 338 P.display (Chap. 25) uses a 
stack for storing subroutine return addresses. 

Unfortunately, we have not been able to include a discussion 
of the "cactus stack" of the B 6500, which is a data structure 
more like a list [Hauck and Dent, 19681. The Hauck and Dent 
paper describes both the relationship to a Pc.stack and its 
relevance to program mapping and memory management for 
multiprogramming. 

The C('D825) parameters are given in Fig. 7. The D825 ISP 
differs from other Pc.stack computers in that the data, d, for 
operations can be in either of two places, the stack or Mp. 
Consider the unary or binary operations: 

C ( '  Burroughs D825; mu1 t i processor s t r u c t u r e ;  

S (c ross -po in t ;  16 M; Ib(Pc,Kio))  

Mp(4.33 JLS/W; 65 kw; (48, l  p a r i t y )  b/w); 

S (c ross -po in t ;  4 Kio;  64 (T,Ms)); 

T(console,  paper tape, p r i n t e r ,  ca rd ,  t ime, communication 

l i n k ) ;  

Ms(drum, d i s k ,  magnet ic tape);  

K i o ( # l  :4) ;  
Pc(#1:2;  12 b / s y l l a b l e ;  s tack ;  0 - 3 a d d r e s s e s / i n s t r u c t i o n ;  

multiprogrammed; data:  ( i n t e g e r ,  f l o a t i n g ,  s i n g l e  char-  

a c t e r ,  f r a c t i o n a l  p r e c i s i o n  word, boolean v e c t o r ) ;  opera- 

t i o n s :  (+, -, x ,  /, A ,  v ,  @, 7 ,  round, { s i )  c { s f ) ,  abs, 

negate,  -abs) : 
i n s t r u c t i o n - s i z e :  ( I  - 7) s y l l a b l e ;  

ope ra t i on -code-s i ze :  5/12 s y l l a b l e ;  

address-size:  (7/12 + 0 - 6) s y l l a b l e ;  

o p e r a t i o n  forms: (d3 t d l  b d2, d2 t u  d l ) ;  

v a r i a b l e  addresses: ( s tack ,  MpCsyl lable + BAR],Mp[syllable 

+ BAR + X[A] + X [ E ]  + X [C]]); 

Mps ( 'S tack /S ,  Index Reg is te rs  [ I  : 15]/X[I : 151, 
' I n d e x  Comparison L i m i t  Registers[1:151, 

'Base Address Registers/BAR, 

'Program Address Register/PAR, 

'Program Counter/PC))) 

Fig. 7. Burroughs D825 PMS diagram. 
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d, t u  d, 
d , td lbd2  

In either of these cases d,, d,, or d, can be the top of Stack/S; 
or Mp[Address + Base Address + [Xindex registers [A,B,C]]]. 
This flexibility allows the Pc to behave as a 0, 1, 2, or 3 address 
per instruction processor. 

The 6 5000 is more conventional than the D825 in its use 
of stacks (see references, Table 1). There are only load and 
store (that is, push and pop instructions) to transfer data be- 
tween Mp and one stack. Actually, the B 5000 has several im- 
portant features that make it worthy of study: 

1 The stacks. 

2 Data-type specification. A data type is declared by placing 
a type identifier with the data. Thus, for example, there 
is one add operation for both fixed and floating point, 
the data telling which addition is to take place. 

3 Multiprogram mapping. Descriptors are used to access 
variables (scalars, vectors, and arrays). This indirect 

addressing technique allows multiprogramming; how- 
ever, the reader should note that the data are not pro- 
tected against other accesses (corrected in the B 6500). 

Failure of the Pc.stack for character processing. The 
B 5000 has a character mode to allow processing of 
string data, and the stack is not used in this mode. In 
effect, a separate string processing ISP is incorporated 
in the Pc. 

Multiprocessing. A B 5000 can have two Pc’s. 

A command structure for complex information processing 

The IPL-VI (Chap. 30) is discussed in Part 4, Sec. 4 page 348 
as a language-based processor. 

Microprogrammed implementation of EULER 
on IBM System/360 

EULER (Chap. 32) is discussed in Part 4, Sec. 4 page 348 as 
a microprogrammed, language-based processor. 



Chapter 21 

Design of an arithmetic unit 
incorporating a nesting storel 

R .  H .  Allmark / 1. R .  Lucking 

Summary This paper describes the arithmetic unit of a computer whose 
order code is based on the Reverse Polbh algebraic notation. The order 
code has been realised by causing the arithmetic unit to operate on data 
stored in the most accessible registers of a nesting store; these registers 
are of the transistor flip-flop type but are backed up by sixteen fast magnetic 
core registers. The functions are performed as micro-programmes of trans- 
fers between the registers in the arithmetic unit, and the necessary arrange- 
ment of transfer paths, logical gates and arithmetic circuits is described. 
The number system is binary, using the two's-complement representation 
of negative numbers. Automatic floating-point operations are included 
which use an autonomous unit to perform the shifts required. 

introduction 

The arithmetic unit of a general purpose digital computer contains 
circuits to perform at least the basic operations of addition, sub- 
traction, multiplication and division. In many machines it is possi- 
ble to use some of the registers in the arithmetic unit as temporary 
storage for the partial results arising during a calculation; thus 
the accumulator of a one-address machine is used to store the 
result of the last arithmetic operation. The arithmetic unit de- 
scribed in this paper uses a nesting store, operating on the last- 
in-first-out principle, for the storage of its data and partial results. 
The nesting store consists of a stack of cells, of which only the 
most accessible supply data to the arithmetic unit, the results are 
automatically returned to the most accessible cells and the original 
operands erased, less accessible information being moved into the 
cells made vacant by the operation. 

The computer and its order code 

on the Reverse Polish algebraic notation, and contains four groups 
of operations: 

a 

b 

Transfers between the arithmetic unit and the main store. 

Arithmetic, logical and manipulative functions on data in 
the nesting store. 

Conditional and unconditional jump instructions used to 
interrupt the normal sequencing of instructions. 

Instructions for controlling the operation of the various 
peripheral devices which may be attached to the machine. 

c 

d 

Main store transfers include instructions for transferring half 
and full-length words to the most accessible cell of the nesting 
store, information already in the stack being retained by transfer 
to the less accessible cells. The contents of the most accessible 
cell of the stack may be stored in the main store; they are then 
automatically erased from the stack while information is moved 
from the less accessible cells to a more accessible position. 

Arithmetic operations also feature the transfer of data in the 
nesting store so that the operands are destroyed, the results are 
left in the most accessible cell (or cells), and data not involved 
in the operation are moved to fill any vacated cells. 

Thus the programme for evaluating 

f = (a  - b) / (c  + de) 

may be written: 

fetch a, 
fetch b, 
subtract (forming a - b in the most accessible cell 

The arithmetic unit is part of a general purpose synchronous 
system, working in the parallel mode, with main core storage of 
(up to) 32, 768 48-bit words, and provision for the time sharing of 
up to 4 programmes. The order code of the computer is based 

'Proc. IFIP Congr. 62, pp. 694-698, 1962. 

and erasing both a and b from the stack), 
fetch d, 
fetch e,  

(forming de in the most 
erasing d and e,  and thus leaving a - b in the 
second most accessible cell), 

262 
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fetch c,  
add (forming c + de) 
divide (forming f ) ,  
store as f(1eaving the nesting store in the same state 

as before the fetch a instruction). 

For instructions, the 48-bit word has been divided into 6 sylla- 
bles of eight bits each, and these are then treated as a continuous 
sequence of variable length instructions. Arithmetic operations are 
specified by single syllable instructions, but main store transfers 
require three syllables to accommodate both the address and the 
address modifying information of the word to  which they refer; 
jump instructions also have three syllables. Two-syllable instruc- 
tions include the peripheral transfers, and instructions for process- 
ing address modifiers and performing shifts. The first syllable of 
every instruction contains two bits whose values specify the length 
of the instruction; the redundant case being used to differentiate 
between main store transfers and jump instructions. The first syl- 
lable of an instruction contains enough information to specify any 
arithmetic unit operation required; thus in the machine, each 
instruction is treated by two controls; the first or Store Control 
organising the fetching and storing of information in advance of 
the second or Arithmetic Unit Control which completes the in- 
struction on the information in the first syllable. 

Range of functions 

The allocation of bits to the instructions described above allows 
64 possible functions, of which 59 are used to specify the wide 
range of operations needed in a general purpose computer. 

As well as the normal single-length fixed-point arithmetic oper- 
ations, functions have been provided for the addition and subtrac- 
tion of double-length numbers. These simplify the programming 
of multi-length operations as well as giving increased accuracy. 
For normal scientific and engineering calculations automatic float- 
ing-point facilities are available. A single length word may repre- 
sent a floating-point number with a 40-bit fractional part f ,  and 
an 8-bit characteristic c; the value of the number is then f2c-128. 
The fractional part is limited to the range -1  5 f < -y2, or 

1 > .f 2 y2, or f = 0 when c is also zero. All floating-point opera- 
tions assume that operands are in this standard form and give 
correctly rounded results in standard form. Functions for the addi- 
tion and subtraction of double-length floating-point numbers have 
been provided, as these give increased accuracy and stability in 
many matrix operations. 

An increase in operating speed and a saving of instructions are 
effected by the use of instructions which re-order the position of 
information in the most accessible cells of the nesting store, in- 
cluding reversing and cycling operations. The normal logical oper- 
ations are provided. 

All arithmetic operations in the arithmetic unit are carried out 
on binary numbers using the two’s-complement notation for nega- 
tive numbers; instructions being provided for the conversion to 
and from binary of information stored as 6-bit characters in other 
radix systems. For the convenience of the programmer, double- 
length numbers are stored in the arithmetic unit with their more 
significant half in a more accessible cell; the sign of the less sig- 
nificant half is ignored and is set positive after all double-length 
operations. 

The nesting store 

Although the concept of a nesting store is similar to that of a rifle 
magazine where the addition of a cartridge displaces those already 
there, movement of information only occurs in the three most 
accessible cells of the nesting store, which are transistor flip-flop 
registers forming part of the arithmetic unit. The less accessible 
cells are core registers which are addressed in a sequential manner 
by a reversible counter. Reading from these cores reduces the 
count by one, thus selecting the next word; the read-out is de- 
structive so that the cores are in the correct state for a subsequent 
writing operation, which is the reverse of a read. The access time 
of the cores is reduced by providing separate counters and reading 
and writing mechanisms for the odd and even numbered rows of 
cores; thus when reading or writing from odd rows the addressing 
mechanism for the next even row is set, so that it is available for 
immediate use. Thus with a simple one core per bit system suc- 
cessive reads can be made at 1 p e c  intervals and writes at  2 p e c  
intervals; as these operations are performed in parallel with the 
functioning of the arithmetic unit, their times do not increase the 
time required to complete the functions. 

The arithmetic unit 

As shown in Fig. 1, there are six full length transistor flip-flop 
registers in the arithmetic unit; there are also two 8-bit registers 
used when performing floating-point operations. The main facili- 
ties associated with these registers are as follows. 

W1, W2 and W3 are the three most accessible cells of the 
nesting store; transfers to the core part of the nesting store, being 
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MAIN TRANSFERS 
A.U CONTROL PULSES 

COUNTER 
. / / I I #’ # t 

_ -  

I 
SET FROM 

ONES I C L f A R  1 STORE 
CONTROL 

TO STOPE CONTROL CLEAR 

AUXILIARY TRANSFERS AND SHlFTS 
RIGHT SHIFTS OF 

0,1 ,2 ,S .8  OR-8 

CHARACTERISTIC MODIFIER 

Fig. 1. Block diagram of the arithmetic unit. Full lines represent infor- 
mation transfers; dotted lines represent control pulses. All registers are 
48-bits long unless otherwise stated. 

made via W3. W1 and W2, together with B1 and B2, form a 
double-length shifting register which may be used as two inde- 
pendent single-length shifting registers. 

B1 and B2 are the inputs to the 48-bit adder whose output may 
be routed to W1, W2, or to the characteristic difference register 
CD. 

The adder contains 13 carry-skip stages which reduce the carry 
propagation time to a maximum of 150 nsec. Subtraction is per- 
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formed by adding the minuend’s complement to the subtrahend 
with a carry inserted into the right-most adder stage. 

N b  acts as a buffer between store control and the arithmetic 
unit, and together with B1 and B2, is used in nearly every function. 

Arithmetic unit control interprets each instruction as a se- 
quence of timed pulses along lines which activate the various 
transfers etc., between the registers. The sequences have been 
constructed so that many operations are performed simultaneously, 
reducing the overall time to a minimum; thus the function sin- 
gle-length fixed-point add is performed by: 

i Transferring W1, W2, W3 to B2, B1 and Nb respectively, 
simultaneously commencing a read from the nesting store, 
clearing the carry inserted into the right-most adder stage 
and switching the adder’s output to W1. 

Adding and simultaneously transferring Nb to W2. ii 

Each step takes 0.5 psec and by the end of the last step, W3 
has been refilled from the core nesting store. 

To speed up multiplication and division, these functions are 
carried out in a separate unit employing the stored carry principle, 
but the results are finally assimilated within the arithmetic unit. 

A similar arithmetic unit operating only on single-length num- 
bers could be designed using only four full-length registers. At least 
five registers are required to perform the function which inter- 
changes the contents of the two most accessible cells in the nesting 
store with those of the next most accessible pair. The sixth register 
enables all double-length arithmetic operations to be performed 
without writing information back into the nesting during the func- 
tion; this would have complicated the sequences and increased 
the time for the functions. 

When determining the arrangement of transfer paths between 
the various registers, it was found sufficient to consider only the 
double-length functions which required complicated or lengthy 
sequences; in particular the function for adding two double-length 
Hoating numbers had great influence. 

An overflow indication is set on fixed-point addition and sub- 
traction if the sign of the result differs from that expected, and 
on floating-point operations if the characteristic exceeds the 
maximum allowable; shifting may also cause overflow. 

Shift control 

Shifting operations are effected by transfers between W1 (and/or 
W2) and B1 (and/or B2), and back again. The shift transfer paths 
from the W to the B registers provide right shifts of 0, 1, 2, 5 
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or 8 places, and a left shift of 8 places; the paths from the B to 
the W registers provide the same shifts in the reverse direction. 
The two sets of shift paths are used alternately, those from the 
W registers being used first; all shifts are terminated using a path 
into the W registers. Shifts of a large number of places are accom- 
plished by a series of shifts of eight places in the appropriate 
direction until the number of places remaining is less than eight; 
if necessary the number is then transferred back into the W regis- 
ters: the remaining shifts, or the whole shift if the number of places 
is less than eight, is then completed by a transfer to the B registers 
and back again using two appropriate paths. With the shifts avail- 
able, extension of the B registers by two bits at the right-most 
end enables any shift to be performed without loss of accuracy. 
In double-length arithmetic shifts, the sign digit of the less sig- 
nificant word is by-passed. When a shift is to be performed, the 
number of places and the type of shift are transferred into a semi- 
autonomous unit, called the shift control, which is then supplied 
with a string of command pulses by the arithmetic unit control; 
shift control then re-routes these pulses to perform the transfers 
necessary to obtain the shift. 

When performing floating-point addition and subtraction, shifts 
are required to equalize the characteristics of the two numbers; 
the amount of shift is calculated by a modified subtraction, oper- 
ating on the characteristic positions of the two numbers. After the 
addition, the shift required to restore the result to standard form 
is determined by logical circuits which interpret the pattern of 
bits in W1 into shift information. The number of shifts performed 
during this standardising operation is made available to the arith- 
metic unit control for use in forming the correct characteristic 
of the result. 

The character conversion operations to, and from, binary are 
accomplished by shift control, using a method involving successive 
shifting of the character word, and adding or subtracting portions 
of the radix word. 

Examples of sequences 

To illustrate the working of the arithmetic unit, two sequences 
are described. 

a -D, (i.e. subtract the double-length fixed-point number in 
W1 and W2 from the number in W3 and the most accessible 
core register of the nesting store). 

Transfer W1, W2, W3 to B2, B1 and N b  respectively, 
simultaneously reading from the core nesting store. 

i 

ii A dummy pulse. 

iii 

iv 
2) 

vi 

Transfer the complement of W2 to B2 (but setting the 
sign of B2 positive), transfer W3 directly to B1 (W3 
has by now been filled with fresh data), switch the 
adder’s output to W2, inserting a carry into the right- 
most adder stage, and read from the nesting store. 
Add. 
Transfer the complement of W1 to B1 and N b  to B2, 
switch the adder’s output to W1 and insert a carry 
into the right-most adder stage if W2 is negative. 
Add, simultaneously clearing the sign of W2. 

b + F (i.e. add the two single-length floating numbers in W1 
and W2). 

i 

ii 

iii 

iv 

21 

vi 

vii 

viii 

ir 

X 

Transfer the complement of W1 to B1, transfer W2 
to B2 and switch the adder’s output to register CD. 
Store the characteristic of W1 in the eight-bit register 
C and add. 
Clear the characteristic positions of W1, simultane- 
ously transferring CD into the shift number register 
in shift control. This latter operation is such that the 
shift register contains minus the difference in charac- 
teristics. 
Clear the characteristic of W2, and if W1 is about 
to be shifted, determined by the sign digit of CD, 
replace the contents of C by the characteristic of B2; 
thus C contains the larger Characteristic. 
Supply control pulses to shift control and thus perform 
the required right-shift of eight W1 or W2. 
Having completed the shift, transfer W1, W2 and W3 
to B2, B1 and N b  respectively, simultaneously switch- 
ing the adder’s output to W1, clearing the carry into 
the right-most adder stage and reading from the core- 
nesting store. 
Add the fractional parts, simultaneously transferring 
N b  to W2. 
Supply control pulses to shift control so as to cause 
it to enter the standardization procedure and perform 
the shifts required. 
Store the complement of the number of left-shifts 
performed in (viii) in the characteristic position of B2, 
transfer C to the characteristic position of B1, switch 
the adder to W1. 
Perform a special add operation which only affects 
the characteristic positions of W1. 

The sum is thus formed in W1. Rounding the answer is carried 
out using two special control pulses which complete all floating- 
point operations, these call up logic to deal with the cases when 
the rounding operation necessitates re-standardization of the re- 
sult. 
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Conclusions 

The advantages of a machine incorporating a nesting store in the 
arithmetic unit are:- 

i 

ii 

The machine is simple to programme using the machine 
language. 
Programmes are faster, since many main store transfers are 
eliminated, and the access time of the nesting store is 
virtually zero. They are more compact because less infor- 
mation is required to specify many instructions. 

Section 5 1 Processors with stack memories (zero addresses per instruction) 

iii As the operation of the arithmetic unit is largely inde- 
pendent of the main store, their controls may readily be 
separated. This allows store control to process instructions 
whilst the arithmetic unit control processes a prior instruc- 
tion, thereby leading to faster execution of the programme. 

The main disadvantage is an increase in the order of complexity 
involved. 
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Chapter 22 

Design of the B 5000 system1 

William Lonergan / Paul King 

Computing systems have conventionally been designed via the 
‘hardware’ route. Subsequent to design, these systems have been 
handed over to programming systems people for the development 
of a programming package to facilitate the use of the hardware. 
In contrast to this, the B 5000 system was designed from the start 
as a total hardware-software system. The assumption was made 
that higher level programming languages, such as ALGOL, should 
be used to the virtual exclusion of machine language programming, 
and that the system should largely be used to control its own 
operation. A hardware-free notation was utilized to design a proc- 
essor with the desired word and symbol manipulative capabilities. 
Subsequently this model was translated into hardware specifica- 
tions at which time cost constraints were considered. 

Design objectives 

The fundamental design objective of the B 5000 system was the 
reduction of total problem through-put time. A second major 
objective was facilitation of changes both in programs and system 
configurations. Toward these objectives the following aspects of 
the total computer utilization problem were considered: 

Statement of problems in higher-level machine-independent 
languages; efficiency of compilation of machine language; speed of 
compilation of machine language; program debugging in higher- 
level languages; problem set-up and load time; efficiency of 
system operation; ease of maintaining and making changes in 
existing programs, and ease of reprogramming when changes are 
made in a system configuration. 

Design criteria 

Early in the design phase of the B 5000 system the following 
principles were established and adopted: 

Program should be independent of its location and unmodified 
as stored at object time; data should be independent of its location; 
addressing of memory within a program should take advantage 
of contextual addressing schemes to reduce redundancy; provisions 

‘Datamation, vol. 7, no. 5, pp. 28-32, May, 1961. 

should be made for the generalized handling of indexing and 
subroutines; a full complement of logical, relational and control 
operators should be provided to enable efficient translation of 
higher-level source languages such as ALGOL and COBOL; pro- 
gram syntax should permit an almost mechanical translation from 
source languages into efficient machine code; facilities should be 
provided to permit the system to largely control its own operation; 
input-output operations should be divorced from processing and 
should be handled by an operating system; multi-programming and 
true parallel processing (requires multiple processors) should be 
facilitated, and changes in system configuration (within certain 
broad limitations) should not require reprogramming. 

System organization 

The B 5000 system achieves its unique physical and operational 
modularity through the use of electronic switches which function 
logically like telephone crossbar switches. Figure 1 depicts the 
basic organization of the system as well as showing a maximum 
system. 

Master control program 

A master control program will be provided with the B 5000 system. 
It will be stored on a portion of the magnetic drum. During normal 
operations, a small portion of the MCP will be contained in core 
memory. This portion will handle a large percentage of recurrent 
system operations. Other segments of the MCP will be called in 
from the magnetic drum, from time to time, as they are required 
to handle less frequently-occurring events, or system situations. 
Whenever the system is executing the master control program, 
it is said to be in the Control State. All entries to the Control 
State are made via ‘interrupts.’ A special operation is provided, 
which can only be executed when the system is in the Control 
State, to permit control to return to the object program it was 
executing at the time the ‘interrupt’ occurred. 

The following are a few typical occurrences which cause an 
automatic ‘interrupt’ in the system: An input-output channel is 

267 
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Fig. 1. Organization of the B5000 system. 

available, an input-output operation has been completed or an 
indexing operation was attempted which violated the storage 
protection features built into the system. 

In addition to processing interrupt conditions, the master con- 
trol program handles fundamental parts of the total system opera- 
tion such as the initiation of all input-output operations, tanking 
of input-output areas when required, file control, allocation of 
memory, scheduling of jobs (priority ratings, system requirements 
of each object program, and the present system configuration are 
considered), maintenance of an operations log and maintenance 
of a system description. 

Operating modes 

The B 5000 can either operate with fixed-length words or with 
variable-length fields. These two modes of operation are called the 

word mode and the character mode. For certain operations, a 
processor operating on words is most desirable and for other opera- 
tions, a variable field length mode of operation is most desirable. 
By combining both abilities in one processor, a processor can 
operate in the mode most desirable for the operation at hand. In 
a B 5000 system, it is even possible for one processor to be operat- 
ing in the word mode and the other in the character mode. 

When operating in the word mode, a standard format for the 
data word is used as illustrated in Fig. 2.  

Note that the standard word is an octal floating point word. 
However, the mantissa is treated as an integer rather than as a 
fraction (heretofore the reverse has been common practice). This 
provides two benefits: first, an integer has the same internal repre- 
sentation as its unnormalized floating point correspondent; and, 
second, the range of numbers that can be expressed, rather than 
being from S+64 to 8-63, is 8+76 to S-51. The first feature eliminates 
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First 
Char- 
acter 

Integer Part 

Second Third Fourth Fifth Sixth Seventh Eighth 
Char. Char- Char- Char- Char- Char- Char- 
acter acter acter acter acter acter acter 

F-Flag (1 bit) 
SE-Sign of Exponent (1 bit) 
Exponent (6 bits) 

Fig. 2. Data word - word mode. 

SO-Sign of Operand (1 bit) 
Integer Part (39 bits) 

the need for fixed-to-floating point conversion; integers and floating 
point numbers can be mixed in arithmetic calculations. The second 
expands the range where trouble with range is most often en- 
countered, namely, in numbers with extremely large magnitude. 

The flag serves a dual purpose. The function of the flag depends 
on how the program references the data word. If the data word 
is a single variable and not an element of an array, the flag identi- 
fies the word as being operand, that is, a data word. If the word 
is an element of an array, the flag may be used to identify this 
particular element as an element of data which is not to be proc- 
essed by the normal program (for example, a boundary point in 
mesh calculations). 

When operating in the character mode, each data word consists 
of eight alphanumeric characters as illustrated in Fig. 3. Programs 
in the character mode can address any character in a word. Fields 
can start at any position in a word. A processor in a single opera- 
tion can operate on fields of any length up to 63 characters long; 
operations on fields of greater length can easily be programmed. 
For example, two 57 character fields could be compared in a single 
operation. 

There are two instances when the character mode operates with 
words of the type used in the word mode. Operations are provided 
in the character mode for converting numeric information in the 
alphanumeric representation to the standard word type of the 
word mode and vice versa. In both of these instances, the length 
of the alphanumeric fields being converted to or from the word 
mode type of word can be no greater than eight characters long. 
Again, conversion of fields of greater length can easily be pro- 
grammed. 

The purpose of the word mode is to provide the advantages 
of high-speed parallel operations, floating-point abilities and the 
inherent information density possible in a binary machine. In the 
first case, it is economically feasible to provide parallel operations 
in a word machine; the cost of parallel operations on variable 
length fields would be prohibitive. In the last case, a given size 
memory can contain over twenty percent more numeric informa- 
tion if that information is expressed in binary rather than binary- 

coded decimal, and over eighty percent more information than 
can be expressed in six-bit alphanumeric representation. 

The purpose of the character mode is to provide editing, scan- 
ning, comparison and data manipulative abilities (although addi- 
tion and subtraction are also provided). The type of editing facili- 
ties provided obviate the need for the artificial “add-shift-extract- 
store” type of editing. For example, operations are provided for 
generalized insertion of editing symbols (such as blanks, decimal 
points, floating dollar signs, etc.) and for the substitution or sup- 
pression of any unwanted characters. For those interested in the 
new area of Information Processing Languages, the character mode 
is particularly well suited to list structures. 

Program organization 

Programs in the B 5000 are composed of strings of syllables. A 
syllable is the basic unit of the program and is twelve bits in 
length. The term “syllable” is used rather than instruction to 
distinguish it from conventional single-address or multi-address 
instructions. Each program word contains four syllables and they 
are executed sequentially in a left-to-right order within the pro- 
gram word, and sequentially by word. Branching is allowed to any 
syllable within a word. Before delving into some of the details 
of the internal operation of the B 5000 processor, it is necessary 
to discuss stacks, Polish notation, and the Program Reference 
Table. 

The stack 

The internal organization of single-address computers forces the 
wasting of both programming and running time for the storage 
and recall of the intermediate results in the sequence of compu- 
tation. The data must be placed into the proper registers and 
memory cells before the operation can be executed, and their 
contents must often be completely rearranged before the next 
operation can be performed. Multi-address computers are con- 
structed to make the execution of a few selected operations more 
efficient, but at the expense of building inefficiencies into all the 
rest. Automatic programming aids attack this problem indirectly: 
they relieve the programmer of the need to laboriously code his 
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Executed 

way around machine design, but they still must provide object 
coding to accomplish the storage and recall functions. In brief, 
conventionally designed computers, with or without automatic 
programming aids, require the wasteful expenditure of program- 
ming effort, memory capacity, and running time to overcome the 
limitations of their internal organization. 

The problem is attacked directly in the B 5000 by incorporation 
of a “pushdown” stack, which completely eliminates the need for 
instructions (coded or compiled) to store or recall intermediate 
results. 

In a B 5000 processor, the stack is composed of a pair of regis- 
ters, the A and B registers, and a memory area. As operands are 
picked up by the programs, they are placed in the A register. If 
the A register already contains a word of information, that word 
is transferred to the B register prior to loading the operand into 
the A register. If the B register is also occupied by information, 
then the word in B is stored in a memory area defined by an 
address register S. Then the word in A can be transferred to B 
and the operand brought into the A register. The new word coming 
into the stack has pushed down the information previously held 
in the registers. As each pushdown occurs, the address in the S 
register is automatically increased by one. The information con- 
tained in the registers is the last information entered into the stack; 
the stack operates on a “last in-first out” principle. As information 
is operated on in the stack, operands are eliminated from the stack 
and results of operations are returned to the stack. As information 
in the stack is used up by operations being performed, it is possible 
to cause “pushups,” i.e., a word is brought from the memory area 
addressed by the S register, and the address in the S register is 
decreased by one. 

To eliminate unnecessary pushdowns and pushups, the A and 
B registers both have indicators used for remembering whether 
the registers contain information or are empty. When an operand 
is to be placed in the stack and either of the registers is empty, 
no pushdown into memory occurs. Also, when an operation leaves 
one or both of the registers empty, no automatic pushup occurs. 

Polish notation 

The Polish logician, J. Lukasiewicz, developed a notation which 
allows the writing of algebraic or logical expressions which do not 
require grouping symbols and operator precedence conventions. 
For example, parentheses are necessary as grouping symbols in 
the expression A(B+ C )  to convey the desired interpretation of the 
expression. In the expression A + B/C, the normal interpretation 
is A + (B/C), rather than (A + B)/C, because of the convention that 

Section 5 I Processors with stack memories (zero addresses per instruction) 

the / operator is of higher precedence than the + operator. The 
right-hand Polish notation used in the B 5000 is based on placing 
the operators to the right of their operands: A + B becomes AB+ 
in Polish notation. A + B + C can be written either as AB + C + , 
or as ABC+ +. In the expression ABC+ +, the first + operator 
says to add the operands B and C. The second + operator says 
to add A to the sum of B and C. Returning to the first examples 
above, A(B + C) can be written as BC + A X  or ABC + x in Polish. 
The second example is written as BC/A+ or ABC/+.  The exten- 
sion of Polish notation to handle equations is shown in the follow- 
ing example: 

Conventional notation Z=A(B-C)/(D+E) 
Polish notation ABC - x DE + /Z= 

The stack in use 

To illustrate the functioning of the stack, two simple examples 
are shown in Figs. 4 and 5. In the examples, the letters P, Q and 
R represent syllables in the program that cause the operands P, 
Q, and R to be picked up and placed in the stack. The symbols 
+ and x represent syllables that cause the add and multiply 
operations to occur. The two examples represent different ways 
of writing P(Q+R) in Polish notation. The first example in Fig. 
4 does not require pushdowns or pushups. The second example, 
shown in Fig. 5,  requires a pushdown in the execution of the 
syllable R, and a pushup in the execution of the syllable x. The 
columns in the table represent the contents of the various registers 
after execution of the syllable listed in the first column. 

Independence of addressing 

One of the goals set in the design of the B 5000 was to make the 
programs independent of the actual memory locations of both the 
program itself and the data, in order to provide really automatic 

Polish Notation QR + P x 

~ ~- 

Fig. 4 
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Syllable 
Executed 

P 

Q 
Pushdown 

Execute 
R 

Polish Notation PQR + x 

Contents of 

Register A Register B Register S Cell 101 

100 - 

P 100 - 

P Empty 

Q 

Empty Q 101 P 

R Q 101 P 

X 
100 

Fig. 5 

program segmentation. Through automatic program segmentation, 
it is possible to have program size practically independent of the 
size of core memory. The systems analyst or programmer intending 
to do multi-processing is then no longer faced with the difficult 
task of planning what jobs are to be run together in order that 
system storage capacities are not exceeded. 

In achieving independence of addressing, a solution requiring 
large contiguous areas of memory was not deemed satisfactory. 
Each segment of the program and each data area should be com- 
pletely relocatable without modification to the program. It is then 
possible to load all the segments of a program or programs onto 
the drum at load time and call in the segments to any available 
space in core memory as needed during run time. If some segment 
of a program is overlaid by a subsequent segment of a program, 
the segment of the program destroyed in core memory is still 
available on the drum to be called in again if needed. 

Due to the very high program densities in the B 5000, the 
availability of high capacity drum storage on every system and 
automatic segmentation, a minimum B 5000 system has the capa- 
city for a program or programs equivalent to approximately 40,000 
to 60,000 single address instructions. Of course, if an installation 
normally ran such large programs, the system would very likely 
not be a minimum system. However, the installation having an 
occasional need to run very large programs is not prevented from 
doing so by storage capacity. 

Processing speed now becomes a function of the size of core 
memory. If large programs are run in a system with small core 
memory, time will be consumed in recalling program segments 

from drum to core. If the core memory is expanded, less time will 
be spent in such activity and the program or programs will be 
speeded up, and no reprogramming is required. 

Program reference table 

The means of achieving independence of addressing in the B 5000 
is called a Program Reference Table (PRT). The PRT is a 1,025 
word relocatable area in memory used primarily for storing con- 
trol words that locate data areas or program segments. There are 
also control words for describing input-output operations. These 
control words, called descriptors, contain the base address and size 
of data areas, program segments and input-output areas. A descrip- 
tor specifying an input-output operation also contains the desig- 
nation of the unit to be used and the type of operation to be 
performed. Operands may also be stored in the PRT, providing 
direct access to single values such as indices, counts, control totals, 
etc. 

In the word mode of the B 5000, every item of data is con- 
sidered to be either a single value or an element of an array of 
data. If it is a single value, it will be obtained directly by indexing 
a descriptor contained in the PRT. 

Program segments are described by program descriptors. In 
addition to core base address, the program descriptor contains the 
location in drum storage of the program segment and an indication 
if the program segment is currently in core memory starting at 
the address specified in the descriptor. Entry to a program segment 
is made via its program descriptor contained in the PRT. If the 
program segment is in core memory, entry will be made to the 
program segment. However, when entry is attempted to a program 
segment whose descriptor indicates that the segment is not in core 
memory, automatic entry to the Master Control Program will occur 
and the desired segment will then be brought in from the drum. 
Notice that in moving from one segment to another, it is not 
necessary to know whether the segment to be entered is currently 
in core memory. Branching within a program segment is self- 
relative, i.e., the distance to jump either forward or backward is 
specified, not the address to be jumped to. 

As a result of keeping all actual addresses of data and program 
in the PRT, the program itself does not contain any addresses, 
but only references to the PRT. To specify one of the 1,024 posi- 
tions in the PRT requires only 10 bits which contributes greatly 
to the high program density achieved in the B 5000. Since the 
PRT is relocatable, references to the PRT contained in the pro- 
gram are to relative locations, thus completely freeing the program 
from any dependence whatsoever on actual memory locations. 
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Word mode program For (3) ,  indexing of the descriptor by the item that is now the 

operand is obtained from the indexed address; for the descriptor 
action is after the indexing. 

In the case of (4), subroutine entry occurs to the subroutine 
addressed. A word of the three previous types may be left in the 

The word mode of the B 5000 processor has four types of syllables, second item in the stack occurs. For an 'Perand sY1lable, the 

The syllable is distinguished by the two high-order bits of 
each 12-bit syllable. The types of syllable and the identification 
bits are: 

00-Operator Syllable 
01-Literal Syllable 
10-Operand Call Syllable 
11-Descriptor Call Syllable 

The first of these, the operator syllable, causes operations to be 
performed. The remaining ten bits of the operator syllable are the 
operation codes. There are approximately sixty different operations 
in the word mode. For those operations requiring an operand or 
operands, the processor checks for sufficient operands in the regis- 
ters; if they are not there, pushups from the stack in memory occur 
automatically. 

The literal syllable is used for placing constants in the stack 
to be used as operands. The ten bits of the literal syllable are 
transferred to the stack. This allows the program to contain inte- 
gers less than 1,024 as constants. 

The operand call syllable, and the descriptor call syllable ad- 
dress locations in the program reference table. The purpose of the 
operand call syllable is to place an operand in the stack; the 
purpose of the descriptor call syllable is to place the address of 
an operand, a descriptor, in the stack. There are four situations 
that arise, depending on the word read from the program reference 
table. 

1 

2 

The word is an operand. 

The word is a descriptor containing the address of the 
operand. 

The word is a descriptor containing the base address of the 
data area in which the operand resides. 

The word is a program descriptor containing the base ad- 
dress of a subroutine. 

3 

4 

For (l), the operand call syllable has completed its action by 
placing an operand in the stack. The descriptor call syllable will 
cause the construction of a descriptor of the operand, replacing 
the operand by the constructed descriptor. 

For (2), the operand call syllable then reads the operand from 
the cell addressed. The descriptor call syllable has completed its 
action. 

registers upon return from the subroutine, in which instance the 
actions described above will take place, depending upon the type 
of syllable which initiated the subroutine. 

Essentially, the four types of action that occur for an operand 
call syllable are obtaining an operand directly, indirectly, from 
an array, or by computation. Sometimes in the use of the call 
syllables, it is not known which type of action will occur for a 
particular syllable when the program is created. This is particu- 
larly true for call syllables in subroutines. 

Programs in the word mode consist of strings of syllables which 
follow the rules of Polish notation. Variable length strings of call 
syllables and literal syllables, which place items of information 
in the stack, are followed by operator syllables which perform their 
operations on information in the stack. 

The indexing features of the B 5000 allow generalized indexing 
and at the same time provide complete storage protection. Data 
areas and program segments of different programs may be inter- 
mingled, but a program is prevented from storing outside of its 
data areas. The method of indexing allows any of the 1,024 words 
of the program reference table to be considered index registers. 
Multilevel indexing is provided, i.e., indices of arrays can them- 
selves be elements of arrays. 

The subroutine control provided in the B 5000 allows nesting 
of subroutines-even recursive nesting (a subroutine is a subrou- 
tine of itself)-arbitrarily deep. Dynamic allocation of storage for 
parameter lists and temporary working storage simplify the use 
of subroutines. Storage is automatically allocated and deallocated 
as required. 

Character mode program 

In the character mode of the B 5000 Processor, there is only one 
type of syllable, called the operator syllable. Program segments 
in the character mode are constructed of strings of these syllables. 
The character mode is designed to provide editing, formatting, 
comparison, and other forms of data manipulation. In doing so, 
the processor uses two areas of memory-the source and desti- 
nation areas. When a program switches from word mode to char- 
acter mode, two descriptors containing the base addresses of these 
areas are supplied. The source area or destination area may be 
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changed at any time during character mode so that the program 
may act on several areas. 

parts; the last part specifies the 'peration to be performed and 

Conclusion 

The Burroughs B 5000 system has been designed as an integrated 

in the memory space required to store equivalent object programs; 

The character mode 'perator is into two hardware-software package which offers such benefits as savings 

the first part 'pecifies the number Of times the 'peration is to be multi-processing and parallel processing; and identical 
performed. Operations are provided for the transferring, deletion, 
comparison, and insertion of characters or bits. Also, there are 
operations which allow the repetition of syllable strings. This is 
quite useful for complex table look-up operations and for editing 
information which contains repeated patterns. 

programs on systems with different size memories and different 
system configurations with no loss in individual system 
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Section 6 

Processors with mu I ti programm i ng 

The processors in this section have features which allow mult i-  
ple programs to exist in the primary memory at the same time. 
The programs can be executed alternately by a single processor 
without having to wait for new programs to be input. The cost 
is only that of changing the processor state, which involves only 
a few instructions at  most (and only one instruction on some 
systems, such as the CDC 6600). Since programs are subject 
to numerous unpredictable delays within a single run for inter- 
change with the external environment (either via Ms or T), 
substantial increases in Pc utilization can be achieved by multi- 
programming. If more than a single processor has access to 
Mp, the system is called a multiprocessor system. 

Time-shared computers are generally multiprogrammed. 
Alternatively, time-shared systems can be implemented by 
swapping programs, one at a time, into primary memory for 
interpretation. The Berkeley Time-sharing System (Chap. 24) 
uses both multiprogramming and program swapping. The 
Burroughs B 5000 (Chap. 22) is an early computer to have 
multiprogram capability. The idea of multiprogramming is so 
fundamental that it should be among the first concepts to be 
understood by the student of computing systems. A very nice 
review of memory mapping and storage allocation is presented 
in the paper Dynamic Storage Allocation Systems [Randell and 
Kuehner, 19681. 

Atlas 

The Atlas is one of the most important machines described in 
this book. The prototype was originally designed and con- 
structed at  Manchester University. The Atlas 1 and Atlas 2 were 
produced by Ferranti Corp. (prior to becoming part of 1.C.T.l). 
Atlas 1 is the most interesting; it incorporates most of the 
features of the Atlas prototype. The Lincoln Laboratory TX-2 
[Clark, 19571 influenced some Atlas features: multiple index 
registers and interrupt processing of input/output devices. 
Atlas' detailed internal structure is described in a paper [Sum- 
ner et al., 19621. 

International Computers and Tabulators, U. K. 

Two original features, one-level storage and extracodes, have 
been copied in many other machines. A one-level store is com- 
mon to most new computers which are time-shared or multi- 
programmed; the scheme for memory paging in the SDS 940 
is essentially that of Atlas. 

The extracodes feature allows ordinary machine operation 
codes to be used to call subroutines. Commonly used complex 
instructions (such as sin, cos, and monitor calls) can be written 
in a common operating system accessible to all users. Initially 
these subroutines were stored in a read-only memory. 

The ISP is straightforward and extremely nice. The extra- 
code idea appears in the SDS 900 series and was used in the 
SDS 940 system for defining common-user instructions. The 
IBM Systeml360 SVC (supervisor call) instruction is an adapta- 
tion of the extracode. 

Atlas was about the earliest computer to be designed with 
a software operating system and the idea of user machine in 
mind. The operating system has been nicely described [Kilburn 
et al., 19611 and evaluated [Morris et al., 19671. 

In a letter to the authors of this book, F. H. Sumner makes 
the following comments on Atlas. 

The initial ideas and the preliminary research on the Atlas computer 
system started in the Department of Computer Science of the Uni- 
versity of Manchester in 1956. The team, under the direction of 
Professor T. Kilburn, was later supplemented by several members 
of the I.C.T. Computer Research Department, and the prototype 
machine was working in the department by the Autumn of 1961. 
The first production model became operational in January 1963. 

The significant features of the system can be summarised as: 

1 The provision of a virtual address field greater than the real 
address space. 

2 The implementation of a "one-level" store using a mixture 
of core store and drum store. 

3 The interrupt system and the method of peripheral control. 

4 The realisation at the design stage that there would be a 
complex operating system and the provision in the hardware 
of specific features to assist such an operating system. 

274 
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The method of peripheral control permitted the attachment of 
a large number of on-line peripherals with rapid response and entry 
into the operating system for a peripheral requiring attention. This, 
together with the multiprogramming features, makes the design 
ideal for the attachment of keyboards for the provision of multi- 
access operation. In the original design, provision for several such 
on-line typewriters was made, but at the production stage it was 
decided to remove these as an economy measure. In view of the 
subsequent development of on-line operation, this was rather an 
unfortunate decision. 

The Atlas computer at the University has now been in continuous 
operation for four years and it is expected to provide for the major 
part of the University's computing needs until 1971. 

During the period of its operation the provision of extensive 
monitoring and logging information has permitted the behaviour of 
the system to be studied in detail. The results of these studies have 
been extremely valuable in the design of a successor to the Atlas. 

Design of the B 5000 System 

The Burroughs B 5000 computer is described in Part 3, Sec. 5, 
page 257, Chap. 22. 

A user machine in a time-sharing system 

The Berkeley Time-sharing Computer (Fig. 1) is based on the 
SDS 930 (Chap. 24). The hardware modifications to the SDS 

930, together with the operating system software, were sold by 
Scientific Data Systems as the SDS 940. The operating system 
and hardware modifications for multiprogramming make the 
940 one of the first commercially available combined hardware- 
software time-sharing computers.' 

The description in Chap. 24 is concerned with the machine 
as it appears to the user. That is, the hardware and the oper- 
at ing system software are both presented in the context in 
which they contribute to form a user machine. 

The 940 uses a memory map which is almost a subset of 
that of Atlas but is more modest than that of the IBM 360/67 
[Arden et al., 19661 and GE 645 [Dennis, 1965; Daley and 
Dennis, 19681. A number of instructions are apparently built 
in via the programmed operator calling mechanism, based on 
Atlas extracodes (Chap. 23). The software-defined instructions 
emphasize the need for hardware features. For example, float- 
ing-point arithmetic is needed when several computer-bound 
programs are run. The SDS 945 is a successor to the 940, with 
slightly increased capability but at a lower cost. 

'Time-shared computers consist of both hardware and a complex software operat- 
ing system. Adams Compute+ Chamcteristics Quarterly lists the deliveries of gen- 
eral-purpose time-shared computers as DEC PDP-6 hardware, October, 1964 
(software in early 1965); SDS 940 hardware (and Berkeley software) April, 1966; 
GE 635, 645 hardware, May, 1965 (M.I.T.'s project MULTICS software, around 
1969); IBM System/360 Model 67 hardware, March, 1966 (software, around 
1968). 

M(content addressable;  f l i p  f l o p )  

M p ( # 0 : 3 ) ' 4 ( 4  Mp; 3 (P,K)) i('Map)-F'c2-S K--Ms(magnet ic tape)-  

L T ( p a p e r  tape)-  

K-S-T (Teletype)-  

K--Ms(drum: 2 d w ;  1.3 x 10 w) 

K-Ms(moving head d i s k :  1.5 x 10' w)  

6 

E 
P i 0  

'Mp(core; 1.75 us /w;  16384 w; (24,l p a r i t y )  b/w) 

"Pc ( 'Mod i f i ed  SDS 930). see Chgpter 42 

Fig. 1. University of California (Berkeley) time-shared-computer PMS diagram. 



Chapter 23 

One-level storage system1 

T. Kilburn / D. B. G. Edwards / M .  J. Lanigan 
F. H .  Surnner 

Summary After a brief survey of the basic Atlas machine, the paper 
describes an automatic system which in principle can be applied to any 
combination of two storage systems so that the combination can be regarded 
by the machine user as a single level. The actual system described relates 
to a fast core store-drum combination. The effect of the system on instruc- 
tion times is illustrated, and the tape transfer system is also introduced 
since it fits basically in through the same hardware. The scheme incor- 
porates a “learning” program, a technique which can be of greater impor- 
tance in future computers. 

requisite transfers of information taking place automatically. There 
are a number of additional benefits derived from the scheme 
adopted, which include relative addressing so that routines can 
operate anywhere in the store, and a “lock out,, facility to prevent 
interference between different programs simultaneously held in 
the store. 

2. The basic machine 

1. Introduction 

In a universal high-speed digital computer it is necessary to have 
a large-capacity fast-access main store. While more efficient oper- 
ation of the computer can be achieved by making this store all 
of one type, this step is scarcely practical for the storage capacities 
now being considered. For example, on Atlas it is possible to 
address lo6 words in the main store. In practice on the first instal- 
lation at Manchester University a total of lo5 words are provided, 
but though it is just technically feasible to make this in one level 
it is much more economical to provide a core store (16,000 words) 
and drum (96,000 words) combination. 

Atlas is a machine which operates its peripheral equipment on 
a time division basis, the equipment “interrupting” the normal 
main program when it requires attention. Organization of the 
peripheral equipment is also done by program so that many pro- 
grams can be contained in the store of the machine at the same 
time. This technique can also be extended to include several main 
programs as well as the smaller subroutines used for controlling 
peripherals. For these reasons as well as the fact that some orders 
take a variable time depending on the exact numbers involved, 
it is not really feasible to “optimum” program transfers of infor- 
mation between the two levels of store, i .e.,  core store and drum, 
in order to eliminate the long drum access time of 6 msec. Hence 
a system has been devised to make the core drum store combi- 
nation appear to the programmer as a single level of storage, the 

The arrangement of the basic machine is shown in Fig. 1. The 
available storage space is split into three sections; the private store 
which is used solely for internal machine organization, the central 
store which includes both core and drum store, in which all words 
are addressed and is the store available to the normal user, and 
finally the tape store, which is the conventional backing-up large 
capacity store of the machine. Both the private store and the main 
core store are linked with the main accumulator, the B-store, and 
the B-arithmetic unit. However the drum and tape stores only have 
acces5 to these latter sections of the machine via the main core 
store. 

The machine order code is of the single address type, and a 
comprehensive range of basic functions are provided by normal 
engineering methods. Also available to the programmer are a 
number of extra functions termed “extracodes” which give auto- 
matic access to and subsequent return from a large number of 
built-in subroutines. These routines provide 

1 A number of orders which would be expensive to provide 
in the machine both in terms of equipment and also time 
because of the extra loading on certain circuits. An example 
of this is the order: 
Shift accumulator contents +n places where n is an integer. 

The more complex mathematical operations, e.g., sin x, 
logx, etc., 

Control orders for peripheral equipments, card readers, 
parallel printers, etc., 

2 

3 

‘ I R E  Truns., EC-II ,  vol. 2, pp. 223-235, April, 1962. 4 Input-output conversion routines, 
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5 Special programs concerned with storage allocation to 
different programs being run sknuftaneously, monitoring 
routines for fault finding and costing purposes, and the 
detailed organization of drum and tape transfers. 

All this information is permanently required and hence is kept 
in part of the private store termed the “fixed store” [Kilburn and 
Grimsdale, l W a ]  which operates on a “read only” basis. This store 
consists of a woven wire me& into which a pattern of small 
“linear” ferrite slugs are inserted to represent digitai information. 
The information content can only be changed manually and will 
tend to differ only in detail between the different versions of the 
Atlas computer. In Muse this store is arranged in two units each 
of 4096 words, a unit consisthg of 16 columrrs of 256 words, each 
word being 50 bits. The access time to a word in any one column 
is about 0.4 psec. If a change of column address is required, this 
figure increases by about 1 p e c  due to switching w e n t s  in the 
read amp&rs. s\tbsequent accsssssin the new c th ru~  revert to 
0.4 pec .  The store operates in mnj with a subsidiary core 
store of 1024 words which provides working space for the b e d  
store programs, and has a cycle time of about 1.8 pec. There are 
certain safeguards a g h t  a normal machine user 
to addre- in either part of the privstc store, thcwgh in effect 
he makes use of this stom &rot& the extracode facility. 

The central store of the madthe consists of a dnun and core 
store combination, whiuh Bas a maxi- edclPcssoble oopcity of 

about 10s weds. ];n R(ue the central store c&paoi2y is about !it@W 
words 
ferred ha b l a h  81 !W wads -/from the main core stom, which 
am&& of four mpuate stacks, each stack hwbg a wpadty of 
4088Wonaa 

The &ip system provides a veay large capacity baddag store 
for the machine. The user aua &e@ transfers of v@&kr Lpmaunts 

of informWon between this store and the eatad &om In octual 
fa& suoh &ansfen are o r @ d  by a fixedstcue program which 
initiates -c transfers of blocks of 512 WQlCdio W e e n  the 

OB 4 drums. Any part afthis *re CBn be trans- 

main core store. “he system cpn 
sima€-ly, each prodw.@gor dem 

thus be PmyMad $onr sither 
the an& m c k e ,  tfiG drum, or the tape systepl. 
is no between t b s e  addrema, h e  
priority system t o  allocate add~esses to the core stom, The dh.lsm 
has top prbxity sbce it delhrsrs a word every 4 pet, the trpe 
next prio%itv since ~rdsopn.cuise every 11 pec h 8 ddcs 

u6es the core s t ~ r e  for the reat of the available 
system newswily takes time to establish its 

at ea& cinnn ar tapa request. Thus the madhe is not slowed 
dmm in payway when aodnug or tape trunshs take place. Thtt 

of &am aad tape t r a d e r s  on machine speed is given in 
Appendix 1. 
To simplt€y the aontrol commands given t o  the drum, t ip.  and 

PBzfpherpaaqUtpHIent in tbs msrchiae, the rdtm all take the b 
b+ S or a+ B d the identification of t$e mquired eonmaad 
register is p v k ? d  by the address S, This type of storpgeis daatly 
widely Soaapered  in &e machine but is termed col lecthly the 
v-s tm.  

En ilye o~ntnh machine &e main accumulator conbins a fast 
uMar [Uhrn -et at., 1tHhi~J d has built-in nrrtwplication nnd 
diviJiciH &&ties. ft cwn dasal with fked or hating poi& numbers 
and its operation is completely independent of the B-store and 
& ~ ~ c  unit, Tbe B-store is a fast core store. (cycle time 0.7 
pee) Qf 1W twenty-four bit words operating in a wosd selected 

‘‘fast’’ 

B lines u;e+olso provided ia the hm of flipflo these, 
thwe am uwd as cm&ol lines, terbped mojn, extrscode, d inter- 
rupt con&& raapectively. The arrangement has the advantage 
that the &td hnmbers can be m a a t p W b y  &e Mwmai &type 
orders, and the existence of three controb permits the machine 
t~ swit&b wpidiy from one to another without having to transfer 
e m t d  &rs to the core store. Main control is used when the 

pridty, ead 90 &E? bWn fSlWlg0d thoz 00- b t b  8- .81y 

partial flw wwitclbing mock [Edwards et al., 
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Exponent 
V,8  bits 

including sgn 

central machine is obeying the current program, while the extra- 
code control is concerned with the fixed store subroutines. The 
interrupt control provides the means for handling numerous pe- 
ripheral equipments which “interrupt” the machine when they 
either require or are providing information. The remaining “fast” 
B lines are mainly used for organizational procedures, though B124 
is the floating point accumulator exponent. 

The operating speed of the machine is of the order of 0.5 x lo6 
instructions per second. This is achieved by the use of fast tran- 
sistor logic circuitry, rapid access to storage locations, and an 
extensive overlapping technique. The latter procedure is made 
possible by the provision of a number of intermediate buffer stor- 
age registers, separate access mechanisms to the individual units 
of core store and parallel operation of the main accumulator and 
B-arithmetic units. The word length throughout the machine is 
48 bits which may be considered as two half-words of 24 bits each. 
All store transfers between the central machine, the drum and tape 
stores are parity checked, there being a parity digit associated with 
each half-word. In the case of transfers within the central store 
( i e . ,  between main core store and drum) the parity digits associ- 
ated with a given word are retained throughout the system. Tape 
transfers are parity checked when information is transferred to 
and from the main core store, and on the tape itself a check sum 
technique involving the use of two closely spaced heads is used. 

The form of the instruction, which allows for two B-modifica- 
tions, and the allocation of the address digits is shown in Fig. 2a. 
Half of the addressable store locations are allocated to the central 
store which is identified by a zero in the most significant digit 
of the address. (See Fig. 2b.) This address can be further subdivided 
into block address, and line address in a block of 512 words. The 
least significant digits, 0 and 1, make it possible to address 6 bit 
characters in a half word and digit 2 specifies the half word. 

The function number is split into several sections, each section 
relating to a particular set of operations, and these are listed in 
Fig. 2c. The machine orders fall into two broad classes, and these 
are 

1 B codes: These involve operations between a B line specified 
by the BA digits in the instruction and a core store line 
whose address can be modified by the contents of a B line 
determined by the B,  digits. There are a total of 128 B 
lines, one of which, Bo, always contains zero. Of the other 
lines 90 are available to the machine user, 7 are special 
registers previously mentioned, and a further 30 are used 
by extracode orders. 

A codes: These involve operations between the Accumulator 
and a core store line whose address can now be doubly 

2 

Mantissa 
x 

40 bits lnc(uding sign 
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(0) 

23 22 2 1 ~ 2 0  19 18 17 46 15 14 I3 12 1i1 IO 9 8 7 6 5 4 3 2 I 

- L i n e  address  .. O d B l o c k  address-  ~ .!- 
(core  store and d r u m )  

I 
1 I 0 O 1  0 0 t 0 0 O - C o l u m n - L L i n e a d d r e s s  

1 MeshA address ’ 
1 M e s h 8  A d d r e s s  in  fixed store . 1 

A d d r e s s  in subsidiary s tore  ___ ~ ~ ~ _ _ _ _ _ _ _  

A d d r e s s  in  V s t a r e  

Most signilicant hall  word 0 
Least significant half-word I 

Mast significant character 0 0 
Least significant character I I 

47 46 45 44  43 42 41 40 39 38 
0 0 0 0 8 8 8 8 8 8  ___ 
0 0 0 1  B codes 

0 0 4 0  8 t e s t  codes 

0 0 1  t A codes 

O f 0 0  
O I O I  
O f  1 0  
0 1  I 1  4 codes and  extrocode r e t u r n  
0 o s  8 

i l 8 6  

__ 
8 codes and extrocode return 
__ 

B t y p e  extracode 

A t y p e  extrocode 

( C )  

( d )  

Fig. 2. Interpretation of a word. (a) Form of instruction. (b) Allocation 
of address digits. (c) Function of decoding. (d) Floating-point number 
X8’. 

modified first by contents of B ,  and then by the contents 
of BA. Both fixed and floating point orders are provided, and 
in the latter case numbers take the form of X S Y ,  the digit 
allocation of X and Y being shown in Fig. 2d. When fixed 
point working occurs, use is made only of the X digits. 



3. 0rrcl-kiwl.toreconobpt 

The choice of system for the fast access store in a large scale 
computer is governed by a number of emdicting factom which 
include speed ard size requirements, eapnomic and technical 
difficulties. Previously the probkm bas been r e s o w  in two ex- 
treme cuses either by the provision of a very large core store, e.g., 
the 2.5 m e b i t  [Papian, 19571 store at M.I.T., or by the use of 
a small core store (40,000 bits) eapanded to &10,000 bits by a dnun 
store as in the Ferranti Mercury [Lonsdale and Warburton, 19%; 
Kilbwn et al., 19561 computer. Each of these m e t h d  has its 
disadvantages, in the first case, that of expense, snd in the second 
case, that of inconvenience to the user, who is obliged to program 
t r a d e r s  of information between the two types of stom and this 
can be time consuming. In some instances it is W b l e  for an 
expert mechine user to m g e  his program so thnt the amwnt 
of time lost by the transfers in the two-level storage mangemcBt 
is not significant, but this sort of ‘‘optimtun’’ p q p m a i n g  is aot 
very desirable. Suitable interpretative coding [Brooker, 19601 can 
permit the two-level system to appear as one level. The effect is, 
however, accompanied by an effective loss of machine speed 
which, in some programs and dependhg on details of machine 
design, can be quite w e r e ,  varying typically, for example, be- 
tween one and three. 

The two-level storage s a k e  has obvious economic advan- 
tages, and bconvenience to the machine user can be ellminated 
by &g the transfer arrangements completely automatic. In 
Atlas a c o m p h d y  automatic system has been provided with t d -  
niques for minimizing the transfer times. In this way the core 
and drum are merged iato an appBpent single level of storage with 
good performance and at moderate cost. Some details of this ar- 
rangement on the Muse are now provided. 

The central store is subdivided into blocks of 512 words as 
shown by ttre address arrangeumnts in Fig. %b. The main cere store 
is also partitioned into blocks of th is  size which for identifiuation 
purposes are called pages. Assodated with each of these core store 
page positions is a “page address register” (P.A.R.) which contains 
the address of the block of information at present Occupying that 
page position. When access to any w01d in the central store is 
required the digits of the demanded block address are compared 
with the contents of all the page address registers. If an “equiva- 
lence” indication is obtained then access to that particular page 
position is permitted. Since B block can occupy any one of the 
32 page positions in the core store it is necessary to modify some 
digits of the demanded block address to conform with the page 
positions i s  which an equivalence was obtained. 

Thaw processes are necesearily time consum@ but by provid- 
ing a by-pass of t h i s  procedure for instruction acoews (since, in 
genera& instntctioa loops are all amtained ia the w n e  block) then 
most of &is t i m ~  cpn be overlapped with a UeeM p”tion of the 
machine or corn store rhythm. in thia wsly infomation in the core 
store is available to the mschine at the full speed d &e awe store 
and only rarely is  the over-all machine speed rrffeeted by delays 
in the equivdwoe circuitry. 

If P “not equivalence” indication is obtakred when the de- 
manded k k  address is c o ~ l i p ~ ~ ~ d  with the conte~~ts of the 
P.A.R.’s &en tht  address, which may have b n  B-modiiBe& is 
first stored in a register which can be a c d  as a Iiw of the 
V-store. Thip permits the central machine easy access to this ad- 
dress. An “intempt” also occurs which swikcherr operntion of the 
machine over te the interrupt control, wbidh fh d the 
ciwe of tbc intarnapt and &en, in thtp h t a c e ,  enters a b d  
store routisk ta organize the necessary trmdbm of infonaation 
between dkun and core store. 

A. Dficnrtm* 

On each drcun, one track is used to identify absolute bloak psi- 
tions around the dnmr periphery. The records on these tracks are 
read into the B registers which can be a c c d  as lines of the 
V-store and this permits the present anglular ckum pit ion to be 
detmmbd, though d y  in units of one blook. In this way the 
ti- Ildeded to tmnsbr m y  Mock while reading hoin &e drwns 

the dFnrn malation time is L2 msec a d  the actual transfer time 
2 msec. 

The time of a writing transfer to the drums hss been r e d d  
by writing the b l d  of idormation to the h t  wailable empty 
bloak pitian oa any dmm. Thus the access time of the drum 
can be e l h i n d  pvkkd there are a masorable number of 
empty blocks on the dnun. This means, however, that transfers 
to/from the drtffn have to be carried out by refesenoe to a direc- 
tory and this is stored in the subsidiary store and up-dated when- 
ever a transfer occurs. 

&st action is 
to determine the absolute position on a dmm of the required block. 
The order is then given to carry out the transfer to an empty page 
position in the core store. The transfer occurs automatically as 
soon as the drum reaches the correct angular position. The page 
address regirtsr in the vacant @ion in the core store is Set to 
*specific block number for dram transfers. This technique sim- 
plifies the engineering with regard to the provision of this number 

~ a n b e ~ ~ ~ t i m e ~ u i e ~ b e t \ m s e n 2 a n d 1 4 m g e ~ ~ i n ~ e  

Whrta the dwm transfer routine is eatered 
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from the drum and also provides a safeguard against transferring 
to the wrong block. 

As soon as the order asking for a read transfer from the drum 
has been given the machine continues with the drum transfer 
program. It is now concerned with determining a block to be 
transferred back from the core store to the drum. This is necessary 
to ensure an empty core store page position when the next read 
transfer is required. The block in the core store to be transferred 
has to be carefully chosen to minimize the number of transfers 
in the program and this optimization process is carried out by a 
learning program, details of which are given in Sec. 5.  The opera- 
tion of this program is assisted by the provision of the “use” digits 
which are associated with each page position of the core store. 

To interchange information between the core store and drums, 
two transfers, a read from and a write to the drum are necessary. 
These have to be done sequentially but could occur in either order. 
The technique of having a vacant page position in the core store 
permits a read transfer to occur first and thus allows the time for 
the learning program to be overlapped either into the waiting 
period for the read transfer or into the transfer time itself. In the 
time remaining after completion of the learning program an entry 
is made into the over-all supervisor program for the machine, and 
a decision is taken concerning what the machine is to do until 
the drum transfer is completed. This might involve a change to 
a different main program. 

A program could ask for access to information in a page position 
while a drum or tape transfer is taking place to that page. This 
is prevented in Atlas by the use of a “lock out” (L.O.) digit which 
is provided with each Page Address Register. When a lock out 
digit is set at 1, access to that page is only permitted when the 
address has been provided either by the drum system, the tape 
system, or the interrupt control. The latter case permits all trans- 
fers from paper tape, punched card, and other peripheral equip- 
ments, to be handled without interference from the main program. 
When the transfer of a block has been completed the organizing 
program resets the L.O. digit to zero and access to that page 
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position can then be made from the central machine. It is clear 
that the L.O. digit can also be used to prevent interference be- 
tween programs when several different ones are being held in the 
machine at  the same time. 

In Sec. 3 it was stated that addresses demanding access to the 
core store could arise from three distinct sources, the central 
machine, the drum, and the tape. These accesses are complicated 
because of (1) the equivalence technique, and (2) the lock out digit. 
The various cases and the action that takes place are summarized 
in Table 1. 

The provision of the Page Address Registers, the equivalence 
circuitry, and the learning program have permitted the core store 
and drum to be Legarded by the ordinary machine user as a one- 
level store, and the system has the additional feature of “floating 
address” operation, Le., any block of information can be stored 
in any absolute position in either core or drum store. The minimum 
access time to information in this store is obviously limited by 
the core store and its arrangement and this is now discussed. 

B. Core store arrangement 

The core store is split into four stacks, each with individual address 
decoding and read and write mechanisms. The stacks are then 
combined in such a way that common channels into the machine 
for the address, read and write digits are time shared between 
the various stacks. Sequential address positions occur in two stacks 
alternately and a page position which contains a block of 512 
sequential addresses is thus arranged across two stacks. In this way 
it is possible to read a pair of instructions from consecutive ad- 
dresses in parallel by increasing the size of the read channel. This 
permits two instructions to be completely obeyed in three store 
“accesses.” The choice of this particular storage arrangement is 
discussed in Appendix 2.  

The coordination of these four stacks is done by the “core stack 
coordinator” and some features of this are now discussed, starting 
with the operation of a single stack. 

Table 1 Comparison of demanded block address with contents of the P.A.R.’s resultant state of equivalence and lock out circuits 

Equivalence 
Lock out = 0 

Sourw of address lE.Q.1 
Not equivalence 
[N.E.Q.] 

[ Equioalence ) 
Lock out = 1 

[E.Q. 6- L.O.] 
~ ~ ~~~~ 

1 Central Machine Access to required page position Enter drum transfer routine Not available to this program 
2 Drum System Access to required page position Fault condition indicated Fault condition indicated 
3 Tape System Access to required page position Fault condition indicated Fault condition indicated 



C. Operation Of U &@e rtedr Of corC8rt0rc 

The storage system employed is a cdncident currant M.I.T. system 
arranged to give paralkl read out of 50 digits. The reading opera- 
tion is de$tmctbe and each read phase of the stack cycle Is fol- 
lowed by a write phase during which the infonnaton read ont 
may be rewritten. This is achieved by a set of digit stpti&zors 
which am loaded during the read phase and are a d  to control 
the inhibit current drivers d w k g  the write phase. When new 
information is to be written into the store a similar sequence is 
followed, except that the digit staticizors are loaded with the MW 

information during the read phase. A diagram indicating the 
different t y p e s  of stack cycle is shown in Fig. 3. 

I 
strobe I I Lg 

I 

I 
phose 

( 0 )  

:::::St-p7 

r 

Rood 
phase I 1 I 
Write 
strobe I U 
Write 
phase 1 I 

I 

,wo.l 

S t n r k  - 

I 
I 

Write ! ‘ 
strobe I I U 
Write phose ! I I l--r 

@% b 
I C )  

r, = occess time; rc = cyclic time; Wo = woit for oddrens decoding 
and loading of oddreu register; W w  = woit for release of write hold 
UP. 

Rg. 3. Bask types of rtldr cycle. (a) Road orckr (s + A). (b) rmteonkr 
(a + S). (c) Road-writ~ W (&I + s + S). 

There is a small delay W, ( N 100 mpec) between the “stack 
request” signal, SR, and the start of the rtwd phase to allow for 
setting of the address s t a b  d the decodbg. The output 
informath from the store appears in the read strobe period, which 
is towards the end of the read phase. In general, the write phase 
starts as soon UL the read phase ends. However, the start of the 
write phase may be held up until the new information is available 
from the central machine. This delay is shown as W, in Fig. 3c. 
The interval T’ between the stack request and the read strobe 
is termed &e stack access time, and in practice this is approxi- 
mately one third of the cycle time T,. Both Tn and T, are functions 
of the storage ryatem and resuming that W, is zero have typical 
values of 0.7 and 1.9 p c  respectively. A holdup gate in the 
request channel prevents the next stack request occurring before 
the end of the preceding write phase. 

D. o p s r c l h  of the muin w m  store wit), the umtral machine 

A s c h e m e  diagram of the essentials of the main core store con- 
trol system is shown in Fig. 4. The control signals SA, and SA, 
indicate whether the address presented is that of a single word 
or a pair of sequentially addressed instructions. Assuming that the 
flip-flop F is in the reset condition, either of these signals results 
in the loading of the buffer address register (B.A.R.). This loading 
is done by the signal B.A.B.A. which also indicates that the buffer 
register in the central machine has become free. 

In dealing with the 5 s t  request the block address digits in the 
B.A.R. are compared with the contents of all the page address 
registers. Then one of the indications summarized in Table 1 and 
indicated in Fig. 4 is obtaimd. Assuming access to the required 
store stack is permitted then a set C.S.F. signal is given which 
resets the flip-flop F. If this occurs before the next access request 
arises, then the speed of the system is not store-limited. In most 
cases SET CSF is generated when the equivalence operation on 
the demanded block address is complete, and the read phase of 
the appropriate stack (or stacks) has swed. Until this time the 
information held in the B.A.R. must not be allowed to change. 
In Fig. 5 a f?mv diagram is shown for the various cases which can 

When a single address request is accepted it is necesrary to 
obtain an “equivalence” indication and form the page location 
digits -re ttZe stack request can be generated. The SET CSF 
sippnrl thm OCC\IES as soon as the read phase starto. zf a “not equiva- 
lent” or ‘‘equivalent a& locked out” indication is a stack 
request is not generated, and the contents of the 4A.R. are copied 
in to a line of &e V-store before SET CSF is p n e r a t d .  

When access to a pair of addresses is reqwsted &e., an instruc- 

ariseinpmctice. 
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Page oddress reg 0 

Page oddress reg 1 

E q u i v a l e n c e  

E O  NEQ EQEiLO 

N o t  ins t ruc t ion  
address 1 

I n s t r u c t i o n  

addressbl 
A 

register 

Cornporison 
c i rcu i t  

re  

S t o c k  0 S t a c k  1 

7w-j 
M a i n  c o r e  s t o r e  

1 
S t a c k  

Fig. 4. Main core store control. 

tion pair) the stack requests are generated on the assumption that 
these instructions are located in the same page position as the last 
pair requested, Le., the page position digits are taken from the 
page digit register. (See Fig. 4.) In this way the time required to 
obtain the equivalent indication and form the page location digits 
is not included in the over-all access time of the system. The 
assumption will normally be true, except when crossing block 
boundaries. The latter cases are detected and corrected by com- 
paring the true position page digits obtained as a result of the 
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equivalence operation with the contents of the page digit register 
and a “right page” or “wrong page” indication is obtained. (See 
Fig. 4.) If a wrong page is accessed this is indicated to the central 
machine and the read out is inhibited. The true page location 
digits are copied into the page digit register, so that the required 
instruction pair will be obtained when next requested. The read 
out to the central machine is also inhibited for “not equivalent” 
or “equivalent and locked out” indications. 

In Fig. 5 the waiting time indicated immediately before the 
stack request is generated can arise for a number of reasons. 

1 

2 

The preceding write phase of that stack has not yet finished. 

The central machine is not yet ready either to accept infor- 
mation from the store, or to supply information to it. 

SA1 OR SA2 

1 
Walt for 
core store 
f r e e  

1 
Wait f o r  
equivalence 
ond formotion 
of page diglts 

Not equivalent 
or equivolent 
ond locked 

Woi t l see  text1 

Copy to  V l i n e  B A R  requ,est Stack 

SET CSF 
S t a r t  read 

Dhose 

WOlt fo r  
equivalence 
and formalion 
o f  page digits 

i 
Woit (see t e x t )  

I t  

l 

or equivalent 
compare page Not equivalent 

and locked 

I requests 1 digits with 
contents o f  I Page digit out I 

1 
SET CSF 

Copy pede d ig i ts  
to page digit  

S E T  CSF SET CSF SET CSF 

Fig. 5. Flow diagram of main core store control. 



3 It is necessary to ensure a certain minimum time between The eppro&mate times for various iastrustiono are given in 
SUCCesSive read strobes &Om the core store ScScks to d O W  Table 2. These figures relate to the times between completing 
mtisfactoV operation of the PafitY CkCUib,  Which take instructions when a long sequence of the same type of instruction 

be reduced, but as it is only poSIsible to get such a condition in practice obNg one instruction is overlapped in time with 

for a part Of the instruction timing it some part of three other instructions. This makes the detailed was not thought to be an economical proposition. 
timing complicated, and so the timing sequence is developed 

about 0.4 p e c  to chwk the information. Thip time could is while this is not ideal, it is necessary because 

The basic machine timing is now discussed. 

4. Instruction times 

In high-speed computers, one of the main factors limiting speed 
of operation is the store cycle time. Here a number of tecbnlques, 
e.g., splitting the core store into four separate stacks and extracting 
two instructions in a single cycle, have been adopted despite a 
fast basic cycle time bf 2 p e c  in order to alleviate this situation. 
The time taken to complete an instruetion is dependent upon 

1 The type of instruction (which is defined by the function 

2 The exact location of the instruction and operand in the 
core or fixed store since this em affect the access time 

3 Whether or not the operand address is to be modified 

4 In the case of floating point accumulator orders, the actus1 
numbers themselves 

5 Whether dnun and/or tape transfers are taking place 

~git.4 

slowly by first considering instructions obeyed one after another. 
It is convedient to make these instructiow a sequemce of floating 
point additions with both instruction and operand in the core store 
and with the operand address single B-modiW. 
To obey this instruction the central machine makes two re- 

quests to the core store, one for the instruction and the second 
for the operand. After the instruction is received in the machine 
the function part has to be dscaded and tlm operand address 
modified by the contents of one of the B registers More the 
operand request can be made. Finally, after the operand has been 
obmned the actual accumulator addition takes place to complete 
the instruction. The time from beginning to end of one instruction 
is 6.05 pec and an approximate timing schedule is as follows in 
Table 3. 

If no other action is permitted in the time required to complete 
the instruction (steps 1 to 8 in Table 3). then the different sections 
of the machine uw being used very inefliciently, eg., the accumu- 
lator adder is only used for less than 1.1 pec .  However, the orga- 
nization of the computer is such that the different sections such 
as store stacks, accumulator and M t h m e t i c  unit, can operate 

Floating Point Addition 

Floating Point Multiplication 

Floating Point Division 

Add Store Line to an Index Register 

0 
1 
2 

1.4 
1.6 
2.03 

0. 1 or 2 4.7 

0, 1 or 2 13.6 

0 
1 

Add Index Register to Store Line and Rewrite to 0 
Store Line 1 

1.53 
1 .$S 

1.63 
1.8 

1.65 
1.65 
1.9 

4.7 

13.6 

1.65 
1.85 

1.65 
1.7 

~ 

1.2 
1.2 
1.9 

4.7 

13.6 

1.t5 
1.85 
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Table 3t 
and operands in the core store) 

Timing sequence for floating point addition (instructions 

Time interval Total 
between steps time 

Sequence ELSec Pec 

1. Add 1 to Main Control 0 

2. Make Instruction Request 0.3 
(Addition time) 0.3 

(Transfer times, equivalence time 
and stack access time) 1.75 

3. Receive Instruction in Central Machine 2.05 

4. Function decoding complete 2.25 

5. Request Operand 3.10 

(Load register and decode) 0.2 

(Single address modification) 0.85 

(Transfer times, equivalence time 
and stack access time) 1.75 

(Load register) 0.1 
6. Receive Operand in Central Machine 4.85 

7. Start Addition in Accumulator 4.95 
(Average floating point addition, 
including shift round and stand- 
a rd i se) 1.1 

8. Instruction complete 6.05 

t In step 4, time is for single address modification. Times for no modification 
and two modifications are 0.25 psec and 1.55 psec respectively. 

at the same time. In this way several instructions can be started 
before the first has finished, and then the effective instruction time 
is considerably reduced. There have, of course, to be certain safe- 
guards when for example an instruction is dependent in any way 
on the completion of a preceding instruction. 

In the time sequence previously tabulated, by far the longest 
time was that between a request in the central machine for the 
core store and the receipt in the central machine of the infor- 
mation from that store. This effective access time of 1.75 psec is 
made up as shown in Table 4. It has been reduced in practice 
by the provision of two buffer registers, one in the central machine 
and the other in the core stack coordinator. These allow the 
equivalence and transfer times to be overlapped with the organi- 
zation of requests in the central machine. 

In this way, provided the machine can arrange to make requests 
fast enough, then the effective access time is reduced to 0.8 p e c .  
Further, since three accesses are needed to complete two instruc- 
tions (one for an instruction pair and one for each of the two 
operands) the theoretical minimum time of an instruction is 1.2 
psec 3 ~ 0 . 8 / 2  and it then becomes store limited. Reference to 
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Table 3 shows that the arithmetic operation takes 1.2 psec to 
complete so that, on the average, the capabilities of the store and 
the accumulator are well matched. 

Another technique for reducing store access time for instruc- 
tions has also been adopted. This permits the read cycles of the 
two stacks to start assuming that the same page will be referred 
to as in the previous instruction pair. This, of course, will normally 
be true and there is sufficient time to take corrective procedures 
should the page have been changed. The limit of 1.2 psec per 
instruction is not reduced by this technique, but the possibility 
of reaching this limit under other conditions is enhanced. 

A schematic diagram of the practical timing of a sequence of 
floating point addition orders is shown in Fig. 6. The overlapping 
is not perfect and in the time between successive instruction pairs 
the computer is obeying four instructions for 25 per cent of the 
time, three for 56 per cent and two for 19 per cent. It is therefore 
to be expected that the practical time for the complete order is 
greater than the theoretical minimum time; it is in fact approxi- 
mately 1.6 psec. 

For certain types of functions the reading of the next pair of 
instructions before completing both instructions of the first pair 
would be incorrect, e.g., functions causing transfer of control. Such 
situations are recognized during the function decoding, and the 
request for the next instruction pair is held up until a suitable 
time. 

In a sequence of floating point addition orders with the operand 
addresses unmodified the limit is again 1.2 psec while the time 
obtained is 1.4 p e c .  For accumulator orders in which the actual 
accumulator operation imposes a limit in excess of 2 psec then 
the actual time is equal to this limit. 

Perhaps a more realistic way of defining the speed of the com- 
puter is to give the time for a typical inner loop of instructions. 
A frequently occurring operation in matrix work in the formation 
of the scalar product of two vectors, this requires a loop of five 
instructions: 

Table 4 Effective store access time 

Total time 
Sequence !J=c 

1. Request in Central Machine 0 

3. Equivalence complete and request made to selected 
2. Request in Core Stack Coordinator 0.25 

stack 0.95 
4. Information in Core Stack Coordinator 1.65 
5. Information in Central Machine 1.75 
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Fig. 6. Timing diagram for a sequence of floating point addition orders. (Singleaddress modification.) 

1 Element of first vector into accumulator. (Operand B-modi- 
fied.) 

Multiply accumulator by element of second vector. (Oper- 
and B-modified.) 

3 Add partial product to accumulator. 

4 Copy accumulator to store line containing partial product. 

5 Alter count to select next elements and repeat. 

2 

The time for this loop with instructions and operands on the 
core store is 12.2 psec. The value of the overlapping technique 
is shown by the fact that the time from starting the first instruction 
to finishing the second is approximately 10 psec. 

When the drum or tape systems are transferring information 
to or from the core store then the rate of obeying instructions 
which also use the core store will be affected. The affect is dis- 
cussed in more detail in Appendix 1. The degree of slowing down 
is dependent upon the time at which a drum or tape request occurs 
relative to machine requests. It also depends on the stacks used 
by the drum or tape and those being used by the central machine. 
The approximate slowing down is by a factor of 25 per cent during 
a drum transfer and by 2 per cent for each active tape channel. 
(See Appendix 1.) 

5. The drum transfer learning program 

The organization of drum transfers has been described in Sec. 2A. 
After the transfer of the required block from the drum to the core 

store has been initiated, the organizing program examines the state 
of the core store, and if empty pages still exist, no further action 
is taken. However, if the core store is full it is necessary to arrange 
for an empty page to be made available for use at the next non- 
equivalence. The selection of the page to be transferred could be 
made at random; this could easily result in many additional trans- 
fers occurring, as the page selected could be one of those in current 
use or one required in the near future. The ideal selection, which 
would minimize the total number of transfers, could only be made 
by the programmer. To make this ideal selection the programmer 
would have to know (1) precisely how his program operated, which 
is not always the case, and (2) the precise amount of core store 
available to his program at any instant. This latter information 
is not generally available as the core store could be shared by other 
central machine programs, and almost certainly by some fixed store 
program organizing the input and output of information from slow 
peripheral equipments. The amount of core store required by this 
fixed store program is continuously varying [Kilburn et al., 19611. 
The only way the ideal pattern of transfers can be approached 
is for the transfer program to monitor the behavior of the main 
program and in so doing attempt to select the correct pages to 
be transferred to the drum. The techniques used for monitoring 
are subject to the condition that they must not slow down the 
operation of the program to such an extent that they offset any 
reduction in the number of transfers required. The method de- 
scribed occupies less than l per cent of the operating time, and 
the reduction in the number of transfers is more than sufficient 
to cover this. 
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That part of the transfer program which organizes the selection 
of the page to be transferred has been called the “learning” pro- 
gram, In order for this program to have some data on which to 
operate, the machine has been designed to supply information 
about the use made of the different pages of the core store by 
the program being monitored. 

With each page of the core store there is associated a “use” 
digit which is set to “1” whenever any line in that page is accessed. 
The 32 “use” digits exist in two lines of the V-store and can be 
read by the learning program, the reading automatically resetting 
them to zero. The frequency with which these digits are read is 
governed by a clock which measures not real time but the number 
of instructions obeyed in the operation of the main program. This 
clock causes the learning program to copy the “use” digits to a 
list in the subsidiary store every 1024 instructions. The use of an 
instruction counter rather than a normal clock to measure “time” 
for the learning program is due to the fact that the operations 
of the main program may be interrupted at  random for random 
lengths of time by the operation of peripheral equipments. With 
an instruction counter the temporal pattern of the blocks used 
will be the same on successive runs through the same part of the 
program. This is essential if the learning program is to make use 
of this pattern to minimize the number of transfers. 

When a nonequivalence occurs and after the transfer of the 
required block has been arranged, the learning program again adds 
the current values of the “use” digits to the list and then uses 
this list to bring up to date two sets of times also kept in the 
subsidiary store. These sets consist of 32 values of t and T, one 
of each for each page of the core store. The value of t is the length 
of time since the block in that page has been used. The value of 
T is the length of the last period of inactivity of this block. The 
accuracy of the values of t and T is governed by the frequency 
with which the “use” digits are inspected. 

The page to be written to the drum is selected by the appli- 
cation in turn of three simple tests to the values of t and T. 

1 

2 

Any page for which t > T + 1, or 

That page with t # 0 and ( T  - t) max, or 

3 That page with T,, (all t = 0). 

The first rule selects any page which has been currently out 
of use for longer than its last period of inactivity. Such a page 
has probably ceased to be used by the program and is therefore 
an ideal one to be transferred to the drum. The second rule ignores 
all pages with t = 0 as they are in current use, and then selects 
the one which, if the pattern of use is maintained, will not be 
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required by the program for the longest time. If the first two rules 
fail to select a page the third ensures that if the page finally 
selected is wrong, in that it is immediately required again, then, 
as in this case, Twill become zero and the same mistake will not 
be repeated. 

For all the blocks on the drum a list of values of T is kept. 
The values of T are set when the block is transferred to the drum: 

T = time of transfer-value of t for transferred page 

When a block is transferred to the core store the value of T is 
used to set the value of T. 

T = time of transfer-value of T for this block 
= length of last period of inactivity 

For the block transferred from the drum t is set to 0. 
In order to make its decision the learning program has only 

to update two short lists and apply at the most three simple rules; 
this can easily be done during the 2 msec transfer time of the block 
required as a result of the nonequivalence. As the learning program 
uses only fixed and subsidiary store addresses it is not slowed down 
during the period of the drum transfer. 

The over-all efficiency of the learning program cannot be 
known until the complete Atlas system is working. However, the 
value of the method used has been investigated by simulating the 
behavior of the one-level store and learning program on the 
Mercury computer at  Manchester University. This has been done 
for several problems using varying amounts of store in excess of 
the core store available. One of these was the problem of forming 
the product A of two 80th order matrices B and C. The three 
matrices were stored row by row each one extending over 14 
blocks, only 14 pages of core store were assumed to be available. 
The method of multiplication was 

b,, x 1st row of C = partial answer to 1st row of A 
b,, x 2nd row of C + partial answer = second partial answer, 

etc. 

Thus matrix B was scanned once, matrix C 80 times and each row 
of matrix A 80 times. 

Several machine users were asked to spend a short time writing 
a program to organize the transfers for a general matrix multipli- 
cation problem. In no case when the method was applied to the 
above problem were fewer than 357 transfers required. A program 
written specifically for this problem which paid great attention 
to the distribution of the rows of the matrices relative to block 
divisions required 234 transfers. The learning program required 
274 transfers; the gain over the human programmer was chiefly 
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due to the fact that the learning program could take full advantage 
of the occasions when the rows of A existed entirely within one 
block. 

Many other problems involving cyclic running of single or 
multiple sets of data were simulated, and in no case did the learn- 
ing program require more transfers than an experienced human 
programmer. 

A. Prediction of drum transfers 
Although the learning program tends to reduce the number of 
transfers required to a minimum, the transfers which do occur still 
interrupt the operation of the program for from 2 to 14 msec as 
they are initiated by nonequivalence interrupts. Some or all of 
this time loss could be avoided by organizing the transfers in 
advance. A very experienced programmer having sole use of the 
core store could arrange his own transfers in such a way that no 
unnecessary ones ever occurred and no time was ever wasted 
waiting for transfers to be completed. This would require a great 
deal of effort and would only be worthwhile for a program that 
was going to occupy the machine for a long time. By using the 
data accumulated by the learning program it is possible to recog- 
nize simple patterns in the use made by a program of the various 
blocks of the one-level store. In this way a prediction program 
could forecast the blocks required in the near future and organize 
the transfers. By recording the success or failure of these forecasts 
the program could be made self-improving. For the matrix multi- 
plication problem discussed above the pattern of use of the blocks 
containing matrix C is repeated 80 times, and a considerable 
degree of success could be obtained with a simple prediction 
program. 

6. Conclusions 

A specific system for making a core-drum store combination appear 
as a single level store has been described. While this is the actual 
system being built for the Atlas machine the principles involved 
are applicable to combinations of other types of store. For exam- 
ple, a tunnel diode-fast core store combination for an even faster 
machine. An alternative which was considered for Atlas, but which 
was not as attractive economically, was a fast core-slow core store 
combination. The system too can be extended to three levels of 
storage, and indeed if 106 words of total storage had to be provided 
then it would be most economical to provide it on a third level 
of store such as a file drum. 

The automatic system does require additional equipment and 
introduces some complexity, since it is necessary to overlap the 

time taken for address comparison into the store and machine 
operating time if it is not to introduce any extra time delays. 
Simulated tests have shown that the organization of drum transfers 
are reasonably efficient and other advantages which accrue, such 
as efficient allocation of core storage between different programs 
and store lock out facilities are also invaluable. No matter how 
intelligent a programmer may be he can never know how many 
programs or peripheral equipments are in operation when his 
program is running. The advantage of the automatic system is that 
it takes into account the state of the machine as it exists at any 
particular time. Furthermore if as in normal use there is some sort 
of regular machine rhythm even through several programs, there 
is the possibility of making some sort of prediction with regard 
to the transfers necessary. This involves no more hardware and 
will be done by program. However, this stage will probably be left 
until results on the actual system are obtained. 

It can be seen that the system is both useful and flexible in 
that it can be modified or extended in the manner previously 
indicated. Thus despite the increase in equipment, the advantages 
which are derived completely justify the building of this automatic 
system. 

APPENDIX 1 
TO THE CORE STORE 

ORGANIZATION OF THE ACCESS REQUESTS 

There are three sources of access requests to the core store, namely 
the central machine, the drum, and the tape systems. In deciding 
how the sequence of requests from all three sources are to be 
serialized and placed in some sort of order, a number of facts have 
to be considered. These are 

1 All three sources are asynchronous in nature. 

2 The drum and tape systems can make requests at a fairly 
high rate compared with the store cycle time of approxi- 
mately 2 psec. For example, the drum provides a request 
every 4 p e c  and the tape system every 11 p e c  when all 
8 channels are operative. 

3 The drum and tape systems can only be stopped in multiples 
of a block length, i.e., 512 words. This means that any system 
devised for accessing the core store must deal with both 
the average rates of drum and tape requests specified in 2. 
Only the central machine can tolerate requests being stopped 
at any time and for any length of time. From these facts a 
request priority can be stated which is 
a Drum request. 
b Tape request. 
c Central machine request. 
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I 
1 S t a c k  reques t  o f  

stored rnochine Order 

A machine request can be accepted by the core store, but 
because there is no place available to accept the core store 
information, its cycle is inhibited and further requests held 
up. In the case of successive division orders this time can 
be as long as 20 psec, in which case 5 drum requests could 
be made. To avoid having an excessive amount of buffer 
storage for the drum two techniques are possible: 
a When drums or tapes are operative do not permit ma- 

chine requests to be accepted until there is a place 
available to put the information. 

h Store the machine request and then permit a drum or 
tape request. 

The latter scheme has been adopted because it can be 
accommodated more conveniently and it saves a small 
amount of time. 

If the central machine is using the private store then it is 
desirable for drum and tape transfers to the core store not 
to interfere with or slow down the central machine in any 
way. 

When the central machine, drum and tape are sharing the 
core store then the loss of central machine speed should 
be roughly proportional to the activity of the drum or tape 
systems. This means that drum or tape requests must 
“break’ into the normal machine request channel as and 
when required. 

The system which accommodates all these points is now dis- 
cussed. Whenever a drum or tape request occurs inhibit signals 
are applied to request channel into the core stack coordinator and 
also to the stack request channels from this coordinator. This 
results in a “freezing” of the state of flip-flop F (Fig. 5) and this 
state is then inspected (Fig. 7 ,  point X). If the state is “busy” this 
means that a machine order has been stopped somewhere between 
the loading of the buffer address register (B.A.R.) and the stack 
request. Normally this time interval can vary from about 0.5 p e c  
if there are no stack request holdups, to 20 psec in the case of 
certain accumulator holdups. In either case sufficient time is al- 
lowed after the inspection to ensure that the equivalence operation 
has been completed. If an equivalence indication is obtained all 
the information relevant to this machine order (i.e., the line ad- 
dress, page digits, stack(s) required and type of stack order) are 
stored for future reference. Use is made here of the page digit 
register provided to allow the by-pass on the equivalence circuitry 
for instruction accesses. The core store is then made free for access 
by the drum or the tape. If the core store had been found to be 
free on inspection, the above procedure is omitted. 

i 
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Fig. 7. Drum and tape break in systems. 

A drum or tape access (as decided by the priority circuit) to 
the core store then occurs, which removes the inhibits on the stack 
request channels. When the stack request for the drum or tape 
cycle is initiated these inhibits are allowed to reapply. At this stage 
(Fig. 7, point Y), if there is a stored machine order it is allowed 
to proceed if possible. The inhibits on the machine request chan- 
nels are removed when the stack request for the stored machine 
order occurs. If there is no stored machine order this is done 
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immediately, and the central machine is again allowed access to 
the core store. However, another drum or tape request can arise 
before the stack request of the stored machine order occurs, in 
particular because this latter order may still be held up by the 
central machine. If this is the case the drum or tape is allowed 
immediate access and a further attempt is made to complete the 
stored machine order when this drum or tape stack request occurs. 

If the stored machine order was for an operand, the content 
of the page digit register will correspond to the location of this 
operand. The next machine request for an instruction pair will 
then almost certainly result in a “wrong page” indication. This 
is prevented by arranging that the next instruction pair access does 
not by-pass the equivalence circuitry. 

The effect on the machine speed when the drum or tapes are 
transferring information to or from the core store is dependent 
upon two factors. First, upon the proportion of time during which 
the buffer register in the core coordinator is busy dealing with 
machine requests, and secondly, upon the particular stacks being 
used by the central machine and the drum or tape. If the computer 
is obeying a program with instructions and operands on the fixed 
or subsidiary store then the rate of obeying instructions is un- 
affected by drum or tape transfers. A drum or tape interrupt 
occurring when the B.A.R. is free prevents any machine address 
being accepted onto this buffer for 1.0 psec. However, if the B.A.R. 
is busy then the next machine request to the core store is delayed 
until 1.8 psec after the interrupt if different stacks are being used, 
or until 3.4 psec after the interrupt if the stacks are the same. 

When the machine is obeying a program with instructions and 
operands on the core store the slowing down during drum transfers 
can be by a factor of two if instructions, operands, and drum 
requests use the same stacks. It is also possible for the machine 
to be unaffected. The effect on a particular sequence of orders 
can be seen by considering the one discussed in Sec. 4 and illus- 
trated in Fig. 6. in this sequence the instructions are on stacks 
0 and 1 while the operands are on stacks 2 and 3. i f  the drum 
or tape is transferring alternately to stacks 0 and 1 then the effect 
of any interrupt within the 3.2 psec of an instruction pair is to 
increase this time by between 0.5 and 3.4 p e c  depending upon 
where the interrupt occurred. The average increase is 1.8 psec 
and for a tape transfer with interrupts every 88 p e c  the computer 
can obey instructions at 98 per cent of the normal rate. During 
drum transfers the interrupts occur every 4 psec which would 
suggest a slowing down to 60 per cent of normal. However, for 
any regular sequence of orders the requests to the core store by 
the machine and by the drum rapidly become synchronized with 

the result in this particular case that the machine can still operate 
at 80 per cent of its normal speed. 

APPENDIX 2 METHODS OF DIVISION OF THE MAIN 
CORE STORE 

The maximum frequency with which requests can be dealt with 
by a single stack core store is governed by the cycle time of the 
store. If the store is divided into several stacks which can be cycled 
independently then the limit imposed on the speed of the machine 
by the core store is reduced. The degree of division which is chosen 
is dependent upon the ratio of core store cycle time to other 
machine opqrations and also upon the cost of the multiple selec- 
tion mechanisms required. , 

Considering a sequence of orders in which both the instruction 
and operand are in the core store, then for a single stack store 
the limit imposed on the operating speed by the store is two cycle 
times per order, Le., 4 psec in Atlas. This is significantly larger 
than the limits imposed by other sections of the computer 
(Sec. 4). If the store is divided into two stacks and instructions and 
operands are separated, then the limit is reduced to 2 p e c  which 
is still rather high. The provision of two stacks permits the ad- 
dressing of the store to be arranged so that successive addresses 
are in alternate stacks. i t  is therefore possible by making requests 
to both stacks at the same time to read two instructions together, 
so reducing the number of access times to three per instruction 
pair. Unfortunately such an arrangement of the store means that 
operands are always on the same stacks as instruction pairs, and 
the limit imposed by the cycle time is still 2 p e c  per order even 
if the two operand requests in the instruction pair are to different 
stacks and occur at the same time. 

Division into any number of stacks with the addressing system 
working through each stack in turn cannot reduce the limit below 
2 psec since successive instructions normally occur in successive 
addresses and are therefore in the same stack. However, four stacks 
arranged in two pairs reduces the limit to 1 psec as the operands 
can always be arranged to be on different stacks from the instruc- 
tion pairs. In order to reduce the limit to 0.5 psec it is necessary 
to have eight stacks arranged in two sets of four and to read four 
instructions at once, which would increase the complexity of the 
central machine. 

The limit of 1 p e c  is quite sufficient and further division with 
the stacks arranged in pairs only enables the limit to be more easily 
obtained by suitable location of the instructions and operands. 

The location of instructions and operands within the core store 
is under the control of the drum transfer program; thus when there 
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Fig. 8. Limit imposed by cycle time on operating speed for different 
divisions of the core store. 
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are several stacks instructions and operands are separated 
wherever possible. Under these conditions it is possible to calculate 
the limit imposed on the operating speed by the cycle time for 
different divisions of the core store. The results are shown in 
Fig. 8, for stacks arranged in pairs instructions are read in pairs and 
in all cases both instructions and operands are assumed to be on the 
core store. Operands are assumed to be selected at random from the 
operand space, for instance in the case of two stacks arranged as a 
pair, successive operand requests have equal probability of being to 
the same stack or to alternate stacks. 

The limit imposed by a four stack store is never severe com- 
pared with other limitations, for example the sequence of floating 
point addition orders discussed in Sec. 4 required 1.6 psec per order 
with ideal distribution of instructions and operands. Division into 
eight stacks, although it reduces the limit, will not have an equiv- 
alent effect on the over-all operating speed, and such a division 
was not considered to be justified. 
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Chapter 24 

A user machine in a time-sharing 
system1 

B. W. Lampson / W. W. Lichtenbqm / M. W. Pirtb 

Summoy This paper describes the design of the computer seen by a 
machine-language programmer in a time-sharing system developed at the 
University of California at Berkeley. Some of the instructions in this machine 
are executed by the hardware, and some are implemented by software. 
The user, however, thinks of them all as part of his machine, a machine 
having extensive and unusual capabilities, many of which might be part 
of the hardware of a (considerably more expensive) computer. 

Among the important features of the machine are the arithmetic and 
string manipulation instructions, the very general memory allocation and 
configuration mechanism, and the multiple processes which can be created 
by the program. Facilities are provided for communication among these 
processes and for the control of exceptional conditions. 

The input-output system is capable of handling all of the peripheral 
equipment in a d o r m  and convenient manner through files having sym- 
bolic names. Programs can access files belonging to a number of people, 
but each person can protect his own files from unauthorized access by 
others. 

Some mention is made at various points of the techniques of implemen- 
tation, but the main emphasis is on the appearance of the user’s machine. 

Introduction 

A characteristic of a time-sharing system is that the computer seen 
by the user programming in machine language differs from that 
on which the system is implemented [Bright, 1964; Comfort, 1965; 
Forgie, 1965; McCullogh et al., 1965; Schwartz, 19641. In fact, 
the user machine is defined by the combination of the time-sharing 
hardware running in user mode and the software which controls 
input-output, deals with illegal actions which may be taken by 
a user’s program, and provides various other services. If the hard- 
ware is arranged in such a way that calls on the system have the 
same form as the hardware instructions of the machine [Lichten- 
berger and Pirtle, 19651, then the distinction becomes irrelevant 
to the user; he simply programs a machine with an unusual and 
powerful instruction set which relieves him of many of the prob- 
lems of conventional machine-language programming [Lampson, 
1965; McCarthy et al., 19631. 

‘Pm. IEEE, 54, vol. 12, pp. 1766-1774, December, 1966. 

In a time-sharing system which has been developed by and for 
the use of members of Project Genie at the University of California 
at Berkeley [Lichtenberger and Pirtle, 19651, the user machine 
has a number of interesting characteristics. The computer in this 
system is an SDS 930, a 24 bit, fixed-point machine with one index 
register, multi-level indirect addressing, a 14 bit address field, and 
32 thousand words of 1.75 ps memory in two independent modules. 
Figure 1 shows the basic configuration of equipment. The memory 
is interleaved between the two modules so that processing and 
drum transfers may occur simultaneously. A detailed description 
of the various hardware modifications of the computer and their 
implications for the performance of the overall system has been 
given in a previous paper [Lichtenberger and Pirtle, 19651. 

Briefly, these modifications include the addition of monitor and 
user modes in which, for user mode, the execution of a class of 
instructions is prevented and replaced by a trap to a system rou- 
tine. The protection from unauthorized access to memory has been 
subsumed in an address mapping scheme: both the 16 384 words 
addressable by a user program (logical addresses) and the 32 768 
words of actual core memory (physical addresses) have been 
divided into 2048-word pages. A set of eight six-bit hardware regis- 
ters defines a map from the logical address space to  the real memory 
by speclfying the real page which is to correspond to each of the 
user’s logical pages. Implicit in this scheme is the capability of 
marking each of the user’s pages as unassigned or read-only, so that 
any attempt to access such a page improperly will result in a trap. 

All memory references in user mode are mapped. In monitor 
mode, all memory references are normally absolute. It is possible, 
however, with any instruction in monitor mode, or even within 
a chain of indirect addressing, to specify use of the user map. 
Furthermore, in monitor mode the top 4096 words are mapped 
through two additional registers called the monitor map. The 
mapping process is illustrated in Fig. 2. 

Another si@cant hardware modification is the mechanism for 
going between modes. Once the machine is in user mode, it can 
get to monitor mode under three circumstances: 

291 
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If a hardware interrupt occurs 

If a trap is generated by the user program as outlined. 

If an instruction with a particular configuration of two bits 
is executed. Such an instruction is called a system pro- 
grammed operator (SYSPOP). 

In case 3,  the six-bit operation field is used to select one of 64 
locations in absolute core. The current address of the instruction 
is put into absolute location zero as a subroutine link, the indirect 
address bit of this link word is set, and another bit is set, marking 
the memory location in the link word as having come from user- 
mapped memory. The system routine thus invoked may take a 
parameter from the word addressed by the SYSPOP, since its 
address field is not interpreted by the hardware. The routine will 

Section 6 I Processors with multiprogramming ability 

address the parameter indirectly through location zero and, be- 
cause of the bit marking the contents of location zero as having 
come from mer mode, the user map will be applied to the re- 
mainder of the address indirection. All calls on the system which 
are not inadvertent are made in this way. 

A monitor mode program gets into user mode by transferring 
to an address with mapping specified. This means, among other 
things, that a SYSPOP can return to the user program simply by 
branching indirect through location zero. 

As the above discussion has perhaps indicated, the mode- 
changing arrangements are very clean and permit rapid and natu- 
ral transfers of control between user and system programs. Advan- 
tage has been taken of this fact to create a rather grandiose 
machine for the user. Its features are the subject of this paper. 

Basic features of the machine 

A user in the Berkeley time-sharing system, working at what he 
thinks of as the hardware language level, has at his disposal a 
machine with a configuration and capability which can be con- 
veniently controlled by the execution of machine instruction se- 
quences. Its simplest configuration is very similar to that of a 
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Fig. 2. The hardware memory map. (a )  Relation between virtual and real 
memory for a typical map. ( b )  Construction of a real memory address. 
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standard medium-sized computer. In this configuration, the 
machine possesses the standard 930 complement of arithmetic and 
logic instructions and, in addition, a set of software interpreted 
monitor and executive instructions. The latter instructions, which 
will be discussed more fully in the following, do rather complex 
input-output of many different kinds, perform many frequently 
used table lookup and string processing functions, implement 
floating point operations, and provide for the creation of more 
complex machine configurations. Some examples of the instructions 
available are: 

Load A, B, or X (index) registers from memory or store any 
of the registers. Indexing and indirect addressing are avail- 
able on these and almost all other instructions. Double word 
load and store are also available. 

The normal complement of fixed-point arithmetic and logic 
operations. 

Skips on various arithmetic and logic conditions. 

Floating point arithmetic and input-output. The latter is 
in free format or in the equivalent of Fortran E or F format. 

Input a character from a teletype or write a block of arbi- 
trary length on a drum file. 

Look up a string in a hash-coded table and obtain its posi- 
tion in the table. 

Create a new process and start it running concurrently with 
the present one at a specified point. 

Redefine the memory of the machine to include a portion 
of that which is also being used by another program. 

It should be emphasized that, although many of these instruc- 
tions are software interpreted, their format is identical to the 
standard machine instruction format, with the exception of the 
one bit which specifies a system interpreted instruction. Since the 
system interpretation of these instructions is completely invisible 
to the machine user, and since these instructions do have the 
standard machine instruction format, the user and his program 
make no distinction between hardware and software interpreted 
instructions. 

Some of the possible 192 operation codes are not legal in the 
user machine. Included in this category are those hardware in- 
structions which would halt the machine or interfere with the 
input-output if allowed to execute, and those software interpreted 
instructions which attempt to do things which are forbidden to 
the program. Attempted execution of one of these instructions will 

result in an ilkgal instruction violation. The effect of an illegal 
instruction violation is described later. 

Memory configuration 

The memory size and organization of the machine is specified by 
an appropriate sequence of instructions. For example, the user may 
specify a machine which has 6K of memory with addresses from 
0 to 13777,; alternatively, he may specify that the 6K should 
include addresses 0 to 3777,, 14000, to 17777,, and 34oO0, to 
37777,. The user may also specify the size and configuration of 
the machine’s secondary storage and, to a considerable extent, the 
structure of its input-output system. A full discussion of this capa- 
bility will be deferred to a later section. 

The next few paragraphs discuss the mechanism by which the 
user’s program may specify its memory size and organization. This 
mechanism, known as the process map to distinguish it from the 
hardware memory address mapping, uses a (software) mapping 
register consisting of eight 6-bit bytes, one byte for each of the 
eight 2K blocks addressable by the 14 bit address field of an in- 
struction. Each of these bytes either is 0 or addresses one of the 
63 words in a table called the private memory table (PMT). Each 
user has his own private memory table. An entry in this table 
provides information about a particular 2K block of memory. The 
block may be either local to the user or it may be shared. If the 
block is local, the entry gives information about whether it is 
currently in core or on the drum. This information is important 
to the system but need not concern the user. If the block is shared, 
its PMT entry points to an entry in another table called the shared 
memory table (SMT). Entries in this table describe blocks of 
memory which are shared by several users. Such blocks may con- 
tain invariant programs and constants, in which case they will be 
marked as read-only, or they may contain arbitrary data which 
is being processed by programs belonging to two different users. 

A possible arrangement of logical or virtual memory for a 
process is shown in Fig. 3. The nature of each page has been noted 
in the picture of the virtual memory; this information can also 
be obtained by taking the corresponding byte of the map and 
looking at the PMT entry specified by that byte. The figure shows 
a large amount of shared memory, which suggests that the process 
might be a compilation, sharing the code for the compiler with 
other processes translating programs written in the same source 
language. Virtual pages one and two might hold tables and tem- 
porary storage which are unique to each separate compilation. 
Note that, although the flexibility of the map allows any block 
of code or data to appear anywhere in the virtual memory, it is 
certainly not true that a program can run regardless of which pages 
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Fig. 3. Layout of virtual memory for a typical process. 

it is in. In particular, if i t  contains references to itself, such as 
branch instructions, then it must run in the same virtual pages 
into which it was loaded. 

Two instructions are provided which permit the user to read 
and modify his process map. The ability to read the process 
mapping registers permits the user to obtain the current memory 
assignment, and the ability to write the registers permits him to 
reassign memory in any way which suits his fancy. The system 
naturally checks each new map as it is established to ensure that 
the process is not attempting to obtain unauthorized access to 
memory which does not belong to it. 

When the user’s process is initiated, it is assigned only enough 
memory to contain the program data as initially loaded. For in- 
stance, if the program and constants occupy 3000, words, two 
blocks, say blocks 0 and 1, will be assigned. At this point, the first 
two bytes of the process mapping register will be nonzero; the 
others will be zero. When the program runs, it may address memory 
outside of the first 4K. If it does, and if the user has specified a 
machine size larger than 4K, a new block of memory will be 
assigned to him which makes the formerly illegal reference legal. 
In this way, the user’s process may obtain more memory. In fact, 
it may easily obtain more than 16K of memory simply by ad- 
dressing 16K, reading and preserving the process mapping register, 
setting it with some of the bytes cleared to zero, and grabbing 
some more memory. Of course, only 16K can be addressed at  one 
time; this is a limitation imposed by the address field of the 
machine. 

Section 6 I Processors with multiprogramming ability 

There is an instruction which allows a process to specify the 
maximum amount of memory which it is allowed to have. If it 
attempts to obtain more than this amount, a memory violation will 
occur. A memory violation can also be caused by attempts to 
transfer into or indirect through unassigned memory, or to store 
into read-only memory. The effect of this violation is similar to 
the effect of an illegal instruction violation and will be discussed. 

The facilities just described are entirely sufficient for programs 
which need to reorganize the machine’s memory solely for internal 
purposes. In many cases, however, the program wishes to obtain 
access to memory blocks which have been created by the system 
or by other programs. For example, there may be a package of 
mathematical and utility routines in the system which the program 
would like to use. To accommodate this requirement, there is an 
instruction which establishes a relationship between a name and 
a certain process mapping function. This instruction moves the 
PMT entries for the blocks addressed by the specified process 
mapping function into the shared memory table so that they are 
generally accessible to all users. Once this correspondence has 
been established, there is another instruction which allows a 
different user to deliver the name and obtain in return the associ- 
ated process map. This instruction will, if necessary, make new 
entries in the second user’s PMT. Various subsystems and programs 
of general interest have names permanently assigned to them by 
the system. 

The user machine thus makes it possible for a number of proc- 
esses belonging to independent users to run with memory which 
is an arbitrary combination of blocks local to each individual 
process, blocks shared between several processes, and blocks per- 
manently available in the system. A complex configuration is 
sketched in Fig. 4. Process 1.1 was shown in more detail in 
Fig. 3. Each box represents a process, and the numbers within rep- 
resent the eight map bytes. The arrows between processes show the 
process hierarchy, which is discussed in the next section. Note that 
the PMT’s belong to the users, not to the processes. 

From the above discussion, it is apparent that the user can 
manipulate the machine memory configuration to perform simple 
memory overlays, to change data bases, or to perform other more 
complex tasks requiring memory reconfiguration. For example, the 
use of common routines is greatly facilitated, since it is necessary 
only to adjust the process map so that (1) memory references 
internal and external to the common routine are correct, and (2) 
the memory area in which the routine resides is read-only. In the 
simplest case, in which the common routine and the data base 
fit into 16K of memory, the map is initially established and remains 
static throughout the execution of the routine. In other cases where 
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the routine and data base do not fit into 16K, or where several 
common routines are concurrently employed, it may be necessary 
to make frequent adjustment to the map during execution. 

Multiple processes 

An important feature of the user machine allows the user program, 
which in the current context will be referred to as the controlling 
process, to establish one or more subsidiary processes. With a few 
minor exceptions, to be discussed, each subsidiary process has the 
same status as the controlling process. Thus, it may in turn estab- 
lish a subsidiary process. It is therefore apparent that the user 
machine is in fact a multi-processing machine. The original sug- 
gestion which gave rise to this capability was made by Conway 
[Conway, 19631, more recently the Multics system has included 
a multi-process capability [Corbato and Vyssotsky, 1965; Dennis 
and Van Horn, 1966; Saltzer, 19661. 

A process is the logical environment for the execution of a 
program, as contrasted to the physical environment, which is a 
hardware processor. It is defmed by the information which is re- 
quired for the program to run; this information is called the state 
vector. To create a new process, a given process executes an in- 
struction which has arguments specifying the state vector of the 
new process. This state vector includes the program counter, the 
central registers, and the process map. The new process may have 
a memory configuration which is the same as, or completely differ- 
ent from, that of the originating process. The only constraint 
placed on this memory specification is that the total memory 
available to the multi-process system is limited to 128K by the 
process mapping mechanism, which is common to all processes. 
Each user, of course, has his own 128K. 

This facility was put into the system so that the system could 
control the user processes. It is also of direct value, however, for 
many user processes. The most obvious examples are input-output 
buffering routines, which can operate independently of the user’s 
main program, communicating with it through memory and with 
interrupts (see the following). Whether the operation being buff- 
ered is large volume output to a disc or teletype requests for 
information about the progress of a running program, the degree 
of flexibility afforded by multiple processes far exceeds anything 
which could have been built into the input-output system. Fur- 
thermore, the overhead is very low: an additional process requires 
about 15 words of core, and process switching takes about 1 ms 
under favorable conditions. There are numerous other examples 
of the value of multiple processes; most, unfortunately, are too 
complex to be briefly explained. 

A process may create a number of subsidiary processes, each 

, 

of which is independent of the others and equivalent to them from 
the point of view of the originating process. Figure 4 shows two 
simple multi-process structures, one for each of two users. Note 
that each process has associated with it pointers to its controlling 
process and to one of its subsidiary processes. When a process has 
two immediate descendants, as in the case of processes 1.2 and 
1.3, they are chained together on a ring. Thus, three pointers, up, 
down, and ring, suffice to defme the process structure completely. 
The up pointers are, of course, redundant, but are convenient for 
the implementation. The process is identified by a process number 
which is returned by the system when it is created. 

A complex structure such as that in Fig. 5 may result from the 
creation of a number of subsidiary processes. The processes in 
Fig. 5 have been numbered arbitrarily to allow a clear description 
of the way in which the pointers are arranged. Note that the user 
need not be aware of these pointers; they are shown here to clarify 
the manner in which the multiple process mechanism is imple- 
mented. 

A process may destroy one of its subsidiary processes by execut- 
ing the appropriate instruction. For obvious reasons this operation 
is not legal if the process being destroyed itself has subsidiary 

PMT 1 

1 M3 
2 M4 
3 M5 
4 SMT1 
5 SMT4 
6 SMT2 
7 M12 
8 SMT6 
9 SMT3 

10 

PMT 2 
1 SMT1 
2 SMT5 
3 M7 
4 M8 
5 M9 
6 SMT2 
7 M13 
8 SMT3 
9 M14 

I O  M15 

SMT 

1 M1 
2 MI6 
3 M2 
4 M1O 
5 M11 
6 M6 

Fig. 4. Process and memory configuration for two users. (The processes 
are numbered for each user and are represented by their process map 
ping registers. Memory blocks are identified by drum addresses, which 
are written M1, M2, . . . .) 
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Fig. 5. Hierarchy of processes. 

processes. It is possible to find out what processes are subsidiary 
to any given one; this permits a process to destroy an entire tree 
of sub-processes by reading the tree from the top down and de- 
stroying it from the bottom up. 

The operations of creating and destroying processes are entirely 
separate from those of starting and stopping their execution, for 
which two more operations are provided. A process whose execu- 
tion has been stopped is said to be suspended. 

To assure that these various processes can effectively work 
together on a common task, several means of interprocess com- 
munication exist. The first allows the controlling process to obtain 
the current status of each of its subsidiary processes. This status 
information, which is read into a table by the execution of the 
appropriate system instruction, includes the current state vector 
and operating status. The operating status of any process may be 

1 Running 

2 Dismissed for input-output 

3 Terminated for memory violation 

4 

5 

Terminated for illegal violation, or 

Terminated by the process itself 

A second instruction allows the controlling process to become 
dormant until one of its subsidiary processes terminates. Termina- 
tion can occur in the following four ways: 

1 

2 

3 Because of self-termination 

Because of a memory violation 

Because of an illegal instruction violation 

Interactions described previously provide no method by which 
a process can attract the attention of another process which is 
pursuing an independent course. This can be done with a program 
interrupt. Associated with each process is a 20-bit interrupt mask. 
If a mask bit is set, the process may, under certain conditions (to 
be described in the following), be interrupted; Le., a transfer to 
a fixed address will be simulated. The program will presumably 
have at this fixed address the location of a subroutine capable of 
dealing with the interrupt and returning to the interrupted com- 
putation afterwards. The mechanism is functionally almost identi- 
cal to many hardware interrupt systems. 

A process may cause an interrupt by delivering the number 
of the interrupt to the appropriate instruction. The process causing 
the interrupt continues undisturbed, but the nearest process which 
is either on the same level as the one causing the interrupt or 
above it in the hierarchy of processes, and which has the appro- 
priate interrupt armed, will be interrupted. This mechanism pro- 
vides a very flexible way for processes to interact with each other 
without wasting any time in the testing of flags or similar frivolous 
activities. 

Interrupts may be caused not only by the explicit action of 
processes, but also by the occurrence of several special conditions. 
The occurrence of a memory violation, attempted execution of 
an illegal instruction, an unusual input-output condition, the ter- 
mination of a subsidiary process, or the intervention of a user at 
a console (by pushing a reserved button) all may cause unique 
interrupts (if they have been previously armed). In this way, a 
process may be notified conveniently of any unusual conditions 
associated with other processes, the process itself, or a console user. 

The memory assignment algorithm discussed previously is 
slightly modified in the presence of multiple processes. When a 
process is activated, one of three options may be specified: 

1 Assign new memory to the process entirely independently 
of the controlling process. 

Assign no new memory to the process. Any attempt to 
obtain new memory will cause a memory violation. 

2 
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3 If the process attempts to obtain new memory, scan upward 
through the process hierarchy until the topmost process is 
reached. If at any time during this scan a process is found 
for which the address causing the trap is legal, propagate 
the memory assigned to it down through the hierarchy to 
the process causing the trap. 

Option 3 permits a process to be started with a subset of 
memory and later to reacquire some of the memory which was 
not given to it initially. This feature is important because the 
amount of memory assigned to a process influences the operating 
efficiency of the system and thus the speed with which it will be 
able to respond to teletypes or other real-time devices. 

The input-output system 

The user machine has a straightforward but unconventional set 
of input-output instructions. The primary emphasis in the design 
of these instructions has been to make all input-output devices 
interface identically with a program and to provide as much 
flexibility in this common interface as possible. Two advantages 
result from this uniformity: it becomes natural to write programs 
which are essentially independent of the environment in which 
they operate, and the implementation of the system is greatly 
simplified. To the user the former point is, of course, the important 
one. 

It has been common, for example, for programs written to be 
controlled from a teletype to be driven instead from a file on, let 
us say, the drum. A command exists which permits the recognizer 
for the system command language and all of the subsystems to 
be driven in this way. This device is particularly useful for repeti- 
tive sequences of program assemblies and for background jobs 
which are run in the absence of the user. Output which normally 
goes to the teletype is similarly diverted to user files. Another 
application of the uniformity of the file system is demonstrated 
in some of the subsystems, notably the assembler and the various 
compilers. The subsystem may request the user to specify where 
he wishes the program listing to be placed. The user may choose 
anything from paper tape to drum to his own teletype. In the 
absence of file uniformity each subsystem would require a separate 
block of code for each possibility. In fact, however, the same 
input-output instructions are used for all cases. 

The input-output instructions communicate with jiles. The 
system in turn associates files with the various physical devices. 
Programs, for the most part, do not have to account for the pecu- 
liarities of the various actual devices. Since devices differ widely 

in characteristics and behavior, the flexibility of the operations 
available on files is clearly critical. They must range from single- 
character input to the output of thousands of words. 

A file is opened by giving its name as an argument to the 
appropriate instruction. Programs thus refer to all files symboli- 
cally, leaving the details of physical location and organization to 
the system. r'f authorized, a program may refer to files belonging 
to other users by supplying the name of the other user as well 
as the file name. The owner of a file determines who is authorized 
to access it. The reader may compare this file naming mechanism 
with a more sophisticated one [Daley and Neumann, 19651, bearing 
in mind the fact the file names can be of any length and can be 
manipulated (as strings of characters) by the program. 

Access to files is, in general, either sequential or random in 
nature. Some devices (like a keyboard-display or a card reader) 
are purely sequential, while others (like a disk) may be either 
sequentially or randomly accessed. There are accordingly two 
major 1/0 interfaces to deal with these different qualities. The 
interface used in conjunction with a given file depends on whether 
the file was declared to be a random or a sequential file. The two 
major interfaces are each broken down into other interfaces, pri- 
marily for reasons of implementation. Although the distinction 
between sequential and random files is great, the subinterfaces are 
not especially visible to the user. 

Sequential J;k 

The three instructions CIO (character input-output), WIO (word 
input-output), and BIO (block input-output) are used to commu- 
nicate with a sequential file. Each instruction takes as an operand 
ajile number. This number is given to the program when it opens 
a file. At the time of opening a file it must be specified whether 
the file is to be read from or written onto. Whether any given 
device associated with the file is character-oriented or word- 
oriented is unimportant; the system takes care of all necessary 
character-to-word assembly or word-to-character disassembly. 

There are actually three separate, full-duplex physical inter- 
faces to devices in the sequential file mechanism. Generally, these 
interfaces are invisible to programs. They exist, of course, for 
reasons of system efficiency and also, because of the way in which 
some devices are used. The interfaces are: 

Character-by-character (basically for low-speed, character- 
oriented devices used for man-machine interaction) 

Buffered block 1/0 (for medium-speed 1/0 applications) 

Block 1/0 directly from user core (for high-speed situations) 
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It should be pointed out that there is no particular relation be- 
tween these interfaces and the three instructions CIO, WIO, and 
BIO. The interface used in a given situation is a function of the 
device involved and, sometimes, of the volume of data to be trans- 
mitted, not of the instruction. 

Any interface may be driven by any instruction. 
Of the three subinterfaces under discussion, the last two are 

straightforward. The character-by-character interface is, however, 
somewhat different and deserves some elaboration. Devices associ- 
ated with this interface are generally (but not necessarily) used 
for man-machine interaction. Consider the case of a person com- 
municating with a program by means of a keyboard-display (or 
a teletype). He types on the keyboard and the information is 
transmitted to the computer. The program may wish to make an 
immediate response on the display screen. In many cases this 
response will consist of an echo of the same character, so that the 
user has the feeling of typing directly onto the screen (or onto 
the teleprinter). 

So that input-output can be carried out when the program is 
not actually in main memory, the character-by-character input 
interface permits programs a choice of a number of echo tables; 
it further permits programs a choice of grade of service by per- 
mitting them to specify whether a given character is an attention 
(or break) character. Thus, for example, the program may specify 
that each character typed is to be echoed immediately and that 
all control characters are to result in activation of the program 
regardless of the number of characters in the input buffer. Alter- 
natively, the program may specify that no characters are echoed 
and every character is a break character. By changing the specifi- 
cation the program can obtain an appropriate (and varying) grade 
of service without putting undue load on the system. Figure 6 

O u t p u t  i n te r rup t  
r o u t i n e  

Fig. 6. The character-oriented interface. 
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shows the components of the character-by-character interface; 
responsibility for its operation is split between the interrupt called 
when the device signals for attention and the routine which proc- 
esses the user’s 1/0 request. 

The advantage of the full-duplex, character-by-character mode 
of operation is considerable. The character-by-character capability 
means that the user can interact with his program in the smallest 
possible unit-the character. Furthermore, the full-duplex capa- 
bility permits, among other things (1) the program to substitute 
characters on strings of characters as echoes for those received, 
(2) the keyboard and display to be used simultaneously (as, for 
example, permitting a character typed on a keyboard to pre-empt 
the operation of a process. In the case of typing information in 
during the output of information, a simple algorithm prevents the 
random admixture of characters which might otherwise result), 
and (3) the ready detection of transmission errors. 

Instructions are included to enable the state of both input and 
output buffers to be sensed and perhaps cleared (discarding un- 
wanted output or input). Of course, it is possible for a program 
to use any number of authorized physical devices; in particular, 
this includes those devices used as remote consoles. A mechanism 
is provided to permit output which is directed to a given device 
to be copied on all other devices which are output linked to it 
(and similarly for input). This is useful when communication 
among users is desired and in numerous other situations. 

The sequential file has a structure somewhat similar to that 
of an ordinary magtape file. It consists of a sequence of logical 
records of arbitrary length and number. On some devices, such 
as a card reader or the teletype, a file may have only one logical 
record. The full generality is available for drum files, which are 
the ones most commonly used. The logical record is to be con- 
trasted with the variable length physical record of magtape or the 
fixed length record of a card. Instructions are provided to insert 
or delete logical records and increase or decrease them in length. 
Other instructions permit the file to be “positioned” almost in- 
stantaneously to a specified logical record. This gives the sequen- 
tial file greater flexibility than one which is completely unaddressa- 
ble. This flexibility is only possible, of course, because the file is 
on a random-access device and the sequential structure is main- 
tained by pointers. The implementation is discussed in the follow- 
ing. 

When reading a sequential file, CIO and WIO return certain 
unusual data configurations when they encounter an end of record 
or end of file, and BIO terminates transmission on either of the 
conditions and returns the address of the last word transmitted. 
In addition, certain flag bits are set by the unusual conditions, 
and an interrupt may be caused if it has been armed. 
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The implementation of the sequential file scheme for auxiliary 
storage is illustrated in Fig. 7. Information is written on the drum 
in 256-word physical records. The locations of these records are 
kept track of in 64-word index blocks containing pointers to the 
data blocks. For the file shown, the first logical record is more 
than 256 words long but ends in the second 256-word block. The 
second logical record fits in the third 256-word block and the third 
logical record-in the 4th data block-is followed by an end of 
file. If a file requires more than 64 index words, additional index 
blocks are chained together, both forward and backward. Thus, 
in order to access information in the He it is necessary only to 
know the location of the first index block. It may be worthwhile 
to point out that all users share the same drum. Since the system 
has complete control over the allocation of space on the drum, 
there is no possibility of undesired interaction among users. 

Available space for new data blocks or index blocks is kept track 
of by a bit table, illustrated in Fig. 8. In the figure, each column 
represents one of the 72 physical bands on the drum allocated for 
the storage of file information. Each row represents one of the 
64256-word sectors around a band. Each bit in the table thus 
represents one of the 4608 data blocks available. The bits are set 
when a block is in use and cleared when the block becomes avail- 
able. Thus, if a new data block is required, the system has only 
to read the physical position of the drum, use this position to index 
in the table, and search a row for the appearance of a 0. The 
column in which a 0 is found indicates the physical track on which 
a block is available. Because of the way the row was chosen, this 
block is immediately accessible. This scheme has two advantages 
over its alternative, which is to chain unused blocks together: 

It is easy to find a block in an optimum position, using the 
algorithm just described. 

1 

EOR/ EOF 

Fig. 7. Index blocks and pointers to data blocks. 

64 words 

72 bits 

I 

Fig. 8. Bit table for allocation of space on the drum. 

2 No drum operations are required when a new block is 
needed or an old one is to be released. 

It may be preferable to assign the new block so that it becomes 
accessible immediately after the block last assigned for the file. 
This scheme will speed up subsequent reading of the file. 

Random $la 
Auxiliary storage files can also be treated as extensions of core 
memory rather than as sequential devices. Such files are called 
random fiZes. A random file differs from a sequential file in that 
there is no logical record structure to the file and that information 
is extracted from or written into the random file by addressing 
a specific word or block of words. It may be opened like a sequen- 
tial file; the only difference is that it need not be specified as an 
output or an input file. 

Four instructions are used to input and output words and blocks 
of words on a random file. To permit the random file to look even 
more like core memory, an instruction enables one of the currently 
open random files to be specified as the secondury memory file. 
Two instructions, LAS (load A from secondary memory) and SAS 
(store A in secondary memory), act like ordinary load and store 
instructions with one level of indirect addressing (see Fig. 9) ex- 
cept, of course, that the data are in a random file instead of in 
core memory. 

Random files are implemented like sequential files except that 
end of record indicators are not meaningful. Although as many 
index blocks are used up as required by the size of a random file, 
only those data blocks which actually contain information will be 
attached to a random file. As new locations are accessed, new data 
blocks are attached. 

Subroutine $lea 
Whereas it makes little sense to associate, say, a card reader with 
a random file, a sequential file can be associated with any physi- 
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Main memory Secondary memory 

STAx ADDR ADDR 
- ~- 

( a )  

Instruction 

16345 

16345 1234567 

Ef fec t  (234567-A 

( b )  

Fig. 9. Load and store form main and secondary memory. (a )  Instruc- 
tions. (b)  Addressing. 

cal device in the system. In addition, a sequential file may be 
associated with a subroutine. Such a file is called a subroutine $le, 
and the subroutine may thus be thought of as a “nonphysical” 
device. The subroutine file is defined by the address of a subroutine 
together with information indicating whether it is an input or an 
output file and whether it is word or character oriented. An input 
operation from a subroutine file causes the subroutine to be called. 
When it returns, the contents of the A register is taken to be the 
input requested. Correspondingly, an output operation causes the 
subroutine to be called with the word or character being output 
in A. The subroutine is completely unrestricted in the kinds of 
processing it can do. It may do further input or output and any 
amount of computation. It may even call itself if it preserves the 
old return address. 

Recall that for sequential files the system transforms all infor- 
mation supplied by the user to the format required by the particu- 
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lar file; hence, the requirement that the user, in opening a sub- 
routine file, must specify whether the file is to be character or 
word oriented. The system will thereafter do all the necessary 
packing and unpacking. 

Subroutine files are the logical end-product of a desire to de- 
couple a program from its environment. Since they can do arbi- 
trary computations, they can provide buffers of any desired com- 
plexity between the assumptions a program has made about its 
environment and the true state of things. In fact, they make it 
logically unnecessary to provide an identical interface for all the 
input-output devices attached to the system; if uniformity did not 
exist, it  could be simulated with the appropriate subroutine files. 
Considerations of convenience and efficiency, of course, militate 
against such an arrangement, but it suggests the power inherent 
in the subroutine file machinery. 

Summary 

The user machine described was designed to be a flexible founda- 
tion for development and experimentation in man-machine sys- 
tems. The user has been given the capability to establish configura- 
tions of multiple processes, and the processes have the ability to 
communicate conveniently with each other, with central files, and 
with peripheral devices. A given user may, of course, wish only 
to use a subsystem of the general system (e.g., a compiler or a 
debugging routine) for his particular job. In the course of using 
the subsystem, however, he may become dissatisfied with it and 
wish to revise or even rewrite the subsystem. The features of the 
user machine not only permit this activity but make it easier. 

References 

BrigHM; ComfW65; ConwM63; CorbF65; DaleR65; DennJ66; ForgJ65; 
LampB65; LichW65; McCaJ63; McCuJ65; SaltJ66; SchwJ64 



The instruction-set processor level: 
special-function processors 

This part contains descriptions of processors that do not interpret general pro- 
gramming languages; that is, they are not Pc’s. They are all p’s, however, since 
they have an interpreter that determines not only the operations to  be taken, given 
the current instruction, but the next instruction to  be obtained. 

A Pi0 (Sec. 1) is a processor that controls T and Ms components. It manages 
block or vector transmission between Ms or T and Mp. 

A P.array (Sec. 2) processes both vectors and two-dimensional matrices. By 
recognizing these data as fundamental units, programs (or algorithms) can be 
expressed efficiently in terms of primitive operators. The chief advantage of these 
P’s is their ability to  take advantage of the data structure for parallel interpretation, 
thereby increasing processing speed. 

A microprogram processor (Sec. 3) is designed to  interpret and process a data- 
type which is a program. In effect, this processor is a computer within another 
computer, programmed to  act as an interpreter. 

A language processor (Sec. 4) interprets a data-type derived from the primitives 
of a programming language. In contrast, a conventional processor interprets a 
language based on fundamental hardware implementation primitives. The difference 
is clearly apparent as increased complexity of the language processors. 
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Section 1 

Processors to control terminals 
and secondary memories 
(i nput-output processors) 

The first three chapters of this section show the evolution of 
the IBM Data Channels (io processors) from 1958 (the 7094 
II) to the present (the 1800, which came after the 360). The 
processor approach for controlling T and Ms components, while 
more general, should be contrasted with the specialized one- 
instruction controls in the B 5000 (Chap. 22) and Burroughs 
D825 (Chap. 36). 

The fourth chapter, on the DEC 338, shows a processor that 
controls cathode-raytube display consoles. The graphic termi- 
nals are the first T’s of sufficient complexity to utilize a proc- 
essor of their own. The first CRT displays used the Pc (e.g., 
on Whirlwind); then small Pc’s were adapted to the task; the 
DEC 338 is one of the earliest special P.display’s that ap- 
pea red. 

There is no example in this section of a specialized P for 
message concentration and switching. For computer systems 
multiple remote inputs are still recent enough so that either 
the main Pc handles the task, via specialized K, or small Pc’s 
are committed to it. However, in the telephone industry there 
has been a very substantial development by the Bell System 
of the Electronic Switching System (ESS), which uses specialized 
C’s to control switching (routing). In computer systems, we can 
expect the use of such specialized processors to increase in 
the near future. 

The IBM 7094 I I  

The IBM 709, a member of the IBM 701-7094 II family, is one 
of the first computers to have an io processor (IBM name: Data 
Channel) in its structure. Chapter 41 discusses the two Data 
Channel types: the early 7607 and the later 7909. The 7909 
Data Channel ISP, and a K which it controls, are given in Ap- 
pendix 2 and 3 of Chap. 41. The principal difference is that 
Pc controls the Pi0 (‘7909) which in turn controls the K, which 
in turn controls a T or Ms; the Pc controls the Pi0 (‘7607) and 
the K; the K controls the T or Ms. The series is discussed in 
Part 6, Sec. 1, page 515. 

The structure of System/360 
Part I-outline of the logical structure 

The io processors (Selector and Multiplexor Channels) in the 
System/360 have evolved from the IBM 701-7094 II Series. Part 
6, Sec. 3 presents the ISP and PMS structures for these proc- 
essors. Depending on thecomputer model, the implementations 
are realized by a microprogrammed processor interpreting a 
shared control program for both Pio’s and Pc, or by a hardwired 
Pio. The multiple Pio’s in a 360 Multiplexor Channel, though 
logically independent, are implemented as a single, shared 
physical processor. 

The IBM 1800 

The Pio’s in this structure are presented in Chap. 33, and the 
structure is discussed in Part 5, Sec. 2, page 396. 

The Digital Equipment Corporation DEC 338 display processor 

The DEC 338 is an early P.display. It directly interprets a stored 
program to control a T.display. Earlier T.displays were con- 
trolled by Pc (Whirlwind, Chap. 6), or by a special K.display 
without stored-program capability, or by a general-purpose Pio. 
The last method outputs fixed length blocks containing data to 
be interpreted by T.display as points, vectors, characters, 
curved line segments, etc. The control of T.display first by Pc, 
then by a K, then by a Pio, and finally by a P.display has been 
observed as an evolution [Myer and Sutherland, 19681. Myer 
and Sutherland also observe that the evolution is about to 
become a closed cycle because the generality of a Pc is needed 
to control a T.display. 

Note that the 338 has a very extensive ISP. In  fact, the 
P.display’s ISP is more extensive than the companion Pc of the 
PDP8 (Chap. 5). There are some display tasks which require 
Pc, for example, compiling programs (pictures), calculating 
elaborate light-pen tracking figures, making coordinate and 
curved lines to straight-line vector approximation transforma- 
tions, and communicating with other system components. 
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Another approach to  the design of a P.display is based on 
a P.microprogram which is shared among many T.displays 
[Rose, 19671. Yet another alternative, which has not yet been 
tried, is to incorporate a Pi0 (P.display) as a special mode in 
a conventional Pc. Thus the P would interpret either conven- 
tional Pc instructions or P.display instructions. 

P.display is the interpreter for the output of pictures or 
graphics. The 338 utilizes data space efficiently simply because 
the data are long variable-length strings (word vectors). The 
instruction requires almost no space to specify the data opera- 
tions and addresses; data are interpreted directly or immedi- 
ately in the instruction rather than via instruction addresses. 

Another feature which allows a program to be efficiently 
encoded is the stack mechanism for storing subroutine link- 
ages. Subroutines in P.displays are actually programs which 
form part of a more complete picture. Subroutines are actually 
subpictures. Although the stack mechanism allows for recursive 
picture calls, the stack is used principally to save space and 
to  allow multiple T.displays to  use common picture programs. 

A problem in the 338 which is common to all multi-P struc- 
tures is intercommunication among the P’s. Pc is the control- 
ling P, as is the case with most Pc-Pi0 structures. The P(’338) 
has no trap to itself but relies on an interrupt signal to Pc. The 
Pc processes both tasks which P.display might process, given 
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an interrupt system, and other tasks beyond P.display’s capa- 
bility. 

A clock should be built into the 338. The brightness or in- 
tensity of a picture is determined both electronically (see the 
mode instructions for controlling intensity) and by the rate at 
which the pictures are repeated. A clock would allow the time 
when pictures are started or drawn to be specified; thus the 
intensity would be independent of picture length. 

The 338 requires more hardware than a simpler Pc. However, 
a large amount of this hardware is used to control the genera- 
tion of characters and lines. The lines (vectors) are drawn 
using a DDS (Digital Differential Analyzer) technique. Perhaps 
one-half of the registers could be eliminated if the 338 were 
not a P. A simpler alternative was constructed about a similar 
computer, the PDP-9, by Bell Telephone Laboratories and DEC, 
using the approach of making the display only a K. 

A more elaborate Pc interrupt system with reduced overhead 
time would enable Pc to  take on the specialized program control 
functions in the 338. Such a scheme might pass the program 
or instruction counter parameter directly from P.display to  Pc. 
In this way, Pc or P.display would alternatively process part of 
a single instruction stream, depending on the task. 

Despite the problems of this early P.display, it has a sophis- 
tication which successors appear to be following. 



Chapter 25 

The DEC 338 display computer 

Introduction 

The C(disp1ay; ‘DEC 338) is a C(’DEC PDP-8) with a P.display 
which can connect to T( #1:8; CRT; display; area: 9.375 x 9.375 
in.2). The PMS structure is shown in Fig. 1, Chap. 5, describing 
the PDP-8. The Pc ISP is given in Appendix 1 of Chap. 5. 

The C(338), although designed to stand alone, is generally used 
as a satellite to a larger C, via an L(Dataphone). The rationale 
for using a C as a T is based on the bandwidth and storage require- 
ments needed to maintain graphical picture displays. A human 
being manipulating pictures (rotation, scale change, and conver- 
sion of internal linked data structure to a picture structure) re- 
quires short response time; this requirement places high processing 
demands on larger C’s. Thus this C(disp1ay) is a preprocessor for 
larger, more general C’s. 

The actual T(CRT) is a 16-inch CRT with a 93/,-inch square 
viewing area covered by 1,024 x 1,024 (XY) points. The diameter 
of the points is -0.015 inch. The spot is magnetically deflected 
and focused. All eight T(CRT)’s can be driven together or used 

’ Eaecuted by Pc t o  s t a r t  F! display 
Executed by Pc to stw I? display ’ Data state ‘states” 

4 control stote”stated’ 
Stote transitions occur approximately each Mp cycle 

Control state instructions 

Fig. 1. DEC 338 instruction-interpretation state diagram. 

independently. A photomultiplier connected through a fiber-optic 
bundle link is used as a light pen (a photosensitive sensor) to detect 
spots on the T. The light pen allows the P.display to detect 
whether a user has “pointed to” a displayed spot. 

Pc and P.display access the same Mp; the total data rate avail- 
able from Mp is one 12-bit word/l.5 microseconds. The instruction 
times of P.display are a function of the point plotting times of 
the T(CRT):0.3 microsecond to the next incremental unintensified 
point (approximately 0.010 inch away); 1.2 microseconds to an 
incremental intensified point; and 35 microseconds to a point 
plotted at a random position. 

The state (registers) of C.display is given in the ISP description 
of Appendix 1 of this chapter. There are four parts of the state: 
the control registers for Program Flow State, the Picture State 
(or position of beam), Console and Light-pen State, and Mp State. 
The instruction interpreter is fairly simple and is best described 
by the state diagram (Fig. 1). The instructions are given in Tables 
1 and 2. The remainder of the chapter discusses the P.display 
instructions and the Pc instructions for communicating with P.dis- 

Play* 

Principle of operation 

The actual picture is held stationary by repeatedly displaying 
(intensifying) a particular point, line, etc. The number of times 
a figure has to be displayed so that it appears stationary and does 
not flicker depends on the CRT phosphor, the figure, and environ- 
mental parameters. The generally accepted range is a plotting rate 
of 20 - 50 plots/second; thus a complete picture has to be drawn 
in 50 - 20 milliseconds. If we assume a 30-Hz plot rate, about 
28,000 points can be plotted in vector mode (or 280 - 1120 inches, 
depending on the spacing). About 1,OOO characters can be dis- 
played in 30 milliseconds using character mode. 

When the light pen is used, a display program is required to 
“track” the pen. The pen’s position is determined by displaying 
known points. The pen, of course, detects the points when it is 
present at the displayed points position; therefore the program 
knows the location of the pen. 

The parameters of interest for a display vary, depending on 
the application. However, the general parameters are: 

305 
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skip skip if not 
in sector 

count 0 + +1 
scale 1 4  -1 

1 Group number (0:l) set unit 0 It pen 

Section 1 I Processors to  control terminals and secondary memories 

skip if 
PB (0 5) = 0 

count 
Intensity 

Intensity 

-~ 

Table 1 

Instruction Op Code 

DEC 338 control-mode instruction set 

Bits 0:2 

Parameters 

Mode 

Conditional 
skip 

Conditional 
skip 

Arithmetic 
compare PB 

Arithmetic 
compare PB 

Skip on flags 

Count 

Set slaves 

Spare 

3 4 5 6 7 8 9 10 11 

sett  Scale Scale (0:l) set It pen It pen set 1 Intensity (0 :2)  
Intensity I 

stop clear 

set Scale 1 Scale (0:1) 1 set It pen 1 It pen 1 push 

clear 1 ;,e; 1 enter 
sector Data-State 

Memory field (0 :2 )  

set Scale ~ Scale (0:1) 

~ 

set It pen ~ It pen 1 inhs 
Data-Mode 

inh Scale, 
It pen 

Push-Buttons (0:5)/PB (0:5) 
test 

Push-Buttons (6: 11)/PB (6: 11) 
test 

0 ~ Push,Buttons (0:5) 

0 l o  Push-Buttons (6: 11) 

~1 

0 -  +1 
o +  -1 

set unit 1 1 It pen 1 Intensity 

t Set; allow instruction bits to  specify new value. 

A two-word instruction, second word contains low-order 12 bits for DAC (jump address). 

7 Skip can be for true or false. 

8 Inhibit restoration of bits 

1 Picture 

3 a Display area 
b 
c Spot size 
d Resolution 
e Linearity 
f Short-term and long-term stability 

Phosphor type (intensity and color as function of time) 

4 2 Figure plotting (generation) characteristics 
a Data types: points, lines (vectors), graphs, characters 

(from a fixed set), characters (from a defined set), curved- 
line segments, etc. 

b Plotting time 

Transformation and internal representations 
a Space to encode (specify) a figure 
b Scale change, rotation, coordinate-system transformation 

abilities 
c Ability t o  communicate between a displayed data 

structure and an internal representation of a picture 

Light-pen or graphic input capability 
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inta inhb 

escc inh 

Instructions and their interpretation in P(display) 

Two instruction-set types are interpreted in the P.display: Data 
State, in which instructions specify display information; and Con- 
trol State, in which instructions specify program control informa- 
tion (e.g., jumps, modes, etc.). A state diagram for the interpre- 
tation process is given in Fig. 1. 

Y coordinate 

X coordinate 

Data-state instructions 

There are seven instructions (which DEC calls modes) that can 
be executed while P.display is in data state. The instructions 
(modes) are really substates of data state. The instructions (actually 

character 1 

Table 2 DEC 338 data-made instruction set 

character 2 

more like data) are interpreted for the mode. When all the data- 
mode instructions have been interpreted, an escape instruction 
returns the P.display to control state. A control instruction is issued 
to select a mode and simultaneously place the display in data state. 

blank 

Increment mode. This mode is used to draw curves and alpha- 
numeric characters and other small symbols. Two instructions are 
stored per word. An instruction will cause the beam position to 
be moved one, two, or three times, in 0.010-inch increments, in 
one of eight directions. Direction 0 is to the right, direction 1 is 
up and to the right, etc. 

character 

point 

increment 

vector 

vector 

continue 

short 
vector 

6-bit 
character 

7-bit 
character 

graph 
plot 

spare 

esc 

6 - 35 

1.5 + 2 x (.9 - 3.6) 

1 - 150 

1 - 1,200 

1.8 - 24 

3.75 + 

4.5+ 

6 - 35 X / v f  Y or X coordinate 

1 of 2 

2 of 2 

1 

1 of 2 

2 of 2 

1 of 2 

2 of 2 

1 

1 

1 

1 

Intensify; turn on beam. 

Inhibit; do not set value into Y or X coordinate. 

e Escape; enter control state. 

d 0  + move 1 and escape: 1, 2, 3, + move 1. 2, 3. 

'0 + set Y and increment X; 1 + set X and increment y. 
8 directions. 

same as bits 0 - 5 int 1 cmoo;v 1 move 
directione 

int f Delta Y 

esc 1 -C 1 Delta X 

int 

esc 1 z I 
int 1 -t 1 Delta Y I 2 I esc Delta X 
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Vector mode. The vector mode is used to draw straight-line seg- 
ments. This two-word instruction causes the beam position to be 
moved along a line represented by an 11-bit delta y and an 11-bit 
delta x. 

Vector continue mode. This mode is used to draw a straight line 
to the edge of the screen. It is similar to vector mode but causes 
the line to be extended until an “edge” is encountered. 

Short vector mode, The short vector mode is used to draw figures 
composed of short line segments. A one-word instruction specifies 
a 5-bit delta y and a 5-bit delta x quantity. It is transformed within 
the display to the same format as vector mode and operates in 
the same manner. 

The preceding modes move the beam by counting the X and 
Y position registers. The counting is done at 1.2 microseconds per 
step on an intensified move and at 0.30 microsecond per step on 
a nonintensified move. 

Point mode. Point mode is used for random point plotting. A 
two-word instruction specifies new Y and/or X coordinates to be 
placed into the Y and X position registers. 

Graph-plot mode. This is used to draw curves of mathematical 
functions. A one-word instruction has data for the Y or X position 
register; at the same time, X or Y, respectively, is incremented 
by a count of one, two, four, or eight, depending on the scale 
factor. 

Point and graph-plot modes operate at a rate depending upon 
the position of the new point with respect to the previous point. 
If a point is only one-eighth of the screen away, the delay for 
beam-settling time is 6 microseconds; otherwise the settling time 
is 35 microseconds. 

Character generation option instructions. The alphanumeric char- 
acters or special symbols which make up a character set are stored 
in Mp in increment mode or short vector mode. These characters 
can be arbitrarily defined. A &bit (or 7-bit) character code in the 
instruction is used to locate a word in a table in Mp called the 
dispatch table. The base address of the table is specified by the 
Starting Address Register/SAR(0:5). 

SAR may be loaded by instructions from the Pc. The SAR 
represents the most significant 6 bits of a 15-bit memory address. 
The character code represents the least significant 6 (or 7 )  bits. 
A seventh SAR bit, corresponding to the octal position 100, is used 
with &bit characters as a case bit (Le., uppercase or lowercase 
characters) and may be set or cleared with a control character. 

Section 1 I Processors to control terminals and secondary memories 

A word in the dispatch table has the following format: 

Bit 0: If bit 0 is a 1, bits I to 11 are used to perform a control 
function as specified by particular control instructions. 
If bit 0 is a 0, bits 2 to 11 are combined with SAR to 
specify the address at which the character definition 
program starts. (The address bit 2 is common to both 
the SAR and bit 2 of the dispatch word and so may 
be specified in either place or in both places.) 

Determines the mode in which the character is to be 
displayed. If bit 1 is a 0, the increment mode is used 
to plot the character used; if bit 1 is a 1, the short 
vector mode is used to plot the character. 

Bit 1: 

Control-state instructions 

There are six control-state instructions. 

Parameter. Parameter is used to set values in scale, light-pen, and 
intensity registers. 

Mode. Mode is used to set up the data-state mode (or data-mode 
instruction). Mode also is used to stop the display. 

Conditional skip. The skip instruction tests the state of the 
P.display and the pushbuttons. 

Miscellaneous. These instructions include both tests and additional 
parameter control. 

Display jump and push -jump subroutine instructions. The display 
jump instruction has 15 address bits, so that a jump may be 
executed to any location in the display file within the 32-kw 
memory. 

The display subroutine instructions are push-jump (an extension 
of the jump instruction) and pop, the return from subroutine. The 
push-jump works as follows: The current state of the display (Light 
Pen Enable, Data Mode, Scale, and Intensity) is stored, along with 
the return address, in two successive locations in the first 4,096 
words of memory. The locations are determined by the pushdown 
pointer, PDP. This pointer is initially set by a Pc instruction. The 
normal jump is then executed. 

To return from a subroutine, the pop instruction is executed. 
It has no address bits. Its function is to return the display to a 
previous state by sending the last words on the push-down stack 
back to the display. 

The stack approach to subroutining as implemented on the 338 
has certain advantages over the jump to subroutine instruction 
normally used in Pc’s: 
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1 Memory space is conserved since return address locations 
are not required in each subroutine in memory. 

A subroutine can be called any number of times before 
return to the main routine. 

Since the state of the display is saved on the stack and 
subsequently restored, subroutines are truly transparent; 
that is, after the return they leave the state of the display 
program the same as before the subroutine call. 

The subroutines can either retain the same state or change 
the state of the display by using one or more of the “inhibit 
restore” bits available in the pop instruction. The program- 
mer can elect independently to inhibit restoration of mode, 
light pen, and scale, or intensity information. 

2 

3 

4 

Instructions in Pc for communicating with P(display) 

Instructions in Pc communicate with P.display. The physical con- 
nection is by the S(’I/O Bus). The in-out transfer instructions in 
Pc are used to initialize and read the state of P.display. 

P.display state initialization from Pc instructions 
Set Push Down Pointer from AC 

Set Display Address Counter from AC 
Set Push Button contents from AC 
Set miscellaneous flag and status bits from AC 
Set character generator SAR address 

P.display status to Pc instructions 
Read Push Down Pointer into AC 
Read X register into AC 
Read Y register into AC 
Read Display Address Counter into AC 
Read Status words 1, 2, 3, 4, 5 into AC (60 miscellaneous 

bits of flags, modes, etc.) 

Picture debugging modes. These modes aid programmed and pic- 
ture debugging. A bit can be set to override the nonintensify bit 
in data-mode instructions. When this bit is a 1, all points and 
vectors are plotted, whether they are to be intensified or not. The 
search enable instruction forces the display to run until a particu- 
lar instruction type is found. The instruction type is specified by 
the search enable instruction. 
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APPENDIX 1 DEC 338 DISPLAY PROCESSOR ISP DESCRIPTION 

Section 1 I Processors to control terminals and secondary memories 

P. display State  

Program Blow State  
D A C B :  14> 

P D P 6 l : I  1> 

I n t e  rna 1 ,Stop 

Appendix 1 

DEC 338 Display Processor I S P  Desc r ip t i on  ( p a r t i a l l y  complete) 

Display Address Counter; holds memory address o f  display 

Push Down Pointer t o  stack holding subroutine return addresses 
c7enotes hal t  by a P.display instruct ion 

instruct ion 

External  Jtop denotes a request by Pc f o r  P.display t o  ha l t  

Datas ta te  and ControlJtate are two mutually exclusive s ta tes .  
l ines ,  and characters t o  be displayed on T .  
data type being interpreted.  
regis ters  and switching t o  a spec i f ic  data mode, 

Datas ta te  instruct ions are interpreted by P.dispZay as points ,  
!There are 7 modes fo r  specifuing the data types .  The DataYFnode reg is ter  holds the 

ControlJtate instruct ions include j w v  t o  subroutines using the stack, controlling P . d i s p l q  s ta te  

Data-State 

Contro l  ,State := 7 Data-State 

DataJode/DM4:2> 

SAR<D : 5> 

Picture Btate 
x 4 : 1 2 >  
Y4 :12>  

Ver t ica l&dgef lag/Vef  

Hor izontal,edge,il ag/Hef 

Edge- I n  te r rup t /E  I 

CHSZ 

l n tens i t yd ) :2>  

Xdirnens i o n a l :  12 
Y,dirnension<D:l> 

Beam 

Console snd Light Pen S ta te  
PushJluttons/PBQ): 1 1 >  

Push,ButtonJii t/PBH 

Manual J nterrupt /M I 

L ightJen,Fi nd/LPF 

L ighLPebEnable/LPE 

Mp State  

M (0 :7] [0:4095] 4: 1 I >  

Instruct ion Format 
i n s t r u c t i o n / i < O : l D  

en teru da taus t a t e  

p b d e n s e  
:= iqll> 

:= iCD 

spec i f ies  interpretat ion of DataJtate instruct ions 
Starting Address Register: base regis ter  of a dispatch table  f o r  

cat t ing character display subroutines 

beam position; onZy integers i n  range o s XIY s 

denotes i f  beam i s  wi thin a displayable area 
se t  when beam moues outside the display area 

z ~ ~ + ~ ~ ~ ~ ~ ~ ~ ~ ~ - ’  
are plotted 

Character Size ,  0 indicates  6 b i t  character se t  1 indicates  7 
b i t  character s e t  

used t o  se t  increrfent s i z e  for  Dataaode instruct ions,  incre- 
ments are x zSCa e 

brightness o f  displaued points  
maximum dimension 0.f plot t ing area, 9.375, 2 8 . 7 5 ,  37.5, 75.0 i n  

on, t o  displav a point or l ine;  automatically turned off a t  
instruct ion comvletion 

reg is ter  with t igh ts :  can be complemented manually or by 

f lag  i s  se t  by manually s tr ik ing any push button 
key which i s  used t o  interrupt  Pc and becomes one when struck 

stops the display and interrupts  Pc whenever the Light Pen 
has seen a displayed spot and the LighLPe%EnabZe i s  a one 

a b i t  t o  enable the L ightPeqFind  f lag  t o  cause an interrupt  

processor 

ppimar,u memory f o r  P.display and Pc 

The individual instruct ions , f ie lds  are defined below. 
instruct ion type has i t s  own b i t  f i e l d  assignments. 

common b i t s  f o r  seveml  instruct ions 

Each 

push button control bits 
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APPENDIX 1 DEC 338 DISPLAY PROCESSOR ISP DESCRIPTION (Continued) 

pb,cleay := i<b 

pbdomp 1 ement i= i 6 >  

pbde lec td ) :5>  := i 4 : 1 1 >  

scale&hange/sc := io> scale ( s i z e )  control b i t s  
s ca 1 eUva 1 ue /sv<O : 1 > 
1 ight&en&hange/lpc := id> l igh t  pen t e s t  control b i t s  
1 i gh tYpenYb i t / l pb  := iQ> 

:= i<4:5> 

Instruct ion Interpretat ion Process 
(7 In ternalJ top V 7 Externa1,Stop) + f e tch  

( inst ruct ion[O: I ]  c M[DAC:DAC+l] ; DAC c DAC + 1; next  

(Con t roLSta te  A ( i n s t r u c t i o K D : l >  = 2)) + (DAC c DAC + 1); 

( D a t b S t a t e  A ((Data Mode = 0) V (OatkMode = 2) V 2 w data 
2 w instruct ion 

(Data Mode = 3 ) ) )  + (OAC + DAC + I ) :  

nex t  ~ n s t r u c t  ion,execut i o n )  execute 

Instruction Set and Instruct ion Execution Process 
The following instruct ion s e t  de f in i t ion  i s  not complete. 
the miscellaneous and conditional skip instruct ions,  

I t  does not include the complete character instruct ion de f in i t ion  or 
Most of the  instruct ions are microcoded. 

I n s t r u c t  ion-execut i o n  := ( 

Control Instructions 
parame ter<0 : 1 I> : = i [o] <O : 1 I> 

pa rame t e  r,opcode := (i<O:P = 000) 
parameter,intensity,change := pa ramete r49  

parameter, i ntens i tv<D r2> := parameteK9:  1 1> 

parameter,opcode A Contro lJ ta te + ( 

scale,change + (Scale t scale,value); 

1 ight-pen-change + (Light,Pen,Find +-T 1 ight,pen,bi t); 

intensity,change + ( I n t e n s i t y  t parameter,intensi t y ) ) ;  

mode<0:ll> := i < O : I l >  

modedpcode := (i<O:2> = 001) 

mode,s top,code := modeb> 

modeslear@ush&utton,flag:= mode<4> 

mode,datapde,change := moded> 

mode,setd):Z> := mode<6:8> 

modeslear,sector := mdde- 

mode&l ear,coord i nate := mode<lO> 

modedpcode A Contro lJ ta te + ( 

modedtop,code + ( In te rna lJ top  c 1); 

m o d e ~ l e a r ~ u s h , b u t t o n , f l a g  + ( P u s h A u t t o n J i t  c0): 

modeJatamde&hange + (Datadode c modede t ) ;  

r n o d e s l e a r d e c t o r  + (X=S:2> c 0; Y=S:2> ~ 0 ) ;  
mode& lea r joo rd ina te  + (XS:12> -0; Yb:12> + O ) ;  

e b t e r d a t a d t a t e  + (DataJtate 1) ) ;  

s e t  parameter instruct ion fonnat 

s e t  parameter execution 

s e t  mode instruct ion f o m t  

s e t  mode execution 
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APPENDIX 1 DEC 338 DISPLAY PROCESSOR ISP DESCRIPTION (Continued) 

I 

PB,l<D;lI> ;=I i<o:11> grouv 1 push button t e s t  and se t  instruct ion .format .for 

grouv 2 (not def ined)  i s  f o r  Wsh  Buttons 6 t o  11 

PBJ instruct ion execution 

Push Buttons 0 t o  5 PR,ldpcode := ( P E , l d : 2 >  = 100) 

PB,l&pcode h Contro1,State + ( 
pbdense  &? (pb,select<0:5> = (PB<O:5' A pb,select<0:5>)) - ( S k i p  t e s t  

DAC + OAC + 2 ) ;  

pb,clear + (PB<o:5> t P B 4 : 5 >  A pb selectcD:5>); next 

pb,complement + (PB4:5> c P B 4 : 5 >  + pb>e lec t4 :5> ) ) ;  

jump[0:1]~0:11> := i [O:I]CO:II> 

j u m w p  
jumbpush := i [old> 
jump,fieldd:2> :=  i [0]4:11> 

:= ( i  [ 0 3 ~ : 2 >  = 010) 

jump-op A Control,State + ( 

sca ledhanqe + (Scale Csca le -va lue ) :  

l i g h t ~ e n s h a n g e  + ( L i g h t P e L F i n d  + Iight,pen,bit); 

DAC jump,fieldoi[l]: 

jump,push + ( 

M[PDP + l] t DAC<O:2XLPFoScaIeOData,ModeOIntensi t y :  

M[PDP + 23 t DAC<3:14>; 

PDP t PDP + 2 ) ;  

pop<o:l l> := i [0 ]<0:11> 

pop,op,code := (i<O:2> = 011) 

pop,inhibit,mode := DOp<b 

pop,inhibit,scale,pen := pop<9> 

pop,inhibit,intensity := pop<lO> 

pop,op,code h Control,State + ( 

DAC<3: l 4 >  t M[PDP] : 

D A C < O : D  t M[PDP-I ]  ; 

pop- inh ib i  t - i n tens i  t y  + ( I n t e n s i t y  c M[PDP-1]6: 1 I > )  ; 

pop,i nh i b i t,mode + [Da taJ4ode c M [PDP- 1 k 6 :  A>) : 
pop- inh ib i  t,scale,change + ( 

Scale M[PDP-1]<4:5> 

LPF t M[PDP-1]<3>); 

PDP t P D P  - 2 ;  next 

scale,change + k a l e  c scale,value): 

l i q h t ~ e n ~ c h a n q e  + (LPF l i gh tsen ,b i t l :  

enter-datadnode + (Datadode t 1 ) ) ;  

Data 'do& Instruct ions 

point[0:1]<0.11> := i [o:I]<o:II> 
p o i n t - i n t e n s i t y  := p o i n t  [034> 
p o i  n t  ,i nh i b i t ,y := p o i n t  [0]<1> 

p o i  n t  - y 4 :  9> := p o i n t  [ O ) Q :  11> 

p o i n t  24 :9> := p o i n t [ l ] Q : l l >  

p o i  n t &scape 

p o i  nt,inh i b i t - x  

:= p o i n t  [13a1> 

:= p o i n t  [I]<I> 

,+wm and stack push down (subroutine ca l l ing)  instruct ion 
format 

jump and push d m  erecution 

stack pop instruct ion format; subroutine return 

pop  execution 

point data instruct ion format 

I 
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APPENDIX 1 DEC 338 DISPLAY PROCESSOR ISP DESCRIPTION (Continued) 

(DatkMode = 000) A D a t a d t a t e  + ( 

7 point,inhibit.,x+ (X e point,X); 

7 point,inhibit,y + (Y c point-Y); 

p o i n t - i n t e n s i f y  + (Beam c 1); 

point-escape + (Data-State c 0)); 

vec to r - i n tens i f y  := vectorC01<(~ 

vecto rues cape :- v e c t o r [ ~ l < ~ >  

vectorydy<O: lo> := v e c t o r [ ~ I < l :  1 I> 
vector,dx<O:lD> := v e c t o r [ l l < l :  1 I> 

vector(01 <O : I I> :- i [O : 13<0 : 1 I> 

(Data-Mode = 010) A D a t a d t a t e  + ( 

Y c Y + vector-dy; 

X c X + vector-dx; 

vec to r - i n tens i f y  + (Beam c 1 ) ;  

vector-escape + Data-state c 0); 

vec to r  continueC0: 1]<0:11> := i L O :  I KO: i i> 

(Data-Mode = 011) A Data-State + ( 
Y c Y + s i  g n a x t e n d  (vector-dy) ; 

X t X + s i g n d x t e n d  (vector-dx) ; 

v e c t o r - i n t e n s i f y  + (Beam e 1); 

vector-escape + (Data-State c 0)); 

short,vector<O: 11> := i [O]<O:l l> 

short,vector,intens i f y  :- short,vector<CD 

short-vector-escape :=- short,vector<b> 

short-vector-dx :.= short,vector<E: 11> 

short-vector-dy :- short,vector<l:P 

(Data-Mode = 100) A Data-State + ( 
X c X + sign,extend(short,vector,dx); 

Y Y + sign,extend(short,vector,dy); 

shor t - vec to r - i n tens i f y  + (Beam e 1); 

short-vector-escape + (Data-State e 0)) ; 

i ncrement<O :9 
increment- in tens i  f y  :- increment<(Y 

i nc remnt -d i  r e c t i  on/ i  KO I P 
i ncremnt,count/i KO: I> 

i c l e  := ( i c  = 0) 
i c l  :- ( i c  = 1) 

i c 2  := ( i c  = 2) 

i c 3  := ( i c  - 3) 

:= i ncrementc3 :5> 
:= i n c r e m n t < l : D  

(Data-Mode = 001) A Data-State + ( 
increment c i < O : P ;  next  p lo t - increment-vector ;  next  

increment e i<b:l 1>; nex t  plot,incremnt,vector) 

point  data execution 

vector data instruct ion format 

vector data execution 

not correct, since the vector from point Y,X t o  Y+ vec tordy ,  
Xt vector,& i s  plot ted 

vector continue instruct ion format s m e  as vector 
vector continue execution 

not correct, as vector continues plot t ing unt i l  e&e i s  round 

short vector instruct ion format 

short vector execution 

increment instruct ion fonnat; 2 increment/instruction 

1 of 8 directions 

count 1 and escape t o  ControlState  
count 1 
count 2 

count 3 
increment instruct ion execution 
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plot,increment,vector := ( 

i c l e  + (move- lgos i t i on ;  Contro1,State - 1 ) ;  move 1 and escape 

i c l  + (move,l,position); move 1 

i c 2  + (move,l&osition; next  move,l+osition) move 2 

i c 3  + (move- lgos i t i on ;  next  move,lGosition; next  move 3 

move,l ,pos i t ion)  

Move,l,position := ( sub process f o r  moving beam 
( i d  = 0) + ( X  t X  + Scale) ;  

( i d  = I )  + ( X  C X  + Scale; Y C Y  + Scale) ;  

( i d  = 2 )  + ( Y  t Y  + Scale) ;  

( i d  = 3 )  + ( Y  t Y  + Scale; X t X  - Scale); 

( i d  = 4 )  + ( X  t X  - Scale) ;  

( i d  = 5 )  + ( Y  C Y  - Scale; X C X  - Scale) ;  

( i d  = 6)  + ( Y  C Y  - Scale); 

( i d  = 7) + (Y C Y  - Scale; X - X + Scale); 

i n c r e w n t d n t e n s i f y  +Beam + I )  

1 o f  8 posi t ions 

charac te rd ) : l l >  := id):]]> 

6,bit [O:I]d):5> := cha rac te rQ) : l l >  

7,bi t6: 1 I >  := character<5: 1 I >  

(OataJode = 101) A DataJtate + ( 

(CHSZ = 0 )  + ( 
X , Y  tf(M[SWRc6,0it[0]3,M); 

X , Y  t f  (M[SAROb,bi t 11 ] ] , M ) ) ;  

(CHSZ = I )  + ( X , Y  t f ( Y [ S A R W & i t ] , Y ) ) ) ;  

character i n s t m c t i o n  format 

character instruct ion execution; 

pZot function; 

see t e x t  

graph data instruct ion format graph,plot<O:ll> := i [ O ] G : l l >  

g r a p k p  lot,escape<O> 

graph-pl ot,x,yd)> 

graph,plot,data<O:SD := graph,plot<Z:ll> 

: = graphup I o t Q >  

: = graphup I o t < P  

(Data-mode = 110) A DataJtate + ( graph data execution 

-, graph,plot,x,y + ( X  t X + Sca le ' ;  Y t graph,plot-data; Beam t 1 ) ;  

graph,pIot,&y + ( Y  C Y  + S c a l e ' ;  X tgraph,plot,data; Beam t I ) ;  
graph,plot,escape + (Data-State c 0 ) )  

end Ins t ruc t ion~execut ion  ) 
I 



Section 2 

Processors for array data 

Two array processors are discussed in this section. Concep- 
tually, they are an outgrowth of both the parallel, distributed 
computer [Holland, 19591, and the matrix-interpreter-based 
programs for general-purpose computers. NOVA is a very low 
cost special processor. ILLIAC IV is a very general array proces- 
sor. Another approach, the ILLIAC Ill [McCormick, 19631 stores 
information on photographic media, so that optical processing 
(inherently parallel) can be used. 

NOVA 

NOVA is a proposed, non-general-purpose machine based on 
the belief that efficient, special-function processors can be built 
to solve particular problems. 

It is reasonable to assume that there are problems for which 
NOVA, with its cyclic memory, would perform no worse than 
a processor with a random-access memory. Unless the opera- 
tions performed on the arrays were extremely simple or re- 
stricted, a single system might not always work very efficiently. 
By using a variable-speed cyclic memory to  match the operation 
time in the form of an address transformation or renaming 
mechanism, the access problems might be avoided. 

NOVA represents a particular'idea for effective utilization of 
hardware and is presented to remind us that a memory now 
considered obsolete may perform nicely for a restricted appli- 
cation. 

The ILLIAC IV computer 

D. L. Slotnick is responsible for the ILLIAC IV computer. The 
idea for a computer with a number of parallel data operators 
or processing elements appeared some time ago in the SOLO- 
MON computer [Gregory and McReynolds, 19631. The tech- 
nology of the first and second generation made SOLOMON 
impractical to  build. ILLIAC IV was designed at the Univer- 
sity of Illinois under a contract to the Department of Defense's 
Advanced Research Projects Agency.' The processing elements 
are constructed from third-generation technology although 
some medium- and large-scale integrated circuits are used in 
the design. 

The design is about the most ambitious ever undertaken. 
The direct and indirect effects should be numerous. 

'The University of Illinois monitored the contract to the Burroughs Corporation, 
Paoli. Pa. 
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Chapter 26 

NOVA: a list-oriented computer1 

Joseph E .  Wirsching 

Since the advent of the internally-stored program computer, those 
of us concerned with problems involving massive amounts of com- 
putation have taken a one-operation, one-operand approach. But 
there is a very large class of problems involving massive amounts 
of computation that may be thought of as one-operation, many- 
operand in nature. Some familiar examples are numerical integra- 
tion, matrix operations, and payroll computation. 

This article proposes a computer, called NOVA, designed to 
take advantage of the one-operation, many-operand concept. 
NOVA would use rotating memory instead of high-cost random 
access memory, reduce the number of program steps, and reduce 
the number of memory accesses to program steps. In addition it 
is shown that NOVA could execute typical problems of the one- 
operation, many-operand type in times comparable to that of 
modern high-speed random access computers. 

Rotating memories were used in early computers because of 
low cost, reliability, and ease of fabrication. These machines have 
been replaced by machines with more costly random access 
memories primarily to increase computing speed as the result of 
a decrease in access time to both operands and instructions. 

In general, the four or more instructions must be brought from 
the memory to the instruction register once for each pair in the 
lists. This seems to be a great waste when only one arithmetic 
operation is involved. Indeed it is, when one considers that the 
majority of computing work consists of the performance of highly 
repetitive operations that are merely combinations of the simple 
example given. Attempts have been made to alleviate this waste 
by incorporating “instruction stacks” and “repeat” commands into 
the instruction execution units of more recent computers. 

Example 2. Consider three lists (a’s, b’s and c’s), where we wish 
to compute (a  + b) x c for each trio. There are two distinct 
methods by which this can be accomplished: first, by forming 
(a  + b) x c for each trio of numbers in the list, or second, by 
forming a new list consisting of (a  + b) for each a and b, and then 
multiplying each c by the corresponding member of the new list. 
Clearly the second method is wasteful of memory space and 
wasteful of programming steps. 

Next, let us take a look at the memory requirements for these 
two examples. First, the instructions are kept in a high-speed 
random access memory, and while the bulk of the variables need 

The NOVA approach 

Let us take two simple examples and use them to compare con- 
ventional computing techniques with those proposed for NOVA. 

not be kept in a random access memory, they must be brought 
to one before the algorithm can be performed. This extra transfer 
may entail more instructions to perform the logistics. Thus the 
simplicity of the overall program is directly related to the size 

Example 1 .  Consider two lists (a’s and b’s) of which the corre- 
sponding pairs are to be added. With a conventional computer 
this is done with a program that adds the first a to the first b, 
the second a to the second b, etc., and counts the operations. The 
working part of such a program might consist of the following 
instructions: 

Fetch a 
Add b 
Store (a  + h) 
Count, Branch, and Index 

lDatarnation, vol. 12, no. 12, pp. 41-43, December, 1966. 

of the memory. The variables (a’s, b’s, etc.) are usually stored in 
consecutive memory locations. Except for indexing this ordering 
of the data is not exploited. 

In NOVA, lists of variables are kept on tracks of a rotating bulk 
memory. When called for, the lists of variables are streamed 
through an arithmetic unit and the results immediately replaced 
on another track for future use. This process takes maximum ad- 
vantage of the sequential ordering of the variables. Instructions 
need only be brought to the instruction execution unit once for 
each pair of lists rather than once for each operand; thus the 
instructions need not be stored in a random access memory but 
may also be stored on the rotating bulk memory. This departure 
from the requirement for random access memory significantly 
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reduces the cost of the computer, without sacrificing speed of 
problem solution. 

Solution of a network problem 

Before going further into the structure of NOVA, let us consider 
a significant example, which shows that NOVA is well suited to 
the solution of differential equations using difference methods over 
a rectangular network. 

Let Fig. 1 represent an artificial network used as a model for 
some physical process. Generally speaking, the method of advanc- 
ing the variables at a mesh point ( i ,  k) from one time step to the 
next involves only information from the neighboring mesh points. 
A typical hydrodynamics problem will require a list of 10 to 20 
variables (physical quantities) a t  each mesh point. The traditional 
computer solution involves listing these variables to each point 
in a contiguous fashion and in a regular sequence with respect 
to the rows and columns of the array. If the total array does not 
fit into the fast memory, three adjacent columns (or rows) are 
brought to the fast memory; as a new column is calculated, the 
next column in sequence is brought in from bulk memory and the 
oldest of the three is written to bulk memory. In this fashion one 
proceeds across the array. This process is then repeated until some 
significant physical occurrence happens and the problem is ended. 

In NOVA, the variables are organized into separate lists rather 
than by mesh point. From a computational standpoint this is 
possible since the main memory of NOVA may be essentially 
unlimited in size, at least exceeding the size of the largest present 
network problems. One then proceeds to execute operations on 

1 2 3 .  1 . .  J 

Fig. 1. Two-dimensional array. 

original Lists 

u0,o v0,o 
U0,l V0,l 

u0,2 V0,z 
. .  

u1,o v1.0 
U1,l V1,l 

U1.Z vk,2 
. .  

Uj,k . .  
. .  
. .  

UJ,K VJ,K 

V Shifted 
Down by 1 

- 
v0,o 
V0,l 
v0,z 

‘0,K 

v1.0 

VlJ 

y , k  

VJ,K-I 
VJ,K 

V Shifted 
DownBy2 

- 
- 

v0,o 
V0,l 

“0,K-1 

v0 ,K 
v1,o 

Vja-1 

VJJ-2 

VJJ-1 

VJ,K 

V Shifted 
Down By K 

y - l , k  

VJ-LK 

Fig. 2. Lists of variables. 

lists of variables rather than single variables, performing a single 
operation for all mesh points in the array in sequence. 

Let us look more closely at the variables and their possible 
combinations. Let Ui,k and Vj,k be variables associated with the 
array of Fig. 1. These variables are listed sequentially by column 
in Fig. 2, along with further lists of the Vcolumn shifted by various 
increments. 

With some concentration, one discovers in Fig. 2 that an arith- 
metic operation between Uj,k and Vi,* is simply a matter of taking 
the two columns as they exist and operating on them in pairs. To 
combine Uj,k with a nearby neighbor, Vj,k--l, the V column is 
shifted down one place, at which time the proper neighboring 
variables are found opposite one another for the entire network. 
At certain boundaries of the array some elements have no proper 
neighbors. In NOVA these boundary elements must be handled 
separately in the same way as they must be handled separately 
in a conventional machine. In NOVA, calculations at boundaries 
may be temporarily inhibited by having a third input to the arith- 
metic unit which allows the calculation of a result for a pair of 
operands to proceed or not, as appropriate. This third input is 
defined as “conditions,” and is brought as a bit string to the arith- 
metic unit concurrently with the operands. This bit string may 
contain any number from one to several bits for each pair of 
operands. 



318 Pari 4 I The instruction-set processor level: special-function processors Section 2 1 Processors for array data 

Further observation shows not only that it is possible to obtain 
the nearest neighbors easily by shifting the columns of variables 
with respect to one another, but that any neighbor relationship 
can be obtained. In general, for an operation with a neighbor k n  
rows away and k r n  columns away, the lists are offset by 
f n  k m- K ,  where K is the number of rows in the array. 

Many problems (for example, payroll and inventory records) 
are essentially list-structured but do not require offsetting of vari- 
ables. Clearly the NOVA structure is well suited for the solutions 
of these problems also. 

Structure 

The most difficult problem to be solved in the proposed computer 
is to synchronize movement of the columns of data that require 
offset. Buffers of various types could be used to solve this problem; 
they could range all the way from rotating memory devices or 
delay lines to core memories. The former are simple, direct, and 
low in cost but are limited in their general capabilities. On the 
other hand, a number of small random access buffer memories 
could be used for offsetting lists of variables and for facilitating 
special functions such as boundary calculations but at a higher 
equipment cost. 

Figure 3 shows a block diagram of the organization of NOVA. 
The rotating memory, which might be a disc or drum, would be 

Fig. 3. Block diagram of NOVA computer. 

\ CONTROL 

RESULTS TO F& , , 
MEMORY 

02  

m 

ARITHMETIC 
CIRCUITRY 

CO N DlTlONS 

CONDITIONS 
TO 
MEMORY 

Fig. 4. Buffering in arithmetic unit. 

composed of several hundred tracks, each storing several thousand 
words, with a total capacity between one and two million words. 
Each track would have an individual read-write head. The heads 
would be organized in such a way as to attain a high word-transfer 
rate, perhaps as high as one million words per second. With this 
in mind an ideal execution time for one addition would be the 
time required to move two operands from the disc to the arith- 
metic unit; i.e., 1-2 microseconds. The disc synchronizer would 
be capable of simultaneously reading two lists of operands, writing 
one list of results, and reading one list and writing one list of 
conditional control information. In addition, instructions would 
be read from another channel in small blocks. 

The bit string of conditions coming from the memory is used 
to control individual operations on pairs of operands in the lists, 
and in essence each bit (or bits) is a subordinate part of the indi- 
vidual operations. Conditions going to the memory are the sub- 
sidiary result of the operation of one list upon another. These bit 
strings may be used later as control during another list operation. 
They want also to contain information on the occurrence of an 
overflow or underflow, or on the presence of an illegal operand, 
etc. 

Figure 4 shows a suggested organization for the arithmetic unit 
that incorporates five sets of alternating buffers. Two sets are for 
lists of operands coming from the memory, one set for lists of 
results going to the memory, and two sets for “conditions” (condi- 
tional control information) coming from and going to the memory. 
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BUFFER 

These buffers should be equivalent in length to the number of 
words on a track of the rotating memory. 

The loading and unloading of the buffers to and from the rotat- 
ing memory is dependent on the timing of the rotating memory, 
whereas the loading and unloading of the buffers to and from the 
arithmetic unit is guided solely by the rate at which the arithmetic 
can be performed. Here again it may also be possible to take 
advantage of the streaming nature of the operands by designing 
an “assembly-line’’ arithmetic unit in which more than one pair 
of operands could be in process at the same time. With this kind 
of unit it may be possible to execute additions at a rate equal to 
the word-transfer rate from the rotating memory; however, a 
multiplication or division of two lists may require several revolu- 
tions of the memory. The timing diagram of Fig. 5 shows several 
typical instructions being carried out. A certain amount of look- 
ahead is required, but there is ample time for this, since instruc- 
tions are prepared for execution at an average rate of less than 
one per revolution of the rotating memory. 

While a detailed cost estimate has not been made for a simple 
prototype NOVA, a quick estimate would be $50,000 for a head- 
per-track disc and $50,000 for the arithmetic and control section, 
making a total of $100,000. For a buffering scheme such as the 
one shown in Fig. 4 the cost would be considerably higher but 
would be offset by increased versatility. 

REVOLUTIONS OF ROTATING MEMORY 

1 1 2 1  3 1 4  1 5  1 6  

Conclusions 

In the previous paragraphs we have demonstrated that NOVA is 
capable of handling network problems at a significantly lower cost 
than contemporary computers, and at a comparable speed. The 
availability of such a machine as NOVA would stimulate further 

Fig. 5. Timing diagram of buffers, rotating memory, and arithmetic unit. 
Dotted line shows movement of data into a device: solid line shows 
movement out. 

interest in the one-operation, many-operand approach to compu- 
tation and no doubt would uncover many other problems to which 
it could be applied. 

Because NOVA makes it possible to easily establish neighbor- 
relationships between mesh points that are further away than 
nearest neighbors, it may be possible to develop new differencing 
techniques for the solution of coupled sets of differential equations. 
This may increase the accuracy or shorten the time required for 
their solution. 

The memory, arithmetic, and other units needed for NOVA are 
commercially available now. No new technology would be required 
to fabricate a prototype model. In view of the potential advantages 
of such a machine, it seems clear that construction of a model 
would justify the minimal development costs. 



Chapter 27 

The ILLIAC IV computer1 

George H .  Barnes / Richard M .  Brown / Maso Kato 
David J .  Kuck / Daniel L. Slotnick / Richard A. Stokes 

Summary The structure of ILLIAC IV, a parallel-array computer con- 
taining 256 processing elements, is described. Special features include 
multiarray processing, multiprecision arithmetic, and fast data-routing 
interconnections. Individual processing elements execute 4 x lo6 instruc- 
tions per second to yield an effective rate of lo9 operations per second. 

Array, computer structure, look-ahead, machine lam 
page, parallel processing, speed, thin-film memory. 

Index terms 

Introduction 

The study of a number of well-formulated but computationally 
massive problems is limited by the computing power of currently 
available or proposed computers. Some involve manipulations of 
very large matrices (e.g., linear programming); others, the solution 
of sets of partial differential equations over sizable grids (e.g., 
weather models); and others require extremely fast data correlation 
techniques (phased array signal processing). Substantive progress 
in these areas requires computing speeds several orders of magn- 
tude greater than conventional computers. 

At the same time, signal propagation speeds represent a serious 
barrier to increasing the speed of strictly sequential computers. 
Thus, in recent years a variety of techniques have been introduced 
to overlap the functions required in sequential processing, e.g., 
multiphased memories, program look-ahead, and pipeline arith- 
metic units. Incremental speed gains have been achieved but at 
considerable cost in hardware and complexity with accompanying 
problems in machine checkout and reliability. 

The use of explicit parallelism of operation rather than over- 
lapping of subfunctions offers the possibility of speeds which in- 
crease linearly with the number of gates, and consequently has 
been explored in several designs [Slotnick et  al., 1962; Unger, 1958; 
Holland, 1959; Murtha, 19661. The SOLOMON computer [Slotnick 
et al., 19621, which introduced a large degree of overt parallelism 
into its structure, had four principal features. 

1 A large array of arithmetic units was controlled by a single 

' I E E E  Trans., C-17, vol. 8,  pp. 746-757, August, 1968. 

control unit so that a single instruction stream sequenced 
the processing of many data streams. 

Memory addresses and data common to all of the data 
processing were broadcast from the central control. 

Some amount of local control at  the individual processing 
element level was obtained by permitting each element to 
enable or disable the execution of the common instructions 
according to local tests. 

Processing elements in the array had nearest-neighbor con- 
nections to provide moderate coupling for data exchange. 

Studies with the original SOLOMON computer indicated that 
such a parallel approach was both feasible and applicable to a 
variety of important computational areas. The advent of LSI cir- 
cuitry, or at  least medium-scale versions, with gate times of the 
order of 2 to 5 ns, suggested that a SOLOMON-type array of 
potentially lo9 word operations per second could be realized. In 
addition, memory technology had advanced sufficiently to indicate 
that lo6 words of memory with 200 to 500-11s cycle times could 
be produced at  acceptable cost. The ILLIAC IV Phase I design 
study during the latter part of 1966 resulted in the design discussed 
in this paper. The machine, to be fabricated by the Defense Space 
and Special Systems Division of Burroughs Corporation, Paoli, Pa., 
is scheduled for installation in early 1970. 

Summary of the ILLIAC IV 

The ILLIAC IV main structure consists of 256 processing elements 
arranged in four reconfigurable SOLOMON-type arrays of 64 
processors each. The individual processors have a 240-ns ADD 
time and a 400-11s MULTIPLY time for 64-bit operands. Each 
processor requires approximately lo4 ECL gates and is provided 
with 2048 words of 240-ns cycle time thin-film memory. 

Instruction and addressing control 

The ILLIAC IV array possesses a common control unit which 
decodes the instructions and generates control signals for all 
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processing elements in the array. This eliminates the cost and 
complexity for decoding and timing circuits in each element. 

In addition, an index register and address adder are provided 
with each processing element, so that the final operand address 
a, for element i is determined as follows: 

a, = a + ( b )  + (c,)  

where a is the base address specified in the instruction, (b) is the 
contents of a central index register in the control unit, and (ci) 
is the contents of the local index register of the processing ele- 
ment i. This independence in operand addressing is very effective 
for handling rows and columns of matrices and other multidimen- 
sional data structures [Kuck, 19681. 

Mode control and data conditional operations 

Although the goal of the ILLIAC IV structure is to be able to 
control the processing of a number of data streams with a single 
instruction stream, it is sometimes necessary to exclude some data 
streams or to process them differently. This is accomplished by 
providing each processor with an ENABLE flip-flop whose value 
controls the instruction execution at the processor level. 

The ENABLE bit is part of a test result register in each 
processor which holds the results of tests conditional on local data. 
Thus in ILLIAC IV the data conditional jumps of conventional 
computers are accomplished by processor tests which enable or 
disable local execution of subsequent commands in the instruction 
stream. 

Routing 

Each processing element i in the ILLIAC IV has data routing 
connections to 4 of its neighbors, processors i + 1, i - 1, i + 8, 
and i - 8. End connection is end around so that, for a single array, 
processor 63 connects to processors 0, 62, 7, and 55. 

Interprocessor data transmissions of arbitrary distance are ac- 
complished by a sequence of routings within a single instruction. 
For a 64-processor array the maximum number of routing steps 
required is 7; the average overall possible distances is 4. In actual 
programs, routing by distance 1 is most common and distances 
greater than 2 are rare. 

Common operand broadcasting 

Constants or other operands used in common by all the processors 
are fetched and stored locally by the central control and broadcast 
to the processors in conjunction with the instruction using them. 
This has several advantages: (1) it reduces the memory used for 

storage of program constants, and (2) it permits overlap of common 
operand fetches with other operations. 

Processor partitioning 

Many computations do not require the full 64-bit precision of the 
processors. To make more efficient use of the hardware and speed 
up computations, each processor may be partitioned into either 
two 32-bit or eight 8-bit subprocessors, to yield 51232-bit or 
2048 %bit subprocessors for the entire ILLIAC IV set. 

The subprocessors are not completely independent in that they 
share a common index register and the 64-bit data routing paths. 
The 32-bit subprocessors have separate enabled/disabled modes 
for indexing and data routing; the 8-bit subprocessors do not. 

Array partitioning 

The 256 elements of ILLIAC IV are grouped into four separate 
subarrays of 64 processors, each subarray having its own control 
unit and capable of independent processing. The subarrays may 
be dynamically united to form two arrays of 128 processors or one 
array of 256 processors. The following advantages are obtained. 

1 Programs with moderately dimensioned vector or matrix 
variables can be more efficiently matched to the array size. 

Failure of any subarray does not preclude continued proc- 
essing by the others. 

2 

This paper summarizes the structure of the entire ILLIAC IV 
system. Programming techniques and data structures for ILLIAC 
IV are covered in a paper by Kuck [1968]. 

ILLIAC IV structure 

The organization of the ILLIAC IV system is indicated in Fig. 1. 
The individual processing elements (PES) are grouped in four 
arrays, each containing 64 elements and a control unit (CU). The 
four arrays may be connected together under program control to 
permit multiprocessing or single-processing operation. The system 
program resides in a general-purpose computer, a Burroughs 
B 6500, which supervises program loading, array configuration 
changes, and 1/0 operations internal to the ILLIAC IV system 
and to the external world. To provide backup memory for the 
ILLIAC IV arrays, a large parallel-access disk system (10 bits, lo9 
bit per second access rate, 40-ms maximum latency) is directly 
coupled to the arrays. There is also provision for real-time data 
connections directly to the ILLIAC IV arrays. 
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Fig. 1. ILLIAC IV system organization. 

Array organization 

The internal structure of an array is indicated in Fig. 2. The 64 
processing elements in each array are arranged in a string and 
are controlled by the control unit (CU) which receives the instruc- 
tion string, generates the appropriate control signals and address 
parameters of the instructions, and transmits them to the indi- 
vidual processing elements for execution. In addition, each CU 
can broadcast via the common data bus operands for common use 
(e.g., constant). 

Full word length (64 bits) communication exists between the 
processing elements for exchange of information by organized rout- 
ing of words along the string array. Direct routing connections 
exist for nearest neighbors and also for processing elements 8 units 
away. Routing for intermediate distances are generated via se- 
quences of routes of + 1, - 1, + 8, or - 8. The end connections 
of the string are circular, but can be broken and connected to 
the ends of other arrays when the system is organized in one of 
the multiarray configurations. 

All processing elements of an array execute, of course, the same 
instruction in unison under the control of the CU; local control 
is provided by the mode bit in each processing element which 
enables or disables the execution of the current instruction. The 
control unit is able to sense the mode bits of all processing ele- 
ments under its control and thereby monitor the state of operation. 

Multiarra y configurations 

To permit more optimal matching of array size to problem struc- 
ture, the four arrays may be united in three different configura- 
tions, as shown in Fig. 3. To enlarge the arrays, the end connections 
of the PE strings are decoupled and attached to the ends of the 
other arrays to form strings of 128 or 256 processors. For multiarray 
configurations all CUs receive the same instruction string and any 
data centrally accessed. The control units execute the instructions 
independently, however, with inter-CU synchronization occurring 
only on those instructions in which data or control information 
must cross array boundaries. This simplifies and speeds up the in- 
struction execution in multiarray configurations. The multiplicity 
of array configurations introduces complexities in memory ad- 
dressing which will be discussed in a later section. 

Control unit 

The array control unit (CU) has the following five functions. 

1 

2 

To control and decode the instruction streams 

To generate the control pulses transmitted to the processing 
elements for instruction execution 

To generate and broadcast those components of memory 
addresses which are common to all processors 

To manipulate and broadcast data words common to the 
calculations of all the processors 

3 

4 

ROUTING NETWORK 

COMMON DATA BUS 
(MEMORY ADDRESS AND COMMON OPERAND1 _ _ _  _ _ _  

I 1l ll 1 
PE61 _ _ _  PEO PE 1 

I r ' 
__. __-2IJT'  

CONTROL UNIT BUS UNSTRUCTION AND COMMON OPERANDS) 

Fig. 2. Array structure. 
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0 63: 127 191; 255 
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PE 
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-1 ["I I"] 
SINGLE OLMMIANT ARRAYS 

Fig. 3. Multiarray configurations. 

5 To receive and process trap signals arising from arithmetic 
faults in the processors, from internal 1/0 operations, and 
from the B 6500. 

The structure of the control unit is shown in Fig. 4. Principal 
components of the CU are two fast-access buffers of 64 words each, 
one associatively addressed, which holds current and pending 
instructions (PLA), and the other a local data buffer (LDB). The 
four 64-bit accumulator registers (CAR) are central to communi- 
cation within the CU and hold address indexing information and 
active data for logical manipulation or broadcasting. The CU 
arithmetic unit (CULOG) performs addition, subtraction, and 
Boolean operations; more complex data manipulations are rele- 
gated to the PE's. To specify and control array configurations, there 
are three 4-bit configuration control registers whose use will be 
described in another section. 

Instruction processing 

All instructions are 32 bits in length and belong to one of two 
classes: CU instructions, which generate operations local to the 
CU (e.g., indexing, jumps, etc.), and PE instructions, which are 
decoded in the CU and then transmitted via control pulses to all 
the processing elements. Instructions flow from the array memory 
upon demand in blocks of 8 words (16 instructions) into the in- 
struction buffer. As the control advances, individual instructions 
are extracted from the instruction buffer and sent to the advanced 
instruction station (ADVAST) which decodes them and executes 
those instructions local to the CU. In the case of PE instructions, 
ADVAST constructs the necessary address or data operands and 
stacks the result in a queue (FINQ) to await transmission to the 
PES. PE instructions are taken from the bottom of the stack to 

the h a 1  instruction station (FINST) which controls the broadcast 
of address or data and holds the PE instruction during the execu- 
tion period. 

The use of the PE instruction queue permits overlap between 
the CU and PE instruction executions; the amount of overlap 
depends, of course, on the distribution of CU and PE instructions. 
As in all overlap strategies, careful attention to the instruction 
sequence by the programmer or compiler can result in consider- 
able speedup of program execution. 

The instruction buffer holds a maximum of 128 instructions, 
sufficient to hold the inner loop of many programs. For such loops, 
after initial loading, instructions are fetched from the buffer with 
minimal delay. 

A variety of strategies for instruction buffer loading were ex- 
amined, and the following straightforward approach was taken. 
When the instruction counter is halfway through a block of 8 

INSTRUCTION ASSOCI4TlVE 
BUFFER 

LOCAL 

BUFFER 

AI 

gpy, SEOUENCER 

. .  
CONTROL SIGNALS COMMON 0414 BUS 110 REWEST MOW FIF 

FROM PES TO PES F R O M I M  FROM PES 

Fig. 4. Control-unit block diagram. 
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words (16 instructions), fetch of the next block is initiated; the 
possibility of pending jumps to different blocks is ignored. If the 
next block is found to be already resident in the buffer, no further 
action is taken; else fetch of the next block from the array memory 
is initiated. On arrival of the requested block, the instruction 
buffer is cyclically filled; the oldest block is assumed to be the 
least required block in the buffer and is overwritten. Jump instruc- 
tions initiate the same procedures. 

Fetch of a new instruction block from memory requires a delay 
of approximately three memory cycles to cover the signal trans- 
mission times between the array memory and the control unit. 
On execution of a straight line program, this delay is overlapped 
with the execution of the 8 instructions remaining in the current 
block. 

In a multiple-array configuration, instructions are fetched from 
the array memory specified by the program counter, and broadcast 
simultaneously to all the participating control units. Instruction 
processing thereafter is identical to that for single-array operation, 
except that synchronization of the control units is necessary 
whenever information, in the form of either data or control signals, 
must cross array boundaries. CU synchronization must be forced 
at  all fetches of new instruction blocks, upon all data routing 
operations, all conditional program transfers, and all configuration- 
changing instructions. With these exceptions, the CUs of the 
several arrays run independently of one another. This simplifies 
the control in the multiple-array operation; furthermore, it permits 
1/0 transactions with the separate array memories without steal- 
ing memory cycles from the nonparticipating memories. 

Memory addressing 

Both data and instructions are stored in the combined memories 
of the array. However, the CU has access to the entire memory, 
while each PE can only directly reference its own 2,048-word PEM. 
The memory appears as a two-dimensional array with CU access 
sequential along rows and with PE access down its own column. 
In multiarray configurations the width of the rows is increased 
by multiples of 64. 

The resulting variable-structure addressing problem is solved 
by generating a fixed-form 20-bit address in the CU as shown in 
Fig. 5. The lower 6 bits identify the PE column within a given 
array. The next 2 bits indicate the array number, and the remain- 
ing higher-order bits give the row value. The row address bits 
actually transmitted to the PE memories are configuration- 
dependent and are gated out as shown. 

Addresses used by the PE’s for local operands contain three 
components: a fixed address contained in the instruction, a CU 

I R o w  Artov Column 

Single a r r a y  

Y 

A d d r e s s  b i t s  (12) 
to  PES 

Fig. 5. Memory address structure. 

index value added from one of the CU accumulators, and a local 
PE index value added at the PE prior to transmission to its own 
memory. 

CU data operations . 

The control unit can fetch either individual words or blocks of 
8 words from the array memory to the local data buffer. In addi- 
tion, it can fetch 1 bit selected from the 8-bit mode register of 
each processing element to form a 64-bit word read into the CU 
accumulator. The CU program counter (PCR) and the configura- 
tion registers are also directly addressable by the CU. Data 
manipulations (+ , -, Boolean) are performed on a selected CAR 
and the result returned to the CAR. Data to be broadcast to the 
processing elements is inserted into the FINQ along with the 
accompanying instruction and transmitted to the PES at the appro- 
priate time. 

Configuration control 

With the variety of array configurations for ILLIAC IV, it is 
necessary to specify and control the subarrays which are conjoined 
and to designate the instruction and data addressing. For this 
purpose each CU has three configuration control registers (CFC), 
each of 4-bit length, where each bit corresponds to one of the four 
subarrays. The CFC registers may be set by the B 6500 or a CU 
instruction. 

CFCO of each CU specifies the array configuration in which 
it is participating by means of a 1 in the appropriate bits of CFCO. 
CFCl specifies the instruction addressing to be used within the 
array. In a united configuration it is thus possible for the instruc- 
tion stream to be derived from any subset of the united arrays. 
CFC2 specifies the CU data addressing form in a manner similar 
to the CFC 1 control of instruction addressing. 
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The addressing indicated by both CFCl  and CFC2 must be 
consistent with the actual configuration designated by CFCO, else 
a configuration interrupt is triggered. 

Trap processing 

Because external demands on the arrays will be preprocessed 
through the B 6500 system computer, the interrupt system for the 
control units is relatively straightforward. Interrupts are provided 
to handle B 6500 control signals and a variety of CU or array faults 
(undefined instructions, instruction parity error, improper con- 
figuration control instruction, etc.). Arithmetic overflow and under- 
flow in any of the processing elements is detected and produces a 
trap. 

The strategy of response to an interrupt is an effective FORK 
to a single-array configuration. Each CU saves its own status word 
automatically and independently of other CU’s with which it may 
previously have been configured. 

Hardware implementation consists of a base interrupt address 
register (BIAR) which is dedicated as a pointer to array storage 
into which status information will be transferred. Upon receipt 
of an interrupt, the contents of the program counter and other 
status information and the contents of CAR0 are stored in the 
block pointed to by the BIAR. In addifion, CAR 0 is set to contain 
the block address used by BIAR so that subsequent register saving 
may be programmed. Interrupt returns are accomplished through 
a special instruction which reloads the previous status word and 
CAR 0 and clears the interrupt. 

Interrupts are enabled through a mask word in a special regis- 
ter. The interrupt state is general and not unique to a specific 
trigger or trap. During the interrupt processing, no subsequent 
interrupts are responded to, although their presence is flagged in 
the interrupt state word. 

The high degree of overlap in the control unit precludes an 
immediate response to an interrupt during the instruction which 
generates an arithmetic fault in some processing element. To 
alleviate this it is possible under program control to force non- 
overlapped instruction execution permitting access to definite fault 
information. 

Processing element (PE)  

The processing element, shown in Fig. 6, executes the data com- 
putations and local indexing for operand fetches. It contains the 
following elements. 

1 Four 64-bit registers (A, B, R, S) to hold operands and results. 
A serves as the accumulator, B as the operand register, R as 

the multiplicand and data routing register, and S as a general 
storage register. 

An adder/multiplier (MSG, PAT, CPA), a logic unit (LOG), 
and a barrel switch (BSW) for arithmetic, Boolean, and 
shifting functions, respectively. 

A 16-bit index register (RGX) and adder (ADA) for memory 
address modification and control. 

An 8-bit mode register (RGM) to hold the results of tests 
and the PE ENABLE/DISABLE state information. 

As described earlier, the PES may be partitioned into subproc- 
essors of word lengths of 64, 2 x 32, or 8 x 8 bits. Figure 7 shows 
the data representations available. Exponents are biased and rela- 
tive to base 2. Table 1 indicates the arithmetic and logical opera- 
tions available for the three operand precisions. 

PE mode control 

Two bits of the mode register (RGM) control the enabling or 
disabling of all instructions; one of these is active only in the 32-bit 
precision mode and controls instruction execution on the second 
operand. Two other bits of RGM are set whenever an arithmetic 
fault (overflow, underflow) occurs in the PE. The fault bits of all 
PES are continuously monitored by the CU to detect a fault condi- 
tion and initiate a CU trap. 

Data paths 

Each PE has a 64-bit wide routing path to 4 of its neighbors (kl, 
?8). To minimize the physical distances involved in such routing, 
the PES are grouped 8 to a cabinet (PUC) in the pattern shown 
in Fig. 8. Routing by distance 5 8  occurs interior to a PUC; routing 
by distance +1 requires no more than 2 intercabinet distances. 

CU data and instruction fetches require blocks of 8 words, 
which are accessed in parallel, 1 word per PUC, into a CU buffer 
(CUB) 512-bit wide, distributed among the PUCs, 1 word per 

Table 1 PE data operations 

Operation time per element 
~~ 

Operation 64 bit 2 x 32 bit 8 x 8 bit 

+, - 200 ns 240 ns 80 ns 
X 400 ns 400 ns 
- 2200 ns 3040 ns 
Boolean 80 ns 
Shift 80/240 nst 160 ns 

t (Single length)/(double length) 



326 Part 4 I The instruction-set processor level: special-function processors Section 2 I Processors for array data 

N E W S  

DRIVERS/ 

RECEIVERS 

R REGISTER ’ 

(RGR) * 
1 

CONTROL UNIT 

MIR CDB 1 1 
DRIVERS MODE 

RECEIVERS (RGM) 
AND - REGISTER 

Jl 

A REGISTER 
(RGA) 

LEADING 

DETECTOR 

1 

ADDRESS 

(MAR) 
y REGISTERS k M E M O R y  

1 

Fig. 6. Processingelement block diagram. 
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Fig. 9. 1/0 data path. 
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cabinet. Data is transmitted to the CU from the CUB on a 512-line 
bus. 

Disk and on-line 1/0 data are transmitted on a 1024-line bus 
which can be switched among the arrays. Within each array, 
parallel connection is made to a selected 16 of 64 PES, 2 per PUC. 
Maximum data rate is one 1/0 transaction per microsecond or lo9 
bits per second. The 1/0 path of 1024 lines is expandable to 4096 
lines if required. 

Processing element memo y (PEM) 

The individual memory attached to each processing element is 
a thin-film DRO linear select memory with a cycle time of 240 
ns and access time of 120 ns. Each has a capacity of 2048 64-bit 
words. The memory is independently accessible by its attached 
PE, the CU, or 1/0 connections. 

DiskIfile subsystem 

The computing speed and memory of the ILLIAC IV arrays re- 
quire a substantial secondary storage for program and data files 
as well as backup memory for programs whose data sets exceed 
fast memory capacity. The disk-file subsystem consists of six Bur- 
roughs model IIA storage units, each with a capacity of 1.61 X los 
bits and a maximum latency of 40 ms. The system is dual; each 
half has a capacity of 5 x 1OX bits and independent electronics 
capable of supporting a transfer rate of 500 megabits per second. 
The data path from each of the disk subsystems becomes 1024 
bits wide at its interface with the array. Figure 9 shows the 
organization of the disk-file system. 

B 6500 control computer 

The B 6500 computer is assigned the following functions. 

1 

2 

3 

Executive control of the execution of array programs 

Control of the multiple-array configuration operations 

Supervision of the internal 1/0 processes (disk to arrays, 
etc.) 

External 1/0 processing and supervision 

Processing and supervision of the files on the disk file sub- 
system 

Independent data processing, including compilation of 
ILLIAC IV programs 

4 

5 

6 

To control the array operations, there is a single interrupt line 
and a 16-bit data path both ways between the B 6500 and each 
of the control units. In addition, the B 6500 has a control and data 

GPC-IOC DISK TEST 

PEM-DISK TEST 

PEM TEST 

CU TEST 

PE TEST 

0 TO BE TESTED 

PARTIALLY TESTED 

[zzl TESTED 

Fig. 10. System diagnostic sequence. 

path to the 1 / 0  controller (IOC) which supervises the disk, and 
also direct connections to the array memories. 

Reliability and maintenance of the ILLIAC IV 

The progress in computer components from vacuum tubes to semi- 
conductors over several generations has improved the mean-time- 
between-failures for computers from tens of hours to several thou- 
sand hours. By using larger scale integration, a tedfold increase 



Chapter 27 1 The ILLIAC IV computer 329 

in number of gates per system should be possible with comparable 
reliability. 

It is only by virtue of high-density integration (50- to 100-gate 
package) that the design of a three-million-gate system can be 
contemplated. Reliability of the major part of the system, 256 
processing elements and 256 memory units, is expected to be in 
the range of lo5 hours per element and 2 x lo3 hours per memory 
unit. 

The organization of the ILLIAC IV as a collection of identical 
units simplifies its maintenance problems. The processing ele- 
ments, the memories, and some part of power supplies are designed 
to be pluggable and replaceable to reduce system down time and 
improve system availability. 

The remaining problems are (1) location of the faulty subsys- 
tem, and (2) location of the faulty package in the subsystem. 

Location of the faulty subsystem assumes the B 6500 to be 
fault-free, since this can be determined by using the standard 
B 6500 maintenance routines. The steps to follow are shown in 
Fig. 10. 

The B 6500 tests the control units (CU) which in turn test all 
PES. PEMs are tested through the disk channel. This capability 
for functional partitioning of the subsystems simplifies the diag- 
nostic procedure considerably. 
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APPENDIX 1 
A l .  CLASSIFIED LIST OF CU INSTRUCTIONS 

AI.  1 Data transmission 

ALIT 
BIN 
BINX 
BOUT 
BOUTX Indexed block store. 
CLC Clear CAR. 
COPY 
DUPI 

DUPO 

EXCHL 

Add literal (24 bit) to CAR. 
Block fetch to CU memory. 
Indexed (by PE index) block fetch. 
Block store from CU memory. 

Copy CAR into CAR of other quadrant. 
Duplicate inner half of CU memory ad- 
dress contents into both halves of CAR. 
Duplicate outer half of CU memory ad- 
dress contents into both halves of CAR. 
Exchange contents of CAR with CU mem- 
ow address contents. 

LDL 

LIT 

LOAD 

LOADX 

ORAC 
SLIT 
STL 
STORE 
STOREX 

TCC W 

TCW 

A1.2 Skip and test 

CTSB(: ") 

4 Instructions: 

4 Instructions: 

Load CAR from CU memory address con- 
tents. 
Load CAR with 64-bit literal following the 
instruction. 
Load CU memory from contents of PE 
memory address found in CAR. 
Load CU memory from contents of PE 
memory address found in CAR, indexed 
by PE index. 
OR all CARS in array and place in CAR. 
Load CAR with 24-bit literal. 
Store CAR into CU memory. 
Store CAR into PE memory. 
Store CAR into PE memory, indexed by 
PE index. 
Transmit CAR counterclockwise between 
CUs in array. 
Transmit CAR clockwise between CUs in 
array. 

Skip on nth bit of CAR. If Tis present, skip 
if 1; if F is present, skip if 0. If A is pres- 
ent, AND together bits from all CUs in 
array before testing; if absent, OR together 
bits from all GUS in array before testing. 
CTSBT, CTSBTA, CTSBF, CTSBFA. 
Skip on CAR equal to CU memory ad- 
dress contents. The letters T,  F ,  and A 
have the same meaning as in CTSB above. 
EQLT, EQLTA, EQLF, EQLFA. 

4 Instructions: 

4 Instructions: 

LESS(:> A J 

4 Instructions: 

ONES( i> 
4 Instructions: 

ONEX(: 

4 Instructions: 

SKIP(:' ") 

4 Instructions: 
SKIP 

8 Instructions: 

Skip on index portion of CAR (bits 40 
through 63) equal to bits 40 through 63 of 
CU memory address contents. The letters 
T,  F,  and A have the same meaning as in 
CTSB above. 
EQLXT, EQLXTA, EQLXF, EQLXFA. 
Skip on index part of CAR (bits 40 through 
63) greater than bits 40 through 63 of CU 
memory address contents. The letters T, 
F, and A have the same meaning as in 
CTSB above. 
GRTRT, GRTRTA, GRTRF, GRTRFA. 
Skip on index part of CAR (bits 40 through 
63) less than bits 40 through 63 of CU 
memory address contents. The letters T,  F ,  
and A have the same meaning as in CTSB 
above. 
LESST, LESSTA, LESSF, LESSFA. 
Skip on CAR equal to all 1's. The letters 
T,  F, and A have the same meaning as in 
CTSB above. 
ONEST, ONESTA, ONESF, ONESFA. 
Skip on bits 40 through 63 of CAR equal 
to all 1's. The letters T, F, and A have the 
same meaning as in CTSB above. 
ONEXT, ONEXTA, ONEXF, ONEXFA. 
Skip on T-F flip-flop previously set. The 
letters T, F, and A have the same meaning 
as in CTSB above. 
SKIPT, SKIPTA, SKIPF, SKIPFA. 
Skip unconditionally. 
Skip on index portion of CAR (bits 40 
through 63) less than limit portion (bits 1 
through 15). The letters T,  F, and A have 
the same meaning as in CTSB above. If I 
is present, the index portion of CAR is in- 
cremented by the increment portion of 
CAR (bits 16 through 39) while the test is 
in progress; if I is not present, no incre- 
menting takes place. 
TXLT, TXLTI, TXLTA, TXLTAI, TXLF, 
TXLFI, TKLFA, TXLFAI. 
Skip on index portion of CAR (bits 40 
through 63) equal to limit portion of CAR 
(bits 1 through 15). See CTSB for the 
meaning of T,  F,  and A; see TXL above 
for the meaning of I. 
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8 Instructions: 

8 Instructions: 

ZER( "1 
4 Instructions: 

4 

A1.3 

Al.4 

ZERX(: "1 
Instructions: 

Transfer of control 

TXET, TXETI, TXETA, TXETIA, TXEF, 
TXEFI, TXEFA, TXEFIA. 
Skip on index portion of CAR (bits 40 
through 63) greater than limit portion of 
CAR (bits 1 through 15). See CTSB for the 
meaning of T,  F, and A; see TXL above 
for the meaning of 1. 
TXGT, TXGTI, TXGTA, TXGTAI, TXGF, 
TXGFI, TXGFA, TXGFAI. 
Skip on CAR all 0's. See CTSB for the 
meaning of T, F, and A. 
ZERT, ZERTA, ZERF, ZERFA. 
Skip on index portion of CAR (bits 40 
through 63) all 0's. See CTSB for the 
meaning of T, F, and A. 
ZERXT, ZERXTA, ZERXF, ZERXFA. 

EXEC 

EXCHL 

HALT 
JUMP 
LOAD 

LOADX 

STL 

Route 

RTE 

A1.5 Arithmetic 

ALIT 
CADD 

CSUB 

INCRXC 

A1.6 Logical 

CAND 
CCB 
CEXOR 

Execute instruction found in bits 32 through 
63 of CAR. 
Exchange contents of CAR with contents 
of CU memory address. 
Halt ILLIAC IV. 
Jump to address found in instruction. 
Load CU memory address contents from 
contents of PE memory address found in 
CAR. 
Load CU memory address contents from 
contents of PE memory address found in 
CAR, indexed by PE index. 
Store CAR into CU memory. 

Route. Routing distance is found in address 
field (CAR indexable), and register con- 
nectivity is found in the skip field. 

Add %-bit literal to CAR. 
Add contents of CU memory address to 
CAR. 
Subtract contents of CU memory address 
from CAR. 
Increment index word in CAR. 

AND CU memory to CAR. 
Complement bit of CAR. 
Exclusive OR CU memory to CAR. 

CLC 
COR 
CRB 
CROTL 
CROTR 
CSB 
CSHL 
CSHR 
LEAD0 

Clear CAR. 
OR CU memory to CAR. 
Reset bit of CAR. 
Rotate CAR left. 
Rotate CAR right. 
Set bit of CAR. 
Shift CAR left. 
Shift CAR right. 
Detect leading ONE in CAR of all quad- 
rants in array. 
Detect leading ZERO in CAR of all quad- 
rants in array. 
OR all CARS in array and place in CAR. 

LEADZ 

ORAC 

A2. CLASSIFIED LIST OF PE INSTRUCTIONS 

A2.1 Data tramisdon 

LDA 
LDB 
LDR 
LDS 
LDX 
LDCO 
LDCl 
LDC2 
LDC3 
LEX 
ONES 
STA 
STB 
STC 
STR 
STS 
STX 
SWAPA 

SWAP 

SWAPX 

Load A register. 
Load B register 
Load R register. 
Load S register. 
Load X register. 
Load CAR 0 from PE register. 
Load CAR 1 from PE register. 
Load CAR 2 from PE register. 
Load CAR 3 from PE register. 
Load exponent of A register. 
Load all ONES into A register. 
Store A register. 
Store B register. 
Store C register. 
Store R register. 
Store S register. 
Store X register. 
Interchange inner and outer contents of A 
register. 
Interchange the contents of A register and 
B register. 
Interchange outer operand of A register 
and inner operand of B. 

A2.2 Index operations 

Set I on comparison of X register and op- 
erand. The presence of L means set I if 
X is less than operand; the presence of E 
means set I if X is equal to operand; the 
presence of G means set I if X is greater 
than operand. If Z is present, increment X 
while performing test; if I is absent, do not 
increment X. 
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6 Instructions: 

JX{ i7 11 
6 Instructions: 

XI 

XI0  

A2.3 Mode setting, 

EQB ' 

GRB 

LSB 
CHWS 

3 Instructions: 

3 Instructions: 

3 Instructions: 

l(:Iz 
3 Instructions: 

3 Instructions: 

J{, i} 
Z 
0 

15 Instructions: 

L 
IX{2 I] 

IXL, IXLI, IXE, IXEI, IXG, IXGI. 
Set J on comparison of X register and op- 
erand. See above for meaning of L, E,  G, 
and I. 
JXL, JXLI, JXE, JXEI, JXG, JXGI. 
Increment PE index ( X  register) by bits 48 
through 63 of operand. 
Increment PE index of bits 48 through 63 
of operand plus one. 

/comparisons 

Test A and B for equality bytewise. 
Test B register greater than A register 
bytewise. 
Test B register less than A register bytewise. 
Change word size. 
Set 1 if A register is less than operand. L 
means test logical; A means test arithmetic; 
M means test mantissa. 
ILL, IAL, IML. 
Set 1 if A register is equal to operand. See 
above for meaning of L, A, and M .  

ILE, IAE, IME. 
Set 1 if A register is greater than operand. 
See above for meaning of L, A, and M. 

ILG, IAG, IMG. 
Set 1 if A register is equal to all zeros. 

ILZ, IAZ, IMZ. 
Set 1 if A register is equal to all ONES. 

ILO, IAO, IMO. 
Set J under conditions specified in set of 
instructions immediately above. 

6 Instructions: 

6 Instructions: 

3 Instructions: 

3 Instructions: 
ISN 

SETE 
SETEO 
SETF 
SETFO 
SETG 
SETH 
SET1 
SETJ 
SETCO 
SETC 1 
SETC2 
SETC3 
IBA 

JSN 

A2.4 Arithmetic 

ADB 
SBB 
ADD 

SUB 

JLL, JAL, JML, JLE, JAE, JME, JLG, 
JAG, JMG, JLZ, JAZ, JMZ, JLO, JAO, 
JMO. 
Set 1 on comparison of X register and op- 
erand. See Section A2.2 for meaning of L, 
E, G, and I .  

IXL, IXLI, IXE, IXEI, IXG, IXGI. 
Set J on comparison of X register and op- 
erand. See Section A2.2 for meaning of L, 
E ,  G, and 1. 
JXL, JXLI, JXE, JXEI, JXG, JXGI. 
Set 1 on comparison of S register and op- 
erand. See Section A2.2 for meaning of L, 
E ,  and G. 
ISL, ISE, ISG. 
Set J on comparison of S register and op- 
erand. See Section A2.2 for meaning of L, 
E,  and G. 
JSL, JSE, JSG. 
Set I from the sign bit of A register. 
Set J from the sign bit of A register. 
Set E bit as a logical function of other bits. 
Set E l  bit similarly. 
Set F bit similarly. 
Set F1 bit similarly. 
Set G bit similarly. 
Set H bit similarly. 
Set 1 bit similarly. 
Set J bit similarly. 
Set Pth bit of CAR 0 similarly. 
Set Pth bit of CAR 1 similarly. 
Set Pth bit of CAR 2 similarly. 
Set Pth bit of CAR 3 similarly. 
Set 1 from Nth bit of A register; bit num- 
ber is found in address field. 
Set J from Nth bit of A register; bit num- 
ber is found in address field. 

Add bytewise. 
Subtract operand from A register bytewise. 
Add A register and operand as 64-bit 
operands. 
Subtract operand from A register as 64- 
bit quantities. 

S} Add operand to A register. The R ,  N, M ,  
S specify all possible variants of the arith- 
metic instruction. The meaning of each 
letter, if present in the mnemonic, is 

R round result 
N normalize result 
M mantissa only 
S special treatment of signs. 
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16 Instructions: ADM, ADMS, ADNM, ADNMS, ADN, 
ADNS, ADRM, ADRMS, ADRM, 
ADRNMS, ADRN, ADRNS, ADR, ADRS, 
AD, ADS. 

ADEX Add to exponent. 
DV{R, N, M, S} Divide by operand. See AD instruction for 

meaning of R, N, M, and S. 
16 Instructions: DVM, DVMS, DVNM, DVNMS, DVN, 

DVNS, DVRM, DVRMS, DVRNM, 
DVRNS, DVRN, DVRNS, DVR, DVRS, 
DV, DVS. 
Extend precision after floating point ADD. 
Extend precision after floating point SUB- 
TRACT. 

LEX Load exponent of A register. 
ML{R, N, M, S} Multiply by operand. See AD instruction 

for meaning of R, N, M ,  and S. 
MLM, MLMS, MLNM, MLNMS, MLN, 
MLNS, MLRM, MLRMS, MLRNM, 
MLRNMS, MLRN, MLRNS, MLR, MLRS, 
ML, MLS. 

EAD 
ESB 

16 Instructions: 

SAN Set A register negative. 
SAP Set A register positive. 
SBEX Subtract exponent of operand from expo- 

nent of A register. 
SB{R, N, M, S} Subtract operand from A register. See AD 

instruction for meaning of R, N, M, and S. 
SBM, SBMS, SBNM, SBNMS, SBN, SBNS, 
SBRM, SBRMS, SBRNM, SBRNMS, SBRN, 
SBRNS, SBR, SB, SBS. 

In 32-bit mode, perform MULTIPLY and 
leave outer result in A register and inner 
result in B register, with both results ex- 
tended to 64-bit format. 

16 Instructions: 

NORM Normalize A register. 
MULT 

A2.5 Logical 

AND A register with operand. The left- 

the A register, the right-hand set, on the 
operand. The meaning of these variants is 

not present use true 
N use complement 
Z use all ZEROS 
0 use all ONES. 

hand set of letters specifies a variant on 

16 Instructions: 

CBA 
CHSA 

{ EOR { 
16 Instructions: 

LEX 

16 Instructions: 

RBA 
RTAL 
RTAML 
RTAMR 
RTAR 
SAN 
SAP 
SBA 
SHABL 
SHABR 
SHAL 
SHAML 
SHAR 
SHAMR 

AND, ANDN, ANDZ, ANDO, NAND, 
NANDN, NANDZ, NANDO, ZAND, 
ZANDN, ZANDZ, ZANDO, OAND, 
OANDN, OANDZ, OANDO. 
Complement bit of A register. 
Change sign of A register. 

Exclusive OR A register with operand. 

EOR, EORN, EORZ, EORO, NEOR, 
NEORN, NEORZ, NEORO, ZEOR, 
ZEORN, ZEORZ, ZEORO, OEOR, 
OEORN, OEORZ, OEORO. 
Load exponent of A register. 

OR A register with operand. 

OR, ORN, ORZ, ORO, NOR, NORN, 
NORZ, NORO, ZOR, ZORN, ZORZ, 
ZORO, OOR, OORN, OORZ, OORO. 
Reset bit A register to ZERO. 
Rotate A register left. 
Rotate mantissa of A register left. 
Rotate mantissa of A register right. 
Rotate A register right. 
Set A register negative. 
Set A register positive. 
Set bit of A register to ONE. 
Shift A and B registers double-length left. 
Shift A and B registers double-length right. 
Shift A register left. 
Shift A register mantissa left. 
Shift A register right. 
Shift A register mantissa right. 



Section 3 

Processors defined by a microprogram 

Processors defined by a microprogram have only recently come 
into existence, although Wilkes suggested the idea in 1951. The 
discussion in Chap. 3 (page 71) suggests reasons why this 
controversial idea has taken so long to be adopted. 

Microprogramming and the design of the control circuits 
in an electronic computer 

Chapter 28 is an extension of an earlier paper by Wilkes. It 
includes an example of a microprogrammed processor (page 
337). In the earlier paper, The Best Way to Design an Automatic 
Computing Machine [Wilkes, 1951a1, the essential ideas of 
microprogramming were first outlined. 

The observation that an instruction set, or ISP, should be 
looked at as a program to be interpreted is the basis of micro- 
programming. The idea of an ISP is our acknowledgment that 
we, too, view a processor as a program. 

There is little to say about this chapter; it is historical, yet 
timely and well written. Microprogramming, like other of Wilkes’ 
ideas, is present in many of our computers. 

chines they have designed. This formal ruse can be used to 
make the design seem difficult but well founded-certainly not 
arbitrary, Kampe truthfully admits to making decisions in a 
somewhat arbitrary fashion. 

The SD-2 microprogram structure, unlike that of the IBM Sys- 
tem 360 models, has a P.microprogram which is similar to the 
external Pc which it defines. As such, the main question about 
this design is whether it is cheaper to have a single, hard- 
wired Pc rather than a computer within a computer. The 
Packard Bell 440 [Boutwell and Hoskinson, 19631 is an example 
of a better-known Pc whose internal P resembles the SD-2. 

The authors of this book feel that, when the internal and 
external P’s are so similar, it may be better to have a single 
Pwhich suits both needs. To gain speed and still define powerful 
functions, Mp could be made up of both the conventional Mp 
and a small, fast Mp. 

The Hewlett-Packard HP 9100A computing calculator 

The HP 9100A (Chap. 20) is discussed in Part 3, Sec. 4, page 
235. 

The design of a general-purpose microprogram- 
controlled computer with elementary structure 

The SD-2 computer (Chap. 29) is described by Kampe in a 
casual but highly communicative fashion. Most engineers tend 
to be somewhat formal and stuffy when describing the ma- 

Microprogrammed implementation of EULER 
On the IBM System 360’Mode1 30 

This microprogrammed processor in Chap. 32 is also discussed 
as a language processor in Part 4, Sec. 4, page 348. 

, 
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Chapter 28 

Microprogramming and the design 
of the control circuits in an electronic 
digital computer1 

M .  V. Wilkes / J. B. Stringer 

1. Introduction 

Experience has shown that the sections of an electronic digital 
computer which are easiest to maintain are those which have a 
simple logical structure. Not only can this structure be readily 
borne in mind by a maintenance engineer when looking for a fault, 
but it makes it possible to use fault-locating programmes and to 
test the equipment without the use of elaborate test gear. It is 
in the control section of electronic computers that the greatest 
degree of complexity generally arises. This is particularly so if the 
machine has a comprehensive order code designed to make it 
simple and fast in operation. In general, for each different order 
in the code some special equipment must be provided, and the 
more complicated the function of the order the more complex this 
equipment. In the past, fear of complicating unduly the control 
circuits of the machines has prevented the designers of electronic 
machines from providing such facilities as orders for floating-point 
operations, although experience with relay machines and with 
interpretive subroutines has shown how valuable such orders are. 
This paper describes a method of designing the control circuits 
of a machine which is wholly logical and which enables alterations 
or additions to the order code to be made without ad hoc altera- 
tions to the circuits. An outline of this method was given by one 
of us [Wilkes, 1951~1 at the Conference on Automatic Calculat- 
ing Machines at the University of Manchester in July 1951. 

The operation called for by a single machine order can be 
broken down into a sequence of more elementary operations; for 
example, shifting a number in the accumulator one place to the 
right may involve, first, a transfer of the number to an auxiliary 
shifting register, and secondly, the transfer of the number back 
to the accumulator along an oblique path. These elementary 
operations will be referred to as micro-operations. Basic machine 
operations, such as addition, subtraction, multiplicatio-tc., are 
thought of as being made up of a micro-programme of micro- 

. 'Proc. Cambridge Phil. Soc., pt. 2, vol. 49, pp. 230-238, April, 1953. 

operations, each micro-operation being called for by a micro-order. 
The process of writing a micro-programme for a machine order 
is very similar to that of writing a programme for the whole 
calculation in terms of machine orders. 

For the method to be applicable it is necessary that the 
machine should contain a suitable permanent rapid-access storage 
device in which the micro-programme can be held-a diode matrix 
is proposed in the case of the machine discussed as an example 
below-and that means should be provided for executing the 
micro-orders one after the other. It is also necessary that provision 
should be made for conditional micro-orders which play a role 
in micro-programming similar to that played by conditional orders 
in ordinary programming. 

Since the only feature of the machine which has to be designed 
specially for any particular set of machine orders is the configura- 
tion of diodes in the matrix, or the corresponding configuration 
in whatever equivalent device is used, there is no difficulty in 
making changes to the order code of the machine if experience 
shows them to be desirable; in fact, the design of the machine 
in the first place can be carried out completely without a firm 
decision on the details of the order code,being taken, as long as 
care is taken to provide accommodation for the greatest number 

#of micro-orders that are likely to be required. It would even be 
possible to have a number of interchangeable matrices providing 
for different order codes, so that the user could choose the one 
most suited to his particular requirements. 

2. 

The system will be described in relation to a parallel machine 
having an arithmetical unit designed along conventional lines. This 
will contain a set of registers and an adder together with a switch- 
ing system which enables the micro-operations in the various 
machine orders to be performed. Some of the micro-operations 
will be simple transfers of a number from one register to another 
with or without shifting of the number one place to the left or 

Description of the proposed system 
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the right, while others will also involve the use of the adder. Any 
particular micro-operation can be performed by applying pulses 
simultaneously to the appropriate gates of the switching system. 
In certain cases it may be possible for two or more micro-opera- 
tions to take place at  the same time. 

It will be convenient to regard the control system as consisting 
of two parts. A register is needed to hold the address of the next 
order due to be executed, and another to hold the current order 
while it is being executed, or at any rate during part of that time. 
Some means of counting the number of steps in a shifting operation 
or a multiplication must also be provided. One method of meeting 
these requirements is to provide a group of registers and an adder 
together with a switching system which enables transfers of num- 
bers, with or without addition, to be made. This part of the control 
system will be called the control register unit. In any case the 
operations which need to be performed on the numbers standing 
in the control register unit during the execution of an order are, 
like the operations performed in the arithmetical unit, regarded 
as being made up of a sequence of micro-operations, each of which 
is performed by the application of pulses to appropriate gates. 

The other part of the control system is concerned with control 
of the sequence of micro-orders required to carry out each machine 
order, and with the operation of the gates required for the execu- 
tion of each micro-order. This will be called the micro-control unit; 
it consists of a decoding tree, two rectifier matrices and two regis- 
ters (additional to those of the control register unit) connected 
as indicated in Fig. 1, which shows how the pulses used to operate 
the gates in the arithmetical unit and control register unit are 
generated. A series of control pulses from a pulse generator are 
applied to the input of the decoding tree. Each pulse is routed 
to one of the output lines of the tree, according to the number 
standing in register I. The output lines all pass into a rectifier 
matrix A and the outputs of this matrix are the pulses which 
operate the various gates associated with micro-operations. Thus 
one input line of the matrix corresponds to one micro-order. The 
address of the micro-order is the number which must be placed 
in register I to cause the control pulse to be routed to the corre- 
sponding line. The output lines from the tree also pass into a 
second matrix B, which has its outputs connected to register 11. 
This matrix has wired on it the address of the micro-order to be 
performed next in time so that the address of this micro-order is 
placed in register 11. Just before the next control pulse is applied 
to the input of the tree a connexion is established between register 
I1 and register I, and the address of the micro-order due to be 
executed next is transferred into register I. In this way the de- 
coding tree is prepared to route the next incoming control pulse 

Section 3 I Processors defined by a microprogram 

I 
M a t r i x  B 
c _ _ _ _ _ -  -7 r - - - - - - 1  

C o n t r o  

pulses 

- 
To ar i thmet ica l  From 

uni t ,  c o n t r o l  cond l t iona '  
registers, e tc .  flip-flop 

Fig. 1. Microcontrol unit. 

to the correct output line. Thus application of pulses alternately 
to the input of the tree and to the gate connecting registers I and 
I1 causes a predetermined sequence of micro-orders to be executed. 

It is necessary to have means whereby the course of the micro- 
programme can be made conditional on whether a given digit in 
one of the registers of the arithmetical unit or control register unit 
is a 1 or a 0. The means of doing this is shown at  X in Fig. 1. 
A two-way switch, controlled by a special flip-flop called a condi- 
tional flip-flop, is inserted between matrix A and matrix B. The 
conditional flip-flop can be set by an earlier micro-order with any 
digit from any one of the registers. Two separate addresses are 
wired into matrix B, and the one which passes into register I, and 
thus becomes the address of the next micro-order, is determined 
by the setting of the conditional flip-flop. 

Conditional micro-orders play the same part in the construction 
of micro-programmes as conditional orders play in the construction 
of ordinary programmes; apart from their obvious uses in micro- 
programmes for such operations as multiplication and division, 
they enable repetitive loops of micro-orders to be used. 

If desired, two branchings may be inserted in the connexions 
between matrix A and matrix B, so that any one of four alternative 
addresses for the next micro-order may be selected according to 
the settings of two conditional flip-flops. Another possibility is to 
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make the output from the decoding tree branch before it enters 
matrix A so that the nature of the micro-operation that is per- 
formed depends on the setting of the conditional flip-flop. 

The micro-programme wired on to the matrices contains sec- 
tions for performing the operations required by each order in the 
basic order code of the machine. To initiate the operation it is 
only necessary that control in the micro-programme should be sent 
to the correct entry point. This is done by placing the function 
digits of the order in the least significant part of register 11, the 
other digits in this register being made zero. The micro-programme 
is constructed so that when this number passes into register I, 
control in the micro-programme is sent to the correct entry point. 

The switching system in the arithmetical unit may either be 
designed to permit a large variety of micro-operations to be per- 
formed, or it may be restricted so as to allow only a small number 
of such operations. In a machine with a comprehensive order code 
there is much to be said for having the more flexible switching 
system since this will enable an economy to be made in the number 
of micro-orders needed in the micro-programme. 

A similar remark applies in connexion with the degree of flexi- 
bility to be provided when designing the switching system for the 
control register unit. If the specification of the machine allows 
the same number of registers to be used in the arithmetical and 
control sections, the construction of these two sections may be 
identical except as far as the number of digits is concerned. In 
a new machine under construction in the Mathematical Labora- 
tory, Cambridge, the registers are being constructed in basic units 
each containing five registers and an adder-subtractor together 
with the associated switching system. It is hoped that it will be 
possible to use identical units in the arithmetical unit and in the 
control register unit. 

3. Etample 

An example will now be given to show the way in which a micro- 
programme can be drawn up for a machine with a single-address 
order code covering the usual operations. It is supposed that the 
arithmetical unit contains the following registers: 

A multiplicand register 

B accumulator (least significant half) 

C accumulator (most significant half) 

D shift register 

The registers in the control register unit are as follows: 

E register connected to the access circuits of the store; the 
address of a storage location to which access is required 
is placed here 

sequence control register; contains address of next order due F 
to be executed 

G register used for counting 

It was assumed when drawing up the micro-programme that there 
was an adder-subtractor in the arithmetical unit with one input 
permanently connected to register D, and a similar adder-sub- 
tractor in the control register unit with one input permanently 
connected to register G. For convenience it was assumed that the 
switching systems in each case were comprehensive enough to 
provide any micro-operation required. I t  was further supposed that 
the arithmetical unit provided for 20 digits and that the numbers 
0, 1 and 18 could be introduced at will into one of the registers 
or the adder of the control register unit. Two conditional flip-flops 
are used. All micro-operations including those involving access to 
the store are supposed to take the same amount of time. Reference 
will be made to this point in r54. 

Table 1 gives the order code of the machine, and Table 2 the 
micro-programme. Each line of Table 2 refers to one micro-order; 
the first column gives the address of the micro-order, the second 
column specifies the micro-operations called for in the arithmetical 
unit of the machine, and the third column specifies the micro- 

Table 1 

Notation: Acc = accumulator 
Accl = most significant half of accumulator 
Accz = least significant half of accumulator 

C(X) = contents of X ( X  = register or storage location) 
n = storage location n 

Order Effect of order 

A n 
S n 

V n 
T n 

C(Acc) + C(n) to Acc 
C(Acc) - C(n) to Acc 

C(Accz).C(n) to Acc, where C(n) 2 0 
C(Acc1) to n, 0 to Acc 

W TI C(n) to A C C ~  

U n C(ACC~) to  n 
R n 
L n C(ACC).~"+' to ACC 

C(ACC) .Z-(n+l) to ACC 

G n 

I n 
0 n 

If C(Acc) < 0, transfer control to n; if C(Acc) 2 0, ignore 
(i.e., proceed serially) 
Read next character on input mechanism into 
Send C(n) to output mechanism 
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Table 2 

Notation: A ,  B ,  C, . . . stand for the various registers in  the arithmetical and control register units (see 03 of the text). 'C  to D '  indicates that 
the switching circuits connect the output of register C to  the input of register D; '(D+A) to C' indicates that the output of register A i s  con- 
nected to  the one input of the adding unit (the output of D is permanently connected to the other input), and the output of the adder to register C. 

A numerical symbol n in quotes (e.g., In') stands for the source whose output is the number n in units of the least significant digit. 

Ari thmeticul 
unit 

Control 
register unit 

Conditional 
fliP-.fEop 

Next 
micro-order 

Set Use 0 1 

0 
1 
2 
3 
4 

A 5  
S 6  
H 7  
V 8  
T 9  
u 10 
R 11 
L 12 
G 13 
I 14 
0 15 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 

C to D 
C to D 
Store to B 
Store to A 
C to Store 
C to Store 
B to D 
C to  D 

Input to Store 
Store to Output 
(D+Store) to C 
(D- Store) to C 

D to B ( R ) t  
C to D 
D to  C ( R )  
D to C (L)$ 
B to D 
D to B ( L )  
'0' to B 
B to C 
'0' to c 
B to D 
D to B ( R )  
C to D ( R )  
D to C 
( D + A )  to C 
B t o D  
D to B ( R )  
C to D ( R )  
D to C 
(D-A) to C 

F to G and E 
(G+ ' l ' )  to F 
Store to G 
G to E 
E to decoder 

E t o G  
E to G 
E to G 

(G-'l') to E 

(G-'l') to E 

'18' to E 
E to G 
(G- ' l ' )  to E 

1 
2 
3 
4 

16 
17 
0 
27 
25 
0 
19 
22 
18 
0 
0 
0 
0 
0 
20 
21 
11 
23 
24 
12 
26 
0 
28 
29 
30 
31 
28 
28 
34 
35 
36 
0 
0 

- 

1 

0 

0 

32 
33 
33 

37 

t Right shift. The switching circuits in the arithmetic unit  are arranged so that the least Significant digit of register C is placed in the most significant place of register 
B dur ing r ight shif t  micro-operations, and the most significant digit of register C (s ign digit) is repeated (thus making the correction for negative numbers). 

$ Left shift. The switching circuits are similarly arranged to  pass the most significant digit of register B to  the least significant place of register Cdur ing  left shift micro- 
operations. 
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operations called for in the control register unit. The fourth col- 
umn shows which conditional flip-flop, if any, is to be set and the 
digit which is to be used to set it; for example, (1)C, means that 
flip-flop number 1 is set by the sign digit of the number in register 
C, while (2)G, means that flip-flop number 2 is set by the least 
significant digit of the number in register G. In the case of uncon- 
ditional micro-orders columns 5 and 7 are blank and column 6 
contains the address of the next micro-order to be executed. In 
the case of conditional micro-orders column 5 shows which flip-flop 
is used to operate the conditional switch and columns 6 and 7 
give the alternative addresses to which control is to be sent when 
the conditional flip-flop contains a 0 or a 1 respectively. 

Micro-orders 0 to 4 are concerned with the extraction of orders 
from the store. They serve to bring about the transfer of the order 
from the store to register E and then cause the five most significant 
digits of the order to be placed in register I1 with the result that 
control is transferred to one of the micro-orders 5 to 15, each of 
which corresponds to a distinct order in the machine order code. 
In this way the sequence of micro-orders needed to perform the 
particular operation called for is begun. 

The way in which the various operations are performed can 
be followed from Table 2. In the section dealing with multipli- 
cation, it is assumed that numbers lie in the range -1 < x < 1 
and that negative numbers are represented in the machine by their 
complements with respect to 2. It will be noted that the process 
of drawing up a micro-programme is very similar to that of draw- 
ing up an ordinary programme for an automatic computing ma- 
chine and the problems involved are very much alike. 

4. The timing of micro-operations 

The assumption that all micro-operations take the same length 
of time to perform is not likely to be borne out in practice. In 
particular in a parallel machine it may not be possible to design 
an adder in which the carry propagation time is sufficiently short 
to enable an addition to be performed in substantially the same 
length of time as that taken for a simple transfer. It will be neces- 
sary, therefore, to arrange that the wave-form generator feeding 
the decoding tree should, when suitably stimulated by a pulse from 
one of the outputs from matrix A, supply a somewhat longer pulse 
than that normally required. Other operations may take many times 
as long to perform as an ordinary micro-order; for example, access 
to and from the store (particularly if a delay store is used) and 
operation of the input and output devices of the machine. The 
sequence of operations in the micro-programme must therefore 
be interrupted. One way of doing this is to prevent pulses from 

the wave-form generator reaching the decoding tree during the 
waiting period. This method, although quite feasible, appears to 
involve just the kind of complication which the present system 
is designed to avoid. A more attractive system is to make the 
machine wait on a conditional micro-order which transfers control 
back to itself unless the associated conditional flip-flop is set. 
Setting of this flip-flop takes place when the operation is com- 
pleted, and control then goes to the next micro-order in the se- 
quence. The machine is thus in a condition of ‘dynamic stop’ while 
waiting for the operation to be completed. This system has the 
advantage that no complication is introduced into the units sup- 
plying the wave-forms to the decoding tree and that the control 
equipment required is similar to that already provided for other 
purposes. 

5. Discussion 

It will be seen that the equipment needed to execute a compli- 
cated order in the machine order code is of the same form as that 
required for a simple one, namely outlets from the decoding tree 
and diodes in the matrices. Quite complicated orders can, there- 
fore, be built into the machine without difficulty. In particular, 
arithmetical operations on numbers expressed in floating binary 
form and other similar operations can be micro-programmed and 
it is found that they do not involve very large numbers of micro- 
orders. For example, a micro-programme providing for the float- 
ing-point operations of addition, subtraction, and multiplication 
needs about 70 micro-orders. The switching system in the arith- 
metical unit must, of course, be designed with these operations 
in view. The decoding tree and matrices of a parallel machine 
with 40 digits in the arithmetical unit and provision for 256 
micro-orders would only amount to about 15% of the total equip- 
ment in the machine, so that it appears that such a machine can 
well be provided with built-in facilities of considerable complexity. 

The number of micro-orders needed in a complicated micro- 
programme can sometimes be reduced by making use of what 
might be called micro-subroutines. For example, when two num- 
bers have to be added together in a floating binary machine, some 
shifting of one of them is usually necessary before the addition 
can take place. By making the micro-orders for this shifting opera- 
tion serve also when a multiplication is called for, considerable 
saving is effected. 

Four registers is the bare minimum needed in the arithmetical 
unit in order to enable the basic arithmetical operations to be 
performed. If any extension or refinement of the facilities provided 
is required, it may be necessary to increase the number of registers. 
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For example, four registers are not sufficient to enable a succession 
of products to be accumulated without the transfer of intermediate 
results to the store, since the accumulator must be clear at the 
beginning of a multiplication. The addition of one register enables 
the accumulation of products to be provided for in the micro- 
programme. If this register is associated with the outlet from the 
store, it also enables some of the waiting time for storage access 
to be eliminated. To do this the micro-programme is arranged to 
call for a number from the store as soon as it is known that the 
number will be required and to continue with other necessary 
micro-operations before finally proceeding to use the number. The 
‘dynamic stop’ would occur just before the number is required for 
use. Another way of saving time is to arrange, in the case of those 
orders which permit it, for the next order to be extracted from 
the store before the operation currently being performed has been 
completed. 

The minimum number of registers required in the control 
register unit of the machine for the simplest mode of operation 
is three. If extra registers are provided facilities similar to those 
provided by the B-lines in the machine at  Manchester University 
could be included in the micro-programme. 

Section 3 1 Processors defined by a microprogram 

6. 

All the discussion so far has been with reference to parallel ma- 
chines because the technique described in this paper is most 
adapted to that type of machine. It is, however, possible to design 
a serial machine along the same lines. In a parallel computer with 
an asynchronous arithmetical unit every gate requires only one 
kind of wave-form to operate it and the timing of that wave-form 
is not critical. In a serial machine, on the other hand, different 
gates require different wave-forms and the same gate may require 
different wave-forms at  different times; further, all these wave- 
forms must be critically timed. These complications may be 
handled by including in the micro-control unit a third matrix, C, 
for selecting the appropriate wave-form for each micro-order. The 
main wave-form, routed by the decoding tree and matrix A, opens 
a gate which is fed by a wave-form selected by matrix C. This 
enables a wave-form of correct duration to be applied to any 
selected gate in the arithmetical or control sections of the ma- 
chine. 

Microprogramming applied to serial machines 
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Chapter 29 

The design of a general-purpose 
microprogram-controlled computer 
with elementary structure1 

Thomas W. Kampe 

Summary This paper presents the design of a parallel digital computer 
utilizing a 20-psec core memory and a diode storage microprogram unit. 
The machine is intended as an on-line controller and is organized for ease 
of maintenance. 

A word length of 19 bits provides 31 orders referring to memory loca- 
tions. Fourteen bits are used for addressing, 12 for base address, one for 
index control, and one for indirect addressing. A 32nd order permits the 
address bits to be decoded to generate special functions which require no 
address. 

The logic of the machine is resistor-transistor; the arithmetic unit is 
a bus structure which permits many variants of order structure. 

In order to make logical decisions, a “general-purpose” logic unit has 
been incorporated so that the microcoder has as much freedom in this area 
as in the arithmetic unit. 

Introduction 

This paper discusses the logical design of a binary, parallel, real- 
time computer. Only those aspects of packaging and circuitry 
which bear directly on this topic will be considered. 

Since the specifications for the job a computer is to perform 
are not enough to fix the design, the logical designer is faced with 
an undetermined system. One of his main functions is to analyze 
the system in its natural environment, i.e., with malfunctions, 
operator errors, etc., and to supply the remainder of the side 
conditions which do fix the design. 

In this discussion, the exposition will be directed toward the 
design philosophy which led to a machine now being built. In 
order to accomplish this, we shall consider the functional require- 
ments, their analysis in terms of the state of the art, the basic 
design decisions, and, finally, a description of the computer as it 
stands. 

‘ I R E  Trans., EC-9, vol. 2, pp. 208-213, June, 1960. 

Functional requirements 

The design of the computer (known, for a variety of reasons, as 
the SD-2) was undertaken to supply a computer capable of mod- 
erately fast arithmetic with perhaps five decimal places of accu- 
racy and 3000 or more words of storage. Furthermore, the com- 
puter must reside in a hostile environment (a small house, 0” to 
85°C temperature), withstand severe shocks, and be maintained 
by men with only two weeks training on the system. The volume 
limitation is 40 cubic feet. Within this space must reside the 
control computer, memory, power supplies, complete maintenance 
facilities, and sufficient input/output equipment to handle 20 shaft 
position outputs, 30 such inputs, numerous switch settings, and 
20 or more display or relay signals. 

The final specification (or blow) was that 15 months were 
available from the start of preliminary design to the delivery of 
an operating instrument with debugged program. 

Design analysis 

The maintenance requirement was evidently the major problem. 
In order to achieve the simplicity required, two design criteria 
were necessary. 

First, the computer had to be readily understood. This implied 
that the usual clever logical tricks such as intensive time sharing 
of control and arithmetic were undesirable. 

Second, if built-in maintenance facilities were to be kept sim- 
ple, the machine must be designed with this in mind. 

Since temperature and reliability were important, an extremely 
conservative approach had to be taken with respect to component 
performance. 

With the schedule requirements, a machine which could be 
designed and released in pieces was needed. Since the control 
system is usually the most troublesome part of a computer to 
design, a simple control was needed. 
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The volume available, together with the schedule, required a 
logical design with natural packaging properties in the sense that 
it should break, in a natural way, into logical packages of a reason- 
able size having a minimum of interpackage communication. 

Design decisions 

The need for 2000 operations per second poses a serious access 
problem with a serial memory, unless one resorts to several simul- 
taneously operating control units which are neither small nor 
simple. Hence, a random access memory seemed advisable. Mag- 
netic core memories at  85°C are a problem, but they can be built, 
provided memory cycle time is not too short. The memory was 
chosen as 4096 words of core storage, with a 20-psec cycle time. 

The requirement for training a man in two weeks to maintain 
the machine argues for a simple-structured parallel machine. 
Providing that much use is made of asynchronous transfer, there 
are a variety of simple maintenance methods, particularly if a bus 
structure is adopted. Also, asynchronous, or semi-asynchronous, 
parallel machines require only average performance of a set of 
components, not of any particular component; the central limit 
theorem of statistics can come to the aid of reliability. This ap- 
proach was finally adopted. 

The simplicity of both design and understanding is aided by 
the use of a microprogram control system. Further, maintenance 
is made rather simple by two provisions on the maintenance con- 
sole. 

The first of these is a manner of going through the micro- 
program on a step-by-step basis. While this tests little of the 
dynamics, it can often locate totally defective parts, and it helps 
factory checkout immeasurably. 

The second is a means of taking out the microprogram unit and 
substituting a set of switches. This permits a maintenance man 
to exercise specific registers, or the memory, at  will. 

This is a powerful tool, and is almost free with a microprogram 
control. Finally, and rather pragmatically, microprogramming 
permits “last minute” changes in machine operation without seri- 
ous hardware modifications. This approach was chosen. 

Regardless of the control used, at various times in the process 
of executing orders, decisions must be made. Occasionally these 
are on a single bit, more often on two, and occasionally on more 
than two. If one excludes order decoding, only such functions as 
zero detection require the use of more than two bits. At this point, 
the logical designer is faced with a rather sticky decision: whether 
to design a specific set of decision logic, which is cheap to build 
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but sometimes messy, or to use some microcontrolled logic- 
generating scheme. 

In this case, the latter alternative was taken. A unit, called (for 
several obscure reasons) the alteration unit, was designed which 
amounted to a three-address, one-bit unit. It can generate any 
Boolean function of two binary variables and transmit this value 
to another variable. A special set of logic was needed for detecting 
zeros. 

Because of the rather wild nature of the inputs, it seemed 
desirable to include a trapping mode. The logic for this was made 
an adjunct to the alteration unit. 

The circuitry chosen was resistor-transistor logic, which yields 
either Sheffer stroke or NOR logic, as one prefers, high or low 
true logic, and p-n-p or n-p-n transistors. In this case, the com- 
bination was high true logic and p-n-p transistors, so that the 
logical operation is Sheffer stroke. Because of temperature and 
reliability requirements, the maximum frequency available was a 
250-kc square wave. This gave a cycle time of 4 p e c  available 
for asynchronous transfer in any sequence of logic. 

An index register seemed advisable because of the amount of 
data processing. Thus, additions were needed for indexing, arith- 
metic, and counter advance. It seemed undesirable to have more 
than one parallel adder, so that an adder accessible to all registers 
was chosen. This was another argument for a bus structure. 

Because of the multiplicity of problems being handled simul- 
taneously, one index register was not really enough. Rather than 
add another register, indirect addressing was chosen. 

At this point, one needs 12 bits for address, one for index 
tagging, and one to specify whether the address is direct or in- 
direct, or 14 bits for operand selection. Thirty-two orders was a 
tight minimum, so the minimum word length was 19 bits. Since 
this was consistent with five decimal place accuracy, it was tenta- 
tively chosen. It was decided, however, to design a structure 
basically suited to any length word. 

Shifting is necessary to multiply and divide and is required on 
two registers, yet shift registers for asynchronous operation are 
complex. Hence, it was decided to put the shift facility on the 
data transfer bus. By providing complementing here, subtraction 
could be generated. 

It was decided to use two-complement arithmetic, first because 
of the simplicity of the multiply-divide logic, and second because 
it avoids the whole negative zero question. 

The precise number of microsteps needed was determined by 
a trial microprogram. The machine was designed for up to 512 
microsteps although only 384 are now used. Eight bits were in 
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a register, called J, and one was a flip-flop, TO, in the alteration 
unit, thus allowing fixed sequence with a one-bit micropro- 
grammed choice. This, incidentally, is the genesis of the name 
“alteration unit.” 

J 
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UNIT c- 

The SD-2 computer 

Figure 1 is a block diagram of the computer. There will be, pres- 
ently, a block-by-block description of the computer. 

The two boxes on the left were added to facilitate input and 
output. The output buffer holds 20 words, and outputs all values 
in a 4.8-msec cycle, thus providing for nearly continuous outputs. 
The output distributor is a selection system which allows the 
programmer to transmit the contents of the accumulator onto one 
of eight channels to control external devices. The “inputs” line 
represents up to 32 channels which can be read into the accumu- 
lator. The numbers 8 and 32 are purely arbitrary; the upper limit 
of 32 is a microcode convenience only. 

The alteration unit, in addition to its decision making duties, 
has several other functions. It has a five bit counter, used for 
microsubroutines, which can be set to any value chosen or to any 
number on the arithmetic unit. The alteration unit can sense when 
it goes from all zeros to all ones. In addition, the flip-flops con- 
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Fig. 1. Computer block diagram. 
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Fig. 2. Arithmetic flow. 

trolling initial carry in the adder, end carry in shifting, and mem- 
ory read or write control are in this unit. 

Figure 2 is a block diagram of the arithmetic unit. Information 
may be put onto the b bus from any register, or from outside 
sources, such as inputs, or constants from the microprogram unit; 
thence to the shift unit, and finally to the d bus. From the d bus, 
it may be sent to other places, such as the output distributor, 
microprogram register, etc., or to an arithmetic register. 

Data and addressing between memory and the arithmetic unit 
have their own private channels, leaving the bus free during 
memory operation. The memory buffer and address register are 
a part of the arithmetic unit. 

Figure 3 is an expanded view of this unit. Capital letters stand 
for registers, small letters for logical entities. Registers A, B, C 
and E are simply storage registers, and are used as the Accumu- 
lator, B-line, Counter and Extension (least significant arithmetic) 
register. The Distributor, D, is the memory buffer, and is often 
used as working storage. Registers F and G are the inputs to the 
adder logic. The a logic is the algebraic sum of ( F )  + (G); e is 
a rather weird logic, (e = F + G, which is used in generating 
the extract order); f, which yields FG + F G ,  is used for the 
“exclusive” or generation; c is the carry logic; g is a constant 
emitter, under microprogram control; and h is a set of gates used 
for input. 

As a number moves from b to d, one of five operations may 
be performed; uiz., normal, shift left one bit, shift right one bit, 
complement or shift left 5 bits. The last is used for automatic fill 
and in connection with the microprogram unit control. 

As an example, to add the number in the A and D registers, 
three microprogram steps would be needed. First, transfer A to 
G, D to F, and finally a to A; 12 psec would be required. 
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Fig. 3. Arithmetic unit detail. 

Figure 4 is a diagram of the microprogram unit. The eight-bit 
J register, augmented by the TO flip-flop of the alteration unit, 
is decoded for up to 512 steps. Students of microprogramming will 
recognize the Wilkes model in its pure form [Wilkes and Stringer, 
19531. The “next” value of the microprogram register may be 
chosen in one of three ways. 

First, the value may be controlled by the microprogram itself. 
Second, five bits of the bus, corresponding to the order portion 

of the word, may be entered; the other three bits are set to zero. 
In this manner, the order decoding is accomplished. 

Third, all eight bits of the J register may be filled from the 
d bus. In practice, the order is shifted five bits to the left, pre- 
senting eight bits of the address to get the J register. In this 
manner, one may generate “no address” commands. 

In principle, the programmer may start on any microstep which 
amuses him; in practice, only a limited number of these will yield 
no-address orders, the other steps being used for parts of add, 
subtract, order procure, etc. The author has no doubt, however, 
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that someone will find a useful reason for popping into the middle 
of divide or some other command. There is no feature of a ma- 
chine, however pathological, which cannot be exploited by a 
programmer. 

The actual decoding of these nine bits is accomplished partly 
by logic, and partly by current switching of the clock pulse. A 
diode matrix is used to convert the microsteps into control signals. 

No more than 15 micro operations may be called out on a single 
step, including selection of the next microorder. 

When stepping the microregister, a ploy is used to reduce the 
number of diodes. Instead of specifying the next step, the micro- 
coder specifies the bits of J which he wishes to reverse. Instead 
of the minimum latency coding of earlier days, the microcoder 
of the SD-2 must do minimum diode coding. This is roughly anal- 
ogous to asking for a fast, efficient computer program containing 
a minimum of 1’s. The author, as well as others, has spent endless 
hours trying to devise a computer program to do such microcoding, 
with no results. 

One may note in passing that the man who wrote the micro- 
code, Tomo Hayata, has for several years specialized in advanced 
programming problems. Wilkes’ views,l that logical design will 
in the future be done by programmers, seem to be verified here. 
Because of the limited microarithmetic available here, micro- 
coding of the highest order is a must, since each microstep is 4 
psec of time. 

For simple orders (e.g., extract), the processes of order procure, 
indexing (but not indirect addressing), operand procure and exe- 
cution can be compressed into the time for two memory cycles, 
Le., 40 psec. Each indirect reference adds another memory cycle 

‘Private communication; Aug. 17, 1959. 

Fig. 4. Microprogram unit. 
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to this time. Only on multiply, divide, and shift does the ultra- 
simple structure begin to be expensive in time. 

If the temperature requirement were not imposed, the clock 
frequency could be doubled, materially improving the perform- 
ance of the machine on multicycle orders. 

Figure 5 is a block diagram of the alteration unit. It consists 
of gates which permit entry of conditions within the computer 
or the outside world, flip-flops used as working storage, flip-flops, 
including TO, to make its conclusions known to all and sundry, 
a five-bit tally register ( I ) ,  a circuit to detect a zero on the d bus, 
and the trap logic. There are as many as 20 input gates, 9 storage 
flip-flops and 10 output flip-flops, exclusive of TO. 

The 1 register can change its contents in one of two ways, viz., 
counting down by one, or by accepting an entry from the d bus. 
It may transmit intelligence in two ways, viz., to the b bus, or 
by notifying the input gate system that, should anyone care, it 
has just counted past zero. 

The zero detector signals the truth of the statement that d is 
identically zero. In practice, it checks only the lower digits, not 
the sign. This is related to the existence of the number -1 in 
a two-complement system, which is the system’s answer to the 
negative zero of a one’s complement logic. 

The trap logic is as follows: one of the output signals of the 
alteration unit signals whether or not the system is receiving trap 
signals; if it is not, the trap logic makes a note of callers. When 
the system is again accepting those signals, it transmits whether 
or not signals have been received, and resets its memory to zero. 
The timing is such that n o  trap signal will ever be lost. 

+ TRAP LOGIC 

+ 
LOGIC 
UNIT - 

--+ - 
+ 

The lines going into the logic unit are actually two busses. Any 
logic source may read to either bus. The logic unit has four control 
wires from the microprogram unit, specifying which of the 16 
Boolean functions of the two busses is to be put on the output 
bus. This value is then routed to the appropriate logic destination. 

The output flip-flops have inputs from the logic unit, and their 
outputs go to various control points in the machine. Three major 
points are: (1) establishing whether a memory cycle is read/restore 
or erase/write; (2) setting the initial carry in the adder; and (3) 
determining what value shall shift into the vacant spot on a left 
or right shift. 

The initial carry is used for more than simply adding one to 
a value; since the logic is two complement, but the one comple- 
ment one is transmitted on the bus, the initial carry is, in general, 
one during subtraction and zero during addition. 

Microprogram details 

Figure 6 gives circuit details of the microprogram decode system. 
The nine flip-flops used are broken into two groups, one of four, 
the other of five flip-flops. These are decoded into, respectively, 
16 and 32 wires. In each group, one and only one wire goes nega- 
tive. When the clock signal, of 2 p e c  width, is applied to the 
emitters of the first set of 16 gates, it is passed by the selected 
gating transistor. From the collector of this transistor, it is routed 
to the emitter of a set of 32 transistors; again, only one can pass 
current. Thus, the clock signal is routed to one of 16 x 32 x 512 
lines. Diodes on the selected line then cause this signal to be 
routed to appropriate gates in the arithmetic or alteration unit. 

By appropriate placement of diodes, a microstep can operate 
a variety of gates, the number of which is limited by the current 
available. 

Some of the microcontrol wires return to the J register so that 
the microcoder may control the selection of the next microstep. 
This register is so designed that the actual change of state is 
inhibited until the clock goes negative. 

While each output of the decoding trees may go to 16 bases, 
only one transistor of the 16 will have a signal on the emitter; 
thus only one must be driven. 

From an engineering point of view, the control of a computer 
is an elaborate timing system. A microprogram unit is thus a 
programmable timing generator. The gating transistor/diode de- 
coding system is but one of many ways to  achieve this. 

Wilkes has observedl that, with the diode system, one has an 

Fig. 5. Alteration unit. I M .  V. Wilkes, private communication; Aug. 17, 1959. 
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Fig. 6. Details of the microdecode system. 

acute packaging problem. He and his co-workers have been led 
to consider the use of switch-core decoding [Wilkes et al., 1958al. 

Eachusl and his co-workers have evolved yet another switch- 
core system which does not depend on coincident current switch- 
ing. 

Order code 

Since the order code is only a small problem in the design of a 
microprogrammed machine (GOTT SEI DANKE), there is little 
need to dwell on it. There are several comments of design interest, 
however. 

We were unable, with this structure, to get the multiplication 
below five microsteps per iteration, nor the divide below six, thus 
costing respectively 20 and 24 psec per bit dealt with. Moreover, 
division required some precalculations (overflow detect) and some 

'Dr. Joseph Eachus of Minneapolis-Honeywell, private conversation; Sep- 
tember, 1959. 

postcalculation (obtaining a rounded quotient with a correct re- 
mainder) which further boosted its time. 

Because of the asynchronous nature of transfer, it is not possible 
to read into and out of a register simultaneously. Hence, shifting 
one register requires two steps, or 8 psec per bit, and double-length 
shifting requires 16 psec. This is painful. 

Because of the short words, four double-length orders were 
microprogrammed: add, subtract, clear and add, and store. These 
take a total of 60 psec to execute. 

A rich collection of branch orders was included. BRanch Un- 
conditionally, BRanch Negative, and BRanch Zero are self- 
explanatory. BRanch on B is the tally loop order which decreases 
(B) by one, and branches if it does not go negative. BR1, BR2, 
BR3, and BR4 are sense toggle branch; if the toggle is set, it is 
turned off and the program branches. These sense toggles are 
actually storage flip-flops T1, T2, T3, and T4 of the alteration unit. 
These may be set by other orders. T1 is also used as an overflow 
mark. 
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The machine has a “dynamic” idle. When it is halted, either 
externally or by order, this fact is observed by the microprogram, 
through the alteration unit, whereupon the microprogram goes 
into a tight loop, continuously asking, “Can I go? Can I go? Can 
I go?. . . .” Two forms of halting are provided. In “Halt and 
Display,” registers are presented; in the other halt, the console 
lights are left unaltered. A manual halt is equivalent to halt and 
display. 

For an addressed order, bit positions one through five are sent 
into the microprogram unit. During order procure, the micro- 
program examines bits zero and six for indirect addressing and 
index modification. 

A nonaddress order is recognized by the binary equivalent of 
31 in the order bits; the microprogram unit causes the order word 
to shift left 5 bits, and the 8 high bits of the “address” field enter 
the J register. 

Conclusion 

This paper is not intended to be an argument in favor of the 
general acceptance of the SD-2 structure as an ideal. Like all 
computers, the SD-2 is a state-of-the-art device, intended not only 
to meet the needs of the problems at hand, but also, more impor- 
tantly, to meet the side conditions of its use. In a vague analogy, 
the computer specification is like a partial differential equation. 
The logical designer must choose the boundary conditions and 
solve the problem, or at least approximate the solution. 

With today’s emphasis on system speed performance, some 
serious mental gear-shifting on the designer’s part is required in 
order to design a simple machine. It goes against the grain of 
instinct and experience. A posteriori, the SD-2 could have been 
made even simpler, particularly with respect to several peripheral 
areas not discussed in the paper. 

Several conclusions can be drawn here, however, The bus 
structure is easy to fabricate and maintain; this has been proven 
on the MILSMAC, a breadboard for the SD-2. It is a highly flexible 
structure, permitting wide variation in order code with no change 
in arithmetic unit. At the same time, the components are cascaded 
to a point where one has the absurd situation of fast-switching 
in a relatively slow computer. A designer of a bus-structured 
machine would do well to consider alternatives, such as multiple 
busses, accumulators, etc., to permit more parallelism when speed 
is important. 

The use of a special-purpose logic unit, such as the alteration 
unit of the SD-2, gives a freedom of design not possible with a 
special-purpose logic. At the same time, it uses more parts, is slow 
in handling multiple variable problems, and requires a great deal 
of control input. It appears to be a weapon of opportunity. 

The use of microprogramming is much the same as the general 
logic unit. Its flexibility and speed of design are unquestionable. 
Also, it uses more parts than a special-purpose control. 

There is no real substitute for a special-purpose design. The 
use of generalized elements in computer design can be justified 
only by the side conditions, never by the basic specification. 
Where simplicity and speed of design are major items, their use 
seems indicated. 

Wilkes once presented a paper on the best way to design a 
computer and launched the microprogramming notions. The 
author would like to comment that if ease and reliability of design 
are criteria, he was absolutely correct. 
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Section 4 

Processors based on a programming 
language 

Programming-language-based processors are described in 
Chap. 3 (page 73). Three examples are presented in this sec- 
tion. Two of the languages, FORTRAN and EULER, are algebraic 
languages operating on conventional data types, whereas IPL-VI 
is more like a conventional machine language operating on 
unconventional data types (i.e., list structures). A peculiar fea- 
ture of IPL-VI is its conception of data as program (as well as 
of program as data) and the multiprogramming organization 
to which this led. 

A command structure for complex information processing 

The IPL-VI processor (Chap. 30) discussed in Part 3, Sec. 5, 
is an outgrowth of the IPL series of programming languages 
by Newell, Shaw, and Simon. The paper seriously treats both 
the language and the merits of casting a language in a hardware 
processor. IPL-VI was never implemented in hardware. (A partial 
IPL-V processor for the CDC 3600 was built at the Argonne 
National Laboratory.) A hardware processor for IPL-VI in the 
third generation would undoubtedly exist as an interpreter in 
a mic roprogrammed processor. 

System design of a FORTRAN machine 

This paper (Chap. 31) presents a way to map a software pro- 
gram into hardware. The machine’s passes (or modes) corre- 

spond to activities one would see when compiling, loading, and 
executing a FORTRAN program. 

BCD format is used for the arithmetic. The symbol table is 
simply organized and, therefore, has to be searched. A more 
serious approach for the actual implementation of such a 
machine might follow the lines of EULER (Chap. 32). 

A microprogrammed implementation of EULER 
on IBM System 360IModel  30 

This very clearly written paper describes a processor to imple- 
ment an ALGOL-like language [Wirth and Weber, 19661. An 
earlier processor was proposed to directly execute ALGOL 
[Anderson, 19611. It is implemented using the Model 30 IBM 
System/360 P.microprogrammed. We include the paper both 
because it describes the Model 30 and because of EULER. 

The P.language operates like a conventional compiler and 
operating system. The description presents clearly the process 
of compiling before execution. 

The microprogramming aspects of the Model 30 are typical 
of other IBM System/360 models. The IBM approach to a 
P.microprogrammed is significantly different from that in 
Kampe’s SD-2 (Chap. 29). In the 360 a microprogram instruc- 
tion is encoded in a long word (60 to 100 bits, depending on 
the model) with a number of microcoded operations which can 
be selected in parallel. The SD-2 uses a short word, and only 
one operation is encoded in a single instruction. 
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Chapter 30 

A command structure for complex 
information processing1 

1. C. Shaw / A. Newell / H. A. Simon / T. 0. Ellis 

The general-purpose digital computer, by virtue of its large ca- 
pacity and general-purpose nature, has opened the possibility of 
research into the nature of complex mechanisms per se. The chal- 
lenge is obvious: humans carry out information processing of a 
complexity that is truly baffling. Given the urge to understand 
either how humans do it, or alternatively, what kinds of mecha- 
nisms might accomplish the same tasks, the computer is turned 
to as a basic research tool. The varieties of complex information 
processing will be understood when they can be synthesized: when 
mechanisms can be created that perform the same processes. 

The last few years have seen a number of attempts at synthesis 
of complex processes.  these have included programs to discover 
proofs for theorems [Newell et al., 1956, 1957b1, programs to 
synthesize music [Brooks et al., 1957b], programs to play chess 
[Bernstein et al., 1958; Kister et al., 19571, and programs to simulate 
the reasoning of particular humans [Newell et  al., 19581. The feasi- 
bility of synthesizing complex processes hinges on the feasibility 
of writing programs of the complexity needed to specify these 
processes for a computer. Hence, a limit is imposed by the limit 
of complexity that the human programmer can handle. The 
measure of this complexity is not absolute, for it depends on the 
programming language he uses. The more powerful the language, 
the greater will be the complexity of the programs he can write. 
The authors’ work has sought to increase the upper limit of com- 
plexity of the processes specified by developing a series of lan- 
guages, called information processing languages (IPL’s), that re- 
duce significantly the demands made upon the programmer in his 
communication with the computer. Thus, the IPL’s represent a 
series of attempts to construct sufficiently powerful languages to 
permit the programming of the kinds of complex processes previ- 
ously mentioned. 

The IPL’s designed so far have been realized interpretively on 
current computers [Newell and Shaw, 1957al. Alternatively, of 
course, any such language can be viewed as a set of specifications 
for a general-purpose computer. An IPL can be implemented far 

more expeditiously in a computer designed to handle it than by 
interpretation in a computer designed with a quite different com- 
mand structure. The mismatch between the IPL’s designed and 
current computers is appreciable: 150-machine cycles are needed 
to do what one feels should take only 2 or 3 machine cycles. (It 
will become apparent that the difficulty would not be removed 
by “compiling” instead of “interpreting,” to  resurrect a set of 
well-worn distinctions. The operations that are mismatched to 
current computers must go on during execution of the program, 
and hence cannot be compiled out.) 

The purpose of this paper is to consider an IPL computer, that 
is, a computer constructed so that its machine language is an 
information processing language. This will be called language 
IPL-VI, for it is the sixth in the series of IPL’s that have been 
designed. This version has not been realized interpretively, but 
has resulted from considering hardware requirements in the light 
of programming experience with the previous languages. 

Some limitations must be placed on the investigation. This 
paper will be concerned only with the central computer, the 
command structure, the form of the machine operations, and the 
general arrangements of the central hardware. It will neglect 
completely input-output and secondary storage systems. This does 
not mean these are unimportant or that they present only simple 
problems. The problem of secondary storage is difficult enough 
for current computing systems; it is exceedingly difficult for IPL 
systems, since in such systems initial memory is not organized in 
neat block-like packages for ease of shipment to the secondary 
store. 

Nor is it the case that one would place an order for the IPL 
computer about to be described without further experience with 
it. Results are not entirely predictable. IPL’s are sufficiently differ- 
ent from current computer languages that their utility can be 
evaluated only after much programming. Moreover, since IPL’s 
are designed to specify large complicated programs, the utility 
of the linguistic devices incorporated in them cannot be ascer- 
tained from simple examples. 

One more caution is needed to provide a proper setting for ‘Proc. WJCC, pp. 119-128, 1958 
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this paper. Most of the computing world is still concerned with 
essentially numerical processes, either because the problems 
themselves are numerical or because nonnumerical problems have 
been appropriately arithmetized. The kinds of problems that the 
authors have been concerned with are essentially nonnumerical, 
and they have tried to cope with them without resort to arithmetic 
models. Hence the IPL’s have not been designed with a view to 
carrying out arithmetic with great efficiency. 

Fundamental goals and devices 

The basic aim, then, is to construct a powerful programming 
language for the class of problems concerned. Given the amount 
and kind of output desired from the computer, a reduction in the 
size and complexity of the specification (the program) that has to 
be written in order to secure this output is desired. 

The goal is to reduce programming effort. This is not the same 
as reducing the computing effort required to produce the desired 
output from the specification. Programming feasibility must take 
precedence over computing economics; since it is not yet known 
how to write a program that will enable a computer to teach itself 
to play chess, it is premature to ask whether it would take such 
a computer one hour or one hundred hours to make a move. This 
is not meant as an apology, but as support for the contention that, 
in seeking to write programs for very large and complicated tasks, 
the overriding initial concerns must be to attain enough flexibility, 
abbreviation, and automation of the underlying computing proc- 
esses to make programming feasible. And these concerns have to 
do with the power of the programming language rather than the 
efficiency of the system that executes the program. 

In the next section a straightforward description of an IPL 
computer is begun. To put the details in a proper setting, the 
remainder of this section will be devoted to the basic devices 
that IPL-VI uses to achieve a measure of power and flexibility. 
These devices include: organization of memory into list structure, 
provision for breakouts, identity of data with program, two-stage 
interpretation, invariance of program during execution, provision 
for responsibility assignments, and centralized signalling of test 
results. 

List structure 

The most fundamental and characteristic feature of the IPL’s is 
that they organize memory into list structures whose arrangement 
is independent of the actual physical geometry of the memory cells 
and which undergo continual change as computation proceeds. 
In all computing systems the topology of memory, the character- 
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istics of hardware and program that determine what memory cells 
can be regarded as “next to” a given cell, plays a fundamental 
role in the organization of the information processing. This is 
obviously true for serial memories like tape; it is equally true from 
random access memories. In random access memories the topo- 
logical structure is derived from the possibility of performing 
arithmetic operations on the memory addresses that make use of 
the numerical relations among these addresses. Thus, the cell 
with address 1435 is next to cell 1436 in the specific sense that 
the second can be reached from the first by adding one to the 
number in a counter. 

In standard computers use is made of the static topology based 
on memory addresses to facilitate programming and computation. 
Index registers and relative addressing schemes, for example, make 
use of program arithmetic and depend for their efficacy upon an 
orderly matching of the arrangement of information in memory 
with the topology of the addressing system. 

When memory is organized in a list structure, the relation 
between information storage and topology is reversed. The topol- 
ogy of memory is continually modified to adapt to the changing 
needs of organization of memory content. No arithmetic operations 
on memory addresses are permitted; the topology is built on a 
single, asymmetric, modifiable, ordinal relation between pairs of 
memory cells which is called adjacency. The system contains 
processes that make use of the adjacency relations in searching 
memory, and processes that change these relations at will inex- 
pensively in the course of processing. 

A list structure can be established in computer memory by 
associating with each word in memory an  address that determines 
what word is adjacent to it, as far as all the operations of the 
computer are concerned. Memory space of an additional address 
associated with each word is given up, so that the adjacency 
relation can be changed as quickly as a word in memory can be 
changed. Having paid this price, however, many of the other basic 
features of IPLs are obtained almost without cost: unlimited 
hierarchies of subroutines; recursive definition of processes; vari- 
able numbers of operands for processes; and unlimited complexity 
of data structure, capable of being created and modified to any 
extent at execution time. 

Breakouts 

Languages require grammar-fixed structural features so that they 
can be interpreted. Grammar imposes constraints on what can be 
said, or said simply, in a language. However, the constraints created 
by fixed grammatical format can be alleviated at the cost of intro- 
ducing an additional stage of processing by devices that allow one 
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to “break out” of the format and to use more general modes of 
specification than the format permits. Devices for breakouts ex- 
change processing time for flexibility. Several devices achieve this 
in IPL-VI. Each is associated with some part of the format. 

As an illustrative example, 1PL-VI has a single-address format. 
Without breakout devices, this format would permit an informa- 
tion process to operate on only a single operand as input, and 
would permit the operand of a process to be specified only by 
giving its address. Both of these limitations are removed: the first 
by using a special communication list to store operands, the second 
by allowing the address for an operand to refer either to the 
operand itself or to any process that will determine the operand. 

The latter device, which allows broad freedom in the method 
of specifying an operand, illustrates another important facet of 
the flexibility problem. Breakouts are of great importance in re- 
ducing the burden of planning that is imposed on the programmer. 
It is certainly possible, in principle, to anticipate the need for 
particular operands at particular stages of processing, and to pro- 
vide the operands in such a way that their addresses are known 
to the programmer at the appropriate times. This is the usual way 
in which machine coding is done. However, such plans are not 
obtained without cost; they must be created by the programmer. 
Indeed, in writing complex programs, the creation of the plan of 
computation is the most difficult part of the job; it constitutes the 
task of “programming” that is sometimes distinguished from the 
more routine “coding.” Thus, devices that exchange computing 
time for a reduction in the amount of planning required of the 
programmer provide significant increases in the flexibility and 
power of the language. 

Identity of data with programs 

In current computers, the data are considered “inert.” They are 
symbols to be operated upon by the program. All “structure” of 
the data is initially developed in the programmer’s head and 
encoded implicitly into the programs that work with the data. The 
structure is embodied in the conventions that determine what bits 
the processes will decode, etc. 

An alternative approach is to make the data “active.” All words 
in the computer will have the instruction format: there will be 
“data” programs, and the data will be obtained by executing these 
programs. Some of the advantages of this alternative are obvious: 
the full range of methods of specification available for programs 
is also available for data; a list of data, for example, may be speci- 
fied by a list of processes that determine the data. Since data are 
only desired “on command” by the processing programs, this 
approach leads to a computer that, although still serial in its 

control, contains at any given moment a large number of parallel 
active programs, frozen in the midst of operation and waiting until 
called upon to produce the next operation or piece of data. This 
identity of data with program can be attained only if the proc- 
essing programs require for their operation no information about 
the structure of the data programs, only information about how 
to receive the data from them. 

Two-stage interpretation 

To identify the operand of an IPL-VI instruction, a designating 
operation operates on the address part of the instruction to pro- 
duce the actual operand. Thus, depending on what designating 
operation is specified, the address part may itself be the operand, 
may provide the address of the operand, or may stand in a less 
direct relation to the operand. The designating operation may even 
delegate the actual specification of the operand to another desig- 
nating operation. 

Invariance of program during execution 

In order to carry out generalized recursions, it is necessary to 
provide for the storage of indefinite amounts of variable informa- 
tion necessary for the operation of such routines. In 1PL-VI all 
the variable information is stored externally to the associated 
routine, so that the routine remains unmodified during execution. 
The name of a routine can appear in the definition of the routine 
itself without causing difficulty at execution time. 

Responsibility assignments 

The automatic handling of such processes as erasing a list, or 
searching through a list requires some scheme for keeping track 
of what part of the list has been processed, and what part has 
not. For example, in erasing a program containing a local sub- 
routine that appears more than once within the program, care 
must be taken to erase the subroutine once and only once. This 
is accomplished by a system for assigning responsibility for the 
parts of the list. In general, the responsibility code in IPL-VI 
handles these matters without any explicit attention from the 
programmer, except in those few situations where the issue of 
responsibility is the central problem. 

Centralized signalling of test results 

The structure of the language is simplified by having all conditional 
processes set a switch to symbolize their output instead of pro- 
ducing an immediate conditional transfer of control. Then, a few 
specialized processes are defined that transfer control on the basis 
of the switch setting. By symbolizing and retaining the conditional 
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information, the actual transfer can be postponed to the most 
convenient point in the processing. The flexibility obtained by this 
device proves especially useful in dealing with the transmission 
of conditional information from subroutines to the routines that 
call upon them. 

General organization of the machine 

The machine that is described can profitably be viewed as a 
“control computer.” It consists of a single control unit with access 
to a large random-access memory. This memory should contain 
lo5 words or more. If less than lo4 words are available in the 
primary memory, there will probably be too frequent occasions 
for transfer of information between primary and secondary storage 
to make the system profitable. 

The operation of the computer is entirely nonarithmetic, there 
being no arithmetic unit. Since arithmetic processes are not used 
as the basis of control, as they are in standard computers, such 
a unit is inessential, although it would be highly desirable for the 
computer to have access to one if it is to be given arithmetic tasks. 
The computer is perfectly capable of proving theorems in logic 
or playing chess without an arithmetic adjunct. 

Memory 

The memory consists of cells containing words of fixed length. 
Each word is divided into two parts, a symbol and a link. The 
entire memory is organized into a list structure in the following 
way. The link is an address; if the link of a word a is the address 
of word b, then b is adjacent to a. That is, the link of a word 
in a simple list is the address of the next word in the list. 

The symbol part of a word may also contain an address, and 
this may be the address of the first word of another list. As indi- 
cated earlier, the entire topology of the memory is determined 
by the links and by addresses located in the symbol parts of words. 
The links permit the creation of simple lists of symbols; the links 
and symbol parts together, the creation of branching list structures. 

The topology of memory is modified by changing addresses in 
links and symbol parts, thereby changing adjacency relations 
among words. The modification of link addresses is handled 
directly by various list processes without the attention of the 
programmer. Hence, the memory can be viewed as consisting of 
symbol occurrences connected together by mechanisms or struc- 
ture whose character need not be specified. 

The basic unit of organization is the list, a set of words linked 
together in a particular order by means of their link parts, in the 
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way previously explained. The address of the first word in the 
sequence is the name of the list. A special terminating symbol T,  
whose link is irrelevant, is in the last word on every list. A simple 
list is illustrated in Fig. 1; its name is L,,,, and it contains two 
symbols, S, and S,. 

The symbols in a list may themselves designate the names of 
other lists. (The symbols themselves have a special format, so that 
they are not names of lists but designate the names in a manner 
that will be described.) Thus, a list may be a list of lists, and each 
of its sublists may be a list of lists. 

An example of a list structure is shown in Fig. 2. The name 
of the list structure is the name of the main list, L,,,,. L,,, contains 
two sublists, L,,, and L,,,, plus an item of information, l,, that 
is not a name of a list. L,,, in its turn consists of item I, plus 
another sublist, L,,,, while L,,, contains just information, and is 
not broken out further into sublists. Each of these lists terminates 
in a word that holds the symbol T. 

Available space list 

A list uses a certain number of cells from memory. Which cells 
it uses is unimportant as long as the right linkages are set up. In 
executing programs that continually create new lists and destroy 
old ones, two requirements arise. When creating a list, cells in 
memory must be found that are not otherwise occupied and so 
are available for the new list. Conversely, when a list is destroyed 
(when it is no longer needed in the system) its cells become avail- 
able for other uses, but something must be done to gain access 
to these available cells when they are needed. 

The device used to accomplish these two logistic functions is 
the available space list. All cells that are available are linked 
together into the single long list. Whenever cells are needed, they 
are taken from the front of this available space list: whenever cells 
are made available, they are inserted on the front of the available 
space list just behind the fixed register that holds the link to the 
first available space. The operations of taking cells from the avail- 
able space list and returning cells to the available space list in- 
volve, in each case, only changes of addresses in a pair of links. 

s2 T 

Fig. 1. A simple list. 
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Communication l i s t  
Available space list 
CIA l is t  

~ 

CClA l ist  l is t  . 
Camporator 

Memory 

Fig. 2. A list structure. 

Organization of central unit 

Figure 3 shows the special registers of the machine and the main 
information transfer paths. Four addressable registers accomplish 
fixed functions. These are shown as part of the main memory, but 
would be fast access registers. 

Lo 
L, 
L2 

L3 

Communication list, Lo. The system allows the introduction of 
unlimited numbers of processes with variable numbers of inputs 
and outputs. The communication of inputs and outputs among 
processes is centralized in a communication list with known name, 
Lo. All subroutines find their inputs on this list, and all subroutines 
put their outputs on the same list. 

Available space list, L,. All cells not currently being used are on 
the available space list: cells can be obtained from it when needed 
and are returned to it when they are no longer being used. 

List of current instruction addresses (CIA), L,. At any given 
moment in working sequentially through a program, there will be 
a whole hierarchy of instructions that are in process or interpreta- 
tion, but whose interpretation has not been completed. These will 
include the instruction currently being interpreted, the routine 
to which this instruction belongs, the superroutine to which this 
routine belongs, and so on. The CIA list is the list of addresses 
of this hierarchy of routines. The first symbol on the list gives the 
address of the instruction currently being interpreted; the second 
symbol gives the address of the current instruction in the next 
higher routine, etc. In this system it proves to be preferable to 

keep track of the current instruction being interpreted, rather than 
the next one. 

List of current CIA lists, L,. The control sequence is complicated 
in this computer by the existence of numerous programs which 
become active when called upon, and whose processing may be 
interspersed among other processes. Hence, a single CIA list does 
not suffice; there must be such a list for each program that has 
not been completely executed. Therefore, it is necessary also to 
have a list that gives the names of the CIA lists that are active. 
This list is L,. 

Besides these special addressable registers, three nonaddress- 
able registers are needed to handle the transfers of information. 
Two of these, R ,  and R,, are each a full word in length, and 
transfer information to and from memory. Register R ,  receives 
input from memory; R, transmits output to memory. The com- 
parator that provides the information for all tests takes as its input 
for comparison the symbols in R, and R,. This pair of registers 
also performs a secondary function in regenerating words in 
memory: the basic “read’ operation from memory is assumed to 
be destructive; a nondestructive “read” merely shunts the word 
received from memory in E ,  to R, and back, by means of a “write” 
operation, to the same memory cell. 

A register, A,  which holds a single address, controls references 
to the memory, that is, specifies the memory address at which a 
“read” or “write” operation is to be performed. References to the 
four addressable registers, Lo to L,, can be made either by A 
or directly by the control unit itself; other memory cells can be 
referred to only by A .  Finally, the computer has a single bit register 
which is used to encode and retain test results. 

Fig. 3. Machine information transfer paths. 
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The environment 

How input-output, secondary storage, and high-speed arithmetic 
could be handled with such a machine will be indicated. The 
machine manipulates symbols: it can construct complex structures, 
search them, and tell when two symbol occurrences are identical. 
These processes are sufficient to play chess, prove theorems, or 
do most other tasks. The symbols it manipulates are not “coded’; 
they simply form a set of arbitrary distinguishable entities, like 
a large alphabet. 

This computer can manipulate things outside itself if hardware 
is provided to make some of its symbols refer to outside objects, 
and other symbols refer to operations on these objects. It could 
do high-speed arithmetic, for example, if some of its symbols were 
names of words in memory encoded as numbers as in the usual 
computer fashion, and others were names of the arithmetic opera- 
tions. In such a scheme these words would not be in the IPL 
language; they would have some format of their own, either fixed 
or floating-point, binary or decimal. They might occupy the same 
physical memory as that used by the control computer. Thus the 
IPL language would deal with numbers at one remove, by their 
names, in much the same manner as the programmer deals with 
numbers in a current computer. A similar approach can be used 
for manipulating printers, input devices, etc. 

The word and its interpretation 

All words in IPL have the same format, shown in Fig. 4. The word 
a is divided into two major parts: the symbol part, bcde, and the 
link, f. It has been observed that the programmer never deals 
explicitly with the link, although it will be frequently represented 
explicitly to show how manipulations are being accomplished. 
Since the same symbol can appear in many words, the symbol 
occurrence of the symbol in the word a will be discussed. 

A symbol occurrence consists of an operation, b, a designation 

a L o c a t i o n  o f  w o r d  
b Operation c o d e  
c Designation c o d e  
d A d d r e s s  f i e l d  
e Responsib i l i ty  code 
f Link to  next w o r d  

Fig. 4. IPL word format. 

Section 4 I Processors based on a programming language 

operation, c, an address, d, and a responsibility code, e.  The opera- 
tion, b, takes as operand a single symbol occurrence, which is 
called s. The operand, s, is determined by applying the designation 
operation, c, to the address, d .  Thus, the process determined by 
a word is carried out in two stages: the first-stage operation (the 
designation operation) determines an operand that becomes the 
input to the second-stage operation. 

The responsibility bit 

The single bit, e, is an essential piece of auxiliary information. The 
address, d,  in a symbol may be the address of another list structure. 
The responsibility code in a symbol occurrence indicates whether 
this occurrence is “responsible” for the structure designated by 
d. If the same address, d, occurs in more than one word, only one 
of these will indicate responsibility for d. 

The main function of the responsibility code is to provide a 
way of searching a branching list structure so that every part of 
the structure will, sooner or later, be reached, and so that no part 
will be reached twice. The need for a definite assignment of 
responsibility for the various parts of the structure can be seen 
by considering the process of erasing a list. Suppose that a list 
has a sublist that appears twice on it, but that does not appear 
anywhere else in memory. When the list is erased, the sublist must 
be erased if it is not to be lost forever, and the space it occupies 
with it. However, after the sublist has been erased when an occur- 
rence of its name is encountered on the other list, it is imperative 
that it not be erased again on the second encounter. Since the 
words used by the sublist would have been returned to the avail- 
able space list prior to the second encounter, only chaos could 
result from erasing it again. The responsibility code would indicate 
responsibility, in erasing, for one and only one of the two occur- 
rences of the name of the sublist. 

Detailed consideration of systems of responsibility is inappro- 
priate in this paper. It is believed that an adequate system can 
be constructed with a single bit, although a system that will handle 
merging lists also requires a responsibility bit on the link f. The 
responsibility code is essentially automatic. The programmer does 
not need to worry about it except in those cases where he is 
explicitly seeking to modify structure. 

Interpretation cycle 

A routine is a list of words, that is, a list of instructions. Its name 
is the address of the first word used in the list. The interpretation 
of a program proceeds according to a very simple cycle. An instruc- 
tion is fetched to the control unit. The designation operation is 
decoded and executed, placing the location of s in the address 
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register, A, of Fig. 3. Then operation b is decoded and performed 
on s. The cycle is then repeated using f to fetch the next instruc- 
tion. 

The operation codes 

The simple interpretation cycle previously described provides 
none of the powerful linguistic features that were outlined at the 
beginning of the paper: hierarchies of subroutines, data programs, 
breakouts, etc. These features are obtained through particular b 
and c operations that modify the sequence of control. The opera- 
tion codes will be explained under the following headings: the 
designation code, sequence-controlling operations, save and delete 
operations, communication list operations, signal operations, list 
operations, and other operations. 

The designation code 

The designation operation, c, operates on the address, d, to desig- 
nate a symbol occurrence, s, that will serve as input, or operand, 
for the operation b. The designation operation places the address 
of the designated symbol, s, in the address register. 

The designation codes proposed, based on their usefulness in 
coding with the IPL’s, are shown in Appendix 1. The first four, 
c = 0, 1, 2, or 3, allow four degrees of directness of reference. 
They are usable when the programmer knows in advance where 
the symbol, s, is located. To illustrate their definition, consider 
an instruction a,, with parts b,, e,, d,, and e,, which can collec- 
tively be called s,. The address part, d,, of this instruction may 
be the address of another instruction d, = a,; the address part, 
d,, of a, may be the address of a,, etc. 

The code c,  = 1 means that s is the symbol whose address is 
d,, that is, the symbol s,. In this case the designating operation 
puts d,, the address of s,, in the address register. The code c ,  = 2 
means that s is s,; hence, the operation puts d,, the address of 
s3, in the address register. The code c, = 3 puts d,, the address 
of s4, in the address register. Finally, c,  = 0 designates as s the 
actual symbol in a,  itself; hence, this means that b is to operate 
on s,. Therefore, this operation places u1 in the address register. 

The remaining two designation operations, c = 4 and 5,  intro- 
duce another kind of flexibility, for they allow the programmer 
to delegate the designation of s to other parts of the program. 
When c1 = 4, the task of designating s is delegated to the symbol 
of the word d, = u2. In this case, s is found by applying the 
designation operation, c2 of word a,, to the address, d,, of word 
u2. An operation of this kind permits the programmer to be 
unaware of the way in which the data are arranged structurally 

in memory. Notice that the operation permits an indefinite number 
of stages of delegation, since if c, = 4, there will be a further 
delegation of the designation operation to e, and d, in word a,. 

The last designation operation, c = 5, provides both for dele- 
gation and a breakout. With c,  = 5,  d, is interpreted as a process 
that determines s. Any program whatsoever, having its initial 
instruction at d,, can then be written to specify s. When this 
program has been executed, an s will have been designated, and 
the interpretation will continue by reverting to the original cycle, 
that is, by applying b, to the s that was just designated. It is 
necessary to provide a convention for communicating the result 
of process d, to the interpreter. The convention used is that d, 
will leave the location of s in L,,, the standard communication cell. 

Sequence-controlling operations 

Appendix 2 lists the 35 b operations. The first 12 of these are the 
ones that affect the sequence of control. They accomplish 5 quite 
different functions: executing a process ( b  = 1, lo), executing 
variable instructions (b  = 2), transferring control within a routine 
(b = 3, 4, 5) ,  transferring control among parallel program struc- 
tures (b  = 0, 6, 7, 8, 9,), and, finally, stopping the computer 

A routine is a list of instructions; its name is the address of 
the first word in the list. To execute a routine, its name (Le., its 
name becomes the s of the previous section) is designated and to 
it is applied the operation b = 1, “execute s.” The interpreter 
must keep track of the location of the instruction that is being 
executed in the current routine and return to that location after 
completing the execution of the instruction (which, in general, is 
a subroutine). All lists end in a word containing b = 10, which 
terminates the list and returns control to the higher routine in 
which the subroutine just completed occurred. (The symbol T is 
really any symbol with b = 10.) 

Figure 5 provides a simple illustration of the relations between 
routines and their subroutines. In the course of executing the 
routine L,, (i.e., the instructions that constitute list L,,), an in- 
struction, (1,0, L,,), is encountered that is interpreted as “execute 
L,,.” In the course of executing L,,,, an instruction is encountered 
that is interpreted as “execute L,,.” Assuming that L,,, contains 
no subroutines, its instructions will be executed in order until the 
terminate instruction is reached. Because of the 10 in its b part, 
this instruction returns control to the instruction that follows L,, 
in Lz0. When the final word in L,, is reached, the operation code 

the instruction following L,,,. (Only the b part, b = 10, of the 
terminal word in a routine is used in the interpretation; the c and 

(b  = 11). 

10 in its b part returns control to Ll0; which then continues with 
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L10 

Fig. 5. A simple subroutine hierarchy. 

d parts are irrelevant.) This is a standard subroutine linkage, but 
with all the sequence control centralized. 

The operation code b = 2, “interpret s,” delegates the inter- 
pretation to the word s. The effect of an instruction containing 
b = 2 is exactly the same as if the instruction contained, instead, 
the symbol, s, that is designated by its c and d parts. One can 
think of the instruction with b = 2 as a variable whose value is 
s. Thus, a routine can be altered by modifying the symbol occur- 
rence s, without any modification whatsoever in the words belong- 
ing to the routine itself. 

The three operations, b = 3, 4, and 5,  are standard transfer 
operations. The first is an unconditional transfer; the two others 
transfer conditionally on the signal bit. As mentioned earlier, all 
binary conditional processes set the signal either “on” or “off.” 
In order to describe operations b = 0, 6, 7, 8, 9 the concept of 
program structure must be defined. A program structure is a rou- 
tine together with all its subroutines and designation processes. 
Such a structure corresponds to a single, although perhaps com- 
plex, process. The computer is capable of holding, at a given time, 
any number of independent program structures, and can interrupt 
any one of these processes, from time to time, in order to execute 
one of the others. All of these structures are coordinate, or parallel, 
and the operations h = 0, 6, 7, 8, 9, are used to transfer control, 
perhaps conditionally, from the one that is currently active to a 
new one or to the previously active one. In this sense, the com- 
puter being described may be viewed as a serial control, parallel 
program machine. 

The execution of a particular routine in program structure A 
will be used as an example. Operation b = 6 will transfer control 
to an independent program structure determined by s; call it B. 

Section 4 I Processors based on a programming language 

The machine will then begin to execute B. When it encounters 
a “stop interpretation” operation (b  = 0) in B, control will be 
returned to the program structure, A, that was previously active. 
But the “stop interpretation” operation, unlike the ordinary ter- 
mination, b = 10, does not mark the end of program structure B .  
At any later point in the execution of A, control may again be 
transferred to B, in which case execution of the latter program 
will be resumed from the point where it was interrupted by the 
earlier “stop interpretation” command. The operation that ac- 
complishes the second transfer of control from A to B is h = 7, 
“continue parallel program s.” Thus, b = 0 is really an “interrupt” 
operation, which returns control to the previous structure, but 
leaves the structure it interrupts in condition to continue at a later 
point. There can be large numbers of independent program struc- 
tures all “open for business” at once, with a single control passing 
from one to the other, determining which has access to the proc- 
essing facilities, and gradually executing all of them. Operations 
b = 8 and 9 simply allow the interruption to be conditional on 
the test switch. 

Notice that the passage of control from one structure to another 
is entirely decentralized; it depends upon the occurrence of the 
appropriate b operations in the program structure that has control. 

When control is transferred to a parallel program structure, 
either of two outcomes is possible. Either a “stop interpretation” 
instruction is reached in the structure to which control has been 
transferred, or execution of that structure is completed and a 
termination reached. In either case, control is returned to the 
program structure that had it previously, together with informa- 
tion as to whether it was returned by interruption or by termina- 
tion. Thus, b = 0 turns the signal bit on when it returns control; 
b = 10 in the topmost routine of a structure turns the signal off. 

The operation, b = 11, simply halts. Processing continues from 
the location where it halted upon receipt of an external signal, 
“go.” 

Save and delete operations 

The two operations, b = 12 and 13, are sufficiently fundamental 
to warrant extended treatment. For example, consider a word, 
L,,,,, that contains the symbol I,: 

Location Symbol Link 

LlOO 11 t 

The link of L,,,, t ,  indicates that the next word holds the 
termination Operation, b = 10. The “save” operation (b  = 12) 
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provides a copy of I, in such a way that I ,  can later be recalled, 
even if in the meantime the symbol in Lloo has been changed. 
After the “save” operation has been performed on s = L,,,, the 
result is: 

Location Symhol Link 
~~ 

L l O O .  . . . . . . . . . . .  1 1 . .  . . . . . . . . . . . . . .  Lzoo 
Lpoo., . . . . . . . . . . . . . . .  . I 1 . .  . . . . . . . . . . . . . . .  t 

A new cell, which happened to be L,,,, was obtained during 
the “save” operation from the available space list, L,, and a copy 
of I, was put in it. The symbol in L,,, can now be changed without 
losing I, irretrievably. Suppose a different symbol is copied, for 
example, 12, into L,,,. Then: 

Location Symbol Link 

LlOO. . . . . . . . . . . . . . . .  . I 2  . . . . . . . . . . . . . . . . . .  L2oo 
L p o o . .  . . . . . . . . . . . . . . . .  . 11 . .  . . . . . . . . . . . . . . . .  t 

Although I, has been replaced in L,,,, I ,  can be recovered by 
performing the “delete” operation, b = 13. Before the “delete” 
operation is explained, it will be instructive to show what happens 
when the “save” operation on L1,, is interated. If it is executed 
again, it will make a copy of I, .  Therefore: 

Location Symbol Link 
~ ~ 

LlOO., . . . . . . . . . . . . .  . I p . .  . . . . . . . . . . . . . . . . .  L300 
L3oo 12  L o o  
Lzo o . . . . .  . . . . . . . . . . .  - 1 1 .  . . . . . . . . . . . . . . . . . .  t 

. . . . .  . . .  . . . . . . . . . . . . . .  

Notice that the cell L,,,,, in which the copy of symbol I, is 
retained, was not affected at all by this second “save” operation. 
Only the top cell in the list and the new cell from the available 
space list are involved in the transaction of saving. The same 
process is performed no matter how long the list that trails out 
below L,,,; thus, the save operation can be applied as many times 
as desired with constant processing time. 

The “delete” operation, b = 13, applied to the symbol I, in 
L,,,, will now be illustrated. This operation puts the symbol and 
link of the second word in the list, L,,,, into the first cell, L,,,, 
and puts L,,, back on the available space list, with the following 
result: 

Location Symbol Link 

. . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . .  L*OO. 1 2 . .  Lzoo 
L z o o .  1 1 . .  t . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . .  

The result is the exact situation obtained before the last “save” 
was performed. 

In the description of the “delete” operation up to this point, 
only the changes it makes in the “push-down” list, in this case 
L,,,, have been considered. The operation does more than this, 
however; “delete s” also erases all structures for which the symbol 
s (II and I, in the examples) is responsible. When a copy of a 
symbol is made, e.g., the operation that initially replaced I ,  by 
I, in L,,,, the copy is not assigned responsibility for the symbol 
( e  = 0 was set in the COPY). Thus, no additional erasing would 
be required in the particular “delete” operation illustrated. If, on 
the other hand, the I, that was moved into Lloo had been respon- 
sible for the structure that could be reached through it (if it were 
the name of a list, for example), then a second “delete” operation, 
putting I, back into L,,,, would also erase that list and put all 
its cells back on the available space list. Thus “delete” is also 
equivalent to “erase” a list structure. 

Communication list operations 

In describing a process as a list of subprocesses, the question of 
inputs and outputs from the processes has been entirely by-passed. 
Since each subroutine has an arbitrary and variable number of 
operands as input, and provides to the routine that uses it an 
arbitrary number of outputs, some scheme of communication is 
required among routines. The communication list, L,, accom- 
plishes this function in IPL. 

That the inputs and outputs to a routine be symbols is required. 
This is no real restriction since a symbol can be the name of any 
list structure whatever. Each routine will take as its inputs the 
first symbols in the L, list. That is, if a routine has three inputs, 
then the first three symbols in L, are its inputs. Each routine must 
remove its inputs from L, before terminating with b = 10, so 
as to permit the use of the communication list by subsequent 
routines. Finally, each routine leaves its outputs at the head of 
list Lo. 

The b operations 14 through 19 are used for communication 
in and out of L,. Their one common feature is that, whenever they 
put a symbol in L,, they save the symbol already there, that is, 
they push down the symbols already “stacked” in Lo. Likewise, 
whenever a symbol is moved from L, to memory, the symbol below 
it in L, “pops up” to become the top one. (To be precise, the 



358 Part 4 I The instruction-set processor level: special-function processors 

responsibility bit travels with a symbol when it is moved. Hence 
for example, b = 16 and 17, do not, unlike the “delete” operation, 
erase the structure for which lL, is responsible.) 

The four operations, b = 14, 15, 16, and 17, are the main in-out 
operations for Lo. Two options are provided, depending on whether 
the programmer wishes to retain the s in memory (b  = 14 and 
16) or destroy it (h  = 15 and 17). (The move in operation 15 has 
the same significance as in I6 and 17; the responsibility bit moves 
with the symbol, and the symbol previously in the location of s, 
is recalled.) 

Operation b = 18 is a special input to aid in the breakout 
designation operation, c = 5. Recall that the latter operation re- 
quires d to place the location of s, the symbol it determines, in 
Lo. Operation 18 allows the process d to accomplish this. 

Operation b = 19 provides the means for creating structures. 
It takes a cell, for example, L,,,, from available space, and puts 
its name, as the symbol (0,0, L,,,), in the location of the designated 
symbol, s. The symbol s, previously in this location is pushed down 
and saved. 

Signal operations 

Ten 6 operations are primarily involved in setting and manipu- 
lating the signal bit. Observe that the test of equality (b  = 20 and 
21) is identity of symbols. Since there is nothing in the system 
that provides a natural ordering of symbols, inequality tests like 
s > lL,, are impossible. (E, means the symbol in Lo.) It is neces- 
sary to be able to detect the responsibility bit (b  = 22), since there 
are occasions when the explicit structure of lists is important, and 
not just the information they designate. Finally, although the signal 
bit is just a single switch, it is necessary to have two symbols, one 
corresponding to “signal on” and the other to “signal off” (b  = 26 
and 27), so that the information in the signal can be retained for 
later use (b  = 28 and 29). 

The sense of the signal is not arbitrary. In general “off” is used 
to mean that a process “failed,” “did not find,” or the like. Thus, 
in operations h = 6 and 7, the failure to find a “stop interpreta- 
tion” operation sets the signal to “off .” Likewise, the end of a list 
will by symbolized by setting the signal to “off.” 

List operations 

Both the “save” and “delete” operations are used to manipulate 
lists, but besides these, several others are needed. The three opera- 
tions, 6 = 30, 31, 32, allow for search over list structures. They 
can be paraphrased as: “get the referent,” “turn down the sublist,” 
and “get the next word of the list.” They all have in common that 
they replace a known symbol with an unknown symbol. This 
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unknown symbol need not exist; that is, the symbol referred to 
may contain a b = 10 operation, which means that the end of the 
list has been reached. Consequently, the signal is always set “on” 
if the symbol is found, and “off” if the symbol is not found. One 
of the virtues of the common signal is apparent at this point, since, 
if the programmer knows that the symbol exists, he will simply 
ignore the signal. Instruction formats that provide for additional 
addresses for conditional transfers would force the programmer 
to attend to the condition even if it only meant leaving a blank 
space in the program. 

To illustrate how these search operations work, Fig. 6 shows 
a list of lists, L,,,, and a known cell, L,,,. Cell L,,, contains the 
reference to the list structure. The programmer does not know 
how the list, L,,,, is referenced. He wants to find the last symbol 
on the last list of the structure. His first step is (30, 1, L,,,) which 
replaces the reference by the name of the list, L,,,. He then 
searches down to the end of list L,,, by doing a series of opera- 
tions: (32, I, Ll,,). Each of these replaces one location on the list 
by the next one. In fact, a loop is required, since the length of 
the list is unknown. Hence, after each “find the next word” opera- 
tion, he must transfer, on the basis of the signal, back to the same 
operation if the end of the list hasn’t been reached. The net result, 
when the end of the list is reached, is that the location of the 
last word on list L,,, rests in L,,,. Since in this example he wants 
to go down to the end of the sublist of the last word on the main 
list, he next performs (31, 1, Lloo). This operation replaces the 
location of the last word with the name of the last list, L,,,,. Now 
the search down the sublist is repeated until the end is again 
reached, at this point the location of the last symbol on the last 
list is in L,,,, as desired. The sequence of code follows: 

Location Symbol Link 

The operations, b = 33 and 34, allow for inserting symbols in 
a list either before or after the symbol designated. The lists in 
this system are one-way: although there is always a way of finding 
the symbol that follows a designated symbol, there is no way of 
finding the symbol that precedes a designated symbol. The “insert 
before” operation does not violate this rule. In both operations, 



Chapter 30 1 A command structure for complex information processing 359 

Direct designation operations 

Figure 7 shows the information flows for c = 2, an operation that 
is typical of the first four designation operations. These flows follow 
a simple, fixed interpretation sequence. Assume that instruction 
(-, 2, L,,,) is inside the control unit. The contents of L,,,, are 
brought into R,, the input register, then transferred to R,, the 
output register, and back to L,,, again. The d part of R,  now 
contains the location of s, and this location is transferred from 
R, to the address register. 

Execute subroutine ( b  = 1 )  

When “execute s” is to be interpreted, the address register already 
contains the location of s, which was brought in during the first 
stage of the interpretation cycle. L,, the current instruction 
address list (CIA), holds the address of the instruction containing 
the “execute” order. A “save” operation is performed on L,, and 
s is transferred into L,, which ends the operation. The result is 
to have the interpreter interpret the first instruction on the next 
sublist, and to proceed down it in the usual fashion. Upon reaching 
the terminate operation, b = 10, the delete operation is performed 
on E,, thus bringing back the original instruction address from 
which the subroutine was executed. Now, when the interpretation 
cycle is resumed, it will proceed down the original list. Thus, the 
two operations, save and delete, perform the basic work in keeping 
track of subroutine linkage. 

Parallel programs 

A single program structure, that is, a routine with all its sub- 
routines, and their subroutines etc., requires a CIA list in order 
to keep track of the sequence of control. In order to have a number 
of independent program structures, a CIA list is required for each. 
L, is the fixed register which holds the name of the current CIA 

Fig. 6. Example of finding last item of last sublist. 

33 and 34, a cell is obtained from the available space list and 
inserted after the word holding the designated symbol. (This is 
identical with the first step of the “save” operation.) In the “insert 
before” operation (b = 33) the designated symbol, s, is copied into 
the new cell, and 1L, is moved into the previous location of s. 
In “insert after” ( b  = 34), the designated symbol is left unchanged, 
and lL, is moved into the new cell. In both cases lL, is moved, 
that is, it no longer remains at the head of the communication 
list. 

Other operations 

This completes the account of the basic complement of operations 
for the IPL computer. These form a sufficient set of operations 
to handle a wide range of nonnumerical problems. To do arith- 
metic efficiently, one would either add another set of b’s covering 
the standard arithmetic operations or deal with these operations 
externally via a breakout operation on b (not formally defined here) 
that would move a frill symbol into a special register for hardware 
interpretation relative to external machines: adders, printers, 
tapes, etc. 

The set of operations has not been described for reading and 
writing the various parts of the word: b, c, d, e, and f (although 
it may be possible to automatize this last completely). These 
operations rarely occnr, and it seemed best to ignore them as well 
as the input-output operations in the interest of simple presenta- 
tion. 

Interpretation 

This section will describe in general terms the machine interpre- 
tation required to carry out the operation codes prescribed. There 
is not enough space to be exhaustive, therefore selected examples 
will be discussed. 

L I O O  

Fig. 7. Information transfers in c = 2 operation. 



360 Part 4 1 The instruction-set processor level: special-function processors 

After 8,1,Lloo 

L I o o r I  

list. The name of the CIA list for the program structure which 
is to be reactivated on completion or interruption of the current 
program structure is the second item on the L, list, etc. Therefore, 
the L, list is appropriately called the current CIA list. The “save” 
and “delete” operations are used to manipulate L, analogously 
to their use with L, previously described. 

Appendix 3 gives a more complete schematic representation 
of the interpretation cycle. It has still been necessary to represent 
only selected b operations. 

L m T l  

Data programs 

In the section on list operations a search of a list was described. 
There the data were passive; the processing program dictated just 
what steps were taken in covering the list. Consider a similar 
situation, shown in Fig. 8, where there is a working cell, L,,,, 
which contains the name of a list, L,,,. L,,, is a data program. 
There is a program that wants to process the data of L3,,,, which 
is a sequence of symbols. This program knows L,,,. To obtain the 
first symbol of data, it does (6,1, L,,,), that is, “execute the parallel 
program whose name is in L,,,.” The result is to create a CIA 
list, L,,,, put its name in L,,,, and fire the program. Some sort 
of processing will occur, as indicated by the blank words of L,,,. 
Presumably this has something to do with determining what the 
data are, although it might be some bookkeeping on L,,,’s experi- 
ence as a data file. Eventually L,,, is reached, which contains (0, 
1, This operation stops the interpretation, and returns con- 
trol to the original processing program. The first symbol of data 
is defined to be lL8,,. The processing program can designate this 
by 4L,,,, since the sequence of c = 4 prefixes in L,,, and L ,  
pass along the interpretation until it ultimately becomes IL,,,. 
Now the processing program can proceed with the data. It remains 

Before 8.i.Lloo 

L u 3 o ~ L G T  

L 
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completely oblivious to the processing and structure that were 
involved in determining what was the first symbol of data. Simi- 
larly, although it is not shown, the processing program is able to 
get the second symbol of data at any time simply by doing a 
“continue parallel program lL,,,” (b  = 7). 

One virtue of the use of data programs is the solution it offers 
for “interpolated’ lists. In working on a chess program, for example, 
one has various lists of men: pawns, pieces, pieces that can move 
more than one square, such as rooks, queens, etc. One would like 
a list of all men. There already exists a list of all pieces and a 
list of all pawns. It would be desirable to compose these lists into 
a single long list without losing the identity of either of the short 
lists, since they are still used separately. In other words form a 
list whose elements are the two lists, but such that, when this list 
of lists is searched it looks like a single long list. Further, and this 
is the necessary condition for doing this successfully, one cannot 
afford to make the program that uses this list of lists know the 
structure. The operation “execute s” (b = 1) is precisely the opera- 
tion needed to accomplish this task in a data program. It says “turn 
aside and go down the sublist s.” Since it does not have the opera- 
tion b = 0, it is not “data.” It  is simply “punctuation” that 
describes the structure of the data list, and allows the appropriate 
symbols to be designated. Figure 9 shows a data list of the kind 
just described. The authors have taken the liberty of writing in 
the names of the chessmen. 

The stretch of code that follows shows the use of a data program 
for a “table look up” operation. The table has arbitrary arguments, 
each of which has a symbol for its value. A,, A,, etc. have been 
used to represent the arguments. To find the value corresponding 
to argument A,, for example, A, is put in the communication cell 
with (14, 0, A,). Then the data program is executed with (6, 0, 
J&). Control now lies with the table, which tests each argument 
against the symbol in the communication lists: Le., A,, and sets 
the signal accordingly. The program stops interpreting (b  = 8) at 
the word holding the value only if the arguments are the same. 
In this case it would stop, designating L,,,. If no entry was found, 
of course, control would return to the inquiring program with the 
signal off. 

Locution Symbol Link 

LlOO. , . . . . . . . . . . . . . 

Fig. 8. Example of a data program. 
t 
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L,,, I j,O. Lzoo H 1 , o , L , o o  T 

O,O, Queen +, O,O, K-Rook + 
Fig. 9. Application of a data program to chess. 

Conclusions 

The purpose of this paper has been to outline a command structure 
for complex information processing, following some of the concepts 
used in a series of interpretive languages, called IPL’s. The ulti- 
mate test of a command structure is the complex problems it 
allows one to solve that would not have been solved if the coding 
language were not available. 

At least two different factors operate to keep problems from 
being solved on computers: the difficulty of specification, and the 
effort required to do the processing. The primary features of this 
command structure have been aimed at  the specification problem. 
The authors have tried to specify the language requirements for 
complex coding, and then see what hardware organization allowed 
their mechanization. All the features of delegation, indirect refer- 
encing, and breakout imply a good deal of interpretation for each 
machine instruction. Similarly, the parallel program structure 
requires additional processing to set up CIA lists, and when a data 
symbol is designated, there is delegated interpreting through 
several words, each of which exacts its toll of machine time. If 
one were solely concerned with machine efficiency, one would 
require the programmer to so plan and arrange his program that 
direct and uniform processes would suffice. Considering the size 
of current computers and their continued rate of growth toward 
megaword memories and microsecond operations, it is believed 
that the limitation already lies with the programmer with his 
limited capacity to conceive and plan complicated programs. The 
authors certainly know this to be true of their own efforts to 
program theorem proving programs and chess playing programs, 
where the IPL languages or their equivalent in flexibility and also 
in power have been a necessary tool. 

Considering the amount of interpretation, and the fact that 
interpretation uses the same operations as are available to the 

programmer; e.g., the save and delete operations, one can think 
of alternative ways to realize an IPL computer. At one extreme 
are interpretive routines on current computers, the method that 
the authors have been using. This is costless in hardware, but 
expensive in computing time. One could also add special opera- 
tions to a standard repertoire to facilitate an interpretive version 
of the language. Probably much more fruitful is the addition of 
a small amount of very fast storage to speed up the interpreter. 
Finally, one could wire in the programs for the operations to get 
even more speed. It is not clear that there is any arrangement more 
direct than the wired in program because of the need of the inter- 
preter to use the whole capability of its own operation code. 
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APPENDIX 1 

c Nature of operation for (a )  = b c d e. 

0 
1 
2 
3 
4 

5 

APPENDIX 2 b OPERATIONS 

c OPERATIONS (DESIGNATING OPERATIONS) 

(a)  is the symbol s. 
d is the address of the symbol s. 
d is the address of the address of the symbol s. 
d is the address of the address of the address of the symbol s. 
d is the address of the designating instruction that deter- 
mines s. 
d is the address (name) of a process that determines s. 

b Nature of operation 

SEQUENCE-CONTROL OPERATIONS 
0 
1 Execute process named s. 

2 Interpret instruction s. 
3 Transfer control to location s. 
4 Transfer control to location s, if signal is on. 
5 Transfer control to location s, if signal is off. 
6 Execute parallel program s; turn signal on if stops; off if not. 
7 Continue parallel program s; turn signal on if stops; off if not. 
8 Stop interpreting, if signal is on. 
9 Stop interpreting, if signal is off. 

Stop interpreting; return to previous program structure. 

10 Terminate. 
11 Halt; proceed on go. 

SAVE AND DELETE OPERATIONS 

12 Save s. 
13 Delete s (and everything for which s is responsible). 
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COMMUNICATION LIST OPERATIONS 
14 
15 
16 
17 
18 
19 

Copy s into communication list, saving IL,. 
Move s into communication list, saving 1L,. 
Move lL, into location of s, saving s. 
Move IL, into location of s, destroying s. 
Copy location of s into communication list, saving IL,. 
Create a new symbol in location of s, saving s. 

SIGNALLING OPERATIONS 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

Turn signal on if s = lL,, off if not. 
Turn signal on if s = lL,, off if not; delete IL,. 
Turn signal on if s is responsible, off if not. 
Turn signal on. 
Turn signal off. 
Invert signal. 
Copy signal into location of s. 
Copy signal into location of s, saving s. 
Set signal according to s. 
Set signal according to s; delete s. 

APPENDIX 3 THE INTERPRETATION CYCLE 

1. Fetch the current instruction according to the current instruc- 
tion address (CIA) of the current CIA list. 

2. Decode and execute the c operation: 
If c = 3 replace d by d part of the word at address d, reduce 
c to c = 2 and continue. If c = 2 replace d by d part of the 
word at address d, reduce c to c = 1 and continue. If c = 1 
put d in the address register and go to step 3 .  
If c = 0 put CIA in the address register and go to step 3 .  
If c = 4 replace c, d by the c, d parts of the word at address 
d and go to step 2. 
If c = 5 mark CIA “incomplete,” save it, set a new CIA = d, 
and go to step 1. 

3. Decode and execute the b operation: (Some of the b operations 
which affect the interpretation cycle follow.) 
If b = 0 turn the signal on, delete CIA and go to step 4. 
If b = 1 save CIA, set a new CIA = d part of s and go to 
step 1. 
If b = 2 replace b, c, d by s and go to step 2.  
If b = 3 replace CIA by the d part of s and go to step 1. 
If b = 10 delete CIA. 

LIST OPERATIONS 

30 

31 

32 

Replace s by the symbol designated by s, and turn signal on; 
if symbol doesn’t exist (b  = lo), leave s and turn signal off. 

Replace s by the symbol in d of s and turn signal on; if symbol 
doesn’t exist, leave s and turn signal off. 

Replace s by the location of the next symbol after d of s and 
turn signal on (s replaced by “0, 4, (f, part of d of s)”); 
if next symbol does not exist, leave s and turn signal off. 

If no CIA “pops up” turn signal off, delete CIA and go to 
step 4. 
If “popped up” CIA is marked “incomplete” fetch the cur- 
rent instruction again, move lL, into address register and 
go to step 3. 
Otherwise go to step 4. 

33 
34 

Insert 1L, before s (move symbol from communication list). 
Insert IL, after s (move symbol from communication list). 

4. Replace CIA by the f part of the current instruction and go 
to step 1. 
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System design of a FORTRAN machine’ 

Theodore R. Bashkow / Azru Susson / Arnold Kronfeld 

Summary A system design is given for a computer capable of direct 
execution of FORTRAN language source statements. The allowed types 
of statements are the FORTRAN DO, GO TO, computed GO TO, Arith- 
metic, READ, PRINT, arithmetic IF, CONTINUE, PAUSE, DIMENSION 
and END statements. Up to two subscripts are allowed for variables and 
no FORMAT statement is needed. The programmer’s source program is 
converted to a slightly modified form while being loaded and placed in a 
Program Area in lower memory. His original variable names and statement 
numbers are retained in a Symbol Table in upper memory, which also serves 
as the data storage area. During execution of the program each FORTRAN 
statement is read and interpreted at basic circuit speeds since the machine 
is a hardware interpreter for these statements. The machine corresponds 
therefore to a “one-pass, load-and-go” compiler except, of course, that there 
is no translation to a different machine language. It is estimated that the 
control circuitry for this machine will require on the order of 10,000 diodes 
and 100 flip-flops. This does not include arithmetic circuitry. 

T e r n  Digital computer system, digital machine design, direct 
.ion of FORTRAN, FORTRAN computer system, FORTRAN lan- 
machine, hardware interpreter. 

Introduction 

The algebraic languages, in particular FORTRAN in this country, 
have had enormous impact on the utilization of computers for 
scientific and engineering computation. They were designed in 
large part to overcome the annoyance of lengthy learning time 
and the laborious attention to detail needed to use a basic machine 
language. 

These annoyances are overcome by providing a language which 
is closer to English in form, and freer of “bookkeeping” details, 
than the usual machine languages, and by providing a machine 
language program, called a compiler or translator, to convert from 
the source program written by a user to an object program execut- 
able by a computer. Thus the original drawbacks are overcome 
but the discrepancy between the external language of the user 
and the internal language of the machine leads to at  least two 
others. The compilation run of the machine, during which the 

‘ IEEE Trans., EC-16, vol. 4, pp. 485-499, August, 1967. 

language translation is accomplished, is a waste of time and money 
to the user since he must pay for this time though he gets no 
problem answers from it. Secondly, the user has specified the 
logical flow and arithmetic details of his solution in the source 
language. However, when the machine “hangs up” or when he 
attempts to debug his program, all he finds displayed on the 
machine console is the machine language. (On large machines he 
gets equivalently an esoteric print-out in a symbolic form of 
machine language.) To overcome these difficulties one could use 
an interpretive translator of the source language instead, but the 
historical deficiencies of interpreters, loss of memory space and 
loss of speed of execution have caused this solution to be shunned. 

Another solution is also possible-design a machine which 
executes an algebraic language directly as its “machine language.” 
This approach is based on a recognition that once the allowable 
syntax and associated semantics of language statements have been 
firmly specified it is a matter of choice whether to write a compiler, 
to write an interpreter or to build an interpreter out of hardware. 
The software choice has been almost overwhelmingly to write a 
compiler. Since the choice of hardware interpreter, or machine, 
has not been made, and in fact has hardly been explored to any 
great extent, a study has been made in order to see if this choice 
leads to a system which is competitive with the usual software 
system. It should be understood that such a machine has not been 
constructed. However, the design2 is sufficiently complete that 
construction seems feasible. 

Language-design philosophy 

Since the machine language is to be an algebraic one it seemed 
reasonable to choose a simple subset of the most commonly used 
one, FORTRAN. This eliminates the necessity for inventing still 
another such language and allows attention to be focused on 
machine design. In fact, the subset chosen is quite close to that 
known as “Preliminary FORTRAN for the IBM 1620,” which is 
complete enough to be quite useful, but which does not include 

2See h a 1  technical report for Contract AF 19(628)-2798. 
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such innovations as subroutines, etc. In addition, the usual “built 
in” subroutines SIN (x), COS (x), etc., are not included. Their in- 
clusion would require additional effort for their hardware imple- 
mentation which did not appear to be worth expending at  this 
time. 

The FORTRAN statement types which are accepted by the 
machine as machine language are in the table that follows.’ 

Stutement Comment 

a = b  

GO TO n 

The value of the arithmetic expression b 
is stored in the memory location referenced 
by the variable name a, which may have 
up to two subscripts. 

Program control is transferred to the 
statement numbered n. 

GO TO (nl, n2, . . . , nm), i Program control is transferred to one of 
the statements numbered nl, n2, . . . , n, 
depending on the value of i at the time 
this statement is executed. 

PAUSE 

Program control is transferred to the 
statement numbered nl if the algebraic 
expression e is negative, to that num- 
bered n2 if e is zero, and to that numbered 
n3 if e is positive. 

Program execution is halted until restarted 
by console switch. 

DO n i = ml, m2, m3 All statements following this one in the 
program, including the statement num- 
bered n. are executed repeatedly. The 
first execution is with i equal ml, i is in- 
cremented by the value of m3 before each 
succeeding execution. This continues until 
i is greater than m2 at which time pro- 
gram control is transferred either to the 
statement following n or to that statement 
required by the DO sequencing rules for 
DO nests. If m3 is not given it is under- 
stood to be 1. 

CONTl N U E  

E N D  

This  statement has the effect of the “no 
operation” instruction in conventional 
machines. Program control goes to the 
next statement in the program unless the 
CONTINUE is the last statement in the 
range of a DO. In this case normal DO 
sequencing takes place. 

This statement generates a control signal 
to start execution of the program. 

Some familiarity with the FORTRAN language is assumed. 

Section 4 1 Processors based on a programming language 

READ, List These statements cause data to be read 
PRINT, List or printed, respectively, in accordance 

with the specified list of variables which 
may be subscripted; however, the “implied 
DO” feature h a s  not been implemented. 
No FORMAT control is available with this 
machine, therefore no statement number 
need be given. 

This statement has the effect of reserv- 
ing memory space for the subscripted 
variables G. Each u stands for a variable 
name followed by parentheses enclosing 
one or two constants. 

DIMENSION u, u,  . . . 

No distinction is made in this machine between fixed (integer) 
and floating point (real) variables. These may have names of any 
length, starting with any alphabetic character. 

Fixed point constants may be specified, in a program or as data, 
as any combination of one to four numeric characters preceded 
by a + or - sign. however, these are converted to an internal 
decimal floating point number and so there are no restrictions on 
“mixed mode” expressions. Statement numbers must be unsigned 
fixed point constants, which are not so converted since they only 
affect program control and not arithmetic processing. 

Floating point comtants are specified in the form of a mantissa 
of one to four numeric symbols preceded by a decimal point (and 
a + or - sign). These are followed by the character E and a single 
(positive or negative) digit representing the power of ten in the 
usual scientific notation. 

These constraints on number size and format are made to 
simplify certain circuits and could easily be relaxed if desired. The 
restriction to a two-subscript maximum for subscripted variables 
is similarly motivated. 

Internally, all numerical data require three %bit words (Fig. 
1). The first two words contain the four-digit mantissa, packed two 
per word in a 4-bit code for each digit. A decimal point is assumed 
to exist to the left of the most significant digit. The most significant 
two bits of the third word are zero. The third bit is 0 if the 
mantissa is positive, or 1 if it is negative, and similarly the fourth 
bit is 0 or 1 if the exponent is, respectively, positive or negative. 
The single exponent digit occupies the least significant four bits 
of this word. All other characters occupy a full 8-bit word of which 
the two most significant are 1’s. Any numeric characters which 
are symbols of a variable, e.g., the “2” in ABZX, also occupy a 
full word of this type. Statement numbers are simply packed 2 
digits per word and always occupy 2 full words. 

Before proceeding with the description of the overall charac- 
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+0.5739 E-4 in three consecutive words in memory 

Mantissa i W o r d 1 { 1 0 1 1  1 0 1 1  1 0 1 1  I l l 1 1  

Word 2 [ I  0 1 0  1 1  1 1  1 1  1 0  1 0  1 1  I 
Word 3 { I 0 I 0 I 0 I 1 I 0 1 1 1 0 1 0 I - 

Not used Exponent -\\ Exponent sign 
Number sign 

Fig. 1. Data format in memory. 

teristics of a machine that loads and executes the language speci- 
fied above, it may be well to indicate two basic design goals. 

1 The card deck or tape containing the Hollerith or BCD 
version of the English language form of a source program 
should be the only deck or tape required at  any time to 
execute the program. 

Once this program is loaded into memory and execution 
started, any look “into the machine” should reveal infor- 
mation in the same form in which it was entered. Thus if 
the program is executing X = A + B ,  then one should find 
“ X ” ,  “=”, “A”, “+ ”, “R”, at least in their BCD form. 

2 

The second goal has been compromised somewhat as far as the 
internal representation of the program is concerned in the interest 
of execution speed. However, all such compromises have been kept 
to a minimum. In addition, the mechanisms by which one can take 
such looks “into the machine” are such as to conceal these com- 
promises. 

Memory organization 

The machine is, in effect, a hardware version of on “one-pass- 
load-and-go” compiler and it operates in two modes. In the load 
mode FORTRAN statements are read. They are analyzed as re- 
quired and stored in memory. When the last statement has been 
stored, the execution mode is entered and program execution 
begins at  the first executable statement that was read. The input/ 
output device for the machine design is a Flexowriter Model SPD. 
Programs are assumed to be punched onto a paper tape, one 

statement per line, followed by a “carriage return” which gen- 
erates a paper tape symbol to separate statements. When this tape 
is read into memory, blanks are automatically “squeezed out.” 

The memory around which the machine is designed is a 4096- 
word, 8-bit-per-word, random-access core mem0ry.l It is treated 
by the control circuits as though it consisted of three distinct 
regions. 

1 Input/output ( I /O)  buffer: One statement at a time is loaded 
sequentially into memory locations 0-99. The six-bit paper 
tape codes are first converted to internal (often different) 
six-bit memory codes and stored in the six least significant 
positions of the &bit words. The carriage return symbol is 
encoded into a special “end-of-statement” symbol repre- 
sented in the paper as “$.” When this symbol is read the 
tape is also automatically stopped. 

Symbol table area: Memory locations 4095 and sequentially 
downward in memory hold the programmer’s names for 
variables, statement numbers, etc., as well as “pointers” to 
machine addresses, plus empty (before execution) locations 
for data. 

Program area: Memory locations 100 and sequentially up- 
ward hold the FORTRAN program, in a slightly modified 
form. 

2 

3 

Operating modes 

The load mode circuits control the input of FORTRAN statements. 
They place certain information in the Symbol Table Area and the 
modified form of the FORTRAN statements in the Program Area. 
It is while in this mode that the necessary searches for variable 
names take place and machine addresses are assigned. These ad- 
dresses replace portions of the variable names in the statement 
as it appears in the Program Area. Similar processing replaces 
programmer-assigned statement number references in the Program 
Area with various internal “pointers” for control of GO TO, DO, 
and IF statements. This modification is done so that statement 
execution in the execute mode can proceed at  high speed. In short, 
the FORTRAN statement in the Program Area is modified to the 
extent that variable names are replaced by actual data addresses 
and statement number references are replaced by actual addresses 
of statement locations in the Program Area. This translation is 
done once only, when the statement is analyzed in the load mode. 
It might be noted here that because of the “one-pass’’ nature of 
the translation (a given statement is analyzed only once), certain 

‘5-ps cycle time, EE Co Model 781. 
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of the pointers correspond to indirect addresses. Figure 2 shows 
a sketch of the overall system control and Tables 2 to 7 show to 
what extent the original statements have been altered. 

Loading a program 

A program, which is punched in a paper tape, is loaded into 
memory by energizing the tape read circuit which reads a state- 
ment on the tape, including the end-of-statement symbol &, into 
the 1/0 buffer. The read circuit is then de-energized. The least 
significant 6 bits of each word of the buffer hold the internal BCD 
representation of each symbol. 

A scan circuit (Fig. 3) now picks up each symbol in the state- 
ment from left to right and as each symbol is decoded it reacts 
as follows. 

1 If the first symbol is a digit, control is turned over to a 
Statement Number Load circuit. This circuit shifts the 
statement number digit by digit into a register (SHR). The 
maximum allowable length of a statement number is 4 digits 
and all statement numbers are carried internally in this 
form, i.e., a programmer's statement number 13 is carried 
in 2 words as 0013. A search is now made of the Symbol 
Table area. One of three possibilities exists: 
a The statement number is not found in the Symbol Table. 

I 

1/0 buffer T 
Execute 7 

t 
Input- Program 

output 

Read /print - -  
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It is put into the Symbol Table followed by the value 
of the current Program location. The statement number 
is also put.into the Program Area starting at this location 
and the Program Counter incremented appropriately, 
Le., by 2 since two 8-bit words are used. 
The statement number is found in the Symbol Table 
because it has been previously referred to by an IF or 
GO TO. The current value of the Program Counter is 
placed into the two memory locations following the 
statement number. (These were left blank when the 
statement number was previously processed.) The state- 
ment number is put into the Program Area and the 
Program Counter is incremented. 
The statement number is found in the Symbol Table 
because it has been previously referred to by a DO 
statement. A description will be deferred until the DO 
statement loading is described since the circuit's behav- 
ior is more meaningful in that context. 

b 

c 

2 After a statement number has been processed in this fashion 
or if the first symbol in the statement was not a digit (no 
statement number was assigned) then the scan circuit con- 
tinues to pick up each symbol from left to right until it 
is able to classify the statement as to type. It then turns 
over control to the appropriate loading circuit as indicated 
in Fig. 3. 

All of these loading circuits put the statements into the Pro- 
gram Area after replacing variable names and statement number 
references in the program with addresses or pointers. They also 
replace reserved names such as GO TO or CONTINUE with a 
single 8-bit code (token). Each unique variable name in the pro- 
gram, however, is also stored in the Symbol Table once using an 
8-bit code for each symbol. For nonsubscripted variables the three 
words following the name are reserved for the data that will be 
associated with this name when the program is executed. Sub- 
scripted variable names are found in DIMENSION statements 
which must precede the use of these variables in the program. 
In this case as many locations following the name are reserved 
as have been computed from the DIMENSION statement. The 
name in the Symbol Table is preceded by a special symbol a ,  to 
indicate that it is a subscripted variable. In addition, the first of 
the two subscript values in the DIMENSION statement is also 
stored immediately following the name. This number is needed 
during program execution for constructing the proper element 
of the array specified by a subscripted variab1e.l The address of 

'A pointer to the next available location in the Symbol Table is also stored 
for speed in Symbol Table searching. Fig. 2. FORTRAN computer system. 
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PRINT Process ‘ P R I N T  

I F  J Process 

PAUSE Process 
PAUSE 

CONTINUE Process 

I F  

’ C O N T I N U E  

P a p e r - t o p e  
contro l  

p rogram swi tch 

. 

I- - 

Process 
end 

s t a t e m e n t  

Process 
D I M E N S I O N  

Process P- ARITHMETIC 

O f f  I 

L 

Fig. 3. Load processing sequence and control. 

DO Process 
DO 

Process 
GO TO 

COMPUTED GO TO Process 
COMPUTED GO TO “On 

CKT hD- Process 

the data location replaces all symbols of the variable name in the 
Program Area except for the first. This symbol, which must be 
alphabetic, is retained in the Program Area as an indicator that 
this is indeed a variable. All special symbols such as (,), +, -, 
etc. are simply stored sequentially in the Program Area in the &bit 
BCD form as they appear in the original statement. 

Statement numbers in IF and GO TO statements are similarly 
replaced by the address in the Symbol Table which holds the 
address in the Program Area of the statement having that number. 
Note that this is an indirect address to the statement. Statement 
numbers in DO statements are dealt with somewhat differently 
as will be explained later. Because variable names and statement 
number references can appear many times in a program, these 
searches of the Symbol Table are controlled by two special circuits, 
the Variable Match Unit (VMU) and the Statement Match Unit 

(SMU). These circuits indicate either that the name or statement 
number is already in the Symbol Table or it is not. Thus the first 
appearance of a variable name, statement number, or reference 
to a statement number causes it to be put into the Symbol Table. 
Subsequent references merely utilize these previously assigned 
data or Program addresses. Therefore each name or statement 
number is stored in the Symbol Table only once with an exception 
noted below. In general, the programmer’s statement is altered 
only in the above described fashion. However, for ease of execution 
the computed GO TO has its index parameter name, i.e., the “i” 
in GO TO (nl, n2. . . . , nm), i, changed from the position following 
the parenthesis to a position preceding the parenthesis, 

The DO statement requires the most complex loading algo- 
rithm. Basically, the idea is to place the DO statement itself, 
essentially unchanged, into the Program Area but to extract the 
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range statement number (which specifies the last statement in the 
range of the DO) and put it into the Symbol Table. It is there 
preceded by a special symbol A, designating it as being referenced 
by a DO, and followed by the Program Area address of the corre- 
sponding DO statement. The DO statement in the Program Area 
has its original statement number replaced by a special symbol, 
A, and an internal address which is determined as follows (see 
Table 6). 

a If this DO is one of a nest of DO’s, the internal address 
is the Program Area address of the X token of the next 
preceding DO statement, This is easily found by a Symbol 
Table search for the range statement number since there 
is an entry in the Symbol Table corresponding to every DO 
statement. Thus for a DO nest three deep all ending in 
statement number 100, for example, there will be three 
entries in “DO nest order” of the number 0100 each fol- 
lowed by the corresponding DO statement Program Area 
address. 

If this DO is the first of a nest of DO’s, or if it is the only 
DO specifying a particular range statement number, then 
this internal address is the program address of the next 
statement outside the DO range, Le., the address to which 
control should go if this DO or DO nest is satisfied. 

b 

This outside address is found by the Statement Number Load 
circuit at the time the last statement in the range appears in the 
1/0 buffer for loading. The circuit first detects that a matching 
statement number in the Symbol Table is preceded by a A. It then 
extracts and saves the Program Area address of the first DO and 
the last DO, if there is a nest, or simply the only address if there 
is just one. The statement number is put in the Program Area as 
always. In addition, the Program Area address of the h token of 
the last DO in the nest is also put in the Program Area immediately 
following it. In addition, a special flip-flop, the LSFF, is set. The 
loading circuit for each statement type allowed to be the last 
statement in a DO range, tests this LSFF after it has loaded the 
statement into the Program Area. If it is on, the current contents 
of the Program Counter, the address of the next statement outside 
the DO range are used as the internal address in the first (or only) 
DO of the nest. 

It should be noted that this DO range statement number 
together with its own Program Area location will also appear in 
the Symbol Table without a preceding A. This is necessary because 
it is possible (and even legal in some cases!) to have an IF or 
GO TO refer to it also. 

The method used to design the circuits which implement these 
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functions is the same in each case. From the English language 
description of the function a sequential circuit state diagram is 
constructed. The circuit is then synthesized from the state diagram 
using established methods. The state diagrams of the Arithmetic 
Statement Loading circuits and the Variable Match Unit, which 
are used during Loading, are shown in the Appendix. 

The hardware implementation of the state diagram of the 
Variable Match Unit is also described there. 

Executing a program 

When the END statement signaling the end of a source program 
is encountered by the scan unit, the machine leaves its load mode, 
executes an automatic RESET, and enters the execution mode. 
(Reset forces the address 100 into the Program Counter.) Pressing 
the console start button causes statement execution to begin at 
the first executable statement which is always found at memory 
address 100. There is a separate statement execution circuit for 
each statement type. In addition, the Statement Number proc- 
essing circuit reacts to a digit as the first symbol in a statement. 
Each of these circuits is in an initial state when execution begins. 
One and only one can leave its initial state when the first symbol 
of a statement is read from memory. The responding circuit then 
retains control as it executes the statement until the $ (end of 
statement symbol) is read from memory. It then returns to its 
initial state. The first symbol of the next statement, as indicated 
by the Program Counter, is read and causes some circuit to leave 
its initial state, etc. Thus the first symbol of a statement acts like 
the “operation code” portion of a conventional computer instruc- 
tion word. The first symbol must be (since the load circuitry causes 
this) one of the 8-bit tokens for the various statement types, or 
a digit of a statement number, or the alphabetic character of the 
variable on the left of the “=” symbol of an arithmetic statement. 
The tokens are represented in this paper shown in Table 1. 

Table 1 

Statement type Token 

GO TO n 
GO TO ( n l ,  n2, . . . , nm), i 
IF (e )  nl, nz, n3 
PAUSE 
DO n i = ml, m2, m3 
CONTINUE 
READ 
PRINT 

GO TO 
COMGOTO 
IF 
PA US E 
DO 
CONTINUE 
READ 
PRlNT 
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It is possible, however, for the DO execution circuitry to leave 
its initial state either by reading of the DO or by reading of the 
A token immediately following it. The former causes DO initial- 
ization, the latter causes DO indexing and testing as will be 
described later. 

The action of the execution circuits is briefly given below. 

Statement number processing 

When the first symbol of a statement is a digit this circuit is 
energized. If there are only four digits (packed into two memory 
words) the circuit returns to its initial state and the remainder 
of the statement is executed. If there are eight digits (packed into 
four memory words), the last four digits (the address of the A of 
the last, or only, DO in a nest) are saved in a register, SSAR. The 
LSFF is turned on, the circuit returns to its initial state and the 
remainder of the statement is executed. If the remainder of the 
statement is not an IF, GO TO, or DO statement, the execution 
circuitry in control executes the statement and then tests for the 
LSFF being on. If it is on, the Program Counter contents are re- 
placed with the SSAR contents, the LSFF is reset, and the circuit 
returns to its initial state. In this case the SSAR holds the program 
address of the h token of the innermost DO. When this A is read, DO 
indexing and testing take place. If the LSFF is off, the circuit returns 
to its initial state. 

GO TO n 

The GOTO token energizes this circuit. The four-digit address 
(packed into two memory words) immediately following the token 
is extracted. The contents of this address are put into the Program 
Counter and the circuit returns to its initial state. 

Exump2e.l GO TO 15$ (Table 2). 

GO TO (nl, nq, . . . , nm), i 
The COMGOTO token energizes this circuit. The initial alpha- 
betic symbol of i, now immediately following the token, is read 
and discarded and the four-digit address immediately following 
is extracted. The contents of this address (the current value of i) 
are put into a register and decremented by one. 

1 If the result is zero, the four-digit address following the 
left parenthesis is extracted. The contents of this address 
are put into the Program Counter and the circuit returns 
to its initial state. 

‘All examples are written as though this statement or statements were the 
first in the program. 

Table 2 

Symbol table Program area 

Address contents Address contents 

4095 00 Machine form for 0100 

0102 
0103 

4094 15)Statement 15 0101 

0250 
0251 

GOTO 
40 Address of the address 
93 I of Statement 15 
$ 

00 Statement 15 
15 I in the program 

If the result is nonzero, the four-digit address following the 
left parenthesis is read and discarded. The register is decre- 
mented by one again. 

If the result is zero, the four-digit address following the next 
comma is treated as in 1 above. 

If the result is nonzero, the four-digit address following the 
next comma is read and discarded. The register is decre- 
mented by one again. 

Steps 3 and 4 above are repeated until the register is zero. If 
the right parenthesis is read while the register is nonzero an error 
condition has been found and will be indicated. 

Exumple. GO TO (5, 10, lSO), ITALY2 (Table 3) .  

IF(+,, n2, n 3  

The IF  token energizes this circuit. The left parenthesis immedi- 
ately following the token is read. Control is then given temporarily 
to the Arithmetic Statement execution circuit. The latter circuit 
is forced to the state in which it would be if it were ready to 
evaluate an expression to the right of the equal sign in an Arith- 
metic Statement. A special F/F,  the IFFF, is also set to 1. The 
expression e of the IF statement is read and evaluated until the 
final right parenthesis of the IF statement is read. Since the Arith- 
metic Statement circuit was not allowed to read the initial left 
parenthesis, it would normally go to an error condition under these 
circumstances of “unbalanced’ parentheses. However, sensing that 
the IFFF is set to 1, it resets the IFFF, places the value of the 
expression e just evaluated into the accumulator, returns to its own 
initial state, and re-energizes the IF statement circuit. The ac- 
cumulator is equipped to sense its own contents and energizes one 
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Table 3 ExampZe. IF(A - B)  10, 20, 2 0 2  (Table 4). 

Symbol table Program area 

Address contents Address contents 

4095 
4094 
4093 
4092 
409 1 
4090 
4089 
4088 
4087 
4086 
4085 
4084 
4083 
4082 
408 1 
4080 
4079 
4078 
4077 
4076 

I 
m 
1 

A 
L 
Y 

00 Representation of 
05 I Statement 5 
02 
50 
00 
10 
03 Address of 
50 I Statement 10 
01 
50 
05 Address of 
53 1 Statement 150 

0100 
0101 
0102 
0103 
0102 
0103 
0104 
0105 
0106 
0107 
0108 
0109 
0110 
0111 
0112 

0250 
0251 

COMGOTO 
I 
40 Address of the 
90 ! data for ITALY 
( 
40 Address of the address 
85)of Statement 5 

40 Address of the address 
8 1  I of Statement 10 

40 Address of the address 
77)of Statement 150 

) * 

00 
05 

0350 00 
0351 10 

0553 01 
0554 50 

of three signal lines depending on whether the number is zero, 
positive, or negative. The IF circuit senses these lines and reacts 
as follows. 

1 If the accumulator signal is negative, the next four-digit 
address (n,) is extracted. The contents of this address are 
put into the Program Counter and the circuit returns to 
its initial state. 

If the accumulator signal is zero, the next four-digit address 
is skipped over. The four-digit address following the next 
coininas (nz) is treated as in 1 above. 

If the accumulator signal is positive, the next 2 four-digit 
addresses and the intervening comma are skipped over. The 
four-digit address following the next comma (n3) is treated 
as in 1 above. 

2 

3 

PA USE 

The PAUSE token energizes this circuit. The end of statement 
symbol, $, is read and discarded. All execution circuits are forced 
to a state 0 and automatic reading of the memory ceases. A 
START signal, initiated by a console switch, is required to return 
these circuits to state 0 and to initiate memory reading at  the 
location specified by the current contents of the Program Counter. 

Example. PAUSE $ (Table 5). 

DO n i = m,, m2, m3 (or DO n i = m,, m2) 

This circuit is energized (i.e., caused to leave its initial state) either 
by a DO token or by the h token. Its action is different in these 
two cases and will be described separately. 

Table 4 

Symbol table Program area 

Address contents Address contents 

4095 
4094 
4093 
4092 
409 1 
4090 
4089 
4088 
4087 
4086 
4085 
4084 
4083 
4082 
4081 
4080 

A 

B 

00 
10 
03 Address of 
50 I Statement 10 
00 
20 

0100 
0101 
0102 
0103 
0104 
0105 
0106 
0107 
0108 
0109 
01 10 
0111 
0112 
01 13 
0114 
0115 
01 16 
0117 
0118 

IF 
( 
A 
40 
94 

B 
40 
90 
) 

- 

40 Address of the address 
81 I of Statement 20 

40 Address of the address 
81 I of Statement 20 
t 

0350 00 
0351 10 

0441 00 
0442 20 
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Table 5 d 

Symbol table Program area 

Address contents 

(not applicable) 0100 PAUSE 
0101 $ 

1 The circuit is energized by the DO token: The h token and 
the four-digit address immediately following are read and 
discarded. The initial alphabetic symbol of i is read and 
discarded and the four-digit address immediately following 
is extracted and saved in a register called SAR. The = 
symbol is read and discarded. The initial value m, of this 
statement can be either purely numeric or it may be the 
name of a variable. 
a If it is purely numeric the load circuitry will have re- 

placed it with the internal machine representation of 
the number. Therefore this number is simply read and 
stored in the Symbol Table starting at  the address given 
in the SAR register. 
If it is the name of a variable, the initial alphabetic 
symbol is read and discarded. The four-digit address 
following is extracted. The contents of this address are 
treated as in a above. 

In either event then, i ,  is given the value ml as required. 
The remainder of the DO statement including the $ sym- 
bol is read and discarded and the circuit returns to its 
initial state. 

h 

2 The circuit i s  energized by the X token: The four-digit 
address immediately following is extracted and saved in the 
SSAR. The initial alphabetic symbol of i is read and dis- 
carded, the four-digit address immediately following is put 
into the SAR and the contents of this address are placed 
in the accumulator. (This is the current value of i.) The = 
symbol and all symbols up to and including the next comma 
are read and discarded. The final value, m2, may be numeric 
or the name of a variable. 
a If it is numeric, this value is placed in a numeric register, 

SHR. 
h If it is the name of a variable the initial symbol read 

and discarded. The contents of the four-digit address 
following is extracted and placed in the numeric register 
SHR. The next symbol is read. This will be a comma 
if m, has been specified or ,i i f  m, has not been specified. 
If it is a comma either the following purely numeric 
value is added to the contents of the accumulator or the 
contents of the following four-digit address is added. 

c 

If it is the $ symbol then the contents of the accumulator 
are incrementedby one. In either event, after the current 
value of i has been incremented by either m3 or one, the 
contents of the accumulator are put in the Symbol Table 
starting at  the address given in the SAR. 

Now the final value, saved in the SHR, is subtracted from the 
accumulator. If the accumulator signal is positive then the value 
of i must be greater than the final value of m2. Therefore the 
address in the SSAR is placed in the Program Counter and the 
circuit returns to its initial state. The address in the SSAR will 
either be the address of the h token of a preceding DO in the 
nest or it will be the address of the next statement outside the 
DO nest depending on which DO statement is being executed. 
If the accumulator signal is not positive then the value of i is less 
than or equal to m2 and the circuit just returns to its initial state. 
Thus the next statement after the DO statement will be executed. 

Example. (See Table 6.) 

DIMENSION B(20, IO)$  
DO 5 
DO 5 J =  N, M $  

5 A = B ( K  J ) S  

IT = 1, 100, L$ 

CONTINUE 

The CONTINUE token energizes this circuit. The 1 symbol is read. 
If the LSFF is not on, the circuit returns to its initial state. If 
the LSFF is on, it is turned off. The contents of the SSAR re- 
place the contents of the Program Counter and the circuit 
returns to its initial state. Thus if this statement is either not 
labeled or is not the last statement in a DO range, its execution 
has no effect on the program. The example assumes the usual case 
where it is the last statement in a DO range. 

Example. (Table 7)  

DO 5 I = 1, 150$ 
5 CONTINUE$ 

READ, list. (PRINT, list.) 

The READ token energizes this circuit which then energizes the 
Flexowriter read circuits. Data from paper tape is read into the 
I/O buffer until the end-of statement symbol, #, is stored. The data 
must be punched as one to four decimal digits for fixed point 
numbers or one to four decimal digits preceded by a decimal point 
for floating point numbers. The latter may also be followed by 
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Table 6 

Symbol table Program area Symbol table Program area 

Address contents Address contents 
- _ _ _ _ _ _ _ ~  

Address contents Address contents 

4095 
4094 
4093 
4092 
409 1 
4090 
4089 

3488 
3487 
3486 
3485 
3484 
3483 
3482 
348 1 
3480 
3479 
3478 
3477 
3476 
3475 
3474 
3473 
3472 
3471 
3470 
3469 
3468 

a 
B 
34 1 Next free symbol 
88 1 Table Address 

Machine form of 
the constant 20 

A 
00 Machine form 
05 J Statement 5 

I 
T 

L 

A 
00 
05 
01 Address of 2nd 
21 I DO in nest 
J 

0100 
0101 
0102 
0103 
0104 
0105 
0106 
0107 
0108 
0109 
01 10 
0111 
01 12 
01 13 
01 14 
0115 
01 16 
0117 
0118 
01 19 
0120 
0121 
0122 
0123 
0124 
0125 
0126 
0127 
0128 
0129 
0130 

DO 
h 
01 Address of Statement 
57 1 following the DO nest 
I 
34 Address of data 
81 I for IT 

00 
01 
04 

- - 

01 
00 
04 

L 
34 
77 
$ 
DO 
h 
01 Address of preceding 
01 I DO in the nest 
J 
34 
68 

w 
34 
64 

- - 

3467 
3466 
3465 
3464 
3463 
3462 
346 1 
3460 
3459 
3458 
3457 
3456 
3455 
3454 
3453 
3452 
345 1 
3450 

0131 
0132 

N 0133 
0134 
0135 
0136 

M 0137 
0138 
0139 
0140 

00 0141 
05 0142 

0143 
0144 

A 0145 
0146 
0147 
0148 
0149 
0150 
0151 
0152 
0153 
0154 
0155 
0156 
0157 

M 
34 
60 

00 
05 
01 Address of last 
21 1 DO in the nest 
A 
34 
52 

B 
40 
91 
( 
1 
34 
81 

$ 

- - 

J 
34 
68 
) 
$ 

the letter E and a single positive or negative digit indicating a 
power of ten. Numbers must be separated by a comma to distin- 
guish them, since no FORMAT information is available and the 
read circuits ‘‘squeeze out” blanks. 

The first set of digits starting at  the beginning of I/O buffer, 
memory address 0, is read into a 24-bit register (which is the size 
of the three &bit memory words required for data). Numerical 

Both registers are set to zero initially. If the first character is a 
minus sign, the bit in the mantissa sign position of X is set to one. 
(The internal form of data representation was described earlier 
in the section on Language-Design Philosophy.) If it is a plus sign 
no action is required since a zero in the mantissa sign position 
indicates a positive mantissa. Further action depends on the next 
character. 

1 If the next character is numeric (or if there was no sign 
given and the first character is numeric) this must he a fixed 

information in the 1/0 buffer is in a 6-bit code. The two most 
significant bits are 0 if the code is for a numeric character. The 

Q placing of information into the 24-bit register is easier to under- 
stand if we consider it as a 16-bit mantissa register M ,  which can 
hold four decimal digits, and an 8-bit sign and exponent register 
X ,  which can hold 2 bits of sign information and an exponent digit. 

point constant. The four bits of numeric information are 
gated to the least significant four positions of register M .  
If the next character is numeric, M is shifted left four posi- 
tions and this character is also gated to the least significant 
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Table 7 

Symbol table Program area 

Address contents Address contents 

4095 A 0100 DO 
4094 00 0101 h 
4093 05 0102 01 
4092 01 0103 22 
4091 01 0104 I 
4090 I 0105 40 
4089 0106 89 
4088 0107 
4087 0108 00 
4086 00 0109 01 
4085 05 0110 04 
4084 01 0111 , 
4083 16 0112 01 

0113 50 
0114 04 
0115 % 
0116 00 
0117 05 
0118 01 Address of the 
0119 01 I DO statement 
01 20 CONTINUE 
0121 ? 
0122 

position. This continues until the comma is read. The nu- 
meric code for four is now gated to the least significant four 
positions of X .  Since the arithmetic unit assumes a decimal 
point at the left of all data, this action insures that a fixed 
point number is properly interpreted. 

If the next character after the sign (if there is one) is a 
decimal point this must be a floating point number. In this 
case the following digits are stored into M as indicated 
above, but three shifts of M are always taken, whether or 
not four digits are stored in M .  This is required to insure 
proper interpretation of the number. If a comma follows 
the series of digits no further action is taken. If an E follows 
then the digit following it is placed in the least significant 
4 positions of X .  If a minus sign is found following the E 
a setting of the exponent sign position of X precedes this 
action. The comma is then read. 

2 

After this first piece of data has been placed in M and X ,  the 
alphabetic character following the READ token is read and dis- 
carded. The next 4 digits are used as the address in which the 

most significant two digits in M are stored and it is then decre- 
mented appropriately to store the remainder of the data. 

The remaining data in the 1/O buffer are then stored one by 
one in sequence at the addresses given by the remainder of the 
READ list. A subscripted variable on this list requires additional 
arithmetic operations to compute the correct address from the 
current index values and the original DIMENSION information 
stored in the Symbol Table. These operations will be given later 
in the Arithmetic Statement description. 

When the $ token in the I/O buffer is reached, the next char- 
acter in the READ list is read. If this character is also the $. token 
then the circuit returns to its initial state. If, however it is not, 
then the Flexowriter is again energized such as to read data into 
the 1/0 buffer, and processing proceeds as before until reading 
of the $ of the READ statement returns the circuit to its initial 
state. 

The PRINT statement circuit operates in almost exactly inverse 
fashion and will not be described in detail. The list variables are 
used in sequence to extract data from the proper memory locations 
and place it in the M and X registers. The contents of these regis- 
ters are then put sequentially into the 1 /0  buffer, together with 
6-bit codes for the decimal point, plus and minus signs, commas, 
and the E symbol at appropriate places. All data are thus output 
in floating point form. When the $. token is read, the Flexowriter 
print circuits are energized and the circuit returns to its initial 
state. 

Example. 

READ, A, B, C(I,  I ) $  
PRINT, B, C(I ,  I )+$ 

The appearance of the Symbol Table and Program Area should 
be apparent from previous examples. Since this would add little 
to the description of circuit action they will be omitted. 

a = b  

The Arithmetic Statement execution unit is energized by any 8-bit 
alphabetic character code. This first character of the variable name 
represented above as “a” is discarded. Then either the following 
four-digit data address is saved or the data address of a subscripted 
variable is computed and saved in a register. After reading and 
discarding the = symbol, the circuit executes the expression h 
in accordance with the given sequence of arithmetic operator 
symbols, +, -, *, /, which are used to control the arithmetic 
unit. The partial results at any time during the execution are stored 
in the 1/0 buffer area which is, of course, otherwise unused during 
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Arithmetic Statement execution. These storage areas for partial 
results are called di,, di,, where i specifies the “level” at which 
computation is taking place,, i is equal to zero until a left paren- 
thesis is encountered which increases the current value of i by 
1. An exception occurs if the left parenthesis immediately follows 
the = symbol. In this case the level remains at  zero. It is also 
necessary to store control information which relates to these par- 
tial results. 

Two control values are required at every level. The count of 
left parentheses at  any i level is stored as a number, Z i .  Before 
i is incremented, the incompleted arithmetic operations still re- 
quired at  the current level are indicated by giving an indicator 
t, the value 1, 2, or 3. Also needed are indicators t + and t * to 
distinguish + from - and * from /. To clarify the significance of 
these control values an analysis will be made of the following ex- 
pression, which contains some unneeded but legitimate sets of 
parentheses: 

A = ( ( B  + ( C / ( ( D  + E * ( F ) ) ) )  + G))$ 

1 The circuit reads and saves the address of A, then reads 
and discards the = which puts the circuit at  the level i = 0. 
The first two left parentheses cause I ,  to be set to 2. The 
value of B is stored in do,,. The plus sign followed by a left 
parenthesis cause the indicator to to be set to 1 to indicate 
the condition “B + (”. Since we might in other cases find 
“ B  - (”, to is set to zero to indicate the plus sign. 

The left parenthesis also causes i to be incremented to one 
and since it is the only one at  this level, I ,  is also set to 
1. The value of C is stored in d,,,. The division symbol 
followed by a left parenthesis causes t ,  to be set to 2 to 
indicate the condition “C/(”. Since we might find “C*(” in 
other cases, t * 

The left parenthesis also causes i to be incremented to 2 
and the next left parenthesis increments 1, to 2. The value 
of D is stored in d,, and the value of E put into d,,, respec- 
tively. The multiplication symbol followed by a left paren- 
thesis causes t, to be set to 3 to indicate the condition 
“ D  + E * (”. t + , and t * , are each set to zero to indicate 
the plus and multiplication symbols, respectively. 

The left parenthesis before the F causes i to be incremented 
to 3 and Z:, to be set to 1. The value of F is placed in d3,. 

The Arithmetic Statement circuit always puts the final 
value computed at any level into the arithmetic unit regis- 
ter, SR. It does this whenever Zi = 0 for any i. Clearly Zi 
must be decremented by one for each right parenthesis. 

‘Basic circuit operation at any level is described in the earlier report. See 
page 363, footnote 2. 

2 

is set to 1 to indicate the division. 

3 

4 

Section 4 I Processors based on a programming language 

Therefore the first right parenthesis after the F causes 1, 
to equal zero. This condition causes the value stored in 
d,, to be placed in the SR. The value of i is decremented 
to 2. 

tz being 3 (and t + = t * , = 0) causes the computation, 
d,, + d,, * SR to be stored in dzo. The next two paren- 
theses after F caiise I, to equal zero. Therefore, this result 
is placed in the SR. The value of i is decremented to 1. 

Since t, is equal to 2 and t * , is equal to 1 the computation 
d,,/SR is made and stored in d,,. The final parenthesis after 
the F causes 1, to equal zero. Therefore this result goes to 
SR. i is decremented to zero. 

Since to is one and t + , is zero the computation, d,, + SR, 
is made and the result is stored in do,. 

The + G  causes the computation do, + G to be made and 
stored in do,. The final two parentheses cause 1, to be zero; 
therefore the value in do, is placed in SR. (If another right 
parenthesis were found, this would cause an error condition 
to be indicated.) The 3 symbol causes the contents of SR 
to be stored at the previously saved memory address for A. 

Any subscripted variable addresses are computed easily from 
the initial DIMENSION statement information, saved in the Sym- 
bol Table, and the current value of the subscripts. Assume the first 
data location for an array A(1, J)  is stored at a location Abase + 1. 
If the DIMENSION statement read DIMENSION A(5, 10) then 
the computation, Abase + 5 * (J - 1) + I, gives the correct data 
address for any nonzero value of I and J .  (This is true only if a 
complete data word is stored per memory word; in this machine 
the expression is slightly more complicated.) 

In this machine the partial result locations d,, and d,, are 
actually 3 words long, of course, to accommodate the data. An 
additional word is used to store control information where 4 bits 
are used for ti. t + ,, and t * and the remaining 4 bits for the 
Zi count. The i counter therefore is actually incremented or decre- 
mented by 7 instead of one. Thus at  any level, of which there 
can be 14 since the 1/0 buffer is 100 words long, the li count 
can be as great as 15. This is more than adequate since it allows 
for 210 left parentheses, which is much longer than the 1/0 buffer 
length. 

Since the appearance of the Symbol Table and Program Area 
would add little to this discussion, an example will be omitted. 

Conclusion 

We have illustrated in some detail that a machine for direct trans- 
lation of a simple algebraic language is possible. It would therefore 
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seem that further investigation be made of the economic position 
of this solution vis-k-vis the software compiler solution. Unfor- 
tunately, the present authors are not sufficiently versed in compiler 
construction to make such a comparison. 

The actual construction of such a machine as an independent 
unit is probably not reasonable except under particular circum- 
stances in which only small one-shot scientific problems form the 
bulk of the computing. However, as an adjunct to a larger general 
purpose machine, it may well serve a need as a hardware inter- 
preter for widely used higher level languages. 

As a result of a fairly complete design of the control circuits 
of this machine, it is estimated that 10,000 diodes and 100 flip-flops 
would be needed for these alone (not including arithmetic circuits). 
The design techniques used are simple and straightforward but 
rather expensive. These designs should probably only be consid- 
ered for use with integrated circuitry. 
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APPENDIX’ 

The variable match unit (VMU) (Fig. 4)  

The Symbol Table at  the end of the load mode should contain 
all variable names used by the program, together with empty 
locations reserved for data associated with these names. The Pro- 
gram Area at the end of the load mode should have a program 
in which all variable names have been modified in that only the 
first letter is retained, followed by the Symbol Table address of 
the data associated with this name. Since any variable name may 
appear many times in a program, a search is required, during the 
loading, to see if the name already exists in the Symbol Table. 
The search of the Symbol Table (ST) consists of comparing each 
name there with the variable name in the statement being loaded. 
All statements are loaded by an appropriate circuit of Fig. 3 from 
the 1/0 buffer and into the Program Area of the memory. There- 
fore the variable name in the Statement exists physically in the 
I/O buffer. 

It is the function of the VMU to make this search when ener- 
gized or “called” by the loading circuits for DIMENSION, DO, 
computed GO TO, READ, PRINT, IF and Arithmetic statements 
in which variable names appear. The output action of the VMU 

‘Symbols used in this Appendix are described in Table 8. 

is to set either the OK, AOK or EOL flip-flops. These flip-flops 
respectively indicate that the ST either: 

holds the variable in question as a result of previous loading, 
or 

that the variable is subscripted and has been previously 
loaded by the DIMENSION statement loading circuit, or 

that the End-of-List (EOL) token was found, indicating the 
absence of the variable in the ST. 

The state diagram for this circuit is shown in Fig. 4. When 
triggered by the START VMU signal in state 0, the circuit goes 
to state 1, the next clock pulse sends it to state 2 from which it 
starts its search of the ST. In going from 1 to 2, the 1/0 Counter 
(CIO) contents are saved in register SCIO since the name may 
have to be scanned again. The Symbol Table Counter (STC) is 
initialized to 4095 since the ST is scanned sequentially downward. 

If a character of a variable name in the 1/0 buffer is found 
in the corresponding position of a name in the ST, the character 
is said to be matched. The VMU proceeds from state 2 to state 
3 if the first character of the name under scan matches. Otherwise 
the state changes from 2 to 8, if the NO MATCH signal is given. 
The MATCH or NO MATCH signals are generated as a result 
of comparing the contents of the ST location undergoing the scan 
(the contents reside in the Memory Buffer Register, MBR), with 
the contents of the register COMP which has the character from 
the 1/0 buffer. The first character is put into COMP by the calling 
circuit, thereafter the VMU picks them up in the 3-4 transition. 
The ClO and STC counters are incremented and decremented, 
respectively, and the VMU oscillates between states 3 and 4 as 
long as matching continues. This comparison process will termi- 
nate when, either an arithmetic operator So, is read from the 1/0 
buffer sending the circuit to state 6 from state 3,  or the ST contents 
cause a NO MATCH signal with respect to the contents of the 
COMP unit causing the transition from state 4 to 5. 

In state 6, if a digit is next read from the ST, corresponding 
in position to the appearance of the operator from the 1/0 buffer 
clearly the names are the same and the OKFF is set to 1, and 
the transition from 6 to 0 is macle. On the other hand, if another 
alphameric character in the ST corresponds to an operator, So, 
in the 1/0 buffer, the names are not the same and the transition 
from 6 to 5 is made. In state 5 the circuit just reads to the end 
of the nonmatching name in the ST. A digit at the end of this 
name causes the transition 5-7 during which the STC is stepped 
over the 3 data locations to the next ST entry and the CIO reini- 
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// 
/ 

a/ STC 
READ (ST 

d/SET OKFF 

READ (STC) 

c VMU/- 

:OL/SET EOLFF 

/ N O  MATCH/- 

S y / t  STC c/ / R E A D  (STC) 

READ (STC) 

\ 

d -+STCL 
SAVE -STCM 

d -STCL 
d SAVE-STCM 

SCIO -CIO I- R E A D  110 

\ 

/READ I/O 
* 

Fig. 4. Variable match unit. 

tialized to the start of the name being sought. The first character 
in this name is read and placed in COMP as circuit goes to 2. 

As stated earlier, when the first character from the 1/0 buffer 
does not match the contents of ST, the state becomes 8. If the 
mismatch was caused by the EOL token in the ST the EOLFF 

is set to 1 and state 0 is reached. If the mismatch was due to a 
A at the present ST location, the STC is decremented by 5 which 
steps over the 2 four-digit numbers stored after a A and the circuit 
returns to 2 to try a match on the next ST entry. If the mismatch 
is caused by a digit then this is statement number information 
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Table 8 

CIO 

CP 

COMP 

SAR 

SAVE 

SClO 

SH R 

SR 

SSAR 

STC 

s, 

Sd 

S O  

(Y 

A 

x 

d 

EOL 

MATCH 

Counter for the input output buffer, 4 BCD numeric char- 
acter (4 bits each), counts up. Can be set to any given 
num ber. 

Program Counter. (During execution it points to the state- 
ment to be executed, during loading it points to the loca- 
tion where the program is to be loaded.) 4 BCD numeric 
characters, counts up. Can be set to any given value. 

Comparator register, 8 bits. During loading holds a char- 
acter to be matched with some other character in the 
memory, during execution saves the input symbol that 
drives the execution circuits. (Acts a s  second rank of 
Memory Buffer Register.) 

Save Address register, 4 BCD numerics. Counts down. Dur- 
ing loading holds the address of the last DO in a nest. 
During execution it is a n  auxiliary counter. 

2 BCD (8 bits total) auxiliary register, each bit can be set 
independently of the others. 

4 BCD numeric register, holds temporarily the value of CIO. 

Special Shift register, 4 BCD character, can be shifted to 
the left 1 BCD character (4 bits) at a time. 

24-bit register, used with the accumulator in the arithmetic 
unit. Bits 1-8, 9-16, 17-24 can be gated independently. 

Special Save register, 4 BCD numeric (used as auxiliary 
register in loading and execution). 

Symbol Table counter, 4 BCD character, counts down. 

The 8 bits in the MBR are decoded as a single alphabetic 
character (A-2). 

The 8 bits in the M B R  are decoded as a digit (0-9) and bits 
1-4 represent in BCD the value of the digit. 

The bits in the M B R  are decoded as one of the following 
operators. + - / ( ), 

8-bit character that precedes a subscripted variable name 
in the Symbol Table. 

8-bit character that precedes the statement number of a 
last statement of a DO nest in the symbol table. 

An 8-bit character that follows the DO token in the program 
area. 

The 8 bits in the MBR are decoded as  2 BCD digits of 4 bits 
each. 

An 8-bit character that is placed at the current end of the 
Symbol Table. 

Signal that is generated when the content of the MER is 
identical to the content of the COMP. 

which requires a decrement of STC by 4 to get to the next entry. 
If an unmatched alphabetic character in the ST was the reason 
for the mismatch, this variable is read to its end in state 12 as 
was done in state 5. 

The only other ST symbol which could have caused a mismatch 
is an a ,  the array symbol. This symbol sends the VMU to state 
9. If a match is now to occur, it will be with a subscripted variable 
name. Thus a match causes a transition from 9 to 13 and states 
13 and 14 correspond to state 3 and 4 for a simple variable as 
matching proceeds. 

Reading an arithmetic operator in the 1/0 buffer causes transi- 
tion to 16 where a corresponding digit in the ST causes the AOKFF 
to be set and the circuit returns to 0, during which time it decre- 
ments the STC. This is necessary in order for the STC to hold 
the address of the first constant given in the DIMENSION state- 
ment which caused this ST entry. The transition 16 to 15 corre- 
sponds to the 6 to 5 transition, the ST name is longer than the 
1/0 buffer name, and in state 15 the rest of the name is stepped 
over. Now, however, the next two words in the ST hold the address 
of the next ST entry. Therefore, these are saved and put into the 
STC during transition 15-17-7, which otherwise corresponds to the 
transition 5-7 for a single variable. 

If, however, there was no match in state 9, the circuit steps 
over the rest of the name in the ST in state 10 and initializes the 
STC to the next ST entry in the transition 10-11-12. 

Note that when the VMU returns to its 0 state after setting 
either EOL or OK or AOK flip-flops, the STC holds precisely the 
address needed for further action. An EOL needs to be replaced, 
starting at  this STC address, with the new variable name. In the 
case of OK or AOK this STC address is the one to be placed in 
the program since it holds the data address for simple variables 
or the address of the required indexing constant for subscripted 
variables. 

After the calling circuit has used the VMU it has received one 
of the 3 signals from the VMU. For certain statements these signals 
can be used to detect syntax errors. If there are none then the 
calling circuit takes whatever further action is necessary on the 
variable name being scanned. 

The arithmetic statement loading circuit (Fig. 5) 

An arithmetic statement consists of a string of alphameric symbols, 
S,S,, grouped to form variable names, of numeric symbols, S,, 
grouped to form constants, and of arithmetic or other operator sym- 
bols, So, which separate them. The Arithmetic Statement loading 
circuit calls on the VMU circuit to find the variable names as has 
been described. It then puts a new name into the ST (if required) 
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Fig. 5. Arithmetic statement loading. 

I /ADJUST SHR 

or it puts the data address into the program. The 8-bit BCD forms 
of the operator symbols are simply put into the program. The 
constants are put into the program after conversion to machine 
form. The state diagram of this circuit is shown in Fig. 5.  The 
scan circuit signal ARITH STAT sends the circuit from 0 through 
1 to 2. The scan circuit has saved the address of the beginning 
of this statement in a register SCIO. This is used to initialize the 
CIO so that this statement can be read from the beginning. 

The first symbol of an arithmetic statement, which must be a 
variable and not a digit, takes the circuit to state 3 after this 
symbol has been put into the program (S, + PROG) and the VMU 
initialized and started. Any one of the VMU signals is possible 
and valid and simply forces the circuit to state 5.  During the 3-5 
transition the circuit loads the appropriate address into the pro- 
gram when the name has matched. If it has not matched any 
existing name the circuit first goes to state 4 and puts the name 

into the Symbol Table before going to state 5.  State 5 is that from 
which all further loading is accomplished. Variable names are 
separated by operators, which are loaded into the program by the 
cycle in state 5 (So -+ PROG). Note the convention that So repre- 
sents any operator symbol not explicitly specified on another exit 
from 5. Any variable names cause a transition to state 3 with the 
same output action as from state 2. Floating point constants are 
loaded via states 5-9-5. A decimal point indicates a floating point 
constant and takes the circuit to state 7. (Note that a minus sign 
preceding a constant is simply an operator and is processed in state 
5.)  The SHR is cleared in preparation for the storing of the follow- 
ing digits in state 7. When E is received the digits of the fraction 
in the SHR are left adjusted (ADJUST SHR), if there are less than 
four of them, and placed in the program area. The exponent sign 
is found in the transition 8 to 9. The exponent digit together with 
the exponent sign bit is stored in the program area during the 



Chapter 31 1 System design of a FORTRAN machine 379 

9 to 5 transition. Fixed point constants are handled in state 6. The 
important difference is that the digits are not left adjusted in the 
SHR and a 04 is put into the program as the exponent since a 
decimal point is assumed to precede the first data word. See 
Fig. 1. 

The $ takes the circuit to its initial state. If this statement 
happens to be the last in a DO nest, the Statement Number Load 
circuit has set the LSFF to 1. It has also put the ST address of 
the word following the A symbol of the first DO of the nest into 
the SSAR register. Since the program counter (CP) now holds the 
correct exit address for this DO statement it is placed at the 
address given by the SSAR during the transition to state 0. During 
the transition the signal START READ is also sent to the paper 
tape reader in order for it to put the next Statement into the 1/0 
buffer. 

Hardware implementation of the VMU state diagram 

Each function mentioned in the paper plus some other auxiliary 
ones are initially represented in a state diagram form, such as the 
state diagram for the loading of the Arithmetic Statement 
(Fig. 5) and the Variable Match Unit (VMU) (Fig. 4). 

We will describe the method used to realize a circuit which 
will perform the function defined by a given state diagram (SD). 
As an example we will use the VMU. All the information needed 
is present on the SD. The operations on the right-hand side of 
the “/,, in the SD are the output operations required to be per- 
formed. In order to implement these operations we must specify 
the actual register gating signals, memory read and write signals, 
arithmetic unit signals, etc., required by them. We will call these 
various signals the microsteps of an output operation. Therefore 
to realize the SD of a given function we must implement the 
microsteps corresponding to the output operations. 

We begin by listing from the state diagram some output opera- 
tions and their corresponding microsteps. For example, in state 
2 of Fig. 4, if a MATCH signal is present we are supposed to 
increment the CIO counter and then read the 1/0 buffer. 

Consequently the microsteps required are: 

TCIO This signal causes the CIO to be incremented by one. 
CIO- MAR This signal causes the CIO to be gated to the 

READ This signal initiates a memory read cycle. 
CHANGE STATE This signal causes the VMU to go from state 

memory address register. 

2 to state 3. 

Therefore the execution of the above microsteps, in that order, 
would implement the 2-3 transition of Fig. 4. Some microsteps 

for the VMU are listed at the end of this Appendix. The largest 
number of microsteps for a transition from one state to another 
is 8, which occurs in the transition from state 8 to state 2. Once 
this maximum number of microsteps is determined, a control cycle 
counter is constructed, which can count as high as this maximum. 
Since in this case the number is 8 we need 3 flip-flops to realize 
it. In addition, a “one hot line” decoder is needed such that at 
each count one and only one line of the decoder has a “one” at 
its output. Also needed is a state diagram counter which realizes 
the “skeleton” of the state diagram. This skeletal counter tells us 
which state we are in and which to change to, given the present 
input signal or symbol. Thus the skeletal counter “knows” that 
if the circuit is in state 2 and a MATCH signal is present, it should 
change to state 3 upon receipt of a change state signal. The real- 
ization of such a skeletal counter has been described [Bashkow, 
19641. Now we use the outputs of the skeletal counter which will 
indicate to us the state we are in, the outputs of the decoder of 
the control cycle counter, and the input lines (Sv, So, MATCH, 
NO MATCH) and connect them as shown in Fig. 6. Each AND 
gate in this figure has 3 inputs except those not requiring input 
line information. One input comes from the input set (So, S,, 
MATCH, etc.). The second input comes from the state diagram 
skeletal counter which indicates a unique state of the state dia- 
gram, and finally the third comes from the control cycle counter. 
The output of each AND gate is a line indicating a unique micro- 
step. The AND’s feed OR gates, which actually energize the given 
microstep. For example the output lead of the “READ” Or gate 
is connected to the “READ” terminal of the memory. 

If we assume that the control cycle counts in sequence 1, 2, 
etc., then the lead numbered 1 will go to the first microstep of 
each sequence. The one numbered 2 will go the second, etc. 
Therefore we see that the following microsteps should be executed 
in the order listed below for states 0, 1, 2, 5 of Fig. 4. The circuit 
which causes the execution is shown in Fig. 6. 

State 0 

State 1 

State 2 

and START VMU 
CHANGE STATE 
CIO + SCIO 
0100 0000 1001 0101 - STC 
STC - MAR 
READ 
CHANGE STATE 
and MATCH 
INCREASE CIO 
CIO + MAR 
READ 
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Fig. 6. State diagram implementation. 
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CHANGE STATE 

CHANGE STATE 

DECREASE STC 
STC + MAR 
READ 
CHANGE STATE 

State 5 and d 
DECREASE STC 
DECREASE STC 
DECREASE STC 
SCIO + CIO 
CIO + MAR 
READ 
CHANGE STATE 

State 2 and NO MATCH 

State 5 and S, 

In state 0 of Fig. 4 a START VMU signal takes it to state 1. This 
is accomplished by the top AND of Fig. 6. The only microstep 
needed is CHANGE STATE. In state 1 of Fig. 4, the next clock 
pulse (after reaching state 1) causes a transition to state 2. In this 
case we need to save CIO contents in register SCIO, (CIO + SCIO) 
set the STC to 4095 (4095 + STC shown above in BCD form) and 
get the contents of the address now in the Symbol Table Counter 
(READ(STC)). This latter is implemented by the two microsteps 
STC -+ MAR followed by a READ command to the core memory. 
This transition from 1 to 2 of Fig. 4 is accomplished by the next 
5 AND gates shown in Fig. 6. The next AND gates shown accom- 
plish the transition from state 2 to 3 if there is a MATCH. The 
next AND accomplishes the transition from 2 to 8 if there is NO 
MATCH (in this case nothing need be done). Finally the lowest 
two groups of AND gates implement the required microsteps as 
the circuit changes from state 5 to 7 if a 4-bit digit code is sensed 
or causes the circuit to remain in state 5 after decrementing the 
STC if an 8-bit variable code is read. 



Chapter 32 

A microprogrammed implementation 
of EULER on IBM System/360 Model 301 

Helmut Weber 

Summary An experimental processing system for the algorithmic language 
EULER has been implemented in microprogramming on an IBM System/360 
Model 30 using a second Read-only Storage unit. The system consists of a 
microprogrammed compiler and a microprogrammed String Language In- 
terpreter, and of an 1/0 control program written in 360 machine language. 

The system is described and results are given in terms of microprogram 
and main storage space required and compiler and interpreter performance 
obtained. The role of microprogramming is stressed, which opens a new 
dimension in the processing of interpretive code. The structure and content 
of a higher level language can be matched by an appropriate interpretive 
language which can be executed efficiently by microprograms on existing 
computer hardware. 

Introduction 

Programs written in a procedure-oriented language are usually 
processed in two steps. They are first translated into an equivalent 
form which is more efficiently interpretable; then the translated 
text is interpreted (“executed”) by an interpretation mechanism. 
The translation process is a data-invariant and flow-invariant 
operation. It consists of two parts-an analytical part, which 
analyzes the higher level language text, and a generative part, 
which builds up a string of instructions that can be directly inter- 
preted by a machine. The analytical part of the translator depends 
on the higher level language; the generative part depends on a 
set of instructions interpretable by a machine. Historically there 
was only one set of instructions which could be interpreted effi- 
ciently by a machine, its “machine language.” Figure 1 outlines 
this scheme. 

Some of the processors of the IBM System/360 family are 
microprogrammed machines. On them the “360 machine lan- 
guage” is interpreted not by wired-in logic but by an interpretive 
microprogram, stored in control storage, which in turn is inter- 
preted by wired-in logic. Therefore, in a certain sense the 360 
language is not the “machine language” of these processors but 
the (efficiently interpretable) language in which the processors of 

‘Cvmm. ACM, vol. 10, no. 9, pp. 549-558, September, 1867. 

the System/360 family are compatible. The true “machine lan- 
guage” of these processors is their microprogram language. This 
language is on a lower level than the “360 language”; it contains 
the elementary operations of the machine as operators and the 
elements of the data flow and storage as operands. 

Now it is conceivable to compile a program written in a higher 
level language into a microprogram language string. This string 
would undoubtedly contain substrings which occur over and over 
in the same sequence. We could call these substrings procedures 
and move them out of the main string, replacing their occurrence 
by a procedure call symbol, followed by a parameter designator 
pointing to the particular procedure. Our object program then 
takes on the appearance of a sequence of call statements. From 
here it is only a final step to eliminate the call symbols and furnish 
an interpreting mechanism which interprets the remaining se- 
quence of “procedure designators.” 

The process just described will result in the definition of a string 
language and the development of a microprogrammed interpreta- 
tion system to interpret texts in this string language. The situation 
is similar to the System/360 case: the string language corresponds 
to the 360 language. Programs written in a higher level language 
are compiled into string language text to be stored in main storage. 
The string language interpreter corresponds to the microprogram 

Fig. 1. Processing programs written in higher level languages via trans- 
lation to machine language. 

I82 



Chapter 32 I A microprogrammed implementation of EULER on IBM System/360 Model 30 383 

which interprets 360 language texts. It consists of a recognizing 
part to read the next consecutive string element and to branch 
to an appropriate action routine and of action routines to execute 
the particular procedure called for by the string element. 

The essential difference between our situation and the 360 case 
is that the string language reflects the features of the particular 
higher level language as well as the features of the particular 
hardware better than the general purpose 360 language. 

What is gained by defining this string language and by provid- 
ing a microprogrammed interpreter for it? From the method of 
definition described, it can be seen that the elements of the string 
language correspond directly to the elements of the higher level 
language after all simplifying data-invariant and flow-invariant 
transformations have been performed. But the elements of the 
string language are also well-adapted to the microprogram struc- 
ture of the machine. Therefore, during the compiling process (see 
Fig. 2) only a minimum of generation is necessary to produce the 
string language text. The compiler is shorter and runs faster. 

But the more important aspect is that object code execution 
is also faster. The string language interpreter in case 2 will be 
coded to take care of all necessary operations in a concise form, 
whereas in case 1 it will be necessary to compile a whole sequence 
of machine language instructions for an elementary operation in 
the higher level language. Examples of this are the compilation 
of 360 code for an add operation in COBOL of two numbers with 
different scaling factors or the compilation of machine instructions 
for table lookup or search operations, etc. In these cases the string 
language interpreter of Fig. 2 will execute a function much faster 
than the machine language interpreter of Fig. 1 will execute the 
equivalent sequence of machine language instructions. Therefore, 
object code execution will be faster in scheme 2.  

If object code performance is not as much in demand as object 
storage space economy, the string language interpreter can also 
be written such that the string language is as tightly packed as 

Input Doto 

Ovtput 
Doto 

Intermediate 
--t 

Analyrir 

Higher-Level 

intermediate text  

I 
I"tcrprcter 

Fig. 2. Processing programs written in  higher level languages via trans- 
lation to  interpretive language. 

possible so that the translated program is as compact as possible 
and will take up less storage space than the eqnivalent machine 
language program under the scheme of Fig. 1. 

These ideas are applied in an experimental microprogram sys- 
tem for the higher level language EULER [Wirth and Weber, 
1966a and 1966133 described below. Problem areas in this approach 
are indicated and some ideas for future development are offered. 

Special considerations for EULER 

The higher level language EULER [Wirth and Weber, 1966a and 
1966bl is a dynamic language. This means that for programs 
written in it many things have to be done at object code execution 
time which can be done at compile time for other languages. 
EULER also contains basic functions which do not have compara- 
ble basic counterparts in the machine languages of most machines. 
To compile machine code for these dynamic properties and for 
those special functions would require rather lengthy sequences of 
machine language instructions, which would consume considerable 
object code space and require high object code execution time. 
Therefore, for a language like EULER, interpretation at the string 
language level by an interpreter into which the dynamic features 
and special functions are included by microcode will yield much 
higher object code economy and object code performance than 
compilation to machine language and interpretation of this ma- 
chine language. 

Three examples from EULER are given here. 

1.  Dynamic type handling. To a variable in EULER, constants of 
varying type can be assigned dynamically. For example in 

A t 3; . . . ; A c 4.51,,-,5; . . . ; A c true; . . . ; A t ' . . . '; 
the quantities assigned to the variable A have the types: integer, 
real, logical, procedure. Therefore, in EULER each quantity has 
to carry its type indicator along and each operator operating on 
a variable has to perform a dynamic type test. The adding operator 
+ for instance in A + B has to test dynamically whether both 
operands are of type number (integer or real). This type testing 
is done by the String Language Interpreter in minimum time, 
whereas it would require extra instructions if the program were 
to be compiled to 360 machine language. 

2. Recursive procedures and dynamic storage allocation. In 
EULER, procedures can be called recursively, e.g., 

F c 'formal N ;  if N = 0 then 1 else N * F(N - 1)'; 
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and storage is allocated dynamically, e.g., 

new N; . . .; N t 4; . . .; begin new A; A t list N; 

In order to cope with these problems the EULER execution system 
uses a run time stack. Each operation is accompanied by stack 
pointer manipulations which by the microprogram can be accom- 
plished in minimum time (in general, even without extra time 
because they are overlapped with the operation proper), whereas 
extra instructions would be required, if the program were com- 
piled. 

3. List processing. EULER includes a list processing system, and 
lists are of a general tree structure, e.g., 

A c (3, 4, (5, 6, 7), true, '. . .'); 

List operators are provided like tail and cat and subscripting: 

B c A [ 3 ] ;  C +- B cat A; C t tail C; 

The string language interpreter handles list operations directly and 
efficiently by special microprograms. If the program would be 
compiled to 360 machine language, a sequence of instructions 
would be required for each list operation. 

EULER system on IBM System/360 Model 30 

An experimental processing system for the EULER language has 
been written to demonstrate the validity of these ideas. It is a 
system running under the IBM Basic Operating System and con- 
sists of three parts: 

1 A translator, written in Model 30 microcode.' This trans- 
lator is a one-pass syntax-driven compiler which translates 
EULER source language programs into a reverse polish 
string form. 

An interpreter, written in Model 30 microcode,l which 
interprets string language programs. 

An 110 Control Program written in 360 machine language.2 
This IOCP links the translator and interpreter to the oper- 
ating system and handles all 110 requests of the translator 
and interpreter. 

2 

3 

Stored in the second Read-only Storage (Compatibility ROS) of Model 
30. 
"he 360 microprograms are stored in the first Read-only Storage (360 
ROS) of the Model 30. 

Section 4 I Processors based on a programming language 

The system is an experimental system. Not all the features of 
EULER are included,-only the general principles that are to be 
demonstrated. The restrictions are: 

1 Real numbers are not included; only integers are recog- 
nized. 

The interpreter microprograms for the operators Divide, 
Integer Divide, Remainder, and Exponentiation have not 
been coded. 

The type 'symbol' is not included. 

No garbage collector is provided. Therefore, the system 
comes to an error stop if a list processing program has used 
up all available storage space (32K bytes). 

2 

3 

4 

Also for reasons of simplicity, the system is written only for 
a 64K System/36O Model 30 and the storage areas for tables, 
compiled programs, stacks and free space are assigned fixed ad- 
dresses. 

The string language into which source programs are translated 
is defined as closely as possible to the interpretive language used 
in the definition of EULER [Wirth and Weber, 1966a and 1966b]. 
The question whether this is the ideal directly interpretable lan- 
guage corresponding to the EULER Source language given the 
Model 30 hardware is left open. Also no attempt is made to define 
the string language so that it becomes relocatable for use in time 
sharing or conversational processing mode. 

The three storage areas used by the execution system are: 

1 Program area 
2 Stack 
3 Variable area 

Program area. A translated program in string language consists of 
a sequence of one-byte symbols for the operators (+, -, begin, 
end, c, go to, etc.). Some of the symbols have trailer bytes associ- 
ated with them; for instance, the symbol +number has three 
trailer bytes for a 24-bit absolute value of the integer constant. 

The symbol reference (@) has two trailer bytes, one containing 
the block number (bn) ,  the second one the ordinal number (on). 
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The operators then, else, and, or and ' have two trailer bytes 
containing a 16-bit absolute program address, e.g., 

1-1 
Other operators with trailer bytes are label and the list-building 

operator. 

Stack. The execution time stack consists of a sequence of 32-bit 
words. It contains block and procedure marks to control the proc- 
essing of blocks and procedures and temporary values of the 
various types. The first 4-bit digit of a word in stack always is 
a type indicator. The format of these words is given in Fig. 3. 

Variable area. The variable area is an area (32K bytes long) of 
32-bit words used for the storage of values assigned to variables 
and lists (and also for auxiliary words in procedure descriptors; 
see type procedure in Fig. 3). The format of the entries is exactly 
the same as the format of the stack entries (see Fig. 3), the only 
exception being that a mark can never occur in the variable area. 

Microprogramming the IBM System/360 Model 3 0  
[Fagg et al., 19641 

Microprograms are sequences of microprogram words. A micro- 
program word is composed of 60 bits and contains various fields 
which control the basic functions in the IBM System/360 Model 
30 CPU. These basic functions are storage control, control of the 

I Type procedure 

IoW/"/A Type undefined 

U I 
I I I 

I value: magnitude in hexadecimal (< 169 

Type logical 
value. t rue 1 13 > u p M f l / J  

false 0 

Type lahel I 

mp:  
the block in ah ich  the label is defined. 
na :  1Wiit absolute Drogram address 

mark pninter, points to  the stack location of the mark for 

[5: d p  [ I ~ C  J Type reference 

mp: mark poiiiter. poinis t o  the stack Irwation of the mark for 
the tilnck in a -h i rh  the variahle i$ defined. 
lot: location nf n-nrd i n  variahle area which rontains value 
assigned trr variable. 

mp: mark pr,inter. p<,int- i n  the stack lncarion of the mark for 
the hlnck f o r  prrjcediire, in  which the p r r ~ e d u r e  is defined. 
link: pointer tr, a a n r d  in variahle area which contains 
additional infnrmatir,n. 
hn:  hlock niimher r,f the t,lnrk for procedure) in which the 
procedure is defined 
pa: 16-hit program arldresq. where string code for procedure 
s tar ts .  

length: numher of elenicrit; in list I <  163) 
Ioc: 
are stored i n  coiiFecutive storage locations). 

16-bir lucatinn f,f first liit element in variable area (lists 

Mark 

A mark coiisistl; of 3 rrords in stack; it is hililt each time a block o r  
a procedure is entered. 

static link: static link t o  mark of embracing block. 
hn:  hlrrck numher. 
dynamic link. dynamic link to  mark of emhracing block (or 
procedure), 
return address: &hit program address to which to  return 
upon normal exit of procedure ifor procedure marks only. this 
field is 0 for hlock marks). 

The last stack word i t i  a mark is a list descriptor (see type list) 
for the variable list (in a hlork mark) or the actual parameter list 
(in a procedure mark). 

I 

Fig. 3. Format of words in stack and variable area. 
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Fig. 4. Simplified data flow of the IBM System/360 Model 30. 

data flow registers and the Arithmetic-Logic-Unit (ALU ), micro- 
program sequencing and branching control, and status bit-setting 
control. Microprogram words are stored in a Card Capacitor 
Read-only Storage (CCROS). Fetching one niicroprogram word 
and executing it takes 750 nsec, the basic machine cycle. 

Figure 4 shows in simplified form the data flow of the IBM 
System/360 (IBM 2030 CPU). It consists of a core storage with 
up to 65,536 8-bit bytes and a local storage (accessible by the 
microprogrammer but not explicitly by the 360 language pro- 
grammer), a 16-bit storage address register (M, N), a set of 10 %bit 
data registers (I, J, . . . , R), an arithmetic-logic-unit (ALU), con- 
necting 8-bit wide buses ( Z ,  A, B, M, N-bus), temporary registers 
(A, E), switches and gates. 

Figure 5 shows the more important fields of a microprogram 
word. Only 47 bits are shown. Other fields contain various parity 
bits and special control bits. The field interpretation given in Fig. 

5 is as for microprogram words in the second Read-only Storage 
unit (Compatibility ROS) if the machine is equipped with the 1620 
Compatibility Feature. The meaning of the microprogram word 
fields is explained in connection with Fig. 6 which shows the 
symbolic representation of a microprogram word together with 
an example as it appears on a microprogram documentation sheet. 

The fields of the microprogram word can be grouped in five 
categories: 

1 

2 

3 

ALU control fields: CA, CF, CB, CG, CV, CD, CC 

Storage control fields: CM, CU 

Microprogram sequencing and branching fields: CN, CH, 
CL 

Status bit setting field: CS 4 

5 Constant field: CK 
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0000 
000 1 
0010 
001 1 

0100 
0101 
0110 
01 1 1  

1000 
1001 
1010 
101 1 
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Fig. 5. IBM System/360 Model 30 microprogram word. (Detailed explanation is provided in text.) The field inter- 
pretation is given for microprogram words in compatibility ROS if the machine is equipped with the 1620 compati- 
bility feature. Fields marked ' I * "  contain designators not explained here in order not to confuse the basic principles. 
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ALU control fields. On the line designated "ALU" in Fig. 6, an 
ALU statement can appear. It will specify an A-source and a 
B-source, possibly an A-source modifier and a B-source modifier, 
an operator, a destination, and possibly a carry-in control and a 
carry-out control. 

CA is the A-source field. It controls which one of the 10 8-bit 
data registers is connected to the transient A-register and therefore 
to the A-input of the ALU. 

CB is the B-source field. It controls whether the R, L, or 
D-register or the CK-field is connected to the transient B-register 
and therefore to the B-input of the ALU. If "K" (CB = 3) is speci- 
fied in this field, the 4-bit constant field CK is doubled up; i.e., the 
same four bits are used as the high digit and the low digit. 

Between the A-register and the ALU input is a straight/cross 
switch and a high/low gate. Its function is controlled by the 
CF-field. Depending on the value of this field, no input is gated 
into the ALU (0) or only the low (L) or high digit (H) is admitted. 
CF  = 3 gates all eight bits straight through, whereas the codes 
CF  = 5,  6, and 7 cross over the two digits of the byte before 
admitting the low (XL) or high digit (XH) or both digits (X). 

Between the B-register and the ALU input is a high/low gate 
and a true/complement control. The high/low gate is controlled 
by the CG-field in the same manner as the high/low gate in the 
A-input. The true/complement control is operated by the CV-field. 
It admits the true byte to the ALU (+) or the inverted byte ( - )  
or controls a six-correct mechanism for decimal addition (@). 

The operator and carry controls are given by the CC-field. This 
field specifies binary addition without carry handling (+O) ,  addi- 

X 6 X 7  ROS ADDR 

C O N S T A N T  

A L U  

STORAGE 

STATUS SETTING 

B R A N C H I N G  SEQUENCE 

COORD- ~ COORD 

Format of symbolic representation 

01 - 

1101 

R f K H - D C  

WRITE 

HZ -54, L Z - S 5  

G4 .G5  c4 

c4 ~ ~ CD 

Example 

Fig. 6. Symbolic representation of a System/360 Model 30 micro- 
program word. 
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tion with injection of a 1 (+ 1) (for instance, to simulate subtraction 
in connection with the B-input inverter), addition with saving the 
carry in bit 3 of register S (+O,Save C, and +l,Save C), and 
addition using an old carry stored in bit 3 of register S and saving 
the new carry in this same bit (+C,Save C). Other codes specify 
logical operations (AND, OR, XOR). 

The CD-field specifies into which register the result of the ALU 
operation is gated. Any one of the 10 data registers can be speci- 
fied. Z means that the ALU output is gated nowhere and will be 
lost. 

Storage control fields. On the line designated “storage” in Figure 
6, a storage statement can appear. It will specify whether this 
microcycle is a ready cycle, a write cycle, a store cycle or a 
no-storage access cycle, and from where the storage address is 
supplied (CM-field) and whether storage access is to main storage 
or local storage (CU-field). Note that a full storage cycle (1.5 psec) 
corresponds to two read-only storage cycles (750 nsec). 

The codes CM = 3, 4, or 5 specify read cycles. The addresses 
are supplied from the register pairs I], UV, and LT, respectively. 
A read cycle reads one byte of data from core storage into the 
storage data register R. 

A write cycle regenerates the data from the storage data regis- 
ter R at the address supplied in the last read cycle. 

A store cycle acts exactly as a write cycle except that it inhibits 
in the read cycle immediately preceding it the insertion of the 
data byte from storage into the R-register. 

The CU-field specifies whether storage access should be to main 
storage (MS) or to a local storage of 256 bytes not explicitly ad- 
dressable by the 360 language programmer. 

Microprogram sequencing and brunching. Each microprogram 
word is stored at a unique address in ROS. A 13-bit ROS address 
register (W3. . . W7, X0. . . X7) holds the address of the word being 
executed. For the symbolic representation of a microprogram (Fig. 
6) the ROS address is given in hexadecimal in the upper right 
corner, and the last two bits of this address are repeated in binary 
on the upper margin. 

After execution of a microprogram step, the next sequential 
word will not be executed. Instead the address of the next word 
to be executed is derived as follows. The high five hits (W) remain 
the same, unless they are changed by a special command in the 
microword, not explained here (so-called module switching). The 
next six bits (XO. . .X5) are supplied from the CN-field (written 
in hexadecimal in the symbolic representation of Fig. 6). The low 
two bits are set according to conditions specified in the CH and 
CL fields. X6 is set according to the condition specified by CH. 
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For instance, if CH = 8, then the bit R2 is transferred to X6; if 
CH = 6, then X6 is set to one if in the last ALU operation a carry 
had occurred. It is set to zero if no carry had occurred. X7 is 
controlled by CL. If, for instance, CL = 0, then X7 is set to zero; 
if X7 = 5,  then X7 is set to one if both digits in R are valid decimal 
digits (Le., RO. . .R3 5 9 and R4. . .R7 5 9), X7 is set to zero if 
either digit in R is not a valid decimal digit (Le., RO. . .R3 > 9 
or R4. . . R7 > 9). This microprogram sequencing scheme allows 
a four-way branch after the execution of each microprogram word. 

Status bit setting. The CS-field allows the unconditional or condi- 
tional setting of certain status bits to be specified, combined in 
Register S. If, for instance, CS = 3, then S4 is set to one if the 
result of the ALU operation performed in this microprogram cycle 
shows a zero in the high digit (Le., ZO = Z1 = 22  = 23 = 0); S4 
is set to zero otherwise. At the same time, S5 is set to one if the 
result of the ALU operation shows a zero in the low digit (Le., 
24 = Z5 = Z6 = 27  = 0); S5 is set to zero otherwise. If CS = 9, 
then S2 is set to one if the result of the ALU operation is not 
zero (i.e., at least one of the bits ZO. . .Z7 is equal to 1). If the 
result of the ALU operation is zero, then S2 is not changed. 

Constuntfield. The 4-bit CK-field is used for various purposes. One 
instance explained in the ALU statement is to supply a constant 
B-source for an ALU operation. Other examples not explained here 
any further are the addressing of a few specific scratchpad local 
storage locations, module switching (replacement of the high part 
W of the ROS address), and the control of certain special functions. 

Symbolic representation of microprograms. Microprograms are 
symbolically represented as a network of boxes (Fig. 6) each 
representing a microword, connected by nets indicating the pos- 
sible branching ways. Figure 7 gives an example of a microprogram 
(to be explained in the next section). There exist programming 
systems to aid in the development of microprograms. They contain 
symbolic translators to translate the contents of a box according 
to Fig. 6 into the contents of the actual fields of the microprogram 
word according to Fig. 5.  A drawing program generates documen- 
tation (Fig. 7 is drawn with such a program). These systems usually 
also contain programs for simulation and generation of the actual 
ROS cards. 

String language interpreter for EULER 

The string language interpreter for EULER is entirely written in 
Model 30 microcode. It consists of a few microprogram steps to 
read the next sequential symbol from the program string and to 
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Fig. 7. Microprogram for the operators AND, OR, and THEN. 

do a function branch on the symbol and of a group of micropro- 
gram routines which perform the necessary operations for the 
program byte read. These routines also take care of dynamic type 
testing and stack pointer manipulations. The routines are equiva- 
lent to the routines described in the definition of the string lan- 
guage for EULER [Wirth and Weber, 1966a and 1966b]. 

Figure 7 shows, as an example, the microprogram to interpret 
the program string symbols and (internal representation X'52''), 
or X'50' and then X'53'. These operators test if the highest entry 
in the stack is a value of type logical. The logical operators in 
EULER work in the FORTRAN sense, not in the ALGOL sense: 
if after the evaluation of the first operand the result is determined 
(false for and, true for or), then the second operand is not evalu- 
ated but skipped over. If an and operator finds the value false, 
then a branch occurs to the program address given in the two 

'X 'mi' represents the hexadecimal number composed of the digits n 
( n  = 0 , .  , , , 9 ,  A , .  . , , F ) .  

trailer bytes. If an and finds the value true, then it deletes this 
value from the stack and proceeds to the next symbol in the pro- 
gram string (to evaluate the second operand of and). Similarly if 
an or operator finds the value true, then a branch occurs to the 
program address given in the two trailer bytes. If an or finds the 
value false, then it deletes this value from the stack and proceeds 
to the next symbol in the program string. The then operator is a 
conditional branch code: it deletes the logical value from the 
stack. If this value was false, then a branch is taken to the program 
address given in the two trailer bytes. If this value was true, then 
the next symbol in the program string is executed. 

The pointer to the symbol in the program string (the instruction 
counter) is located in the functionally associated pair of registers 
I and J in the Model 30. The pointer to the left-most byte of the 
highest entry in the stack (the stack pointer) is located in the two 
registers U and V in the Model 30. 

In the following the individual steps in this microprogram are 
explained in more detail. 
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Location Location 
Address in Figure Description Address in Figure Description 

1161: 

11 17: 

1171: 

11 5D: 

11C4: 

c1: The instruction counter IJ addresses main stor- 
age. The addressed byte in  main storage is 
read out into the storage data register R. The 
instruction counter is updated by adding 1 to 
register J. A possible carry is saved to be added 
to 1. 

The operator has been read out f rom main 
storage into R. It is also transferred (through 
the ALU)to register G. A four-way branch occurs 
on the two highest bits RO and R1 of the oper- 
ator. For the operators 52, 53, and 50 this 
branch goes to ROS word 1171, whereas other 
operators cause a branch to 1170, 1172, or 
1173, indicated by the three lines not continued. 

To complete the updating of the instruction 
counter, the carry f rom 1161 is added into I. 
The first byte of the highest entry of the stack 
is addressed by UV and read out into R .  A fur- 
ther four-way branch on the operator is made 
(G2, G3). For our operators the branch goes to 
115D. 

The high order byte of the highest stack entry 
has been read out of storage into R. It contains 
the type of entry in the high digit and if this 
type was logical then i t  contains the value true 
(1) or false (0) in the second digit. This byte is 
tested by adding X'DO' to i t  and observing the 
result, ignoring the carry. S4 is set to  1 when 
the type was 3 (logical) otherwise to 0. S5 is 
set to 1 when the low digit of this byte was 0 
(value false), S5 is set to  0 when the low digit 
of this byte was 1 (value true). Another four- 
way branch occurs on the bits G4 and G5 of the 
operator. If the operator is 50(or), 5 1  (cannot 
occur), 52 (and), or 53(then), then a branch to 
11C4 occurs. 

The next byte is read from the program string, 
it is the high byte of the two-byte program ad- 
dress trail ing the operator. The instruction 
counter is updated again by adding a 1 to  J, 
saving a possible carry. Another four-way branch 
occurs on the bi t  G6 of the operator and the 
value of the stack entry. If the operator was 
and or then (G6 = 1) and the value was false 
(S5 = l), then branching to llCB occurs; if 
the operator was or (G6 = 0) and the value 
was true (S5 = O) ,  then branching to l l C 8  
occurs. I f  the operator was or  (G6 = 0) and 
the value was false (S5 = l), then branching 

c2: 

c3: 

c4:  

L4: 

11CB: G5: 

l l C 3 ,  J6, J7: 
11 1E: 

l l C 3 ,  J6. L7: 
111F: 

l l C E ,  N8, N9: 
1144: 

l l C 8 :  J5: 

l l C 9 :  N5: 

11CA: 45: 

to 11C9 occurs. If the operator was and or then 
(G6 = 1) and the value was true (S5 = 0), 
then branching to 11CA occurs. 

This word is executed for the operators and and 
then when the value was false. Here the type 
test is made. If the type was not logical (S4 = 0). 
then a branch to  l l C l  occurs. If the type was 
correct, then the microprogram proceeds to 
fetching the trailing program address (two bytes) 
to store it as the new instruction counter in IJ. 
This is done for the and operator (G7 = 0) in 
this word and the following two words l l C 3  
and 11 1E; for the then operator (G7 = 1) it is 
done in this word and the words 11C3 and 11 1F. 

The two bytes trail ing of the operators and or 
or are stored as the new instruction counter IJ. 
The operation is completed. The microprogram 
branches back to  1161 to read out the next 
operator. 

The two bytes trailing of the operator then are 
stored as the new instruction counter in IJ. The 
carry-saving bit S3 is forced to zero. 

The stackpointer is decremented by four (the 
operator '-' means complement add) which in 
effect deletes the highest entry from the stack. 
Observe that when these two words are entered 
from l l l F  (then operator with value false) the 
microprogram will not go through 1145 be- 
cause we have forced S3 to  zero in l l l F. The 
operation is completed, and the microprogram 
branches back to 1161 to read out the next 
operator. 

This word is executed for the operator or when 
the value was true. Similarly as in l l C B ,  the 
typetest is taken. For types not logical a branch 
to l l C l  occurs. I f  the type was correct, then 
the microprogram proceeds to  fetching the 
trailing program address (two bytes) to store it 
as the new instruction counter in IJ (words 
l l C 3 ,  111E). 

This word is executed for the operator or when 
the value was false. A typetest is made. If the 
type was correct, then the trailing program ad- 
dress is skipped and IJ is updated by 1 twice 
in 11C4, 11C9 (possible carries out of J handled 
in 11CF or 1145). The stackpointer is decre- 
mented by four in l l C E ,  1144. 

This word is executed for the operators and and 
then when the value was true. A typetest is 
made. If the type was correct then the trailing 
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Location 
Address in Figure Description 

address is skipped, IJ  is updated by 1 twice in 
llC4, llCA (possible carries out of J handled 
in llCF or 1145). The stackpointer is decre- 
mented by four in llCE, 1144. 

11C1, G6,L6,N6 These words are executed when a typetest 
occurs. An error code 01 is set up in L and a 
branch occurs to the error routine not drawn 
here. 

11% 
11CD: 

It can be seen from Fig. 7 that the execution times of the 
microprograms including the readout of the operator (I-Cycle) are 
the following: 

and 
or 
then 

6 pet' (8 microprogram steps) 
6 psec (8 microprogram steps) 
6 psec for value true (8 microprogram steps) 
7.5 p e c  for value false (10 microprogram steps) 

In order to compare this with a hypothetical EULER system 
for System/360 language, let us assume that the compiler produces 
in-line code (which probably will give the highest performance 
although it will be very wasteful with respect to storage space). 
Then a reasonable sequence for and might be: 

CLI 0 (STACK), LOGFALSE 
BE ANDFALSE 
CLI 0 (STACK), LOGTRUE 
BNE TYPEERR 
SH STACK, = ’4’ 

Timing: true: YO psec; false: 32 psec. 

This comparison seems to indicate that the microprogram in- 
terpreter is about an order of magnitude faster than the equivalent 
program in 360 language. However, this comparison will only yield 
such a high factor for functions of EULER which do not have 
simple System/360 language counterparts (as for instance the 
list-operators, begin-, end-, and procedure-call-operator) or where 
the overhead for dynamic testing and stackpointer manipulation 
is heavy as in the above example of the logical operations. For 
functions which do have System/360 language counterparts and 
which are slower so that the overhead is relatively lighter as, for 
instance, arithmetic operations (especially for real numbers), the 
microprogrammed interprete- will still be faster than the System/ 
360 language program, but not by a factor of 10. 

‘The cases where carries occur in the IJ and UV updating are disregarded 
for timing purposes. 

The total ROS space requirement for the String Language In- 
terpreter is: 

Coded routines 1000 microwords 
Routines for real number 500 microwords (estimated) 

Divide, Exponentiation, etc. 400 microwords (estimated) 
Garbage collector ~ 600 microwords (estimated) 

handling 

2500 microwords 

EULER compiler 

The translator to translate EULER source language into the Re- 
verse Polish String Language is a one-pass, syntax-driven compiler. 
The syntax of the language and the precedence functions F and 
G over the terminal and nonterminal symbols are stored in table 
form in Model 30 main storage. There is also main storage space 
reserved for translation tables for character delimiters and word 
delimiters and for a compile time stack, a name table, and, of 
course, for the compiled code. All these areas are at  fixed storage 
locations because of the experimental nature of the system. 

The microprogram consists of the following parts: 

A routine reads the next input character from the input 
buffer to translate it to a 1-byte internal format, if it is a 
delimiter, or to collect it into a name buffer if it is part 
of an identifier, or to convert it to hexadecimal if it is part 
of a numeric constant and to collect the number into a 
buffer. This “prescan” requires 100 + microwords. 

As soon as an input unit is collected (delimiter, identifier, 
number) the main parsing loop is entered which makes use 
of the precedence tables and the syntax table in main stor- 
age. This syntactic analyzer loop requires 100- micro- 
words. 

When the parsing loop identifies a syntactic unit to be 
reduced, it calls the appropriate generation routine which 
performs essentially the functions described as the semantic 
interpretation rules in the EULER definition. The micro- 
program space required for these programs amounts to 
approximately 250 ROS words. 

If a syntactic error is detected, the system signals an error 
and does not try to continue with the compilation process. 
Though this procedure is totally inadequate for a practically 
useful system, it was deemed sufficient to prove the essential 
point. For this minimum error analysis and for linkage to 
the 360 microprograms (IOCP), approximately 60 micro- 
words are required. 



392 Part 4 I The instruction-set processor level: special-function processors 

The total compiler microprogram space is therefore approxi- 
mately 500 ROS words. The total main storage space required is 
approximately 1200 bytes. 

The speed of this compiler is limited by the speed of the card- 
reader of the system (1000 cards/minute). This excellent per- 
formance has three main reasons: (1) EULER as a simple prece- 
dence language is a language extremely easy to compile. (2)  The 
functions of a compiler are mainly of a table lookup and bit and 
byte-testing type. Microprogramming is extremely well-suited for 
these kinds of operations. (3) Since the target language is String 
Code and not, for example, 360 Machine Language, the generative 
part of the compiler is relatively short. 

It is very difficult to assess the individual contributions of these 
three main reasons to the high compiler performance. Therefore, 
it is not possible at this stage to make a statement as to whether 
the nature of the language EULER or the fact that the compiler 
is microprogrammed is the dominant factor. 

Development of the microprogram 

Since there is no higher level language to express microprogram 
procedures and no compiler to compile microcode, the micropro- 
grams were written in the symbolic language explained in Fig. 
6. Actually the process was a hand translation of the algorithms 
in the EULER definition to the symbolic microprogram language. 
The microprograms were translated into actual microcode and 
simulated before they were put on the System/360 Model 30 by 
means of a general microprogram development system. 

Outlook and general discussion 

It is hoped that the development of this experimental system for 
EULER shows that with the help of microprogramming we can 
create systems for higher level languages or special applications, 
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which utilize existing computer hardware to a much higher degree 
than conventional programming systems. 

Among the thoughts which are raised by this scheme are the 
following: 

There should be an investigation to determine the ideal 
directly interpretable languages which correspond to higher 
level languages. Although several attempts have been made 
to define string languages for interpretive systems (for in- 
stance in Wirth and Weber [1966a and 1966bI and Mel- 
bourne and Pugmire [1965]), to the author’s knowledge no 
work has been published which attacks this question in a 
general and theoretically founded manner. 

A proliferation of interpretive languages and the develop- 
ment of microprogrammed interpreters can be justified 
when better tools are developed to reduce the cost of 
microprogramming. It is necessary that we be able to ex- 
press microprogramming concepts (and also machine design 
concepts) in a higher level language form and that we 
develop compilers which translate the microprograms from 
higher level language form to actual microcode. Also, good 
microprogram simulation and debugging tools are called for. 

The whole relationship between programming, micropro- 
gramming, and machine design should be viewed with a 
common denominator: how should the tradeoffs be made 
such that the ultimate goal can be reached more effec- 
tively, . . . how to solve a user’s problem? Green [1966] 
offers some thinking in this direction but the state of the 
art has to progress further before we will have a complete 
understanding of what these relationships and tradeoffs are. 
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Part 5 

The PMS level 

This part presents the PMS structure dimension of the computer space. The sections 
are arranged in order of increasing organizational structure complexity. The sections 
are as follows; 1 Pc; 1 Pc with multiple Pio; multiprocessing with n Pc; parallel 
processing with n Pc; computers which are networks; and networks of computers. 

In Chap. 37 Lehman defines the terms multiprogramming, multiprocessing, and 
parallel processing. 
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Section 1 

Computers with one central processor 

The computers with one Pc and no Pio’s control T and Ms in 
either of two ways. First, the Pc contains the K for T and Ms; 
second, a separate K controls a data transmission while Pc 
initializes the K. In the latter case, a K is like a P where each 
instruction is received from Pc instead of being fetched auto- 
matically by K itself. 

processing concurrency is difficult to achieve. The structure is 
first discussed in Part 2, Sec. 1, page 90. 

The SDS 910-9300 series 

The SDS 910-9300 series is presented in Chap. 42 and is dis- 
cussed in Part 6, Sec. 2, page 542. The input/output and the 
interrupt system are especially interesting. 

The Whirlwind I computer 

Whirlwind (Chap. 6) controls data transmissions between Ms 
or T and Mp by using Pc. Thus, arithmetic and input/output 

395 



Section 2 

Computers with one central processor 
and multiple input /output processors 

The computer structures discussed in this section are manu- 
factured mainly by IBM. The reason for this bias toward IBM 
is that only fairly elaborate or very specialized structures have 
Pio’s; computers of other manufacturers which have Pio’s tend 
to have also the more general multiprocessing capability1 that 
would place them in Sec. 3. 

The DEC PDP-8 

The PDP-8 is presented in Chap. 5, and its 338 P.display ap- 
pears in Chap. 25. Discussions are given in Part 2, Sec. 1 and 
Part 4, Sec. 1, respectively. For this section, the reader should 
look at the methods for transmitting data between Ms or T and 
Mp. Three methods are used: Pi0 or P.display is used to control 
T.displays (Chap. 25); Pc directly transmits a word to the buffer 
of a K for low-data-rate devices, here a K may request data, 
using the program interrupt; and a K transmits data directly 
to Mp. 

The IBM 1800 

Chapter 33 describes the 1Pc-9Pio IBM 1800 computer. There 
are five Pi0 types, depending on the components they control. 
Although we classify them as Pio’s, they are barely processors 
since the instruction counter has a very restricted behavior. 
Unless the data channel has “data chaining” capability (in 
effect a jump instruction), it is not a processor. 

The IBM 7094 II 

The IBM 7094 II computer is discussed in Part 6, Sec. 1, page 
515; its description appears in Chap. 41. The earlier 709 was 
about the first computer to use independent Pio’s. UNIVAC 
(Chap. 8) has a very extensive K for data transmission con- 
current with processing, whereas the 701 and 704 both required 
Pc to control each data word transmitted. The Pio’s of the 7094 
I I  might be looked a t  as an overreaction or overdesign inspired 
by the 701-704. 

‘For example, the CDC-3600 [Casale, 19623, and the SDS Sigma 7 [Mendelson 
and England, 19661. 

The structure of System/360, 
Part I-outline of the logical structure 

The structure of the 360 is presented in Part 6, Sec. 3. A dis- 
cussion of an alternative implementation of the 360 by the 
authors of this book, using multiprocessors, is given (page 585). 
Chapter 43 gives an overview of the ISP, and Chap. 44 presents 
the implementations of various 360 models. The implementa- 
tions of physical processors to give multiple logical processors 
using microprogramming are interesting. IBM is rather conserv- 
ative in regard to providing structures convenient for multi- 
programming; and a multiprocessing design appears too com- 
plex for them to attempt outside a research environment. 

The engineering design of the Stretch computer 

Stretch (also known as Model 7030) and the UNIVAC LARC 
[Eckert, et al., 19591 are perhaps the first computers with the 
principal design goal of maximizing numerical computing 
power. Stretch, aptly named because of its influence on the 
technology (and on the IBM organization), was initiated by the 
Atomic Energy Commission at Los Alamos. It was designed to  
interpret large-scale scientific programs for nuclear engineer- 
ing. Like a number of other high-risk major developmental 
efforts in the computer field, Stretch was not outstandingly 
successful as a computer system. Only a few(5 - 10) were built 
at a cost substantially exceeding their contract price and with 
performance only modestly better than the art at the time of 
their production. However, again in common with other similar 
efforts, they had a substantial positive effect on the state of 
the art. In the Stretch case, in particular, the 2.18-microsecond 
Mp core technology developed for Stretch was transferred to 
the 7090. In fact, this was a major contribution to why Stretch 
was only modestly better than 7090. The design goal was per- 
formance 100 times an IBM 704. The computer is described 
at a high level in Chap. 34. Buchholz’s book on Project Stretch 
[Buchholz, 19621 is outstanding as a text on computer struc- 
tures and as a description of Stretch. It should be read by all 
computer designers. 

Computers built t o  maximize numerical computing power 
also include, besides the UNIVAC LARC for the Lawrence Radia- 
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tion Laboratory at Livermore, the Control Data 6600 (Chap. 39), 
and the IBM System/360, Models 91  and 85. 

Stretch derives its power through: 

1 Compound and complex ISP instructions 

2 A PMS structure with Mp(2.18 ps/w),Pc(0.25 - 1 ps/w), 
Pio’s, and a satisfactory switch between P’s and Mp 

3 Many data-types 

4 Parallelism within the Pc, involving concurrent interpre- 
tation of the instruction stream using the ”Instruction 
look-ahead’’ mechanism 

The last of these, internal Pc parallelism, is the most novel. 
Stretch was possibly the earliest computer to make use of it; 
each of the other “maximum” power C’s listed above also uses 
some version of instruction look-ahead, for each of these 
“maximum” systems is faced with how to obtain computing 
power that goes beyond the basic logic and memory technology 
available at the time the system is designed. The conclusion, 
reached in all these cases, is to move toward internal paral- 
lelism. 

In Stretch the instruction look-ahead mechanism fetches the 
next several instructions and partially interprets each future 
instruction. The mechanism is elaborate compared with the 
straightforward instruction stack in the CDC 6600 (Chap. 39, 
page 489). The Stretch look-ahead complexity stems from par- 
tially interpreting instructions which may later have to be un- 
done. 

Stretch uses a basic Mp(core; 16384 w; (64 + 8 parity) b/w; 
tc:2.18 ps). Sixteen Mp’s can be connected to the P’s via the 
S(’Memory Bus; time multiplexed). The 8 parity bits are used 
to give single-error correction and double-error detection, which 
is a very substantial amount of error protection compared with 
standard design practice. This is the memory that was incor- 
porated in the IBM 7090 and became operational even before 
Stretch was delivered. Thus, as is often the case with large 
development efforts, the by-products are as important as the 
main product. 

There is a single well-designed physical Pio, called the Ex- 
change, consisting of several logical Pio’s. Its ability to have 
the state of all the logical Pio’s accessible in Mp is useful and 
important. This design seems better than the data channels 
in the IBM 709-7094 series. It is almost a prototype for the IBM 
System/360 Pio’s. 

The Stretch word length is 64 bits. It has operations on the 
following data-types: binary integers, decimal integers, address 

integers, variable-length integers, boolean vectors, single and 
double floating point. The length of thevariable integer is speci- 
fied by parameters in the instruction. Noisy-mode floating-point 
data provide a method of introducing a roundoff error in the 
least significant bit under program control. Thus a problem can 
be run in conventional and noisy modes and the results com- 
pared. An instruction is either 32 or 64 bits. 

The ISP processor state has an instruction counter, a dou- 
ble-length accumulator, 15 index registers, about 6 registers, 
and about 100 miscellaneous bits. Computing power is obtained 
by having an instruction set with complex instructions. Hence, 
there is an instruction for almost every possible operation, 
though inverse subtract and inverse divide instructions are 
lacking. However, there is a “multiply and add” instruction. 
Stretch has the complete set of 16 operators for boolean vec- 
tors. Compound instructions, formed from a sequence of sim- 
pler instructions, also increase power. These instructions 
specify the array element to be accessed, an operation on the 
element, and a calculation to get the next element, in a single 
instruction. Notice that several of these instructions are 
oriented toward operations on arrays (i.e., matrices), which are 
the type of numerical-analysis tasks for which the system was 
built. 

Multiprogramming was done with Stretch [Codd et al., 19591 
and undoubtedly had some influence within IBM. Stretch has 
a pair of bounds registers to relocate and protect a single 
program. The interrupt scheme for Stretch [Brooks, 1957al was 
better than that of existing IBM computers, though it is not 
described in Chap. 34. 

The importance of Stretch lies in the by-products it inspired 
and its influence on IBM, encouraging a concern with hardware 
project management. The elaborate ISP and the complex im- 
plementation of Stretch may not have been worth the effort, 
especially when one compares this computer with the later, 
larger but elegant CDC 6600. It is, however, interesting to note 
that Stretch was used as a central component in an early spe- 
cialized multiprocessor system called the IBM Harvest [Herwitz 
and Pomerene, 19601, which provides extremely powerful data- 
processing capabilities. 

PILOT, the NBS multicomputer system 

The National Bureau of Standards’ PILOT computer (Chap. 35) 
was first described in 1959. A t  that time it was a multiple 
computer; by our criteria, we classify it as a multiple-processor 
computer, as shown by its PMS structure (Fig. 1). However, 



398 Part 5 1 The PMS level Section 2 1 Computers with one central processor and multiple input/output processors 

I Mp(l p s / w ;  60 w; 16 b /w)  -Pc('Secondary Computer)-T.console - 

Pc( 'Pr imary Computer)-T.console - 

P i o ( ' T h i r d  Computer) M s h a g n e t i c  t a p e )  - 

T(reader)  + 

Fig. 1. National Bureau of Standards' PILOT computer PMS diagram. 

unlike present multiprocessors with several identical proces- 
sors, each PILOT processor is different. 

PILOT is a good example of an early attempt to use multi- 
processors; successors look little like it. It has one of the best 
analytical discussions of any computer [Leiner et al., 19571. 
With this machine there was an attempt to resolve the contro- 
versy between the short-word EDSAC (17 bits) and the long- 
word Institute for Advanced Studies computers (40 bits) by 
providing a processor and memory (i.e., computers) for each 
problem. Only the first computer had substantial Mp, and the 
other computers, or processors, could be concerned only with 
the first computer. The third computer was introduced to proc- 

ess devices such as Ms(magnetic tape) and used a plugboard 
program memory. The idea of an independent processor (IBM 
7094) or computer (CDC 6600) for input/output processing is 
used now, though it is doubtful that PILOT inspired these de- 
signs. 

The capacitor-diode store is novel and daring for the tech- 
nology. Two- and three-address computers are used in the pri- 
mary and secondary computers. The secondary computer, with 
16-bit words, is not very useful; its memory is very limited, and 
it is essentially used only for address calculations. The book- 
keeping operation for a three-address computer could easily 
keep a small processor busy. 
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The IBM 1800 

Introduction 

This third-generation computer is constructed with hybrid-circuit 
technology (semiconductors bonded to ceramic substrates) known 
as SLT (Solid Logic Technology). It has a core primary memory. 

The 1800 is designed for process control and real-time applica- 
tions. It is nearly identical to the IBM 1130, which is designed 
for small-scale, general-purpose, and scientific calculation appli- 
cations. The two C’s perform about the same for computation 
bound problems. The 1130 and 1800 are not program compatible 
with the “universal” IBM System/360 series, though introduced 
at about the same time. However, the 1800 uses terminals and 
secondary memories similar or identical to the System/360. These 
are organized about the standard IBM System/360 8-bit byte. Thus 
their common information media provide a link between the two. 
Hence an 1800 is sometimes connected to the System/360 as a 
preprocessor. The relative performance of the IBM 1130, 1800, 
and the IBM System/360 can be seen on page 586. The 1800 has 
a better cost/performance ratio than a System/360, Model 40 and 
has the performance of a Model 30. From now on we will refer 
only to the IBM 1800, although much applies to the IBM 1130. 

The 1800’s interface facilities include a large number of T’s 
which can connect to different physical processes; a multiple 
priority interrupt facility with fast response; multiple Pio’s which 
can transfer information at high data rates;’ and a complete 
instruction set for real-time, nonarithmetic processing. 

We include the 1800 because it is a typical, 16-bit, real-time, 
process control computer. The ISP is the most straightforward of 
the IBM computers in the book (and perhaps the nicest). The 
several different Pio’s and their implementations are unusual and 
should be carefully studied. Important aspects of the 1800 include 
the PMS structure as it links to real-time processes, e.g., analog 
processes; the straightforward Pc ISP (Appendix 1 of this chapter); 
the specialized Pio’s for real-time T’s; the Pc implementation; and 
the Pi0 implementation. The chapter is written to expose and 
explain these aspects.2 

By comparing the 1800 with Whirlwind, an evolutionary pro- 
gression can be seen. Their ISP’s are similar but, because of better 

lAkhoigh we refer to the data channels as Pio’s, they have a very limited 
ISP for a Pio; in fact, they might better be called Ks.  
‘Some of the material in the chapter ha5 been abstracted from the JBM 
1800 Functional Characteristics Manual. 

technology, the 1800 shows an increase in capability. The 1800 
Pc has a medium-sized state (ISP has six registers) including three 
index registers. The implementation is not elegant; a single register 
array and adder would provide the basis for a straightforward Pc 
implementation. The 1800 has features which facilitate higher 
information processing rates compared with Whirlwind. The major 
change between Whirlwind and the 1800 machines was brought 
about by the decreasing cost of registers and primary memory. 
In the 1800, all K‘s have independent memory (usually 1 - 2 
words or characters) so that concurrent operation of almost all 
the T and Ms via their K’s is possible. In contrast, Whirlwind has 
only a single, shared register in Pc, and only one device can 
operate at a time. 

Lower hardware costs allow multiple Pio’s in the 1800. The 
Pio’s represent an unusual approach to information processing in 
this period. The Pio’s which process standard disk, magnetic tape, 
and card reader are conventional, but the Pio’s for analog and 
process signals are novel and interesting. The latter Pio’s are the 
most unusual part of the 1800, and they allow independent pro- 
grams in each Pi0 to do some very trivial processing tasks such 
as alarm-condition monitoring independent of Pc. However, the 
Pio’s are limited; for example, it is difficult to transmit or receive 
a data block between Ms and Mp (using a Pio) without surrounding 
the data block with Pi0 control words (thereby transmitting the 
control words). 

The interrupt system is typical of second- and third-generation 
computers and is comparable to the SDS 900 series (Chap. 42). 
In later computers interrupt conditions are used to determine a 
fixed address to which the processor interrupts. There are generally 
many conditions (100 to 1,000), but only a few discrete levels (8 
to 20). The 1800 depends on program polling within a discrete 
interrupt level; each level has a unique, fixed address. 

A principal ISP design problem is the addressing of the 65,536- 
word Mp. Thus, a 16-bit number has to be generated within Pc 
for an address. In this regard the 1800 behaves like the 12-bit 
machines which have to address a 212 (4,096) word memory, and 
the modes or methods the 1800 uses for addressing are reasonable. 
It should be noted that it is relatively difficult to write programs 
which do not modify themselves. For example, the instruction, 
Store Status, is changed by its execution. 

399 
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A peculiar feature of the 1800 is its storage protection (see page 
408). This feature should provide program relocation capability 
in addition to protection, but it does not. 

PMS structure 

A simplified picture of the IBM 1800 structure is given in Fig. 
1, without Pio('Data Channel)'s and K('Device Adapter)'s. Each 
T and Ms have a K which connects Pc's In and Out Bus, the S('Pc 
to K). Some K's attach to Pio's and some directly to Pc. Information 
can be transferred between Mp and K via Pi0 at rates up to 0.5 
megawordis or 8 megabitsis. The IBM Configurator (Fig. 2) gives 
the restrictions on the possible structures, together with minute 
L details. It is presented as an alternative to the PMS structure 
(Fig. 1). The Configurator is intended to show the "permissible 
structures" but does not show the logical or physical structure. 
The PMS diagram (Fig. 3) alternatively shows the physical-logical 
hardware structure and performance parameters. l t  should be 
noted that a PMS diagram with the information of the computer 
component Configurator (Fig. 2) would require slightly more de- 
tails (and space). 

The central processor'-primary memory 

The IBM 1800 is a fixed-word-length, binary computer with 4, 8, 
16, or 32-kword memories of 16 + 1 + 1 bits, and a memory cycle 
time of 2 or 4 microseconds. Of the 18 bits 1 bit is used as a parity 
check (P bit) and 1 bit is used for storage protection (S bit). The 
Pc instruction set operates on 16-bit and 32-bit words. Indirect 
addressing and three index registers are used in address modifica- 
tion. The Pc has a 24-level interrupt system, three interval timers, 
and a console. 

The Pc interrupt is a forced branch (jump) in the normal 
program sequence based upon external or internal Pc conditions. 
The devices and conditions that cause interrupts are hardwired 
in fixed priority levels. An interrupt request is not honored while 
the level of the request itself or any higher level is being serviced, 
or if the level requested is masked. Examples of interrupt condi- 
tions are: 

1 An external process condition that requires attention is 
detected. 

'IBM name: the Processor-Controller or PC. 

PROCESSOR- 1 PROCESS I/O 
CONTROLLER I pn.log Input Points 

DATA PROCEjSING I/O 

Fig. 1. IBM 1800 data acquisition and control system. (Courtesy of International Business Machines Corporation.) 
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t '  
M W S  MPX, R 

I DIGITAL INPUTS 

I 

Fig. 2. IBM 1800 data-acquisition and control-system configurator. 
(Courtesy of International Business Machines Corporation.) 
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T.console - 
I K ( t  i me)+ 

T ( # l  : t y p e w r i t e r ) -  

T(#2:4: page: p r i n t e r ) +  

T(#5;  t y p e w r i t e r ) -  

"ST: T(#6:8: paqe; p r i n t e r ) +  

M p l  PC"- s? 

K ~ T( incrementa1 p o i n t  p lo t ) '  

K T(paper tape: reader 1punch)- 

P i 0 4  K T(card;  reader1 punch)- 

P i 0  K -  s - M s ( # ~ : ~ ;  magnetic tape)-  

P i 0  ( # I  : 3)  

P i 0  K T ( '?ystem/360 i n t e r f a c e ) -  

Pio6-s 

Ms (removable ;d i skpak)- 

K(#l:3)-SS-KT #I:R; d i q i t a l :  i npu t ;  1 w; c contacts  l l o g i c  vo l tage  3 
K(#4:6)-S-KT i q i  t a l  : event pu lse:  t 1 

1 
i n p u t :  counters ;  c (#1:16: 8 b ) I ( # l : R :  16 b)  

d i g i t a l :  contact  

i npu ts ;  t o :  i n t e r -  

u p t :  16 b 

K-S - K ( # l  :4)-S-KT I : 4 :  d i g i t a l :  ou tpu t :  

c o n t a c t l l o g i c  v o l t a g e /  

u lse:  16 b 

p i o s - s L K -  S-KT ' 10113 1:4:  analoq: b output :  

P i 07- t?-S-K- :-L #1:-1024: analog: i npu t ;  
a 

I 

I 

I 
I 

I , vo l tage,  cu r ren t :  (+lo1 
I I +20 1+50/+100 /+200j+500) 'I I mv1+5 v1+10 V I  (-20)ma) 

p io8- K L L Z - - - - - - - - 

'Mp(core: 214 p / w :  4096 - 32768 w;  

2Pc( '1801 11802; 1 - 2 w/ ins t ruc t i on ;  technology: hyb r id :  Mps(- 6 w): 1 address/ 

(16, p a r i t y ,  p r o t e c t )  b/w) 

i n s t r u c t  ion: -1965) 

3 ~ ( 1 ~ n  B U S ,  ou t  BUS) 

4Maximum o f  9 P i 0  pe r  C 

' P i o ( ' D i g i t a 1  Input  Data Channel) 

" P i o ( ' D i g i t a 1 ,  Analog Output Data Channel) 

'Pio( 'Anal0g Input  Data Channel) 

'Optional P i 0  t o  c o n t r o l  analog channe l ; ( s t ruc tu re  i s  q r e a t l y  s i m p l i f i e d )  

'K('ADC; analog: i npu t :  9 ,  12, 15 b/w; i . r a t e :  9 ... 24 kw/s )  

Fig. 3. IBM 1800 PMS diagram (simplified). 
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2 

3 

An interval timer has counted a previously set time interval. 

A magnetic-tape drive has completed a data transfer previ- 
ously requested and is ready for another request. 

An operator has initiated an interrupt from the Pc console. 

A device such as a typewriter has just printed a character 
and is ready to receive the next one. 

4 

5 

Primarymemory communication and data transmission with 
terminals and secondary mentory 

Two methods are used to transmit data between Mp and Ms, or 
Mp and T. First, low-speed devices are controlled directly by 
the program. Each character or word of data is transmitted to or 
from the Pc and onto T by means of an Execute I/O(XIO) instruc- 
tion. The Pc program and device synchronization are accomplished 
by using the interrupt mechanism. Devices operating under direct 
program control include typewriter, printer, plotter, paper tape 
reader and punch, analog-to-digital converters, contact sense, 
voltage-level sense, pulse counters, etc. 

The second method of transferring data is via the Pio(’Data 
Channe1)’s. The Pi0 program is started by the XI0 instruction of 
the Pc. The transfer of data words then proceeds under control 
of the specified Pio, completely asynchronous to and in parallel 
with Pc program operation. The Pi0 gains Mp access independent 
of Pc (Pc operation is suspended for one Mp cycle). During the 
Mp cycle, the data are taken from or placed into core storage by 
Pi0 (via internal Pc control and registers). As soon as the Pi0 has 
been satisfied, which normally takes one cycle, the Pc proceeds. 
The logical state of the Pc, or the Instruction-set Processor, is not 
changed by Pio’s access to Mp. This method of access is referred 
to as “cycle stealing.” Devices (Ms and T) operating under Pi0 
control include magnetic tapes, disks, line printer, card reader- 
punch, and the link to the IBM System/360. 

Some devices can operate under both Pc and Pi0 control, 
depending on their characteristics and the configuration, e.g., 
analog input, analog output, digital input, and digital output. 

Process Z/O, controls and transducers 

Analog inputs. Analog-input equipment includes analog-to-digital 
converters, multiplexors, amplifiers, and signal conditioning equip- 
ment to handle various analog-input signals. The data input rates 
are up to 20,000 16-bit samples per second, with program selecta- 
ble resolution and external synchronization. There can be 1,024 
(via relay) and 256 (via high-speed solid state) multiplexed analog- 
input channels connected to a single K (analog-to-digital con- 
verter). The Confignrator (Fig. 2) shows the allowable inputs. 

Digital inputs. The Digital Input provides up to 384 process in- 
terrupts; up to 1,024 bits of contact sense, digital input, or parallel 
register input; and 128 bits of event input counters as 1-, 8-, and 
16-bit counting registers. 

Analog outputs. Up to 128 analog outputs can be provided. 

Digital outputs. Digital Outputs provide up to 2,048 bits of pulse 
output, contacts, and registers. 

ZO processors (data channels) 

Pio(’Data Channels) give a T or Ms the ability to communicate 
directly with Mp. For example, if an input unit requires a primary 
memory cycle to store data that it has collected, the Pi0 communi- 
cates directly with Mp and stores the data. 

The Pio’s run even if Pc is waiting. The Pio’s have two registers: 
a Word Count which is used to count the number of words being 
transferred in a block between a device and Mp memory; and a 
Channel Address which points to the next word transferred in a 
block. The Channel Address is also used to select the next instruc- 
tion in the program for the next block transfer task. 

Two basic types of Pio’s are used, nonchaining and chaining.’ 
The Pio’s provide the ability to transfer either a single block 
(nonchaining) or multiple blocks (chaining) directly to Mp inde- 
pendent of Pc. 

The central processor 

Registers in the physical processor 

Figure 4 shows the relationship of the registers in Pc, together 
with those in the Instruction-set Processor. Those registers acces- 
sible by the program are shown with an *. All the registers are 
accessible from the console. A description of the functions of each 
register is given below. 

Storuge address register (SAR). All Pc references to Mp are selected 
or accessed by this 16-bit register. Pi0 references to Mp use the 
Channel Address Register (CAR) of the active Pio. 

Instruction register ( I )* .  This 16-bit counter register holds the 
address of the next instruction. 

Storuge buffer register (B) .  This 16-bit register is used for buffering 
all word transfers with Mp. 

‘A descriptive name undoubtedly concocted by one of IBM’s marketing 
departments. 
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I Core Storage ' 
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Control Registers 

*regis ers accesslb t o  Instruct on 

I sc 
( 6 )  

Overflow*, Carry* 

:t Processor 

**allows processor reg is ters  to be reed or w r i t t e n  

Fig. 4. IBM 1800 Pc data flow. (Courtesy of International Business Machines Corporation.) 

Arithmetic factor register (0). This 16-bit register is used to hold 
one operand for arithmetic and logical operations. The Accumu- 
lator provides the other factor. 

Accumulator (A)",  This 16-bit register contains the results of any 
arithmetic operation. It can be loaded from or stored into core 
storage, shifted right or left, and otherwise manipulated by specific 
arithmetic and logical instructions. 

Accumulator extension (Q)". This register is a 16-bit low-order 
extension of the Accumulator. It is used during multiply, divide, 
shifting, and double-precision arithmetic. 

Shift control counter (SC). This 6-bit counter is used primarily to 
control shift operations. 

Accumulator temporury (U). The U register is used to store A 
temporarily during an instruction or an operation which requires 
the A's facilities. 

OP register (OP). This 5-bit register is used to hold the operation 
code portion of an instruction. 

Index registers'. The three l6-bit registers are used in effective- 
address calculations. 
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Op Code 

OverJlow and carry indicators". The two indicator bits associated 
with the Accumulator are Overflow and Carry. The Overflow 
indicator can be turned on by Add, Subtract, or Divide instruction 
and indicates a result larger than can be represented in the Accu- 
mulator. The Overflow indicator can also be turned on by a Load- 
status instruction. Once Overflow is on, it will not be changed 
except by testing the indicator, or by a Load-status or Store-status 
instruction. The Carry indicator provides the information that a 
carry (or borrow) from the high-order position of the Accumula- 
tor has occurred. 

The Carry indicator is used with the Add, Subtract, Shift-left, 
Load-status, Store-status, and Compare instructions. 

F T Displacement 

In-bus. This 18-bit bus is a link(L) used to carry information from 
a K to Pc. Generally only 16 of the 18 bits are used, although 
transfers to magnetic tape can be made three 6-bit characters. 

Out-bus. This 18-bit bus is used to carry information from Pc to 
a K. 

Instruction-set processor 

The operation of the Pc from a program viewpoint follows. The 
ISP registers were declared (") in the previous section and in Fig. 
4. The ISP registers are the 18bi t  I, A, Q, XR [l, 2, 31, and the 
1-bit Overflow and Carry. 

An SSP description of the 1800 appears in Appendix 1 of this 
chapter. It is incomplete in the following respects: The memory 
protect bit checking is not described; the illegal (undefined) in- 
struction action is not described; double word data must be aligned 
on even and odd address word boundaries or else a fault occurs; 
and the IO instruction and interrupt operation are not given. 

Instruction formats. Two basic instruction-word formats are used, 
one word (Fig. 5)  and two word (Fig. 6). The bits within the 
instruction words are used in the following manner: 

OP Operation Code. These 5 bits define the instruc- 
tion. 

I I 

Fig. 5. IBM 1800 one-word-instruction format. (Courtesy of Inter- 
national Business Machines Corporation.) 

I 5  8 9 1 0  15 0 

1 
Fig. 6. IBM 1800 two-word-instruction format. (Courtesy of Inter- 
national Business Machines Corporation.) 

F Format bit. A 0 indicates a single-word instruc- 
tion, and 1 a two-word instruction. 

Tag. These 2 bits specify which of the three index 
registers is used in address modification or the shift 
count. 

Displacement. These 8 bits are usually added to 
the instruction register or the index register speci- 
fied by T for one-word instructions. The modified 
address is defined as the Effective Address (EA). 
If T is 00, the displacement is added to the in- 
struction register (then EA = I + DISP). The 
displacement is in two's complement form if nega- 
tive, with the sign in bit 8. The bit in position 
8 is automatically extended to the higher-ordered 
bits (0 to 7 )  when the displacement is used in EA 
generation. 

Indirect addressing. This bit is used only in the 
two-word-instruction format. If 0, addressing will 
be direct. If a 1 ,  addressing will be indirect. Only 
one level of indirect addressing is permitted. (The 
Load Index and Modify Index and Skip instruc- 
tions have exceptions, as shown in the ISP descrip- 
tion.) 

Branch Out. This bit is used to specify that the 
Branch or Skip on Condition (BSC) instruction is 
to be interpreted as a Branch Out (BOSC) when 
used in an interrupt routine. 

Conditions. These 6 bits select the indicators that 
are to be interrogated on a BSC or BSI instruction. 
The bit, assignments for conditions are: 

Cond( 10) A = 0 
Cond(l1) A < 0 
Cond(l2) A > 0 
Cond( 13) 
Cond(l4) (Carry = 0) 
Cond( 15) (Overflow = 0) 

These 16 bits usually specify a core storage address 

T 

DISP 

SA 

BO 

COND 

(A( 15) = 0) that is, A is eoen 

ADDRESS 



408 Part 5 I The PMS level 

F = O  
(direct addressing) t (direct addressing) 

(F = 1) A (1A = 0) 

Section 2 1 Computers with one central processor and multiple input/output processors 

(F = 1 ) ~  (1A = 1)  
(indirect adressing) 

T = 00 
T = 01 
T = 10 
T =  11 

EA t I + DispS 
EA t XR[1] + Disp 
EA c XR[2] + Disp 
EA t XR[3] + Disp 

EA t Address 
EA t Address + XR[1] 
EA t Address + XR[2] 
EA c Address + XR[3] 

EA c C(Address)§ 
EA t C(Address + XR[l]) 
EA t C(Address + XR[2]) 
EA t C(Address + XR[3]) 

in a two-word instruction. The address can be 
modified by the contents of an index register or 
used as an indirect address if the IA bit is on. 

Effective-address generation. The Effective Address (EA) is devel- 
oped as shown in Table 1. The instruction set is divided into five 
classes as shown in Table 2.  
Storuge protection. The storage-protection facility protects the 
contents of specified individual locations of Mp from change due 
to the erroneous storing of information during the execution of 
a program. The status of each location is identified as “read only” 
or “read/write” by the condition of the Storage Protect Bit, S. 

The Store-status instruction is used to write and clear Storage 
Protect Bits. The execution of this instruction is under control of 
the Write Storage Protect Bits switch on the console. Any attempt 
by the program to write into a read-only protected location results 
in a storage-protect violation which causes the Internal Interrupt 
(the highest priority interrupt). 

Instruction interpretation process 

The simplified Pc data-flow block diagram (Fig. 4) shows instruc- 
tions and data entering and leaving memory via the B register. 
Additional bits in Pc hold the P and S bits for Mp. Input devices 
send data and instructions to the B register via the 18-bit In-bus. 
Output devices receive data from the B register via the 18-bit 
Out-bus. Eighteen bits can be transferred between Pc and K(mag- 
netic tape). As each stored-program instruction is selected, its 
various parts (op code, format bit, etc.) are directed to the control 
registers via the B register and the Out-bus. The control registers 
decode and interpret each instruction before the instruction is 
executed. 

Except for Pi0 operations, all instructions and data in memory 
are addressed by the Storage Address Register (SAR). SAR obtains 
the memory address from the I register or the A register. The 

Table 2 Instruction set 

class Znstnrction 
Indirect 
addressing Mmmnic 

Load and 
store 

Arithmetic 

Shift 

Branch 

I/O 

Load accumulator 
Double load 
Store accumulator 
Double store 
Load index 
Store index 
Load status 

Store status 

Add 
Double add 
Subtract 
Double subtract 
Multiply 
Divide 
And 
Or 
Exclusive Or 

Shift Left instructions: 
Shift left logical (A) t  
Shift left logical (AQ) t  
Shift left and count (AQ)t 
Shift left and count (A)? 

Shift Right instructions: 
Shift right logical (A ) t  
Shift r ight arithmetically (AQ)t  
Rotate right (AQ)’ 

Branch and store I 
Branch or skip on condition 
Modify index and skip 
Wait 
Compare 
Double compare 

Execute 1/0 

Yes 
Yes 
Yes 
Yes 
$ 
Yes 
No 
Yes 

Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 

No 
No 
No 
No 

No 
No 
No 

Yes 
Yes * 
No 
Yes 
Yes 

Yes 

LD 
LDD 
STO 
STD 
LDX 
STX 
LDS 
STS 

A 
AD 
S 
SD 
M 
D 
AND 
OR 
EOR 

SLA 
SLT 
s LC 
SLCA 

SRA 
SRT 
RTE 

BSI 
BSC (BOSC) 
M DX 
WAIT 
CMP 
DC M 

XI0 

t Letters in parentheses indicate registers involved in shift operations. 

$See the section for the individual instruction (MDX and LDX). 
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contents of the I register are developed by one of the following 
means, depending on the Pc operation: 

1 

2 

The I register is incremented for each instruction. 

The effective address of each instruction is developed in 
the accumulator (A register) and then transferred to SAR. 
The contents of the accumulator are saved in an auxiliary 
(U) register during effective-address computation. If the 
instruction was a branch, the contents of SAR is transferred 
to the I register. 

The following examples illustrate the data flow or instruction 
interpretation process for the Load Accumulator (LD) instruction. 

One-word load instruction 
Instruction Cycle 

A register transfers to U register. 

I register transfers to SAR (I register is then incremented). 

SAR addresses the memory location containing the instruc- 
tion. 

Memory location transfers to the B register and Out-bus. 

Control registers store various parts of the instruction (op 
code, format, and tag). 

Displacement is stored in the D register. 

a 
b 

Displacement (D register) is added to A register. 

If tag = 00, I register transfers to A register. 
If tag # 00, the specified XR transfers to A register. 

Execute Cycle 

9 

10 

11 SAR addresses data word. 

12 

13 

A register transfers to SAR (effective address). 

U register transfers to A register. 

Data word transfers to B register. 

B register loads into A register (via D register). 

Two-word load instruction, direct addressing 
Instruction Cycle 1 

1 

2 

A register transfers to U register. 

I register transfers to SAR (I register is then incremented). 

3 SAR addresses the memory location containing the instruc- 
tion (first word). 

Memory location transfers to B register and Out-bus. 

Control registers store various parts of the instruction (op 
code, format, and tag). 

If tag # 00, the specified XR transfers to A register. 

4 

5 

6 

Instruction Cycle 2 

7 

8 

9 

10 

11 

I register transfers to SAR (I register is then incremented). 

SAR addresses second word of instruction. 

Second word of instruction (address) is read into B register. 

Address (from B register) is stored in D register. 

a 
b 

If tag = 00, D register transfers to A register. 
If tag # 00, D register is added to A register (A register 
contains contents of XR) 

Execute Cycle 

12 

13 

14 

15 

16 

A register transfers to SAR (effective address). 

U register transfers to A register. 

SAR addresses memory at effective address (data word). 

Data word transfers to B register. 

B register loads into A register (through D register). 

Central-processor communication with the controls' 

Direct program controZ of the controls 

Pc direct programmed control of 1/0 devices is on the basis of 
single-word or character-at-a-time transfers for each X I 0  instruc- 
tion executed. One data word or character is transferred to or from 
Mp to K. The X I 0  instruction specifies an 1/0 Control Command 
(IOCC) with a function of Control, Sense, Read, or Write to a 
controlled device. This command is either directly to a device or 
to a Pio. 

It is possible for the program sequence to execute an X I 0  
instruction to a device that is busy responding to a previous XI0  
instruction. Each device has a Busy indicator, which signals 
whether or not the device can accept data or control information. 
(Incorrect program sequence timing may cause undetected errors.) 

'IBM name: Adapter or Device Adapter. 
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It is possible for a device operating synchronously with the 
program to request a data word transfer before the program 
sequence is ready to service the request. Devices with this poten- 
tial have a “program check” indicator to signal when data have 
been lost (that is, Pc has not kept up with the device). 

Execute Z/O instruction (XZO) 

This instruction is used for programmed 1/0 operations and to 
initialize Pio; it may be either one or two words in length, as 
specified by the F bit. In the two-word instruction the address 
is either a direct or indirect address, as specified by the IA bit. 
For proper operation the effective address must be an even ad- 
dress. The effective address is used to select a two-word 1/0 
Control Command (IOCC) from storage. 

The IOCC specifies the 1/0 operation, 1/0 device, and core 
storage address. The format of the two-word IOCC follows, with 
an explanation of the assigned fields: 

Area := IOCC[1](0:4). The area field specifies a unique segment 
of 1/0 which may be a single device (1442 Card Read-Punch, 1443 
Printer, etc.) or a group of several units (magnetic-tape drives, 
serial 1/0 units, contact sense units, etc.). (Area 00000 is used to 
address system devices such as the console and the Interrupt Mask 
Register.) 

Function : = IOCC[1](5:7). The primary 1/0 functions are speci- 
fied by the 3-bit function code of the IOCC: 

000 

001 

010 

011 

100 

Removes an 1/0 device from on-line status and places 
it in a “free” mode. 

Write 
Transfers a single word from storage to an 1/0 unit. 
The address of the storage location is provided by the 
Address field of the 1/0 Control Command. 

Read 
Transfers a single word from an 1/0 unit to storage. 
The address of the storage location is provided by the 
Address field of the 1/0 Control Command. 

Sense Interrupt Level 
Directs the selected 1/0 device to make its status 
available in the Accumulator as the Interrupt Level 
Status Word (ILSW). 

Control 
Causes the selected device to interpret the address 
and/or Modifier of the IOCC as a specific control 
action. Examples are feed card and load interrupt mask 
register. 

101 

110 

111 

Initialize Write 
Initiates a Write operation on a device or unit which 
will subsequently make data transfers from storage via 
a Pc. 

Initialize Read 
Initiates a Read operation from a device or unit which 
will subsequently make data transfers to storage via a 
Data Channel. 

Sense Device 
Reads the selected device status word into the Accu- 
mulator. A Device Status Word (DSW) and the Process 
Interrupt Status Word (PISW) are sensed with this 
instruction. 

If Area 00000 is specified, the Console status and 
Interval Timer status may be brought into the Accu- 
mulator as specified by a unit address code in the 
Modifier field. 

The current contents of the Accumulator are destroyed by the 
execution of Sense Interrupt Level, Sense Device, Initialize Read, 
Initialize Write, Read, or Write. 

Modijier : = IOCC[1](8:15). This %bit field provides additional 
detail for either Function or Area. For example, if the Area spe- 
cifies a disk and if the Function specifies Control (100) then a 
particular modifier code specifies the direction of the Seek opera- 
tion. In this case, the Modifier serves to extend the function. 

If, however, the Area specifies a group of 1/0 devices, and if 
the Function specifies Write (OOl) ,  then the particular unit address 
is specified by the modifier. 

Address : = lOCC[O]( 0:15). The meaning prescribed for this 16-bit 
field is dependent upon the Function specified by this 1/0 Control 
Command: 

If Function is Initialize Write (101) or Initialize Read (110), 
then Address specifies the starting address of a table in 
storage (an 1/0 block). The contents of this table are data 
words and control information. 

If Function is Control (100) and if, for example, Area speci- 
fies the 1443 Printer, the Address may specify a specific 
control action. 

If Function is Sense (011 or ill), the Address field is ignored. 
Instead, an increment of time equivalent to a memory cycle 
is taken, during which the selected 1/0 device or Inter- 
rupt Level places its status word in the accumulator. 
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4 If Function is Write (001) or Read (010), the Address speci- 
fies the storage location of the data word. 

X I 0  execution interpretation process 

1 The EA of the XI0  is developed in the accumulator (A) 
and routed to the Storage Address Register (SAR) to locate 
the IOCC (as for any EA). 

Bit position 15 of SAR is forced on to select the EA + 1 
where the IOCC Area, Function, and Modifier are found. 

The Area, Function, and Modifier are routed through the 
B register to the Out-bus to the control of the device speci- 
fied by the Area. 

Bit position 15 of SAR is turned off to allow the address 
portion of the IOCC word to be transferred from the Mp 
location specified by the Effective Address (EA) to the B 
register. 

If the Function is an Initialize Read, Initialize Write, or 
Control, the address part of the IOCC is routed through 
the B register to the Out-bus. The address part of the 
Initialize Read/Write IOCC goes to the Channel Address 
Register (CAR) of Pio. If the Function is Read or Write, the 
address is routed from the B register through the A regis- 
ter to the SAR. SAR addresses the memory location to or 
from which the data are transmitted. 

2 

3 

4 

5 

Interval timers 

Three timers are provided to supply real-time information to the 
program. They are in core-storage locations 0004 (Timer A), 0005 
(Timer B), and 0006 (Timer C). Each timer is incremented ac- 
cording to its associated or permanent time base and can be 
hardwired to be 0.125, 0.250, 0.5, 1, 2, 4, 8, 16, 32, 64, or 128 
milliseconds. 

The timers can be started or stopped under program control. 
When the count reaches zero, an interrupt is requested on the 
level assigned to the timers. 

Interrupt 

The interrupt feature provides an automatic branch from the 
normal program sequence, based upon an external condition. A 
maximum of 24 external interrupt levels (groups) are available, 
arranged in order of priority. Twelve external interrupt levels are 
standard. Each interrupt level has a unique core-storage address 
assigned to it. Several devices may be connected to a single inter- 
rupt level, and program polling can be used to differentiate the 
possible signals causing the interrupt. The Interrupt Level Status 
Word, ILSW, is used to identify the specific condition causing its 
interrupt level to request service. 

Internal interrupt. When any one of the following error conditions 
occur, there is an internal interrupt in Pc: an invalid op code; 
a Mp parity error (an even number of bits); a storage-protect 
violation; and Channel Address Register check error. The internal 
interrupt takes priority over all external interrupts and cannot be 
masked. 

A mask register exists for the masking and unmasking of inter- 
rupt levels. An interrupt level that is masked cannot initiate a 
request for service until it has been unmasked. 

Device status word (DSu/?. DSW indicators usually fall into three 
general categories: 

1 

2 

3 Routine status conditions 

Error or exception interrupt conditions 

Normal data or service-required interrupts 

Process interrupt status word indicators (PISW). The P E W  indi- 
cators are physically located in Pc and are turned on by events 
external to the computer, e.g., contact closures or voltage shifts. 

IO processors1 

The Pc initializes each Pi0 with an XI0 instruction. The Pi0 has 
priority to the extent that, when the 1/0 device is ready to send 
or receive a data word, the Pc is stopped while the word transfers 
to or from core storage. Pc data and conditions are undisturbed 
except for the memory locations that receive data from an input 
device. 

1 / 0  devices that are to be operated concurrently must be on 
separate Pio's. 

The X I 0  instruction for a Pi0 specifies an 1/0 Control Com- 
mand (IOCC) with a function of Initialize Read or Initialize Write. 
However, even though a device operates with a Pio, the X I 0  
instructions in Pc are used to sense device status and for control. 

Registers 

Channel address register. The Channel Address Register (CAR) 
is a 16-bit register used to store the M p  address of the next word 
that will be addressed by the Pio. Each Pi0 has a CAR. Pi0 and 
its associated CAR are selected when their assigned 1/0 device 
is selected by the Area Code and Modifier of an IOCC word. 
CAR is incremented by 1 after each transfer of its contents 
to CAB. 

'IBM name: Data Channel (DC). 
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Channel address buffer. A common Channel Address Buffer (CAB) 
is used by all Channel Address Registers to address Mp. When a 
cycle steal request occurs, the CAR for the requesting Pi0 is 
transferred into the Channel Address Buffer. 

Channel-address-register check bit. Channel Address Register 
(CAR) checking is provided to ensure that the first word addressed 
by a selected CAR is the first word of the correct data table. Thus 
the check determines if a Pc program has set up the Pi0 program 
correct1y.l A CAR check is made for all devices after the address 
from the IOCC word is transferred to the selected CAR. A bit- 
by-bit comparison is made between the contents of the selected 
CAR and the contents of the B register. If any of the corresponding 
bits are not equal, a CAR check error has occurred. This CAR 
check error terminates the Pi0 task and initiates an internal inter- 
rupt. 

Word count register. A Word Count Register is provided in each 
Pio. The Word Count Register is loaded with the contents of the 
word-count portion of the data table, (2:15). This register is 
decremented each time a data word is transferred from (to) the 
data table. 

Scan control register. A Scan Control Register is provided in each 
Pi0 that has chaining ability. Scan Control register bits are stored 
in the first word of the first data table (bit positions 0 and 1) and 
in the second word (bit positions 0 and I) of the second data 
table and all subsequent data tables in a chain. 

The Scan Control Register controls the 1/0 device and the Pi0 
operation at the end of the data table as follows: single scan of 
data table and stop with an interrupt; single scan of data table 
and stop (no interrupt); continuous scan of this data table or a 
different data table with an interrupt at the end of this table; and 
continuous scan of this data table or a different data table with 
no interrupt. 

The IO processor program operation 

The sequence of steps for a Pi0 program is given below. The 
memory map or format of the program is shown in Fig. 7. 

1 Pc issues an XI0 instruction which references the IOCC 
word and initializes Pio. 

The Area Code and Modifier of the IOCC select the 1/0 
device. Function specifies the type of operation (Initialize 
Read or Initialize Write, etc.). 

2 

'Not a completely arbitrary program fault to check, since processors are in- 
volved. 

3 a The address portion of the IOCC word is stored in CAR 
for the selected Data Channel and 1/0 device. 

A CAR check is made between the selected CAR and 
the B register. 

b 

4 

5 

A cycle steal is requested by Pio; CAR transfers to CAB. 

CAB addresses core storage for the first word of the data 
table while CAR is being incremented by 1. 

The first word of the data table contains 
a Scan Control bits (bit positions 0 and 1) 
b Word Count (bit position 2 to 15) 
These are transferred to their respective registers in the 1 / 0  
device. This is the end of the first cycle steal. 

When another cycle-steal request from Pi0 occurs, CAR, 
which was incremented in step 5,  now transfers the next 
higher address to CAB. CAB then addresses core storage 
while CAR is being incremented. 

The first data word is transferred to or from the 1/0 device 
via the B register and Data Channel. The Word Count Reg- 
ister in the 1/0 device is decremented by 1. This is the 
end of the second cycle-steal cycle. 

6 

7 

8 

Steps 7 and 8 now continue on a cycle-steal basis; that is, they 
occur as the 1/0 device requests data transfers. The CAR is 
incremented with each data transfer and the WCR is decremented. 
This sequence continues until the last data word of the data table 
is transferred. The last word transfer is sensed by the WCR reach- 
ing zero or through some indicator in the device. If the device 
does not have chaining ability, no more demands for data transfer 
are made until the device is reinitialized with another XI0 instruc- 
tion. 

Chaining. These steps are for the second and all subsequent data 
tables. See above for steps 1 through 8. 

9 The contents of the word following the last data word in 
the first data table are transferred to CAR. This word must 
contain the address of the next data table. 

a 10 When the next cycle is requested, CAR is transferred 
to CAB to address core storage. The contents of the 
first word of the next data table is transferred to the 
B register. This word must contain the address of itself. 

10 b CAR check is performed and CAR is incremented 

When the next cycle steal is requested, CAR is transferred 
to CAB and CAB addresses Mp. The Scan-control bits and 
Word-count bits are transferred from the second word of 

by 1. 

11 
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0 15 0 15 

X10 Ins t ruc t ion  

sc Word Coun t  
Word Coun t  = 22 
SC = Cont inuous w i t h  

No In ter rup t  1001 Fi rs t  Da ta  Word 
Word Count  = 54 

i n g l e  Scan 1002 

1022 1-1 Last Data Word 

a 

2002 1-1 Fi rs t  Data Word 

c I 

1 
2055 Last Data Word 

b .  

ond Stop w i t h  an 

In te r rup t  

Fig. 7. IBM 1800 data-channel tables for chaining memory maps. (a )  First data table; ( b )  second data table. (Courtesy of International Business Machines 
Corporation.) 

the data table to their respective registers. CAR is incre- 
mented by 1. 

Data are transferred to (from) the 1/0 device on a cycle- 
steal basis via the B register and the Data Channel. CAB 
addresses core storage to transfer a data word to the B 
register. Each time CAB addresses core storage, CAR is 
incremented by 1. When the next cycle-steal request 
occurs, CAR is transferred to CAB. The Word-count Reg- 
ister is decremented for each word transferred. 

When the last data character is transferred (word count 
is decremented to zero), operation will continue as speci- 
fied by the Scan Control Register. (See above section for 
Scan-Control Register.) 

12 

13 

Special data channels 

The four Pi0 types for special functions are: 

1 Analog input (block data transfers, and comparisons of 
analog inputs for limits) 

2 Digital input/output 

3 Analog output 

4 Digital output 

Analog-input datu channels. Memory maps (Fig. 8a and b)  illus- 
trate the command formats interpreted in the Analog Data Chan- 
nel programs. A list of limit values is placed in a table (Fig. sa), 
and each analog input is compared with the limits. The operation 
sequence is: Read a specific addressed analog voltage, called the 
multiplex' point (mpx); compare the input voltage with the limits 
stored in the table following the analog address (the limit word 
contains a high and low value in bits (0:7) and (8:15), respec- 

lThe IBM multiplexor is an S which allows multiple inputs to be read 
into the T(Ana1og to Digital Converter) sequentially. 
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ADDRESS A First Mpx Point Location 
J " "  ~ I i I I I I I I  

L 1 I 1 1  d I 1 I I I I l I  

LIMIT WORD 

1 1  ADDRESS 6 

LIMIT WORD 

J l I I I  I ~ I I I I I I I .  

L l n c l  I I I I I I / I I _  

0 0  ADDRESS C 

1 1  ADDRESS D 

LIMIT WORD 

I O  ADDRESS E 
J P .  

ETC. 

L = I, Limit Word Follows 
K = I, Perform Comparison 

I 

This word contains 
i t s  own address 
MPX Address 47 

Limits Not Used 

Second Mpx Point 

Comparison i s  Performed 

Third Mpx Point 

Fourth M p x  Point 

Comparison i s  Performed 

Fifth Mpx Point 

31 I9 

Not Used 

31 23 A I - ln t .  WR 

a. 

3012 

Location 

2999 1:: I Word Count = 12 1 

Starting Toble Addrerr(BO15) 

3000 I Multiplex Address I 
I 1 3001 1 Value 1 

3011 T Value 1 1  T 
I 
I 

Locaticm 

301 5 Car Check Word 
= 3015 1 

3016 I %$ I Word Count = 25 I 
3017 1 Mult iplex Address I 

1 3018 1 
3041 T Value 35 T 

Value 12 

3043 A/l -1nit iol ize Read 

b .  

Location 

3201 
- 

3202 

3203 
3204 

3321 

Loccr im 

3402 
- 

3403 
3434 

3521 

3522 

SicrtinS IOCC 
35 24 

This word contains its own address 

LVord Count 

ADC dolue (47) 
ADC F l u e  (82) 

ADC Value (14) 

ADC Volue (47) 
ADC value (82) 

ADC Value (141 

1 I Starting Table Addr. 
(3201) 

Starling Table Addr . 
IOCC 

1 A/I - In1 . Rd. I I  

d .  

Fig. 8. IBM 1800 data-channel analog-input instruction format and memory maps. (a) Multiplexor address table 
with limit words for comparisons. (b)  Data table, chained sequential control. (c) Multiplexor address table, random 
addressing. (d) Analogto-digital converter storage tables, random addressing (used with a second data channel). 
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Word Count= m + 1 I Control I 
I Initial Digital Input Group Address 1 

Scan 
Word Count = n + 1 Control 

I D or A Output Address I 

Data 2 
I Data 1 

I Data rn I 

a .  

I I z;rol I Word Count = 2m 

Digital Input Group Address1 

I Data 2 I -- 
Data rn 

b .  

I Data n 

C .  

Scan Control Word Count = 2n 

I Initial D or A Output Address 1 
I Data 1 

D or A Output Address 

Data2 

D or A Output Addresses 

Datag 

d .  

Fig. 9. IBM 1800 data-channel digital or analog-output instruction formats and memory maps. (a) Digital input, 
sequential; (b) digital input, random addressing; (c) digital or analog output, sequential; (d) digital or analog out- 
put, random addressing. (Courtesy of International Business Machines Corporation.) 

tively); and if the analog-input value lies outside the limit range, 
initiate an interrupt. 

Figure 8h describes a second use of this data channel. Pi0 
accepts a sequence of analog inputs and packs them into a table 
following the address initiation instruction. The analog inputs from 
the T’s are either fixed or selected in a cyclic fashion from a 
Multiplexor. 

Two Pio’s can be used concurrently: One Pi0 controls the input 
from a series of analog-input addresses (Fig. 8c); the second Pi0 
packs the corresponding analog values in a second table (Fig. 8 4 .  

Digital-input data channels. Digital parameters or events can be 
read into Mp under the control of a Digital-input Data Channel. 
The memory map (Fig. 9a) shows the control format for selecting 
and inputting a block or sequence of external data. The memory 
map (Fig. 9h) illustrates a more general ability to address inputs 
at random and read them into succeeding Mp locations. 

Digital- and analog-output data channels. Memory maps (Fig. 3c 
and d )  show the program format used by the Digital- or Analog- 
output Data Channels. These channels output selected data points 
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to external analog or digital K’s. This Pi0 is similar to the Digital- 
input Data Channel. 

Conclusions 

We have tried to show a typical, third-generation computer used 
for process control. Many of the facilities the 1800 possesses are 

general. The Pio’s are rather special, designed to monitor and 
control a process, independent of Pc. Although the Pio’s are 
powerful (by providing parallel data transmission), their use, like 
other multiprocessing systems, is nontrivial. The Pc ISP is fairly 
straightforward, and one should write a program using it to ap- 
preciate its simplicity. 
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APPENDIX 1 THE IBM 1800 ISP DESCRIPTION 

P c  S ta t e  

A<O:15> 

Q<O:15> 

1<0:15> 

XR[ 1 : 3 1<0 : l5> 
o v  

C 

R"" 

Mu S ta te  

M [ O :  F F F F l  61<P, S ,0: l5> 

Pc Console S t a t e  
Check Stop Switch 

USPB Switch 

S P V  Ind ica tor  

Ins t ruc t ion  Format 

i n s t r u c t i o n / i [ 0 : 1 ] < 0 ; 1 5 >  

o p d : 4 >  := i[O]<n:4> 

shop<O:7> := opoi  [0]<5.8,9> 
f := i [ O ] < 5 >  

t 4 : 1 >  := i [O] ib :7>  

d&:15> :=  i [ O ] & : 1 5 >  
d s g n a :  15>:= s i g n g x t e n d ( d c 8 m Q :  15;) 

a<0:15> := i[11<0:15> 

i a  := i [ O l d >  
bo := i C o l d >  
cond4 :5>  := i [ O ] < l O : l 5 ;  

E.Ffect iv~ Address c'alculation Process 

z<O:15>:= ( 

( t  = 0 ) A  f -,(dsgn + I ) ;  

( t  # O ) A  7 f i (dsgn + X R [ t  1 ) ;  
( t  = 0 )  A f A ia-> a;  

( t  # 0 )  A f A 

( t  = 0 )  A f A i a  + M[n1; 

( t  # 0) A f F\ i a  + (M[a + X R [ t l l ) )  

i a + ( a  + X R [ t ] ) ;  

z'<0:15> := (? f -> (dsgn + I ) ;  

f A 7 i a  +a: 

f A i a  -Mia]) 

Appendix I 

I B M  1800 I S P  D e s c r i p t i o n  

Accwnulator 

Accumulator Frtension ,for mu; t ip l ier ,  auotient and double 

Instruet ior .  Location Counter 

Index Regis ters  
0iierfloi.i Indicator  

Carru Indi ea t or 
denotes runn ing  comutcr 

length 

Mp with  P a r i t y  and Protect b i t s  

p c  stops i f  storage pro tec t  wiolat ion occurs 
Write .Storage Protect Elits; enables the wr i t i ng  of b i t s  i n  
a arord 

Storage Protect  V io la t ion  ind ica tor :  s e t  t o  1 if a memory 
reference is made to a orotected iuord 

operation code 

s h i f t  ooeration code count 
f o rmat ;  s p e c i f i e s  a 1 or 2 word in s t ruc t ion  

tag:  index r e g i s t e r  spec i f i ca t ion  

disnlacement or  short  address 

afldress 

irr'irect aciiress b i t  

branch o u t  b i t  
coniYtions for t e s t  

e f f e c t i v e  address 
1 word, r e l a t i v e  

7 word, r e la t ioe ,  indexed 

2 word, direct 
2 ii)ord, d irect ,  indexe,i 
2 i,,ord, in?irect  

2 word, indirect, indexed 
e . f fec t ive  address for index r e g i s t e r  i v s t r u c t i o n s  
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APPENDIX 1 THE IBM 1800 ISP DESCRIPTION (Continued) 

z d i n : 1 5 > : =  ( ~ z < 1 5 >  + z  + I ;  process f o r  locating -econd operand for  double length 

z<15> i z )  

xi<D:15> := (7 f i d s g n ;  index increment 

f A 7 i a  + a ;  

f A i a  ->M[al)  

s<0:5>  := ( shift count caZcuZatCnn 
( t  = 0) +d<10:15> 

( t  # 0 )  ->XR[t]<lO:l5>) 

Tnstruction I n t e r a r e t o t i o n  Process 

R u n - ( i n s t r u c t i o n [ O : l l  + M [ l : I  + I ] ;  n e x t  f e t c h  

~f + ( I  6 1  + I ) ;  f + ( I  tl + 2 ) ;  n e x t  1 or 2 uord i n s t r u c t i o n  

I n s t r u c t i o n u e x e c u t i o n )  execute 

Instructicrr Y e t  an” Tnstruction Fzerutior Pr0ces.s 

I n s t r u c t i o n d x e c u t i o n  := ( 

Load and Arithmetic 

LO 

LDD (:= op = IlDOl) i (AOQ t M [ z ] O M [ z d ] ) ;  double load 

STO (:= op = 11010) 4 (M[z] + A ) ;  store a c c m l o t o r  

STD ( := op = I l O l l )  i (M[Z]oM[zd] t A o Q ) ;  double s tore  
A 

AD 

S (:= op = 10010) + (OV,CoA + A  - M[z]) ;  

SD ( : =  op = IOOIl) -) (Ov,Col\Oa +AOQ - M[z]CCl[zd]): double subtract 

M 

D 

(:= op = 11000) + (A + M [ z l ) :  load a c c m  lator 

(:= op = IOOOO) -> (Ov,Cd + A  + M[z ] ) :  

( : =  op = IOOOI) + (Ov,CoAoQ (-Ana + M[zloM[zd]) ;  

add 

double add 
subtract 

(:= op = 10100) 3 (AOQ +A x M[z]): muztipzy 

(:= op = I O l O l )  + (Ov,Q t A o Q  / M[z]; 

A +A@ mod M[z]) ;  

div ide  

i o g i c a  I i n s t r u c t  ion:; 

AND ( :=  op = l l100)  + ( A  + A  A M[z] ) ;  

OR (:= op = I l l O l )  + ( A  +A v M[z]) ;  logical or 
EOR ( : =  op = I l l l o )  ->(A +A @ M [ z ] ) ;  loy:cal ezclusiiie or 

logical and 

Compare 

CMP (:= op = 10110) - ( ( A <  M[z1) + (I I + I ) ;  compare 

(A = MCzl) - ( 1  1 + 2 ) ) ;  

DCM (:= op = lOll1) + ((AW< M[z lP( [zd l )  + ( I  1 + I ) ;  double comnare 

(AQ = M [ z l M [ z d l )  - ( I  + I + 2 ) ) ;  

S h i f t s  

SLA ( : =  shop = OOOlOcOcOO) + (  s h i f t  lef t  l o p i c a l  

A + A  x 2’ [ l o g i c a l ] ;  c -AG-I>); 

A@ + A @  x 2’ [ log ica l  1; c ~A+,-I>): 

SLT ( : =  shop = 000106)o10) i( s h i f t  douhle l p f t  lopi?al 

SRA ( :=  shop = O O O l l c O ~ O )  +(A + A  / 2’ s h i s t  r i g h t  logical 

SRT ( :=  shop = O O O l l ~ o l O )  + (Ana +Am / 2’): s h i f t  r i g h t  A on? 0 

RTE ( : =  shop = 0001 IOOOl 1 )  +(A@ <-AOQ / 2’ 

SLCA(:= shop = 00010oD;101) i( S h i . f t  7e.ft cv4 court P 

[ l o g i c a l ] ) ;  

( r o t a t e ) ) :  rotate r i g h t  A an? 0 
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APPENDIX 1 THE IBM 1800 ISP DESCRIPTION (Continued) 

( t  = 0) + (A + A X  2': c ~ A + , - I > ) ;  

( t  f 0)  + (A +normaI ize(A) ;  

C ~ X R [ t ] < l 0 : 1 9  t normal ize,exponent(A): 

XRC t 1<8 ,9  + 0) 1 : 
SLC (:= shop = O O O l C n ~ l l )  + (7 ( ( s  = 0 )  V A<O>) + ( 

( t  = 0 )  -? (PaQ t PaQ x 2'; C c A < s - l > ) :  

( t  # 0) + (bQ tnorrnaI ize(AnQ);  

C O X R [ t ]  t n o r m a l  ize,exponent(A@)))); 

LOX ( :=  op = 01100) + ( ( t  = 0) + ( I  tz'): 

( t  # 0) + ( X R [ t l  tz')); 

STX (:= op = 01101) + ( ( t  = 0) + (M[z']  t I ) ;  

( t  # 0 )  + ( M [ z ' I  t X R [ t l ) ) ;  

STS ( : =  op = O O l O l )  + ( 

( f  A bo)  + M [ z ] < b c  cond<l5>: 

?bo + (M[ ~ ] < 8 :  ID c OOOOcbcOOv; CoOv t 0 0 ) )  ; 

LOS ( : =  i [ o ]  = ooiomcoomoooooomm) + (C t i [ O l < l l u :  

B S C  (:= (op = 01001) A i<9>) - ( 

Ov t i [ O l < l P ) ;  

( 

(,skip,condition A f )  + ( I  t z ) ;  

skip,condition A 7 f )  + ( I  t I + I ) :  

K I D  -) ov c 0 ) ;  

e k i b c o n d i t i o n  := ( 

( ~ O V  A d<15>) V 

( i C  A d<l4>) V 

(A<l5> A d<13>) V 

( (A > 0) A d<l2>) V 

(A<O> A d<l I > )  V 

( ( A = O )  A d<l O>) ) 

BOSC ( : = ( o p  = OlOOl) A i s > )  - ( 
(skip,condition A 7 f )  + ( I  + I + 1 ;  I n t e r r u p t  + I ) ;  
(7 skip,condition A f )  + ( I  + z ;  I n t e r r u p t  + I ) ;  
d<l$> -9 ( O V  t o ) ) ;  

B S I  (:= op  = OIOOO) + ( 
if + ( 1  t z  + I ;  M[z]  t I ) ;  

f + (d<15> - Ov + 0 ) ;  

- , sk ip jond i t i on  + ( I  t z  + I ;  P [ z l  - 1 ) ) ;  

MDX (:= op = 01110) -f ( 

( t  = 0) A f - ( I  + I  + dsgn); 

( t  = 0) A f + ( M [ a l  t M [ a l  + dsgn; 
(Msum=O) v (M101<0> @Msum<O>) - ( I  - I + I ) ) ;  

Msurn,O:15> := (M ta l  + dsgn) 

( t  # 0) - t ( X R [ t l  t X R [ t l  + x i ;  

(Xsurn=o) V ( ~ ~ [ t l a . ,  @xsurnQO') - ( 1  + I + 1 ) ) ) ;  

Xsurndl:15> := (XR[ t ]  + dsgn) 

Wait (:= i = 3 0 0 0 ~ ~ )  + ( I  t I - I ) ;  

s h i f t  l e f t  and count 

load index or i n s t r u c t i o n  counter 

s tore  index or i n s t r u c t i o n  countei 

s tore  s t a t u s  

load s t a t u s  

branch or sk ip  on condition 

overflow o f f  
carry o f f  
Accumulator even 
Accumulator greater than zero 
Accumulator negative 
Accumulator zero 

branch out of  i n t e r r u p t s  

branch and s tore  i n s t r u c t i o n  regie 

modify index and sk ip  
local  branch 

r e s u l t  zero or s ign  change 

r e s u l t  zero or s ign  change 
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APPENDIX 1 THE IBM 1800 ISP DESCRIPTION (Continued) 

Section 2 I Computers with one central processor and multiple input/output processors 

IO Control In s t ruc t ion :  

XI0 (:= op = OOOOl) + ( Execute I / O ,  not defined 
l O C C [ O : l l  eM[z lOM[zdl ;  next  

Execute,lO,inst r u c t  ion)  

) end Ins t ruc t iondzecu t ion  

I O  Ins t ruc t ion  Format: 
I O  Address<O:15> := iOCCC0l address i f  I O  data 
I O  Device o r  Area<9:4> := I O C C C I I < o : 4 >  io device name 
10 Function<5:7> := l O C C [ l 3 < 5 : 7 >  

I O  Modifier<8:25> := l O C C [ l ] C 8 : 1 5 >  device func t ion  d e t a i l s  
Device mode o f f  l i n e  := ( I O  Funct ion = 0) 

Device mode w r i t e  := ( I O  Funct ion = I )  
Device mode read := ( I O  Funct ion = 2) 

Device mode sense I n t e r r u p t  l e v e l  := ( I O  Funct ion = 3 )  
Device mode con t ro l  := ( I O  Funct ion = 4) 
Device mode i n i t i a l i z e  w r i t e  := ( I O  Funct ion = 5 )  
Device mode i n i t i a l i z e  read := ( I O  Funct ion = 6 )  
Device mode sense := ( I O  Funct ion = 7) 
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The engineering design of the Stretch 
co m pu terl 

Erich Bloch 

Summary The Stretch computer is an advanced scientific computer with 
variable facilities for floating-point, fixed-point, and variable-field-length 
arithmetic and data-handling facilities. 

The performance goal of 100 x 704 speed is achieved by high-speed 
circuits, multiplexing, and simultaneous-operation technique of instruction 
and data-fetching, as well a overlap within the execution units. This 
massive overlap and multiplexing results in complicated recovery routines 
between the look-ahead and instruction units. These units are described 
in detail, as are the arithmetic units and significant algorithms used in the 
floating-point arithmetic. 

A flexible set of circuits using a current-switching technique with 
overriding-level facility is described, as well as the packaging of circuits 
on printed cards. The frame and gate concept is also shown. Performance 
figures and hardware count illustrate the size, complexity, and performance 
of the system. 

Introduction 

The Stretch computer [Dunwell, 19561 project was started in order 
to achieve two orders of magnitude of improvement in perform- 
ance over the then existing 704. Although this computer, like the 
704, is aimed at  scientific problems such as reactor design, hydro- 
dynamics problems, partial differential equation etc., its instruc- 
tion set and organization are such that it can handle with ease 
data-processing problems normally associated with commercial 
applications, such as processing of alphanumeric fields, sorting, and 
decimal arithmetic. 

In order to achieve the stated goal of performance, all factors 
that go into the computer design must contribute towards the 
performance goal; this includes the instruction set [Buchholz, 
19581, the internal system organization, the data and instruction 
word length, and auxiliary features such as status-monitoring 
devices, the circuits, packaging, and component technology. No 
one of them by itself can give this hundred-fold increase in speed; 
only by the combining and interacting of these contributing 
factors can this performance be obtained. 

'Proc. EJCC, pp. 48-59, 1959 

This paper reviews the engineering design of the Stretch System 
with primary concentration on the central computer as the main 
contributor to performance. In it, these new techniques, devices, 
and instructions have been pushed to the limit set by the present 
technology and, therefore, its analysis will convey best the prob- 
lems encountered and the solutions employed. 

The Stretch system 

Early in the system design, it appeared evident that a six-fold 
improvement in memory performance and a ten-fold improvement 
in basic circuit speed over the 704 was the best one could achieve. 
To meet the proposed performance criteria, the system had to be 
organized in such a way that it took advantage of every possible 
overlap of systems function, multiplexing of the major portion of 
the system, processing of operations simultaneously, and anticipa- 
tion of occurrences, wherever possible. The system had to be 
capable of making assumptions based on the probability that 
certain events might occur, and means had to be provided to 
retrace the steps when the assumption proved to be wrong. 

This simultaneity and multiplexing of operations reflects itself 
in the Stretch System at all levels, from overall systems organiza- 
tion to the cycle of specific instructions. In the following descrip- 
tion, this will be discussed in more detail. 

If one considers the Stretch System (Fig. 1) from an overall 
point of view it becomes apparent that the major parts of the 
system can operate simultaneously: 

a The 2-psec, 16,384-word core memories are self-contained, 
with their own clocks, addressing circuits, data registers and 
checking circuits. The memories themselves are interleaved 
so that the first two memories have their addresses distrib- 
uted modulo 2 and the other four are interleaved modulo 
4. The modulo-2-interleaved memories are used primarily 
for instruction storage; since, for high-performance instruc- 
tions, halfword formats are used, the average rate of ob- 
taining instructions is one per '/z psec. Similarly, a 0.5-psec 

42 1 
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INSTRUCTION MEMORIES 
(MOD 2 INTERLEAVED) I 

OPERAND MEMORIES 
(MOD 4 INTERLEAVED) 

2 p  SEC CORE 2p SEC CORE Zp SEC CORE, 2p SEC CORE ,2p  SEC CORE 2 p  SEC CORE GI GI/G Gi '-I GI 
I I 1  1 1  I ,  I /  I 

MEMORY I N  BUS 

1 MEMORY OUT BUS 

I 
CENTRAL 

COMPUTER 

t 1 
I/O EXCHANGE 

DISK SYNCH 
UNIT 

1 DISK 1 1 CONSOLE 1 1  READER 
CONTROL ADAPTER ADAPTER 

f?$pt,; & 
4 x lo6 WORDS 

- 
T 5 

TAPE TAPE TAPE 
ADAPTER ADAPTER ADAPTER 

729- IX 
TAPE 

Fig. 1. The Stretch system. 

Y - 
the transfer of information from and to the memories by 
a memory bus permits new addresses, information, or both 
to pass through the bus every 200 mpsec. 

linked with the memories and the computer through the 
Exchange, which, after initial instruction by the computer, 
coordinates the starting of the 1/0 equipment, the checking 
and error-correction of the information, the arrangement 
of the information into memory words, and the fetching and 
storing of the information from and to memory. All these 
functions are executed without the use of the computer, 
so it can in the meantime continue its data processing and 
computation. 

The central computer processes and executes the stored 
program. Here, now, the simultaneity and multiplexing of 
functions has reached its ultimate. 

a 

h The simultaneously-operating Input/Output units are b 

C 

c 

data-word rate is achieved by the use of four modulo-4 
organized memories. The addressing of the memories and 

Before discussing the computer organization, a few general 
features must be mentioned for completeness: 

Word length: fj4 bits plus eight bits for parity checks and 
error-correction codes. 

Memory capacity and addressing: A possible 256,000 words 
can be randomly addressed. These storage positions are all 
in external memory, except for the 32 first addresses. These 
positions consist of the internal registers (accumulators, time 
clocks, index registers). 

The instructions are single-address instructions with the 
exception of a number of special codes that imply the 
second address explicitly. 

The instruction set (Fig. 2) is generalized and contains a 
full set for single- and double-precision floating-point arith- 
metic, and a full set for variable-field-length integer arith- 
metic (binary and decimal). It also has a generalized set for 
index modification and a branching set, as well as a set of 
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1/0 instructions. All told, 765 different types of instructions 
are used in the system. 

The instruction format (Fig. 3) makes use of both half and 
full words; half words accommodate indexing and floating- 
point instructions (for optimum performance these two sets 
of instructions use a rigid format), and full-word formats 
are used by the variable-field-length instructions. Notice 
that the latter specifies the operand field by the address of 
its left-most bit, the length of the field, and the byte1 size, 
as well as the starting point (offset) of the implied operand 

‘Byte: a generic term to denote the number of bits to be operated on as 

d 

(accumulator). Both halves of the word are independently 
indexable. 

A general monitoring device used for important status 
triggers is called the Interrupt [Brooks, 19571 System. This 
system monitors the flip-flops which reflect internal mal- 
functions, result significance (exponent range, mantissa zero, 
overflow, underflow), program errors (illegal instruction, 
protected memory area), and input/output conditions (unit 
not ready, etc.). The status of these flip-flops can cause a 
break in the normal progression of the stored program for 
fix-up purposes. Their status is automatically interrogated 

e 

a unit by a variable-field-length instruction. at all times. 

COMPUTER V O C A B U L A R Y  

M O D I F I E R  I E X A M P L E S  
INSTRUCTION 

CATEGORY 
N U M B E R  

O F  I N S T R  C L A S S  

V A R I A B L E  F I E L D  
L E N G T H  A R I T H M E T I C  

B I N A R Y  D E C I M A L  SIGNED ADD (TO M E M O R Y )  
U N S I G N E D  LOAD / S T O R E  
SAME SIGN 
NEGATIVE S I G N  D I V I D E  

280 

32 3 l N / D E C  RADIX CONVERSION 

LOGIC CONNECTS 

I 

48 I 16 LOGIC S T A T E M E N T  

FLOATING POINT 
A R I T H M E T I C  

N O R M A L I Z E D  
U N N O R M A L I Z  E D 

SAME SIGN 
OPPOSITE S I G N  
N E G A T I V E  SIGN 
NOISY MODE 

ADD ( S I N G L E  8 D O U B L E )  
L O A D I S T O R E  
M P Y / ( S I N G L E  8 D O U B L E )  
DIV ( W I T H  R E M A I N D E R )  
I N T E R C H A N G E  D I V I D E  
C U M U L A T I V E  M P Y  
SQUARE ROOT 24 0 

I N D E X I N G  A R I T H M E T I C  D I R E C T  

I M M E D l  A T E  

P R O G R E S S I V E  43 

B R A N C H E S  U N C O N D I T I O N A L  
I N D E X I N G  
I N  DICATOR 
B I T  “ { b  

S E T  0 
L E A V E  B I T  
I N V E R T  B I T  STORE I N S T  CTR 68 

T R A N S M I T / S W A P  

I10 I N S T R U C T I O N  24 

I T O T A L  735 

Fig. 2. The instruction set. 
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Section 2 I Computers with one central processor and multiple input/output processors 

ECC 
PTY 

DATA FORMATS 

INDEX 
WORD 

ECC - 
I PARITY 
I+ COUNT REFILL VALUE 

LUAl INb I EXPONE NT~Y POINT 

DATA WORD ADR Isin/&! I I COUNT 
WORD 

MANTISSA ( FRACTION 1 

ECC 
PARITY REFILL 

4- " tLl 1-1 I PAR 

I 

I 
ADDRESS DI R ECT 

INDEX J OP I 

,FLAG 

0 I8 25 28 46 63 71 

INSTRUCTION FORMATS 

I ADDRESS 1;' S OP\Ol I I POINT I 1  I 

0 18 28 31 

'BINARY 
DECIMAL 

Fig. 3. Data word-and instruction word formats. 

organization of Stretch, where two instruction words and four 
operands can be fetched simultaneously. In addition, the execution 
of the instruction is done in parallel and simultaneously with the 
described fetching functions. 

All the units of the computer are loosely coupled together, each 
one controlled by its own clock system, which in turn is synchro- 
nized by a master oscillator. This multiplexing of the units of the 
computer results in a large number of registers and adders, since 

The Stretch computer 

If one considers the internal organization of the majority of corn- 
puters that have been produced during the last eight years (and 
the 704 is a case in point), the organization looks as shown in Fig. 
4a. There is a sequential flow of instructions into the computer, 
and after due processing and execution, the next instruction is 
called from memory. Compare this with Fig. 4b, showing the 
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time-sharing of the major computer organs is no longer possible. 
All in all, the computer has 3,000 register positions and about 450 
adder positions. 

Despite the multiplexing and simultaneous operation of suc- 
cessive instructions, the result appears as if sequential step-by-step 
internal operation were utilized. This has made the design of the 
interlocks quite complex. 

Data flow 

The data flow through the computer is shown in Fig. 5 and is 
comparable to a pipeline which in a steady state (namely, once 
filled) has a large output rate no matter what its length. The same 
is true here; after start-up the execution of the instructions is fast 
and bears no relation at all to the stages it must progress through. 

D A T A  W O R D  

1 
I N S T R U C T I O N  

I N S T R U C T I O N  
F E T C H  

I N S T R U C T I O N  

D A T A  W O R D  

I N S T R U C T I O N  

E X E C U T I O N  

4 I N S T R U C T I O N S  4 D A T A  W O R D S  

I N S T R U C T I O N  I N S T R U C T I O N  I U P D A T I N G  I I E X E C U T I O N  I 

70 4 S T R E T C H  

Fig. 4. Comparison of Stretch and 704 organization. 
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I 2WORD 

FR EXCHANGE 

TO EXCHANGE 

I INSTR WORD BUFFFR~ A [OPERAND BUFFER I 
INSTR WORD BUFFER 

INDEXING UNIT 

OPERAND BUFFER 
OPERAND BUFFER e 
OPERAND BUFFER 

LOOK-AHEAD 
CHECKER IN BUS - v I1 

,;PiTRANSFER BUS 11 
I 

I I OPERAND 171 I REGISTER 
ACCUMULATOR 1 A.B INTERRUPT 1 SYSTEM I AR ITH METlC 1 CHECK 

11 ARITH CHECKER INBUS fi 

SERIAL 
ARITH UNIT 

Fig. 5. Stretch computer-units and data flow. 

The Memory Bus is the communication link between the mem- 
ories on one side and the exchanges and the computer on the other. 
It monitors the requests for storage to, or fetches from, memory, 
and sets up a priority scheme. Since 1/0 units cannot hold up  
their requests, the exchange will get highest priority, followed by 
the computer. In the computer the instruction-fetch mechanism 
has priority over the operand-fetch mechanism. All told, the 
memory bus gets requests from and assigns priority to eight differ- 
ent channels, 

Since memory can be accessed from multiple sources, and once 
accessed it is on its own to complete its cycle, a busy condition 
can exist. Here again, the memory bus tests for busy conditions 
and delays the requesting unit until memory is ready to be inter- 

rogated on data fetches. The return address is remembered and 
the requesting unit receives the information when it becomes 
available. To accomplish this, from the time information is re- 
quested the receiving data register is in a reserved status. 

Requests for stores and fetches can be processed at a 200 mpsec 
rate and the time, if no busy or priority conditions exist, to return 
the word to the requesting unit is 1.6 psec, a direct function of 
the memory read-out time. 

The Instruction Unit [Blaauw, 19591 i s  a computer of its own. 
It has its own instruction set, its own small memory for index word 
storage, and its own arithmetic unit. During its operation as many 
as six instructions can be at  various stages of execution. 

The Instruction Unit fetches the instruction words from mem- 
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ory, it steps the instruction counter, and performs the indexing of 
instructions and the initiation of data fetches. After a preliminary 
decoding of the class of instruction, it recognizes its own instruc- 
tions and executes indexing instructions. On branches, conditional 
or unconditional, the instruction unit executes these. In the case 
of conditional branches, it makes the assumption that the branch 
will not be successful. 

This assumption and the availability of two full-word buffer 
registers keep the flow of instruction to the computer continuous. 
Therefore, the rate of instructions entering the instruction unit 
is for all practical purposes independent of the memory cycle. 

Since, for high speed instructions, half-word formats are used, 
four of these at any one time can be in buffer storage. As soon 

as the instruction unit starts processing an instruction, it is re- 
moved from the buffer, thus making room for the next memory- 
word access (Fig. 6). Incidentally, half-word instructions and 
full-word instructions can be intermixed within the same word, 
and therefore the latter can cross a word boundary. This permits 
maximum packing of instructions in memory and also serves as 
a facility for automatic program assemblers and compilers. 

The adder path, index registers, and transfer bus to look-ahead 
complete the instruction unit system (Fig. 6). It should be noted 
that the index registers are part of the instruction-unit data path, 
therefore permitting fast access (no long transmission lines) to an 
index word. There are 16 index words available to the programmer. 
The index registers, consisting of multi-aperture cores, are oper- 

MEMORY OUT BUS - - D 

LOOKAHEAD LOAD LINES * 
\ y CHECKER IN BUS Y V 

D 

MEMORY ADDRESS BUS J. 
D 

Fig. 6. Instruction unit. 
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ated in a non-destructive fashion, since in a representative pro- 
gram, the index word is used nine out of ten times without modi- 
fying it. This permits fast operation under these conditions, and 
additional time is only applied where modification is involved. 

After processing through the instruction unit, the updated (in- 
dexed) instruction enters a level of the Look-ahead (Fig. 5) .  Besides 
the instruction, all necessary information, its associated instruction 
counter value, and certain tag information are also stored in the 
same level. The operand, already requested by the instruction unit, 
will enter this level directly and will be checked and error- 
corrected while awaiting transfer to the arithmetic units for execu- 
tion. 

An interlocked counter mechanism in the look-ahead keeps its 
four levels in step, preventing out-of-sequence execution of in- 
structions, even if all information for a succeeding one is available, 
before the previous instruction has been started. 

The pre-accessing of operands by the look-ahead and of instruc- 
tions by the instruction unit leads sometimes to embarrassing 
positions, for which a fix-up routine must be provided. Consider 
the program 

(n) STORE Accumulator m 
( n +  1) LOADR 
( n + 2 )  A D D m  

and assume instruction (n) is in look-ahead, waiting for execution. 
If (n  + 2) now enters the look-ahead, a reference to m cannot be 
made, since the data stored in that position is subject to change 
by the STORE instruction. The look-ahead must recognize this 
and “forward” the result of instruction (n), when received, to the 
level where (n  + 2)  is stored. 

Another example is the case where the instruction unit assumed 
that a conditional branch would not be executed. This instruction 
is stored in look-ahead and, when it is recognized that the branch 
was successful, all modifications of addressable registers made by 
the instruction unit in the meantime must be restored. Look-ahead 
in this case acts as a recovery memory for this information. A 
similar condition exists when interrupts occur due to arithmetic 
results. The look-ahead here again has the data stored pertaining 
to registers which were modified erroneously in the meantime. The 
restoring and recovery routines described break into the instruc- 
tion unit processing, interrupting temporarily the flow of instruc- 
tion and their indexing. 

The arithmetic units described later are slaves to the look- 
ahead, receiving not only operands and instruction codes but also 
the start-execution signal. Conversely, the arithmetic units signal 
to the look-ahead the termination of an operation and, in the case 

of “To Memory” operations, place into the look-ahead the result 
word for transfer to the proper memory position. 

Arithmetic units 

The design of the arithmetic units was established along lines 
similar to the design of look-ahead and the instruction unit. Every 
attempt was made to speed up the execution of arithmetic opera- 
tions by multiplexing techniques and overlapping of the algo- 
rithm, where mathematically permissible. 

The arithmetic units, consisting of the Serial Unit and the 
Parallel Unit, use the same arithmetic registers, namely a double- 
length accumulator (A$) consisting of 128 bits and a double-length 
operand register (C,D) consisting of 128 bits. The reason for the 
use of the same arithmetic registers is the fact that at any time, 
a shift from floating-point to variable-field-length operation (or vice 
uersa) can be made by the program. Therefore, the result obtained 
by a floating-point operation can serve as the starting operand for 
a variable-field-length operation. The chief reason for the double- 
length registers is the definition of maximum field length to be 
64 bits. The field can start with any bit position, and therefore 
can cross the word boundary. 

The executions of floating-point mantissa operations and varia- 
ble-field-length binary multiply and divide operations are per- 
formed by the parallel unit, whereas the floating-point exponent 
operation and the variable-field-length binary and decimal add- 
type operations are executed by the serial unit. The square-root 
operation and the binary-to-decimal conversion algorithm are 
executed in unison by both units. Salient features of the two units 
will now be described. 

The serial arithmetic unit [Brooks et al., 19591 (Fig. 7 ) .  The serial 
arithmetic consists of a switch matrix which can extract 16 con- 
secutive bits from A,B and C,D. These 16 bits then can be aligned 
in such a way that the low-order bit of a field as specified by the in- 
struction is at the right end of the field. This wrap-around circuit 
then feeds into a carry-propagate adder or, in case of logical-con- 
nect instructions, into the logic unit. At the adder output, a true 
complement unit and a binary-to-decimal correction unit are used 
for subtract and decimal operations. The inverse process of ex- 
tracting is used to insert the processed byte back into the register 
without disturbing any neighboring positions. Notice that in one 
clock cycle, the information is extracted, the arithmetic is per- 
formed and the result inserted back into the registers. In addition, 
the arithmetic information is checked by parity checks on the 
switch matrices and by duplication and comparison of the arith- 
metic procedure in a duplicate unit. 
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Fig. 7. Serial arithmetic unit. 

Parallel arithmetic unit. The parallel arithmetic unit (Fig. 8) is 
designed to execute floating-point operations with a maximum of 
efficiency. Since both single- and double-precision arithmetic is 
performed, the shifter and adder exist in a double-length format 
of 96 bits. This insures almost the same performance for single- 
and double-precision arithmetic. The adder is of a carry-propaga- 
tion type with look-ahead over 4 bits at a time to reduce the delay 
that normally results in a ripple-carry adder. This carry look-ahead 
results in a delay time of 150 m p e c  for 96-bit binary-number 

additions. All additions and subtractions are made in one's com- 
plement form with automatic end-around carry. 

The shifter is capable of shifting up to 4 positions to the right 
and up to 6 positions to the left. This shifter arrangement takes 
care of the majority of shifting operations encountered under 
normal operation. Where higher-order shifts are required, a suc- 
cessive operation is set up between the parallel unit register and 
the shifter. 

To expedite the execution of the multiply instruction, 12 bits 
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Fig. 8. Floating-point arithmetic unit. 

of the multiplier are handled within one cycle. This is accom- 
plished by breaking the 12 bits into groups of three bits each. The 
action is from right to left and consists of decoding each group 
of three bits. By observing the lowest-order bit of the next higher 
group, a decision is made as to what multiple of the multiplicand 
one must add to the partial product. Since only even multiples 
of the multiplicand are available, subtraction and addition of the 
multiples can result. The following example will elaborate this 
point: (MCD means multiplicand) 

Groups 

n + 4  n + 3  11 + 2 n + l  

Multiplier, 12 bit group 

xxo 011 110 101 

n 

010 

Octal value 

3 6 5 2 

If two addition5 of multiples were permitted 

4 x MCI) 6 x MCD 6 x MCD 2 x MCD 
-1 x MCD -1 x MCD 

Instead of subtracting 1 x ,MCD in n + 1, subtract 8 X MCD in n. 

2 x MCD 
-8 x MCD 

6 x ,MCII 4 X MCD 6 x iMCD 
-8 x MCD 

Resulting decoding 

4 x  MCD -2x  MCD 6 x MCD -6 x MCD 

The four multiple multiplicand groups and the partial product of 
the previous cycle are now fed into carry-save adders of the form, 
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Sum S = A W B W C  
Carry C‘ = A B  + AC + BC 

There are four of these adders, two in parallel followed by two 
more in series (Fig. 8). The output of Carry-Save Adder 4 then 
results in a double-rank partial product, the product sum and the 
product carry. For each cycle this is fed into Carry-Save Adder 
2, and, during the last cycle, into the carry-propagate adder, for 
accumulation of the carries. Since no propagation of carries is 
required in the four cycles, where multiple multiplicands are 
added, this operation is fast and is the main contributor to  the 
fast multiply-time of Stretch. 

The divide scheme [Robertson, 19581 has a similarity to the 
multiply scheme. Multiples of the divisor are used, namely, 
3/2 x divisor, 3/4 x divisor and 1 x divisor. This, plus shifting 
over strings of ones and zeros, results in the generation of the 
required 48 quotient bits within thirteen machine cycles. Most 
machines using a nonrestoring divide method require 48 cycles 
for 48 quotient bits. The following example explains this technique. 
This scheme depends on the use of normalized divisors: 

DIVIDEND (DD) = 101000000000000 
DIVISOR (DR) = 1100011 
2’s COMP DR (DR) = 0011101 
3/4 DR = 100101001 

( a )  Using skip ouer 1 /0  only: 

101000000000000 DIVIDEND 

1 101 101 
Step 1: 0011101 ADD DR 

Remainder negative, 1st quotient hit = 0; shift one position. 
Leading 1 indicates that next quotient bit must be 1; Q,Q2 
= 01 

011010000 REMAINDER 
Step 2: 1100011 ADD DR 

100101 - 11 

Overflow: Remainder positive and Q:$ = 1, leading zero indicates 

Q4 = 0 

1011100 REMAINDER 
Step 3: 0011101 ADD DR 

1llJ001 

Negative remainder; Qn = 0; leading 1’s indicate QBQ7Q8 = I 1 1  

Number of quotient bits per cycle: 

Cycle 1: 01 = 2 
Cycle 2: 10 = 2 
Cycle 3: 0111 = 4 

( b )  The same problem uith hotli skip ozjer 1 /0  and 3 /4  - %3/2 
complement: 

101000000000000 

11011010000 
Step 1: 0011101 

Same as before, QIQ2 = 01 

100101001 
11 11 1 1001 

Step 2: Add 3/4 DR 

This (by table look-up) indicates QRQ4QsQ6Q7Q8 = 100111 

Quotient bits generated per cycle: 

Cycle 1: 01 = 2 
Cycle 2: 100111 = 6 

In general, this method results in the generation of 3.7 quotient 
bits per subtraction. While the mantissa operations of multiply 
and divide are performed by the parallel unit, the serial arithmetic 
unit executes the exponent arithmetic. Here again is a case where 
overlap and simultaneity of operation is used to special advantage. 

Checking. The operation of the computer is checked in its entirety 
and correction codes are employed where data transfers from 
memory and input-output units are involved. In particular, all 
information sent to memory has a correction code associated with 
it, which is checked for accuracy on its way from memory. If a 
single error is indicated, then correction is made and the error 
is recorded via a maintenance output device. Within the machine, 
all arithmetic operations are checked, either by parity, duplica- 
tion, or a “casting out three” process. These checks are overlapped 
with the execution of the next instruction. 

Hardware count. Figure 9 shows the percentage of transistors used 
in the various sections of the machine. It becomes obvious that 
the parallel unit and the instruction unit use the highest percent- 
age of transistors. In case of the parallel unit this is due to  the 
extensive circuits for multiply and to the additional hardware to 
achieve speed up of the divide scheme. In the instruction unit, 
the controls consume the majority of the transistors, because of 
the high multiplexed operation encountered. 

Performance. The performance comparisons in Fig. 10 show the 
increase in speed achieved, especially in floating-point operations, 
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over the 704. It should be noted that for a large number of prob- 
lems this particular increase in all arithmetic speeds is almost 
proportional to the performance increase of the problem as a 
whole, since the instruction execution-times are overlapped to a 
great extent with the preparation and fetching of instructions. 

Simulation of Stretch programs on the 704 proved a performance 
of 100 x 704 speed in mesh-type calculations. Higher performance 
figures are achieved where double- or triple-precision calculations 
are required. 
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Circuits 

Having reviewed the systems organization of Stretch, it is now 
of interest to discuss briefly the components, circuits, and packag- 
ing techniques used to implement the design. 

The basic component used in Stretch is the high-speed drift 
transistor which exists in both an NPN and a PNP version. This 
transistor has a frequency cut-off of approximately 100 mc and 

for high-speed operation must be kept out of saturation at all times. 
This then explains why both the PNP and NPN version are used: 
mainly to avoid the problem of level translation, which would be 
required due to the potential difference of the base and the col- 
lector. This difference is 6 volts, an optimum point for this device. 

Figure 11 shows the basic circuit configuration. It consists of 
a current source, represented by the -30 volt supply and resistor 
R. The functional operation of the circuits consists of two possible 
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Fig. 10. Comparison of Stretch and 7051704 operation times. 
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paths represented by transistor A or C. Which path is chosen by 
the current depends on the condition existing on base A. If point 
A is positive with respect to ground by 0.4 volts, that particular 
transistor is cut off, making the emitter of transistor C positive 
with respect to the base and, therefore, making C conducting. The 
current supplied by the current source (6 ma) will then flow 
through transistor C to the load $. Output 6, then, is positive by 
0.4 volts with respect to the -6 volt reference. This indicates at 
@ the equivalent function impressed on A. At the same time, s 
is negative with respect to the -6 volt power supply by 0.4 volt, 
representing, therefore, the inverse of the function impressed on 
A. Conversely if A is negative with respect to the ground reference, 
transistor A is the conducting one, keeping emitter C negative with 
respect to its base. The current flows through transistor A, making 
@ positive with respect to -6 and @ negative with respect to -6. 
Again, the output of @ reflects the function impressed on A, 
whereas 

If an additional transistor now is paralleled with A, it becomes 
obvious that only if both bases A and B are positive will output 

- 

represents the inverse of the function. 

@ be positive and $ negative. If any or none of the bases A and 
B are positive, then @ will be negative and will be positive. In 
other words, an AND function is obtained on output @. 

This principle, which is reflected in all the circuits, is essen- 
tially the principle of current switching or current steering. 

Logical functions for the PNP circuits are, therefore, a +AND 
or -OR. Two outputs from each circuit block are available: the 
AND function and the inverse of the AND function. 

A dual circuit exists for NPN transistors with input levels at 
-6 volts and output levels at ground. This circuit will give the 
+OR or -AND function. 

A thorough investigation of the systems design showed that the 
circuits described so far are versatile enough to be used throughout 
the system. However, there are enough special cases (resulting 
from the many data buses and registers throughout the machine) 
that could use a distributor function or an overriding function. 
This caused the design of a circuit which permitted great savings 
in space and transistors by adding a third voltage level. Figure 
12 shows the PNP version of the third-level circuit. 

Fig. 14. The circuit package. 
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If transistor X were eliminated, then transistors A and B in 
conjunction with the reference transistor C would work normally 
as a current switching circuit, in this case a +AND circuit. If 
transistor X is added with the stipulation that the down level of 
X is more negative than the lowest possible level of A or B, it 
becomes apparent that when X is negative, the current will flow 
through that branch of the circuit in preference to branch @ or 
+, regardless of inputs A and B. Therefore, the output of @ and 
@ will be negative, provided input X is negative. Output I l l  is 
the inverse of input X. If, however, X is positive, then the status 
of A and B will determine the function @ and 5 implicitly. This 
demonstrates the overriding function of input X. 

Similarly, the NPN version (not shown) results in the OR 
function of C+ if input X is negative and in a positive output at 
@ and T, regardless of status A and B, if X is positive. Again 
minimum and maximum signal swings are shown in Fig. 12. 

The speed of the circuits described so far depends on the 
number of inputs and the number of circuits driven from each 
load. The response of the circuit is anywhere between 12 and 25 
mpsec per logical step with 18 to 20 mpsec average. The number 
of inputs allowable per circuit is eight. The number of driven 
circuits is three. Additional circuits are needed to drive more than 
three bases and where current switching circuits communicate 
over long lines, termination networks must be added to avoid 
reflections. 

To improve the performance of the computer in certain critical 
places, emitter-follower logic is used as shown in Fig. 13. These 
circuits, having a gain less than one, after a number of stages 
require the use of current switching circuits as level setters and 
gain devices. Both AND and OR circuits are available for both 
a ground-level and a -6-level input. Change from a -6-level 
circuit to a ground-level circuit is obtained by applying the ap- 
propriate power supply levels. Due to the variations in inputs and 
driven loads, the circuits must be designed so that the load can 
vary over a wide range. This resulted in instability which had to 
be offset by the feedback capacitor C shown in the circuit. 

All functions needed in the computer can be implemented by 
the use of the aforementioned circuits, including flip-flop opera- 
tion, which is obtained by tying a PNP current switch block and 
an NPN current switch block together with proper feedback. 

- 

- 

A circuit package using the smaller of the two printed circuit 
boards shown in Fig. 14, called a single card, contains AND or 
OR circuits. It should be mentioned that the printed wiring is 
one-sided and that besides the components and transistors, a rail 
is added which permits the shorting or addition of certain loads 
depending on the use of the circuits. This rail then has the effect 
of reducing the different types of circuit boards in the machine. 
Twenty-four different boards are used and of these, two types 
reflect approximately 70% of the total single card population. 

Due to the large number of registers, adders, and shifters used 
in the computer, it seems reasonable that functional packages 
could be employed economically, because of wide usage. This 
results in the high-density package also shown in Fig. 14, called 

Packaging 

The circuits described in the last paragraph are packaged in two 
ways: Fig. 15. The back panel. 
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a Double Card, which has 4 times the capacity of a single card 
and which has wiring on both sides of the board. Furthermore, 
components are double-stacked; and again, the rail is used to effect 
circuit variations due to different applications. Eighteen double 
card types are used in the system. Approximately 4,000 double 
cards are used, housing 60% of the transistors. The rest of the 
transistors are on approximately 18,000 single cards. 

The cards, both single and double, are assembled in gates, and 
two gates are assembled into a frame. Figure 15 shows the gate 
back-panel wiring, using wire-wraps; and Figs. 16 and 17 the frame 
construction, both in a closed and open version. 

To achieve high performance, special emphasis must be placed 
on keeping noise to a low level. This required the use of a plane 

Fig. 17. The frame (extended). 

which overlies the whole back panel, against which the intercircuit 
wiring is laid. In addition, the power-supply distribution system 
must be of such a low impedance that extraneous noise cannot 
induce circuit malfunction. For this reason, a bus system, consist- 
ing of laminated copper sheets, is used to distribute the power 
to each row of card sockets. The wiring rules are such that single- 
conductor wire is used up to a maximum of 24“, twisted pair to 
a maximum of 36”, unterminated coax to a maximum of 60”, and 
terminated coax to a maxirniim of 100 feet. The whole back-panel 
construction and the application of single wire, twisted pair, or 
coax are calculated by a computer program to minimize the noise 
on each circuit node. 

The two gates of a frame are a sliding pair with the power 
supply mounted on the sliding portion. All connecting wires 
between frames are coax and arrayed in layers which are formed 
into a drape. 
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PILOT, the NBS multicomputer system1 

A. L. Leiner / W. A. Notz / J. L. Smith 
A. Weinberger 

Summary PILOT, the new NBS system, possesses both powerful external 
control capabilities and versatile internal processing capabilities. It contains 
three independently operating computers. The primary and secondary 
computers each utilize only 16 basic types of instructions, thus providing 
a simple code structure; but because so many variations of the formats 
are possible, a wide variety of computing, data-processing, and informa- 
tion-retrieval operations can be performed with these instructions. The 
secondary computer is specially adapted for performing so-called “red- 
tape” operations, and both the secondary and the primary computers, acting 
co-operatively, can carry out special complex sorting or search operations. 
The third computer in the system, called the format controller, is specially 
adapted for performing editing, inspecting, and format modifying opera- 
tions. The system is equipped to transfer information concurrently along 
several input-output trunks, though only two are planned for the near 
future. Using two such trunks, it is possible to maintain two continuous 
streams of data simultaneously flowing between any two external units and 
the internal memory, without interrupting the data-processing program. 
The system can operate with a wide variety of input-output devices, both 
digital and analog, either proximate or remotely located. The external 
control capabilities of the system enable the machine to supervise this wide 
family of external devices and, on an unscheduled basis, to interrupt or 
redirect its overall program automatically, in order to assist or manage 
them. 

At the National Bureau of Standards (NBS) a new large-scale 
digital system has been designed for carrying out a wide range 
of experimental investigations that are of special importance to 
the Government. The system can be utilized for investigating new 
or stringent applications of these general types: (1) data-processing 
applications, in which the system can be used for performing 
accounting and information-retrieval operations for management 
purposes; (2)  mathematical applications, in which the system can 
be used for performing mathematical calculations for scientific 
purposes, including scientific data-reduction; (3)  control applica- 
tions, in which the system can be used for performing real-time 
control and simulation operations, in conjunction with analog 
computer facilities or in conjunction with other instrument instal- 
lations, remotely located if necessary; and (4) network applications, 

‘ P ~ o c .  EJCC, 71-75 (1958). 

in which the system can be used in conjunction with other digital 
computer facilities, forming an interconnected communication 
network in which all the machines can work together collabora- 
tively on large-scale problems that are beyond the reach of any 
single machine. 

Because the system was designed for such varied uses (ranging 
from automatic search and interpretation of Patent Office records 
to real-time scheduling and control of commercial aircraft traffic), 
the system is characterized by a variety of features not ordinarily 
associated with a single installation, namely: a high computation 
rate, highly flexible control facilities for communicating with the 
outside world, and a wide repertoire of internal processing formats. 
The system contains three independently programmed computers, 
each of which is specially adapted for performing certain classes 
of operations that frequently occur in large-scale data-processing 
applications. These computers intercommunicate in a way that 
permits all three of them to work together concurrently on a 
common problem. The system thus provides a working model of 
an integrated multicomputer network. 

System organization 

Exclusive of data-storage and peripheral equipment, the central 
processing and control units of the over-all system contain ap- 
proximately 7,000 vacuum tubes and 165,000 solid-state diodes. 
The basic component for these units is a modified version of the 
one megacycle package used in the NBS DYSEAC, which in turn 
was evolved from the hardware used in NBS Electronic Automatic 
Computer (SEAC). As a result of a more effective logical design 
and faster memory, however, the new NBS system will run more 
than 100 times faster than SEAC on programs involving only 
fixed-point operations; for programs involving floating-point ma- 
nipulations, the advantage exceeds 1,000. The arithmetic speed 
of the new system derives in a large part from connecting a novel 
type of parallel adder to a diode-capacitor memory capable of 
providing one random access per microsecond. 

The system contains seven major blocks, which are indicated 
in Fig. 1, namely: (1) the primary computer, in the lower center 
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Table 1 Arithmetic operation times 
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Fixed-point Addition, Subtraction, Comparison . . 
Fixed-point Multiplication . . . . . . , . . . . . . . .31  . . . . .22-40 
Fixed-point Division . , . , . . . . . . . . . , . , , . , .73  . . .72-74 
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of the figure, (2) the primary storage, upper center; (3)  the second- 
ary computer and the secondary storage, right; (4) the input-output 
control, upper left; (5) the external storage units, upper far left; 
(6) the external input-output units such as readers, printers, and 
displays, lower far left; and (7) lower left, the external control 
containing the special features that facilitate communication with 
people and devices in the world outside the system which is 
remotely located if necessary. Interchanges of information between 
the system and the outside world can take place at any time, on 

1 
ARITHMETIC a PROGRAM PROGRAM ARITHMETIC 8 

CONTROL UNIT FSUCESSING UNIT 

TWO-ADDRESS BINARY, 

PROCESSING UNIT CONTROL UNIT 

BINARY a DECIMAL, THREE-ADDRESS 
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.FIXED a FLOATING l $ ~ ~ ~ O ”  * SYSTEM 16-811, 
DIRECT INSTRUCTIONS EXPLICIT NEXT 
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FULLa HALFWJrnS sE%%~k?$xT 4ND mNTRDL SIGN4S INSTRUCTION 

(I6 VARIETIES) 4 (16TYPES) 
(16 BASIC TYPES) 

a completely impromptu basis, at the instigation of either the 
system or the external world, or both acting jointly. 

The primary computer, a high-speed general-purpose com- 
puter, contains both an arithmetic unit and a program control unit 
of considerable versatility. This computer can carry out a variety 
of high precision arithmetic and logical processing operations, in 
either binary or decimal code and in a wide variety of word lengths 
and formats. Its partner computer, the secondary computer, spe- 
cializes in short-word operations, usually manipulations on address 
numbers or other “red-tape” information, which it supplies auto- 
matically as needed to the primary program. The third computer 
of the system, called the format controller (see input-output con- 
trol in Fig. l), is specially designed for carrying out editing, 
inspecting, and format-modifying operations on data that are 
flowing in or out of the internal memory via the peripheral external 
units of the system. All three computers, and all the external units 
of the system, share access privileges to the common high-speed 
internal memory, which is linked to the input-output and external 
storage units via independent trunks for effecting data-transfers. 
Transfers of data can take place between the external units, the 
memory units, and the computers concurrently without interrupt- 
ing the progress of the computational program. Because of the 
flexibility of the format controller, incoming data can be accepted 

NBS PILOT ELECTRONIC DATA-PROCESSER 

Fig. 1. Over-all block diagram for PILOT. 
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from a wide variety of external devices and in a wide variety of 
formats. 

format, the respective lefthand and righthand halves of each 
double operand are processed simultaneously in a single instruc- 
tion time, and the two independent half-word results are written 
back in the corresponding halves of the full-length result location. 

Functions of the major units 

The specific functions of the major units can be described briefly 
as follows: 

Primary computer 

Arithmetic and processing unit. Using a 64-bit number word with 
algebraic sign, this unit carries out 7 different types of arithmetical 
operations, 5 types of choice (branch) operations, and 2 types of 
logical pattern-processing operations. See Table 2. Arithmetical 
operations can be performed in any of 16 possible formats. For 
example, arithmetic can be performed using either a pure binary 
or a binary-coded decimal number code, and in both fixed-point 
and floating-point notation. Fixed-point operations can also be 
carried out in a special half-word format in which two independ- 
ently addressable half-words are stored in a single full-word storage 
location. These two half-words can be processed either separately, 
as independent words, or concurrently in duplex format. In duplex 

Table 2 Types of internal operations 

Program control unit. The program control unit interprets and 
regulates the sequencing of instructions in the program. It operates 
with a 68-bit binary-coded 3-address instruction word. See Table 
3. Each instruction word contains three 16-bit codes which specify 
the addresses of each of two operands, alpha and beta, and usually 
the address of the result of the operation, gamma, in the main 
memory. The memory location of the next instruction word is 
specified by a 16-bit address number contained in one of 16 possi- 
ble base registers; a 4-bit code in the instruction word (d-digits) 
specifies which one of the base registers contains the desired word. 
Whenever a register is so used as a next-instruction address source, 
its contents are automatically increased by unity. Choice instruc- 
tions, used for program branching, from time to time may cause 
a new alternative address number to be inserted in any one of 
the base registers. This register is then used as the source of the 
address number of the next instruction. 

Primary computer 
Name Abbreoiation 

Secondary computer 
Name Abbreviation 

Arithmetic operations: 
Add 
Augment 
Subtract 
Multiply 
Divide 
Square-root 
Shift 

Nonnumerical processing operations: 
Transplant Segment with Shift 
Generate Boolean Functions 

Choice operations: 
Compare, Algebraic 
Compare, Modulus 
Compare, Equality 
Check Scale 
Compare Boolean Functions 

A D  
AG 
SB 
MP 
DV 

SH 
SQ 

Clear add 
Hold add 
Store positive 
Transfer 
Increase 
Decrease 

Logical Multiply 

Compare, Zero 
Compare, Righthand Bit 
Compare, Lefthand Bit 
Compare, Negative 

Check Primary and Proceed 
Check Primary and Wait 
Regulate Primary Computer 
Replace Primary Instruction 
Secondary Take Input from Primary 

TL 
G B  

CA 
CM 
CE 
cs 
CB 

ca 
ha 
SP 
tr 
in 
de 

Im 

CZ 

cr 
CI 

cn 

C P  

rP 
ri 
si 

cw 

Control operations: 
Transfer Between Storage Units TS 
Regulate Secondary Computer RS 

Leiner, Notz, Smith, Weinberger-PILOT 



Chapter 35 1 PILOT, the NBS multicomputer system 443 

Table 3 Contents of primary instruction word 

Digits numbered 1 through 68 

68-65 64-61 60-57 56-53 52-49 48-45 44 -41  40-37 36-33 32-29 28-25 24-21 20-17 16-13 12-9 8-5 4-1 

Tags Address alpha Address beta Address gamma Next Code for Mon. 
Instn. Operation Break 

Point - 
OOO? a-  b- C- d- Param. Basic e- 

Digits Digits Digits Digits eter Type Digits 

Addresses alpha, beta, and gamma written in the instruction 
word are subject to automatic modification if desired by writing 
a 1-digit in a specified bit position. Such addresses are called 
relative addresses. Each of the three addresses (a ,  /3, and y )  in each 
instruction word contains a 4-bit code group, called the a-, b-, 
and c-digits respectively, in which any base register identification 
number (0 through 15) may be written. When this is done, the 
address number to which the computer actually refers is equal 
to the sum (modulo 216) of the address number stored in the 
designated base register plus an address-modification constant, 
indicated in the remaining 12 bits of the 16-bit address segment 
of the instruction word. 

Primay storage units 

Fast access memory. Because of budget limitations, the initial 
installation of the system will contain only a relatively small 
section of internal memory of the diode-capacitor type. This 
diode-capacitor memory, originally developed at NBS in 1953, is 
very fast; i.e., capable of providing one random access per micro- 
second, but it has the disadvantage of relatively high cost per word 
of storage. This type of memory is available in modules of 256 
words subdivided as follows: 

Numerical information 
Algebraic signs and tags 
Parity check digits 

Total word length 

64 bits 
4 bits 
4 bits 

72 bits 

The over-all system is designed to accommodate up to 32,768 
internally-accessible full-words, which may be held in storage units 
with access times ranging from 1 microsecond (psec) to 32 psec. 
Thus the minimum fast access memory can be backed up with 
a much larger and slower magnetic-core memory. 

Inter-memory trunsfer trunk. Provision is made for transferring 
blocks of information between the various internal storage units 

in the system, concurrently with computation. The size of the 
block transferred may range from a single word to the entire 
contents of the memory, and the addresses between which the 
information is transferred are specified by a single programmed 
inter-memory transfer instruction. Automatic interlocks are pro- 
vided to insure that all future references which the program may 
make to any memory positions involved in the inter-memory 
transfer operation are automatically made after the data have been 
shifted to the new locations. 

Secondary computer 

Arithmetic and processing unit. The secondary computer is a 
high-speed independently programmable general-purpose com- 
puter that operates in conjunction with the primary computer and 
can perform 16 distinct types of operations using 16-bit words. 
These operations include 6 arithmetic-processing operations, 4 
choice operations, 1 nonnumerical processing operation, and 5 
operations that transfer digital information or control-signals be- 
tween the primary and the secondary computers. See Table 2. 
Operation times for the secondary computer average about 2 psec. 

Both computers operate concurrently and can transfer infor- 
mation back and forth between each other. One of the principal 
functions of the secondary computer is to carry out so-called 
“red-tape” operations, such as: (1) counting iterations, (2) syste- 
matically modifying the addresses of the operands and instructions 
referred to by the primary program, (3) monitoring the primary 
program, and (4) various special tasks. Through the use of special 
subroutines for the secondary computer, both computers acting 
co-operatively can be made to carry out a wide variety of complex 
operations without unduly complicating the writing of the primary 
computer programs. Examples of such operations are: (1) special 
types of sorting, (2) logarithmic search, (3) routines involving 
cross-referencing, or items selected according to an attached code, 
(4) error analyses, and (5) operations involving small numerical 
fields. 
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Secondary storage unit. Associated with the secondary computer 
is the secondary storage unit which consists of 60 storage locations 
containing 16-bit words. Sixteen of these locations can be used 
as base registers by the primary computer and may be selected 
by the primary computer according to the a-, b-, c-, and d-digits 
in the primary instruction word. The contents of the registers 
selected by the primary computer in this way are automatically 
added to the address numbers specified in the primary computer 
instruction word. The secondary storage unit is also capable of 
being addressed directly by the primary computer. The fifteen 
4-word blocks of the secondary storage are identified by 15 special 
primary address numbers. Other addressable registers associated 
with the secondary storage hold the address numbers of current 
and next instruction words in the primary program. 

Program control unit. The secondary computer program operates 
with a 2-address instruction system, the addresses referring to 
words in the secondary storage unit, including the base registers. 
See Table 4. From time to time the primary instruction program 
may order the insertion of a new instruction into the secondary 
instruction register or may order the transfer of data in either 
direction between the primary storage units and the secondary 
storage unit. The secondary computer program may also cause data 
to be transferred into the secondary storage unit from the primary 
instruction register and can also cause information to be trans- 
ferred into the primary instruction register from a location in the 
main memory. 

Using these facilities, the secondary computer can inspect each 
instruction word in the primary program as it is selected from the 
primary store and, acting upon specifications written into the 
secondary program, can cause the primary instruction either to 
be executed as written or to be replaced by a new instruction word 
from a memory location determined by the secondary. Other types 
of discrimination can be effected by the secondary that depend 
upon the result of a primary operation, such as an overflow, jump, 
etc. These features facilitate the use of interpretive programming 
methods. 

Table 4 Contents of secondary instruction word 

Digits numbered 1 through 16 

16 13 12 7 6 1  

Operation code 
(0-15) Address “g” Address “ h ”  

Input-output control 

Concurrent input-output trunks. The concurrent input-output 
trunks have the function of controlling the transfer of information 
in either direction between the internal memory and the external 
storage units. All input-output transfers are initiated by a single 
internally programmed instruction, and are carried out by the 
trunk units with the aid of automatic interlocks similar to those 
used in the inter-memory transfer trunk for preventing interfer- 
ence with the progress of the computing program. The size of the 
block of data that is transferred may range from a single word 
to the entire contents of the memory and may be directed to any 
addresses. Using two such trunks, it is possible to maintain two 
continuous streams of data simultaneously flowing between the 
internal memory and any two external storage units without 
interrupting the progress of the computations. 

Format controller. Data that are passing in and out of the internal 
storage system via the input-output trunks are subject to further 
concurrent processing by the format controller. The format con- 
troller is an independent internally-programmed data-processing 
unit specially designed for carrying out general-purpose editing, 
inspecting, and format-modifying operations on incoming or out- 
going data. Programs for the format controller are stored on 
removable plugboards, and the primary computer program is able 
to direct the format controller to select whichever particular 
format program may be appropriate from among the small library 
of format programs contained on the boards currently attached 
to the machine. Among the typical kinds of programs that the 
format controller can carry out are: (1) searching of magnetic tapes 
for words bearing identifying addresses or other coded labels 
specified by the internal program, with selective input or output 
of data at these selected tape locations, (2) insertion of incoming 
data for the internal storage units of the system into address 
locations specified by the incoming data itself, (3)  conversion and 
rearrangement of data that are stored on external units in formats 
not compatible with the formats used in the internal units; e.g., 
binary-decimal character conversion, adjustment of word-length 
modules, etc. 

External storage 

External storage in the initial installation of the system will consist 
mainly of magnetic tape units. Because of the flexibility of the 
format controller, it will be possible to supplement these tape units 
later with a wide variety of other types of external units without 
making any significant changes in the existing equipment. 
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Input-output units 

The system is designed to operate with a wide variety of input- 
output devices, both digital and analog. 

Input readers and printers. Flexowriter units and paper-tape read- 
ers and punches will be available in the initial installation. 
Punched card input readers and high-speed printers, along with 
their auxiliary controls, may be attached to the format controller 
in the manner indicated in the preceding paragraph. 

Displays. Two types of displays are provided for: (1) pilot-light 
display of data and control information in the various registers 
and flip-flops throughout the system, in order to aid the rapid 
diagnosis of equipment malfunctions of programming faults, and 
(2) picture-tube display of real-time data stored in the internal 
memory of the system. This kinematic diagram type of display 
is very important when performing dynamic simulation operations 
which require visual presentation of the simulated data in real- 
time to the human operators. 

External control 

Manual-monitor control. The term “manual-monitor” was coined 
at NBS several years ago to describe certain types of control 
operations that are initiated either manually by the machine 
operator or by the machine itself under conditions which are 
specified by means of external switch settings. The former is 
referred to as a manual operation and the latter is called a monitor 
operation because the machine must monitor its internal program 
to determine precisely when the operation should be performed. 
The type of operation to be performed as well as the conditions 
under which it is to be performed are specified by means of 
external switch settings. 

This feature provides for convenient communication between 

the data-processor and the operator, and allows the operator to 
monitor the progress of the program automatically, to insert new 
data and instructions, and to withdraw intermediate results con- 
veniently, without need for advance preparation of special pro- 
grams. This is particularly useful in debugging programs and in 
checking equipment malfunctions. 

Monitor operations are performed by the machine whenever 
the conditions specified by the external switch settings occur in 
the course of the program; e.g., every time the program refers to 
a new instruction, any time the program refers to an instruction 
to which a special monitor breakpoint symbol (e-digits) is attached, 
any time an arithmetic overflow occurs, etc. By pairing a particular 
type of manual-monitor operation with a selected set of conditions, 
a variety of special composite operations can be performed. 

Remote controls. Manual-monitor operations can be specified and 
initiated by external devices as well as by human operators. Since 
all of the external switch settings control only d-c voltages, the 
external devices can even be remote from the machine itself, and 
from a distance, via ordinary electrical transmission lines, they can 
exercise supervisory control over the internal program of the 
machine. This makes it possible to harness together two or more 
remotely located data-processing machines, and have them work 
together co-operatively on a common task. Each member of such 
an interconnected network of separate data processors is free at 
any time to initiate and dispatch special control orders to any of 
its partners in the system. As a consequence, the supervisory 
control over the common task may be shared among the various 
members of the system, and may be passed back and forth from 
one machine to the other as the need arises. 
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Section 3 

Computers for multiprocessing 
and parallel processing 

The computers in this section are probably the most general 
in the book. Although the general PMS model for a computer 
in Chap. 3, page 65, characterizes these computers, the struc- 
ture by Lehman (Chap. 37) most closely fits the model. The 
Burroughs computers that are presented have multiple Pc ’s ;~  
however, K’s are used for control of device K’s ,  rather than 
Pio’s-perhaps a wise choice. 

D825-a multiplecomputer system for command and control 

The Burroughs D825 computer is discussed, together with other 
stack processors, in Part 3, Sec. 5, page 257. Chapter 36 
emphasizes the PMS structure and operating system charac- 
teristics necessary in a multiprocessor system. 

‘As does the B 8500, a successor to the D825; however, its successor, the 
B 8501, IS designed with Pio’s. 

Design of the B 5OOO system 

This computer (Chap. 22) is discussed, together with other stack 
processors, in Part 3, Sec. 5, page 257. 

A survey of problems and preliminary results concerning 
parallel processing and parallel processors 

Chapter 37, by M. Lehman, provides a very good introduction 
to the concepts of multiprogramming, multiprocessing, and 
parallel processing. A specific multiprocessor computer struc- 
ture is postulated to provide parallel processing. The processing 
ability of the structure is analyzed at the instruction level. It 
is significant that the paper is by an IBM scientist. IBM has 
not been particularly advanced in the use of multiple arithmetic 
processor computers. 
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Chapter 36 

D825-a m ult i ple-corn puter system 
for command and controll 

James P. Anderson / Samuel A. Hoffman 
Joseph Shifman / Robert 1. Williams 

Introduction 

The D825 Modular Data Processing System is the result of a 
Burroughs study, initiated several years ago, of the data processing 
requirements for command and control systems. The D825 has 
been developed for operation in the military environment. The 
initial system, constructed for the Naval Research Laboratory with 
the designation AN/GYK-3(V), has been completed and tested. 
This paper reviews the design criteria analysis and design rationale 
that led to the system structure of the D825. The implementation 
and operation of the system are also described. Of particular 
interest is the role that developed for an operating system program 
in coordinating the system components. 

Functional requirements of command and control data processing 

By “command and control system” is meant a system having the 
capacity to monitor and direct all aspects of the operation of a 
large man and machine complex. Until now, the term has been 
applied exclusively to certain military complexes, but could as well 
be applied to a fully integrated air traffic control system or even 
to the operation of a large industrial complex. Operation of com- 
mand and control systems is characterized by an enormous quan- 
tity of diverse but interrelated tasks-generally arising in real 
time-which are best performed by automatic data-processing 
equipment, and are most effectively controlled in a fully integrated 
central data processing facility. The data processing functions 
alluded to are those typical of data processing, plus special func- 
tions associated with servicing displays, responding to manual 
insertion (through consoles) of data, and dealing with communica- 
tions facilities. The design implications of these functions will be 
considered here. 

Aoailability criteria. The primary requirement of the data-proc- 
essing facility, above all else, is availability. This requirement, 
essentially a function of hardware reliability and maintainability, 

‘AFIPS Proc. FJCC, vol. 22, pp. 86-96, 1962 

is, to the user, simply the percentage of available, on-line, opera- 
tion time during a given time period. Every system designer must 
trade off the costs of designing for reliability against those incurred 
by unavailability, but in no other application are the costs of 
unavailability so high as those presented in command and control. 
Not only is the requirement for hardware reliability greater than 
that of commercial systems, but downtime for the complete system 
for preventive maintenance cannot be permitted. Depending upon 
the application, some greater or lesser portion of the complete 
system must always be available for primary system functions, and 
all of the system must be available most of the time. 

The data processing facility may also be called upon, except 
at  the most critical times, to take part in exercising and evaluating 
the operation of some parts of the system, or, in fact, in actual 
simulation of system functions. During such exercises and simula- 
tions, the system must maintain some (although perhaps partially 
and temporarily degraded) real-life and real-time capability, and 
must be able to return quickly to full operation. An implication 
here, of profound significance in system design, is, again, the 
requirement that most of the system be always available; there 
must be no system elements (unsupported by alternates) perform- 
ing functions so critical that failure at these points could compro- 
mise the primary system functions. 

Adaptability criteria. Another requirement, equally difficult to 
achieve, is that the computer system must be able to analyze the 
demands being made upon it at  any given time, and determine 
from this analysis the attention and emphasis that should be given 
to the individual tasks of the problem mix presented. The working 
configuration of the system must be completely adaptable so as 
to accommodate the diverse problem mixes, and, moreover, must 
respond quickly to important changes, such as might be indicated 
by external alarms or the results of internal computations (exceed- 
ing of certain thresholds, for example), or to changes in the hard- 
ware configuration resulting from the failure of a system compo- 
nent or from its intentional removal from the system. The system 
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must have the ability to be dynamically and automatically re- 
structured to a working configuration that is responsive to the 
problem-mix environment. 

Expansibility criteria. The requirement of expansibility is not 
unique to command and control, but is a desirable feature in any 
application of data processing equipment. However, the need for 
expansibility is more acute in command and control because of 
the dependence of much of the efficacy of the system upon an 
ability to meet the changing requirements brought on by the very 
rapidly changing technology of warfare. Further, it must be possi- 
ble to incorporate new functions in such a way that little or no 
transitional downtime results in any hardware area. 

Expansion should be possible without incurring the costs of 
providing more capability than is needed at the time. This ability 
of the system to grow to meet demands should apply not only to 
the conventionally expansible areas of memory and 1 / 0  but to 
computational devices, as well. 

Programming criteria. Expansion of the data-processing facility 
should require no reprogramming of old functions, and programs 
for new functions should be easily incorporated into the overall 
system. To achieve this capability, programs must be written in 
a manner which is independent of system configuration or problem 
mix, and should even be interchangeable between sites performing 
like tasks in different geographic locales. Finally, because of the 
large volume of routines that must be written for a command and 
control system, it should be possible for many different people, 
in different locations and of different areas of responsibility, to 
write portions of programs, and for the programs to be subse- 
quently linked together by a suitable operating system. 

Concomitant with the latter requirement and with that of 
configuration-independent programs is the desirability of orienting 
system design and operation toward the use of a high-level pro- 
cedure-oriented language. The language should have the features 
of the usual algorithmic languages for scientific computations, but 
should also include provisions for maintaining large files of data 
sets which may, in fact, be ill-structured. It is also desirable that 
the language reflect the special nature of the application; this is 
especially true when the language is used to direct the storage 
and retrieval of data. 

Design rationale for the data-processing facility 

The three requirements of availability, adaptability, and expansi- 
bility were the motivating considerations in developing the D825 
design. In arriving at the final systems design, several existing and 

proposed schemes for the organization of data processing systems 
were evaluated in light of the requirements listed above. Many 
of the same conclusions regarding these and other schemes in the 
use of computers in command and control were reached inde- 
pendently in a more recent study conducted for the Department 
of Defense by the Institute for Defense Analysis [Kroger et al., 
19611. 

The single-computer system. The most obvious system scheme, and 
the least acceptable for command and control, is the single-com- 
puter system. This scheme fails to meet the availability require- 
ment simply because the failure of any part-computer, memory, 
or 1 / 0  control-disables the entire system. Such a system was not 
given serious consideration. 

Replicated single-computer systems. A system organization that had 
been well known at the time these considerations were active 
involves the duplication (or triplication, etc.) of single-computer 
systems to obtain availability and greater processing rates. This 
approach appears initially attractive, inasmuch as programs for 
the application may be split among two or more independent 
single-computer systems, using as many such systems as needed 
to perform all of the required computation. Even the availability 
requirement seems satisfied, since a redundant system may be kept 
in idle reserve as backup for the main function. 

On closer examination, however, it was perceived that such 
a system had many disadvantages for command and control appli- 
cations. Besides requiring considerable human effort to coordinate 
the operation of the systems, and considerable waste of available 
machine time, the replicated single computers were found to be 
ineffective because of the highly interrelated way in which data 
and programs are frequently used in command and control appli- 
cations. Further, the steps necessary to have the redundant or 
backup system take over the main function, should the need arise, 
would prove too cumbersome, particularly in a time-critical ap- 
plication where constant monitoring of events is required. 

Partially shared memory schemes. It was seen that if the replicated 
computer scheme were to be modified by the use of partially 
shared memory, some important new capabilities would arise. A 
partially shared memory can take several forms, but provides 
principally for some shared storage and some storage privately 
allotted to individual computers. The shared storage may be of 
any kind-tapes, discs, or core-but frequently is core. Such a 
system, by providing a direct path of communication between 
computers, goes a long way toward satisfying the requirements 
listed above. 
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The one advantage to be found in having some memory private 
to each computer is that of data protection. This advantage van- 
ishes when it is necessary to exchange data between computers, 
for if a computer failure were to occur, the contents of the private 
memory of that computer would be lost to the system. Further- 
more, many tasks in the command and control application require 
access to the same data. If, for example, it would be desirable to 
permit some privately stored data to be made available to the fully 
shared memory or to some other private memory, considerable 
time would be lost in transferring the data. It is also clear that 
a certain amount of utilization efficiency is lost, since some private 
memory may be unused, while another computer may require 
more memory than is directly available, and may be forced to 
transfer other blocks of data back to bulk storage to make way 
for the necessary storage. It might be added in passing that if 
private 1/0 complements are considered, the same questions of 
decreased overall availability and decreased efficiency arise. 

Muster/sluve schemes. Another aspect of the partially shared 
memory system is that of control. A number of such systems 
employ a master/slave scheme to achieve control, a technique 
wherein one computer, designated the master computer, coordi- 
nates the work done by the others. The master computer might 
be of a different character than the others, as in the PILOT system, 
developed by the National Bureau of Standards [Leiner et al., 
19571, or it may be of the same basic design, differing only in its 
prescribed role, as in the Thompson Ram0 Wooldridge TRW400 
(AN/FSQ-27) [Porter, 19601. Such a scheme does recognize the 
importance, for multicomputer systems, of the problem of coordi- 
nating the processing effort; the master computer is an effective 
means of accomplishing the coordination. However, there are 
several difficulties in such a design. The loss of the master com- 
puter would down the whole system, and the command and control 
availability requirement could not, consequently, be met. If this 
weakness is countered by providing the ability for the master 
control function to be automatically switched to another processor, 
there still remains an inherent inefficiency. If, for example, the 
workload of the master computer becomes very large, the master 
becomes a system bottleneck resulting in inefficient use of all other 
system elements; and, on the other hand, if the workload fails to 
keep the master busy, a waste of computing power results. The 
conclusion is then reached that a master should be established only 
when needed; this is what has been done in the design of the D825. 

The totally modular scheme. As a result of these analyses, certain 
implications became clear. The availability requirement dictated 

a decentralization of the computing function-that is, a multi- 
plicity of computing units. However, the nature of the problem 
required that data be freely communicable among these several 
computers. It was decided, therefore, that the memory system 
would be completely shared by all processors. And, from the point 
of view of availability and efficiency, it was also seen to be unde- 
sirable to associate 1/0 with a particular computer; the 1/0 
control was, therefore, also decoupled from the computers. 

Furthermore, a system with several computers, totally shared 
memory, and decoupled 1 / 0  seemed a perfect structure for satis- 
fying the adaptability requirements of command and control. Such 
a structure resulted in a flexibility of control which was a fine 
match for the dynamic, highly variable, processing requirements 
to be encountered. 

The major problem remaining to realize the computational 
potential represented by such a system was, of course, that of 
coordinating the many system elements to behave, at any given 
time, like a system specifically designed to handle the set of tasks 
with which it was faced at that time. Because of the limitations 
of previously available equipment, an operating system program 
had always been identified with the equipment running the pro- 
gram. However, in the proposed design, the entire memory was 
to be directly accessible to all computer modules, and the operat- 
ing system could, therefore, be decoupled from any specific com- 
puter. The operation of the system could be coordinated by having 
any processor in the complement run the operating system only 
as the need arose. It became clear that the master computer had 
actually become a program stored in totally shared memory, a 
transformation which was also seen to offer enhanced program- 
ming flexibility. 

Up to this point, the need for identical computer modules had 
not been established. The equality of responsibility among com- 
puting units, which allowed each computer to perform as the 
master when running the operating system, led finally to the design 
specification of identical computer modules. These were freely 
interconnected to a set of identical memory modules and a set 
of identical 1/0 control modules, the latter, in turn, freely inter- 
connected to a highly variable and diverse 1/0 device comple- 
ment. It was clear that the complete modularity of system ele- 
ments was an effective solution to the problem of expansibility, 
inasmuch as expansion could be accomplished simply by adding 
modules identical to those in the existing complement. It was also 
clear that important advantages and economies resulting from the 
manufacture, maintenance, and spare parts provisioning for iden- 
tical modules also accrue to such a system. Perhaps the most 
important result of a totally modular organization is that redun- 
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dancy of the required complement of any module type, for greater 
reliability, is easily achieved by incorporating as little as one 
additional module of that type in the system. Furthermore, the 
additional module of each type need not be idle; the system may 
be looked upon as operating with active spares. 

Thus, a design structure based upon complete modularity was 
set. Two items remained to weld the various functional modules 
into a coordinated system-a device to electronically interconnect 
the modules, and an operating system program with the effect of 
a master computer, to coordinate the activities of the modules into 
fully integrated system operation. 

In the D825, these two tasks are carried out by the switching 
interlock and the Automatic Operating and Scheduling Program 
(AOSP), respectively. Figure 1 shows how the various functional 
modules are interconnected via the interlock in a matrix-like 
fashion. 

System implementation 

Most important in the design implementation of the D825 were 
studies toward practical realization of the switching interlock and 
the AOSP. The computer, memory, and 1/0 control modules 
permitted more conventional solutions, but were each to incor- 
porate some unusual features, while many of the 1/0 devices were 
selected from existing equipment. With the exception of the latter, 
all of theses elements are discussed here briefly. (A summary of 
D825 characteristics and specifications is included at the end of 
the paper.) 

Switching interlock. Having determined that only a completely 
shared memory system would be adequate, it was necessary to find 
some way to permit access to any memory by any processor, and, 
in fact, to permit sharing of a memory module by two or more 
processors or 1/0 control modules. 

A function distributed physically through all of the modules 
of a D825 system, but which has been designated in aggregate 
the switching interlock, effects electronically each of the many 
brief interconnections by which all information is transferred 
among computer, memory, and 1/0 control modules. In addition 
to the electronic switching function, the switching interlock has 
the ability to detect and resolve conflicts such as occur when two 
or more computer modules attempt access to the same memory 
module. 

The switching interlock consists functionally of a crosspoint 
switch matrix which effects the actual switching of bus intercon- 
nections, and a bus allocator which resolves all time conflicts 
resulting from simultaneous requests for access to the same bus 

or system module. Conflicting requests are queued up according 
to the priority assigned to the requestors. Priorities are pre- 
emptive in that the appearance of a higher priority request will 
cause service of that request before service of a lower priority 
request already in the queue. Analyses of queueing probabilities 
have shown that queues longer than one are extremely unlikely. 

The priority scheduling function is performed by the bus allo- 
cator, essentially a set of logical matrices. The conflict matrix 
detects the presence of conflicts in requests for interconnection. 
The priority matrix resolves the priority of each request. The 
logical product of the states of the conflict and priority matrices 
determines the state of the queue matrix, which in turn governs 
the setting of the crosspoint switch, unless the requested module 
is busy. 

The AOSP: an  operating system program. The AOSP is an operating 
system program stored in totally shared memory and therefore 
available to any computer. The program is run only as needed 
to exert control over the system. The AOSP includes its own 
executive routine, an operating system for an operating system, 
as it were, calling out additional routines, as required. The con- 
figuration of the AOSP thus permits variation from application to 
application, both in sequence and quantity of available routines 
and in disposition of AOSP storage. 

The AOSP operates effectively on two levels, one for system 
control, the other for task processing. 

The system control function embodies all that is necessary to 
call system programs and associated data from some location in 
the 1/0 complement, and to ready the programs for execution by 
finding and allocating space in memory, and initiating the proc- 
essing. Most of the system control function (as well as the task 
processing function) consists of elaborate bookkeeping for: pro- 
grams being run, programs that are active (that is, occupy memory 
space), 1/0 commands being executed, other 1/0 commands 
waiting, external data blocks to be received and decoded, and 
activation of the appropriate programs to handle such external 
data. It would be inappropriate here to discuss the myriad details 
of the AOSP; some idea of its scope, however, can be obtained 
from the following list of some of its major functions: 

1 Configuration determination 

2 Memory allocation 

3 Scheduling 

4 

5 Reporting and logging 

Program readying and end-of-job cleanup 
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Fig. 1. System organization, Burroughs D825 modular data processing system. 
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6 Diagnostics and confidence checking 

7 External interrupt processing 

The task processing function of the AOSP is to execute all 
program 1/0 requests in order to centralize scheduling problems 
and to protect the system from the possibility of data destruction 
by ill-structured or conflicting programs. 

AOSP response to interrupts. The AOSP function depends heavily 
upon the comprehensive set of interrupts incorporated in the 
D825. All interrupt conditions are transmitted to all computer 
modules in the system, and each computer module can respond 
to all interrupt conditions. However, to make it possible to dis- 
tribute the responsibility for various interrupt conditions, both 
system and local, each computer module has an interrupt mask 
register that controls the setting of individual bits of the interrupt 
register. The occurrence of any interrupt causes one of the system 
computer modules to leave the program it has been running and 
branch to the suitable AOSP entry, entering a control mode as it 
branches. The control mode differs from the normal mode of 
operation in that it locks out the response to some low-priority 
interrupts (although recording them) and enables the execution 
of some additional instructions reserved for AOSP use (such as 
setting an interrupt mask register or memory protection registers, 
or transmitting an 1/0 instruction to an 1/0 control module). 

In responding to an interrupt, the AOSP transfers control to 
the appropriate routine handling the condition designated by the 
interrupt. When the interrupt condition has been satisfied, control 
is returned to the original object program. Interrupts caused by 
normal operating conditions include: 

1 

2 

3 Real-time clock overflow 

4 Array data absent 

5 Computer-to-computer interrupts 

6 

16 different types of external requests 

Completion of an 1/0 operation 

Control mode entry (normal mode halt) 

Interrupts related to abnormalities of either program or equipment 
include: 

1 

2 Arithmetic overflow 

3 Illegal instruction 

Attempt by program to write out of bounds 

4 Inability to access memory, or an internal parity error; 
parity error on an 1 / 0  operation causes termination of that 
operation with suitable indication to the AOSP 

5 Primary power failure 

6 

7 

Automatic restart after primary power failure 

1/0 termination other than normal completion 

While the reasons for including most of the interrupts listed above 
are evident, a word of comment on some of them is in order. 

The array-data-absent interrupt is initiated when a reference 
is made to data that is not present in the memory. Since all array 
references such as A[k] are made relative to the base (location 
of the first element) of the array, it is necessary to obtain this 
address and to index it by the value k. When the base of array 
A is fetched, hardware sensing of a presence bit either allows the 
operation to continue, or initiates the array-data-absent interrupt. 
In this way, keeping track of data in use by interacting programs 
can be simplified, as may the storage allocation problem. 

The primary power failure interrupt is highest priority, and 
always pre-emptive. This interrupt causes all computer and 1/0 
control modules to terminate operations, and to store all volatile 
information either in memory modules or in magnetic thin-film 
registers. (The latter are integral elements of computer modules.) 
This interrupt protects the system from transient power failure, 
and is initiated when the primary power source voltage drops 
below a predetermined limit. 

The automatic restart after primary power failure interrupt is 
provided so that the previous state of the system can be recon- 
structed. 

A description of how an external interrupt is handled might 
clarify the general interrupt procedure. Upon the presence of an 
external interrupt, the computer which has been assigned respon- 
sibility to handle such interrupts automatically stores the contents 
of those registers (such as the program counter) necessary to 
subsequently reconstitute its state, enters the control mode, and 
goes to a standard (hardware-determined) location where a branch 
to the external request routine is located. This routine has the 
responsibility of determining which external request line requires 
servicing, and, after consulting a table of external devices (teletype 
buffers, console keyboards, displays, etc.) associated with the 
interrupt lines, the computer constructs and transmits an input 
instruction to the requesting device for an initial message. The 
computer then makes an entry in the table of the 1/0 complete 
program (the program that handles 1/0 complete interrupts) to 
activate the appropriate responding routine when the message is 
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read in. A check is then made for the occurrence of additional 
external requests. Finally, the computer restores the saved register 
contents and returns in normal mode to the interrupted program. 

AOSP control of 1 / 0  activity. As mentioned above, control of all 
1 / 0  activity is also within the province of the AOSP. Records are 
kept on the condition and availability of each 1/0 device. The 
locations of all files within the computer system, whether on 
magnetic tape, drum, disc file, card, or represented as external 
inputs, are also recorded. A request for input by file name is 
evaluated, and, if the device associated with this name is readily 
available, the action is initiated. If for any reason the request must 
be deferred, it is placed in a program queue to await conditions 
which permit its initiation. Typical conditions which would cause 
deferral of an 1/0 operation include: 

1 

2 

3 

No available 1 / 0  control module or channel. 

The device in which the file is located is presently in use. 

The file does not exist in the system. 

In the latter case, typically, a message would be typed out on the 
supervisory printer, asking for the missing file. 

The 1/0 complete interrupt signals the completion of each 1/0 
operation. Along with this interrupt, an 1/0 result descriptor is 
deposited in an AOSP table. The status relayed in this descriptor 
indicates whether or not the operation was successful. If not 
successful, what went wrong (such as a parity error, or tape break, 
card jams, etc.) is indicated so that the AOSP may initiate the 
appropriate action. If the operation was successful, any waiting 
1/0 operations which can now proceed are initiated. 

AOSP control of program scheduling. Scheduling in the D825 relies 
upon a job table maintained by the AOSP. Each entry is identified 
with a name, priority, precedence requirements, and equipment 
requirements. Priority may be dynamic, depending upon time, 
external requests, other programs, or a function of many variable 
conditions. Each time the AOSP is called upon to select a program 
to be run, whether as a result of the completion of a program or 
of some other interrupt condition, the job table is evaluated. In 
a real-time system, situations occur wherein there is no system 
program to be run, and machine time is available for other uses. 
This time could be used for auxiliary functions, such as confidence 
routines. 

The AOSP provides the capability for program segmentation 
at the discretion of the programmer. Control macros embedded 

in the program code inform the AOSP that parallel processing with 
two or more computers is possible at a given point. In addition, 
the programmer must specify where the branches indicated in this 
manner will join following the parallel processing. 

Computer module. The computer modules of the D825 system are 
identical, general-purpose, arithmetic and control units. In deter- 
mining the internal structure of the computer modules, two con- 
siderations were uppermost. First, all programs and data had to 
be arbitrarily relocatable to simplify the storage allocation func- 
tion of the AOSP; secondly, programs would not be modified 
during execution. The latter consideration was necessary to mini- 
mize the amount of work required to pre-empt a program, since 
all that would have to be saved to reinstate the interrupted pro- 
gram at a later time would be the data for that program and the 
register contents of the computer module running the program 
at the time it was dumped. 

The D825 computer modules employ a variable-length in- 
struction format made up of quarter-word syllables. Zero-, one-, 
two-, or three-address syllables, as required, can be associated with 
each basic command syllable. An implicitly addressed accumulator 
stack is used in conjunction with the arithmetic unit. Indexing of 
all addresses in a command is provided, as well as arbitrarily deep 
indirect addressing for data. 

Each computer module includes a 128-position thin-film mem- 
ory used for the stack, and also for many of the registers of the 
machine, such as the program base register, data base register, 
the index registers, limit registers, and the like. 

The instruction complement of the D825 includes the usual 
fixed-point, floating-point, logical, and partial-field commands 
found in any reasonably large scientific data processor. 

Memory module. The memory modules consist of independent 
units storing 4096 words, each of 48 bits. Each unit has an individ- 
ual power supply and all of the necessary electronics to control 
the reading, writing, and transmission of data. The size of the 
memory modules was established as a compromise between a 
module size small enough to minimize conflicts wherein two or 
more computer or 1/0 modules attempt access to the same mem- 
ory module, and a size large enough to keep the cost of duplicated 
power supplies and addressing logic within bounds. It might be 
noted that for a larger modular processor system, these trade-offs 
might indicate that memory modules of 8192 words would be more 
suitable. Modules larger than this-of 16,384 or 32,768 words, for 
example-would make construction of relatively small equipment 
complements meeting the requirements set forth above quite 
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difficult. The cost of smaller units of memory is offset by the 
lessening of catastrophe in the event of failure of a module. 

I /O control module. The 1/0 control module executes 1/0 opera- 
tions defined and initiated by computer module action. In keeping 
with the system objectives, 1/0 control modules are not assigned 
to any particular computer module, but rather are treated in much 
the same way as memory modules, with automatic resolution of 
conflicting attempted accesses via the switching interlock function. 
Once an 1/0 operation is initiated, it proceeds independently until 
completion. 

1/0 action is initiated by the execution of a transmit 1/0 
instruction in one of the computer modules, which delivers an 1 / 0  
descriptor word from the addressed memory location to an inactive 
1/0 control module. The 1/0 descriptor is an instruction to the 
1/0 control module that selects the device, determines the direc- 
tion of data flow, the address of the first word, and the number 
of words to  be transferred. 

Interposed between the 1/0 control modules and the physical 
external devices is another crossbar switch designated the 1/0 
exchange. This automatic exchange, similar in function to the 
switching interlock, permits two-way data flow between any 1/0 
control module and any 1/0 device in the system. It further 
enhances the flexibility of the system by providing as many possible 
external data transfer paths as there are 1/0 control modules. 

Equipment complements. A D825 system can be assembled (or 
expanded) by selection of appropriate modules in any combination 
of: one to four computer modules, one to 16 memory modules, 

Table 1 Specifications, D825 modular data processing system 

Computer module: 

Computer module, type: 

Word length: 

Index registers: 
(in each computer module) 

Magnetic thin-f i lm registers: 
(in each computer module) 

Real-time clock: 
(in each computer module) 

Binary add: 

Binary multiply: 

Floating-point add: 

Floating-point multiply: 

Logical AND: 

Memory type: 

Memory capacity: 

1/0 exchanges per system: 

1/0 control modules: 

1/0 devices: 

Access to  1/0 devices: 

Transfer rate per 1/0 exchange: 

1/0 device complement: 

4, maximum complement 

Digital, binary, parallel, solid-state 

4 8  bi ts inc lud ing sign (8 characters, 6 bits 
each) plus parity 

15 

128 words, 1 6  bi ts per word, 0.33.psec 
read/write cycle t ime 

1 0  msec resolution 

1.67 psec (average) 

36 .0  e e c  (average) 

7.0 psec (average) 

34 .0  psec (average) 

0 .33  psec 

Homogeneous, modular,  random-access, 
linear-select, ferr i te-core 

65,536 words (16 modules maximum, 4096 
words each) 

1 or 2 

1 0  per exchange, maximum 

6 4  per exchange, maximum 

All  1/0 devices available to every 1/0 control 
module in exchange 

2,000,000 characters per second 

All standard 1/0 types, including 67  kc mag- 
netic tapes, magnetic drums and discs, card 
and paper tape punches and readers, char. 
acter and line printers, communications and 
display equipment 

one to ten 1/0 control modules, one or two 1/0 exchanges, and 
one to 64 1/0 devices per 1/0 exchange in any combination 
selected from: operating (or system status) consoles, magnetic tape 
transports, magnetic drums, magnetic disc files, card punches and 
readers, paper tape perforators and readers, supervisory printers, 
high-speed line printers, selected data converters, special real-time 
clocks, and intersystem data links. 

Figure 2 is a photograph of some of the hardware of a com- 
pleted D825 system. The equipment complement of this system 
includes two computer modules, four memory modules (two per 
cabinet), two 1/0 control modules (two per cabinet), one status 
display console, two magnetic tape units, two magnetic drums, Fig. 2. Typical D825 equipment array. 
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a card reader, a card punch, a supervisory printer, and an electro- 
static line printer. 

D825 characteristics are summarized in Table 1. 

Summary and conclusion 

It is the belief of the authors that modular systems (in the sense 
discussed above) are a natural solution to the problem of obtaining 
greater computational capacity-more natural than simply to 
build larger and faster machines. More specifically, the organiza- 
tional structure of the D825 has been shown to be a suitable basis 
for the data processing facility for command and control. Although 
the investigation leading toward this structure proceeded as an 
attack upon a number of diverse problems, it has become evident 
that the requirements peculiar to this area of application are, in 
effect, aspects of a single characteristic, which might be called 
structural freedom. Furthermore, it is now clear that the most 
unique characteristic of the structure realized-integrated opera- 
tion of freely intercommunicating, totally modular elements- 
provides the means for achieving structural freedom. 

For example, one requirement is that some specified minimum 
of data processing capability be always available, or that, under 
any conditions of system degradation due to failure or mainte- 
nance, the equipment remaining on line be sufficient to perform 
primary system functions. In the D825, module failure results in 
a reduction of the on-line equipment configuration but permits 
normal operation to continue, perhaps at a reduced rate. The 
individual modules are designed to be highly reliable and main- 
tainable, but system availability is not derived solely from this 
source, as is necessarily the case with more conventional systems. 
The modular configuration permits operation, in effect, with active 
spares, eliminating the need for total redundancy. 

A second requirement is that the working configuration of the 
system at a given moment be instantly reconstructable to new 
forms more suited to a dynamically and unpredictably changing 
work load. In the D825, all communication routes are public, all 
modules are functionally decoupled, all assignments are scheduled 
dynamically, and assignment patterns are totally fluid. The system 
of interrupts and priorities controlled by the AOSP and the 
switching interlock permits instant adaptation to any work load, 
without destruction of interrupted programs. 

The requirement for expansibility calls simply for adaptation 
on a greater time scale. Since all D825 modules are functionally 
decoupled, modules of any types may be added to the system 
simply by plugging into the switching interlock or the 1/0 ex- 
change. Expansion in all functional areas may be pursued far 
beyond that possible with conventional systems. 

It is clear, however, that the D825 system would have fallen 
far short of the goals set for it if only the hardware had been 
considered. The AOSP is as much a part of the D825 system 
structure as is the actual hardware. The concept of a “floating” 
AOSP as the force that molds the constituent modules of an 
equipment complement into a system is an important notion 
having an effect beyond the implementation of the D825. One 
interesting by-product of the design effort for the D825 has, in 
fact, been a change of perspective; it has become abundantly clear 
that computers do not rim programs, but that programs control 
computers. 
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Chapter 37 

A survey of problems and preliminary 
results concerning parallel processing 
and parallel processors1 

M .  Lehman 

Summay After an introduction which discusses the significance of a trend 
to the des@ of parallel processing systems, the paper describes some of 
the results obtained to date in a project which aims to develop and evaluate 
a unified hardware-software parallel processing computing system and the 
techniques for its use. 

normal circumstances, with all units operational, each could be 
assigned a specific activity within an overall control program. As 
a result of the multiplicity of units in such Multiprocessing Systems, 
failure of any one would degrade, but not immobilize, the system, 
since a supervisor program could re-assign activities and configure 
the failed unit out of the system. Subsequently, it was recognized 

1. M ultiprogramm ing, multiprocessing, 
and parallel processing 

A brief review of the literature, of which a partial listing is given 
in the bibliography, reveals an active and growing interest in 
multiprogramming, multiprocessing, and parallel processing. 
These three terms distinguish three modes of usage and also serve 
to indicate a certain historical development. We cannot here 
attempt to trace this history in detail and so must rely on the 
bibliography to credit the contributions from industrial, university, 
and other research and development organizations. 

 the^ emergence of autonomous input-output devices first sug- 
gested [Gill, 19581 the time-sharing of the processing and periph- 
eral units of a computing system among several jobs. Thus surplus 
capability that could not be applied to the processing of the 
leading job in a batch processing load, at any stage of the compu- 
tation, could be usefully applied to successor jobs in the work load. 
In particular, while any computation was held up for some 1/0 
activity, the single main processor could be used for other compu- 
tation. The necessary decision-taking, scheduling, and allocation 
procedures were vested in a supervisor program, within which the 
user-jobs were embedded, and the resultant mode of operation was 
termed Multiprogrumming. 

The use of computers in on-line control situations and for other 
applications giving rise to ever-more stringent reliability and 
availability specifications, resulted in the construction of systems 
including two or more central processing units [Leiner et al., 1959; 
Bright, 1964; Desmonde, 1964; McCullough et al., 19651. Under 

'Proc. IEEE, vol. 54, no. 12, pp. 1889-1901, December, 1966 

that such systems had advantages over a single processor system 
in a more general environment, with each processor in the system 
having a multiprogramming capability as well. 

Finally, following from ideas first exploited in the Gamma 60 
Computer [Dreyfus, 19581, there has come the realization that 
multi-instruction counter systems can speed up computation, par- 
ticularly of large problems, when these may be partitioned into 
sections which are substantially independent of one another, and 
which may therefore be executed concurrently-that is, in parallel. 
When the several units of a multiprocessing system are utilized 
to process, in parallel, independent sections of a job, we exploit 
the macro-parallelism [Lehman, 19651 of the job, which is to be 
distinguished from micro-parallelism [Lehman, 19651, the relative 
independence of individual machine instructions, exploited in 
look-ahead machines. This mode of operation is termed Purullel 
Processing and, as in PL/I [IBM OS/360, PL/I Language Specifica- 
tion, Form C28-6571, p. 741, the execution of any program string 
is termed a Tusk. We note that parallel processing may, and 
normally will, include multiprocessing activity. 

2. The approach to parallel processing system design 

In the previous section we indicated that the prime impetus for 
the development of parallel processing systems arose from their 
potential for high performance and reliability. These systems may 
operate as pools of resources organized in symmetrical classes and 
it is this property that promises High Auuilubility. They also 
possess a great reserve of power which, when applied to a single 
problem with the appropriate degree of parallelism, can yield high 

456 
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performance and fast turn around time. Surplus resources can be 
applied to other jobs, so that the system is potentially efficient, 
displaying a peak-load averaging effect and hence high utilization 
of hardware [Corbato and Vyssotsky, 19651. The concept of sharing 
in parallel processing systems and its related cost reduction is not, 
however, limited to hardware. Perhaps even more significant is 
the common use of data-sets maintained in a system library or 
file, and even concurrent access during execution from a high- 
speed store. This may represent considerable economy in storage 
space and in processing time for 1/0 and internal memory. 
hierarchy transfers. But above all [Corbato and Vyssotsky, 19651 
it facilitates the sharing of ideas, experience, and results and a 
cross fertilization among users, a prospect which from a long term 
point of view represents perhaps the most significant potential of 
large, library-oriented, multiprocessing systems. Finally, in this 
brief summary of the basic advantages of parallel processing 
systems, we refer to their intrinsic modularity, which may yield 
an expandable system in which the only effect of expansion on 
the user is improved performance. 

Adequate performance of parallel processing systems is, how- 
ever, predicated on an appropriately low level of overhead. Allo- 
cation, scheduling, and supervisory' strategies, in particular, must 
be simplified and the related procedures minimized to comprise 
a small proportion of the total activity in the system. The system 
design must be based on performance objectives that permit a user 
to specify a time period and a tolerance within which he requires 
and expects to receive results, and the cost for which these will 
be obtained. In general the entire system must yield minimum 
throughput time for the large job, adequate response time to the 
terminal requests in conversational mode, guaranteed throughput 
time for real-time tasks, and minimum cost processing for the 
batch-processed small job. These needs require the development 
of an executive and supervisory system integrated with the hard- 
ware into a single, unified computing system. Finally, the tech- 
niques and algorithms of classical computation, of problem analy- 
sis, and of programming, must be modified and new, intrinsically 
parallel procedures developed if full advantage is to be gained 
from exploitation of these parallel systems. 

Our studies to date represent but a small fraction of the ground 
that will have to be covered if effective parallel processing systems 
are to come into their own. It is, however, abundantly clear that 
such systems will yield their potential only if the design is ap- 
proached on a broad but unified front ranging from problem 

' We differentiate intuitively between executive and supervisory activities. 
The former are those whose costs should be chargeable to the individual 
user directly, whereas the latter are absorbed in the system running costs. 

analysis and usage techniques, through executive strategies and 
operating systems, to logic design and technology. We therefore 
present concepts and results from each of these areas, as obtained 
during our preliminary investigation into the design and use of 
parallel processing systems. 

3. Language 

3.1 

The analysis of high level language requirements for parallel 
processing has received considerable attention in the literature. 
We may refer in particular to the paper by Conway [1963] which 
discussed the concepts of Fork, Join, and Quit, and the recent 
review by Dennis and Van Horn [1966]. 

Recognizing that programming languages should possess capa- 
bilities that express the structure of the computational algorithm, 
Schlaeppi [ 19??] has proposed augmentations to PL/I-like lan- 
guages that portray the macro-parallelism in numerical algorithms. 
These in turn have been reflected in proposals for machine- 
language implementation. As examples we discuss Split, Terminate, 
Assemble, Test and Set or Wait (interlock), Resume, Store-Test and 
Branch, and External Execute instructions. We describe here only 
the basic functional elements, from which machine instructions 
for actual realization will be composed as suggested by practical 
programming experience. 

Parallelism in high level languages 

3.2 

Split provides the basic task-generating capability. It indicates that 
in addition to continuing the execution of the present instruction 
string in normal fashion a new task, or set of tasks, may be initi- 
ated, execution starting at  a specified address or set of addresses. 
Such potential tasks will be queued to await pick-up by an appro- 
priate processing unit. 

Terminate causes cessation of activity on a task. The terminat- 
ing unit will, of its own volition, access an appropriate queue to 
obtain its next task. Alternatively, it may execute an executive 
allocation-task to determine which of a number of task-queues is 
to be accessed next according to the current urgency status of work 
in the system. 

Assemble permits the merging of several tasks. The first (n  - 1) 
tasks in an n-way parallel set belonging to a single job, reaching 
the assemble instruction terminate. The nth task, however, will 
proceed to execute the program string which constitutes the 
continuation of all n tasks. 

Machine level instructions for tasking 
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Test and Set or Wait provides an interlock facility. Thus a 
number of tasks all operating on a common data set may be 
required to filter through certain sections of program or data, one 
at a time. This may be achieved by an instruction related to the 
S/360 test and set instruction [Falkoff et al., 19641, but causing 
the task finding the specified location to be already set to go into 
a wait state. System efficiency requires that processors do not idle, 
so that the waiting task will generally be returned to queue and 
the processor released for other work. 

He.wme directs a processor or processors waiting as a result 
of a test on a specified location, to proceed, or more generally, 
that specified waiting tasks that have been returned to queue be 
re-activated to await the spontaneous availability of an appropri- 
ate processor. 

Test and Branch Storage Location permits communication be- 
tween parallel tasks based on tests analogous to the register tests 
of uniprocessors, but associated with the contents of storage loca- 
tions. This is desirable since processor registers are private to the 
processor and inaccessible from outside. 

External Execute is a special case of the general interaction 
facility discussed in Section 4 that permits related tasks to influ- 
ence one another. This can be achieved through the application 
of instructions already discussed. It is, however, more efficient to 
provide a new facility akin to the Interrupt concept. By applying 
this Interaction function, a task may cause other specified tasks 
to execute an instruction at a specified location, each on comple- 
tion of its present instruction. Thus, for example, a number of 
processors searching for a particular item in a partitioned list can 
be caused to abandon the search when the item has been located 
by one, while processors searching for other items, or otherwise 
busy, will not be redirected. 

4. Interaction 

4.1 The interaction concept 

An extension of the task interaction concept introduced in the 
preceding section is fundamental to efficient parallel processing. 
In the particular example cited, the interaction, in the form of 
an external execute instruction, forms part of the computational 
procedure. In fact, many other situations arise in which processing 
for inter-task communication may be detached from problem 
processing and be carried through concurrently in autonomous 
units, thereby increasing system utilization. 

We therefore propose to associate with each active unit in the 
system an autonomous Interaction Controller. Groups of controllers 

are linked by a special bus. This provides facilities whereby any 
one unit may, at a given time, act as a command or signal source 
with all other units potential recipients. By thus systemizing 
inter-unit communication and making it a concurrent activity, we 
both increase system utilization and remove a maze of intercon- 
necting cables. Succeeding subsections describe some of the func- 
tions that the controllers fulfill and, briefly, one hardware proposal 
for their realization. 

4.2 Interaction activities 

In present-day systems there already exist activities of the type 
to be classified as interaction. Thus, for example, in System/S6O 
we find a CPU to Channel Halt I /O facility, channel interruptions 
of processors, and timer interruptions. In extending the concept 
we differentiate among three classes of interaction. 

PROBLEM INTERACTION. These relate to logical dependencies 
between tasks, and will generally require waits, forced branches, 
or terminations. Search termination, previously discussed, is an 
example of this type interaction, as are data and instruction- 
sequence interlocks. 

EXECUTIVE INTERACTION. This activity is concerned primarily 
with the allocation of system resources. Consider, for example, the 
problem of processing interrupts in a parallel processing system. 
These will usually not need to interrupt a computing activity, but 
may await the spontaneous availability of a unit at a Terminate, 
a natural lx-eakp0int.l If an interrupt does become critical it should 
not be applied to a specific physical unit. Instead the interruption 
should be steered to that unit which, by virtue of the work it is 
processing, may be classed as Most Interruptable. Selection of the 
latter may be obtained ahead of time and is maintained by the 
interaction system, on the basis of the relative urgency of tasks. 

Another example of executive interaction concerns the constant 
provision of queue status information to all active units. Besides 
simplifying scheduling activity this may prevent units from access- 
ing empty queues, reducing both storage and executive interfer- 
ence. Similarly, units can be caused to access a previously empty 
queue when an entry is made, obviating continuous testing of 
queue status. 

'This is possible in a parallel processing system since tasks are smaller than 
jobs and since there are many processors. Furthermore, units operate 
anonymously. That is, on picking up a task, a unit records the task identity 
in an internal register and its own identity in a table associated with the 
work queue. Other processors do not, therefore, know how tasks and 
processors are matched at any time, since this is a matter of chance, and 
determination would require an extensive and wasteful table search. 
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The interaction system also supports other activities associated 
with accounting, recording, and general system supervision. 

SYSTEM INTERACTION. System interaction provides controls and 
interlocks for operation and maintenance of the physical system. 
It includes, for example, interchange of information between 
active units about the validity of storage map entries, storage 
protection control, queue interlocks, checks and counts of unit 
availability, the initiation of routine and emergency diagnostic and 
maintenance activity, and the isolation of malfunctioning units. 

SUMMARY. The preceding paragraphs have indicated some of the 
many applications of an interaction controller. The common 
property which, for practicality, has been used to identify poten- 
tial interaction activities is that they should be autonomous rela- 
tive to the main computational stream and that their execution 
should not require access to storage. 

4.3 The interaction controller 

4.3.1. The basic system hardware architecture. It is not intended 
to give a full description of an interaction controller in the present 
paper. We shall, however, outline its basic structure, indicate its 
mode of operation, and list some of the proposed interaction 
instructions, termed Directiues. 

As a first step we introduce, in Fig. 1, a diagrammatic descrip- 
tion of an overall representative hardware system. This consists 
of central processors (Pi) with local storage (LSi), 1/0 processors 
(SCi), storage modules (Si), a requestor-storage queue (Qi), and a 
communication system functionally equivalent to a crossbar 
switch. iln 1/0 area, including a bulk-store, files, channels (Ch), 
devices, device control units (Cu), and interconnection networks, 
is indicated in less detailed fashion. 

4.3.2. lnteraction controllers. Interaction controllers (IC) are 
associated with all central and 1/0 processors, and communicate 
with each other over a special bus. Similarly localized interaction 
systems may provide a facility for certain classes of 1/0 units or 
devices to interact amongst themselves. 

To be economically feasible, the Interaction Controller must 
be simple. Figure 2 illustrates a structure which includes about 
two hundred and fifty bits of storage, of which about half are 
organized in registers. The remainder are used as status bits or 
appear in the controller-processor interface. Control is obtained 
from a read-only store, whose capacity depends on the size of the 
directive repertoire (an interaction directive being analogous to 

a processor instruction) and the number of interaction functions 
it is required to implement. 

Controller connection to the ten-bit wide interaction bus is by 
means of OR gates. When an interaction is occurring, one and 
only one controller will be in command of the bus. Figure 3 
illustrates the sequence of events required to implement an inter- 
action. 

The controller required by its associated processor to initiate 
an activity will await availability of the bus, indicated by an ALL 
ZERO state, and will then attempt to seize control by transmitting 
a unique identifying four-out-of-eight code. Should more than one 
controller attempt to seize the bus at  the same time, a conflict 
resolution procedure is initiated. This is based on the simultaneous 
transmission by all requesting controllers of a second, two byte, 
identifying code. Each byte consists of one or more ones followed 
by all zeros. A simple comparison by each controller of its trans- 

- 

Fig. 1. A representative system hardware configuration. 
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Fig. 2. The interaction controller. 

mitted signals with the state of the bus, identifies to itself that 
controller having the most ones in each byte, since it will have 
found a match on both comparisons. This enables it to seize the 
bus and to switch to the command state. All remaining controllers 
remain in the listening state. 

The controller in command of the bus then transmits signals 
which select recipients for the directives which are to follow. 
Other controllers ignore all further communications until the next 
selection signal appears. 

4.4 Interaction directives 

A signal designating the interaction function required by a proc- 
essor is transmitted across the processor/controller interface, as 
the result of the execution of some processor instruction. The 
processor will then generally continue its execution sequence 
unless or until it is required to pass on a second interaction func- 
tion before a previously issued function has been completed. Upon 
receipt of the interaction command, and after successful seizure 
of the bus as described, the command controller may initiate 

Interaction required a7 Bus free ? 

Seize bus i 
Conflict? &L 

E r n i t  order or question 

Fig. 3. The interaction sequence. 

execution of the interaction by transmitting a sequence of one or 
more directives to the selected units. A basic set of directives is 
listed in Table 1. 

The Compare directives are most frequently used to seize the 
bus and to select a subset of the controllers for the receipt of 
subsequent directives. The remaining units ignore further direc- 
tives until alerted by an Attention signal or until Free Bus provides 
the release that permits waiting controllers to attempt to seize 
the bus. Receive provides for transmittal of data between control- 
lers; for example, transmission of a machine instruction to a se- 
lected set of controllers, followed by the directive Interact. Thus 
this sequence could realize the basic interaction function. External 
Execute is, however, considered so fundamental to efficient exploi- 
tation of a parallel processing system that we include it as an 

Table 1 

Send and Compare 
Compare 
Received 

Set Status Bits 
Interact 

External Execute 
Attention 
Free Bus 



Chapter 37 1 A survey of problems and preliminary results concerning parallel processing and parallel processors 461 

explicit directive. Status bits that may be set or reset by appropri- 
ate directives, provide data on the status of various systems queues, 
on the interruptability of given processors, on Wait status, and 
so on. 

5. Storage communication 

The fact that interest in large parallel processing systems is in- 
creasing rapidly as technology enters into the integrated or mono- 
lithic era is no coincidence. Such systems will not, in fact, be 
practical for general purpose application until miniaturization 
reaches the stage where the large amount of hardware required 
can be assembled in compact fashion. This need is most apparent 
when one considers communication between the high-speed store 
and the various classes of processors, which may collectively be 
termed Requestors. Already in presently available systems, the 
transmission delay between storage and requestors is of the same 
order of magnitude as the storage cycle time; and cycle times are 
still decreasing. 

Formulation of a hardware model as in Fig. 1 led to the imme- 
diate conclusion that feasibility of the interconnection of large 
numbers of units had first to be established. Many possible systems 
were considered, and preliminary studies concluded that the 
crossbar switch was the most appropriate system for early study 
in view of its regular structure, simplicity, and basic modularity. 
More particularly, monolithic crossbar modules are visualized 
which it will be possible to interconnect to provide networks of 
any required dimensions. Alternatively, or additionally, other 
interconnections of these modules can provide highly available, 
multi-level trunking systems. 

In addition to the switch proper, the crossbar network requires 
a selection and control mechanism. It is moreover appropriate to 
locate the queues, which store all but one of a group of conflicting 
requests, within the switching area. A switch complex, as in Fig. 
4, has been designed for a system configuration including twenty- 
four requestors, thirty-two memory modules, thirty-two data plus 
four parity bit words, and sixteen plus two parity bit addresses. 

The result of this design study shows that the size and com- 
plexity of such a switch is not excessive for a large scale system. 
In its simplest form and using standard high-performance logical 
devices, with a fan-in of four, a fan-out of ten and a four-way OR 
capability, its use leads to a worst case delay of some seven logical 
levels in the control and queue decision circuits and two levels 
in each direction of the switch. The switch uses between two and 
three times as many circuits as a central processor such as the 
model 75 of System/36O. While this, in itself, represents a consid- 

erable amount of hardware, it is still an order of magnitude less 
than the hardware found in the units that the switch is intercon- 
necting. Moreover, its regular structure and simple, repetitive 
logic suggest ultimate economical realization using monolithic 
circuit techniques. 

6. Usage 

6.1 The executive system 

The basic properties outlined in Sec. 2 give parallel processing 
systems the potential to overcome many of the ills and shortcom- 
ings that presently beset computer systems. For maximum effec- 
tiveness, the system must be library- or file-oriented. It can, how- 
ever, be exploited efficiently only if the overhead resulting from 
executive control and supervisory activity does not strangle the 
system. More particularly, the gains from the sharing of resources 
and any peak averaging effect must exceed any additional over- 
head due to resource allocation procedures, conflict resolutions, 
and other processing activity arising from the concurrent operation 
of many units. Thus a unified and integrated design approach is 
required in which software and hardware, operating system and 
processing units, lose their separate identities and merge into one 
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Fig. 4. The centralized crossbar switch. 
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overall complex, for which allocation and scheduling procedures, 
for example, are as basic and as critical as arithmetic operations. 

Equally significant to the successful exploitation of parallel 
processing potential are the problems of data management, man- 
machine interactions; and, most generally, problem preparation 
and usage of the system. We restrict the present discussion to brief 
comments on programming techniques for task generation and on 
the development of algorithms possessing macro-parallelism. In 
particular we indicate that multi-instruction-counter systems can 
be profitably applied to the solution of the large problems whose 
computing requirements tax the speed capability and storage of 
the largest computer and the patience of their users. In the fol- 
lowing section we evaluate these proposals by quoting some per- 
formance measurements obtained from an executing simulator. 

6.2 Programmed task generation 

Study of the usage of parallel processing systems for the rapid 
solution of large real-time problems involves two aspects. On the 
one hand we must consider the development of algorithms dis- 
playing an appropriate form of macro-parallelism. On the other 
hand programming techniques must be developed for efficient 
exploitation in terms of both problem- and machine-oriented 
instructions, such as those discussed in Sec. 4. 

It is appropriate to discuss programmed task generation first. 
For simplicity we consider a job segment that requires n executions 
of a procedure I. The procedure will itself include modification 
of index registers or other changes that distinguish the individual 
tasks. We assume that on completion of all n tasks, a new proce- 
dure J should be initiated. Moreover, should processing power be 
available at a time when n executions of I have been initiated but 
not all n completed, we assume that an independent procedure 
K ,  belonging to the same job, may be initiated. In the simplest 
case K will be a terminate instruction which releases the processor, 
and makes it available to process other work as determined from 
the work-queue complex. 

A Z O  
B = O  
c=o 

ST IF N - B 5 1 THEN GO TO IN Suppress split if nth task 
being initiated 

A = A + l  
IF A 2 P THEN GO TO IN Split if less than p proces- 

sors allocated 

SPLIT TO ST 
B = B + 1  
IF B > N THEN GO TO FIN IN If all n I-tasks started, 

proceed with K 

CALL I PROCEDURE 
C = C + l  
IF C < N THEN GO TO IN If all n I-tasks completed, 

proceed with J 

CALL J PROCEDURE 
FIN CALL K PROCEDURE 

Execution of split and terminate instructions involves executive 
overheads, so that these instructions should not be used indiscrim- 
inately. Within a system in which a maximum of p processors are 
available to a job, it is pointless to partition a job, at  any one time, 
into more than p tasks. It is, however, undesirable to guarantee 
a user that p processors, or even more than one processor, will 
execute his program. A simple task generation scheme that makes 
as many entries in the task queue as there are potentially concur- 
rent parts of the algorithm (for example, from a loop containing 
a split instruction) is inefficient when that number is much larger 
than the number of processors that happen to be available. The 
technique also leads to very large queues. An alternative, termed 
Onion Peeling by us, puts the instruction sequence containing the 
split at  the head of procedure I and ends each execution of the 
procedure with a terminate. This restricts the queue length for 
this job segment to one but it otherwise is as inefficient as the 
previous method. 

A Modilfied Onion Peeling scheme (MOP) restricts the split and 
terminate overhead to at  most one morel than the number of 
processors actually applied to the segment. It also ensures that 
processing is completed as quickly and as efficiently as possible 
with the number of processors that become available to the job 
segment. Thus if during execution no further processors are freed, 
the n tasks are executed sequentially with only one split and no 
terminate. If, on the other hand, some other number of processors 
is used for execution, the procedure is speeded up accordingly. 
The maximum number p of processors that may be applied to the 
job may be limited by the number of processors in the system and 
available, or by executive edict. 

The basic scheme was illustrated by the above program, in 
which the first expressions following the ZEROing of counters 
ensures that no unnecessary splits are queued. 

'This is not quite accurate. The simple MOP algorithm presented here 
does not explicitly interlock the split seqnence. There is therefore a possi- 
bility that unnecessary task-calls may be queued during the execution of 
the split which is to generate the nth task. The probability of this is, 
however, small, while the degradation arising from an interlock could be 
significant, and the algorithm in the form given appears more economical. 
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6.3 Macro-parallelism 

Commonly used numerical algorithms, data processing procedures, 
and computer programs are generally sequential in nature. The 
reason for this is largely historical, a consequence of the fact that 
the Mechanisms, human, mechanical, and electronic, used in 
developing and executing these procedures have been incapable 
of significant parallel activity, other perhaps than the simultane- 
ous, coordinated use of many humans. The advent of parallel 
processing systems thus calls for the modification of accepted 
techniques to expose any inherent parallelism. The resultant pro- 
cedures must then be further adapted to make parallel tasks of 
such a magnitude that the overhead involved in their generation 
becomes insignificant. But the ultimate benefit from parallel execu- 
tion will be obtained only by going back to the problems them- 
selves. These must be analyzed anew. Algorithms must be devel- 
oped that make it possible to exploit the parallel executing capa- 
bility, by introducing into the mathematical and program model 
parallelism that ultimately reflects the parallelism of the physical 
system or phenomena being studied. In this need to return to 
fundamentals, the situation is somewhat analogous to the early 
days of electronic computing, when attempts at  commercial ap- 
plication were largely frustrated until it was realized that wide- 
spread application required the development of new techniques, 
rather than the adaptation and mechanization of existing proce- 
dures. 

At the present time, however, our direct activity in problem 
analysis has concentrated mainly on the adaptation of existing 
numerical techniques for parallel processing, for problems in 
which the basic macro-parallelism was self-evident. These include, 
for example, linear algebra and the solution of elliptic partial 
differential equations. In these areas the extent and nature of the 
parallelism had previously led to proposals for vector processing 
systems such as Solomon [Slotnick et al., 1962; Gregory and 
McReynolds, 19631 and Vamp [Senzig and Smith, 19651. Other 
areas in which the parallelism is self-evident hut where vector 
processors prove less effective are those in which the algorithms 
model distinct physical activities such as in file processing and 
Monte Carlo techniques. For all significant problems investigated 
[Schlaeppi, 19??] it was possible to establish the existence of 
parallel tasks of such a length that tasking overheads could be 
expected to be negligible. 

Other classes of problems have been studied, both in terms of 
the extension of existing algorithms and the development of new 
ones. In particular we refer to the extraction of polynomial roots 
[Shedler and Lehman, 19661, solution of equations [Shedler, 

19661, and the solution of linear differential equations [Niever- 
gelt, 19641, [Miranker and Liniger, 19671. These various studies, 
not all directly related to the present project, were more mathe- 
matical in nature, and to the best of our knowledge, no attempt 
has yet been made to develop efficient parallel computer programs. 
Thus, while numerical methods are beginning to emerge which 
enable the exploitation of macro-parallelism in the solution of 
time-limited problems, and from which it appears that significant 
reductions may be obtained in throughput times, much work 
remains to be done on re-programming the problems themselves. 

7.  Simulation 

7.1 

It has been our experience with simulation that its principal 
function as a design tool is to focus attention on features that 
require investigation and explanation. Many results, qualitative 
and quantitative, that are obtained during simulation experiments 
may also be obtained analytically. It is, however, the insight and 
understanding gained from the design of simulation experiments 
and the analysis of their results that draws attention to specific 
details and difficulties. The undeniable value of simulation in 
development and design is therefore quite different from that in 
system evaluation, where meaningful performance figures may be 
obtained when the work load is well defined. 

Simulation as a design tool 

7.2 The executing simulator 

In the present study simulation was seen as fulfilling a number 
of additional functions. In particular it made available a usable 
working model of a parallel processing system. This would give 
potential users the incentive to undertake actual programming and 
to gain limited operational experience. An executing simulator was 
also required for the investigation of what is commonly regarded 
as the most immediate question in parallel processing, the extent 
of performance degradation due to storage-access interference and 
executive (queue-access) interference. Such an executing simulator 
is now operational and its use is discussed in the next section. We 
note parenthetically that a limitation of this type simulator is its 
speed. For the evaluation of total system performance over any 
length of time, particularly when using a computer itself much 
slower than the simulated system, only gross, nonexecuting, sim- 
ulation is reasonable [Katz, 19661. 

The system presently modeled in the executing simulator in- 
cludes the processors, switch, and Storage Modules of Fig. 1. The 
storage modules are accessed through a fully interleaved address 
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structure, though it is clear that in any realization interleaving 
will be partial, both to sustain high availability and to decrease 
storage interference between independent jobs. The individual 
processors have a System/36O-like structure [Blaauw and Brooks, 
19641 and execute an augmented subset of S/36O machine lan- 
guage. The nonstandard instructions added to the repertoire in- 
clude the functions discussed in Section 4. The local store LSi, 
to be used also as an instruction buffer, is however not included 
in the model for which the interference results are quoted in the 
next section. The simulator configuration is parameterized so that, 
for example, the numbers of storage modules and processors, 
instruction execution times (in storage cycles), and the nature of 
statistics gathered and printed may be selected for each run. The 
program itself is modular, and both system features and measure- 
ment facilities may be expanded or modified as required. 

7.3 Simulator experiments 

7.3.1 Kernels. Simulation experiments fist  concentrated on an 
investigation of storage interference arising in the execution of 
typical kernels from numerical analysis. The results indicated that 
under the limited condition of the experiments and for a storage 
module-to-processor ratio of two, interference would degrade 
performance by less than twenty percent, dropping to some five 
percent for storage module-to-processor ratio of eight. Addition 
of a local processor store and its use as an instruction buffer 
effectively eliminated interference, as expected, indicating that 
it had been substantially due to instruction-fetch interference. 

These results were considered to have been generated under 
conditions too restrictive to permit generalization. In particular 
each set referred only to concurrent executions of a single loop. 
Thus more recent experiments have included many runs of a 
matrix-multiply subroutine and the solution of an electrical net- 
work problem using an appropriately modified version of the 
Jacobi variant of the Gauss-Seidel solution of a set of linear alge- 
braic equations. 

7.3.2 The matrix multiplication. The Matrix Multiply program 
was written in two versions. A classical sequential program ex- 
cluding all the special instructions provided the standard on which 
measurement of the parallelism overhead and interference could 
be based. The second, parallel, program used the onion peeling 
rather than the MOP algorithm described in Sec. 7.2. The product 
matrix was partitioned by rows, with the computation of each 
comprising one task. The experiments were performed for square 
matrices of dimensions thirty-nine and forty with from one to 
sixteen processors and sixteen to sixty-four storage modules. Two 

sizes of matrices were used to isolate the effect of commensurate 
periodicities of array mapping with the address structure of the 
store, which demonstratively had significant influence on the 
results. 

Instruction execution times for the most frequently executed 
instructions used in the experiment are given in Table 2. 

These times exclude the instruction fetch time (one instruction 
for each fetch), since these are overlapped unless storage conflict 
occurs, when a request must be queued. The arithmetic operations 
may also include a data fetch (RX instructions) in which case a 
further store access time is required. 

In the absence of an internal instruction buffer, processors 
executing the same program string interfere with each other 
continuously during instruction fetches. To minimize this effect 
for loops that are short relative to the width of the interleaving, 
it is profitable to unwind such loops by repetition so that the 
resultant string stretches as far as possible across the interleaved 
store. The program was unwound in this way. We note, however, 
that it is in fact better [Rosenfeld, 19651 to repeat the loop, 
appropriately modified, several times across the interleaved store, 
directing successive processors to successive, hut unconnected, 
loops. This can decrease interference by as much as twenty percent 
over the previous case. 

Some results of the simulation are given in Table 3 and plotted 
in Figs. 5 and 6. 

We note that running time (col. 4) is defined as the interval 
between the start of the first processor on its first task and the 
completion, by the last processor to finish, of its final task. Since 
an onion peel technique has been used for the splitting, there is 
an interval (of order 70 storage cycles) between the start of suc- 
cessive tasks. There is also an initial interval (87 memory cycles) 
in which the first processor initializes the program. Finally, the 
finish of processors is staggered and, in particular, for the sixteen- 
processor case, eight processors are assigned two tasks (rows) in 
succession, and eight, three tasks. The former processors will, of 

Table 2 

Instruction Execution time in storage cycles 

Fixed Point Addition 0.4 
Floating Point Addition 0.5 
Floating Point Multiplication 1 .o 
Floating Point Division 2.0 
Split 25.0 
Terminate 25.0 
New Task Fetch (Part of Terminate) 25.0 
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Table 3 Results of the matrix multiply simulation 

Parallel processor 
progrom 

program 
8 Uniprocessor 

(40x40)  " ( 4 0 1  40) 
N,, = 6 4  

16 tosks 
x \: 40tasks 

1 2 3 4 5 6 7 8 9 10 11 

No. of Total Storage interference Exec. NO. of Storage 
No. of storage Matrix Run proc. intel$ storage utilization 
proc. mods. dim. time time Time % % accesses % Notes 

1 
1 
2 
4 
8 

16 
16 
16 
16 

64 
64 
64 
64 
64 
64 
32 
16 
64 

40 
40 
40 
40 
40 
40 
40 
40 
39 

427 
429 
216 
109 
56 
35 
38 
47 
33 

427 
429 
432 
436 
445 
46 1 
507 
639 
428 

1.02 
0.21 
1.77 
5.79 

14.4 
30.3 
75.9 

207 .O 
26.1 

.2 NA 
0.05 NA 
0.4 0.33 
1.3 0.39 
3.3 0.68 
7 .O 0.76 

17.7 0.88 
48.2 0.64 

6.5 N V  

459K 
460K 
460K 
460K 
460K 
460K 
460K 
460K 
427K 

1.69 Sequential program 
1.68 Interference between 
3.3 instruction & data fetches 
6.6 

13.0 
25.0 
45.4 
72.1 
26.9 

Note: All times in thousands of storage cycles. 
NA-Not Applicable 
NV-Not Available 

# Acc. x # Proc. 
% Storage Utilization = Roc. time x # Mods. 

Col. 9 x Col. I . .  - - 
Col. 5 x Col. 2 

course, terminate considerably earlier than the latter. Thus, as 
indicated by the corresponding entry in column four, the particu- 
lar mode of partitioning is not optimum if  the shortest execution 
time is to be obtained. From a system efficiency point of view, 
however, and in actual operation with other jobs and tasks in the 
system, it is of no consequence since processor idling does not 
actually occur. New tasks, perhaps arising from quite different jobs, 
are initiated, according to some scheduling strategy, whenever a 
processor becomes spontaneously available. 

Fig. 5. Execution time for matrix multiply. 

Time 
(4Ox40)x(40x 40) +. 

N,, =64 

4 2 0 K I  

E \  3 0 K  

Total delay due t o  
storage interference '""LNP 1 0 K  5 

Number of processors 

Fig. 6. Total processor time and interference in matrix multiply modules. 

In addition to run time, we define a total processor time (col. 
5). This represents the sum total of time that individual processors 
were active in the program and is therefore a reflection of total 
processor running cost. Storage interference (cols. 6, 7 )  measures 
the total time that processors were inactive due to attempts to 
initiate simultaneous accesses to the same storage module. It 
occurs also when only a single processor is applied, when it repre- 
sents a conflict between a data fetch and an attempt by the overlap 
circuit to initiate an instruction fetch from the same module. 
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Fig. 7. Total processor and throughput times in electrical network 
analysis-16 storage modules. 

Executive interference (col. 8) represents processor hold-ups due 
to the simultaneous attempts by two or more processors to access 
the system work-queues. These interferences are of course repre- 
sentative of a whole class of effects that can lead to performance 
degradation in parallel processing systems. 

In Table 3 interference has been related to the number of 
interleaved storage modules and to the number of processors. In 
an actual system it is of course a complex function of the number 
of storage modules, of the degree of address interleaving, of the 
relationship between active jobs and the degree of program and 
data sharing, and of the total system utilization of storage. In 
optimizing a design, the numbers of processors and storage mod- 
ules and the addressing scheme must be fixed subject to constraints 
related to cost, total storage capacity, the capacity of available 
storage modules, the degree of availability desired, and the ex- 
pected nature of the work load. Processor utilization of storage 
alone is not very significant, since a critical factor is the 1/0 
storage activity present, the degree of storage utilization required 

to get program and data into the high-speed store and to output 
results. We include utilization figures for these executions in Table 
3, to aid in analysis of the system behavior but not for evaluation 
purposes. 

7.3.3 The electrical network analysis problem. This problem 
represents the solution of a set of simultaneous linear equations, 
described by a sparse coefficient matrix. The technique used for 
its solution on the executing simulator essentially comprises a 
relaxation procedure. Extensive runs have been made using a 
specific thirty-six node network, yielding twenty-six equations with 
up to four terms in each equation. 

From the wealth of results obtained we present representative 
sets that indicate some general trends related to the characteristics 
and performance of the parallel processing system. Available space 
will not permit, however, detailed analysis in the present paper, 
nor does it permit a discussion of the equally interesting results 
obtained concerning speed of convergence, in particular, and other 
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Fig. 8. Total processor and throughput times in electrical network 
analysis-32 storage modules. 
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Fig. 9. Total processor and throughput times in electrical network 
analysis-@ storage modules. 

effects which must be understood within the framework of a 
numerical analysis of the relaxation solutions. 

Figures 7 , 8 ,  and 9 present the basic performance data, through- 
put time, and total processor time, for a total of one hundred and 
forty-four cases. The variables are the number of processors in the 
system (12 cases), the size of the inner loop as represented by the 
number of currents (from 2 to 5 )  evaluated in the loop, and the 
number of interleaved storage modules (16, 32, 64). 

These curves clearly indicate the reduction in throughput time 
to be obtained from the use of parallel processing, the consequent 
increase in processor cost due to interferences of various sorts, the 
resultant effect of diminishing returns, and the actual increase in 
throughput time, when too many processors chase too few equa- 
tions and generally get seriously “into each other’s way.” 

For the smaller inner loops and when interference between 
processors is low, total processor times vary somewhat erratically. 
The causes for this are related to the relaxation pattern and the 
rate of convergence in each case. In fact there appears strong 

circumstantial evidence that an ad hoc procedure, which does not 
guarantee sequential evaluation of the equations, improves per- 
formance. This point, however, requires further study. 

Figure 10 reproduces some of the results of the previous three 
figures for the case of a five-equation inner loop. Table 4 lists these 
same results as a percentage of the time using one processor and 
compares them with the reciprocal of the number of processors. 

Figure 11 indicates storage interference and parallel processing 
overheads as a function of the number of processors, with storage 
modularity again a parameter and an inner loop again comprising 
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Fig. 10. Total processor and throughput times in electrical network 
analysis with number of storage modules as a parameter. 
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Table 4 
using one processor, with a five equation inner loop 

Run time for resistor network system relative to the run time 

Relatiae time 100 
Number of 16 Storage 32 Storage 64 Storage 
processors modules modules modules No. of processors 

1 
2  

4 
6  

7  

8  

9  

10 
11 
1 2  

1 4  

1 6  

100% 
5 2 . 8  

29 .5  

2 2 . 4  

2 0 . 9  

1 9 . 2  

1 7 . 8  

1 7 . 6  

1 6 . 8  

17 .5  

1 7 . 3  

17 .7  

1 0 0 %  

5 1 . 2  

2 7 . 9  

2 0 . 3  

17 .9  

1 6 . 8  

1 5 . 2  

14 .5  

13 .9  

1 3 . 9  

1 3 . 2  

13 .7  

1 0 0 %  

51 .2  

2 7 . 1  

1 9 . 5  

1 7 . 1  

1 5 . 8  

1 4 . 2  

1 3 . 7  

1 2 . 9  

1 3 . 0  

11 .7  

11 .7  

100% 
5 0 . 0  

2 5 . 0  

1 6 . 7  

1 4 . 3  

1 2 . 5  

1 1 . 1  

1 0 . 0  

9 . 1  

8 . 3  

7 . 2  

6 . 3  

the evaluation of five currents. Storage interference has previously 
been defined. The parallel processing overhead represents as a 
percentage the excess of total number of storage cycles required 
for execution, excluding storage interference cycles, when more 
than one processor is used, relative to the number of cycles re- 
quired by a one-processor execution. 

% 

" T 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6  
NUMBER OF PROCESSORS 

Fig. 11. Storage and executive interference. 
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Fig. 12. Storage utilization and cost /performance factors. 

Actual counts during execution show that in general some 
sixty-seven percent of store access are instruction fetches in this 
program and some thirty-three percent are data fetches. Thus 
incorporation of a substantial instruction buffer in each processor 
clearly reduces all interference by an order of magnitude, since 
of the four ways in which a storage interference can occur, only 
one-a data fetch conflicting with a data fetch-remains in the 
inner loop. Moreover, these measurements refer to a processor in 
which arithmetic speeds, as in Table 2, are of the order of magni- 
tude of a memory cycle time, which implies a somewhat powerful 
processor. Thus in every sense the interference figures are worst 
case results which, with the performance curves to which they 
relate, support the view that storage interference is not a serious 
obstacle to parallel processing. 

The four contours drawn on these curves represent lines of 
constant storage module-to-processor ratio. They slope slightly 
upward due to the statistical Marbles and Boxes [Rosenfeld, 19651 
effect previously referred to. 

Figure 12 presents two sets of data, based on the five-equation 
line loop. The upper family of curves relates to storage utilization. 
The reservations made at the end of Sec. 7.3.2, with reference to 
the significance of utilization figures, also apply. The second family 
of curves represents a first attempt at estimating the relative 
quality of processing, that is, some function of a cost/performance 
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factor. Such a factor is intuitive and environment-sensitive, de- 
pending on the relative concern for speed and for costs of various 
sorts. For the present data we have chosen to display a function: 

’ = throughput time x total processor time 

where K is a constant, throughput time a measure of the speed 
of computation, and total processor time a measure of the cost. 

K 

8. Conclusion 

I11 this paper we have presented some thoughts on parallel process- 
ing. In particular we have chosen to survey the topic by including 
an extensive bibliography and some of the results of our work in 
this area. The discussion has had to be brief, but our intention 
has been to convey the picture of the potential that parallel 
processing systems offer for the future development of computing. 

The key to successful exploitation lies in a new, unified, and 
scientific approach to the entire problem of the design and usage 
of computing systems. The development of large, integrated sys- 
tems raises many problems, but there can be no doubt that eco- 
nomic solutions to these will be found. Their development should 
comprise a significant part of the computer system architectural 
design effort of the next few years. 

Any ultimate evaluation of a parallel processing system within 
a working environment depends on actual operating experience. 
This in turn requires the existence of a system and the interest 
of users. Only when usable systems become available will the 
concept of parallel processing in integrated systems be accurately 
evaluated. 
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Section 4 

Network computers and computer 
networks 

The RW-400 and the CDC 6600 are actually computer networks 
by our definition of a computer (Chap. 2, page 17). Yet because 
of the restrictions on the quantity and location of the compo- 
nents in these structures, we still consider them to be com- 
puters. On the other hand, two or more computers which are 
separated physically, yet connected, constitute a computer 
network. Computer networks will appear in the future; it is 
important to understand the basis for them. 

The RW-400-a new polymorphic data system 

Chapter 38 presents the RW-400 (also called the AN/FSQ-27), 
a later version of the Ramo-Wooldridge RW-40 originally de- 
signed in 1959. The diagram (page 478) gives an indication 
of the relationship and names of the components. The PMS 
structure in Fig. 1 has more configuration details. A t  least six 
RW-400’s were built for military command and control applica- 
tions (although the number of computers of a type in existence 
has little to do with a machine’s worth or ability). 

The RW-40 ISP as given in Appendix 1 of Chap. 38 is a 
good example of a processor with a two-address instruction set. 
The ISP does not have index registers; it has a small state 
consisting of the accumulator (A), a limited extended accumu- 
lator (B), the program counter (P), and about 6 state bits. The 
Pc is limited by its ability to address directly only a 1,024-word 
Mp. The ISP is undoubtedly sufficient for solving the kinds of 
problems encountered by the computer and compares favorably 
with Whirlwind and the IBM 1800. 

The RW-40 introduced multiple parts for reliability [Roth- 
man, 19591. Multiple C’s (or Mp-Pc and Mp-Pio) are provided 
for redundancy and capacity. However, the S(’Centra1 Ex- 
change) which provides communication among the C’s may not 
have redundant parts. The multiple-computer concept can be 
viewed as the forerunner to our present computer networks, 
in which the central switching element is the Telephone Ex- 
change. Over a longer time span, the RW-400 may be most 
significant as a pioneer. However, the whole system, with the 
exception of the small Mp’s, is nicely designed. The problem 
of low speed T(typewriter, display)’s is handled well by trans- 
ferring data from Mp-Pc to Ms(drum) for concurrent and 

independent T and P activity. Similar solutions are common 
for managing T activity by using an M, local to particular T’s, 
and local C’s. 

The structure should be compared with the CDC 6600 (Chap. 
39) and the network examples in Chap. 40. 

The CDC 6400, 6500, 6600, 6416, and 7600 

The CDC 6600 development began in 1960, using high-speed 
transistors and discrete components of the second generation. 
The first 6600 was delivered in September, 1964. Subsequent 
compatible successors included the 6400, in April, 1966, which 
was implemented as a conventional Pc(a single shared arith- 
metic function unit instead of the 10 D’s); the 6500 in October, 
1967, which uses two 6400 Pc’s; and the 6416 in 1966, which 
has only peripheral and control processors. The first 7600, 
which is nearly compatible, was delivered in 1969. The dual 
processor 6700, consisting of two 6600 Pc’s was introduced 
in October, 1969. Subsequent modifications to the series in 
1969 included the extension to 20 peripheral and control 
processors with 24 channels. CDC also marketed a 6400 with 
a smaller number of peripheral and control processors (e.g., 
6415-7 with 7). Reducing the maximum PCP number to 7 
also reduced the overall purchase cost by approximately $56,000 
per processor. 

The computer organization, technology, and construction 
are described in Chap. 39. ISP descriptions for both the Pc and 
Pc (‘Peripheral and Control Processors/PCP) are given in Ap- 
pendices 1 and 2 of Chap. 39. 

To obtain the very high logic speeds, the components are 
placed close together. The logic cards use a cordwood-type 
construction. The logic is direct-coupled transistor logic, with 
5 nanoseconds propagation time and a clock of 25 nano- 
seconds. The fundamental minor cycle is 100 nanoseconds and 
the major cycle is 1,000 nanoseconds, also the memory cycle 
time. Since the component density is high (about 500,000 
transistors in the 6600), the logic is cooled by conduction to 
a plate with Freon circulating through it. 

This series is interesting from many aspects. It has remained 
the fastest operational computer for many years. Its large 

470 
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Fig. 1. RW-40 (Polymorphic) PMS diagram. 

component count almost implies i t  cannot exist as an opera- PMS structure 
tional entity. Thus i t  is a tribute to  an organization, and the 
project leader-designer Seymour Cray, that a large number 
exist. There are sufficiently high data bandwidths within the 
system so that it remains balanced for most job mixes (an 
uncommon feature in large C's). I t  has high performance 
Ms.disks and T.displays to  avoid bottlenecks. The Pc's ISP is 
a nice variation of the general-registers processor and allows 
for very efficient encoding of programs. The Pc is nicely multi- 
programmed and can be switched from job to  job more quickly 
than any other computer. Ten smaller C's control the main 
Pc and allow it to spend time on useful (billable) work rather 
than its own administration. The independent multiple data 
operators in the 6600 increase the speed by at least 2y2 times 
over a 6400 which has a shared D. Finally, it realizes the 10 C's 
in a unique, interesting, and efficient manner. Not many com- 
puter systems can claim half as many innovations. 

A simplified PMS structure of the C('6400, '6600) is given in 
Fig. 2. Here we see the C(io; # 1 : l O )  each of which can access 
the central computer (Cc) primary memory (Mp). Figure 2 shows 

CC 

Fig. 2. CDC 6600 PMS diagram (simplified). 
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why we consider the 6600 to  be fundamentally a network. Each 
Cio (actually a general-purpose, 12-bit C) can easily serve the 
specialized Pi0 function for Cc. The Mp of Cc is an Ms for a Cio, 
of course. By having a powerful Cio, more complex input-output 
tasks can be handled without Cc intervention. These tasks can 
include data-type conversion, error recovery, etc. The K’s which 
are connected to a Cio can also be less complex. Figure 2 has 
about the same information as Thorton’s Fig. 1 block diagram 
(Chap. 39). 

A detailed PMS diagram for the C(’6400, ‘6416, ‘6500, and 
‘6600) is given in Fig. 3. The interesting structural aspects can 
be seen from this diagram. The four configurations, 6400 - 
6600, are included just by considering the pertinent parts of 
the structure. That is, a 6416 has no large Pc; a 6400 has a sin- 
gle straightforward Pc; a 6500 has two Pc’s; and the 6600 has 
a single powerful Pc. The 6600 Pc has 10 D’s, so that several 
parts of a single instruction stream can be interpreted in paral- 
lel. A 6600 Pc also has considerable M.buffer to hold instruc- 
tions so that Pc need not wait for Mp fetches. 

The implementation of the 10 Cio’s can be seen from the 
PMS diagram (Fig. 3). Here, only one physical processor is used 
on a time-shared basis. Each 0.1 ps a new logical P is processed 
by the physical P. The 10 Mp’s are phased so that a new access 
occurs each 0.1 ps. The 10 Mp’s are always busy. Thus the i.rate 
is 10 x 12 b/ps or 120 megabits/s. This process of shifting 
a new Pc state into position each 0.1 ps has been likened to 
a barrel by CDC. A diagram of the process is shown in Fig. 4. 

The T’s, K’s, and M’s are not given, although it should be 
mentioned that the following units are rather unique: a K for 
the management of 64 telegraph lines to be connected to a 
Cio; an Ms(disk) with four simultaneous access ports, each at 
1.68 megacharls data transfer rate, and a capacity of 168 
megachar; an Ms(magnetic tape) with a K( # 1:4) and S to allow 
simultaneous transfers to 4 Ms; the T (display) for monitoring 
the system’s operation; K’s to other C’s and Ms’s; and con- 
ventional T(card reader, punch, line printer, etc.). 

ISP 

The ISP description of the Pc is given in Appendix 1, Chap. 39. 
The Pc has a very clean, straightforward scientific-calculation- 
oriented ISP. We can consider it a variation on the general- 
register structure because the Pc state has three sets of general 
registers. Their use is explained both in Chap. 39 and its Ap- 
pendix 1. This structure assumes that a program consists of 
several read accesses to a large array(s), a large number of 
operations on these accessed elements, followed by occasional 

write accesses to store results. We would agree that this is a 
valid assumption for scientific programs (e.g., look at a FOR- 
TRAN arithmetic statement), and it is probably valid for most 
other programs as well. 

Cc has provisions for multiprogramming in the form of a 
protection and relocation address. The mapping is given in the 
ISP description for both Mp and Ms(’Extended Core Storage- 
/ ECS). 

Appendix 2, Chap. 39, has an ISP description of the PCP. 
Appendix 2 includes a figure which shows the instruction de- 
coding and execution as well. The 6600 PCP is about the same 
as the early CDC 160. The PCP has an 18-bit A register because 
it has to process addresses for the large Cc. 

One interesting aspect of the 6600 which we question is the 
lack of communication among all components at the ISP (pro- 
gramming) level. When Pc stops, it has no way of explicitly 
informing any other components. There are no interprocessor 
interrupts. An io device cannot interrupt a Pio, nor can Pio’s 
communicate with one another except by polling. The state 
switching for Pc is, however, elegant, since a Pi0 can request 
Pc to stop a job, store Mps, and resume a new task in one 
instruction. (The t.save + t.restore - 2 ps.) 

The operating system 

The Cio’s functions are data transmission between a peripheral 
device and the large Cc via the Cio’s Mp with some data trans- 
formation or conversions: complete task management, includ- 
ing initiation, termination, and error handling; and manage- 
ment of Pc. The Cio’s perform in about the same manner as 
the C(’Attached Support Processor) in the N(’360 ASP) (Chap. 
40, page 506). The operating-system software is managed by 
a single fixed Cio. The remaining nine Cio’s are free, and as 
io tasks arise in the system, the Cio’s assign themselves to 
particular tasks, carry out the tasks, and then free themselves 
to  take on other tasks. The operating-system software resides 
in Mp(Pc) (that is, Cc) accessible to all Cio’s and includes: 

1 The variables which determine the state of a particular 
job, e.g., data pointers to Ms(disk, ‘ECS), running time, 
a list of jobs to do, etc. 

2 Programs for the Cio’s 
a Parts of the operating system used by the Cio re- 

sponsible for the system management 
b IO management programs (or programs to get the 

task management program from Ms) which the Cio’s 
use 
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M('Barre1; working; IO w; 5 1  b/w; 0.1 ps/w) 

Mp(#O:Y)'- S"-Pc3 (bO:9)-Stm-S #1.12 

T('Dead Start Console)- I 
K-L(l vs/w; I2 b/w)- 

i v 4 1  [fixedjrK-STT(bl :2; CRT; display)- 

Mp4 (#0:31)-S6- 

l l  LT (key board) - 
'Read Pyramid; buffer: 
12 b/w: M(workinq: 

(1+2+3+4+5): 12 b/w): ! \  .2 p/w) 
7 7  

S(4 K: I6 Ms)-Ms" (#0:15) 

1 CB L(#2,3,4: to:'Extended Core Coupler) 
J 

c9 

'Mp(core; 1.0 ps/w; 4096 w; 12 b/w) 
ZS(time multiplex: . I  ps/w; 12 b/w) 

3Pc('Peripheral and Control Processor; #0:9;  time multiplex:.l p5/w: 1 address/instruction: 

12 b/w; MpsC'Program Counter, Accumulator) 1 ,2  wlinstruction) 

4Mp(core: 1 .O ps/w; 4096 w: (5 x 12) b/w) 

'S(time multiplex: 0.1 ps/w: 60 b/w) 
'Ms('Extended Core Storage/ECS; 3.2 ps/w; (125952 / 8) w: (8 x (60, I parity)) b/w) 
7See  Chapter 39 for operation. 
*Only present i n  CDC 6500 
'No C('Centra1)in CDC 6416: CDC h500 and CDC 6400 do not have K('Scoreboard), separate D's, 
and M('lnstruction Stack). 
Pc('6600; 15, 30 b/instruction: techno1ogy:transistor: - 1964: data: si,bv,w,sf,d 

D('Shift) 
D('Boo1ean) 
D ( # I :  2:  ~lncrement) 

D ( 'Branch) 

D('Add; 0 .3  ps) 

O('Long Add) 
D(#1:2: Multiply; 1 p s )  

D('Divide: 2.9 ~ s )  

I p s  (f 1 ip flop: -16 w)-S('Swi tchboard) 
i 
I 
I 

M .worki ng 

.- .- 

Fig. 3. CDC 6400, 6416, 6500, and 6600 PMS diagram. 
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Fig. 4. CDC 6600 peripheral and control processors. (Courtesy of Control Data Corporation.) 



Section 4 I Network computers and computer networks 475 

yps f l i p  f l o p :  27.5 ns/w: -S D('Long Add) 

D ( '  Increment)  

D ( Pop" I a t  i on Count) 

D( 'Boolean) 

- 11; 16 w; 60 b/w 

- S  K M.workinq: i n s t r u c t i o n  D ( ' S h i f t )  - c  12 w :  60 b/w 

1 -  - - - - - - - - - - -1 

i n t e r p r e t e r  D( 'Normal ize) 

M ' I n s t r u c t i o n  Stack: D ( ' F l o a t i n q  Add) 

f l i p  f l o D :  27.5 ns/w; D ( ' F l o a t i n q  M u l t i p l y )  I D ( ' F l o a t  i nq D iv ide)  

In a typical system, one might expect to find the following 
assignment of PCP's to be: 

1 Operating-system execution, including scheduling and 
management of Cc and all Cio's 

Display of job status data on T(display) 2 

3 Ms(disk) transfer management 

4 

5 L( # 1:3; to:C.satellite) 

6 Ms(magnetic tape) 

7 T(64 Teletypes) 

8 

9 Free 

10 Free 

T(printers, card reader, card punch) 

Free to be used with Ms(disk) and Ms(magnetic tape) 

CDC 7600 
The CDC 7600 system is an upward compatible member of the 
CDC 6000 series. Although the main Pc in the 7600 is compati- 
ble with the main Pc of the 6600, instructions have been added 
for controlling the io section and for communicating between 
Large Core Memories/LCM and Small Core Memory/SCM. It is 
expected to compute at an average rate of four to six times 
a C('6600). 

The PMS structure (Fig. 5) is substantially different from that 
of the 6600. The C('7600 Peripheral Processing UnitIPPU), 
unlike the C(l6600 Peripheral and Control Processor)'s, has a 
loose coupling with the main C. The PPU's are under control 
of the main C when transferring words into SCM via K('Input- 
Output Section). The 15 C('PPU)'s have 8 input/output chan- 
nels. These channels, which can run concurrently, provide the 
link between C('PPU) and peripheral Ms's and T's. Some of the 
PPU's are located in the same physical space as the Pc. 

Ms(#0:7)' 

Mp(#0:31)"-S3TFJc5 

S -t(M.buffer: core to core transfers1 T I  

Basic N ( ' C D C  7600) 

Fig. 5. CDC 7600 computer PMS diagram. 
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The 7600 Pc can be interrupted by a clock, the PPU’s, and 
trap condition within the Pc. A breakpoint address, BPA, can 
be set up within Pc such that, on the program reaching BPA, 
a trap is initiated. This interruption scheme is in contrast to 
that of the 6600, which could not be interrupted or trapped. 
The 7600 interrupt may be a reaction to  the lack of intercom- 
munication in the 6600. 

Conclusions 

Although the 6600 was somewhat behind its announced delivery 
schedule and represented a significant drain on the financial 
resources of CDC, it is now clear that it is a successful product. 

Section 4 1 Network computers and computer networks 

There have been instances of very large computers not being 
carried to completion either for financial or technical reasons. 
The 6600 seems to  be the first large computer to achieve these 
marks of success. Here we are interested in the 6600 because 
it has held the “world’s largest computer” title for so long. 

Computer-network examples 

In Chap. 40, we present examples of seven computer networks. 
There is a dearth of both computer networks and of papers on 
computer networks. 

This chapter takes examples from papers and from knowl- 
edge of several existing or proposed networks. 



Chapter 38 

The RW-400-a new polymorphic 
data system1 

R. E. Porter 

Summary The RW-400 Data System, based upon modularly constructed, 
independently operating and flexibly connected components, is the logically 
evolved snccessor to conventional computer designs. It provides the means 
by which information processing requirements can be met with equipment 
capable of producing timely results at a cost commensurate with problem 
economic value. System obsolescence is minimized by the expandahility in 
numbers and types of processing modules. Real time reliability is assured 
by component duplication at minimum cost and by the advanced design 
techniques employed in the system’s manufacture. Man-machine commu- 
nication facilities are program controlled for maximum flexibility. Parallel 
processing and parallel information handling modules increase the system’s 
speed and adaptability when handling complex computing workloads. This 
polymorphic design truly represents an extension of man’s intellect through 
electronics. 

The RW-400 Data System is a new design concept. It was devel- 
oped to meet the increasing demand for information processing 
equipment with adaptability, real-time reliability and power to 
cope with continuously-changing information handling require- 
ments. It is a polymorphic system including a variety of function- 
ally-independent modules. These are interconnectable through a 
program-controlled electronic switching center. Many pairs of 
modules may be independently connected, disconnected, and re- 
connected, in microseconds if need be, to meet continuously- 
varying processing requirements. The system can assume whatever 
configuration is needed to handle problems of the moment. Hence 
it is best characterized by the term “polymorphic”-having many 
shapes. 

Rapid, program-controlled switching of many pairs of func- 
tionally-independent modules permits nondisruptive system ex- 
pandability, operating reliability, simultaneous multi-problem 
processing capability, and man-machine intercommunication 
feasibility. These are only partially found in computers of conven- 
tional design. 

Computer users have been forced heretofore to match problems 
to computer limitations. Problem changes posed serious reorien- 
tation and reprogramming difficulties. Changes from one computer 

‘Datumnution, vol. 6, no. 1, pp. 8-14, January/Fehruary, 1960. 

to another model, due to growth in applications, often resulted 
in large expenditures of time and money. During maintenance or 
malfunction of a conventional computer its entire processing 
capacity is shut down. Real time processing reliability cannot be 
maintained on an around-the-clock basis. The conventional ma- 
chine must process its problems serially. This serious limitation 
is only partially alleviated by time-sharing or computing-ele- 
ment-doubling designs. The high cost-per-hour of conventional 
computer operation rules out direct man-machine intercommuni- 
cation during other than emergency situations. 

The radically-new polymorphic design concept of the RW-400 
Data System was evolved by Ramo-Wooldridge engineers to pro- 
vide a practical solution to those information processing problems 
now inadequately handled by conventional computer designs. The 
RW-400 is a powerful new tool in the field of intellectronics-the 
extension of man’s intellect by electronics. 

System description 

The RW-400 Data System contains an optional number and variety 
of functionally-independent modules. These communicate via a 
central electronic switching exchange. Each module is designed, 
within practical economic and functional limits, to maximize 
system adaptability over a wide range of problem types and sizes. 
This new design embodies the latest proven electronic design 
techniques, assuring high processing speeds and high equipment 
reliability. The RW-400’s modularity assures reliable, round-the- 
clock processing of information with controllable computing ca- 
pacity degradation during module maintenance or malfunction. 
Practical man-machine intercommunication is achieved in the 
RW-400 system by use of program-controlled information display 
and interrogation consoles. 

Figure 1 shows the over-all system design. Modules of various 
types communicate through a central exchange switching center. 
Computing and buffering modules provide control for the system. 
These modules are self-controlled and make possible completely 
independent processing of two or more problems. One of the 
computer modules may be designated the master computer and 

477 
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I COMPUTING 
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Fig. 1. The RW-400 data system. 

in this role initiates and monitors actions of the entire system. An 
alert-interrupt network is provided to allow coordinated system 
action. Therefore, the system as applied to given information 
processing problems may change on a short range (microsecond) 
basis, thus providing, through programming, a self-organizing 
aspect to the system. In addition, the system may change through 
the years as the applications change. The most efficient and eco- 
nomical complement of equipment is applied to the problem at 
all times. 

An RW-400 system is built around an expandable Central 
Exchange (CX) to which a number of primary modules may be 
attached. These are: Computer Modules (CM); self-instructed 
Buffer Modules (BM); Magnetic Tape Modules (TM); Magnetic 
Drum Modules (DM); Peripheral Buffer Modules (PB); and 
console communication Display Buffer Modules (DB). How many 
modules are put together in a system is entirely a function of 
system application. In addition to primary system modules, 
punched card, punched tape, high speed printing and control 
console devices are available. These handle nominal system in- 

put/output requirements. Additional man-machine communica- 
tion devices such as interrogation, display and control consoles, 
may be included in the system as problem requirements dictate. 
A Tape Adapter (TA) module is available to provide compatibility 
with magnetic tape of other computers. Information generated at 
Flexowriter inquiry and recording stations may be directly re- 
ceived by the system via the Peripheral Buffer Module. This latter 
module also buffers the receipt of TWX and punched tape infor- 
mation. 

The way in which a particular RW-400 Data System functions 
depends on the number and type of each module included. It may 
initially be composed of the minimum number and variety of 
modules needed to do a small problem or the initial part of some 
large but yet-to-be-defined problem. Such a system would work 
much like a conventional computer. It would probably include 
a buffer module and thus have a parallel data handling capability 
not found in the conventional design at a comparable price. The 
initial system installation may then be augmented by the timely 
addition of modules. 
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A buffer module (BM) has the capability to control its acquisi- 
tion and dissemination of information independently. The buffer 
provides a computer module with parallel data handling capability 
without complicating the problem processing program with the 
conventional intermixture of arithmetic and housekeeping in- 
structions. Information previously generated by the processing 
program may be appropriately disposed of within the system while 
processing continues. Data needed at  a subsequent time in the 
processing may be retrieved from system storage in advance of 
need while processing progresses. The simultaneity of these oper- 
ations not only materially increases over-all processing speed but 
also increases the practical utility of the less costly types of in- 
ternal system storage such as a magnetic tape. 

The computer (CM) or buffer (BM) modules, when acting in 
a controlling capacity, may initiate connection to an information 
storage or handling module during that part of the processing 
program when the two can work profitably in unison. The pair 
of modules thus interconnected neither affect nor are affected by 
other modules. Logical interlocks prevent unwanted cross talk 
among modules. An intermodule communication system lets con- 
trolling modules signal status or alert other such modules of their 
need to communicate. The decision by a module receiving an alert 
signal to permit interruption or to proceed is optional with 
that module. The optional interrupt feature is that needed to 
make the often-discussed but seldom-used program interrupt 
capability both useful and practical. Programs may thus permit 
interruptions only at convenient points in the processing 
sequence. 

Modules may be assigned, under program control, to work 
together on a problem in proportion to its needs. As soon as a 
module’s function is complete for a given problem, that module 
may be released for reassignment to some other task. The system 
is thus self-controlled to match processing capacity to each prob- 
lem for the time necessary to do the job. Full system capacity may 
be brought to bear upon a very large problem when needed. This 
capacity may be apportioned among a number of smaller problems 
for simultaneous processing, program compilation, program 
checkout, module maintenance etc., when it is not needed for 
maximum system effort. 

From the preceding system description, it is apparent that such 
equipment can be expanded from a modest initial installation into 
a very powerful and comprehensive information processing cen- 
ter as requirements warrant. More specific descriptions of prin- 
cipal system modules follow to give the reader a better feel 
for how this system might perform his information processing 
work. 

The functional modules 

The key to appreciative understanding of the power of the RW-400 
lies in knowledge of intermodule connection. It is appropriate to 
describe the Central Exchange (CX) unit first, then follow with 
descriptions of the various modules. 

The central exchange 

The Central Exchange performs the vital function of intercon- 
necting a pair of modules whenever requested to do so by either 
a computer or a buffer module. Since internal programmed control 
is only possible within a computer or a buffer module, one of the 
interconnected pair of modules must be either a computer or a 
buffer. The time in which any connection may be made or broken 
is about 65 microseconds. An exchange has basic capacity to 
connect any of 16 computer or buffer modules to any of 64 auxili- 
ary function modules. There is nothing sacred about the number 
16 since it is possible to extend the CX module’s interconnection 
matrix through design modification when need arises. The CX is 
an expandable, program-controlled, electronic switching center 
capable of connecting or disconnecting any available pair of 
modules in roughly the time of one computer instruction execu- 
tion. Figure 2 illustrates the permissible module interconnections 
within the Central Exchange. 

Every intersection on the illustration represents a possible 
connection between modules. The “x-ed” intersections indicate 
typical connections in force at any point in time. The control logic 
of the CX module’s connection table prevents more than one 
interconnection on any horizontal (controlling) or vertical (con- 
trolled) data path representation on the diagram. When connec- 
tion is requested of the Central Exchange while one of the re- 
quired modules is already carrying out a previous assignment, the 
requesting module can be programmed to sense this condition and 
wait until connection can be made without interference. Should 
waiting be undesirable, the requesting module can go on about 
its business and check back later to see when the desired connec- 
tion can be made. There is an implication here, of course, that 
knowing the kind of a system he is dealing with, a programmer 
requests connections in advance of need whenever possible. 

Provision for master-slave control is included via an Assignment 
Matrix established within the CX module by a computer module 
previously assigned to master status. Such a provision is necessary 
to preclude inadvertent connection requests from unchecked 
programs or malfunctioning control modules from affecting sets 
of modules simultaneously processing another problem. Connection 
requests are therefore essentially filtered through both an assign- 
ment and an interconnection validity matrix prior to being acted 
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TM 

Fig. 2. The Central Exchange connection matrix. 

upon by the Central Exchange. The computer module manually 
assigned to master status is the only one permitted to cause the 
interconnection of a pair of modules which does not include itself. 

The computer module (See Fig. 3) 

The Computer Module (CM) is a self-sufficient, general purpose, 
two-address, parallel word, fixed point, random access computer. 
Its internal magnetic core memory has a capacity of 1024 words. 
A computer word consists of 26 information bits and 2 parity bits. 
Each parity bit is associated with the 13-bit half word transferred 
in parallel via the Central Exchange to other system modules. The 
instruction repertoire of the CM consists of 38 primary instructions 
whose various modes effectively result in over 300 different oper- 
ations. Of the 39 available CM-400 instructions, 24 may be classi- 
fied as “arithmetic” and 10 as “program control” or “sequence 
determining” instructions. Five additional instructions may be 

classified as “external” or “input/output” instructions. All but 
three of the 24 arithmetic instructions fit into a symmetric scheme 
of classification wherein there are seven basic operations, each 
having three distinct modes. The seven basic operations are-add, 
subtract, absolute subtract, multiply, divide, square root and insert. 
The three modes are-Replace, Hold and Store. If we let the 
capital letter “G” identify the first operand, “H” identify the 
second operand, an “’” signify an arbitrary operation, the sym- 
bol “+” indicate replace, and “A” the word in the accumulator, 
then the three modes may be characterized as: 

Replace: H ’ G + H, A 
Hold: H G+ A 
Store: A G+ H, A 

The three remaining arithmetic operations are Add Accumulate 
wherein the contents of H and G are added to the Accumulator; 
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Multiply Accumulate wherein the contents of H are multiplied 
by G and added to A; and Transmit where the contents of G are 
stored in H. 

The ten program control instructions are Store, Store Double 
Length Accumulator, Load Accumulator, Insert Mask in the 
S Register, Stop, Link Jump, Compare Jump, Tally Jump, Test 
Jump and a Multi-purpose Shift. 

The five external instructions are those which cause data to 
be transmitted to or received from a device external to the com- 
puter. Each command is multi-purpose in nature and hence equiv- 
alent to several conventional external instructions. The commands 
are-Command Output, Data Input, Conditional Data Input, Data 
Output and Character Transfer. A comprehensive discussion of the 
variation of each of these commands is not pertinent to this article. 

* 

Suffice it to say that commands are available for carrying out a 
wide variety of intermodule data communication. 

The interrupt capability of a Computer Module is a logical 
generalization of the “trapping” feature found on several conven- 
tional computers. It permits the automatic interruption of a pro- 
gram, at the option of the program, when the computer module 
receives an “alert” that a condition requiring attention has arisen. 
It can be used to warn the program when an error of some type 
has occurred, minimize unproductive computer waiting time while 
another module completes its task, eliminate many programmed 
status test instructions and provide a convenient means of sub- 
jecting one computer module to the control of another. Program 
control of interruptions within a CM-400 is accomplished through 
the sense register S. This register may be filled with an interrupt 

J I 
CONTROL 

LOGIC 1 L 
OP ADDRESS ADDRESS 

INSTRUCTION REGISTER 

INPUT LINES b 
MAGNETIC 

CORE 
STORAGE 

CENTRAL 
EXCHANGE 

I - r J t l  OUTPUT LINES 

TXCHANGE RFGISTFR c. 

L- CONTROL PANEL 

INTERRUPT 
SENSING ACCUMULATOR 
REGISTER 

ACCUMULATOR 
EXTENSION 

I 
I 

ALERT CONDITIONS 

Fig. 3. The CM-400 Computer Module. 
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RW-400 analysis console. 

mask by means of the Insert S instruction. A bit by bit correspond- 
ence exists between the S register and the interrupt register and 
the interrupt register I to which the alert lines are connected. A 
Test Jump instruction can be used to examine the coincidence 
between these registers of an alert signal in a bit position corre- 
sponding to a one in the S register mask. If an alert is received 
by the computer during the execution of an instruction, control 
will be transferred to memory location “0” at the end of the 
instruction if, and only if, (a) the sense bit corresponding to the 
alert is a “one,” (b) the master sense bit is a “one,” and (c) the in- 
struction was not an “Insert s.’’ The master sense bit in the S reg- 
ister may be programmed to permit the interrupt to take place 
according to the interrupt mask or to inhibit interrupt until the 
program can conveniently cope with it. All instructions being 
executed at the time an interrupt condition occurs are completed 
before the interruption is allowed to take place. 

Figure 3 schematically illustrates the Computer Module’s pri- 
mary registers and the interconnecting information paths. 

Typical two-address addition and subtraction times are ap- 
proximately 35 microseconds including memory access time. Mul- 
tiplication takes about 80 microseconds, and division and square 
root about 130 and 170 microseconds respectively. 

Before attempting to draw a comparison between a CM and 
a deluxe conventional computer the reader should bear in mind 

the trade offs in features versus cost; parallel processing versus 
sequential processing; independent information handling versus 
program complicating “housekeeping”; and real time system reli- 
ability versus periodic inoperability. The only valid comparison 
is that between the RW-400 Data System and a conventional 
computer applied to the same task. The contribution to the 
RW-400 system made by the Buffer Modules can be better assessed 
by the reader after the following description has been considered. 

The buffer module 

A Buffer Module consists of two independent logical buffer units, 
each having 1024 words of random access magnetic core storage 
and a number of internal registers used in performing its functions 
when in the self-controlling mode. A Buffer Module may be con- 
nected to a Computer Module so that the Buffer’s core storage is 
accessible to the computer as an extension of the computer’s own 
storage. A Buffer may also serve as an intermediary device between 
a computer and another module, such as a tape or drum, to 
minimize time conventionally lost in data transfers. The Buffer 
is capable of recognizing and executing certain instructions stored 
in its own memory. It can therefore be left to perform data han- 
dling functions on its own while computer modules are otherwise 
occupied. 

A Buffer Module may be connected to a Computer Module 
and the buffer 1024 word storage used as an indirectly addressed 
extension of the computer’s own working storage. When the ad- 
dress 1023 (all ones) appears in the operand field of a computer 
instruction to be executed, the computer is signalled that the 
operand refers to some cell in buffer storage. The computer then 
uses the number in the buffer read register R (or in the case of 
a few instructions, the buffer write register W) as the effective 
address designated by the operand field of the instruction. Ex- 
tended addressing may be used in either the first or second operand 
field of the instruction or in both operand fields. If extended 
addressing is used in only one operand field, the effective address 
designated by that field is the number in register R. A “1” is 
automatically added to the contents of the R register after the 
instruction is executed. If extended addressing is used in both 
operand fields of an instruction, the effective address of the first 
operand is the number in register R and the effective address of 
the second operand is one more than the number in register R. 
A “2” is automatically added to the contents of register R after 
the execution of this type of instruction. The R (or W )  register 
may be preset to any desired initial condition by means of the 
computer’s Command Output instruction. All the commands being 
executed by the computer must be stored within the computer 
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module’s storage and may not be in buffer cells addressed by the 
computer at execution time. The extended addressing and buffer 
register indexing may be used to materially simplify repetitive data 
acquisition operations. 

The primary function of a Buffer Module is not, however, that 
of an auxiliary computer storage unit. The drum and tape modules 
more aptly serve this function in the RW-400 system. A Buffer 
Module is capable of operating autonomously and of controlling 
other modules such as Tape Modules, Drum Modules, Peripheral 
Buffers, Display Buffers, Printers or Plotters. This capability en- 
ables the Buffer Modules in a system to perform routine tape 
searching and data transferral tasks thereby freeing the Computer 
Modules to do more computing. In its “self-instruction” mode, the 
buffer executes its own internally stored program in much the same 
fashion as a computer. The memory of a Buffer Module will 
therefore be occupied by its own control programs as well as blocks 
of data which it is holding for transmission to other units. The 
buffer is used to acquire information from the relatively slower 
auxiliary storage and communication modules while the computer 
proceeds at high speed. Blocks of information retrieved in advance 
of computer need by the buffer may then be rapidly transferred 
to the computer’s own storage or operated upon as they stand in 
the buffer via the indirect addressing capability of the computer. 
Another feature of the buffer is its switching capability. Each 
Buffer Module is composed of two buffer units tied together. A 
unit function switching feature permits the employment of the 
two units together in an alternating mode of operation. Continuous 
information transfer from tape to computer, for example, may be 
accomplished without stopping the tape unit. A switching in- 
struction executed simultaneously by both units of a Buffer Module 
causes whatever devices were connected to the first unit to be 
connected to the second and vice versa. 

Now that the functional controlling modules and the module 
interconnection concept have been discussed, the more conven- 
tional auxiliary storage modules available with the system may be 
described to round out the processing capability of the system. 

The tape modules 

A Tape Module consists of an altered Ampex FR-300 tape transport 
plus the necessary power supplies and control circuitry to effect 
information reading, writing and control. One inch mylar tape is 
used. Information is written on 16 channels-two of which are 
clock channels. The remaining 14 channels consist of 13 informa- 
tion bits plus parity. The information reading or recording rate 
is 15,000 computer words per second. Data may be recorded on 
tape in variable blocks up to a maximum of 1024 words per block 

(the size of the storage available to hold the data in a sending 
or receiving module). Each block is preceded by a block identi- 
fication which permits selective tape information searching by a 
Buffer Module. Single blocks imbedded in a tape file of other 
blocks can be overwritten. A two-stack head permits automatic 
verification of each block as it is written. Readback parity errors 
are automatically detected during the writing process. Thus drop- 
out areas may be determined while the data is still available in 
a computer or buffer for recording elsewhere. 

A description of the RW-400’s tape handling capability would 
not be complete without mentioning the Tape Adapter (TA) 
module. This is a self-contained unit capable of performing the 
reading and writing of magnetic tapes in a format acceptable to 
the IBM 704 and 709 systems. The TA consists of an Ampex FR-300 
half-inch digital tape transport, including dual gap head and servo 
control system; reading, writing and control circuits; and a module 
housing with its own blower and power supply. 

RW-400 Buffer Module. 
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The drum module 

The Drum Module (DM) contains a magnetic drum with storage 
capacity of 8192 words. It may be connected to either a Computer 
or a Buffer Module through the Central Exchange. Average access 
time to the first word position on the drum is 8y2 milliseconds. 
Successive words are transmitted at the rate of 60,000 computer 
words per second. The Drum Module is conventionally used as 
an intermediate item storage device to minimize tape handling 
time. 

Special system communication modules 

The external data and man-machine communication of the 
RW-400 Data System are handled via drum buffer modules. A wide 
variety of asynchronously operated equipment is speed matched 
and program controlled through the features designed into these 
special system communication modules. 

The Peripheral Buffer (PB) provides input/output buffers for 
communication between Computer or Buffer Modules and rela- 
tively slow speed external devices such as Flexowriters, Plotters, 
Punched Tape Handlers, Teletype Lines and Keyboard Operated 
Equipment. The Peripheral Buffer stores its information in four 
pairs of bands which operate alternately as circulating registers. 
Each band contains eight input and eight output buffers for a total 
of 32 input buffers and 32 output buffers in each Peripheral Buffer 
Module. Each buffer is a drum band sector 64 computer words 
long. Conventionally one input and one output buffer sector are 
connected to each external device (such as a Flexowriter) to permit 
two-way communication between the external device and the 
RW-400 system. 

The display buffer 

A Display Buffer (DB) acts as a recirculating storage for the 
cathode ray tube display units in a Display Console. Information 
to be displayed is sent to the DB band associated with a particular 
display tube via the Central Exchange. The Display Buffer sends 
only status information back to other system modules upon request. 
The information displayed on any tube is controlled by the bit 
pattern sent to the Display Buffer. The display pattern is regener- 
ated 30 times per second to minimize image fading and flicker. 
The preceding explanation of the Display Buffer has little meaning 
to a reader unfamiliar with the features of the Display Console 
itself. This console is therefore described in more detail in the 
following paragraphs. 

Display consoles 

Display Consoles can give a problem “analyst” or “monitor” a 
visual picture of the status or results of any information being 

handled by the RW-400 system. In addition to the actual Cathode 
Ray Tube, numerical indicator, signal lamp and typewriter infor- 
mation outputs, several types of keyboard activated system control 
and parameter entry facilities are provided on the console. The 
total man-machine communication facility represented by each 
console is designed to be primarily a function of the computer 
control programs initiated by the analyst via his console. 

A set of Display Control Keys generate messages which are 
recorded on a Peripheral Buffer sector for later interpretation and 
display generation by a computer program. A set of Process Step 
Keys are provided the analyst so that he can initiate prepro- 
grammed system processing variations. Associated with the Process 
Step Keys is an overlay or “program card’ which permits the 
assignment of a variety of meanings to the set of Process Step Keys. 
Insertion of the overlay by the analyst gives him a unique label 
for each Process Step Key and automatically cues the controlling 
computer to assign the corresponding set of programs to each key 
message. A Data Entry Keyboard is provided on the console so 
that the analyst can enter control parameters when asked to do 
so via the display devices. 

A Joystick Lever affords the console operator a means of con- 
trolling the position of cross hair markers on the cathode ray 
display tubes. Associated with the joystick are control keys which 
may be used to send a message to the controlling computer speci- 
fying the coordinates of the cross hairs. Control programs may be 
written, for example, to act upon this information to reorient the 
display with respect to the area selected by the cross hair position. 

A Light Gun is also provided as a means of selecting any point 
on the cathode ray tube displays. The gun emits a small beam 
of light. With the beam centered on a given point on the cathode 
ray display tube, pressing the trigger results in the automatic 
generation of a message to the Peripheral Buffer specifying the 
address in the Display Buffer containing the coordinates of the 
selected point. 

A set of Status and Error lights are contained on the Display 
Console to provide the console operator with over-all knowledge 
of the system and thus minimize conflicting control requests and 
intermodule interference. For example, a Peripheral Buffer may 
not be ready to accept a console key message until after certain 
previously requested control actions have been completed. The 
Status Lights indicate this condition to the console operator so 
that he may act accordingly. 

The printer module 

The Printer Module (PR) is basically a 160 column, 900 line per 
minute Anelex type printer. It receives information from either 
a Computer or a Buffer module via the Central Exchange. Indi- 
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vidual characters to be printed are represented by a 6-bit code 
and are transmitted four to a computer word. Zero suppression, 
line completion and information block end codes are included for 
format control. A plugboard is provided for flexibility in columnar 
data arrangement. Paper feed is controlled by means of a loop 
of 7-channel punched paper tape. Control of the printing operation 
has been arranged so that the connected control module may send 
line headings from one set of memory locations, stop sending 
information while going to a different part of the memory, and 
then proceed to send data from this new set of memory locations 
to complete a line of print. 

The punched card modules 

The RW-400 Data System may be equipped with a high speed 
punched card reading module (CR) and an IBM card punch. The 

CR communicates with Computer or Buffer modules via the 
Central Exchange. It is capable of reading 80 column punched 
cards at the rate of 2,500 cards per minute. The card punch is 
connected to the system through the Peripheral Buffer Module 
(PB) since it is a relatively low speed device. Emphasis has not 
been placed on directly connected punched card equipment since 
the sources of large volumes of punched cards usually convert this 
data into magnetic tape form which may be more rapidly handled 
using the Tape Adapter Module (TA). 
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APPENDIX 1 RW 40 ISP DESCRIPTION 

Appendix I 

RW-40 I5P D e s c r i p t i o n  

The descr io t ion  does not  include Innut-Output i n s t r u c t i o n s ,  i n t e r r u p t s  nnri communication i i i th  t h e  other c o m u t e r s  or  processors.  
The descr ip t ion  was taken from the  Preliminaru Yanual o f  1n.formation on the  RCI-40 and i s  vo doubt -hanged i n  f i n a l  machines. 
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f / o p d : l >  := iQ6 :21>  

g<IO:l> := i Q O : l l >  

j 6 : l >  := g 6 : 1 >  

h<10:1> := i < I O : l >  

Operand Calculation Process 

GQ6:1$ := (GI; nex t  

( g  = 17778) iEx te rna lJdd ress  t ExternalJddress + I )  

G ' Q 6 : 1 >  := ( (4  = 0 )  - 0; 
(0 < g < 1777) +M[qlQ6:l>; 

(g = 1777) - M[External,AddressIQ6:1>) 

H Q 6 : 1 >  := ( H I ;  nex t  

(h = 1777) -tExternal,Address +External-Address + I )  

H ' ( 2 6 : b  := ( (h  = 0) - 0; 

(o<k 1777) - id[h]<26:1> 

(g = 1777) + H[External,Address]<26: I > )  

Arithmetic r e g i s t e r  
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Irs tmcLion In te rpr , e ta&icq  ~ ' Y C J C ~ ~ S  

R u n - ( i n s t r u c t i o n  < - M [ P ] :  P <- P + 1 ;  n e x t  !etch 

1nst ruc t ion"execut ion)  eTecu :c 

Trst,ructior S e t  nn? Tnsiructior .?'kecu?iPr nroePss 

I n s t r u c t  ion-execu t i o n  := ( 

Transmi t  

A ~ ; t i t m e t i c  i l l s  complemencl 
Replace Add 

Hold Add 

S t o r e  Add 

Replace S u b t r a c t  

Hold S u b t r a c t  

S t o r e  S u b t r a c t  

Replace Abso lu te  S u b t r a c t  

Hold Abso lu te  S u b t r a c t  

S t o r e  Abso lu te  S u b t r a c t  

Replace M u l t i p l y  

Hold M u l t i p l y  

S t o r e  M u l t i p l y  

ReDlace D i v i d e  

Hold D i v i d e  

Store D i v i d e  

Replace Square Root 

H o l d  Square Root 

S t o r e  Square Root 

Accumulate Add 

Accumulate M u l t i o l y  

( := op = 27)  -> (H  + G ) :  

( := op = 0) + (Ov,A + H  + G :  n e x t  H '  , - A ) ;  

( : =  op = I )  + (Ov,A t H  + G ) :  

( : =  op = 2 )  + (Dv,A + A  + G ;  n e x t  H '  + A ) :  

( : =  op = 3 )  + (Ov,A i - H  - G :  n e x t  H '  .-A): 

( : =  op = 4 )  -,(Ov,A + H  - G ) :  

( : =  op = 5 )  + (flv,A - A  - G :  n e x t  H '  + A ) ;  

( : =  op = 6 )  ->(A + a b s ( H )  - abs(G):  n e x t  H '  + A ) :  

(:= op = 7)  -> (A ,abs(H) - a b s ( G ) ) :  

( : =  op = IO) -> (A - a b s ( A )  - a b s ( G ) :  n e x t  H '  + A ) :  

( : =  op = 1 1 )  + (AR < - H  x G :  n e x t  H '  < -A) :  

( : =  o p  = 1 2 )  -> (A6 1. H x C): 

( : =  op = 1 3 )  -) (AB < - A  x G :  n e x t  H '  < -A) :  

( : = o p =  1 4 )  - > ( ( H r G )  - > O v + I ;  

(H  < G) + ( 

A,E <-H/G: n e x t  H '  + A ) ) :  

( : =  op = 1 5 )  -) ( (H  Z G )  '0" - I ;  
(H  < G )  --i (A,B t H / G ) ) :  

(:= = 16) + ( ( A  c )  -jnv + 1; 

( A < G )  + (  

A,E ( - A / G :  n e x t  H '  , -A)) :  

( : =  op = 17)  - ) ( A  , -sqrt(H+G): nex t  H' t A ) :  

( : =  op = 2 0 )  - , (A - s q r t ( H + G ) ) :  

( : =  op = 2 1 )  . i  (A . -sqr t (A+G) :  nex t  H '  < - A ) :  

( : =  op = 2 5 )  --> (A .-OvoA + H + C ) ;  

( :=  op = 26)  + (A i-flvOA + H x G ) :  
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(g<10:7> # 0) - ( 

A - ((g<IO> + I s o n d ;  7 g<IO> - 17??777?7) h 

(96’ + SR; 7 g 8 >  + 177777777) A 

(g& + 1 0 W e l e c t o l O d a t a ;  7 s<b - I????????) A 

( g q ’  + CJS; i g c / >  - 177777777)); next  

(gQ> @ T e s t )  - (P - h ) ) ;  
The T e s t  condition is a se lec ted  b i t  of A ,  or o ther  Pc  or I O  b i t s .  

Test := ( ( j  = 0)  - 0 ;  

( i  I j i 32) -A<j \ . ;  

(j = 33) - ( O V ;  Ov - 0 ) ;  

(j = 34) - ( P a r i t y  e r r o r ;  P a r i t y  e r r o r  - 0 ) ;  

( j  = 35) - (Control-panel t e s t ;  Control,panel-test - 0 ) ;  

( j  = 36) -, (Tape-read; Tape-read + 0)  ; 

( j  = 37) - (Prog ramgr ro r ;  Program-error + 0 ) )  

L i n k  Jump (:= op = 32) - ( ( g  # 0 )  + (P + h ;  G 4 O : l :  + P); 

(g = 0) - (P + h ) ) ;  

T a l l y  Jump (:= op = 33) - ( ( G  = 7 0 )  - (P c h ) ;  

(G = 0 )  - ; 
( G  > O )  - ( G I  - G  - 1 ;  P - h ) ;  

(G < 0 )  - (G - G + 1 ) ) ;  

Compare Jump ( :=  op = 37) - (A < G )  + P + h ;  

Load A (:= op = 34) - ( A  - Oogoh); 

I n s e r t  S ( := op = 35) - ( S  - ( A  A (OOgOh)) v (S A 7 ( b g o h ) ) ) ;  

Store AB (:= op = 36) (G * 8; H - A ;  

(g = 0 )  A (h = 0 )  + (A + 8 ;  B + A ) )  

) end Instruction,executior 
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Parallel operation in the Control Data 
66001 

James E .  Thornton 

History 

In the summer of 1960, Control Data began a project which 
culminated October, 1964 in the delivery of the first 6600 Com- 
puter. In 1960 it was apparent that brute force circuit perform- 
ance and parallel operation were the two main approaches to 

more critical system control operations in the separate processors. 
The central processor operates from the central memory with 
relocating register and file protection for each program in central 
memory. 

periDheral control processors 
any advanced computer. 

This paper presents some of the considerations having to do 
with the parallel operations in the 6600. A most important and 
fortunate event coincided with the beginning of the 6600 project. 
This was the appearance of the high-speed silicon transistor, which 
survived early difficulties to become the basis for a nice jump in 
circuit performance. 

System organization 

The computing system envisioned in that project, and now called 
the 6600, paid special attention to two kinds of use, the very large 

the large problem, a high-speed floating point central processor 
with access to a large central memory was obvious. Not so obvious, 
but important to the 6600 system idea, was the isolation of this 
central arithmetic from any peripheral activity. 

It was from this general line of reasoning that the idea of a 
multiplicity of peripheral processors was formed (Fig. 1). Ten such 
peripheral processors have access to the central memory on one 
side and the peripheral channels on the other. The executive 
control of the system is always in one of these peripheral proces- 
sors, with the others operating on assigned peripheral or control 
tasks. All ten processors have access to twelve input-output chan- 
nels and may “change hands,” monitor channel activity, and 
perform other related jobs. These processors have access to central 
memory, and may pursue independent transfers to and from this 
memory. 

Each of the ten peripheral processors contains its own memory 
for program and buffer areas, thereby isolating and protecting the 

‘AFIPS Proc. FJCC, pt. 2 vol. 26, pp. 3340, 1964. 

scientific problem and the time sharing of smaller problems. For 

The peripheral and control processors are housed in one chassis 
of the main frame. Each processor contains 4096 memory words 
of 12 bits length. There are 12- and 24-bit instruction formats to 
provide for direct, indirect, and relative addressing. Instructions 
provide logical, addition, subtraction, shift, and conditional 
branching. Instructions also provide single word or block transfers 
to and from any of twelve peripheral channels, and single word 
or block transfers to and from central memory. Central memory 
words of 60 bits length are assembled from five consecutive pe- 
ripheral words. Each processor has instructions to interrupt the 
central processor and to monitor the central program address. 

To get this much processing power with reasonable economy 
and space, a time-sharing design was adopted (Fig. 2). This design 
contains a register “barrel” around which is moving the dynamic 
information for all ten processors. Such things as program address, 
accumulator contents, and other pieces of information totalling 
52 bits are shifted around the barrel. Each complete trip around 
requires one major cycle or one thousand nanoseconds. A “slot” 
in the barrel contains adders, assembly networks, distribution 
network, and interconnections to perform one step of any periph- 
eral instruction. The time to perform this step or, in other words, 
the time through the slot, is one minor cycle or one hundred 
nanoseconds. Each of the ten processors, therefore, is allowed one 
minor cycle of every ten to perform one of its steps. A peripheral 
instruction may require one or more of these steps, depending on 
the kind of instruction. 

In effect, the single arithmetic and the single distribution and 
assembly network are made to appear as ten. Only the memories 
are kept truly independent. Incidentally, the memory read-write 
cycle time is equal to one complete trip around the barrel, or one 
thousand nanoseconds. 
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Fig. 1. Control Data 6600. 
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Input-output channels are bi-directional, 12-bit paths. One 
12-bit word may move in one direction every major cycle, or 1000 
nanoseconds, on each channel. Therefore, a maximum burst rate 
of 120 million bits per second is possible using all ten peripheral 
processors. A sustained rate of about 50 million bits per second 
can be maintained in a practical operating system. Each channel 
may service several peripheral devices and may interface to other 
systems, such as satellite computers. 

Peripheral and control processors access central memory 
through an assembly network and a dis-assembly network. Since 
five peripheral memory references are required to make up one 
central memory word, a natural assembly network of five levels 
is used. This allows five references to be “nested” in each network 
during any major cycle. The central memory is organized in 
independent banks with the ability to transfer central words every 
minor cycle. The peripheral processors, therefore, introduce at 
most about 2% interference at the central memory address control. 

PERIPHERAL A N D  

C O N T R O L  PROCESSORS 

12 INPUT 

OUTPUT C H A N N E L S  

UPPER 
BOUNDARY 

LOWER 
BOUNDARY 

A single real time clock, continuously running, is available to 
all peripheral processors. 

Central processor 

The 6600 central processor may be considered the high-speed 
arithmetic unit of the system (Fig. 3) .  Its program, operands, and 
results are held in the central memory. It has no connection to 
the peripheral processors except through memory and except for 
two single controls. These are the exchange jump, which starts 
or interrupts the central processor from a peripheral processor, 
and the central program address which can be monitored by a 
peripheral processor. 

A key description of the 6600 central processor, as you will 
see in later discussion, is “parallel by function.” This means that 
a number of arithmetic functions may be performed concurrently. 
To this end, there are ten functional units within the central 

CENTRAL PROCESSOR 

24 
OPERATING 

Fig. 3. Block diagram of 6600. 
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processor. These are the two increment units, floating add unit, 
fixed add unit, shift unit, two multiply units, divide unit, boolean 
unit, and branch unit. In a general way, each of these units is a 
three address unit. As an example, the floating add unit obtains 
two 60-bit operands from the central registers and produces a 
60-bit result which is returned to a register. Information to and 
from these units is held in the central registers, of which there 
are twenty-four. Eight of these are considered index registers, are 
of 18 bits length, and one of which always contains zero. Eight 
are considered address registers, are of 18 bits length, and serve 
to address the five read central memory trunks and the two store 
central memory trunks. Eight are considered floating point regis- 
ters, are of 60 bits length, and are the only central registers to 
access central memory during a central program. 

In a sense, just as the whole central processor is hidden behind 
central memory from the peripheral processors, so, too, the ten 
functional units are hidden behind the central registers from 
central memory. As a consequence, a considerable instruction 
efficiency is obtained and an interesting form of concurrency is 
feasible and practical. The fact that a small number of bits can 
give meaningful definition to any function makes it possible to 
develop forms of operand and unit reservations needed for a 
general scheme of concurrent arithmetic. 

Instructions are organized in two formats, a 15-bit format and 
a 30-bit format, and may be mixed in an instruction word (Fig. 
4). As an example, a 15-bit instruction may call for an ADD, 

f rn I h 

OPERATION 
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0 

RESULT 
REG 

(I of 8) 

4 
151 OPERAND 

REG. 
(I of 8) 

2nd C 

_J 

RAND 
REG 

( I  of 8) 

Fig. 4. Fifteen-bit instruction format. 

designated by the f and m octal digits, from registers designated 
by the i and k octal digits, the result going to the register desig- 
nated by the i octal digit. In this example, the addresses of the 
three-address, floating add unit are only three bits in length, each 
address referring to one of the eight floating point registers. The 
30-bit format follows this same form but substitutes for the k octal 
digit an %bit constant K which serves as one of the input oper- 
ands. These two formats provide a highly efficient control of 
concurrent operations. 

As a background, consider the essential difference between a 
general purpose device and a special device in which high speeds 
are required. The des iper  of the special device can generally 
improve on the traditional general purpose device by introducing 
some form of concurrency. For example, some activities of a 
housekeeping nature may be performed separate from the main 
sequence of operations in separate hardware. The total time to 
complete a job is then optimized to the main sequence and excludes 
the housekeeping. The two categories operate concurrently. 

It would be, of course, most attractive to provide in a general 
purpose device some generalized scheme to do the same kind of 
thing. The organization of the 6600 central processor provides just 
this kind of scheme. With a multiplicity of functional units, and 
of operand registers and with a simple and highly efficient address- 
ing system, a generalized queue and reservation scheme is practi- 
cal. This is called the scoreboard. 

The scoreboard maintains a running file of each central register, 
of each functional unit, and of each of the three operand trunks 
to and from each unit. Typically, the scoreboard file is made up 
of two-, three-, and four-bit quantities identifying the nature of 
register and unit usage. As each new instruction is brought up, 
the conditions at the instant of issuance are set into the scoreboard. 
A snapshot is taken, so to speak, of the pertinent conditions. If 
no waiting is required, the execution of the instruction is begun 
immediately under control of the unit itself. If waiting is required 
(for example, an input operand may not yet be available in the 
central registers), the scoreboard controls the delay, and when 
released, allows the unit to begin its execution. Most important, 
this activity is accomplished in the scoreboard and the functional 
unit, and does not necessarily limit later instructions from being 
brought up and issued. 

In this manner, it is possible to issue a series of instructions, 
some related, some not, until no functional units are left free or 
until a specific register i b  to be assigned more than one result. With 
just- those two restrictions on issuing (unit free and no double 
result), several independent chains of instructions may proceed 
concurrently. Instructions may issue every minor cycle in the 
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absence of the two restraints. The instruction executions, in com- 
parison, range from three minor cycles for fixed add, 10 minor 
cycles for floating multiply, to 29 minor cycles for floating divide. 

To provide a relatively continuous source of instructions, one 
buffer register of 60 bits is located at the bottom of an instruction 
stack capable of holding 32 instructions (Fig. 5 ) .  Instruction words 
from memory enter the bottom register of the stack pushing up 
the old instruction words. In straight line programs, only the 
bottom two registers are in use, the bottom being refilled as quickly 
as memory conflicts allow. In programs which branch back to an 
instruction in the upper stack registers, no refills are allowed after 
the branch, thereby holding the program loop completely in the 
stack. As a result, memory access or memory conflicts are no longer 
involved, and a considerable speed increase can be had. 

Five memory trunks are provided from memory into the central 
processor to five of the floating point registers (Fig. 6). One address 
register is assigned to each trunk (and therefore to the floating 
point register). Any instruction calling for address register result 
implicitly initiates a memory reference on that trunk. These in- 
structions are handled through the scoreboard and therefore tend 
to overlap memory access with arithmetic. For example, a new 
memory word to be loaded in a floating point register can be 
brought in from memory but may not enter the register until all 

previous uses of that register are completed. The central registers, 
therefore, provide all of the data to the ten functional units, and 
receive all of the unit results. No storage is maintained in any unit. 

Central memory is organized in 32 banks of 4096 words. Con- 
secutive addresses call for a different bank; therefore, adjacent 
addresses in one bank are in reality separated by 32. Addresses 
may be issued every 100 nanoseconds. A typical central memory 
information transfer rate is about 250 million bits per second. 

As mentioned before, the functional units are hidden behind 
the registers. Although the units might appear to increase hard- 
ware duplication, a pleasant fact emerges from this design. Each 
unit may be trimmed to perform its function without regard to 
others. Speed increases are had from this simplified design. 

As an example of special functional unit design, the floating 
multiply accomplishes the coefficient multiplication in nine minor 
cycles plus one minor cycle to put away the result for a total of 
10 minor cycles, or 1000 nanoseconds. The multiply uses layers 
of carry save adders grouped in two halves. Each half concurrently 
forms a partial product, and the two partial products finally merge 
while the long carries propagate. Although this is a fairly large 
complex of circuits, the resulting device was sufficiently smaller 
than originally planned to allow two multiply units to be included 
in the final design. 

INSTRUCTION 
STACK 

8 60417 
WORDS 

I BUFFER REGISTER I 
FROM CENTRAL MEMORY ’ I 

4 

Fig. 5. 6600 instruction stack operation. 
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OPERANDS 

(60-BlT) 

(UP TO 8 WORDS 

Fig. 6. Central processor operating registers. 

To sum up the characteristics of the central processor, remem- 
ber that the broadbrush description is “concurrent operation.” In 
other words, any program operating within the central processor 
utilizes some of the available concurrency. The program need not 
be written in a particular way, although centainly some optimiza- 
tion can be done. The specific method of accomplishing this 
concurrency involves issuing as many instructions as possible while 
handling most of the conflicts during execution. Some of the essen- 
tial requirements for such a scheme include: 

1 Many functional units 

2 Units with three address properties 

3 Many transient registers with many trunks to and from 
the units 

4 A simple and efficient instruction set 

Construction 

Circuits in the 6600 computing system use all-transistor logic (Fig. 
7). The silicon transistor operates in saturation when switched 
“on” and averages about five nanoseconds of stage delay. Logic 
circuits are constructed in a cordwood plug-in module of about 
2y2 inches by 21/, inches by 0.8 inch. An average of about 50 
transistors are contained in these modules. 

Memory circuits are constructed in a plug-in module of about 
six inches by six inches by 2% inches (Fig. 8). Each memory module 
contains a coincident current memory of 4096 12-bit words. All 
read-write drive circuits and bit drive circuits plus address trans- 
lation are contained in the module. One such module is used for 
each peripheral processor, and five modules make up one bank 
of central memory. 

Logic modules and memory modules are held in upright hinged 
chassis in an X shaped cabinet (Fig. 9). Interconnections between 
modules on the chassis are made with twisted pair transmission 
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Fig. 7. 6600 printed circuit module. 

lines. Interconnections hetween chassis are made with coaxial 
cables. 

Both maintenance and operation are accomplished at a pro- 
grammed display console (Fig. 10). More than one of these consoles 
may be included in a system if desired. Dead start facilities bring 

. '  

Fig. 8. 6600 memory module. 

Fig. 9. 6600 main frame section. 

Fig. 10. 6600 display console. 
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the ten peripheral processors to a condition which allows infor- 
mation to enter from any chosen peripheral device. Such loads 
normally bring in an operating system which provides a highly 
sophisticated capability for multiple users, maintenance, and so 
on. 

The 6600 Computer has taken advantage of certain technology 
advances, but more particularly, logic organization advances 

which now appear to be quite successful. Control Data is exploring 
advances in technology upward within the same compatible 
structure, and identical technology downward, also within the 
same compatible structure. 

References 

AllaRM; ClayB64 
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APPENDIX 1 
CENTRAL PROCESSOR ISP DESCRIPTION 

CDC 6400, 6500, 6600 

Appendix I 

C O C  6400, 6500, 6600 Centra l  Processor ISP Descr ip t i on  

Pc S ta te  

P<17:0> 

x[0:7]<59:0> 

A[O:7]i l7 :0> 

B[Ol<l7:0> := 0 

E[ I : 7]<17 : O> 

Run 

E M 4  7 : O> 

Address gut,of,range,rnode := EM<I 2> 

O p e r a n d g u t a f  ,rangeurnode := EM<13> 

lndef  i n i  teaperandurnode := EM<14> 
The above descr ip t ion  i s  incomplete i n  tha 
an alarm condi t ion occurs "and" the  mode i s  a one, 

the  above 

Mp Sta te  

MP [O :7777778 169:O> 

Ms [0 :2015232 1 6 9  :0> 

RA<I 7 : O> 

FL<I 7:0> 

R A E C S B 9 : 3 6 >  

FLECK59 : 36> 

Addressau t  df -range 

Memoru Mannina Process 

Program counter 
Main ari thmetic  r e g i s t e r s .  XL1:5], are i m p l i c i t l y  loaded from 

X[6:71 are i m p l i c i t l y  stored i n  Mp when A[ l :5 ]  are loaded. 
Mp when A [ 6 : 7 ]  are Zoaded. 

as index r e g i s t e r s .  
B r e g i s t e r s  are general a r i t h v e t i c  r e g i s t e r s ,  and can be used 

1 i f  in terpre t ing  ins t ruc t ions ,  not under program contro l .  

Ex i t  mode b i t s  

mode's alarm allow condi t ions t o  t rap  Pc a t  M p [ R A ] .  Trapping occurs i f  

main core memory of 218 w,  (256 kwJ 
ECS/Extended Core Storage Program can only t rans fer  data between 

reference for re locat ion)  address r e g i s t e r  t o  map a logical  M p '  

f i e l d  length - the  bounds r e g i s t e r  which l i m i t s  a program's 

reference o r  re locat ion  r e g i s t e r  f o r  Ms (Extended Core Storage)  

f i e l d  length f o r  ECS 

a b i t  denoting a s t a t e  when memory mapping i s  inval id  

Mp and Ms. 

i n t o  physical  Mp 

access t o  a range of Mp' 

Program cannot he executed i n  Ms. 

. / / "  

This  process maps or re locates  a log ica l  program, a t  locat ion Mp', and Ms' , into physical  Mp and M S .  

Mp'[X] := ((X < FL) i M p [ X  + RAl); logical  Mp' 
(X 5 FL) +(Run + O ;  AddressYoutdfurange - 1 ) )  

Ms'[X] := ((X < FLECS) +Ms[Xl+ RAECSI); logical  Ms ' 
(X 2 FLECS) + (Run +O; Address-out-of-range - 1 ) )  

Ezchange juq storage a l locat ion  map a t  locot ion,  n wi th in  Wp: 
The fol lowing Mp" array is reserved when Pc s t a t e  i s  s tored,  and switched t o  another job .  
a Peripheral and Control Processor enacts the operation: 

The exchange i n s t r u c t i o n  i n  
iMp"+ Mp; Mp t Mp"). 

Mp"[ n]<53 :0> 

Mp"[n+1]<53:0> := RAoA[ l loB[ I l  

Mp"[ n+2]<53 :0> := FLoA[2]oB[2] 

Mp"[ n+3]<53 : 0> := EMoA[ 3]oB[3 ] 

Mp"[n+4] := RAECSoA[4]oB[4] 

Mp"[n+5] := FLECSoA[5]oB[5] 

Mp"[ n+6]<35 .0> : = A [  6]oB[ 61 

Mp"[n+71<35 :0> := A [ 7 l O B [  71 
Hp"[n+lO 'n+I781:= X[O:7] 

:= PoA[ 0300000008 

8 '  
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Ins t ruc t ion  Format 

i n s t r u c t i o n Q 9 : 0 >  

frnd:O> := i n s t r u c t i o n Q 9 : 2 4 >  

frni <8 :O> := fmoi 

i Q : O >  := i n s t r u c t i o n Q 3 : 2 1 >  

j Q : O >  := i n s t r u c t i o n Q 0 : l b  

k Q  : O> := i n s t r u c t i o n < l 7 : 1 5 >  

j k d : O >  := j o k  

K<17:0> := i n s t r u c t  ion<l7:0> 

l o n g - i n s t r u c t i o n  := ( ( f m  < log) v 
(50 I f m  < 53) v 
(60 s f m  < 63) v 
(70 i f m  < 7 3 ) )  

s h o r t J n s t r u c t i o n  := l o n g  i n s t r u c t i o n  

although 30 b i t s ,  most i n s t ruc t ions  are 15  b i t s ;  see 

operation code or funct ion 

extended op code 

spec i f i e s  a reg i s t e r  or an extension t o  op code 

spec i f i e s  a r e g i s t e r  

spec i f i e s  a reg i s t e r  

a s h i f t  constant 16 b i t s )  

an 18 b i t  address s i z e  constant 

30 b i t  i n s t ruc t ion  

Ins t ruc t ion  In t e rpre ta t ion  Process 

15 b i t  i n s t ruc t ion  

Ins t ruc t ion  In t e rpre ta t ion  Process 
A 15 b i t  ( s h o r t )  or 30 b i t  ( l ong)  in s t ruc t ion  i s  fetched from M p ' - [ P ] q  x 1 5  f 15 - 1 : p  x 1 9  where p = 3, 2, 1, or 0. 
b i t  i n s t ruc t ion  cannot be stored across word boundaries (or i n  2 ,  Mp' l oca t ions ) .  

A 30 

a pointer  t o  15 b i t  quarter word which has ins t ruc t ion  P<l>4 
Run + ( i n s t r u c t i o n Q 9 : 1 5 >  +Mp'[P]<(p x 15 + 1 4 ) : ( p  x 1 5 ) r ;  n e x t  Fetch 

p t p  - I ;  n e x t  

(p = 0) A I o n g J n s t r u c t i o n  +Run t o ;  
(p # 0 )  A l o n g - i n s t r u c t i o n  -' ( 

i n s t r u c t i o n < l 4 : 0 >  t M p ' [ P I < ( p  X 15 + 1 4 ) : ( p  X 15)>: 

p t p  - I ) ;  n e x t  

Ins t ruc t ion ,execut ion ;  nex t  execute 

(p = 0 )  - ( p  - 3 ;  P t P  + I ) )  

Ins t ruc t ion  Set  and Ins t ruc t ion  Execution Process 

F d  . t p p j [ A l i R  oeeurs. If (i Z 61 2 store is made t o  Mo'[A[ill. The descr ip t ion  does not  describe Address-but,of,range ease, 
il,hz.c% is treated l i k e  a nu l l  operation. 

etches or s tores  betueen Mp' and X [ i ]  occur by loading or s toring reg i s t e r s  Alii. If 10 < i C 61 a f e t c h  from 

~ n s t r u c t i o n ~ e x e c u t i o n  := ( 

Set A [i ] / S A  

  SA^ ~j + K" ( f m  = 50) - ( A [ i ]  c A [ j ]  + K; n e x t  F e t c h d t o r e ) ;  

  SA^ ~j + K" ( f m  = 5 1 )  - ( A [ i  1 t B [ j ]  + K; n e x t  F e t c h d t o r e ) ;  

 SA^ x j  + ~ 1 1  (fm = 5 2 )  + ( A [ i  I t X [ j l < 1 7 : 0 >  + K; n e x t  F e t c h s t o r e ) ;  

 SA^ x j  + Bk" ( f m  = 53) + ( A [ i  1 + x [ j ] d 7 : n > +  B [ k ] :  n e x t  Fetch,Store); 

 SA^ ~j + Bk" ( f m  = 54) + ( A [ i ]  t A [ j ]  + B[k];  n e x t  Fe tch-Store) ;  

 SA^ - Bkl' (fm = 5 5 )  + ( A [ i  ] t A [ j ]  - B [k ] ;  n e x t  F e t c h d t o r e ) ;  

" S A i  B j  + Bk" (frn = 56) + ( A [  i ]  t B [ j ]  + B [k ] ;  n e x t  Fetch,Store);  

" S A i  B j  - Bk" (fm = 57) + ( A [ i ]  t B [ j j  - E[k]:  nex t  F e t c h J t o r e ) ;  

Fetch-Store := ( 

(0  < i < 6 )  + ( X [ i l  t M p ' [ A [ i l l ) ;  

( i  2 6) + ( M p ' [ h [ i ]  c X [ i ] ) )  

Operations on B and X 

Set  B [i VSBi 

" S B i  A j  + K" (frn = 60) 3 (E[ i] + A[ j l  + K); 

process t o  get  operand i n  X or store operand from X uhen A 
i s  wri t t en  
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" S B i  B j  + K" (fm = 61) 4 ( B [ i l  + B [ j l  + K ) ;  

" S B i  X j  + K" (fm = 62) --f ( B [ i l  t X [ j 1 < 1 7 : b  + K ) ;  

" S B i  X j  + Bk" ( fm = 63) + ( B [ i ]  + X [ j ] < l 7 : L b  + B [ k l ) ;  

" S B i  A j  + Bk" (fm = 64) + ( B [ i l  + A [ j l  + BCkl ) ;  

" S B i  A j  - Ek" ( fm = 6 5 )  + (BCi l  - A [ j l  - BCkl ) ;  

"SB i  B j  + Bk" ( f m  = 66) + ( B [ i l  + B [ j l  + B L k l ) ;  

" s B i  B j  - Bk" (fm = 67) + ( B c i l  + B [ j l  - B [ k l ) ;  

Set  X[il/SXi 
" S X i  A j  + K" (fm = 70) 4 (x[ 11 + sign,extend(A[j 

" S X i  B j  + K" (fm = 71) --f (x[ 11 + sign,extend(B[j 

" S X i  X j  + K" ( f m  = 72) -f (X[ i l  sign,extend(X[j] 

" S X i  X j  + Bk" (fm = 73) --f (X[ il t sign,extend(X[j 

" S X i  A j  + Bk" (fm = 74) + (X[ i l  + sign,extend(A[j 

" S X i  A j  - Bk" ( fm = 75) + (X[ i l  + s i g n g x t e n d ( A [ j  

" S X i  B j  + Bk" (fm = 76) + (X[ i] c s i g n & x t e n d ( B [ j  

" S X i  B j  - Bk" ( f m  = 77) + (X[ i] c s i g n & x t e n d ( B [ j  

Miscellaneous program controZ 
"PSI ( := f m  = 0) + (Run t 0) ;  

"NO" ( := f m  = 46) + ; 

d~unp uncond i t iowl  

program stop 
no operation; pass 

"JP B i  + K" ( := frn = 02 )  + ( P  + Sy i] + K; p + 3) :  jump 

Jwnp on X [ j ]  conditions 
"ZR X j  K" (:= f m i  = 030) + ( ( X [ j ]  = 0) + (P t K ;  p ~ 3 ) ) ;  

"NZ X j  K" ( := f m i  = 031) + ( ( X [ j l  # 0) + ( P  c K ;  p ~ 3 ) ) ;  

"PL X j  K" (:= fmi = 032) --f ( ( X c j ]  z 0) --f (P t K; p t3)); 
"PIG X j  K" ( := frni = 033) + ( ( X [ j ]  < 0) + (P + K ;  p t 3 ) ) ;  

"IR X j  K" (:= f m i  = 034) + ( 

zero 

non zero 

P I U S  011 position 
negUtiUe 

out of range constant t e s t s  

( ( Y [ j - M 5 : 4 e +  3 7 7 7 ) ~  (X [ j l%9:48>.  40nO)) + P  + K ;  P - 3 ) ;  

"OR X j  K" ( := f m i  = 035) + ( 

( X [ j l 6 9 : 4 8 % 3 7 7 7 )  V (XCj169:48>=4000)+ (P + K ;  p + 3 ) I ;  
i n d e f i n i t e  form constant t e s t s  "DF X j  K" ( :=  f m i  = 036) + ( 

( X L j 1 6 9 : 4 8 h l 7 7 7 )  V (XCj I89 :48>-6000)  + ( P  + K ;  p + 3 ) ) ;  

" I D  X j  K" ( := f m i  = 037) + ( 

( X C j l B 9 : 4 8 h l 7 7 7 )  V ( X [ j 1 8 9 : 4 8 X 6 0 0 0 )  - (P + K ;  p t 3 ) ) ;  
Jwnp on B [i 1. B l j  ] comparison 

"EQ B i  B j  K" (:- frn = 04) + ( ( B [ i ]  = B [ j ] )  + ( P  t K ;  p c 3 ) ) ;  equal 

"NE B i  B j  K" (:= f m  = 05) +((BE:] # B [ j 1 )  +rP - K ;  P - 3 ) ) ;  not  equaZ 

"GE B i  B j  K" (:= frn = 06) + ( ( B [ i l  2 B [ j l )  + (P + K; p + 3 ) ) ;  greater than or @qua2 

"LT B i  B j  K" (:= fm = 07) + ( ( B C i l  < B C j 1 )  + ( P  +K; P ~ 3 ) ) ;  l e s s  than 

"RJ K" (:= frni = 010) + (  return jump 
Subroutine c a l l  

M [ K I B ~ : ~ P  + 0 4 ~ r n o ~ o ( ~  + ~ ) m o o o o o ~ ;  nex t  

(P t K  + 1 ;  p ~ 3 ) ) ;  

"REC B j  + K" ( := f m i  = 011) + (  
Peading (RECl and w r i t i n g  (WECi Mp wi th  Extended Core Storage, subjec;ed t o  bounds checks,  and Ma', M p '  mapping 

read extended core 
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M p ' [ A [ n l : A [ o ]  + B [ j l  + K - i ]  t M s ' [ X [ O ] : X [ O I  + B [ j ]  + K - 1 1 ) ;  

"WC B j  + K" ( := f m i  = 012) + ( write extended core 
M s ' [ X [ O I : X [ O ]  + B [ j l  + K - I 1  - M p ' C A [ O l : A [ O l  + B [ j l  + K - 1 1 ) ;  

Fixed Point Arithmetic and Logical operations using X 
" I X i  X j  + X k "  I : =  f m  = 35) + ( X [ i l  t X [ j l  + X [ k l ) ;  

" I X i  X j  - X k "  ( := f m  = 37)  - ( X [ i l  t X C j 1  - V [ k l ) ;  

"rxi X k "  ( :=  f m  = 4 7 ) i  ( X [ i l  c s u r n ~ n o d u l o ~ 2 ( X [ k l ) ;  

" R X i  X j "  ( := f m  = 10 ) - ( X [ i l  + x [ j l ) ;  
" B X i  X j  2: X k "  ( : =  f m  = 1 1  ) i ( X [ i l  t X [ i l  + X [ j l  h X [ k I ) ;  8 
" B X i  X j  + X k "  ( : =  f m  = 12) - ( X C i l  t X [ J ]  V X [ k l ) ;  

" R X i  X j  - X k "  ( := f m  = 1 3 )  i ( X [ i l  t X [ J I  @ X [ k l ) ;  

" B X i  - X k "  f : =  f m  = 1 4 )  i ( X C I ]  -7 X [ k l ) ;  

8 

" R X i  - X k  i. X j "  (:= f m  = l 5 ) i  ( X [ i  I t X [ j l  A 7 X [ k l ) ;  

" B X i  - Y k  + X j "  (:= f m  = 1 6 ) i  ( X [ i  ] t X [ j ]  v I X [ k ] ) ;  

" B X i  = X k  - X j "  ( := f m  = 1 7 ) -  ( X [ i ]  t X c j ]  @ - X [ k ] ) ;  

" L X i  j k "  ( := f m  = 20)  i ( X [ i l  t X C i l  x Z J k  { r o t a t e ) ) ;  

" A X i  j k "  ( : =  f m  = 21)  + ( X [ i ]  c X [ i ]  / 2 j k ) ;  

"I X i  B j  X k "  ( := fm = 22) i ( 

,R[j]<17> i X [ i ]  t X [ k l  x EBCj1<55:0> ( r o t a t e ) ;  

R [ j ] < 1 7 >  + X [ i l  c X C k 1  / Z7 B[jl<lo:"> ) ;  
" A X i  B j  X k "  ( : =  fm = 23)  + ( 

+ [ j ] < 1 7 >  i X [ i ] c X [ k ]  / 2 B [ j 1 < l o : o > :  

B [ j ] < 1 7 >  i X [ i ]  t X [ k ]  x Z1 B[j1<5:"> { r o t a t e ] ) ;  

" M X i  j k "  ( : =  f m  = 4 3 )  i ( 
X [ i ] < 5 9 : 5 9 - j k + l >  + 2 j k  - 1 ;  

( j k  = n) i X [ i l  ' -0) ;  

integer sum 

integer difference 
count the number of b i t s  in X [ k ]  

transmit 
logical product 
logical s m  

logical difference 
transmit complement 
logical product and complement 
logical sun and complement 
logical difference and complement 

arithmetic right shift 
left shift nominally 

arithmetic right shift nominally 

form mask 

Floating Point Arithmetic using X 
Onlu the least significant (7.0) part of arithmetic is stored in Floating DP operations. 

" F X i  X j  + X k "  ( :=  f m  = 30) + ( X [ i l  t X [ j l  + X [ k l  { s f ) ) ;  

" F X i  X j  - X k "  ( := f m  = 3 1 )  + ( X [ i l  t X [ j l  - X [ k l  { s f ) ) ;  

" n x i  X j  + X k "  i:= fm = 3 2 )  + ( X i i l  t X [ j l  + X C k l  ( l s . d f 1 ) ;  floating dP Sum 

"nx i  X j  - Y k "  ( := f m  = 3 3 )  i ( X [ i l  t X [ j l  - X [ k l  { l s . d f ) ) ;  floating dP difference 
" R X i  X j  + X k "  i:= f m  = 34)  i ( 

floating sum 

floating difference 

X C i l  c r o u n d ( X C j 1 )  + r o u n d ( X [ k l )  ( s f ) ) ;  
round floating difference " R X i  X j  - X k "  ( := f m  = 3 5 )  i ( 

X [ i ]  c r o u n d ( X [ j ] )  - r o u n d ( X [ k l )  { s f ) ) ;  

" F X i  X j  :': X k "  ( : =  f m  = 40) i (X[ i ]  t X [ j ]  x X [ k ]  [ s f ) ) ;  

" R X i  X j  :': X k "  ( : =  f m  = 4 1 )  + ( round floating product 

floating product 

X [ i ]  + X [ j ]  x X [ k ]  [ s f ) ;  next  X [ i l  t r o u n d ( X C i 1 )  { s f ) ) ;  

" D X i  X j  * X k "  ( : =  f m  = 4 2 )  i ( X [ i ]  t X [ j l  x X [ k ]  [ l s . d f l ) ;  floating dp product 
" F X i  X j  / X k "  ( : =  f m  = 4 4 )  i ( X [ i ]  + X [ j ]  / X [ k l  { s f ) ) ;  

" R X ~  x j  / X k "  f : =  f m  = 4 5 )  + ( X [ i ]  t r o u n d ( X [ j ]  / X [ k ] )  [ s f ) ) ;  round floating divide 

f bating divide 

normalize " N X i  R j  X k "  ( : =  f m  = 2 4 )  + ( 

X [ i ]  t n o r m a l i z e ( X [ k l )  ( s f ) ;  

R [ j ]  c normalize,exponent(X[kl) ( s f ] ) ;  
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" Z X i  B j  Xk" (:= fm = 2 5 )  i L round and normaZize 
x [ i ]  c round(X[k]) [ s f ] ;  next  

X [  i 1 c normal i z e ( x [  i l )  (s f )  ; 

B[ j ]  t normal ize,exponent (X[ i 1)  ( s f ) )  ; 

"UX i  BJ Xk' ( :=  f m  = 26)  3 ( B [ j ]  cX[k]<58:48> ( s i ] ;  unpack 

X [ i ]  tX [k ]<59,47:0> { s i ) ) ;  

" P X i  B j  Xk" ( := f m  = 27) + (X[k1<58:4b t BCj l  ( s i ) ;  pack 
X[k]<59,47:rD c X [ i l  { s i ) )  

end Instmctionusxecution ) 
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APPENDIX 2 
PERIPHERAL AND CONTROL PROCESSORS, 
PCP, ISP DESCRIPTION 

CDC 6400, 6500, 6600, AND 6416 

Appendix 2 

C D C  6400, 6500. 6600, and 6416 
Peripheral and Control Processors/PCP, ISP Description 

Pc State  

A<17: O> a c c m l a t o r  
P<l I : o> Progrm Address Counter 

E.5, S ta t e  

M[0:40951<11:0> 4 
M index[0:631<11:C’:= M[O:63]<11:D soecial arrau i n  PE reserved for  index reg i s t e r  

C(’Centra1) S ta t e  

CPuP<17: E. 

CPM[O:77777781<59:O> 

the main Pc  i n s t ruc t ion  address counter 

the Mp o.f main C 

I O  Regis ters  f o r  C i  ‘PCPI 

C,OATA[O:63]<Il:O> 
C,ACTC 0 : 633 
LFLG[O:631 denotes a , fu l l  (or emptgl b u f f e r  a t  the K 

C,FCN[0:631 <I I :o> 

data b u f f e r s  a t  peripheral K ‘ s  

a b i t  t o  denote ip 1 of the  64 K ’ s  i s  ac t i ve  

function or in s t ruc t ion  reg i s t e r  a t  a s p e c i f i c  K 

Ins t ruc t ion  Format 
Ins[ 0: 1 ]<I 1 : Cb i n s t ruc t ion  

2 w i n s t r u c t i o n :  def ined i n  terms of  op codes, see Table,  page 50; long-i nstruct i on 
short,instruction := 7 long,instruction 1 ZL i n s t ruc t ion  

K5:D := lns[0]<11:6> f unc t ion  o r  op code 
dc5:D := Ins[0]<5:O> 

m ~ 1 1 : 0 >  := Ins[l] address Dart 
drKl7:0> := d m  

i < l l  LO> := I n a l l  ]<I 1 :0> i n d i r e c t  b i t  
d,sign<l I :O> := ( 

-7d<5> - OOd : 
d<5> +l d)  

md<lI:O> := ( 

(d  = 0 )  -tn: 

(d  # 0 )  + m + M[dl) 

Ef fec t i ve  Address Calculation Process 
z := ((F<5:9 = 3 )  -id. 

(F<5:9 = 4 )  + i; 
(F<5:p = 5) --f rnd) 

Instruct ion In t eq j re ta t ion  Process 

Run + ( l n s [ O l  cMLP1; P t P  + 1 :  next f e t c h  
Iongoinstruction + (InsCIl +MEPI; P t P  + I ) :  next 

lnst ruct ion,execution) execute 
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SCN i( 
A t A M ) ;  

Implementation 
The I O  x 5 2  b i t s  i n  the  barre l  for t h e  I O  PC? IS? inc lude:  

LDN + (  
A t d ) ;  

A[0:9]<17:0, 

P[O:9]<Il :o, 

Temporary ffardware r e g i s t e r s  (not i n  the  ISPl 

Q[O:3l<ll :0> 

K [ O  : 91<5 : O> 

T [ O  : 9 1<2 : O> 

LMC 4 ( 
A+A@dm) ; 

accumulators 

i n s t r u c t i o n  address counters 

PSN +;  
null 

low order 6 bits o f  an i n s t r u c t i m  or address data 

six b i t s  hold the  operation code. The 3 b i t s  specif? the  
t r i p  count or s t a t e  of an i n s t r u c t i o n ' s  in terpre ta t ion .  

Instruction execut ion := ( F = XsY8 

8 00 

PSN --1; 

nu 7 7 

SHN i A+Ax2L i g r  

X' 8 

00 

I O  

20 

30 

40 

50 

60 

70 

06 

PJN + (  
7 A 4 7 >  + ( 

07  

MJN - (  
A<17> + (  

LJM i ( 
Pi- md); 

RJM + (  
MCmd] t P ;  
P c  m d + l ) ;  

LMN + (  
A(-A@d) ; 

LPN - (  
A c A A d )  ; 

~ 

SEN -,( 
AcA-d)  ; 

LCN + (  
A +-d)  ; 

A D N i  ( 
A<- A+d) ; 

LPC + ( 
AtAAdm) : 

PSN + ;  EXN + (  
CPYPA) ; 

ADC i ( 
A<-A+dm) ; 

RPN + ( 
A-CP-P); 

SED -> ( 1 A00 + (  -7 I 

SBI + (  7 RAI + (  401 + (  

SBM i( 
bcA-M[z])  

d 
CWD -> ( 

CPM [A 1.- 
M[d: d+5 I) ; 

ADM i ( 

CRM + ( 
M[m:m+ 
SxM[dl-l I t  
CPM[A:A+ 
Mldl-11); 

A c M [ z  ]-I ; 
next  
M [ z  ]<-A ) ; 

EJM + (  
7 C,FLG [d ]+ 

c 
IJM i( 

- P c m )  ) ; 
7 C,ACT [d ]+ ( 

FJM + (  
CvFLG [d ]+ ( 

CWM i( 
CPM [A :A+ 
M [d 3 -  I I+ 
M[m:m+ 
5xM[d] - I l ) ;  

OAM 4 ( 
(7 C J L G  [d  1- 
CYDATA [d 1 
+M[m:rn+Al)); 

AJM i( 
CdXTCdl-, ( 

t 

IAN -> ( 
A+ 
C,DATA[dl) : 

IAM + ( 
C,FLG[d l i  ( 
M [m : m+A I<- 
C,DATA[d 1) ) 

DAN --t ( 
CuDATA[dl 
c A) ; 

FAN + (  

<.A) ; 
C,FCN[d] 

ACN + f DCN i ( 
C,ACT[d] 
t o )  : 

I 

1 end I n s t r u c t i o n q x e c u t i o n  * 
1 uord or short, instruction 



Chapter 40 

Computer-network examples 

We are just entering the era in which general-purpose networks 
of computers make technical and economic sense. The requisite 
hardware and software development of operating systems and 
multiprogramming capability is still maturing. Thus, unlike the 
other PMS structures discussed in this book, there is no supply 
of operational systems with published descriptions upon which we 
can draw. Consequently, we have assembled several brief examples 
of networks to provide at least some illustrations of what is sure 
to be an important aspect of computer systems in the near future. 
The more interesting of these examples are still in the planning 
stages; those that exist currently are still highly specialized. 

Spatially distributed intercommunicating networks of digital 
devices have existed for a long time. But many of the ones that 
come most easily to mind are not computer networks. For example, 
the various airline reservation systems like American Airline’s 
SABRE [Plugge and Perry, 19611 have spatially distributed termi- 
nals (T’s) with a single Pc, possibly mediated by Pio’s or Cio’s. 
When there are several Pc’s, they are functionally integrated so 
as to provide the total capacity and reliability needed. Some 
military networks, such as the SAGE Air Defense System [Everett 
et al., 19571 have multiple computers (SAGE actually has a very 
large number). But they transmit to each other highly specialized 
data streams (for example, aircraft positional information for con- 
trol). The National Physics Laboratory of England has made a very 
comprehensive proposal for a general-purpose network [Davies et 
al., 19671, although we do not include it as a chapter. Again, it 
is just in the proposal stage. The Lawrence Radiation Laboratory 
(at Livermore) is no doubt the earliest and most impressive net- 
work. 

In terms of our PMS descriptions, a computer network (N) 
requires at least two C’s not connected through primary memory. 
Thus each C has a Pc and an Mp of its own and has to communi- 
cate with other C’s through messages. Duplex computers are thus 
defined as networks, provided they do not share Mp. For networks, 
links (L’s) are usually shown explicitly. In spatially distributed 
systems, both the time delays and the flow rates of the links are 
significant. The latter is so partly because the networks must make 
use of the telephone communication system, which exists inde- 
pendently of the networks, thus having parameters that do not 
correspond with any of the internal parameters of the individual 
computers. There may also be limitations of reliability, cost, 

accessing characteristics, and the size of the information unit that 
derive wholly from the links. For instance, many computer net- 
works would like to buy their transmissions from the telephone 
system for very short intervals (milliseconds), at very high data 
rates, and with short switching time (milliseconds), Le., bursts. 
Switching time and pricing policies within the telephone system 
conspire to  make this a difficult thing to do. Thus, with networks, 
links become important independent components. 

One classification of networks (N’s) is by fixed or variable 
interconnection structure. Fixed structure may mean that the links 
are fixed permanently over the life of the network. However, fixed 
structure may mean only that connections once made must be 
held for long periods of time relative to the message flows. An 
example is the telephone switching system mentioned above, 
which looks like a variable switching structure at the level of 
human conversations, but like a fixed switching structure at the 
level of computer conversations. Figures l a  and IC show variable- 
structure systems; Fig. l b  shows a fixed-structure system. In the 
former, any C can talk directly to any other C. In the latter, each 
C talks directly to only a few C’s; thus, to communicate with the 
other C’s, it must transmit through them as links; that is, it must 
use another C as an L. 

A second classification of N’s is by the nature of the delays 
suffered by the messages as they travel from an initiating C to 
a target C. Communication can be direct, in which case the only 
delays are those through the switches (S) and links (L) between 
the two C’s (Figs. l a  and lb). Alternatively, communication can 
involve storing messages at intermediate nodes (called store-and- 
forward communication), thus introducing additional memory 
delays into the communication but decreasing the demands for 
coordination between the two C’s. Although store-and-forward 
systems can be built with the intermediate nodes being K s  with 
buffer memories, in the present context the natural form for such 
a system uses the other C’s in the system as the intermediate nodes, 
as in Fig. IC. 

Several kinds of reasons can justify the existence of a particular 
network. The following list is adapted from Roberts [1967]: 

Load sharing. A problem (program and data) initiated at one C 
that is temporarily overloaded is sent to another for processing. 
The cost of transshipment must clearly be less than the costs of 

504 
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;/ 
/ 
C 

Fig. la. Variable-structure direct switching network PMS diagram. 

delay in getting the problem processed. Load sharing implies 
highly similar facilities at the nodes of the network. 

Data sharing. A program is run at a node that has access to a large, 
specialized data base, such as a specialized automated library. It is 
less costly to bring the program to the data than t o  bring the data 
to the program. 

Program sharing. Data are sent to a C that has a specialized 
program. This might happen because of the size of the program 
(hence, fundamentally the same reason as data sharing), but it 
might also happen because the knowledge (i.e., initialization and 
error rituals) to run the program is available at one C but not 
at  another. 

Specialized facilities. Within the network there need exist only 
one of various rarely used facilities, such as large random-access 
memories, or special display devices, or special-purpose array 
processors. 

c--L/[ I kL I 

/ \ 

Fig. lb.  Fixed-network PMS diagram. 

I 

Fig. IC. Store-and-forward network PMS diagram (using C switching) 

Message switching. There may be a communication task of such 
magnitude that sophisticated switching and control are worth- 
while. 

Reliability. If some components fail, others can be used in their 
place, thus permitting the total system to degrade gracefully. (At 
the present state of the art, peripheral computers are needed to 
isolate the periphery from the unreliability of the network, and 
vice versa.) 

Peak computing power. Large parts of the total system can be 
devoted for short periods to a single task, if there are important 
real-time constraints to be met. This depends on being able to 
fractionate the task into independent subtasks. 

Communication multiplexing. Efficient use of communication fa- 
cilities is obtained by multiplexing a number of low data-rate 
users, for example, T(typewriter; 150 b/s)’s. This may not be a 
reason for a network per se but may justify a larger network, 
provided that there is some reason for having one in the first 
place. 

Better communication. A community of users (e.g., a scientific or 
engineering community) that could mutually use the same pro- 
grams and data bases and converse about these directly (i.e., not 
by writing about them but in the context of mutual use) might 
become a much more productive community, with less duplication 
of work, faster communication of results, etc. 

Better load distribution through preprocessing. Some tasks require 
very high-data-rate communication with a computer. By doing 
preprocessing in a smaller computer, a reduced information rate 
can be sent to the more general system. 

With this general view of networks, let us consider several 
examples. 
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? 

Ms(disk)  . . .  l s (magne t i c  tape) . . .  
I 

r“‘ 
Mp(( . l  - 5)megabyte) 

Pie. . .  Pc(’IBM System/360 Model 40. 50) 

T(card)  . . . T ( l  i ne; p r i n t e r ) .  . . T ( typewr i  t e r )  

- - 

Section 4 I Network computers and computer networks 

ZBM ASP (Attached Support Processor) 

This first example (Fig. 2) is the simplest of all computer networks, 
consisting of two computers tied together, with each functionally 
specialized (and in addition required to be physically close). The 
function of Csupport is job setup and breakdown, that is, pre- 
processing and postprocessing. All T’s for the network are handled 
by it (except for Txonsole on C.main). The function of C.main 
is to process data. Thus this is an escalated version of the Pc-n 
Pi0 organization, where the Pio’s have been made into a Csupport 
and thus can take on additional functions. It should be compared 
with the CDC 6600 organization, which is C.main-10 Cio, but 
where the Cio’s are rather small Cio(4096 w; 12 b/w) compared 
with the C.support. The ASP organization is the 360 analog of 
a system consisting of an IBM 7090-IBM 7040 which emerged 
spontaneously in the early sixties at several IBM installations in 
order to deal with 7090 1/0 bottlenecks. Thus this kind of simple 
computer network has been with us for some time. 

In more detail, the advantages that are claimed for ASP are 
in reducing resource interference:l 

‘Adapted from IBM System/360 Attached Support Processor (ASP) System 
Description, H20-0223-0. 

C ( ‘Ma i n) := 

Fig. 2. IBM System/360 Attached Support Processor system/ASP 
PMS diagram. 

The addition of smaller modules of Mp in the form of a 
second processor. The processing of the application is di- 
vided between the main processor and the support proces- 
sor, with each performing those functions for which it is 
best suited. The core requirements for the support processor 
are small in comparison with those for the main processor. 
With this division of responsibilities, the system can expand 
its capabilities with a minimum addition of storage. 

The elimination of concurrent use of Pc time on the main 
processor for processing support functions (such as printing). 
Because the clerical functions are assigned to the support 
processor, the main processor no longer shares Pc time 
between the support functions and the application pro- 
grams. Therefore, the application has the opportunity to 
use all the resources of the main processor to fiill capacity. 

The addition of selector channels. The channel capacity of 
the system has been increased by one or more additional 
selector channels attached to the support processor. 

An algorithm for efficient management of the direct-access 
storage devices for system input/output data sets. The 
algorithm was designed specifically to accommodate the 
data demands, the data set characteristics, and the available 
private devices. The input/output routines always know the 
position of the access mechanism, thereby ensuring mini- 
mum seek time when data are transferred to the devices. 

IBM cites the above reasons for using the ASP system. These 
views differ from ours on its usefulness. Ideally, a multipro- 
grammed single-processor or multiprocessor structure would easily 
provide all the above advantages without the overhead of having 
large Mp’s on two computers (both of which hold nearly the same 
operating system). Also, as we note in the introduction to the 
System/S60 (page 584), the support-computer functions can be 
handled in the main computer with very little loss of large Pc 
power (3 to 10 percent). A multiprocessor structure should also 
cause less overhead, by not passing data sets between two C’s. 
(Alternatively, in ASP this could be done by an S to common Ms 
from both C’s.) 

University of Texas network 

The structure shown in Fig. 3 is similar to ASP in that a C.main 
is used, with some job setup and breakdown being done in several 
other C’s. However, there are several of these C’s, and they provide 
independent power for small tasks where the setup time for the 
large system is greater than the computation time. They are also 
physically remote from C.main and thus serve to make the power 
of the central facility available at local sites. The Teletypes are 
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e I etype)  

Telephone Exchange) 

CDC 6600; Computation Center) 

ie lephone Exchange ) 

L -C('CDC 1700; L i n q u i s t i c  Research Laboratory) -  

L - C('CDC 3100: College of Business Admin i s t ra t i on ) -  

L - C('8231 Computer Terminal)+ I +(ca rd ) -  

T(1 ine:  p r i n t e r ) +  

E. 
L ( t o :  o the r  C's  o f f  campus)- 

Fig. 3. The Computation Center, University of Texas, (Austin) Network 
PMS diagram. 

used to enter jobs directly to the C.main, where they are run in 
a batch mode. 

The network of Fig. 3 is that at the University of Texas, as 
derived from its internal planning memoranda. Similar systems are 
in existence or under construction at other universities. 

M.Z. ?: proposed network 

Figure 4 shows a network that is proposed for the M.I.T. campus 
[Bhushan, Stotz, and Ward, 19671. It moves to a more complex 
switching system, partly because there are two C.main's. Here 
an S(direct) is used in a non-store-and-forward mode as each C 
communicates directly with another. The communication rate 
between C's is 40 - 230 kb/s. (Note that at higher data rates a 
fairly large computer is necessary just to handle the store-and- 
forward message switching information rates.) The purpose of the 
network is to allow users of the small or terminal C's to get 
access to C('1BM 360/67) and C('GE-645). These two C's can, 
of course, communicate with one another. A large number of 
users are connected to T(typewriters) via the S('Te1ephone Ex- 
change). 

The Lawrence Radiation Laboratory (at Livermore) network 

The LRL network, started in 1964, appears to be the earliest 
general-purpose-computer network. It serves a user population 
of approximately 1,000, with several hundred simultaneous on 
line users. The network consists of five large computers (three 
CDC 6600s and two CDC 7600s), a switching computer (a DEC 

PDP-6 with two Pc's ant1 a 262 kword Mp and a 10"bit fixed- 
head disk for fast-access files), three terminal control com- 
puters (DEC PDP-8's), and a large central file (a 1012-bit IBM 
Photostore controlled by an IBM 1800 computer). Hardwired 4 
megabit per second links connect the large computers to the 
switching computer. The terminal computers and the large file 
are also connected to the switching computer. 

The main purpose of the network is to gain access to the 
central filing, printing, and terminal facilities. Load sharing is not 
an important consideration because each of the large computers 
operates nearly autonomously. Thus little change was required in 
each system to be integrated to the network. Jobs enter the net- 
work in any of three ways-by the batch input terminals of a 
large computer; by the typewriter inputs of a large computer; 
or by the typewriter inputs of the terminal control computer 
which in turn connects to the central switch. Unlike most uni- 
versity computation centers, which provide service for many 
users with small jobs, the LRL network is oriented to users with 
(multiple) large jobs. 

T storage CRT: d i sp lay :  . . .  I [keyboard 

T 'Dataphone; ( 1 . 2  - . . .  
i L . 8 )  kb/s 

3 
3 

. . ,  - I5 char/s 

( 'Dataphone). . . 

1 ( 'Dataphone). , . T('Dataphone) . . . T ( 'Dataphone). . . 

C ( ' S a t e l  1 i t e )  . . . 
:(CRT; d i s p l a y ) .  . . 

3 
'S('Te1ephone exchange: 

'S('Wideband Communications Center; (40 .8  - 2 3 0 . 4 )  kb/s) 

(IO- 1 5 )  c h a r / s , ( l . 2 -  4.8)  kb/s) 

Fig. 4. M.1.T.-network PMS diagram (proposed). 
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I 
duDlexed f i l e  
C 's  s h a r i n g  a 
common secondary 
memory f o r  l o n g  
t e r m  f i l i n g  

I I . _ _ _ . _ . _ . _  . _ . _ . _ .  - 
. C ( s f ;  M5) - - I 
-C ( s f :  M s ) T l  r-3- - - - - - - - - - 

I 1 l ; Z ; ( c R T ;  c o n s o l e ) -  

1 LN, : 
.C(s f :  Ms)- - I .\ u 
c o n c e n t r a t o r s ,  I I 

I 

I I h i g h  speed message 

s p e c i a l  systems, 
s t o r e  and f o r w a r d / s f  L S "  

I 
-I F-s -x  -I-- - 

I main processors  
w i t h  secondary 
memory (Ms) 

'S(50 - 180 b / ~ e c ) ~  

'S(600 - 4800 b / ~ e c ) ~  

3 S ( 4 0  - 50 k b / ~ e c ) ~  

'S(200- 2000 kb/sec; f i x e d )  

i x e d ,  ( 'Te lephone Exchange; d i r e c t ) ,  (C(sw: 3 
L (200 - 2000 kb /s )  

-.- .- L(40 - 50 kb/s)  

~ ( 6 0 0  - 4800 b / 5 )  - _ _ -  
- - - - - - - L(50 - 180 b/5)  

I -C (s f :  M s F - - - - l  ' 

c o n s o l e ) -  

~~ - ,I ,-;tT(card, l i n e s ,  ana loq ,  p l o t ) )  

message concen- I 
I t r a t o r s ,  spec ia l l  

systems, s t o r e  
I and fo rward /s f  

L ; ( c a r d ,  l i n e ,  p l o t ) -  

I ; 
I 
I 

I 

T e l e t y p e ,  - 3 u 
network periphery 

Fig. 5. Typical computer network PMS diagram. 

Typical local network 

We summarize in Fig. 5 the direction in which the last three 
networks are moving by presenting a hypothetical, local network, 
as it may mature on many large university campuses (and large 
industrial establishments). The network is conceived as a single 
computing facility, to serve a clientele with many heterogeneous 
but partially overlapping computing needs. An essential feature 
of the environment of the network is that the collection of com- 
puting resources it connects are not planned all at  once but keep 
growing and changing in imperfectly controlled ways. This arises 
from the quasi-independent nature of the subparts of large uni- 
versities and engineering establishments. In any event, the network 
is a mixture of functionally independent and functionally special- 
ized C's. One probable feature is the duplexed C.files which handle 

all the Ms functions for all C's, except the C(1ibrary). A library's 
computer, though strongly coupled to the network, would have 
its own files and specialized terminals, including hard copy devices 
oriented to library needs. The C.file increases the requirements for 
the S.centra1 but provides much more economic Ms, as well as 
easing the ability to connect new C's into the system, since they 
immediately have access to an organized Ms. 

The reader should note that the four switches (S's) can be either 
fixed links, variable switches (e.g., Telephone Exchange), or a 
computer used as a direct switch or as a store-and-forward switch. 

The most interesting aspect of this network is that it has a 
general hierarchical structure and is like other hierarchical organi- 
zations. Here, the levels of the organization are based on data 
rates. For example, there is a very low-level computer which deals 
with the basic communication to typewriters at -150 b/s. This 
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C switch concentrates several typewriters into a time-multiplexed 
2,400-b/s link. Several of the 2,400-b/s links can in turn be con- 
centrated prior to transmitting via a 50-kb/s link. Thus the general 
organizing principle, like that of most large organizations, is to 
handle problems at the lowest (cheapest) possible level. Another 
organization principle of the hierarchy is that only relevant infor- 
mation be passed between the levels. For example, encoding would 
be used so that only some fraction of the bits flowing at the 
periphery would enter the highest-level computers. At each of the 
levels we assume that specialized, time-shared computers are 
employed to handle the very simpler tasks of editing, simple 
calculations, etc. 

At the network periphery there are a number of terminal 
computers, Le., C(termina1; CRT, card, lines, analog, plot, key- 
board). Although they are computers, they behave as terminals. 
The DEC 338 (Chap. 25) is typical of this terminal class. Part of 
the periphery connects to other networks and part connects to 
specialized processes, e.g., a process control, or experimental 
apparatus on a dedicated basis. The peripheral computers are able 
to do local tasks independently of the larger, more unreliable 
computers. 

Combat Logistics Network/ComLogNet 

ComLogNet was developed for the U.S. Air Force in the early 
1960s for the purpose of sending messages (or information) among 
T's [Segal and Guerber, 19611. It is built to transmit both at low 

N('ComLogNet) := 

l T ( ' 5 u b s c r i b e r  Stat ion/SS) := 

(T(Te1etype I 'Compoun81 'Magnetic Tape Termina l4 ) )  

"See F i q u r e  6 ~ .  
3T(1Compound) := 

r L r 5 , I  50, 3- r -S F ' ( c a r d ;  r e a d e r ) j  

300,600 b/s M.buf fe r  T(card ;  punch)+ 

T ( 'Te l  e type) -  

L 1200,2400, -K-Ms(magnetic tape) - 4 T  Maqnetic Tape] := [[ 1 ] , Termi na 1 4800 b / s  
M s ,  b u f f e r  

c 

N('ComLogNet) 

1 

D i s t r i b u t i o n /  
ADU; # I  : I I  

Fig. 6b. Combat Logistics Network/ComLogNet component relationships. 

N ( ComLogNet) := 

i ( ' S C  
I 

/ 
I 

I 
I 
I 
I 
I 
I 
1 
\ 
\ 
\ 
\ 
', 

('SC)' 
( S S ) 2  . . 

S ( '  ComLogNet) 

I N ( ' S w i t c h i n 9  C e n t e r / S C )  See F i g u r e  6 d  

zTT( 'Subscr iber Stat ion/SS) See Figure  6a 

Fig. 6a. Combat Logistics NetworkKomLogNet PMS diagram. Fig. 6c. S('ComLogNet) PMS diagram. 
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(10 char/s) and medium (1,200 - 4,800 b/s) speed, as shown in 
Fig. 6a. In this regard the network is simply a message switch for 
the three terminal types. It employs C's for the switching elements 
and is fundamentally a store-and-forward system. Had it not been 
for security, reliability, response time, and other considerations, 
it would have been possible to construct an equivalent system 
using standard lease wire switches (or telephone exchanges). In Fig. 

C (Communications. Data Processor/CDP) := 

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ p ~ ;  reader) 

3 7 T . c o n s o l e  - 
C(CDP) := 

T(paper tape; reader)+ 

Ms(# l  :3 ;  drum) 

Ms(#1:48; magnetic tape ) -  

L ( to :C(  ' E x t e r n a l ) ) -  

T ( l i n e ;  p r i n t e r ) +  

T ( ' sys tem consol e) 3 

C('Tape Search Uni t ) '  

'Mp(core; 1.5 p / w ;  8192 w: 56 b/w) 

"C('Tape Search Unit/TSU := 

K-S-T(printer)+ 

Mp 'Data s to re ;  Pc I:.;;; 1 
Mp 'Procedure; 

/5;:'96 b/w f unc t i on :  

code trans Za- 

3C ( 'Accumulation and D i s t r i b u t  ion/ADU) := 

;-K # i : Z 5 ;  ('low 

- K  [BOO b / s )  ] speed; 0 -601  -L4 -  
b / s )  I ( ' h i g h  

speed); 601 - 

P o n  J 
4Link;  communications l i n e s  

Fig. 6d. ComLogNet N("3witching Center/SC) PMS diagram. 

6b a tree is used to present the relationship of constituent members 
of ComLogNet. From it we see that at the first level ComLogNet 
has just a switch, links, and terminals (as shown in Fig. 6 4 .  The 
networks switch employs five specialized N('Automatic Electronic 
Switching Centers/SC)'s which communicate among each other 
(Fig. 6c). Terminals connect to the individual N('SC)'s and mes- 
sages are routed between two T's, either by a store-and-forward 
process within N('SC) or among two N('SC)'s. 

The individual N('SC)'s are located at five specific locations and 
consist of fixed computer configurations of five to seven C's. The 
structure of N('SC) (Fig. 6 4  is formed basically by a duplex C 
structure which handles most processing. Attached to the two 
C('Communications Data Processor/CDP) are two to four C('Ac- 
cumulation and Distribution Unit/ADU) which handle communi- 
cation-link processing. A C('Tape Search Unit) is used off line to 
process data from Ms(magnetic tape). The structures of C('CDP), 
C('Tape Search Unit), arid C('ADU) are defined within Fig. 6d. 

ARPA network1 

An experimental computer network (Fig. 7a) is operational and 
connects 19 computer facilities associated with the contractors 
of the Information Technology Branch of the Advanced Research 
Projects Agency (ARPA). These contractors, all of whom are 
engaged in advanced research in computer science and technology, 
form a community in which to attempt a general-purpose network. 
Since several of the nodes in this network (e.g., M.I.T.; see Fig. 
4) will themselves be constructing networks at their own sites, the 
system has faced a good many of the design problems associated 
with such a network. Unlike many of the other networks discussed 
in this chapter, the ARPA network consists of sites that are physi- 
cally remote, that are each developing as total systems under 
independent management, and that have no agreed-upon func- 
tional specialization vis-i-vis each other. Furthermore, the uses 
that each node will make of other nodes will be the fairly general 
ones cited at the beginning of this chapter, as generated by a 
general scientific community. Since many of the institutions that 
will be tied in are major academic institutions, diversity will be 
guaranteed. The motivation behind the experiment is to reveal 
and begin to solve the technical problems of such general net- 
works, while also discovering which of the several advantages of 
using networks listed earlier (or others unmentioned) emerge as 
important. 

'The Specific links, sites, etc., change with time; thus the actual structures 
we present are, by the nature of the experiment, almost guaranteed to be 
in error. 
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C('Dartmouth Colleqe) 

N('U Illinois) 

Santa Barbara 

I 

Fig. 7a. Advanced Research Projects Agency (ARPA) network PMS diagram (tentative). 

c ('Local) := 

C ('Host)- C ( '  Interface Messaqe Processor/lMP) 1 L(40 .8  kb/s ;  to:N('ARPA)) 

I . . .  
[I ... 

Fig. 76. Advanced Research Projects Agency (ARPA) local-computer 
PMS diagram. 

Technically, the goals of the network are (1) to make a user 
(T) at any site behave as though it were a T at another site and 
(2) to let a C at any site use a C at another site for load, program, 
and data sharing. To each site has been added a special C('1nterface 
Message Processor/IMP). The C('IMP) has been designed by the 
creators of the network, and it provides the communality that will 
permit the network to function. One constraint in the network 

design is to make only small perturbations to the larger host 
computers. The C('1MP) is responsible for network messages 
among other nodes (i.e., to their C('1MP)'s) and for the interface 
between the network and the C (or N) at the local site. The local 
computer C('Host)-C('1MP) interface is shown in Figs. 7h and 7c 

I N('Loca1) := 

I"" 
Fig. 7c. Advanced Research Projects Agency (ARPA) local-computer- 
network PMS diagram (tentative). 

( ' L o d i  , Cal i forn ia)' ( I  Li tt leton, Massachusetts)' 

S('Mojave, California)' 

X ( # l  !312 
I 

S(manual;50 kb/s; 'Telephone Switching Centers) 

2X(C('local)lN('locaI)) These N o r  C may communicate directly 

with one another or by using more L's can communicate via the S ' s .  

Fig. 7d. Advanced Research Projects Agency (ARPA) fixed switching centers PMS diagrams (tentative). 
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for a local computer and local network cases, respectively. The 
C('1MP) is a C('Honeywell516; 16 b/w; 12 - 16 kw; 1 p / w )  with 
capability to connect to four to six links at a 5O-kb/s data rate. 

The ARPA network leases a set of fixed links, L(50 kb/s). 
These emanate from four Sfixed, as shown in Fig. 7d.  Thus the 
fixed links between the various sites, as shown in Fig. 7a, are 
composed of the links in Fig. 7d.  For example, the L(Carnegie- 
Mellon University; Bolt Beranak and Newman) goes from Carnegie- 
Mellon University in Pittsburgh, Pa., to Williamstown, Ky., to 
Littleton, Mass. (on one of the two links) to Bolt Beranak and 
Newman in Boston, Mass. The other L(Litt1eton; Williamstown) is 
part of L(University of Michigan; Lincoln Laboratory). With such 
a fixed-link system the network must operate in a store-and-forward 
fashion, with C('1MP)'s at each site carrying out this function. Thus 
the C('1MP) is required at each site, since there is no uniformity 

Section 4 I Network computers and computer networks 

in the other C's that are at a site and no control over their 
operation. 

Conclusions 

We feel the network is the most important computer structure 
in the book. Through understanding it, we will be able to organize 
more computing power than with any other structure and to 
achieve more reliability. The issues of switches and links are so 
vital that through understanding of them all computer structures 
will improve. 
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Part 6 

Computer families 

The three groups or families of computers described in this part are each built around 
a single ISP and PMS structure. The IBM 701-7094 I1 sequence (Sec. 1) shows the 
evolution of a series. The reader can trace a number of incremental changes, or 
features, such as the addition of index registers, indirect addressing, 1/0 processors, 
and larger random-access memories. The SDS 900-9000 series and the IBM Sys- 
tern1360 are both families in which successor models are within a planned frame- 
work; evolution occurs mainly in the implementations, not in the ISP. 
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Section 1 

7094 

709 

704 

70, 

The IBM 701-7094 II sequence, 

C (  7094 I? C(7094 It)' 
/-4*-* 

~ 

c'7".L .c(7090) 

/ .C.(7040,7044)6 

- 

~ c 

- .C(701) 
2 0 4 ?  

, 1 I I , / / 1 1 I I l  

a family by evolution 

The IBM 701, 704, 709, 7090, 7040, 7044, 7094 I, and 7094 
II sequence relationship is shown in Fig. 1. The group is not 
a compatible series. The IBM 701 [Astrahan and Rochester, 
1952; Buchholz, 19531 is a forerunner of the series; all except 
the 701 are painfully compatible. The sequence is included 
because the 7090 is a reference or benchmark of scientific- 
computer power. All machines use 36-bit words. The 701 stores 
two instructions/word in the same manner as the IAS computer 
(Chap. 4), whereas all others in the sequence store only one 
instruction/word. The 701, 704, and 709 are first-generation, 
vacuum-tube technology; the rest are second-generation. 

The IBM 7094 II description given in Chap. 41 is based 
directly on information in the Programming Reference Manual, 
but the Appendices of that chapter give the ISP of the Pc, a 
Pio, and a K as inferred by the authors of this book. The 
description of the Pc gives the instructions in the 704 and 7044 

Fig. 1. Relationships among IBM 701, 704, 709, 7094 series. 

- 

b/char 

'Mp(e1ec t ros ta t i c :  random; 24 p / w ;  2048 w: 36 b/w) 

" ~ c ( 2  i ns t ruc t i ons /w ;  M.processor s ta te ( -  3w) :  I address/ 

i n s t r u c t i o n ;  36 b/w; technology: vacuum tubes: descendants: 

IBM 704, IBM 709: 1953- 1956) 

Fig. 2. IBM 701 PMS diagram. 

to show an evolution. However, the major evolutionary change 
does not appear in Pc's ISP but in the PMS structure. 

The 704 structure, like that of the 701 (Fig. 2), provides only 
for peripheral transfers to primary memory via Pc under pro- 
grammed control with no interrupt system. As such, only one 
T or Ms could operate easily at a time. The 709 introduced 
the Pio('Data Channels) to improve the ability to transfer data 
between Mp and Ms without requiring Pc intervention. Concur- 
rent operation of several 1/0 devices is carried out by multiple 
Pio's along the lines of the 7094 II PMS structure (Fig. 1, Chap. 
41, page 518). However, the utilization of the data channels 
tends to be rather low, particularly when the data channel is 
controlling very slow devices (e.g., card equipment and line 
printers). When operating a high-speed tape unit at 90,000 X 6 
bits/sec the utilization of the data channel is still only approxi- 
mately 3 percent. A program interrupt method of data transfers 
would have been sufficient. 

The incompatibility among the machines, especially the 
7090-7040-7094, is disheartening, both from the point of view 
of a user and an engineer. The incremental hardware needed 
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to achieve compatibility is inexpensive when the system price 
is considered. Also, the incremental changes in the ISP do little 
to increase the Pc performance. Compared with the 704, the 
extensive order code of the 7094 shows an evolution in which 
for marketing, emotional, or analytic reasons new instructions 
were added. The index registers and their instructions are a 
good example of this trend. The 7094 has a very general set 
of index-register transmission instructions; if implemented 
properly, they are probably easier to provide than the original 
704 instructions. 

In the implementation of the double-precision floating-point 
hardware, the sense-indicator register is needed for temporary 

Section 1 1 The IBM 701-7094 II sequence, a family by evolution 

storage. Thus a user has to preserve this register when double- 
precision floating-point instructions are given. The reason for 
this undoubtedly relates to field modifications and cost. In an 
original design this would be inexcusable; in this case double- 
precision floating point is undoubtedly worth the loss of sense 
indicators. 

All in all, the designers of the 704-7094 I I  provided increased 
generality through evolution. They gradually ran out of patching 
time, technology, instruction encoding space, and memory 
addressing bits, while exceeding compatibility constraints. It 
was indeed time to create the IBM System/360. 



Chapter 41 

The IBM 7094 I, II 

Introduction 

The IBM 7094 I and 7094 I1 computers are the last of a series 
of computers beginning with the IBM 704 (Fig. 1, page 515). The 
series is an outgrowth of the IBM 701. Although the series is 
designed for scientific (arithmetic) calculations, its speed and 
structure allow it to be used for general-purpose computation. 
Business-type processing which uses string data is efficiently han- 
dled by conversion into fixed-length fields at input and output. 
From about 1956 to 1966 the family was the standard of large 
computers in the United States, there being approximately 20 701, 
50 704, 20 709, 50 7090, 130 7094 I, 125 7094 11, 120 7040, and 
120 7044 computers in existence. 

The PMS structure is a single central processor (Pc) with 
multiple input/output processors (Pio’s) (for all except the 701 and 
704). The Pio’s provide for multiple transfers to primary memory 
(Mp) at high information flow rates. The structure allows for 
duplex connection to terminal (T) or secondary-memory (Ms) 
control (K). This provision permits the system to be used in real- 
time applications requiring significant computation, high-data-rate 
transfers with other systems, and high availability. However, the 
system was not initially designed for time sharing and multipro- 
gramming use, and the attempt to so use it required modification 
[Corbato et al., 19621. 

The word length is 36 bits. There is one single-address instruc- 
tion/word. In all but the 7094 the processor interprets instructions 
serially. In the 7004 one register instruction look-ahead is used. 
The Pc has index registers, the 704 being the first IBM computer 
to use them. Their number increased from three in the 704 - 7090 
to seven in the 7094, as their usefulness became apparent. 

Structure 

A simple tree-structured IBM 7094 I using PMS is shown in Fig. 
1 and using a conventional block diagram in Fig. 2. 

Primary memory ( M p )  and P-Mp switch 

The primary memory, Mp(’7302 Core Storage), has a capacity of 
32,768 36-bit words with a cycle time of 2 microseconds. The 
actual memory has a 72 + 1 parity bit word for even and odd 
addresses of 36-bit words. A request for two 36-bit words can be 

acknowledged in one 2-microsecond memory cycle. Thus Mp is 
Mp(’7302 Core Storage; 2 p / w ;  16384 w; (72, 1 parity) b/w) for the 
7094I,andMp(1.4ys/w; 1 6 3 8 4 ~ :  (72,l parity)b/w)forthe7094 11. 

The S(’7606 Multiplexor: time multiplexed) provides access to  
Mp from any one of nine P’s. Only Pc can request two 36-bit words 
at a time from Mp for instruction look-ahead and double-word 
operations. There can be only one Pc in the system. 

Processors, P 

Three processors are described: Pc(’7109, 71 10 Central Processing 
Unit/CPU), Pio(’7607 Data Channel), and Pio(’7909 Data Chan- 
nel). 

All P’s behave similarly in that Pc instructions and Pi0 com- 
mandsl are fetched (or requested) from Mp and then interpreted 
in P. An instruction location counter in P addresses the next 
instruction. A processor instruction may, in turn, require the 
processor to access Mp for data, to perform transfers, to modify 
its state, etc. Although structurally the P’s are similar, organiza- 
tionally the Pc is superior to the Pio(’Data Channe1)’s; Pc issues 
programs to Pio’s and start and stops (controls) Pio’s. 

Two-way communication is required between Pc and the Pio’s. 
Tasks (jobs or programs) for Pio’s are first set up in Mp by Pc. 
Pc then demands that Pi0 execute the program independently 
under its own control. Initialization takes place when Pc sets the 
instruction counter of a Pio. Upon task completion in Pio, an 
interrupt request is sent to Pc from Pio. 

Below we first give a description of the Pc. Then the Pio(’7900) 
is presented in detail and the Pio(’7607) is outlined. The reader 
should compare the two Pio’s. The Pio(’7909) is a later design than 
the Pio(’7607). It interprets instructions for the block of data being 
transferred and issues instructions to the KMs or KT. The earlier 
Pio(’7607) interprets the instructions for controlling the informa- 
tion being transferred; the Pc interprets and issues the instructions 
to KMs or KT. The 7909 is therefore able to control more closely 
a T or Ms using a single program without need for Pc intervention. 

‘IBM attempts to distinguish between Pc and Pio’s terminologically by 
“instruction” and “command.” We make no such distinction in the follow- 
ing discussion; P s  interpret instructions. 
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I T( '7151 -2: consol e ) -  

. K-Sfx-Ms 

X-Sfx  7 l- 
- 
# 0 : 9 :  '729 I - V I .  magnetic 

tape: 751112 i n / s :  2400 f t ;  

200, 556, ROO b y / i n :  6 b/by 

'716:  l i n e ;  p r i n t e r :  72/120 

cha r / l i ne ;  150 In/min: 64 
symbol/char; 6 b/char 

- 

. K  

' T .console - 

I , 
I 
I 

I 

I 
I 
I T.console - 

Sfx-Ms (#0:9; '7340 Hypertape) - 

- 
K ( # l  : 6)-Sf x-K-T(rUO.9)b. u 

L ( t o :  P i 0  (#4: 8 ) )  

'Mp(core; 16384 w:  (72, I p a r i t y )  b/w: 2 . 0  /LS /W)  

"S( t ime mu l t i p lexed ;  '7606 M u l t i p l e x o r :  I M :  R P: r a d i a l ;  l oca t i on :  c e n t r a l )  

3Pc('7109,7110 Centra l  Processing U n i t ;  I i ns t ruc t i on /w :  I address / i ns t ruc t i on ;  

Mps(12w): data:  si,bv,sf,suf,df,duf,fr.i: technology:  t r a n s i s t o r s :  antecedants: I B M  704,709, 

7090: descenddnib:IBM 7040,7044,7094 I I ;  1962 - 1966) 

'S( f ixed;  from: 2 K; t o :  5 Ms; c0ncurrency:Z) 

' K ( # l  .2: '7640) 

" T  := ( T ( l O 1 1 1  paper tape: reader: 500 char/s; 6,7,8 b / c h a r ) l T ( ' l 0 1 4 ;  paper tape: 

7 S ( f i x e d :  2 K )  

punch) I T (Tel e type)  1 T (typewri t e r ) )  

Fig. 1. IBM 7094 I PMS diagram. 
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Pc 

Console 

- 
'7109, 7110, 7151-2 Central Processing Unit/CPU; 
36 b/w; 1 address; 1 instruction/w; 
data: (si, bv, sf, suf, df, duf, fr.i); 
number representation: s i p ,  magnitude; 

- able( 1 : 12), 'miscellaneous-bits( 1 : 7)) 

519 

+ 
Instruction I Arithmetic 

+ Processing equence 
Unit I Unit 

(Central Processing Unit) 

Core Storage 

t 
I 

7909 Data Channel - - - - - - - - - - 
0 (channel switch) 0 (channel switch) 

Control 
Reader Tape Units Control Synchronizer 

w$+,+, Drum Storage 

File 

I I 

Telegraph 
1/0 Units 

Fig. 2. IBM 7094 data-processing system configuration. (Courtesy of International Business Machines Corporation.) 

The Pc will be discussed in two parts: the Register-transfer 
level implementation and the Instruction-set Processor. These are 
partially redundant, but they offer another opportunity to compare 
the two types of descriptions. The Pc hardware will be described 
by first giving the registers and the interregister transfer paths. 
Then the process by which instructions are interpreted will be 
described. (Interpretation occurs in a distinct set of memory cycles, 
called instruction/I, execute/E, logic/L, and buffer/B, which are 
sometimes mentioned in describing registers and will be fully 
discussed later.) 
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Processor registers and mode bits registers 

Figure 3 gives the Pc registers and the data transfer paths. Both 
the ISP registers (denoted by ") and the temporary registers are 
given. The ISP registers and modes are controlled by the program. 

Instruction counter (IC)".  The Instruction Counter, IC, is 15 bits. 
It is used by the processor to locate the next instruction in Mp. 
Once the program is started, the IC can be set to an address 
specified by a transfer instruction. For most instructions, the IC 
is stepped sequentially by 1 with each new instruction. The IC 
is normally advanced at the end of each instruction (I  cycle). 

Instruction backup register (IBR).  The Instruction Backup Register, 
IBR, is a 36-bit register, (S, 1:35), and is used to buffer the next 
instruction. Pc attempts to have the next instruction available in 
IBR, since the Mp permits 72-bit transfers, thus avoiding an 
unnecessary reference to Mp. When the instruction reference is 
to an even location, the IBR is loaded with the contents of the 
next higher odd address after the contents of the even address have 
been placed in the Storage Register. The IBR is also used for 
fetching operands in double-precision operations. 

Address register ( A R ) .  The Address Register, AR, is 15 bits and re- 
ceives information from the Storage Register, Instruction Backup 
Register (at the beginning of a storage reference I or E cycle), 
Index Register, and Index Adder. The contents of the AR are 
sent to the Multiplexor Address Switch to select the core mem- 
ory location. 

Instruction register ( IR) .  The 18-bit Instruction Register, IR, is 
divided into two parts: bits (S, 1:9) always contain the operation 
part of the instruction, and bits (10:17) form the Shift-counter 
Register. The Shift Counter is used during shifting, multiplication, 
division, and floating-point instructions. Bits (10:17) may also 
contain a sense instruction address, operation codes for those 
instructions which require an address part, and the class and unit 
codes for input/output instructions. 

Storage register (SR). The 36-bit Storage Register, SR, stores infor- 
mation that comes from or goes to core storage. 

Adders (not a register). The Adders furnish a 36-bit path for data 
going from the storage register to other registers in the processor. 

Accumulator register (AC)".  The Accumulator Register, AC, is 38 
bits (a 35-bit word with a 1-bit sign, and 2 bits for overflow 

conditions, P and Q). The AC is used to hold one factor during 
arithmetic or logical operations and to receive results from the 
adders. 

Information may be shifted into the accumulator from the MQ, 
1 bit at a time. 

Multiplier-quotient regi.ster (MQ)" .  The MQ Register is 36 bits. 
During a multiply instruction, MQ contains the multiplier; during 
a divide instruction, MQ receives the quotient. It can be shifted 
right or left, independently, or combined with AC into a 72-bit 
register. 
Sense indicator register ( S I ) " .  The Sense Indicator Register, SI, is 36 
bits. SI is normally used as a set of binary program switches which 
can be set and tested. However, it is also used as a temporary register 
in double-precision arithmetic operations. 

Indexregisters (XR)".  Seven 15-bit Index Registers, XRs, in the 7094 
system are used for address modification. They are specified by the 
tag bits of an instruction (bits (18:2O)) and modify an address by 
adding the two's complement of their contents to the address. In the 
earlier 7090 (and 7044) only XR[l, 2, 41 are available. 

Multiple tag mode". In Multiple Tag Mode only Index Registers 
1, 2, and 4 can be specified. The indexing function specified is 
determined by the "logical-or'' of each index register specified. 
When not in Multiple Tag Mode, each 3-bit number selects one 
of seven index registers. The 1-bit Multiple-Tag-Mode Register 
maintains the state of the mode. The requirement for the two 
modes comes entirely from the need to maintain compatibility 
between the 704, 709, 7090, 7040, and 7044 (which have three 
index registers addressed as in Multiple Tag Mode) and the 7094 
I and 7094 I1 which have seven index registers. 

Tag register (TR). This temporary register holds the tag field of 
the instruction being executed and is used to select the Index 
Register being addressed. 

Index adders (XAD) (not a register). A separate 15-position Index 
Adder is used for the Index-register operations. All storing, load- 
ing, changing, and modifying of Index Registers is via the Index 
Adders. 

Accumulator overflow*. The Accumulator Overflow Indicator is 
turned on whenever a 1 passes into or through position P from 
position 1 of the AC as a result of the execution of a fixed-point 
arithmetic or a shifting instruction. 
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Fig. 3. IBM 7094 central-processingunit information flow. (Courtesy of International Business Machines Corporation.) 
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Dioide-check". The Divide-Check Indicator is turned on, in fixed- 
point or floating-point division, if the magnitude of the number 
in the AC (dividend) is greater than or equal to the magnitude 
of the number in memory (divisor). 

Input-output check". The Input-Output Check Indicator (1-0 
check) is turned on by the attempted execution of an input/output 
instruction without first selecting an input/output unit. 

Transfer trap mode". The computer can be operated in a special 
Transfer Trap Mode. Operation in the Trap Mode permits the 
program to run at normal speed with interruptions of normal 
operation only at transfer points. At such points the location of 
the last sequential instruction is saved, and a transfer of control 
is made to a fixed location. 

Sense switches". Six Sense Switches are located on the console. 
They may be turned on or off manually, and there are instructions 
which sense them. 

Sense lights". Four Sense Lights are also on the console. Any one 
of these lights may be turned on, off, or the status tested by 
instructions. 

€'cine1 in-out sicitclzes". These 36 switches on the console may be 
read by an instruction. 

Instruction-set interpretation 

The basic computer clock cycle is 2.0 p in 7094 I and 1.4 ps in 
7094 11, as dictated by Mp. Within the single 2- (or 1.4-) micro- 
second cycle, up to 10 sequential register transfers and/or data 
operations can take place, each of which transfers information 
among the Pc's registers; several operations may occur simulta- 
neously. In Pc four different cycles are used: instruction/I, exe- 
cute/E, logic/I,, and bnffer/B. The cyclic sequence of an instruc- 
tion is fixed, always beginning with an I cycle and progressing to E, 
L, or B cycles, depending on the instruction. The number of cycles 
requiredfor an instruction may vary from I (e.g., transfer) to 19 (e.g., 
double-precision floating-point divide). 

Instruction cycle (I). The I cycle begins when IC furnishes the 
instruction location to Mp, via S('Multip1exor). The addressed 
instruction word taken from Mp goes to the Multiplexor Storage 
Bus (Fig. 3) .  From the Multiplexor Storage Bus the instruction 
is read into the Storage Register where it is separated into the 
operation portion and the address portion of the instruction word, 

The operation portion of the Storage Register goes into the In- 
struction Register, where the operation code is decoded and the 
execute control circuitry is set up to perform the operation 
specified by the instruction. The address portion of the instruc- 
tion word, now located in the Storage Register, may be used 
directly. Normally, however, it goes to the Address Register and 
then to the Multiplexor Address Switch to locate the appropriate 
data word in Mp. If the address is to be modified, it is routed 
from the Storage Register to the Index Adders for Index-register 
modification. The modified address is then brought to the Address 
Register and on to the Multiplexor Address Switch to locate the 
data word in core storage. 

Concurrently, during the same instruction cycle, a second 
instruction, located at  the immediately higher odd-numbered Mp 
address location, is broiight to the Instruction Backup Register/ 
IBR. While in the IBR, the odd-numbered instruction is partially 
decoded to determine if it meets certain criteria for concurrent 
execution, thus saving a second Mp reference. If the instruction 
in the IBR cannot be executed with the current instruction, it is 
ignored in the current I cycle and is brought into the Storage 
Register on the next I cycle. 

Execution cycle (E) .  The execution (E) cycle is used when a reference 
to core storage is needed. All instructions requiring an operand have 
an E cycle following the I cycle. 

Indirect addressing of an instruction requires an extra E cycle. 
In other words, an instruction that normally goes from I to E to 
be  executed will go to I, E, and again to E if it is indirectly 
addressed. 

Logic cycle (L) .  The L cycle is an execute cycle that does not 
require a reference to Mp. Many instructions use both E and L 
cycles when information is required from storage and the instruc- 
tion cannot be completed during an E cycle. Other instructions 
require no reference to storage and, therefore, use only I and L 
cycles for their completion. 

Bufer cycle (B) .  A buffer (B) cycle is a null Pc cycle; it is used 
when the data channels get information from or put information 
into core storage. This information can be either data or data- 
channel commands. All demands for B cycles come from the 
channels themselves. Because of the nature of Ms's and T's, the 
demand for a B cycle takes precedence over an instruction being 
performed by Pc. If Pc is in its logic cycle, then both an L and 
B cycle occur simultaneously. 
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Instruction interpretution. Instruction flow diagrams for the CLA, 
CAL, and CLS instructions are given in Fig. 4. These diagrams 
show the sequential process of instruction execution. Although the 
flow diagrams for these instructions are trivial, the general process 
is still apparent. The more complex instructions, for example, dou- 
ble-precision floating-point divide, are carried out in a similar 
fashion, but with many more operations. The registers, transfer 
paths, and interregister data operations are the register-trans- 
fer-level primitives from which the ISP is implemented. The data 
flow diagram (Fig. 3) explicitly defines the main registers and 
register operations within Pc. 

Pc ZSP 

The Pc Instruction-set Processor is given in Appendix 1 of this 
chapter. The instructions are arranged in groups according to the 
location of operands. These groups are: 

Operations on Mp 
M p t u  Mp 
M p t u  Mps 

Mp + Mp b Mps 

(unary operutionlu on  M p )  
(unary operation on Mprocessor 

(binary operationlb) 
state/ Mps) 

Obtain instruction 

s. 1-1 I 71-15 

ploced in inrt, reg 

Operation decoded 
in  decoders 

1 
Bring up execution 
control lines 

Minus to storage 
register sign 

I I 

Address routed through 
address register 3-17 

I 

! 
Address of data i s  
located 

CLA, CAL Data routed to the 

Fig. 4. IBM 7094 CLA and CLS instruction flowcharts. (Courtesy of 
International Business Machines Corporation.) 

Operations on AC and MQ 
Mps t u  Mps 
Mps t u  Mp 
Mps t Mps b Mp 

Operations on the index registers 

Operations on the sense indicators 

Instruction for program control 

Memory mapping for multiprogramming and Mp(65536 w )  

A special option provides multiprogramming by allowing a pro- 
gram to run in a protected area of Mp. Two registers are used: 
The base register establishes the lower bound of the program, and 
the length register establishes the upper bound. Pc checks that 
all program references are within the protected area. 

Two Mp(32678 w)'s can be used on the computer. Mp is then 
considered as A core and B core for addresses 0:32767 and 
32768:65535. A 1-bit register is used to select whether A or B core 
is to be used for data; and one 1-bit register is used to select 
whether A or B core is to be used for the instruction. These 
modifications were used at M.I.T. in their Compatible Time Shar- 
ing System/CTSS [Corbato et al., 19621 which used a 7094 11. 

Pio('7607 Data Channel) 

The Pio('7607 Data Channel) executes programs which transfer 
data between Mp and Ms(magnetic tape) or T(card; reader, 
punch), (line; printer)). The paths and structure can be seen in 
Fig. 1. 

Transferring blocks of data between Mp and an Ms or a T via 
the 7607 data channel takes places as follows: 

1 

2 

Pc sets up the block transfer program in Mp for Pio. 

Pc attaches a K for Ms(magnetic tape) or for T(card;reader) 
to Pio. (Faults in the connection may cause K to interrupt Pc.) 

Pc starts the Pi0 by loading the Pio's instruction counter. 

The data transmission takes place. On input, for example, 
T or Ms transmits a &bit character (or a 72-bit word) to 
K. The characters are buffered (collected) in K and sent on 
to Pio. Pi0 then requests a memory access from Mp via the 
S('7606 Multiplexor) and, finally, a data word is transmitted 
to Mp. 

At the termination of a simple data block transfer, Pi0 
fetches the next instruction from Mp. If the next instruc- 
tion-task type is the same, Pi0 and K remain logically linked 
and continue to transmit data. 

3 

4 

5 
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6 At the termination of the task, the completion signal from 
Pi0 causes Pc to interrupt and Pi0 may also halt. 

Pio('IBM 7909 Data Channel) 

Ms('1301 Disk Storage, '7340 Hypertape Drives) and the T('Te1e- 
Processing equipment) communicate with Mp via the Pio('7909 
Data Channel). Four 7909 Data Channels may be attached to a 
7094 I or I1 system. 

K('7631 File Control) is required for M(disks). Several K('7631) 
can be used with the 7094 system alone or shared with an IBM 
1410 system or shared with another IBM 7000 series (not 7072 
system). 

When Ms('7340 Hypertape Drives) are attached to the 7094 
system, K('7640 Hypertape Control) is used between the 7909 data 
channel and the drives. One K('7640) may be attached to a 7094 
system; it has two paths, each of which can be used for data 
transmission. 

The K('1416-6 Input-Output Synchronizer) is used with T('Te1e- 
processing Equipment)'s. The structure for these T's is rather 
elaborate, yet only six T's can be active at a time. 

Transferring data from Mp to a T or an Ms via the 7909 takes 
place as follows: 

Pc sets up the data-transfer management program in Mp for 
a Pio. 

Pc starts Pi0 by setting Pio's command (instruction) location 
counter at the origin of the task program in Mp. (Faults in 
the connection may cause Pi0 interrupts to Pc.) 

Pi0 issues an instruction to be executed by K. This establishes 
a state in K which selects and initializes the particular Ms or 
T and attaches the peripheral device K to Pio. (Faults in this 
selection may cause interruption of Pio.) 

The data-transmission instruction is read and initializes Pio. 

The data transmission takes place under control of Pio-K. 
The K of the selected device assembles characters. Input 
characters are transferred to Pi0 which assembles them into 
words and in turn transfers them to Mp. 

At the termination of a data block transfer instruction, 
another instruction is fetched from Mp by Pio. This in- 
struction may be to another K. 

At the termination of the Pi0 program, Pi0 signals comple- 
tion by interrupting Pc. 

This discussion is based on information taken from the IBM 
7094 Reference Manual. The body of the description is contained 

in ISP descriptions (Appendices 2, 3 and 4 of this chapter). The 
main registers of Pi0 are shown in Fig. 5.  These registers are 
declared and their function is explained in the first section of the 
ISP description of Pi0 (Appendix 2). The remainder of the ISP 
description is concerned with defining the interpreter and the ISP 
instruction set. 

There are about 50 bits in the K's (see Appendix 3). A knowl- 
edge of K's state and the K process is required for understanding 
the Pio. A description of the K and Pi0 data-transmission processes 
is given in Appendix 2. 

The Pc instructions controlling Pi0 are presented in Ap- 
pendix 4. 

The level of detail in the appendices is slightly greater than 
that in normal ISP description. It is, however, not completely 
precise, as the behavior is extremely time- and Ms- or T-depend- 
ent. The sequence check conditions are incomplete; that is, the 

Mp(core) 

3'7606 Mlultiplexor) 

(36 datal  (15 address) 

Storage Channel 
address 

switches switches 

(1 5 )  (1 51 (15) 

Operation Word Address 

1 1  
I A I  I 

Assembly 
register/ 

AR<S,l 35> 

switches. ring/ r ing/  
register 
,. Pi0 status 

Fig. 5. IBM 7909 data-channel-registers diagram. 
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conditions for illegal instruction sequences are not given. Both ISP 
and text descriptions are given for parts which are particularly 
complex. 

The ISP description should be observed in the following se- 
quence: Pi0 State; K State (Appendix 3); Pi0 Instruction Format; 
Pi0 Interpreter; Pi0 Instruction-Control (or Initialization) in- 
structions, Block Transfer (or Copy) instructions, Conventional 
Move and Transfer instructions, and Interrupt Control instructions; 
Instructions in Pc (Appendix 4); Interrupt Operation; and Proc- 
esses definingdata movementsbetween K and Pio(Appendix2). The 
Pio, K, and Ms or T processes are, in several ways, more complex 
than those of a Pc. First, Ms or T activity is not categorized as 

nicely as a Pc instruction set. The T or Ms events occur at times 
peculiar to the device-not a simple synchronous clock. Finally, the 
peripheral components have a large number of error states. 

Conclusions 

The series ending with the IBM 7094 I1 is a significant member of 
the computer population. It provides a good example of the evolii- 
tion in computer systems that occurred from 1954 to 1!)65. 
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APPENDIX 1 IBM 7094 PC ISP 

Appendix I 

I B M  7094 Pc I S P  Desc r io t i on  

Pc S ta te  
The descr ip t ion  does not  include the  imo protec t ion  and re locat ion  schemes used for  t h e  7040 and 7094. 
i s  declared; i t s  ac t ion  i s  not  described. 
t i o n  Backup Regis ter  i s  not  described, although it i s  used t o  save time i n  program execution. 
func t ions  i s  highly s i m p l i f i e d .  

AC<a,P ,S, 1 : 35> * Accumulator, 38 b i t s  

The Trm-Mode . f l ip - f lop  
Trapdode  allovs anu change o,f t h e  Tns truc t ion  Counter t o  cause a t rap .  The Tnstruc- 

The descr ip t ion  of t h e  ar i thmet ic  

ACsIS.1 :35> := A C 4 , 1 : 3 5 >  * signed AC &lord 

AC\6,1:35> := ACB.1:35> A log ica l  AC word 

P := A C 6 >  * carry .for A C d : 3 5 > :  AC overflow i s  a l s o  s e t  

Q := ACQ> 

5 := AC<S> 

MQ<S, I : 35> 
ACMQ<S,Q,P,l :71>:= A C d l Q < l  :35> 
S la: 35> 

X R ' [  1 :7]<3! Ih 

* carry for  b i t s @ , l : 3 5 >  

* s ign  b i t  of AC 

* Mult ip l ier -Quot ien t  

* i?ouble uord accwrtulator 
Sense Indicators or pr>ogram f l a g s  must be preserved i f  

index  Regis ters  i n  7094 

double prec is ion  f l o a t i n g  poin t  i n s t r u c t i o n s  are given. 

XR"[A,B,C]<3: ID := X R [ 1  , 2 , 4 ] 8 r  ID * Index Regis ters  f o r  704, 7090 

Multiple,Tag,Mode Drogram switch t o  force  compatibi1it.u w i t h  704 ,  7090; only  
3 index r e g i s t e r s  XR[A,B,CI are i n  704, 7090 

I c<3: l7> * I n s t r u c t i o n  Location Counter 

Run * ind ica tes  whether machine is executing i n s t r u c t i o n s  

DivideJheck 

A C d v e r f  low 

* 
* 

MQuoverf low * 
I n pu t Jl u t pu t ,chec k 

Trap,request<A:H> 

* 
Request t o  trap Pc  :porn P i 0  # A , .  , # H  

TrapJode 4 A l l o ~ l s  trapninq o r  not  o f  t r a n s f e r  i n s t r u c t i o n s  (not  
descrihed I 

PC Console S t a t e  

b y K o l 3 D  
Sens%Switches<O:P 

Sense,L i gh t s<O : P 

Mp Sta te  
M[O:32768-l]<S, I : 3 V  

Ins t ruc t ion  Format 
instruct ion<S,1:35> 

Y<21 :35> := i n s t r u c t i o n Q l  :35> 

~<18:2@ := i n s t r u c t i  on<l8: 20> 

F d  2: I3> := i n s t r u c t  ion<l2: 13> 

i n d i r e c t  := (F<12:13> = 1 1 )  

op<S,1;11> i= instruct ion<S,l111> 

hi,opd:2> != i ns t ruc t i on<S, l  .2> 

corresponds t o  t h e  physical Storage Repis ter  
generallu t h e  address oar t :  .*sed t o  ca lcu la te  the  e f , f ec-  

t i v e  address: corresponds t o  the  physical Address Regis ter  
the  XR t o  use: I , .  . .7; 0 means no indexing; corresponds t o  
a physical r e g i s t e r  

i n d i r e c t  address s o e c i f i c a t i m  

OD code; corresponds t c  a oh!isical r e g i s t e r  
special o p  coi'es 

* Denotes subset ISP> IBN 704,  7044 s e r i e s  
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R<18; 35> ;= inst ruct ion<l8;35> 

De: l 7 >  := i n s t r u c t  i o n d ;  l 7 >  
C ' <I 2 :  l 7 >  := i n s t r u c t  ion<lZ: l 7 >  
C<1 0 : I 7> : = i ns t r uc t i on <I 0 : 1 7> 
c<l5: l 7 >  := i n s t r u c t i o n < l 5 :  17> 

E f f e c t i v e  Address Calculation Process 

r i g h t  hal f  o f  i n s t ruc t ion  used to s e l e c t  SI b i t s  

'Decrement p a r t  o f  i n s t ruc t ion ,  used t o  d i r e c t l y  modifq XR's 
s p e c i f i e s  variable  length Dart 0.f operation 

convert i n s t ruc t ion  parameter 
speci , f ies  character pos i t i on  i n  7040, 7044 o r  extends pp code 

eQ1:35> :=  (7 i n d i r e c t  +e ' ;  e f f e c t i v e  address ca lcu la t ion  

i n d i r e c t  + inst ruct ion<18:35> c M  [e' ]<18:15>: n e x t  e ' )  1 ZeveZ i n d i r e c t  addressing 

e'Q1:35>:= ( (T  = 0) + Y ;  

(T  # 0) *Y-XR[T] ) 

e "Q3 :  35>:= e ' Q 3 :  35> 

indexed e f f e c t i v e  

5cQ8:35>:= e 'Q8 :  35> 

XR[T]<3:17> := ( 

a truncat ion o.f e, 

index r e g i s t e r s  are or 'd  together  in mul t ip l e  tag mode 

used for )  spec i fu ing  number of s h i f t s :  
corresponds t o  a vhusical  r e g i s t e r  

~ M u l  t i ple,TagJode X R '  [TI ;  
Multiple,TagJIode + ( 

(T<13>+XR"[A]) V (T<19> +XR"[B]) v (TQO> j X R " [ C ] ) ) )  

The descript ion f o r  Mult iple  Tag Mode i s  incomplete for t he  case o f  wr i t i ng  i n  several index r e g i s t e r s  a t  one t ime.  The o n h  
wau t h i s  could be accomulished in t he  descript ion would be t o  de f ine  each load index reg i s t e r  i m t r u c t i o n  as microprogrmed .  

Data Formats 

SI 4.1 : 35> 

sxcs, 1 : 35> 

5x s i g n  := s x 6 >  

s x  magnitude<l:35> := sx<1!35> 

s f 4 ,  I : 35> 

5 f  s i q n  := s f d >  

s f  exponent<l:8> := 200 - 5f<1:8> 

s f  mant i 55a<D:26>:= s f 6 : 3 5 >  
8 

df[O:l l<S,1:35> 

df  s i q n  := df[O]<S> 

df exponent<l:8> := ZOO8 - df[O]<I:R> 

d f  mantissad):53>:= df  [ 0 :  1 ] 6 : 3 5 >  

Ins t ruc t ion  in t e rpre ta t ion  Process 

Run i ( i n s t r u c t i o n  t M C I C 1 :  IC t l C + l ;  nex t  

i n s t r u c t i o n , i z x e c u t i o n )  

logical  data; unsigned integer/boolean vec tor  
s ing le  prec i s ion  f i x e d  point  ( i n t e g e r )  data 

s ing le  v rec i s ion  f l o a t i n g  po in t  value o f :  sfusigmsf,mantissa 
x2s f,exponent 

double v rec i s ion  f l o a t i n g  po in t  value of: df,sigmdf,mantissa 

X 2 d , f u e ~ o n e n t  

, fe tch 
execute 

Ins t ruc t ion  Set  and Ins t ruc t ion  Ezecution Process 

I n s t r u c t  i o n  g x e c u t  i on := ( 

Operat iow on M: M[e] - f; o r  MLe] - f I M [ e ] l ;  

STZ ( : =  op = 600) i M [ e ]  -0; * s tore  zero 

MSP ( :=  (op = -1623)  A ( c  = 7 ) )  +M[e]6> t o ) :  make s ign nos i t i ve ;  704 se r i e s  onip 

MSM ( :=  (op = -1623) A ( c  = 6 ) )  +M[e]<5> + I ) ;  make s ign  minus; 704 se r i e s  only 

Block t rans f e r  of data, ?4-  ?4 1704 series o n l y )  

TMT ( : =  op = -1704) + (M[ACVI:35>:.(ACQI:35> + e 'Q8 :35>) ]  t 

M [ A C < 3 : 1 7 > : ( A C < 3 : 1 7 >  + e'Q8:35>)1); 
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Single word data transmission t o  M ,  M[e 1 +Reg i s t e r  
* s tore  MQ 

* s tore  l e f t  hal f  MQ 

* s tore  
* s tore  logical  word 

* s tore  p r e f i x  

* store decrement 

* s tore  tag 

A s tore  address 
store i n s t m c t i o n  locat ion counter 

STR ( : =  h i d p  = - I )  +(M[O]Q1:35> + I C ;  I C  + 2 ) ;  s tore  in s t ruc t ion  locat ion counter and trap 

S T I  ( := op = 604) + (M[e] + S I ) ;  

DoubZe length data transmission to M from A 

DST (:= op = -603) - (M[elcM[e+l 1 + A C S M Q ) ;  

Binary operation with AC: M[e] - AC b M[el; 

store indicators  

double s to re  

ORS ( :=  op = -602) + (M[el t A C I  V r e ] ) ;  

ANS ( := op = 320) + (Mcel cAC1 A MCel); 

* o r  t o  storage 

* and t o  storage 

6 b i t  character t o  M from AC, (7040 on ly ) ;  

SAC ( := op = -1623) --f (M[e]<c x 6 : (c  x 6+5)> - AC<30:3p); 

Operations t o  the AC,MQ, or  ACQVQ with AC,MQ,ACMQ, Keys and M operands. 

C L M  ( := (op = 760) A ( e '  = 0 ) )  +(AC4l,P,l :35> e o ) ;  
S S P  (:= (op = 760) A (e '  = 3 ) l  - CARS> - 0) ;  

SSM ( := (op = -760) A ( e '  = 3 ) )  4 (Ac<S> - 1 ) ;  

CLA ( : =  OP = 500) + (AC e o ;  next ACs +AC+M[el); 

CAL 

C L S  (:= op = 502) i (AC t-0; next AC +AC-M[eI); clear and subtract  

C l e m  wgn i tude  
* s e t  s ign PLUS 
* s e t  s ign minus 

clear and add 
c l ear  and add logical  ( :=  op = -500) - (AC - 0 ;  next  A C I  +ACI+M[el); 

load MQ 

enter  Xeys 
LDQ (:= op = 560) + (MQ +M[el ) ;  

FNK ( := (op = 760) A ( e '  = 4 ) )  + (MQ +Keys); 

place indicators  i n  AC 

double load 

COM ( : =  (op = 760) A ( e '  = 6) )  + (AC<a,P,l:35> e,AC<a,P,l 

RND ( :=  op = 760) A ( e '  = IO)) +MQ<l>  + A C  c A C  + I ;  
FRN ( := op = 760) A ( e '  = 1 1 ) )  - (AC + round(ACMQl(sPl1; 

ALS ( : =  op = 767) + (AC<Q,P,l:35> <-AC<Q,P,1:35> x 2"); 

ARS (:= op  = 771) i (AC<Q,P,l:35> tAC<Q,P,1:35>/2sC); 

LLS ( : =  op = 763) + (ACMQ' - A C M Q '  x 2"); 

L R S  ( :=  op = 765) + (ACMQ' - A C M Q ' /  2"); 

LGL ( :=  op = -763) + (ACMQ" + A C M Q "  

ACMQ1<0:71> := AC<Q,P,l:35> 0 MQ<l:35> 
z s c  (logicall); 

LGR (:= op = -765) + (ACMQ" t ACMQ'/ Z s c  [ l o g i c a l l ) ;  

ACMQ"<O:72> := AC<Q,P,I:35> 0 MQ<S,1:35> 

RQL ( : =  op = -773) + (MQ ~ M Q  x 2" ( r o t a t e l ) ;  

Exchange of Data betueen reg i s t e r s ,  AC, and ?4Q 

35>) ; *complement magnitude 
* round 
* f l oa t ing  round 
* AC l e f t  s h i f t  
* AC r i g h t  s h i f t  
* long l e f t  s h i f t  
* long r i g h t  s h i f t  

* Zogical l e f t  s h i f t  

* Zogical r i g h t  s h i f t  

* ro ta t e  MQ l e f t  
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XCL (:= op = -130) + (MQ t A C I ;  A C I  c M Q ;  A C G , Q >  - 0 ) ;  exchange logical  AC and MQ 

6 b i t  character t o  AC from M (704 on ly )  
pcS ( := op = -1505) + (ACq0:35> c M [ e F ( c  x 6 ) :  ( C  x 6 + 5) ; ) ;p lace  character from storage 

Binary operations w i th  M,AC+ AC b M ;  

ADD ( := op = 400) + (AC t AC + M [e 1) ; * add 
ADM ( := op = 401) +(AC t A C  + abs(MCe1)); * add magnitude 

SUB ( :=  op = 402) + (AC t A C  - M[el ) ;  * subtract  
SBM ( := op = -400) +(AC c A C  - a b s ( M [ e l ) ) ;  

MPY (:= op = 200) + ( A C M Q  c M Q  x M[e]; A C d l , P >  -0 ) ;  

MPR ( := op = -200) +(ACMQ c M Q  x M[e l ;  n e x t  * mul t ip l y  and round 

* subtract  magnitude 

* mul t ip l y  

MQ<l> + A C  t A C  + I ;  A C Q , P >  e o ) ;  
OVH (:= op = 220) + ( A C , M Q  tACMQ / M [ e l ;  n e x t  

D i v i d e L h e c k  + R u n  -0 ) ;  * d iv ide  o r  h a l t  
OVP (:= op = 221) -(AC,MQ t A C M Q  / MCel); 

ACL ( := op = 361) +(ACI c A C l  + M [ e l ) ;  

* d iv ide  o r  proceed; DivideYcheck may be s e t  

* add and carry logical  uord 

The fol lowing are variable  length x and / operat ions.  C '  s p e c i f i e s  t he  length o f  d i v i sor  o r  mul t ip l i e r .  

VLM ( :=  op = 204) + (ACMQ e M Q  X M [ e l  {VI 1); 
VDP ( := op = 225) - (AC ,NQ tACMQ / M [e I (VI 1) ; 
VDH (:= op = 224) +(AC,MQ t A C M Q  / M[e] {VI}; n e x t  

variable  length mu l t ip l y  
variable  length d i v ide  or proceed 

variable  length d i v ide  o r  h a l t  

D i v i d e d h e c k  +Run e o ) ;  
Single  prec i s ion  f l o a t i n g  po in t  

FA0 (:= op = 300) + (AC,MQ + A C  + M [ e l  ( s f \ ) ;  

FAM (:= op = 304) + (AC,MQ c A C  + abs(MCe1) { s f ) ) ;  * add magnitude 

FSB ( := op = 302) + (AC,MQ t A C  - M[e l  ( s f ? ) ;  
FSM (:= op = 306) + (AC,MQ e A C  - abs(M[e l )  { s f ) ) ;  

FMP ( := op = 260) + (AC,MQ t M Q  X MCel ( s f ? ) ;  

FDH ( := op = 240) + (AC,blQ c A C  / M [ e l  { s f ) :  n e x t  

* add 

.i subtract  
* subtract  magnitude 

* mul t ip l y  
* d iv ide  o r  h a l t  

Div ideucheck  +Run e o ) ;  
FOP ( :=  op - 241) + (AC,MQ e A C  / M [ e l  { s f ] ) ;  * d iv ide  or  proceed 

Unnormalized s ing le  prec i s ion  f l o a t i n g  po in t  
UFA ( := op - -300) + (AC,MQ c A C  + MCel [su f ) ) ;  * add 
UAM ( :=  op = -304) +(AC,MQ c A C  + abs(M[e l )  (suf ] ) ;  * add magnitude 

UFS ( : =  op = -302) + (AC,MQ t A C  - M [ e l  {Suf));  

USM (:= op E -306) + (AC,MQ t A C  - abs(M[e]) 

UFM ( :=  op = -260) +(AC,MQ t M Q  x M [ e l  [Suf ] ) ;  

* subtract  
* subtract  magnitude 

* mul t ip l y  
( s u f ) ) ;  

Double prec i s ion  f l o a t i n g  point  
~n DF operations, t he  S I  are used as  temporary r e g i s t e r s  and w i l l  be changed. 

DFAD ( :=  op = 301) + (  "a& 
ACMQ c A C M O  + M[elOi%e+l 1 {df ) ;  S I  + ? ) ;  

DFAM (:= op = 305) + (  * add magnztude 
ACMQ - ACMQ + abs(MCelCW[e+ll) ( d f j ;  SI ? ) ;  

ACYO +ACMO - M[eIQl[e+i  1 (df1; S I  + ? ) ;  

DFSB (:= OD = 303) + ( * subtract  

DFSM (:= OD 307) + (  * subtract  magnitude 
ACMO eACMQ - abs(MEeIM[e+l  1) {df 1: SI + 7 ) ;  
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DFMP (:= op = 261) + ( 

ACMQ t A C M Q  x M[e]DM[e+ll { d f l ;  S I  e?); 

DFDH ( :=  op = -240) i ( 

ACMQ tACMQ / M[e]oM[e+l] { d f l ;  S I  e?; nex t  

Div ide-check +Run eo); 

DFDP (:= op = -241) + ( 

ACMQ t A C M Q  / M[e]OM[e+l] (d f ) ;  S I  t 7 ) ;  

Unnormalized double prec is ion  f loa t ing  poin t  
DUFA ( :=  op  = -301) + ( 

A C M Q  +ACMQ + M[e]nM[e+l] [ du f ] ;  S I  e?); 

DUAM (:= op = -305) i ( 

ACMQ t ACMQ + abs(M[elOM[e+l 1 I {undf  1; S I  t 1 )  ; 

DUFS (:= op = -303) + ( 

ACMQ t ACMQ - M[e]d l [e+ l  ] (duf I ;  S I  e?) ; 

DUSM (:= op = -307) i ( 

ACMQ -ACMQ - abs (M[e ]d l [e+ l ] ) {du f1 ;  S I  t?); 

DUFM ( := op  = -261) i ( 

ACMQ tACMQ x M[eICM[e+l] {duf ) ;  S I  t?); 

Logical 
ORA ( : =  o p  = -501) - (AC l  +ACl V MCel); 

ANA (:= op  = -320) +(AC l  +ACl A M r e l ) ;  

ERA ( :=  op = 3 2 2 )  i (ACI t A C I  @ M[e l ) ;  

* mul t ip ly  

* div ide  or h a l t  

* div ide  o r  proceed; Divide check may be s e t  

* add 

add magnitude 

* subtract  

subtract  magnitude 

* mul t ip ly  

* o r  t o  accwnulator 
* and t o  accumulator 

* exclusive or t o  accumuZator 

The convert ins t ruc t ions  are not  described i n  d e t a i l .  
characters i n  AC or MQ and form a sum of products i n  the  AC or M Q  for  each character component of the  word. 

These ins t ruc t ions  take a tab le  i n  memory, addressed by the  E,  ti b i t  

C V R  ( : =  op = 114) i (AC,MQ +f(AC,C,XR[ll,M[Y:Y+631)); 
C R Q  ( :=  op = -154) + (AC,MQ +f(MQ,C,XR[II,M[Y:Y+631)); 
CAQ ( : =  o p  = -114) i (AC,MQ c f ( A C , M Q , C , X R [ l I , M [ Y : Y + 6 3 1 ) ) ;  

Transmission between M, X ~ Q [  T I ,  and AC 
If tag,-,=o, then a no operation DCCUPS 

PDX ( : =  op = -734) + (XRCTI +AC<3:17>); 

PAX ( := op = 734) i (XRLTI +AC<21:35>); 

PDC ( := op = -737) --f (XRCT] +215 - AC<3:17>); 

PAC ( : =  op = 737) + (XR[Tl  ~ - 2 ’ ~  - AC<21:35>); 

LXD ( := op = -534) i (XRLTI cM[YI<3:17>); 

LXA ( : =  op = 534) + (XR[T] tM [Y ]QI :35>) ;  

LDC (:= op = -535) --f (XR[T] + Z I 5  - M[Y lO :17>) ;  

LAC ( := op = 535) + (XR[T] < -Z I5  - M [ Y ] Q l : 3 5 > ) ;  

A X C  ( := op = -774) + (XR[T] + Z I 5  - Y ) ;  

P X D  ( : =  op = -754) +(AC t o ;  n e x t  ACO:17> tXR[T l ) ;  

PXA (:= op = 754) + (AC + 0; n e x t  AC<21 : 3 5 >  +- XR[T]);  

AXT ( := op = 774) i (XR[T] + Y ) ;  

convert by replacement from the  AC 

convert by replacement from the  MQ 

convert by addi t ion  from the  MQ 

* place decrement i n  index 
* place address i n  index 
* place complement o f  decrement i n  index 
* place complement of address i n  index 
* load index from decrement 
* load index from address 

.i load complement of decrement i n  index 

* load complement of address i n  index 

* address t o  index true 

A address t o  index complement 
* place index i n  decrement 
* place indez i n  address 

P C D  ( : =  op  = -756) + (AC t o ;  n e x t  4 C q : : 7 > +  215 - XR[T]); 

PCA ( : =  op  = 756)+(AC t o ;  n e x t  ACQ1:35>- 215 - XR[T]); 

SXD ( : =  op = -634) i ( M [ Y ] Q : 1 7 >  t X R [ T l ) ;  * s tore  indez in decrement 

SXA ( := op = 634) 

* place complement of iv.dex ir, decrement 
* place complement of index iv .  address 

* s tore  index i n  addres:: i ( M [ Y ] Q l : 3 5 >  t X R [ T I ) ;  
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SCD ( := op = -636) + ( M [ Y I Q : I 7 >  +Z15 - XR[T]); 

SCA (:= op = 636) + ( M [ Y ] a l : 3 5 >  t 2 I 5  - XR[T]); 

Transmission t o  Sense Indicators  
PA1 ( := op = 44) + ( S I  + A C l ) ;  

LDI ( := op = 441) + ( S I  + M [ e l ) ;  

O A l  ( :=  op = 43) + ( S I  + S I  V A C I ) ;  

R I A  ( := op = -42) + ( S I  + S I  A Y A C 1 ) ;  

I I A  ( := op = 41) +(SI + S I  62ACl); 

O S I  ( := op = 442) + ( S I  + S I  V MCeI); 

R I S  ( := op = 445) + ( S I  + S I  A ~ M [ e l ) ;  

IIS ( := op = 440) + ( S I  + S I  @ M [ e I ) ;  

SIL ( := op = -55) + ( S I a l : 1 7 >  t S I a l : 1 7 >  V R ) ;  

RIL ( := op = -57) + ( S l a l : l 7 >  t S I a l : 1 7 >  A 1 R ) ;  

I I L  ( := op = - 5 1 )  + ( S l a l : l 7 >  c - S I a l : 1 7 >  62 R ) ;  

S I R  ( := op = 55) + (Sl<l8:35> t S I < I 8 : 3 5 >  V R); 

R I R  ( := op = 57) + ( S I i I 8 : 3 5 >  t S I < 1 8 : 3 5 >  A i R ) ;  

I I R  (:= op = 51) 4 (S1<18:35> c S l < l 8 : 3 5 >  C d R ) ;  

Program flow control i n s t ruc t ions  

NOP (:= op = 761) + ;  

HPR ( := op = 420) + (Run to); 
HTR ( := op = 0) + (Run + O ;  I C  + e ) ;  

TRA ( := op = 20) --f ( I C  + e ) ;  

X E C  ( := op = 522) + ( i n s t r u c t i o n  + M [ e l ;  n e x t  

I n s t r u c t i o n s x e c u t i o n ) ;  

Conditional t rans f e r s  
TZE ( := op = 100) + ( ( A c < ~ , P , I : ~ s >  = 0) + I C  te); 

TPL ( := OP = 120) + (-, AC<S> + I C  + e ) ;  

TMI  ( := op = -120) --f (AC<S> + I C  +e); 

TOV ( :=  op = 140) + (AC&verf low + I C  t e ;  

TNZ ( := op = -100) + ( T  (AC<a,P,1:35>= 0) + I C  + e ) ;  

AC,overf low t 0) ; 

TNO (:= op = -140) + (l A C d v e r f l o w  -f I C  + e ;  

AC,overf low t 0) ; 

TQP (:= op = 162) + (l MQ<S> + I C  + e ) ;  

TQO (:= op = 161) + (MQ,overflow + I C  + e ;  

t i e o v e r f l o w  t o ) ;  

TLQ ( := op = 40) + ((AC > MQ) + I C  + e ) ;  

T I 0  ( :=  op = 42) 4 ((ACI = (ACl A S I ) )  + I C  + e ) ;  

T I F  (:= op = 46) --f ( ( 0  = (ACI A S I ) )  + I C  + e ) ;  

TSX (:= op = 74) 4 (XR[T] + Z i 5  - I C ;  I C  C Y ) ;  

TSL (:= op = -1627) + (M[e]<21:35> + I C ;  I C  + e  + 1 ) ;  

Index manipulation and control  and subroutine ca l l i ng  

Loop control  
TXI ( :=  hi,op = I )  + (XR[T] +XR[Tl  + 0 ;  

TXH ( :=  hi,op = 3) + ((D < XRCT]) + I C  + Y ) ;  

I C  C Y ) ;  

* s tore  complement of index i n  decrement 
* s tore  complement of index i n  address 

place accumulator i n  indicators  

load indicators  

or  accumulator t o  ind ica tor s  

neset  indicators  from accumulator 
inver t  indicators  from accumulator 

or  storage t o  indicators  

r e s e t  indicators  from storage 
inver t  indicators  from storage 

s e t  indicators  of l e f t  ha l f  

r e s e t  indicators  of l e f t  ha l f  

i nver t  indicators  of l e f t  h a l f  

s e t  indicators  of r i g h t  hal f  
r e s e t  i nd ica tor s  of  r i g h t  hal f  

i n v e r t  indicators  of r i g h t  hal f  

no operation 

* h a l t  and proceed 

* h a l t  and t rans f e r  
* t rans f e r  

execute 

* t rans f e r  on zero 
* t rans f e r  on no zero 

* t rans f e r  on plus 
* t rans f e r  on minus 

* transfer on overflow 

* t rans f e r  on no overflow 

* t rans f e r  on M Q  p lus  
* t rans f e r  on MQ overflow 

* t rans f e r  on low MQ 

* t rans f e r  when indicators  on 

* t rans f e r  when indicators  o f f  

* t rans f e r  and s e t  index 

* 704 

* t rans f e r  wi th  index incremented 

.+ t rans f e r  on index high 
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TXL (:= h i d p  = -3) i ( ( 0  5 XR[T]) i I C  t Y ) ;  * t rans fer  on index low o r  equal 
TIX (:= h i d p  = 2) + ( (XR[T I  > D )  i (XRCTI t X R [ T ]  - 0; * t rans fer  on index 

I C  CY)); 

TNX ( : =  hi-op = - 2 )  + ((XRCT] > D )  +XR[T] t X R [ T ]  - D ;  * t rans fer  on no index 

(XR[T] < D) + I C  cy); 

S k i p  t e s t s  

M I T  ( := (op = -1341) A (c = 7) )  + (M[e]<S> + I C  c I C  + I ) ;  
PLT ( :=  (op = -1341) A (c = 6 ) )  + (7 M[e]<S> - I C  t I C  + I ) ;  

CCS ( := ( ( o p  = -1341) A (C < 6 ) )  + ( 

storage minus t e s t ;  704 s e r i e s  Oniy 

storage p lus  t e s t ;  7 0 4  s e r i e s  onlu 

compare 
character wi th  storage; 704 series only  (AC<30:35> = M[ej<(c x 6 ) :  ( c  x 6 + 5)>) + I C  t I C  + I ;  

(AC<30:35> < M[e]<(c x 6 ) : ( c  x 6 + 5)>) + I C  + I C  + 2 ) ) ;  

PBT ( := (op = -760) A (e" = I ) )  i (AC<P> + I C  t I C  + I ) ;  
DCT ( := (op = +760) A (e" = 1 2 ) )  + (Divide-check + I C  t I C  + I).* D i v i d e j h e c k  t e s t  

LBT ( := (op = ~ 7 6 0 )  A (e" = I ) )  + (AC<35> + I C  t I C  + 1 )  ; 

ZET ( := op = +520) - ((MCe] = 0 )  + I C  t I C  + I ) ;  
FlZT ( := op = -520) - ((M[e ]  # 0 )  - I C  t I C  + I ) ;  

CAS ( :=  op  = +340) i ( 

* P b i t  t e s t  

* low b i t  t e s t  

* storage zero t e s t  
* storage own zero t e s t  
* compare AC wi th  storage 

(ACs = MCel) i I C  c I C  + 1 ;  

(ACs < M[eI)  + I C  c I C  + 2 ) ;  

LA8 ( := op = -340)  - ( * log ica l  compare AC wi th  storage 

(AC<Q,P,l:39 = M[el<S,1:3P) + ( I C  c I C  + 1 ) :  

(AC<Q,P,l:39 < M[e l<S,1 :39)  - ( I C  t I C  + 2 ) ) ;  

SWT ( :=  (op = 760) A ( e 1 < 9 : l W  = 1 6 ) )  + ( Sense-Switches test 
Sens~Switches<e'<l5:I;n> i I C  c I C  + I ) ;  

SLF ( := (op = 760) A ( e '  = 140)) i ( S e n s L L i g h t X 0 : b  c 0 ) ;  Sense- l ights  off 
SLN (:= (op = 760) A ( e ' < g : l b  = 14) A ( e ' < i 5 : l P  # 0 ) )  - ( Sense- t ights  on 

S e n s c L i g h t x e ' < i 5 : i b >  I ) ;  

CLT ( := (op = -760) ( e1<9 :1b  = I * ) )  + ( Sense-lights t e s t  
Sense,Lights<e1<l5:I~> + ( I C  + I C  + I ;  SenseULights<e'<l5:l7>> t o ) ) ;  

ETM (:= (op = 760) A ( e '  - 7 ) )  + (Trap-Mode + I ) ;  enter Trapdoode 

LTM ( : =  (op = -760) A ( e '  = 7 ) )  i (Trap-Mode t 0 ) ;  leave TrapJdode 

EMTM ( : =  (op = -760) A ( e '  = 16) )  + (Multiple-Tag-Mode - I ) ;  enter  MuZtipZe&zg-fdode 
LMTM (:= (op = 760) A ( e '  = 1 6 ) )  + (Hultiple,Tag,Mode - 0 ) ;  Zeave M u l t i p l e 2 a g d o d e  

1 end Ins t ruc t im&xecu t ion  
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APPENDIX 2 IBM 7909 DATA CHANNEL ISP DESCRIPTION (A PIO) 

Append ix  2 

I B M  7909 Data  Channel ISP D e s c r i p t i o n  (a Pio) 

Although the  fol lowing descr ip t ion  i s  of  a Pio, s ignals  generated i n  D c ,  '4,  and K are necessaru. 
a l so  necessaru f o r  a complete descript ion.  

Ppnendices 1 ,  3, and 4 are 
The Ms attached t o  K controls  t he  precise  time information f l ows .  

P i 0  S ta t e  
CC<21:35> 

AC<21:35> 

AR<S,I:35> 

ARc [O:5 ]4 :5>  := AR<SS,l:35> 

CTC<O:P 

Cornnand Counter: 15 b i t  command (or  i n s t r u c t i o n )  counter 
containing the  locat ion c,f t he  next  command 

Address Counter: during vector  data t rans f e r s  A C  contains 
t h e  address o f  t h e  nes t  data word t o  t rans f e r .  Durina a 
t r a n s f e r  comand A C  i s  s e t  t o  t he  address 01- t he  nes t  command 

r e g i s t e r  and the  device control  r e g i s t e r s  

s e l ec t ed  ARd PSR] 

stored bu the  ISP 

Assemblu Regis ter:  a buf,fer ,for 4ata f low behjeen the  data 

character arrau defined bu RR; a character is normally 

Control Counter: a E b i t  r e g i s t e r  uhich can be loaded and 

wc<3 : 1 I> Vord Counter: a counter con t ro l l i na  the  number of words l e f t  
t o  t r a n s f e r  during a command 

Data transm<ss<on modes 'n Pio f o r  thP E-Pia dialoouer 
.These control  the f l ow  d i rec t ion  and data types between K and P i o .  
exclusive o.f the  o thers ,  

illthough not  described as such, each ind ica tor  i s  mutuallu 

SH I 

WR I 

RD i 

W a i t  

8 I L  := 42 

I n t e r r u p t - R e q u e s t  := ((CKC<1:6> A CKC1<30:35>) # 0) 

Pc,Trap,Reques t 

I n t e r r u p t  Mode 

C KC<1 : 6> 
CKC<l>/ I nput,OutputJheck/ I JlpyCheck 

CKC<2>/SequenceUCheck 

CKC<3>/K,Unusual ,End 

CKC<k : 5>/At t e n  t i o n  Cond i t i  ons<l  : 2 9  

CKC<6>/KUCheck 

C KC I <30 : 35> 

The CXC ind ica tor s  m e  described as  fol lows;  
i n v u t  Dutvut. Check 

Sense Tndicator; K i s  transmit t ing sense data t o  Pio. 
Write Tnc'icator: K i s  receiving -lata from Pio. 

Read Tndicator; ii i s  transmit t ing data t o  ?io, 
b i t  denotes a hal ted condi t ion i n  Pio: i n s t ruc t ions  are not  

Tnterruot  Location f o r  P i 0  #A t o  i n t e r rup t  i t s e l f .  Fach of 

executed 

the  E ? i o ' s  have svecial  locat ions.  b o  locat ions,  TL, 
TL t l ,  are reserved 

s i p n i f i e s  a reouest  t o  in t e r rup t  Pio from K o r  w i th in  Pio 
s i g n i f i e s  a reouest to trap Pc , f m n  P i 0  

b i t  t o  denote t h a t  an in t e r rup t  propran  is running i n  Pio 
Check Conditions i n  K t ha t  cause an in t e r rup t  o,f the  P io  

a mask t o  i n h i b i t  P i 0  i n t e r r u v t s  from CKC 

This' condi t ion occurs when the channel . f a i l s  t o  obtain a storage re,ference cycle  i n  time t o  s a t i s f u  demands of the  attached 
IO device.  
t h e  Pc  eseeutes  an RSC or RIC ins t ruc t ion .  

adapter (XI. The command counter contains the  locat ion p l u s  one of t he  present  comand. The address counter contains the loca- 
tion p lus  one or  two of the  l a s t  word transmit ted i p  the operation was o wr i t e  or control ,  o r  the locot ion plus one o,f the  l a s t  
w x d  transmit ted i f  the  operation 

The condi t ion i s  also monitored i n  the  ?e. I,O,Check is turned o f f  when an L I P  or LIPT command i s  executed or when 

When an I,O,Check occurs, the adapter i s  disconnected and an in t e r rup t  occurs when the  KJnd signal  i s  received f r o m  the  

was a read o r  sense. 
I f  an I d d h e c k  occurs whi le  the channel is i n  i n t e r rup t  mode, t he  Tg-Check is not recogn<zed a d  is not saved, 
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Sequence Jheok 
A Sequence-Check ind ica te s  an inva l id  sequence 0.f channe 1 commands, 

the adapter i s  l og ica l l y  disconnected and the in t e r rup t  occu21s when the KJnd signal i s  received. 
The following in s t ruc t ions  cause a Sequence-Check and a channel i n t e r ruv t .  

descrio t i on .  i 

I f  a Seauence,Check occurs during data transmission, 

(The checks ore not described i n  the IS? 

I .  I f  a CTLW, CTLR, or SNS is folloided by CTL, CTLW, WTR, TWT, o r  SNS. 
2,  If an SNS or  CPYP i s  followed by an,u command other  than a PYP, CPYD, TCH, or  TDC. 
3. I f  a TCH o r  TDC followina an SNS or CPYP t rans f e r s  control  t o  anu command other than a PI". P Y D .  TCH. o r  TDC. 

~~ 

4 .  ff a CPYP or  CPyb has no; been proverly preceded by a CTLW, CTLR, o r  SNS. 

K Jnusua ldnd  

determined by sensing the K error indicat ion.  

A t t en t ion  Conditions 

a t t e n t i o n  signal i s  generated when an access mechanism has comvleted a seek overation. 
generated t h i s  i nd ica t ion  may be determined .from sense data. 

Kdheck 

The conditions which cause an adapter check are: 

This signal i nd ica te s  an error condi t ion recognized bu K .  I t  causes an { m e d i a t e  in t e r rup t  t o  Pio. The s ignal  may be 

This  i s  a s ignal  indicat ing a change i n  s ta tus  o f  the attached input  output device.  For e x q l e ,  during disk  operations,  an 
The var t i cu lar  access mechanism tha t  

Adapter check (=heck) i nd ica te s  an error and i s  recognizer' bzj the 7909, hut does not necessari lu  indicate  a K ma1,function. 

1. 
2 .  
3. 

Circu i t  f a i l u r e  occurs i n  the ASR or CR. 
The character ra t e  0.f the attached I O  device ezceeds the capab i l i t y  of the channel. 
The adapter ( K )  i s  not operational.  
read, wr i t e ,  control  or sense.  

This  i nd ica t ion  occurs i.f power i s  off on the a d m t e r  and an attempt i s  made t o  

Harduare &i tches  

not r eg i s t e r s .  
These gates  route information among the reg i s t e r s  on a selected bas i s ,  They are not under control of the  program and are 

S t o r a q e  Bus S w i t c h e s d , l : 3 5 >  

Channel  A d d r e s s  S w i t c h e s Q l : 3 D  

C h a r a c t e r  Swi tchescO:5> 

These 36 switches (and/or ga te s )  provide the data path t o  
and from the 7606 bdultinlexor f o r  data or comand entru i n t o  
the Pio. 

Address information i s  selected from the Address Counter o r  
the  Comand Counter. 

or  w r i t t e n  i n t o  the Pssemblir Segis ter .  

These 35 switches provide the 9 with address information.  

These 6 b i t  switches enable the character t o  be read from 

Pi0 S ta te  (not  i n  ISP) 
Yardblare reg i s t e r s  not i n  ISP but used i n  the descriot ion and the Pi0 

OR<O:4> Operation Regis ter .  The reg i s t e r  containing the operat ion  
OR i s  made up from i<S,l:3,19>. part o.f the  in s t ruc t ion .  

DR<S,l i 35> 
CR 

Data Regis ter .  

Character Ring. 

A bu f f e r  f o r  4ata .fZow between M and the AR. 
P reg i s t e r  t o  control the t iming or trans- 

mission i n t o  AR. 

ASR6 
Assemblu Ring. 
AR from/boK. 
Y, one 6 -b i t  character a t  a time v ia  the Character ,%itches 
under control  of A.qRR. 

The counter t o  control  the gates  to/ from 
Data are sent  t o  or received from the control ,  

In s t ruc t ion  .Format 

i 4.1 : 35> i n s t ruc t ion :  normally I W  c a l l s  these comands because a Pio 
executea them 

f := i<18> 

0 p 4 : 4 >  ;= iC;,1;3,19> 
ycO:14> ;= i Q l 1 3 5 >  
c d ) : 1 4 >  I =  i d t l h  

c'<O:Z> := i<315> 
rn4:5> := i<12:17> 

i nd i rec t  
operation code 

address 
count part  

mask 
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eQ1;35> ;= t7 f  + y ;  f +MCylQ1;35>); 2 l e v e l  o f  i n d i r e c t  addressing 

I% S ta te  
MCO:32768-1 la, 1 :35> Computer ' s  primaru memory 

Ins t ruc t ion  Tnterpretat ion Process 

Inter$upt,request A 7 Wait  + ( I n s t r u c t i o n  + M [ C C ] ;  f e t c h ,  no in t e r rup t  
CC + C C + l ;  n e x t  

I n s t r u c t  i o L e x e c u t i o n )  ; execute, no in t e r run t  
I n t e r r u p t j e q u e s t  A Interrupturnode + ( 

( M [ I L ] Q 1 : 3 5 >  + CC;M[ IL IB :17> c C C ;  

i n t e r r u v t  process 

Interrupturnode tl: next  C C  c l L + 1 ) ;  

P i 0  I n t e r rup t s  and P c  Traps 

d i s t i n c t  from a data channel trap in which ?io in t e r rup t s  the P c .  On recogni t ion of an in t e r rup t  condi t ion the  P i 0  s to res  the  
contents  o f  t he  command and address counters i n  a f i x e d  memor,u locat ion,  IL, and then executes the  command located i n  the  next  
locat ion.  

t h a t  w i l l  change the  contents  of the  command counter ITCH, LIPT, or successful  TDC or  TCV). 
successful  t r a n s f e r ,  t he  channel executes it and resumes operation a t  t he  locat ion i m e d i a t e l v  .following the locat ion where the 
in t e r rup t  occurred. I f  the  command a t  t he  f i x e d  locat ion i s  a WTR or TW?, the  channel suspends ooeration as described i n  the 
channel command sec t ion ,  but t he  command counter contains the locat ion p lus  one o f  the command responsible  f o r  t he  in t e r rup t .  

In t e r rup t  condi t ions are s tored i n  a s i x -pos i t i on  r e g i s t e r  i n  the data channel and may be exmined  with the TCM command. 
Any combination o f  i n t e r rup t  condi t ions causes an i n t e r r u p t :  however, Once interrupted the channel i s  placed i n  in t e r rup t  mode 
and f u r t h e r  at tempts  t o  s e t  the in t e r rup t  condi t ion or  t o  in t e r rup t  are inh ib i t ed .  
an L I P  or L I P T  command i s  executed by t he  channel or an RIC i n s t r u c t i o n  is executed b y  t h e  CPU. If a channel i s  i n  i n t e r rup t  
mode and an RSC ins t ruc t ion  i s  executed by the CPU before the channel executes a LIP or  LIPT command, the in t e r rup t  condi t ion 
r e g i s t e r  i s  r e s e t  but  the channel remains i n  in t e r rup t  mode. A n  L IP  or LI?? command or a RIC ins t ruc t ion  i s  the only program 
means avai lable  t o  cause the channel t o  e x i t  from i n t e r rup t  mode and become recep t i ve  t o  f u r t h e r  in t e r r imt  condi t ions.  

This  i n h i b i t i n g  n e r s i s t s  u n t i l  e i t h e r  an RSC 
or STC ins t ruc t ion  (depending on whether the  channel was enabled) i s  executed by the Pc. 

I f  tlie channel i s  prepared t o  read or wr i t e ,  t h i s  c o k a n d  causes c words t o  be transmit ted between the  channel and MD, s t a r t i n g  
w i t h  M[e].  Data transmission continues u n t i l  c i s  reduced t o  zero or  a &End s ignal  is received by t he  channel. 
t he  channel read or wr i t e  indicator  i s  r e s e t .  I f ,  while a rPYD i s  being executed a L F n d  s ignal  I s  received before the count i s  
reduced t o  zero, the channel read or idrite i nd ica tor  i s  r e s e t ,  and the  channel obtains  a new comvand from the  next  seauent ial  
locat ion.  

I f  the  next  comanc' <s a copy, the channel 
in terrupts  on a program sequence check. The l a s t  word transmitted t o  s torage  under CPYD control remains i n  the assemblii r e g i s t e r  
i f  a LEnd  s ignal  i s  received be.fore the  word count reaches zero.  

g e t  t h e  next  sequent ial  command u n t i l  a L E n i !  o r  KJinusuaLEnd s ignal  i s  obtained. 
channel does not ob ta in  the next  seauent ial  command u n t i l  e i t h e r  a Kdnd or a LUnusuaLFnd s ignal  causes an in t e r rup t .  

In s t ruc t ion  Se t  and Ins t ruc t ion  Ezecution Process 

The ?io i s  capable o f  having i t s  s tored program interrupted independently of  other  P I S .  This  operation i s  separate and 

I f  t he  7909 channel i s  to be diverted from normal command execut ion seouence, t he  cornan? i n  the f i x e d  loca t ion  must be one 
I f  t h i s  command i s  other  than a 

The channel remains i n  in t e r rup t  mode u n t i l  

In t e r rup t s  are a l so  inh ib i t ed  i f  channel trap i s  in process on t h a t  channel. 

This  command, when decoded by a channel not  prevared t o  read or wr i t e ,  causes a seauence cheik and, thus,  a channel i n t e r run t .  

I n  e i t h e r  case, 

I f  t he  next  command i s  other  than a copg, the channel executes t h a t  cornand. 

I f  t he  count f o r  the CPYD goes t o  zero be fore  the  KJnJ signal  i s  received,  t he  channel i n i t i a t e s  a disconnect but  does not 
I n  generaz, when operating under CPYD contro1,the 

The fol lowing control  commands transmit  i n s t ruc t ions  (orders)  o r  operation information t o  K.  
MCel s t a r t i n g  with the  high order 6 b i t  characten and co t i nues  u n t i l  a K 3 n d  i s  received by P i 0  from K. 
word i s  required, t he  next  words come from H e+l,e+Z,. . .7. 

In,format :on i s  s en t  t o  K from 
I f  more than one control  

,Vert the Read or F'vite i nd ica tor  i s  s e t  i n  pia. For CTL, CTLR, and CTLW ins t ruc t ions ,  t he  control  uorc's are f i r s t  transmLtted. 

I n s t r u c t i o n  e x e c u t i o n  := ( 

C T L  ( := op = 01000) i (AC t e: covtrol  
MoveYwordYfrornUM; ASP - 0 :  n e x t  

Move,con t r o l  ,char,touK) ; 

CTLR ( := op = 0 1 0 0 1 )  i (AC + e :  control  and read 
Move,word,f rorn,M: ASR t 0 .  n e x t  

Move,control,char,to,K: R D I  t I ) ;  

CTLId ( := op = 01010) i (AC + e :  nex t  control  and wr i t e  
MoveYwordYfrornYM; A S R  - 0 .  nex t  

Kove,controlUcharYtouK; W R I  + I ) ;  
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CPYD &= op = 101+01) + (AC + e ;  

Copy,data,block: n e x t  

RD lOSNlOWRl  -0 :  KLend-wa i t ) ;  

CPYP ( := op = I O O S O )  (AC t e ;  

Copy,data&lock); 

SNS (:= op = OlOll) + (SNI 1 ) ;  

Execution of t h i s  command must be fotlowed by a conu command. 
r e g i s t e r  through AR and DR t o  M .  

SMS (:= (op = 11100) A (c '=O))  + C K C I  c e Q 9 : 3 5 > :  

LCC (:= op = IlOll) -3 (AC + e ;  n e x t  

CTC t AC<30: 35,) : 

TDC (:= op = 11010) + (AC t e ;  n e x t  

(CTC = 0) + : 

(CTC # 0 )  -3 (CTC t C T C - I ;  C C  t A C ) ) ;  

ICC,  (:= op = 1 1 1 ~ 1 )  -3 ( 

(0 < c '  < 7) + A R c [ c ' ] c  CTC; 

( c '  = 0) +ARc[5]  c C K C I ;  

( c '  = 7) -3 :) ; 

( ( c '  = 0) ,+, -i i<Il> A (m = C K C ) )  + (cc + e ) ;  

( ( c '  = 0) A i< l l>  A ( ( m  A C K C )  = m ) )  + (cc e e l ;  

( ( 0  < c '  < 7) A 7 i < I I > A  (m = ARc[c]))  + ( C C  - e ) ;  

((0 < c '  < 7 )  A i<ll> A ( ( m  A ARc[C]) 

( ( c '  = 7)  A (m = 0 ) )  + (cc + e ) ) ;  

TCM (:= op = l O l @ l )  -3 ( 

= m ) )  - (CC + e ) ;  

TCH ( : =  op = O O I + O )  + (Cc + e ) ;  

LAR (:= op = 01100) +(AC t e ;  n e x t  AR t M [ A C l ) ;  

SAR (:= op = O l l O l )  +(AC + e :  nex t  M [ A C ]  t A R ) ;  

XMT (:= op = OOOll) + (AC t e ;  \.IC t c ;  n e x t  

M g l o c k a o v e )  

XMT i s  ac tual ly  a vec tor  move wi th in  Mp. 
XMT ( :=  op = 000@1) + ( ( c  # 0) + (  

copy and disconnect 

covu and proceed 

sense 
The data i n  K ' s  sense ind ica tors  are sent v i a  the K d a t a  

s e t  mode and s e l e c t  

load control  counter 

t r a n s f e r  an6 decrement counter 

i n s e r t  control  counter 

t r a n s f e r  on condi t ions met 

t ranqfer  i n  channeZ 

load assemb1.y r e g i s t e r  

s tore  assemblli r e g i s t e r  
an i n s t r u c t i o n  t o  move c words i n  I"[CC: ICC + ci 1 t o  Y[e: ( e  + c 

vector  move 

M[e i (e  t c - I ) ]  c M [ C C ; ( C C  + c - I ) ] !  
WC e o ;  A C  c A C  + c ;  f i x  end condi t ions 
cc c c c  + c ) ) :  

WTR (:= op = OOOW) + (AC + e ;  Wait  t l ) ;  wait  and transfer 

TWT (:= op = O l l l O )  +(AC t e ;  Wait  el; trap and wait  

PcJrapJequest t 1 ) .  

L I P  (:= op = IlOOl) + ( leave in terrupt  urogram 

c c  +YILI&I i35>) 
C K C  t o ;  I n t e r r u p t J o d e  to); 

LIPT (:= 001@1) + ( leave i n t e r r u p t  p r ~ g r ~ n ~  and trans,fer 

(CC +e;  CKC -0; 

I n t e r rup t,Mode t 0) 

) end Ins t ruc t ion-execut fon  
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K ,  Pio, and M Data Movement Processes 
The fol lowing processes de f ine  the movement o f  characters and words among the  r e g i s t e r s  and FJemory. 
copydadatadlock. 
reading, a character i s  taken from K and assembled i n  Pio, then trans,ferred as  a word t o  M. 
e i t h e r  characters o r  words i n  a d i rec t ion  r e l a t i v e  t o  pio. 

The pr inc ip l e  a c t i v i t y  is 
On wr i t ing ,  a word i s  taken from M and placed i n  Pio, then transferred character by chanacter t o  K .  On 

The fol lowing urocesses move 

Moueshar,toJ( 
Movedontro l$har,toJ 

Moue &harJromJ 

Move JJord,to & 
MoueaordJromJ4 
MQtockJoove 
K&nd&ai t 

Copy,data&lock := ( 

R D I  --f (Movedhar - f  r o m X :  ASR + 0) ; 

SNI + (Movejhar, f romX; ASR e o ) ;  
WRI + (Move,wordfromJ; A S R  t o ;  W C  t W C  

Move,char,toX)) 

Movejhar,toJ( := ( 

K,End V (WC = 0) + :  

7 K S n d  A (WC # 0) A K D a t a J q  + ( 

m i t i n g  i n t o  K 

s e t t i n g  uv i n s t ruc t ion  in K 

reading from K 
wr i t i ng  i n t o  M 

reading from Ed 

read M ,  wr i t e  M on a word bu word bas i s  
p r o c e ~ s  t o  u a i t  f o r  K end s ignals  

I ;  n e x t  

K t P i o  c M  data movement 

s top a t  end 

transmit  a char 
(ASR = 0) + M o v e ~ o r d f r o m d ;  WC c W C - I ;  n e x t  

KJata cARc[ASR];  ASR c A S R  + 1 ;  nex t  

Move,char, to,K) ; 

1 K,End A (WC # 0) A K d a t a d q  + ( 

Move&har,to,K)) 

Movejontrol&har,to,K := ( 

K S n d  + ;  

-, K,End A KJataJq --f ( 
(ASR = 0) --fMove.wordUfromJ4; n e x t  

KQata cARc[ASR];  ASR c A S R  t I :  next  

Move&ontrolghar,toJ() ; 

7 K S n d  A K Q a t a a q  +Move~ontroI&har,to,K)) 

Move&har,fromJ( := ( 

K,End v (WC = 0) + ;  

7 KJnd A (WC # 0) A KSataJ Iq  + ( 

ARcCASR) c K D a t a ;  ASR t A S R  + 1 :  n e x t  

(ASR = 0) + (Move#ord,toJI: WC c W C  - I ) ;  next  

Movejharfrom,K) ; 

KJnd A (WC # O ) A  K Q a t a d q  + ( 

M o v e s h a r f  rom,K)) 

Move,.word,tod := (DR c A R ;  n e x t  

M [ A C l  e D R :  AC t A C  + I )  

MoveJuordfromJI := (AR t D R ;  n e x t  

DR eM[ACI ;  AC c A C  + I )  

PQlock f love  := ( 

i d l e  t i l l  char ar r i ves  

K t P i o  cM 
stou a t  end 
transmit  a char 

i d l e ,  t i l l  char ar r i ves  
kf e P i 0  t K data movement 
s top a t  end 

rece ive  a char 

i d l e  t i l l  char ar r i ves  

i” c Pi0 data movement 

P i 0  e ? n  data movement 

V c M  block move process f o r  m o v i q  WC words w i th in  M ,  i . e . ,  
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1 ( W C  = 0 )  - : 
( W C  # 0) i (DR t M [ C C ] :  CC t C C  + 1 ;  n e x t  

""[i'C: f[i'(' + W) I t P ' [ A C :  ( A r  + V C )  1 I 
M [ A C ]  t D R ;  AC c A C  + I ;  WC t W C  - I :  n e x t  

M,block,move)) 

K s n d - w a i t  := ( "rocess to ?Iqle u n t i l  R transmits an end signal -. (K,End v K,Unusual,End) i K s n d j v a i  t ;  

(K,End v K,Unusual,End) i ; )  
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APPENDIX 3 K('HYPERTAPE) AND 'KDISK ISP DESCRIPTIONS 

Appendix 3 

K( 'Hyper tape)  and K ( d i s k )  I S P  D e s c r i p t i o n s  

These K depend on control and s t a t e  d e f i n i t i o n s  from P i 0  of Appendix 2.  

K S t a t e  
K g p d ) :  1 

K,Da t K O :  5> 
t h e  ooeration or  i n s t r u c t i o n  r e g i s t e r  i n  K 

i'ata b u f f e r  i n  P; used *or t ransmi t t inp  and receiving characters 
KJa ta,Rq 

K,End 

used t o  control data f low bptween ARcCASR] and K d a t a :  s ignal  
i n  K denoting KJata reauires neu data i f  wri t ing ,  or has a 
full data b u f f e r  i f  readinq 

s e t  by K a t  the  completion o f  reading o r  o r i t i n g  a block o f  data 
KJJnusual Jnd s e t  b~ K when an error is detectec7 during wr i t ing  or reading and 

data f l o w  must be terminated 

The following sense data b i t s  for tape or ig inate  i n  Ens and K. 
Some o f  the  b i t s  are s e t  using t h e  CTL, CTLR, o r  CTLW i n s t r u c t i o n s  ,from Pi0 a s  control words 
SDT[O:l 1 6 , 1 : 3 5 >  

SDT[Ol<l>/Operator Requ i red  := ( 

These r e g i s t e r s  can be read by P i 0  using t h @  Pi0 SNS i n s t r u c t i o n s  

sense data .for K('H,upertape) 

SDT[Ol<l j>/Selected D r i v e  Not Ready V 
SDT[0]<15>/Selected D r i v e  Not Loaded V 
SDT[01<16>/Selected D r i v e  F i l e  P r o t e c t e d  V 
SDT[O ]<I 7>/0perat i o n  Not S t a r t e d )  

SDT[OI<l9>/lnval i d  Order Code v 
SDT[OIQl>/Selected D r i v e  Busy v 
SDT[O]42>/Selected D r i v e  a t  Beg inn ing  of Tape v 
SDT[O143>/Selected D r i v e  a t  End o f  Tape) 

SDT[OlQ5>/Correct i o n  Occurred v 
SDT[Ok27>/Channel P a r i t y  Check V 
SDT[OlQ8>/Code Check V 
SDT[OIQ9>/Envelope Check v 
SOT[O1Ql>/Overrun o r  Charac ter  Lost  Check v 
SDT[O]~3>/Excess ive  Skew Check v 
SDT[Ol (3b /Track  S t a r t  Check o r  C lock  L o s t  Check) 

SDTll  l< l> /Se lec ted  D r i v e  Read a Tape Mark V 
SDT[ I lQ>/Se lec ted  D r i v e  i n  End o f  Tape Warning Area) 

SDT[O]q>/Program Check := ( 

SDT[O]<O/Data Check := ( 

SDT[D k 5 > /  Except i o n  C o n d i t i o n s  := ( 

SDT[01<7,9:11>/Selected Tape U n i t  Address O : 3  
SDT[I 1<7>/Read S e c t i o n  Busy 
SDT[I ]->/Write S e c t i o n  Busy 
SDT[I ]<I I N B a c k w a r d  Mode 
SDTCl 1<13,15: 17,19,21 :23,25,27>/Drive A t t e n t i o n [ O : 9 1  

SDF[OlO>/Program Check := ( 
SDF[O:I I6,i :35> Sense data d'or t h e  K (  'Disk) 

SDF[Olq>/ Inva l  i d  Sequence V 
SDF[Ol<S>/lnval i d  Code V 
SDF[O]<IO>/Forrnat Check v 
SDF[Ol<I I>/No Record Found 
SDF[0]<13>/lnval i d  Address) 

SDF[OI<lp/Response Check V 
SOF[O]<lb/Data Compare Check V 
S D F [ O l < I P / P a r i t y  o r  C y c l i c  Code) 

SDF[Ol<p/Except ion  C o n d i t i o n  := ( 
SDF[O1<1F'/Access I n o p e r a t i v e  V 
SDF[01<21>/Access Not Ready V 
SDF[01<2D/Disk C i r c u i t  Check V 
SDF[O]<2j>/Fi l e  C i r c u i t  Check 

SDF[O]<b/Data Check := ( 

SDF[O1<7>/six B i t  Mode/Status B i t  
SDF[ O l <  31 ,33 :  3poSDF[ I ] <  1,3 :5,7,9>/Access 0, Module[O :9 ]  
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Control Orders, i . e  
In s t ruc t ion  Names and Nwibers f o r  X i d i s k )  
These in s t ruc t ions  are s e t  i n  the K op r e g i s t e r  by the  CTL ins t ruc t ions  from Pio. 
K ' s .  

The inc t ruc t ions  are then executed by the  
They w i l l  only be given as names, mnemonics, and operation codes. 

DNOP (:= K d p  = AA) + 

DREL ( :=  K&p = A4) + 

DEBM (:= K&p = A8) --f 

DSBM ( : =  K d p  = As) + 

D S E K  (:= K d p  = EA) + 

DVSR (:= K a p  = 82) .--) 

DWRF (:= L o p  = 83) + 

DVTN (:= K a p  = 84) .--) 

DVCY (:= K d p  = 85) --f 

DWRC (:= K,op = 86)  + 

D S A l  (:= K d p  = 87) .--) 

DCTA (:= K,op = 88) + 

DVHA (:= K d p  = 89) + 

Control Orders, . i . e .  
In s t ruc t ion  Names and Numbers f o r  K i  'Hypertape) 

HNOP ( : =  K d p  = AAJ + 

HE05 (:= K a p  = A I )  + 

HRLF ( : =  L o p  = A2) + 

HRLN (:= K,op = A3) --f 

HCLN (:= L o p  = A5) + 

HSEL ( : =  K,op = A6) + 

HSBR (:= L o p  = A7J i 

HCCR (:= K,op = 28) --f 

HRWD (:= L o p  = 3A) + 
HRUN ( : =  K,op = 31)  --f 

HERG ( : =  L o p  = 32)  --f 

HWTM (:= L o p  = 33) + 

HBSR ( : =  L o p  = 34) + 

HBSF (:= L o p  = 35) + 

HSKR ( :=  K,op = 36) + 

HSKF ( :=  L o p  = 37) --f 

HCHC ( : =  L o p  = 38) + 

HUNL ( : =  L o p  = 3 9 )  i 
HFPN ( :=  L o p  = 42)  + 

no operation 
release 

e igh t  b i t  mode 

s i x  b i t  mode 

seek 

prepare t o  v e r i f y  ( s ing le  record)  

prepare to wri t e  format 
orepare t o  v e r i f y  ( track w i t h  no addresses) 

prepare t o  v e r i f y  icy1 +der operat ion)  
prepare t o  wr i t e  check 

s e t  access inoperat ive  
prepare t o  u e r i f y  ( track w i th  addresses) 

prepare t o  ver i , f y  (home address) 

no operation 
end of sequence 

reserved l i g h t  0,f.f 

reserved l i g h t  on 

check l i g h t  on 

s e l e c t  
s e l e c t  f o r  backward reading 

change cartr idge and rem% 

rewind 

rewind and unload cartr idge 
erase long pao 
wr i t e  tape mark 
backspace 

backspace f i l e  
space 

space f i l e  
change cartr idge 

unload cartr idge 
file pro tec t  on 
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APPENDIX 4 IBM 7094 PC INSTRUCTIONS TO PlO('7909) 

Appendix  4 

IBM 7094 Pc I n s t r u c t i o n s  t o  P i 0 ( ~ 7 9 0 9 )  

P r  S ta te  
Pc,t r a p g n a b  l e d ,  B,C,  D,E,  F,G. H> An 8 b i t  r e g i s t e r  i n  Pc which i s  used t o  mask or allow t r a p  

reques ts  frov P i o .  ( # A ,  q, . . . H) 
Ins t ruc t ion  S e t  

The .Collowing i n s t r u c t i o n s  i n  Pc are used t o  
R S C  i (Wait i (CC t e ;  Wait  - 0 ) ;  

?Wa i t  + R S C ) : ,  

STC + ( W a i t  + (CC L A C ;  Wai t  ~ 0 ) ;  

+sit i S T C ) :  

SCH + (M[elQ1:35> t C C ;  M[e]<3:17> c A C ) :  

ENB --f ( P c d r a p a n a b l e  cM[e]Q8:35>); 

R I C  + (CTCOACuARnCCnUCnWait t o ) ;  
TCO + (7 Wait  --f I C  + e ) ;  

TCN + (Wait + I C  +e); 

operate on each P i 0  s t a t e :  thus,  each i n s t r u c t i o n  i s  actuall!i 8 ins t ruc t ions  
r e s e t  and s t a r t  channel 
i n i t i a l i z e s  a Pi0 

s t a r t  t h e  Pi0 program 

s t o r e  channel. Checks s t a t u s  of  a P i o .  

enable .from e , f f e c t i v e  address 
r e s e t  channel 

t r a n s f e r  on channel i n  operation 
t rans fer  on channel no t  :n ooeration 

I I 



Section 2 

The SDS 910-9300 series, 
a planned family 

The Scientific Data System 900-9000 series consists of the SDS 
910, 920, 925, 930, 940, 945, and 9300 computers. The series 
includes capabilities and features found in most 24-bit ma- 
chines. The design implementation is among the best for 24-bit 
machines, as measured by equipment utilization, the processor 
state, implementation technology, and ease of use. 

The first delivery dates for the members of the series are910 
(August, 1962), 920 (September, 1962), 925 (February, 1965), 
930 (June, 1964), 940 (April, 1966), 945 (-1968), and 9300 
(December, 1964). 

The 910 and 920 were designed at the same time as a 
planned series of compatible computers which spanned a range 
of performance. The 910 has instructions which facilitate de- 
fining 920 instructions by software. For examde, these include 
the multiply and divide step1 (see page 544) instructions in 
the 910 for programming the multiply and divide instruction 
in the 920. 

The I / O  facility evolved to a clean structure, with the poten- 
tial for having a high degree of T and Ms data-transfer concur- 
rency at a comparatively low cost. The IBM 7094 should be 
studied for a contrasting (more expensive) approach. 

The instructions which help manipulate floating-point data 
are interesting and useful. The machine's ability to execute 
closed floating-point arithmetic subroutines is fairly good con- 
sidering that the instructions are not hardwired. 

The Programmed Operator (POP) instructions provide the 
ability to define an instruction set for efficient encoding. The 
idea appeared earlier in Atlas. However, the POP instruction 
calls subprograms in primary memory, instead of in fixed 
memory like Atlas. 

A nice scheme1 is described for increasing the memory 
address space from 16,384 to 32,768 words. Other schemes 
which switch memory banks, like those in the PDP-8 (Chap. 5) 

'We believe this appeared originally in the DEC PDP 1 introduced in November, 
1960. 

and in the 65,384-word 7094 II (Chap. 41), tend to be less 
desirable and flexible. 

The SDS 930 was used at the University of California (Berk- 
eley) as the base machine for the design of the Berkeley Time 
Sharing System (Chap. 24). SDS later marketed the system as 
the SDS 940. 

The 9300 was not a member of the original 910-930 series. 
There is almost symbolic language program compatibility. Sev- 
eral registers and extra memory transfer paths were added to 
form the 9300 from the 930. The power of the 9300 is only 
a factor of 2 times the 930 for simple instructions. However, 
the hardwired floating-point instructions in the 9300 increases 
the power over the 930 by a factor of almost 10 for arithmetic 
problems. It is hard to believe that the incompatible 9300 was 
a wise choice. (We suggest a more reasonable alternative could 
have been a two-processor 930'. The 930' processor would be 
a 930 but with hardwired floating-point arithmetic instructions.) 
The 9300 has interesting twin-mode instructions for simulta- 
neously operating on 12-bit data pairs. The 24-bit fixed-point 
word is sufficient for the real-time applications for which the 
computer was designed. 

A flaw in the series is the sharing of K's among peripheral 
T's and Ms's. This problem can be seen by looking at the PMS 
structure (Chap. 42, Fig. 2, page 546). The connection to the 
peripheral K from K('Channe1) requires a continuous connection 
during the data-transfer dialogue to Mp. This structure is espe- 
cially bad in the case of a slow T, for example, a typewriter. 
A single character transmission requires that K('W, 'Y) be 
assigned to the typewriter during the complete message trans- 
mission (at a connected time of 100 milliseconds/character). 
The problem can be avoided by placing a character memory 
in each slow KT. Multiple devices could then run concurrently 
without requiring the elaborate K('W, 'Y) to be attached to them. 
The structure does not preclude such an improvement. 

A complete description of the input/output and interrupt 
system is given and should be read carefully. 
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Chapter 42 

The SDS1 910-9300 series 
Introduction 

The SDS 910, 920, 925, and 930 form a compatible series of 
computers. The 9300, though not compatible with the series, was 
an outgrowth of it. The  9300 uses the Ms and T devices of the 
930. The 940 was designed initially at the University of California, 
Berkeley (see Chap. 24) for time sharing, and the 945 is a successor 
to  the 940. The word length is 24 bits, and one single address 
instruction is encoded per word. The state of the machine consists 
of Mp(2048 - 32768 w) and Mps('P/Program Counter, 'A/Accu- 
mulator, 'B/Extended Accumulator, 'X/Index register). 

These computers have been designed to process data originat- 
ing from physical processes in real time. This design goal leads 
to  a priority interrupt system with many (1,024) levels. The  multi- 
ple interrupts facilitate programming and decrease the interrupt 
response time. A 24-bit word or two 12-bit words are a reasonable 
size for the problem types encountered. A multiple of 6 bits was 
chosen because of the (then) standard 6-bit magnetic-tape charac- 
ter. The relatively efficient storage representation and processing 
of floating-point data allow these computers to be  used for gen- 
eral-purpose computation. However, only the 9300 has built-in 
floating-point operations. The 9300 has extensive capability for 
more general-purpose use. It is also used for operations on half- 
length data. 

The data types processed by the 910-930 include words, inte- 
gers, addresses, and boolean vectors. Several special instructions 
aid processing of types floating-point and double-length integers. 
The  9300 processes the additional data-types single- and double- 
length floating point. The  9300 has twin-mode instructions which 
operate on two half-length data (12 b)  simultaneously. The  two's 
complement representation is used for negative numbers. 

The multiply, divide, and several other instructions are not 
wired into the 910, and compatibility between the 910 and 920-930 
cannot be  completely obtained by programming, although the 910 
is a subset of the 920-930. Likewise, a smaller minimum Mp is 
available on the 910 (2,048 word versus 4,096 word). The 920 and 
930 have identical instruction sets and differ in memory and logic 
performance. The  930 has a t.cycle: 1.75 ps, and the 910-920 has 
t.cycle: 8 ps. The more elaborate PMS structure of the 930 al- 
lows for greater growth, (e.g., by having more access ports to Mp). 

'Scientific Data Systems merged with Xerox Corporation in 1969. The 
divisional name became Xerox Data Systems (XUS). 

The 9300's instruction set is different from the 930's. There are 
three index registers. The PMS structure is similar (and nearly 
compatible) with the 930. There are more (and better) working 
registers in the 9300 Pc to  increase performance. The 9300 has 
two memory-access links, and the Pc can fetch instructions and 
data simultaneously. The  instructions in the various C's appear 
in Table 1 for comparison purposes. 

The SDS 925, a 1.75-ps version of the SDS 910, was available 
only for a brief time and will not be discussed further. 

The machines process instructions (operations to the accumu- 
lator) in the following times (microseconds): 

Instruction 910 920 930 9300 

Fixed-point Add 16 16 3.5 1.75 
Fixed-point Multiply 248 32 7.0 7.0 
Floating-point Add 896 384 92 14.0 
Floating-point Multiply 1696 656 147 12.25 

Structure 

The structure of these computers is given with PMS and conven- 
tional diagrams in Figs. 1 to 4. 

The  SDS channel is a Kio('Channe1) and not a Pio, since it has 
no program counter and uses Pc. However, it  can be  as effective 
as a Pio. Of course, the cost is lower since Pc is shared. If K('W, 
'Y) requires memory accesses, they must wait until suitable times 
in the Pc instruction-interpretation process to  communicate with 
memory (Fig. 1). 

The PMS structural detail (Fig. 2) does not show the algorithm 
by which simultaneous Kio('V', 'Y, 'C, 'D) and Pc requests for Mp 
are resolved. K has the highest priority, and further resolution 
among K's is determined by the K with the fullest buffer memory. 
Thus the priority is variable. 

There are three basic K types, or channels (Fig. 2), in the 930 
and 9300: 

1 K('Time Multiplexed Communications Channel/TMCC) 

2 K('Direct Access Communications Channel/DACC) 

3 K('Data Subchannel/DSC) 
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544 Part 6 1 Computer families 

Table 1 SDS 910, 920, 930 and 9300 instruction sets1 

Section 2 I The SDS 910-9300 series, a planned family 

Mnemonic Name Mnemonic Name 

LOAD/STOR E 

+ LDA 
+ STA 
+ LDB 
+ STB 

LDP 
STD 
LDS 
STS 

+ LDX 
+ STX 
+ EAX 

STZ 
+XMA 

XMB 
XMX 

AR ITH M ETlC 

Load A 
Store A 
Load B 
Store B 
Load Double Precision 
Store Double Precision 
Load Selective (Masked) 
Store Selective (Masked) 
Load Index X 
Store Index X 
Copy Effective address into Index Reg 

ister 1 
Store Zero 
Exchange M and A 
Exchange M and B 
Exchange M and 

Index Register 

+ADD 
DPA 

+SUB 
DPS 
M PO 

OMIN 
M PT 

*+ADM 
$ + M U  
$ + DIV 

TMU 
DPN 

x MUS 
x DIS 
*.sue 
$oADC 

x ~ M D E  

Add M to A 
Double Precision Add 
Subtract M from A 
Double Precision Subtract 
M Plus One 
M Increment (M + 1) 
M Plus Two 
Add to Memory 
Multiply 
Divide 
Twin Multiply 
Double Precision Negate 
Multiply Step 
Divide Step 
Subtract with Carry 
Add with Carry* 
M Decrement 

ARITHMETIC, FLOATING-POINT (OPTIONAL) 

FLA M, T Floating Add 
FLS M, T Floating Subtract 
FLM M, T Floating Multiply 
FLD M. T Floating Divide 

LOGICAL 

+ETR M, T Extract 
+MRG M,T Merge 

REGISTER CHANGE 

RCH 
AXB 

$oCLA 
$oCLB 
0CLR 

$.CAB 
0ABC 

$CBA 
0BAC 
0XAB 

$oCBX 
$oCXB 
$oXXB 
$oSTE 
$oLDE 
$oXEE 
$oCXA 
$CAX 

0XXA 
$oCNA 

OCLX 
COPY 

BRANCH 

+ BRU 
+ BRX 
+ BRM 

BRC 
BMA 

+ BRR 

TEST/SKIP 

$ + SKE 
+ SKG 

SKL 
+SKM 

SKU 
SKQ 

SKF 

+ SKA 

S+SKB 

+ SKN 
S+SKR 

Register Change 
Address to Index Base 
Clear A* 
Clear B*  
Clear AB 
Copy A into B* 
Copy A into B, Clear A 
Copy B into A* 
Copy B into A, Clear B 
Exchange A and B 
Copy B into Index* 
Copy Index into B* 
Exchange Index and B*  
Store Exponent* 
Load Exponent* 
Exchange Exponents* 
Copy Index into A* 
Copy A into Index' 
Exchange Index and A* 
Copy Negative into A* 
Clear X 
COPY 

Branch Unconditionally 
Increase Index and Branch 
Mark Place and Branch 
Branch and Clear Interrupt 
Branch and Mark Place or Argument 

Address 
Return Branch 

Skip if A Equals M 
Skip if A Greater than M 
Skip if A Less than M 
Skip if A equals M on B Mask 
Skip if A Unequal M 
Skip if Masked Quantity in A Greater 

Skip if Floating Exponent in B is Greater 

Skip if A and M do not Compare Ones 

than M 

than or Equal 

Anywhere 

Anywhere 
Skip if B and M do Compare Ones 

Skip if M is Negative 
Reduce M, Skip if Negative 
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Table 1 SDS 910, 920, 930 and 9300 instruction sets (Continued) 

Mnemonic Name Mnemonic Name 

+EOR M,T 

REGISTER SHIFT 

SHIFT M,T 
ARSA N,T 
ARSB N,T  

ARSD N, T; 
ARST N, T 
LRSA N,T 
LRSB N,T 

LRSD N, T; 
LRST N, T 
CRSA N,T 
CRSB N,T 

CRSD N, T; 
CRST N, T 

ALSA N, T 
ALSB N,T 
ALSD N, T 
ALST N, T 
LLSA N, T 
LLSB N, T 
LLSD N, T 
LLST N, T 
CLSA N, T 
CLSB N, T 

*RSH, 

0 LRSH (930 only), 

oRCY, 

0LSH; 

0 LCY, 
CLSD 
CLST 
NORA 

0 NOD 
NORD 

CONTROL 

+ HLT 
+ NOP 
+ EXU 

INR 
REP 

Exclusive OR 

Shift 
Arithmetic Right Shift A 
Arithmetic Right Shift B 
Arithmetic Right Shift AB 
Arithmetic Right Shift Double 
Arithmetic Right Shift Twin 
Logical Right Shift A 
Logical Right Shift B 
Logical Right Shift AB 
Logical Right Shift Double 
Logical Right Shift Twin 
Circular Right Shift A 
Circular Right Shift B 
Circular Right Shift AB 
Circular Right Shift Double 
Circular Right Shift Twin 
Arithmetic Left Shift AB 
Arithmetic Left Shift A 
Arithmetic Left Shift B 
Arithmetic Left Shift Double 
Arithmetic Left Shift Twin 
Logical Left Shift A 
Logical Left Shift B 
Logical Left Shift Double 
Logical Left Shift Twin 
Circular Left Shift A 
Circular Left Shift B 
Circular Left Shift AB 
Circular Left Shift Double 
Circular Left Shift Twin 
Normalize A 
Normalize: Decrement X 
Normalize Double 

Halt 
No Operation 
Execute 
Interpret 
Repeat 

SKP M,T Skip if Bit Sum Even 
+SKS M,T Skip if Signal Not Set 
0SKD M, T Difference Exponents; Skip" 

FLAG REGISTER 

FRTS M Flag Indicator Reset Test/Set 
FLAG M Flag 
FIRS M Flag Indicator Reset/Set 
FSTR M Flag Indicator Set Test/Reset 
FRST M Flag Indicator Reset/Set Test 
SWT M SENSE Switch Test 

INTERRUPTS 

+ EIR 
+ DIR 
+ EIT 
+ IDT 
+AIR 

Enable Interrupts 
Disable Interrupts 
Interrupt Enabled Test 
Interrupt Disabled Test 
Arm Interrupts 

MEMORY EXTENSION (930 ONLY) 

Set Extension Register 
Extension Register Test 

BREAKPOINT TESTS (SENSE SWITCHES IN 9300) 

0BPT 4 Breakpoint No. 4 Test 
0BPT 3 Breakpoint No. 3 Test 
0 BPT 2 Breakpoint No. 2 Test 
0BPT 1 Breakpoint No. 1 Test 

OVERFLOW (FLAG IN 9300) 

0ROV Reset Overflow 
.REO Record Exponent Overflow 
0 OVT Overflow Test: Reset 

PROGRAMMED OPERATORS 

.POP M,T  Programmed Operator (64 instructions) 

'M-Memory  or Memory Address: N - n u m b e r  of shifts: T-tag field: +-also in the 910, 920 and 930; x.910 only; m o t  in the 9300; $-not in the 910. 
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I T.consol  e -  

MP"-PC- ~ ( ' ~ n - o u t  B U S )  TK('W)-sfx ;+ 

K( 'Y)-Sfx t 

' P c ( l  a d d r e s s / i n s t r u c t i o n :  1 i n s t r u c t i d w ;  24 b/w: 

technology: t r a n s i s t o r ;  1962 - 1968) 

Fig. 1. SDS 910 and 920 PMS diagram. 

The links between KT or KMs and any one of K('TMCC), 
K('DACC), and K('DSC) are identical. The KT or KMs assembles/ 
disassembles characters into/from words and transmits/receives 
them to/from the Kio('Channe1). The channel communicates with 
Mp or Pc for data transmission and finally communicates with Pc 
a t  task completion (the block of data transferred). Task alarms may 
came Kio to  interrupt Pc. Each Kio('Channe1) can assemble data 
on a 6-, 12-, or 24-bit basis for Mp accesses. A K('Channe1) recog- 
nizes two types of information: data being transmitted between 
Mp and the peripheral K, and initialization or controlling infor- 
mation from Pc. 

In the 930 or 9300 K's the principal distinction is that  the actual 
data-path switching routes differ. From a program operation and 
control viewpoint the Time Multiplexed and the Direct Access 
Communication Channels (TMCC and DACC) and the Data 
Subchannels (DSC) behave almost identically. The TMCC and 
DSC differ from DACC in that  the block control information 
(number of words and location in memory) for the channel may 
be either in primary memory or in local hardware memory associ- 
ated with the channel hardware. 

T.conso le  - 
I 

L ( I / O  b u s :  under Pc v r o g r m e d  control)  

- P c1- s 

T- 
L - L('Memory I n t e r f a c e  Cnnnection/MlC)- 

' Pc(laddress/instruction: 1 i n s t r u c t i o n / w :  Mps( -4 w ) :  24 b/w; t e c h n o 1 o g y : t r a n s i s t  

2Mp(core :  I .75 p s / w ;  4 - 
a S ( c o n c u r r e n c y : l ;  1 . 7 5 u s / w )  

kw. (24, I p a r i t y )  b/w) 

K( 'T ime Mu1 t i  p l  exed Communi c a t  inns  Channel /TPCC) 

' K ( ' D i r e c t  Access Communications Channel/DACC) 

' K ( ' D a t a  Subchannel/DSC) 

" S ( # D a t a  Y u l  t i p l c x - r  Evs tedDPS)  

E x  :=  TIM^ 

- c n n t r n l ,  da ta  

da ta  o n l y  

Fig. 2. SDS 930 PMS diagram. 
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Main Frame 
Para1 l e 1  

Input/Output POT 

i zs -7 

- 
. . . . . . . . . . . . . . . . .  I 
Additional 
Optional 

. . . . . . . . . . . .  
Memory 

Multiple Access 
to Memory 1 Feature 1 

r - l  Memory 

Multiple Access 
to Memory I Feature I 

TMCC -m 

I-- Second Path --- I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 

I 
Data Multiplexing System I 

Priority 
Control 

Optional 
E I N  

I I 

Where 

DSC= Data Sub-channel 
M I C =  Memory I n t e r f a c e  Connection 
TMCC= Time Mu l t i p lexed  Communications Channel 
DACC= D i r e c t  Access 

I 
I 
I 
I 
I 
I 
I Priority Interrupts 
I 
I 

Fig. 3. SDS 390 computer-configuration diagram. (Courtesy of Scientific Data Systems.) 
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The 9300 structure, though not given in the PMS diagram, is 
essentially that of the 930 (Figs. 3 and 4). In the 9300, Mp has 
three access ports or a S('Memory-Processor; 8 Mp; 3 PX) .  The 
Pc('9300) requires two of the access ports for independent access 
of instructions and data, leaving one for K transfer to Ms and T.  

'nstruction-set processor 

The interesting parts of the ISP are discussed informally below. 
The formal ISP description given in Appendix I of this chapter 
should be read. The descriptions are partially taken from the SDS 
Programming Reference Manuals. 

Instruction/operand access 
i s  overlapped when separate 
memory modules are accessed 

Core Memory 
Expandable to 32,768 words 

Basic 4096-word Memory 
C 

Singye-bit 1/0 Instructions - 
Control and Sense 1 1 A S  9300 _ _ _ - _ - -  ---- 

b COMPUTER h Optional 4096-word Memory I 

Time-Multiplexed 1 

4 * k _ _ _ - - - - - - - -  i 

1 r - - - - - - - - - - -  
I/O Optional 8192-word Memory I 

24-bit 1/0 Ari thmetic Operands and 
and Control - 

$L -__-- - - - - - -  -I 
Input/Output Control 

+ -1 I--- - - -  - - - - - - 
I I 

I 
Optional 16,384-word Memory I 

I 
I I 
L _ _ _ _ _ _ _ _ - _ _ -  J I 

Time-Multiplexed Communication Channels b 
(Up to 30 devices/channel) 

r -  - - - z - - T  r - - - - - -  -1 
I 
I 
I \ _ _ - _ _ _ -  _1 

Mul t ip le  Access I I Data Mult ip lex 
I, System I 

to Memory I 
L _ _ _ _  [ - - J  

G 

1 Tm Direct Access Communication Chonnels 
(Up to 30 devices/channel) 

Up to 128 Data I r - - - - -  ---- 
To/from Special Devices I M~~~~~ interface I 

I Connections* I 
4 Subchannels 

L ---------- J 
Note: Broken lines indicate optional hardware. 

Fig. 4. SDS 9300 computer-configuration diagram. (Courtesy of Scientific Data Systems.) 
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R x Instruction code 1 Address field 
I I I I I 1 

Registers and memory (930) 

The Pc state is declared in the ISP description. The  ISP registers 
are A, B, X, P, M, and miscellaneous bits for overflow, carry, etc. 
Overflow can be turned on for arithmetic overflow in addition, 
subtraction, multiplication, division, and left-shift instructions. 

Data  formats 

General. A computer word, W, is 24 binary digits (bits) or 8 octal 
digits. A word is numbered W(0:23) from left to right or alterna- 
tively W (0:7),. 

Fixed-point data format. Fixed-point numbers are represented in 
two’s complement form with the sign at W(0). A 23-bit fraction 
W(1:23)  can be assumed. The binary point is to the left of bit 
position 1 (W(1)) .  For integers, the binary point is to  the right 
of W(23). 

Floating-point datu format. Subroutines perform double- and sin- 
gle-precision floating-point arithmetic. A floating-point word is 

defined as f(O:47) := W[n:(n + 1)](0:23). Of course, single- 
precision floating point requires less processing time. 

The fractional portion (mantissa), f(0:38), of a double-precision 
floating-point number is a 39-bit proper fraction with the leading 
bit being the sign bit and the binary point located to the left of 
the most significant magnitude bit, f (  1). 

The floating-point exponent is a %bit integer, f(39:47), with 
the leading bit being the sign, f(39). The standard routines operate 
on both fraction and exponent in two’s complement form. If F 
represents the contents of the fractional field and E represents the 
contents of the exponent field, the number has the form F x 2E. 

Standard subroutines assume that the more significant word is 
in the A register and that the less significant word is in the B 
register. Correspondingly for Mp, the more significant word is in 
Mp[x] and the least significant word in Mp[x + 11. 

The single-precision floating-point representation is identical 
to that of double-precision floating point; Le., it takes two words. 
However, the least significant bits of the mantissa, f(24:38), are 
not processed; thus there is a saving in time but not in space for 
using single precision. 

Znstruction word format (930) 

The computer instruction word format is given in Fig. 5. 
W(0)  is the Relative Address bit, R. Standard software loading 

programs use this bit; central processor decoding logic does not 
use or sense this bit. A 1 in W(0) causes some loading programs 

I dig't I 
Fig. 5. SDS 930 instruction-format diagram. 

to  add the assigned location of the instruction to  the address field 
contents prior to  actual storage into the assigned location. 

W(1) is the Index Register bit, X. It determines whether or 
not the index register will be added to calculate the effective 
address. 

W(2:8) is the Instruction Code field and determines the oper- 
ation to be performed. The  Programmed Operator facility is 
selected by W(2); it is part of the Tag field W(0:2). 

W(9) is the Indirect Address bit, I. I t  determines whether or 
not e or M[e] is to be used as the effective address (see below). 

W( 10:23) is the Address field and for most instructions repre- 
sents the location of the operand called for by the instruction code. 

Address modi$cation. Index and indirect addressing, used singly 
or in combination, perform address modification after bringing the 
instruction from memory but before executing it. The instruction 
remains in memory in its original form. The results of indexing 
and/or indirect addressing form the “effective address,” e. 

INDEXING If the content of the index bit in an instruction is a 
1, prior to execution the computer adds the contents X(10:23), 
of the index register to  the contents of the address field of the 
instruction. This addition does not keep any overflow or carry 
beyond the fourteenth address bit. This addition occurs prior to  
any indirect action. 

INDIRECT ADDRESSING A 1 in the indirect address bit causes the 
computer to  decode the contents of the effective address, accessed 
as described above, as if it were an instruction without an instruc- 
tion code; that  is, the address logic reinitiates address decoding, 
using the word in the effective location (the memory cell whose 
address is the effective address). This is an iterative process and 
provides multilevel indirect and indexed addressing. Each level 
of indirect addressing adds an additional cycle time to the in- 
struction execution time. 

930 memory extension control registers. Core memory in the 930 
is expandable to 32,768 words. However, the address field in the 
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instruction format is 14 bits long, allowing direct access of only 
up  to  16,384 words. Memory extension in the 930 contains two 
3-bit memory extension registers, EM2 and EM3, and allows 
addressing of memories of 32,768 words. The program loads either 
or both of the registers and activates them as desired. Each register 
can become the most significant digit (fifth octal) of any operand 
address. 

The  program uses the first extension register, EM3, by calling 
for an  address with an 11, in the most and next most significant 
address bits, respectively (a 3 for the most significant octal digit). 
The program calls for EM2, the second extension register, by 
setting the same two address bits to  10, (a 2 for the most significant 
octal digit). In this way, normal addressing compatible with the 
910 and 920 occurs by setting a 3 in EM3, and a 2 in EM2. 

910-930 instructions 

Programmed Operators (POP’S) enable subroutines to  be called 
with a single instruction. This provides definable instructions of 
the same form as built-in machine instructions. The  computer 
decodes the operation codes 100, - 177, as special instructions 
and transfers to a subroutine whose address is uniquely determined 
by the code. The  computer records the address of the POP in- 
struction at location 0 together with an indirect address bit so 
that  the program continuity may be  maintained. By indirect 
addressing which refers to location 0, which in turn refers to the 
POP instruction, the subroutine can gain access to  the effective 
address of the operand associated with the POP instruction. 

The instruction set for the computers in this series is listed in 
Table 1. The table should be  used to  compare the machines. 

There are two instructions in the 910 which are not in the 920 
or 930: Multiply Step and Divide Step. These instructions facilitate 
writing subroutines for multiplication and division. The Multiply 
Step (MUS) instruction is defined: 

MUS + (B(23) + A t A + M[e]; next AB t AB/2); 

9300 instructions 

The instruction word format in the central processor is shown in 
Fig. 6. 

2 3 4 5 6 7  I 
Fig. 6. SDS 9300 instruction-format diagram. 

W(0) contains the Indirect Address bit I. 
W(1:2) contains the Index Register bits X(0:l) .  
W(0:2) is called the Tag field. 
W(3:8) contains the Instruction code; the contents of this field 

determine the operation to be  performed. 
W(9:23) contains the Address; for most instructions, the con- 

tents of this field represent the memory location of the operand 
called for by the instruction code. 

Address modijication. Each index register contains an unsigned 
base address of 15 magnitude bits and a signed increment of 9 
bits. The  increment contains 8 magnitude bits and a sign bit and 
is held in two’s complement form. 

Index registers are modified by adding the signed-increment 
value to the base address using two’s complement arithmetic. Since 
the increment and base address fields are of unequal lengths, the 
sign bit (bit 0) of the increment field is extended six positions to  
the left prior to the addition. This 15-bit sum is then stored in 
the base address field of the index register. The  index register may 
be incremented by any value from -256,” to 255,” using a single 
instruction. Incrementing and testing for a “terminal condition” 
is done by the instruction Increase Index And Branch (BRX), as 
follows: 

If the index register has been negatively incremented, a ter- 
minal condition exists when the base address has been reduced 

below the zero value. 
If the index register has been positively incremented, a terminal 

condition exists when the resultant base address has been increased 
beyond the maximum address value (077777,). 

If the terminal condition exists, the next instruction is taken 
in sequence. If the terminal condition does not exist, program 
control is transferred to the location specified. 

The instruction set for the 9300 is given in Table 1. 

Pc implementation 

All the processors of the series have basically similar register 
configurations because of the common Instruction-set Processor. 
However, the increasing complexities of the machines can be seen 
by comparing the register structures of the 910-930 (Fig. 7) with 
the 9300 (Fig. 8). The  figures show both the registers accessible 
to  the program or defined by the ISP (denoted by ”) and the 
temporary registers which are necessary for the implementation. 

910, 920, 930 registers (Fig. 7)  

ISP registers (”). The A register is the main accumulator of the 
computer. The  B register is an extension of the A register. The 
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1 Core memory (24 b / w ,  
2048 T, 16384 w 1 * /  

Memory B u f f e r  IL Memory address w 
A *  

Gccumulator 

To peripheral T and Ms 

Al l  registers 24 b i ts  except Sq0.23>;0<3.8>;EM2<0:2>; and EM3<0 2> 
x Registers accessable t o  program OSP) 
t Only in 930,930 core memory is 32768 w 

Fig. 7. SDS 910, 920, and 930 registers diagram. 

B register contains the less significant portion of double-length 
numbers. Overflow and carry bits are used with A and B opera- 
tions. 

The index register X, used in address modification, is a full-word 
register. Index-register operations use the least significant 14 bits. 

The P register is a 14-bit register that contains the memory 
address of the current instruction. Unless modified by the program, 
the contents of P increase by 1 at  the completion of each instruc- 
tion. 

The memory extension registers, EM3 and EM2, are 3-bit 
registers that specify the portion of extended memory being used. 
They exist only in the 930. 

Harcliuare registers not i n  the 1SY. The S register is a 14-bit register 
that contains the address of the memory location to be accessed 
for instructions or data. The 15-bit address is formed by S and 
one of the memory extension registers. 

The 24-bit C register comniunicates with memory. Instructions 
are temporarily held in C before instruction decoding. It is used 
as an arithmetic and control register in multiply, divide, and other 
operations. Address modification and parity generation/detection 
use the C register. 

The 0 register is a &bit register that contains the instruction 
or operation code of the instruction being executed. 

The MI register is a 24-bit register that holds each word as i t  
comes from memory. Recopying of a word into memory takes place 
from the MI register. 

9300 registers (Fig. 8) 

1SP registers ("). The A and B registers of the 9300 are the same 
as in the 900 series computers; however, the P register is P(9:23). 

There are  three 24-bit index registers, X[l:3]. Each index regis- 
ter is composed of a base address of 15 bits and a signed increment 
of 9 bits. 

The Flag register, F, is a @bit register that may he set and/or 
sensed by the program. The first bit position of this register is the 
overflow indicator. 

Hardware registers not i n  the LSY. The C register holds the 24-bit 
operand word as it is transmitted to, or received from, memory. 

The D register holds the next 24-bit iiistruction word as it is 
received from memory. 

The 15-bit S register contains the address of the memory loca- 
tion to he  accessed for either instruction or operand. 

The &bit  O register contains the instruction code of the in- 
struction being executed. 

The A' register is an optional 15-bit register used for the 
floating-point option. It temporarily extends the A register during 
the execution of floating-point instructions. 

The B' register is an optional 15-bit register which temporarily 
extends the B register during the  execution of floating-point in- 
structions. 

Instruction interpretation in  the 900 series 

The instruction-interpretation process can be explained in terms 
of the processor's registers (Fig. 7). The ADD instruction execution 
(not including memory mapping) defined in ISP as A t A + M[e] 
is interpreted as 

S t P; P t P + 1:  next fetch the instruction 

MI t Memory[S]; next 

C t MI; next 
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Fig. 8. SDS 9300 registers diagram. (Courtesy of Scientific Data Systems.) 

0 t C(0:5); next 

(0 = 05)+ ( 

S t C( 1O:23); next 

MI t Memory[S]; next 

C t MI; next 

A t A + C )  

Input/output processing 

Introduction 

ADD execution 

operand effectiue-address-cal- 
culation process (including 
indexing and indirect ad- 
dressing) 

final operand fe tch 

add operation 

There are several methods of transferring data between Mp and 
the K's. These methods will be described independently, and in 

order of increasing complexity. They are: 

la  

l b  

Single bit sent to a selected K (EOM instruction). 

Single bit sense (or bit detection) from a K (SKS instruc- 
tion). 

Word parallel to/from a K (POT/PIN instruction). 

Interrupt from one of 1,024 K's on a priority basis to Pc. 
K can signal Pc to execute a particular program. 

Time Multiplexed Communication Channel/TMCC (In- 
ternal Interlace' feature). 

2 

3 

4a 

4b Time Multiplexed Communication Channel (External 
Interlace*). 

Direct Access Communication Channel/DACC (External 
Interlace). 

5 

'The control information for the location of the next word transferred and 
the number of words to transfer are kept in Mp. 
2The control information is taken from registers within K. 
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6a Data Subchannel/DSC (Internal Interlace). 

6b Data Subchannel (External Interlace). 

7 Memory Interface Connection/MIC link. A component has 
a link to Mp. 

Methods 1 to 3 above are completely under control of a pro- 
gram and are simple time-independent instructions (or methods) 
of transferring data to K’s (and onto KT or KMs). The ISP descrip- 
tion (Appendix 1 of this chapter) has a detailed description of the 
1/0 devices and these 1 / 0  instructions. 

Single-bit control and sense 

Two instructions provide for single-bit ON/OFF control signals. 
The first, EOM, transmits a control signal and a 14-bit address 
to an external device or a function within the computer. The 
second, SKS, selects an external device or computer function and 
skips in response to a false (0) signal. Up to 16,384 control signals 
can be sent and 16,384 input signals tested theoretically. (A more 
reasonable number of physical destinations would be 50.) Execu- 
tion of an EOM causes a signal of approximately 1.4 microseconds 
duration to be transmitted. 

EOM instruction format. EOM is used to select a specific 1/0 
device by placing a 1 in its select register. EOM requires one cycle. 

W(2)  = 0. 
W(0 : l )  is reserved for special system address bits. 
W(3:8) contains the EOM instructions code, 02. 
W(1O:ll)  contains the system mode specifier. 
W(12:23) contains the 12-bit address field that specifies the 

special system destinations. 

SKS format. The SKS instruction format has each corresponding 
bit field identical to the system EOM format. Execution of an SKS 
causes a 14-bit address to be presented to all K’s; the K being 
addressed responds and is tested. If the addressed external K 
supplies a “set” signal to the central processor, the computer 
executes the next instruction in sequence from the SKS. If no signal 
is set, the computer skips the next instruction in sequence and 
executes the following instruction. No registers are affected except 
the P register. SKS requires two or three Mp cycles if no skip or 
skip, respectively, is executed. 

Word parallel instructions 

Two instructions, Parallel Output (POT)  and Parallel Input (PIN), 
permit any word in Mp to be presented in parallel on a physical 

connector to a K or, inversely, permit signals sent from a K to 

be stored in Mp. The execution of a POT or PIN instruction sends 
a signal to the external device involved in the input/output oper- 
ation, which notifies the device to send its data word as soon as 
it is operational. When the device becomes operational during a 
Read or PIN operation, it transmits a Ready signal to the central 
processor while a t  the same time presenting a data word to Pc. 

During the execution of a POT instruction, the central proc- 
essor transmits a signal to the external device, alerting it to receive 
a data word. When the device becomes operational, it transmits 
a Ready signal to the central processor, which releases the data 
word to the external device. 

Selective input/output with these devices is accomplished by 
preceding POT or PIN with an EOM to alert (select) the desired 
device by a specific address. By preceding the POT or PIN with 
an SKS, the Ready signal of the special device can be tested after 
the execution of the EOM but prior to execution of the parallel 
transfer instruction; a possible Pc “hangup” can thus be avoided. 

The Ready signal can also set one of the priority interrupts. 
PIN stores the contents of 24 input lines in parallel in the 

effective-memory location. PIN or POT requires four cycles plus 
any waiting time for Ready. 

Interrupt 

The interrupt provides program control of input/output opera- 
tions, aids in programming simultaneous input/output and com- 
pute operations, and allows immediate recognition of special 
external conditions by causing Pc to execute an instruction in a 
selected Mp location at the end of the execution cycle of the 
current instruction. Without disturbing the program register, the 
processor executes an instruction in one of a selected set of mem- 
ory locations. A Mark Place and Branch (BRM) instruction in this 
location saves the contents of the program register, EM3, EM2, 
and overflow indicator and transfers to the particular interrupt 
servicing routine reqnired. To exit from the interrupt service 
routine, a Branch Unconditionally (BRU) instruction using indirect 
addressing returns control to the next instruction in proper se- 
quence in the main program; it also clears the interrupt. Processor 
state (that is, A, B, Overflow, and X )  must be preserved and 
restored by the program if the registers are used by the program. 

The priority interrupt system has up to 1,024 interrupts ar- 
ranged in levels. The levels have priority according to a priority 
number; the higher priority levels have a smaller number. Inter- 
rupt channels are installed in Pc in groups of 16. The assignment 
of physical memory locations to interrupt levels is shown in Ap- 
pendix 1 of this chapter; the assignment is in order of decreasing 
priority from location 200, (highest) to 1477, (lowest). Interrupt 
requests can also be programmed. The power fail-safe (for power 
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Channel 

- Request - .  Control 

Un i t  Line 

supply off) interrupts and out-of-order interrupts have the highest 
priority. 

Besides the interrupt mechanism just discussed, there is also 
a single instruction interrupt. This permits the execution of only 
one instruction before automatically being cleared and returning 
to  the program that was interrupted. For example, if an external 
clock source is connected to  the computer so that  it pulses an 
interrupt line at set intervals, the program can maintain a pro- 
grammed real-time clock. Each time the external pulse causes an 
interrupt,  the program executes the single instruction, Memory 
Increment (MIN), to  add 1 to the memory word selection for use 
as a programmed real-time clock. (The main program can examine 
this memory location whenever necessary to  determine how many 
time increments have elapsed since the clock was started.) 

Interrupts can be  single or normal-instruction interrupts in any 
combination desired. 

Channel E 

(8- 

Error 

Character Output  Parity --La L 
(8-,  12-, 24-bit  opt ional)  

An interrupt has three operational states: inactive, waiting, and 
active states. 

In the inactive state, 110 interrupt signal has been received into 
the level and none is currently being processed by its interrupt 
servicing subroutine. 

In the waiting state, an interrupt has been received but is not 
being processed. This situation may arise when an interrupt of 
higher priority is being processed. When all higher waiting inter- 
rupts have been processed, this level goes to  the active state. 

In the active state, the interrupt has caused the main program 
to recognize its presence and has transferred to its assigned inter- 
rupt location where it is being processed. 

Two program control features are Arm/Disarm and Enable/ 
Disable. Arm/Disarm controls whether an interrupt can proceed 
from the inactive state to the waiting state. When armed, an 
interrupt signal sets the interrupt to  the waiting state. Enable/ 

to  KMS 
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KT 

"Part o f  in te r lace  

Other  
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Address SDS 
930 

Memory 

Modu I es 

To Hp v i a  S 
or t o  

Hp v i a  Pc 
( fo r  Channels 

W ,  Y ,  C .  D) 

Fig. 9. SDS 930 direct-access communication-channel register diagram. (Courtesy of  Scientific Data  Systems.) 
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Disable operates on the entire interrupt system. (When the inter- 
rupt  system is enabled, interrupts can occur.) 

Communications channels-Kio( 'Channel) 's 

Kio('Communication Channels) provide buffering, input/output 
control, and data transmission simultaneously with computation. 
There can be u p  to eight independent communication channels 
and a large number of subchannels in a single system. Figure 9 
shows the registers in a K('Channe1). 

Each channel can control up to 30 KT's or KMs's. The channel 
handles character, word assembly and disassembly, input/output 
parity detection and generation, data transmission to and from 
memory, and end-of-transmission detection. 

All channels are bidirectional and can communicate with 6-bit 
character devices or word devices in 6, 12, and 24 bits. The main 
program that initializes a K specifies the number of characters to 
be contained in each word during the transmission. 

The channel interlace controls the transfer of the data words 
going through the associated channel buffer, supplies the memory 
address of data coming from or going to memory, and maintains 
the word count determining the number of words transferred. This 
interlace information can be  either in K hardware (external inter- 
lace) or in Mp (internal interlace). The terminal interrupts, End 

of Record and Zero Word Count, come from the interlace and 
are under its control. 

The time-multiplexed channels use the memory-access logic of 
Pc to transmit input and output of data  words and require two 
memory cycles (see Fig. 2). Each direct-access channel has inde- 
pendent memory-access logic and requires one memory cycle (see 
Fig. 2). 

Comrriunication-channel description. Up to 30 peripheral devices 
(K's for T or Ms) may be connected to one K('Channe1) (Fig. 9). 
Each device has a unique, 2-digit, octal address by which it is 
selected for an input/output operation. To select the peripheral 
device, the program loads the proper unit address into the 6-bit 
Unit Address Register (UAR) in the channel. This address selects 
both the device and, if appropriate, the function to be  performed. 
Placing a nonzero unit address in the unit address register connects 
the peripheral unit addressed to the channel, and the unit becomes 
active. When the UAR contains a zero address, or any time that 
a terminal or initial condition clears the contents of UAR, the 
channel becomes inactive. 

The 24-bit data Word Assembly Register (WAR) contains the 
data word actively being received or transmitted during an input 
or output operation. During input, 6-bit characters (plus parity) 

enter the Single-Character Register (SCR) where the channel 
buffer assembles them, one at  a time, into the WAR. 

The channel interlace contains two working registers: the Word 
Count Register (WCR) and the Memory Address Register (MAR). 
A channel may have these registers either in K or in Mp. In the 
setup sequence for an interlaced input/output operation, the POT 
instruction transmits to the interlace a data word made up of the 
word count (that is, length) and the starting address of the data 
block. The 15-bit Word Count Register (WCR) contains the data 
word count during a data transfer. The number of data words is 
decremented by 1, and the new count replaces the old one in the 
WCR for each word transmitted. 

The Memory Address Register (MAR) contains the starting 
destination or source address in memory of the transmitted data. 
The memory locations to or from which data words are to be  
transmitted enter the MAR a t  the same time the word count does. 
During transmission of data, the interlace increments the MAR 
after each word as i t  decrements the contents of the WCR. These 
two registers provide the interlace control of block transmissions. 
Obviously, if the interlace control registers are in Mp, then two 
extra accesses are required for each word transferred. 

Memory interface connection link 

Once a computer is equipped with a multiple-access-to-memory 
feature, one or more Memory Interface Connections (MIC) can 
be attached. The MIC is a general interface to the computer that 
allows special devices to access Mp. It preserves the integrity of 
the memory by generating the parity of incoming data words and 
checking the parity of words read from memory to indicate mem- 
ory failures. The device that is connected to the MIC must hold 
both the data and the address until the  transmission to/from 
memory is completed (that is, MIC does not have registers). 

Conclusions 

The SDS computers appear to be the first attempt to  design several 
computers a t  the same time with a common ISP. Over a longer 
time span other compatible computers were added to the original 
910 and 920 as technology (and marketing) dictated. The series 
is characteristic of well-designed typical 24-bit computers. By 
increasing the arithmetic capability, the series could also be used 
more generally. 
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APPENDIX 1 SDS 930 ISP DESCRIPTION 

Appendix 1 

SDS 930 I S P  D e s c r i p t i o n  

The descr ip t ion  de f ines  t h e  I n s t r u c t i o n  S e t  without exact assignment of operation codes t o  i n s t r u c t i o n  names. 
i n s t r u c t i o n  ac t ions  are given f o r  t h e  simple contro ls ,  bu t  do not  include t h e  ac t ion  of the  channels or t h e  devices.  

Input-outnut 

P c  S t a t e  

A 4 : 2 3 >  A c c m l a t o r ;  main ar i thmet ic  r e g i s t e r  
BCO : 23> 

AB<D:47> := AOE 

x 4 0 : 2 3 >  Index Regis ter  
P<I 0 :  23> 

Overf  low/Ov 

Car ry  := X c O >  

Run 

Mp S t a t e  

secondaru ar i thmet ic  r e g i s t e r  f o r  m u l t i p l i e r ,  quot ien t ,  e t c .  
combined 48  b i t  ar i thmet ic  r e g i s t e r  

Program o r  i n s t r u c t i o n  locat ion  counter f o r  16 kw 

s e t  on in teqer  operations 

used i n  mul t ip le  nrec is ion  operations t o  l i n k  words 

Mem0ry[O:77777~lcO:23> 32 kw prirnaru memom 
Tuo 3 b i t  map (or ex tens ion)  r e g i s t e r s  eztend t h e  address space o f  Mp t o  32 kw.  
20000 -27777 are used. 8 8  

EV2 holds a 4 kw block number when addresses 

8' EM3 holds the  4 kw block number f o r  addresses 30000-37777 

EM2Q):2> Fxtension Vemor,u r e g i s t e r s  
~ ~ 3 4 ) : 2 >  

Memory Mapping Process 
This process maps the  16 kw address space i n t o  t h e  32 kw phusical memory. 

Mdl:23>[a] := ( 

(a < 200008) +Memory [a 14):23> 

(200008 4 a i 277778) ~Memory[EM24):2>oaQ2:23>14):23> 

(30O0Og 4 a )  +Memory [EM34:2>Oea2:23>14):23> 

P c  Console S ta te  
Individual r e g i s t e r s  i n  Pc can be read and w r i t t e n  from the  console. 

B P T d  : 4 >  Breakpoint o r  sense switches 

I n s t r u c t i o n  Format 
i n s t r u c t  ion/ i<O: 23> 

re1  a t  i ve := i<D> 

index,bi t / xb  := i <I > 
op,code/op<2:8> := i<2:8> 

pop,code<0:5> := i<3:8> 

i n d i r e c t & i t / i b  := i<9> 
y<10:23> := i<10:23> 

p microcoded i n s t r u c t i o n  b i t s  w i t h i n  an instruction 

E f e c t i v e  Address Calculation Process 
e<10:23>:= (7 i b  + (  

~ x b  + Y ;  

xb + y  + X);  

i b  + (  

-,xb - . ( i d ) @ : 2 3 >  tM[y IQ)og:23> 

xb i ( i < O O 9 : 2 3 >  t M [ y  + X]<009:23>); n e x t  e ) )  

e I < I  8: 23> : = e<l8: 2 9  s h i f t  count 

unused by I.SP; so,ft#are re locat ion  b i t  

programed oneration code v a l w  

address f i e l d  f o r  16 kw 

i t e r a t i v e  process of i n d e f i n i t e  i n d i r e c t  addressing u n t i l  
no inc' irect  b i t ,  ib ,  i s  found 
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Ins t ruc t ion  In t e rpre ta t ion  Process -. ~nte r rup t - i n te rp re ta t i on  --f ( normal in t e rpre ta t ion  

i n s t r u c t i o n  + M I P I ;  P t P  + I ;  n e x t  , fe tch 
I n s t r u c t  i o n d x e c u t  i o n )  ; execute 

I n te r rup t , i n te rp re ta t i on  + ( i n t e r rua t  i n t e rnre ta t ion  
I n s t r u c t i o n  +M[200 + 208 x K j l d d r e s s  + l a d d r e s s ] :  n e x t  e 

I n s t r u c t i o n  e x e c u t i o n )  

Ins t ruc t ion  Set  and Ins t ruc t ion  Execution Process 
l n s t r u c t i o n g x e c u t i o n  := ( 
Load and Store Croup 

LDA + ( A  t M [ e l ) :  

STA --f ( M [ e l  - A ) ;  

LDB + ( E  - MEel) ;  

STB + M [ e I c B ) ;  

LDX 3 (X c M [ e ] ) ;  

STX + (M[e] e x ) ;  
EAX + ( X  t e ) ;  

XMA + ( M [ e ]  t A ;  A t M [ e ] ) ;  

Arithmetic  Group 

SUB +(Ov,CarryDL\ + A  - MCel): 

ADD + (Ov,CarryDL\ + A  + M [ e l ) ;  

SUC +(Ov,CarryOA + A  - M [ e l  - C a r r y ) ;  

ADC +(Ov,CarryOA + A  + M [ e l  + C a r r y ) ;  

M I N  +(Ov,M[el  - M [ e ]  + I ) ;  

ADM +(Ov,M[e l  - M [ e ]  + A ) ;  

MUL + (Ov,AB + A  X MCel); 

D I V  + (Ov,B c A B / M [ e l ;  A + A B  mod MCel): 

Logical Group 

ETR * ( A  + A  A M [ e l ) ;  

MRG + (A t A  v M [ e l ) ;  

EOR - ( A  t A  e M [ e l ) ;  

load A 

s tore  A 

load R 

s to re  B 

load index 
s tore  index 

load index .from e 
exchange A and nr  

subtract  

add 
subtract  wi th  Carr:, 

add u i t h  Carru 
memoru increment 

add t o  memoru 
mu l t i p  114 
d i v ide  

ex t rac t  

merge 
exc lus i ve  o r  

Microcoded Regis ter  Exchange Ins t ruc t ion  
Each ins t ruc t ion  can be formed from a ser i e s  of microprogrmed  operat ions.  
wi thout  a p I .  

Comnound microcoded ins t ruc t ions  are shown below 

CLA + (A 1-0 ) ;  

CLB + ( B  t o ) ;  
CLR +(AB - 0 ) ;  c lear  A and B 

CLX + ( X  - 0 ) ;  u, c lear  X 

C A B  + (B + A ) ;  p, cop!, A i n t o  R 

c l ear  A 

u, c lear  B 

CBA - ( A  t B ) ;  p, COpU B i n t o  A 

X A B  + (A t B ;  B + A ) ;  exchange P ond B 

C X B  - ( B  e x ) ;  p, eovy X i n t o  B 

C B X  + (X + a ) ;  (2, copy B i n t o  X 

X X B  + ( X  + B ;  B e x ) ;  exchange X and B 

C A X  + (X + A ) ;  +, copy A i n t o  X 
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C X A  + ( A  t X ) ;  

X X A  --f (A t X ;  

CNA --f (A t~ A ) ;  

BAC + (A t B :  B t o ) ;  
ABC i (E + A ;  A to); 
STE + (X<15 : 23> 

X + A ) ;  

B<15 : 23>; X.8 : I 4> t s  i an-extend (B<l5>) ) ; 

B<15:23 >t 0 ) ;  

LDE i (B<15:23> t X < l 5 : 2 3 > ) :  

X E E  --f ( < E l 5 : 2 y  t X<15:23>; X<15:23> t EK15:23>; 

X<0:14> + sign&xtend(B<15>));  

End of microcoded instruction group 

L R S H  --f ( A B  + A B  / zel { l o g i c a l ) ) ;  

R C Y  -) ( A B  < - A B  / z e l  r o t a t e l ) ;  

Lcy - (AB - A B  x zel ( r o t a t e l ) ;  

N O D  -) (X t X - normalize,exponent(AB) 

S h i f t  Group 

RSH -) (AB t A B  / 2 e l ) :  

L 
LSH + (Ov ,AB < - A B  X 2 1 ;  

A B  t n o r m a l i z e ( A B ) ) ;  

Skip  T e s t  Group 

SKE i ( (A = M[e])  i ( P  t P + 1 ) ) :  

S K B + ( ( ~ ~ ~ ] A  B )  = o ) + ( P t P +  I ) :  

SKN -1 (MleI;O> * (P - P + I ) ] :  
SKR -1 (Ov,M[el + M [ e l  - I :  next  M[e]<O> - (p + P + 11); 
SKM - ((M[e ]  A E) = (A A 8 ) )  + (P C P  + 1 ) ;  

SKG - ( A  > M[e]) + ( P  t P  + 1 ) ;  

S K D  - (XR<0:23> t a b s ( k l 5 : 2 3 >  - M[e]<15:23>l; 

SKA - ( ( M [ e ]  A A) = 0 )  4 ( P  C P  + I ) ;  

(M[e]<l5:23>>B<l5:23>) i ( P  t P + I ) ) :  

Branch Croup 

BRU - (P t e ) :  

BRX - ( X  t x + I :  x < p  i P t  e ) ;  

BRM + ( M [ e ] < b  t O v ;  M [ e ] G : 5 >  t E M 3 ;  M[e]<l ,2,9> t o ;  
M[e1<6:8> r-EM2: M[e1<10:23> t P :  n e x t  

P + e  + I ) :  

BRR i ( P  t M L e ]  + I ;  Ov t O v  v M [ e ] a > ) :  

Control Group 
HLT 4 (Run t o ) :  
NOP 4 : 

E X U  - ( i n s t r u c t i o n  t M [ e ] :  

Ins t ruc t ion ,execut ion)  : 

Overflow T e s t  Group 

OVT + (OV + (P + P + I ) ;  

R O V  -1 (0" c 0 ) ;  

REO 3 ( X < I b  C8 X<15>) + (Dv t 

(0" + 0 ) ) ;  

p, copy X into A 
exchange X and A 

P, not A 

copy R into A ,  c lear  B 

copu A i n t o  B,  c lear  A 

p ,  s tore  exponent' emonent  control bit 

load exponent 

exchanpc exponent 

log ica l  r i g h t  shift 
r i g h t  s h i f t  

r i g h t  cgcle 

left s h i f t  
l e f t  cycle 

normalize, decrease X 

sk ip  if A = M 

s k i p  if B and M d o n ' t  compare 1 ' s  

s k i p  i.f M negative 
reduce F ,  s k i p  < 0 

skib on masked M 
s k i p  if greater  than M 

di.F,ference emonents  ami s k i p  

skip if A and M don ' t  compare 1 ' s  

branch uncomiit ionally 

increment Tndex, Rranch 
mark nlace and branch 

used t o  eel2 subroutines 

branch re turn;  used in terminating subroutines 

h a l t  
no operation 

execute 

overfZo7i t e s t  
r e s e t  overflow 

record exponent 
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Breakpoint T e s t  Group 

((BPT I A BPT<I>) V (BPT 2 A BPTQ>) V (BPT 3 A BPTO>) V (BPT 4 A BPT<4>)) -f (P t P  + 1 ) ;  
Memory Extension Regis ter  Control Group 

SET + ( i n s t : u c t i o n < l 7 >  + (EM2 t i n s t r u c t i o n Q l  :23>) ;  

i n s t r u c t i o n < l 6 >  i (EM3 t i n s t r u c t  ion<18:20>))  ; 

EXT + c o n d i t i o n  - ( P  t P  + I ) ;  

c o n d i t i o n  := ( ( i n s t r u c t i o n Q Z >  A (EM2 = 2 ) )  A ( i n s t r u c t i o n Q 3 >  A (EM3 = 3 ) ) )  

POP + ( M [ 0 1 4 , 9 : 2 3 >  tOvUlC4'; P - 1 0 0  + p o p ~ o d e ) ;  

EOM + I0,ins t r u c t  i o n g x e c u t  i on:  

POT + I O - i  n s t r u c t  i o n g x e c u t  i o n :  

P I N  i I O - i  ns t r u c t  i o n g x e c u t  i o n ;  

SKS - I0,i n s t  r u c t  i o n g x e c u t  i o n  ; 

8 

) 

Input-Output Control from the  Pc 

XT and ILnls S t a t e  
17euices cons is t  o$ the  fol lowing parts:  

l O , D e ~ i c e [ O : 7 7 7 7 7 ~ 1  

10,output E O :  7777781<0:23> 

lO,inp~t[0:77777~]<0:23> 
I0,Ready[0:7777781 

I O , S e l e ~ t [ 0 : 7 7 7 7 7 ~ ]  

i o - u n i  t<:0:14:, 

I O  Ins t ruc t ion  Se t  
EOM - +  ( io,unit  ~ - e ) ;  

POT -3  (IO,,Select: io,unit ]  A IO,Ready[io,unitl -f ( 

l 0 , O u t ~ u t L i o d n i t l  t M [ e l ;  i o - u n i t  t o ) :  
IO,Select[io,unit] A IO,Ready[io,unit] -f (POT)) :  

P I N  i (IO,Select[ io,unit ]  A IO>eady[ io,uni t ]  + ( 

MLe] e- IO,lnput[io,unit]; io,unit to): 
IO,Select[io,unit] A IO,Ready[io,unit] + ( P I N ) ) ;  

SKS - (io,unit t e :  n e x t  

(IO,select[ io,unit ]  A IO,Ready[io,unit] i ( 

P t P  + I ) ;  

i o - u n i t  - 0 ) :  

Tnterruot .C!ustern S t a t e s  

I n t e r r u p t  

I,RQ[0:63]<0:15> 

I ,ON [ 0 : 63 ]<O : I 5> 

I ,S i gna I [ 0  : 63 ]<0 : 15> := I ,RQ[O : 6 3 ~ 0  : l5> A i ,ON [0  : 6 3 ~ 0  : 15> 

K d d d  ress<O : 5> 
I,address<O: 3> 

programmed operator; 64 user de.fined ins t ruc t ions  ca l led  via 

see the d e f i n i t i o n  o{ the  iO i n s t r u c t i o n  set  below 

subroutine ZinP i n  b q n ]  

end i n s t r u c t i o n ~ ~ e c u t i o n :  not i rc luding  Input Output 
ins t ruc t ions  

name lor addressi  of a s p e c i f i c  I O  device:  the  EOM command 
i s  f i r s t  given t o  s e l e c t  the  s p e c i f i c  device:  subseauent 
commands are i m n l i c i t l u  t o  the  selected device 

devices  
Irput and Output Data b u f f e r s  associated wi th  s p e c i f i c  

b i t  for each 3evice t o  denote when device is rea& t o  trans-  

a b i t  wi th in  each deuice denoting i t  has been se lec ted  .for 

the  par t icu lar  i o  devzce se lec ted  by the  EOM cononand; 

m i t  data 

an operation 

cornand t o  s e l e c t  or a f i i r e s s  the device:  energize output  Pf 

outnut  data commard 

wait  u n t i l  read.u 

input  data command 

wa i t  until r p a h  

s k i p  i f  signal i s  not s e t  

contro ls  whether in terrupts  w i l l  be processed 
arrau o.f 1024 in terrupt  r e o m s t s  
array of in terrupt  enable t o  enable or i n h i b i t  in terruot  

reouests  

groui, number 
l e v e l  number wi th in  a group 0.f the  ac t ive  i n t e r r u p t  
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The Idaddress and ypddress  combine (ZOO8 t 208 x K address t I s d d r e s s l  t o  e s tab l i sh  an i n t e r r u r t  address, 2008 i s  the highest  
p r i o r i t y  and Z O O 8  t 14778 t h e  lowest priori . ty .  

There are three s t a t e s  associated with each i n t e r m v t ,  Tnact ive ,  Waiting, and Ac t i ve :  
3 I nterrupt, level  ,state[O :63 ] i o :  l 5 >  

Inact ive  means no I,signal i s  present. 
Waiting means t h e r d i g n a l  has been received but  i s  waiting t o  be processed. 
Act ive  means the in t e r rup t  has caused the main program t o  recognize i t s  vresence. 

x Kdddress t I d d d r e s s ]  is executed upon in t e r rup t .  The in s t ruc t ion  in MI200 
i n s t ruc t ion  allows one i?%truc#ion t o  be executed and the  in t e r rup t  l eve l  s t a t e  i s  chiazged from ac t i ve  t o  inac t i ve ;  and normal 
reauires  tha t  a mark place and branch, BRlvf, i n s t ruc t ion  to be executed t o  save P .  A t  the  comnletion o.f the  in t e r rup t  nrogram, 
a branch unconditional (BRU) i n d i r e c t l y  v i a  the BRM ins t ruc t ion  re s tores  the in t e r rup t  l e v e l .  
i s  changed from Act ive  t o  Inac t i ve ,  and another I J i g n a l  can be processed, l 

t 20 There are two kinds o f  i n t e r ruv t s :  Single 

(That i s ,  the  Interruot , level&tate  

I n t e r  rup t,i n t e r p r e t a  t i o n  

A s t a t e  denoting tha t  an in t e r rup t  i s  t o  be processed o r  the  in t e r rup t  l eve l  s t a t e  to be ci,anged .from Waiting t o  Act iue for 
normal in t e r rup t s  and Waiting t o  Act ive  to Inact ive  for s i n g l e  i n t e r r u v t s .  The in t e r run t  processed is the highest  of  those 
waiting provided there are rn i n t e r rup t s  of  highest  l eve l  i n  the Act ive  s t a t e .  

Interrupt  Control In s t ruc t ions  
E I R  + ( I n t e r r u p t  t I ) !  enable in t e r run t :  turn on mooe 

D I R  + ( I n t e r r u p t  t o ) ;  
I E T  + ( I n t e r r u p t  + P t P  + 1 ) ;  

disable  in t e r rup t ;  t u r r  off 

i n t e r rup t  t e s t :  s P i p  i f  on 

IDT + (7 I n t e r r u p t  + P t  P + I ) ;  
POT in s t ruc t ion  t o  control  the Interrupt  Sustem.  

i n t e r rup t  disable  t e s t ;  s k ip  i f  off 
EOFn[200201 i s  . f i r s t  given to s e l e c t  the Interrunt  Sustem. 

(POT A IO,ReadyC20020]) + ( i n t e r rup t  control  i n s t ruc t ions  

( c  = I )  + lJN[al<0:15> c I$N[a]<0:15> v B<0:15>) 

( c  = 2 )  + I,ON[a]<O:15> t I J N [ a l 4 : 1 5 >  V - R<Oi15>: 

( c  = 3) + luON[a]4J:15> t b < 0 : 1 5 > ) ;  

arm a channel l eve l  group 

disarm a channel leve l  group 
se t  a channel leve l  group 
prow select  or K d d d r e s s  a<0:5> := M[e]<O:5> 

b<0:15>:= M[e]<8:23> data .for I-address 

c 4 : l >  := M [ e ] 4 : 7 >  command control b i t s  



Section 3 

The IBM System/360- 
a series of planned machines which span 
a wide performance range 

In this introduction, besides making some general comments 
on the IBM System/360, we will attempt an analysis of the 
performance and costs of the series. Performance is notoriously 
difficult to measure, as we noted in Chap. 3, and costs are even 
more so. With respect to the latter, what is publicly available 
are price data, not manufacturing-cost data. 

These prices reflect not only marketing policies but also 
accounting policies within the organization for the attribution 
of costs to product lines. For example, we have had to determine 
Pc and Mp prices on the basis of incremental Mp prices within 
a C. Nevertheless, the 360 series provides two things which 
make a comparative analysis worthwhile. First, the common ISP 
makes simple performance measures more comparable; sec- 
ond, the common manufacturer makes relative prices more a 
reflection of relative costs than would otherwise be the case. 
Neither of these aspects is perfect, as we will note at several 
points in the discussion. Nevertheless, the 360 series provides 
as good an opportunity to attempt cost/performance analysis 
as we know. Indeed, this opportunity has already been grasped 
in a paper by Solomon [1966], which we have found very valua- 
ble and use to provide a basis of Pc power. 

Analyses of the type we attempt here produce only rather 
crude pictures and are subject to question if all the input data 
are not very carefully checked. We have not done the latter, 
depending instead on published sources. For the purpose of this 
book, illustration of the style of analysis seems sufficient. In 
addition, using a performance measure based only on Pc power 
measurements, as we do here, leaves many questions un- 
answered because it does not address the soft areas of analysis 
relating to throughput, task environment, and the operating 
system software. 

Unlike the other introductions in this book, the reader may 
find it worthwhile to scan this one, read the chapters in the 
section, and then return to this introduction when the system 
has become somewhat familiar. 

The IBM System/360 is the name given to a third-genera- 
tion series of computers which constitute the current primary 
IBM product line. They all have a common ISP but differ in inter- 

preter speeds and PMS structure. Many PMS elements are 
used in common, particularly K's, Ms's, and T's. 

The System/360 series is presented both because IBM's 
market dominance makes it the most prevalent current com- 
puter and because its implementations span the largest per- 
formance and price range of any series. The C('360) models 
should be compared with one another (Table 1) to be aware 
of their capabilities. Their introduction dates and their relation- 
ship are shown in Fig. 1. Chapters 43, 44, and 32 discuss the 
logical structure of the system, the implementations,I and the 
microprogrammed Model 30. 

A succinct description of the design goals and innovations 
is given in the abstract of the paper Architecture of the IBM 
System 360 [Amdahl et al., 1964al: 

'Chapters 43 and 44 are from IBM Systems Journal, vol. 3, no. 2, 1964, which 
was devoted exclusively to the System/360. The other articles (listed in the 
bibliography) are recommended for additional details. 

Model 
11 30' 
4 800' 
20 

25 
30 
40 
4 4  
50 
60 
62  
64 
65 
66 
67 
TSS(softwa 
7 0  
75 
85 
91 
92  
95 

RCA Spectr 

A-announced; D-delivery; E-exhibited; W-withdrawn 
'Not part of  System/ 360 
'Uses same ISP 

Fig. 1. IBM System/SCO models introduction dates. 

561 
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The architecture“ of the newly announced IBM System/360 
features four innovations: 

1 An approach to storage which permits and exploits very 
large capacities, hierarchies of speeds, read-only storage 
for microprogram control, flexiblestorage protection, and 
simple program relocation. 

2 An input/output system offering new degrees of concur- 
rent operation, compatible channel operation, data rates 
approaching 5,000,000 characters/second, integrated 
design of hardware and software, a new low-cost, multi- 
ple-channel package sharing mainframe hardware, new 
provisions for device status information, and a standard 
c han ne1 interface between central processing unit and 
input/output devices. 

3 A truly general-purpose machine organization offering 
new supervisory facilities, powerful logical processing 
operations, and a wide variety of data formats. 

4 Strict upward and downward machine-language compati- 
bility over a line of six models having a performance 
range factor of 50. 

The above four featured innovations are all stated as IBM 
Corporation design results. It seems better to analyze them in 
terms of design constraints and implementation results. It 
appears that the design constraints, from marketing and man- 
agement directions, were compatibility (item 4 above) and the 
use of common peripheral equipment (item 2 above). Thus we 
can measure the 360 design in terms of how well it meets these 
constraints. With some minor exceptions, all the peripheral 
components existed at the time of the design and had been 
used with other IBM computers; thus a goal was already real- 
ized. A measure of the design can also be based on a compari- 
son with alternative designs. In the following sections we sug- 
gest that several forms of multiprocessing would yield higher 
performance at lower cost. A difficult and important constraint, 
though not mentioned above, is the necessity of program com- 
patibility with almost all earlier IBM computers. 

It should be noted that, at the outset of the IBM System/360 
announcement, another company, RCA, adopted the 360 ISP 
as a design constraint for its own future computer development. 
Although some price-performance characteristics appear to be 
better in the RCA series, the implementation scheme is similar. 

The term nrchitecturr is used here to describe the attributes of a system as seen 
by the programmer, i.e., the conceptual structure and functional behavior, as 
distinct from the organization of the data flow and controls, the l o g m  design, 
and the physical implementation. 

The lower RCA prices do not reflect entirely implementation and 
technology but include RCA marketing and profit strategy. In 
addition, of course, there should have been lower development 
costs. 

An interesting aspect of the design is the method used to 
implement the individual computer models (of the range) and 
their associated costs. From the standpoint of innovation, the 
360 was the first computer series to cover a wide range. The 
more basic P’s (Models 20 - 65) were implemented via a 
microprogrammed processor. This is based on a computer 
program within an M(read only), i.e., a Read Only Storage/ROS, 
to interpret the common ISP. A payoff from this implementation 
strategy is a solution to the “compatibility design constraint,” 
which is the ability to provide compatibility with the customer’s 
previous (IBM) machine, which of course was not a member 
of the 360 series. This is undoubtedly the most difficult con- 
straint to meet in the P designs, and probably the most signifi- 
cant real innovation. From the marketing viewpoint, it provided 
the user with a crutch to go from a former IBM computer to 
the System/360. This is accomplished through “emulation,” 
which (as defined by IBM) means the ability of one C to inter- 
pret another’s programs at a reasonable performance leeel. 
These emulations are realized by various microprogrammed P’s 
being designed to interpret both the 360 ISP and one or more 
of IBM 704, 709, 1401, 1410, 1440, 1460, 1620, 7010, 7040, 
7044, 7070, 7074, 7090, 7094. 

Most of the above ISP’s have a different structure from the 
360 ISP. For example, the 1401 (Chap. 18) series instructions 
and data are variable-length character strings; the 1620 has 
variable-length data strings; the 704 series process fixed- and 
floating-point data with single-address instructions; and the 
7070 is a fixed-word decimal computer. Thus the 360 C’s repre- 
sent the first machines to be two logical processors in the same 
physical implementation. 

The emulated speeds are often better than that of the origi- 
nal hardwired computer. This is not surprising, considering the 
change in technology; it is a very attractive feature. The 360 
Mp performance is often a factor of 5 to 10 times the “emu- 
lated” computers; and the M(R0S) data rates are a factor of 
25 times the Mp’s. For example, the Model 65 emulating a 7090 
runs faster than a hardwired 7090 (Table 1). The use of an 
M(R0S) for defining an ISP is questionable if we ignore the 
emulation constraint. Note, by way of evidence, that the hard- 
wired models 9 1  and 44 have the lowest cost-to-performance 
ratios in the series. 

There are minor deviations in the particular models, but all 



Table lt IBM System/JCO Models, IBM 1130, and IBM 1800 computer characteristics 

Parameter 11300 1 8 W  2ob 25 30 40 44 50 65167 75 85 91 

Pc (technology: (hybrid/hlp.rolp.rw)); h;h h;h 
Pi0 (technology) 

size w; . . .  
M (rol rw; t.cycle: ps/w; . .  . . .  

. . .  . . .  b/w; 
technology: (ind lcaplcore); . . .  . . .  

ISPs implemented in P.microprogram . . . . . . 

S (concurrency: (Mp;Pc)) 
Mp (i.width: (by); (8, 1 parity) b/by; 

t.cycle: ps/w; 
size: log,(by), 
i.avg: log,(by); 
i.rate: b/ps; 
t.1-bit: ps; 
t.64-bit: ps) 

C(t.matrix.q: ps; 
t.sqrt.q. ps; 
t field-scan.q: ps; 
t.scientific-mix.q.ps; 
t.al1.q: ps; 
t.avg.q: ps; 

power ' p \ ( l ,  t.avg.q); 
power 'p2(l  /t.64-bit); 
power/p,[Stevens, 1964]'; 
power/P,[Conti, 19681, 
Mp utilization efficiency/ 

(t.bd-bit/t.avg.q)) 
Pc(cost:$/s) 
Mp(cost.avg:$/s) 
C(cost.min: $ )s )  
C(cost.ava: $/s) 

1;l 1.1 
2 2 
3.6 214 
13-14; 13-16; 
13.5 14.5 
4.45 814 
0.22 0.12510.25 
14. 8116 

. . .  . . .  
420 241480 

2.9 5.012.5 
4.2 7.213.6 
. . .  . . .  
. . .  . . .  
. . .  . . .  

p.ro 

? 

. . .  

1;l  
1 
7.2 
12-14; 
13 
1.1 
0.9 
58. 

. . .  

. . .  

. . .  

. . .  
148 
120 

1.0 
1.0 
. . .  
. . .  
0.49 

rw 

(MP) 
. . .  
. .  
core 
1401c 

1;l  
2 
0.9 
14-15; 
14.75 
17.8 
0.056 
3.6 

. . .  

. . .  

. . .  

... 
110 
80 

1.5 
16. 
. . .  
. . .  
0.045' 

p.ro p.ro 

1.0 0.625 
4096 4096 
60 60 
cap ind 
14011 14011 
1620d 1410e 
1;1 1;l  
1 2 
1.5 2.5 
13-16, 14-18 
14.5 16 
5.3 6.4 
0.19 0.16 
12.1 10 

71 23.4 
118 26.8 
35 12.8 
47 15 
88 25.4 
60 20 

2.0 6.0 
4.8 5 8 
2.0 7.0 

0.2 0.5 
. . .  . . .  

h;h 

. . .  

. . .  

. . .  

. . .  

1;l  
4 
1.0 
15-18 
6.5 
32 
0.031 
2 

. . .  

. . .  

. . .  

. . .  
5.7 
4 

30 
29 
. . .  
. . .  
0.5 

h; h h.p.ro.p.rw,h h; h p.ro p.ro;h 

0 5  
2816 
90 

1410) 
70701 
1,l  
4 
2 0  
16-19, 
17 3 
16 
0 063 
4 0  

cap 

/- 

0.2 
4000 
100 

7070 1 
70900 
1;218;5 
8 
0.75 
17-(20 124); 
18.5 
(85-170)1425 
0.017 10.0025 
0.75.0.375 10.147 

cap 

. . .  0.08 

. . .  2000.500 

. . .  108 
ro,rw 

. . .  7090 

. . .  

1.2.4;l (4.1) 1 ~ 1 . 1 )  
8 16 
0.75 
18-20; 19-22; 
19 20.5 
85,170.340 -51211600 
0.017 
0.75.0.375,0.18 0.125)0.04 

(0.96.1.04) 10.08h 

2 x 10-316.3 x 10-4 

7.35 1.8 1.02 . . .  
6.8 1.97 1.24 . . .  
5.8 1.8 1.64 . . .  

1.45 . . .  8.0 2.4 
8.5 2.3 1.55 
8 1.912.2 1.3 0.5k 

16;1 
8 
0 75 
20-22; 
21 
1370 
7.3 x 10-4 
0.047 

0.4k 

15 63154 92,1001 2521 314, range: 1-314 
14 77,1551394 77,155,310 46511450 1230 range: 1-1450 

range: 2-100 20 42-60 100 . . .  . . .  
. . .  1 1.58 3.9-4.3 m 5 range: 1-5 

0.2 0.5 0.37-0.18 0.54-0.27 0.25/0.08 

0.00064 0.0019)0.0016 0.00049 0.00050 0 0013 0.0030 0.0041 0.012 0.02210.029 0.037 0.087 0.091' range: 1-186 
0.00049 0.0014)0.0012 0.00065 0.0027 0.0023 0.0049 0.0050 0.0084 0.02310.032 0.031 0.080 0.069 range: 1-123 
0.00096 . .  0.0019 . .  . 0.0043 0.008 0.008 0 022 0.0541 0.075 . . .  0.20 range: 1-105 
0.0018 0.0077 0.0045 0.0085 0.0130 0.027 0.024 0.051 0.081 0.128 0.18 0.30 range: 1-65 

Pc(cost) + Mp(cost avg) 000113 00033~00028 000114 00032 00036 00079 00091 0020 0 04510061 0068 0 167 0160 range 1-160 

C(cost min $ s )  p, 0 00069 0 0038 00043 0003 000053 00029 00017 0 0016 0 0013 

Pc(c0st) 5p, 000046 00008l00013 000098 0 00067 00013 00010 000028 00016 00007l00011 00008 0 00069 0 00058 
C(cost avg $/SIP, 00013 00031 0009 0011 00130 0009 00016 00068 000251 0 0028 0 00143 0 0019 

C(cost.min)/C(cost.avg.) 0.5 . .  . 0.42 . . . 0.32 0.3 0.33 0.43 0.681 0.59 . . .  
Pc(cost)/Mp(cost.avg.) 1.3 1.411.3 0.75 1.85 0.57 0.61 0.82 1.4 0.9610.91 1.2 1.1 
Pc(cost)/C(cost.avg.) 0.35 0.25 0.11 0.06 0.10 0.11 0.17 0.24 0.281 0.29 0.47 

0.66 avg: .47 
1.3 avg: 1.1 
0.3 avg: 0.23 

tTh is  table is presented as PMS expressions. 
" Not IBM System, 360 compatible. but made with hybrid technology 
bSimilar. but not identical to System 360 ISP. 
?C('IBM 1401, 1440. 1460). 
dCC('IBM 1620). 
?C('IBM 1410, 7010) 
'C('IBM 7070, 7074) 
"C('IBM 709. 7040. 7044. 7090, 7094). 

"wo M's; an M(content addressable) working with Mp 
' Estimated. see Chap. 44. 
'See Conti [1968], based on running many programs. 
kModels 85. and 91 are too difficult to predict because of instruction buffering based on Conti [1968] 
'Cost derived from purchase cost,45. 

"Meaningless per sei Mp is used by microprogram defining Systemi360 ISP. 
" 1130 and 1800 are not program-compatible. The very high penalty factor of 3 is used to compare them to System, 360 ISP 

Varies depending on buffering and multiply options. 
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implementations belong to a common ISP subset. The Model 
20 and the Model 91, the extremes of the series, deviate most 
from the standard 360 ISP. The range of models (Table 1) 
shows the comparative effects of implementation on the actual 
processing times. For example, the designers of the various C’s 
were constrained by memory bandwidths. Since the core mem- 
ories have about the same cycle time (0.75 - 2.0 microsec- 
onds), variation in bandwidth is obtained by increasing the data 
path width from 8 to 64 bits and by increasing the number of 
independent Mp’s. By looking at just Mp bandwidth, for models 
30 - 65, we obtain a range of 5.3 to 85 megabits/s, corre- 
sponding to a performance range of about 1 to 16. By doubling 
the number of independent memories, this factor can be in- 
creased to 32. These models correspond to a Pc performance 
range of 1 to 32. Although we might expect a narrower range 
(based on Mp speed), the range can be increased by perform- 
ance suppression (at the low end). Power range can be in- 
creased by lowering the absolute performance of Model 30. This 
is accomplished by making performance tradeoffs to lower cost. 

Logic technology 

The logic of the 360 series is realized in a hybrid technology, 
composed partly of integrated-circuit techniques and partly of 
the solid-state techniques standard in second-generation ma- 
chines. lt is a “thick-film’’ technology that deposits the circuitry 
on a ceramic substrate. This is called Solid Logic Technology 
(SLT) and is used solely by IBM. This production technique 
allows only for the fabrication of passive circuit elements on 
the substrate. The semiconductor elements (diodes and tran- 
sistors) are produced independently, using standard semicon- 
ductor production techniques on a wafer. The semiconductors 
are then cut and bonded to the substrate, and the complete 
SLT logic unit is encapsulated. The substrates correspond 
roughly to logic elements (gates, inverters, flip-flops, etc.). The 
SLT units are placed on larger printed-circuit boards. 

Although SLT differs fundamentally from integrated-circuit 
technology, the overall size of the final printed-circuit boards 
is about the same. At the time the decision was made to develop 

nology of the 360 series is outstanding, perhaps surpassed only 
by the 360 marketing plan. 

The Instruction-set processor 

The following discussion covers only the Pc. The instruction set 
consists of two classes, Scientific ISP and Data Processing ISP, 
which operate on the different data-types. These data-types 
correspond roughly to the IBM 7090 (Chap. 41) and IBM 1401 
(Chap. 18). For the scientific ISP they are half- and single-word 
integers, address integers, single, double, and quadruple (Model 
85) floating point, and logical words (boolean vectors); for the 
data-processing ISP they are address or single-word integers, 
multiple byte strings, and multiple digit decimal strings. These 
many data-types give the 360 strength in the minds of its various 
types of users. The many data types may be of questionable 
utility and constrain the ISP design by having to  perform few 
operations, rather than having a more complete operation set 
for a few basic data types. The viewpoint taken here is a biased 
one; we feel that, unless a particular data-type adds significant 
processing and storage capability, it should not be fundamental 
to the ISP. The decimal-string integers appear to cost in storage 
and processing time. Their redeeming virtues are that little or 
no conversion is required at input or output time, and their 
internal representation is easily recognized by people. 

Advantages of general-registers organization 

The ISP uses a general-register organization. The ISP power 
can be compared with several similar general-register ISP 
structures such as those of the UNIVAC 1107, 1108; the DEC 
PDP-6, PDP-10; the SDS Sigma 5, Sigma 7; and the early 
general-registers-organized machine Pegasus (Chap. 9). Of the 
above machines the 360 Scientific ISP appears to be the 
weakest in terms of instructions and the completeness of the 
instruction set. 

For example, in Pegasus, PDP-6, and the UNIVAC 1107 
symmetry is provided in the instruction set. For any binary 
operation b the following are possible: 

the technology, it was unclear that integrated-circuit technology 
would reach mass-production state. Thus the SLT program was 
an intermediate design prior to integrated-circuit technology. 
The two approaches are about the same from the standpoint 
of reliability, especially when one considers the soldered 
printed-circuit mounting. The number of connections to the 
printed-circuit board are about the same. The production tech- 

GR t G R  b Mp 
GR c G R  b GR 
Mp c G R  b Mp 
M p t M p  b Mp 

The 360 ISP provides only the first two. Additional instructions 
(or modes) would increase the instruction length. 
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In the System/360 the only advantage taken of general 
registers is to make them suitable for use as index registers, 
base registers, and arithmetic accumulators (operand storage). 
Of course, the commitment to extend the general-purposeness 
of these general registers would require more operations. Chap- 
ter 3 (page 61) suggests advantages for general register 
organizations. 

The 360 has a separate set of general registers for floating- 
point data. This provides more processor state and temporary 
storage but again detracts from the general-purpose ability of 
the existing registers. Special commands are required to ma- 
nipulate the floating-point registers independent of the other 
general registers. Unfortunately the floating-point instruction 
set is not quite complete (e.g., fixed- to floating-point conver- 
sion), and several instructions are needed to move data be- 
tween the fixed and floating registers. 

When multiple data-types are available, it is desirable to have 
the ability to convert among them unless the operations are 
complete in themselves. The System/360 might use more data 
conversion instructions, for example, between the following: 

1 

2 

3 

4 

Fixed precision integers and floating-point data 

Address-size integers and any other data 

Half-word integer and other data 

Decimal and byte string and other data (decimal string 
to and from byte string conversion is provided) 

Some of the facilities are redundant and might be handled 
by better but fewer instructions. For example, decimal strings 
are not completely variable-length (they are variable up to 3 1  
digits, stored in 16 bytes), and so essentially the same arith- 
metic results could be obtained by using fixed multiple length 
binary integers. This would remove the special decimal arith- 
metic and still give the same result. If a large amount of fixed 
field decimal or byte data were processed, then the binary- 
decimal conversion instructions would be useful. 

The communication instructions between Pc and Pi0 are 
minimal. The Pc must set up Pi0 program data, but there are 
inadequate facilities in Pc for quickly forming Pi0 instructions 
(which are actually yet another data-type). There are, in effect, 
a large number of Pio's as each device is independent of all 
others. However, signaling of all Pio's is via a single interrupt 
channel to Pc. 

The Pc state consists of 26 words of 32 bits each: 

1 Program state word, including the instruction counter (2 
words) 

Sixteen general registers (16 words) 

Four 2-word floating-point general registers (8 words) 

2 

3 

Many instructions must be executed (taking appreciable time) 
to preserve the Pc state and establish a new one. A single 
instruction would be preferable; even better would be an in- 
struction to exchange processor states, as in the CDC 6600 
(Chap. 39). 

Addressing and multiprogramming 

The methods used to address data in Mp have some disad- 
vantages. It is impossible to fetch an arbitrary word in Mp in 
a single instruction. The address space is limited to a direct 
address of only 212 bytes. Any Mp access outside the range 
requires an offset or base address to be placed in a general 
register. Accesses to several large arrays may take significant 
time if a base address has to be loaded each time. The reason 
for using a small direct address is to save space in the in- 
struction. We know of no published attempt to analyze the 
tradeoffs, even of instruction efficiency alone, although un- 
doubtedly such comparisons were made within IBM. 

Another difficulty of the 360 addressing is the inhomogeneity 
of the address space. Addressing is to the nearest byte, but 
the system remains organized by words; thus, many addresses 
are forced to be on word (and even double-word) boundaries. 
For example, a double-precision data-type which requires two 
words of storage must be stored with the first word beginning 
at a multiple of an 8-byte address. (However, the Model 85, 
which is a late entry in the series, allows arbitrary alignment 
of data-types with word boundaries.) When a general register 
is used as a base or index register, the value in the index register 
must correspond to the length of the data-type accessed. That 
is, for the ith value of a half integer, single integer, single 
floating, double floating (long), and quadruple floating (ex- 
tended), i must be multiplied by 2, 4, 4, 8, and 16, respectively, 
to access the proper element. 

A single instruction to load or store any string of bits in Mp 
(as provided in the IBM Stretch) would provide a great deal of 
generality. Provided the length were up to 64 bits, such an 
instruction might eliminate the need for the more specialized 
data-types. 

A basic scheme for dynamic multiprogramming is nonexist- 
ent (i.e., although static multiprogramming is done, relocation 
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hardware is not present). Only a simple method of Mp protec- 
tion is provided, using protection keys (see Chap. 43, page 597). 
This scheme associates a 4-bit number (key) and a 1-bit write 
protect with each 2 kby block, and each Pc access must have 
the correct number. Both protection of Mp and assignment of 
Mp to a particular task (greater than 24 tasks) are necessary 
in a dynamic multiprogramming environment. Although the 
architects of System/360 advocate its use for multiprogram- 
ming, the operating system does not enforce conventions to 
enable a program to be moved, once its execution is started. 
Indeed, the nature of the 360 addressing is based on absolute 
binary addresses within a program. The later experimental 
Model 67 does, however, have a very nice scheme for protection, 
relocation, and name assignment to program segments [Arden 
et al., 19661. 

PMS structures and implementations of the computer 

The PMS structures of the various models in System/360 are 
basically similar, except for the upper end of the series and for 

the Model 44 (complete compatibility can be purchased as an 
option). We take up the main group first and then discuss the 
others i nd ividua I ly . 

Models 30, 40, 50, and 65 

The PMS of Models 30, 40, and 50 is the tree-structured Mp-Pc 
shown in Fig. 2.l They all use a P.microprogram, although 
with different ISP's. Some gross characteristics are given in 
Table 1. The Pc of Model 65 is also microprogrammed, but it 
has hardwired Pio's. A PMS diagram of Model 65 (and Model 
75) is given in Fig. 3. 

The C structures with M(R0S) use a single physical P.mi- 
croprogram to realize the Pc, the Pio('Mu1tiplexor Channel), 
and the Pio('Se1ector Channel). This technique of using a single 
shared physical P for multiple logical P's with fast changing 
of P.state is the same one that Pio('Mu1tiplexor) uses. The 

'The structure of the Mp's does not include the local M's used for access control, 
i.e., the storage protect key mechanism, which it is hoped the student will forget 
about (forever). 

T. conso l  e -  

=See Tab le  1 f o r  parameters .  

L ( Se I e c t o r  ,Mu I t i  p l e x o r  Russes) - 

Mp(read o n l y :  microproqram: ' 3 6 @  I S P  p rograr  

Mp(workinq) 

3Present  o n l y  i n  Model 50 

4See Figures  I 1  t o  16. 
" ~ ~ ( ' 2 3 6 1 - 2  Large Capac i ty  Store/LCS: R ~ s / w :  t a :  3 .2 p,s: 262144 w:  8 by/w; 

(8.1 p a r i t y )  b/by) 

" O n l y  8 p h y s i c a l  K ' s .  

"See Chapter 44 f o r  parameters .  

Fig. 2. IBM System/360 Models 30, 40, and 50 PMS diagram. 
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T.console- 

ic(("2065; microprogramed)1 '2075; ,s?e "&ZP I )  

K('Direct) 
M P  (#O:  3) 

Pio(#l :192)4- Stm- -K(#0:19I7)" Mp(#0:3)?.- P('2870) := [-ST 

pi o (#I  : 4)5- 

P('2860) := [-S--Pio(#l:3)"-- Sfx-] - K(#0:7)' 

P('2860) := ES-Pio(#l:3)6- Sfx-] -K(#0:7)' 

Sfx- -K(#0:7)' 3 
'Mp('2365-3) := (Mp(#O,l; '2365-2; core: .75 us/w; 8 by/w; 16 kw; (8 , l  parity) b/by)-S-) 
"Mp('2361-2 Large Capacity Store/LCS; 8 us/w: t.access: 3.2 u s ;  262 kw: 8 by/w; ( 8 , l  parity) 

b/by) 
3 S ( 8  M: 4 P: time multiplexed; concurrency:l: 'Bus Control Unit/BCU) 

4Pio('2870 10 Multiplexor Channel) 

5Pio(12870 IO Selector Subchannel) 

oPio('2860 Selector Subchannel) 

70nly 8 physical K's 

'See Figures 1 1  to 16. 

Fig. 3. PMS structure for IBM System/360 Models 65 and 75 PMS diagram. 

Pio('Multip1exor) is equivalent to multiple Pio's. Within the 
physical P both interrupts and polling are used to switch among 
the P's. Polling is used to service the several P's since the main 
program loop of the ISP interpreter returns to a common point 
each time the next instruction is fetched. That is, the interpre- 
tation cycle for the 360 ISP starts by fetching the instruction, 
proceeds to fetch the operands, executes the instruction, and 
then returns results to Mp. The instruction-interpretation proc- 
ess takes only a few Mp references for most instructions. 

A few instructions require a long (or indefinite) interpreta- 
tion time, e.g., character translate, edit, etc., since the opera- 
tions are on character strings. Here, the iterative program loop 
which operates on each character of the string must test the 
attached K's to detect when the Pi0 interpreter is to be run for 
data transfers. The long instructions can take several hundred 
microseconds and cannot be interrupted; thus the response 
time for an interrupt can be very poor. Figure 4 gives a simpli- 
fied picture of the registers organization of a Model 50, but it 
is also typical of Models 30, 40, and 65. 

The actual System/360 ISP interpretation program in each 
of the models is different. In addition, each model has micro- 
programs for interpreting other ISP's through emulation. Tucker 
[1967] discusses how the models were changed as the emula- 
tion constraint was added. Table 1 gives the computers which 
each of the models can emulate. A register structure of the 
C('30) and the operation for the P.microprogram ISP are given 

in Chap. 32, page 386. Tables 2 and 3 in Chap. 44 give the 
additional parameters which influence the instruction inter- 
pretation rate of the P.microprogram. The significant param- 
eters for a P.microprogram are the M(R0S) hardware char- 
acteristics (speed, size, and information width); the number 
of fields in the M(R0S) instructions, which gives an indication 
of the number of control functions performed in parallel; the 
M(genera1 register) rates and their location in the structure; 
the Mp data rate; and the characteristics of M(temporary) 
within P. The activity of transferring data from a K, via the 
Pio('Selector), is done concurrently with normal instruction 
interpretation in Models 30, 40, and 50. A program in M(R0S) 
sets up the data transmission with Mp, and transmission is 
controlled by an independent hardware control. 

Model 20 

This model is a subset of the System/360. It has eight 16-bit 
general registers. It is possible to write programs which will run 
on both the Model 20 and other models. Model 20 does not 
have Pio's, and Pc issues instructions to control the attached 
K's. 

Model 25 

The Model 25 is an interesting C. Perhaps some of the interest 
of the authors is caused by the mystery (to the authors) as to 
what its ISP is. Its ISP is no doubt described in maintenance 
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R e d  only storage 

Boric machine cycle 

Multiplexer channel 
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Mult iplex mode 

Selector channel 

Doto tronsfen 
Processor to storage 
Storage to rtomge 
Selector channel to procersar 
Multiplexer channel to processor 
Control unit  to channel 

ROS 
Reod Only Storoge 
Micro-Coded Sequencing 
Control 

Local Storage 

General Regirten 
Floating-Point Registerr 
Selector Channel 

Control Storage 
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16 

4 

Doto Width 

4 bytes 
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4 bytes 
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4 bytes 
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@ 
A = One byte wide dato path 
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0.5 microsecond 
R / W  cycle/4 bytes 
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0.5 microsecond 
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Fig. 4. IBM System/360 Model 50 data-flow diagram and system characteristics. (Courtesy of International 
Business Machines Corporation.) 
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manuals. We can make the following observations based on its 
characteristics taken from its manual of Functional Character- 
istics. These appear in Table 1. The observations are: 

1 It has a very high-performance Mp, namely, Mp(core; 
.9 pslw; 16124132148 kby; 2 by/w); the Mp power is al- 
most that of a Model 50. 

2 There is a relatively straightforward Pc which is micro- 
programmed. The Pc uses Mp for its memory. The Sys- 
tem/360 ISP is defined in conventional M(read,write). 
Of the Mp(48 kby) 16 kby is reserved for a microprogram. 

3 Its performance is between that of Models 20 and 30, 
performing a 360 ISP instruction in about 80 p s .  

4 The penalty paid (slowdown factor) to interpret the 360 
ISP is therefore 8011.8 N 45. 

5 A small 180-nanosecond local store is used for operands. 

6 The Pc cost appears to be about the lowest in the series. 

We should ask ourselves: 

1 Why do we want an intermediate-level P.microprogram 
with its own M.read-only, as in the other processors? 
These P's just seem to waste power. 

2 Why should we bother to implement an intermediate-level 
360 ISP? We know the final user will write programs in 
a much higher level language. Thus two levels of inter- 
pretation are required instead of one. It is assumed that 
to program a given task will take, say, x p s  if using the 
360 ISP. We assume the same task programmed directly 
in the Pc could take as short a time as x /45 ps if the Pc 
were used directly. 

We assume that if the P.microprogram, which is used to define 
the System/360 ISP, were used to interpret a FORTRAN ISP, 
the speed for a Model 25 FORTRAN ISP might easily approach 
that of the Model 50. 

Model 44 

Model 44 does not use M(ROS), but its Pc and Pi0 are hard- 
wired (Models 75 and 9 1  are also hardwired). The PMS structure 
of the Model 44 is given in Fig. 5. Model 44 (and 91) stand 
out as having better performance per unit of cost than their 
nearest neighbors, which are implemented with M(ROS), as can 
be seen from Table 1. It must be noted that Models 44 and 
9 1  are not strictly compatible with the 360 ISP since they do 
not process variable-string and variable-decimal-data formats, 
although Model 44 options can make it completely compatible. 
(Subroutines will probably perform satisfactorily for most ap- 
plications.) 

The PMS structure of the Model 44 (Fig. 5) is a tree. The 
C('44) structure indicates 2-Pio('High Speed Multiplexor Chan- 
nels/HSMPX) which are between a P('Se1ector) and P('Multi- 
plexor) in power, since a single physical P('HSMPX) with four 
subchannels can behave as four independent Pio's. The orga- 
nization of the Model 44 Pc registers is given in Fig. 6, which 
reveals a straightforward implementation. The heavy lines in 
Fig. 6 indicated an ORing of register outputs to form a single 
data bus (usually 16 or 32 bits wide). The 16-bit crossover 
function box allows the right and left halves (16 bits) of the 
input to be exchanged when output. Almost all the units are 
registers (except the adders, parity generators, and ORers). The 
A, Ax, B, and Bx registers are used as the M.working for per- 
forming instructions, where the x indicates an extension regis- 
ter used in the 64-bit floating-point operations. The C register 

T .  consol e-  

Mp core ;  l us/w; 8192 .- - S t m  

32768 w; 4 by/w; (8.1 P i o ( l M u l  t i p l e x o r  Channel )-Stm -K(#0:63l  ) 7  

1 : 4 :  ' H i g h  Speed M u l t i -  S f x - K ( # O : I ) '  - 

Sfx-K(#O:1)2 - 
[ a r l t y )  b/by ] e F ' i o p  P i o ( # l  p l e x o r  : 4 ;  ' H S P M X )  Channel/HSPMX 1 

'On ly  8 logical K ~ S  

'See F i g u r e s  1 1  t o  16. 

Fig. 5. IBM System/360 Model 44 PMS diagram. 
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System Model Byte, Words 
E44 32,768 8,192 
F44 65,536 16,384 

Procerror Storage G44 131,072 32.768 
ti44 262,144 65,526 
I T 

M ~ Y o I  Dato Entry from System Contml Panel- .~ 

Doto Out to 
Channelr 

Sixteen-bit 

I 1 1 1 

I I Function 7 

L 
FPR = Flmting-Point Registel 
GR = General Register 
I C  = In.truction Counter 

__tt_ Doto 

Address Entry 1 

} From HSMPX - Address 

Op = Operotion Code 
SAR = Storoge Mdreir  Register 
SDR ~ Stormge Dota Register 

8,4,32,etc. = B i t  width of the clrcult 

21-23, ets = B i t  numbers 

* Includes por;h/ 
f High-Speed Generol R e g i s t e r s  

t Con be dirploved on system control panel 

Fig. 6. IBM System/360 data flow in Model 44 CPU. (Courtesy of International Business Machines Corporation.) 
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is a second operand register used for arithmetic and logical 
operations. 

Model 75 

The PMS structure of Model 75 is given in Fig. 3. Models 65, 
67, 75, and 9 1  all use the same basic Mp('2365; core). The S(n 
Mp; mP), which switches between the n Mp modules and the 
m Pc and Pio's, varies with model, however. C('65) and C('75) 
use a simple time-multiplexed S in Pc, called the S('Bus Control 
Unit/BCU). This S makes decisions about which P is to use 
which Mp, rather than having each Mp arbitrate the P request- 
ing service locally. When the memories are all about the same 
speed, such an S is all right; however, it has severe limitations 
when slow speed (8 microseconds for the large core store) and 
high-speed memories (0.75 microsecond) are intermixed. The 
principal difference between Models 65 and 75 is that C('75) 
is hardwired and, depending on the size of the configuration, 
may have lower cost/performance. 

The simplified functional unit diagram of C('75) (Fig. 7) is 
more abstract than the register interconnection diagram of a 
C('44) (Fig. 6). From this description (Fig. 7) of the logic design, 
one is able to conjecture what is necessarily within the instruc- 
tion, execution, variable field length, and decimal functional 
units. The diagram is presented at a nonuniform level at both 
the PMS and register-transfer levels. There is somewhat more 
detail than in the PMS structure (Fig. 3). The Model 75 is 
possibly the first System/360 to require an intermediate-level 
diagram between a PMS structure and a register-transfer dia- 
gram. The instruction unit contains the instruction location 
counter (part of the ISP) and is responsible for obtaining the 
next instruction and the operands. Since there can be overlap 
in the instruction fetching process, this unit is responsible for 
holding a number of instructions and stores up to 128 bits 
(2 double words) of instructions at a time. The execution unit 
and the variable field and decimal units carry out operations 
on data. The execution unit processes floating-point and 
fixed-point data. 

Model 67 

The Model 67 was introduced in April, 1965, for the purpose 
of time sharing. The entry was prompted by M.I.T.'s project 
MULTICS. M.I.T. had ordered a GE 645 for experimental re- 
search in time sharing. IBM formed a group for the development 
of a time-shared computer and responded with the Model 67. 
The Model 67 is essentially a Pc('65) with adequate S's for 
multiprocessing and a K between Mp and Pc for multiprogram- 

ming and memory mapping. Because of software uncertainties, 
the Model 67 ran as a Model 65 in most installations (in 1968). 
The University of Michigan and M.I.T.'s Lincoln Laboratory, the 
first two customers having considered the MULTICS proposal, 
were instrumental in outlining the specifications [Arden, et al 
19661. Several 67's have been delivered, and the software con- 
tinues to evolve and be scheduled for completion (see Fig. 1). 
Questions of costs per console must wait unti l the system is 
stable enough to  test and evaluate, although in April, 1969 
IBM considered the system attractive (operational) enough to 
market. The most significant outcome of the experiment to 
date is: 

The hardware seems capable of supporting a straight- 
forward time-sharing system [Corbato et al., 19621. Had 
IBM first developed a simple system based on proved 
concepts, they would be capable of undertaking research 
into more complex systems like the version to which they 
originally committed themselves. (Vendors should have 
some basis of actual operating experience before com- 
mitting a product to market.) 

The problems of building really large-scale software sys- 
tems are not fully understood yet. 

The idea of a virtual memory with a large address space 
(232w) is excellent. Many storage allocation problems are 
simplified by this concept. Unfortunately, the system 
software builders seem well on their way to filling such 
a memory. Thus the new freedom allows relaxation in 
this level of programming. 

There is a problem of getting users into Mp.core so that 
Pc can be kept busy. Thus a swapping system is often 
found waiting for Ms.drum or Ms.disk information. Work 
at Carnegie-Mellon University using a Mp('LCS; core; 
.5 - 1 mw; 8 by/w; 8 ps/w) seems to indicate that a 
large number of users can have adequate response from 
the Model 67 if the users reside in core and are not 
subjected to swapping [Lauer, 1967; Fikes et al., 19681. 

The above items relate to the software. The hardware (Fig. 
8) is interesting from several aspects. First, there are adequate 
facilities for memory mapping and program segmentation. This 
general scheme is outlined in Fig. 9. In the Model 67 a user's 
segment and page maps are in Mp, and these maps point to 
physical Mp blocks of the program. Each time a reference is 
made, the map is checked for the actual reference. In order 
to avoid the accesses to Mp for each Mp reference, a K, with 
an M(content address), is located between Pc and Mp to trans- 
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addressable; taccess: 150 ns; 8 w ;  

address: 20 b: data: 9 b 1 1  T.console - 

M integrated circuit; content 

P io('2870: # (0 : 191 ) , ( 1  : 4 )  )? 
pio('2860; #1:3)- -E pio(I2860; # I  :3) - 

I[ 
K(#O:I; 'Dynamic Address Translation1 -Pc(#O:I; ' 2 0 6 7 ) - ~ ( t n i ~ ~ ~ ~ )  - 

S(#O:l; *2846 Channel Controller) 

IMP (12365-12) := (M ( # O :  1 ; '2365-2: .75 us/w; 16 kw; 8 by/w; ( 8 , l  parity b/by))-S-) 
"Mp('2361-2 Large Capacity Store/LCS; 8 us/w; taccess: 3,2 ps/w;  262 kw; 8 by/w; 

' S ( 8  M ;  (4  - 6) P; cross-point; concurrency: 8; t.delay: . I  
bus) 

(8.1 parity) 

distributed; location: M ;  

4 S ( 4  M ;  2 P ;  cross-point; concurrency: 2; t. delay: I ~ 1 5 ;  distributed; location: M ;  bus)  

'See Figure 3 for Model 65. 

Fig. 8. IBM System/360 Model 67 PMS diagram. 

form a 24- or 32-bit virtual address in Pc into an actual 19- to 
22-bit physical address in Mp. This K is not shown in Fig. 9 
because it is not logically necessary. The scheme suggested 
in Fig. 9 uses control bits in the map to determine legal Mp 
accesses. In the Model 67 the storage key mechanism holds 
whether a given page can be accessed by a given numbered 
user (instead of associating the control with the mapping as 
shown in Fig. 9). 

Second, the Model 67 is the first acknowledgment by IBM 
of multiprocessor computers, since it provides adequate 
switching to allow multiple Pc's. The C('65) multiprocessing 
configuration has been introduced based on Model 67 structure. 
Multiprocessors are necessary for reliability, not solely for per- 
formance reasons. 

The PMS structure of C('67) in Fig. 8 does not have to use 
the S('Bus Control Unit/BCU),I as in the C('65). The C('67) can 
have an S in each Mp, so that four P's can communicate with 
an Mp, as shown in Fig. 8. Each Mp makes the decision about 
the P request to be honored next. Thus the problem of having 
an "all knowing" S('BCU) is solved by allowing each Mp to do 
local scheduling, rather than having a dialogue with another 
component (with time delays). The S('BCU) in a duplex C('67) 
is still present, but with less power, in the form of the S('2846 

' A  system with only one port at Mp, controlled by BCU, is called a simplex. A 
system with multiport Mp is called a duplex. 

Channel Controller). It is used to arbitrate the Pi0 accesses to 

Without multiprocessing, the Pc seems very badly mis- 
matched with respect to Mp. Consider, for instance, the data 
rates on the C('67). From Fig. 8 its maximum possible Mp 
data rates are: 

MP. 

For 1 Mp('2365-12): 

64 bits = 171 megabits/sec 
0.75 p~ 

and for 1 Mp('2361 Large Core Store): 

____- 64 bits - 8 megabits/sec 
8 PS 

Thus the total data rate is 

171 x 8 + 8 x 4 = 1,368 + 32 megabitslsec 
= -1,400 megabits/sec 

The processing rate is approximately 

~- 64 bits - 29 megabits/sec 
2.2 ps 

An Ms.drum rate is approximately 

8b '" = 10 megabits/sec 
P 
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~ _ _ _ _ _ _ _ _ _ _ _ _ ~ ~ _ _ _ _ _ _ _  
Logical ( v i r t u a l )  address f rom processor 

User segment table register L. --- Segment tableZ 1 I 

Segment 

----- - ' Page tables for segments2 

table 
length 

Address translation (user maps) 

Primary memory component 

within page - 
"+'an addition operation 

access and act iv i ty infoimation(read,write,read or ly,etc)  
located in pr imary memory during execution 

Fig. 9. Memory allocation using pages and segments. 

Thus, for the several P's, an effective Mp request rate of 100 
megabits/sec might be needed. The data-flow mismatch (be- 
tween Mp and the P's) occurs because of the P's, the S (the 
L's connecting P and Mp), the lack of P's, and the fact that 
t.access = - '/z t.cycle. 

The Pio('2870), used in Model 65 and above, is described 
at two structural levels in Fig. 3. The Pi0 includes a large 
M.working to store the state of each of the logical Pio's. This 
Pi0 state includes the instruction location counter, the control 
state bits (active, running, interpreting an instruction, process- 

ing data, etc.), and buffering (one 8-byte word). By having an 
M.buffer, the demands on Mp from the Pio's are reduced by 
a factor of 8. Although the expected data rate from many K's 
does not require the extra M, there are possible times when 
the uncertainty of the access times for Mp might cause data 
loss. Since the M.working is necessary to store the Pi0 state, 
the additional space for buffering is not expensive. An alterna- 
tive design might use Mp for this buffering. 

The four Pio('2860 Selector Channel)'s are implemented as 
independent Pio's, using conventional hardwired logic and 
buffering. However, they are packaged as one unit. 

Model 85 

The Model 85 was announced in February, 1968, with the goal 
of being the highest-performance Model 360 in production. The 
performance is -(3 - 5) times the Model 65 and in some cases 
outperforms a Model 9 1  [Conti et al., 19681. 

The PMS diagram of the Model 85 is shown in Fig. 10. The 
Pio, T, Ms structure is identical to that of Models 65 and 75 
(Fig. 3). The two interesting aspects of the structure in Fig. 10 
are the M(content addressable; 'Buffer Storage; 16 I32 page; 
1024 bylpage) and the Pc. The pages are filled in groups of 
64 bytes, as references to a particular physical block in Mp.core 
are made. Conti [1968] gives running times for various pro- 
grams as a function of buffer memory size. Multiprogramming 
may degrade the performance more than any other case. This 
process, which has been referred to as "look aside," or a "slave 
memory," was suggested by Wilkes [1965]. It is completely 
analogous to  the Model 67 M(content,addressable; 8 w) which 
is used to hold the segment-page map for a multiprogrammed 
time-sharing system. It is also analogous to a one-level storage 
system (Atlas; see Chap. 23) which is formed from two physical 
M's whose performance differs significantly. Here, the effect 
is to try to approximate a computer with a large Mp(80 ns/w) 
by using a large Mp(1 p / w )  and a small Mp(80 ns/w). The 
CDC 7600 (page 475) has a similar structure, but the Mp-Ms 
migration is under programmed control. 

The P.microprogram used for controlling the Pc(K('Exe- 
cution Unit)) allows for great flexibility in the definition of ISP's. 
An Mp(500 w) is available for the user: this may be loaded by 
a program, and it specifies an ISP. One standard option is to 
emulate the 704-7094 series. 

The Model 85 removes the restriction of aligning words at 
particular boundaries. Thus any logical word, independent of 
its length, can be located at any physical location addressed 
in bytes. 
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K 

L L ( i n :  16 by; out: (8,16)by)-Pc6-T.consoles - 
I 
M('Buffer Storagel4 

L L('Direct) - 

Mp1-k ('Storage Control) T(#l :3)-L(#l:3)2- 

'Mp(core; ( '185;  M(ffl:2; '2365-5; 1.04 ps /w;  262 kby))I ('J85; M( # 1 : 4 ;  '2365-5; 
1.04 ~ s / w ;  262 kby))l('K85/2385 Model 
.96 ps/w; 4 mby); M('Protecti0n Key Storage Elements: 128 - 1024 w; 6 b/w) 
(16 + error) by/w; 8 b/by; s i ~ o Z r  error ,detection and correction, double error 
detection) 

I ;  .96 us/w; 2 mby)] ('L85/2385 Model 2: 

"L(#l :3; Pio(12870 Multiplexor Channel)3, Pio(#l :2; '2860 Selector Channel)3: 

8 by; ( 8 , l  parity b/by)) 
3See Figure 3 for Model 65 and 75. 
*M.buffer('Buffer Store; inteqrated circuit; (16384 - 32768) by: 80 ns/w; content 

addressable: data: 1024 by: address: 9 - 12 b) 
5T.console((CRT: display), keyboard, (microfiche; reader)) 

"Pc := 

-L 
Mps(4 w; 8 by/w) 

1 

M.pararneter(read on ly ;  80 nsfw: 2000 w) 
M. buf fer 

M.parameter(read wci te; 80 ns/w; 500 w) I L 
7 
C .mi croprogrammed 

Fig. 10. IBM Systern/360 Model 85 PMS diagram. 

The Pc's data operation performance is impressive. A fixed- 
point multiply is done in 0.4 ps, and a floating-point multiply 
takes 0.56 ps (not including accesses). 

The data-type, extended floating-point number, is used in 
Model 85. Thus a 24-, 56-, or 112-bit fraction part can be used. 

Model 91 

This model has a very low cost/performance ratio (see Table 
1). Only about 20 Model 91's were produced before it was 
withdrawn from the market. It has the highest performance of 
the series. The Mp is 0.75 ys, but 16 are overlapped to provide 
a theoretically maximum bandwidth of 16 X 64/0.75 = 1,370 
megabits/s. About 2.5 mega-instructions/s are executed; thus, 
a total of 160 megabits/s of Mp are absorbed by Pc. 

There are other interesting models in the '90 series; the 

Model 92 was a paper machine,l and the Model 95 was unan- 
nounced but produced, a version of the Model 91 with an Mp(in- 
tegrated circuit; 60 ns/w; 8 by/w). The Model 91 is not covered 
in any detail here because of space limitations. It is similar to 
other very large computers in that many techniques are em- 
ployed to obtain parallelism. The January, 1967, IBM Joournul 
of Research1 is devoted to design issues of the Model 91. 

Models 1130 and 1800 

These computers are presented as reference points and have 
nothing to  do with the C('360). They are implemented outside 
the System/360 framework but use its technology, and so cost 
com pa risons are sti I I somew hat mean i ngf u I. These com puters 

'See bibliography a t  the end of this chapter 
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are straightforward, and for a given task which does not use 
floating-point arithmetic, they should perform as well as any 
System/360 model. The arguments we use for the intermediate 
Pc for the Model 25 apply equally well here, too. Namely, why 
have such a complex ISP when simple ones will do just as well? 

The programmed floating-point arithmetic times for a 4-ps 
1800 and the "hardwired" (microprogrammed) System/360 
Model 30 are compared in Table 2. We would expect the 2-ps 
1800 to be better by a factor of 2. Note that the times are about 
the same for Model 30 and the slower 1800. The cost/perform- 
ance is especially low with the 1130 (Table 1). In  Chap. 33 we 
discuss the 1800. It is interesting to speculate why the 1130 
and 1800 cannot be implemented within the System/360 frame- 
work. Are they "loss leaders"? Are they in response to more 
sophisticated, performance-oriented users? 

The PMS structure of the controls, terminals, secondary memories, 
and special processors 

There are many common components which attach to the C's 
(Figs. 11 to 17). Most of the components which attach to a Pi0 
are not especially interesting, but they give an idea of the 
behavior and parameters. For example, the expression T('1403 
Model 3; line; printer; 1100 line/min; 132 char/line; 8 bits/ 
character; 64 - 240 character set) pretty well describes a 
typical line printer. From the above description one can de- 
duce the data rate of a T(line printer). It is 132 char/line X 

1100 line/min X 1/" min/s  X 8 b/char = 19.4 kb/s. 

The channel-to-channel adapter control. The most interesting 
group of components (outside the C structures) are the special 
components shown in Fig. 11. The K('Channe1 to Channel 
Adapter) allows two P's, either on the same or a different C, 
to communicate with one another. This K is used in the con- 

Table 2 
point arithmetic timing 

IBM 1800 (4 ps)  and IBM System/360 Model 30 floating 

Operation times (ps) 

Operation 1mo (4  w) System/360 Model 30 

+ (sf); + (df} 460; 440 75; 115 
x{s f ) ;  (df) 560; 790 320; 1060 
- {sf} 766 600 
K { f )  4500 2965 
sin {f} 3000 3876 
exponential (f) 2000 4173 

- ; Cc 0' i 0 )  ) 

K(IChannel t o  Channel Adapter .  

I used t o  trans,fer da ta  among 2 c f s )  

- L  ( C  ( ? i o ) )  

a. I n t e r c o n n e c t i o n  of 2 computers ( o r  w i t h i n  a comvuter)  

f o r  t r a n s m i s s i o n  o f  I n f o r m a t i o n  

- L ( S ( ' S e l e c t o r  Channel: 

1 use8 in place a f  regular channel ) )  

P(b1ock t r a n s f e r ;  'S to raqe t o  Storaqe Channel) 

b .  Processor f o r  t h e  t r a n s m i s s i o n  o f  i n f o r m a t i o n  ( v e c t o r s )  

w i t h i n  Mp 

'2903 Spec ia l  C o n t r o l  Unit/SCU)-X' 

5 - h ;  'SCU)-X' 

c .  I n t e r c o n n e c t i o n  t o  o t h e r  c o n t r o l s  and computers 

- L ( S ( ' S e l e c t o r  Channel, Models 44,  65, 75: 

used in place  of regular Channel) 
P ( a r r a y :  '2938:  microprogrammed: Mps(- 64 w; 32 b/w): 

o p e r a t i o n s :  ( v e c t o r  move, v e c t o r  m u l t i p l i c a t i o n ,  

v e c t o r  i n n e r  p r o d u c t ,  sum o f  v e c t o r  e lements ,  sum of  

squares,  c o n v o l u t i o n ,  d i f f e r e n c e  e q u a t i o n ,  f i x e d  f l o a t  

i n g  c o n v e r s i o n ) ;  da ta  l e n g t h s ;  s c a l a r ,  v e c t o r ,  m a t r i x ;  I d a t a - t y p e s :  f i x e d ,  f l o a t i n g )  

d .  Array Processor  

Fig. 11. IBM System/360 special P's and K's PMS diagrams. 

struction of a dual C system or the N('Attached Support Proc- 
essor/ASP) in Chap. 40, page 506. A C('40 1'50) is attached to 
a C('65 1'75). The C('40 150) is used as a Cio with file processing 
capabilities. The K has M.buffer. Data can flow in only one 
direction at a time. 

The special control unit. The K('2903 Special Control Unit/SCU) 
consists of two independent K's which are physically packaged 
together and allow users to interface with the Pio's. Although 
it has not been discussed, the actual interconnection with a 
Pio, via theS(Pio; K), is via a physical 1/0 bus which is arranged 
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in a bus (or chained) fashion. Such a single interface to handle 
a wide range of needs (high and low response and data rates) 
via a single set of electrical conductors requires a great deal 
of control information to be passed along the link. Therefore 
a K must have a great deal of knowledge of the dialogue in 
order to communicate. The hardware to attach to the 1/0 bus 
at a K is costly and must be designed carefully. The K('SCU) 
provides a rather simplified interface to the Pio. All 1/0 bus 
synchronization control, communication protocol control, 
buffering, and electrical isolation are within K('SCU). The 
K('SCU) is fairly flexible, in that devices connected to it can 
communicate with one another without Pi0 (see Fig. 11). 

Storage-to-storage-channel processor. The P('Storage to Storage 
Channel) is a special processor which performs the sole function 
of transferring data blocks (a word vector) between one location 
in Mp to another in Mp. It qualifies as a P, since it takes an 
instruction from Mp containing the location and length, and 
once the instruction is executed, another is fetched and exe- 
cuted (if it exists). Thus the component has a well-defined 
interpretation cycle and set of operations. This P is useful in 

a multiprogrammed environment requiring programs to be 
moved. 

The 2938 array processor. The P.array('2938) is an extremely 
interesting special P (Fig. 11). It can be connected to Models 
44, 65, or 75. It has a limited instruction repertoire, but the 
instructions it interprets are more complex than those in the 
ISP of the Pc. The instructions are algorithms for operating on 
an array (a vector or a matrix). These instructions include: 

1 Vector move, similar to the P('Storage to Storage) de- 
scribed above, with conversion either way between fixed 
and floating point 

2 An element-by-element vector sum 

3 An element-by-element vector multiplication 

4 A row-by-column vector inner product 

5 A convolution multiply 

6 The solution to a step in a difference equation 

The P.array is microprogrammed, using an M(ROS), which 

-L ( # I  : 2 ) -  S f  x-K ( 2R41)- S f  x -  

- 135) m s ) :  156 kby/s:  7.25 megabyte) 

[ms: 1.2 mby/s. 4 mby: ( 4 . 1  p a r i t y )  b/by 

- L ( # l  :2)'-Sfx-K('2820)- Ms # I  : 4 ;  '2301 Para1 l e 1  Drum: taccess :  

movinq head d i s k :  

D i r e c t  Access Storaqe F a c i l i t y :  

ms); 3 1 2  kby /s ;  26 megabyte; 

( 8 , I  p a r i t y )  b/by; o n l y  8 selectable u n i t s  

- L(#l:2)2-Sfx-K- 

' - L ( P i o ( ( ' S e l e c t o r )  1 ( ' M u l t i p l e x o r ) ) )  - 
'- L ( P i 0  ( ' S e l e c t o r )  ) -  

Fig. 12. IBM System/360 Ms(drum, disk, data cell) PMS diagrams. 
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M: 
- 
( '2415; maqnet ic tape:  

18.75 i n / s :  a r e a :  1.5 i n  x I800 f t )  

[model. !f: b y / i n :  b / b y ) .  ( 

( I :  1:2 :  200,556,800: (6+1),(8+1))l 
(2:  1 : 4 :  200,556,800: ( 6 + I ) , ( X + I ) ) /  

(3 .  I :6 :  200,556,Rno: ( h + l ) ,  (8+1)) 

( 4 ;  1 :2 :  200,556,800,1600: (8+1))1 

(5:  I : 4 :  200,556,R00,1600: ( 8 + 1 ) ) (  

(6 :  1 : 6 ;  200,556,800,1600; (R+I))) - 
- L -K('2802)-Sfx4-Ms 

K ( ' 2 4 0 3 )  := ( 

- L -  K('2803)--SfPrM5(#I: '2401" 1 '24023)  - 

K( '2404)  := ( 

- L- K('2804)-Sfx4 M s ( # l :  '2401") '2402') - 

Ms(#2:R: '2401" 1'2402') - 1 

TMs(12:R: I240l2 1 ' 2 4 0 9 )  - ) 

- L ( # l : 2 ) - S S F x - K ( ' 2 8 0 7 ) - - S f x ~ M s  

I : R :  '2401" 1 '24023 : - 1 K #1:2;  -S x :  

[2804) I n :  IT magnet ic  tape 

- L ( # l : 2 )  - 

o u t :  

" -  Mr 
- L(to:Pio('Selectorl'Multiplexor)) - 

'2401: maanet ic  tape:  a r e a : ( . 5  i n  x IROO 
(model ;  i n / s :  b y / i n :  b / b y ) :  ( 

( I :  37.5; 200,556,ROO: (6+ l ) , ( f i+ l ) )  I 
(2;  75: 200,556,800; (6+1),(R+l)) 1 
( 7 :  1 1 2 . 5 :  20n,556,~00:  (~+I),(R+I)) 1 
(4:  37.5; 200,556,800,1600: ( X + I ) )  I 
(5;  75; 200,556,800,1600; ( R + I ) )  I 
(6: 112.5, 2oo,556,Roo,16oo; ( 1 ( + 1 ) ) )  

" M s l  2402) := ( M s ( # l : 2 :  p2401: magnet ic  tape u n i t ) )  

4 S f x  := ( S ( f x ;  I K: 8 M s ) I S ( f x :  2 K:  8 Ms: concur rency :  2 )  1 
S ( fx :  4 K :  I 6  Ms: concur rency :  4 ) )  

Fig. 13. IBM System/360 Ms(magnetic tape) PMS diagrams. 

makes it possible to construct complex algorithms in a flexible 
manner. The hardware logic is capable of doing a combined 
floating-point multiplication and addition in 200 nanoseconds. 
The impressive results this P achieves in the interpretation of 
the algorithms are principally because the time to access the 

algorithm has gone to zero. A measure we might apply to a 
P is the ratio of the time it spends fetching the algorithm's data 
to  the total t ime it spends executing the algorithm. In a con- 
ventional computer Pc we suggest that a ratio of nearly % is 
very good. Two fetches are usually required-one for data, one 
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for the instruction. This P has a ratio near one, as it is always 
accessing data (and rarely instructions). 

Secondary-memory structure. Figures 12 and 13 present the Ms 
PMS structures. All the K's have an optional S, which can be 
placed between the K and the S(P;K) to allow two Pio's to access 
a common K (from either of two C's or two Pio's of the same 
C). The K('2841 Storage Control) is interesting only in being 
able to control a series of quite disparate devices, on a one-at- 
a-time basis. 

Figure 13 presents all the M(s; magnetic tape)'s. The 
switch is interesting as it can be used for up to four K's to 
access simultaneously any of 16 M.tapes. (The vast array of 
very similar devices is due undoubtedly to marketing rather than 
production or engineering reasons.) It should be noted that 
there are two distinct M.tapes: conventional magnetic tape and 
Hypertape. Hypertape is explicitly addressed and has built-in 
error-correction coding. 

Terminal structure. Figure 14 shows the T(cathode ray tube; 
display) and T(audio; output). There are terminals for writing 
and reading from photographic fi lm (35 mm). The two ap- 
proaches used for audio (vocal) output are noteworthy. One 
uses an M.drum to record a fixed vocabulary of words; the other 
uses an encoding mechanism to allow digital information stored 
in Mp to be transferred via the K('7772 Audio Response) to 
transforming a coded voice back to an audio output form. The 
S at the output of the T(audio) provides for audio signals to 
be switched on a word-by-word basis to any of several output 
telephone lines. 

The structure of the vast array of printing devices that can 
attach to  the C('360) is shown in Fig. 15. Some of the devices 
are interesting, such as the one that reads pencil-marked or 
typewritten paper. The main parameters of significance to  PMS 
are the rate the device reads paper together with the kind of 
paper. 

The T and K's which connect to external processes are given 
in Fig. 16. The K('1827) is used to connect with analog proc- 
esses and is actually part of the IBM 1800 computer system 
(Chap. 33). The other K's are important, though not especially 
interesting, since they provide the K to T(Teletypes), K(tele- 
phone lines), and T(typewriters). The K('2701) and K('2702) 
are built to  transform unsynchronized parallel data from the 
C into the synchronized serial form required by the telephone 
line. The K('2701) controls a small number of lines of high data 
rates; the K('2702) controls a large number of lines at low data 

- L- K('2848)- S t m  

T ( # l  :24;  t y p e w r i t e r  p r i n t e r ) +  

M ( b u f f e r ;  16384 by)  
I 

-L2-K('2840-1)-Stm T # 1  : 6 ;  '2250-2: (CRT: 1 [~::PF d i s p l a y ;  a rea :  1024 x 12 1024 x 12  

p o i  n t /page)  ; (keyboard : 

T ( # 1 : 6 ;  l i g h t ;  pen: i n p u t ) +  

T '2280; f i l m ;  w r i t e r ;  35 - 
rnm; 4096x 4096 point /page.  

T ( ' 2281 :  f i l m ;  r eader  35 mm) 

M ( b u f f e r :  analog;  32 - 128 words)  

Response j 

f r o m : d i q i t a l :  

J L t o :  ana I og 

' L  := (L(Pio('Selector1'Multiplexor)) I L( (1200 - 4800) b /s ;  

Dataphone)) 

* L ( P i 0  ( ' S e l e c t o r  1 'Mu1 t i  p l e x o r )  ) 

L ( P  i o  ( 'Mu1 t i p l  exo r )  ) 

Fig. 14. IBM System/360 T(audio, display) PMS diagrams. 

rates. The K('2702) is actually an array of up to 31 K's that 
are time-multiplexed, using an M.core to hold the state of 
each K. 

Peripheral switching. For performance, communications, and 
reliability reasons it is necessary to provide access to K's, M's, 
or T's from several C's or Pio's. A sample structure of a pos- 
sible configuration, using the above components, is given in 
Fig. 17. The PMS diagram also shows the physical structure of 
S(from:Pc; to:K). 

Performance and costs 

The System/360 series is perhaps the only group of computers 
for which a valid comparison of performance and cost can be 
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- L1-KT('1442-N2; card; punch: 160 c01/5)+ 

-L -KT('1442-N1: card; (reader; 400 card/rnin), (punch; 160 co l / s ) ;  h a l f  duplex)- 

-L -K?(card: reader, ('2501-81: 600 card/min) I('2501-82; IO00 card/min))i 

- L  -KT('2520-81; card; reader, punch; 500 card/min; half duplex)- 

- L --?(I25201 card: punch; 

- L - K('282l)- '2671-1; paper tape; reader; I kchar/s; c 

('model 82; 500 card/min)](Vmdel 63; 300 card/min))i 

I 5,6,7,8 b/char: area: - 1 x .1 in2/char 1 
-L -K('2821)--5(3T) 

punch; 300 card/min): f u l l  duplex 

KT( '1053; character; printer; 14.8 char/s)-i 

1 
-L 

- L-KT '1231-NI; optical; pencil mark page; reader; area: (8.5 x 1 1 )  in*/page; 1- [I 1.8 s/page 
C 'n: 22 char/col: 300 char/s 
c area: (2.25 x 3 in2) j(5.91 x 9 in2) 

[288 - 420 docurnents/min 

- L-KT '1285; optical; printed character roll paner; reader; width: (.9375 w 3.5) t I 
1-  - L -KT '1287 Models 1 and 2: optical: rnader: handprinted; roll, document: 

- L -KT '1418, 1428 'Models 1,2,3; optical; typewritten character; reader; area: t 3 2 
(2.75 x 3.66 in2) i(5.875 x 8.75 i n  )1(2.33 x 4.18 in2)1(3 x 8.75 in2); 

- C -K?('1445 Printer-N1; magnetic character line; printer; 190,240,525 lin/min)-, 

- L -KT magnetic; character; reader; bank checks; ('1412; 950 document/min)1('1419; <- c 1600 docurnent/min) I 
L(Pio((Se1ector ('Multiplexor)) 

Fig. 15. IBM System/360  T(printer, reader, punch) PMS diagrams. 

made. The models use essentially the same technology, imple- 
ment the same ISP, and are probably constrained by a common 
corporate profit goal. Even here, as we noted earlier, compari- 
sons are difficult to make. 

In Table 3 we present the costs for various PMS component 
primitives. From this table, costs (relative to other components) 

can be obtained. These costs are expressed as dollars per 
second ( $ I s )  to rent the equipment. They have been derived 
from the IBM monthly rental prices. The computer prices are 
based on estimates of minimum, average, and maximum con- 
figurations in the Adams Computer Characteristics (kurterly 
[Adams Associates]. The conversion factors are 
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- L'-K(#l:2; ' 2 7 0 1 ) - S - K ( # l : 2 ) - L ( # l : 2 ;  f u l l  d u p l e x ,  te lephone 1 i n e ) -  

asynchronous; t o :  T(Dataphone) 1- -L(#1;2)*- Stm-K('2702)-Stm-T(#l :?,I) -L Telephone L i n e ;  

M b u f f e r ;  50 .- 600 b /s ;  s t n r t ,  ptcp ,  

'[3l w 1 
- L2 - K(' 1827)- Stm T(ana1oq; i n p u t ,  o u t p u t )  - 

--((Dataphone; d i g i t a l ;  s t a ~ t  ,clor row+r~oZ)--T 12740112741 Communications - 
Termina l ;  t y p e w r i t e r ;  133 b /s ,  

14.8 char /s :  9 b /char ;  

(44 x 2 )  symbol/char 1 
9 b/char 

- L #1:14;  - S  '2712 Remote - L - 2 kb/s ;  -S '2712 Remote - L # I  14: - 
134.5 b / s :  L u l t i p l c x o r  I] [ f u l l  duplex] [ M u l t i p l e x o r ]  L 3 4 . 5  b/s] 

[9 b /char  ] 
' L ( P i o ( ' S e l e c t o r l  'MUI t i p l e x o r ) )  

"L (P io ( 'Mu1 t i  p l e x o r ) )  

3 K  '=  ( K T ( ' B i t  Synchronous Data Adapter :  1 . 2 -  40 .8  k b / s ) I  

KT('Te1ephone L i n e  Adapter:  0 

K T ( ' P a r a l l e 1  Data Adapter ,  (16, 48) b/w))  

600 b / s )  I 

Fig. 16. IBM System/360 T(te1ephone line, analog, typewriter) PMS diagrams. 

$ / s  = 1 / [ (173 .3  hour/month) x 3,600 s/hour] 
= 1.6 x 10V $/month 

$/month = 0.625 x lo6 $ / s  

The cost to buy, in dollars, is approximately 

$ = 45 x ($/month) 

$ = 45 X 0.625 X lofi ($/s) = 2.82 X lo7 X ( $ / s )  

Table 1 is written as a single, large PMS expression, thus, the 
attributes are: 

Pc(cost: ($/s i$))  : = c.Pc : = cost of Pc alone 

Mp(cost.avg) : = c.Mp.avg : = cost of average-size Mp for 

C(cost.min:) : = c.C.min : = cost of minimum-size com- 

C(cost.avg:) : = c.C.avg : = cost of average-size computer 

a model 

puter configuration 

configuration 

Primary memory 

The graph of Fig. 18 gives the Mp costs, c, (in $ / s )  versus 
memory size (information/i). The line i = 1.43 x IO7 X c is 

I T T  
L' t - s x -  

- X S  -,-KS 

r - L - r  7 -xs  J 

' S y s t e d 3 6 0  l/O I n t e r f a c e  Bus 

"x := ( T ~ M S )  

Fig. 17. IBM System/360 peripheral-switching PMS diagram. 
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Table 3 IBM System/360 component costs 

Section 3 1 The IBM System/360-a series of planned machines which span a wide performance range 

component 

Mp (core; cost: $/(kby x s)) 

Mp ('Large Capacity Storage/LCS; 
cost: $/(kby x s)) 

Pc ('20125~30~401441501651671 
75 1851 91) 

P.array ('2938) 
Pi0 ('2860) 
Pi0 ('2870) 

Ms ('2415; magnetic tape) 
K ('2415) 

Ms ('2401; magnetic tape) 
K ('2803 12804) 

Ms ('7340 Hypertape) 
K ('2802) 

Ms ('2311; removable disk) 
K ('2814; #1:8) 

KMs ('2314; #1:9, removable 
disk) 

Ms ('2321 Data Cell) 
K ('2814; #1:8) 

Ms ('2303; drum) 
K ('2814; #1:8) 

Ms ('2301; drum) 
K ('2820) 

S ('2816; Ms.magnetic-tape; K) 
T ('2741; typewriter) 
T ('2260; display) 

KT ('2250; display) 

T ('2761; paper tape; reader) 

KT ('7772/7770; audio) 
T ('1403/1404 line; printer) 

K ('2848; #1:8, 16, 24) 

K ('2822) 

K ('2821; #1:3) 
KT ('1443 11445; line; printer) 
T ('2540; card; reader 1 punch) 

KT ('1442 I2501 12520; card; 

K ('2701 Data Adapter) 
K ('2702; typewriter; Teletype) 

K ('2821; #1:3) 

reader I punch) 

4 

I 
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Fig. 18. Graph of IBM System/360 core-memory cost versus core-memory size. 

plotted in terms of $/(by/s) and allows us to compute the 
purchase cost of a bit. The purchase cost of most Mp.core is 
$0.25/bit, according to the line. The 8-ps Large Capacity Stor- 
age/LCS cost is $0.032/bit. There appear to be slight cost 
savings for large Mp's and a significant saving for lower per- 
formance in the case of LCS, a factor of 8. A reasonable formula 
for Mp cost is: c = (7 x 10" x i)/[t.cycle: ( , U S ) ] .  This formula 
would account for Model 50 Mp and LCS costs, but not Model 
25 and 30 Mp costs. We really need an i l l 2  term in the formula 
to make a good f i t  (and also a constant). The value i l l 2  should 
be present, if purchase prices are relcted to manufacturing 
costs, because coincident current selecrion cost is inherently 
proportional to i l l z .  

An odd pricing point is the Model 44; it was developed after 
the other models and is either implemented better or priced 
differently. The anomalies in Mp('65; P4 words), Mp('30; P4 
words), Mp('40; 217 bytes), and Mp('44) are undoubtedly due 
to pricing-strategy differences. In the case of the Model 30 the 
incremental cost to increase the Mp size from 213 to 2lcj bytes 
is the addition of only a different core array (with no change 

in electronics), at a small incremental manufacturing cost of 
goods. 

The Mp size range within a model varies by a factor of 8 
for Models 30, 40, 44, 50, 65, and 75, although by only a factor 
of 4 at the ends of the line (Models 20 and 91). The Mp imple- 
mentation is usually a single common set of electronics to drive 
214 (16,384) words in a square or coincident-current-selection 
system of z7 by P. These square points are indicated on the 
graph, and they should be the most economical memories. 
Smaller Mp's are implemented simply by using smaller core- 
memory arrays, but with the same basic electronic configura- 
tion, e.g., the Model 30 above. Larger Mp's are obtained by 
replicating the whole Mp system including the core array and 
the electronics. 

An Mp size range of 8 for a given model presupposes a 
certain structuring of problems. That is, the models assume 
a fixed relationship between Pc capacity and Mp size require- 
ments. An ideal system might let Pc power, Pc quantity, Mp 
power, and Mp size be completely variable. These parameters 
would all be selected independently to match the work load. 
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Central processors 

The relative Pc powers (in 360 instructions/s) and costs are 
given in the graph of Fig. 19 and in Table 1. The most signifi- 
cant fact from the graph is that the cost/power ratio is roughly 
constant for each of the Pc’s (especially if we ignore Model 44 
and Model 50). Figure 19 gives the relative computing power 
versus cost for various configurations. Table 1 also shows a 
number of relationships. One interesting relationship (Table 1) 
is the ratio of actual Pc power to maximum possible Pc power 
for a model. This can be based on Mp utilization: 

- Mp cycles utilized by Pc 
Mp cycles available 

- -  Actual Pc power 
Maximum Pc power 

This ratio must be less than 1 unless there are many Pc’s or 
a single Pc has more power than Mp. In every case, the Pc is 
far from fully utilizing the Mp. The technique of buffering in- 
structions in a local Pc memory can increase this ratio to be 
>1 (although no computers ever do so). In the higher model 

numbers the utilization is low because a large number of cycles 
have to be available in order to avoid conflicts when a given 
cycle is requested-using an Mp with a long txycle. In the case 
of Model 25, the cycles are lost because the microprogram is 
being executed from Mp. (A ratio of 0.045 indicates 21  cycles 
are used for microprograms to every 1 of program.) 

In the case of the Model 30 the power is limited by holding 
the general registers in Mp. For example, by using an additional 
fast M to  hold the general registers and working data, the Pc 
power could increase. Unfortunately, such a change might 
cause the cost of other parts of the system to be increased, 
so that it would not be just a simple incremental addition. The 
C(’30) performs well for the field-scan problem [Solomon, 19661 
(see Table 1). The data structure for the field-scan problem 
coincides with the 1-byte Mp organization. C(’65) and C(’75) 
perform the worst for field scan because of the mismatch 
between Mp organization (8 bytes) and program data (1 byte). 

C(’65) and C(’75) have the same Mp structure and hence 
have the same potential power available from Mp. In the case 
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Fig. 19. Graph of IBM System/360 cost/processing power ratio versus cost. 
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of C(’75) the power of the Mp is more nearly utilized. Unfortu- 
nately for the more complex Mp structures, which have more 
potential Mp cycles, the Pc is not able to utilize them. The C(’65) 
and C(’75) have several registers concerned with obtaining the 
next instruction and holding it for execution while other in- 
structions are obtained (look-ahead). The hardwired Model 75 
Pc may account for the improvement over the Model 65 P.mi- 
croprogra m med. 

The performance of C(’20) is inaccurately high since it is 
a limited subset of the 360 ISP. (C(’20) does not have float- 
ing-point or fixed-point multiply and divide instructions, and it 
has only eight 16-bit general registers.) The hardwired Model 
44 has a better cost/power characteristic than any of the other 
C’s, by any measured criteria (see Fig. 19). In the case of the 
Model 44, the Pc price also includes Ms.disk. Perhaps the Model 
44, designed initially for real-time scientific problem solving, 
is priced more competitively with similar machines (DEC PDP-10 
and SDS Sigma 5, 7), whereas the other models compete in 
a performance-insensitive, competition-free market for gen- 
eral-purpose business data processing. Thus its anomalous 
position may be due to external market pressures and not 
manufacturing cost. 

The design of the IBM System/360 models is undoubtedly 
predicated on the basis that performance or computing power 
is proportional to the cost raised to some power, g, greater than 
1: power = k x costg; where g > 1.’ Almost all models follow 
the above relationship with g > 1. When g > 1 there is an 
advantage to have large configurations since the cost/computa- 
tion will decrease. If g 5 1, then an alternative implementation 
for the 360 C’s would simply use multiple C’s or Pc’s to obtain 
the same power. Unfortunately, such an approach does not 
provide for the interconnection of the components to function 
as a single unit. In many cases a single task cannot be broken 
into a number of parallel and independent subtasks. If the 
performance for the system varied by a factor of 100, then 100 
Pc’s or C’s would be placed together. From Table 1 we see a 
power range of about 314 corresponds to a cost range of 65 
to 114 (which tells us g < 2). 

The following discussion takes computing power to be 
measured by instructions per second and Mp (size; t.cycle). 
Costs are measured in dollars per second of rental time. The 
graph (Fig. 20) shows the relationship to computing power p 
and costs. The power (actually p.Pc) is taken from the meas- 
ures of instruction times for certain fixed work. Solomon ob- 

‘Herb Grosch [Grosch, 19531 first noted this relationship and estimated g to be 
2: thus we use g for this exponent. Adams suggested g = y2 [Adams. 19621. 
See also The Economics of Computers [Sharpe, 19691. 

served Grosch’s law to hold for Models 30, 40, 50, 65, and 75. 
This line is drawn in Fig. 20 for C(cost.average). Considering 
Models 20, 25, 44, 85, and 91, a line with a less steep slope 
might f i t  the points better. If we consider C(cost.minimum), 
g < 2; considering only Pc, a g = 1 might be appropriate (see 
Fig. 20) in which the power/cost is essentially constant with 
cost. 

Pc(cost)/Mp(cost.avg) : = c.Pc/c.avg.Mp = - 1.1, the ra- 
tio of processor to memory cost 

C(cost.min)/C(cost.avg) : = c.min.C/c.avg.C = - 0.47, the 
ratio of the smallest computer configuration to an average 
configuration 

Pc(cost)/C(cost.avg) : = c.Pc/c.avg.C = - 0.23, the ratio 
of processor to computer cost 

These are averages over all the series and can be rather 
misleading. For example, in higher-numbered models the 
C(cost.min)/C(cost.avg) : = c.min.C/c.avg.C is about 0.6. 
whereas in lower-numbered models the ratio is 0.3. We might 
have expected this, since it indicates that a higher proportion 
of system cost is in Ms and T on lower-number models. 

An alternative computer series based on multiprocessing 

In this section we suggest an alternative design providing a wide 
range of computing power but using multiprocessing. That is, 
rather than building a higher-performance model, we would 
have multiple lower-performance models. On the surface, this 
appears feasible only if the cost of the processor is a relatively 
small part of the computer, and if for a particular configuration 
there are memory cycles available in the system (so that a more 
costly memory system is not required). It is also desirable that 
the proposed multiprocessor configurations have rather large 
Mp’s so that it can be assumed there will be several jobs in 
Mp waiting to run; i.e., we should be able to multiprogram rather 
than do parallel processing. These conditions are satisfied with 
the System/360 models. Although we do not address the ques- 
tion of development cost, it is clear that a multiprocessor 
system would have a lower development cost because fewer 
processors would be required. Within IBM we can assume that 
the development cost tends to go to zero because of the large 
production; unfortunately, even for IBM, the training cost for 
servicemen and salesmen does not go to zero but is propor- 
tional to the number of products. Thus, we would anticipate 
savings by having a smaller line. 

The multiprocessor view is presented in Table 4; namely, we 
suggest dropping Models 20, 30, 40, 50, 65, 75, 85, and 91. 
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Fig. 20. Graph of IBM System/360 relative processing power versus cost. 

These would be replaced with only Models 25 and 44. Note there 
are Pc's in Table 4 (other than 25 and 44) which when multi- 
processed can perform better for lower cost, e.g., 2 Model 65's 
are >1 Model 75, for about the same cost. Admittedly there 
are major problems in multiprocessing with 11 Pc's, but other 
existence proofs [Anderson, 19611 have shown that two to four 
Pc's can be effective (Chap. 36). If we ignore Models 85 and 91, 
the worst case is for a maximum of four Pc's needed to obtain 
the power of model 40. Note that in the above cases the proces- 
sor cost is about one-half the cost of a single Pc. This factor 
of 2 might be used to answer critics of the scheme. The reasons 
against the scheme are: There have to be good switches be- 
tween Mp and Pc's; there has to be communication among the 
Pc's (which is about the same as what the Pc-Pi0 communica- 
tion should be); and there has to be knowledge of the program 
environment to split tasks apart to  run in parallel. 

A less radical suggestion is also presented in Table 4: 
namely, examining the number of processor models which can 
be used to provide processing power for the next highest model. 

Actually, if we carry this view further and were forced to build 
such a system, the view that the ideal machines are the Model 
25 and 44 would undoubtedly change. Model 25 and 44 exist 
and can be used for the argument. The reader should note that 
there is a major flaw in our argument using a Model 25. The 
microprogrammed Model 25 Pc cost should include a 16-kby 
memory for the microprogram (actually one Mp should be 
included for each Pc to avoid memory-request conflict). Alter- 
natively, if we use the Model 25 directly without a microprogram, 
we would lose performance range. With our present knowledge 
of multiprocessors, a responsible engineer would hardly suggest 
building a multiprocessor system with 11 processors as a sure- 
fire money-making venture. A more reasonable alternative 
would be to use the multiprocessor Model 75 as an alternative 
to Models 85 and 91. A reasonably safe alternative would be 
three basic processors and a four-processor multiprocessor 
structure. For a power range of 320:1, then the processors 
could be 1, 20, 80, giving powers of 1, 2, 3, 4, 20, 40, 60, 80, 
160, 240, 320. This structure would leave a gap of a factor of 
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Table 4 IBM System/360 Pc (power: cost) and an alternative design based on multiprocessors 

Given 

Pc.mode1 Pc.power Pc.cost Quantity.Pc 

Proposed multiprocessor alternatives 

Pc.model Pc.power Pc.cost 

20 
25 
30 

40 

44 
50 
65 
75 

85 
91 

1 
1.5 
2 

6 

30 
15 
63 
92 

252 
314 

0.00049 
0.00050 
0.0013 

0.003 

0.0041 
0.012 
0.022 
0.037 

0.087 
0.091 

1 
1 
2 
2 
4 
6 
1 
1 
2 
3 
2 
8 

11 

25 
25 
25 
20 
25 
20 
44 
44 
44 
44 
65 
44 
44 

1.5 
1.5 
3 
2 
6 
6 

30 
30 
60 
90 

126 
240 
330 

0.0005 
0.0005 
0.001 
0.00098 
0.002 
0.00294 
0.0041 
0.0041 
0.0082 
0.012 
0.044 
0.033 
0.045 

5 between a 4 x 1 
The largest gap in 
Models 30 and 40. 

power processor 
the System/360 

and 20 power processor. 
is a factor of 3 between 

Conclusions 

The IBM System/360, by achieving a production record, has 
fulfilled its principal design objective. The technical goals, how- 
ever, are of interest to us here. The most interesting aspect 
of the design is achieving a performance range of 314 to 1 over 
a series of models, with a primary-memory size range of 2,048 
to 1 for various computer configurations. Thus a user is given 
a very large set of configuration alternatives. The SLT technol- 
ogy, though not integrated-circuit, is certainly of the third gen- 
eration. Using SLT the fabrication of the models is superb. 

There is a vast array of secondary-memory and terminal 
devices to couple with almost any other system. The Sys- 
tem/360 is the first computer to make extensive use of micro- 
programming. Microprogramming is used for the definition of 
the System/360 instruction-set processor, but, more important, 
microprograms define previous IBM computers so that a user 
can operate satisfactorily during the interim period when older 
programs are being updated to use the System/360. There are 
provisions for multicomputer structures. Within a single com- 
puter structure there is adequate means of peripheral switching 
so that reliable and high-performance structures can be as- 
sembled. Early structures do not provide multiprocessing; we 
have suggested multiprocessing as a technique to achieve the 
same performance-range objectives. The io processor, though 
rather elaborate, provides a certain commonality. 

The instruction-set processor for the System/360, based on 
a general-registers structure, appears to be overly complex, yet 
incomplete, because there are so many data types. The address- 
ing mechanism and lack of multiprogramming ability make 
the System/360 a hard machine to appreciate fully. Although 
we praise microprogramming as a means of accomplishing 
compatibility with the past, it appears to stand in the way of 
getting the most performance from the hardware. Perhaps of 
most significance, the System/360 may have a greater lifetime 
than any past computer. 
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Chapter 43 

The structure of SYSTEM/36O1 

Part I-Outline of the logical structure 

G .  A .  Blaauw / F. P .  Brooks, Jr. 

Summary A general introductory description of the logical structure of 
SYSTEM/36O is given. In addition, the functional units, the principal regis- 
ters and formats, and the basic addressing and sequencing principles of 
the system are indicated. 

In the  SYSTEM/^^^ logical structure, processing efficiency and 
versatility are served by multiple accumulators, binary addressing, 
bit-manipulation operations, automatic indexing, fixed and variable 
field lengths, decimal and hexadecimal radices, and floating-point 
as well as fixed-point arithmetic. The provisions for program 
interruption, storage protection, and flexible CPU states contribute 
to effective operation. Base-register addressing, the standard in- 
terface between channels and input/output control units, and the 
machine-language compatibility among models contribute to flex- 
ible configurations and to orderly system expansion. 

SYSTEM 360 is distinguished by a design orientation toward 
very large memories and a hierarchy of memory speeds, a broad 
spectrum of manipulative functions, and a uniform treatment of 
input/outpiit functions that facilitates communication with a 
diversity of input/output devices. The overall structure lends 
itself to program-compatible embodiments over a wide range of 
performance levels. 

The system, designed for operation with a supervisory pro- 
gram, has comprehensive facilities for storage protection, program 
relocation, nonstop operation, and program interruption. Privi- 
leged instructions associated with a supervisory operating state 
are included. The supervisory program schedules and governs the 
execution of multiple programs, handles exceptional conditions, 
and coordinates and issues input/output (I/O) instructions. Relia- 
bility is heightened by supplementing solid-state components with 
built-in checking and diagnostic aids. Interconnection facilities 
permit a wide variety of possibilities for multisystem operation. 

The purpose of this discussion is to introduce the functional 
units of the system, as well as formats, codes, and conventions 
essential to characterization of the system. 

Functional structure 

The  SYSTEM/^^^ structure schematically outlined in Fig. 1 has 
seven announced embodiments. Six of these, namely, Models 30, 
40, 50, 60, 62, and 70, will be  treated here.l Where requisite 1/0 
devices, optional features, and storage capacity are present, these 
six models are logically identical for valid programs that contain 
explicit time dependencies only. Hence, even though the allow- 
able channels or storage capacity may vary from model to model 
(as discussed in Chap. 44), the logical structure can be discussed 
without reference to specific models. 

Znput/output 

Direct communication with a large number of low-speed terminals 
and other 1/0 devices is provided through a special multiplexor 
channel unit. Communication with high-speed 1/0 devices is 
accommodated by the selector channel units. Conceptually, the 
input/output system acts as a set of subchannels that operate 
concurrently with one another and the processing unit. Each 
subchannel, instructed by its own control-word sequence, can 
govern a data transfer operation between storage and a selected 
1/0 device. A multiplexor channel can function either as one or 
as many subchannels; a selector channel always functions as a 
single subchannel. The control unit of each 1/0 device attaches 
to the channels via a standard mechanical-electrical-programming 
interface. 

Processing 

The processing unit has sixteen general purpose 32-bit registers 
used for addressing, indexing, and accumulating. Four 64-bit 
floating-point accumulators are optionally available. The inclusion 
of multiple registers permits effective use to be made of small 
high-speed memories. Four distinct types of processing are pro- 

'A seventh embodiment, the Model 92, is not discussed in this paper. This 
model does not provide decimal data handling and has a few minor differ- 
ences arising from its highly concurrent, speed-oriented organization. A 
paper on Model 92 is planned for future publication in the IBM Systems 
Journal. 

588 
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Fig. 1. Functional schematic of System/360.  

vided: logical manipulation 01 individual bits, character strings and 
fixed words; decimal arithmetic on digit strings; fixed-point binary 
arithmetic; and floating-point arithmetic. The processing unit, 
together with the central control function, will be  referred to as 
the central processing unit (CPU). The basic registers and data 
paths of the CPU are shown in Fig. 2. 

The CPU’s of the  various models yield a substantial range in 
performance. Relative to  the smallest model (Model 30), the in- 
ternal performance of the largest (Model 70) is approximately 50:l 
for scientific computation and 15: 1 for commercial data processing. 

Control 

Because of the extensive instruction set, SYSTEM/36O control is 
more elaborate than in conventional computers. Control functions 
include internal sequencing of each operation; sequencing from 
instruction to instruction (with branching and interruption); gov- 
erning of many 1/0 transfers; and the monitoring, signaling, tim- 
ing, and storage protection essential to total system operation. The 
control equipment is conibined with a programmed supervisor, 
which coordinates and issues all 1/0 instructions, handles excep- 
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Fig. 2. Schematic of basic registers and data paths. 

b 

tional conditions, loads and relocates programs and data, manages 
storage, and supervises scheduling and execution of multiple pro- 
grams. To a problem programmer, the supervisory program and 
the control equipment are indistinguishable. 

The functional structure of SYSTEM/360, like that of most 
computers, is most concisely described by considering the data 
formats, the types of manipulations performed on them, and the 
instruction formats by which these manipulations are specified. 

Information formats 

The several  SYSTEM/^^^ data formats are shown in Fig. 3. An 8-bit 
unit of information is fundamental to most of the formats. A 
consecutive group of n such units constitutes a field of length n. 
Fixed-length fields of length one, two, four, and eight are termed 
bytes, halfwords, words, and double words, respectively. In many 
instructions, the operation code implies one of these four fields 
as the length of the operands. On the other hand, the length is 
explicit in an instruction that refers to operands of variable length. 

The location of a stored field is specified by the  address of the 
leftmost byte of the field. Variable-length fields may start on any 
byte location, but  a fixed-length field of two, four, or eight bytes 

must have an address that is a multiple of 2, 4, or 8, respectively. 
Some of the various alignment possibilities are  apparent from 
Fig. 3. 

Storage addresses are represented by binary integers in the 
system. Storage capacities are always expressed as numbers of 
bytes. 

Processing operations 

The SYSTEM/360 operations fall into four classes: fixed-point arith- 
metic, floating-point arithmetic, logical operations, and decimal 
arithmetic. These classes differ in the data formats used, the 
registers involved, the operations provided, and the way the field 
length is stated. 

Fixed-point arithmetic 

The basic arithmetic operand is the 32-bit fixed-point binary word. 
Halfword operands may be  specified in most operations for the 
sake of improved speed or storage utilization. Some products and 
all dividends are 64 bits long, using a n  even-odd register pair. 

Because the 32-bit words accommodate the 24-bit address, the 
entire fixed-point instruction set, including multiplication, division, 
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shifting, and several logical operations, can be used in address 
computation. A two's complement notation is used for fixed-point 
operands. 

Additions, subtractions, multiplications, divisions, and com- 
parisons take one operand from a register and another from either 
a register or storage. Multiple-precision arithmetic is made con- 
venient by the two's complement notation and by recognition of 
the carry from one word to  another. A pair of conversion instruc- 

tions, CONVERT TO BINARY and CONVERT TO DECIMAL, 
provide transition between decimal and binary radices without 
the use of tables. Multiple-register loading and storing instructions 
facilitate subroutine switching. 

Fzoating-point 

Floating-point numbers may occur in either of two fixed-length 
formats-short or long. These formats differ only in the length of 
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the fractions, as indicated in Fig. 3. The fraction of a floating-point 
number is expressed in 4-bit hexadecimal (base 16) digits. In the 
short format, the fraction has six hexadecimal digits; in the long 
format, the fraction has 14 hexadecimal digits. The short length 
is equivalent to seven decimal places of precision. The long length 
gives u p  to 17 decimal places of precision, thus eliminating most 
requirements for double-precision arithmetic. 

The radix point of the fraction is assumed to be  immediately 
to the left of the high-order fraction digit. To provide the proper 
magnitude for the floating-point number, the fraction is considered 
to be multiplied by a power of 16. The characteristic portion, bits 
1 through 7 of both formats, is used to indicate this power. The 
characteristic is treated as an excess 64 number with a range from 

- 64 through + 63, and permits representation of decimal numbers 
with magnitudes in the range of 

Bit position 0 in either format is the fraction sign, S. The 
fraction of negative numbers is carried in true form. 

Floating-point operations are performed with one operand from 
a register and another from either a register or storage. The result, 
placed in a register, is generally of the same length as the operands. 

Logical operations 

Operations for comparison, translation, editing, bit testing, and 
bit setting are provided for processing logical fields of fixed and 
variable lengths. Fixed-length logical operands, which consist of 
one, four, or eight bytes, are processed from the general registers. 

to 
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Fig. 4. Extended binary-coded-decimal interchange code. 
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Fig. 5. Eight-bit representation for proposed international code. 

Logical operations can also be  performed on fields of up  to 256 
bytes, in which case the fields are processed from left to right, 
one byte at  a time. Moreover, two powerful scanning instrnctions 
permit byte-by-byte translation and testing via tables. An impor- 
tant special case of variable-length logical operations is the one- 
byte field, whose individual bits can be  tested, set, reset, and 
inverted as specified by an 8-bit mask in the instruction. 

Character codes 

Any 8-bit character set can be processed, although certain restric- 
tions are assumed in the decimal arithmetic and editing operations. 
However, all character-set-sensitive 1/0 equipment assumes either 
the Extended Binary-Coded-Decimal Interchange Code (EBCDIC) 

of Fig. 4 or the code of Fig. 5,  which is an eight-bit extension 
of a seven-bit code proposed by the International Standards Orga- 
nization. 

Decimal arithmetic 

Decimal arithmetic can improve performance for processes re- 
quiring few computational steps per datum between the source 
input and the output. In these cases, where radix conversion from 
decimal to binary and back to decimal is not justified, the use of 
registers for intermediate results usually yields no advantage over 
storage-to-storage processing. Hence, decimal arithmetic is pro- 
vided in S Y S T E M / 3 6 0  with operands as well as results located in 
storage, as in the IBM 1400 series. Decimal arithmetic includes 
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addition, subtraction, multiplication, division, and comparison. 
The decimal digits 0 through 9 are represented in the 4-bit 

binary-coded-decimal form by 0000 through 1001, respectively. 
The patterns 1010 through 1111 are not valid as digits and are 
interpreted as sign codes: 1011 and 1101 represent a minus, the 
other four a plus. The sign patterns generated in decimal arithme- 
tic depend upon the character set preferred. For EBCDIC, the 
patterns are 1100 and 1101; for the code of Fig. 5, they are 1010 
and 1011. The choice between the two codes is determined by 
a mode bit. 

Decimal digits, packed two to a byte, appear in fields of variable 
length (from 1 to 16 bytes) and are accompanied by a sign in the 
rightmost four bits of the low-order byte. Operand fields can be 
located on any byte boundary, and can have lengths up to 31 digits 
and sign. Operands participating in an operation have independent 
lengths. Negative numbers are carried in true form. Instructions 
are provided for packing and unpacking decimal numbers. Packing 
of digits leads to  efficient use of storage, increased arithmetic 
performance, and improved rates of data transmission. For purely 
decimal fields, for example, a 90,000-byte/second tape drive reads 
and writes 180,000 digits/second. 

Instruction formats 

Instruction formats contain one, two, or three halfwords, depend- 
ing upon the number of storage addresses necessary for the opera- 
tion. If no storage address is required of an instruction, one half- 
word suffices. A two-halfword instruction specifies one address; a 
three-halfword instruction specifies two addresses. All instructions 
must be aligned on halfword boundaries. 

The five basic instruction formats, denoted by the format 
mnemonics RR, RX, RS, SI, and SS are shown in Fig. 6. RR denotes 
a register-to-register operation, RX a register and indexed-storage 
operation, RS a register and storage operation, SI a storage and 
immediate-operand operation, and SS a storage-to-storage opera- 
tion. 

In each format, the first instruction halfword consists of two 
parts. The first byte contains the operation code. The length and 
format of an instruction are indicated by the first two bits of the 
operation code. 

The second byte is used either as two 4-bit fields or as a single 
8-bit field. This byte is specified from among the following: 

Four-bit operand register designator (R) 

Four-bit index register designator (X)  

Four-bit mask (M)  

Four-bit field length specification (L) 

Eight-bit field length specification 

Eight-bit byte of immediate data (I)  

The second and third halfwords each specify a 4-bit base 
register designator (B), followed by a 12-bit displacement (D). 

Addressing 

An effective storage address E is a 24-bit binary integer given, 
in the typical case, by 

E = B + X + D  

where B and X are 24-bit integers from general registers identified 
by fields B and X, respectively, and the displacement D is a 12-bit 
integer contained in every instruction that references storage. 

The base B can be used for static relocation of programs and 
data. In record processing, the base can identify a record; in array 
calculations, it can specify the location of an array. The index X 
can provide the relative address of an element within an array. 
Together, B and X permit double indexing in array processing. 

The displacement provides for relative addressing of up  to 4095 
bytes beyond the element or base address. In array calculations, 
the displacement can identify one of many items associated with 
an element. Thus, multiple arrays whose indices move together 
are best stored in an interleaved manner. In the processing of 
records, the displacement can identify items within a record. 

In forming an effective address, the base and index are treated 
as unsigned 24-bit positive binary integers and the displacement 
as a 12-bit positive binary integer. The three are added as 24-bit 
binary numbers, ignoring overflow. Since every address is formed 
with the aid of a base, programs can be readily and generally 
relocated by changing the contents of base registers. 

A zero base or index designator implies that  a zero quantity 
must be used in forming the address, regardless of the contents 
of general register 0. A displacement of zero has no special signifi- 
cance. Initialization, modification, and testing of bases and indices 
can be carried out by fixed-point instructions, or by BRANCH 
AND LINK, BRANCH ON COUNT, or BRANCH ON INDEX 
instructions. LOAD EFFECTIVE ADDRESS provides not only a 
convenient housekeeping operation, but also, when the same 
register is specified for result and operand, an immediate register- 
incrementing operation. 

Sequencing 

Normally, the CPU takes instructions in sequence. After an in- 
struction is fetched from a location specified by the instruction 
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Fig. 6. Five basic instruction formats. 

counter, the instruction counter is increased by the number of 
bytes in the instruction. 

Conceptually, all halfwords of an instruction are fetched from 
storage after the preceding operation is completed and before 
execution of the current operation, even though physical storage 
word size and overlap of instruction execution with storage access 
may cause the  actual instruction fetching to be  different. Thus, 
an instruction can be  modified by the instruction that immediately 
precedes i t  in the instruction stream, and cannot effectively modify 
itself during execution. 

Branching 

Most branching is accomplished by a single BRANCH ON CON- 
DITION operation that inspects a 2-bit condition register. Many 

of the arithmetic, logical, and 1/0 operations indicate an outcome 
by setting the condition register to one of its four possible states. 
Subsequently a conditional branch can select one of the states 
as a criterion for branching. For example, the condition code 
reflects such conditions as non-zero result, first operand high, 
operands equal, overflow, channel busy, zero, etc. Once set, 
the  condition register remains unchanged until modified by 
an instruction execution that reflects a different condition 
code. 

The outcome of address arithmetic and counting operations 
can be  tested by a conditional branch to effect loop control. Two 
instructions, BRANCH ON COUNT and BRANCH ON INDEX, 
provide for one-instruction execution of the most common arith- 
metic-test combinations. 
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Fig. 7. Program status word format. 

Program status word 

A program status word (PSW),  a double word having the format 
shown in Fig. 7 ,  contains information required for proper execution 
of a given program. A PSW includes an instruction address, con- 
dition code, and several mask and mode fields. The active or 
controlling PSW is called the current PSW. By storing the current 
PSW during an interruption, the status of the interrupted program 
is preserved. 

Interruption 

Five classes of interruption conditions are distinguished: input/ 
output, program, supervisor call, external, and machine check. 

For each class, two PSW's, called old and new, are maintained 
in the main-storage locations shown in Table 1. An interruption 
in a given class stores the current PSW as an old PSW and then 
takes the corresponding new PSW as the  current PSW. If, a t  the 
conclusion of the interruption routine, old and current PSW's are 
interchanged, the system can be  restored to its prior state and the 
interrupted routine can be  continued. 

The system mask, program mask, and machine-check mask bits 
in the PSW may be used to control certain interruptions. When 
masked off, some interruptions remain pending while others are 
merely ignored. The system mask can keep 1/0 and external 
interruptions pending, the program mask can cause four of the 
15 program interruptions to be  ignored, and the machine-check 
mask can cause machine-check interruptions to be ignored. Other 
interruptions cannot be  masked off. 

Appropriate CPU response to a special condition in the chan- 
nels and 1/0 units is facilitated by an 1/0 interruption. The 

addresses of the channel and 1/0 unit involved are recorded in 
the old PSW. Related information is preserved in a channel status 
word that is stored as a result of the interruption. 

Unusual conditions encountered in a program create program 
interruptions. Eight of the fifteen possible conditions involve over- 
flows, improper divides, lost significance, and exponent underflow. 

Table 1 Permanent storage assignments 

Address Byte length Purpose 

0 8 Initial program loading PSW 
8 8 Initial program loading CCW 1 

16 8 Initial program loading CCW 2 
24 8 External old PSW 
32 8 Supervisor call old PSW 
40 8 Program old PSW 
48 8 Machine check old PSW 
56 8 Input/output old PSW 
64 8 Channel status word 
72 4 Channel address word 
76 4 Unused 
80 4 Timer 
84 4 Unused 
88 8 External new PSW 
96 8 Supervisor call new PSW 

104 8 Program new PSW 
112 8 Machine check new PSW 
120 8 Input/output new PSW 
128 Diagnostic scan-out areat  

t The size of the diagnostic scan-out area is configuration dependent. 
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The remaining seven deal with improper addresses, attempted 
execution of privileged instructions, and similar conditions. 

A superuisor-cull interruption results from execution of the 
instruction SUPERVISOR CALL. Eight bits from the instruction 
format are placed in the interruption code of the old PSW, per- 
mitting a message to be associated with the interruption. SUPER- 
VISOR CALL permits a problem program to switch CPU control 
back to the supervisor. 

Through an external interruption, a CPU can respond to signals 
from the interruption key on the system control panel, the timer, 
other CPU’s, or special devices. The source of the interruption 
is identified by an interruption code in bits 24 through 31 of the 
PSW. 

The occurrence of a machine check (if not masked off) termi- 
nates the current instruction, initiates a diagnostic procedure, and 
subsequently effects a machine-check interruption. A machine 
check is occasioned only by a hardware malfunction; it cannot 
be caused by invalid data or instructions. 

Interrupt priority 

interruption requests are honored between instruction executions. 
When several requests occur during execution of an instruction, 
they are honored in the following order: (1) machine check, (2) 
program or supervisor call, (3)  external, and (4) input/output.  
Because the program and supervisor-call interruptions are mutu- 
ally exclusive, they cannot occur at the same time. 

If a machine-check interruption occurs, no other interruptions 
can be taken until this interruption is fully processed. Otherwise, 
the execution of the CPU program is delayed while PSW’s are 
appropriately stored and fetched for each interruption. When the 
last interruption request has been honored, instruction execution 
is resumed with the PSW last fetched. An interruption subroutine 
is then serviced for each interruption in the order (1) input/output,  
(2) external, and (3)  program or supervisor call. 

Program status 

Overall CPU status is determined by four alternatives: (1) stopped 
versus operating state, (2) running versus waiting state, (3) masked 
versus interruptable state, and (4) superuisor versus problem state. 

In the stopped state, which is entered and left by manual 
procedure, instructions are not executed, interruptions are not 
accepted, and the timer is not updated. in  the operating state, 
the CPU is capable of executing instructions and of being inter- 
rupted. 

In the running state, instruction fetching and execution pro- 
ceeds in the normal manner. The wait state is typically entered 

by the program to await an interruption, for example, an 1/0 
interruption or operator intervention from the console. In the wait 
state, no instructions are processed, the timer is updated, and i/O 
and external interruptions are accepted unless masked. Running 
versus waiting is determined by the setting of a bit in the current 
PSW. 

The CPU may be interruptable or masked for the system, 
program, and machine interruptions. When the CPU is interrupt- 
able for a class of interruptions, these interruptions are accepted. 
When the CPU is masked, the system interruptions remain pend- 
ing, but the program and machine-check interruptions are ignored. 
The interruptable states of the CPU are changed by altering mask 
bits in the current PSW. 

In the problem state, processing instructions are valid, but all 
I /O  instructions and a group of control instructions are invalid. 
In the supervisor state, all instructions are valid. The choice of 
problem or supervisor state is determined by a bit in the PSW. 

Supervisory facilities 

Timer 

A timer word in main storage location 80 is counted down at a 
rate of 50 or 60 cycles per second, depending on power line 
frequency. The word is treated as a signed integer according to 
the rules of fixed-point arithmetic. An external interrupt occurs 
when the value of the timer word goes from positive to negative. 
The full cycle time of the timer is 15.5 hours. 

As an interval timer, the timer may be used to measure elapsed 
time over relatively short intervals. The timer can be set by a 
supervisory-mode program to any value a t  any time. 

Direct control 

Two instructions, READ DIRECT and WRITE DIRECT, provide 
for the transfer of a single byte of information between an external 
device and the main storage of the system. These instructions are 
intended for use in synchronizing CPU’s and special external 
devices. 

Storage protection 

For protection purposes, main storage is divided into blocks of 
2,048 bytes each. A four-bit storage key is associated with each 
block. When a store operation is attempted by an instruction, the 
protection key of the current PSW is compared with the storage 
key of the affected block. When storing is specified by a channel 
operation, a protection key supplied by the channel is used as the 
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comparand. The keys are said to match if equal or if either is zero. 
A storage key is not part of addressable storage, and can .be  
changed only by privileged instructions. The protection key of the 
CPU program is held in the current PSW. The protection key of 
a channel is recorded in a status word that is associated with the 
channel operation. 

When a CPU operation causes a protection mismatch, its 
execution is suppressed or terminated, and the program execution 
is altered by an interruption. The protected storage location 
always remains unchanged. Similarly, protection mismatch due to 
an 1/0 operation terminates data transmission in such a way that 
the protected storage location remains unchanged. 

Multisystem operation 

Communication between CPU’s is made possible by shared control 
units, interconnected channels, or shared storage. Multisystem 
operation is supported by provisions for automatic relocation, 
indication of malfunctions, and CPU initialization. 

Automatic relocation applies to the first 4,096 bytes of storage, 
an area that contains all permanent storage assignments and 
usually has special significance for supervisory programs. The 
relocation is accomplished by inserting a 12-bit prefix in each 
address whose high-order 12 bits are zero. Two manually set 
prefixes permit the use of an alternate area when storage malfunc- 
tion occurs; the choice between prefixes is preserved in a trigger 
that is set during initial program loading. 

To alert one CPU to the possible malfunction of another, a 
machine-check signal from a given CPU can serve as an external 
interruption to  another CPU. By another special provision, initial 
program loading of a given CPU can be initiated by a signal from 
another CPU. 

Input/output 

Devices and control units 

Input/output devices include card equipment, magnetic tape 
units, disk storage, drum storage, typewriter-keyboard devices, 
printers, teleprocessing devices, and process control equipment. 
The 1 / 0  devices are regulated by control units, which provide 
the electrical, logical, and buffering capabilities necessary for 1 / 0  
device operation. From the programming point of view, most 
control-unit and 1/0 device functions are indistinguishable. 
Sometimes the control unit is housed with an 1/0 device, as in 
the case of the printer. 

A control unit functions only with those 1 / 0  devices for which 
it is designed, but all control units respond to a standard set of 

signals from the channel. This control-unit-to-channel connection, 
called the 1/0 interfucr, enables the CPU to handle all 1/0 
operations with only four instructions. 

110 instructions 

Input/output instructions can be executed only while the CPU 
is in the supervisor state. The four 1/0 instructions are START 
I/O, HALT I/O, TEST CHANNEL, and TEST I/O. 

START 1/0 initiates an 1 / 0  operation; its address field speci- 
fies a channel and an 1/0 device. If the channel facilities are free, 
the instruction is accepted and the CPU continues its program. 
The channel independently selects the specified 1/0 device. HALT 
1/0 terminates a channel operation. TEST CHANNEL sets the 
condition code in the PSW to indicate the state of the channel 
addressed by the instruction. The code then indicates one of the 
following conditions: channel available, interruption condition in 
channel, channel working, or channel not operational. TEST 1/0 
sets the PSW condition code to indicate the state of the addressed 
channel, subchannel, and 1/0 device. 

Channels 

Channels provide the data path and control for 1/0 devices as 
they communicate with main storage. In the multiplexor channel, 
the single data path can be time-shared by several low-speed 
devices (card readers, punches, printers, terminals, etc.) and the 
channel has the functional character of many subchannels, each 
of which services one 1 / 0  device at a time. On the other hand, 
the selector channel, which is designed for high-speed devices, has 
the functional character of a single subchannel. All subchannels 
respond to the same 1 / 0  instructions. Each can fetch its own 
control word sequence, govern the transfer of data and control 
signals, count record lengths, and interrupt the CPU on exceptions. 

Two modes of operation, burst and multiplex, are provided 
for multiplexor channels. In burst mode, the channel facilities are 
monopolized for the duration of data transfer to or from a particu- 
lar 1 / 0  device. The selector channel functions only in the burst 
mode. In multiplex mode, the multiplexor channel sustains several 
simultaneous 1/0 operations: bytes of data are interleaved and 
then routed between selected 1 / 0  devices and desired locations 
in main storage. 

At the conclusion of an operation launched by START 1/0 
or TEST I/O, an 1 / 0  interruption occurs. At this time a channel 
status word (CSW) is stored in location 64. Figure 8 shows the 
CSW format. The CSW provides information about the termina- 
tion of the 1/0 operation. 

Successful execution of START 1/0 causes the channel to 
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KEY 0 0 0 0 COMMAND ADDRESS 

STATUS 

011s 0 through 3 contain the storage protection hay used In th. 0p.ration. 
Bits 4 through 7 contain zeros 
81ts 8 through 32 specify the location of the last CCW used 
Bits 32 through 47 contdin an 110 device status byte and a channel status 

byte The s t a t ~ s  bytes provide such information as data check c h a n t  

Bits 4%through 63 contam the resodual count of the last CCW used. 
I" check. Control unlt end. oltc 

COUNT 1 

Fig. 8. Channel status word format. 

fetch a channel address word from main-storage location 72. This 
word specifies the storage-protection key that governs the I/O 
operation, as well as the location of the first eight bytes of infor- 
mation that  the channel fetches from main storage. These 64 bits 
comprise a channel command word (CCW). Figure 9 shows the 
CCW format. 

Channel program 

One or more CCW's make up  the channel program that directs 
channel operations. Each CCW points to the next one to be  
fetched, except for the last in the chain which so identifies itself. 

Six channel commands are provided: read, write, read back- 
ward, sense, transfer in channel, and control. The read command 
defines an area in main storage and causes a read operation from 
the selected I/O device. The write command causes data to be  
written by the selected device. The read-backward command is 
akin to the read command, but the  external medium is moved in 
the opposite direction and bytes read backward are  placed in 
descending main storage locations. 

The control command contains information, called an order, 
that is used to control the selected 1/0 device. Orders, peculiar 
to the particular 1/0 device in use, can specify such functions 
as rewinding a tape unit, searching for a particular track in disk 
storage, or line skipping on a printer. In a functional sense, the 
CPU executes 110 instructions, the channels execute commands, 
and the control units and devices execute orders. 

The sense command specifies a main storage location and 
transfers one or more bytes of status information from the selected 
control unit. It provides details concerning the selected 1/0 de- 
vice, such as a stacker-full condition of a card reader or a file- 
protected condition of a magnetic-tape reel. 

A channel program normally obtains CCW's from a consecu- 
tive string of storage locations. The string can be  broken by a 
transfer-in-channel command that specifies the location of the next 
CCW to be  used by the channel. External documents, such as 
punched cards or magnetic tape, may carry CCW's that can be  
used by the channel to govern the reading of the documents. 

The input/output interruptions caused by termination of an 

COMMAND CODE DATA ADDRESS 

0 7 8  31 

811s 0 through 7 rpscity the command code 
Brits 8 through 31 specity the location of a byte In main storage 
Bots 3 2  through 36 am 11.18 bits 

Bit 34 causes a possible incorrect length indication to be suppressed 
Bit 35 suppresses the fraiirfer al information to main storage 
Bit 36 causes an interrwtion 

Bits 37 through 39 must contain zeros 
Bits 40 through 47 are igiiored 
Bits 4 8  through 63 ~ p e c l l y  the number of bytes on the operation 

Bit 32 causes the address wrtion of the next CCW to be used 
811 33 causes the command code and data address in the next 

ccw to be "Sed. 

Fig. 9. Channel command word format. 



Table 2 System/JBO instructions 
~ ~~~ 

RR F m t  

0100 
0101 
0110 
0111 
1000 
1001 
1010 

Branching and 
status switching 

DOOOxxxr 

SPM SET PROGRAM MASK 
BALR BRANCH AND LINK 
BCTR BRANCH ON COUNT 
BCR BRANCH/CONDITION 
SSK SET KEY 
ISK INSERT KEY 
SVC SUPERVISOR CALL 

Floating-point 
shmt 

001 I X X X Z  

Fixed-point f i i l l w d  
and logical 

-0ooln;xx 

LOAD POSITIVE 
LOAD NEGATIVE 
LOAD AND TEST 
LOA0 COMPLEMENT 
AND 
COMPARE LOGICAL 
OR 
EXCLUSIVE OR 
LOAD 
COMPARE 
ADO 

u x x  - 
LPR 
LNR 
LTR 
LCR 
NR 
CLR 
OR 
XR 
LR 
CR 
AR 

LPER LOAD POSITIVE 
LNER LOAD NEGATIVE 
LTER LOAD AND TEST 
LCER LOAD COMPLEMENT 
HER HALVE 

LER 
CER 
ALR 
SER 
MER 
DER 
AUR 
SUR 
- 

LOAD 
COMPARE 
ADD N 
SUBTRACT N 
MULTIPLY 
DIVIDE 
ADD U 
SUBTRACT U 

1011 
1100 I SR SUBTRACT 

MR MULTIPLY 
DR DIVIDE 
ALR ADD LOGICAL 
SLR SUBTRACT LOGICAL 

SDR SUBTRACT N 
MDR MULTIPLY 
DDR DIVIDE 
AWR ADD U 
SWR SUBTRACT U 

RX Fonnnt 

Fixed-point halfword 
and branching 

xxxx ni wrxr* 

Fixed-point fullword 
and logical 

01 Olxxxx 

Floating-point 

01 1 oarxx 
long 

Floating-point 
shmt 

Ol1lxxxx 

ST STORE STD STORE STE STORE STORE 
LOAD ADDRESS 
STORE CHARACTER 
INSERT CHARACTER 
EXECUTE 
BRANCH AND LINK 
BRANCH ON COUNT 
BRANCH/CONDITION 
LOAD 
COMPARE 
ADD 
SUBTRACT 
MULTl PLY 

STH 
LA 
STC 
IC 
EX 
BAL 
BCT 
EC 
LH 
CH 
AH 
SH 
M H  

N AND 
CL COMPARE LOGICAL 
0 OR 
X EXCLUSIVE OR 
L LOAD 
C COMPARE 
A ADD 
S SUBTRACT 
M MULTIPLY 
D DIVIDE 
AL ADD LOGICAL 
SL SUBTRACT LOGICAL 

LD LOAD 
CD COMPARE 
AD ADD N 
SD SUBTRACT N 
MO MULTIPLY 
DD DIVIDE 
AW ADO U 
SW SUBTRACT U 

LE LOAD 
CE COMPARE 
AE ADD N 
SE SUBTRACT N 
ME MULTIPLY 
DE DIVIDE 
AU ADD U 
SU SUBTRACT U 

1101 
1110 1 CVD CONVERT-DECIMAL 
11 11 CVB CONVERT-BINARY 

RS, SI  F o m t  

Branchtng 
status switching 

and shifting 

1 o m x x x  

Fixed-point 
logical and 

inputloutput 

I W l x r n  xxxx 

0000 
0001 
0010 
001 1 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

IOllxxxr 

SSM SET SYSTEM MASK STM STORE MULTIPLE 
TM TEST UNDER MASK 
MVI MOVE 
TS TEST AND SET 
NI AND 

LPSW LOAD PSW 
DIAGNOSE 

WRO WRITE DIRECT 
RDD READ DIRECT 
BXH BRANCHlHIGH 
BXLE BRANCH/LOW.EQUAL 
SRI. SHIFT RIGHT SL 
SLL SHIFT LEFT SL 
SRA SHIFT RIGHT S 
SLA SHIFT LEFT S 

CLI COMPARE LOGICAL 
01 OR 
XI EXCLUSIVE OR 
LM LOAD MULTIPLE 

SRDL SHIFT RIGHT DL 
SLDL SHIFT LEFT DL 
SRDA SHIFT RIGHT D 
SLDA SHIFT LEFT D 

S I 0  START 1/0 
T I 0  TEST 1/0 
H I 0  HALT 1/0 
TCH TEST CHANNEL 

SS Fmmat 

xxxx 1 I m r x x  

Decimal 

1 1  1 lxxxr 1 I IV***X 

MVN MOVE NUMERIC 
MVC MOVE 
MVZ MOVE ZONE 
NC AND 
CLC COMPARE LOGICAL 
OC OR 
XC EXCLUSIVE OR 

MVO MOVE WITH OFFSEl 
PACK PACK 
UNPK UNPACK 

ZAP ZERO AND ADD 
CP COMPARE 
AP ADD 
SP SUBTRACT 
MP MULTIPLY 
DP DIVIDE 

TR TRANSLATE 
TRT TRANSLATE AND TEST 
ED EDIT 
EDMK EDIT AND MARK 

NOT€ N = NORMALIZED DL = DOUBLE LOGICAL S = SINGLE 
SL = SINGLE LOGICAL U = UNNORMALIZED D = DOUBLE 
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I/O operation, or by operator intervention at the 1/0 device, 
enable the CPU to provide appropriate programmed response to 
conditions as they occur in 1/0 devices or channels. Conditions 
responsible for 1/0 interruption requests are preserved in the 1/0 
devices or channels until recognized by the CPU. 

During execution of START I/O, a command can be rejected 
by a busy condition, program check, etc. Rejection is indicated 
in the condition code of the PSW, and additional detail on the 
conditions that precluded initiation of the 1/0 operation is pro- 
vided in a CSW. 

Manual control 

The need for manual control is minimal because of the design of 
the system and supervisory program. A control panel provides the 

ability to reset the system; store and display information in main 
storage, in registers, and in the PSW; and load initial program 
information. After an input device is selected with the load unit 
switches, depressing a load key causes a read from the selected 
input device. The six words of information that are read into main 
storage provide the PSW and the CCW’s required for subsequent 
operation. 

Znstruction set 

The SYSTEM/36O instructions, classified by format and function, 
are displayed in Table 2. Operation codes and mnemonic abbrevi- 
ations are also shown. With the previously described formats in 
mind, much of the generality provided by the system is apparent 
in this listing. 



Chapter 44 

The structure of SYSTEM/3601 

Part I l-System implementations 

W Y. Stevens 

Summary The performance range desired of  SYSTEM/^^^ is obtained by 
variations in the storage, processing, control, and channel functions of the 
several models. The systematic variations in speed, size, and degree of 
simultaneity that characterize the functional components and elements of 
each model are discussed. 

A primary goal in the SYSTEM/360 design effort was a wide range 
of processing unit performances coupled with complete program 
compatibility. In keeping with this goal, the logical structure of 
the resultant system lends itself to a wide choice of components 
and techniques in the engineering of models for desired perform- 
ance levels. 

This paper discusses basic choices made in implementing six 
 SYSTEM/^^^ models spanning a performance range of fifty to one. 
It should be emphasized that the problems of model implementa- 
tion were studied throughout the design period, and many of the 
decisions concerning logical structure were influenced by  difficul- 
ties anticipated or encountered in implementation. 

Performance adjustment 

The choices made in arriving at  the desired performances fall into 
four areas: 

Main storage 

Central processing unit (CPU) registers and data  paths 

Sequence control 

Input/output (I/O) channels 

Each of the adjustable parameters of these areas can be  subordi- 
nated, for present purposes, to one of three general factors: basic 
speed, size, and degree of simultaneity. 

lIBM Sys. J, vol. 3, no. 2, 136-143, 1964. 
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Main storage 

Storage speed and size 

The interaction of the general factors is most obvious in the area 
of main storage. Here the basic speeds vary over a relatively small 
range: from a 2.5-psec cycle for the Model 40 to a 1.0-psec cycle 
for Models 62 and 70. However, in combination with the other 
two factors, a 32:l range in overall storage data rate is obtained, 
as shown in Table 1. 

Most important of the three factors is size. The width of main 
storage, Le., the  amount of data  obtained with one storage access, 
ranges from one byte for the Model 30, two bytes for the Model 
40, and four bytes for the Model 50, to 8 bytes for Models 60, 
62, and 70. 

Another size factor, less direct in its effect, is the total number 
of bytes in main storage, which can make a large difference in 
system throughput by reducing the number of references to exter- 
nal storage media. This number ranges from a minimum of 8192 
bytes on Model 30 to a maximum of 524,288 bytes on Models 60, 
62, and 70. An option of up  to eight million more bytes of slower- 
speed, large-capacity core storage can further increase the 
throughput in some applications. 

Znterleaved storage 

Simultaneity in the core storage of Models 60 and 70 is obtained 
by overlapping the cycles of two storage units. Addresses are 
staggered in the two units, and a series of requests for successive 
words activates the two units alternately, thus doubling the 
maximum rate. For increased system performance, this technique 
is less effective than doubling the basic speed of a single unit, since 
the  access time to a single word is not improved, and successive 
references frequently occur to the same unit. This is illustrated 
by comparing the performances of Models 60 and 62, whose only 
difference is the choice between two overlapped 2.0-psec storage 
units and one single 1.0-psec storage unit, respectively. The per- 
formance of Model 62 is approximately 1.5 times that of Model 60. 
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Table 1 System/360 main storage characteristics 

Model 
30 

Cycle time (psec) 2.0 
Width (bytes) 1 
Interleaved access no 
Maximum data rate (byteslpsec) 0.5 
Minimum storage size (bytes) 8,192 
Maximum storage size (bytes) 65,536 
Large capacity storage attachable no 

Model Model 
40 SO 

2.5 2.0 
2 4 

no no 
0.8 2.0 

16,384 65,536 
262,144 262,144 

no Yes 

Model Model 
60 62 

Model 
70 

~~~~~ 

2.0 1.0 
8 8 

yes no 
8.0 8.0 

131,072 262,144 
524,288 524,288 

Yes Yes 

1.0 
8 

16.0 
262,144 
524,288 

yes 

yes 

CPU registers and data paths 

Circuit speed 

 SYSTEM/^^^ has three families of logic circuits, as shown in Table 
2, each using the same solid-logic technology. One family, having 
a nominal delay of 30 nsec per logical stage or level, is used in 
the data paths of Models 30,40, and SO. A second and faster family 
with a nominal delay of 10 nsec per level is used in Models 60 
and 62. The fastest family, with a delay of 6 nsec, is used in Model 
70. 

The fundamental determinant of CPU speed is the time re- 
quired to take data from the internal registers, process the data 
through the adder or other logical unit, and return the result to 
a register. This cycle time is determined by the delay per logical 

Table 2 System/360 CPU characteristics 

circuit level and the number of levels in the register-to-adder path, 
the adder, and the adder-to-register return path. The number of 
levels varies because of the trade-off that can usually be made 
between the number of circuit modules and the number of logical 
levels. Thus, the cycle time of the system varies from 1.0 psec for 
Model 30 (with 30-nsec circuits, a relatively small number of 
modules, and more logic levels) and 0.5 psec for Model SO (also 
with 30-nsec circuits, but  with more modules and fewer levels) 
to 0.2 psec for Model 70 (with 6-nsec circuits). 

Local storage 

The speed of the CPU depends also on the speed of the general 
and floating-point registers. In Model 30, these registers are located 
in an extension to the main core storage and have a read-write 

Model Model Model Model Model 
30 40 SO 60/62 70 

Circuit family: nominal delay per logic level (nsec) 
Cycle time (psec) 
Location of general and floating registers 

Width of general and floating register storage (bytes) 
Speed of general and floating register storage (psec) 
Width of main adder path (bits) 
Width of auxiliary transfer path (bits) 
Widths of auxiliary adder paths (bits) 
Approximate number of bytes of register storage 
Approximate number of bytes of working locations in local 

storage 

Relative computing speed 

30 
1 .o 

main 
core 

storage 
1 

2.0 
8 

12 
45 

(main 
storage) 

1 

30 
0.625 
local 
core 

storage 
2 

1.25 
8 
16 

15 
48 

3.5 

30 
0.5 
local 
core 

storage 
4 

0.5 
32 
8 

30 
60 

10 

10 
0.25 
local 

transistor 
storage 

4 
0.25 
56 

8 
50 
4 

21/30 

6 
0.2 

transistor 
registers 

4 or 8 

64 

8, 8, and 24 
100 

50 
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time of 2.0 psec. In Model 40, the registers are  located in a small 
core-storage unit, called local storage, with a read-write time of 
1.25 psec. Here, the operation of the local storage may be over- 
lapped with main storage. In Model 50, the registers are in a local 
storage with a read-write time of only 0.5 psec. In Model 60/62, 
the local storage has the logical characteristics of a core storage 
with nondestructive read-out; however, it is actually constructed 
as an array of registers using the 30-nsec family of logic circuits, 
and has a read-write time of 0.25 psec. In Model 70, the general 
and floating-point registers are implemented with 6-nsec logic 
circuits and communicate directly with the adder and other data 
paths. 

The two principal measures of size in the CPU are the width 
of the data  paths and the number of bytes of high-speed working 
registers. 

Data  path organization 

Model 30 has an 8-bit wide (plus parity) adder path, through which 
all data transfers are  made, and approximately 12 bytes of working 
registers. 

Model 40 also has an 8-bit wide adder path, but has an addi- 
tional 16-bit wide data transfer path. Approximately 15 bytes of 
working registers are used, plus about 48 bytes of working locations 
in the local storage, exclusive of the general and floating-point 
registers. 

Model 50 has a 32-bit wide adder path, an 8-bit wide data path 
used for handling individual bytes, approximately 30 bytes of 
working registers, plus about 60 bytes of working locations in the 
local storage. 

Model 60/62 has a 56-hit wide main adder path, an 8-bit wide 
serial adder path, and approximately 50 bytes of working registers. 

Model 70 has a 64-bit wide main adder, an 8-bit wide exponent 
adder, an &bit  wide decimal adder, a 24-bit wide addressing adder, 
and several other data transfer paths, some of which have incre- 
menting ability. The model has about 100 bytes of working registers 
plus the 96 bytes of floating point and general registers which, in 
Model 70, are directly associated with the data paths. 

The models of  SYSTEM/^^^ differ considerably in the number 
of relatively independent operations that can occur simultaneously 
in the CPU. Model 30, for example, operates serially: virtually all 
data transfers must pass through the adder, one byte a t  a time. 
Model 70, however, can have many operations taking place at the 
same time. The CPU of this model is divided into three units that 
operate somewhat independently. The instruction preparation unit 
fetches instructions from storage, prepares them by computing 
their effective addresses, and initiates the fetching of the required 
data. The execution unit performs the execution of the instruction 

prepared by the instruction unit. The third unit is a storage bus 
control which coordinates the various requests by the other units 
and by the channels for core-storage cycles. All three units nor- 
mally operate simultaneously, and together provide a large degree 
of instruction overlap. Since each of the  units contains a number 
of different data paths, several data transfers may be occurring 
on the same cycle in a single unit. 

The operations of other SYSTEM/360 models fall between those 
mentioned. Model 50, for example, can have simultaneous data 
transfers through the main adder, through an auxiliary byte trans- 
fer path, and to  or from local storage. 

Sequence control 

Complex instruction sequences 

Since the SYSTEM/360 has an extensive instruction set, the CPU’s 
must be capable of executing a large number of different sequences 
of basic operations. Furthermore, many instructions require se- 
quences that are dependent on the data or addresses used. As 
shown in Table 3, these sequences of operations can be  controlled 
by two methods; either by a conventional sequential logic circuit 
that uses the same types of circuit modules as used in the data 
paths or by a read-only storage device that contains a micro- 
program specifying the sequences to be performed for the different 
instructions. 

Model 70 makes use of conventional sequential logic control 
mainly because of the high degree of simultaneity required. Also, 
a sufficiently fast read-only storage unit was not available at  the 
time of development. The sequences to be performed in each of 
the Model 70 data paths have a considerable degree of independ- 
ence. The read-only storage method of control does not easily lend 
itself to controlling these independent sequences, but is well 
adapted where the actions in each of the data paths are highly 
coordinated. 

Read-only storage control 

The read-only storage niethod of control is described elsewhere 
[Peacock, 19??]. This microprogram &rol, used in all but the 
fastest model of SYSTEM/360, is the only method known by which 
an extensive instruction set may be economically realized in a 
small system. This was demonstrated during the design of Model 
60/62. Conventional logic control was originally planned for this 
model, but  i t  became evident during the design period that too 
many circuit modules were required to implement the instruction 
set, even for this rather large system. Because a sufficiently fast 
read-only storage became available, it was adopted for sequence 
control a t  a substantial cost reduction. 
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Table 3 System/360 sequence control characteristics 

Model Model Model Model Model 
30 40 50 60/62 70 

TY Pe read-only read-only read-only read-only seq uentia I 
storage storage storage storage logic 

Cycle time (psec) 1 .o 0.625 0.5 0.25 0.2 
Width of read-only storage word (available bits) 60 60 90 100 
Number of read-only storage words available 4096 4096 2816 2816 
Number of gate-control fields in read-only storage 

word 9 10 15 16 

The three factors of speed, size, and simultaneity are applicable 
to the read-only storage controls of the various  SYSTEM/^^^ models. 
The speed of the read-only storage units corresponds to the cycle 
time of the CPU, and hence varies from 1.0 psec per access for 
Model 30 down to 0.25 psec for Models 60 and 62. 

The size of read-only storage can vary in two ways-in width 
(number of bits per word) and in number of words. Since the bits 
of a word are used to control gates in the data paths, the width 
of storage is indirectly related to the complexity of the data paths. 
The widths of the read-only storages in  SYSTEM/^^^ range from 
60 bits for Models 30 and 40 to 100 bits for Models 60 and 62. 
The number of words is affected by  several factors. First, of course, 
is the number and complexity of the control sequences to be 
executed. This is the same for all models except that Model 60/62 
read-only storage contains no sequences for channel functions. The 
number of words tends to be greater for the smaller models, since 
these models require more cycles to accomplish the same function. 
Partially offsetting this is the fact that the greater degree of 
simultaneity in the larger systems often prevents the sharing of 
microprogram sequences between similar functions. 

SYSTEM/360 employs no read-only storage simultaneity in the 
sense that more than one access is in progress at  a given time. 
However, a single read-only storage word simultaneously controls 
several independent actions. The number of different gate control 
fields in a word provides some measure of this simultaneity. Model 
30 has 9 such fields. Model 60/62 has 16. 

Inputloutput channels 

Channel design 

The SYSTEM/36O input/outpnt channels may be considered from 
two viewpoints: the design of a channel itself, or the relationship 
of a channel to the whole system. 

From the viewpoint of channel design, the raw speed of the 
components does not vary, since all channels use the 30-nsec family 
of circuits. However, the different channels do have access to 

I .  

different speeds of main storage and, in the three smaller models, 
different speeds of local storage. 

The channels differ markedly in the amount of hardware de- 
voted exclusively to channel use, as shown in Table 4. In the Model 
30 multiplexor channel, this hardware amounts only to three 
1-byte wide data paths, 11 latch bits for control, and a simple 
interface polling circuit. The channel used in Models 60, 62, 
and 70 contains about 300 bits of register storage, a 24-bit wide 
adder, and a complete set of sequential control circuits. The 
amount of hardware provided for other channels is somewhere in 
between these extremes. 

The disparity in the amount of channel hardware reflects the 
extent to which the channels share CPU hardware in accomplish- 
ing their functions. Such sharing is done at  the expense of increased 
interference with the CPU, of course. This interference ranges 
from complete lock-out of CPU operations at  high data rates on 
some of the smaller models, to interference only in essential 
references to main storage by the channel in the large models. 

Channel/system relationship 

When the channels are viewed in their relationship to the whole 
system, the three factors of speed, size, and simultaneity take on 
a different aspect. The channel is viewed as a system component, 
and its effect on system throughput and other system capabilities 
is of concern. The speeds of the channels vary from a maximum 
rate of about 16 thousand bytes per second (byte interleaved mode) 
on the multiplexor channel of Model 30 to a maximum rate of 
about 1250 thousand bytes per second on the channels of Models 
60, 62, and 70. The size of each of the channels is the same, in 
the sense that each handles an %bit byte at  a time and each can 
connect to eight different control units. A slight size difference 
exists among multiplexor channels in terms of the maximum num- 
ber of subchannels. 

The degree of channel simultaneity differs considerably among 
the various models of  SYSTEM/^^^. For example, operation of the 
Model 30 or 40 multiplexor channels in burst mode inhibits all 
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Table 4 System/360 channel characteristics 

Model Model Model Model Model 
30 40 50 60/62 70 

Selector channels 
Maximum number attachable 
Approximate maximum data rate on one channel in 

KbY PS t 
Uses CPU data paths for: 

initiation and termination 
byte transfers 
storage word transfers 

chaining 
CPU and 1/0 overlap possible 

Multiplexor channels 
Maximum number attachable 
Minimum number of subchannels 
Maximum number of subchannels 
Maximum data rate in byte interleaved mode (Kbyps) 
Maximum data rate in burst mode (Kbyps) 
Uses CPU data paths for all functions 
CPU and 1/0 overlap possible in byte mode 
CPU and 1/0 overlap possible in burst mode 

2 
250 

Yes 
no 
no 

Yes 
Yes 

1 
32 
96 
16 

200 
Yes 
Yes 
no 

2 
400 

yes 
no 

low speed 
only 
Yes 
Yes 

1 
16 

30 
200 
Yes 
Yes 
no 

128 

3 6 6 
aoo 1250 1250 

(1250 on 
high speed) 

Yes 
regular-yes 

high speed-no 

1 
64 

256 
40 
200 
Yes 
Yes 
yes 

0 0 

t Thousand bytes per second. 

other activity on the system, as does operation of the special 
high-speed channel on Model 50. At the other extreme, as many 
as six selector channels can be operating concurrently with the 
CPU on Models 60, 62, or 70. A second type of simultaneity is 
present in the multiplexor channels available on Models 30, 40, 
and 50. When operating in byte interleaved mode, one of these 
channels can control a number of concurrently operating input/ 
output devices, and the CPU can also continue operation. 

Differences in application emphasis 

The models of S Y S T E M / 3 6 0  differ not only in throughput but also 
in the relative speeds of the various operations. Some of these 
relative differences are simply a result of the design choices de- 
scribed in this paper, made to achieve the desired overall perform- 
ance. The more basic differences in relative performance of the 
various operations, however, were intentional. These differences 
in emphasis suit each model t o  those applications expected to  
comprise its largest usage. 

Thus the smallest system is particularly aimed at  traditional 
commercial data processing applications. These are characterized 
by extensive input/output operations in relation to the internal 
processing, and by more character handling than arithmetic. The 

fast selector channels and character-oriented data paths of Model 
30 result from this emphasis. But despite this emphasis, the gen- 
eral-purpose instruction set of S Y S T E M / 3 6 0  results in much better 
scientific application performance for Model 30 than for its com- 
parable predecessors. 

On the other hand, the large systems are expected to find 
particularly heavy use in scientific computation, where the em- 
phasis is on rapid floating-point arithmetic. Thus Models 60, 62, 
and 70 contain registers and adders that can handle the full length 
of a long format floating-point operand, yet do character opera- 
tions one byte at  a time. 

No particular emphasis on either commercial or scientific 
applications characterizes the intermediate models. However, 
Models 40 and 50 are intended to be particularly suitable for 
communication-oriented and real-time applications. For example, 
Model 50 includes a multiplexor channel, storage protection, and 
a timer as standard features, and also provides the ability to share 
main storages between two CPU’s in a multiprocessing arrange- 
ment. 

References 
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Appendix 

PMS and ISP notations 

This appendix provides complete definitions of the notations used for the 
PMS and ISP descriptions. It is intended to supplement Chap. 2, which 
provides an informal description of the notations along with some comments 
on motivation and underlying rationale. 

The two descriptive systems are consistent with each other in two 
senses. First, certain general conventions that have to do with forming 
expressions and abbreviating apply to both systems. Second, the values of 
certain PMS attributes are describable in ISP but not in PMS. A complete 
“top down” development would thus embed ISP within PMS. Neverthe- 
less, it appears appropriate to present them as two distinct notations: it 
makes reference easier and permits each to be organized around its own 
most important notions. 

The style of presentation is moderately formal. Within a section, the 
syntax is presented, followed by remarks on the interpretation to be given 
to these syntactic forms (the semantics). Examples that help to pin down 
the notations are furnished throughout. Although not a computer lan- 
guage, we present it as if it were; thus, a number of elementary things 
are provided for in the definitions. (Part of the motivation for this is to 
introduce abbreviations.) 

A language can be realized in many media. In this book we have taken 
some advantage of printing orthography insofar as it enhances cornmuni- 
cation. However, it may also be necessary to map the notations into vari- 
ous restrictive character seta-e.g., those of the typewriter and the com- 
puter. For the sake of brevity, we do not discuss this coding problem here. 

The appendix is in three parts. The first part gives the general con- 
ventions common to both PMS and ISP. The second and third parts give 
PMS (page 615) and ISP (page 628), as discussed in Chap. 2. 

General conventions 

The conventions given in this section define the general nature of the 
syntax and semantics of both PMS and ISP. 

These general conventions parallel closely natural usage by technically 
trained people familiar with programming languages, such as ALGOL. 
There is no need to consult these sections if the brief statements and il- 
histrations following each subsection title are clearly understood. 

1 Basic semantics 
The language can refer to any entities that are given by attributes 
and values. 

2 Metanotation 
(There is no need for metanotation unless general conventions are 
to be read in detail.) 

3 Basic syntax 
Expressions are built up from subexpressions and ultimately from 
names. Parentheses are used to avoid ambiguity. 

Commands: assignments, abbreviations, variables, forms 
x := y assigns the name x to mean the same as the expression y. 
x / y establishes the name y as an abbreviation or alternative 
name (alias) for x. 
x y := min(x - y, 0) defines a new binary operation (7) by 
means of a form in the variables x and y. 

4 

5 Indefinite expressions 
a /  b 1 c means one of a or b or c. 

x - y means the interval from x up to and including y. 
-x means an interval around x of undetermined scope. 

6 Lists and sets 
(3, 5, 1, 5) is a list of digits, which also could have been written 
(3; 5 ;  1; 5). Digit-list refers to all possible lists of digits. Digit-set 
refers to all possible sets digits, unordered and without repetition. 

7 Definite expressions 
X : = (size: integer; function: (primary I secondary); control: (yes I 
no)) defines X to be an entity with an attribute, size, taking any 
integer as value; with an attribute, function, taking primary or 
secondary as value; and with an attribute, control, taking yes or 
no as value. 
Y : = X(size: 12 - 20; primary; 7control) defines Y as an entity of 
type X which is further specified by having size between 12 and 
20, having the value of function be primary and the value of 
control be no. 

8 Attributes 
3:Z is the third item on the list 2; - l : Z  is the last item. (add- 
time, store-time) can be an attribute and then has values such as 
(10 p, 6 p). 

9 Null symbol and optional expressions 
p is the null symbol so that (x, $4, y) is the same as (x, y). *x means 
that x is optional; defined as (x I p) 

10 Names 
Simple-names are strings of letters and digits, permitting concate- 
nation with the space (-) and the hyphen (-). ‘The-big-instruc- 
tion-set’ is a simple-name. 
Memory.primary is a compound name, which is an abbreviation 
for Memory(primary). 
Classes of names can be constructed and assigned to be used for 
various entities-if for an entity, X, then called X-names. 

607 
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11 Numbers 
Numbers and arithmetic expressions are defined in the standard 
fashion. 

12 Quantities, dimensions, and units 
A quantity is just a dimensionalized number-a number of units 
along a given dimension. 

13 Booleans and relations 
Logical expressions involving and (A), or (V), not (7), implies 
(3). equivalence (z), and exclusive-or (0) are defined in stand- 
ard fashion, as are expressions involving the six basic relations 
(=,#, <> >> I> 2). 

1. Basic semantics 

1 . 1  
expressions in the language. 

We will use the term “entity” to refer to all things designatable by 

1.2 
and associated values, which are themselves entities. 

An entity is assumed to be fully characterizable by a set of attributes 

COMMENT 

within the system-that, in effect, have only a name. 
There will necessarily be entities with no further specification 

The semantics of the language consists in showing how expressions in the 
language determine the various attributes and values. 

1.3 There are three types of expressions. 

1 

2 

A definite expression designates an entity. 

An indefinite expression defines a class of definite expressions; it 
designates one of the entities designated by members of this class. 

A command designates the establishment of some purely linguistic 
convention. 

3 

EXAMPLES ‘IBM 7090 is a definite expression 

Mp is an indefinite expression (any primary mem- 
O‘Y). 

SAM := Mp is a command to give the name SAM to an Mp. 

1.4 There are also English language comments, which are connected with 
the language only in being associated with particular occurrences of ex- 
pressions (on which they comment) and in having a punctuation convention 
that allows them to be nnambiguously distinpished from expressions in 
the language. 

2. Metanotation 

2.1 The language itself is described by giving various classes of expres- 
sions and assigning meanings to the members of these classes (ie., telling 
what they designate). We will generally do this in English but with a few 
special notations. 

2.2 Expression-variables 

1 Let a, b, . . , , A ,  B, . , . b e  variables whose domain is a set of ex- 
pressions. 

Let class(a) be the set of definite expressions defined by the indefi- 
nite expression a. This is extended to definite expressions, x, by 
defining class(x) = X. 

2 

COMMENT Normally lowercase variables (e.g.. a) stand for any 
legal expression, whereas uppercase variables (e.g., A) stand for 
any indefinite expression. 

2.3 We will define the language by giving forms of expressions, that is, 
by writing down sequences of expressions and expression-variables. These 
forms are to be interpreted as permitting any expression that results from 
replacing the expression-variables with expressions from their respective 
domains. 

EXAMPLE 

then the expression M I P is legal. 
If the form x I y is legal, where x and y range over components, 

2.4 The one special notation is the expression form 

x o x . .  . 

which is to be taken as permitting an indefinite sequence of x’s separated 
by o’s, terminating with an x, where each occurrence is to be viewed as 
an independent variable. That i.j, x o x . . . is equivalent to 

X 

or 

x o x  

or 

x o x o x  

01 

x o x o x o x  

etc. 
1 In the book we use italics. 

EXAMPLE This is an example of a comment; it may appear anywhere. 
EXAMPLE 

operations, could have as instances: 5, 6 + 6, 7 - 2 + 3, etc. 
d a d  . . . , where d ranges over digits and o over arithmetic 
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COMMENT Note that we have used the same variable several times, even 
though independently selected values are meant at each occurrence. It will 
always be clear from the context when this is being done. 

3. Basic syntax 

3.1 An expression is either a name or a sequence of expressions. 

3.2 A name is a sequence of characters written without spaces. 

3.3 A character is a member of one of the following alphabets: 

I Capital letters A B . . . Z 

2 Small letters a b . . . z 

3 Digits 0 1  . . .  9 

4 Marks I ; , : + + = $ @ >  V A , = f < >  
- < > ? +  - X / - T J , C  , . - $ # ? * ' ' '  B 
* P (  ) [  I (  I (  ) 

The characters of each alphabet are ordered a5 shown, from left (low) to 
right (high). 

3.4 One or more spaces (freely determined) occur between names. The 
only exceptions are names that are single marks (alphabet 4, above) and 
can be disambiguated. For these, spaces can be omitted. 

EXAMPLES A, B instead of A ,  b 

- 3  instead of - 3 

(A + B) instead of ( A + B ) 

3.5 Parentheses are used around any expression that would otherwise be 
ambiguously interpreted. Conversely, parentheses can be dropped when- 
ever there is no possibility of ambiguity. 

3.6 To avoid excesq parentheses, an order of precedence exists for names 
used as separators. The higher in the order, the greater the binding power, 
i.e., the greater precedence in being interpreted first. The following order 
is consistent with the alphabetical order: 

: = I  ~ ; l , l : l + l + / ~ & @ ~  3 1 
v I A I1 I = #  I < > < 2  1 + -  I x /  
I - 1 f I .1 I C J  1 /(abbreviation), .-(hyphen) 

3.7 Spacing on the page is freely determined (e.g., for legibility). An ex- 
pression may run freely on several consecutive lines (with no explicit con- 
tinuation mark). 

EXAMPLE z'(0:ll) := (? ib+ z"; This ISP  expression and also 
this comment are on two lines. ib + M[z"]) 

3.8 
the marks J, and t respectively. 

Subscripting and superscripting may be used interchangeably with 

EXAMPLE 10 1 2  is the same as 10, 

x t 2 is the same as xz 

4. 

4.1 
(CC lo)] and y is any expression, then the command 

Commands: assignment, abbreviation, variables, forms 

If x is a free name [as defined in General Conventions section 10 

Y X : =  

assigns the name x to the corresponding expression y. In particular, 

class(x) = class(y) 

EXAMPLE 

ticular (partially specified) computer. 
BILL : = C(operation-rate: 10 t 6 o/s) assigns a name to a par- 

4.2 If there are several assignment expressions for a single name x: 

x : =  a 
x := b 

etc.; then x is assigned to be the name of the union of all the expressions: 

class(x) = union( class(i) ) 
i = a,b, . . . 

EXAMPLE 

define M.l to be memories of either 1,000 or 2,000 words. 
M.l := M(size: 1000 w) and M.l := M(size: 2000 w) would 

4.3 If x is any name and y is any name, then the command 

X / Y  

assigns y to be an abbreviation (a synonym) for x. Abbreviation may oc- 
cur on any occasion and not just when x is first defined. It may occur as a 
separate expression or it may occur in an expression in which x occurs, 
thus establishing the abbreviation in passing. A sequence of abbreviations 
may be defined in the same expression. 

COMMENT 

an alternative phrasing (say, one commonly known). 
The abbreviation may not be a shorter phrase at all, but simply 

EXAMPLE Memory / M, bit / b, second / sec 1 s 
multiplex / many channeled 

COMMENT / is also used for division, but no difficulties arise 

4.4 If x is any name and D is any indefinite expression, then the command 

x : = D-variable 
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assigns x to be a variable with the set of entities of class(D) as the do- 
main. If there are no restrictions on the domain of the variable, then the 
D may he dropped. 

EXAMPLES x : = number-variable 

y : = component-variable 

z : = variable no restricted domain 

COMMENT 

sions (as are the expression-variables x, y, zj. 
Note that these variables are over entities, not over expres- 

4 . 5  A form is any expression containing variables. If f is a form contain- 
ing a single free name x (in addition to variables and defined subexpres- 
sions) and g is a form, then we extend the assignment command to 
include 

f : =  g 

which is taken as defining the name x. The variables occurring in f are 
called the operands of x. An occurrence of the form f with variables re- 
placed hy expressions designating in the domain of the variables is equiva- 
lent to the expression g with these same variables replaced by their values 
from the occurrence of f. This permits the definitions of functions and 
operations in which the operands (the variables in f) can be identified by 
the form of their occurrence. 

EXAMPLES x : = iliimber-vdriabk y : = number-variable 

x y is (I fonn 

abs(xj is a f o n  

abs(x) :=(x 2 O+ x; x < 0 + -xj  

x y := niax(x - y, 0) dejineines N y 

dejines abs(xj 

5. Indefinite expressions 

5.1 
class associated with the expression. 

An indefinite expression is characterized completely by giving the 

5.9 

If A contains an occnrrence of another indefinite expression B, then 
class(A) is the union of the classes of all the expressions formed by replac- 
ing the occurrence of B by each member of class(B). In symbols, 

The hasic evaluation rule is the following: 

class( A(. . . B . . .) j = union( class( A(. . . b . . .) ) ) 
b in class(B) 

EXAMPLE X : = M(size: 1000 w) 

Y := C(M1): xj 

class(Y) contains C(iMp: M(size: 1000 w; width: 12 bj) 

C(Mp: M(size: 1000 w; width: 16 b)j 

C(Mp: M(size: 10(M w; speed: 1000 o/s)j 

etc. 

6.3 Indefinite expressions can be formed in five ways: 

Postulation: an expression is given in the initial definition in this 
appendix. 
EXAMPLE 

Specialization: If A contains an occurrence of another indefinite 
expression, B and x is any expression for a subset of class(B); then 
the expression formed by replacing the occurrence of B in A by x 
yields a legitimate expression. In symbols, if A(. , , B . . .) is legal 
and x is legal and class(x) C class(B), then A(. . . x . . .) is legal. 

Entity is so defined in GC 7. 

EXAMPLE 

bers of class(Yj are legal expressions. 

Alternation: If x, y, . . , are any expressions, then x 1 y . . . is the in- 
definite expression “either x or alternatively y or alternatively. . . .” 
In symbols, 

In the example of GC 5.2, the expressions of the mein- 

class(x I y . . .) = nnion( class(i) j 
I = x,y, . . . 

COMMENT Note that x : = a and x : = b is equivalent to x : = a 1 b. 

EXAMPLE 

Range: If x and y designate members of an ordering, such that 
x y, then 

x-Y 

number-name : = integer I decimal 

is the indefinite expression containing all members of the ordering 
starting with x, tip to arid including y. 

EXAMPLE 

Approximation: If x designates a member of an ordering, then -x 
is an indefinite expression containing x plus members of the order 
on both sides of x, without specification of the exact limits. 

7 - 11 is equivalent to 71 8 1 9  101 11 

EXAMPLE -10 i\ a set of nuinbeis around 10, posihly 8 I Y 1 10 I 11. 

COMMENT In the ahove five ways of defining indefinite expressions, spe- 
cialization and alternation corre\pond to the iisiial definition of a simple- 
phrase structure grammar (Backus Normal Form, RNFj; BNF is often used 
to define programming languages. 
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6. Lists and sets 

6.1 If x is any expression, then 

x-list 

is an abbreviation either for 

x, x 

or for 

x;x . . .  

x-list designates an ordered set of entities designated by x, with repetition 
permitted. The choice of a comma or a semicolon for the separator is 
semantically irrelevant. The two choices permit the nesting of comma 
lists within semicolon lists without parentheses. (Recall the order of prec- 
edence of comma over semicolon.) 

EXAMPLE 4, 6, 3, 6, 9 is an instance of digit-list 

(3;  2, 5; 6; 4, 3, 8; 7) = (3, (2, 5) ,  6, (4, 3, 8), 7) 

6.2 If x is any expression, then 

x-set 

is an abbreviation either for 

x,x . . .  

or for 

x;x . . .  

except that no repetition is permitted. x-set designates an unordered set 
of entities designated by x. The choice of comma or semicolon is seman- 
tically irrelevant, as above. 

EXAMPLE (3, 6, 2) and (2, 3 ,  6) are the same entity, as instances of 
digit-set. 

(3, 3 )  is not an instance of digit-set. 

7. Definite expressions 

7.1 All definite expressions can be defined hy specialization of the in- 
definite expression entity. In the following, all names are legitimate, as 
defined in GC 10. Also, any expression that occurs without expression- 
variables in it is a legal expression of the language as it stands. 

7.2 entity : = (parameter-set) 

parameter : = attribute: value 
: = value 

if attribute can be inferred from value 

: = attribute 1 Tattribute 

: = quantity / entity 
if value is binary-value 

if attribute can be inferred from entity. 
value : = entity 1 ? 
binary-value : = boolean I (1 10) I (on 1 off) I (high I low) I 

(exist I not-exist) 1 (+ I -) I (positive 1 negative) 

An entity may be defined (or described) by listing its attributes and values 
explicitly. There is no natural ordering on the attributes, so they form a 
parameter-set rather than a parameter-list. The value may be any entity, 
but for each attribute there will be a domain of possible entities. This 
domain can always be given as an indefinite expression. The question mark 
can be used when the value is uncertain. A parameter always defines both 
an attribute and a value but may be abbreviated in several ways if the 
context makes clear what the attributes and values are. 

Both the attribute and value may be given explicitly 

EXAMPLE M(size: 100 w) 

The attribute may be dropped, if the value uniquely determines 
the attribute. 

EXAMPLE 

ory that has a number of words as value is size. 
M(1000 w) is legal because the only attribute of a mem- 

COMMENT What is inferable is somewhat ill-defined, because it 
depends on the information available to the reader of the expres- 
sion (whether man or machine). The simplest case is when the 
value is a quantity whose unit is uniquely associated with the attri- 
bute, as in the example above. Another is when the value is a 
member of a class (or a subset of that class) and the attribute is the 
class name (see GC 8.5). 

Binary-valued attributes may drop the value and use the occurrence 
of the attribute to symbolize the negative sense and the negated 
attribute to symbolize the negative sense. 

EXAMPLE M(destructive-read) for M(destructive-read: yes) 
M(7destructive-read) for M(destructive,read: no) 

If the parameter gives some kind of unit quantity, then it is often 
natural to state the parameter in the form of quantity per entity 
(quantity / entity), where the attribute either is the attribute itself 
(the unit to be defined) or permits inference of the attribute. 

EXAMPLE Memory(word: 32 bits) = Memory( 32 bits/word) 
Control(number-devices-controlled: 3)  = Control( 3 
devices / control) 
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COMMENT The remark made in point 2 above on “inferable” holds 
here as well. 

7.3 entity : = attribute(entity) 
An entity can be designated as the value of an attribute of some other entity. 

COMMENT This is simply standard functional notation. 

EXAMPLE Pc(speed: speed(Mp)) 

7.4 entity : = A(parameter-set) 
An entity can be defined as having all the parameters of the indefinite 
expression A, further specialized, modified, or augmented by the given 
parameter-set. 

COMMENT This permits one entity to be defined as an instance or further 
specification of another “general” entity, allowing the equivalent of sub- 
routining in building up a system of definitions. It also permits one entity 
to be defined as like another except in certain specified respects. 

EXAMPLE Let M : = Component(size: +integer word; color: blue) 

M(size: 100 - 1000 word) further specification 

M(size: 100; 0-rate: 1 0  s/word) further specification, if 
Component defines 0-rate 

M(co1or: red) definition by exception 

M(size: 100; weight: 300 Ib) definition by augmentation 

7.5 entity : = entity-set I entity-list 1 labeled-entity-set 1 labeled-entity-list 
labeled-entity : = label: entity 
label : = simple-name 

An entity can he a set or a list of entities. It is possible to affix labels to 
the entities of a set or list to make referencing easier. 

EXAMPLE C(M: Mp, Ms, M.ps) declares the memory of C 
T(co-components: to: L.l, from: L.2) to and fr07ll are labels 

7.6 entity : = +integer entity 
An abbreviation for a list of a specified number (the +integer) of entities, 
as specified in the entity following the +integer. If the specifyiiig entity 
is an indefinite expression, then each of the entities is independent. 

EXAMPLE 

specifications. 
12 M(tape) where each M(tape) may have different further 

7.7 
Each of these possibilities is taken up in later sections. 

entity : = number 1 quantity 1 predicate 1 entity-name 

8. Attributes 

8.1 The following gives the possibilities for attributes. It also provides for 
the automatic definition of certain attributes. Throughout, let x be the 
entity whose attribute is being defined and let V be the domain of values 
of the attribute. 

8.2 attribute : = simple-name 
Simple-names provide freely definable attributes, without restriction on use. 

EXAMPLE 

can simply he defined and given any domain desired. 
C(user,efficiency: fraction) an attribute called user-efficiency 

8..3 attribute : = label 
if x is a labeled-list or labeled-set 

The labels of a labeled-list or labeled-set antomatically become attributes. 

8.4 attribute := V 
Often there exists no separate name for an attribute other than the set of 
values it can take on (V), which already has an appropriate expression in 
the language. 

EXAMPLE 

being also the domain. 
C(Mp: hf(1000 w; 32 b/w)) where Mp serves as the attribute, 

8.5 
A sequence of attributes, interpreted as making an iterated sequence of 
selections, can serve as a single attribute. The first (leftmost) attribnte 
determines a value of x; the next attribute determines a value in the 
parameter set of this value, and so on through the sequence. 
In symbols: 

attribute : = attribute: attribute. . . 

a: b: . . . q(x) = q(p(. . . b(a(x)) . . .)) 

EXAMPLE X : = C(Mp(size: 1000 w)) 
size: Mp(X) = IOO() w 

8.6 attribute : = a 

if q: p: . . . b: a is an attribute of x and there is only 
one value of x to any depth with attribute a 

The front end of an attribute sequence can be dropped if the remainder 
uniquely identifies the value; that is, if there is only one occurrence of a 
within x and its values. 

EXAMPLE x := c(PC, Mp, MS) 
add-time(X) is defined, since only Pc has an add-time. 
size(X) is not defined, since both Mp and Ms have size as an 
attribute. 

8.7 attribute : = attribute-list 
The value is a value-list that corresponds one-to-one with the attributes of 
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the attribute-list. This is an abbreviation technique that permits writing 
the attribute names only once for a list of values, each of which has 
several suhattributes. 

EXAMPLE operation-times : = (add-time, store-time) has values 
(10 p, 6 p), (20 ~ s ,  20 p j ,  etc. 

8.8 attribute : = x-name 
This is a single special attribute, defined for each entity x. See GC 10.10 
for definition. 

8.9 attribute := index / # 
where value(indexj : = +integer 1 -integer 
if x is a list (more generally, of form z o z . . .) 

The elements of a list (or other sequence) are automatically indexed by 
their number from the front (+integer) or the end (-integer) of the list. 
This index can be used as an attribute. 

EXAMPLE x := (Ma, Mb, Mc, Md) 
x(index: 3)  = x ( # :  3)  = x(3) = Mc 
x.4 = x.-I = Md 

9. 

9.1 

Null symbol and optional expression 

Let p be the null expression 

class(p) = the null class 

g may occur as the defining expression in an assignment or as a member 
of an alternation: 

x : =  p 
X l a l Y  

(d may occur as a member of a set or list, in which case it may be deleted 
from the set or list. 

x, 8, y is equivalent to x, y 

9.2 If x is any expression, define the optional expression 

*x to be (xi@ 

Thus, if *x occurs in any expression, it means that either x can occur there 
or fJ, that is, x has an optional occnrrence. 

EXAMPLE (1, *2, 3, *4) = (1, 2, 3, 4)1(1, 3, 4)1(1, 2, 3)1(1, 3) 

10. Names 

10.1 Names are expressions distinguished by two things: 

I They are composed of strings of characters, which are not them- 
selves expressions. 

They are written without spaces between the characters. 2 

10.2 
are used to define names. 

There is a special class of expressions called name-expressions, which 

1 Name-expressions all have names that are of the form x-name, 
where x is a name. 

Name-expressions are written with spaces, which are to be removed 
in generating strings of characters from them. 

Name-expressions occur only in conjunction with name-expression 
names, either as an assignment: 

x-name : = name-expression 

or as an attribute-value: 

x-name: name-expression 

2 

3 

Thus, it can always he determined when a name-expression 
occurs. 

EXAMPLE Q-name : = A I3 (1 12) defines Q-name 
AB1 and A B 2  are the two possible Q-names 

10.3 Alphabets are defined as the alternate\ of their characters, e.g., 

digit := 0 ( 1 ( 2 ( 3 ( 4 ( 5 ( 6 ( 7 ( 8 ( 9  

Capital letters, small letters, marks, and characters, as laid out in GC 3.3, 
are defined similarly. 

10.4 If x is any set of characters, then 

x-string 

is a string of such characters of indefinite length (at least one) with no 
spaces between. 

EXAMPLE digit-string contains 1, 1354, 65487, etc. 

COMMENT Note that expression-variables are being extended to cover sets 
of characters and character strings, even though these are not always 
expressions. 

10.5 name : = simple-name 1 compound-name 1 number-name 1 x-name 

10.6 simple-name : = primitive-name 1 phrase-name I hyphen-name 

primitive-name : = (capital-letter I small-letter 1 digitj-string 

phrase-name : = primitive-name-primitive-name 

hyphen-name : = phrase-name-phrase-name 

Single-names are strings of letters and digits or phrases made up of such 
strings with space concatenation marks (-) (phrase-names) or with hyphens 
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(-) (hyphen-names), All simple-names fiinction identically: they obtain their 
designations through assignment (: = ) or abbreviation (/). They may thus 
be definite or indefinite, corresponding to the expressions they name. Any 
simple-name may be used if it has not already been used for a different 
expression or is not excluded by number-name or by a previously defined 
x-name (see below). 

EXAMPLES AB3 SAM Baker Instruction-set input-register 13-B 

ABBREVIATION 

written with a space instead of the space-concatenation mark (J. 
If there is no chance for ambiguity, phrase-names may be 

EXAMPLE skip condition = skip-condition 

ABBREVIATION If the hyphen-name x-a is used within the scope of the 
definition of the entity x, then the name may be abbreviated to just a. 

COMMENT This permits the use of the same name in local contexts, where 
the name of the context (the expression being defined) serves to disambig- 
uate the name where needed. 

EXAMPLE data-type : = (. . . data-type-component: data-type . . .) 
data-type := (. . . component: data-type . . .) alternatioe form 

10.7 compound-name := S . v . v . . . 
where S is an indefinite simple-name and the 
v are simple-names. 

The compound-name has the same designation as 

S(v; v . . .) 
where each of the v’s defines a parameter whose attribute may be dropped 
because the v is self-identifying, Thus a compound-name is an abbrevia- 
tion technique that constructs a name for an entity by conjoining a series 
of modifying attribute values to the type of the entity. 

EXAMPLE Memory.primary is an abbreviation for 
Memory(function: primary) 

ABBREVIATION 

results. 
An intervening period may be dropped if no ambiguity 

EXAMPLE Mp is the same as M.p 
Mprimary is the same as M.primary though poor taste 

COMMENT Compound names have the desirable feature that the leading 
symbol (leftmost) gives the kind of entity being designated, e.g., M.primary 
is a kind of memory. 

10.8 number-name. Defined in GC 11. 

10.9 x-name. The names to be used in defining an immediate instance 
of the entity x. If x is any entity and y is any name-expression, such that 

x : = (x-name: y; . . .) 

then any z which is an instance of x, 

2 := x(. . . . .) 

must be chosen from the name-expressions defined by y. This holds only 
for a single level. If w : = z(. . .), then w is not constrained as to the name 
used. 

EXAMPLE component : = (component-name: capital-letter) 
M := component (. . .) 
SAM : = component(. . .) 
SAM := M(. . .) 

is legal: 
is not legal; 

is legal. 

11. Numbers 

11.1 number : = number-name I number-variable I number J base I 
arithmetic-expression 1 count-expression 

number-name : = integer I decimal 

integer-name / integer : = *sign digit-string 
recall * means optional 

sign := + I - 
+ integer-name / +integer : = digit-string 

- integer-name / - integer : = - +integer 

decimal-name / decimal : = integer . digit-string 

base : = +integer 

arithmetic-expression : = unary-arithmetic-operation number I 

includes 0 

number binary-arithmetic-operation number I 
number n-ary-arithmetic-operation number , . . I  
arithmetic-function(nnmber4ist) 

unary-arithmetic-operation : = - I + 
binary-arithmetic-operation : = - I / 1 exponentiation / exp / t 1 

modulo / mod 

n-ary-arithmetic-operation : = + 1 X 

arithmetic-function-operation : = log J, 2 I absolute-value / abs 1 
entier I maximum / max I minimum / min I average / avg I sum I 
prodnct / prod 

count-expression : = number(x-set) I number(x-list) 

Numbers are defined in the standard way, starting with number-names 
for integers (1324 or - 14) and decimals (13.23). If the base of the number 
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system is different from 10, it may be given explicitly (for example, 10 J 2 
= 10, = 2). Arithmetic expressions are formed from various arithmetic 
operations with numbers as operands. Operations are classified by their 
syntactic form: unary operations ( - (3)  or +(7) ): binary operations (7 - 6, 
3/8 or 3 t 2 = 37; and n-ary operations (3 + 8 + 6 or 5 x 6 x 2 x 3). 
Functions are defined as taking a list of numbers as operands (abs(3) or 
max(5, 7, - 12) ). There is a counting function that takes any set or list of 
entities as inputs and produces their number (if X : = (Ma, Mb, Mc) then 
number(X) = 3). Abbreviations are introduced for many of the operations 
and functions. 

11.2 number-set-name : = (digit 1 @)-string 

A special subset of (alternative) numbers may be defined by substituting a 
@ for a digit. The Q) stands for any digit (of the base of the number). 

EXAMPLE 01@ = 0101011 01@ hinary 
7@ = 701711.. ,177 7@ octal 

12. Quantities, dimensions, and units 

quantity : = number unit 

unit : = (dimension; conversion-list) 1 unit-name : = miiltiplier unit I 
simple-name 

conversion : = number-name unit I number-name / unit I 
arithmetic-expression( unit) 

multiplier : = pica / p : = 10'" 1 nano / n : = 109 1 
micro / p / u : = 1OF 1 milli / m : = 103  I centi / c : = 10' I 
kilo / k : = (10" 12'") I 
mega : = 106 1 giga / g : = 10" 

dimension : = (base-unit: unit) I [dimension-expression] 

dimension-expression : = dimension 1 dimension X dimension 1 
dimension / dimension 

13. Boolean and relations 

boolean : = true / t / l  I false / f/O 1 boolean-variable 1 
boolean-expression I relational-expression 

boolean-expression : = unary-boolean-operation boolean 1 
hoolean binary-boolean-operation boolean I 
boolean 11-ary-boolean-operation boolean . . . 

unary-boolean-operation : = 

binary-boolean-operation : = I I E 
n-ary-boolean-operation : = V I A I @ 

relational-expression : = number relational-operator number 

relational-operation : = = 1 + 1 < I > I 5 I 2 15 I f 

There are two primary boolean values, true and false. Boolean-variables, 
boolean-expressions, and relational-expressions are expressions that evaluate 
(potentially) to true or false. Boolean expressions are made up from the 
standard operations on truth values: negation (+. implication (I), equiva- 
lence (G), conjunction (A), disjunction (V), and exclusive-or (0). Relations 
are defined on numbers. 
COMMENT More general definitions for entities (for = and f )  and for 
ordered sets (for <, >, 5 ,  and 2) are not needed. 

PMS conventions 

Making use of the prior general conventions, PMS is developed systemati- 
cally through the definitions of the various components: P, M, S, etc. Much 
of the development repeats common abbreviations and conventions, simply 
to provide a self-contained notational system. 

1 Dimensions 

2 General units 

A quantity is a number of units of a given dimension. A unit is defined 
by the dimension and the conversion between the given unit and other 
units of the same dimension. Conversions can be expressed either as the 
amount of the other unit for each of the given units (e.g., 1 minute is 60 
seconds) or as the amount of the given unit per each of the other units 
(e.g., 1 minute is 1/60 per second = .0167 / second). When conversions 
are not linear, it is necessary to use functions of the other unit. Thus, for 
bits the conversion to states is log,(states) (e.g., 128 states is equivalent to 
log,(128) = 7 bits). 

Each dimension h a  a base unit (e.g., seconds for the dimension of time). 
A dimension may also be given as a product of two other dimensions (e.& 
[energy] is [force x distance]) or the ration of two other dimensions (e.g., 
[velocity] is [length / time]). We use the standard bracket notation to indi- 
cate dimension, (e.g., [l/t] for the dimension of velocity). 

3 Information units 

4 Component 

5 Link (L) 

6 Memory(M) 

7 Switch (S) 

8 Control (K) 

9 Transducer (T) 

10 Data (D) 

11 Processor (P) 

12 ComDuter (C) 
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1. Dimensions 

1.1 Definition of dimension, repeated from GC 12. 
dimension : = (base-unit: unit) I [dimension-expression] 

1.2 Basic dimensions 

time / [t] : = dimension(base-unit: second) 

length / [l] : = dimension(base-unit: meter) 

cost / [$I : = dimension(base-unit: dollar) 

weight : = dimension(base-unit: kilogram) 

power : = dimension(base-unit: watt) 

temperature : = dimension(base-unit: degree-centigrade) 

voltage : = dimension(base-unit: volt) 

current : = dimension(base-unit: ampere) 

component / [c] : = dimension 

operation / [o] : = dimension 

information / [i] : = dimensionjbase-unit: bit) 

state : = dimension(base-unit: state) 

2. General units 

2.1 Definition of unit, repeated from GC 12. 

unit : = (dimension; conversion-list) (unit-name : = multiplier unit 1 
simple-name 

conversion : = number-name unit 1 number-name / unit 1 
arithmetic-expression (unit) 

2.2 We give the basic units, but no variations with multipliers 

second / sec / s : = unit(dimension: time) 

minute / min : = unit(dimension: time; conversion: 60 s) 

meter / m : = unit(dimension: length) 

foot / ft : = unit(dimension: length; conversion: 3.28 / meter, 12 in) 

inch / in : = unit(dimension: length; conversion: 39.37 / meter, 12 / ft) 

dollar / $ : = unit(dimension: cost) 

operation / o : = unit(dimension: operation) 

watt / w : = unit(dimension: power) 

volt / v : = unit(dimension: voltage) 

ampere / amp / a : = nnit(dimension: current) 

kilogram / kg : = unit(dimension: weight; conversion: 2.2 / lb) 

pound / Ib : = unit(dimension: weight: conversion: 2.2 kg) 

3. Information units 

3.1 Units 

state : = unit(dimension: state; conversion: 2x bits) 

binarydigit / bit / b : = unitjdimension: [i]; conversion: log,(.) states) 

octal-digit / od : = unit(dimension: [i]; conversion: 3 bits) 

decimal-digit / digit / d / dit rare : = unit(dimension: [i]; conversion: 
log,(lO) bits, logl0(x) states) 

hexa-decimal-digit / hex : = unit(dimension: [i], conversion: 4 bits) 

character / char / ch : = unit(dimension: [i]; conversion: 4 - 8 bits) 

byte / by : = unit(dimension: [i]; conversion: 8 bits) 

COMMENT 

occasional use otherwise, although not in this book. 
The byte is almost standardized at 8 bits; 

3.2 I-units 

i-unit : = base-unit I length x i-unit I i-unit-name I (base-unit; length- 
list; content: product(1ength-list) base-unit; level:number(length-list)) 

i-unit-name : = i-unit-prefix i-unit-name I simple-name 

i-unit-prefix : = + integer1 multiple/m I quadruple/q) triple/t 1 
double/d I *single/s I half/h 1 fractional/fr 

base-unit : = unit(dimension: [i]) 

length : = +integer 

The i-unit is a hierarchically organized information structure, in which 
each level consists of a number of subunits, all identically organized. The 
number of subunits in a level is called its length. Units eventually occur 
that cannot be decomposed further. These are called base-units and are 
some unit of information-e.g., the bit or the character. Thus, if the 
lengths are L,, b, . . . , L, and the base unit is the bit, then the total 
amount of information (the content of the i-unit) is L, x L, x . . . x L, 
bits and the number of levels is n. The i-unit may be likened to an n-di- 
mensional rectangular volume of information (except that the “dimensions” 
-the lengths-occur in a fixed order). 

COMMENT Almost all information in computer systems is organized in 
terms of i-units-e.g., a memory consists of a number of words, each of a 
number of characters, each of a number of bits. More exotic data structures 
are invariably encoded into i-units and are not reflected in the hardware. 
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word : = length x bits I length x character I length x base-unit This single definition of a computer component contains all of the 

word-bit-length : = 12 - 64 

word-character-length : = 2 - 8 

block : = length x word I length x character 

record : = length x word 1 length x character 

file := +integer x block1 +integer x record 

IBM-card / card : = column x row x card-hole 

card-column / col : = 80 

card-row / row : = 12 

card-hold := 1 hit 

print-line / line : = print-column x character 

print-column / col : = 64 - 132 I 72 180 I 120 I 132 

attributes common to all components. All components can thus he given 
as further specifications of this definition. (Such definitions can add attri- 
butes not in the higher entity.) Examples are given in succeeding sections. 
We comment on some of the attribute domains below and provide an 
extensive listing of values for some. 

4.2 Component-name. All components that are immediate instances of 
this definition are to have single-letter names-for example, P, M, S, etc. 
Names of instances of P, M, S, etc., are arbitrary. 

4.3 Manufacturer-names I Proper-name. We provide a very short abbrevia- 
tion (') to indicate that a string of characters is a manufacturer's name, 
since these names are arbitrary and need to be distinguished from other 
values. A proper name can also he given to a component. 

EXAMPLES 'IBM System/360 Model 50. 'I/O,Bus rarely <64 

4. Component 

4.1 component := ( 

component-name: capital-letter; 

manufacturer-name / ' : *manufacturer catalog-numher; 

operation-set; 

operation-rate-set; 

'suhcomponents: (function-attribute: component)-set; 

*cocomponents: (function-attrihute: component)-set; 
port-set; 

function: (subcomponent-attribute j cocomponent-attribute); 

logic-technology ; 

*technology; 

reliability: (mean-operations-between-failure / MOBF, mean-time- 
between-failure / MTBF); 

error-rate: (erroneous-operations / error-free operations); 

cost: purchase, rental; 

lineage; 

history; 

weight; 

power; 

volume; 

area; 

temperature) 

4.4 Operation-set and operation-rate-set. A component is defined funda- 
mentally by the set of operations it can perform. In PMS such operations 
are defined informally and given names (e.g., read, transmit). Significant 
performance parameters may be defined, but complete definitions are given 
only in ISP. Each operation has a rate (number per unit time), which need 
not be constant. 

EXAMPLE A link might have an operation-set consisting of two transmis- 
sion operations (one in each direction) of a single i-unit. The operation- 
rate might be l o t 3  o/s for each operation. If the i-unit were 10 b, it 
would be given an information-rate of 10 t 4 b/s. 

4.5 Subcomponen&, cocomponents, function. In general, components con- 
sist of PMS structures of other components, which are called its subcom- 
ponents. Also, in general, a component participates in a PMS structure. 
The components to which it is connected are called its cocomponents. The 
connecting interface of a component and a cocomponent is called a port. 
Conventional names exist that describe the roles the components play in 
a PMS structure (e.g., central processor, buffer memory, address switch). 
These terms are called functions and can be used to label both subcom- 
ponents and cocomponents. 

4.6 port := ( 

operations: (output I input); 

operation-rate / o-rate; 

i-unit : [i] ; 

information-rate / i-rate: ((i-unit / operation) x o-rate [i/t]); 

concurrency: +integer; 

concurrency-type: (simplex I half-duplex 1 full-duplex I time-multiplex I 
multiplex); 
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direction: (from / out / output / X +) 1 (to / in / into / input / X t); 

turn-around-time / t.tum: [t] only for hoZf-duplex currier; 

carrier) 

carrier := ( 

writability: (human / h 1 machine / mechanical process / In I 
both machine and human / b); 

readability: (human / h I machine / mechanical process / m I 
both machine and human / b); 

medium; 

encoding) 

medium : = (electrical conduction : = voltage 1 current) 1 
magnetic 1 electrostatic I radiowave 1 microwave I optical light I 
(mechanical movement : = tactile 1 linear position I angular position I 

spatial position) I temperature / heat I 

(acoustical / airpressure : = high frequency audio) 1 memory technology 
see PMS 6.2 

encoding / modulation : = continuous-modulation / analog I 
digital / discrete-modulation 

continuous-modulation : = direct / null 1 amplitude / am I 

pulse amplitude modulation / pam I pulse duration modulation / pdm I 

time duration modulation I frequency modulation / fm 

discrete-modulation : = direct / pulse code modulation / pcm 1 

frequency shift keying / fsk I digital pulse I digital level I contact 

The ports are the connection points (nodes or terminals) of a compo- 
nent at which cocomponents connect. A port is not a component but 
simply an interface with a characteristic i-unit that crosses it in one direc- 
tion or the other. One can thus associate two operations with a port, 
namely, the transmission operations of its component and the cocom- 
ponent. The port introduces directionality: input is from the cocompo- 
nent into the port’s component; output is from the port’s component to 
the cocomponent. 

The i-unit subcomponents iisiially correspond to physical subparts of 
the port. For conventional information-carrying structures, the base-unit 
is the encoding of information on a single wire of the port, i.e., a bit. 
The width is the number of wires available per unit time. The length is the 
number of (width x base-unit)’s which are necessary to transmit the i-unit. 
As such, the i-unit can he thought of as a message normally with length 
X width x base-unit. More complex messages can have multiple dimen- 
sional lengths (e.g., consider a record which is transmitted serially, where 
the base-unit is a bit, the width is 1, the length is an 8-bit byte, and the 
record length is 1,000 bytes). 

The information rate as measured at the port is the flow of i-units per 
unit of time. An equivalent measure is the time for the i-unit to pdSS 

through the port. Concurrency is a measure of the number of simul- 
taneous i-units the port can pass. Concurrency-type denotes both the 
number of simultaneous messages and the message direction. The simplex 
port allows only one message to enter or leave the port, not both. The 
half-duplex port allows a message to either enter or leave the port, hut 
only on a time-multiplexed basis; that is, the port is simplex for one 
direction at a time. In the case of the half-duplex port, the turnaround 
time is a significant attribute that denotes the time taken to go from re- 
ceiving to transmitting or vice versa. A full-duplex port allows information 
to flow in both directions at once (i.e., enter and leave the port simulta- 
neously). Finally, the multiplex port denotes multiple ports that can be 
decomposed into the more elementary structures discussed above. 

Direction is usually indicated on each port of a component to denote 
the direction of information flow. Direction must be specified for simplex 
ports (using arrowheads t, +). Half- and full-duplex ports are shown 
with no arrowheads. 

Carrier characterizes the form of information at a port. The two major 
attributes, writability and readability, define whether human beings, ma- 
chines, or both human beings and machines are able to use (interpret) the 
carrier directly. Media denotes the technology of the carrier. Information 
can be carried by any of the media listed. It should be noted that memory 
technology is also listed as a media to carry information. Unlike the media 
that are instantaneous carriers, memory holds information over a long pe- 
riod of time. For each media, it is appropriate to encode information in 
particular ways. The two basic methods are continuous and discrete en- 
coding (or modulation). 

4.7 Logic-technology and technology. All devices have a logic technology 
and almost always only a single one (though exceptions exist, especially in 
compound components). They may also have other technology specific to 
the type of component (e.g., disk-memory technology). The logic technol- 
ogy is given here; other technologies are given with the specific component. 

logic-technolop : = magnetic-core 1 cryogenic 1 
electro-mechanical I fluidic I hybrid-circuit 1 
monolithic integrated / integrated / ic I large scale integrated / LSI 1 
mechanical I integrated metal oxide silicon / MOS I 

medium scale integrated / MSI 1 optical I 
transistor 1 vacuum-tube 

4.8 Reliability. Although of extreme importance, we list only two values 
for reliability, the mean number of operations between failures, and the 
mean time between failures. In essence, one can be derived from the other 
if the operation rate is known. 
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4.9 
error-free operations. Approximately l/(probability of an error). 

Enor rute. Usually a ratio of the number of erroneous operations per 

4.10 Cost. Only the two simplest cost numbers, purcha5e price and 
(monthly) rental are listed as attributes. Conventionally, purchase price is 
taken as 45 times monthly rental. In addition, one could list manufac- 
turing costs, broken down into materials, labor, etc., and more elaborate 
sales costs, such as lease-purchase options. Most of these quantities are not 
relevant from an engineering viewpoint. Some that are important are un- 
obtainable in general. 

4.11 lineage := ( 

manufacturer: Burroughs 1 
Control Data Corporation / CDC I 
Digital Equipment Corporation / DEC 1 
English Electric I 
Ferranti I 
General Electric / GE I 

Honeywell I 
International Business Machines / IBM 1 

International Computers and Tabulators / ICT I 
Hewlett-Packard / HP 1 

Olivetti I 
Radio Corporation of America / RCA I 

Remington-Rand / UNIVAC 1 
Scientific Data Systems / SDS / Xerox Data Systems / XDS I 

Westinghouse; 

manufacturer-type: government / g 1 industrial / i I 
research-laboratory / r 1 university / u; 

country: Australia / A 1 Great Britain / B I Canada / C I Denmark / D 1 
France / F 1 Germany / GI Israel / HI Italy / 11 Japan / J I 
Netherlands / N I Russia / R I Sweden / SI United States / *U; 

*descendants: component-set; 

'antecedent: component-set) 

The attributes are mostly self-descriptive, We have not attempted to 
list manufacturers other than the principle industrial ones. Descendants 
and antecedents are necessarily vague, since no precise notion of parent- 
hood can be defined. It is not limited to computers built as a series (as in 
the IBM 704 being a descendant of the IBM 701) but includes any ma- 
chine where the design bond is strong (e.g., IBM 709 and 7090). 

4.12 history : = ( 

t.conception / t.start: date; 

?.announcement / t.paper: date 

*t.birth / t.prototype / t.operational: date; 

*t.scheduled: date; 

*t.exhibited: date; 

't.delivery / t.production: date-list; 

*t.first-delivery / t.first: date; 

*t.last-delivery / t.last / t.withdrawa1: date; 

*t.death / t.last-use: date; 

'production: number(t.delivery)) 

date : = year 1 month year 1 day month year quarter year 

quarter / q : = winter / I 1 spring / 2 I summer / 3 1 fall / 4 

The history of the component is viewed as a series of event dates, only 
the more important being given above. Often the same essential function 
is served by a variety of events (e.g., the announcement of a computer to 
the public can be made either by formal announcement, as happens with 
commercial systems, or by a technical paper). Delivery or production re- 
fers to the actual placing of systems and consists of a series of dates, one 
for each instance produced. This series is normally abbreviated to the first 
and last delivery, plus the number produced. None of the attributes be- 
yond t.start need exist, as a computer system can be aborted at any time. 
For all attributes, the dates may be known only approximately. 

4.13 Weight, power, volume, area, temperature. Since we concentrate on 
the informational aspects of components, other attributes are mentioned 
only briefly (and others, such as decor, are left out entirely). The values of 
these parameters are especially important in aerospace applications. They 
also show the effects of technology on packaging and computing power 
per unit volume. 

5. Link 

5.1 Link / L : = simple-link I compound-link 

5.2 simple-link : = component ( 

cocomponents: (input: component, output: component, initiators: 
input 1 output (both); 

subcomponents: (*control; *input-buffer: M.i-unit; *output-buffer: 
M.i-unit); 

concurrency: 1; 
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concurrency-type: simplex; 

information-rate / i-rate: (i-unit/operation) x o-rate [i/t]; 

i-unit: i-unit(input) equals i-unit(output); 

delay / t.delay / td: [t]; 

carrier) 

A simple-link has the capability of moving an i-unit from the input 
cocomponent to the ontpnt cocomponent. The simple-link has two simplex 
ports that connect to the ports of the two cocomponents and are sepa- 
rated by a delay. In essence, as the delay goes to zero, the input port and 
output ports become one. Initiation of the transmission may be b e d  at 
one end or the other or be from either end, depending on the design of 
the link. The base-unit is usually a bit (is., two states), but it may be 
more. The width of the i-unit is the number of base-units transmitted in 
parallel; and the length is the number of widths serially transmitted in one 
operation. A simple-link permits transmission in one direction only (from 
input to output cocomponent); this is normally called a simplex link. The 
port-to-port delay is the time from the initiation of the transmit operation 
at one port to the arrival of the i-unit at the second port. (Occasionally, 
the arrival time between widths can be relevant operationally, and then 
a more precise characterization of the time structure would be required.) 
The rate of transmission (the information rate) may be calculated by taking 
the operation rate times the information transmitted per operation (ix., 
the content of the i-unit). Links may-but need not-contain buffering at 
either end for a single i-unit. There may be a distinct control involved, 
especially if initiation and termination rituals must be accomplished; but 
it is possible to have links that are simple wires and simply present at the 
output terminal what was presented at the input. 

EXAMPLE L input: register A; output: register B; width: 36 h; 
[I megawords/s 

5.3 compound-link : = ( 

simple-link(c0ncurrency: 1; concurrency-type: half-duplex) 1 

simple-link(concurrency: 2; concurrency-type: full-duplex) I 
siml-'le~link(concriri-en~y: +integer; concurrency-type: hroadcast; 

output: component-set) 1 
simple-link(concurrency: + integer; concurrency-type: network broad- 

cast; input: component-set; output: component-set) 1 

simple-link(concurrency: +integer; concurrency-type: star) 1 
(simple-link)-set) 

A compound-link is made up of several links, but such that no switch- 
ing occurs. A half-duplex link permits information to flow from either 
terminal to the other, but transmission is possible in only one direction at 

a time-which thus leads to a turnaround delay time. A full-duplex link 
permits simultaneous transmission in both directions. Broadcast links per- 
mit transmission to many receivers; thus the output components can he 
set. Network broadcast permits more than one terminal to be a source, 
though only one at a time. The star denotes all n components of a set to 
simultaneously communicate with one another via ( 4 2 )  x (n-1) full- 
duplex links. 

Finally, a set of disjoint links (that is, inputs disjoint and outputs dis- 
joint) can be considered to be a single link. This latter is essentially a 
convenience for naming a multiplex link. 

EXAMPLES L Dataphone; 1800 h/s; half-duplex; i-unit: (length: 8, 
[width: 1 b) 

L(Te1ephone; i-rate: 110 b/s; direction: full-duplex) 

Telephone : = L(110 b/s; full-duplex) 

1/0 Bus := L half-duplex; i-unit: 1 w; 12 b/w; 

alternative form 

1 [operation-rate: 500 ko/s 

L 'I/O Bus; half-duplex; i-unit: 1 w; ] 
alternatiue form 

[I2 b/w; 500 kw/s 

L 'I/O Bus; half-duplex; i-unit (length: 1 alternative form 
[I2 b; width: 1 b); 6 megabits/s 

6. Memory 

6.1 

6.2 

Memory / M : = simple-memory I compound-memory 

simple-memory : = component ( 

cocomponents: read: component, write: component; 

- functions: see Table 1, 

subcomponent: control; 

word / w: i-unit [i]; 

size: 1 word [i]; 

operations: (read I write I read, write); 

information-rate / i-rate: [i] / word x operation-rate [i/t]; 

.J 

x access-time / ta: constant 1 -constant [t]; 

- cycle-time / tc: time(read; next write) [t]; 
_c_ 

- - -.- .- 

per-mannEy: (decay I fast-read-slow-write / frsw I permanent / read- 
only / ro / ros / ROS / read-only-memory / rom / ROM I 
read-clestryct 1 read-regenerate / rr 1 read-write / rw 1 write-only) [t]; 
' A \  1 \ ( 1  

.- portahility: (portable / p I not portable / fixed / f ) ;  

technology: see Table 2) 
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Table 1 Memory functions 

Within C 
primary / p 

secondary / s 

Within P, K 
address 
buffer / synchronizer 

control 

data operands 

fixed 

error detection 

error accounting 

instruction 

processor state / ps 

program state word 

process map 

process registers 

program address / 
instruction address 
instruction location 
counter / progr,m 

working / tempors3ry 
Within T, L 

buffer / synchronizer 
control 
working / temporary 

Within D 
control 

/ 

Primary memory; holds directly execut- 
able programs; instructions and data 
for instructions are taken from Mp 
and i t  must be directly accessible by P 

Secondary memory, in which data acces- 
sible to the ISP is stored; programs are 
not executed from secondary; normally 
Ms is much larger than Mp (and much 
slower); Ms holds files, programs 
(waiting to be executed), data, etc. 

Holds operands 
Holds data while synchronizing with an- 

other component 
Used during instruction’s interpretation; 

state of a K 
Holds information that are operands or 

eventual operands 
Used to define permanently the nature 

of a processor or a control 
Holds detected error information. nor- 

mally hardware errors 
Holds counts of errors; normally part of 

Mps; two major types or errors, machine 
(or hardware) errors and process (or 
program) errors, are accounted 

Holds parts of instruction as it is being 
interpreted 

Includes all registers, state bits, and in- 
struction counter associated with ISP; 
includes the following subcomponents: 

Holds the state of the program flow, over- 
flow bits, i.e., the instruction or pro- 
gram counter, and any state bits 
accessible to a program 

Used to locate programs within Mp (and 
Ms) 

Specific arithmetic and indexing registers 
(e.g., AC, MQ, general registers, stack) 

Holds pointer to either the current or the 
next instruction the processor is to 
interpret 

Holds intermediate results 

Used for synchronizing purposes 
The K part of T or L 
Temporary results 

K part of D 

data operand D may stack operands and results, 
synchronizing with some other process 

instruction Current operation D is performing 
working / temporary Temporary results of intermediate data 

Within S 
address Position of switch, i.e., the information 

that holds gate-switches open or closed 
Any synchronizing storage needed within 

S for links 
The K part of S 

buffer / synchronizer 

control 

Table 2 Memory technology 

Muehine readable; machine writable 

Porta- P e m -  
Access+ bilityt nencyt 

capacitor 
core / magnetic core 

bulk core / large core storage // Ics / 
extended core storage / ecs 

delay line / magnetostrictive delay line 
mercury delay line 
optical delay line 

fixed head disk 
moving head disk 

drum / fixed head drum 
moving head drum 

electrostatic storage tube 
integrated circuit array 
logic / technology 

disk / diskpak 

See PLUS 4.6 jbr 
logic used to makc actioe hit, register 
and arra!i memories 

magnetic card e.g., Datacell 
magnetic tape / tape 

addressable magnetic tape 
carousel magnetic tape 

magnetic wire 
photographic store e.g., photostore 

plasma display readability: both 
film (write once) 

thin film 

r f 
r f 
r f 
r f 
C f 
C f 
C f 
1, c P 
1, c f 
C f 
C f 
1, c f 
r f 
r / content f 
r f 

1, c P 
1 P 
b P 
c, 1 P 
1 P 
1, r P 
1, r P 
r f 
r f 

Machine reudable; read-onhi; nonportable; rundom aecess 

capacitor array r f 
diode array r f 
inductor array r f 
rope / transformer coupled braided r f 

rope resistor r f 

decay 
rr 
rr 
frsw 
rr 
rr 
rr 
rw 
rw 

rw 
rw 
decay 
rw 
rw 

rw 
rw 
rw 
rw 
rw 
wlro 
wlro 
rw 
rw 

ro 
ro 
ro 
ro 
ro 
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Memories which cannot he both read and written by a machine 

Writa- Reuda- Perma- 
bility bility Access nency 

badge 
card / punched card 

cathode ray tube / CRT 

garment tag 
joystick 
keys / pushbuttons keyboard 
knobs 
page / impact printed page / paper 

credit card 

storage CRT 

braille page 
handprinted page 
handwritten page 
magnetic ink page 
thermal page 
typewritten page 
xerographed page 

paper tape / punched paper tape 
plot / incremental point plot 

analog plot continuous 
patchboard 
switches / toggle switches 

b 
rnl b 
b 
rn 
rn 
m 
h 
h 
h 
rn 
m 
h 
h 
rn 
m 
b 
m 

m 
m 
h 
h 

rnl b 

b 
rnl b 
b 
h 
h 
b 
b 
b 
b 
b 
h 
b 
h 
b 
b 
b 
b 
ml b 
h 
h 
b 
b 

1 
1 
1 
r 
r 
1 
r 
r 
r 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
r. I 
r 
r 

ro 
wlro 
ro 
decay 

wlro 
rw 
rw 
rw 
wlro 
wlro 
wlro 
wlro 
wlro 
wlro 
wlro 
wlro 
wlro 
wlro 
wlro 
rw 
rw 

wo 

~ 

?See PMS 6.2 for abbreviations, also c/cylic, I/linear, r/randorn. 

A simple-memory stores a single word of information by means of a 
read operation and delivers that word on subsequent write operations. 
There is no addressing, and the access time is a constant (or approximately 
so). The memory is connected to the larger system via one component 
for its read operation and one for its write operation. These are usually 
links and need not be distinct. The only subcomponent that need be dis- 
tinguished in a simple-M is the control (though of course the word may he 
built up from a set of bit memories). The information rate is the amount 
of information in a word times the operation-rate. The cycle time is the 
time it takes to read the memory and then write new information into it; 
the ISP expression (read; next write) implies a sequential operation. The 
permanency describes what happens to information left in the memory as 
a function of time. This concept is often partially covered by other no- 
tions, such as reliability, volatility, destructive-nondestructive, etc. We give 
the main values that arise in practice: a rate of decay with time (which 
expands to an actual decay function); write-once-read-only (e.g., cards and 
photographs); read-write; fact-read-slow-write (a special case of read-write); 
destruction of the information upon reading; and permanent or read-only 
(as long as the system remains viable). Write-only refers to the character- 
istic of the memory from the point of view of the system under discussion; 
always there is some other system (usually a human being) who can read 
the memory. Whether the memory can he only read or only written 

(readability, writability) or both read and written, and by whom (human 
or machine), is derived from the port characteristics. Portability denotes 
whether information can be carried away from the system or is non- 
portable (fixed). Two of the parameters, function and technology, are 
extensive enough to give by tables. 

6.3 compound-memory : = component ( 

cocomponents: read: component, write: component, address: 
component; 

function: see Table 1; 

subcomponents: control; address; switch; memory: M-set, *read-buffer: 

memory, *write-buffer: memory; 

word: word(M.niemory); 

size: sum(word(M.memoryjj; 

operations: read-set, write-set; 

information-rate: [i] / word x operation-rate [i/t]; 

access-time: access-time(S.address) [ t ]  randm, cyclic, etc. see PMS 7.n; 

cycle-time: cycle-time(simp1e-M); 

permanency: permanency(simp1e-M); 

portability: portability(simp1e-M); 

technology: see Table 2) 

A compound-memory is a system of simple-memories, organized by an 
addressing switch. Thus memory is fundamentally defined recursively as a 
switch to other memories. At each switch stage the dimensionality of the 
overall i-unit is reduced by one. The addressing may he provided by a 
different cocomponent than those for the read and write data. All the 
submemories have the same word, and the size of the compound-memory 
is the sum of all these words. There may be additional subcomponent 
memory within a memory, such as buffer memories and a memory con- 
nected with the address switch and the control. However, none of these 
are available for storage purposes and are not counted in the size. The 
access time of the memory is defined by the access time of the address 
switch. A classification of these can be found under the definition of switch 
and is often used to classify memories (e.g., linear, random, cyclic, etc.). 
Some parameters are the same as those given for a simple-memory, and 
these are simply cross-referenced. 

COMMENT Not all conceivable memories come under the definitions just 
given (e.g., we have assumed constant word size); hut in fact all memories 
used in existing digital computers do. 

EXAMPLES Mp(core; t.access: 2 us/w; 4096 w; 16 b/w) 
M(fixed head disk; t.access: 0 - 17 ms; i-rate: 300 kchar/s; 
size: 1 megaword) 
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7. Switch 

7.1 Switch / S : = gate-switch I simple-switch I compound switch 

7.2 gate-switch : = component ( 

cocomponents: (input: component, output: component: initiators: 
component); 

subcomponents: (*control; *input-buffer: M.i-unit; *output-buffer: 
M.i-unit); 

operation: (open I close); 

concurrency: (1 12); 

concurrency-type: (simplex 1 half-duplex I full-duplex / duplex); 

i-rate: i-rate(1ink); 

delay: delay(1ink); 

hang-up-delay: [t]; 

access-time / ta: constant [t]) 

A gate-switch acts as a simple-link or as no connection. It is used to trans- 
mit information conditionally between the ports of two components. It 
can be used as a basic primitive to express the structure of other switches, 
including the simple-switch. The parameters will be discussed under the 
simple-switch. 

7.R simple-switch : = component ( 

cocomponents: (input/from: component-set, output/to: component-set, 
initiator: component-set); 

subcomponents: control, links: link-set, *address: memory; 

operation: access; 

size: size(output(cocomponents)); 

concurrency: + integer; 

concurrency-type:(simplex 1 half-duplex I full-duplex/duplex 1 
dual-simplex 1 dual half-duplex 1 dual full-duplex / dual-duplex 1 
time-multiplexed-cross-point / 1 trunk I cross-point 1 dual-cross-point 1 
k-trunk); 

hierarchy: (hierarchical 1 nonhierarchical / anarchical); 

location: (central I distributed (cocomponent set)); 

distribution: (radial 1 bussed / \)us / chain / daisy chain); 

accesq-time / ta: switch-type(address / a, prior-address / p )  

switch-type : = ( 

bilinear: constant + constant x abs(a - p ) (  
cyclic: constant + constant x (a - p )  mod (size)( 
interleave: (a interleave-relation p + random)-list 1 
linear: (a 2 p +  constant + constant x (a - p ) ;  

a < p + reset-time + constant x a) 1 
first-in-first-out / fifo / queue: (constant I -constant) I 

last-in-first-out / lifo / stack: (constant 1 -constant) I 
dequeue: (constant 1 -constant)); 

permanency: (decay 1 transmit-destruct I time-multiplexed / tmx / tm 1 
moving I cyclic I permanent I irreversible I fixed until broken / 
fixed I manual); 

hang-up-delay: [t]; 

delay: delay(1inks); 

L-initiator: initiator(1inks); 

technology) 

A simple-switch consists of a set of potential links between a set of 
input and output components, with an operation (access) that can actual- 
ize some subset of the links. This is done according to an instruction called 
the address (which may or may not be held in a memory). For a switch, 
the cocomponent input and output ports are sometimes listed to specify 
the size of the switch. 

An important parameter is the concurrency-type, which describes the 
various subsets that can be simultaneously realized. The values given cor- 
respond to practical alternatives-simplex, in which only a single simplex 
link may be established at a time; duplex, in which a single full-duplex 
link may be established; cross-point (also dual-cross-point), which permits 
true simultaneity; time-multiplexed-cross-point, in which functional simul- 
taneity is established for many links by means of rapid switching within 
the course of transmission of an i-unit (in essence the time multiplexed- 
cross-point has 1-trunk, which permits 1 conversation); and finally k-trunks 
for k-simultaneous conversations. We often use a duplex switch instead of 
simplex or half duplex switch in PMS diagrams, even though the latter 
would be more accurate. 

Hierarchy is a redundant attribute derived from the cocomponent set. 
As a rule, if there are n identical cocomponents each of which communi- 
cates with one another, there is no hierarchy. A telephone system is a 
typical nonhierarchical structure. Usually the switches internal to a com- 
puter are hierarchical in that there are n components of type a which 
communicate with m components of type b. The a’s only communicate 
with the b’s and vice versa: hierarchy does not determine the component 
initiating the dialogue. 

The location of a switch refers to whether the hardware is localized 
within one of the components using the switch, whether it is separate 
(called central), or whether it is distributed through all the cocomponents. 

An attribute that is not completely independent is distribution, which 
denotes whether the physical structure is a continuous bus or chain or is 
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fed radially from a centralized component. See Fig. 13, Chap. 3, page 67 
for common alternative physical structures. 

A major way of classifying simple-switches is by their access time- 
cyclic, linear, random, etc. With each is given the type of formula that 
determines the actual access time. The two critical parameters in most 
switches are the address being sought (a) and the prior address ( p ) ,  which 
represents the existing state of the switch. Thus, in a bilinear switch the 
access time consists of a start-up time plus a time proportional to the mag- 
nitude of the difference between the prior address and the desired address. 
This differs from a linear switch, which only permits movement in one 
direction and must reset to an initial state if an address lower than the 
existing address ( p )  is sought. An interleave memory is one that consists of 
a collection of random-access memories, depending on the relationship 
between a and p (usually a modular one, such as (a = p mod 4) + long 
access; (1 # p mod 4+ short access). Random access means that the access 
time is independent of both a and p .  This constancy may be only approxi- 
mate (as in using a drum with its cyclic character ignored). Queues and 
stacks differ from the other switches in having a degenerate addressing 
system such that the next link selected is determined by the state of the 
switch itself. Dequeues allows either of the two ends of a queue to be 
accessed. 

Permanency refers to how long the switch maintains a link (or set of 
them) after establishing the link by an access operation. The three com- 
mon values are (1) the destruction of the connection with the transmission 
of the i-unit across the link, (2 )  the maintenance of the connection perma- 
nently, and (3) the autonomous movement of the connection (as in disks 
and drums). The latter two give rise to the p used in the access formulas. 
Rarer is a decay function, in which the link remains established for some 
period of time, or an irreversible connection, which can be set just once 
and from then on operates like a simple-link. 

Hang-up delay is the time taken to break a connection after the appro- 
priate i-unit has been transmitted. Hang-up delay is given only for certain 
permanencies of fixed-until-broken and manual switches. 

A number of parameters derive directly from the properties of the set 
of ports or links-the size of the i-unit, the information-rate, the link de- 
lay, the direction of data flow, and the component that can initiate data 
transmission (as opposed to initiating accessing). Finally, there is tech- 
nology, which is not given in detail, since much of it is identical to 
memory technology. 

EXAMPLES S('I/O BUS; location: K; from:P; to:K; half-duplex; initiators: 
P, K; switch-type: random; ta: 5 p ;  concurrency: 1) 

S(cross-point; 16 M; 6 (P + K); concurrency; 6; location: M) 

7.4 compound-switch : = simple-switch ( 

subcomponents: control, links: link-set, subswitches: switch-set, 
*address: memory; 

access-time: (cascade: sum(access-time(subswitches)) I 
parallel: max(access-time(subswitches)) ) ) 

A compound-switch is an array of switches whose links are connected 
so that the outputs of some are inputs to others and thus effects a total 
set of links, which go from output to input component-sets. It can be 
defined as an extension of a simple-switch, since most parameters are 
defined identically for both. Many combinations of accessing arrangements 
are possible. The two most common are given above. A cascade-switch is 
one in which each accessing of the next subswitch must take place after 
the prior one so that the access times add. A parallel-switch makes all the 
accesses simultaneously, so that the total access time is simply the access 
time of the subswitch that takes longest. (In both cases, there can be ad- 
ditional overhead time, but this can usually be allotted to the subswitches 
and does not require separate terms in the expressions for access time.) 

, I  8. Control 

8.1 

8.2 

Control / K : = simple-control I compound-control 

simple-control : = component ( 

cocomponents: controlled / object: component-set, *instruction: 
component-set, *data: component-set; 

subcomponents: *instruction: memory, working / w: memory, 
operations: data-operation; 

operations: evoke / -+, next-evoke / next, condition-operations; 

controlled-operations: (controlled-component: operation)-list; 

instruction-source: (none I data 1 instruction); 

instruction-set) 

A simple-control is a logical circuit (usually sequential) that evokes 
operations in other components (the controlled, or object, components). 
Thus, its main operations are those of evoking and evoking-next (symbol- 
ized as + and next in ISP). However, it must also detect conditions on 
which such evoking depends, so that it has available additional operations, 
that are combined in an instruction-set (see ISP 2.1). These vary greatly 
in complexity, from boolean operations to arithmetic operations (such as 
counting the number of i-units processed). 

A major distinction is the source of the external instructions that can 
be given the control. At one extreme there may be none, as in a clock 
whose function is to interrupt the system every millisecond. The common 
case is that in which all the external instruction comes via the data itself. 
More complex controls have a separate set of external instructions (often 
called control characters or commands). A control does not obtain its own 
next instruction, being dependent on an external component to set it into 
action. This is the primary characteristic that distinguishes it from a proc- 
essor. It does have an instruction-set, which is the ISP expression that 
shows what conditions evoke what actions. 

No technology is given, since controls are all realized in a logic tech- 
nology, as given in the definition of component. Likewise, no function 
parameter is given, since there exists no special vocabulay to designate 
the different subspecies of control tasks. 

, I  F '  
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EXAMPLES K(Mp; input: Pc; output: Mp) 
K( D( multiply)) 

8.3 compound-control : = simple-control ( 

subcomponents: alternatives: simple-K-set, *instruction: memory, 
working: memory; 

instruction-source: mode-instructions) 

A compound-control consists of a collection of alternative simple-controls 
and can be given as an extension of the simple-control. At any time, the 
control is one of these simple-controls. Determination of what simple- 
control is operative (often called the mode the control is in) is by a mode- 
instruction from some external component. This additional freedom re- 
quires a subcomponent, the control-state, to hold the current specification. 
(Thus it is possible, though rare, that the actual simple-K is determined 
by a sequence of mode-instructions, each determining some part of the 
control state.) 

EXAMPLE K(1nstruction set processor/ISP; input:M.processor,state; out- 
put: D, K(Mp), K(L('I/O Bus)); M(read-write; 40 b; working); 
M(read only; 100 w; 36 b/w 1 ps/w)) 

9. Transducer 

9. I 

9.2 

Transducer / T : = simple-transducer 1 compound-transducer 

simple-transducer : = component ( 

cocomponentx input: component, output: component, initiator: 
(input 1 output 1 both); 

subcomponents: input: L, output: L, 'control; 

functional-name: (input: reader / sensor / pen / receiver; output: 
writer / punch / perforator / display / printer / transmitter; 
synchronizer isolator; transducer); 

operation: transduce (plus transmit) / t; 

carrier See port of component; 

' transduction: port(output) t port(input); 

divergence: i-uni t (ou tpu t) - i-uni t (in pu t) [i] ; 

divergence-rate / divergence x o-rate [i/t]; 

'portability: (portable I not portable / fixed); 

concurrency-type: simplex; 

concurrency: I; 

transduction-technology : = (amplification 1 analog-digital I angular- 
linear \ attentuation I electroluminescence 1 electromagnetic I 
electromechanical 1 electromechanical-acoustic I electro-optical I 
mechanical-indentation I photochemical I xerographic) 

transducer-technology : = (analog-digital converter 1 bell 1 buzzer 1 TV 
camera / vidicon I card reader 1 card punch 1 CRT display I storage 
CRT display 1 plasma display 13 D display 1 printed document 
reader / document reader I document printer I magnetic character 
document reader(f2m reader(fi1m)writer)gongljoystick) keys) 
keyboard I light gun 1 light pen I continuous line plotter I line printer / 
printer 1 linear actuator 1 SRI mouse 1 paper tape reader 1 paper tape 
punch I incremental point plotter I pressure transducer I speech 
synthesizer I Rand tablet 1 Sylvania tablet 1 telephone dial I push 
button telephone dial I thermocouple I Lincoln Laboratory Wand) ) 

A simple-transducer is a pair of connected links that have different i-units 
and/or underlying carriers. As defined above, transduction is a digital op- 
eration, taking in an i-unit of the input link and producing an i-unit of the 
output link. Meaning is preserved; that is, only the encoding has changed. 
Preservation of meaning distinguishes transduction from data operation. 
The amount of information need not be preserved, so that information 
divergence is an additional characteristic of a transducer. It may be posi- 
tive or negative, as the net number of bits is either increased or decreased. 

A simple-transducer is called a simplex, in that information flow is in 
one b e d  direction only (as in a simple-link). 

Knowing the function of the transducer permits an inference of whether 
one interface of the transducer involves a human being. This inference 
can be derived from the port characteristics. 

EXAMPLE T(1ine printer; 1000 lines/m; 132 char/line; 8 bit/char) 
T(paper tape; reader; 300 char/s; 8 b/char; width: 1 in.) 
T(sense amplifier; i-rate: .5 w/s; 24 b/w; input: M(memory 

stack)) 

9.3 compound-transducer : = ( 

simple-transducer-set : 
concurrency-type: (half-duplex [ full duplex); 
compound-transducer-technology; 

concurrency: +integer) 

compound-transducer-technology : = rard reader-punch I computer 
console / processor console / console 1 Dataphone I keyboard-CRT 
display 1 diskpak drive I film write-reader I magnetic card transport I 
magnetic tape transport 1 typewriter I Teletype I special purpose 
console : = (airlines reservations I stock quotation I data collection) 

A compound-transducer consists of a set of simple-transducers. The two 
simplest kinds are the half-duplex and the full-duplex, which are extensions 
of the simple-transducer, wherein the direction of information flow can be 
either way but only one way at a time (half-duplex) or can be both ways 
simultaneously (full-duplex). The more general case is simply a set of trans- 
ducers with independent inputs and outputs (so that overall there is no 
switching function). It is common to call this a multiplexed transducer in 
which concurrency is specified by an integer. 
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EXAMPLES T.half-duplex(typewriter; 15 char/sec; output: paper, video, 

T.multiplex(conso1e; keyboard, display, printer) 
audio; input: keyboard; 88 char; 8 b/char) 

10. Data-operations 

I O .  1 Data operations/D : = simple-data-operation 1 compound-data-oper- 
ation 

10.2 simple-data-operations : = component ( 

cocomponents: inputs: components, output: component, initiator; 
input; 

subcomponents: working: M-set, control: K-set; 

operations: see I S P  data-operations, I S P  3.1; 

operation time: [t]; 

concurrency-type: simplex; 

data-types: data-typejoperations) see ISP data-types, ISP 1.3) 

A data-operation creates information (i.e., new instances of data-types) 
that has new meaning. It usually does this as a function of input informa- 
tion (e.g., a floating point multiply which creates a floating point number 
that represents the product of the two input numbers). It may or may not 
destroy some existing information (e.g., a tally operation, which modifies 
the existing number in creating the new one). A data operation differs 
from a transducer (T), since its output differs in meaning from its input. 
The T preserves meaning, while changing representation. 

The data-operation takes the data-type i-units at the input ports, oper- 
ates on the data, and presents the result at the output port. The simple- 
data-operation can perform only one operation at a time. The simplest D 
is just a set of transfer paths between registers for performing some oper- 
ation on a boolean vector (that is, A A B, A @ B, lA) or a combinational 
network (that is, X = 0). Slightly more complex D's are the additive op- 
erations on integers (+, -). Operations like X, / are usually constructed 
from more primitive D's, +, -, and (/2), with a subcontrol (K) to step 
through the various substeps of the arithmetic algorithm. Finally, a float- 
ing point multiply would be formed as a sequence of simple-data-opera- 
tions controlled by one or more common subcontrols. 

1 EXAMPLE D operation: +; data-type: fixed; i-unit: 32 b; 
[operation-time: .2 p 

D floating point multiplier; data-type: f; i-unit: 36 b; 
[operation-time: 2.0 ps; M.working (3  x 36 + 10)b 1 

10.3 compound-data-operation : = simple-data-operation( 

subcomponents: alternatives; simple-data-operation-set; 

instruction: memory; 

concurrency: + integer; 

instruction-source: data, instructions, operator instruction) 

A compound-data-operation consists of a collection of alternative simple- 
data-operations. Thus, a compound-data-operation is compound either in 
time, by having many varied operations which can be selected sequen- 
tially, or in space, by having many separate operations which can perform 
in parallel. 

11. Processor 

11.1 

11.2 simple-processor := component ( 

Processor / P : = simple-processor 1 complex-processor 

cocomponents: primary: M-set, *secondary: M-set, controlled: 
component-set; 

' function: (microprogram 1 central / general purpose / c 1 input-output / 

.. 

io I display I array I vector move I special algorithm I language) 

subcomponents: (interpreter: K; data-operations: D-set; M.processor- 
state / ps: see PMS Tuhle 1;  M.nou-processor-state: see PMS 
Table 1;  

operations: operations(data-operations), operationsjcocomponents) 
see ISP; 

data-types: data-type(operations) see 1%'; 

cycle-time / tc: cycle-time(Mp); 

i-rate: i-rate(Mp); 

concurrency: (a-rate / cycle-time) [o]; 

program-switching-time: It]; 

interrupt-response-time: It]; 

instruction-set see ISP 2.1; 

instruction-efficiency: (operations / instruction) / instruction-size [o/i]; 

algorithm-encoding-efficiency: (sum(data i-units/[t])/ 
siim(data i-units + instructions)/[t])); 

instruction-size: [i]; 

operation-code-size: [i]; 

address-size: [i]; 
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addresses-per-instruction: (0 address / stack 1 1 address / 11 1 + index / 
(1 + x) I 1 + general register address / (1 + g) 12 address 13 address I 
n + 1 address I compound)) 

A simple processor is always associated with a memory (its primary mem- 
ory), which holds the program (and usually the data) for the processor. 
In addition, there may he secondary memories and also other components 
that are controlled by the processor. 

The processor often functions as the main component of an essentially 
isolated system (often called stand-alone); it is then a central processor, Pc. 
Processors also occur as more specialized components in larger systems; e.g., 
to manage input/output (Pia) or display (P.display) or to do a subset of 
data-operations efficiently (Pdata, P.vector,move, P.array, or P.specia1-- 
algorithm). Processors are sometimes built in hierarchy, using one processor 
to perform the interpretation and operations of another. Such processors 
have become known as microprogram processors. 

The distinguishing feature of a processor is that it determines its own 
next instruction. The control that does this is called the interpreter. The 
repertoire of operations of the processor is partly a set of data-operations 
performed by its own subcomponents and partly the set of operations 
proper to a set of transducers, memories, links, and switches external to 
the processor but incorporated into its operation code. The operations are 
largely determined by the set of data-types (see the ISP section). 

A processor may have considerable internal memory (called the proc- 
essor state, Mps). Besides the instruction and instruction-address registers, 
which are necessary for interpretation, there may be various amounts of 
status information, accumulators, index registers, general registers, and 
accumulator stacks. No one system has all of these memories, since they 
often provide alternatives to each other (e.g., index registers and general 
registers). 

Each of the operations has its own operation time and its own possi- 
bilities for being overlapped with other operations. Several parameters are 
given that summarize this array of information: the cycle-time of Mp, 
which in the long run limits the rate at which instructions and data can 
be accessed (and also determines the maximum throughput); the concur- 
rency, which tells how many operations can be performed per cycle time 
(this requires an averaging of the various possibilities as given in the in- 
struction set); and the program-switching time, which is the time required 
to change context from one program to another. In simple operating re- 
gimes (standard batch processing) program-switching time is not an impor- 
tant parameter; it becomes so when interrupts are permitted. For inter- 
rupts, the response time is critical. It is the time between when a request 
is made and when the request is acknowledged by P. The instruction set 
is really an entry point to the ISP description of the processor. One might 
give here simply the number of instructions, but this can be a very mis- 
leading number, since many variations of a basic instruction can be counted 
thus giving highly erroneous results. The algorithm-encoding-efficiency is 
the ratio of i-units uaed for data per unit time to the number of accesses 
for data + instructions per unit time. This efficiency is strongly affected 
by the address size, which is usually the address size of the Mp but need 

not be if a processor use5 an incremental or relative addressing system. 
The ratio can he measured at many levels of the ISP: instruction-by- 
instruction, on a subroutine, or for a whole program. In a simple computer, 
this ratio is near y2. Vector operations can allow a ratio much closer to 1. 

Common measures for the instructions give the size of the operation 
code, the address, and the instruction. The addresses per instruction is one 
of the best parameters to indicate the overall structure of the instruction 
set and is called the instruction-type. It ranges from 0 addresses (systems 
which execute a sequence of operations) through 1,2,  and 3 addresses per 
instruction to variable number of addresses. Between 1 and 2 addresses lie 
index register (1 + x) and general register (1 + g) machines. In a special 
class is the (n + 1) organization, which involves an additional address to 
obtain the next instruction; it can be added to any other organization. 

EXAMPLES Pc(’DEC PDP-8; 1 address / instruction; -2 w/ instruction; 

Pio(’1BM 7909; 500 kw/s; data-types: words; integer; 1 ad- 
12 b/w; 1.5, 3.0, 4.5 ps / instruction) 

dress / instruction: 36 b/w ) 

11.3 complex-processor : = simple-processor ( 

Mp-concurrency: (1 PI 1 P with interrupt I 1 program with multiple 
concurrent subprograms 1 1 Pc - n Pi0 1 monitor + 1 user program I 
monitor + 1 swapped program 1 fixed multiprogramming) 
multiprogramming I segmented-programming); 

multiprogramming : = (no relocation I protect only I 1 segment I 
2 segment / pure 1 impure segments I > 1 segments I paging) 
segmented-programming : = (fixed length page segments I 
multiple length page segments I variable length page segments 1 
named segments); 

P-concurrency: (serial / serial by bit I parallel / parallel by word 1 
multiple instruction streams I multiple data streams (arrays) I 
pipeline processing I instruction-memory ); 

instruction-memory : = (none 1 1 instruction look ahead1 n instruction 
look ahead I cache / look aside / slave memory)) 

A complex processor is often an extension of a simple processor along the 
dimension of memory mapping, since a processor is already a highly struc- 
tured and “complex” component. 

Note that a collection of processors does not constitute a compound 
processor in a way similar to other PMS components; hence, we denote a 
general collection of processors as a computer. Thus, a complex processor 
can be written in terms of a simple-P with new values. The central proc- 
essor using a microprogrammed processor contains a specialized processor 
as a subcomponent (P.microprogram). 

Three attributes separate a simple processor from a complex processor: 
Mp-concurrency, P-concurrency, and instmction-memory. In essence, the 
simple processor has no Mp concurrency (interpreting a single program) 
and serial or parallel P concurrency, with no instruction-memory (buffer- 
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ing for multiple instructions). These attributes are independent of one 
another and are discussed in Chap. 3. 

12. Computer 

12.1 

12.2 

Computer / C : = simple-computer 1 compound-computer 1 network 

simple-computer : = component ( 

structure: 1Pc 1 1 Pc.interrupt; 

sulxomponents: Pc, Mp-set, *controlled: component-set(Pc); 

cocomponents: none: 

function: (scientific 1 business data processing 1 general purpose 1 process 
control / control I communication : = (switching I store and forward) 1 
terminal control / input-output / io 1 display1 file processing / file 
control I time-sharing); 

access-time: access-time(Mp); 

cycle-time: min(cyc1e-time(b1p)); 

access-type: access-type(Mp.min); 

instruction-type: instruction-type(Pc)) 

A simple computer consists of a single Pc (possibly with interrupt capa- 
bility) with an Mp (possibly a set of them) plus some set of transducers, 
Ms’s, switches, and controls. It is a complete system that can stand alone 
and accomplish processing for a wide variety of functions. 

Almost all of its significant parameters are derived from those of the 
Pc or the Mp (using the Mp with the minimum cycle time if there are 
several Mp’s). 

E.UMPI,ES C(’Whir1wind I:  Mp(core; 8p /w;  2 0 4 8 ~ ;  16 b/w); 
Pc(M.processor_state: -2w; 1 instruction/w; 1 address/ 
instruction); I948 - 1966) 

C(’LGP-30; technology: vacuum tubes; power: 1500 watts; 
Mp(drum, 4096 w; 31 b/w; t.access: ,260 - 16.6~1~);  
Pc(1 address/instruction; 1 instruction/word; Mps: -2w)) 

12.3 compound-computer : = simple-computer( 

structure: ((1 Pc, n Pio)((l  Pc, n Pio, P.display)J(2 Pc)\(n Pc multi- 
processor) 1 (n Pc, P(array) 1 (n Pc, special algorithm) 1 (n Pc parallel 
processor)); 

siilxomponents: Pc-set, Mp-set, *controlled: component-set(Pc-set)) 

The essential feature of compound computers is to have more than one 
processor. This is indicated primarily by the structure parameter but re- 

quires augmenting the subcomponents to include a set of Pc’s. Other than 
this, compoundc’s are the same as simple-C’s, although some parameters 
(such as instruction-type) may not have simple values if several Pc’s differ 
radically. 

The simpler compound-C’s retain a single Pc, but add input/output 
processors (Pio’s and then P.display’s). The next step is to limited multi- 
processing, with 2 Pc’s, and on to n Pc’s operating on many programs, and 
finally to parallel processing operation on many tasks of a single program. 
A parallel processor is distinguished from a network; namely, there is no 
way to decompose a parallel processor into disjoint C’s (with Pc’s and 
Mp’s). In both multiprocessing and parallel processing there may or may 
not be Pio’s, P.display’s, and other special-function processors. 

EXAMPLES C(l Pc-8 Pia; ‘IBM 7094 11; Mp (32768 w; 1.4p/w; 36 b/w); 
Pc(1 address; 1 instruction / w; Mprocessor state: 12 w; data- 
types:(integer, word, bv, sf, suf, df, duf, fri); 1962 - 1966) 

C(mu1tiprocessor; ‘Burroughs D-825; Mp(65 kw; 4.8p/w; 48 
b/w); 16 (Pc, Kio); Pc(stack; 12 b/syllable; 1 - 7 syllable / 
instruction; data-types: integer, floating, single character, 
boolean vector)) 

12.4 
A network is any collection of two (dual-C) or more computers not inter- 
connected through primary memory. The network-C is a special case of a 
single physical structure which is usually called a single C but by its 
structure is a network (for example, CDC 6600). Finally, a set of inter- 
connected computers that are physically separate are the most general 
case of networks. 

network/N : = dual-C 1 network-C I C-set. 

ISP conventions 

Making use of the prior general conventions and the PMS definitions, ISP 
is developed systematically. We do this only for the processor and not for 
controls (though the system might be adapted to that end). Several nota- 
tions are added to make ISP conform with currently existing notations. 

The top-level entities of ISP-data-types, operations, the interpreter, 
and the instruction-set-are values of corresponding attributes in the PMS 
definition of a processor. An image of all the PMS structure for a computer 
system exists in the instruction set of the processors that control the PMS 
components. PMS notation is assumed for this. In ISP the primary mem- 
ory (Mp) is usiially named M; all other memories must be specifically 
declared and named. 

1 Data-types 

2 Instructions 

3 Operations 

4 Processors 
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1. Data-types 

1.1 We give first a general definition of data-types (1.2), and then two 
shorter notations, which are the ones commonly used-i-units (1.3) and 
data-type-names (I .4). 

1.2 data-type := ( 

referent: entity; 

referent-expression; 

*component-list ; 

component: data-type; 

carrier: i-unit; 

format: (component: memory-expression)-list; 

information-content: [i] ) 

A data-type specifies the encoding of a meaning into an information me- 
dium. The meaning of the data-type (that which it designates or refers to) 
is called its referent (or value). The referent may be an entity, ranging 
from highly abstract (the uninterpreted bit) to highly concrete (the pay- 
roll account for a specific type of employee). The encoding of this refer- 
ent either is directly understood (as when a bit encodes a bit) or must be 
given by the referent expression in terms of the component data-types. 

EXAMPLE binary-floating-point-number : = data-type( 

referent: number; 

component-list: mantissa, exponent: 

referent-expression: mantissa x 2 t exponent) 

COMMENT Note that in the referent expression the component data-types 
are taken to designate their values, Le., a signed fraction and an exponent 
is an integer. This avoids a clumsier notation in which one could write: 

referent(mantissa) x 2t referent(exponent). 

Associated with every data-type is an i-nnit, called its carrier, into 
which all its component data-types can be mapped. The carrier is used in 
storing the data-type in memories and in transmitting it over links. It must 
he extensive enough to hold all the component data-types, hut it may be 
larger (having error-checking and -correcting bits, or even unused bits). 
It need not hold disjointly all the carriers of the component data-types, 
since packing may occur. However, the component data-types must all 
have their relative structures preserved (or they cannot be processed). The 
mapping of the component data-types into the carrier is called the format. 
It is given as a list that associates to each component a memory expression 
involving the carrier (see ISP 2 for definition of memory-expression). 

EXAMPLE floating-point-number : = data-type ( 

component-list: mantissa, exponent; 

mantissa := 23 b; exponent := 0 b: 

carrier: word, 32 b/w: 

format:(mantissa: word(0:22), exponent: word(23:31) ) ) 

The five parameters-referent, referent-expression, component-list, 
carrier, and format-determine a data-type. The information content is 
simply a usefill redundant parameter, which gives the amount of variety 
of the data-type. An upper hound, of course, is the amount of information 
in the carrier. A better estimate is the sum of the contents of the compo- 
nent data-types. A true value must take into account the dependencies 
between components. The efficiency of encoding (under the constraint that 
the encoding must be into the carrier and that all possible values must be 
represented, no matter how low their probability of occurrence) is the 
ratio of the information content to  the carrier content. 

1.3 data-type : = i-unit 
The simplest data-types are i-units. An i-unit as a data-type implicitly 
determines the five defining parameters given in ISP 1.2. The referent is 
the uninterpreted i-unit itself (k, a word is to be handled only as an 
uninterpreted unit of information). There is no need for a referent expres- 
sion. The carrier is the i-unit itself, if it is an i-unit capable of independent 
storage and transmission in the system. If not, then the carrier is the 
smallest such i-unit that contains the given i-unit. The component data- 
types are the first sublevel of structures of the i-unit. There are no com- 
ponents if the i-unit is a base-unit (bit or undecomposable character). If 
the i-unit is the carrier, no format is needed. If a larger carrier is required, 
then a mapping is usually implicit (e.g., 1 bit in a word goes into the low- 
order position; 1 word in a block goes into the first word, etc.). If not, a 
format must then be given in the regular way. 

1.4 data-type : = data-type-name 

data-type-name : = i-unit-name 1 simple-name I 
component-name . length-type I precision . data-type-name 1 
component. component. . . 

length-type : = array / a 1 string / st 1 vector / v 

precision : = +integer I multiple / m 1 quadruple / q 1 triple / t I 
double / d 1 *single / 7 1 half / h 1 fractional / fr 

A naming scheme is provided for data-types, which can be used as a basis 
for abbreviations. Some data-types have arbitrary simple names (e.g., char- 
acter, floating point numbers); others are named by their value (e.g., in- 
teger). Data-types that are iterations of a basic component can be named 
by the component suffixed by a length-type. The length-type can be array/ 
a, implying a multidimensional array of fixed but unspecified dimensions; 
a string/st, implying a single seqnence of variable length (on each occur- 
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rence) or a vector/v, implying a one-dimensional array of a fixed but un- 
specified number of components. The length-type need not exist, and then 
this form of the name is not applicable. 

Data-types are often of a given precision, especially when referring to 
numbers; it has become customary to measnre this in terms of the number 
of components that are used, e.g., triple-precision integers. Names can be 
formed from the basic data-type-name by prefixing the precision. Note 
that a double-precision integer, while taking two words, is not the same 
thing as a two-integer vector; so that the precision and the length-type, 
although both implying something about the size of the carrier, do not 
express the same thing. Finally, it is possible to name a data-type by simply 
listing its components. 

The main use of the data-type-name is to permit the short abbrevia- 
tions which arise by replacing every part with its abbreviation and drop- 
ping the periods. Thus, double-precision integers have the data-type-name 
of double.integer, which can be replaced by d.i and then by di. Similarly, 
a vector of bits is bit.vector / b.v / bv. [The definition of data-type-name 
is consistent in its use of period with the definition of compound name 
(see GC IO)]. 

If a data-type is defined by giving just its name, conventions are re- 
quired to define the five parameters of the data-type. The carrier is always 
taken to be the smallest i-unit that can contain the data-type with the fol- 
lowing mapping. The format is taken to imply that the components are 
laid out in order (with no packing) into the subcomponents of the carrier 
i-unit. The referent of the data-type is given by context, e.g., if the data- 
type is simply an iteration of some kind of a data-type whose value is al- 
ready understood, (e.g., in a vector of integers). Thus, there is no need for 
a referent expression. 

1.5 We give below a number of basic data-types that need to be defined 
explicitly. Table 3 summarizes a large number of data-types and gives 
their standard abbreviations, as above. Figure 3 of Chap. 2 shows the 
lattice of data-types in which one data-type is connected to a higher one 
if it can be obtained by a further specification of the higher one. This is 
significant, since operations on higher data-types also apply to the lower 
ones. In the definitions below, which are the standard general data-types, 
we omit the referent expressions, carriers, and formats except those that 
are simple. (The fully general definition of radix-complement number 
representation, for example, is too extensive to be worthwhile here.) 

base-data-type / radix : = data-type(referent: (binary / 2 I octal / 8 1 
decimal / 10 1 hexidecimal / 16); component: i-unit: (b 1 o 1 d 1 hex) ) 

+ integer-data-type / ui / unsigned-integer / magnitude : = data-type 
(referent: +integer; component: radix) 

integer-data-type / i : = sign-magnitude 1 radix-complement I 
(radix - 1)-complement 

number-data-type : = data-type(referent: number; normalization: 
(*normalized / n I unnormalized / u); name: normalization . number- 
data-type-name) 

Table 3 Examples of commonly used datatypes (organized by basic 
i-units) 

bit / boolean / b 
bitarray / ba 
bitvector / bv 

byte / by 
byte.string / by.st 
10 byte.vector / 10 by.v 

character / char / ch 
char.string / chard  
10 char / 10 ch 
4 char.vector / 4 ch.v 

complex / cx 

digit / d 

10 digits / 10 d 
digit vector / d.v 
10 digit, array / 10 d.a 

unnormalized floating point / uf 
double floating point / df 
double unnormalized floating point / duf 
floating point vector / s.f.v / f.v 

floating point / f / single floating point / sf 

field 

fraction / fr 

integer / i 
integer vector / iv 
double integer / di 

mixed / mx 

word / w 
half word / hw 
double word / dw 
triple word / tw 
multiple word / mw 
word vector / wv 
word string / wstring 
half word vector / hw.v 
7 word / 7 w 
8 word vector / 8 w.v 

COMMENT 

(normalization) to prefix the name of all numbers. 
The general data-type for number introduces a new parameter 

mixed / mx / fixed-point : = number-data-type (components: integer- 
part, fractional-part) 

floating-point / f : = number-data-type(components: mantissa, expo- 
nent; value-expression: mantissa x radix ? exponent) 



Appendix 631 

complex : = data-type(components: real, imaginary; usually floating 
complex) 

field : = data-type(carrier: word; components: i-unit-list; format: 
(element-range)) 

COMMENT A field is a subset of bits, or characters, or bytes in a word. It 
is usually, though not always, an interval. See ISP.2 for element range. 

EXAMPLES 

12, 101, 5; + 125, - 126; 

+72, -999; sign-magni tude 

]()I2, 77,, AS,,; 

+ 6.257; 6.257 X 10”; 

(1, 2, 2.7); complex 

unsigned; and signed integm 

binary, octal and heridecimul 

mixed, and floating point 

digit set specification: stands fool 

l O 2 I 1 1 , ;  and 70,171, I . . . 177, 
respectiuel!y 

2. instruction 

2.1 instruction : = data-type(referent: instruction-expression; operation- 
code: field; operand-li.;t; operand: data-type) 

instruction-expression : = condition + action-sequence 

action-sequence : = (step I next step)-list 

step : = action I condition 4 action-sequence 

action : = memory-expression t data-expression 

memory-expression : = ( 
memory *[address-rangel-list *( element-range) character-base I 
memory-expressionl; memory-expression I memory-expression-list) 

address-range : = address I address: address 1 address-expression I 
address-range-list 

address-expression : = operation-expression(address-operations) 

element-range : = field 1 field-list 

character-hase : = +integer 

condition : = boolean I memory-expression 

data-expression : = data-type I irieiiiory-expression I 
operation-expression 1 data-expression{ data-type} 

base i-unit 

operation-expression : = (nonary-operation I 
unary-operation data-expression 1 
data-expression binary-operation data-expression 1 

data-expression n-ary operation data-expression . . . I  
function(data-expression-list) / f(data-expression-list) I 
operation-expression * { operation-modifier ) 

operation-modifier : = data-type I name 

2.2 The instruction is a data-type and thus has both a representation in 
memory and a referent, which is called the instruction-expression. The 
only fixed part of the instruction format is the operation-code. All the rest 
are operands to be used by the instruction-expression. 

See GC 10 

2.3 The instrnction-expression, when interpreted, takes the processor 
through a sequence of steps which result (possibly) in some change of state 
of the computer system that holds past the period of interpretation, thus 
constituting a new initial condition for the next instruction. The action 
sequence has two structural features. First, steps (and subsequences of steps) 
may he conditional on a boolean value, developed according to a condi- 
tion. Second, steps may be accomplished in parallel or in series. Any set 
of steps between two occurrences of the term “next,” are to have all their 
data expressions developed prior to any transmission of data. Thus, all 
their data is a fimction of the existing state at the start of the sequence. 
At the occurrence of the term “next,” all pending transmissions are made, 
so that the state for the following sequence of steps is now different (if 
there were in fact transmissicns to be made). 

2.4 All permanent changes in state are accomplished by means of actions, 
which take data developed according to a data expression and transmit it 
for storage in a memory, as designated by a memory expression. 

EXAMPLES 

A t B ;  B t D - C ;  B t B + g  

x l  t .x2; x2 t -xl; a t &(a); a c normalize(b) 

AB t a 3 b  

x l  {float} t x2 {Fixed) 

XI  t xl + x2 {floating] 

a e- a x 2“ (logical] 

.fired to floating data-type 

floating duta 

usually called logical shift, actu- 
ally a boolean tiector operation 

AC, M Q  t A C n  MQ / M[z]  

AC3MG t AC x M[z] 

A c 6777 nonary operation 

G +f(A, B, C) general function 

A t u  B general unary operation 

A t B h C  general binary operation 

A t max(a, H, XYZ, E, 4)  n-ary operation 
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2.5 The memory expression specifies the contents of a memory (an in- 
stance of a data-type) by giving the memory switch (possibly compound), 
as seen from PMS. However, all that is represented in ISP is the address 
that is used to control the switch. The address is a data-type, usually rep- 
resented as a positive integer. The element-range is a field. In both cases 
it is possible to specify an arbitrary list of contents (addresses and fields), 
although in most processors this can never arise. The address-range x:y 
means from address x to address y inclusive. 

EXAMPLES OF REGISTERS 

A, or A; 

sign bit/sign,bit/sb 

lb; b2; 2C1; 2C2’; C”; C’ ”; “+”; “A” 

end-aroundshift or end around shift 

G.3 

i(2); z(a) 

bc(12:8) or bc(12, 11, 10, 9, 8) 

AC( P,Q,S,1:35) 

X(O:7), or X(0:23), or X(0:23) 

M[0:7777,](0:11) or M[0:4095](0:3), 

X[O: 15][0: 15](31 :O)  

M[O:7][0:31][0: 127](O: 11 ) 

EXAMPLES OF RESTRUCTURING AND RENAMING 

A( 17) : = B(4); A(():]) : = B(0, 4) 

op(0:2) : = i[1](9:11) 

A[O:3](0:7) : = A’(O:31) 

indicator[1100001,] : = sense-switch(A) 

XR[1:2][1:3] ( B, A, 8, 4, 2, 1) := M[87:89, 
92:94](B, A, 8, 4, 2, 1) 

boolean-memories; 
scalar bits 

identical names 

ternary memory 

scalar bih of an array 

identical registers 

38 bit register 

identical registers 

identical vectors 

16x16 matrix 

3 dimensional array 

vectors formed f r u m  
single bit vector 

EXAMPLES OF REGISTERS FORMED BY CONCATENATION 

LAC(L, 0:ll) := LCIAC(0:ll) 

A B ( o : ~ ~ )  : = ~(0:23)  n ~(0:23)  

EXAMPLES OF REGISTERS FORMED BY A LIST OF REGISTERS 

C, D(O:4) := B(7), A(1:4)0Z(8) 

2.6 An address-expression is an operation-expression on addresses, Le., 
using only the address-operations available in the processor. An address- 

expression may imply the use of memory if it involves nested parentheses; 
such memory is assumed to he temporary with no permanent effect on 
the memory state. 

2.7 A condition is given as a boolean, that is, as either true or false 
(equivalently, 1 or 0), or the result of a boolean expression involving the 
logical connectives or relations among data-expressions (see Table 4, ISP 3, 
and also GC 13). A condition can also be given as a memory-expression, 
in which case the memory contents are normally evaluated as a boolean 
vector with all Os being false, and not all Os being true. 

2.8 Data-expressions are either instances of data-types; the contents of a 
memory, as given by a memory-expression; or the results of operation- 
expressions, which is to say, the results of operating on data-types by the 
data-operations available in the processor. Data-expressions may imply the 
use of memory if they involve nested parentheses. Such memory is as- 
sumed to be temporary, with no permanent effects on the memory state 
of the processor or memory. The data-type name may sometimes follow 
the data-expression, {data-type}, in order to carry more information and 
avoid more complex names for memory-expressions, etc. (see Chap. 2, 
page 30, and ISP 3.1). 

2.9 Operation-expressions are the form used by the operations (see ISP 3). 
Note that the operation-expression as a whole can be modified by an 
operation modifier enclosed in braces. 

EXAMPLES OF INSTRUCTIONS 

add (:= op = IOl)+ integer add 
(L AC t L  AC + M[z]) 

jms (:= op = 100) -+ (M[z] t PC; next jump to subroutine 
P C t z  + I) 

FAD (:= op = +767)+ 
(FAC c F A C  + M[z] (s.f}) 

single precision 
fiating point add 

add 4 (A c A + M[z] {two’s complement}) the operation code 
need not be given 

skip (: = op = 67) + ((A > 0) + P t P + 2; 
( A = O ) - + P t P +  1) 

add / “A” (: = ~p = 110001) -+ 
(Ov, M[B] t M[B] + M[A] {string}) 

‘3’’ (: = OP = 1) + (A t M[t][s]) 

((A A B) v (C > F))+ (G t G  + H) 

3. Operations 

3.1 Operations are defined to produce results of specific data-types from 
operands of specific data-types. The data-types themselves determine by 
and large the possible operations that apply to them. No attempt will be 
made to define the various operations here, as they are all familiar. Table 
4 gives the notation for the operation-types, organized by data-types. In 



Table 4 Data-operations 

operation-types : = access-i-unit-operations 1 transmission-operation 1 control-operations 1 unary-arithmetic-operations 1 binary-arithmetic-operations 1 
n-ary-arithmetic-operations I conversion-arithmetic-operations 1 unary-vector-operations I relational-i-unit-operations I 
relational-arithmetic-operations I boolean-operations 

nonary-operation : = memory-expression 
unary-operation / u := unary-arithmetic-operations1 unary-boolean-operation see GC 13 
binary-operation / b := binary-arithmetic-operations 1 binary-boolean-operations see CC 13 
n-ary-operation : = n-ary-arithmetic-operations1 n-ary-boolean-operations see CC 13 

Operation Abbreviation Result' Operution Form' Comments 

access-i-unit-operations 

read 
write 
vector element write 
vector element 
concatenation 
extraction 

transmission-operation 

transmit 

control-operations 
evoke 

next 

unary-arithmetic-operations 
absolute value or 

negate 
reciprocal 
integer part 
fraction part 
sign 
round 
normalize, mantissa part 
normalize exponent, 

square root 
square 
logarithms 
exponent i a I 

trigonometric 

magnitude 

exponent part 

random (parameter 
for particular 
distributions) 

arithmetic shift 
of radix, r 

c 

+ 

abs n2 

sqrt n2 
( )2 n2 

log, I n  n2 

trigfcn n2 

e n2 

xr n3 
/ r  n3 

t l  
t l  
t.v,[i,I 
t 3  

t l t, 
t, (element-range) 

b, + action-sequence 

- n1 
1 / n1 
integer-part(n,) 
frp(n,) 
sgn(n,) 
round(n,,n,) 
normalize(n,) 
normalize- 

exponent( n,) 
sqrt(nJ 
(nJ2 
~0ge.1o(n1) 
en' 
trigfcn(n,) 

random( n,) 

n, x ri2 
n1 / ri2 

basic operation is to access an i-unit 
in a memory (e.g., word vector) 

access t, for reading 
access t, for writing 
the i2th element of vector, is read 
the i2th element of vector, is written 
t, and t, are combined to form t3 
some part of t, forms t, 

t, receives 1-unit of t,; involves read 
transmit and write 

if b, is true then action-sequence is 
applied; else the action-sequence is 
ignored 

the occurrence of "next" implies 
operations following occur later 

n2 may be unsigned data-type 

n2 is an integer data-type 
n1 may be mixed If I unf 
n1 may not be ui I ufr 
used with multiply, divide 
used with f arithmetic 
to fix numbers into a standard form 

(n, 2 0) 

log,o(n,) 
~og,(n,) 

also sin, sin-', sinh, etc. for the 
separate trigonometric function 
(both radians and degrees) 

n1 may be previous pseudo-random 
number (seed) 

if i2 is signed, then either form can 
be used for both x and / 

Resu l t s  a n d  opera t i ons  f o r m s  g i ven  in t e r m s  of da ta - t ypes  t o  wh ich  they  apply:  b -boo leans ;  + in tegers ;  f - f l oa t i ng :  n - a n y  n u m e r i c  da ta - t ype  (e.g., f loa t ing ,  
in teger ,  mixed) :  t -a l l  da ta- types ;  v -vec tors .  
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Operation Ahhreciation Result Operation Fomi Comnicnts 

binary-arithmetic-operations 
add 
subtract 
inverse subtract 
multiply 
divide 

+ 
- 

X 
/ where only n, or n2 may be used to 

see divide similar to inverse subtract 
i, - (i, / iz) x i2 remainder 

give n4 or n5 
inverse divide 
modulo 

conversion-arithmetic-operations 

f ix-to-f loat 
float-to-fix 

unary-vector-operations 

mod il mod i2 

f, 

12 

float(i ,) 
f ix(f ,) 

integer or fixed to floating 
floating number to integer 

radix r; note if r = 2, the character 
is a bit 

end-around.shift (rotate) v3 x r (rotate} 
v3 ,' r (rotate} 
v3 x r (logical} 
v3 ,' r {logical} 
12 

n2 

v1 x ri2(rotate} 
v, / r'X{rotate) 
v1 x r'z{logical} 
v1 x ri.{logical} 
tally(b.v) 
sign,extend(b.v,) 

logical-shift 

tally/count 
sign extend 

minimum 
maximum 
summation 
average 
product 

identical 
not identical 

equality 
heq ua I i ty 
less than 
greater than 
less than or equal to 
greater than or equal to 

n-ary-arithmetic-operations 

relational-i-unit-operations 

relational-arithmetic-operations 

boolean-operations 

false (0) 
and 

the most or least significant digits 

count 1 's  in a vector 
copy sign of b.v to fill vector in n2 

receive 0's in the shift 

min 
max 
sum 
a vg 
prod 

smallest of n1 . . . n, 
largest of n, . . . nm 
n, + n 2 . .  . + nm 
n, + n2 . . . nm) / m 
n, x n 2 .  . . x nm 

comparison of two i-units 
b3 
b3 

comparison of two numbers 

all 16 possibilities are listed 0 
A 

null 

null 
exclusive or; 

inclusive or 
nor/ Pierce stroke 
coincidence or 
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Table 4 Data-operations (Continued) 

Operation Abbreviation Result Operation Form Comments 
~ ~~ 

not 1 b3 1 b2 
implication inverse b3 b l  V l b  
not 1 b3 l b l  

true (1) 1 b3 1 

not 1 b3 1 bl 
and A b3 b l  A b, 
or V b3 b l  V b, 
exclusive or 0 b3 b l 0  b, 

nand t b3 l ( b i  A bz) 
b3 l ( b i  V bz) 

implication 3 b3 7bl V b2 or b, 3 b, 
nand/Sheffer stroke t b3 i b 1  V 7b2 o r l ( b 1  A b2) 

boolean-operations (common set) 

boolean-operations (sufficient sets) 

lbl this pair of operations are required 
1 nor 

and A b3 b, A b,) for sufficient set 
not 1 b3 

order to have an open-ended scheme for operating on many data-types 
and defining new operators, the operation modifier is used. The operation 
modifier enclosed in braces is used to distinguish operations from one 
another. The operation modifier is usually the name of a data-type, but it 
can also be a descriptive name applying to the operation (e.g., rotate). 
For example, the various add operations on differing data-types are speci- 
fied by writing (data-type} after the operation (see Chap. 2, page 30). 

3.2 Operations can be defined for the most inclusive data-types for which 
they will work and can then he applied to more specific data-types. The 
most general instance of this is the transmit operations which works on 
i-units, and is therefore used for all specific data-types, such as numbers 
(because it works on their carriers). Another example is the relational 
operations of equality and inequality. 

3.3 
simply give some examples. 

New operations can be defined by means of forms (see GC 4.5). We 

EXAMPLES 

x1 + x2 := ( X I  + x2; two’s coniplement add 
side efeet, set 00 

rotate operation; end 
hits, X(11) and X(O), 
are connected 

( X1 + X 2  2 212) 4 (Ov c I ) )  

Xl(1l:O) := X2 x 2 {rotate} := ( 
Xl(11:l) := X2(10:0); 
Xl(0) := X2(11) ) 

4. Processors 

4.1 The ISP definition of a processor consists of a set of instructions, which 
involve a set of operations, data-types, memories, and other PMS compo- 
nents, plus an interpreter that finds the next instruction and executes it. 
These sets are all values of corresponding attributes of the PMS descrip- 
tion of a processor. All these aspects of an ISP processor have to be de- 
clared in giving the description. In practice, some of them are given by 
having the PMS description available (e.g., word size, T’s, Ms’s, etc.); 
others declare themselves simply by occurring in the ISP expressions (e.g., 
most of the operations and data-types). We list below the common form 
of the machine ISP descriptions as a reader will find them in the chapter 
appendices of this book. 

4.2 Memory (Mps, Mp and M(T.console)). The processor state memory 
is declared first. It holds the information necessary to restart the proces- 
sor, if it is stopped between instructions. Table 1 (page 621) names the 
functions of the memory (e.g., program counter, accumulators, etc.). The 
state also includes the interrupt status, machine fault bits, etc. Any memory- 
mapping hardware registers are considered part of this state. 

The primary memory, the largest state, is used to hold the program 
that the processor interprets. It also holds data. 

The console state is accessible from the operator’s console. Only the 
bits that are part of the ISP are relevant, i.e., bits that can be used to 
change the state of the primary memory or processor state. The switches 
that are used to start and stop the machine should also be given in a 
complete definition. 
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4.3 Instruction Format. The instruction formats are usually declared in 
the same bashion as memory and are not distinguishable as special non- 
memory entities. Normally, the instriictions are carried in registers; it is 
thus natural to give declarations in this fashion. Usnally only a single dec- 
laration is made, the instruction/i, followed by the declarations of the 
parts of the instruction-the operation code, the address fields, indirect 
hit, etc. 

EXAMPLE 

i/instrnction[0:4](0:7) 

op(0:4) : = i[o](0:4) oprode 

r(0:2) := i[0](5:7) register address 

d(0:15) : = i[l:2](0:7) 

five 8 hit byte instruction 

Z6 hit address 

4.4 Effective Address Calculation Process. This process is declared using 
the assignment command (:=) and is evoked each time an instruction 
makes reference to a variable that is taken to be an effective address or an 
operand. In the book operands have two forms. Most of the time they are 
expressed as memories and address expressions using the effect address 
calculation process: otherwise the operands are defined by a process. 

EXAMPLES 

Conditional register definition 
z(0:ll) := z‘; effective address 

with side effects i +  (M[z’] + 1; 
+- M[z’] + 1)) 

G := M[g] 

shift-count / SC(0:ZS) : = 
(TF c e’; F + z) 

operand definition 
process 

E’(21:35) := index convention 
((T = 0) 4 (T # 0) + XR[T] + y) 

Declarations in terms of a variable puranaeter 
hlp[z] : = ((2 > FL) + Mp[z + RA]: 

(z 2 FL) + (Run c 0: only side effects, 
violation c 1)) no value 

Evaluated expressions 
add-instruction : = (op = 5 )  

z(0:6) : = (a(0:5,7) + b( 1:7)) 

skip-condition : = (?Q A d( 15) V z ( 6 ) )  

boolean 

7 bit calue 

4.5 Data-type Foimat and Special Data-Operation Definitions. The com- 
ponent parts of the data-types are named, and their element ranges are 

first defined, so that the data-operation definitions can use them. For ex- 
ample, a precise definition of an ISP would include the data-type formats 
(for example, floating-point), followed by a definition of each data opera- 
tion (for example, +, -, X, /). Normally, we do not give enough infor- 
mation about the data-type and its appropriate operation implementation 
in our description of machines, since the information for these descriptions 
is obtained from the programming manuals. If we were actually to use the 
ISP descriptions, as an interpreter nsing a compiled or interpreted lan- 
guage, then only a few well-defined primitives would exist in the language 
and all other operations would have to be defined in terms of these primi- 
tives for each ISP. ISP 2 and ISP 3 describe how the various data-types 
and operations are declared. 

4.6 Instruction Interprehtion Process. In the definition of processors, the 
only part that is executed is the instruction interpreter. All the other parts 
are memory data declarations and processes to be carried out as an indirect 
consequence of the interpretation process. The format for most interpreters 
is the familiar fetch-the-instruction then execute-the-instruction pair of 
states, and consists of only one ISP statement. 

EXAMPLE 

Rim 4 (instruction c hl[PC]; fetch (PC/progrum counter) 
PC t PC + 1: next 

Instruction-execution) execute 

In more complex processors the conditions for trapping and interrupting 
must be described. Also, in the interpretation process it is often more 
descriptive to carry out part of effective address calculation prior to In- 
struction-execution. See below. 

EXAMPLE 

-, interrupt A Run+ 

(op[O] c M[PC]; PC c PC + 1; next 

long instruction 4 

(op[ll + M W I ;  (op[ll c M[PCl: 

fetch 

fetch more instruction 
if a long instruction PC t PC + 1); next 

Instruction-execution) execute 

interrupt A Run + (M[O] t PC; PC t 1: interrupt, .saw 

PC and go to M [ 1 ]  interrupt t 0) 

The IRM 1401 interpreter (Chap. 18) requires a separate process to fetch 
the operands addresses prior to execution in a variable-length instruction. 
The fetch is based on the specific instruction to be executed next. 
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EXAMPLE EXAMPLE 

Run + (op t M[PC]; PC + PC + 1; next fetch 

Fetch-operands-addresses; next fetch operands 

Instruction-execution) execute 

4.7 Instruction-Set and Instruction Execution Process. The instruction-set 
and the process by which each instruction is executed are usually given 
together in a single definition. This process is called Instruction-execution 
in all the ISP descriptions in this book. It usually includes the definition of 
the conditions for execution, the instruction (i.e., its operation code), the 
name of the instruction, its mnemonic name, and the process for execution. 

Instruction-execution : = ( 

add + (A t A + M[z]; 

end Instruction-execution 
opr --$ (499); 
and 4 ('4 t A M[q])) 

where 

qqq : = (cb + (A t 0); next secondary definition 
cmb 4 (A t lA); 

pl+  (A t A + 1)) end 9'19 definition 
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Aberdeen Proving Grounds (see EDVAC; 

ACE (NPL/National Physical Laboratory), 39, 
ENIAC; IAS) 

43, 44, 74, 190, 193-199, 216 
introduction, 193 
ISP, 193-199 
PMS, 191, 193, 198 
T(io), 197-199 

ADU/Accumulation and Distribution Unit 

AEC/Atomic Energy Commission, 396 
AGC/Apollo Guidance Computer (M.I.T. 

Instrumentation Laboratory), 44, 89, 
146- 156 

(see ComLogNet) 

D(arithmetic), 150-152 
design and construction, 148 
interpreter, 147-148 
introduction, 146 
ISP, 152-155 
PMS, 146-148 

Air Force, 137 
ALGOL language, 13, 45, 73, 257, 267, 348 
ALPAK language, 45 
ALWAC IIIE, 11, 44 
AMBIT Zanguage, 45 
AN/FSQ-27 (see RW-40 and 400) 
AN/GYK-3(V) (see D825 and D830) 
AN/UYK (RW =1 TRW), 71 
AOSP/Automatic Operating and Scheduling 

APEXC, 39 
APL/A Programming Language, 13, 45 
Apollo (see AGC) 
Argonne Laboratory, 257 
Arithmometer (L. X. Thomas), 46 
ARPA/Advanced Research Projects Agency, 

program (see D825, operating system) 

291-300, 315 
network, 510-512 

Arrow (see Strela) 
AS1 6000 (EMR), 44 
Atlas (Manchester University, Ferranti), 43-45, 

82, 91, 274-290 
input-output, 274-283, 285-289 
interrupt, 274, 276-277 
introduction, 276 
ISP, 276-279, 283-285 
M(core), 280-283, 289-290 
multiprogramming, 274-283 
operating system, 279, 285-287 

RT, 287-289 
ATLAS-1 and 2 (Ferranti), 43 
AVIDAC, 39-89 

PMS, 277, 279-283, 289-290 

B 160, 170, 180, 250, 260, 263, 270, 273, 280, 

H 2500, 2501, and 3500 (Burroughs), 43 
B 5000 (Burroughs), 43, 44, 79, 81, 257-261, 

283, and 300 (Burroughs), 43-44 

267-273 
design, 267 
ISP, 268-273 
operating system, 267-268 
PMS, 258-260, 268 

B 5500 (Burroughs), 43-45 
B 6500 and B 7 k 0  (Burroughs), 43, 45, 

257-261, 325, 328 
B 8500 and B 8501 (Burroughs), 43-44, 64, 257 
Babbage’s Analytic Engine, 42, 46, 53 
Babbage’s Difference Engine, 46 
Baldwin Calculator, 46 
BASIC (Dartmouth College), 45, 236 
Bell System, 303 
Bell Telephone Laboratory computers, 39, 

Bendix 3 CDC (see under CDC; G-15; 6-20) 
BESK, 39, 89 
BESM, 213 
BINAC (Eckert-Manchly), 43, 91, 163 
BIT 480 (Business Information Technology), 

Bitran 6 (Fabri-Tek), 44 
BIZMAC I, I1 (RCA), 39-43 
BTL MACRO language, 45 
BTSS/Berkeley Time Sharing System 

42-43, 45-46 

44 

(University of California, Berkeley), 44, 
45, 274-275, 291-300 

input-output, 297-300 
introduction, 291 -292 
ISP, 291-297 
M(files), 297-300 
multiprogramming, 291-295 
operating system, 292-300 
PMS, 275, 292 
T(io), 297 

Burroughs (see B 2500; B 5000; B 55(X); 
B 6500; B 8500; D825; Datatron 204, 205, 
and 220; E 101, 102, and 103; ILLIAC 
IV) 

California, University of, Berkeley (see BTSS) 
Carnegie-Mellon University, 120, 571 
CDC/Control Data Corporation (see (2-15; 

CDC 160, A, 6, 43, 44, 120 
CDC 924, 3100, 3200, 3300, and 3500, 43-44, 

G-20) 

79 

CDC 1604, 44, 89 
CDC 1700, 44 
CDC 3400, 3600, and 3800, 43-44, 348, 396 
CDC 6400, 6416, 6500, 6600, 6700, and 7600, 

43-45, 47, 71, 76, 79, 83, 120, 170, 397, 
470-476, 489-503 

circuits, 41-14-495 
history, 470, 489 

operating system, 472-475 
packaging, 494496 
performance, 470-471 
PMS, 470, 471-475, 476, 489-494 
RT, 491-494 

ISP, 472, 491-49-3, 497-503 

CDC 8090 and 8092 (see CDC 160, A, G) 
CDP/Communications Data Processor (see 

C.E.C.E., 39 
Census, Bureau of, 157, 164-165 
CG24 (Lincoln Laboratory), 43 
Chasm special pulpose computer, 73 
COBOL 60 and 61 language, 45 
Columbia University Calculator, 46 
COMIT language, 33, 45 
ComLogNet, 45, 509-510 
CORC language, 45 
CPC/Card Programmed Calculator (IBM), 43, 

88 
CSIRAC, 89 
Culler-Fried on line language, 45 

ComLogNet) 

D825 and D830 (Burroughs), 44, 45, 257-260, 
446-455 

design philosophy, 447-450 
input-output, 454-455 
ISP, 45.3 
operating system, 450-455 
PMS, 260, 450-455 

DASK, 89 
Datamatic 1000 (Honeywell), 39, 43 
DATANET 30 (GE), 43 
Datatron 204, 205, and 220 (Burroughs), 39, 

IIDP-IS (Honeywell), 43 
DIIP-24, 224, and 124 (Honeywell), 43-44 
DDP-116, 316, 416, and 516 (Honeywell), 

DEC/Digital Equipment Corporation (see 

DEC 338, 260, 303-314, 396 

43, 44 

43-44, 512 

PDP- 1) 

interpreter, 305 
introduction, 305 

56 
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DEC 338, ISP, 305-309, 310-314 
PMS, 121 
(See ako PDP-8) 

(See also ACE) 
Deuce (English Electric), 39, 43-45, 191 

DMI/Data Machine Inc. Varian Associates, 

DMI 520/I (Varian), 44 
DM1 620 (Varian), 44 
Dutch Postal and Telecommunications 

Services, 200 
Dynamo language, 45 
DYSEAC (National Bureau of Standards), 39, 

43, 172, 440 

44 

E 101, 102, and 103 (Burroughs), 43, 44 
EAI/Electronic Associates Inc., 44 
EA1 640, 44 
Eccles-Jordan Flip-Flop, 46 
Eckert-Mauchly Computer 

Corporation * UNIVAC, 91 
EDSAC I and I1 (Cambridge University), 39, 

42-45, 58, 89, 139, 144, 196, 398 
EDVAC/Electronic Discrete Variable 

Automatic Computer (University of 
Pennsylvania) 39, 42-45, 95 

Eight-bit character computer, 170, 184-187, 
224 

introduction, 184 
ISP, 184, 185, 186-187 

EMR 6130, 44 
English Electric = ICT/International 

ENIAC/Electronic Numerical Integrator and 
Computers and Tabulators (see KDF 9) 

Computer (University of Pennsylvania), 
39, 42-43, 45-47, 88, 113 

Associates * UNIVAC, 43, 192 
ERA/Engineering Research 

(See also UNIVAC 1101, 1102; UNIVAC 
1103A) 

ERMA (see GE 100) 
ESS/Electronic Switching System (Bell 

EULER, 44, 73, 257, 348, 382-392 
System), 303 

interpreter (microprogram), 385-392 
introduction, 382-383 
ISP, 383-385, 388-391 
PMS, 382-392 

Fabri-Tek (see Bitran 6) 
FACT language, 45 
Ferranti Carp. Ltd. * ICT/International 

Computers and Tabulators, 39 
(See also Atlas; Mercury; Pegasus) 

FLAC (Florida), 39 
FOCAL (DEC) language, 236 
FORMAC (IBM) language, 45 
FORTRAN (IBM), FORTRAN 11, FORTRAN 

IV language, 45, 50, 73, 348 

FORTRAN Machine, 44, 348, 363-381 
interpreter, 366-379 
introduction, 363-364 
ISP, 363-365 
logical design, 365-381 
PMS, 365-366 
RT, 364-368, 375-381 

FX-1 (Lincoln Laboratory), 43-45 

6-15 (Bendix 3 CDC), 39, 43-44, 74, 191 
6-20 (Bendix =) CDC), 44, 57, 152 
Gamma 60 (Machines Bull), 44, 456 
GARDE 312 (GE), 43 
GE lOO/ERMA, 43 
GE 115, 43 
GE 205, 210, 215, 225, 235, 255, and 265, 

43-44 
GE 412, 435, 43-44 
GE 635, 625, 43 
GE 645 (General Electric), 43, 45, 79, 275 
GE 4040, 4050, 4060, 4020, and 4050 11, 43 
General Automation (see SPC-8) 
General Precision CDC (see LGP-30) 
Genie prooject (see BTSS) 
George (University of New South Wales), 257 
Gott Sei Danke, 346 
GPS language, 45 

H-200 series: 110, 120, 125, 200, 400, 1200, 
1250, 2200, 3200, 4200, and 8200 
(Honeywell), 43, 44, 58, 225 

H-1400 and 1800 (Honeywell), 43 
Harvard (see Marks) 
Hollerith Punched Cards, 46 
Honeywell (see Datamatic 1000; DDP-19; 

Host computer (see ARPA network) 
HP/Hewlett-Packard (see HP 9100A) 
HP 9100A, 44, 235-236, 243-256 

DDP-24; DDP-116; H-200; H-1400) 

D, 243-244, 254-256 
ISP, 243-249 
microprogram, 254-256 
packaging, 250, 252-253 
PMS, 235, 240-254 
RT, 250 
T, 243, 248, 253 

IAS/Institute for Advanced Studies nircchine 

IBM ASP/Attached-Support Processor, 506 
IBM 305 (disk), 43, 45 
IBM 650, 39, 43, 44, 91, 216, 220-223 

IBM 701, 39, 43-45, 47, 89, 515-516 

(see van Neumann) 

ISP, 220-223 

PMS, 515 
(See also IBM 7094) 

IBM 702, 39, 43, 47, 87 
IBM 705, 705 III, 708, and 7080, 39, 43-44, 

IBM 1130 (see IBM 1800) 
IBM 1401, 1440, and 1460, 43-45, 47, 61, 188, 

224-234, 562-,564 

47, 87, 433 

history, 225 
interpreter, 229 
introduction, 225-226 
ISP, 226-229, 231-234 
PMS, 226 
RT, 229-230 

IBM 1410 and 7010, 43, 44 
IBM 1620, 111, and 1710, 43-44, 225 
IBM 1800 and 1130, 43-45, 48, 55, 90, 396, 

399-420, 470, 575-576, 579, 583-586 
input-output, 405, 409-411 
interpreter, 408-409 
introduction, 3%-400 
ISP, 407416, 417-420 
PMS, 400-405, 404 
RT, 405-409, 411-413 

IBM 2938, 45, 72 
IBM 7030 (see Stretch) 
IBM 7070, 7072, 7074, 43, 44 
IHM 7094 I, 11, 7044, 7040, 7090, 709, and 

704, 30-32, 39, 43-45, 47, 54, 64, 70, 79, 
91, 149, 303, 306, 422, 433, 515-541, 
562-564 

history, 515-517 
interpreter, 522-523 
ISP, 523, 526-541 
multiprogramming, 523 
P(io), 524-525 
PMS, 517-519 
RT, 520-522 

IBM Multiplying Calculator, 46 
IBM Stretch (see Stretch) 
IBM System/360, 43-45, 61, 64, 303, 396 

addressing, 565-566, 594 
array processor, 576-579 
base register, 594 

bihliography, 587 
branch instructions, 505 
channel-to-channel adapter, 576 
circuits, 564, 603-604 
cost, 579-585 
critique by authors, 561-587 
data types, 564-565, 590-594 
design, 561-564, 588 
direct control, 597 

emulation, 562-563 
floating point, 591-592 
functional schematic, 589 
general registers, 564-565 
history, 561 

(See also design above) 
information formats (see data types above) 
innovations, 562 

(See also addressing above) 

(See also input-output below) 
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IBM System/360, input-output, 588, 598-601 
[See also P(io; data channels) below; PMS 

and PMS diagrams below] 
interpreter, 594-595, 604-605 
interrupts, 596-597 
introduction, 561, 588 
ISP, 564-566, 588-601 
logical structure, 588-601 

(See also ISP above) 
M(content addressable), 571, 573-574 
M(Large capacity store), 571-572, 582-583 
M(read only), 604-605 

(See also microprogramming below; 
Models 30, 40, and SO below) 

microprogramming, 563-564, 604-605 

model range, 561-564, 588, 602-606 

Model 20, 563-567 
Model 25, 184, 563, 567, 569 
Model 30, 236, 348, 382-392, 566-568, 

(See also Models 30, 40, and 50 below) 

(See also performance below) 

602-606 
ISP, 385-388 
microprogram, 382-385, 388-392 
RT, 386 

Model 67, 76, 79, 275, 561, 563, ,571, 

Model 75, 561, 563, 571 
Model 85, 76, 561, 563, 574-575 
Model 91, 561, 563, 575 
Models 30, 40, and 50, 561, 563, 566, 568, 

Mp, ,563, 571-572, 582-583, 602-603 
multiprocessing, 456-469, 585-587 
multiprogramming, 565-566, 571, 573-574, 

iletworks, 576-579, 581, 598 

performance, 563, 579-587, 602-606 
P(io; data channels), 573-574, 576-577, 

PMS and PMS diagrams, 563, 566-579, 

573-574 

602-603 

597-598 

(See also IBM ASP) 

598-601, 605-606 

602-606 
K(specia1 controls), 576 
Model 20, 567 
Model 44, 569-571, 569 
Model 67, 571, 573-574, 573 
Model 75, 567, 571-572 
Model 85, 574-575, 575 
Model 91, 575 
Models 30, 40, and SO, 65, 566-568, 

Ms (data cell, disk, drum), 577, 579 
Ms(magnetic tape), 578-579, 578 
P(array), 576-578, 576 
P(special), 576-578, 576 
S(c), 579, 581 

T(analog), 581 
T(audio), 579 
T(display), 579 

566-567 

(See also networks above; IBM ASP) 

IBM/System 360, PMS and PMS diagrams, 
T(print, punch, read), 580 
T(telephone, typewriter), 579, 581 

processor state, 564-565, 588, 596-598 
RT, 568, 570, 572, 603-604 
S(cross-point; time-multiplexed; BCU), 573 
SLT/Solid Logic Technology, 564, 603-604 
storage protection (see multiprogramming 

storage-to-storage channel, 576-577 
SVC/Supervisor Call, 597 
system implementations, 602-606 
timer, 597 
variable-length character strings, 591 

above) 

ASCII, 593 
decimal, 593-594 
EBCDIC, 592 

ICT/International Computers and Tabulators, 
91, 274 

(See also Atlas; KDF 9) 
ILLIAC I (University of Illinoiq), 39, 43-45, 

ILLIAC II (University of Illinois), 43 
ILLIAC Ill (University of Illinois), 43, 351 
ILLIAC IV (University of Illinois), 43-45, 47, 

89 

66, 72, 315, 320-330 
input-output, 322, 327-328 
interpreter, 322-325 
introduction, 320-321 
ISP, 322-325, 330-333 
PMS, 321-322, 327-329 

RT, 326 

(See also under ILLIAC) 

K(P), 322-323 

Illinois, University of, 43 

IMP computer (see ARPA, network) 
Instrumentation Laboratory, M.I.T. (see AGC) 
Interdata, Model 3 and 4, 44, 184 
IPL I, 11, Ill, IV, and V, 45, 257 
IPL VI/Information Processing Language. 44, 

45, 73, 257, 348-362 
design, 349-350 
interpreter, 351, 354-355, 359-362 
ISP, 354-359, 361-362 
RT, 352-354 

IPL VC, 257 

Jacquard Punched Card Loom, 46 
JOHNNIAC (RAND), 43-44, 78, 89 
JOSS (RAND) language, 45, 78 
JOVIAL (SDC) language, 45 

KDF 9 (English Electric), 44, 257-266 
D, 263-266 
introduction, 282 
ISP, 262-263 
PMS, 260 
RT, 264 

L.4RC (UNIVAC), 43-44, 86. 396-397 
Lehman Computer example (IBM Research), 

44-45, 446, 456-469 
application, 464-469 
design philosophy, 456-457 
instructions, 457-461 
interrupt, 458-461 
introduction, 456 
operating system, 461-463 
performance, 456-457, 463-469 
PMS, 459-461 
simulation, 463-469 

Leibniz Calculator, 46 
LEO I and 11, 39 
Leprechan (Bell Telephone Laboratories), 43 
LGP-30, and LGP-21 (General 

Precision =) CDC), 44, 45, 74, 91, 192. 
216-219 

ISP, 217, 218-219 
PMS, 217 

LINC/Laboratory Instrument Computer 

LINC-8 (DEC) (see PDP-8) 
Lincoln Laboratory (M.I.T.), 571 

(M.I.T. Lincoln Laboratory), 43, 44, 120 

(See also CG24; FX1; LINC; MTC; TX-0, 
TX-2) 

LISP 1.0 and 1.5 language, 45 
Lockheed Electronics (see MAC-16) 
Los Alamos (see AEC) 
LRL/Lawrence Radiation Laboratory, 

LKL network, 507 
Livermore, California, 396-397 

MAC-16 (Lockheed Electronics), 44 
MAD language (University of Michigan), 45 
MADM/Manchester Automatic Digital 

Manchester University, 39, 45, 340 
(See also Atlas; MADM; Mark I; Muse) 

MANIAC: I and 11 (University of California, 

Mark I (Manchester University), 43 
Mark I, 11, Ill, and IV (Harvard), 39, 42-43, 

Mathmatic language, 45 
MEG, 39 
Mercury (Ferranti), 39, 279 
Michigan, University of, MAD, MIDAC, 192, 

MIDAC (Michigan, University of), 39, 44, 192, 

Machine, 39, 58 

Los Alamos), 39, 43, 89 

46 

209-212, 571 

209-212 
ISP, 209-212 

MILSMAC, 347 
MISTIC, 43 
M.I.T. CTSS operating system, 45 
M.I.T./Massachusetts Institute of Technology 

(see AGC; GE 645; Lincoln Laboratory; 
MULTICS project; Whirlwind I) 

M.I.T. network, 507 
Monorobot, Monorobot XI, 39, 44 
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Monroe Calculator, 46 
Monroe Corporation, 46 
Moore School of Electrical Engineering (see 

MOSAIC, 39 
Motorola 1O(M), 44-45 
MTC/Memory Test Computer (M.I.T. Lincoln 

Laboratory), 39, 45, 89 
Mueller's Difference Engine, 46 
MULTICS project (M.I.T.), 45, 571 
Muse (Manchester University), 43, 277 

Pennsylvania, University of) 

NBS/National Bureau of Standards (see 

Neher Laboratory, 200 
Network of Computers, 504-512, 505-512 

DYSEAC; PILOT; SEAC) 

ARPA, 510-512 
ComLogNet, 509-510 
IBM ASP, 506 
LRL, 507 
M.I.T., 507 
SABRE, 504 
SAGE, 504 
Texas, University of, 506-507 
typical, 508-509 

NORC, 39, 44 
NOVA (LRL/Lawrence Radiation 

Laboratory), 44, 66, 315-319 
applications, 316-317 
introduction, 316 
ISP, 317-318 
RT, 318 

(See also ACE) 
NPL/National Physical Laboratory, 45 

Olivetti-Underwood (see Programma 101 Desk 

ONR/Office of Naval Research, 137 
ORACLE, 89 
ORDVAC (University of Illinois), 39, 43, 89 

Calculator) 

Pascal Calculator, 46 
PB/Packard Bell a Raytheon (see PH-250; 

PB-250, 44, 74, 101 
PB-440, 334 
PDC 808, 816, 44 
PDP-1 (DEC), 44-45 
PDP-4, 7, 9, and 15, 43-45 
PUP-8, 8S, 81, 8L, and 5, 20-32, 43-44, 49, 90, 

PR-440) 

120-136, 396 
applications, 120 
circuits, 132-133 
input-output, 123 
interpreter, 131 
interrupt, 123 
ISP, 22-33, 120-123, 127, 134-136 
Logical design, 127-133 

PDP-8, 8S, 81, 8L, and 5, M(core), 128-129 
PMS, 20-21, 123-131, 121, 124, 126, 128 
RT, 125, 127-131 
(See also DEC 338) 

PDP-10 and 6, 43-45, 79, 170, 275, 564 
PDP-12, LINC-8 (see PDP-8) 
Pegasus (Ferranti), 44, 62, 170-183, 564 

circuits, 171-174, 176 
introduction, 181 
ISP, 176-179, 182-183 
logcal design, 172-175, 179-181 
packaging, 174-176, 179-182 

Pennsylvania, University of (Moore School), 
43, 46, 05 

Philco 212, 44 
PILOT (National Bureau of Standards) 39, 43, 

(See also EDVAC; ENIAC) 

44, 75, 397-398, 440-445, 449 
applications, 440 
input-output, 444-445 
ISP, 442-444 
performance, 440-442 
PMS 398, 440-442 

Polymorphic (RW) (see RW-40 and 400) 
Programma 101 Desk Calculator 

(Olivetti-Underwood), 44, 216, 235, 
237-242 

ISP, 237-242 
PMS, 237-238, 237 

Programmed Console (Washington University), 

PUFFT, compiler, 45 
120 

RAND Corporation (see JOHNNIAC; JOSS) 
RAYDAC (Raytheon), 39 
RCA/Radio Corporation of America (see 

BIZMAC I, 11; SPECTRA 70 Series) 
RCA 110, 43, 44 
RCA 301 and 3301, 4.3 
RCA 501 and 601, 4.3, 44, 225 
RCA 1600, 184 
RCA Spectra 70, 561-562 
Recomp I, 11, and 111, 44 
Rice University computer, 45, 53 
RW/Radio Wooldridge (see AN/UYK) 
RW-40 and 400 (Thompson, Ramo, 

Wooldridge), 44, 53, 192, 400, 470-471, 
477-488 

design philosophy, 477 
interrupt, 481-482 
ISP, 470, 480-482 
ISP language, 486-488 
PMS, 471, 477-480, 482-485 

SABRE network (American Airlines), 45, 504 
SAGE/Semi-Automatic Ground Environment 

network, 45, 504 
SCC/Scientific Control Corp. 650, 120 
Schickhardt Calculator, 46 

SD-2 (Librascope), 44, 334, 341-347 
desip, 341-343 
interpreter, 550-552 
introduction, 341 
ISP, 343-347 
microprogram, 345-346 
packaging, 341-343 
PMS, 343 
RT, 343-345 

SDC/Systems Development Corp., 45 
SDS/Scientific Data Systems * XDS/Xerox 

Data Systems (see SDS 910; SDS 940 and 
945; Sigma 2 and 3; Sigma 5 and 7) 

SDS 92, 44, 120 
SDS 910, 020, 925, 030, 9300, 43, 44, 91, 291, 

542-560 
history, 542-543 
input-output, 543-545, 552-555 
interpreter, 551-552 
interrupt, 553-555 
introduction, 542-543 
ISP, 544-545, 548-550, 556-560 
PMS, 275, 543, 546-548, 546 
RT, 550-552 
(See olso BTSS) 

SDS 940 and 945 (SDS, University of 
California, Berkeley), 43-44, 79, 275, 
291-300, 542 

(See also BTSS) 
SEAC (National Bureau of Standards), 39, 

SEL/Systems Engineering Laboratories, 44 
SEL 810, 44 
Sigma 2 and 3 (SDS * XDS), 43-44, 78 
Sigma 5 and 7 (SDS 3 XDS), 43, 170, 396, 564 
SILLIAC, 89 
SIMSCRIPT language, 45 
SIMULA, language, 45 
SNOBOL language, 45 
SOL language, 45 
SOLOMON, 315, 320 
Soviet Academy of Sciences, 213 
SPC-8 and 12, 44 
SPECTRA 70 Series (RCA), 43 
SS 80 I and I1 (UNIVAC), 43 
Strela/Arrow (Russian), 44, 192, 213-215 

Stretch/IBM 7030, 43-45, 47, 91, 396-397, 

43-45, 172, 192, 209-212, 440 

ISP, 213-215 

421-439 
arithmetic, 428-431 
circuits, 433-438 

input-output, 421-422 
interrupt, 423 
introduction, 421 
ISP, 422-424 
K(P), 424-428 
look-ahead, 426-428 
packaging, 432, 438-439 
performance, 421-423, 425-426, 431-433 
PMS, 421-423, 425-426 

D, 427-431 
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Stretch/IBM 7030, RT, 426-431 
Subscriber Station (see ComLogNet) 
SWAC, 39, 43 
Systein/3fiO (see IBM System/360) 

Texas, University of, network, 506-507 
Toronto University Computer, 44 
TRAC language, 45 
TRE, 39 
TRW/Thompson, Ramo, Wooldridge (see RW-40 

Turing machine, 23 
TX-2 and TX-0 (Lincoln Laboratory, M.I.T.), 

39, 43-45, 274 

and 400) 

UNCOL language, 8-9, 13 
US. Army Ordnance Department, 92 
UNIVAC, 39, 43-45, 48, 91, 157-160 

applications, 164-165 
design constraints, 163 
input-outpnt, 158, 161-162 
interpreter, 159-161 
ISP, 157-160 
performance, 164-168 
PMS, 158 
reliability, 165-169 
RT, 157-160 
T(io), 161-163 
(See aEo SS 80 I and 11) 

UNIVAC 11 and 111, 39, 43-45 
UNIVAC 418, 1218, and 1818, 43-44 
UNIVAC 490, 491, 492, and 494, 43-44 
UNIVAC 1004 I, 11, 111, 1005 I, 11, and 111, 

UNIVAC 1050, 43, 44 
UNIVAC 1101 and 1102, 39, 43 
UNIVAC 1103A, 39, 43, 44, 48, 62, 192, 

43, 44 

205-208 
ISP, 205-208 

UNIVAC 1105, 39, 43 
UNIVAC 1108, 1107, and 1106, 10, 43-45, 62. 

170, 192, 564 
UNIVAC 1206, 43 
UNIVAC 1212 (Military), 43 
UNIVAC 9200 and 9300, 43 

Varian Associates (see under DMI) 
van Neumann/IAS/Institute for Advanced 

Studies, 39, 42, 44, 58, 89, 92-119, 152, 
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applications, 92-93 
checking, 118 
D, 96-111 
design constraints, 92-93 
input-output, 92, 117, 119 
interpreter, 111-119 
ISP, 111-119 
M, 94-96 

WEIZAC, 43, 89 
Whirlwind I (M.I.T.), 10, 39, 43-45, 55, 

58, 90, 137-145, 303, 470 
applications, 138 
D, 142 
interpreter, 140- 14 1 
introduction, 137-139 
ISP, 145 
K, 139-143 
M, 141 
packaging, 14 1-143 
PMS, 90, 138-139 

Wilkes’ microprogrammed computer example, 
44, 335-340 

design, 335-337 
introduction, 335 
ISP, 337-340 
microprogram, 339-340 
RT, 336 

XDS/Xerox Data Systems (see SDS) 

ZEBRA (Standard Telephones and Cables, 
Ltd.), 44, 191-192, 200-204, 216 

introduction, 200 
ISP, 200-204 
PMS, 201 

ZUSE Company, 39, 42 
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abbreviation/, 19, 607, 609 
acceptance test, UNIVAC, 165-166 
access-i-unit-operation, 633 
access-time, 620-622 
accessing algorithm, 41 
accumulator, ZEBRA, 202 
accumulator register, 59-60, 98 
accuracy, HP 9100 A, 246, 256 
acoustic delay line, 96 

action t, 23-24, 631-632 
action-sequence, 23, 631 
actual address, 76-81 

adaptability: 

[See also under M(delay line)] 

(See also physical address) 

D825, 447-448 
RW-400, 477-479 

adder, Pegasus, 174 
addition, van Neumann, 98-99 
address-expression, 631-632 
address-range [ 1, 24, 631-633 
address-size, P, 626-627 
addresses-per-instruction, P, 57-63, 627 

addressing (see memory addressing; memory 

addressing system, memory, 16 
aerospace computer, 146-1.56 
algorithm-encoding-efficiency, P, 627 
alias/, 19, 607, 609 
alphabet, 609, 613 
alternation 1 ,  indefinite expression, 17, 610 
and A, 25 

antecedent, 619 
applications: 

(See also instruction format) 

mapping; multiprogramming) 

(See also n-ary-boolean-operation) 

Lehman computer, 464-469 
NOVA, 316-317 
PDP-8, 120 
PILOT, 440 
UNIVAC I, 164-165 
van Neumann, 92-93 
Whirlwind I, 138 

approximation-, 607-608, 610 
architecture, 562 

(See also ISP; under PMS) 
archival memory [see M(archiva1)l 
area, 617, 619 
arithmetic: 

multiple-precision, AGC, 151-152 
parallel, 429-4,M 
serial, 428-429 
Stretch, 428-431 

arithmetic element, Whirlwind, 142 
arithmetic expression, 614 
arithmetic-function-operation, 614 
arithmetic organ, van Neumann, 98 

(See also D/data-operation) 
arithmetic unit, KDF 9, 263-266 
array instructions, NOVA, 316-319 
array processor [see P(array)] 
ASCII/American Standards Code for 

Information Interchange, 593 
assemble instruction, 457-458 
assignment: =, 23, 607, 609 
associative memory [see look-aside memory; 

attribute, 19, 607, 612-613 
attribute-list, 612-613 
attribute: value pair (see attribute; value) 
auto index register, 120-122, 134 
availability, 447 

Lehman computer, 456-457 
available space list, IPL VI, 352-353 

M(associative)] 

b (see bit) 
I3 line: 

Atlas, 277-278 
Manchester University, 340 
(See also index register) 

barrel, CDC 6600, 474, 489-491 
base, 24, 55-56, 614, 616, 631 
base-data-type, 630-631 
base register, MIDAC, 210 
bench-mark, 52 
bilinear switch, 623-624 
binary-arithmetic-operation + - , 614, 633-635 
binary-boolean-operation, 615, 633-635 
binary-decimal conversion, 21 1 

binary machine, 87-88 
binary-operation, 28, 633 
binary-value, 611 
bit/binary-digit, 611, 616-617 
bit string, 317-318 

(See also data-type, Stretch) 
block, 617 
block diagram (see PMS diagram; PMS level; 

block transfer, ZEBRA, 204 
BNF/Backus-Normal Form (Backus-Naur 

Form), 9 
boolean, 608, 615 
booleaii-expre\\lon, 615 

(See also ISP, IBM System/360) 

RT) 

boolean-operations E @ 3 V A -,, 608-609, 

branch instruction, 595 
breakouts, IPL VI, 350-351 
buffer module, RW-400, 482-484 
bulk core memory (see M/memory) 
bus, 10 (See also S/switch) 
business computer (see function) 
buzzer, ACE, 198 
by/byte, 616 

633-635 

IBM Stretch, 423 
IBM System/360, 591 

C/compnter (see computer) 
C(l Pc), 40-41, 63-70, 395 
C( l  Pc-nPio), 40-41, 63-70, 396-398 
capital letters, 609 
card, IBM, 617 
carrier, 618 

carry, 98-99 
casting out three, Stretch, 431 
central processor [see P(c)] 
channels [see P(io)] 
character-base, 631-632 
character/char, 616 
character generation instruction, 308 
character string, 184-185 

checking: 

data-type, 629-631 

(See also variable-length character string) 

Stretch, 431 
UNIVAC, 160-161, 168-169 
Whirlwind, 143-144 

circuit level, 4 
circuits: 

CDC 6600, 494-405 
component count, 470-471 
PDP-8, 132-133 
Pegasus, 171-174, 176 
Stretch, 433-438 

component count, 431-432 
class, 609-610 
cocomponent, 617 
co-incident current memory [see M(core)] 
colon : , 19, 612-613, 631 

combinatorial circuits, 5 
comma, 611 
commands, 608-610 

(See cilso attribute:valrie pair) 

(See also abbreviation; assignment, form; 
variable) 

COMMENT, 608 
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comments, 608 
communication computer (see function) 
communication multiplexing, 505 
compiler, EULER, 391-392 
complex, data-type, 631 
complex number arithmetic, 246, 255-256 
component: 

data-type, 629-631 

component-function, 617 
component-name, 617 
compound computer, 628 
compound-link, 619-620 
compound name (see name) 
compnter, 628 

control, 146-156 
duplex, 66 

computer levels, 3-11 
PDP-8, 126-127 

computer model, 63-66 
computer-space dimensions, 40 
concatenation 0, 24, 631-633 
concurrency, 617-618 
concurrency-type, 617 
condition, 23, 631 
condition codes, IBM 1800, 407 
conditional micro-order, 336-337 
configurator, IBM 1800, 400-403 
construction (see packagng) 
content addressable memory [see M(content 

contextual addressing, 267-268 
continuous-modulation, 618 
control, 624-625 

PMS, 616-619 

addressable)] 

ILLIAC IV, 322-323 
Stretch, 424-428 
Whirlwind, 139-142 
(See also interpreter; K/control; RT) 

control computer (see function) 
control-operation, 633 
control-organ, van Neumann, 111-119 
controlled-operation, 624-625 
conversion, 615-616 
conversion-arithmetic-operation, 633-634 
Cooley-Tukey algorithm, 73 
cooling, 470 

Pegasus, 181 
UNIVAC, 163 

core memory [see M(core)] 
cost, 616-617, 619 
count-expression, 614 
country, 619 
cross-point switch, 267 
crosshar switch, [see S(crotshar); tinder S(cross- 

point)] 
CRT/Cathode Ray Tube display [see under 

T(CRT)] 
current, 616 
cycle-time (see memory) 
cyclic memory [see M(cyclic)] 
cyclic switch, 623-624 

D/data-operation, 17, 23-36, 626 
d/decimal digit, 616 
D(Stretch), 427-431 
data break, PDP-8, 124-126 
data channel [see P(io)] 

IBM 7094, 523-525 
SDS 900 series, 543, 546-548, 552-555 

data-expression, 631 
data field register, 120, 523 
data flow, Stretch, 425-428 
data-operation, 17, 23-36, 626 
data-operation definition, ISP, 636-637 
data-operations table, 633-635 
data programs, IPL VI, 360 
data structure, IPL VI, 351, 354 
data-type, 23-36, 57 

ISP, 629-631 
P, 626-628 
Stretch, 423-424 

data-type format, ISP, 636-637 
data-type-name, 629-631 
decimal, 614 
decimal digit, 616 
decimal machine, 57, 87-88 
decimal-name, 614 
DECtape, 124-126 
definite expression, 607-608, 611-612 
definition: = (see assignment) 
delay, 1, 620 
delay line [see under M(de1ay line)] 
dequeue switch, 623-624 
descendants, 619 
descriptor, 79-81 

B 5000, 271-272 
design philosophy: 

D825, 447-450 
Lehman computer, 456-457 
SD-2, 341-343 

desk calculators, 235-256 
destination address, ACE, 194-199 
digital computer (see C/computer) 
digital differential analyzer, 304 
digits, 609 
dimension, 608, 615 
dimension-expression, 615 
direct access communications channel, SDS 

900 series (see data channel) 
direct memory access, PDP-8, 124-126 
direction, 618 
directive instructions, Lehman computer, 459 
discrete-modulation, 618 
disk, 74, 577, 579 
display processor [see P(display)] 
distribution, switch, 623-624 
divergence, T, 625-626 
divergence-rate, T, 625-626 
divide step, SDS 900 series (see ISP) 
division: 

nonrestoring, 107- 11 1 
restoring, 107-11 1 
UNIVAC, 158 

drum [see M(drum)] 
dynamic data types, 383 
dynamic storage allocation, 383-384 

EBCDIC/Extended Binary Coded Decimal 

ECL/Emitter Coupled Logic, 320 
edit instruction, 228 
effective address calculation process, ISP, 28, 

efficiency, processor, 626-628 
electrostatic memory, 75 
element-range/( ), 24, 631-633 
ellipses. . . , 608, 610 
emulation, 562-563 
encode, 16 
encoding, 618 
entity, 608, 611-612 
error-rate, 617, 619 
evoke operation +, 23, 631, 633 
EXAMPLE, 608 
excess three code, UNIVAC, 163 
expansibility criteria, D825, 448 
expression, 608 

definite, 607-608, 611-612 
indefinite, 607-608, 610 
optional, 613 
(See also boolean-expression; 

Interchange Code, 592 

59-60, 636-637 

count-expression; dimension-expression; 
relational-expression) 

expression-variables, 608 
extended core store/ECS, CDC 6600, 473 
external execute instruction, 458 
extra codes, 597 

AGC, 154-155 
Atlas, 274-278 
(See ulso syspop) 

fabrication (see packaging) 
family tree of computer design, 39 
fast Fourier transform, 73 
features, 225-226 
fetch-execute cycle (see interpreter) 
field, data-type, 631 
file, 617 

BTSS, 297-300 
file control (see function) 
fixed point (see data-type) 

fixed structure network, 504 
flag bit, IBM 1401, 226 
floating point, 97 

number-data-type, 630-631 

Atlas, 277-278, 283-285 
B 5000, 268-270 
HP 8100 A, 243-256 
IBM 7094, 527 
KDF 9, 263-266 
number-data-type, 630-631 
SDS 900 series, 544-545, 549-551 
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floating point, Stretch, 429-431, 433 
UNIVAC 1103A, 208 
Wilkes example, 335 

fork instruction, 325, 457 
form, 607, 610 
format, data-type, 629-631 
full-duplex, 617-618 
function, 37, 40, 46-49 

biisiness, 47-48 
C, 618 
communication, 48 
component, 617 
control, 48 
file control, 48 
operation, 28 
P, 626-627 
scientific, 47 

terminal, 48-4:) 
time-sharing, 49 

T, 625-626 

functional units, CDC 6600, 473, 494 

gate tubes, 112-119 
general conventions, PMS and ISP, 607-615 
general registers: 

&bit character computer, 184-187 
Pegasus, 176-379 

39-40, 43-46 
generations (first, second, third, and fourth), 

Gibson mix, 49-50 
graph-plot instructions, 308 

Half-diiplex, 617-618 
hexa-decimal-&@/hex, 616 
hierarchy (see structure) 

high-level language, B 5000, 267 
high-speed core memory (see M/memoryj 
history, 38-46, 617, 619 
hyphen-, 25, 607 
hyphen-name, 613-614 

switch, 623-624 

i-rate, 617-618 
i-imit/information unit, 16, 616-618 

base-unit, 616 
data-type, 629-631 
length, 616 

i-iinit-name, 616 
i-unit-prefix 
IBM-card, 617 
iconoscope tube, 84 
illegal instruction, BTSS, 293 
indefinite expression, 607-608, 610 
index#, 20, 613 
index register, 59-80 
information, 616 
information base, 24, 55-56, 614, 616, 631 
information-content, data-type, 629-631 

information length, 16 
information-rate, 617-618 
information units, 616-618 
inhibit drivers [see M(core)] 
input-output: 

ACE, 197-199 
Atlas, 274-283, 285-289 
BTSS, 297-300 
D825, 454-455 
IBM 1800, 405, 509-411 
IBM 7094, 524-525 
ILLIAC IV, 322, 327-328 
PDP-8, 123 
PILOT, 444-445 
SDS 900 series, 543-545, 552-555 
Stretch, exchange, 421-422 
UNIVAC I, 158, 161-162 

input and output organ, van Neumann, 91, 

instruction: 
117, 119 

control, DEC 338, 308-309 
data, DEC 338, 307-308 
ISP, 601-632 
special, Lehman computer, 457-461 

instruction backup register, IBM 7094, 

instruction buffers, 84 
520-522 

ILLIAC IV, 323-324 
(See also look-ahead; look-aside) 

instruction decoding diagram, 122-123, 184 
instruction-efficiency, P, 626-627 
instruction examples, ISP, 632, 635-637 
Instruction-execution, ISP, 25-36, 637 
instruction execution process, ISP, 637 
instruction-expression, 23, 631-632 
instruction format: 

0 address/stack, 62-64, 257-261 
stack: B 5000, 268-273 

1 address, 58-60, 64, 87-91 

1 + general register (see general regstersj 
1 + 1 address, IRM 650, 220-223 
1 + index address, 58-60, 87-9 1 
2 address, 60-61 

KDF 9; 262-266 

ACC, 145)-150 

RW-400, 470, 480-482, 486-488 
UNIVAC 1103A, 205-208 

MIDAC, 209-212 
Strela, 213-215 

general registers, 61, 64 
(See also general registers) 

IBM 1800, 407-408, 410-411 
ISP, 25, 636-637 
n + 1 address, 61, 191 
SUS 900 series, 544-545, 548-552 
variahle number of addresses per 

3 address, 60-61 

instruction, 63 
instruction highway, ACE, 197 
instruction interpretation process, ISP, 

636-637 

instruction interpreter (see interpreter) 
instruction look-ahead (see look-ahead) 
instruction-memory, P, 627-628 
instruction modification, 209-210 
instruction-set, 25 

ISP, 636-637 
K, 624-625 
P, 626 
(See also ISP) 

instruction-size, P, 626-627 
instruction-source, K, 624-625 
instruction unit, Stretch, 426-427 
integer-data-type, 630-631 
+ integer-data-type, 630-631 
integer-name, 614 
+ integer-name, 614 
- integer-name, 614 
integrated circuit memory (see M/memory) 
interaction controller, Lehman computer, 460 
interaction function, Lehman computer, 

interference, processor-memory, 463-4611 
interflow, 151 
interlace (see data channel, SDS 900 series) 
interleaving (see memory interleaving) 
interpretation-cycle, 22-36 

( See also interpreter) 
interpreter, 22-36 

AGC, 147-148 
DEC 338, 305 
EULER microprogrammed, 385-392 
FORTRAN Machine, 366-379 
IBM 1401, 229 
IBM 1800, 408-409 
IBM 7094, 522-523 
ILLIAC IV, 322-325 
IPL VI, 351, 354-355, 359-362 
ISP, 636-637 
PDP-8, 131 
SDS 900 series, 550-552 
Stretch (see instruction unit) 
UNIVAC, 15R-161 
von Neumann, Ill-119 
Whirlwind I, 140-141 

458-461 

interprocess communication, 41 
interprogram communication, 81-83 
interrupt/interprocess interrupts, 82-83, 411 

Atlas, 274-283 
B 5000, 267-272 
D823, 452-453 
Lehinan computer, 458-461 
PDP-8, 123 
RW-400, 48 1-482 
SDS 900 series, 553-5.55 
Stretch, 423 

interrnpt-response-time, P, 626-627 
intraprocess interrupt/trap, 82-83 

1/0 Bits: 
(See also extra codes; trap) 

PDP-8, 124-126 
SDS 900 series (see input-output) 
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ISP/Instruction-set Processor, 12, 22-33 
ACE, 193-199 
AGC, 152-155 
Atlas, 276-279, 283-285 
B 5000, 268-273 
BTSS, 292-297 
CDC 6600, 472, 401-493, 497-503 
DEC 338, 305-309, 310-314 
D825, 453 
%bit character computer, 184, 186-187 
EULER, 38.3-385, 388-391 
FORTRAN, 363-365 
HP 9100A, 243-249 
IBM 650, 220-223 
IBM 1401, 226-229, 231-234 
IBM 1800, 407-416, 417-420 
IBM 7094, 523, 526-541 
IBM System/360, Model 30, 385-388 
ILLIAC IV, 322-325, 330-333 
1PL VI, 354-358, 361-362 
KDF 9, 262-263 
LGP-30, LGP-21, 217, 218-219 
MlDAC, 209-212 
NOVA, 317-318 
PDO-8, 22-25, 26-27, 28-33, 120-123, 127, 

134-136 
Pegasus, 176-179, 182-183 
PILOT, 442-444 
Programma, 237-242 
RW-40, RW-400, 470, 480-482, 486-488 
SD-2, 343-347 
SDS 900 series, 544-545, 548-550, 556-560 
Strela, 213-215 
Stretch, 422-424 
UNIVAC, 157-160 
UNIV.4C 1103A, 205-208 
von Neumann, 111-119 
Whirlwind, 140-141, 145 
Wilkes example, 337-339 
ZEBRA, 200-204 

ISP conventions, 628-637 
italics, 24, 608 

join instruction, 457 

K/control, 16-22 

k/kilo, 616 
kernels, 464 
keyboard: 

(See also control) 

HP 9100A, 235, 244-249, 251-253 
Programma 101; 237-242 
[See also T(keyboard)] 

L/link, 16-22, 619-620 
label, 612 
labeled-entity, 612 
language, 9 

large capacity store/LCS, 571-572, 582-583 
lattice (see structure) 
length, 616 
length-type, data-type, 629-631 
level, system, 3-4 
LINCtape, 124-126 
lineage, 617, 619 
linear switch, 623-624 
link, 619-620 

delay, 620 
port-to-port delay, 620 

list, 607, 611 
list processing, EULER, 384 
list structure, IPL VI, 350 
literal syllable, B 5000; 272 
location, S, 623-624 
logic diagrams, PDP-8, 127-133 
logic equations, PDP-8, 127-133 
logic technology, 40, 617-618 
logical address, 76-81 

BTSS, 291 
(See also memory mapping; 
multiprogramming) 

logical design l e d ,  5 
FORTRAN Machine, 365-381 
PDP-8, 127-133 
Pegasus, 172-175, 179-181 

logical structure (see ISP, IBM System/m) 
look-ahead: 

Atlas, 281-285, 287-289 
CDC 6600, 492-494 
IBM 7094, 550-552 
ILLIAC IV, 323-324 
Stretch, 397, 422, 424-428 

[See also M(content addressable)] 
look-aside memory, 84, 574 

M/memory, 16-22 

M(associative), 76 

M(bu1k core), 74 
M(content addressable), 74 

(See also look-aside) 
M(core), PDP-8; 128-130 
M(cyclic), 73-74 
M(de1ay line; ACE, Deuce), 191, 193-199 
M(de1ay line; Pegasus), 173-174, 177 
M(de1ay line; UNIVAC), 163 
M(drum), 74 
M(e1ectrostatic; Whirlwind I), 141 
M(fixed-head disk), 74 
M(fixed-head disk; ILLIAC IV), 322, 327-328 
M(1arge storage; Whirlind), 137-138, 141 
M(magnetic card), 74 
M(magnetic card; HP 91(K)A), 248-249, 253 
M(1nagnetic card; Programma 101), 237-242 
M(magnetic tape), 74 
M(magnetic tape; IBM format), 126 
M(magnetic tape; RW-400), 483 

(See also memory) 

[See also M(content addressable)] 

M(magnetic tape; Univervo), 157 
M(moving head diskpak), 74 
M(p/primary memory), 17, 24, 74 
M(p; concurrency), 41, 76-81 
M(p; size), 41 
M(photostore; IBM), 507 
M(punched card), 74 

[See also T(punch)] 
M(queue), 73 
M(random), 75 
M(read only), 604-605 
M(read only; capacitor; System/360; Model 

30), 385-387 
M(read only; HP 9100A), 235, 250-253 
M(read only; rope; AGC), 146-147 
M(s/secondary), 74 
M(stack), 73 
M(stack; B SOOO), 269-271 
M(thin film; D825), 453-454 
M(togg1e switch; Whirlwind I), 142-143 
M(UNIVAC), 158, 164 
machine-independent language, B 5000; 267 
macro-parallelism, 456, 463 
magnetic card [see M(magnetic card)] 
magnetic tape [see M(magnetic tape)] 
mapetic wire memory, 96 
main line of computers, 87-91 
maintenance: 

ILLIAC IV, 328-329 
Pegasus, 181-182 
UNIVAC, 165-169 
Whirlwind I, 138-139, 142-143 

manufacturer catalog number, 617 
manufacturer name (see proper-name) 
manufacturer-type, 619 
map (see memory map; multiprogramming) 
marks, 609 
master control program, B 5000, 267-268 
master slave schemes, D825, 449 
matrix milltiply problem, Lehman computer, 

464-466 
medium, 618 
memory, 620-622 

access-time, 620-622 
cycle-time, 620-622 
function, 620-622 
information-rate, 620-622 
operations, 620-622 
permanency, 620-621 
portability, 620-621 
primary, 621 

[See also M(p)] 
processor state, 621 
secondary, 621 

[See also M(s)] 
size, 620-622 
technology, 620-622 

(See also M/memory; memory organ) 
memory access algorithm, 73 
memory addressing: 

AGC, 155-156 
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memory addressing: (cont.) 
SDS 900 series, 542, 549-550 

memory bus, Stretch, 422, 426 
(See also S/switch) 

memory declaration, 36 
memory-expression, 631-632 
memory interface connection, SDS 900 series, 

543, 546548, 555 
memory interleaving: 

Atlas, 289-290 
CDC 6600, 473, 493 
IBM 7094, 517-522 
ILLIAC IV, 322-324, 327-328 
Stretch, 397, 421-422 

BTSS, 291-295 
IBM 7094, 523 

(See also multiprogramming) 

memory map: 

memory mapping, 77-80 

memory organ, van Neumann, 92-96 
memory protection, IBM 1800, 408 
memory violation, BTSS, 294-295 
message concentrator, 120 
message switching, 505 
metanotation, 607-609 
micro-operation, Wilkes, 335-337, 339 
micro-order: 

System/360, Model 30, 385-388 
Wilkes, 335-337 

micro-parallelism, Lehman, 456 
micro-programme, Wilkes, 335 

[See aEo P(microprogram)] 
microprogram: 

control fields, 387 
HP 9100A, 254-256 
sequencing, 388 
status bits, 388 
symbolic representation, 388-389 
[See ulso P(microprogram)] 

microprogram processor [see P(microprogram)] 
micro-subroutines. Wilkes, 339-340 
mixed number, data-type, 630-631 
MOBF/mean-operations-between-failure, 

617-618 
modular scheme, D825, 449-450 
modulation, 618 
monitor map, BTSS, 291-295 
monitor mode, BTSS, 291-297 
moving head disk, 74, 577, 579 
Mp-concurrency, processor, 627-628 
MTBF/mean-time-between-failure, 617-618 
multiple addresses per instruction, 191 

multiple data stream, 83-84 
multiple instniction stream, 83-84 
multiplex, 617-618 
multiplexer, memory, IBM 7094 11, 518-519 

(See also S/switch) 
multiplication, 100-1 11 

AGC, 152 
UNIVAC, 157 

(See also instruction format) 

multiplication, Whirlwind, 142 
multiplier, 615 
multiplier-quotient register, 59 
multiply step, SDS 900 series (see ISP) 
multiprocessing, 446-469 
multiprogramming, 76, 274-275, 456-469 

Atlas, 274-283 
B 5000; 267-268 
BTSS, 291-295 
(See also memory map; multiprocessing; 

parallel processing) 

n-ary-arithmetic-operation, 614, 633-635 
n-ary-boolean-operation, 615, 633-635 
n-ary operation, 633 
name, 607, 609, 613-614 

component, 617 
compound, 25, 614 
hyphen, 613-614 
phrase, 613-614 
primitive, 613-614 
proper, 607, 617 
simple, 607, 613-614 

name-expression, 613 
nesting store, 263-266 

[See also M(stack)] 
network, 628 
network analysis problem, Lehman computer, 

466-469 
network computers, 447, 470-503 
next, 24, 631 
noisy mode floating-point, 422-423 
nonary operation, 633 
null, 607, 613 
number, 608, 614 
number-data-type, 630-631 
number-name, 614 
number representation, AGC, 150-152 
number-set-name, 615 

octal-digit, 616 
one-level store, Atlas, 179-283 
one’s complement, AGC, 150-152 
onion peeling, Lehman computer, 462-463 
operand call syllable, B 5000, 272 
operating system: 

Atlas, 279, 285-287 
B 5000, 267-268 
BTSS, 292-300 
CDC 6600, 472, 475 
D825, 450-455 
Lehman computer, 461-463 

D, 626 
K, 624-625 
M, 620-622 

port, 627-628 

operation, 616, 632-635 

P, 626-627 

operation, S, 623 

operation-code-size, processor, 626-627 
operation-expression, 631-635 
operation-modifier/{ 1, 30-32, 631-632 
operation-rate, port, 617-618 
operation-rate-set, 617 
operation-set, 617 
operation-time, 19 
operator syllable, B 5000, 272 
optimum coding, 193, 199 
optional expression, 607, 613 

T, 625-626 

P/processor, 17 

P(l address) (see instruction format) 
I’(2 address) (see instruction format) 
P(3 address) (see instruction format) 
P(n + 1 address) (see instruction format) 
P(array), 66 
P(array; ILLIAC IV), 320-333 
P(array; NOVA), 318-319 
P(c/central processor), 17-22, 71 
P(display), 72 
€’(io), 72, 303-304 
P(io; analog/digital; IBM 1800), 405, 409-416 
P(language), 63, 73, 257 
P(microprogram)/microprogram processor, 61, 

€‘(microprogram; SD-2), 34-347 
I’(microprogram; System/3f300, Model 30), 

I’(microprogram; Wilkes example), 335-340 
P(specia1 algorithm), 66, 72-73, 301 
P(stack) (see instruction format) 
P(vector move), 72 
1’-concurrency, 627-628 
packaging: 

CDC 6600, 494-496 
HP 9100A, 250, 252-253 
Pegasus, 174-176, 179-182 
SD-2, 341-343 
Stretch, 432, 438-439 
Whirlwind I, 141-143 

address, 120-134 

(See also processor) 

71, 334 

385, 388 

page: 

(See also memory mapping; multiprogram- 
ming) 

Atlas, 274, 276, 279-283 
BTSS, 291 
mapping, 79-80 

page address register, Atlas, 279-283 
parallel arithmetic (see arithmetic) 
parallel-by-function, CDC 6600, 491-494 
parallel processing, 446, 456-469 
parallel programs, IPL VI, 359-360 
parallelism, 456 
parameter, 19, 611 (see attribute) 
parameter-set, 611 
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parentheses ( ), 609 
performance, 37, 49-52 

CDC 6600, 470471 
Lehman example, 456-457, 4fX-469 
PILOT, 440-442 
Stretch, 421-423, 425-426, 431-433 
UNIVAC, 164-168 

period ., 25, 609, 614 
peripheral and control processors, CDC 6600, 

permanency: 
471-475, 489-491 

M, 620-622 
S, 623 

phrase-name, 613-614 
physical address, 76-81 

BTSS, 291 
(See also memory mapping; multiprogram- 

ming) 
pipeline processor, 84-85 
PMS conventions, 615-628 
PMS diagram, 16-22 
PMS level, 9-10, 15-22 

ACE, 191, 193, 198 

ARPA network, 511 
Atlas, 277, 279-283, 289-290 

BTSS, 275, 292 

ComLogNet, 509-510 
computer models, 63-66 
D825 and D830, 260, 450-451, 453-455 
Deuce, 191 
EULER, 382-392 
FORTRAN machine, 365-366 
HP 9100A, 235, 240-254 
IBM 701, 515 
1BM 1401, 226 
IBM 1800, 400-405, 404 
IBM 7094, 517, 518, 519 
IBM ASP, 506 
IBM System/360, 563, 579-587, 602-606 
ILLIAC IV, 321-322, 327-329 
KDF 9, 260 
Lehman Computer, 459-461 
LGP-30 I LGP-21, 217 
M.I.T. network, 507 
networks, 504, 505-512 

PILOT, 398, 440-442 
pipeline processor, 84 
Programma 101, 237, 237-238 
RW40, RW-400, 471, 477-480, 482-485 
SD-2, 343 
SDS 900 series, 275, 543, 546, 546-548 
Stretch, 421-423, 425-426 
S/switches, 67-69 
Texas, University, 506-507 
UNIVAC, 158 
UNIVAC 1108, 11 
Whirlwind I, 90, 1.38-139 

AGC, 146-148 

B 5000, 258-260, 268 

CDC 6tW0, 470, 471-475, 476, 480-494 

PDP-8, 20-21, 121, 123-131, 124, 126-128 

PMS notation, 19-22 
PMS primitives, 16-22 
PMS structure, 41 
PMS structure dimensions, 63-85 
polar coordinate arithmetic, 246, 255-256 
Polish notation, 270-271, 391 
port, 16-18, 617-618 
port-to-port delay, L, 620 
portability: M, 620-622 

postulation, indefinite-expression, 610 
power, 616-617, 619 
power supply: Pegasus, 181 

precision, data-type, 629-631 
primary computer, PILOT, 441-443 
primary memory [see M(core), Mp-concurrency] 
primitive-name, 613-614 
print column, 617 
process, BTSS, 293-297 
process control computer, IBM 1800, 399-420 
process map, BTSS, 293 
processing elements, ILLIAC IV, 321-322 
processor, 626-628 

T, 625 

UNIVAC, 163 

address-per-instruction, 627 
address-size, 626-627 
algorithm-encoding-efficiency, 626-627 
concurrency, 41, 83-85, 626-627 
data-types, 626-628 
encoding-efficiency, 626-627 
function, 626 
instruction-memory, 627 
instruction-size, 626-627 
interrupt-response-time, 626-627 

Mp-concurrency, 627-628 
operation-code size, 626-627 
P-concurrency, 627 
parallel/parallel-by-word, 83-84 
program-switching-time, 626-627 
serial, 83 
(See also P/processor) 

processor state, 24, 57-63 
program checking, Pegasus, 178 
program counter, Whirlwind, 140 
program entry mode, desk calculator, 235 
program field register, 120 
program level, 8-10 
program reference table, B 5000, 271-272 
program-switching-time, 626-627 
programmed operator, SDS 900 series, 542, 

ISP, 635-637 

544-545, 550 
(See also extra codes) 

programming criteria, D825, 448 
proper-name, 607-617 
protection and relocation registers, 80 
PSW/program status word (see processor state) 
punched card [see M(punched card)] 
push-pop instruction, DEC 338, 308-309 

pyramid, CDC 6600, 474 
(See also stack) 

quantity, 608, 615 
queue memory [see M(yueue)] 
quit instruction, 457 

random access memory [see M(random)] 
range-, indefinite expression, 19, 610 
readability, 618 
real address, 76-81 

record, 617 
recursive procedure, EULER, 383-384 
referent, data-type, 16, 629-630 
referent-expression, data-type, 629-630 
register, 632 
register transfer (see RT) 
relation, 608 
relational-arithmetic-operations 

= # < > 5 >,6008-609,634 
relational-expression, 615 
relational-i-unit-operations, 633-634 
relational-operation, 615, 634 
relations, 615 
reliability, 617-618 

HP 9100A, 253 

Lehman computer, 456-457 
network, 505 
Pegasus, 181-182 
UNIVAC, 166-168 
Whirlwind, 138-139 

relocation registers, 80 
(%e also memory mapping: multiprogrram- 

(See aIso physical address) 

ILLIAC IV, 328-329 

ming) 
renaming, 632 
repeat instruction, 207 

NOVA, 316 
replicated single-computer systems, 448 
resource allocation diagram, 10 
resume instruction, 458 
reverse polish, 262-263 
round-off, 104-107 
RT/register transfer level, 5-7 

Atlas, 287-289 
CDC 6600, 491494 
FORTRAN Machine, 364-368, 375-381 
HP 9100A, 250 
IBM 1401, 229-230 
IBM 1800, 405-409, 411-413 
1BM 7094, 520-522 
ILLIAC IV, 326 
IPL VI, 352-354 
KDF 9, 264 
NOVA, 318 

SD-2, 343-345 
SDS 900 series, 550-552 
Stretch, 426-431 
UNIV.4C, 157-1M 
Wilkes example, 336 
(See also logical design leuel; microprogram) 

PDP-8, 125, 127-133 
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S(crossbar; Mp-Pc; Lehman computer), 461 
S(cross-point), 67-70 
S(cross-point; BSOOO), 258, 267-268 
S(cross-point; D825), 450-454 
S(cross-point; non-hierarchy; RW-400), 478- 

S(duplex), 66-69 
S(hierarchy) 67-70 
S(1nter-memory transfer trunk; PILOT), 443 
S(non-hierarchy), 68-69 
S/sec/seconds, 616 
S(simplex), 66-69 
S/switch, 17-22, 41, 66-70 

S(Te1ephone exchange), 506 
S(trunk; CDC 6600), 493 
scientific computer (see function) 
scoreboard, CDC 6600, 473, 492 
scratch-pad memory, 58 
secondary computer, PILOT, 443444 
sementation, 77-81 

480 

(See also switch) 

(See also memory mapping; multiprogram- 
mind 

Selectron memory, 95 
semantics, 607-608 
semi-colon ;, 611 
sense amplifiers, 128-130 
sequencing (see interpretation-cycle) 
sequential circuits, 5 
serial arithmetic, 428-429 
serial computer microprogramming, 340 
set, 607, 611 
shared memory scheme, D825, 448-449 
sharing networks, 504-505 
sign, 614 
simple-computer, 628 
simple-link, 619-620 
simple-memory, 620-621 
simple-name, 607, 613-614 
simplex, 617-618 
simulation: 

digital computers (See also emulation; inter- 

Lehman computer, 463-469 
single data stream, 83-84 
single instruction stream, 83-84 
slave memory (see look-aide) 
SLT/Solid Logic Technoloa, 564, 603-604 
small letters, 609 
source address, ACE, 194-199 
space, SD-2, 341 
space -, 25, 607 
spacing, 609 
specialization, indefinite expression, 610 
split instruction, 457 
square root instruction, 241 
stack: 

B 5000, 2W-261, 269-271 
DEC 338, 308-309 
EULER, 385 
KDF 9, 260-261 

pretation-cycle) 

stack memory, 73 

stack switch, 623-624 
state, 616 
state diagram: 

ISP, 29 

[See also instruction format; M(stack)] 

(See also interpreter) 
PDP-8, 131 

state-system level, 7, 15-16 
staticizor, Pegasus, 174 
step, 631-632 
storage protection (see memory mapping; mem- 

store and forward network, 504 
stored program digital computer (see computer) 
string, 613 
structure, 37-38, 52-85 

ory protection; multiprogramming) 

computer, 628 
hierarchy, 63-70 
lattice, 65 
tree, 65 

subcomponents, 617 
subroutine calling instructions, PDP-8, 123, 135 
subroutine file, BTSS, 299-300 
subscripts (see base register; index register) 
subscripts/J,, 609 
subtraction, 99-100 
superscripts/?, 609 
SVC/Supervisor Call, 597 
switch, 41, 66-70, 623-624 

concurrency-type, 623-624 ’ 
control-terminal, 70 
distribution, 623 
hang-up-delay, 623-624 
hierarchy, 623 
location, 623 
permanency, 623-624 
processor-control, 69-70 
processor-memory, 66-69 
(See also S/switch) 

switch-type, 623 
syllable: 

B 5000, 272 
KDF 9, 263 

synchronizer, IBM, 518-519 (see controls) 
syntax, 607, 609 
syspop/system programmed operator, BTSS, 

system level, 3-4 
292 

T(CRT; DEC 338), 305 
T(CRT; HP 9100A), 243, 251 
T(CRT; RW400), 484 
T(keyboard; HP 9100A), 235, 244-249, 252-253 
T(keyboard to tape; Unityper), 161-162 
T(puuch; cardipaper tape), 580 
T(tape to print; Uniprinter), 161-162 
t/time, 616 
T/transducer/terminal, 17 

(See also transducer) 

table look-up: 
IBM 650; 220, 222 
ZEBRA, 204 

task, Lehman example, 456-458, 461-463 
technology, 53-55, 617-618 

M (see memory, technology) 
T, 625 

Teletype, 126 
temperature, 616-617, 619 
terminate instruction, 457458 
test and set instruction, 458 
test control, Whirlwind, 142-143 
tetrads, 112 
three addresses per instruction, 193-194 

time, 616 
time chart, 43-46 
time-sharing computer (see function, multipro- 

gramming) 
timer, IBM 1800. 411 
transducer, 625-626 

divergence, 625-626 
technology, 625 

transduction, T, 625-626 
transduction-technology, 625 
transmission-operation, 633 
transmit t, 23-24, 631-633 
trap: 

(See also instruction format) 

IBM 7094, 515, 522-524, 526, 532, 536, 541 
ILLIAC IV, 325 
(See ulso intraprocess interrupt/trap) 

tree (see structure, tree) 
trouble shooting (see maintenance) 
turn-around-time, 618 
twin mode instructions, SDS 900 series, 543-545 

unary-arithmetic-operation, 614, 633-635 
unary-boolean-operation, 615, 633-635 
unary operation, 28, 633 
unary-vector-operation, 633-634 
unit, 608, 615 
units, general, 616 
user mode, BTSS, 291-297 

value, 19, 607, 611-613 
variable, 607, 609-610 
variable-character-variable length strings, 414 
variable-length character string, 184-185, 224 

B 5000, 268-269, 272-273 
EULER, 383, 388-391 

variable structure network, 504 
vector display instructions, 308 
virtual memory/virtual address, 77-80 

(See also memory mapping; multiprogram- 
ming) 

virtual table of contents, 14 
voltage, 616 
volume, 617, 619 
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w/word, 617 
wait instruction, 458 
weight, 617, 619 
Wideband Communication Center, 507 
wiring (see packaging) 
word/w, 617 
word length, 56-57 

AGC, 146, 148-152 

word length, CDC 6600, 489, 492 
PILOT, 442444 
Stretch, 414-421 

(See also performance) 
Whirlwind, 137 

word mark character, IBM 1401, 226 
(See also data-type; design philosophy) 

word size, 40 
writability, 618 

x-list, 611 
x-name, 614 
x-set, 611 

I alternation 17, 610 
._  .- 
; semicolon, 611 
: colon, 19, 612-613, 631 
, comma, 611 
t transmit, 23-24, 631-633 
+ 
E 0 2 v A 7 

$ 634 

assignment, 23, 607, 609 

evoke operation, 23, 631, 633 
boolean-operation, 608- 

609,633-635 

= # < > 5 2 
? 611 

rehtional-arithmetic 
operations, 608-609, 634 

+ - unary-arithmetic-operation, 614-615, 

X / binary-arithmetic-operations, 614-615, 

- range, 19, 610 

J subscript, 609 
0 concatenation, 24, 631- 

i abbreviation, 19, 607, 609 
I space, 25, 607 
. period, 25, 609, 614 
$ 609, 616 

633-635 

633-635 

t superscript, 609 

633 

# index, 20, 613 
* 607, 613 
' name, 607, 617 
" 609 
0 null, 607, 613 

@ 615 
p 615 
( ) parentheses, 609 
[ ] address-range, 24, 631-633 
{ 1 operation-modifier, 30-32, 631-632 
( ) element range, 24, 631-633 
. . . ellipsis, 608, 610 


