
Chapter 1

CAMERA CALIBRATION

Camera calibration is a necessary step in 3D computer vision in order to extract
metric information from 2D images. It has been studied extensively in computer vi-
sion and photogrammetry, and even recently new techniques have been proposed. In
this chapter, we review the techniques proposed in the literature include those using
3D apparatus (two or three planes orthogonal to each other, or a plane undergoing
a pure translation, etc.), 2D objects (planar patterns undergoing unknown mo-
tions), 1D objects (wand with dots) and unknown scene points in the environment
(self-calibration). The focus is on presenting these techniques within a consistent
framework.

1.1 Introduction

Camera calibration is a necessary step in 3D computer vision in order to extract
metric information from 2D images. Much work has been done, starting in the
photogrammetry community (see [3, 6] to cite a few), and more recently in computer
vision ([12, 11, 33, 10, 37, 35, 22, 9] to cite a few). According to the dimension of the
calibration objects, we can classify those techniques roughly into three categories.

3D reference object based calibration. Camera calibration is performed by ob-
serving a calibration object whose geometry in 3-D space is known with very
good precision. Calibration can be done very efficiently [8]. The calibra-
tion object usually consists of two or three planes orthogonal to each other.
Sometimes, a plane undergoing a precisely known translation is also used [33],
which equivalently provides 3D reference points. This approach requires an
expensive calibration apparatus and an elaborate setup.

2D plane based calibration. Techniques in this category requires to observe a
planar pattern shown at a few different orientations [42, 31]. Different from
Tsai’s technique [33], the knowledge of the plane motion is not necessary.
Because almost anyone can make such a calibration pattern by him/her-self,
the setup is easier for camera calibration.

1D line based calibration. Calibration objects used in this category are com-
posed of a set of collinear points [44]. As will be shown, a camera can be
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calibrated by observing a moving line around a fixed point, such as a string
of balls hanging from the ceiling.

Self-calibration. Techniques in this category do not use any calibration object,
and can be considered as 0D approach because only image point correspon-
dences are required. Just by moving a camera in a static scene, the rigidity of
the scene provides in general two constraints [22, 21] on the cameras’ internal
parameters from one camera displacement by using image information alone.
Therefore, if images are taken by the same camera with fixed internal param-
eters, correspondences between three images are sufficient to recover both the
internal and external parameters which allow us to reconstruct 3-D structure
up to a similarity [20, 17]. Although no calibration objects are necessary, a
large number of parameters need to be estimated, resulting in a much harder
mathematical problem.

Other techniques exist: vanishing points for orthogonal directions [4, 19], and cali-
bration from pure rotation [16, 30].

Before going further, I’d like to point out that no single calibration technique
is the best for all. It really depends on the situation a user needs to deal with.
Following are my few recommendations:

• Calibration with apparatus vs. self-calibration. Whenever possible, if we
can pre-calibrate a camera, we should do it with a calibration apparatus.
Self-calibration cannot usually achieve an accuracy comparable with that of
pre-calibration because self-calibration needs to estimate a large number of
parameters, resulting in a much harder mathematical problem. When pre-
calibration is impossible (e.g., scene reconstruction from an old movie), self-
calibration is the only choice.

• Partial vs. full self-calibration. Partial self-calibration refers to the case where
only a subset of camera intrinsic parameters are to be calibrated. Along the
same line as the previous recommendation, whenever possible, partial self-
calibration is preferred because the number of parameters to be estimated is
smaller. Take an example of 3D reconstruction with a camera with variable
focal length. It is preferable to pre-calibrate the pixel aspect ratio and the
pixel skewness.

• Calibration with 3D vs. 2D apparatus. Highest accuracy can usually be
obtained by using a 3D apparatus, so it should be used when accuracy is
indispensable and when it is affordable to make and use a 3D apparatus. From
the feedback I received from computer vision researchers and practitioners
around the world in the last couple of years, calibration with a 2D apparatus
seems to be the best choice in most situations because of its ease of use and
good accuracy.

• Calibration with 1D apparatus. This technique is relatively new, and it is
hard for the moment to predict how popular it will be. It, however, should be
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useful especially for calibration of a camera network. To calibrate the relative
geometry between multiple cameras as well as their intrinsic parameters, it
is necessary for all involving cameras to simultaneously observe a number
of points. It is hardly possible to achieve this with 3D or 2D calibration
apparatus1 if one camera is mounted in the front of a room while another in
the back. This is not a problem for 1D objects. We can for example use a
string of balls hanging from the ceiling.

This chapter is organized as follows. Section 1.2 describes the camera model
and introduces the concept of the absolute conic which is important for camera
calibration. Section 1.3 presents the calibration techniques using a 3D apparatus.
Section 1.4 describes a calibration technique by observing a freely moving planar
pattern (2D object). Its extension for stereo calibration is also addressed. Sec-
tion 1.5 describes a relatively new technique which uses a set of collinear points (1D
object). Section 1.6 briefly introduces the self-calibration approach and provides
references for further reading. Section 1.7 concludes the chapter with a discussion
on recent work in this area.

1.2 Notation and Problem Statement

We start with the notation used in this chapter.

1.2.1 Pinhole Camera Model
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Figure 1.1. Pinhole camera model

A 2D point is denoted by m = [u, v]T . A 3D point is denoted by M = [X, Y, Z]T .
1An exception is when those apparatus are made transparent; then the cost would be much

higher.



4 Camera Calibration Chapter 1

We use x̃ to denote the augmented vector by adding 1 as the last element: m̃ =
[u, v, 1]T and M̃ = [X, Y, Z, 1]T . A camera is modeled by the usual pinhole (see
Figure 1.1): The image of a 3D point M, denoted by m is formed by an optical ray
from M passing through the optical center C and intersecting the image plane. The
three points M, m, and C are collinear. In Figure 1.1, for illustration purpose, the
image plane is positioned between the scene point and the optical center, which is
mathematically equivalent to the physical setup under which the image plane is in
the other side with respect to the optical center. The relationship between the 3D
point M and its image projection m is given by

sm̃ = A
[
R t

]
︸ ︷︷ ︸

P

M̃ ≡ PM̃ , (1.2.1)

with A =




α γ u0

0 β v0

0 0 1


 (1.2.2)

and P = A
[
R t

]
(1.2.3)

where s is an arbitrary scale factor, (R, t), called the extrinsic parameters, is the
rotation and translation which relates the world coordinate system to the camera
coordinate system, and A is called the camera intrinsic matrix, with (u0, v0) the
coordinates of the principal point, α and β the scale factors in image u and v axes,
and γ the parameter describing the skew of the two image axes. The 3× 4 matrix
P is called the camera projection matrix, which mixes both intrinsic and extrinsic
parameters. In Figure 1.1, the angle between the two image axes is denoted by θ,
and we have γ = α cot θ. If the pixels are rectangular, then θ = 90◦ and γ = 0.

The task of camera calibration is to determine the parameters of the transfor-
mation between an object in 3D space and the 2D image observed by the camera
from visual information (images). The transformation includes

• Extrinsic parameters (sometimes called external parameters): orientation (ro-
tation) and location (translation) of the camera, i.e., (R, t);

• Intrinsic parameters (sometimes called internal parameters): characteristics
of the camera, i.e., (α, β, γ, u0, v0).

The rotation matrix, although consisting of 9 elements, only has 3 degrees of free-
dom. The translation vector t obviously has 3 parameters. Therefore, there are 6
extrinsic parameters and 5 intrinsic parameters, leading to in total 11 parameters.

We use the abbreviation A−T for (A−1)T or (AT )−1.

1.2.2 Absolute Conic

Now let us introduce the concept of the absolute conic. For more details, the reader
is referred to [7, 15].
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Figure 1.2. Absolute conic and its image

A point x in 3D space has projective coordinates x̃ = [x1, x2, x3, x4]T . The
equation of the plane at infinity, Π∞, is x4 = 0. The absolute conic Ω is defined by
a set of points satisfying the equation

x2
1 + x2

2 + x2
3 = 0

x4 = 0 .
(1.2.4)

Let x∞ = [x1, x2, x3]T be a point on the absolute conic (see Figure 1.2). By
definition, we have xT

∞x∞ = 0. We also have x̃∞ = [x1, x2, x3, 0]T and x̃T
∞x̃∞ = 0.

This can be interpreted as a conic of purely imaginary points on Π∞. Indeed, let
x = x1/x3 and y = x2/x3 be a point on the conic, then x2 + y2 = −1, which is an
imaginary circle of radius

√−1.
An important property of the absolute conic is its invariance to any rigid trans-
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formation. Let the rigid transformation be H =
[
R t
0 1

]
. Let x∞ be a point on Ω.

By definition, its projective coordinates: x̃∞ =
[
x∞
0

]
with xT

∞x∞ = 0. The point

after the rigid transformation is denoted by x′∞, and

x̃′∞ = Hx̃∞ =
[
Rx∞

0

]
.

Thus, x′∞ is also on the plane at infinity. Furthermore, x′∞ is on the same Ω because

x′T∞x′∞ = (Rx∞)T (Rx∞) = xT
∞(RT R)x∞ = 0 .

The image of the absolute conic, denoted by ω, is also an imaginary conic, and
is determined only by the intrinsic parameters of the camera. This can be seen as
follows. Consider the projection of a point x∞ on Ω, denoted by m∞, which is
given by

m̃∞ = sA[R t]
[
x∞
0

]
= sARx∞ .

It follows that

m̃T A−T A−1m̃ = s2xT
∞RT Rx∞ = s2xT

∞x∞ = 0 .

Therefore, the image of the absolute conic is an imaginary conic, and is defined by
A−T A−1. It does not depend on the extrinsic parameters of the camera.

If we can determine the image of the absolute conic, then we can solve the
camera’s intrinsic parameters, and the calibration is solved.

We will show several ways in this chapter how to determine ω, the image of the
absolute conic.

1.3 Camera Calibration with 3D Objects

The traditional way to calibrate a camera is to use a 3D reference object such as
those shown in Figure 1.3. In Fig. 1.3a, the calibration apparatus used at INRIA [8]
is shown, which consists of two orthogonal planes, on each a checker pattern is
printed. A 3D coordinate system is attached to this apparatus, and the coordinates
of the checker corners are known very accurately in this coordinate system. A similar
calibration apparatus is a cube with a checker patterns painted in each face, so in
general three faces will be visible to the camera. Figure 1.3b illustrates the device
used in Tsai’s technique [33], which only uses one plane with checker pattern, but
the plane needs to be displaced at least once with known motion. This is equivalent
to knowing the 3D coordinates of the checker corners.

A popular technique in this category consists of four steps [8]:

1. Detect the corners of the checker pattern in each image;
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Figure 1.3. 3D apparatus for calibrating cameras

2. Estimate the camera projection matrix P using linear least squares;

3. Recover intrinsic and extrinsic parameters A, R and t from P;

4. Refine A, R and t through a nonlinear optimization.

Note that it is also possible to first refine P through a nonlinear optimization, and
then determine A, R and t from the refined P.

It is worth noting that using corners is not the only possibility. We can avoid
corner detection by working directly in the image. In [25], calibration is realized by
maximizing the gradients around a set of control points that define the calibration
object. Figure 1.4 illustrates the control points used in that work.

1.3.1 Feature Extraction

If one uses a generic corner detector, such as Harris corner detector, to detect
the corners in the check pattern image, the result is usually not good because the
detector corners have poor accuracy (about one pixel). A better solution is to
leverage the known pattern structure by first estimating a line for each side of the
square and then computing the corners by intersecting the fitted lines. There are two
common techniques to estimate the lines. The first is to first detect edges, and then
fit a line to the edges on each side of the square. The second technique is to directly
fit a line to each side of a square in the image such that the gradient on the line
is maximized. One possibility is to represent the line by an elongated Gaussian,
and estimate the parameters of the elongated Gaussian by maximizing the total
gradient covered by the Gaussian. We should note that if the lens distortion is not
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Figure 1.4. Control points used in a gradient-based calibration technique

severe, a better solution is to fit just one single line to all the collinear sides. This
will leads a much more accurate estimation of the position of the checker corners.

1.3.2 Linear Estimation of the Camera Projection Matrix

Once we extract the corner points in the image, we can easily establish their corre-
spondences with the points in the 3D space because of knowledge of the patterns.
Based on the projection equation (1.2.1), we are now able to estimate the camera
parameters. However, the problem is quite nonlinear if we try to estimate directly
A, R and t. If, on the other hand, we estimate the camera projection matrix P, a
linear solution is possible, as to be shown now.

Given each 2D-3D correspondence mi = (ui, vi) ↔ Mi = (Xi, Yi, Zi), we can
write down 2 equations based on (1.2.1):

[
Xi Yi Zi 1 0 0 0 0 uiXi uiYi uiZi ui

0 0 0 0 Xi Yi Zi 1 viXi viYi viZi vi

]

︸ ︷︷ ︸
Gi

p = 0

where p = [p11, p12, . . . , p34]T and 0 = [0, 0]T .
For n point matches, we can stack all equations together:

Gp = 0 with G = [GT
1 , . . . ,GT

n ]T

Matrix G is a 2n× 12 matrix. The projection matrix can now be solved by

min
p
‖Gp‖2 subject to ‖p‖ = 1
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The solution is the eigenvector of GT G associated with the smallest eigenvalue.
In the above, in order to avoid the trivial solution p = 0 and considering the fact

that p is defined up to a scale factor, we have set ‖p‖ = 1. Other normalizations are
possible. In [1], p34 = 1, which, however, introduce a singularity when the correct
value of p34 is close to zero. In [10], the constraint p2

31 + p2
32 + p2

33 = 1 was used,
which is singularity free.

Anyway, the above linear technique minimizes an algebraic distance, and yields
a biased estimation when data are noisy. We will present later an unbiased solution.

1.3.3 Recover Intrinsic and Extrinsic Parameters from P

Once the camera projection matrix P is known, we can uniquely recover the intrinsic
and extrinsic parameters of the camera. Let us denote the first 3× 3 submatrix of
P by B and the last column of P by b, i.e., P ≡ [B b]. Since P = A[R t], we
have

B = AR (1.3.1)
b = At (1.3.2)

From (1.3.1), we have

K ≡ BBT = AAT =




α2 + γ2 + u2
0︸ ︷︷ ︸

ku

u0 v0 + c β︸ ︷︷ ︸
kc

u0

u0 v0 + c α︸ ︷︷ ︸
kc

α2
v + v2

0︸ ︷︷ ︸
kv

v0

u0 v0 1




Because P is defined up to a scale factor, the last element of K = BBT is usually
not equal to 1, so we have to normalize it such that K33(the last element) = 1.
After that, we immediately obtain

u0 = K13 (1.3.3)
v0 = K23 (1.3.4)

β =
√

kv − v2
0 (1.3.5)

γ =
kc − u0 v0

β
(1.3.6)

α =
√

ku − u2
0 − γ2 (1.3.7)

The solution is unambiguous because: α > 0 and β > 0.
Once the intrinsic parameters, or equivalently matrix A, are known, the extrinsic

parameters can be determined from (1.3.1) and (1.3.2) as:

R = A−1B (1.3.8)

t = A−1b . (1.3.9)
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1.3.4 Refine Calibration Parameters Through a Nonlinear Opti-
mization

The above solution is obtained through minimizing an algebraic distance which is
not physically meaningful. We can refine it through maximum likelihood inference.

We are given n 2D-3D correspondences mi = (ui, vi) ↔ Mi = (Xi, Yi, Zi). As-
sume that the image points are corrupted by independent and identically distributed
noise. The maximum likelihood estimate can be obtained by minimizing the dis-
tances between the image points and their predicted positions, i.e.,

min
P

∑

i

‖mi − φ(P, Mi)‖2 (1.3.10)

where φ(P, Mi) is the projection of Mi onto the image according to (1.2.1).
This is a nonlinear minimization problem, which can be solved with the Levenberg-

Marquardt Algorithm as implemented in Minpack [23]. It requires an initial guess
of P which can be obtained using the linear technique described earlier. Note that
since P is defined up to a scale factor, we can set the element having the largest
initial value as 1 during the minimization.

Alternatively, instead of estimating P as in (1.3.10), we can directly estimate
the intrinsic and extrinsic parameters, A, R, and t, using the same criterion. The
rotation matrix can be parameterized with three variables such as Euler angles or
scaled rotation vector.

1.3.5 Lens Distortion

Up to this point, we use the pinhole model to describe a camera. It says that the
point in 3D space, its corresponding point in image and the camera’s optical center
are collinear. This linear projective equation is sometimes not sufficient, especially
for low-end cameras (such as WebCams) or wide-angle cameras; lens distortion has
to be considered.

According to [33], there are four steps in camera projection including lens dis-
tortion:

Step 1: Rigid transformation from world coordinate system (Xw, Yw, Zw) to cam-
era one (X, Y, Z):

[X Y Z]T = R [Xw Yw Zw]T + t

Step 2: Perspective projection from 3D camera coordinates (X, Y, Z) to ideal image
coordinates (x, y) under pinhole camera model:

x = f
X

Z
, y = f

Y

Z

where f is the effective focal length.
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Step 3: Lens distortion2:

x̆ = x + δx , y̆ = y + δy

where (x̆, y̆) are the distorted or true image coordinates, and (δx, δy) are dis-
tortions applied to (x, y).

Step 4: Affine transformation from real image coordinates (x̆, y̆) to frame buffer
(pixel) image coordinates (ŭ, v̆):

ŭ = d−1
x x̆ + u0 , v̆ = d−1

y y̆ + v0 ,

where (u0, v0) are coordinates of the principal point; dx and dy are distances
between adjacent pixels in the horizontal and vertical directions, respectively.

There are two types of distortions:

Radial distortion: It is symmetric; ideal image points are distorted along radial
directions from the distortion center. This is caused by imperfect lens shape.

Decentering distortion: This is usually caused by improper lens assembly; ideal
image points are distorted in both radial and tangential directions.

The reader is referred to [29, 3, 6, 37] for more details.
The distortion can be expressed as power series in radial distance r =

√
x2 + y2:

δx = x(k1r
2 + k2r

4 + k3r
6 + · · · ) + [p1(r2 + 2x2) + 2p2xy](1 + p3r

2 + · · · ) ,

δy = y(k1r
2 + k2r

4 + k3r
6 + · · · ) + [2p1xy + p2(r2 + 2y2)](1 + p3r

2 + · · · ) ,

where ki’s are coefficients of radial distortion and pj ’s and coefficients of decentering
distortion.

Based on the reports in the literature [3, 33, 36], it is likely that the distortion
function is totally dominated by the radial components, and especially dominated
by the first term. It has also been found that any more elaborated modeling not
only would not help (negligible when compared with sensor quantization), but also
would cause numerical instability [33, 36].

Denote the ideal pixel image coordinates by u = x/dx, and v = y/dy. By
combining Step 3 and Step 4 and if only using the first two radial distortion terms,
we obtain the following relationship between (ŭ, v̆) and (u, v):

ŭ = u + (u− u0)[k1(x2 + y2) + k2(x2 + y2)2] (1.3.11)

v̆ = v + (v − v0)[k1(x2 + y2) + k2(x2 + y2)2] . (1.3.12)

2Note that the lens distortion described here is different from Tsai’s treatment. Here, we go
from ideal to real image coordinates, similar to [36].
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Following the same reasoning as in (1.3.10), camera calibration including lens
distortion can be performed by minimizing the distances between the image points
and their predicted positions, i.e.,

min
A,R,t,k1,k2

∑

i

‖mi − m̆(A,R, t, k1, k2, Mi)‖2 (1.3.13)

where m̆(A,R, t, k1, k2, Mi) is the projection of Mi onto the image according to
(1.2.1), followed by distortion according to (1.3.11) and (1.3.12).

1.3.6 An Example

Figure 1.5 displays an image of a 3D reference object, taken by a camera to be
calibrated at INRIA. Each square has 4 corners, and there are in total 128 points
used for calibration.

Figure 1.5. An example of camera calibration with a 3D apparatus

Without considering lens distortion, the estimated camera projection matrix is

P =




7.025659e−01 −2.861189e−02 −5.377696e−01 6.241890e+01
2.077632e−01 1.265804e+00 1.591456e−01 1.075646e+01
4.634764e−04 −5.282382e−05 4.255347e−04 1



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From P, we can calculate the intrinsic parameters: α = 1380.12, β = 2032.57,
γ ≈ 0, u0 = 246.52, and v0 = 243.68. So, the angle between the two image
axes is 90◦, and the aspect ratio of the pixels is α/β = 0.679. For the extrinsic
parameters, the translation vector t = [−211.28,−106.06, 1583.75]T (in mm), i.e.,
the calibration object is about 1.5m away from the camera; the rotation axis is
[−0.08573,−0.99438, 0.0621]T (i.e., almost vertical), and the rotation angle is 47.7◦.

Other notable work in this category include [27, 38, 36, 18].

1.4 Camera Calibration with 2D Objects: Plane-based Technique

In this section, we describe how a camera can be calibrated using a moving plane.
We first examine the constraints on the camera’s intrinsic parameters provided by
observing a single plane.

1.4.1 Homography between the model plane and its image

Without loss of generality, we assume the model plane is on Z = 0 of the world
coordinate system. Let’s denote the ith column of the rotation matrix R by ri.
From (1.2.1), we have

s




u
v
1


 = A

[
r1 r2 r3 t

]



X
Y
0
1


 = A

[
r1 r2 t

]



X
Y
1


 .

By abuse of notation, we still use M to denote a point on the model plane, but
M = [X, Y ]T since Z is always equal to 0. In turn, M̃ = [X, Y, 1]T . Therefore, a
model point M and its image m is related by a homography H:

sm̃ = HM̃ with H = A
[
r1 r2 t

]
. (1.4.1)

As is clear, the 3× 3 matrix H is defined up to a scale factor.

1.4.2 Constraints on the intrinsic parameters

Given an image of the model plane, an homography can be estimated (see Ap-
pendix 1.A). Let’s denote it by H = [h1 h2 h3]. From (1.4.1), we have

[h1 h2 h3] = λA [ r1 r2 t ] ,

where λ is an arbitrary scalar. Using the knowledge that r1 and r2 are orthonormal,
we have

hT
1 A−T A−1h2 = 0 (1.4.2)

hT
1 A−T A−1h1 = hT

2 A−T A−1h2 . (1.4.3)
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These are the two basic constraints on the intrinsic parameters, given one homog-
raphy. Because a homography has 8 degrees of freedom and there are 6 extrinsic
parameters (3 for rotation and 3 for translation), we can only obtain 2 constraints
on the intrinsic parameters. Note that A−T A−1 actually describes the image of the
absolute conic [20]. In the next subsection, we will give an geometric interpretation.

1.4.3 Geometric Interpretation

We are now relating (1.4.2) and (1.4.3) to the absolute conic [22, 20].
It is not difficult to verify that the model plane, under our convention, is de-

scribed in the camera coordinate system by the following equation:

[
r3

rT
3 t

]T




x
y
z
w


 = 0 ,

where w = 0 for points at infinity and w = 1 otherwise. This plane intersects

the plane at infinity at a line, and we can easily see that
[
r1

0

]
and

[
r2

0

]
are two

particular points on that line. Any point on it is a linear combination of these two
points, i.e.,

x∞ = a

[
r1

0

]
+ b

[
r2

0

]
=

[
ar1 + br2

0

]
.

Now, let’s compute the intersection of the above line with the absolute conic.
By definition, the point x∞, known as the circular point [26], satisfies: xT

∞x∞ = 0,
i.e., (ar1 + br2)T (ar1 + br2) = 0, or a2 + b2 = 0 . The solution is b = ±ai, where
i2 = −1. That is, the two intersection points are

x∞ = a

[
r1 ± ir2

0

]
.

The significance of this pair of complex conjugate points lies in the fact that they
are invariant to Euclidean transformations. Their projection in the image plane is
given, up to a scale factor, by

m̃∞ = A(r1 ± ir2) = h1 ± ih2 .

Point m̃∞ is on the image of the absolute conic, described by A−T A−1 [20]. This
gives

(h1 ± ih2)T A−T A−1(h1 ± ih2) = 0 .

Requiring that both real and imaginary parts be zero yields (1.4.2) and (1.4.3).
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1.4.4 Closed-form solution

We now provide the details on how to effectively solve the camera calibration prob-
lem. We start with an analytical solution. This initial estimation will be followed
by a nonlinear optimization technique based on the maximum likelihood criterion,
to be described in the next subsection.

Let

B = A−T A−1 ≡



B11 B12 B13

B12 B22 B23

B13 B23 B33


 (1.4.4)

=




1
α2 − γ

α2β
v0γ−u0β

α2β

− γ
α2β

γ2

α2β2 + 1
β2 −γ(v0γ−u0β)

α2β2 − v0
β2

v0γ−u0β
α2β −γ(v0γ−u0β)

α2β2 − v0
β2

(v0γ−u0β)2

α2β2 + v2
0

β2 +1


 . (1.4.5)

Note that B is symmetric, defined by a 6D vector

b = [B11, B12, B22, B13, B23, B33]T . (1.4.6)

Let the ith column vector of H be hi = [hi1, hi2, hi3]T . Then, we have

hT
i Bhj = vT

ijb (1.4.7)

with vij = [hi1hj1, hi1hj2 +hi2hj1, hi2hj2, hi3hj1 +hi1hj3, hi3hj2 +hi2hj3, hi3hj3]T .
Therefore, the two fundamental constraints (1.4.2) and (1.4.3), from a given homog-
raphy, can be rewritten as 2 homogeneous equations in b:

[
vT

12

(v11 − v22)T

]
b = 0 . (1.4.8)

If n images of the model plane are observed, by stacking n such equations as
(1.4.8) we have

Vb = 0 , (1.4.9)

where V is a 2n × 6 matrix. If n ≥ 3, we will have in general a unique solution b
defined up to a scale factor. If n = 2, we can impose the skewless constraint γ = 0,
i.e., [0, 1, 0, 0, 0, 0]b = 0, which is added as an additional equation to (1.4.9). (If
n = 1, we can only solve two camera intrinsic parameters, e.g., α and β, assuming
u0 and v0 are known (e.g., at the image center) and γ = 0, and that is indeed what
we did in [28] for head pose determination based on the fact that eyes and mouth
are reasonably coplanar. In fact, Tsai [33] already mentions that focal length from
one plane is possible, but incorrectly says that aspect ratio is not.) The solution
to (1.4.9) is well known as the eigenvector of VT V associated with the smallest
eigenvalue (equivalently, the right singular vector of V associated with the smallest
singular value).
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Once b is estimated, we can compute all camera intrinsic parameters as follows.
The matrix B, as described in Sect. 1.4.4, is estimated up to a scale factor, i.e.,,
B = λA−T A with λ an arbitrary scale. Without difficulty, we can uniquely extract
the intrinsic parameters from matrix B.

v0 = (B12B13 −B11B23)/(B11B22 −B2
12)

λ = B33 − [B2
13 + v0(B12B13 −B11B23)]/B11

α =
√

λ/B11

β =
√

λB11/(B11B22 −B2
12)

γ = −B12α
2β/λ

u0 = γv0/α−B13α
2/λ .

Once A is known, the extrinsic parameters for each image is readily computed.
From (1.4.1), we have

r1 = λA−1h1 , r2 = λA−1h2 , r3 = r1 × r2 , t = λA−1h3

with λ = 1/‖A−1h1‖ = 1/‖A−1h2‖. Of course, because of noise in data, the
so-computed matrix R = [r1, r2, r3] does not in general satisfy the properties of
a rotation matrix. The best rotation matrix can then be obtained through for
example singular value decomposition [13, 41].

1.4.5 Maximum likelihood estimation

The above solution is obtained through minimizing an algebraic distance which is
not physically meaningful. We can refine it through maximum likelihood inference.

We are given n images of a model plane and there are m points on the model
plane. Assume that the image points are corrupted by independent and identically
distributed noise. The maximum likelihood estimate can be obtained by minimizing
the following functional:

n∑

i=1

m∑

j=1

‖mij − m̂(A,Ri, ti, Mj)‖2 , (1.4.10)

where m̂(A,Ri, ti, Mj) is the projection of point Mj in image i, according to equa-
tion (1.4.1). A rotation R is parameterized by a vector of 3 parameters, denoted
by r, which is parallel to the rotation axis and whose magnitude is equal to the
rotation angle. R and r are related by the Rodrigues formula [8]. Minimizing
(1.4.10) is a nonlinear minimization problem, which is solved with the Levenberg-
Marquardt Algorithm as implemented in Minpack [23]. It requires an initial guess
of A, {Ri, ti|i = 1..n} which can be obtained using the technique described in the
previous subsection.

Desktop cameras usually have visible lens distortion, especially the radial com-
ponents. We have included these while minimizing (1.4.10). See my technical
report [41] for more details.
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1.4.6 Dealing with radial distortion

Up to now, we have not considered lens distortion of a camera. However, a desktop
camera usually exhibits significant lens distortion, especially radial distortion. The
reader is referred to Section 1.3.5 for distortion modeling. In this section, we only
consider the first two terms of radial distortion.

Estimating Radial Distortion by Alternation. As the radial distortion is expected
to be small, one would expect to estimate the other five intrinsic parameters, using
the technique described in Sect. 1.4.5, reasonable well by simply ignoring distortion.
One strategy is then to estimate k1 and k2 after having estimated the other param-
eters, which will give us the ideal pixel coordinates (u, v). Then, from (1.3.11) and
(1.3.12), we have two equations for each point in each image:

[
(u−u0)(x2+y2) (u−u0)(x2+y2)2

(v−v0)(x2+y2) (v−v0)(x2+y2)2

] [
k1

k2

]
=

[
ŭ−u
v̆−v

]
.

Given m points in n images, we can stack all equations together to obtain in total
2mn equations, or in matrix form as Dk = d, where k = [k1, k2]T . The linear
least-squares solution is given by

k = (DT D)−1DT d . (1.4.11)

Once k1 and k2 are estimated, one can refine the estimate of the other parameters
by solving (1.4.10) with m̂(A,Ri, ti, Mj) replaced by (1.3.11) and (1.3.12). We can
alternate these two procedures until convergence.

Complete Maximum Likelihood Estimation. Experimentally, we found the con-
vergence of the above alternation technique is slow. A natural extension to (1.4.10)
is then to estimate the complete set of parameters by minimizing the following
functional:

n∑

i=1

m∑

j=1

‖mij − m̆(A, k1, k2,Ri, ti, Mj)‖2 , (1.4.12)

where m̆(A, k1, k2,Ri, ti, Mj) is the projection of point Mj in image i according to
equation (1.4.1), followed by distortion according to (1.3.11) and (1.3.12). This is
a nonlinear minimization problem, which is solved with the Levenberg-Marquardt
Algorithm as implemented in Minpack [23]. A rotation is again parameterized
by a 3-vector r, as in Sect. 1.4.5. An initial guess of A and {Ri, ti|i = 1..n}
can be obtained using the technique described in Sect. 1.4.4 or in Sect. 1.4.5. An
initial guess of k1 and k2 can be obtained with the technique described in the last
paragraph, or simply by setting them to 0.

1.4.7 Summary

The recommended calibration procedure is as follows:

1. Print a pattern and attach it to a planar surface;
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2. Take a few images of the model plane under different orientations by moving
either the plane or the camera;

3. Detect the feature points in the images;

4. Estimate the five intrinsic parameters and all the extrinsic parameters using
the closed-form solution as described in Sect. 1.4.4;

5. Estimate the coefficients of the radial distortion by solving the linear least-
squares (1.4.11);

6. Refine all parameters, including lens distortion parameters, by minimizing
(1.4.12).

There is a degenerate configuration in my technique when planes are parallel to
each other. See my technical report [41] for a more detailed description.

In summary, this technique only requires the camera to observe a planar pattern
from a few different orientations. Although the minimum number of orientations
is two if pixels are square, we recommend 4 or 5 different orientations for better
quality. We can move either the camera or the planar pattern. The motion does
not need to be known, but should not be a pure translation. When the number of
orientations is only 2, one should avoid positioning the planar pattern parallel to
the image plane. The pattern could be anything, as long as we know the metric on
the plane. For example, we can print a pattern with a laser printer and attach the
paper to a reasonable planar surface such as a hard book cover. We can even use
a book with known size because the four corners are enough to estimate the plane
homographies.

1.4.8 Experimental Results

The proposed algorithm has been tested on both computer simulated data and real
data. The closed-form solution involves finding a singular value decomposition of
a small 2n× 6 matrix, where n is the number of images. The nonlinear refinement
within the Levenberg-Marquardt algorithm takes 3 to 5 iterations to converge. Due
to space limitation, we describe in this section one set of experiments with real data
when the calibration pattern is at different distances from the camera. The reader
is referred to [41] for more experimental results with both computer simulated and
real data, and to the following Web page:
http://research.microsoft.com/~zhang/Calib/
for some experimental data and the software.

The example is shown in Fig. 1.6. The camera to be calibrated is an off-the-shelf
PULNiX CCD camera with 6 mm lens. The image resolution is 640×480. As can be
seen in Fig. 1.6, the model plane contains a 9× 9 squares with 9 special dots which
are used to identify automatically the correspondence between reference points on
the model plane and square corners in images. It was printed on a A4 paper with
a 600 DPI laser printer, and attached to a cardboard.
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(A) (B)

Figure 1.6. Two sets of images taken at different distances to the calibration
pattern. Each set contains five images. On the left, three images from the set taken
at a close distance are shown. On the right, three images from the set taken at a
larger distance are shown.
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Table 1.1. Calibration results with the images shown in Figure 1.6

image set α β ϑ u0 v0 k1 k2

A 834.01 839.86 89.95◦ 305.51 240.09 -0.2235 0.3761
B 836.17 841.08 89.92◦ 301.76 241.51 -0.2676 1.3121

A+B 834.64 840.32 89.94◦ 304.77 240.59 -0.2214 0.3643

In total 10 images of the plane were taken (6 of them are shown in Fig. 1.6). Five
of them (called Set A) were taken at close range, while the other five (called Set B)
were taken at a larger distance. We applied our calibration algorithm to Set A, Set
B, and also to the whole set (called Set A+B). The results are shown in Table 1.1.
For intuitive understanding, we show the estimated angle between the image axes,
ϑ, instead of the skew factor γ. We can see that the angle ϑ is very close to 90◦,
as expected with almost all modern CCD cameras. The cameras parameters were
estimated consistently for all three sets of images, except the distortion parameters
with Set B. The reason is that the calibration pattern only occupies the central part
of the image in Set B, where lens distortion is not significant and therefore cannot
be estimated reliably.

1.4.9 Related Work

Almost at the same time, Sturm and Maybank [31], independent from us, developed
the same technique. They assumed the pixels are square (i.e., γ = 0) and have
studied the degenerate configurations for plane-based camera calibration.

Gurdjos et al. [14] have re-derived the plane-based calibration technique from
the center line constraint.

My original implementation (only the executable) is available at
http://research.microsoft.com/~zhang/calib/.
Bouguet has re-implemented my technique in Matlab, which is available at
http://www.vision.caltech.edu/bouguetj/calib doc/.

In many applications such as stereo, multiple cameras need to be calibrated
simultaneously in order to determine the relative geometry between cameras. In
2000, I have extended (not published) this plane-based technique to stereo calibra-
tion for my stereo-based gaze-correction project [40, 39]. The formulation is similar
to (1.4.12). Consider two cameras, and denote the quantity related to the second
camera by ′. Let (Rs, ts) be the rigid transformation between the two cameras such
that (R′, t′) = (R, t) ◦ (Rs, ts) or more precisely: R′ = RRs and t′ = Rts + t.
Stereo calibration is then to solve A,A′, k1, k2, k

′
1, k

′
2, {(Ri, ti)|i = 1, . . . , n}, and
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(Rs, ts) by minimizing the following functional:
n∑

i=1

m∑

j=1

[
δij‖mij − m̆(A, k1, k2,Ri, ti, Mj)‖2 + δ′ij‖m′

ij − m̆(A′, k′1, k
′
2,R

′
i, t

′
i, Mj)‖2

]

(1.4.13)
subject to

R′
i = RiRs and t′i = Rits + ti .

In the above formulation, δij = 1 if point j is visible in the first camera, and
δij = 0 otherwise. Similarly, δ′ij = 1 if point j is visible in the second camera.
This formulation thus does not require the same number of feature points to be
visible over time or across cameras. Another advantage of this formulation is that
the number of extrinsic parameters to be estimated has been reduced from 12n if
the two cameras are calibrated independently to 6n + 6. This is a reduction of 24
dimensions in parameter space if 5 planes are used.

Obviously, this is a nonlinear optimization problem. To obtain the initial guess,
we run first single-camera calibration independently for each camera, and compute
Rs through SVD from R′

i = RiRs (i = 1, . . . , n) and ts through least-squares
from t′i = Rits + ti (i = 1, . . . , n). Recently, a closed-form initialization technique
through factorization of homography matrices is proposed in [34].

1.5 Solving Camera Calibration With 1D Objects

In this section, we describe in detail how to solve the camera calibration problem
from a number of observations of a 1D object consisting of 3 collinear points moving
around one of them [43, 44]. We only consider this minimal configuration, but it is
straightforward to extend the result if a calibration object has four or more collinear
points.

1.5.1 Setups With Free-Moving 1D Calibration Objects

We now examine possible setups with 1D objects for camera calibration. As already
mentioned in the introduction, we need to have several observations of the 1D
objects. Without loss of generality, we choose the camera coordinate system to
define the 1D objects; therefore, R = I and t = 0 in (1.2.1).

Two points with known distance. This could be the two endpoints of a stick, and
we take a number of images while waving freely the stick. Let A and B be the two 3D
points, and a and b be the observed image points. Because the distance between
A and B is known, we only need 5 parameters to define A and B. For example, we
need 3 parameters to specify the coordinates of A in the camera coordinate system,
and 2 parameters to define the orientation of the line AB. On the other hand, each
image point provides two equations according to (1.2.1), giving in total 4 equations.
Given N observations of the stick, we have 5 intrinsic parameters and 5N parameters
for the point positions to estimate, i.e., the total number of unknowns is 5 + 5N .
However, we only have 4N equations. Camera calibration is thus impossible.
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Three collinear points with known distances. By adding an additional point,
say C, the number of unknowns for the point positions still remains the same, i.e.,
5 + 5N , because of known distances of C to A and B. For each observation, we have
three image points, yielding in total 6N equations. Calibration seems to be plausi-
ble, but is in fact not. This is because the three image points for each observation
must be collinear. Collinearity is preserved by perspective projection. We therefore
only have 5 independent equations for each observation. The total number of inde-
pendent equations, 5N , is always smaller than the number of unknowns. Camera
calibration is still impossible.

Four or more collinear points with known distances. As seen above, when the
number of points increases from two to three, the number of independent equations
(constraints) increases by one for each observation. If we have a fourth point, will
we have in total 6N independent equations? If so, we would be able to solve the
problem because the number of unknowns remains the same, i.e., 5 + 5N , and we
would have more than enough constraints if N ≥ 5. The reality is that the addition
of the fourth point or even more points does not increase the number of independent
equations. It will always be 5N for any four or more collinear points. This is because
the cross ratio is preserved under perspective projection. With known cross ratios
and three collinear points, whether they are in space or in images, other points are
determined exactly.

1.5.2 Setups With 1D Calibration Objects Moving Around a fixed
Point

From the above discussion, calibration is impossible with a free moving 1D calibra-
tion object, no matter how many points on the object. Now let us examine what
happens if one point is fixed. In the sequel, without loss of generality, point A is the
fixed point, and a is the corresponding image point. We need 3 parameters, which
are unknown, to specify the coordinates of A in the camera coordinate system, while
image point a provides two scalar equations according to (1.2.1).

Two points with known distance. They could be the endpoints of a stick, and
we move the stick around the endpoint that is fixed. Let B be the free endpoint
and b, its corresponding image point. For each observation, we need 2 parameters
to define the orientation of the line AB and therefore the position of B because the
distance between A and B is known. Given N observations of the stick, we have 5
intrinsic parameters, 3 parameters for A and 2N parameters for the free endpoint
positions to estimate, i.e., the total number of unknowns is 8 + 2N . However, each
observation of b provides two equations, so together with a we only have in total
2 + 2N equations. Camera calibration is thus impossible.

Three collinear points with known distances. As already explained in the last
subsection, by adding an additional point, say C, the number of unknowns for
the point positions still remains the same, i.e., 8 + 2N . For each observation, b
provides two equations, but c only provides one additional equation because of
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the collinearity of a, b and c. Thus, the total number of equations is 2 + 3N
for N observations. By counting the numbers, we see that if we have 6 or more
observations, we should be able to solve camera calibration, and this is the case as
we shall show in the next section.

Four or more collinear points with known distances. Again, as already explained
in the last subsection, The number of unknowns and the number of independent
equations remain the same because of invariance of cross-ratios. This said, the more
collinear points we have, the more accurate camera calibration will be in practice
because data redundancy can combat the noise in image data.

1.5.3 Basic Equations

Figure 1.7. Illustration of 1D calibration objects

Refer to Figure 1.7. Point A is the fixed point in space, and the stick AB moves
around A. The length of the stick AB is known to be L, i.e.,

‖B− A‖ = L . (1.5.1)

The position of point C is also known with respect to A and B, and therefore

C = λAA + λBB , (1.5.2)
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where λA and λB are known. If C is the midpoint of AB, then λA = λB = 0.5.
Points a, b and c on the image plane are projection of space points A, B and C,
respectively.

Without loss of generality, we choose the camera coordinate system to define
the 1D objects; therefore, R = I and t = 0 in (1.2.1). Let the unknown depths for
A, B and C be zA, zB and zC , respectively. According to (1.2.1), we have

A = zAA−1ã (1.5.3)

B = zBA−1b̃ (1.5.4)

C = zCA−1c̃ . (1.5.5)

Substituting them into (1.5.2) yields

zC c̃ = zAλAã + zBλBb̃ (1.5.6)

after eliminating A−1 from both sides. By performing cross-product on both sides
of the above equation with c̃, we have

zAλA(ã× c̃) + zBλB(b̃× c̃) = 0 .

In turn, we obtain

zB = −zA
λA(ã× c̃) · (b̃× c̃)

λB(b̃× c̃) · (b̃× c̃)
. (1.5.7)

From (1.5.1), we have

‖A−1(zBb̃− zAã)‖ = L .

Substituting zB by (1.5.7) gives

zA‖A−1
(
ã +

λA(ã× c̃) · (b̃× c̃)

λB(b̃× c̃) · (b̃× c̃)
b̃
)‖ = L .

This is equivalent to
z2
AhT A−T A−1h = L2 (1.5.8)

with

h = ã +
λA(ã× c̃) · (b̃× c̃)

λB(b̃× c̃) · (b̃× c̃)
b̃ . (1.5.9)

Equation (1.5.8) contains the unknown intrinsic parameters A and the unknown
depth, zA, of the fixed point A. It is the basic constraint for camera calibration
with 1D objects. Vector h, given by (1.5.9), can be computed from image points
and known λA and λB . Since the total number of unknowns is 6, we need at least six
observations of the 1D object for calibration. Note that A−T A actually describes
the image of the absolute conic [20].
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1.5.4 Closed-Form Solution

Let

B = A−T A−1 ≡



B11 B12 B13

B12 B22 B23

B13 B23 B33


 (1.5.10)

=




1
α2 − γ

α2β
v0γ−u0β

α2β

− γ
α2β

γ2

α2β2 + 1
β2 −γ(v0γ−u0β)

α2β2 − v0
β2

v0γ−u0β
α2β −γ(v0γ−u0β)

α2β2 − v0
β2

(v0γ−u0β)2

α2β2 + v2
0

β2 +1


 . (1.5.11)

Note that B is symmetric, and can be defined by a 6D vector

b = [B11, B12, B22, B13, B23, B33]T . (1.5.12)

Let h = [h1, h2, h3]T , and x = z2
Ab, then equation (1.5.8) becomes

vT x = L2 (1.5.13)

with
v = [h2

1, 2h1h2, h
2
2, 2h1h3, 2h2h3, h

2
3]

T .

When N images of the 1D object are observed, by stacking n such equations as
(1.5.13) we have

Vx = L21 , (1.5.14)

where V = [v1, . . . ,vN ]T and 1 = [1, . . . , 1]T . The least-squares solution is then
given by

x = L2(VT V)−1VT 1 . (1.5.15)

Once x is estimated, we can compute all the unknowns based on x = z2
Ab.

Let x = [x1, x2, . . . , x6]T . Without difficulty, we can uniquely extract the intrinsic
parameters and the depth zA as

v0 = (x2x4 − x1x5)/(x1x3 − x2
2)

zA =
√

x6 − [x2
4 + v0(x2x4 − x1x5)]/x1

α =
√

zA/x1

β =
√

zAx1/(x1x3 − x2
2)

γ = −x2α
2β/zA

u0 = γv0/α− x4α
2/zA .

At this point, we can compute zB according to (1.5.7), so points A and B can
be computed from (1.5.3) and (1.5.4), while point C can be computed according to
(1.5.2).
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1.5.5 Nonlinear Optimization

The above solution is obtained through minimizing an algebraic distance which is
not physically meaningful. We can refine it through maximum likelihood inference.

We are given N images of the 1D calibration object and there are 3 points on
the object. Point A is fixed, and points B and C moves around A. Assume that
the image points are corrupted by independent and identically distributed noise.
The maximum likelihood estimate can be obtained by minimizing the following
functional:

N∑

i=1

(‖ai − φ(A, A)‖2 + ‖bi − φ(A, Bi)‖2 + ‖ci − φ(A, Ci)‖2
)

, (1.5.16)

where φ(A, M) (M ∈ {A, Bi, Ci}) is the projection of point M onto the image, according
to equations (1.5.3) to (1.5.5). More precisely, φ(A, M) = 1

zM
AM, where zM is the

z-component of M.
The unknowns to be estimated are:

• 5 camera intrinsic parameters α, β, γ, u0 and v0 that define matrix A;

• 3 parameters for the coordinates of the fixed point A;

• 2N additional parameters to define points Bi and Ci at each instant (see below
for more details).

Therefore, we have in total 8 + 2N unknowns. Regarding the parameterization for
B and C, we use the spherical coordinates φ and θ to define the direction of the 1D
calibration object, and point B is then given by

B = A + L




sin θ cosφ
sin θ sin φ

cos θ




where L is the known distance between A and B. In turn, point C is computed
according to (1.5.2). We therefore only need 2 additional parameters for each ob-
servation.

Minimizing (1.5.16) is a nonlinear minimization problem, which is solved with
the Levenberg-Marquardt Algorithm as implemented in Minpack [23]. It requires
an initial guess of A, A, {Bi, Ci|i = 1..N} which can be obtained using the technique
described in the last subsection.

1.5.6 Estimating the fixed point

In the above discussion, we assumed that the image coordinates, a, of the fixed
point A are known. We now describe how to estimate a by considering whether the
fixed point A is visible in the image or not.
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Invisible fixed point. The fixed point does not need to be visible in the image.
And the camera calibration technique becomes more versatile without the visibility
requirement. In that case, we can for example hang a string of small balls from
the ceiling, and calibrate multiple cameras in the room by swinging the string. The
fixed point can be estimated by intersecting lines from different images as described
below.

Each observation of the 1D object defines an image line. An image line can be
represented by a 3D vector l = [l1, l2, l3]T , defined up to a scale factor such as a
point m = [u, v]T on the line satisfies lT m̃ = 0. In the sequel, we also use (n, q)
to denote line l, where n = [l1, l2]T and q = l3. To remove the scale ambiguity, we
normalize l such that ‖l‖ = 1. Furthermore, each l is associated with an uncertainty
measure represented by a 3× 3 covariance matrix Λ.

Given N images of the 1D object, we have N lines: {(li,Λi)|i = 1, . . . , N}. Let
the fixed point be a in the image. Obviously, if there is no noise, we have lTi ã = 0,
or nT

i a + qi = 0. Therefore, we can estimate a by minimizing

F =
N∑

i=1

wi‖lTi ã‖2 =
N∑

i=1

wi‖nT
i a+ qi‖2 =

N∑

i=1

wi(aT ninT
i a+2qinT

i a+ q2
i ) (1.5.17)

where wi is a weighting factor (see below). By setting the derivative of F with
respect to a to 0, we obtain the solution, which is given by

a = −
( N∑

i=1

wininT
i

)−1( N∑

i=1

wiqini

)
.

The optimal weighting factor wi in (1.5.17) is the inverse of the variance of lTi ã,
which is wi = 1/(ãT Λiã). Note that the weight wi involves the unknown a. To
overcome this difficulty, we can approximate wi by 1/ trace(Λi) for the first iter-
ation, and by re-computing wi with the previously estimated a in the subsequent
iterations. Usually two or three iterations are enough.

Visible fixed point. Since the fixed point is visible, we have N observations:
{ai|i = 1, . . . , N}. We can therefore estimate a by minimizing

∑N
i=1 ‖a − ai‖2,

assuming that the image points are detected with the same accuracy. The solution
is simply a = (

∑N
i=1 ai)/N .

The above estimation does not make use of the fact that the fixed point is
also the intersection of the N observed lines of the 1D object. Therefore, a better
technique to estimate a is to minimize the following function:

F =
N∑

i=1

[
(a−ai)T V−1

i (a−ai)+wi‖lTi ã‖2] =
N∑

i=1

[
(a−ai)T V−1

i (a−ai)+wi‖nT
i a+qi‖2

]

(1.5.18)
where Vi is the covariance matrix of the detected point ai. The derivative of the
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above function with respect to a is given by

∂F
∂a

= 2
N∑

i=1

[
V−1

i (a− ai) + wininT
i a + wiqini

]
.

Setting it to 0 yields

a =
( N∑

i=1

(V−1
i + wininT

i )
)−1( N∑

i=1

(V−1
i ai − wiqini)

)
.

If more than three points are visible in each image, the known cross ratio provides
an additional constraint in determining the fixed point.

For an accessible description of uncertainty manipulation, the reader is referred
to [45, Chapter 2].

1.5.7 Experimental Results

The proposed algorithm has been tested on both computer simulated data and real
data.

Computer Simulations

The simulated camera has the following property: α = 1000, β = 1000, γ = 0,
u0 = 320, and v0 = 240. The image resolution is 640 × 480. A stick of 70 cm is
simulated with the fixed point A at [0, 35, 150]T . The other endpoint of the stick is
B, and C is located at the half way between A and B. We have generated 100 random
orientations of the stick by sampling θ in [π/6, 5π/6] and φ in [π, 2π] according to
uniform distribution. Points A, B, and C are then projected onto the image.

Gaussian noise with 0 mean and σ standard deviation is added to the projected
image points a, b and c. The estimated camera parameters are compared with
the ground truth, and we measure their relative errors with respect to the focal
length α. Note that we measure the relative errors in (u0, v0) with respect to α,
as proposed by Triggs in [32]. He pointed out that the absolute errors in (u0, v0)
is not geometrically meaningful, while computing the relative error is equivalent to
measuring the angle between the true optical axis and the estimated one.

We vary the noise level from 0.1 pixels to 1 pixel. For each noise level, we
perform 120 independent trials, and the results shown in Fig. 1.8 are the average.
Figure 1.8a displays the relative errors of the closed-form solution while Figure 1.8b
displays those of the nonlinear minimization result. Errors increase almost linearly
with the noise level. The nonlinear minimization refines the closed-form solution,
and produces significantly better result (with 50% less errors). At 1 pixel noise
level, the errors for the closed-form solution are about 12%, while those for the
nonlinear minimization are about 6%.
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(a) Closed-form solution

(b) Nonlinear optimization

Figure 1.8. Calibration errors with respect to the noise level of the image points.
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Table 1.2. Calibration results with real data.
Solution α β γ u0 v0

Closed-form 889.49 818.59 -0.1651 (90.01◦) 297.47 234.33
Nonlinear 838.49 799.36 4.1921 (89.72◦) 286.74 219.89
Plane-based 828.92 813.33 -0.0903 (90.01◦) 305.23 235.17
Relative difference 1.15% 1.69% 0.52% (0.29◦) 2.23% 1.84%

Frame 10 Frame 60

Frame 90 Frame 140

Figure 1.9. Sample images of a 1D object used for camera calibration.
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Figure 1.10. A sample image of the planar pattern used for camera calibration.
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Real Data

For the experiment with real data, I used three toy beads from my kids and strung
them together with a stick. The beads are approximately 14 cm apart (i.e., L = 28).
I then moves the stick around while trying to fix one end with the aid of a book.
A video of 150 frames was recorded, and four sample images are shown in Fig. 1.9.
A bead in the image is modeled as a Gaussian blob in the RGB space, and the
centroid of each detected blob is the image point we use for camera calibration.
The proposed algorithm is therefore applied to the 150 observations of the beads,
and the estimated camera parameters are provided in Table 1.2. The first row is the
estimation from the closed-form solution, while the second row is the refined result
after nonlinear minimization. For the image skew parameter γ, we also provide the
angle between the image axes in parenthesis (it should be very close to 90◦).

For comparison, we also used the plane-based calibration technique described
in [42] to calibrate the same camera. Five images of a planar pattern were taken,
and one of them is shown in Fig. 1.10. The calibration result is shown in the third
row of Table 1.2. The fourth row displays the relative difference between the plane-
based result and the nonlinear solution with respect to the focal length (we use
828.92). As we can observe, the difference is about 2%.

There are several sources contributing to this difference. Besides obviously the
image noise and imprecision of the extracted data points, one source is our current
rudimentary experimental setup:

• The supposed-to-be fixed point was not fixed. It slipped around on the surface.

• The positioning of the beads was done with a ruler using eye inspection.

Considering all the factors, the proposed algorithm is very encouraging.

1.6 Self-Calibration

Self-calibration is also called auto-calibration. Techniques in this category do not
require any particular calibration object. They can be considered as 0D approach
because only image point correspondences are required. Just by moving a camera in
a static scene, the rigidity of the scene provides in general two constraints [22, 21, 20]
on the cameras’ internal parameters from one camera displacement by using image
information alone. Absolute conic, described in Section 1.2.2, is an essential concept
in understanding these constraints. Therefore, if images are taken by the same
camera with fixed internal parameters, correspondences between three images are
sufficient to recover both the internal and external parameters which allow us to
reconstruct 3-D structure up to a similarity [20, 17]. Although no calibration objects
are necessary, a large number of parameters need to be estimated, resulting in a
much harder mathematical problem.

We do not plan to go further into details of this approach because two recent
books [15, 7] provide an excellent recount of those techniques.
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1.7 Conclusion

In this chapter, we have reviewed several camera calibration techniques. We have
classified them into four categories, depending whether they use 3D apparatus, 2D
objects (planes), 1D objects, or just the surrounding scenes (self-calibration). Rec-
ommendations on choosing which technique were given in the introduction section.

The techniques described so far are mostly focused on a single-camera cali-
bration. We touched a little bit on stereo calibration in Section 1.4.9. Camera
calibration is still an active research area because more and more applications use
cameras. In [2], spheres are used to calibrate one or more cameras, which can be
considered as a 2D approach since only the surface property is used. In [5], a tech-
nique is described to calibrate a camera network consisting of an omni-camera and
a number of perspective cameras. In [24], a technique is proposed to calibrate a
projector-screen-camera system.

1.A Estimating Homography Between the Model Plane and its
Image

There are many ways to estimate the homography between the model plane and its
image. Here, we present a technique based on maximum likelihood criterion. Let
Mi and mi be the model and image points, respectively. Ideally, they should satisfy
(1.4.1). In practice, they don’t because of noise in the extracted image points. Let’s
assume that mi is corrupted by Gaussian noise with mean 0 and covariance matrix
Λmi . Then, the maximum likelihood estimation of H is obtained by minimizing
the following functional

∑

i

(mi − m̂i)T Λ−1
mi

(mi − m̂i) ,

where m̂i =
1

h̄T
3 Mi

[
h̄T

1 Mi

h̄T
2 Mi

]
with h̄i, the ith row of H.

In practice, we simply assume Λmi = σ2I for all i. This is reasonable if points
are extracted independently with the same procedure. In this case, the above
problem becomes a nonlinear least-squares one, i.e., minH

∑
i ‖mi − m̂i‖2. The

nonlinear minimization is conducted with the Levenberg-Marquardt Algorithm as
implemented in Minpack [23]. This requires an initial guess, which can be obtained
as follows.

Let x = [h̄T
1 , h̄T

2 , h̄T
3 ]T . Then equation (1.4.1) can be rewritten as

[
M̃T 0T −uM̃T

0T M̃T −vM̃T

]
x = 0 .

When we are given n points, we have n above equations, which can be written in
matrix equation as Lx = 0, where L is a 2n×9 matrix. As x is defined up to a scale
factor, the solution is well known to be the right singular vector of L associated with
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the smallest singular value (or equivalently, the eigenvector of LT L associated with
the smallest eigenvalue). In L, some elements are constant 1, some are in pixels,
some are in world coordinates, and some are multiplication of both. This makes L
poorly conditioned numerically. Much better results can be obtained by performing
a simple data normalization prior to running the above procedure.
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