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Abstract—Zero-knowledge proofs have a vast applicability
in the domain of cryptography, stemming from the fact that
they can be used to force potentially malicious parties to abide
by the rules of a protocol, without forcing them to reveal
their secrets. Σ-protocols are a class of zero-knowledge proofs
that can be implemented efficiently and that suffice for a
great variety of practical applications. This paper presents a
first machine-checked formalization of a comprehensive theory
of Σ-protocols. The development includes basic definitions,
relations between different security properties that appear
in the literature, and general composability theorems. We
show its usefulness by formalizing—and proving the security—
of concrete instances of several well-known protocols. The
formalization builds on CertiCrypt, a framework that provides
support to reason about cryptographic systems in the Coq
proof assistant, and that has been previously used to formalize
security proofs of encryption and signature schemes.

I. INTRODUCTION

Proofs of knowledge [1], [2] are two-party interactive pro-

tocols where one party, called the prover, convinces the other

one, called the verifier, that she knows something. Typically,

both parties share a common input x and something refers

to a witness w of membership of the input x to an NP
language. Proofs of knowledge are useful to enforce honest

behavior of potentially malicious parties [3]: the knowledge

witness acts as an authentication token used to establish

that the prover is a legitimate user of a service provided

by the verifier, or as evidence that a message sent by the

prover has been generated in accordance to the rules of a

protocol. Proofs of knowledge must be complete, so that a

prover that has indeed knowledge of a witness can convince

a honest verifier, and sound, so that a dishonest prover

has little chance of being convincing. In addition, practical

applications often require to preserve secrecy or anonymity;

in such cases the proof should not leak anything about

the witness. Zero-knowledge proofs are computationally

convincing proofs of knowledge that achieve this goal, i.e.

they are convincing and yet the verifier does not learn

anything from interacting with the prover beyond the fact

that the prover knows a witness for their common input.

This property has an elegant formulation: a protocol is said

to be zero-knowledge when transcripts of protocol runs

between a prover P and a (possibly dishonest) verifier V
can be efficiently simulated without ever interacting with the

prover—but with access to the strategy of V . In particular,

this implies that proofs are not transferable; a conversation

is convincing only for the verifier interacting with the prover

and cannot be replayed to convince a third party.

In his PhD dissertation [4], Cramer introduced the concept

of Σ-protocols, a class of three-move interactive protocols

that are suitable as a basis for the design of many efficient

and secure cryptographic services. Cramer described Σ-

protocols as abstract modules and showed that they are

realizable when instantiated for most computational as-

sumptions commonly considered in cryptography, including

the difficulty of computing discrete logarithms or factoring

integers, or the existence of some abstract function families

(e.g. one-way group homomorphisms). In addition, he gave

an effective method to combine Σ-protocols to obtain zero-

knowledge proofs of any Boolean formula constructed using

the AND and OR operators from formulæ for which Σ-

protocols exist. This means that Σ-protocols can be used

in a practical setting as building blocks to achieve vari-

ous cryptographic goals. Applications of Σ-protocols no-

tably include secure multi-party computation, identification

schemes, secret ballot electronic voting, and anonymous

attestation credentials.

This paper reports on a fully machine-checked formaliza-

tion of a comprehensive theory of Σ-protocols using Cer-

tiCrypt [5]–[7], a general framework for reasoning about

cryptographic schemes built on top of the Coq [8] proof

assistant. Our formalization consists of more than 10,000

lines of Coq code, and covers the basics of Σ-protocols:

definitions, relations between different notions of security,

general constructions and composability theorems. We show

its applicability by formalizing several well-known proto-

cols, including the Schnorr, Guillou-Quisquater, Okamoto,

and Feige-Fiat-Shamir protocols. The highlight of the for-

malization is a generic account of Σφ-protocols, that prove

knowledge of a preimage under a group homomorphism φ.

We use the module system of Coq to define and relate

the classes of Σφ- and Σ-protocols. Our formalization of

Σφ-protocols provides sufficient conditions (the so-called

specialness conditions) on the group homomorphism φ so

that every Σφ-protocol can be construed as a Σ-protocol.

Moreover, we show that special homomorphisms are closed

under direct product, which yields a cheap way of AND-

combining Σφ proofs. We exploit the generality of our result

to achieve short proofs of completeness, special soundness,



and (honest verifier) zero-knowledge for many protocols in

the literature.

Related work

Our work participates to an upsurge of interest in Σ-

protocols, and shares some motivations and commonalities

with recently published papers. Specifically, our account

of Σφ-protocols coincides with Maurer’s unifying treatment

of proofs of knowledge for preimages of group homomor-

phisms [9]. Concretely, Maurer exhibits a main protocol

that uses a group homomorphism—which in our setting

corresponds to the definition of the module of Σφ-protocols

in Section IV—and shows (in his Theorem 3) that under

suitable hypotheses the main protocol is a Σ-protocol. He

gives several instances of the main protocol by picking suit-

able group homomorphisms and showing that they satisfy

these hypotheses.

Our work is also closely connected to a recent effort

by Bangerter and co-workers [10], [11] to design and

implement efficient zero-knowledge proofs of knowledge.

They provide both a set of sufficient conditions on a ho-

momorphism φ under which the corresponding Σφ-protocol

can be viewed as a Σ-protocol [10, Theorem 1], and a

generalization that allows to consider sets of linear relations

among preimages of group homomorphisms [10, Theorem

2]. The latter result is used to justify the soundness of

a compiler that generates efficient code from high-level

descriptions of protocols. As future work, the authors of [10]

mention that they plan to make their compiler certifying,

so that it would generate proofs accompanying the code.

Doing so from scratch remains a daunting task. By building

on CertiCrypt, our formalization could be readily used

as a stepping stone for a modular certifying compiler, in

which (high-level, unoptimized) code is certified, and then

compiled to efficient code using a certified or certifying

compiler; see e.g. [12], [13] for an instance of applying ideas

from certified/certifying compilation to cryptography.

Cryptographic primitives need not only be secure; they

must also be used correctly. In a series of papers, Backes

and co-authors [14], [15] develop sound analysis methods

for protocols that use zero-knowledge proofs, and apply

their analyses to verify the authentication and secrecy

properties of the Direct Anonymous Attestation Protocol.

One extremely ambitious objective would be to use their

results, which complement ours, to fully certify the security

of the protocol in the computational model. Intermediate

results would involve formalizing computational soundness

results [16], [17], which represents a substantial amount of

work on its own.

II. A CERTICRYPT PRIMER

The goal of this section is to provide a brief overview

of the CertiCrypt framework. We first present the syntax

and semantics of the language used to describe protocols,

and then some of the reasoning tools that we use. It should

be noted, however, that the formalization of Σ-protocols

only uses a limited number of features of the CertiCrypt

framework; we refer the reader to [5] for an account of

features that are not required for this paper.

A. Syntax and semantics of games

We will use games to describe the interaction between

the entities participating in a protocol and procedures to

represent the entities themselves. In CertiCrypt, a game is

simply a program in a probabilistic programming language

together with an environment mapping procedures to their

implementation.

Given sets V and P of variable and procedure identifiers,

respectively, the language is inductively defined as follows,

I ::= V ← E deterministic assignment

| V $← DE random assignment

| if E then C else C conditional

| while E do C while loop

| V ← P(E , . . . , E) procedure call

C ::= skip nop

| I; C sequence

where E is a set of deterministic expressions and DE is a set

of expressions that evaluate to distributions and from which

values can be sampled in random assignments. CertiCrypt

allows the core language to be extended with user-defined

types and operators. Our development puts this feature to

good use by defining various extensions including types for

groups, and operators for homomorphisms and permutations

on those groups.

The semantics of programs is defined in terms of the

measure monad D(X) of Audebaud and Paulin [18], whose

type constructor is defined as

D(X) def
= (X → [0, 1])→ [0, 1]

The semantics of a command c ∈ C is given by a function

JcK :M→D(M), that relates an initial memory µ ∈ M to

the expectation operator of the (sub) probability distribution

of final memories resulting from its execution. This allows

to define the probability of an event A in a game G and an

initial memory µ in terms of its characteristic function 1A,

as follows

Pr [µ : G] E def
= JGK µ 1A

B. Complexity

In the context of zero-knowledge proofs one often

needs to prove that some constructions are probabilistic

polynomial-time (PPT) programs (e.g. the simulator that

justifies the zero-knowledge property of a protocol). Cer-

tiCrypt provides an instrumented semantics that accounts

for the execution cost of programs, and that is used to

characterize the class of PPT programs, i.e. of programs that

execute in polynomial time and polynomial memory. The



characterization relies on an axiomatization of the execution

time and the memory usage of expressions:

• we postulate the execution time of each operator, in

the form of a function that depends on the inputs

of the operator—which corresponds to the so-called

functional time model;

• we postulate for each datatype a size measure, in the

form of a function that assigns to each value its memory

footprint.

We stress that making complexity assumptions on operators

is perfectly legitimate. It is a well-known feature of depen-

dent type theories (as is the case of the calculus of Coq) that

they cannot express the cost of the computations they purport

without using computational reflection, i.e. formalizing an

execution model (e.g. probabilistic Turing machines) within

the theory itself and proving that functions in type theory

denote machines that execute in polynomial time. In our

opinion, such a step is overkill. A simpler solution to the

problem is to restrict in as much as possible the set of

primitive operators, so as to minimize the set of assumptions

upon which the complexity proofs rely. For instance, one

could, instead of defining Euclidean division as a type-

theoretical function, define a procedure that performs the

computation, and show that the computation is PPT provided

addition is. Again, we claim that such a step would be an

overkill.

C. Reasoning in CertiCrypt

Most of the security properties of interest in this paper

can be stated either in terms of an equivalence between two

games or in terms of the probability of an event occurring

in a game. Sometimes directly computing the probability of

an event E1 in a game G1 may be difficult. The essence of

game-based proofs is to introduce a sequence of intermediate

games and events (G1, E1), . . . , (Gn, En) in such a way

that the probability of the event E1 in the original game

can be obtained from the probability of the event En in the

last game and the relation between the probability of events

in consecutive games. Typically, relating the probability of

events in consecutive games boils down to proving that both

games satisfy some form of program equivalence.

In CertiCrypt, program equivalence is formalized using

a probabilistic relational Hoare logic. In its more general

form, this logic deals with judgments of the form ⊢ G1 ∼
G2 : Φ ⇒ Ψ, where Φ and Ψ are relations over program

states (memories). A simplified form of judgment, more

amenable to mechanization via syntactic manipulation, is

obtained when the relations Φ, Ψ are the equality relation

on subsets of program variables. We define this formally

next.

Definition 1 (Observational Equivalence). Observational

equivalence is defined relative to a set of input variables

I and a set of output variables O. Two programs G1 and

G2 are observationally equivalent with respect to I and O,

written ⊢ G1 ≃I
O G2, if and only if for any memories

µ1, µ2 that coincide on I and functions f, g : M → [0, 1]
depending only on the value of variables in O, we have

JG1K µ1 f = JG2K µ2 g

Note that observational equivalence is only a partial

equivalence relation; reflexivity only holds if the distribution

over O induced by the program is completely determined by

the initial values of variables in I . We will sometimes use

a slightly more general form of equivalence G1 ≃I∧Φ
O G2,

denoting observational equivalence with respect to I , and O
with the additional demand that the relation Φ holds as a

precondition.

Preservation of Probability. The following proof rule

relates observational equivalence and probability. Assume

that an expression E denoting an event depends only on

a set of variables O (a sufficient, syntactic condition that

ensures this is that the set of free variables of E be a subset

of O). Then, to show that the probability of E is identical

in two games G1, G2 executed in initial memories µ1, µ2

respectively, it is sufficient to exhibit a set of variables I
such that µ1, µ2 coincide on I , and ⊢ G1 ≃

I
O G2:

fv(E) ⊆ O ⊢ G1 ≃I
O G2 µ1 =I µ2

Pr [µ1 : G1] E = Pr [µ2 : G2] E
[PrEq]

Mechanized Reasoning. In addition to the standard tactics

provided by Coq, CertiCrypt provides tactics that help

mechanize reasoning about an observational equivalence

goal of the form ⊢ c1 ≃I
O c2. In order to deal with

procedure calls the user needs to provide the tactics with

specifications of the procedures appearing in programs.

These specifications include information about the variables

a procedure may modify and an observational equivalence

statement saying under which conditions one can guarantee

that two calls to a procedure are equivalent. In most cases, a

simple static analysis of the code of a procedure is sufficient

to compute a meaningful specification; CertiCrypt provides

means of computing specifications in this way that lift the

burden from the user of having to craft them. We briefly

describe next the most relevant tactics used to mechanize

the proofs in this paper:

• eqobs_in: solves goals of the form ⊢ c ≃I
O c by

performing a dependency analysis to determine a set

I ′ such that ⊢ c ≃I′

O c and checking whether I ′ ⊆ I .

It handles loops by trying to compute a fixpoint in a

bounded number of iterations and relies on specifica-

tions to handle procedure calls. Variants of eqobs_in

include eqobs_tl, that does not require that the

two commands coincide, but instead acts only on the

longest common suffix of them. In addition, CertiCrypt

provides the converse tactic eqobs_hd that strips off

the longest common prefix of two programs and a tactic

eqobs_ctxt that combines both.
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Figure 1. Characteristic 3-step interaction in a run of a Σ-protocol

• deadcode: performs dead code elimination; it re-

moves from programs the instructions that have no

influence on the set of output variables O.

• ep: implements expression propagation; it relies on

a generic function for dataflow analysis on programs,

transforming programs by performing partial evaluation

using the result of this analysis. The program analyzer

may be extended with simplification rules for expres-

sions; we often use this to normalize expressions based

on algebraic properties of operators (e.g. expressions

involving homomorphisms). A variant ep_eq e1 e2

can be used to jump start the analysis with the directed

equality e1 = e2 which is then left as an obligation.

• swap: reorders instructions in programs to generate a

longest common suffix while preserving observational

equivalence.

• alloc: takes as arguments a variable x and a fresh

variable y, and introduces a copy of variable x in

variable y, consistently replacing all uses of x by y.

• clean_nm: simplifies the goal by removing from the

set O variables in I that are not modified by the

programs.

• inline: unfolds procedure calls; the tactic sinline

combines inline, alloc, ep, and deadcode to

simplify the goal after inlining a procedure call.

CertiCrypt provides certified implementations of tactics

that, in addition to the two-sided versions described above,

yield one-sided versions that apply the transformation only

to the program on the left (suffix l) or on the right hand

side (suffix r) of the goal.

III. SIGMA-PROTOCOLS

A Σ-protocol is a 3-step interactive protocol where a

prover P interacts with a verifier V . Both parties have

access to a common input x, and the goal of the prover

is to convince the verifier that she knows some value w
suitably related to x, without revealing anything beyond

this assertion. The protocol begins with the prover sending

a commitment r to the verifier, who responds by sending

back a random challenge c chosen uniformly from a set

C; the prover then computes a response s to the challenge

and sends it to the verifier, who either accepts or rejects

the conversation. Figure 1 shows a diagram of a run of a

Σ-protocol.

Formally, a Σ-protocol is defined with respect to a

knowledge relation R. This terminology comes from in-

terpreting the proof system as proving membership of the

common input to an NP language L. Each NP language

admits an efficient membership verification procedure and a

polynomial-time recognizable relation RL such that

L = {x | ∃w, (x, w) ∈ RL}

Proving that x belongs to the language amounts to proving

knowledge of a witness w related to x via RL. In Cer-
tiCrypt, the class of Σ-protocols is formalized as a module

type parametrized over the knowledge relation R, and a

number of procedures specifying the different phases of

the prover and the verifier; the module type specifies as

well the properties that any given protocol instance must

satisfy. In the remainder of this section we describe in detail

our formal definition of Σ-protocols and comment on an

alternative—but in some sense equivalent—specification of

the zero-knowledge property.

Definition 2 (Σ-protocol). A Σ-protocol for a knowledge

relation R is a 3-step protocol between a prover P and a

verifier V , whose interaction is described by the following

parametrized program:

Protocol(x,w) :
(r, state)← P1(x, w);
c← V1(x, r);
s← P2(x, w, state, c);
b← V2(x, r, c, s)

In the above program, the two phases of the prover are

described by the procedures P1 and P2, while the phases

of the verifier are described by V1 and V2. Note that the

protocol explicitly passes state between the phases of the

participants; we could have used instead global variables

shared between P1 and P2 on one hand, and V1 and V2

on the other, but that would unnecessarily complicate the

proofs because we would need to specify that the procedures

representing one party do not have access to the shared state

of the other party. All the protocols that we consider in

the following are public-coin, meaning that a honest verifier

chooses the challenge uniformly from some predefined set.

A Σ-protocol must satisfy the following three properties,

1) Completeness: Given a public input x and a witness

w such that (x, w) ∈ R, the prover is always able to

convince the verifier, i.e., when the protocol is run in

a memory µ where R(µ(x), µ(w)), the final value of

b is always true:

∀µ, R(µ(x), µ(w))=⇒Pr [Protocol, µ : b = true] = 1

2) Special Honest Verifier Zero-Knowledge (sHVZK):

There exists a probabilistic polynomial-time simulator

S that given x ∈ dom(R) and a challenge c, computes

triples (r, c, s) with the same distribution as a valid

conversation. The property is formalized in terms of a



version of the protocol where the challenge c is fixed,

Protocol(x, w, c) :
(r, state)← P1(x,w);
s← P2(x, w, state, c);
b← V2(x, r, c, s)

≃
{x,c}∧R(x,w)

{r,c,s}
(r, s)← S(x, c)

3) Special Soundness: Given two accepting conversations

(r, c1, s1), (r, c2, s2) for an input x, with distinct

challenges but with the same commitment r, there

exists a PPT knowledge extractor procedure KE that

computes a witness w such that (x, w) ∈ R. Formally,

for any memory µ,

µ(c1) 6= µ(c2)
Pr [b← V2(x, r, c1, s1), µ : b = true] = 1
Pr [b← V2(x, r, c2, s2), µ : b = true] = 1

}

=⇒

Pr [w ← KE(x, r, c1, c2, s1, s2), µ : (x,w) ∈ R] = 1

Special soundness might seem a relatively weak property

at first sight. It can be shown using a rewinding argument

(although we did not formalize this result in Coq) that

thanks to special soundness, any Σ-protocol with challenge

set C can be seen as a proof of knowledge with soundness

error |C|−1 [19]. Informally, this means that any efficient

prover (possibly dishonest) that manages to convince a

honest verifier for a public input x with a probability greater

than |C|−1 can be turned into an efficient procedure that

computes a witness for x.

A. Relation between sHVZK and HVZK

Some authors require that Σ-protocols satisfy a somewhat

weaker property known as honest verifier zero-knowledge

rather than the special version of this property mentioned

above. The difference is that in the former the simulator

is allowed to choose the challenge while in the latter the

challenge is fixed. In other words, plain HVZK requires that

there exists a PPT simulator S that given just x ∈ dom(R)
computes a triple (r, c, s) with the same distribution as

the verifier’s view of a conversation. The relation between

the two notions has been studied by Cramer [4]. As an

illustration of the use of CertiCrypt and the Σ-protocol

framework, the formalization of this relation is discussed

below.

Theorem 3 (sHVZK implies HVZK). A Σ-protocol satisfy-

ing sHVZK also satisfies HVZK.

Proof: A HVZK simulator S′ can be built from the

sHVZK simulator S:

Simulator S′(x) :
c $← {0, 1}k;
(r, s)← S(x, c);
return (r, c, s)

The fact that S′ perfectly simulates conversations of the

protocol can be proved by means of the following sequence

of games:

Protocol(x, w) ≃
{x}∧R(x,w)

{r,c,s}
c $← {0, 1}k;Protocol(x, w, c)

≃
{x}∧R(x,w)

{r,c,s} c $← {0, 1}k; (r, s)← S(x, c)

≃
{x}∧R(x,w)

{r,c,s} (r, c, s)← S′(x)

The first and last equivalences are easily proved by unfolding

procedure calls using the tactic inline, and reordering

instructions in the resulting programs using swap. To prove

the second equivalence, the tactic eqobs_hd is used to get

rid of the instruction c $← {0, 1}k that is common to both

games; the resulting goal matches exactly the definition of

sHVZK for S.

In a sense, sHVZK is a stronger property than HVZK,

because a protocol satisfying sHVZK can be shown to satisfy

HVZK, while the converse is not generally true. However,

from every protocol (P, V) that satisfies HVZK it is possible

to construct a protocol (P′, V′) that satisfies sHVZK and is

nearly as efficient as the original protocol:

P′
1(x, w) def

= (r, state)←P1(x, w); c′ $← {0, 1}k;
return ((r, c′), (state, c′)))

P′
2(x, w, (state, c′), c)

def
= s← P2(x,w, state, c⊕ c′); return s

V′
1(x, (r, c′))

def
= c← V1(x, r); return (c⊕ c′)

V′
2(x, (r, c′), c, s)

def
= b← V2(x, r, c⊕ c′, s); return b

Essentially, the construction creates a new protocol for which

HVZK and sHVZK coincide. The difference is that in the

new protocol the challenge that the verifier chooses is xor-

ed with a random bitstring sampled by the prover at the

beginning of the protocol.

Theorem 4 (sHVZK from HVZK). If a protocol (P, V ) is

a Σ-protocol as in Definition 2 but satisfying HVZK instead

of sHVZK, then the protocol (P′, V′) defined above is a

Σ-protocol.

Proof:

Completeness: Follows easily from the completeness

of protocol (P, V ) and the following algebraic property of

the exclusive or operator:

(c⊕ c′)⊕ c′ = c

Special Honest Verifier Zero-Knowledge: The follow-

ing is a sHVZK simulator for the protocol

S′(x, c) def
= (r̂, ĉ, ŝ)← S(x); return ((r̂, c⊕ ĉ), ŝ)

(The variables of the original protocol are decorated with

a hat.) We prove this by means of a sequence of program

equivalences,

Protocol′(x, w, c) ≃
{x,c}∧R(x,w)

{r,c,s}

Protocol(x, w);
r ← (r̂, c⊕ ĉ);
s← ŝ

≃
{x,c}∧R(x,w)

{r,c,s}

(r̂, ĉ, s)← S(x);
r ← (r̂, c⊕ ĉ)

≃
{x,c}∧R(x,w)

{r,c,s}
(r, s)← S′(x, c)



The first and last equivalences are proved without much

difficulty using the program transformation tactics described

in Section II, while the second can be reduced to the HVZK

of S using the alloc and eqobs_tl tactics to simplify

the goal.

Soundness: From a conversation ((r, c′), (c ⊕ c′), s)
of (P′, V′) a conversation (r, c, s) of the original protocol

can be trivially recovered. Thus, the following knowledge

extractor proves special soundness of (P′, V′):

KE′(x, (r, c′), c1, c2, s1, s2) :
w ← KE(x, r, c′ ⊕ c1, c

′ ⊕ c2, s1, s2); return w

IV. SIGMA PROTOCOLS BASED ON SPECIAL

HOMOMORPHISMS

An important class of Σ-protocols are the so-called

Σφ-protocols, that prove knowledge of a preimage under

a homomorphism. The Schnorr protocol [20], one of the

most archetypal zero-knowledge proofs, is an instance of a

Σφ-protocol that proves knowledge of a discrete logarithm

in a cyclic group, i.e. the homomorphism is in this case

exponentiation, φ(x) = gx, where g is a generator of the

group.

Our formalization of Σφ-protocols is constructive. We

provide a functor that, given a homomorphism φ together

with proofs that it satisfies certain properties, builds a

concrete Σ-protocol for proving knowledge of a preimage

under φ. This protocol comes with proofs of completeness,

soundness, and sHVZK. Thus, all that it takes to build an

instance of a Σφ-protocol is to specify a homomorphism

and prove that it has the necessary properties. In this way,

we give several examples of Σφ-protocols, including the

Schnorr, Guillou-Quisquater and Feige-Fiat-Shamir proto-

cols. Although using the Σφ construction spares us the

hassle of proving each time the properties in Definition 2,

these instantiations remain non-trivial because one needs to

formalize the homomorphisms themselves, which in turn

requires to give representations of the groups over which

they are defined.

In the remaining of this subsection we let (G,⊕) be a

finite additive group and (H,⊗) a multiplicative group.

Definition 5 (Σφ-protocol). Let φ : G → H be a homo-

morphism, and define R def
= {(x, w) | x = φ(w)}. The

Σφ-protocol for relation R with challenge set C is the Σ-

protocol (P, V) defined as follows:

P1(x, w) def
= y $← G; return (φ(y), y)

P2(x, w, y, c) def
= return (y ⊕ cw)

V1(x, r) def
= c $← C; return c

V2(x, r, c, s) def
= return (φ(s) = r ⊗ xc)

It can be shown that the above protocol satisfies the

properties of a Σ-protocol when C = {0, 1}. However, a

cheating prover could convince the verifier with probability

1/2; this probability may be reduced to 1/2n (at the cost

of efficiency) by repeating the protocol n rounds. We will

see that a certain class of homomorphisms defined below

admits a much larger challenge set, and thus achieves a lower

soundness error in a single execution of the protocol.

Definition 6 (Special Homomorphism). We say that a

homomorphism φ : G → H is special if there exists a value

v ∈ Z \ {0} (called special exponent) and a PPT algorithm

that given x ∈ H computes u ∈ G such that φ(u) = xv .

To formalize Σφ-protocols, we extended the language of

CertiCrypt with types for the groups G,H and operators

for computing the group operation, exponentiation/product,

and inverse; we also added operators φ(·), u(·), and a

constant expression v denoting the special exponent of the

homomorphism as in Definition 6. In addition, we wrote an

expression normalizer that simplifies arithmetic expressions

by applying the homomorphic property of φ; normalization

is done as part of the ep tactic.

A Σφ-protocol built from a special homomorphism admits

as a challenge set any natural interval of the form [0..c+],
where c+ is smaller than the smallest prime divisor of the

special exponent v. Let p be the smallest prime divisor of v
(and assume |v| ≥ 2), then a maximal c+ can be chosen

as p − 1. We provide a functor to construct the largest

challenge set for any special homomorphism φ; it can then

be plugged into the corresponding Σφ-protocol to minimize

the soundness error.

Theorem 7 (Σφ-protocols for special homomorphisms). If

φ is special and c+ is smaller than any prime divisor of

the special exponent v, then the protocol in Definition 5 is

a Σ-protocol with challenge set C = [0..c+].

Proof:

Completeness: We must prove that a honest prover

always succeeds in convincing a verifier, i.e.

∀µ, R(µ(x), µ(w)) =⇒ Pr [Protocol, µ : b = true] = 1

Note that this can be reformulated in terms of a program

equivalence as follows

Protocol(x, w) ≃
R(x,w)
{b} b← true

To prove this, we inline all procedure calls in the protocol

and simplify the resulting program performing expression

propagation, normalization, and dead code elimination. We

use the following proof script:

inline P1; inline P2; inline V1; inline V2;
ep; deadcode.

This resulting goal has the form

y $← G; c $← [0..c+ ];
b← φ(y)⊗ φ(w)c = φ(y)⊗ xc ≃

φ(w)=x
{b}

b← true

We use the tactic ep_eq x φ(w) to simplify the last

instruction in the game on the left hand side to b ← true,



Protocol(x, w, c) :
(r, state)← P1(x, w);
s← P2(x, w, state, c);
b← V2(x, r, c, s)

inline_l P1;
inline_l P2;
ep; deadcode

1

y $← G;
r ← φ(y);
s← y ⊕ cw

≃
{x,w,c}∧R(x,w)

{r,c,s}

s′ $← G;
y ← s′ ⊕−cw;
s← y ⊕ cw;
r ← φ(y)

ep;
deadcode

3

s′ $← G;
s← s′;
r ← φ(s′)⊗ φ(w)−c

4

alloc_r s s′
s $← G;
r ← φ(s)⊗ φ(w)−c

≃
{x,w,c}∧R(x,w)

{r,c,s}

6

s′ $← G;
r ← φ(s′)⊗ x−c;
s← s′

sinline_r S

Simulator(x, c) :
(r, s)← S(x, c)

alloc_r s′ s;
ep_eq_r x φ(w);
swap;
eqobs_in

2 5

swap;
eqobs_tl;
alloc_l y s′;
clean_nm;
apply sum_otp

Figure 2. A game-based proof that S is a sHVZK simulator for the Σφ-protocol in Theorem 7.

tactic deadcode to remove the first two instructions that

are no longer relevant, and eqobs_in to conclude.

Special Honest Verifier Zero-Knowledge: The follow-

ing is a sHVZK simulator for the protocol:

Simulator S(x, c) :
s $← G;
r ← φ(s)⊗ x−c;
return (r, c, s)

A proof that S perfectly simulates conversations of the

protocol is illustrated in Figure 2; we briefly explain the

numbered steps in the figure.

1) Similarly to the proof above, we inline calls to P1

and P2, and simplify the goal using tactics ep and

deadcode.

2) We introduce an intermediate game using the transi-

tivity of observational equivalence. To prove that the

new game is observationally equivalent to the previous

one, we first reorder the instructions using swap to

obtain a common suffix which we then remove using

the tactic eqobs_tl. The resulting goal is

⊢ y $← G ≃
{x,w,c}∧R(x,w)
{y,w,c} s′ $← G; y ← s′ ⊕ −cw

Since variables w and c are not modified, we

can remove them from the output set using tactic

clean_nm. We next use tactic alloc y s′ to sample

s′ instead of y in the game on the left, and we weaken

the precondition to true, which results in the goal

⊢ s′ $← G; y ← s′ ≃{y} s′ $← G; y ← s′ ⊕−cw

This equivalence holds because −cw acts as a one-

time pad; we have proved this as a lemma called

sum_otp that we apply to conclude the proof.

3) Using ep, we propagate throughout the code the value

assigned to y and then remove the assignment using

deadcode. The expression normalizer automatically

simplifies (s′⊕−cw)⊕ cw to s′, and φ(s′ ⊕−cw) to

φ(s′) ⊗ φ(w)−c using the homomorphic property of

φ.

4) We introduce a new intermediate game; to prove that

is equivalent to the previous one, we allocate variable

s into s′; the resulting game is identical to the one on

the left hand side.

5) We substitute variable s for s′ in the game on the right

hand side of the equivalence, and use the precondition

R(x, w)—which boils down to x = φ(w)—to sub-

stitute x by φ(w). The resulting games are identical

modulo reordering of instructions.

6) We conclude by inlining the procedure S in the sim-

ulation

Soundness: Soundness requires the existence of a

PPT algorithm KE that given two accepting conversations

(x, r, c1, s1), (x, r, c2, s2), with c1 6= c2, computes w such

that x = φ(w). We propose the following knowledge

extractor,

KE(x, c1, c2, s1, s2) :
(a, b, d)← extended gcd(c1 − c2, v);
w ← a(s1 ⊕−s2)⊕ b u(x);
return w

where extended gcd efficiently implements the extended

Euclidean algorithm. For integers a, b, extended gcd(a, b)
computes a triple of integers (x, y, d) such that d is the

greatest common divisor of a and b, and x, y satisfy the

Bézout’s identity

ax + by = gcd(a, b) = d



Since all computations done by the knowledge extractor can

be efficiently implemented, KE is a PPT algorithm; we prove

this in Coq using an automated procedure PPT_proc that

proves that a program without loops or recursive procedure

calls is PPT by computing polynomial bounds for its time

and memory footprints, provided expressions appearing in

the program are efficiently evaluable. We have to prove as

well that KE computes a preimage of the public input x. For

two accepting conversations (x, r, c1, s1) and (x, r, c2, s2),
we have

φ(s1) = r ⊗ xc1 ∧ φ(s2) = r ⊗ xc2

and thus

xc1−c2 = φ(s1 ⊕−s2) (1)

Furthermore, since φ is special we can efficiently compute

u such that xv = φ(u). The triple (a, b, d) given by the

extended Euclidean algorithm satisfies the Bézout’s identity

a(c1 − c2) + bv = gcd(c1 − c2, v) = d (2)

Both c1 and c2 are at most equal to c+, which is in turn

smaller than the smallest prime that divides v. Thus, no

divisor of |c1−c2| can divide v and d = gcd(c1−c2, v) = 1.

In addition, since φ is a homomorphism, from (1) and (2)

we conclude

φ(w) = φ(a(s1 ⊕−s2)⊕ bu) = xa(c1−c2) ⊗ xbv = x

A. Concrete instances of Σ
φ-protocols

We have formalized several Σφ-protocols using the func-

tor described in the previous section. For each protocol,

we specify the groups G,H and the underlying special

homomorphism φ : G → H, and provide appropriate

interpretations for the operator u(·) and the constant special

exponent v. Table I summarizes all the protocols that we

have formalized.

The Schnorr [20] and Okamoto [21] protocols are based

on the discrete logarithm problem. For prime numbers p and

q such that q divides p−1, a Schnorr group is a multiplicative

subgroup of Z
∗
p of order q with generator g. A Σ-protocol

for proving knowledge of discrete logarithms in the Schnorr

group is obtained by instantiating the construction of Def-

inition 5 with the homomorphism φ : Z
+
q → Z

∗
p defined

as φ(x) = gx. Since the order q of the Schnorr group is

known, it suffices to take q as the special exponent of the

homomorphism, and u(x) = 0 for all x ∈ Z
+
q . The Okamoto

protocol is similar to Schnorr protocol but it works with

two Schnorr subgroups of Z
∗
p with generators g1 and g2,

respectively (it can be naturally generalized to any number of

generators). In this case φ maps a pair (x1, x2) to gx1

1 ⊗gx2

2 .

Let N be an RSA modulus with prime factors p and q,

and let e be a public exponent; e must be co-prime with

the totient ϕ = (p − 1)(q − 1) (i.e. gcd(e, ϕ(N)) = 1).

The Guillou-Quisquater [22], Fiat-Shamir [23], and Feige-

Fiat-Shamir [24] protocols are based on the difficulty of

solving the RSA problem: given N , e and y ≡ xe mod N ,

compute x, the eth-root of y modulo N . The Guillou-

Quisquater protocol is obtained by taking φ : Z
∗
N → Z

∗
N ,

φ(x) = xe. The Fiat-Shamir protocol is obtained as a special

case when e = 2. The Feige-Fiat-Shamir is obtained by

taking φ : {−1, 1} × Z
∗
N → Z

∗
N , φ(s, x) = s.x2.

Remark. We note that our results hold independently of

any computational assumption. Certainly, it is the difficulty

of inverting the underlying homomorphism what makes a

Σφ-protocol interesting, but this is inessential for establish-

ing the properties we prove about the protocol.

B. Composition of Σφ-protocols

Let φ1 : G1 → H1 and φ2 : G2 → H2 be two

special homomorphisms with special exponents v1, v2 and

associated algorithms u1, u2, respectively. We give below

two useful ways of combining the Σφ-protocols induced by

these homomorphisms.

Theorem 8 (Direct Product of Special Homomorphisms).

The following homomorphism from the direct product of G1

and G2 to the direct product of H1 and H2 is a special

homomorphism:1

φ : G1 × G2 → H1 ×H2

φ(x1, x2)
def

= (φ1(x1), φ2(x2))

Proof: It suffices to take

v def
= lcm(v1, v2)

u(x1, x2)
def
= (u1(x1)

v/v1 , u2(x2)
v/v2 )

Indeed,

φ(u(x1, x2)) = (φ1(u1(x1)
v/v1), φ2(u2(x2)

v/v2 ))

= (x
v1v/v1

1 , x
v2v/v2

2 )
= (x1, x2)

v

Theorem 9 (Equality of Preimages). Suppose that the

domain of both homomorphisms is the same, G1 = G2 = G,

v1 = v2, and u1, u2 are such that

∀x1, x2 ∈ Im(φ), u1(x1) = u2(x2)

Then, the following homomorphism from G to the direct

product of H1 and H2 is a special homomorphism:

φ : G → H1 ×H2

φ(x) def

= (φ1(x), φ2(x))

Proof: Take v def
= v1 and u(x1, x2)

def
= u1(x1),

φ(u(x1, x2)) = (φ1(u1(x1)), φ2(u2(x2)))
= (xv1

1 , xv2

2 )
= (x1, x2)

v

1This yields an effective means of AND-combining assertions proved by
Σφ-protocols. The result generalizes the protocol in [9, Theorem 6.2]; we
do not require that the special exponent be the same.



Protocol G H φ u v

Schnorr Z
+
q Z

∗
p x 7→ gx x 7→ 0 q

Okamoto (Z+
q , Z

+
q ) Z

∗
p (x1, x2) 7→ g

x1

1 ⊗ g
x2

2 x 7→ (0, 0) q

Fiat-Shamir Z
∗
N

Z
∗
N

x 7→ x2 x 7→ x 2
Guillou-Quisquater Z

∗
N

Z
∗
N

x 7→ xe x 7→ x e

Feige-Fiat-Shamir {−1, 1} × Z
∗
N

Z
∗
N

(s, x) 7→ s.x2 x 7→ (1, x) 2

Table I
SPECIAL HOMOMORPHISMS IN SELECTED Σφ-PROTOCOLS.

We can use this latter theorem to construct a Σ-protocol

that proves correctness of Diffie-Hellman keys. Given a

group with prime order q and a generator g, this amounts

to prove that triples of group elements of the form (α, β, γ)
are Diffie-Hellman triples, i.e. that if α = ga and β = gb,

then γ = gab. We instantiate the above construction for

homomorphisms φ1(x) = gx, and φ2(x) = βx. Knowledge

of a preimage a of (α, γ) implies that (α, β, γ) is a Diffie-

Hellman triple (and thus that γ is a valid Diffie-Hellman

shared key).

V. SIGMA PROTOCOLS BASED ON CLAW-FREE

PERMUTATIONS

This section describes a general construction in the same

flavor as the Σφ construction discussed in the previous

section, but based on pairs of claw-free permutations [4]

rather than on special homomorphisms.

Definition 10 (Trapdoor Permutation). A family of trapdoor

permutations is a triple (KG, f, f−1), where KG is a ran-

domized key generator procedure that generates pair of keys

of the form (pk, sk), such that f(pk, ·) is a permutation, and

f−1(sk, ·) is its inverse.

Definition 11 (Claw-Free Permutation Pair [1]). A pair of

trapdoor permutations f = (f0, f1) on the same domain D
is claw-free if it is unfeasible to compute x, y ∈ D such that

f0(x, pk) = f1(y, pk).

Given a claw-free permutation pair f , and a bitstring a ∈
{0, 1}k, we define

f[a](b)
def
= fa1

(fa2
(. . . (fak

(b)) . . . ))

where ai denotes the ith bit of a.

Theorem 12 (Σ-protocol Based on Claw-Free Permuta-

tions). Let (f0, f1) be a pair of claw-free permutations on

D and let R be such that

R(pk, sk) ⇐⇒
∀x, f0(pk, f−1

0 (sk, x)) = f−1
0 (sk, f0(pk, x)) = x ∧

f1(pk, f−1
1 (sk, x)) = f−1

1 (sk, f1(pk, x)) = x

The following protocol is a Σ-protocol for relation R:

P1(pk, sk)
def
= y $← D; return (y, y)

P2(pk, sk, y, c)
def
= return f−1

[c]
(sk, y)

V1(pk, r)
def
= c $← {0, 1}k; return c

V2(pk, r, c, s)
def
= return

(

f[c](pk, s) = r
)

except that it might not satisfy the knowledge soundness

property.

Proof:

Completeness: The proof follows almost the same

structure as the completeness proof for Σφ-protocols. After

inlining procedure calls in the protocol, we are left with the

goal

b← f[c](pk, f−1
[c] (sk, y)) = y ≃

R(pk,sk)
{b} b← true

We use the fact that the pair (pk, sk) is in R to prove that

f[c](pk, f−1
[c] (sk, y)) = y by induction on c.

Special Honest Verifier Zero-Knowledge: The follow-

ing is a sHVZK simulator for the protocol,

Simulator S(pk, c) :
s $← D;
r ← f[c](pk, s);
return (r, s)

To prove that

Protocol(pk, sk, c) ≃
{pk,c}∧R(pk,sk)
{r,c,s} (r, s)← S(pk, c)

we inline every procedure call in both games and perform

expression propagation and deadcode elimination, we are

left with the following goal:

r $← D;
≃

{pk,sk,c}

{r,s}

s $← D;
s← f−1

[c]
(sk, r) r ← f[c](pk, s)

which is provable using the fact f is a permutation pair.

We observed that the above protocol does not necessarily

satisfy the special soundness property. Instead, it satisfies a

property known as collision intractability: no efficient algo-

rithm can find two accepting conversations with different

challenges but same commitment (a collision) with non-

negligible probability. Interactive proof protocols that are

complete, sHVZK but only satisfy collision intractability

have important applications as signature protocols.

Theorem 13. It is unfeasible to find a collision for the

protocol in Theorem 12.



Proof: By contradiction. Assume two accepting con-

versations (r, c1, s1), (r, c2, s2) for a public input pk with

c1 6= c2. We show that it is possible to efficiently compute

a claw (b, b′) such that f0(b) = f1(b
′). Since the two

conversations are accepting,

f[c1](pk, s1) = f[c2](pk, s2) = r

The following algorithm computes a claw

find claw(s1, c1, s2, c2) :
if head(c1) = head(c2)
then find claw(tail(c1), s1, tail(c2), s2)
else if head(c1) = 0

then(f[tail(c1)](pk, s1), f[tail(c2)](pk, s2))
else (f[tail(c2)](pk, s2), f[tail(c1)](pk, s1))

The algorithm executes in polynomial-time provided per-

mutations f0 and f1 can be evaluated in polynomial time,

and c1, c2 are polynomially bounded. For a polynomially

bounded challenge set, this contradicts the assumption that

(f0, f1) is claw-free.

A. A Σ-protocol based on a family of claw-free permutations

Goldwasser, Micali and Rivest proved that claw-free pairs

of permutations exist provided factoring integers is hard [1];

Cramer [4] used this construction to define a Σ-protocol.

We next overview a formalization we developed in Coq of

this family of claw-free trapdoor permutations for which we

instantiate the protocol in Theorem 12.

Recall that the Jacobi symbol for an integer a and an odd

prime p is defined as follows2

(

a

p

)

=







0 if a ≡ 0 (mod p)

+1 if a 6≡ 0 (mod p) and a is a perfect square

−1 otherwise

The Jacobi symbol of an integer a and a composite number

is defined as the product of the Jacobi sybmols of its prime

factors, so that if N = pq,
(

a

N

)

=

(

a

p

)(

a

q

)

Consider two distinct primes p and q, such that p ≡ 3
(mod 8), and q ≡ 7 (mod 8), and define n = pq—such

n is usually called a Blum integer. It follows that −1 is a

non-quadratic residue modulo p and q, and thus
(

−1

n

)

= 1 and

(

2

n

)

= −1

For any such integer n, define

Dn
def
=

{

x

∣

∣

∣

∣

0 < x < n
2 ∧

(

x

n

)

= 1

}

2The Jacobi symbol reduces to the Legendre symbol in this case.

The following pair of permutations on Dn is claw-free:

f0(x) def
=

{

x2 mod n if 0 < x2 mod n < n/2

−x2 mod n if n/2 < x2 mod n < n

f1(x) def
=

{

4x2 mod n if 0 < 4x2 mod n < n/2

−4x2 mod n if n/2 < 4x2 mod n < n

If the prime factors of n are known, then these permutations

can be efficiently inverted by computing square roots in Z
∗
n

and applying the Chinese Remainder Theorem; moreover, it

can be shown that from a claw (x, y), the prime factors p
and q can be efficiently extracted [4]. Therefore, we can use

the construction in Theorem 12 to obtain a Σ-protocol for

the relation R(n, (p, q)) def
= n = pq.

VI. COMBINATION OF SIGMA-PROTOCOLS

There are two immediate, but essential, ways of combin-

ing two Σ-protocols (P 1, V 1) and (P 2, V 2) with knowl-

edge relations R1 and R2 respectively: AND-combination,

and OR-combination. The former allows a prover to prove

knowledge of witnesses w1, w2 such that (x1, w1) ∈ R1

and (x2, w2) ∈ R2. The latter allows a prover to prove

knowledge of a witness w such that either (x1, w) ∈ R1 or

(x2, w) ∈ R2, without revealing which is the case. This can

be naturally extended to proofs of any monotone Boolean

formula by nested combination (although there exist direct,

more efficient constructions). Even though simple, such

constructions are incredibly powerful and form the basis

of many practical protocols, like secure electronic voting

protocols [4].

A. AND-combination

Two Σ-protocols can be combined into a Σ-protocol

that proves simultaneous knowledge of witnesses for both

underlying knowledge relations, i.e. a Σ-protocol with a

knowledge relation:

R def
= {((x1, x2), (w1, w2)) | (x1, w1) ∈ R1∧(x2, w2) ∈ R2}

We have formalized a functor AND, that combines two

public-coin Σ-protocols (P 1, V 1) and (P 2, V 2) in this form.

Without loss of generality, we assume that both protocols

mandate that honest verifiers choose challenges uniformly

from a set of bitstrings of a certain length k. The con-

struction is straightforward; the combination is essentially

a parallel composition of the two sub-protocols using the



same randomly chosen challenge:

P1((x1, x2), (w1, w2))
def
=

(r1, state1)← P1

1(x1, w1);
(r2, state2)← P2

1(x2, w2);
return ((r1, r2), (state1, state2))

P2((x1, x2), (w1, w2), state1, state2, c)
def
=

s1 ← P1

2(x1, w1, state1, c);
s2 ← P2

2(x2, w2, state1, c);
return (s1, s2)

V1((x1, x2), (r1, r2))
def
= c $← {0, 1}k; return c

V2((x1, x2), (r1, r2), c, (s1, s2))
def
=

b1 ← V1

2(x1, r1, c, s1)
b2 ← V2

2(x2, r2, c, s2)
return (b1 = true ∧ b2 = true)

Observe that V1 is not built from V1
1 and V2

1. The reason

for this is that in order to prove soundness, two runs of

the protocol for the same public input x with the same

commitment r, but with different challenges c 6= c′, must

yield two runs of each of the sub-protocols with distinct

challenges. If the challenge for the main protocol were

built from the challenges computed by V1
1 and V2

1, e.g. by

concatenating them, we would not be able to conclude that

the challenges in each pair of conversations extracted for

the sub-protocols are different—one could only conclude

that this is the case for one of the sub-protocols. Instead,

we make use of the public-coin property and simply draw

in V1 a new random challenge that is used in both sub-

protocols. This solves the above problem, but also requires

that the sub-protocols satifsy the special honest verifier zero-

knowledge property, since we need to be able to simulate

the sub-protocols for any fixed challenge.

Since AND combination essentially amounts to pairing

the two sub-protocols while respecting the structure of a Σ-

protocol, all proofs have the same general form: procedure

calls are first inlined, and then the goal is manipulated

using program transformations to put it in a form where the

properties of the sub-protocols can be applied to conclude.

We give below a proof sketch of sHVZK and special

soundness; a more detailed proof of these properties and

a proof of completeness can be found in Appendix A.

sHVZK: The sHVZK simulator for the protocol simply

runs the simulators of the sub-protocols to obtain a conver-

sation for each sub-protocol with the same challenge c, the

conversations are then combined to obtain a conversation of

the main protocol:

Simulator S((x1, x2), c) :
(r1, s1)← S1(x1, c);
(r2, s2)← S2(x2, c);
return((r1, r2), (s1, s2))

Soundness: Soundness requires us to give a PPT knowl-

edge extractor that computes a witness for the knowledge

relation R from two accepting runs of the protocol with

different challenges but the same commitment. This amounts

to computing a witness for each of the sub-protocols and

can be done using the corresponding knowledge extractors

as follows:

KE((x1, x2), (r1, r2), c, c
′, (s1, s2), (s

′
1, s

′
2)) :

w1 ← KE1(x1, r1, c, c
′, s1, s

′
1);

w2 ← KE2(x2, r2, c, c
′, s2, s

′
2);

return (w1, w2)

Note that since we use the challenge for the main protocol as

the challenge for the underlying sub-protocols, for each sub-

protocol we can extract two accepting runs with different

challenges since c 6= c′. Concretely, from

Pr [b← V2((x1, x2), (r1, r2), c , (s1, s2)), µ : b = true] = 1
Pr [b← V2((x1, x2), (r1, r2), c

′, (s′1, s
′
2)), µ : b = true] = 1

we can prove that for i = 1, 2,

Pr
[

wi ← KEi(xi, ri, c, c
′, si, s

′
i), µ : (xi, wi) ∈ Ri

]

= 1

from the soundness of the sub-protocols and from the fact

that

Pr
[

bi ← Vi
2(xi, ri, c , si), µ : bi = true

]

= 1
Pr

[

bi ← Vi
2(xi, ri, c

′, s′i), µ : bi = true
]

= 1

B. OR-combination

Two Σ-protocols can also be combined to obtain a pro-

tocol that proves knowledge of a witness for the knowledge

relation of one of the sub-protocols, but without revealing

which. The construction relies on the ability to simulate

accepting runs; the basic idea is that the prover runs the

real protocol for which she knows a witness, and uses

the simulator to generate a run of the other protocol. The

knowledge relation suggested in, e.g. [25],

R̂ def
= {((x1, x2), w) | (x1, w) ∈ R1 ∨ (x2, w) ∈ R2}

suffers from placing unrealistic demands on the simulator.

As pointed out in [4], it is important to allow the simulator

to fail on an input x 6∈ dom(R). However, in order to

prove completeness for the above relation, the simulator

must be able to perfectly simulate outside the domain of

the respective knowledge relation. Instead, we can prove

completeness (and sHVZK) of the combination with respect

to a knowledge relation whose domain is restricted to the

Cartesian product of the domains of the knowledge relations

of the sub-protocols, i.e.

R def
=

{

((x1, x2), w)

∣

∣

∣

∣

((x1, w) ∈ R1 ∧ x2 ∈ dom(R2)) ∨
((x2, w) ∈ R2 ∧ x1 ∈ dom(R1))

}

Unfortunately, we cannot prove soundness with respect to

R, we can only prove it with respect to R̂. The reason for

this is that an accepting run of the combined protocol only

guarantees the existence of a witness for the public input

of one of the protocols, the simulation of the other protocol

may succeed even if the input is not in the domain of the

respective relation. Put more technically, from two accepting



runs of the combined protocol with distinct challenges we

might not be able to extract two accepting runs with distinct

challenges for each of the sub-protocols; we can only guar-

antee we can do that for one of them. Observe that we do not

really lose anything by proving completeness with respect

to the smaller relation R. If we admitted pairs (x1, x2)
as public input where one component does not belong to

the domain of the corresponding knowledge relation, we

would not be able to say anything about the success of

the simulator. The simulator might as well fail, trivially

revealing that the prover could not have known a witness for

the corresponding input, and rendering the protocol pointless

for such inputs.

Compared to the AND combination, the OR combination

is harder to fit into the structure of a Σ-protocol. The reason

for this is that the first phase of the prover needs to use

the simulator of one of the protocols, which results in a

full (accepting) run that has to be passed over throughout

the whole execution of the protocol. Given (x1, w) ∈ R1,

the OR prover runs the prover of the first protocol and the

simulator of the second, and returns as a commitment a

pair with the commitments of each protocol; it passes over

in the state the challenge and the reply of the simulated

conversation,

P1((x1, x2), w)
def
=

if (x1, w) ∈ R1 then

(r1, state1)← P1

1(x1, w);
c2

$← {0, 1}k;
(r2, s2)← S2(x2, c2);
state← (state1, c2, s2)

else

(r2, state2)← P2

1(x2, w);
c1

$← {0, 1}k;
(r1, s1)← S1(x1, c1);
state← (state2, c1, s1)

return ((r1, r2), state)

Above, the test (x1, w) ∈ R1 is an encoding of the fact that

the prover knows to which knowledge relation corresponds

the witness w, and thus which protocol she can run for real,

while simulating the other one. The commitment (r1, r2) is

passed along to the verifier that simply replies by returning

a randomly chosen bitstring to the prover, the combination

is a public-coin protocol,

V1((x1, x2), (r1, r2))
def
= c $← {0, 1}k; return c

Assume without loss of generality that (x1, w) ∈ R1. In the

second phase the prover constructs the challenge for the first

protocol by xor-ing the challenge c of the OR protocol with

the challenge used in the simulation of the second protocol in

the first phase. It then runs the second phase of the prover

of the first protocol to compute a reply. The result of the

second phase is constructed from the challenges for each

protocol and the prover replies (the ones coming from the

simulated protocol are recovered from the state):

P2((x1, x2), w, (state, c′, s), c)
def
=

if (x1, w) ∈ R1 then
state1 ← state; c2 ← c′; s2 ← s;
c1 ← c2 ⊕ c;
s1 ← P1

2(x1, w, state1, c1)
else
state2 ← state; c1 ← c′; s1 ← s;
c2 ← c1 ⊕ c;
s2 ← P2

2(x2, w, state2, c2)

return ((c1, s1), (c2, s2))

The verifier accepts a conversation when the runs of both

protocols are accepting and the challenge is the xor of the

challenges used in each of the combined protocols,

V2((x1, x2), (r1, r2), c, ((c1, s1), (c2, s2)))
def
=

b1 ← V1

2(x1, r1, c1, s1);
b2 ← V2

2(x2, r2, c2, s2);
return (c = c1 ⊕ c2 ∧ b1 = true ∧ b2 = true)

Completeness: The proof is slightly more involved than

the proof for the AND combination, since only one of the

protocols is run for real, while the other is just simulated,

and this depends on the knowledge of the prover. Thus, the

proof is split into two cases:

• case (x1, w) ∈ R1: the outline of the proof is as follows:

Protocol((x1, x2), w)≃Protocol1(x1, w);
c2

$← {0, 1}k; (r2, s2)← S2(x2, c2)
≃Protocol1(x1, w);Protocol2(x2, w

′)

The first equivalence is immediate from inlining and

simplification. The second equivalence follows from the

fact that ∃w′, R2(x2, w
′) and the sHVZK property of the

second protocol. The proof concludes by application of

the completeness property of each of the sub-protocols.

• case (x2, w) ∈ R2: Idem.

sHVZK: The simulator for the OR combination is

easily built from the simulators of the sub-protocols.

Simulator S((x1, x2), c) :
c2

$← {0, 1}k;
c1 ← c⊕ c2;
(r1, s1)← S1(x1, c1);
(r2, s2)← S2(x2, c2);
return ((r1, r2), ((c1, s1), (c2, s2)))

As before, the proof is split into two cases.

• case (x1, w) ∈ R1:

Protocol((x1, x2), w) ≃ Protocol1(x1, w); S2(x2)
≃ S1(x1); S2(x2)
≃ S((x1, x2), c)

Where the first and last steps are immediate from inlining,

and simplification, whereas the second step is a direct

application of the HVZK property of S1 (which follows

from sHVZK by Theorem 3).

• case (x2, w) ∈ R2: Idem.



Soundness: Unlike the AND combination, the OR com-

bination does not have the property that runs with distinct

challenges guarantee that the challenges used in the sub-

protocols are distinct as well. This is not as problematic

as in the case of the AND combination, since it suffices to

compute a w such that either (x1, w) ∈ R1 or (x2, w) ∈ R2.

Furthermore, from

c = c1 ⊕ c2 6= c′ = c′1 ⊕ c′2

we have either c1 6= c′1 or else c1 = c′1, in which case

necessarily c2 6= c′2. Thus, the knowledge extractor simply

needs to do a case analysis:

KE((x1, x2), (r1, r2), c, c
′,

((c1, s1), (c2, s2)), ((c
′
1, s

′
1), (c

′
2, s

′
2))) :

if c1 6= c′1 then

w ← KE1(x1, r1, c1, c
′
1, s1, s

′
1)

else

w ← KE2(x2, r2, c2, c
′
2, s2, s

′
2)

return w

Assume two accepting runs of the combined protocol with

the same commitment and c 6= c′:

((x1, x2), (r1, r2), c, ((c1, s1), (c2, s2)))
((x1, x2), (r1, r2), c

′, ((c′1, s
′
1), (c

′
2, s

′
2)))

We have to establish that for an i ∈ 1, 2,

Pr
[

wi ←KEi(xi, ri, ci, c
′
i, si, s

′
i) :(xi, wi) ∈ Ri

]

= 1

depending on whether c1 6= c′1 or c1 = c′1 ∧ c2 6= c′2,

• case c1 6= c′1: From the special soundness of Protocol1,

Pr
[

w1 ← KE1(x1, r1, c1, c
′
1, s1, s

′
1) :(x1, w1) ∈ R1

]

= 1

• case c1 = c′1 (and thus c2 6= c′2): From the special

soundness of Protocol2

Pr
[

w2 ← KE2(x2, r2, c2, c
′
2, s2, s

′
2) :(x2, w2) ∈ R2

]

= 1

VII. CONCLUSION

In this article we have presented a formalization of Σ-

protocols in CertiCrypt. The highlights of our formalization

are its generic account of the class of Σφ-protocols and

the detailed treatment of the AND/OR composition. Our

work complements recent advances in the field, and takes

a first but important step towards formalizing a rich theory

of zero-knowledge proofs. In our opinion, and judging by

the myriad of small variations in definitions we have found

in the literature, this effort would be worth pursuing for a

field that strives for definitional clarity and consistency.

Compared to other applications of CertiCrypt, like the

verification of security proofs of encryption and signature

schemes [5]–[7], the formalization presented here imposes

challenges of a different nature to the user. In contrast to

earlier case studies, for which we have developed a mature

set of techniques that mechanize most of the reasoning

patterns appearing in proofs, we found that the formalization

of Σ-protocols does not require as much complex proba-

bilistic reasoning, but is more demanding with respect to

the compositionality of proofs. This led us to revise some

design choices of CertiCrypt and has given us ideas on

how to improve the framework so that results can be reused

and composed more easily. For instance, when composing

proofs of observational equivalence statements the user often

needs to manually rename variables to match the names of

the context where the proof is being reused; currently the

user has to appeal to the alloc tactic to do this, but a

simply heuristic may suffice in most cases.
We can build on the existing formalization to verify

other important results about zero-knowledge proofs. These

include other means of composing protocols: sequential [26]

and concurrent [27], [28] composition; transforming public-

coin zero-knowledge proofs in general zero-knowledge

proofs [2], or different formulations like non-interactive

zero-knowledge proofs [29] or properties, i.e. statistical zero-

knowledge and computational zero-knowledge instead of

perfect zero-knowledge. Moreover, Σ-protocols form the

base for a number of important and intriguing protocols

for electronic voting schemes [4], identity schemes [4], and

commitment schemes [4], [30]. All are prime targets for

future formalizations.
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APPENDIX

A. Proofs of properties of the AND-combination

Completeness: We know that each of the sub-protocols

is complete, i.e.

R1(µ(x1), µ(w1)) =⇒ Pr [Protocol1, µ :b1 = true] = 1
R2(µ(x2), µ(w2)) =⇒ Pr [Protocol2, µ :b2 = true] = 1

and our goal is to prove that their AND-combination is

complete,

R(µ(x), µ(w)) =⇒ Pr [Protocol, µ : b = true] = 1



We begin by inlining the definition on V2 in the protocol,

thus obtaining

(r, state)← P1(x,w);
c← V1(x, r);
s← P2(x,w, state, c);
b1 ← V1

2(x1, r1, c, s1);
b2 ← V2

2(x2, r2, c, s2);
b← b1 = true ∧ b2 = true

We then split the goal into two subgoals by applying the

following lemma:

Pr [p, µ : b1] = 1 Pr [p, µ : b2] = 1

Pr [p; b← b1 ∧ b2, µ : b] = 1

We detail the proof of the first subgoal, the second is proven

analogously. The subgoal has the form

Pr [p, µ : b1 = true] = 1

where p is the following program

(r, state)← P1(x,w);
c← V1(x, r);
s← P2(x,w, state, c);
b1 ← V1

2(x1, r1, c, s1);
b2 ← V2

2(x2, r2, c, s2)

We restate the subgoal as an observational equivalence

statement

p ≃
R(x,w)
{b} b← true

We then simplify the program in the left hand side of the

equivalence by applying the following sequence of tactics:

inline P1; inline P2; inline V1;
alloc_l c c1; ep; deadcode

(r1, state1)← P1

1(x1, w1);
c1

$← {0, 1}k;
s1 ← P1

2(x1, w1, state1, c1);
b1 ← V1

2(x1, r1, c1, s1)

Observe that since protocol (P 1, V 1) is a public-coin pro-

tocol, the above program is semantically equivalent to the

protocol. Since we know that R(x, w) holds as precondition,

we know that R1(x1, w1) also holds, and we can conclude

the proof by appealing to the completeness of protocol

(P 1, V 1).

Special Honest-Verifier Zero-Knowledge: We should

prove the following observational equivalence statement:

Protocol(x, w, c) :
(r, state)← P1(x,w);
s← P2(x, w, state, c);
b← V2(x, r, c, s)

≃
{x,c}∧R(x,w)

{r,c,s} S(x, c)

We introduce as an intermediate game the sequential com-

position of each of the sub-protocols, i.e.

p def
=

(x1, x2)← x; (w1, w2)← w;
Protocol1(x1, w1, c);
Protocol2(x2, w2, c);
r ← (r1, r2); s← (s1, s2)

We prove that the above game is observational equivalent to

the main protocol using the following sequence of tactics:

inline_l P1; inline_l P2;

sinline_l V2;

swap; eqobs_in

We have then to prove that

p ≃
{x,c}∧R(x,w)
{r,c,s} S(x, c)

After inlining the definition of S and simplifying this be-

comes

Protocol1(x1, w1, c);
Protocol2(x2, w2, c)

≃Φ
{r1,r2,s1,s2}

(r1, s1)← S1(x1, c);
(r2, s2)← S2(x2, c)

where Φ = {x1, x2, w1, w2, c} ∧ R1(x1, w1) ∧ R2(x2, w2).
This is proved in two steps by applying the rule of sequential

composition of the Relational Hoare Logic,

p1 ≃Φ
Θ p′1 p2 ≃Θ

Ψ p′2
(p1; p2) ≃

Φ
Ψ (p′1; p

′
2)

with Θ = {r1, s1, x2, w2, c} ∧ R2(x2, w2), which leads to

two proof obligations. The first one has the form:

Protocol1(x1, w1, c) ≃
Φ
Θ (r1, s1)← S1(x1, c)

and follows directly from the sHVZK property of protocol

(P 1, V 1) and the fact that neither of the programs in the

equivalence modify x2, w2 or c.

The second proof obligation is the equivalence

Protocol2(x2, w2, c) ≃
Θ
{r1,r2,s1,s2}

(r2, s2)← S2(x2, c)

As above neither program modifies r1 or s1, and thus the

equivalence follows from the sHVZK property of the second

sub-protocol.

Soundness: We must prove that given two accepting

runs

((r1, r2), c, (s1, s2)) ((r1, r2), c
′, (s′1, s

′
2))

of the main protocol with c 6= c′, the knowledge extractor KE

proposed in Section VI-A succeeds in computing a witness

for each of the sub-protocols. We begin by observing that

each accepting run of the main protocol yields and accepting

run for each of the sub-protocols. We illustrate the proof of

this remark by showing how to extract an accepting run for

protocol (P 1, V 1) from the first accepting conversation, the

other cases are analogous.



Remark 14. (r1, c, s1) is an accepting conversation of pro-

tocol (P 1, V 1), i.e.

Pr
[

b1 ← V1

2(x1, r1, c, s1), µ : b1 = true
]

= 1

Proof: Because ((r1, r2), c, (s1, s2)) is accepting,

Pr [b← V2((x1, x2), (r1, r2), c, (s1, s2)), µ : b = true] = 1

By expanding the definition of V2, one gets

Pr

[

b1 ← V1
2(x1, r1, c

′, s′1);
b2 ← V2

2
(x2, r2, c

′, s′2)
, µ : b1 = true ∧ b2 = true

]

= 1

Observe then that for any program p,

Pr [p, µ : b1 ∧ b2] ≤ Pr [p, µ : b1]

which implies that

Pr

[

b1 ← V1
2(x1, r1, c

′, s′1);
b2 ← V2

2(x2, r2, c
′, s′2)

, µ : b1 = true

]

= 1

The call to V2
2 in the above program is dead code and can

be eliminated, thus obtaining the needed result.

We now have to prove that

Pr [(w1, w2)←KE( . . . ), µ : R1(x1, w1) ∧R2(x2, w2)] = 1

Observe that for any program p and events E1, E2,

Pr [p, µ : E1] = 1 Pr [p, µ : E2] = 1

Pr [p, µ : E1 ∧ E2] = 1

so that after inlining the definition of KE and eliminating

dead code, our goal boils down to proving

Pr
[

w ← KE1(x1, r1, c, c
′, s1, s

′
1), µ : R1(x1, w1)

]

= 1 ∧
Pr

[

w ← KE2(x2, r2, c, c
′, s2, s

′
2), µ : R2(x2, w2)

]

= 1

Both proof obligations follow directly from the soundness

of the corresponding sub-protocol and the above remark that

conversations (ri, c, si) and (ri, c
′, s′i) are accepting.


