
Edition August 2010

©
 S

ie
m

en
s

N
ix

do
rf

 In
fo

rm
a

tio
ns

sy
st

e
m

e
A

G
 1

9
95

P

fa
d

: F
:\

W
e

bT
A

\V
7.

5\
M

a
nu

al
e

\1
00

35
0

7_
C

lie
n

t_
A

P
Is

\e
n

\c
lie

n
ts

.v
or

User Guide - English

WebTransactions V7.5
Client APIs for WebTransactions

Comments… Suggestions… Corrections…
The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
manuals@ts.fujitsu.com

Certified documentation
according to DIN EN ISO 9001:2008
To ensure a consistently high quality standard and
user-friendliness, this documentation was created to
meet the regulations of a quality management system which
complies with the requirements of the standard
DIN EN ISO 9001:2008.

cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

This manual is printed
on paper treated with
chlorine-free bleach.

Copyright © Fujitsu Technology Solutions GmbH 2010.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

mailto:manuals@ts.fujitsu.com
http://www.cognitas.de

Client APIs for WebTransactions

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
ul

y
20

1
0

 S
ta

nd
 1

4
:2

6.
31

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

ua
le

\1
00

35
0

7_
C

lie
n

t_
A

P
Is

\e
n\

cl
ie

nt
s.

iv
z

Contents

1 Preface . 7

1.1 Product characteristics . 7

1.2 Architecture of client access in WebTransactions 9

1.3 WebTransactions documentation . 11

1.4 Structure and target group of this manual . 13

1.5 New features . 13

1.6 Notational conventions . 14

2 Client concept of WebTransactions . 15

2.1 The Web browser as standard client . 15

2.2 The WT_REMOTE interface . 16

2.3 The WT_RPC class library for WebTransactions clients 17

2.4 Class library for Java clients . 18
2.4.1 Applet for WebTransactions access . 19
2.4.2 Java program for WebTransactions access . 20
2.4.3 Data exchange between the Java client and WebTransactions 21

3 The WT_RPC class . 23

3.1 Constructor . 23

3.2 Attributes . 24

3.3 Methods . 25
3.3.1 open method . 25
3.3.2 close method . 26
3.3.3 invoke method . 26

Contents

 Client APIs for WebTransactions

3.3.4 addMethod Method . 27

3.4 Developing distributed applications with WT_RPC 28

4 The com.siemens.webta Java package . 29

4.1 WTSession class . 30
4.1.1 Constructors . 30
4.1.1.1 WTSession for a new WebTransactions session 31
4.1.1.2 WTSession for an already existing WebTransactions session 32
4.1.1.3 WTSession for an applet . 33
4.1.2 Methods . 35
4.1.2.1 attach method . 35
4.1.2.2 close method . 36
4.1.2.3 open method . 36
4.1.2.4 setApplTimeout method . 37
4.1.2.5 setLanguage method . 37
4.1.2.6 setStyle method . 38
4.1.2.7 setTraceLevel method . 39
4.1.2.8 setUserTimeout method . 40
4.1.3 Exceptions . 41
4.1.4 Example . 41

4.2 WTObject class . 42
4.2.1 Constructor . 42
4.2.2 Methods . 44
4.2.2.1 getAttribute method . 44
4.2.2.2 getAttributeNames method . 44
4.2.2.3 getValueAsString method . 45
4.2.2.4 getWTClass method . 45
4.2.2.5 getWTType method . 45
4.2.2.6 removeAttribute method . 46
4.2.2.7 setAttribute method . 46
4.2.2.8 setValue method . 47
4.2.3 Exceptions . 47
4.2.4 Example . 48

4.3 WTObjectRemoteAccess class . 49
4.3.1 Constructor . 49
4.3.2 Methods . 50
4.3.2.1 createObject method . 50
4.3.2.2 download method . 51
4.3.2.3 invoke method . 52
4.3.2.4 upload method . 53

Contents

Client APIs for WebTransactions

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
ul

y
20

1
0

 S
ta

nd
 1

4
:2

6.
31

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

ua
le

\1
00

35
0

7_
C

lie
n

t_
A

P
Is

\e
n\

cl
ie

nt
s.

iv
z

4.3.3 Exceptions . 54

5 Example: Distributed WebTransactions application with WT_RPC 55

5.1 Implementation scenario . 55

5.2 Technical concept . 57

5.3 Implementation of integration application . 57

6 Appendix: The WT_REMOTE interface . 61

6.1 Introduction . 61

6.2 WT_REMOTE methods . 62
6.2.1 START_SESSION method . 62
6.2.2 EXIT_SESSION method . 62
6.2.3 PROCESS_COMMANDS method . 63

6.3 Single-step and multi-step transactions . 64
6.3.1 Single-step transactions . 64
6.3.2 Multi-step transactions . 65

6.4 Structure of request messages for WT_REMOTE 66
6.4.1 Request messages without data part . 67
6.4.2 Request messages with control part and data part 69
6.4.3 Control part of the HTTP message . 70
6.4.4 Data part of the HTTP message . 71

6.5 XML documents for request messages . 73
6.5.1 The structure of the XML document (DTDrequest) 74
6.5.2 Structure of the data and uploadData elements (DTDdata) 76
6.5.3 Structure of the downloadData element (DTDdownload) 79
6.5.4 Structure of the callMethod element (DTDmethod) 81
6.5.5 Structure of the createObject element (DTDcreate) 84

6.6 XML documents in response messages . 86
6.6.1 Response message for START_SESSION . 87
6.6.2 Response message for EXIT_SESSION . 87
6.6.3 Response message for PROCESS_COMMANDS 88

Glossary . 91

Contents

 Client APIs for WebTransactions

Abbreviations . 109

Related publications . 111

Index . 113

Client APIs for WebTransactions 7

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

n
d

14
:2

6.
31

P
fa

d
: F

:\W
eb

TA
\V

7.
5\

M
an

u
al

e\
1

00
3

50
7

_C
lie

n
t_

A
P

Is
\e

n\
cl

ie
nt

s.
k0

1

1 Preface
Over the past years, more and more IT users have found themselves working in heteroge-
neous system and application environments, with mainframes standing next to Unix
systems and Windows systems and PCs operating alongside terminals. Different hardware,
operating systems, networks, databases and applications are operated in parallel. Highly
complex, powerful applications are found on mainframe systems, as well as on Unix servers
and Windows servers. Most of these have been developed with considerable investment
and generally represent central business processes which cannot be replaced by new
software without a certain amount of thought.

The ability to integrate existing heterogeneous applications in a uniform, transparent IT
concept is a key requirement for modern information technology. Flexibility, investment
protection, and openness to new technologies are thus of crucial importance.

1.1 Product characteristics

With WebTransactions, Fujitsu Technology Solutions offers a best-of-breed web integration
server which will make a wide range of business applications ready for use with browsers
and portals in the shortest possible time. WebTransactions enables rapid, cost-effective
access via standard PCs and mobile devices such as tablet PCs, PDAs (Personal Digital
Assistant) and mobile phones.

WebTransactions covers all the factors typically involved in web integration projects. These
factors range from the automatic preparation of legacy interfaces, the graphic preparation
and matching of workflows and right through to the comprehensive frontend integration of
multiple applications. WebTransactions provides a highly scaleable runtime environment
and an easy-to-use graphic development environment.

Product characteristics Preface

8 Client APIs for WebTransactions

On the first integration level, you can use WebTransactions to integrate and link the
following applications and content directly to the Web so that they can be easily accessed
by users in the internet and intranet:

– Dialog applications in BS2000/OSD
– MVS or z/OS applications
– System-wide transaction applications based on openUTM
– Dynamic web content

Users access the host application in the internet or intranet using a web browser of their
choice.

Thanks to the use of state-of-the-art technology, WebTransactions provides a second
integration level which allows you to replace or extend the typically alphanumeric user inter-
faces of the existing host application with an attractive graphical user interface and also
permits functional extensions to the host application without the need for any intervention
on the host (dialog reengineering).

On a third integration level, you can use the uniform browser interface to link different host
applications together. For instance, you can link any number of previously heterogeneous
host applications (e.g. MVS or OSD applications) with each other or combine them with
dynamic Web contents. The source that originally provided the data is now invisible to the
user.

In addition, you can extend the performance range and functionality of the WebTransactions
application through dedicated clients. For this purpose, WebTransactions offers an open
protocol and special interfaces (APIs).

Host applications and dynamic Web content can be accessed not only via WebTransactions
but also by “conventional” terminals or clients. This allows for the step-by-step connection
of a host application to the Web, while taking account of the wishes and requirements of
different user groups.

Preface Architecture of client access in WebTransactions

Client APIs for WebTransactions 9

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

n
d

14
:2

6.
31

P
fa

d
: F

:\W
eb

TA
\V

7.
5\

M
an

u
al

e\
1

00
3

50
7

_C
lie

n
t_

A
P

Is
\e

n\
cl

ie
nt

s.
k0

1

1.2 Architecture of client access in WebTransactions

The diagram below shows the architecture of client access in WebTransactions. This
manual deals with the items shown here in yellow:

Figure 1: Architecture of client access in WebTransactions

Web browser

The Web browser previously served as the standard client. Using the Web browser, host
applications that were formerly only available via terminal emulations can be operated via
a Web interface. In this case, the client only accesses the elements of the Web pages
created by the WebTransactions application.

WebTransactions server

Web browser as
standard client

w
eb

 s
er

ve
r

WebTransactions

H
os

t a
pp

lic
at

io
ns

Protocols of
host appli-

Java client

HTTPJava classes for
protocol with

W
T

_R
E

M
O

T
E

Any application, e.g.
C++, VBA or
WebTransactions

WebTransactions client

WT_RPC

HTTP
protocol with

HTTP
protocol

WT_REMOTE
elements

WT_REMOTE
elements

HTTP
protocol with
WT_REMOTE
elements

W
T

_D
IA

LO
G

WebTransactions

cations

Architecture of client access in WebTransactions Preface

10 Client APIs for WebTransactions

WebTransactions server

The WebTransactions server is the computer which runs the WebTransactions application
and the web server for client access to this application.

web server

In principle, all clients use the HTTP protocol to access the WebTransactions application via
the web server. If the client is a Web browser, the inquiries are forwarded to WT_DIALOG
which assumes control of the end user session.

If the HTTP messages contain WT_REMOTE elements, the inquiries are forwarded to the
WT_REMOTE interface of WebTransactions and are processed there.

WT_REMOTE

WT_REMOTE is an open interface of WebTransactions for all types of clients. It is thus possible
to access the resources (objects and methods) of WebTransactions applications from any
programs and thereby use their functionality in other applications. The only prerequisite for
this is that the client is capable of sending multi-part HTTP messages.

WebTransactions client

The WebTransactions client is a computer running a WebTransactions application which
accesses another WebTransactions application.

WT_RPC

WT_RPC is a programming interface of WebTransactions for distributed WebTransactions
applications. In this case, communication with the web server and hence utilization of the
WT_REMOTE interface are performed internally by WT_RPC and are thus transparent to the
programmer. This means that WebTransactions applications can access other
WebTransactions applications without major programming effort.

Java client

WTJavaClient classes can be used to write Java applets and Java programs for access to
WebTransactions. The methods of the Java classes are modeled on the calls of the
WT_REMOTE interface.

Preface WebTransactions documentation

Client APIs for WebTransactions 11

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

n
d

14
:2

6.
31

P
fa

d
: F

:\W
eb

TA
\V

7.
5\

M
an

u
al

e\
1

00
3

50
7

_C
lie

n
t_

A
P

Is
\e

n\
cl

ie
nt

s.
k0

1

1.3 WebTransactions documentation

The WebTransactions documentation consists of the following documents:

● An introductory manual which applies to all supply units:

Concepts and Functions

This manual describes the key concepts behind WebTransactions:

– The various possible uses of WebTransactions.

– The concept behind WebTransactions and the meanings of the objects in
WebTransactions, their main characteristics and methods, their interaction and life
cycle.

– The dynamic runtime of a WebTransactions application.

– The administration of WebTransactions.

– The WebLab development environment.

● A Reference Manual which also applies to all supply units and which describes the
WebTransactions template language WTML. This manual describes the following:

Template Language

After an overview of WTML, information is provided about:

– The lexical components used in WTML.

– The class-independent global functions, e.g. escape() or eval().

– The integrated classes and methods, e.g. array or Boolean classes.

– The WTML tags which contain functions specific to WebTransactions.

– The WTScript statements that you can use in the WTScript areas.

– The class templates which you can use to automatically evaluate objects of the
same type.

– The master templates used by WebTransactions as templates to ensure a uniform
layout.

– A description of Java integration, showing how you can instantiate your own Java
classes in WebTransactions and a description of user exits, which you can use to
integrate your own C/C++ functions.

– The ready-to-use user exits shipped together with WebTransactions.

– The XML conversion for the portable representation of data used for communication
with external applications via XML messages and the conversion of WTScript data
structures into XML documents.

WebTransactions documentation Preface

12 Client APIs for WebTransactions

● A User Guide for each type of host adapter with special information about the type of
the partner application:

Connection to openUTM applications via UPIC

Connection to OSD applications

Connection to MVS applications

All the host adapter guides contain a comprehensive example session. The manuals
describe:

– The installation of WebTransactions with each type of host adapter.

– The setup and starting of a WebTransactions application.

– The conversion templates for the dynamic conversion of formats on the web
browser interface.

– The editing of templates.

– The control of communications between WebTransactions and the host applications
via various system object attributes.

– The handling of asynchronous messages and the print functions of
WebTransactions.

● A User Guide that applies to all the supply units and describes the possibilities of the
HTTP host adapter:

Access to Dynamic Web Contents

This manual describes:

– How you can use WebTransactions to access a HTTP server and use its resources.

– The integration of SOAP (Simple Object Access Protocol) protocols in
WebTransactions and the connection of web services via SOAP.

● A User Guide valid for all the supply units which describes the web frontend of
WebTransactions that provides access to the general web services:

Web-Frontend for Web Services

This manual describes:

– The concept of web frontend for object-oriented backend systems.

– The generation of templates for the connection of general web services to
WebTransactions.

– The testing and further development of the web frontend for general web services.

Preface Structure and target group of this manual

Client APIs for WebTransactions 13

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

n
d

14
:2

6.
31

P
fa

d
: F

:\W
eb

TA
\V

7.
5\

M
an

u
al

e\
1

00
3

50
7

_C
lie

n
t_

A
P

Is
\e

n\
cl

ie
nt

s.
k0

1

1.4 Structure and target group of this manual

This manual is aimed at anyone who creates clients for WebTransactions applications or
who wishes to distribute functional elements of WebTransactions applications on a number
of servers.

The individual chapters describe the necessary protocols and interfaces for carrying out
these tasks.

This manual provides all the client-specific information supplementary to the introductory
WebTransactions manual “Concepts and Functions” and the WebTransactions reference
manual “Template Language”.

1.5 New features

You will find an overview of all the changes in WebTransactions V7.5 in the
WebTransactions manual “Concepts and Functions”

Notational conventions Preface

14 Client APIs for WebTransactions

1.6 Notational conventions

The following notational conventions are used in this documentation:

Name Description

typewriter font Fixed components which are input or output in precisely this
form, such as keywords, URLs, file names

 italic font Variable components which you must replace with real speci-
fications

bold font Items shown exactly as displayed on your screen or on the
graphical user interface; also used for menu items

[] Optional specifications; do not enter the square brackets
themselves

{alternative1 | alternative2 } Alternative specifications. You must select one of the expres-
sions inside the curly brackets. The individual expressions are
separated from one another by a vertical bar. Do not enter the
curly brackets and vertical bars themselves.

... Optional repetition or multiple repetition of the preceding
components

Important notes and further information

[CR][LF] Representation for “line feed” in the HTTP examples

Ê Prompt telling you to do something.

Refers to detailed information

i

Client APIs for WebTransactions 15

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

n
d

14
:2

6.
31

P
fa

d
: F

:\W
eb

TA
\V

7.
5\

M
an

u
al

e\
1

00
3

50
7

_C
lie

n
t_

A
P

Is
\e

n\
cl

ie
nt

s.
k0

2

2 Client concept of WebTransactions
The client concept described here allows for the flexible implementation of
WebTransactions as a supplier of data for all types of clients.

2.1 The Web browser as standard client

The structure of the client server access to WebTransactions appliances is fundamentally
different from the usual dialog-oriented WebTransactions applications with a Web browser
as standard client. In order to make the difference clearer, the standard case will be again
shown below, that means how WebTransactions transfers host applications to interactive
applications in the WWW. Using a Web browser available on most platforms, the HTTP
protocol can be used to access interactive applications that were formerly only available via
terminal emulations.

Figure 2: Components of a WebTransactions application

The browser sends its inquiries to WebTransactions via the web server. It can display the
HTML pages created by the WebTransactions server, and the browser user can commu-
nicate with the host application via the WebTransactions application in accordance with the
specifications in the templates. The user can only exert direct influence on the process of
the WebTransactions application insofar as this is permitted by the WebTransactions appli-
cation (e.g. a button to close the session).

WebTransactions

Web browser as
standard client

w
eb

 s
er

ve
r

HTTP

server

WebTransactions

H
os

t a
pp

lic
at

io
n

Protocol of
host application

The WT_REMOTE interface Client concept of WebTransactions

16 Client APIs for WebTransactions

2.2 The WT_REMOTE interface

The open client interface WT_REMOTE enables all types of clients to directly access the
resources of a WebTransactions application. Special incapsulations of this interface
(WT_RPC and the WTJavaClient classes) represent WebTransactions resources using
proxies, and thereby enable access as though these were part of the client application.

Figure 3: The WT_REMOTE interface for client access

Here, an application of any type sends inquiries to the web server in the form of multi-part
HTTP messages in a special format. The web server forwards these messages to the
WT_REMOTE interface of WebTransactions, where they are interpreted and processed.

The main difference from the standard client is that direct access is possible to the remote
application in the form of a remote procedure call, and not only access to the web pages of
the WebTransactions application. Client applications are allowed the following accesses:

● Start a WebTransactions session

● Execute a command in the WebTransactions session:
– send data to the WebTransactions session
– receive data from the WebTransactions session
– create WebTransactions objects
– call WebTransactions methods

● Close a WebTransactions session

In this way clients can actively influence a WebTransactions application and control this
application remotely, or use the functionality of a WebTransactions application for their own
purposes.

Any application, e.g.
C++, VBA,
Java applet, HTTP protocol with

WebTransactions

w
eb

 s
er

ve
r

server

WebTransactions

W
T
_
R
E
M
O
T
E

WT_REMOTE
elements

WebTransactions

Client concept of WebTransactions The WT_RPC class library for WebTransactions clients

Client APIs for WebTransactions 17

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

n
d

14
:2

6.
31

P
fa

d
: F

:\W
eb

TA
\V

7.
5\

M
an

u
al

e\
1

00
3

50
7

_C
lie

n
t_

A
P

Is
\e

n\
cl

ie
nt

s.
k0

2

Standard libraries (described in the following two sections) are available for the most
important application scenarios (Java applets and WebTransactions itself as client). For all
other clients, please see the detailed description of the WT_REMOTE interface in the chapter
“Appendix: The WT_REMOTE interface” on page 61.

2.3 The WT_RPC class library for WebTransactions clients

Using the client/server protocol WT_REMOTE, any application capable of sending HTTP multi-
part messages can obtain access to a WebTransactions application. For WebTransactions
applications as clients, there is also a user-friendly interface in the form of a class library
called WT_RPC, which enables uncomplicated communication using this protocol.

Figure 4: The WT_RPC class of WebTransactions

The WT_RPC class library provides a range of methods for communication with
WebTransactions server applications via the WT_REMOTE interface, without having to
consider the technical details of HTTP communication. Although communication takes
place via the web server as before, this is transparent to the programmer on the client side.
WT_RPC thus represents a high-level interface.

This interface offers the following functionality:

● starting and closing a remote WebTransactions application

● calling remote methods

● local definition of remote methods so that they can be used in the same way as local
methods

This functionality is all that is needed to implement distributed WebTransactions applica-
tions simply and effectively.

WebTransactions server

WT_REMOTEWebTransactions client

WT_RPC

WT_REMOTE calls

Class library for Java clients Client concept of WebTransactions

18 Client APIs for WebTransactions

2.4 Class library for Java clients

The WTJavaClient.jar class library can be used to write applets and Java programs which
access the data of a WebTransactions application using the methods of the predefined
classes. The classes of WTJavaClient.jar are based on JDK V1.1. The corresponding
methods use the interface WT_REMOTE internally but hide it behind an object interface that is
much easier to use.

A Java client for WebTransactions comprises various classes:

– user-defined and predefined classes based on JDK V1.1 which contain the on-screen
graphical representation of the program and the application logic

– WTJavaClient classes, responsible for connecting to a WebTransactions session and
for data exchange

Figure 5: Java clients for WebTransactions

An applet differs from a Java application in that the top class must be derived from the
java.applet.Applet class. This is not the case for a Java application, which must simply
have a main method. Different security concepts also apply.

WebTransactions server

WT_REMOTE

Web browser as
standard client

Java applet

Methods for WT_REMOT calls

Java classes for

Java program

Java classes for

WebTransactions

WebTransactions

WT_DIALOG

w
eb

 s
er

ve
r

Client concept of WebTransactions Class library for Java clients

Client APIs for WebTransactions 19

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

n
d

14
:2

6.
31

P
fa

d
: F

:\W
eb

TA
\V

7.
5\

M
an

u
al

e\
1

00
3

50
7

_C
lie

n
t_

A
P

Is
\e

n\
cl

ie
nt

s.
k0

2

The WTJavaClient.jar class library contains three classes:

– WTSession for starting and closing WebTransactions sessions and for restarting a new
or existing session

– WTObject for representing the data of a WebTransactions session, for establishing data
structures, and for setting and querying objects

– WTObjectRemoteAccess for the actual data exchange with a WebTransactions session,
for instantiating objects in the WebTransactions session, and for calling methods in the
WebTransactions session

2.4.1 Applet for WebTransactions access

The applet call is defined in a template and is sent to the browser as part of the HTML page.
The browser starts the applet automatically and thereby loads the applet class and the Java
classes for WebTransactions on the client computer.

The WTJavaClient classes must be located on the computer also running the web server
and WebTransactions, because an applet is only permitted to establish one connection to
the computer from which it was loaded. During installation, the WTJavaClient.jar archive
is therefore stored in the document directory of the web server under the webtav75
directory.

When the applet is to set up a connection to a WebTransactions session, the session
parameters must be transferred with the PARAM tag.

Example

<APPLET NAME="CLIPBOOK"
 CODE="clipBook.class"
 ARCHIVE="/webtav75/JavaDemo/java/clipBook.jar"
 WIDTH="516" HEIGHT="207">
 <PARAM NAME="SERVER" VALUE="##WT_SYSTEM.CGI.SERVER_NAME#">
 <PARAM NAME="SERVERPORT" VALUE="##WT_SYSTEM.CGI.SERVER_PORT#">
 <PARAM NAME="HREF" VALUE="##WT_SYSTEM.HREF#">
 <PARAM NAME="LANGUAGE" VALUE="##WT_SYSTEM.LANGUAGE#">
 <PARAM NAME="TRACELEVEL" VALUE="1">
 </APPLET>

With these values, the applet can attach to the existing connection with the
WebTransactions session (attach method) and can access the data of this
WebTransactions application. In addition, an applet itself can start a WebTransactions appli-
cation (open method).

Class library for Java clients Client concept of WebTransactions

20 Client APIs for WebTransactions

Demo Java applications which clarify this procedure are supplied with WebTransactions.
During installation, these applications are installed in the document directory of the web
server under the subdirectory webtav75/JavaDemo, if the WebTransactions Demo
Applications option has been selected. A demo application is a notebook function which
can make notes during the entire course of the WebTransactions session after a non-
synchronous call, displays the existing notes, and saves these notes when the session is
closed.

2.4.2 Java program for WebTransactions access

The Java program itself can start a WebTransactions application using the open method.
The Java program and the WTJavaClient classes are located on the client computer which
accesses the WebTransactions application.

Client concept of WebTransactions Class library for Java clients

Client APIs for WebTransactions 21

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

n
d

14
:2

6.
31

P
fa

d
: F

:\W
eb

TA
\V

7.
5\

M
an

u
al

e\
1

00
3

50
7

_C
lie

n
t_

A
P

Is
\e

n\
cl

ie
nt

s.
k0

2

2.4.3 Data exchange between the Java client and WebTransactions

The Java client uses the upload method to transfer data to the WebTransactions session.
Depending on the content, this data is created as new global variables or as attributes of
WT_SYSTEM or WT_HOST in the WebTransactions session.

Figure 6: Data exchange between Java client and WebTransactions

Conversely, the Java client can also use the download method to query the data of the
addressed WebTransactions session. In addition, the CreateObject method can be used to
execute integrated or user-defined constructors, and the invoke method used to execute
methods and functions in the WebTransactions session. The result of such a call is returned
to the client program.

Client program WebTransactions Host applicationweb
server

Retrieve requested data

Poss. communication
with host application

...

.........

... ...
upload()

Perform requested action
Return result

download()

createObject()
invoke()

Accept and create trans-
ferred data

Empty acknowledgment
to client program

Class library for Java clients Client concept of WebTransactions

22 Client APIs for WebTransactions

Client APIs for WebTransactions 23

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

n
d

14
:2

6.
31

P
fa

d
: F

:\W
eb

TA
\V

7.
5\

M
an

u
al

e\
1

00
3

50
7

_C
lie

n
t_

A
P

Is
\e

n\
cl

ie
nt

s.
k0

3

3 The WT_RPC class
An object of the WT_RPC class represents a connection to a remote WebTransactions appli-
cation, which was implemented on the server side via the WT_REMOTE interface. The WT_RPC
class is defined in the delivered template wtRPC.htm, which is saved in your base directory
in the subdirectory config/forms. You have to include wtRPC.htm in your template to create
objects of the the WT_RPC class. An example for an application of this class can be found in
chapter “Example: Distributed WebTransactions application with WT_RPC” on page 55.

3.1 Constructor

The WT_RPC constructor creates a new WT_RPC object via which the WT_REMOTE calls to a
remote WebTransactions application can be processed.

If the constructor is called without arguments, only the communication object is created. If
the remote WebTransactions application is also to be started, the following arguments must
be specified:

urlOfWebTA
URL of the WTPublish program on the computer whose WebTransactions appli-
cation is to be started. urlOfWebTA must refer to the program WTPublish.exe or
WTPublishISAPI.dll on the remote machine
(e.g. http://remoteMachine/cgi-bin/WTPublish.exe).

basedir
String with the base directory of the remote WebTransactions application.

If the call was successful and if the remote WebTransactions application could be started,
the WT_CONNECTED attribute of the new WT_RPC object is assigned the value true. Otherwise,
it is defined as false.

WT_RPC()
WT_RPC(urlOfWebTA, basedir)

Attributes The WT_RPC class

24 Client APIs for WebTransactions

3.2 Attributes

An object of the WT_RPC class has three attributes that can be addressed. These attributes
are generally set and used by the methods, but can also be used by the client application
for checking purposes.

WT_URL
Contains the URL for calling the WebTransactions application. This URL is set by
the open call or the constructor call, provided a URL was specified as an argument
in the call.

WT_BASEDIR
Contains the base directory of the remote WebTransactions application. This base
directory is parameterized by the open call or the constructor call, provided a base
directory was specified as an argument in the call.

WT_CONNECTED
Contains the status of the connection to the remote WebTransactions application.
This status is set to true by the open call, provided the connection was established
successfully. Otherwise, the status is set to false.

 WT_URL
WT_BASEDIR
WT_CONNECTED

The WT_RPC class Methods

Client APIs for WebTransactions 25

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

n
d

14
:2

6.
31

P
fa

d
: F

:\W
eb

TA
\V

7.
5\

M
an

u
al

e\
1

00
3

50
7

_C
lie

n
t_

A
P

Is
\e

n\
cl

ie
nt

s.
k0

3

3.3 Methods

A description of the methods of the WT_RPC class follows.

3.3.1 open method

The open method starts a remote a WebTransactions application or creates a connection
with a current WebTransactions application.

urlOfWebTA
URL of the WTPublish program on the computer whose WebTransactions appli-
cation is to be started. urlOfWebTA must refer to the program WTPublish.exe or
WTPublishISAPI.dll on the remote machine
(e.g. http://remoteMachine/cgi-bin/WTPublish.exe).

If the method is called without any parameters, the values of the WT_URL and
WT_BASEDIR attributes of the WT_RPC object are used to establish the connection;
these values must be transferred beforehand to the constructor or to a preceding
open call.

basedir
Base directory of the remote WebTransactions application. If the method is called
without the basedir parameter, the value of the WT_BASEDIR attribute of the WT_RPC
object is used to establish the connection; this value must be transferred
beforehand to the constructor of the WT_RPC class or to a preceding open call.

session, signature
If the open method is used additionally to transfer for the parameters session and
signature the values of the attributes WT_SYSTEM.SESSION and WT_SYSTEM.SIGNATURE
of a remote current WebTransactions application, a connection is established with
this WebTransactions application. No new session is started in this case.

The values of the transferred parameters are stored in the WT_URL and WT_BASEDIR attributes
of the WT_RPC object. If the remote WebTransactions application is started successfully, the
WT_CONNECTED attribute is set to true; otherwise, it is set to false. The value of this attribute
is also returned by the method as the result. If the parameters session and signature are not
specified, it is tried to start a new remote session in all cases. If in this case there is already
a connection for the current object the previously connected remote application is termi-
nated (see section “close method” on page 26)

 open()
open(urlOfWebTA)
open(urlOfWebTA, basedir)
open(urlOfWebTA, basedir, session, signature)

Methods The WT_RPC class

26 Client APIs for WebTransactions

3.3.2 close method

The close method ends the remote WebTransactions application which is connected with
this WT_RPC object. The WT_CONNECTED attribute of the object is set to false.

3.3.3 invoke method

The invoke method calls a function in the remote WebTransactions application.

name Specifies the name of the function in the remote WebTransactions application

codeBase
Specifies the WTML document containing the function definition

argArray
An array whose elements are transferred to the remote function as arguments

The method returns the result of the remote function. If no connection is established to a
remote WebTransactions application, the value null is returned.

Example

A remote function add, which is defined in the WTML document calc.htm, calculates
the sum of all its parameters and returns this value as the result. A WT_RPC object rwt
has already been created for the remote WebTransactions application by a preceding
constructor call. The following call then returns the result 42 in the answer variable.

answer = rwt.invoke('add', 'calc', new Array(1, 2, 3, 4, 32));

 close()

 invoke(name, codeBase, argArray)

The WT_RPC class Methods

Client APIs for WebTransactions 27

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

n
d

14
:2

6.
31

P
fa

d
: F

:\W
eb

TA
\V

7.
5\

M
an

u
al

e\
1

00
3

50
7

_C
lie

n
t_

A
P

Is
\e

n\
cl

ie
nt

s.
k0

3

3.3.4 addMethod Method

Calling a remote function using the invoke method is somewhat laborious, because the
defined document must always be specified again and the parameters must be transferred
in an array.

Calling the addMethod method defines a new method of the underlying WT_RPC object as a
representative for the remote function. The remote function can now be called as a method
of the WT_RPC object.

name Specifies the name of the function in the remote WebTransactions application

codeBase
Specifies the WTML document containing the function definition

Example

A local representative method can be defined by the following call for the add function
described above in the section “invoke method” on page 26. The remote function can
then be called using this representative method.

rwt.addMethod('add', 'calc.htm');
answer = rwt.add(1, 2, 3, 4, 32);

 addMethod(name, codeBase)

Developing distributed applications with WT_RPC The WT_RPC class

28 Client APIs for WebTransactions

3.4 Developing distributed applications with WT_RPC

If you want to develop distributed WebTransactions applications, it is advisable to observe
the following sequence:

1. Define functionality

First define the functionality of the WebTransactions application. This functionality
should be made available in the form of functions, i.e. you should define an API for the
desired functionality. To simplify access to the functions at a later stage, the API should
be provided in a separate template:

//myAPI
function turnover(company) {...}

To simplify the test and subsequent distribution, it is advisable to provide the entire
functionality as methods of an object:

myAPI = new Object();
myAPI.turnover = turnover;

2. Test the functionality locally

The functions should first be tested locally in the same WebTransactions application.
This means that you can use the full functionality of WebLab during the test. You simply
have to write a test template which accesses the functions. This test template includes
the functions you have defined and implements an interface for the test:

Turnover:

##myAPI.turnover(WT_POSTED.c)#

Continue testing until your functions are working satisfactorily.

3. Distribute the WebTransactions application

In this step you must perform two tasks:

● Distribute your documents to two WebTransactions applications. One application
contains the templates which provide functionality (server), while the other appli-
cation contains the templates you used for the test (client).

● In the test template on the client, replace the API object with an object of the WT_RPC
class and define the methods on the server as methods of this object:

myAPI = new WT_RPC(...);
myAPI.addMethod('turnover',...);

When you specify the URL and base directory of your WebTransactions application in
the constructor of the WT_RPC object in your client application, your client application
accesses the WebTransactions application remotely and you have distributed your
application.

Client APIs for WebTransactions 29

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

n
d

14
:2

6.
31

P
fa

d
: F

:\W
eb

TA
\V

7.
5\

M
an

u
al

e\
1

00
3

50
7

_C
lie

n
t_

A
P

Is
\e

n\
cl

ie
nt

s.
k0

4

4 The com.siemens.webta Java package
Java classes are combined into packages. The com.siemens.webta package is supplied for
communication with WebTransactions. During installation, this package is stored as the
WTJavaClient.jar archive both in the subdirectory lib in the WebTransactions installation
directory and in the webtav75 directory under the web server document directory. The
com.siemens.webta package contains the following classes:

– WTSession, which provides methods for establishing a connection to the
WebTransactions application.

– WTObject, which provides methods for object representation of the remote WTObject
data of an active WebTransactions session.

– WTObjectRemoteAccess, which provides methods for exchanging data with the
WebTransactions application.

In order to work with the WTJavaClient classes of WebTransactions, the path under which
the classes can be accessed must be added to the Java environment variable CLASSPATH.
In the source program itself, the package must be made known to your Java program using
the import statement.

Example

import com.siemens.webta.*;

WTSession class The com.siemens.webta Java package

30 Client APIs for WebTransactions

4.1 WTSession class

The WTSession class contains the basic methods for communication with WebTransactions.
An object of the WTSession class references a remote WebTransactions session. With an
object of this class a new WebTransactions session can be started or the object can be
connected with an existing session. For this purpose you enter the address in the
construktor. Use the open or attach methods to establish whether a new or existing
WebTransactions session should be used.

Internally, the methods use the interface WT_REMOTE, which is described in chapter
“Appendix: The WT_REMOTE interface” on page 61.

4.1.1 Constructors

Use a constructior to create a new object for access to a remote WebTransactions session.
Here you transfer the information that is required for addressing a session.

Two cases can be distinguished:

● A new WebTransactions session is created and used. In this case it is sufficient to
specify the WebTransactions application by entering the server and base directory.

● An already existing WebTransactions setting should be used. For addressing here, the
session ld and the signature of this session are required. They can be transferred via
the parameter href.

This distinction is not definitive because the decision to invoke a new or existing session
can be set not until using the open or attach methods. The attach method enables the
session ld and the signature to be entered at a later date to invoke the current session. But
you can also use the open method and thus ignore any session parameters previously
transferred with href.

Use in applets

There is a special constructor for use in applets that contains only the applet object and
determines all required entries from the correspondingly named parameters. Both cases,
i.e. new and already existing WebTransactions sessions are equally supported.

 public class WTSession

The com.siemens.webta Java package WTSession class

Client APIs for WebTransactions 31

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

n
d

14
:2

6.
31

P
fa

d
: F

:\W
eb

TA
\V

7.
5\

M
an

u
al

e\
1

00
3

50
7

_C
lie

n
t_

A
P

Is
\e

n\
cl

ie
nt

s.
k0

4

4.1.1.1 WTSession for a new WebTransactions session

WTSession creates a new WTSession object to be used for a new connection to a
WebTransactions application.

protocol
Protocol for the connection; this parameter can be omitted if the HTTP protocol is
used.
Possible values: http, https
Default: http

server
Internet address or symbolic name of the computer running the
WebTransactions application.

serverPort
Port for the HTTP connection; default:

80 if http is specified for protocol

443 if https is specified for protocol

WTScriptName
Path for the WTPublish call (e.g. /cgi-bin/WTPublish.exe or /scripts/WTPub-
lishISAPI.dll).

basedir
Base directory of the WebTransactions application.

 Please note that you must specify either the parameter protocol or serverPort. Both
parameters must not be omitted simultaneously.

Example

WTSession osd1=new WTSession("http", "111.222.111.222", 8080,
 "/cgi-bin/WTPublish.exe",
 "c:\\WebTABase\\osd_test");

 WTSession(String protocol, String server, int serverPort,
String WTScriptName, String basedir)

WTSession(String server, int serverPort, String WTScriptName, String basedir)
WTSession(String protocol, String server, String WTScriptName, String basedir)

i

WTSession class The com.siemens.webta Java package

32 Client APIs for WebTransactions

4.1.1.2 WTSession for an already existing WebTransactions session

WTSession creates a new WTSession object to be attached to an already existing
WebTransactions session.

protocol
Protocol for the connection; this parameter can be omitted if the HTTP protocol is
used.
Possible values: http, https
Default: http

server
Internet address or symbolic name of the computer running the
WebTransactions application.

serverPort
Port for the HTTP connection; default:

80 if http is specified for protocol

443 if https is specified for protocol

href
Relative URL for the WebTransactions application (corresponds to the values of the
HREF or HREF_ASYNC attribute of the global system object).

Example

string href="cgi-bin/WTPublish.exe?WT_SYSTEM_BASEDIR=c:/myBase&
WT_SYSTEM_FORMAT=myStart&WT_SYSTEM_SESSION=E-43585543569&
WT_SYSTEM_SIGNATURE=1242545991206130607";

WTSession osd1=new WTSession("http", "rechner1", 8080, href);

 WTSession(String protocol, String server, int serverPort, String href)
WTSession(String server, int serverPort, String href)
WTSession(String protocol, String server, String href)
WTSession(String server, String href)

The com.siemens.webta Java package WTSession class

Client APIs for WebTransactions 33

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

n
d

14
:2

6.
31

P
fa

d
: F

:\W
eb

TA
\V

7.
5\

M
an

u
al

e\
1

00
3

50
7

_C
lie

n
t_

A
P

Is
\e

n\
cl

ie
nt

s.
k0

4

4.1.1.3 WTSession for an applet

WTSession creates a new WTSession object for a new or existing connection to a
WebTransactions session in an applet.

app Current applet

This constructor can only be used in a Java applet if the parameters required to establish a
connection to a WebTransactions application are transferred in the HTML page via param-
eters. Please note that HTML is not case-sensitive.

The following parameters can be specified with an applet using the PARAM tag in a WTML
template:

● Connection parameters that must always be specified:

protocol Protocol for the connection; this parameter can be omitted if the HTTP
protocol is used.
Possible values: http, https
Default: http

server Internet address or symbolic name of the computer running the
WebTransactions application.

serverPort Port for the HTTP connection; default:

80 if http is specified for protocol

443 if https is specified for protocol

● Connection parameters for a new WebTransactions session:

WTScriptName
Path for the WTPublish call (e.g. /cgi-bin/WTPublish.exe or
/scripts/WTPublishISAPI.dll).

basedir Base directory of the WebTransactions application.

● Connection parameters for an existing WebTransactions session:

href Relative URL for the WebTransactions session (corresponds to the values
of the HREF or HREF_ASYNC attribute of the global system object).

 WTSession(Applet app)

WTSession class The com.siemens.webta Java package

34 Client APIs for WebTransactions

The following parameters can also be specified instead of the href parameter:

WTScriptName
Path for the WTPublish call (e.g. /cgi-bin/WTPublish.exe or
/scripts/WTPublishISAPI.dll).

basedir Base directory of the WebTransactions application.

session Session ID of the current WebTransactions session, corresponding to the
WT_SYSTEM.SESSION attribute of the global system object.

signature Signature of the current WebTransactions session, corresponding to the
WT_SYSTEM.SIGNATURE attribute of the global system object.

Example

Below is an extract from a WTML template in which an applet is called with the
necessary parameters for an existing connection to a WebTransactions session.

...
<APPLET code="Applet1.class"
 archive="/webtav75/WTJavaClient.jar"
 codebase="/applets">

 <PARAM name="protocol" value="http">
 <PARAM name="server" value="111.222.111.222">
 <PARAM name="serverPort" value="8080">
 <PARAM name="WTScriptName" value="/cgi-bin/WTPublish.exe">
 <PARAM name="basedir" value="c:/WebTAbase">
 <PARAM name="session" value="##WT_SYSTEM.SESSION#">
 <PARAM name="signature" value="##WT_SYSTEM.SIGNATURE#">
</APPLET>
...

The applet object can then be created with the following constructor call:

WTSession myApp = new WTSession(this);

The com.siemens.webta Java package WTSession class

Client APIs for WebTransactions 35

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

n
d

14
:2

6.
31

P
fa

d
: F

:\W
eb

TA
\V

7.
5\

M
an

u
al

e\
1

00
3

50
7

_C
lie

n
t_

A
P

Is
\e

n\
cl

ie
nt

s.
k0

4

4.1.2 Methods

The methods of the WTSession class are described below in alphabetical order.

4.1.2.1 attach method

The attach method establishes a connection with an existing WebTransactions session.
If a session has already been specified in the constructor (through the parameters href or
session and signature), attach can be used without parameters. Otherwise, you must
instance the session and signature parameters. The attach method returns the current
WTSession object. The attach method does not call a WebTransactions session directly.
This occurs with the methods of the WTObjectRemoteAccess class, see also section
“WTObjectRemoteAccess class” on page 49.

Possible exceptions are described in section “Exceptions” on page 41.

session
Session ID of the current WebTransactions session, corresponding to the SESSION
attribute of the global system object.

signature
Signature of the current WebTransactions session, corresponding to the SIGNATURE
attribute of the global system object.

Example

myApp.attach();

 WTSession attach(String session, String signature) throws
WTSessionConnectionException, WTSessionParameterException

WTSession attach() throws
WTSessionConnectionException, WTSessionParameterException

WTSession class The com.siemens.webta Java package

36 Client APIs for WebTransactions

4.1.2.2 close method

The close method closes a WebTransactions session that was opened using the open or
attach methods. It resets the addressing of the WebTransactions application in the under-
lying object because the WebTransactions session referenced up until now no longer exists.
If no session has been started yet, only the addressing of a WebTransactions application is
reset. Possible exceptions are described in section “Exceptions” on page 41.

Example

myApp.close();

4.1.2.3 open method

The open method starts a new WebTransactions session and returns the current WTSession
object. Addressing of the WebTransactions application was already set with the constructor.
The open method calls the close method implicitly before a new WebTransactions session
is started, and calls the attach method following a successful start.

If the new session starts with special timeout, language or style settings you can call the
corresponding methods before the open method. Possible exceptions are described in
section “Exceptions” on page 41.

Example

myApp.open();

 void close() throws
WTSessionConnectionException,
WTCloseSessionException

 WTSession open() throws
WTSessionConnectionException,
WTSessionParameterException,
WTCloseSessionException

The com.siemens.webta Java package WTSession class

Client APIs for WebTransactions 37

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

n
d

14
:2

6.
31

P
fa

d
: F

:\W
eb

TA
\V

7.
5\

M
an

u
al

e\
1

00
3

50
7

_C
lie

n
t_

A
P

Is
\e

n\
cl

ie
nt

s.
k0

4

4.1.2.4 setApplTimeout method

The setApplTimeout method sets the value of the TIMEOUT_APPLICATION system object
attribute for the next call of the WebTransactions application. setApplTimeout returns the
current WTSession object.

applTimeout
Time span in seconds for responses from the host application within the
WebTransactions session.

 Please note that when this method is used there is no communication with the
WebTransactions application. The value set for TIMEOUT_APPLICATION is buffered
and is sent with the next communication method (e.g. open).

Example

myApp.setApplTimeout(60);

4.1.2.5 setLanguage method

The setLanguage method sets the value of the LANGUAGE system object attribute for the next
call of the WebTransactions application. setLanguage returns the current WTSession object.

language
config directory of the WebTransactions application, in which the templates for the
corresponding interface language are stored.

 Please note that when this method is used there is no communication with the
WebTransactions application. The value set for LANGUAGE is buffered and is sent with
the next communication method (e.g. open).

Example

myApp.setLanguage("engl");

 WTSession setUserTimeout(int applTimeout)

 WTSession setLanguage(String language)

i

i

WTSession class The com.siemens.webta Java package

38 Client APIs for WebTransactions

4.1.2.6 setStyle method

The setStyle method sets the value of the STYLE system object attribute for the next call of
the WebTransactions application. setStyle returns the current WTSession object.

style Subdirectory under the config directory of the WebTransactions application, in
which the templates for the corresponding interface style are stored.

 Please note that when this method is used there is no communication with the
WebTransactions application. The value set for STYLE is buffered and is sent with
the next communication method (e.g. open).

Example

myApp.setStyle("lay1");

 WTSession setStyle (String style)

i

The com.siemens.webta Java package WTSession class

Client APIs for WebTransactions 39

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

n
d

14
:2

6.
31

P
fa

d
: F

:\W
eb

TA
\V

7.
5\

M
an

u
al

e\
1

00
3

50
7

_C
lie

n
t_

A
P

Is
\e

n\
cl

ie
nt

s.
k0

4

4.1.2.7 setTraceLevel method

The setTraceLevel method activates the trace function for the WTJavaClient object.

traceLevel
Numeric value which determines the trace level. The individual values are defined
as variables. The table below provides an overview of which values you can specify
and which variable definition corresponds to each value:

The various trace options can be combined by adding the numeric values or
linking the constants with the logical OR operand.

Example

myApp.setTraceLevel(WTSession.traceLevel_WTSession +
WTSession.traceLevel_WTObject);

If you use the sum of the numeric values for the constants (WTSession =1 and
WTObject =4), the following line is synonymous with the first:

myApp.setTraceLevel(5);

 void setTraceLevel(int traceLevel)

Value Variable definition Meaning

0 public static final int
traceLevel_Off

The trace function is deactivated

1 public static final int
traceLevel_WTSession

Trace of the WTSession class

2 public static final int
traceLevel_WTObjectRemoteAccess

Trace of the
WTObjectRemoteAccess class

4 public static final int
traceLevel_WTObject

Trace of the WTObject class

8 public static final int
traceLevel_WTXMLHandler

Trace of the XML parser

Table 1: Trace levels

WTSession class The com.siemens.webta Java package

40 Client APIs for WebTransactions

4.1.2.8 setUserTimeout method

The setUserTimeout method sets the value of the TIMEOUT_USER system object attribute for
the next call of the WebTransactions application. setUserTimeout returns the current
WTSession object.

userTimeout
Time span in seconds for responses from the user within the WebTransactions
session.

 Please note that when this method is used there is no communication with the
WebTransactions application. The value set for TIMEOUT_USER is buffered and is sent
with the next communication method (e.g. upload). As the value does not come into
effect until the next time the WebTransactions application is called, until then it has
no effect on the current session.

Example

myApp.setUserTimeout(360);

 WTSession setUserTimeout(int userTimeout)

i

The com.siemens.webta Java package WTSession class

Client APIs for WebTransactions 41

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

n
d

14
:2

6.
31

P
fa

d
: F

:\W
eb

TA
\V

7.
5\

M
an

u
al

e\
1

00
3

50
7

_C
lie

n
t_

A
P

Is
\e

n\
cl

ie
nt

s.
k0

4

4.1.3 Exceptions

The open, attach and close methods of the WTSession object can trigger the following
exceptions:

4.1.4 Example

Below is an extract from a Java program.

// construct a WTSession object for a remote WebTransactions session
WTSession wtSession = new WTSession("PGTD1234",
 80,
 "/scripts/WTPublishISAPI.dll",
 "c:/basedirs/myAppl");
// set the application and user timeout object for the new
// WebTransactions session
wtSession.setApplTimeout("60").setUserTimeout("3600");
// open a new WebTransactions session for the WTSession object
wtSession.open();
...

Exception Meaning

WTSessionConnectionException This exception is triggered when the connection parameters
for a WebTransactions session are not correct. Check the
parameters protocol, server, serverPort or WTScriptName
which you specified in the WTSession constructor.

WTSessionParameterException This exception is triggered when the session or signature
parameter is not set for a WebTransactions session. Check
these parameters, which you specified in the WTSession
constructor.

WTCloseSessionException This exception is triggered when the WebTransactions
session cannot be closed. The session and signature param-
eters are however always reset, which means that this
exception can generally be ignored.

Table 2: Exception for WTSession

WTObject class The com.siemens.webta Java package

42 Client APIs for WebTransactions

4.2 WTObject class

The WTObject class reflects the main part of the WebTransactions object model. It provides
methods for processing objects and thereby supplies the WTObjectRemoteAccess class with
the objects and methods for data exchange with the remote WebTransactions application

4.2.1 Constructor

WTObject creates a new WTObject object which corresponds to a WebTransactions object.
Data types and classes are predefined as Java variables. The value of the object is
managed as a character string. If you want to work with the real value, you must convert it
into the corresponding data type.

objectType
Data type of the new object. The following values can be specified:

 public class WTObject

 WTObject(int objectType)
WTObject(int objectType, String objectValue)
WTObject(int objectType, int objectClass)
WTObject(int objectType, int objectClass, String objectValue)

Java variable definition WTML data type

public static final int TYPE_UNDEFINED undefined

public static final int TYPE_STRING string

public static final int TYPE_NUMBER number

public static final int TYPE_BOOLEAN boolean

public static final int TYPE_OBJECT object

public static final int TYPE_FUNCTION function

Table 3: Java definitions for WTML data types

The com.siemens.webta Java package WTObject class

Client APIs for WebTransactions 43

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

n
d

14
:2

6.
31

P
fa

d
: F

:\W
eb

TA
\V

7.
5\

M
an

u
al

e\
1

00
3

50
7

_C
lie

n
t_

A
P

Is
\e

n\
cl

ie
nt

s.
k0

4

objectClass
Class of the new object. The following values can be specified:

If you do not specify a class, an object of the Undefined class is created.

objectValue
Value of the new object. If you do not assign a value to an object, the object is
initialized with the value null.

Example

WTObject local_obj= new WTObject(WTObject.TYPE_OBJECT,
 WTObject.CLASS_OBJECT);

Java variable definition WTML class

public static final int CLASS_UNDEFINED Undefined

public static final int CLASS_STRING String

public static final int CLASS_NUMBER Number

public static final int CLASS_BOOLEAN Boolean

public static final int CLASS_OBJECT Object

public static final int CLASS_ARRAY Array

public static final int CLASS_REGEXP Regexp

public static final int CLASS_FUNCTION Function

public static final int CLASS_WTHOSTOBJECT WT_Hostobject

public static final int CLASS_WTCOMMUNICATION WT_Communication

public static final int CLASS_DOCUMENT Document

public static final int CLASS_WTUSEREXIT WT_Userexit

public static final int CLASS_DATE Date

Table 4: Java definitions for WTML classes

WTObject class The com.siemens.webta Java package

44 Client APIs for WebTransactions

4.2.2 Methods

The methods of the WTObject class are described below in alphabetical order.

4.2.2.1 getAttribute method

The getAttribute method returns the specified attribute of the current object as a WTObject
object. If the desired attribute does not exist, the value null is returned.

attributeName
Name of the desired attribute, which can also be specified in the object hierarchy.

Example

WTObject local_obj=remote_obj.download("WT_SYSTEM");
WTObject style=local_obj.getAttribute("STYLE");
WTObject script=local_obj.getAttribute("CGI.SCRIPT_NAME");

4.2.2.2 getAttributeNames method

The getAttributeNames method returns the name of all attributes of the current object in a
character string array.

Example

String[] Attribute=local_obj.getAttributeNames();

 WTObject getAttribute(String attributeName)

 String [] getAttributeNames()

The com.siemens.webta Java package WTObject class

Client APIs for WebTransactions 45

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

n
d

14
:2

6.
31

P
fa

d
: F

:\W
eb

TA
\V

7.
5\

M
an

u
al

e\
1

00
3

50
7

_C
lie

n
t_

A
P

Is
\e

n\
cl

ie
nt

s.
k0

4

4.2.2.3 getValueAsString method

The getValueAsString method returns the value of the current object as a character string.
Please note that you must convert the value into the corresponding data type if you want to
work with the real value.

Example

String value=local_obj.getValueAsString();

4.2.2.4 getWTClass method

The getWTClass method returns the class of the current object as a constant. The constants
are explained in the table “Java definitions for WTML classes” on page 43.

Example

int objectClass=local_obj.getWTClass();

4.2.2.5 getWTType method

The getWTType method returns the data type of the current object as a constant. The
constants are explained in the table “Java definitions for WTML data types” on page 42.

Beispiel

int objektTyp=local_obj.getWTType();

 String getValueAsString()

 int getWTClass()

 int getWTType()

WTObject class The com.siemens.webta Java package

46 Client APIs for WebTransactions

4.2.2.6 removeAttribute method

The removeAttribute method removes the specified attribute from the current object and
returns the current object. If the specified attribute does not exist, this method has no effect.

attributeName
Name of the attribute to be removed.

Example

local_obj.removeAttribute("myObj");

4.2.2.7 setAttribute method

The setAttribute method sets the specified attribute in the current object and returns the
set object. If the set attribute does not yet exist in the current object, it is created. If a level
does not exist in the specified object hierarchy, setAttribute returns the value null and
the attribute is not set.

attributeName
Name of the attribute to be set or created. The attribute can also be specified in the
object hierarchy.

object Description of the attribute as a WTObject object.

Example

local_obj.setAttribute("STYLE",new WTObject(WTObject.TYPE_STRING,"N"));

 WTObject removeAttribute(String attributeName)

 WTObject setAttribute(String attributeName, WTObject object)

The com.siemens.webta Java package WTObject class

Client APIs for WebTransactions 47

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

n
d

14
:2

6.
31

P
fa

d
: F

:\W
eb

TA
\V

7.
5\

M
an

u
al

e\
1

00
3

50
7

_C
lie

n
t_

A
P

Is
\e

n\
cl

ie
nt

s.
k0

4

4.2.2.8 setValue method

The setValue method sets the value of the current object. Please note that the value must
always be a character string, even if the data type of the object is not a character string.

value
Value of the current object as a character string.

Example

local_obj.setValue("42");

4.2.3 Exceptions

No exceptions are defined for this class.

 void setValue(String value)

WTObject class The com.siemens.webta Java package

48 Client APIs for WebTransactions

4.2.4 Example

...
// create a new WebTransactions remote access object and open a
// WebTransactions session,
// it is supposed that the WTSession parameters are passed as parameters
// to the applet via the <param> tag.
WTObjectRemoteAccess wtSession = new WTObjectRemoteAccess (
 new WTSession(this).open());

// create and download WT_SYSTEM object from WebTransactions session
WTObject wt_system = wtSession.download("WT_SYSTEM");
// determine if connection runs via proxy HOST1 and store it in new system
// object
if (wt_system.getAttribute("CGI.REMOTE_HOST").getValueAsString().
equals("HOST1"))
 wt_system.setAttribute("PROXY", new WTObject(WTObject.TYPE_STRING,
"YES"));
else
 wt_system.setAttribute("PROXY", new WTObject(
 WTObject.TYPE_STRING, "NO"));

// change attribute style of system object to value APPLREMOTE
wt_system.getAttribute("STYLE").setValue("APPLREMOTE");

// upload current wt_system object into WT_SYSTEM object of remote
// WebTransactions session
wtSession.upload(wt_system ,"WT_SYSTEM");

// download all value attributes of host objects of WT_HOST.MYCOM from
// WebTransactions
WTObject wt_host = wtSession.download("WT_HOST.MYCOM..Value");
WTObject my_comm = wt_host.getAttribute("MYCOM");
// shortcut to WT_HOST.MYCOM

// invoke remote function wtmlMeth of template func.htm with parameters
//of two host objects and store the return value in local variable
WTObject[] params = new WTObject[2];
params[0] = my_comm.getAttribute("E_01_001_80.Value");
params[1] = my_comm.getAttribute("E_02_001_80.Value");
String result = (wtSession.invoke(
 "wtmlMeth", params, "func.htm")).getValueAsString();
...

The com.siemens.webta Java package WTObjectRemoteAccess class

Client APIs for WebTransactions 49

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

n
d

14
:2

6.
31

P
fa

d
: F

:\W
eb

TA
\V

7.
5\

M
an

u
al

e\
1

00
3

50
7

_C
lie

n
t_

A
P

Is
\e

n\
cl

ie
nt

s.
k0

4

4.3 WTObjectRemoteAccess class

The WTObjectRemoteAccess class contains methods for remote access to a WebTransac-
tions session. It enables data exchange and the remote implementation of methods and
functions. To represent data on the Java page objects of the WTObject class are used.
The remote session is specified by an object of the WTSession class that contains all
addressing information.

4.3.1 Constructor

WTObjectRemoteAccess creates a new WTObjectRemoteAccess object. The exception is
described in the section “Exceptions” on page 41.

wtSession
Current WTSession object, which points to a WebTransactions session.

Example

WTObjectRemoteAccess remote_obj=new WTObjectRemoteAccess(myApp);

 public class WTObjectRemoteAccess

 WTObjectRemoteAccess(WTSession wtSession) throws
WTSessionNotAttachedException

WTObjectRemoteAccess class The com.siemens.webta Java package

50 Client APIs for WebTransactions

4.3.2 Methods

Please note that the following methods can only be executed correctly if a connection is
open to a WebTransactions session. You can open a connection using the open or attach
method of a WTSession; see also section “WTSession class” on page 30.

4.3.2.1 createObject method

The createObject method creates a new object in the remote WebTransactions session
and returns this object as a WTObject object. If the method call fails, the appropriate
exception is triggered; see section “Exceptions” on page 54.

name Name of the new object.

constructor
Name of the remote constructor with which the object is to be created.

parameters
An array of WTObjects objects with the parameters of the constructor. If the
constructor does not expect any parameters, this parameter is omitted.

codebase
In the remote WebTransactions application, codebase specifies the template in which
the constructor is defined. This parameter can be omitted if the constructor is
already known in the WebTransactions session, if the constructor is, for example,
from the integrated classes, or if the constructor is assigned to the global system
object WT_SYSTEM.

Example

The following example creates a function that calls the receive method without trans-
ferring the entire communication object as a return value.

...
WTObject[] params=new WTObject[1];
params[0]=new WTObject(WTObject.TYPE_STRING,"{this.receive();}");
remote_obj.createObject("WT_HOST.osd.silentReceive",
 "Function", params);

 WTObject createObject(String name, String constructor [,WTObject[] parameters]
[,String codebase]) throws WTSessionNotAttachedException,
WTSessionConnectionException, WTXMLParserException,
WTNoXMLException

The com.siemens.webta Java package WTObjectRemoteAccess class

Client APIs for WebTransactions 51

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

n
d

14
:2

6.
31

P
fa

d
: F

:\W
eb

TA
\V

7.
5\

M
an

u
al

e\
1

00
3

50
7

_C
lie

n
t_

A
P

Is
\e

n\
cl

ie
nt

s.
k0

4

4.3.2.2 download method

The download method transfers the specified object structure from a WebTransactions
session to a WTObject object and returns this object. If the method call fails, the appropriate
exception is triggered; see section “Exceptions” on page 54.

remotePattern
Name or search string of the remote WebTransactions object. remotePattern can be
used in the following ways:

A logical OR operand such as "WT_SYSTEM | WT_HOST" is not permitted on the top
object level.

Example

WTObject wt_system=remote_obj.download("WT_SYSTEM.CGI");

 WTObject download(String remotePattern) throws
 WTSessionNotAttachedException,
 WTSessionConnectionException,
 WTXMLParserException,
 WTNoXMLException

remotePattern Meaning

object Any object with all attributes. If the attributes themselves are also
objects, the conversion for these objects is continued recursively.

object. Any object without attributes. The dot at the end means that no
attributes of this object are converted.

object.. Any object with attributes but without subobjects, since none is
specified between the two dots. The dot at the end means that no
subattributes of subobjects in object are converted.

object..value All attributes of the same name one level below an object. All
attributes with the name value that are contained in objects
directly under the data object object.

object1|object2
object..val1|val2

Several objects or attributes under an object. The objects object1
and object2 or all attributes with the name val1 or val2 that are
contained in objects directly under the data object object. The
character | is a stronger link than the character ., which means
that the following example applies:
WT_HOST|WT_SYSTEM.xyz returns WT_HOST.xyz and
WT_SYSTEM.xyz

Table 5: Possible specifications for the object structure to be loaded

WTObjectRemoteAccess class The com.siemens.webta Java package

52 Client APIs for WebTransactions

4.3.2.3 invoke method

The invoke method calls a remote method or function in a WebTransactions session.
invoke supplies the return value of the executed method or function as WTObject or the
value null if the method or function does not return a value. If the method call fails, the
appropriate exception is triggered; see section “Exceptions” on page 54.

methodName
Name of the method or function, which can also be specified in the object hierarchy,
e.g. host.myMeth.

parameters
An array of WTObject objects with the parameters of the method or function. This
parameter is optional, i.e. the method or function does not need parameters.

codebase
In the remote WebTransactions application, codebase specifies the template in which
the method or function to be executed is defined. The template is sought in accor-
dance with the search sequence of WebTransactions; see also the
WebTransactions manual “Concepts and Functions”.
This parameter can be omitted if the method or function is already known in the
WebTransactions session, if the method is from the integrated classes or the
function is a global WTML function, or if the method is assigned to the global system
object WT_SYSTEM.

Example

...
WTObject[] params=new WTObject[2];
params[0]=myApp.getAttribute("E_02_001_80");
params[1]=myApp.getAttribute("E_06_005_85");
remote_obj.invoke("myMeth",params, "\temp1.htm");

 WTObject invoke(String methodName [, WTObjects[] parameters]
 [,String codebase]) throws
 WTSessionNotAttachedException,
 WTSessionConnectionException,
 WTXMLParserException,
 WTNoXMLException

The com.siemens.webta Java package WTObjectRemoteAccess class

Client APIs for WebTransactions 53

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

n
d

14
:2

6.
31

P
fa

d
: F

:\W
eb

TA
\V

7.
5\

M
an

u
al

e\
1

00
3

50
7

_C
lie

n
t_

A
P

Is
\e

n\
cl

ie
nt

s.
k0

4

4.3.2.4 upload method

The upload method transfers a WTObject object with the specified name to a remote
WebTransactions session. upload operates additively, which means that objects or
attributes that do not yet exist are created. Existing objects or attributes are overwritten.

object
Object to be uploaded to the WebTransactions session.

remoteObjectName
Name of the uploaded object in the WebTransactions session.

Example

remote_obj.upload(wt_system, "WT_SYSTEM");

 Void upload(WTObject object, String remoteObjectName) throws
 WTSessionNotAttachedException,
 WTSessionConnectionException,
 WTXMLParserException,
 WTNoXMLException

WTObjectRemoteAccess class The com.siemens.webta Java package

54 Client APIs for WebTransactions

4.3.3 Exceptions

The invoke, createObject, download, upload methods and the constructor of the
WTObjectRemoteAccess object can trigger the following exceptions:

Exception Meaning

WTSessionNotAttachedException This exception is triggered when the current WTSession
object does not have a connection to a WebTransactions
session. You must first open a connection to a WebTransac-
tions application using the open or attach method of the
WTSession object before you can use the methods of the
WTObjectRemoteAccess object.

WTSessionConnectionException This exception is triggered when the connection parameters
are not correct for a new WebTransactions session. Check
the parameters protocol, server, serverPort or WTScriptName,
which you specified in the WTSession constructor.

WTXMLParserException This exception is triggered when a WebTransactions error
occurs or when the parser has found an XML error in the
current document. In the case of a WebTransactions error,
the message text is part of the exception message.

WTNoXMLException This exception is triggered when WebTransactions does not
send an XML document as a response. The transmitted
document is output as part of the exception message.

Table 6: Exceptions of WTObjectRemoteAccess

Client APIs for WebTransactions 55

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

n
d

14
:2

6.
31

P
fa

d
: F

:\W
eb

TA
\V

7.
5\

M
an

u
al

e\
1

00
3

50
7

_C
lie

n
t_

A
P

Is
\e

n\
cl

ie
nt

s.
k0

5

5 Example: Distributed WebTransactions
application with WT_RPC
This chapter uses an example to illustrate how to use the interfaces described.

The example describes a filter application for the HTTP adapter using the example of the
supplied WebTransactions client WT_RPC for WTRemote.

5.1 Implementation scenario

The example is based on two physically distant host applications AppA and AppB, which are
to be integrated under a shared Web interface.

The host applications contain different formats mA1 and mA2 / mB1 and mB2, which can be
used to determine logically equivalent data. In order to process a transaction, the two
formats must be run through as follows.

The terminal user logs on using the command logon user,password or
login u=user,p=password. He or she then issues the command mA1 or mB1 to access the
format for entering the search. A personnel number is entered for mA1 or mB1, and the date
of joining is output in the mA2 or mB2 format. The aim of the shared Web interface is to ensure
uniform access to the date of joining for both formats.

Implementation scenario Example: Distributed WebTransactions application with WT_RPC

56 Client APIs for WebTransactions

Only a small section of the data presented in the format is relevant to the respective search:

Figure 7: The different host applications and their formats

AppA mA1 11:53

PersNo.: 12345

Command SEARCH___

mA2 11:54

Name : Smith

Command END____

Sex : 1
Birth date : 07.05.52
Join date : 01.01.85

------------------------------------ ------------------------------------

AppB mB1 11:53

pNo : 12345_______

====================================
Action SEND____

mB2 11:54

date of

====================================
Action BYE_____

birth : 05/07/52
join : 01/01/85

==================================== ====================================

or
name: ____________

Example: Distributed WebTransactions application with WT_RPC Technical concept

Client APIs for WebTransactions 57

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

n
d

14
:2

6.
31

P
fa

d
: F

:\W
eb

TA
\V

7.
5\

M
an

u
al

e\
1

00
3

50
7

_C
lie

n
t_

A
P

Is
\e

n\
cl

ie
nt

s.
k0

5

5.2 Technical concept

To enable uniform access to both host applications, an API is defined to process the trans-
actions. WTScript functions are implemented, which perform the dialog with the respective
host application. Since the mainframes are in different locations, the data is extensive, and
the formats are very different, it is advisable to distribute this application and thereby permit
the data to be presummarized. For both hosts, the methods logon(user,password) and
date_of_joining(pers_no) should be made available as WebTransactions applications on
different WebTransaction computers that are physically close to the respective host, in order
to carry out the appropriate tasks. These WebTransactions applications could also be
referred to as mainframe drivers. The methods of these WebTransactions applications are
called by a third WebTransactions integration application and presented in the Web.

Another possible use of these mainframe drivers is that they enable a reduced view of the
application (only searches on the basis of the date of joining) to be provided for utilization
in other applications.

5.3 Implementation of integration application

The search in both applications is implemented as a distributed WebTransactions appli-
cation. One of the WebTransactions applications WTSrvA or WTSrvB accesses the AppA or
AppB application directly and provides the functionality as the functions
logon(user,password) and date_of_joining(pers_no). An WebTransactions integration
application WTInt accesses these functions via the WT_RPC class:

Figure 8: The integration application WTInt

Implementation Example: Distributed WebTransactions application with WT_RPC

58 Client APIs for WebTransactions

WebTransactions applications

The WebTransactions applications WTSrvA and WTSrvB each contain a WTML document
accHost.htm, in which the access functions logon and join are implemented. The
documents may be slightly different, as the host applications are not identical. The template
for the AppA host application could look as follows, for example:

function logon(user, password)
{
 host = new WT_Communication("appA");
 host_system = host.WT_SYSTEM;
 host_system.HOST_NAME = "HostA";
 host_system.SYM_DEST = "AppA";
 host.open("OSD");
 host.receive();
 host.E_1_1.Value = 'logon ' + user + ',' + password;
 host.send();
 host.receive();
 return (E_1_1.Value == 'logged in');
}
function date_of_joining(pers_no)
{
 WT_SYSTEM.ERROR = '';
 host = WT_HOST.appA;
 host.E_8_10.Value = 'GOTO mA1';
 host.send();
 host.receive();
 host.E_3_10.Value = persNr;
 host.send();
 host.receive();
 return (WT_SYSTEM.ERROR ? false : E_6_12.Value);
}

The logon function creates a new communication object and uses the OSD host adapter to
open a connection with the host application AppA on computer HostA. The first format is
displayed and the login data is entered. In the event of a positive acknowledgment, the
function returns the value true, otherwise it returns false.

The join function enters the command "GOTO mA1", in order to navigate to the search
format. The number assigned as a parameter is entered in the field for the personnel
number, and the search is performed. If no communication error occurs, the value of the
date field is returned.

The functions implement a particular technical logic. As well as being used by the
WebTransactions integration application, they can also be used locally to process certain
tasks.

Example: Distributed WebTransactions application with WT_RPC Implementation

Client APIs for WebTransactions 59

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

n
d

14
:2

6.
31

P
fa

d
: F

:\W
eb

TA
\V

7.
5\

M
an

u
al

e\
1

00
3

50
7

_C
lie

n
t_

A
P

Is
\e

n\
cl

ie
nt

s.
k0

5

WebTransactions integration application

The WebTransactions integration application creates the HTML interface for the browser. It
determines the data by accessing the remote WebTransactions applications. Access is
processed via the HTTP host adapter with the aid of the WT_RPC class.

Two WT_RPC objects appA and appB are first created for the connection to the remote host
applications. References are stored in the system object for subsequent dialog steps. The
methods logon and join are attached using the addMethod method. The remote function
can now be executed using the method call appA.logon, for example.

The closing HTML format enables the search in one of the two remote applications:

<wtInclude name="wtRPC">
<wtOnCreateScript>
 if(! WT_SYSTEM._appA)
 {
 WT_SYSTEM._appA = appA =
 new WT_RPC('WebTaA/cgi-bin/WTPublish.exe', '/home/WTSrvA');
 appA.addMethod('logon', 'accHost');
 appA.addMethod('join', 'accHost');
 WT_SYSTEM._appB = appB =
 new WT_RPC('WebTaB/scripts/WTPublish.exe', 'D:/WTSrvB');
 appB.addMethod('logon', 'accHost');
 appB.addMethod('join', 'accHost');
 appA.logon('testuser', '123');
 appB.logon('testuser', '123');
 }
 else
 {
 appA = WT_SYSTEM._appA;
 appB = WT_SYSTEM._appB;
 }
</wtOnCreateScript>
The date of joining is
##WT_POSTED.SEARCH == "A" ? appA.join(WT_POSTED.PNUM)
 : appB.join(WT_POSTED.PNUM) #
<wtDataForm>
 Search for date of joining for personnel number
 <INPUT TYPE="TEXT" NAME="PNUM"> in the application
 <INPUT TYPE="SUBMIT" NAME="SEARCH" VALUE="A"> or
 <INPUT TYPE="SUBMIT" NAME="SEARCH" VALUE="B">
</wtDataForm>

Implementation Example: Distributed WebTransactions application with WT_RPC

60 Client APIs for WebTransactions

Client APIs for WebTransactions 61

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ju

li
20

10

S
ta

nd
 1

4:
26

.3
1

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

ua
le

\1
00

35
0

7_
C

lie
n

t_
A

P
Is

\e
n\

cl
ie

nt
s.

an
h

6 Appendix: The WT_REMOTE interface
This appendix describes the WT_REMOTE interface. WT_REMOTE is an interface between
WebTransactions applications and any clients, enabling controlled access to
WebTransactions applications.

The information presented here is particularly relevant to accesses from remote clients.
Predefined class libraries, such as the WT classes for Java clients and WT_RPC for
WebTransactions clients, are available for the most common client applications, Java
applets, and other WebTransactions applications. These class libraries are discussed in
more detail in previous sections of this manual.

6.1 Introduction

Up to now, there were only two ways to access WebTransactions via a Web browser,
namely using synchronized and non synchronized dialog. Both methods create HTML
output that can be displayed directly by the browser.

The WT_REMOTE interface provides a new method of requesting the services of a
WebTransactions session via the Web. In contrast to the former methods, the purpose of
the new method is to:

● call services within a WebTransactions session

● transfer data to or from a WebTransactions session

The transmitted data is not limited to HTML data that can be presented by the browser,
rather can also include any structured data, which is exchanged in the form of XML
documents.

The following sections describe the methods of the WT_REMOTE interface, the format of the
HTTP messages in which these coded methods must be transmitted, and finally the XML
document types used to encode the methods within the HTTP messages. This interface can
therefore be used not only by the supplied classes for Java applets and WebTransactions
clients, but also by any other applications.

Methods of WT_REMOTE Appendix: WT_REMOTE

62 Client APIs for WebTransactions

6.2 WT_REMOTE methods

This section provides an overview of the various methods offered by WT_REMOTE. The table
below lists these methods and their purpose:

 Please note that there is no WT_REMOTE method for executing a WTML document.
Such documents can be executed by means of a non synchronized dialog step,
whereby the desired document is specified as WT_ASYNC_PAGE. These
asynchronous calls can be mixed as desired with WT_REMOTE calls. A detailed
description of how the HTTP messages must be structured for the individual
methods can be found in the section “Request messages without data part” on
page 67” and section “Request messages with control part and data part” on
page 69”.

6.2.1 START_SESSION method

This method is used exclusively to start a WebTransactions session.

As the response message, this method supplies an XML document containing the session
parameters for subsequent access to this session (see also section “Response message
for START_SESSION” on page 87).

6.2.2 EXIT_SESSION method

This method closes the specified session and as a response message returns an XML
document with an empty response element as confirmation (see also section “Response
message for EXIT_SESSION” on page 87). EXIT_SESSION can only be used when a
session is active, since the control part of the request message must contain name/value
pairs for the session ID and signature. A data part for this method is unnecessary and may
therefore be ignored.

Method Meaning

START_SESSION Starts a new session and returns the session parameters for subsequent
requests.

EXIT_SESSION Closes the session.

PROCESS_COMMANDS Transfers data to or from a WebTransactions session, creates objects, or
calls methods.

Table 7: WT_REMOTE methods

i

Appendix: WT_REMOTE Methods of WT_REMOTE

Client APIs for WebTransactions 63

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ju

li
20

10

S
ta

nd
 1

4:
26

.3
1

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

ua
le

\1
00

35
0

7_
C

lie
n

t_
A

P
Is

\e
n\

cl
ie

nt
s.

an
h

6.2.3 PROCESS_COMMANDS method

This method transmits data to or from a WebTransactions session, creates an object in the
WebTransactions session using a constructor call, or calls a WTScript method of the
WebTransactions session. Various actions, which can be executed by means of a request,
are available for performing these tasks:

– data, uploadData
Upload data to the WebTransactions session.

– downloadData
Download data from the WebTransactions session.

– createObject
Create objects in the WebTransactions session.

– callMethod
Call WTScript methods of the WebTransactions session.

A number of these actions can be performed in a request message using the
PROCESS_COMMANDS method. The request message can be addressed to an active session
or can be executed in a separate session; see also the following section.

One data element is returned in the XML document of the response message for each
downloadData, createObject and callMethod element in the request message. data and
uploadData elements in the request message are ignored in the response message. In
addition, the response message may contain an error element for each error that occurred
(see also section “Response message for PROCESS_COMMANDS” on page 88).

Single-step and multi-step transactions Appendix: WT_REMOTE

64 Client APIs for WebTransactions

6.3 Single-step and multi-step transactions

A client can access an active WebTransactions session via WT_REMOTE by specifying his or
her session ID during the access procedure. A WebTransactions session can also be
started independently by the client access. The first case always involves multi-step trans-
actions, while the second case allows both single-step and multi-step transactions.

6.3.1 Single-step transactions

In a single-step transaction, a WebTransactions session is started to execute a request
message. The actions specified in the message are executed and the session is then
closed again. All of this occurs with a single client access to WT_REMOTE using the
PROCESS_COMMANDS method (see section “PROCESS_COMMANDS method” on page 63).

Figure 9: Single-step transaction

Client

WebTransactions server

WT_REMOTE

WebTransactionsPROCESS_COMMANDS
session

Appendix: WT_REMOTE Single-step and multi-step transactions

Client APIs for WebTransactions 65

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ju

li
20

10

S
ta

nd
 1

4:
26

.3
1

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

ua
le

\1
00

35
0

7_
C

lie
n

t_
A

P
Is

\e
n\

cl
ie

nt
s.

an
h

6.3.2 Multi-step transactions

There are two possible scenarios for a multi-step transaction. In the first case, a WebTrans-
actions session is started explicitly by the WT_REMOTE access START_SESSION, several client
accesses are then performed with PROCESS_COMMANDS, and the session is finally closed with
EXIT_SESSION.

Figure 10: Multi-step transaction (started by WebTransactions)

In the second case, a client can address an active WebTransactions session (e.g. an applet
is started with a dynamic page and activates itself in the same session). This is achieved
by specifying PROCESS_COMMANDS with the appropriate session parameters.

Figure 11: Multi-step transaction (started by another client)

Client

WebTransactions server

WT_REMOTE

WebTransactions

PROCESS_COMMANDS

PROCESS_COMMANDS

START_SESSION

EXIT_SESSION

PROCESS_COMMANDS

session

Client

WebTransactions server

WT_REMOTE
WebTransactions

PROCESS_COMMANDS

PROCESS_COMMANDS

PROCESS_COMMANDS

session

Request messages Appendix: WT_REMOTE

66 Client APIs for WebTransactions

6.4 Structure of request messages for WT_REMOTE

Communication between the client and the WT_REMOTE interface comprises a sequence of
request messages from the client and response messages from the WT_REMOTE interface.
The following sections describe the structure of these messages.

The requests described here are executed in the context of WT_REMOTE. This means that
there is a set of global variables available exclusively for WT_REMOTE requests. These
variables are not deleted automatically and are therefore available in a number of requests.
The WT_SYSTEM and WT_HOST objects are used in conjunction with the synchronous and
asynchronous accesses to the corresponding WebTransactions session.

The HTTP requests to WebTransactions primarily comprise a control part and an optional
data part. If both parts are present, you use a HTTP-POST message of the mime type
multipart/mixed. The messages are always structured in this way for the
PROCESS_COMMANDS method.
If the data part is missing (with the methods START_SESSION and EXIT_SESSION), a single
POST message with mime type application/x-www-form-urlencoded or a GET message
can be used.

The following text provides some HTTP messages. To demonstrate the logical structure of
the messages consisting of HTTP header and body more clearly, the precision of a
hexadecimal representation has been dropped. For the HTTP protocol the line feeds are
important:

– every line of the header ends with the characters carriage return and line feed (two
characters).

– the HTTP header ends with an additional blank line (carriage return and line feed).

Therefore the line feed characters explicitly are displayed as [CR][LF].

Appendix: WT_REMOTE Request messages

Client APIs for WebTransactions 67

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ju

li
20

10

S
ta

nd
 1

4:
26

.3
1

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

ua
le

\1
00

35
0

7_
C

lie
n

t_
A

P
Is

\e
n\

cl
ie

nt
s.

an
h

6.4.1 Request messages without data part

If the data part is missing, a POST message is basically structured as following:

POST /cgi-bin/WTPublish.exe HTTP/1.0 [CR][LF]
Content-type: application/x-www-form-urlencoded [CR][LF]
Content-length: Length [CR][LF]
[CR][LF]

...control part of message...

In contrast, a GET message has the following structure:

http://server/cgi-bin/WTPublish.exe?<control part of message>

This structure is illustrated below using some examples of the START_SESSION and
EXIT_SESSION methods.

Request messages for START_SESSION

The path part of the URL for WebTransactions after the WTPublish program must
contain the word startup. This method could then be called as follows, for example:

● WT_REMOTE method START_SESSION and HTTP method POST:

POST /cgi-bin/WTPublish.exe/startup HTTP/1.0 [CR][LF]
Content-type:application/x-www-form-urlencoded [CR][LF]
Content-length:60 [CR][LF]
[CR][LF]

WT_REMOTE=START_SESSION&WT_SYSTEM_BASEDIR=base-directory

The length 60 in Content-length is an example. The length depends on the precise
length of the message and the values for the base directory, sessionid etc. That applies
to all other examples.

● WT_REMOTE method START_SESSION and HTTP method GET:

http://server/cgi-bin/WTPublish.exe/startup?\
WT_REMOTE=START_SESSION&WT_SYSTEM_BASEDIR=base-directory

Request messages Appendix: WT_REMOTE

68 Client APIs for WebTransactions

Request messages for EXIT_SESSION

● WT_REMOTE method EXIT_SESSION and HTTP method POST:

POST /cgi-bin/WTPublish.exe HTTP/1.0 [CR][LF]
Content-type:application/x-www-form-urlencoded [CR][LF]
Content-length:130 [CR][LF]
[CR][LF]
WT_REMOTE=EXIT_SESSION&WT_SYSTEM_BASEDIR=base-directory&\
WT_SYSTEM_SESSION=sitzungs-id&WT_SYSTEM_SIGNATURE=signature

● WT_REMOTE method EXIT_SESSION and HTTP method GET:

http://server/cgi-bin/WTPublish.exe?\
WT_REMOTE=EXIT_SESSION&WT_SYSTEM_BASEDIR=base-directory&\
WT_SYSTEM_SESSION=session-id&WT_SYSTEM_SIGNATURE=signature

A detailed description of the control part of the message can be found in section “Control
part of the HTTP message” on page 70.

Appendix: WT_REMOTE Request messages

Client APIs for WebTransactions 69

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ju

li
20

10

S
ta

nd
 1

4:
26

.3
1

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

ua
le

\1
00

35
0

7_
C

lie
n

t_
A

P
Is

\e
n\

cl
ie

nt
s.

an
h

6.4.2 Request messages with control part and data part

This type of request message is used for the WT_REMOTE method PROCESS_COMMANDS,
because this method always requires parameters which must be specified in the data part.

The control part has the mime type application/x-www-form-urlencoded and specifies the
selected WebTransactions session. The data part has the mime type text/xml and
contains the data to be processed in the current request.

Since both the control part and the data part cannot accept any arbitrary values, the
message boundary is strictly defined by the character string <<'<<"<<42>>">>'>>. Such a
HTTP message is therefore basically structured as follows:

POST /cgi-bin/WTPublish exe HTTP/1.0 [CR][LF]
Content-type: multipart/mixed; boundary=<<'<<"<<42>>">>'>> [CR][LF]
Content-length: 270 [CR][LF]
[CR][LF]
--<<'<<"<<42>>">>'>> [CR][LF]
Content-type: application/x-www-form-urlencoded [CR][LF]
[CR][LF]
...control part of message... [CR][LF]

--<<'<<"<<42>>">>'>> [CR][LF]
Content-type: text/xml [CR][LF]
[CR][LF]
...data part of message...

This message structure describes a multi-step transaction. In a single-step transaction,
whereby the PROCESS_COMMANDS method creates a separate WebTransactions session
solely for the execution of the WT_REMOTE method, the keyword startup must also be
specified after the WTPublish program:

POST /cgi-bin/WTPublish exe/startup HTTP/1.0 [CR][LF]
Content-type: multipart/mixed; boundary=<<'<<"<<42>>">>'>> [CR][LF]
Content-length: 270 [CR][LF]
[CR][LF]
--<<'<<"<<42>>">>'>> [CR][LF]
Content-type: application/x-www-form-urlencoded [CR][LF]
[CR][LF]
...control part of message... [CR][LF]

--<<'<<"<<42>>">>'>> [CR][LF]
Content-type: text/xml [CR][LF]
[CR][LF]
...data part of message...

Request messages Appendix: WT_REMOTE

70 Client APIs for WebTransactions

6.4.3 Control part of the HTTP message

The control part of the HTTP message (mime type application/x-www-form-urlencoded)
contains information on which WebTransactions application is to be addressed (base
directory) and which WT_REMOTE method is to be executed (START_SESSION, EXIT_SESSION
or PROCESS_COMMANDS; see also section “WT_REMOTE methods” on page 62). In addition,
the control part can contain further information corresponding to that of a conventional, local
WebTransactions session:

– application timeout
– user timeout
– language
– style

If an active session is addressed, i.e. in a multi-step transaction with PROCESS_COMMANDS or
EXIT_SESSION, the control part must contain additionally:

– session ID
– signature

This information is encoded as a name/value pair in the form Name=Value and is linked with
the character &. The syntax is shown below:

WT_SYSTEM_BASEDIR=base-directory
&WT_REMOTE={START_SESSION|EXIT_SESSION|PROCESS_COMMANDS}

[&WT_SYSTEM_TIMEOUT_APPLICATION=timeoutApplication]
[&WT_SYSTEM_TIMEOUT_USER=timeoutUser]
[&WT_SYSTEM_LANGUAGE=language]
[&WT_SYSTEM_STYLE=style]
[&WT_SYSTEM_SESSION=session-id
&WT_SYSTEM_SIGNATURE=signature]

The sequence of name/value pairs is arbitrary within the message body.

Example

POST /cgi-bin/WTPublish exe HTTP/1.0 [CR][LF]
Content-type: multipart/mixed; boundary=<<'<<"<<42>>">>'>> [CR][LF]
Content-length: 270 [CR][LF]
[CR][LF]
--<<'<<"<<42>>">>'>> [CR][LF]
Content-type: application/x-www-form-urlencoded [CR][LF]
[CR][LF]
WT_SYSTEM_BASEDIR=base-directory&WT_REMOTE=PROCESS_COMMANDS\
&WT_SYSTEM_SESSION=sessionID&WT_SYSTEM_SIGNATURE=signature [CR][LF]
--<<'<<"<<42>>">>'>> [CR][LF]
Content-type: text/xml [CR][LF]
[CR][LF]
...data part of message...

Appendix: WT_REMOTE Request messages

Client APIs for WebTransactions 71

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ju

li
20

10

S
ta

nd
 1

4:
26

.3
1

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

ua
le

\1
00

35
0

7_
C

lie
n

t_
A

P
Is

\e
n\

cl
ie

nt
s.

an
h

6.4.4 Data part of the HTTP message

The data part of the HTTP message, if it is present, is of the mime type text/xml and
contains further information on how the specified WT_REMOTE method is to be executed. It
contains the parameters of the WT_REMOTE method, so to speak. These are encoded as an
XML document (see section “XML documents for request messages” on page 73 for the
syntax of this XML document).

Example 1

In this example, a complete HTTP message is specified which calls the eval() function
in a WebTransactions session. In this case, the message is directed to an active
session, i.e. the SESSION and SIGNATURE parameters must also be specified:

POST /cgi-bin/WTPublish exe HTTP/1.0 [CR][LF]
Content-type: multipart/mixed; boundary=<<'<<"<<42>>">>'>> [CR][LF]
Content-length: 270 [CR][LF]
[CR][LF]

--<<'<<"<<42>>">>'>> [CR][LF]
Content-type: application/x-www-form-urlencoded [CR][LF]
[CR][LF]

WT_SYSTEM_BASEDIR=base-directory&WT_REMOTE=PROCESS_COMMANDS\
&WT_SYSTEM_SESSION=sessionID&WT_SYSTEM_SIGNATURE=signature [CR][LF]
--<<'<<"<<42>>">>'>> [CR][LF]
Content-type: text/xml [CR][LF]
[CR][LF]

<request>
<callMethod name="eval">
<string name="0">2*21</string>
</callMethod>
</request>

Request messages Appendix: WT_REMOTE

72 Client APIs for WebTransactions

Example 2

In this example, the request from Example 1 is formulated as a single-step transaction.
This means that a separate WebTransactions session is started to execute the function:

POST /cgi-bin/WTPublish exe/startup HTTP/1.0 [CR][LF]
Content-type: multipart/mixed; boundary=<<'<<"<<42>>">>'>> [CR][LF]
Content-length: 270 [CR][LF]
[CR][LF]

--<<'<<"<<42>>">>'>> [CR][LF]
Content-type: application/x-www-form-urlencoded [CR][LF]
[CR][LF]

WT_SYSTEM_BASEDIR=base-directory&WT_REMOTE=PROCESS_COMMANDS [CR][LF]
--<<'<<"<<42>>">>'>> [CR][LF]
Content-type: text/xml [CR][LF]
[CR][LF]

<request>
<callMethod name="eval">
<string name="0">2*21</string>
</callMethod>
</request>

Appendix: WT_REMOTE XML documents for request messages

Client APIs for WebTransactions 73

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ju

li
20

10

S
ta

nd
 1

4:
26

.3
1

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

ua
le

\1
00

35
0

7_
C

lie
n

t_
A

P
Is

\e
n\

cl
ie

nt
s.

an
h

6.5 XML documents for request messages

This section describes the structure of the XML documents in request messages, i.e. the
data part of multi-part request messages.

In the following sections, DTDs (Document Type Definitions) are used to describe the
permitted syntax of these XML documents. The structure of such DTDs is therefore
described here first using a brief example:

These four entries of a DTD describe the structure of two elements, namely callMethod and
number. The line <!ELEMENT callMethod ...> defines that the callMethod elements can
contain any number (*) of subelements, i.e. the subelements undefined, number, boolean,
string, object or function. On the other hand, the line <!ATTLIST callMethod ...>
defines which attributes must (#REQUIRED) or can (#IMPLIED) have a callMethod element.
In the case of callMethod, the name attribute must be specified, whereas the codeBase
attribute is optional. The number element must contain a name attribute and free text
(#PCDATA) which specifies the value of the element.

Example

<callMethod name="eval">
<string name="0">

2*21
</string>

</callMethod>

This XML document satisfies the syntax described with the above DTD. It describes the
call of the eval method with one parameter. The name of the parameter is "0", i.e. it is
the first parameter. The parameter has the value "2*21".

<!ELEMENT callMethod ((undefined | number | boolean |
string | object | function)*)>

<!ELEMENT number (#PCDATA)>

<!ATTLIST callMethod name CDATA #REQUIRED

 codeBase CDATA #IMPLIED>

<!ATTLIST number name CDATA #REQUIRED>

XML documents for request messages Appendix: WT_REMOTE

74 Client APIs for WebTransactions

6.5.1 The structure of the XML document (DTDrequest)

The data part of a request message comprises an XML document which is structured in
accordance with the following DTD, hereafter referred to as DTDrequest:

<!ELEMENT request ((data | uploadData | downloadData
|createObject | callMethod)*)>

<!ELEMENT data ((undefined | number | boolean |
string | object | function)*)>

<!ELEMENT uploadData ((undefined | number | boolean |
string | object | function)*)>

<!ELEMENT downloadData EMPTY>

<!ELEMENT createObject ((undefined | number | boolean |
string | object | function)*)>

<!ELEMENT callMethod ((undefined | number | boolean |
string | object | function)*)>

<!ELEMENT undefined EMPTY>

<!ELEMENT number (#PCDATA)>

<!ELEMENT boolean (#PCDATA)>

<!ELEMENT string (#PCDATA)>

<!ELEMENT object (#PCDATA? (undefined | number |
boolean | string | object |
function)*)>

<!ELEMENT function EMPTY>

<!ATTLIST downloadData name CDATA #REQUIRED>

<!ATTLIST createObject name CDATA #REQUIRED

 constructor CDATA #REQUIRED

 codeBase CDATA #IMPLIED>

<!ATTLIST callMethod name CDATA #REQUIRED

 codeBase CDATA #IMPLIED>

<!ATTLIST undefined name CDATA #REQUIRED>

<!ATTLIST number name CDATA #REQUIRED>

<!ATTLIST boolean name CDATA #REQUIRED>

<!ATTLIST string name CDATA #REQUIRED>

<!ATTLIST object name CDATA #REQUIRED

class CDATA #IMPLIED

reference CDAT
A

#IMPLIED>

Appendix: WT_REMOTE XML documents for request messages

Client APIs for WebTransactions 75

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ju

li
20

10

S
ta

nd
 1

4:
26

.3
1

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

ua
le

\1
00

35
0

7_
C

lie
n

t_
A

P
Is

\e
n\

cl
ie

nt
s.

an
h

The root element request of the XML document includes the elements that define the
actions:

If only one of these actions is to be executed in a HTTP message, the respective element
can also be used as the root element of the XML document without specifying the request
element.

Example

In this example, the request element contains three subelements data, downloadData
and callMethod.

<request>
<data>

<number name="answer">42</number>
</data>
<downloadData name="WT_HOST"/>
<callMethod name="myMethod" codeBase="myTemplate.htm">

<number name="0">
42

</number>
<number name="1">

24
</number>

</callMethod>
</request>

The structure of the possible subelements of request is described in more detail in the
following sections.

data Transfer data to a WebTransactions application

uploadData Upload data to a WebTransactions application

downloadData Download data from a WebTransactions application

createObject Call a constructor in a WebTransactions application

callMethod Call a method in a WebTransactions application

XML documents for request messages Appendix: WT_REMOTE

76 Client APIs for WebTransactions

6.5.2 Structure of the data and uploadData elements (DTDdata)

The elements data and uploadData and their substructures are equivalent elements for
transferring data to the data area of the remote WebTransactions session. The methods
operate additively, i.e. if an object does not yet exist, it is created; if it already exists,
additional attributes are created or existing attributes are modified. The syntax of both
elements is identical and corresponds to the following DTD (hereafter referred to as
DTDdata):

The root element data (or uploadData) of this DTD contains an arbitrary sequence of the
elements undefined, number, boolean, string, object and function. These element types
correspond to the WTScript data types of the same names. Each element has a mandatory
name attribute which defines the name of the variable or of the variable part.

The undefined and function elements are always empty. The elements number, boolean
and string contain PCDATA (parsed character data) character strings. The value of the
elements is specified as text in these PCDATA parts, i.e. as numeric literals (e.g.
-0.717273E-42) for number values, as the literals true and false for boolean values, and as
any character strings for string values.

<!ELEMENT data ((undefined | number | boolean |
string | object | function)*)>

<!ELEMENT undefined EMPTY>

<!ELEMENT number (#PCDATA)>

<!ELEMENT boolean (#PCDATA)>

<!ELEMENT string (#PCDATA)>

<!ELEMENT object (#PCDATA? (undefined | number |
boolean | string | object |
function)*)>

<!ELEMENT function EMPTY>

<!ATTLIST undefined name CDATA #REQUIRED>

<!ATTLIST number name CDATA #REQUIRED>

<!ATTLIST boolean name CDATA #REQUIRED>

<!ATTLIST string name CDATA #REQUIRED>

<!ATTLIST object name CDATA #REQUIRED

class CDATA #IMPLIED

reference CDATA #IMPLIED>

<!ATTLIST function name CDATA #REQUIRED>

Appendix: WT_REMOTE XML documents for request messages

Client APIs for WebTransactions 77

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ju

li
20

10

S
ta

nd
 1

4:
26

.3
1

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

ua
le

\1
00

35
0

7_
C

lie
n

t_
A

P
Is

\e
n\

cl
ie

nt
s.

an
h

The object element can have a class attribute which specifies the class of the object
presented. In this case, the element describes the complete structure of the object. In
addition, it can have a PCDATA part as the first subelement which specifies the value of a
Number, Boolean or String object. As with simple data types, this text must then be an
appropriate literal.

After the PCDATA part, the object element can have any sequence of nested elements which
represent the attributes or methods of the object.

If an object has already been described within the document and if a further reference to
this object occurs in the same document, this is indicated by the reference attribute. This
attribute contains the absolute name of the referenced object. The contained attributes are
identical to those of the referenced object and are not listed a second time in the XML
document.

The following example shows an extract from WT_SYSTEM and its representation in DTDdata:

WT_SYSTEM (type object, class Object)
BASEDIR (type string, value "/home/WebTA")
CGI (type object, class Object)

HTTP_USER_AGENT (type string, value "Mozilla/4.0")
REMOTE_HOST (type string, value "pcfritz")

FORMAT (type string, value "wtstart")
_myArray (type object, class Array)

0 (type string, value "the answer is ")
1 (type number, value 42)
2 (type boolean, value true)
att (type string, value "problem is the question")
top (type object, class Object, reference to WT_SYSTEM.CGI)

_myStringObject (type object, class String, value "another string")
att1 (type object, class Boolean, value false)
att2 (type boolean, value true)

_myMethod (type function)

If this data structure is presented as an XML document in accordance with DTDdata, it looks
as follows (the line breaks and indents do not correspond to the actual conversion, rather
are inserted for legibility purposes):

<data>
<object name="WT_SYSTEM" class="Object" >

<string name="BASEDIR">
/home/WebTA

</string>
<object name="CGI" class="Object">

<string name="HTTP_USER_AGENT">
 Mozilla/4.0
</string>
<string name="REMOTE_HOST">
 pcfritz

XML documents for request messages Appendix: WT_REMOTE

78 Client APIs for WebTransactions

</string>
</object>
<string name="FORMAT">

wtstart
</string>
<object name="_myArray" class="Array">

<string name="0">
 the answer is
</string>
<number name="1">
 42
</number>
<boolean name="2">
 true
</boolean>
<string name="att">
 problem is the question
</string>
<object name="top" reference="WT_SYSTEM.CGI"/>

</object>
<object name="_myStringObject" class="String">

another string
<object name="att1" class="Boolean">
 false
</object>
<boolean name="att2">
 true
</boolean>

</object>
<function name="_myMethod"/>

</object>
</data>

uploadData (or data) transfers the specified data to the addressed WebTransactions
session. In the example, the specified values and attributes are transferred from WT_SYSTEM.

Appendix: WT_REMOTE XML documents for request messages

Client APIs for WebTransactions 79

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ju

li
20

10

S
ta

nd
 1

4:
26

.3
1

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

ua
le

\1
00

35
0

7_
C

lie
n

t_
A

P
Is

\e
n\

cl
ie

nt
s.

an
h

6.5.3 Structure of the downloadData element (DTDdownload)

The downloadData element specifies one or more objects that are to be downloaded from
the remote WebTransactions session. The desired objects are returned in the response.
The element is structured in accordance with the following DTD, hereafter referred to as
DTDdownload:

The downloadData element has a name attribute which specifies the objects or attributes to
be downloaded, in accordance with the following syntax:

<!ELEMENT donwloadData EMPTY>

<!ATTLIST downloadData name CDATA #REQUIRED>

object Any object.
The data object object and all its attributes. If attributes are
themselves objects, the conversion for these objects is continued
recursively.

object. Any object without attributes.
The data object object. However, no attributes of this object are
converted due to the dot at the end.

object.. Any object without subobjects.
The data object object and all the attributes of this data object
(since no specification is made between the two dots). The dot at
the end ensures that no subattributes or subobjects in object are
converted.

object..value All attributes of the same name one level below an object.
All attributes with the name value which are contained in objects
directly under the data object object.

object1|object2
object..val1|val2

Several objects or attributes under an object.
The objects object1 and object2 or all attributes with the name val1
or val2 which are contained in objects directly under the data
object object.
The character | is a stronger link than the character ., which
means that the following example applies:
WT_HOST|WT_SYSTEM.xyz returns WT_HOST.xyz and WT_SYSTEM.xyz

XML documents for request messages Appendix: WT_REMOTE

80 Client APIs for WebTransactions

Example

This example queries the three session attributes BASEDIR, SESSION and SIGNATURE.

<request>
<downloadData name="WT_SYSTEM.BASEDIR|SESSION|SIGNATURE"/>

</request>

The following response message, for example, could then be returned as a response to
this request, in accordance with the DTD DTDresponse (see also section “XML
documents in response messages” on page 86):

<response>
<data>

<object name="WT_SYSTEM" class="Object">
<string name="BASEDIR">C:/basedirs/context
</string>
<string name="SESSION">E-935516492-8494
</string>
<string name="SIGNATURE">159177851380710585
</string>

</object>
</data>
</response>

Appendix: WT_REMOTE XML documents for request messages

Client APIs for WebTransactions 81

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ju

li
20

10

S
ta

nd
 1

4:
26

.3
1

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

ua
le

\1
00

35
0

7_
C

lie
n

t_
A

P
Is

\e
n\

cl
ie

nt
s.

an
h

6.5.4 Structure of the callMethod element (DTDmethod)

The callMethod element specifies the necessary information for calling a method of the
remote WebTransactions session. The corresponding method is executed and the result of
the function is returned. The element is structured in accordance with the following DTD,
hereafter referred to as DTDmethod:

The root element callMethod has two attributes, namely name and codeBase. The name
attribute must be specified and must define the absolute name of the method to be
executed. A simple identifier is specified for a global function, and an object-specific method
is represented by dot notation.

The codeBase attribute is optional and can be used to specify a template name.
WebTransactions then searches for the template of this name using the standard search
sequence (described in the WebTransactions manual “Concepts and Functions”). If the
method is already known to the system (e.g. an integrated function or a method of an
object), this attribute can be omitted.

The elements within the root element represent the method to be called. They can be of any
type, i.e. undefined, number, boolean, string, object or function.

<!ELEMENT callMethod ((undefined | number | boolean |
string | object | function)*)>

<!ELEMENT undefined EMPTY>

<!ELEMENT number (#PCDATA)>

<!ELEMENT boolean (#PCDATA)>

<!ELEMENT string (#PCDATA)>

<!ELEMENT object (#PCDATA? (undefined | number |
boolean | string |object |
function)*)>

<!ELEMENT function EMPTY>

<!ATTLIST callMethod name CDATA #REQUIRED

 codeBase CDATA #IMPLIED>

<!ATTLIST undefined name CDATA #REQUIRED>

<!ATTLIST number name CDATA #REQUIRED>

<!ATTLIST boolean name CDATA #REQUIRED>

<!ATTLIST string name CDATA #REQUIRED>

<!ATTLIST object name CDATA #REQUIRED

class CDATA #IMPLIED

 reference CDATA #IMPLIED>

<!ATTLIST function name CDATA #REQUIRED>

XML documents for request messages Appendix: WT_REMOTE

82 Client APIs for WebTransactions

The respective name attribute of this element on the top level is set to an integer which
specifies the index of the respective parameter in the parameter list (i.e. ‘0’ for the first
parameter, ‘1’ for the second, etc.). This name is used for references to these objects
within the parameters. These parameters are defined within the calling XML document, and
the parameters are transferred to the method “by value”, i.e. modifications to the param-
eters within the method have no effect in the calling XML document.

A name attribute must be specified for each lower level of the parameter definition so that
well-formed structures of named attributes can be established.

Here, the definition of values and classes corresponds to that of the DTD DTDdata,
described in section “Structure of the data and uploadData elements (DTDdata)” on
page 76.

Examples:

● Calling a global function, e.g. eval:

<callMethod name="eval">...</callMethod>

● Calling a user-defined function myFunction. In this case, the template (in the example,
MyFunctions.htm) containing the function must also be specified:

<callMethod name="myFunction" codeBase="MyFunctions.htm">
...

</callMethod>

● Calling an object-specific method for an object of the integrated classes; in this case,
the name of the method called must also contain the name of the calling object.

myComm is a communication object, i.e. of the class WT_Communication

<callMethod name="WT_HOST.myComm.send"/>

● Calling a user-defined method myMethod in a user-defined class. In this case, the
template (in the example, MyMethods.htm) containing the method must also be
specified:

myObject is an object of the user-defined class

<callMethod name="myObject.myMethod" codeBase="MyMethods.htm">
...

</callMethod>

Appendix: WT_REMOTE XML documents for request messages

Client APIs for WebTransactions 83

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ju

li
20

10

S
ta

nd
 1

4:
26

.3
1

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

ua
le

\1
00

35
0

7_
C

lie
n

t_
A

P
Is

\e
n\

cl
ie

nt
s.

an
h

● The following example shows the simple call of a global function with one parameter:

<request>
<callMethod name="eval">

<string name="0">2*21</string>
</callMethod>

</request>

And below is the response message:

<response>
<data>

<number name="">42
</number>

</data>
</response>

XML documents for request messages Appendix: WT_REMOTE

84 Client APIs for WebTransactions

6.5.5 Structure of the createObject element (DTDcreate)

The createObject element creates a constructor call in the addressed remote
WebTransactions session. The element is structured in accordance with the following DTD,
hereafter referred to as DTDcreate:

The name attribute of this element identifies the name of the new object. The element
attribute constructor also available specifies the desired constructor function. Finally, the
optional attribute codeBase can be used to specify a WTML document of the remote
WebTransactions session, whose functions are provided before execution. The constructor
and the methods of the class are then defined in this document.

<createObject name="myObj" constructor="myCons" codeBase="remoteTest.htm">
constructor arguments
...

</createObject>

<!ELEMENT createObject ((undefined | number | boolean |
string | object | function)*)>

<!ELEMENT undefined EMPTY>

<!ELEMENT number (#PCDATA)>

<!ELEMENT boolean (#PCDATA)>

<!ELEMENT string (#PCDATA)>

<!ELEMENT object (#PCDATA? (undefined | number |
boolean | string |object |
function)*)>

<!ELEMENT function EMPTY>

<!ATTLIST createObject name CDATA #REQUIRED

constructor CDATA #REQUIRED

 codeBase CDATA #IMPLIED>

<!ATTLIST undefined name CDATA #REQUIRED>

<!ATTLIST number name CDATA #REQUIRED>

<!ATTLIST boolean name CDATA #REQUIRED>

<!ATTLIST string name CDATA #REQUIRED>

<!ATTLIST object name CDATA #REQUIRED

class CDATA #IMPLIED

 reference CDATA #IMPLIED>

<!ATTLIST function name CDATA #REQUIRED>

Appendix: WT_REMOTE XML documents for request messages

Client APIs for WebTransactions 85

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ju

li
20

10

S
ta

nd
 1

4:
26

.3
1

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

ua
le

\1
00

35
0

7_
C

lie
n

t_
A

P
Is

\e
n\

cl
ie

nt
s.

an
h

The elements within createObject specify the arguments of the constructor. The created
object is returned in the form of an XML document as the result (see section “XML
documents in response messages” on page 86).

Example

The following example creates an object of type Date with the value 31.12.1999:

<createObject name="myDate" constructor="Date">
<number name="0">

1999
</number>
<number name="1">

11
</number>
<number name="2">

31
</number>
</createObject>

The response message (see following section) could then look as follows, for example:

<response>
<data>

<object name="myDate" class="Date">
</object>

</data>
</response>

XML documents in response messages Appendix: WT_REMOTE

86 Client APIs for WebTransactions

6.6 XML documents in response messages

All response messages to WT_REMOTE requests always have the mime format text/xml,
except in the event of connection errors. The XML documents supplied correspond to the
following DTD (DTDresponse):

The root element can contain a sequence of data elements and a sequence of error
elements. The structure of the data element corresponds to that of DTDdata, described on
section “Structure of the data and uploadData elements (DTDdata)” on page 76. With this
element, the result of a download, of the creation of an object, or of a method call is
returned.

<!ELEMENT response (data* error*)>

<!ELEMENT data ((undefined | number | boolean | string
| object | function)*)>

<!ELEMENT undefined EMPTY>

<!ELEMENT number (#PCDATA)>

<!ELEMENT boolean (#PCDATA)>

<!ELEMENT string (#PCDATA)>

<!ELEMENT object (#PCDATA? (undefined | number | boolean
|string | object | function)*)>

<!ELEMENT function EMPTY>

<!ELEMENT error (#PCDATA?)>

<!ATTLIST undefined name CDATA #REQUIRED>

<!ATTLIST number name CDATA #REQUIRED>

<!ATTLIST boolean name CDATA #REQUIRED>

<!ATTLIST string name CDATA #REQUIRED>

<!ATTLIST object name CDATA #REQUIRED

class CDATA #IMPLIED

 reference CDATA #IMPLIED>

<!ATTLIST function name CDATA #REQUIRED>

<!ATTLIST error document CDATA #IMPLIED

 line CDATA #IMPLIED

 column CDATA #IMPLIED

message CDATA #REQUIRED>

Appendix: WT_REMOTE XML documents in response messages

Client APIs for WebTransactions 87

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ju

li
20

10

S
ta

nd
 1

4:
26

.3
1

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

ua
le

\1
00

35
0

7_
C

lie
n

t_
A

P
Is

\e
n\

cl
ie

nt
s.

an
h

If errors occur during processing in the remote WebTransactions session, information on
every error is transferred to the client as error elements. These error elements can contain
the following information, if it can be determined:

– document (document attribute)
– line (line attribute)
– column (column attribute)

The error number is always returned in the message attribute, and the error text is contained
in the error element as PCDATA (see also the second example in section “Response
message for PROCESS_COMMANDS” on page 88).

6.6.1 Response message for START_SESSION

The XML document returned as the response to START_SESSION has the following form:

<response>
<data>

<object name="WT_SYSTEM" class="Object">
<string name="SESSION">session-id</string>
<string name="SIGNATURE">signature</string>
<string name="BASEDIR">base-directory</string>

</object>
</data>

</response>

6.6.2 Response message for EXIT_SESSION

The response message for EXIT_SESSION comprises an empty response element as confir-
mation.

<response/>

XML documents in response messages Appendix: WT_REMOTE

88 Client APIs for WebTransactions

6.6.3 Response message for PROCESS_COMMANDS

A data element is returned in the response message for each downloadData, createObject
and callMethod action. The data and uploadData actions in the request message are
ignored in the response message (see the first example below). Furthermore, the response
message can contain an error element for each error that occurred (second example).

Examples

The following examples further illustrate the interaction of request and response messages,
along with the examples already given for the request messages.

● This is an example of several requests in one message. One of the methods is
uploadData, which does not generate a response:

<request>
<createObject name="NewString" constructor="String">

<string name="0">Hello world</string>
</createObject>
<uploadData>

<string name="NewString">Hello world</string>
</uploadData>
<downloadData name="NewString"/>

</request>

The associated response message could then look as follows, for example:

<response>
//response to createObject

<data>
<object name="NewString" class="String">Hello world
</object>

</data>
//response to downloadData

<data>
<string name="NewString">Hello world
</string>

</data>
</response>

Appendix: WT_REMOTE XML documents in response messages

Client APIs for WebTransactions 89

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ju

li
20

10

S
ta

nd
 1

4:
26

.3
1

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

ua
le

\1
00

35
0

7_
C

lie
n

t_
A

P
Is

\e
n\

cl
ie

nt
s.

an
h

● This is an example of an error message in the error element, for example a typing error
in the function name:

<request>
<callMethod name="evla">

<string name="0">2*21</string>
</callMethod>

</request>

The associated response message:

<response>
<data>

<undefined name=""/>
</data>
<error message="216">Error: unknown function - function "evla" not
defined or not of type function; correct WTML document.
</error>

</response>

XML documents in response messages Appendix: WT_REMOTE

90 Client APIs for WebTransactions

Client APIs for WebTransactions 91

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
li

2
01

0
 S

ta
n

d
14

:2
6.

31
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
07

_C
lie

nt
_A

P
Is

\e
n\

cl
ie

nt
s.

m
ix

Glossary
A term in ->italic font means that it is explained somewhere else in the glossary.

active dialog
In the case of active dialogs, WebTransactions actively intervenes in the control
of the dialog sequence, i.e. the next ->template to be processed is determined
by the template programming. You can use the ->WTML language tools, for
example, to combine multiple ->host formats in a single ->HTML page. In this
case, when a host ->dialog step is terminated, no output is sent to the ->browser
and the next step is immediately started. Equally, multiple interactions between
the Web ->browser and WebTransactions are possible within one and the same
host dialog step.

array
->Data type which can contain a finite set of values of one data type. This data
type can be:
– ->scalar
– a ->class
– an array
The values in the array are addressed via a numerical index, starting at 0.

asynchronous message
In WebTransactions, an asynchronous message is one sent to the terminal
without having been explicitly requested by the user, i.e. without the user having
pressed a key or clicked on an interface element.

attribute
Attributes define the properties of ->objects.
An attribute can be, for example, the color, size or position of an object or it can
itself be an object. Attributes are also interpreted as ->variables and their values
can be queried or modified.

Glossary

92 Client APIs for WebTransactions

Automask template
A WebTransactions ->template created by WebLab either implicitly when gener-
ating a base directory or explicitly with the command Generate Automask. It is
used whenever no format-specific template can be identified. An Automask
template contains the statements required for dynamically mapping formats
and for communication. Different variants of the Automask template can be
generated and selected using the system object attribute AUTOMASK.

base directory
The base directory is located on the WebTransactions server and forms the
basis for a ->WebTransactions application. The base directory contains the
->templates and all the files and program references (links) which are necessary
in order to run a WebTransactions application.

BCAM application name
Corresponds to the openUTM generation parameter BCAMAPPL and is the name
of the −>openUTM application through which −>UPIC establishes the
connection.

browser
Program which is required to call and display ->HTML pages. Browsers are, for
example, Microsoft Internet Explorer or Mozilla Firefox.

browser display print
The WebTransactions browser display print prints the information displayed in
the ->browser.

browser platform
Operating system of the host on which a ->browser runs as a client for
WebTransactions.

buffer
Definition of a record, which is transmitted from a ->service. The buffer is used
for transmitting and receiving messages. In addition there is a specific buffer for
storing the ->recognition criteria and for data for the representation on the
screen.

capturing
To enable WebTransactions to identify the received ->formats at runtime, you
can open a ->session in ->WebLab and select a specific area for each format and
name the format. The format name and ->recognition criteria are stored in the
->capture database. A ->template of the same name is generated for the format.
Capturing forms the basis for the processing of format-specific templates for the
WebTransactions for OSD and MVS product variants.

Glossary

Client APIs for WebTransactions 93

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
li

2
01

0
 S

ta
n

d
14

:2
6.

31
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
07

_C
lie

nt
_A

P
Is

\e
n\

cl
ie

nt
s.

m
ix

capture database
The WebTransactions capture database contains all the format names and the
associated ->recognition criteria generated using the ->capturing technique. You
can use ->WebLab to edit the sequence and recognition criteria of the formats.

CGI
(Common Gateway Interface)
Standardized interface for program calls on ->Web servers. In contrast to the
static output of a previously defined->HTML page, this interface permits the
dynamic construction of HTML pages.

class
Contains definitions of the ->properties and ->methods of an ->object. It provides
the model for instantiating objects and defines their interfaces.

class template
In WebTransactions, a class template contains valid, recurring statements for
the entire object class (e.g. input or output fields). Class templates are
processed when the ->evaluation operator or the toString method is applied to a
->host data object.

client
Requestors and users of services in a network.

cluster
Set of identical ->WebTransactions applications on different servers which are
interconnected to form a load-sharing network.

communication object
This controls the connection to an ->host application and contains information
about the current status of the connection, the last data to be received etc.

conversion tools
Utilities supplied with WebTransactions. These tools are used to analyze the
data structures of ->openUTM applications and store the information in files.
These files can then be used in WebLab as ->format description sources in order
to generate WTML templates and ->FLD files.
COBOL data structures or IFG format libraries form the basis for the conversion
tools. The conversion tool for DRIVE programs is supplied with the product
DRIVE.

daemon
Name of a process type in Unix system/POSIX systems which runs in the
background and performs no I/O operations at terminals.

Glossary

94 Client APIs for WebTransactions

data access control
Monitoring of the accesses to data and ->objects of an application.

data type
Definition of the way in which the contents of a storage location are to be inter-
preted. Each data type has a name, a set of permitted values (value range), and
a defined number of operations which interpret and manipulate the values of
that data type.

dialog
Describes the entire communication between browser, WebTransactions and -
>host application. It will usually comprise multiple ->dialog cycles. WebTransac-
tions supports a number of different
types of dialog.
– ->passive dialog
– ->active dialog
– ->synchronized dialog
– ->non-synchronized dialog

dialog cycle
Cycle that comprises the following steps when a ->WebTransactions application is
executed:
– construct an ->HTML page and send it to the ->browser
– wait for a response from the browser
– evaluate the response fields and possibly send them to the->host application

for further processing
A number of dialog cycles are passed through while a ->WebTransactions appli-
cation is executing.

distinguished name
The Distinguished Name (DN) in ->LDAP is hierarchically organized and
consists of a number of different components (e.g. “country, and below country:
organization, and below organization: organizational unit, followed by: usual
name”). Together, these components provide a unique identification of an object
in the directory tree.
Thanks to this hierarchy, the unique identification of objects is a simple matter
even in a worldwide directory tree:
– The DN "Country=DE/Name=Emil Person" reduces the problem of achiev-

ing a unique identification to the country DE (=Germany).
– The DN "Organization=FTS/Name=Emil Person" reduces it to the organiza-

tion FTS.
– The DN "Country=DE/Organization=FTS/Name=Emil Person" reduces it to

the organization FTS located in Germany (DE).

Glossary

Client APIs for WebTransactions 95

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
li

2
01

0
 S

ta
n

d
14

:2
6.

31
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
07

_C
lie

nt
_A

P
Is

\e
n\

cl
ie

nt
s.

m
ix

document directory
->Web server directory containing the documents that can be accessed via the
network. WebTransactions stores files for download in this directory, e.g. the
WebLab client or general start pages.

Domain Name Service (DNS)
Procedure for the symbolic addressing of computers in networks. Certain
computers in the network, the DNS or name server, maintain a database
containing all the known host names and IP numbers in their environment.

dynamic data
In WebTransactions, dynamic data is mapped using the WebTransactions
object model, e.g. as a ->system object, host object or user input at the browser.

EHLLAPI
Enhanced High-Level Language API
Program interface, e.g. of terminal emulations for communication with the SNA
world. Communication between the transit client and SNA computer, which is
handled via the TRANSIT product, is based on this interface.

EJB
(Enterprise JavaBean)
This is a Java-based industry standard which makes it possible to use in-house
or commercially available server components for the creation of distributed
program systems within a distributed, object-oriented environment.

entry page
The entry page is an ->HTML page which is required in order to start a
->WebTransactions application This page contains the call which starts
WebTransactions with the first ->template, the so-called start template.

evaluation operator
In WebTransactions the evaluation operator replaces the addressed
->expressions with their result (object attribute evaluation). The evaluation
operator is specified in the form ##expression#.

expression
A combination of ->literals, ->variables, operators and expressions which return
a specific result when evaluated.

FHS
Format Handling System
Formatting system for BS2000/OSD applications.

Glossary

96 Client APIs for WebTransactions

field
A field is the smallest component of a service and element of a ->record or
->buffer.

field file (*.fld file)
In WebTransactions, this contains the structure of a ->format record (metadata).

filter
Program or program unit (e.g. a library) for converting a given ->format into
another format (e.g. XML documents to ->WTScript data structures).

format
Optical presentation on alphanumeric screens (sometimes also referred to as
screen form or mask).

In WebTransactions each format is represented by a ->field file and a ->template.

format type
(only relevant in the case of ->FHS applications and communication via ->UPIC)
Specifies the type of format: #format, +format, -format or *format.

format description sources
Description of multiple ->formats in one or more files which were generated from
a format library (FHS/IFG) or are available directly at the ->host for the use of
“expressive” names in formats.

function
A function is a user-defined code unit with a name and ->parameters. Functions
can be called in ->methods by means of a description of the function interface (or
signature).

holder task
A process, a task or a thread in WebTransactions depending on the operating
system platform being used. The number of tasks corresponds to the number
of users. The task is terminated when the user logs off or when a time-out
occurs. A holder task is identical to a ->WebTransactions session.

host
The computer on which the- >host application is running.

host adapter
Host adapters are used to connect existing ->host applications to
WebTransactions. At runtime, for example, they have the task of establishing
and terminating connections and converting all the exchanged data.

Glossary

Client APIs for WebTransactions 97

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
li

2
01

0
 S

ta
n

d
14

:2
6.

31
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
07

_C
lie

nt
_A

P
Is

\e
n\

cl
ie

nt
s.

m
ix

host application
Application that is integrated with WebTransactions.

host control object
In WebTransactions, host control objects contain information which relates not
to individual fields but to the entire ->format. This includes, for example, the field
in which the cursor is located, the current function key or global format
attributes.

host data object
In WebTransactions, this refers to an ->object of the data interface to the ->host
application. It represents a field with all its field attributes. It is created by
WebTransactions after the reception of host application data and exists until the
next data is received or until termination of the ->session.

host data print
During WebTransactions host data print, information is printed that was edited
and sent by the ->host application, e.g. printout of host files.

host platform
Operating system of the host on which the ->host applications runs.

HTML
(Hypertext Markup Language)
See ->Hypertext Markup Language

HTTP
(Hypertext Transfer Protocol)
This is the protocol used to transfer ->HTML pages and data.

HTTPS
(Hypertext Transfer Protocol Secure)
This is the protocol used for the secure transfer of ->HTML pages and data.

hypertext
Document with links to other locations in the same or another document. Users
click the links to jump to these new locations.

Hypertext Markup Language
(Hypertext Markup Language)
Standardized markup language for documents on the Web.

Glossary

98 Client APIs for WebTransactions

Java Bean
Java programs (or ->classes) with precisely defined conventions for interfaces
that allow them to be reused in different applications.

KDCDEF
openUTM tool for generating ->openUTM applications.

LDAP
(Lightweight Directory Access Protocol)
The X.500 standard defines DAP (Directory Access Protocol) as the access
protocol. However, the Internet standard “LDAP” has proved successful specif-
ically for accessing X.500 directory services from a PC.
LDAP is a simplified DAP protocol that does not support all the options available
with DAP and is not compatible with DAP. Practically all X.500 directory services
support both DAP and LDAP. In practice, interpretation problems may arise
since there are various dialects of LDAP. The differences between the dialects
are generally small.

literal
Character sequence that represents a fixed value. Literals are used in source
programs to specify constant values (“literal” values).

master template
WebTransactions template used to generate the Automask and the format-
specific templates.

message queuing (MQ)
A form of communication in which messages are not exchanged directly, rather
via intermediate queues. The sender and receiver can work at separate times
and locations. Message transmission is guaranteed regardless of whether or
not a network connection currently exists.

method
Object-oriented term for a ->function. A method is applied to the ->object in
which it is defined.

module template
In WebTransactions, a module template is used to define ->classes, ->functions
and constants globally for a complete ->session. A module template is loaded
using the import() function.

MT tag
(Master Template tag)
Special tags used in the dynamic sections of ->master templates.

Glossary

Client APIs for WebTransactions 99

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
li

2
01

0
 S

ta
n

d
14

:2
6.

31
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
07

_C
lie

nt
_A

P
Is

\e
n\

cl
ie

nt
s.

m
ix

multitier architecture
All client/server architectures are based on a subdivision into individual
software components which are also known as layers or tiers. We speak of
1-tier, 2-tier, 3-tier and multitier models. This subdivision can be considered at
the physical or logical level:
– We speak of logical software tiers when the software is subdivided into

modular components with clear interfaces.
– Physical tiers occur when the (logical) software components are distributed

across different computers in the network.
With WebTransactions, multitier models are possible both at the physical and
logical level.

name/value pair
In the data sent by the ->browser, the combination, for example, of an ->HTML
input field name and its value.

non-synchronized dialog
Non-synchronized dialogs in WebTransactions permit the temporary deacti-
vation of the checking mechanism implemented in ->synchronized dialogs. In this
way, ->dialogs that do not form part of the synchronized dialog and have no
effect on the logical state of the ->host application can be incorporated. In this
way, for example, you can display a button in an ->HTML page that allows users
to call help information from the current host application and display it in a
separate window.

object
Elementary unit in an object-oriented software system. Every object possesses
a name via which it can be addressed, ->attributes, which define its status
together with the ->methods that can be applied to the object.

openUTM
(Universal Transaction Monitor)
Transaction monitor from Fujitsu Technology Solutions, which is available for
BS2000/OSD and a variety of Unix platforms and Windows platforms.

openUTM application
A ->host application which provides services that process jobs submitted by
->clients or other ->host applications. openUTM responsibilities include trans-
action management and the management of communication and system
resources. Technically speaking, the UTM application is a group of processes
which form a logical unit at runtime.
openUTM applications can communicate both via the client/server protocol
->UPIC and via the emulation interface (9750).

Glossary

100 Client APIs for WebTransactions

openUTM-Client (UPIC)
The openUTM-Client (UPIC) is a product used to create client programs for
openUTM. openUTM-Client (UPIC) is available, for example, for Unix platforms,
BS2000/OSD platforms and Windows platforms.

openUTM program unit
The services of an ->openUTM application are implemented by one or more
openUTM program units. These can be addressed using transaction codes and
contain special openUTM function calls (e.g. KDCS calls).

parameter
Data which is passed to a ->function or a ->method for processing (input
parameter) or data which is returned as a result of a function or method (output
parameter).

passive dialog
In the case of passive dialogs in WebTransactions, the dialog sequence is
controlled by the ->host application, i.e. the host application determines the next
->template which is to be processed. Users who access the host application via
WebTransactions pass through the same dialog steps as if they were accessing
it from a terminal. WebTransactions uses passive dialog control for the
automatic conversion of the host application or when each host application
format corresponds to precisely one individual template.

password
String entered for a ->user id in an application which is used for user authenti-
cation (->system access control).

polling
Cyclical querying of state changes.

pool
In WebTransactions, this term refers to a shared directory in which WebLab can
create and maintain ->base directories. You control access to this directory with
the administration program.

post
To send data.

posted object (wt_Posted)
List of the data returned by the ->browser. This ->object is created by WebTrans-
actions and exists for the duration of a ->dialog cycle.

Glossary

Client APIs for WebTransactions 101

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
li

2
01

0
 S

ta
n

d
14

:2
6.

31
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
07

_C
lie

nt
_A

P
Is

\e
n\

cl
ie

nt
s.

m
ix

process
The term “process” is used as a generic term for process (in Solaris, Linux and
Windows) and task (in BS2000/OSD).

project
In the WebTransactions development environment, a project contains various
settings for a ->WebTransactions application. These are saved in a project file
(suffix .wtp). You should create a project for each WebTransactions application
you develop, and always open this project for editing.

property
Properties define the nature of an ->object, e.g. the object “Customer” could
have a customer name and number as its properties. These properties can be
set, queried, and modified within the program.

protocol
Agreements on the procedural rules and formats governing communications
between remote partners of the same logical level.

protocol file

● openUTM-Client: File into which the openUTM error messages as are writ-
ten in the case of abnormal termination of a conversation.

● In WebTransactions, protocol files are called trace files.

roaming session
->WebTransactions sessions which are invoked simultaneously or one after
another by different ->clients.

record
A record is the definition of a set of related data which is transferred to a ->buffer.
It describes a part of the buffer which may occur one or more times.

recognition criteria
Recognition criteria are used to identify ->formats of a ->terminal application and
can access the data of the format. The recognition criteria selected should be
one or more areas of the format which uniquely identify the content of the
format.

scalar
->variable made up of a single value, unlike a ->class, an ->array or another
complex data structure.

Glossary

102 Client APIs for WebTransactions

service (openUTM)
In ->openUTM, this is the processing of a request using an ->openUTM appli-
cation. There are dialog services and asynchronous services. The services are
assigned their own storage areas by openUTM. A service is made up of one or
more ->transactions.

service application
->WebTransactions session which can be called by various different users in turn.

service node
Instance of a ->service. During development and runtime of a ->method a service
can be instantiated several times. During modelling and code editing those
instances are named service nodes.

session
When an end user starts to work with a ->WebTransactions application this opens
a WebTransactions session for that user on the WebTransactions server. This
session contains all the connections open for this user to the
->browsers, special ->clients and ->hosts.
A session can be started as follows:
– Input of a WebTransactions URL in the browser.
– Using the START_SESSION method of the WT_REMOTE client/server interface.
A session is terminated as follows:
– The user makes the corresponding input in the output area of this

->WebTransactions application (not via the standard browser buttons).
– Whenever the configured time that WebTransactions waits for a response

from the ->host application or from the ->browser is exceeded.
– Termination from WebTransactions administration.
– Using the EXIT_SESSION method of the WT_REMOTE client/server interface.
A WebTransactions session is unique and is defined by a ->WebTransactions
application and a session ID. During the life cycle of a session there is one
->holder task for each WebTransactions session on the WebTransactions server.

SOAP
(originally Simple Object Access Protocol)
The ->XML based SOAP protocol provides a simple, transparent mechanism
for exchanging structured and typecast information between computers in a
decentralized, distributed environment.
SOAP provides a modular package model together with mechanisms for data
encryption within modules. This enables the uncomplicated description of the
internal interfaces of a ->Web-Service.

Glossary

Client APIs for WebTransactions 103

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
li

2
01

0
 S

ta
n

d
14

:2
6.

31
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
07

_C
lie

nt
_A

P
Is

\e
n\

cl
ie

nt
s.

m
ix

style
In WebTransactions this produces a different layout for a ->template, e.g. with
more or less graphic elements for different->browsers. The style can be changed
at any time during a ->session.

synchronized dialog
In the case of synchronized dialogs (normal case), WebTransactions automati-
cally checks whether the data received from the web browser is genuinely a
response to the last ->HTML page to be sent to the ->browser. For example, if
the user at the web browser uses the Back button or the History function to
return to an “earlier” HTML page of the current ->session and then returns this,
WebTransactions recognizes that the data does not correspond to the current
->dialog cycle and reacts with an error message. The last page to have been
sent to the browser is then automatically sent to it again.

system access control
Check to establish whether a user under a particular ->user ID is authorized to
work with the application.

system object (wt_System)
The WebTransactions system object contains ->variables which continue to
exist for the duration of an entire ->session and are not cleared until the end of
the session or until they are explicitly deleted. The system object is always
visible and is identical for all name spaces.

TAC
See ->transaction code

tag
->HTML, ->XML and ->WTML documents are all made up of tags and actual
content. The tags are used to mark up the documents e.g. with header formats,
text highlighting formats (bold, italics) or to give source information for graphics
files.

TCP/IP
(Transport Control Protocol/Internet Protocol)
Collective name for a protocol family in computer networks used, for example,
in the Internet.

Glossary

104 Client APIs for WebTransactions

template
A template is used to generate specific code. A template contains fixed infor-
mation parts which are adopted unchanged during generation, as well as
variable information parts that can be replaced by the appropriate values during
generation.
A template is a ->WTML file with special tags for controlling the dynamic gener-
ation of a ->HTML page and for the processing of the values entered at the -
>browser. It is possible to maintain multiple template sets in parallel. These then
represent different ->styles (e.g. many/few
graphics, use of Java, etc.).
WebTransactions uses different types of template:
– ->Automask templates for the automatic conversion of the ->formats of MVS

and OSD applications.
– Custom templates, written by the programmer, for example, to control an -

>active dialog.
– Format-specific templates which are generated for subsequent post-pro-

cessing.
– Include templates which are inserted in other templates.
– ->Class templates
– ->Master templates to ensure the uniform layout of fixed areas on the

generation of the Automask and format-specific templates.
– Start template, this is the first template to be processed in a

WebTransactions application.

template object
->Variables used to buffer values for a ->dialog cycle in WebTransactions.

terminal application
Application on a ->host computer which is accessed via a 9750 or 3270
interface.

terminal hardcopy print
A terminal hardcopy print in WebTransactions prints the alphanumeric repre-
sentation of the ->format as displayed by a terminal or a terminal emulation.

transaction
Processing step between two synchronization points (in the current operation)
which is characterized by the ACID conditions (Atomicity, Consistency, Isolation
and Durability). The intentional changes to user information made within a
transaction are accepted either in their entirety or not at all (all-or-nothing rule).

Glossary

Client APIs for WebTransactions 105

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
li

2
01

0
 S

ta
n

d
14

:2
6.

31
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
07

_C
lie

nt
_A

P
Is

\e
n\

cl
ie

nt
s.

m
ix

transaction code/TAC
Name under which an openUTM service or ->openUTM program unit can be
called. The transaction code is assigned to the openUTM program unit during
configuration. A program unit can be assigned several transaction codes.

UDDI
(Universal Description, Discovery and Integration)
Refers to directories containing descriptions of ->Web services. This information
is available to web users in general.

Unicode
An alphanumeric character set standardized by the International Standardisa-
tion Organisation (ISO) and the Unicode Consortium. It is used to represent
various different types of characters: letters, numerals, punctuation marks, syl-
labic characters, special characters and ideograms. Unicode brings together all
the known text symbols in use across the world into a single character set.
Unicode is vendor-independent and system-independent. It uses either two-
byte or four-byte character sets in which each text symbol is encoded. In the ISO
standard, these character sets are termed UCS-2 (Universal Character Set 2)
or UCS-4. The designation UTF-16 (Unicode Transformation Format 16-bit),
which is a standard defined by the Unicode Consortium, is often used in place
of the designation UCS-2 as defined in ISO. Alongside UTF-16, UTF-8 (Unicode
Transformation Format 8 Bit) is also in widespread use. UTF-8 has become the
character encoding method used globally on the Internet.

UPIC
(Universal Programming Interface for Communication)
Carrier system for openUTM clients which uses the X/Open interface, which
permity CPI-C client/server communication between a CPI-C-Client application
and the openUTM application.

URI
(Uniform Resource Identifier)
Blanket term for all the names and addresses that reference objects on the
Internet. The generally used URIs are->URLs.

URL
(Uniform Resource Locator)
Description of the location and access type of a resource in the ->Internet.

user exit
Functions implemented in C/C++ which the programmer calls from a
->template.

Glossary

106 Client APIs for WebTransactions

user ID
User identification which can be assigned a password (->system access control)
and special access rights (->data access control).

variable
Memory location for variable values which requires a name and a ->data type.

visibility of variables
->Objects and ->variables of different dialog types are managed by WebTrans-
actions in different address spaces. This means that variables belonging to a -
>synchronized dialog are not visible and therefore not accessible in a
->asynchronous dialog or in a dialog with a remote application.

web server
Computer and software for the provision of ->HTML pages and dynamic data
via ->HTTP.

web service
Service provided on the Internet, for example a currency conversion program.
The SOAP protocol can be used to access such a service. The interface of a
web service is described in ->WSDL.

WebTransactions application
This is an application that is integrated with ->host applications for internet/
intranet access. A WebTransactions application consists of:
– a ->base directory
– a start template
– the ->templates that control conversion between the ->host and the

->browser.
– protocol-specific configuration files.

WebTransactions platform
Operating system of the host on which WebTransactions runs.

WebTransactions server
Computer on which WebTransactions runs.

WebTransactions session
See ->session

WSDL
(Web Service Definition Language)
Provides ->XML language rules for the description of ->web services. In this
case, the web service is defined by means of the port selection.

Glossary

Client APIs for WebTransactions 107

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
li

2
01

0
 S

ta
n

d
14

:2
6.

31
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
07

_C
lie

nt
_A

P
Is

\e
n\

cl
ie

nt
s.

m
ix

WTBean
In WebTransactions ->WTML components with a self-descriptive interface are
referred to as WTBeans. A distinction is made between inline and standalone
WTBeans:
– An inline WTBean corresponds to a part of a WTML document
– A standalone WTBean is an autonomous WTML document

A number of WTBeans are included in of the WebTransactions product, addi-
tional WTBeans can be downloaded from the WebTransactions homepage
ts.fujitsu.com/products/software/openseas/webtransactions.html.

WTML
(WebTransactions Markup Language)
Markup and programming language for WebTransactions ->templates. WTML
uses additional ->WTML tags to extend ->HTML and the server programming
language ->WTScript, e.g. for data exchange with ->host applications. WTML
tags are executed by WebTransactions and not by the ->browser (serverside
scripting).

WTML tag
(WebTransactions Markup Language-Tag)
Special WebTransactions tags for the generation of the dynamic sections of an
->HTML page using data from the->host application.

WTScript
Serverside programming language of WebTransactions. WTScripts are similiar
to client-side Java scripts in that they are contained in sections that are intro-
duced and terminated with special tags. Instead of using ->HTML-SCRIPT tags
you use ->WTML-Tags: wtOnCreateScript and wtOnReceiveScript. This indicates
that these scripts are to be implemented by WebTransactions and not by the
->browser and also indicates the time of execution. OnCreate scripts are
executed before the page is sent to the browser. OnReceive scripts are
executed when the response has been received from the browser.

XML
(eXtensible Markup Language)
Defines a language for the logical structuring of documents with the aim of
making these easy to exchange between various applications.

XML schema
An XML schema basically defines the permissible elements and attributes of an
XML description. XML schemas can have a range of different formats, e.g. DTD
(Document Type Definition), XML Schema (W3C standard) or XDR (XML Data
Reduced).

Glossary

108 Client APIs for WebTransactions

Client APIs for WebTransactions 109

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

n
d

14
:2

6.
31

P
fa

d
: F

:\W
eb

TA
\V

7.
5\

M
an

u
al

e\
1

00
3

50
7

_C
lie

n
t_

A
P

Is
\e

n\
cl

ie
nt

s.
ab

k

Abbreviations
BO Business Object

CGI Common Gateway Interface

DN Distinguished Name

DNS Domain Name Service

EJB Enterprise JavaBean

FHS Format Handling System

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IFG Interaktiver Format Generator

ISAPI Internet Server Application Programming Interface

LDAP Lightweight Directory Access Protocol

LPD Line Printer Daemon

MT-Tag Master-Template-Tag

MVS Multiple Virtual Storage

OSD Open Systems Direction

SGML Standard Generalized Markup Language

SOAP Simple Object Access Protocol

Abbreviations

110 Client APIs for WebTransactions

SSL Secure Socket Layer

TCP/IP Transport Control Protocol/Internet Protocol

Upic Universal Programming Interface for Communication

URL Uniform Resource Locator

WSDL Web Services Description Language

wtc WebTransactions Component

WTML WebTransactions Markup Language

XML eXtensible Markup Language

Client APIs for WebTransactions 111

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
li

2
01

0
 S

ta
n

d
14

:2
6.

31
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
u

al
e\

10
03

50
7

_C
lie

nt
_A

P
Is

\e
n\

cl
ie

nt
s.

lit

Related publications

WebTransactions manuals

You can download all manuals from the Web address http://manuals.ts.fujitsu.com.

WebTransactions
Concepts and Functions
Introduction

WebTransactions
Template Language
Reference Manual

WebTransactions
Connection to openUTM Applications via UPIC
User Guide

WebTransactions
Connection to OSD Applications
User Guide

WebTransactions
Connection to MVS Applications
User Guide

WebTransactions
Access to Dynamic Web Contents
User Guide

WebTransactions
Web Frontend for Web Services
User Guide

http://manuals.ts.fujitsu.com

Related publications

112 Client APIs for WebTransactions

Client APIs for WebTransactions 113

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
ul

y
20

1
0

 S
ta

nd
 1

4
:2

6.
31

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

ua
le

\1
00

35
0

7_
C

lie
n

t_
A

P
Is

\e
n\

cl
ie

nt
s.

si
x

Index

A
active dialog 91, 94
active session

address 65
addMethod (WT_RPC class) 27
applets

WTSession constructor 33
architecture

WebTransactions 9
array 91
asynchronous message 91
attach (WTSession class) 35
attribute 91

query names 44
remove 46
set in current object 46

automask template 92

B
base data type 91
base directory 92
BCAM application name 92
BCAMAPPL 92
browser 92
browser display print 92
browser platform 92
buffer 92

C
call

Java method in WebTransactions session 52
callMethod element 81
capture database 93
capturing 92
CGI (Common Gateway Interface) 93

class 93
query 45
templates 93

class library
Java clients 18
WT_RPC 17

client 93
close

WT_RPC class 26
close (WTSession class) 36
cluster 93
com.siemens.webta.WTJavaClient (package) 29
communication methods (WTSession class) 30
communication object 93
connection parameters 33
constructor

WTObject class 42
WTObjectRemoteAccess class 49
WTSession class 30

control part, of HTTP messages 66, 70
conversion tools 93
create

object in WebTransactions session 50
createObject (WTObjectRemoteAccess

class) 50
createObject element 84

D
daemon 93
data

dynamic 95
data access control 94
data element 76
data part of HTTP messages 66, 71
data type 94

Index

114 Client APIs for WebTransactions

demo Java application 20
dialog 94

active 94
non-synchronized 94, 99
passive 94, 100
synchronized 94, 103
types 94

dialog cycle 94
distinguished name 94
document directory 95
Document Type Definition 73
Domain Name Service (DNS) 95
download method

WTObjectRemoteAccess class 51
downloadData element 79
DTD

syntax of description 73
DTDcreate 84
DTDdata 76
DTDdownload 79
DTDmethod 81
DTDrequest 74
DTDresponse 86

E
EHLLAPI 95
EJB 95
element

callMethod 81
createObject 84
data 76
downloadData 79
error (example) 89
request 74
response 86
uploadData 76

entry page 95
error element (example) 89
error message (example) 89
evaluation operator 95
exceptions

WTObject class 47
WTSession class 41

EXIT_SESSION (WT_REMOTE class) 62
response message 87

EXIT_SESSION method
message structure 68

expression 95

F
FHS 95
field 96
field file 96
filter 96
filter application (example) 55
fld file 96
format 96

#format 96
*format 96
+format 96
-format 96

format description source 96
format type 96
function 96

G
getAttribute (WTObject class) 44
getAttributeNames (WTObject class) 44
getValueAsString (WTObject class) 45
getWTClass (WTObject class) 45
getWTType (WTObject class) 45

H
holder task 96
host 96
host adapter 96
host application 97
host control object 97
host data object 97
host data print 97
host platform 97
HTML 97
HTTP 97
HTTP messages 66

control part 66, 70
data part 66, 71

HTTPS 97

Index

Client APIs for WebTransactions 115

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
ul

y
20

1
0

 S
ta

nd
 1

4
:2

6.
31

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

ua
le

\1
00

35
0

7_
C

lie
n

t_
A

P
Is

\e
n\

cl
ie

nt
s.

si
x

hypertext 97
Hypertext Markup Language (HTML) 97

I
inline WTBean 107
integration application (example) 57
interface

WT_REMOTE 16
invoke (WT_RPC class) 26
invoke (WTObjectRemoteAccess class) 52

J
Java application, demo 20
Java Bean 98
Java classes 29

WTObject class 42
WTSession 30

Java clients 18
Java method

call WebTransactions session 52
Java variables

for trace 39
for WTML classes 43
for WTML data types 42

JDK V1.1 18

K
KDCDEF 98

L
LANGUAGE (system object attribute)

set 37
LDAP 98
literals 98
load

object structure from WebTransactions
session 51

M
master template 98, 104

tag 98
message queuing 98

method 98
addMethod (WT_RPC class) 27
attach (WTSession class) 35
close (WT_RPC class) 26
close (WTSession class) 36
createObject (WTObjectRemoteAccess

class) 50
download (WTObjectRemoteAccess

class) 51
EXIT_SESSION (WT_REMOTE class) 62
EXIT_SESSION, message structure 68
EXIT_SESSION, response message 87
getAttribute (WTObject class) 44
getAttributeNames (WTObject class) 44
getValueAsString (WTObject class) 45
getWTClass (WTObject class) 45
getWTType (WTObject class) 45
invoke (WT_RPC class) 26
invoke (WTObjectRemoteAccess class) 52
open (WT_RPC class) 25
open (WTSession class) 36
PROCESS_COMMANDS (WT_REMOTE

class) 63
PROCESS_COMMANDS, response

message 88
removeAttribute (WTObject class) 46
setApplTimeout (WTSession class) 37
setAttribute (WTObject class) 46
setLanguage (WTSession class) 37
setStyle (WTSession class) 38
setTraceLevel (WTSession class) 39
setUserTimeout (WTSession class) 40
setValue (WTObject class) 47
START_SESSION 62
START_SESSION (WT_REMOTE class) 62
START_SESSION, message structure 67
START_SESSION, response message 87
upload (WTObjectRemoteAccess class) 53
WTObjectRemoteAccess class 50

module template 98
MT tag 98
multi-step transactions 64, 65

for active session 65
for own session 65

Index

116 Client APIs for WebTransactions

multitier architecture 99

N
name/value pair 99
non-synchronized dialog 94, 99

O
object 99

creating 42
creating in WebTransactions session 50
querying all attribute names 44
querying class 45
querying data type 45
querying value 45
removing attribute 46
setting attribute 46
setting value 47
uploading to WebTransactions session 53

object hierarchy 46
object structure

loading from WebTransactions session 51
open (WT_RPC class) 25
open (WTSession class) 36
openUTM 99

application 99
Client 100
program unit 100
service 102

operations 94

P
package com.siemens.webta.WTJavaClient 29
parameter 100
passive dialog 94, 100
password 100
polling 100
pool 100
posted object 100
posting 100
process 101
PROCESS_COMMANDS method 63

response message 88
project 101
property 101

protocol 101
protocol file 101

Q
query

attribute names 44
data type 45
data type of an object 45
object class 45
object value 45

R
recognition criteria 101
record 101
record structure 96
remove attribute 46
removeAttribute (WTObject class) 46
request element 74
request messages 66

HTTP messages 66
without data part 67

response element 86
response messages (examples) 88

S
scalar 101
service (openUTM) 102
service node 102
session 102

WebTransactions 102
set

attribute of an object 46
object value 47
STYLE (system object attribute) 38
system object attribute LANGUAGE 37
TIMEOUT_APPLICATION (system object

attribute) 37
TIMEOUT_USER (system object

attribute) 40
setApplTimeout (WTSession class) 37
setAttribute (WTObject class) 46
setLanguage (WTSession class) 37
setStyle (WTSession class) 38
setTraceLevel (WTSession class) 39

Index

Client APIs for WebTransactions 117

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
ul

y
20

1
0

 S
ta

nd
 1

4
:2

6.
31

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

ua
le

\1
00

35
0

7_
C

lie
n

t_
A

P
Is

\e
n\

cl
ie

nt
s.

si
x

setUserTimeout (WTSession class) 40
setValue (WTObject class) 47
single-step transactions 64
SOAP 102
standalone WTBean 107
start template 104
START_SESSION method 62

message structure 67
response message 87

style 103
STYLE (system object attribute)

setting 38
synchronized dialog 94, 103
system access control 103
system object 103
system object attribute

set LANGUAGE 37
set STYLE 38
set TIMEOUT_APPLICATION 37
set TIMEOUT_USER 40

T
TAC 105
tag 103
TCP/IP 103
template 104

class 93
master 104
object 104
start 104

terminal application 104
terminal hardcopy printing 104
Thread 96
TIMEOUT_APPLICATION (system object at-

tribute)
setting 37

TIMEOUT_USER (system object attribute)
setting 40

trace
activate 39
activating 39

transaction 104
transaction code/TAC 105

U
UDDI 105
Unicode 105
UPIC 105
upload

object to WebTransactions session 53
WTObjectRemoteAccess class 53

uploadData element 76
URI 105
URL 105
user exits 105
user ID 106
UTM see openUTM

V
value

query 45
set 47

value range of a data type 94
variable 106
visibility 106

W
web server 106
web service 106
WebTransactions

architecture 9
session 102

WebTransactions application 106
WebTransactions platform 106
WebTransactions server 106
WebTransactions session

calling Java method 52
creating object 50
loading object 51

WSDL 106
WT_REMOTE 16

description 61
methods 62
purpose 61
request messages 66

WT_RPC class
addMethod 27
class library 17

Index

118 Client APIs for WebTransactions

close 26
invoke 26
open 25

WTBean 107
WTJavaClient.jar 18
WTML 107

classes 43
data types 42

WTML tag 107
WTObject class

constructor 42
exceptions 47
getAttribute 44
getAttributeNames 44
getValueAsString 45
getWTClass 45
getWTType 45
Java class 42
removeAttribute 46
setAttribute 46
setValue 47

WTObjectRemoteAccess class 49
constructor 49
createObject 50
download 51
exceptions 54
invoke 52
methods 50
upload 53

WTScript 107
WTSession class 30

attach 35
close 36
constructor for applet 33
constructors 30
exceptions 41
methods 35
open 36
setApplTimeout 37
setLanguage 37
setStyle 38
setTraceLevel 39
setUserTimeout 40

WWW browser 92

WWW server 106

X
XML 107
XML documents

for request messages 73
for response messages 86
structure 74

XML schema 107

	Contents
	Preface
	Product characteristics
	Architecture of client access in WebTransactions
	WebTransactions documentation
	Structure and target group of this manual
	New features
	Notational conventions

	Client concept of WebTransactions
	The Web browser as standard client
	The WT_REMOTE interface
	The WT_RPC class library for WebTransactions clients
	Class library for Java clients
	Applet for WebTransactions access
	Java program for WebTransactions access
	Data exchange between the Java client and WebTransactions

	The WT_RPC class
	Constructor
	Attributes
	Methods
	open method
	close method
	invoke method
	addMethod Method

	Developing distributed applications with WT_RPC

	The com.siemens.webta Java package
	WTSession class
	Constructors
	WTSession for a new WebTransactions session
	WTSession for an already existing WebTransactions session
	WTSession for an applet

	Methods
	attach method
	close method
	open method
	setApplTimeout method
	setLanguage method
	setStyle method
	setTraceLevel method
	setUserTimeout method

	Exceptions
	Example

	WTObject class
	Constructor
	Methods
	getAttribute method
	getAttributeNames method
	getValueAsString method
	getWTClass method
	getWTType method
	removeAttribute method
	setAttribute method
	setValue method

	Exceptions
	Example

	WTObjectRemoteAccess class
	Constructor
	Methods
	createObject method
	download method
	invoke method
	upload method

	Exceptions

	Example: Distributed WebTransactions application with WT_RPC
	Implementation scenario
	Technical concept
	Implementation of integration application

	Appendix: The WT_REMOTE interface
	Introduction
	WT_REMOTE methods
	START_SESSION method
	EXIT_SESSION method
	PROCESS_COMMANDS method

	Single-step and multi-step transactions
	Single-step transactions
	Multi-step transactions

	Structure of request messages for WT_REMOTE
	Request messages without data part
	Request messages with control part and data part
	Control part of the HTTP message
	Data part of the HTTP message

	XML documents for request messages
	The structure of the XML document (DTDrequest)
	Structure of the data and uploadData elements (DTDdata)
	Structure of the downloadData element (DTDdownload)
	Structure of the callMethod element (DTDmethod)
	Structure of the createObject element (DTDcreate)

	XML documents in response messages
	Response message for START_SESSION
	Response message for EXIT_SESSION
	Response message for PROCESS_COMMANDS

	Glossary
	Abbreviations
	Related publications
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

