
Edition August 2010

©
 S

ie
m

e
ns

 N
ix

do
rf

 In
fo

rm
at

io
n

ss
ys

te
m

e
 A

G
 1

99
5

P
fa

d
: F

:\W
eb

TA
\V

7.
5\

M
an

u
al

e\
1

00
3

50
4_

U
T

M
\e

n
\u

tm
.v

or

User Guide - English

WebTransactions V7.5
Connection to openUTM Applications via UPIC

Comments… Suggestions… Corrections…
The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
manuals@ts.fujitsu.com

Certified documentation
according to DIN EN ISO 9001:2008
To ensure a consistently high quality standard and
user-friendliness, this documentation was created to
meet the regulations of a quality management system which
complies with the requirements of the standard
DIN EN ISO 9001:2008.

cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

This manual is printed
on paper treated with
chlorine-free bleach.

Copyright © Fujitsu Technology Solutions GmbH 2010.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

mailto:manuals@ts.fujitsu.com
http://www.cognitas.de

Contents

WebTransactions for openUTM

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

.
Ju

ly
 2

01
0

 S
ta

n
d

09
:2

6.
52

P
fa

d:
 F

:\W
eb

TA
\V

7.
5\

M
an

u
al

e\
10

03
50

4
_U

T
M

\e
n\

ut
m

.iv
z

Contents

1 Preface . 7

1.1 Product characteristics . 7

1.2 Architecture of WebTransactions for openUTM . 9

1.3 WebTransactions documentation . 11

1.4 Structure and target group of this manual . 14

1.5 New features . 14

1.6 Notational conventions . 15

2 Installing WebTransactions . 17

2.1 Installation . 17
2.1.1 Windows . 18
2.1.1.1 Installation via the user interface . 18
2.1.1.2 Silent installation . 19
2.1.2 Solaris . 21
2.1.3 Linux . 22
2.1.4 BS2000/OSD . 23
2.1.5 WebLab installation . 23

2.2 Licensing . 24

3 Example session . 25

3.1 Administering the WebTransactions server . 25
3.1.1 Setting the browser . 26
3.1.2 Starting the administration program . 27
3.1.3 Entering licenses . 28
3.1.4 Creating users . 31
3.1.5 Creating a pool . 32

Contents

 WebTransactions for openUTM

3.1.6 Assigning the pool to a user . 34

3.2 Connecting a host application to the Web . 35
3.2.1 Creating a project . 35
3.2.1.1 Creating a base directory . 36
3.2.2 Saving the project . 40
3.2.3 Generating templates from FHS formats . 42
3.2.3.1 Generating the description file with IFG2FLD . 42
3.2.3.2 Generating templates and field files from the description file 43
3.2.4 Define local host application names . 46
3.2.5 Starting a session . 47

3.3 Editing templates . 53
3.3.1 Inserting a drop-down list for selecting a country . 54
3.3.2 Replacing command input with buttons . 60
3.3.3 Inserting a clickable image . 62

3.4 Starting WebTransactions . 64
3.4.1 Creating a start template . 64
3.4.2 Starting a session with WebLab . 68
3.4.3 Alternative ways of starting a WebTransactions application 69

4 Creating the base directory . 71

4.1 Creating a base directory with WebLab . 71

4.2 Structure of a base directory . 73

5 Generating templates . 75

5.1 Generating templates from FHS formats . 76
5.1.1 Using IFG2FLD . 77
5.1.2 Using WebLab to generate templates and FLD files from the format description source 79

5.2 Generating templates from FORMANT formats 82
5.2.1 Generating templates and FLD files using WebLab 82

5.3 Structure of the field files (FLD files) . 84

5.4 Structure of the generated templates . 89

Contents

WebTransactions for openUTM

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

.
Ju

ly
 2

01
0

 S
ta

n
d

09
:2

6.
52

P
fa

d:
 F

:\W
eb

TA
\V

7.
5\

M
an

u
al

e\
10

03
50

4
_U

T
M

\e
n\

ut
m

.iv
z

6 Editing templates . 99

6.1 Master template UTM.wmt . 100

6.2 Designing templates . 101
6.2.1 Defining the global layout . 101
6.2.2 Customizing the interface . 103
6.2.3 Designing the dialog sequence . 103

6.3 Special characteristics of FHS/FORMANT partial formats 104
6.3.1 Communications sequence . 104
6.3.2 Structure of the master template UTMpartial.wmt 106
6.3.3 Editing with partial format templates . 117

6.4 Support for openUTM line mode . 120

6.5 Binary data support . 124

7 Configuring connections . 125

7.1 Aligning WebTransactions and the host . 127

7.2 Configuring the WebTransactions side . 132
7.2.1 localapps file . 132
7.2.2 Addressing the openUTM application using system attributes 133
7.2.3 upicfile . 134
7.2.4 Declaring the server computer name . 137

7.3 Configuring the openUTM (host) side . 138
7.3.1 Adapting the openUTM generation . 138
7.3.2 Declaring the client computer . 141

7.4 BCMAP entries (BS2000/OSD) . 142

8 Controlling communication . 145

8.1 openUTM-specific attributes of the system object 145
8.1.1 Overview . 146
8.1.2 Interaction between system object attributes and actions/methods 153

8.2 Host objects and attributes . 159
8.2.1 Host objects for the individual format fields (host data objects) 159
8.2.2 Host control object WT_HOST_MESSAGE . 165
8.2.3 Host control object WT_HOST_GLOBALS . 169
8.2.4 Host control objects $FIRST and $NEXT . 170

Contents

 WebTransactions for openUTM

8.3 Terminal functions supported by the browser 171
8.3.1 Terminal functions supported . 171
8.3.2 Mapping keys in wtKeysUTMFHS.js and wtKeysUTMFormant.js 174
8.3.3 Interaction between wtCommonBrowserFunctions.js and

wt<browser>BrowserFunctions.js . 179
8.3.4 Using the WT_BROWSER object . 183

8.4 Start templates for openUTM . 185
8.4.1 The openUTM-specific start template in the start template set (wtstartUTMV4.htm) . 186
8.4.2 WTBean wtcStartUPIC.wtc for the generation of a start template 191

8.5 Creating a new openUTM communication object (wtcUPIC) 193

8.6 Security through the openUTM user concept 195

8.7 RESTART - automatic restart . 197

8.8 BADTAC - simulating the BADTAC event service 200

8.9 Automatic conversation chaining . 201

8.10 Simulating function keys . 202

8.11 Support for KDCSCUR . 203

8.12 Targeted logon via specific LTERMs . 204

Glossary . 205

Abbreviations . 223

Related publications . 225

Index . 227

WebTransactions for openUTM 7

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

2
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
1

1 Preface
Over the past years, more and more IT users have found themselves working in heteroge-
neous system and application environments, with mainframes standing next to Unix
systems and Windows systems and PCs operating alongside terminals. Different hardware,
operating systems, networks, databases and applications are operated in parallel. Highly
complex, powerful applications are found on mainframe systems, as well as on Unix servers
and Windows servers. Most of these have been developed with considerable investment
and generally represent central business processes which cannot be replaced by new
software without a certain amount of thought.

The ability to integrate existing heterogeneous applications in a uniform, transparent IT
concept is a key requirement for modern information technology. Flexibility, investment
protection, and openness to new technologies are thus of crucial importance.

1.1 Product characteristics

With WebTransactions, Fujitsu Technology Solutions offers a best-of-breed web integration
server which will make a wide range of business applications ready for use with browsers
and portals in the shortest possible time. WebTransactions enables rapid, cost-effective
access via standard PCs and mobile devices such as tablet PCs, PDAs (Personal Digital
Assistant) and mobile phones.

WebTransactions covers all the factors typically involved in web integration projects. These
factors range from the automatic preparation of legacy interfaces, the graphic preparation
and matching of workflows and right through to the comprehensive frontend integration of
multiple applications. WebTransactions provides a highly scaleable runtime environment
and an easy-to-use graphic development environment.

Product characteristics Preface

8 WebTransactions for openUTM

On the first integration level, you can use WebTransactions to integrate and link the
following applications and content directly to the Web so that they can be easily accessed
by users in the internet and intranet:

– Dialog applications in BS2000/OSD
– MVS or z/OS applications
– System-wide transaction applications based on openUTM
– Dynamic web content

Users access the host application in the internet or intranet using a web browser of their
choice.

Thanks to the use of state-of-the-art technology, WebTransactions provides a second
integration level which allows you to replace or extend the typically alphanumeric user inter-
faces of the existing host application with an attractive graphical user interface and also
permits functional extensions to the host application without the need for any intervention
on the host (dialog reengineering).

On a third integration level, you can use the uniform browser interface to link different host
applications together. For instance, you can link any number of previously heterogeneous
host applications (e.g. MVS or OSD applications) with each other or combine them with
dynamic Web contents. The source that originally provided the data is now invisible to the
user.

In addition, you can extend the performance range and functionality of the WebTransactions
application through dedicated clients. For this purpose, WebTransactions offers an open
protocol and special interfaces (APIs).

Host applications and dynamic Web content can be accessed not only via WebTransactions
but also by “conventional” terminals or clients. This allows for the step-by-step connection
of a host application to the Web, while taking account of the wishes and requirements of
different user groups.

Preface Architecture of WebTransactions for openUTM

WebTransactions for openUTM 9

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

2
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
1

1.2 Architecture of WebTransactions for openUTM

The figure below illustrates the architecture of WebTransactions for openUTM:

Figure 1: Architecture of WebTransactions for openUTM

Host adapter with Integrated UPIC protocol

WebTransactions for openUTM uses the UPIC protocol at runtime and during the devel-
opment phase. This protocol is integrated in the host adapter and is used for managing
communication between the WebTransactions kernel and the host application.

K
er

ne
l

H
os

t a
da

pt
erWTPublish

WTEdit

WebLab

Browser
HTML
editor

Browser
User

W
eb

 s
er

ve
r

H
os

t a
pp

lic
at

io
n

WTML
template

WebTransactions

Runtime

Development

Format descrip-
tion source

IF
G

2F
LD

Architecture of WebTransactions for openUTM Preface

10 WebTransactions for openUTM

WebLab

WebLab is the development environment for WebTransactions and is used to carry out all
the work necessary for connecting a host application, creating and editing of format-specific
templates through to testing of the application. WebLab can be used to generate templates
from existing FHS and FORMANT formats. These format-specific tempates can be edited
using WebLab.

WebLab does not need to be installed on the computer that is running WebTransactions.
You can use WebLab on a different computer running the Windows operating system. All
the data required in order to run a WebTransactions application is managed on the
computer on which WebTransactions is runnning.

Runtime

At runtime, the templates control the graphical conversion and editing of formats.

Unicode support

The host adapter in WebTransactions for openUTM can also interpret data as Unicode
characters at the UPIC interface.

The BS2000/OSD program IFG2FLD reads format descriptions from an IFG library and
stores them in a format description source. The fields in an IFG library can contain the new
attribute Unicode.

You can use WebLab to generate templates and field files (FLD files) from the format de-
scription source. During this conversion, the Unicode marker is automatically taken into ac-
count as of IFG2FLD Version 8.3 (see chapter “Generating templates” on page 75).

For further information refer to section “Unicode support” on page 126.

Existing templates can be retained unchanged if the only change in a format was the
change to Unicode fields. However, the assignment of the value UTF-8 to the global system
object attribute CHARSET must be inserted (see section “Host control object
WT_HOST_MESSAGE” on page 165).

You will find information on the rules you must observe for templates in this context in the
section “Unicode support” on page 126.

Preface WebTransactions documentation

WebTransactions for openUTM 11

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

2
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
1

1.3 WebTransactions documentation

The WebTransactions documentation consists of the following documents:

● An introductory manual which applies to all supply units:

Concepts and Functions

This manual describes the key concepts behind WebTransactions:

– The various possible uses of WebTransactions.

– The concept behind WebTransactions and the meanings of the objects in
WebTransactions, their main characteristics and methods, their interaction and life
cycle.

– The dynamic runtime of a WebTransactions application.

– The administration of WebTransactions.

– The WebLab development environment.

● A Reference Manual which also applies to all supply units and which describes the
WebTransactions template language WTML. This manual describes the following:

Template Language

After an overview of WTML, information is provided about:

– The lexical components used in WTML.

– The class-independent global functions, e.g. escape() or eval().

– The integrated classes and methods, e.g. array or Boolean classes.

– The WTML tags which contain functions specific to WebTransactions.

– The WTScript statements that you can use in the WTScript areas.

– The class templates which you can use to automatically evaluate objects of the
same type.

– The master templates used by WebTransactions as templates to ensure a uniform
layout.

– A description of Java integration, showing how you can instantiate your own Java
classes in WebTransactions and a description of user exits, which you can use to
integrate your own C/C++ functions.

– The ready-to-use user exits shipped together with WebTransactions.

– The XML conversion for the portable representation of data used for communication
with external applications via XML messages and the conversion of WTScript data
structures into XML documents.

WebTransactions documentation Preface

12 WebTransactions for openUTM

● A User Guide for each type of host adapter with special information about the type of
the partner application:

Connection to openUTM applications via UPIC (this User Guide)

Connection to OSD applications

Connection to MVS applications

All the host adapter guides contain a comprehensive example session. The manuals
describe:

– The installation of WebTransactions with each type of host adapter.

– The setup and starting of a WebTransactions application.

– The conversion templates for the dynamic conversion of formats on the web
browser interface.

– The editing of templates.

– The control of communications between WebTransactions and the host applications
via various system object attributes.

– The handling of asynchronous messages and the print functions of
WebTransactions.

● A User Guide that applies to all the supply units and describes the possibilities of the
HTTP host adapter:

Access to Dynamic Web Contents

This manual describes:

– How you can use WebTransactions to access a HTTP server and use its resources.

– The integration of SOAP (Simple Object Access Protocol) protocols in
WebTransactions and the connection of web services via SOAP.

Preface WebTransactions documentation

WebTransactions for openUTM 13

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

2
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
1

● A User Guide valid for all the supply units which describes the open protocol, and the
interfaces for the client development for WebTransactions:

Client APIs for WebTransactions

This manual describes:

– The concept of the client-server interface in WebTransactions.

– The WT_RPC class and the WT_REMOTE interface. An object of the WT_RPC class repre-
sents a connection to a remote WebTransactions application which is run on the
server side via the WT_REMOTE interface.

– The Java package com.siemens.webta for communication with WebTransactions
supplied with the product.

● A User Guide valid for all the supply units which describes the web frontend of
WebTransactions that provides access to the general web services:

Web-Frontend for Web Services

This manual describes:

– The concept of web frontend for object-oriented backend systems.

– The generation of templates for the connection of general web services to
WebTransactions.

– The testing and further development of the web frontend for general web services.

Structure and target group of this manual Preface

14 WebTransactions for openUTM

1.4 Structure and target group of this manual

This documentation is intended for users who want to use WebTransactions to connect
openUTM dialog applications to the Web.

The individual chapters describe the necessary steps. If you have not yet worked with
WebTransactions for openUTM, you should first read chapter 3, which presents an example
session which will give you an initial insight into working with WebTransactions.

This manual provides all the openUTM-specific information necessary to complement the
WebTransactions manuals “Concepts and Functions” and “Template Language”.

Scope of this description

WebTransactions for openUTM runs on the system platforms BS2000/OSD, Solaris, Linux
and Windows. This documentation is valid for all WebTransactions platforms. However, if
any information applies specifically to any one of these platforms, then this fact is explicitly
noted in the text.

1.5 New features

This section only lists the openUTM-specific innovations of the WebTransactions
version 7.5. For a general overview of the new features, refer to the WebTransactions man-
ual “Concepts and Functions”.

Type of new feature Description

New host data object attribute Unicode page 161

New attribute Unicode at WT_HOST_MESSAGE page 168

Preface Notational conventions

WebTransactions for openUTM 15

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

2
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
1

1.6 Notational conventions

The following notational conventions are used in this documentation:

Name Description

typewriter font Fixed components which are input or output in precisely this
form, such as keywords, URLs, file names

 italic font Variable components which you must replace with real speci-
fications

bold font Items shown exactly as displayed on your screen or on the
graphical user interface; also used for menu items

[] Optional specifications; do not enter the square brackets
themselves

{alternative1 | alternative2 } Alternative specifications. You must select one of the expres-
sions inside the curly brackets. The individual expressions are
separated from one another by a vertical bar. Do not enter the
curly brackets and vertical bars themselves.

... Optional repetition or multiple repetition of the preceding
components

Important notes and further information

Ê Prompt telling you to do something.

Refers to detailed information

i

Notational conventions Preface

16 WebTransactions for openUTM

WebTransactions for openUTM 17

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

2
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
2

2 Installing WebTransactions
The WebTransactions installation files can be downloaded from the Web.

 Detailed information on the hardware and software requirements can be found in
the release notice accompanying the product.

2.1 Installation

WebTransactions for openUTM consists of the host adapter via which communications with
the openUTM applications transit, the WebTransactions runtime system and the host
adapter for dynamic web contents.

WebTransactions for openUTM contains the installation package for the WebLab devel-
opment environment which you can use to connect host applications to the WWW, edit the
appearance of host formats and extend their functionality. You may need to install WebLab
explicitly on your development machine (see section “WebLab installation” on page 23).

 Before installing WebTransactions, make sure that the web server and, if necessary,
Java are already installed.

Make a note of the Java installation directory together with the following information
from the web server configuration:

– root directory for web pages (=document directory)
– CGI directory
– URL prefix for CGI programs

i

i

Installation Installing WebTransactions

18 WebTransactions for openUTM

2.1.1 Windows

For Windows, WebTransactions is available as a Windows installer package
(msi file) WebTransactionsUTM75.msi after it has been downloaded.

2.1.1.1 Installation via the user interface

To perform installation, you must possess Windows administrator rights. There are various
ways of starting installation

– Via the Settings/Control Panel command in the Start menu.

– Via Windows Explorer.
Double click the msi file or single click this file with the right mouse button and then, in
the context menu which appears, select the Install command.

Setting the web server settings

When you start WebTransactionsUTM75.msi you will see a series of dialog boxes in which
you must enter the installation directory and the values for your web server:

– Root directory for web pages (= document directory).
– CGI directory and URL prefix.
– ISAPI directory and ISAPI prefix (optional).
– Directory of the Java2 library jvm.dll for Java integration (optional).

When you have entered the values, the installation will be started and the required compo-
nents will be installed. If you install WebTransactions with an additional host adapter on the
same system, these values will be taken over by the new installation.

Selecting components

You can now select all the components you want to install. In the Select Installation Type
dialog box, select one of the following entries:

Typical or Complete
This will install all the WebTransactions components.

Custom
The installation program proposes the following components:

– WebTransactions runtime system.
– WebTransactions demo applications

Installing WebTransactions Installation

WebTransactions for openUTM 19

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

2
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
2

2.1.1.2 Silent installation

For a silent installation, use the Windows installer Msiexec.exe. You can find a complete
description of this command in, for example, the Windows online help. In order to run an
installation with Msiexec.exe you will require administrator access rights.

Use the Msiexec.exe command with the following syntax:

Msiexec.exe /I "package" /q
[INSTALLDIR="install-dir"]
[DOCUMENTROOTDIR="documentroot-dir"]
[HTTPSCRIPTSDIR="cgi-dir"]
[JAVA2SYS="java-dir"]
[ISPREFIX="isapi-prefix"]
[URLPREFIX="cgi-prefix"]
[ISAPICHECK="isapicheck"]
[JAVA2CHECK="java2check"]

The parameters have the following meaning:

package
Path for the package to be installed (e.g. C:\tmp\WebTransactionsUTM75.msi).

install-dir
The WebTransactions installation directory.
Default value: C:\Programme\WebTransactionsV75 or
C:\Program Files\WebTransactionsV75

documentroot-dir
Web server document directory.
Default value: C:\InetPub\wwwroot

cgi-dir The CGI directory of the web server.
Default value: C:\InetPub\scripts

java-dir
Directory of the Java2 library jvm.dll. This entry is only necessary when the
support for the Java interface is to be installed.

isapi-prefix
URL prefix for ISAPI.
Default value: scripts

cgi-prefix
URL prefix for CGI.
Default value: scripts

Installation Installing WebTransactions

20 WebTransactions for openUTM

isapicheck
This indicates if the ISAPI interface for WebTransactions is to be installed.
Possible values: Yes | No
Default value: No

java2check
This indicates if the support for the Java interface is to be installed.
Possible values: Yes | No
Default value: No

Example

Msiexec.exe /I "C:\tmp\WebTransactionsUTM75.msi" /q
INSTALLDIR="D:\Program Files\WebTransactionsV75"
DOCUMENTROOTDIR="C:\Program Files\Apache Group\Apache\htdocs"
HTTPSCRIPTSDIR="C:\Program Files\Apache Group\Apache\cgi-bin"
JAVA2SYS="D:\Program Files\Java\jdk1.6.0_13\jre\bin\client"
URLPREFIX="cgi-bin" JAVA2CHECK="Yes"

Installing WebTransactions Installation

WebTransactions for openUTM 21

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

2
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
2

2.1.2 Solaris

As usual, when you install WebTransactions, you use the installation procedure pkgadd with
root authorization. To do this, enter the absolute path name of the unpacked product file:

pkgadd -d /absolute_path/filename

During installation, the following questions are displayed:

1. Should WebTransactions demos be installed?

If you enter y (yes) the WebTransactions demo applications are also installed.

2. Your Web Server has a ’document default directory’
Where is this directory?

Enter the corresponding path name.

3. The server uses an URL prefix to access WebTransactions CGI program.
URL prefix:

Enter the URL prefix that is set for CGI programs on your web server.

4. Your Web Server has a cgi-bin directory,
in which you install WebTransactions CGI-Program.
Where is this directory?

Here you enter the absolute path to the CGI directory which is configured for your web
server.

During the installation, you will then see the URL which you use to start the demo appli-
cation.

Installation Installing WebTransactions

22 WebTransactions for openUTM

2.1.3 Linux

WebTransactions is available as a compressed archive for downloading and has the suffix
.gz (for example, webtransUTMV75.tar.gz). You must first decompress this file using the
command:

gunzip -d webtransUTMV75.tar

Please note that you must not specify the suffix .gz. You can then fetch the installation files
from the archive using the tar command:

tar -xvf webtransUTMV75.tar

Start the installation procedure doinstall with root authorizations:

 ./doinstall

During installation you will be asked the following questions:

You can install WebTransactions into any directory.
 Where is this directory ? [/opt]

You should now enter a different path name if you do not want WebTransactions to be
installed under the default path /opt.

Your Web Server has a directory for CGI programs.
 Where is this directory ? [/usr/local/httpd/cgi-bin]

Enter the corresponding path name.

Your Web Server uses an URL prefix to access the CGI programs in
/usr/local/httpd/cgi-bin
What is this prefix ? [cgi-bin]

Enter the URL prefix used for CGI programs on your web server

Are this settings OK ? [y]

Confirm your specifications to terminate installation.

Installing WebTransactions Installation

WebTransactions for openUTM 23

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

2
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
2

2.1.4 BS2000/OSD

Standard installation is performed using the SOLIS procedure. If the IMON product (Instal-
lation MONitor) is started in the source system then you can also perform a standard instal-
lation using IMON.

To install POSIX, you can use the POSIX installation tool.

2.1.5 WebLab installation

When you install WebTransactions on any platform, the msi file for the installation of
WebLab under Windows (WebLab75.msi) is written to the web server’s document directory
that is
located below the directory webtav75.

Transferring the installer package to the development computer

The WebLab installer package can be downloaded to the required development computer
via a browser call specifying the following URL:

http://web-server/webtav75/wtdownload.htm

Installing WebLab under Windows

When you have downloaded the WebLab installer package to your development computer,
install the msi file as usual via the graphical user interface (see page 18) or with
Msiexec.exe (see page 19).

In both cases, you need only specify the WebLab installation directory.

Licensing Installing WebTransactions

24 WebTransactions for openUTM

2.2 Licensing

After installation, you must configure the number of licenses present and the machine-
specific activation key. To do this, you require the WebTransactions administration interface
and select the Licences menu item. For more information on the administration program,
see the WebTransactions manual “Concepts and Functions”.

WebTransactions for openUTM 25

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

2
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
3

3 Example session
In this chapter, you will learn about what you can do with WebTransactions and become
familiar with a number of basic rules for working with WebTransactions. This example
session is intended to serve as a procedural description which will show you how you can
connect a host application to the Web simply and quickly.

In this example session, you will first use the administration program to create the condi-
tions necessary for your work with WebLab and WebTransactions. Next you will use
WebLab to connect the host application to the Web. You will then get to know the ways in
which you can make global and format-specific changes in a template.

 Please note that all path specifications are based on the assumption that
WebTransactions has been installed in the initial directory.

3.1 Administering the WebTransactions server

Once you have installed WebTransactions for openUTM on a computer (see also page 17),
you must create the conditions necessary for your work with WebTransactions and WebLab.
To do this, you use the administration program that is described in the WebTransactions
manual “Concepts and Functions”.

The first step in WebLab is to set the browser that WebLab is to use to operate the
WebTransactions application. Your work with the administration program is subdivided into
the following steps:

1. Enter the licenses

2. Set up the user

3. Create the pool

4. Assign the pool to the user

i

Administering the WebTransactions server Example session

26 WebTransactions for openUTM

3.1.1 Setting the browser

Before you start to work, you should - in WebLab - set the browser which you want WebLab
to use to operate the WebTransactions application. This step is only necessary if you are
working with WebLab for the first time.

Ê Start WebLab with the command Start/Programs/WebTransactions 7.5/WebLab.
The WebLab main window is displayed on the screen. For a detailed description of the
main window and its components, refer to the WebTransactions manual „Concepts and
Functions“ and the online help.

Ê In WebLab you can now select the Options/Properties command. The Properties
dialog box is displayed on screen with the Programs tab open.

Ê In the lower section, Browser, select the browser which is installed on your computer,
and specify how it is to be used by WebLab.

Ê Click on OK to confirm your settings.

Example session Administering the WebTransactions server

WebTransactions for openUTM 27

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

2
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
3

3.1.2 Starting the administration program

Ê Choose the Administration/Server command to start the administration program
initially. The dialog box Administrate Server opens on the screen.

Ê Under URL of WTPublish, click the Change button. The URL of WTPublish dialog
box will be displayed.

Ê Select the Protocol to be used for the connection.

Ê In the other fields, enter the corresponding values for your host:

Ê Confirm with OK. The values will be entered in the Administrate Server dialog box.

Ê Confirm with OK. The administration program is started and the first window is shown
in the browser.

Server Host computer on which WebTransactions runs.

Port Corresponding port number.

CGI-Path Path for the CGI program WTPublish.

Program CGI program.

Administering the WebTransactions server Example session

28 WebTransactions for openUTM

Ê Log on as the admin user. This user is set up without a password when
WebTransactions is set up. The licensing page is now displayed automatically.

 If you are working with the administration program for the first time then, for reasons
of security, you should assign a password for the admin user after login.

3.1.3 Entering licenses

Ê Click the Register button.

i

Example session Administering the WebTransactions server

WebTransactions for openUTM 29

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

2
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
3

This opens the registration page:

Ê To register licenses for a stand-alone server, click on Single Server under
Type of license.

Ê Enter the number of servers that you want to license in the Number of licences field.

Ê Enter your e-mail address and additional parameters as required.

Administering the WebTransactions server Example session

30 WebTransactions for openUTM

Ê Click Request Key to submit the form.

The license key will then soon be sent to the specified e-mail address.

Ê Enter the number of acquired licenses and the valid license key notified to you by e-mail
in the Licenses and Key fields of the licensing page.

Ê Confirm by clicking Set followed by Save.

The licenses are activated and the new number of licenses is displayed in the status bar.

Example session Administering the WebTransactions server

WebTransactions for openUTM 31

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

2
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
3

3.1.4 Creating users

Ê Click on the Users menu item to enter new users. The Users window is displayed in the
browser.

Ê Enter the name of the new user in the Username input field in the work area.

Ê If you wish, enter a description or comment for the user in the Comment field and click
on Add. The user is now entered for operations with WebTransactions and WebLab.
However, as yet the user has no rights. You must assign these.

Ê However, you should first click on the Change Password button and enter a password
for the new user. You proceed in exactly the same way to assign a password for admin.

Administering the WebTransactions server Example session

32 WebTransactions for openUTM

3.1.5 Creating a pool

Ê Next, click on the Pools menu item to create a directory under which base directories
can be created. The Pools window is displayed in the browser.

Ê Enter the name of the directory in the Directory input field in the work area. Please note
that if this directory does not already exist you must select the directory creation option.

Ê In the Virtual Path entry field, type the name of a directory below the web server’s
document directory that is allocated to the new pool. This directory corresponds to the
start of the virtual path used by the web server to directly (i.e. without it being necessary
to call WebTransactions) access the files of WebTransactions applications (e.g. images,
entry page etc.) in this directory.

Example session Administering the WebTransactions server

WebTransactions for openUTM 33

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

2
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
3

 If you want to use base directories with identical names in different pools, the values
for Virtual Path corresponding to the pools have to be different.

Ê You may also enter a description or comment for the pool in the Comment field before
clicking on the Add button. The new pool is now entered for WebTransactions and
WebLab operation. You can enter further pools as required.

You can now use WebLab to create the base directories under the pools which you have
created in this way. However, as yet no WebLab user can access such a pool since the
pool has not yet been assigned to a user.

i

Administering the WebTransactions server Example session

34 WebTransactions for openUTM

3.1.6 Assigning the pool to a user

Ê In the pools table, click on the pool which you have just created. The
Pool window with the newly created pool is displayed in the browser.

This window displays the users who are permitted to access the new pool. Currently no
user is assigned to this pool. A list displays all the users who are permitted to work with
WebTransactions on this host.

Ê Click on an entry in this list to select the user you have just created and then click on
the Add button. The selected user is entered as possessing access to this pool. You
have now completed the preparations required in order to work with WebTransactions.

Ê Click on the Save button to save the current WebTransactions configuration.

Ê Click on the Exit button to terminate the administration program.

Example session Connecting a host application to the Web

WebTransactions for openUTM 35

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

2
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
3

Ê Exit the browser.

3.2 Connecting a host application to the Web

Once you have performed the preparations for your work with WebTransactions and
WebLab, you can use WebTransactions development environment - WebLab - to connect
the host application to the WWW. To do this, you must perform the following steps:

1. Create the project

– Create a base directory

2. Save the project

3. Generate templates from FHS formats

4. Define local application names

5. Start a session

3.2.1 Creating a project

The project stores the most important data that is required by WebLab to generate and
edit a WebTransactions application, e.g. the WebTransactions server data.

Ê To create a project, choose the Project/New... command.

Ê In the next dialog box, you are asked whether you want to generate a base directory.
Click Yes. This opens the Connect dialog box, see next section.

Connecting a host application to the Web Example session

36 WebTransactions for openUTM

3.2.1.1 Creating a base directory

The base directory is the fundamental requirement for connecting a host application to the
web using WebTransactions. This directory contains all the necessary files and links to the
programs that constitute a WebTransactions application.

The base directory must always be located on the host on which WebTransactions is
running. In the Connect dialog box, you enter this WebTransactions server and the paths
to the CGI programs WTPublish.exe and WTEdit.exe.

– WTEdit.exe receives all WebLab requests. It performs all the necessary tasks on behalf
of WebLab (which may be running on a different host) on the WebTransactions server
(e.g. creation of a base directory) and enables WebLab to access running
WebTransactions sessions.

– WTPublish.exe receives all requests from the browser. It starts new WebTransactions
sessions or establishes connections to an open session for each subsequent dialog
step.

Ê Under Connection to server - URL of WTPublish, click Change. The
URL of WTPublish dialog box will be displayed.

Example session Connecting a host application to the Web

WebTransactions for openUTM 37

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

2
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
3

Ê Select the Protocol to be used for the connection; in our example this is HTTP.

Ê In the Server field, enter the name of the host on which WebTransactions is running; in
our example this is example.net.

Ê In the Port field, enter the corresponding port number; in our example this is 80.

Ê Enter the path for the CGI program WTPublish; in our example this is wtscripts.

Ê Enter the name of the CGI program, in our example WTPublish.exe, and then confirm
with OK. These values will now be taken over by the Connect dialog box.

Ê Repeat this procedure for the entries under URL of WTEdit. Once again enter the
values for your host; in our example these are:

Ê When you have finished, in the Connect dialog box, click OK. The connection to the
WebTransactions host computer will now be established with the values entered.

First, however, you must log on to WebTransactions. The Name and Password dialog
box is opened to allow you to do this.

Server example.net

Port 80

CGI Path wtscripts

Program WTEdit.exe

Connecting a host application to the Web Example session

38 WebTransactions for openUTM

Ê Enter the user name and password that you specified in the section “Creating users” on
page 31.

Ê Click on OK to confirm. The Create Basedir dialog box is displayed on the screen.

The upper list of this dialog box displays the pools under which the logged on user is
able to create base directories on the WebTransactions server.

Example session Connecting a host application to the Web

WebTransactions for openUTM 39

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

2
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
3

Ê In the list, click on the pool which you created in the section “Creating a pool” on
page 32.

Ê Enter a name in the Name of new Base Directory input field, here example_utm.

Ê Next select the host adapter via which WebTransactions communicates with the host
application, here UTM. Only those host adapters that are actually installed are
displayed. The host adapter for HTTP is preset by default.

Ê Click on OK to confirm your input. The Create Basedir dialog box is closed and the
base directory is generated using the specified values at the WebTransactions server.
In the WebLab main window, a message window is opened below the work area. This
displays the progress of the operation.

The Define New Project dialog box is now opened, see next section.

A start template that takes the user directly to the first format in the host application will
be created at the end of the example session (see section “Creating a start template”
on page 64).

Connecting a host application to the Web Example session

40 WebTransactions for openUTM

3.2.2 Saving the project

You define the settings for the newly created project in the Define New Project dialog box.

Ê In this example, you should accept all the default settings and save the project with
Save as...

This opens the Save As dialog box.

Ê In this dialog box you select the directory in which you want to save the project and enter
a name for the project file.

Ê Click on Save.

The project file is created with the suffix .wtp in the selected directory. The name of the
project file is displayed in the WebLab title bar.

Example session Connecting a host application to the Web

WebTransactions for openUTM 41

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

2
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
3

You are then connected with your new base directory. For a full overview of the files and
directories that are created, see section “Structure of a base directory” on page 73.

Connecting a host application to the Web Example session

42 WebTransactions for openUTM

3.2.3 Generating templates from FHS formats

In order to generate templates from FHS formats, you must first create a format description
source from the IFG library under OSD using the IFG2FLD program. The format description
source contains all field names defined originally by the developer of the host formats using
the formatting system. It is transferred to the WebLab host, where it is used by WebLab to
generate the templates and field files.

3.2.3.1 Generating the description file with IFG2FLD

Ê Transfer one of the following LMS libraries from the WebTransactions installation
directory lib in binary format to the OSD host to the user ID under which the IFG library
is located. On the OSD host name this library WTIFG2FLD.LMS.

Ê Log on at the OSD host under this ID.

Ê Use the following SDF command to redirect SYSLST to a file.
/ASSIGN-SYSLST description-file

Ê Start IFG2FLD with:
/START-PROGRAM FROM-FILE=*PHASE(LIBRARY=WTIFG2FLD.LMS,ELEMENT=IFG2FLD)

Ê In the IFG2FLD MAPFILE command, specify the library containing the formats to be
converted:
MAPFILE LIB.EUROSI.FORMATS

Ê If various user profiles are defined in the IFG library, you must use the PROFILE
command to select the same profile that was used to prepare the openUTM application
for use:
PROFILE user-profile

Ê You can use the *ALL operand of the CONVERT command to convert all the formats in the
library:
CONVERT *ALL

Alternatively, you can select specific formats for conversion:
CONVERT TRAV0
CONVERT TRAV1
...

Library Meaning

WTifg2fldFTP.lms For transfer with FTP

WTifg2fldOpenFT.lms For transfer with openFT

Example session Connecting a host application to the Web

WebTransactions for openUTM 43

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

2
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
3

Ê The END command now triggers generation of the description file and terminates
IFG2FLD:
END

Ê Enter the following SDF command to reassign SYSLST to the system default:
/ASSIGN-SYSLST *P

Ê Transfer the generated format description source in text format to the system on which
WebLab is installed. In this example, the file is stored under
D:\WebTA\V75\archiv\travel.ifg.

3.2.3.2 Generating templates and field files from the description file

Ê Call WebLab on the development system.

Ê Select Generate/Templates/from IFG library. This opens the
Options for FLD generation dialog box.

Ê In the Input field, enter the name of the format description file (in this case,
D:\WebTA\V75\archiv\travel.ifg). The Formats list then displays the names of all formats
whose descriptions can be read by WebLab in the specified format description source.

Connecting a host application to the Web Example session

44 WebTransactions for openUTM

Ê In the list, click on the formats for which templates and FLD files are to be generated.

Ê In the FLD directory field, define the directory in which the newly generated FLD files
are to be stored.

Ê Confirm your entries with Next >. The Generate FLD and Template dialog box then
appears on your screen.

You can use the options in this dialog box to control the generation of templates and
their subsequent conversion.

Ê Check the default settings for Master Template (UTM.wmt) and Host Protocol (UTM).

Example session Connecting a host application to the Web

WebTransactions for openUTM 45

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

2
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
3

Ê Under Communication Object, assign a name to the communication object. In this
example, the default setting UTM_0 is used. If you wish to open several connections
within a session, however, it makes sense to name the communication object individ-
ually. The name of the communication object must also be specified in the start
template.

 Please note that this entry is case-sensitive.

Ê Under Generation method, select Inline script.

Ê In the WTML Directory field, select the subdirectory of the forms directory in which the
newly generated templates are to be stored.

Ê Select Finish to generate the FLD files and templates.

The sample_utm\config directory then contains the generated field files (*.fld), while the
sample_utm\config\forms directory contains the generated templates (*.htm).

The templates are ready to use and can be tested.

In section “Structure of the generated templates” on page 89, you will find a corresponding
generated template.

i

Connecting a host application to the Web Example session

46 WebTransactions for openUTM

3.2.4 Define local host application names

In the localapps file, you have to define the local application names. Create th following
entries in the file sample_utm\localapps file:

*file: localapps
FREE UPICPTR0
FREE UPICPTR1
FREE UPICPTR2
...
FREE UPICPTR9

Explanation

10 free local application names are defined for the openUTM application. This means that
up to 10 WebTransactions sessions can be simultaneously connected to the openUTM
application.

 In this example, you specify the configuration parameters of the openUTM appli-
cation at start of the session. Alternatively, you can enter the parameters into the
upicfile, see section “upicfile” on page 134.

i

Example session Connecting a host application to the Web

WebTransactions for openUTM 47

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

2
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
3

3.2.5 Starting a session

Once you have created the base directory, you can start a session to the host application.

Ê Choose the File/Start session command. The Start session dialog box is displayed
on the screen.

In this dialog box the connection data such as the web server name, CGI program path
and the base directory name have already been taken over from the project settings.
You just need to specify the name of the start template with which the host application
is to be started.

Ê Enter the name of a start template in the Start Template dialog box, here wtstart.htm.
wtstart is a supplied start template which is copied into the base directory and can be
used for all host applications.

Ê Click on OK to start the session. The dialog box is closed. The set browser is opened
and the general start template wtstart is displayed and calls for a new
WebTransactions session with the start template wtstart. wtstart displays a form in
the browser window.

Connecting a host application to the Web Example session

48 WebTransactions for openUTM

In this form of the general start template, you can now enter the connection parameters for
WebTransactions in order to set up a new communication object.

Ê Select the UTMV4 entry in the PROTOCOL pick list.

Ê Specify the name of the communication object, here UTM_0. The name of the commu-
nication object must correspond to the name which you used when generating the
template.

Ê Now click on the create button to create a new communication object. Your specifica-
tions are processed by WebTransactions and the openUTM-specific start template
wtstartUTMV4.htm continues checking and displays the next form.

Example session Connecting a host application to the Web

WebTransactions for openUTM 49

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

2
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
3

Connecting a host application to the Web Example session

50 WebTransactions for openUTM

Ê In the APPLICATION_NAME field, enter the name of the openUTM application, in this
example VTV10TRV.

Ê For HOST specify the name of the computer (NAME field) on which the openUTM appli-
cation is running, in this example HOST0001.

Ê In the TAC field, enter the transaction code that starts the conversation in the openUTM
application, in this example MMENUE.

Ê In the FLD pick list, select TRAV0 as the first format description to be used. In the
remaining fields, you can set the system object attributes with the same name.

Ê Click on open to establish a connection with the host application.

Example session Connecting a host application to the Web

WebTransactions for openUTM 51

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

2
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
3

Connecting a host application to the Web Example session

52 WebTransactions for openUTM

Ê In the global host attributes section, you can set the attributes of the WT_HOST_GLOBALS
object if necessary.

Ê Select enter dialog. This displays the first template of the openUTM service (TRAV0).

If you now want to terminate the connection to the host, first you have to terminate the host
application. In this example session you enter the value 7 (for End of Session) and then
click DUE or press the return key to send the screen. Processing again branches to the
openUTM-specific start template (see also section “The openUTM-specific start template
in the start template set (wtstartUTMV4.htm)” on page 186). Select main menu and click
on the go to button to return to the general start template. You can now select quit to exit
the WebTransactions application.

In the example session you proceed as follows:

Ê Enter 1 (for Reservation).

Ê Click DUE or press the return key to send the screen. The next format of the application
(trav1.htm) is displayed in the browser (see the following section).

Example session Editing templates

WebTransactions for openUTM 53

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

2
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
3

3.3 Editing templates

In this section, we use the example of trav1.htm to present a number of ways of enhancing
templates.

Interface of the generated template

The interface provided by the automatically generated template resembles an FHS format
in terms of appearance and functionality.

The only difference between the generated template and the FHS format is the buttons
DUE, MAR, K1, ... Suspend. These are always generated as the standard template
wtKeysUTM.htm is included. A complete listing of the template can be found in section
“Structure of the generated templates” on page 89.

Editing templates Example session

54 WebTransactions for openUTM

3.3.1 Inserting a drop-down list for selecting a country

An example of an enhanced feature would be the conversion of a value-oriented selection
option (selection by entering a number) to a drop-down list, as shown in the diagram below:

In the FHS format and in the generated template, the user selects the desired country by
entering the appropriate number. However, since graphical interface users prefer to make
selections via a drop-down list, we will now integrate such a list in our template.

Ê Choose the command File/Open Current Template to open the format-specific
template TRAV1 in the WebLab work area.

Ê Choose the command Design/Select Hostobjects graphically/
From a Communication Object. The dialogbox Select host objects graphically for
the current template is displayed on the screen.

Before After

Example session Editing templates

WebTransactions for openUTM 55

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

2
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
3

This dialog box displays the format as it would appear in an emulation or at a terminal.
All the output fields which cannot be edited have a yellow background. The input fields
in this format have a white background.

Ê Move the mouse pointer to this input field (because of the selection the field becomes
blue) and click on the right mouse button to open the context menu.

Ê Choose the Drop-Down List command from the context menu, see above. The
Choose Template dialog box is displayed on the screen. This dialog box is the first
displayed by a wizard which helps you create a list.

Editing templates Example session

56 WebTransactions for openUTM

In this dialog box you specify the template in which the list is to be inserted. The option
Template in active window is preset. If you have not previously opened the active
template, choose the Current template option.

Ê Click on Next > to confirm this presetting. The second dialog box, Assign Values, is
displayed on the screen.

Example session Editing templates

WebTransactions for openUTM 57

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

2
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
3

In this example, the Internal value corresponds to the numerical value which the user
must enter to select an item in the field. The Value on user interface is the description
matching the internal value and corresponds to an entry in the pick list.

Ê Enter the internal values and the corresponding descriptions (see Figure on page 53)
in the input fields. Click on the Add button to take over a pair of values into the list.

Ê When the list is complete, click on Finish to confirm. The corresponding HTML code for
the conversion of a list is entered along with the corresponding values in the template
TRAV1.htm.

Ê To view this replacement, scroll through the template TRAV1 until you reach the host
section. This section starts with the comment begin of host screen section.

Editing templates Example session

58 WebTransactions for openUTM

WebLab has generated the following code for the input field:

<select name="COUNTRY_SELECT" size="1">
 <option ##UTM_0.COUNTRY_SELECT.Value == "1" ? "SELECTED" : ""#
value="1">Belgium</option>
 <option ##UTM_0.COUNTRY_SELECT.Value == "2" ? "SELECTED" : ""#
value="2">France</option>
 <option ##UTM_0.COUNTRY_SELECT.Value == "3" ? "SELECTED" : ""#
value="3">Germany</option>
 <option ##UTM_0.COUNTRY_SELECT.Value == "4" ? "SELECTED" : ""#
value="4">Greece</option>
 <option ##UTM_0.COUNTRY_SELECT.Value == "5" ? "SELECTED" : ""#
value="5">Italy</option>
 <option ##UTM_0.COUNTRY_SELECT.Value == "6" ? "SELECTED" : ""#
value="6">Portugal</option>
 <option ##UTM_0.COUNTRY_SELECT.Value == "7" ? "SELECTED" : ""#
value="7">Spain</option>

Example session Editing templates

WebTransactions for openUTM 59

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

2
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
3

 <option ##UTM_0.COUNTRY_SELECT.Value == "8" ? "SELECTED" : ""#
value="8">Switzerland</option>
 <option ##UTM_0.COUNTRY_SELECT.Value == "9" ? "SELECTED" : ""#
value="9">United
 Kingdom</option>
</select>

WebLab does not simply generate a drop-down list which maps the interface values to
the values which are used internally. It also automatically ensures that the value which
is preset in the list is the value which is treated as default in the host application.

To this end, every OPTION tag contains an evaluation operator each of which in turn
contains an IF query in abbreviated JavaScript notation: the condition is followed by a
question mark. This is followed by a value which is the current value if the condition is
fulfilled. This is followed by a colon and a value which applies if the condition is not
fulfilled.

Ê Remove the now superfluous static country selection text.

Ê Choose the Update in Browser command in the WebLab Control menu to view the
result.

Editing templates Example session

60 WebTransactions for openUTM

3.3.2 Replacing command input with buttons

The next step involves replacing the text box for command input with appropriate buttons.
The procedure here is the same as when generating a drop-down list:

Ê In the Select host objects graphically dialogbox, position the cursor on the command
input field and click your right mouse button to open the context menu.

Ê Choose the Push Buttons... command. The Choose Template dialog box is displayed
on the screen. This dialog box is the first displayed by a wizard which helps you create
a list.

Ê Confirm the default settings in the Choose Template dialog box with Next >. The
Assign Values dialog box then appears.

Ê Enter the values for the buttons. Under Internal value, enter the values to be sent to
the host application. In the Value shown on user interface field, define the text
displayed to the user at the interface.

Ê When the list is complete, click on Finish to confirm. The corresponding HTML code for
the conversion of a list is entered along with the corresponding values in the template
TRAV1.htm.

Example session Editing templates

WebTransactions for openUTM 61

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

2
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
3

WebLab then generates the following HTML code:

Command ===> \
<input type="submit" name="COMMAND" value="OK">

<input type="submit" name="COMMAND" value="CANCEL">
 (CONFIRM / QUIT=main menue)

The corresponding OnReceive or OnReceiveScript tag is automatically modified such
that the host data object with the value that corresponds to the pressed key is supplied.

Ê Remove the now superfluous static text Command ===> and
(CONFIRM / QUIT=main menue)
and align the buttons by adding spaces, for example.

Ê Remove any superfluous buttons from the include template wtKeysUTM.htm (in this
example, it is assumed that the F1, F2, F3 keys are not generated in the openUTM
application). wtKeysUTM.htm is located in the base directory under config/forms. You
should remove the corresponding lines in the wwwdocs/javascript/wtKeysUTMFHS.js
file because the keys can also be triggered by the PC keyboard. In wtKeysUTMFHS.js,
you also can modify the more keys selection list. For more details see section “Mapping
keys in wtKeysUTMFHS.js and wtKeysUTMFormant.js” on page 174.

Ê Choose the Update in Browser command of the WebLab Control menu to view the
result:

Editing templates Example session

62 WebTransactions for openUTM

3.3.3 Inserting a clickable image

The next enhancement step is to insert an image for country selection whose individual
sections are sensitive to mouse activation and branch to various HTML pages (“clickable
image”):

The template which performs this conversion is described below:

<html>
<head>
<title>Travel Agency - Country</title>
</head>
<wtinclude name="header">
<h2>Click the country name you want to travel
to</h2>

Example session Editing templates

WebTransactions for openUTM 63

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

2
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
3

The image (<input Name="EUROPE" type="image">) returns two name/value pairs, namely
the x and y coordinates of the position clicked in the image. These are available as
attributes of the posted object and are evaluated by a user exit in an OnReceive script (see
the WebTransactions manual „Template Language“).

<input name="EUROPE" type="image" border="0"
src="##WT_SYSTEM.WWWDOCS_VIRTUAL#/image/europe.gif"><p>
<p>
<p>
<p>
<input type="submit" name="COMMAND" value="Cancel">
<p><p><p>
<wtonreceivescript>
<!--

host = WT_HOST[WT_SYSTEM.HANDLE];
// Generate an object of class Userexit, Look for
// the required function in the library WTUserexit.[dll|so].
// If the function is contained in a different library
// the library must be specified in the following
// constructor.
UserExit = new WT_Userexit();
// The result of the Userexit is buffered in a
// local variable.
country=UserExit.UXEurope(WT_Posted.EUROPE.x, WT_POSTED.EUROPE.y);
// If the user has clicked outside any
// sensitive area, the Userexit returns "0" and the
// old value of the host object is retained.
if (country != "0")
 host.COUNTRY_SELECT.Value = country;
// The clicked button is now queried.
if (WT_POSTED.COMMAND == "Cancel")

 host.COMMAND.Value = "QUIT";
else

 host.COMMAND.Value = "CONFIRM";
//-->
</wtOnReceiveScript>

Starting WebTransactions Example session

64 WebTransactions for openUTM

3.4 Starting WebTransactions

An edited WebTransactions application is started with WebLab as described in section
“Starting a session” on page 47. However, you can also use WebLab to create your own
start template which brings the user directly to the first format of the host application.

3.4.1 Creating a start template

WebLab also provides you with a special WTBean for the creation of application-specific
start templates. This is a standalone WTBean.

 Before you can access WTBeans, there must be a connection to a WebTransac-
tions application.

Ê Choose the File/New/wtcStartUPIC command to call the WTBean. This opens the
dialog box Add:wtcStartUPIC which contains four tabs in which you can edit the
properties of the WTBean.

You define the name and directory of the start template in the wtcStartUPIC tab. By
default, the file name is set to config/forms/startUPIC.htm.

Ê Under File name,enter the directory and name of the start template, in this case
Start_Travel.htm.

Ê Next, choose the WT_SYSTEM attributes tab.

In this tab you define the most important attributes of the system object. The default
values are sufficient for the example session.

Ê Choose the UTM connection parameter tab.

i

Example session Starting WebTransactions

WebTransactions for openUTM 65

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

2
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
3

Ê Enter the name of the communication object, in this case UTM_0. You should note that
the name of the communication object must be the same as you have defined in the
wtstart template.

Ê In the example session activate the options non upicfile and Send.

Ê Choose the non upicfile tab.

Starting WebTransactions Example session

66 WebTransactions for openUTM

Ê In the Host application field, enter the name of the openUTM application, in this case
VTV10TRV.

Ê In the Host name field, specify the name of the host on which the openUTM application
is running, in this case HOST0001.

Ê For Start tac enter the name of the trancaction code that starts the conversation in the
openUTM application, in this case MMENUE.

Ê Check the option Code conversion.

Ê Click on the Further options tab.

Example session Starting WebTransactions

WebTransactions for openUTM 67

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

2
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
3

Here you will see a tree structure in which you can edit all the properties relating to the
connection to the openUTM application.

Ê In Global parameter choose TRAV0 for Current field file.

No further modifications are required for the sample application.

Ê Click OK. The Add:wtcStartUPIC dialog box is closed. The start template
Start_Travel.htm is generated and displayed in the WebLab work area. The start
template is stored in the base directory under config/forms.

The start template Start_Travel.htm will now make the settings undertaken here every time
it is called. You no longer have to make these settings every time you start a session as
described in section “Starting a session” on page 47 with wtstart.htm and
wtstartUTMV4.htm.

Starting WebTransactions Example session

68 WebTransactions for openUTM

3.4.2 Starting a session with WebLab

There are two ways of starting a WebTransactions session with the application-specific
WebLab start template:

– You select the File/Start Session command. In this case the Start session dialog box
will be displayed.

Ê In the Start Template input field, enter the name of the application-specific start
template.

Ê Confirm with OK.

– In the template tree you click with the right mouse button on the application-specific
start template. In the context menu which appears, select the command Start session.

In both cases WebLab immediately starts the session with the template selected as the
start template.

Example session Starting WebTransactions

WebTransactions for openUTM 69

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

2
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
3

3.4.3 Alternative ways of starting a WebTransactions application

The above example only explains how to start a WebTransactions application from WebLab
during development. In productive operation, however, there are other ways of doing this.
For a complete description, see the WebTransactions manual “Concepts and Functions”.

– You can give the supplied entry page wtadm.htm the name of the start template and
provide the user with this.

– You can write your own entry page in which WebTransactions is started via a form or
link.

Example

<form method="post" action=
"/cgi-prefix/WTPublish.exe/basedir?startTemplate">

<input type="submit" value="Start WebTransactions">
</form>

– You could also start WebTransactions without an entry page by simply entering the URL
directly:

http://WebServer/cgi-prefix/WTPublish.exe/basedir?startTemplate

For basedir you must specify the absolute path of the base directory.

Example

http://diana/scripts/WTPublish.exe/d:\webta\apps\
sample_utm?Start_Travel

Starting WebTransactions Example session

70 WebTransactions for openUTM

WebTransactions for openUTM 71

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
4

4 Creating the base directory
Once you have installed WebTransactions, you can use WebLab to create one or more base
directories. A base directory includes all the files which configure WebTransactions for a
specific application scenario.

If you de-install WebTransactions or install a new product version, the individual configura-
tions are therefore retained.

4.1 Creating a base directory with WebLab

Before you can create a base directory for a WebTransactions application, the
WebTransactions administrator must have created a user ID for you and then subsequently
released one or more pools for this user ID in which you can create a base directory.

Before you create a base directory, it is recommended that you first create a project to store
most important data required by WebLab when working with the WebTransactions appli-
cation. When creating a project, you are automatically offered the opportunity to create a
base directory.

To do this, proceed as follows:

Ê Call WebLab, e.g. via Start/Programs/WebTransactions 7.5/WebLab

Ê There are two possibilities for starting to create a base directory:

Ê Select the Project/New... command and when asked whether you want to create a
base directory, answer Yes (see section “Creating a project” on page 35).

or

Ê Choose the Generate/Basedir... command and specify that a new project is to be
created when the relevant query appears.

In both instances, the Connect dialog box is opened.

Ê Enter the connection parameters in the Connect dialog box and click on OK.

Ê In the following dialog box, enter your user ID and password and click on OK.

Creating a base directory with WebLab Creating the base directory

72 WebTransactions for openUTM

Ê Enter the following in the Create basedir dialog box:
– from the list of proposed pools, select the pool in which the base directory is to be

created
– enter the name of the new base directory
– check the UTM box in the Host Adapter section
– click on OK.

Ê Enter the required options in the Generate Automask dialog box. These correspond to
the options for the generation of format-specific templates.

Ê Click on Generate. WebLab now creates the base directory together with all the files
that are required for the execution of the WebTransactions application. The structure
and contents of the base directory are described in the WebTransactions manual
“Concepts and Functions” and in section “Structure of a base directory” on page 73.

Converting a base directory to a new version

Ê Select Generate/Update Base Directory. This opens the Update Base Directory
dialog box.

Ê If you only want to change the links from the base directory to the new installation
directory, select the Update all links option. Select this option when you have updated
the files that are supplied or generated by WebTransactions.

Ê If all files which are copied or generated on creation of the base directory need to be
recreated, select the Overwrite all files option.

Creating the base directory Structure of a base directory

WebTransactions for openUTM 73

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
4

4.2 Structure of a base directory

This section describes the specific aspects of the base directory that only apply to the
openUTM host adapter.

 Information regarding the structure of base directories that applies to all host
adapters can be found in the WebTransactions manual “Concepts and Functions”.

The configuration files localapps and upicfile

The connection to an openUTM application can be realized via configuration files or via
system object attributes.

For connection via configuration files, the base directory contains the files localapps for the
management of local applications and upicfile for the configuration of the UPIC connec-
tions. You must adapt these files for the requirements of your particular application (see
section “localapps file” on page 132 and section “upicfile” on page 134).

Preparing upicfile in the DMS user ID (BS2000/OSD)

UPIC functions running on the OSD system platform cannot read from the hierarchically
structured POSIX file system (UFS). If you are using the upicfile, the upicfile must
therefore be copied to the data management system (DMS) under the ID under which the
http daemon has been started.

Use the POSIX command bs2cp to copy upicfile to the user ID under which you start the
HTTP server. This may be $TSOS or another user ID $UserId. You must then also store
upicfile as $TSOS.UPICFILE or $UserId.UPICFILE.

 The user ID under which you install WebTransactions need not be identical to the
user ID under which you start the HTTP server.

Under OSD, you must terminate every line in the upicfile with a semi-colon (;).
The file must not contain any comments. Furthermore, only entries of type HD are
permitted.

The config subdirectory

For each converted format (screen), config contains a description file formatname.fld in
which the format’s data fields are described. These files, also known as field files, are
created automatically when the templates are generated.

A file with the fixed name wtlnmode.fld is provided for line mode. The name of this file must
not be changed.

i

i

Structure of a base directory Creating the base directory

74 WebTransactions for openUTM

WebTransactions for openUTM 75

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
5

5 Generating templates
The WebLab development environment allows you to generate templates automatically
from existing alphanumeric formats. FHS formats must be edited beforehand using the
OSD tool IFG2FLD.

When generating templates with WebLab, a template and a field file is created for each
format or data structure.

● Templates (*.htm files)

The templates contain HTML tags for structuring the Web page and WT tags for
communications control. One template is generated for each format and stored by
default in the directory basedir/config/forms. The template echoes the appearance
and functionality of the terminal format. You can adapt the design of a template to meet
your own needs, e.g. with WebLab (see section “Editing templates” on page 53).

● Field files (*.fld files)

The field files describe the data fields in the formats (attributes, lengths, offsets). One
field file is generated for each format and stored in the directory basedir/config. The
host adapter requires the metadata which these files contain in order to interpret the
exchanged data. During communications between WebTransactions and the host appli-
cation, only the net data is transferred over the network. You should only edit field files
when you need to adapt to modifications in the host application. However, it is often
easier and safer to generate new field files after modifying the host application.

Generating templates from FHS formats Generating templates

76 WebTransactions for openUTM

5.1 Generating templates from FHS formats

The procedure for generating templates from FHS formats consists of two steps:

1. Firstly, you must generate a format description file from the IFG library using the
IFG2FLD program under OSD and then transfer this file to the development system. The
format description source is the result of an IFG2FLD run in which the format descrip-
tions are read from the IFG library into the source. It contains all field names defined
originally by the developer of the host formats using the formatting system.

2. You can then generate templates and field files from the format description source using
WebLab under Windows.

Procedure

To generate templates and FLD files from FHS formats, proceed as follows:

Ê For the Unix and Windows WebTransactions platforms, transfer one of the following
LMS libraries in binary format to the OSD host to the user ID under which the IFG library
is located and name this library on the OSD host WTIFG2FLD.LMS:

This step is not necessary for the OSD platform, as IFG2FLD is located in the OSD
installation directory.

Ê Log on at the OSD host under this ID.

Library Meaning

WTifg2fldFTP.lms For transfer with FTP

WTifg2fldOpenFT.lms For transfer with openFT

IFG2FLD

Field
filesField

filesField
files

Field
filesField

filesTemplates

File transfer
OSD Windows

WebLab

(ftp / bs2cp / openFT)

IFG
library

Format
description

source

Format
description

source

Generating templates Generating templates from FHS formats

WebTransactions for openUTM 77

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
5

Ê Run IFG2FLD as described in section “Using IFG2FLD” on page 77.

Ê Transfer the generated format description source in text format to the system on which
WebLab is installed.

Ê When generating the template, specify this format description source in the
FLD and Template generation dialog box (see section “Using WebLab to generate
templates and FLD files from the format description source” on page 79).

5.1.1 Using IFG2FLD

IFG2FLD is an OSD program and therefore requires the corresponding libraries to be trans-
ferred to an OSD user ID. IFG2FLD can then be started from the transferred library using the
following command:

/START-PROGRAM FROM-FILE=*PHASE(LIBRARY=WTIFG2FLD.LMS,ELEMENT=IFG2FLD)

IFG2FLD is called using the START-PROGRAM command and output is written to SYSLST. The
following commands are supported by IFG2FLD:

Command Description

MAPFILE IFG-library Assigns the IFG library which is to be processed.

PROFILE user-profile Assigns a user profile for the conversion. Each IFG library
contains at least one user profile in order to enable it to process
formats. The user profile is a set of default values for controlling
IFG, for the format properties, for the properties of the format’s
fields and for properties which affect programming.

CONVERT format-name
[/version| /ALL]

Takes the specified IFG format over into the format description
source. Optionally, you can also specify the version of the
format.
If you do not specify the version then the most recent format
version is entered. If, instead of a version, you specify the value
/ALL then all the versions of the format are entered in the format
description source.

CONVERT *ALL [/version|
/ALL]

Takes all the specified IFG formats in the IFG library over into
the format description source. Optionally, you can also specify
the version of the format. Only formats with this version are then
entered.
If you do not specify the version then the formats with the most
recent version are entered in the format description source. If,
instead of a version, you specify the value /ALL then all the
formats of all versions are entered.

END Generates an output file and exits IFG2FLD.

Generating templates from FHS formats Generating templates

78 WebTransactions for openUTM

Example

To perform a conversion using IFG2FLD, the following steps might be necessary in OSD:

/ASSIGN-SYSLST output-file
/START-PROGRAM FROM-FILE=*PHASE(LIBRARY=WTIFG2FLD.LMS,ELEMENT=IFG2FLD)
MAPFILE IFG-library
CONVERT *ALL
END
/ASSIGN-SYSLST *P

Generating templates Generating templates from FHS formats

WebTransactions for openUTM 79

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
5

5.1.2 Using WebLab to generate templates and FLD files from the format
description source

Ê Use the command File/Connect to establish a connection to the base directory if
required.

Ê Select Generate/Templates/from IFG library. This opens the
Options for FLD generation dialog box.

Ê In the Input group, enter the name of the format description source. The Formats list
then displays the names of all formats described there.

Ê In the list, click on the formats for which templates and FLD files are to be generated.

Ê In the Output group, select the directory to which the generated FLD files are to be
written. If a session is started with this WebTransactions application, the path name is
automatically displayed.

Ê Confirm by clicking Next >. This opens the Generate FLD and Template dialog box.

Generating templates from FHS formats Generating templates

80 WebTransactions for openUTM

You can use the options in this dialog box to control the generation of format-specific
templates. A detailed description of the generation options can be found in the online
help system.

Ê In the Master Template field, enter the master template you wish to use. This is
different for full formats and partial formats:

– For full formats, you must use the master template UTM.wmt (see also section
“Master template UTM.wmt” on page 100).

– For partial formats, you must use the master template UTMpartial.wmt (see
section “Structure of the master template UTMpartial.wmt” on page 106).

Ê In the Output group, enter the directory to which the generated templates are to be
written.
Default path for templates (HTML output): basedir/config/forms

Generating templates Generating templates from FHS formats

WebTransactions for openUTM 81

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
5

Ê If you wish to integrate several host applications which may have the same format
names, select the Use Application Prefix option. WebLab then inserts a prefix in front
of the names of FLD files and templates. The file name is then composed as follows:
[comobj@]formatname.{fld|htm}.

Ê Confirm the generation options with Finish.

Ê Use OK to close the Generate FLD and Template dialog box. WebLab then generates
an HTML template and an FLD file for each of the selected formats:

– HTML templates are interpreted by WebTransactions at runtime and define the
interface displayed in the browser.

– FLD files are special description files. They are required by WebTransactions at
runtime, and are used by the WebTransactions development environment WebLab
to implement the graphical object selection function. To ensure that they can be
accessed by WebTransactions during operation, they must be stored under
basedir\config.

Generating templates from FORMANT formats Generating templates

82 WebTransactions for openUTM

5.2 Generating templates from FORMANT formats

The procedure for generating templates from FORMANT formats consists of three steps:

1. Create the converter format <format_name>.txt using formantconv.

2. Transfer the FORMANT files (converter format description and addressing aid in the
appropriate format (*, +, #) for C <formatname>a.h) to the development system.
If necessary, for example, when an addressing aid is only available for COBOL, create
this addressing aid by saving it from formantgen.

3. You can then generate templates and field files from these FORMANT files using
WebLab under Windows.

5.2.1 Generating templates and FLD files using WebLab

Ê If necessary, use the File/Connect to establish a connection to the base directory.

Ê Select Generate/Templates/from FORMANT file (for openUTM). This opens the
Option for FLD generation dialog box.

FORMANT
files

Field
filesField

filesField
files

Field
filesField

filesTemplates

FORMANT
files

File transfer

Unix system Windows system

WebLab

(ftp openFT)

Generating templates Generating templates from FORMANT formats

WebTransactions for openUTM 83

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
5

Conversion mode
Each FORMANT format is defined by a format description file and an addressing
aid. WebLab can generate templates and FLD files for both individual formats and
groups of formats. In the latter case, the associated description files must be
combined into directories.

Format(s) Type
This defines the type of format.

Formant file(s)
Formant addressing aid(s)

Depending on the conversion method chosen, enter a file or directory from which
WebLab is to generate the FLD files and templates.

Ê In the FLD directory field, you must specify the directory config. The newly generated
FLD files will then be stored in /config.

Ê Confirm using Next >. This opens the Generate FLD and Template dialog box (see
page 82).

Structure of the field files (FLD files) Generating templates

84 WebTransactions for openUTM

5.3 Structure of the field files (FLD files)

WebLab saves the structure of an FHS/FORMANT screen as a data record in the field file.
This represents the metadata concerning the structure of the data which is exchanged
between the host application and WebTransactions. This static metadata is not therefore
sent with the message but is stored in a file. It is read the first time WebTransactions
processes a format. Your information is then available to the host adapter for the interpre-
tation of the net data (host data objects) from the host application.

The format of the field file corresponds to that of a *.ini file under Windows:

● The file is subdivided into various sections which describe the individual parts of the
format (see table on page 85).

● Sections can be totally omitted if none of the keywords assigned to them are present in
the field file.

● Boolean attributes have the value 0 or 1, all other attributes can only assume the values
which you have specified in your description.

● Unless specified to the contrary, all numerical values are integer values and > 0.

● Comments must start in column 1 with a semi-colon (;) and must not exceed 1 line
(256 characters) in length.
Blank lines are permitted.

Generating templates Structure of the field files (FLD files)

WebTransactions for openUTM 85

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
5

The following sections are supported:

The following keywords are supported:

The table contains all the keywords. The actual keywords present in any concrete case may
vary depending on the type of format (*,+,#) and the IOTYPE of the field.

Section name Contents

FormProperties The version and format type as well as the global attributes of the format

AttributOffsets The relative offsets of the underlying attributes in the field attribute block

<Fieldname> The individual fields are described in sequence here. The description
includes data such as name, length and offset. Field names may consist only
of letters, digits, underscores (_) and dollar symbols($) and must not start
with a digit. They are derived from the original names with the following
modifications:

– a hyphen (‘-‘) becomes an underscore

– an initial digit is preceded by a dollar symbol (‘$’)

– all illegal characters are replaced by a dollar symbol

– as of the second occurrence of an ambiguous name, a suffix consisting
of a dollar symbol and serial number is added

FieldMatching Establishes the link between IFG or FORMANT field names and generic
field names (E_yy_xxx_lll)

Keyword Section Description

AttributeLength FormProperties Length of the global attribute block in # formats

Background
Colour

FormProperties Background color of format: WHITE (normal brightness) or GRAY
(half brightness)

BaseVariant FormProperties Base variant of the character set (only for 8-bit formats)

CursorControl FormProperties Offset of global attribute CURSOR CONTROL

CursorPosition FormProperties Offset of global attribute CURSOR POSITION

DateFormat FormProperties Display format for fields with DataType=DATE

DecimalSeparator FormProperties Decimal separator for numerical fields
(DataType=NUMBER)

DigitSeparator FormProperties Digit separator for numerical fields
(DataType=NUMBER)

FieldsDetect FormProperties Offset of global attribute FIELDS DETECTION

FieldsMod FormProperties Offset of global attribute FIELDS_MOD

Structure of the field files (FLD files) Generating templates

86 WebTransactions for openUTM

FieldsValid FormProperties Offset of global attribute FIELDS VALIDATION

FormatLength FormProperties Length of format contents

FormatName FormProperties Format name

FormattingSystem FormProperties Formatting system: FHS, FORMANT

FormatType FormProperties Type of format: #, + (no alignment), *

InputKeyClass FormProperties Offset of global attribute INPUT KEY CLASS

InputKeyNumber FormProperties Offset of global attribute INPUT KEY NUMBER

PopUp FormProperties Specifies whether or not the object is a pop-up box.
Possible values: 0, 1

Protocol FormProperties Type of application protocol, always set to UTM

ScreenDimensions FormProperties Screen dimensions in the format linesxcolumns, e.g. 24x080

TimeFormat FormProperties Display format for fields with DataType=TIME

UndefinedValues FormProperties Offset of global attribute UNDEFINED VALUES

UserexitRc FormProperties Offset of global attribute USER EXITROUTINE RC

Version FormProperties Version of WebTransactions

AttributeCombination AttributOffsets Offset within an attribute block as of which the
AttributeCombination attribute starts

AttributeLength AttributOffsets Length of the field attribute block in # formats

Color AttributOffsets Offset within an attribute block as of which the Color attribute starts

Cursor AttributOffsets Offset within an attribute block as of which the Cursor attribute starts

EditRC AttributOffsets Offset within an attribute block as of which the EditRC attribute starts

EditState AttributOffsets Offset within an attribute block as of which the EditState attribute
starts

FieldLength AttributOffsets Offset within an attribute block as of which the FieldLength attribute
starts

InputControl AttributOffsets Offset within an attribute block as of which the FieldInput attribute
starts (mandatory input)

InputState AttributOffsets Offset within an attribute block as of which the InputState attribute
starts (field value type since last output of format)

InputStateAct AttributOffsets Offset within an attribute block as of which the InputStateAct attribute
starts (identifier of the currently entered field)

Intensity AttributOffsets Offset within an attribute block as of which the Intensity attribute starts
(field display mode, e.g. bold or normal)

Inverse AttributOffsets Offset within an attribute block as of which the Inverse attribute starts
(field displayed in inverse video)

NumAttributes AttributOffsets Number of field attributes in # formats

Keyword Section Description

Generating templates Structure of the field files (FLD files)

WebTransactions for openUTM 87

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
5

OutputControl AttributOffsets Offset within an attribute block as of which the OutputControl attribute
starts

Protection AttributOffsets Offset within an attribute block as of which the Protection attribute
starts

Underline AttributOffsets Offset within an attribute block as of which the Underline attribute
starts (field underscored)

Visibility AttributOffsets Offset within an attribute block as of which the Visibility attribute starts
(field visible)

Align <Fieldname> Field alignment: LEFT, RIGHT

AttributOffset <Fieldname> Offset to start of field attributes. It is then possible to navigate through
the attributes using the relative offsets specified above.

AutoInput <Fieldname> Automatic field input. Possible values: Y,N.

Blink <Fieldname> Field displayed blinking: 1, 0

Case <Fieldname> Letter conversion: UPPER, LOWER, BOTH;
(in FHS UPPERCASE)

Color <Fieldname> Field foreground color. Possible values:
1 (red), 2 (green), 3 (yellow), 4 (blue), 5 (magenta), 6 (cyan),
default (black).

Column <Fieldname> Column number

DataOffset <Fieldname> Offset to start of field data.

DataType <Fieldname> Data type of field: NUMERIC, ALPHANUMERIC, ALPHA, DATE,
TIME.

DefaultCursor <Fieldname> Specifies whether the cursor is to be positioned in this field if not
positioned elsewhere by the program. Possible values: 1, 0.

Detectable <Fieldname> Specifies whether the field can be selected. Possible values: 1, 0.

DisplayLength <Fieldname> Field length on the screen

FillCharInput <Fieldname> Field fill character for data input to openUTM program unit. Possible
values as in IFG report; Default: ‘ ‘.

FillCharOutput <Fieldname> Field fill character for data output from openUTM program unit.
Possible values as in IFG report; Default: ‘ ‘.

GroupDigit <Fieldname> Specifies whether digit grouping is permitted (for fields with
DataType=NUMERIC). Possible values: Y/N.

Intensity <Fieldname> Intensity of field: BRIGHT, NORMAL

Invers <Fieldname> Specifies whether the field is to be displayed in reverse video.
Possible values: 1, 0.

Keyword Section Description

Structure of the field files (FLD files) Generating templates

88 WebTransactions for openUTM

IOType <Fieldname> Type of field: INPUT, OUTPUT, TEXT, FIXTEXT.
Fields of type FIXTEXT cannot be accessed via the program, rather
only via the FLD file. Their values are output in the Text attribute (see
below).

Length <Fieldname> Length of the field in the addressing aid.
This value must be > 0.
The field length in the addressing aid may differ from that on the
screen (DisplayLength), e.g. as in the case of date fields
(DataType=DATE) or numeric fields (DataType=NUMERIC).

Line <Fieldname> Line number

Mandatory <Fieldname> Specifies whether a field is mandatory. Possible values: 1, 0.

NumDecimal <Fieldname> Number of characters after the decimal separator (for fields with
DataType=NUMERIC)

Protection <Fieldname> Field write protection: 1, 0

Sign <Fieldname> Specifies whether a sign is permitted (for fields with
DataType=NUMERIC). Possible values: Y/N.

SignFloat <Fieldname> Specifies whether the sign may be located to the right of the number
(for fields with DataType=NUMERIC). Possible values: Y/N.

SuppressZero <Fieldname> Specifies whether zero suppression is permitted (for fields with
DataType=NUMERIC). Possible values: Y/N.

Text <Fieldname> Field contents for IOType=FIXTEXT enclosed in single quotes ('text')

Underline <Fieldname> Field displayed underscored: 1, 0

UTMControl <Fieldname> Specifies whether the field is a openUTM control field: 1, 0

Visibility <Fieldname> Specifies whether the data field is visible. Possible values: 1, 0.

<IFG-name> or
<FORMANT-name>

FieldMatching Describes the mapping between IFG or FORMANT field names and
generic names in the format E_yy_xxx_lll, e.g.
BERUF=E10_005_36

Keyword Section Description

Generating templates Structure of the generated templates

WebTransactions for openUTM 89

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
5

5.4 Structure of the generated templates

This section describes templates generated from full FHS or FORMANT formats. For infor-
mation on the templates generated from partial FHS or FORMANT formats, refer to section
section “Structure of the master template UTMpartial.wmt” on page 106.

Each generated template is based on the master template you specify on generation. The
standard master template UTM.wmt supplied with the product is described in section “Master
template UTM.wmt” on page 100.

This section describes the structure of a generated template using an example.

The comments are the expansion of %%GenerationInfo%.

<html>

<wtrem>**</wtrem>
<wtrem>** WTML document: TRAV3 **</wtrem>
<wtrem>**</wtrem>
<wtrem>** **</wtrem>
<wtrem>** Document generation based on Master Template : **</wtrem>
<wtrem>** C:\Programme\WebTransactionsV75\weblab\UTM.wmt **</wtrem>
<wtrem>** **</wtrem>
<wtrem>** Generated at Wed Jun 09 13:54:57 2010 **</wtrem>
<wtrem>** **</wtrem>
<wtrem>** Options used by the generator : **</wtrem>
<wtrem>** - %OPTIONS: **</wtrem>
<wtrem>** CommObj = UTM_0 **</wtrem>
<wtrem>** NationalVariant = International - PartialFormatMode = No **</wtrem>
<wtrem>** - %LINES: **</wtrem>
<wtrem>** TaggedInput = Enabled - TaggedOutput = Enabled **</wtrem>
<wtrem>** DisplayAttributes = No - CursorInProtectedField = No **</wtrem>
<wtrem>** Generate = Inline **</wtrem>
<wtrem>** CellsDelimiter = "-" **</wtrem>
<wtrem>** CellsDelimiterReplace = </PRE></TD></TR><TR><TD><PRE>\ **</wtrem>
<wtrem>** - %RECEIVES: **</wtrem>
<wtrem>** Parameters not specified **</wtrem>
<wtrem>**</wtrem>
<wtrem>** WebTransactions V7.5 Fujitsu Technology Solutions 2010 **</wtrem>
<wtrem>**</wtrem>

References to the communication object and the system object attribute that belongs to it
are created in order to ensure uniform access to the connection parameters and host
objects. UTM_0 is the name selected in the Communication Object field at generation.

Structure of the generated templates Generating templates

90 WebTransactions for openUTM

<wtoncreatescript>
<!--
 //{{WebLab(assignCommunicationObject)
 UTM_0 = WT_HOST.active || WT_HOST.UTM_0;
 if (UTM_0.WT_SYSTEM != null)
 UTM_0_system = UTM_0.WT_SYSTEM; // communication specific system object
 else
 UTM_0_system = WT_SYSTEM; // global system object
 //}}
 // propagate communication object to included WTML documents //////////////
 wtCurrentComm = UTM_0;
 wtCurrentComm_system = UTM_0_system;
//-->
</wtoncreatescript>

The <head> tag is used to define the header for the HTML page. This contains the title as
well as a number of global values.

<head>
<title>WebTransactions V7.5 - application ##UTM_0_system.SYM_DEST#</title>
##WT_SYSTEM.CGI.HTTP_USER_AGENT.indexOf('MSIE') >= 0 ?
 '<meta http-equiv="Pragma" content="no-cache"/>' :
 '<meta http-equiv="Cache-Control" content="no-cache"/>'#
<wtif (WT_BROWSER.acceptClass)>
 <style type="text/css">
 input {
 font-size: ##WT_BROWSER.charSize#px;
 font-family: courier new, monospace;
 }
 input.box {
 border: 0 solid;
 padding: 1px 0 1px 0;
 margin-left: -1px;
 margin-top: ##WT_BROWSER.marginTop#px;
 font-size: ##WT_BROWSER.charSize#px;
 font-family: courier new, monospace;
 color: #000000;
 background-color: #FFFFFF;
 }
 input.button {
 font-size: ##WT_BROWSER.charSize#px;
 font-family: courier new, monospace;
 border-width: 1pt;
 margin-left: -1pt;
 }
 select {
 font-size: ##WT_BROWSER.charSize#px;

Generating templates Structure of the generated templates

WebTransactions for openUTM 91

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
5

 font-family: courier new, monospace;
 }
 pre {
 font-size: ##WT_BROWSER.charSize#px;
 font-family: courier new, monospace;
 margin: 0;
 }
 </style>
</wtif>
</head>

In the BODY section, a form with the current format (<form>) and a table are opened. This
table frames the entire format.

To use the dialog, <wtInclude> calls the templates wtKeysUTM.htm and wtBrowserFunc-
tions.htm in order to support as precise a 1:1 display as possible. Their controls therefore
become part of the form.

<body bgcolor="#C0C0C0">
<form WebTransactions name="TRAV3">
 <table frame="border" rules="all">
 <tr>
 <td>
 <wtinclude name="wtBrowserFunctions">
 <wtinclude name="wtKeysUTM">
 <wtif (UTM_0_system.FORMTPL)>
 <wtinclude Name="##UTM_0_system.FORMTPL#">
 </wtif>
 </td>
 </tr>
 <tr>
 <td>

This wtOnCreate script defines the display attributes for the host objects. The
taggedOutput() function is used to process the output fields and the taggedInput()
function is used to process the input fields.

<wtoncreatescript>
 <!--
 colors = new Array('RED','GREEN','YELLOW','BLUE','MAGENTA', 'CYAN',
'WHITE');
 space80 = "
";

 function taggedInput(hostObject)
 {
 if (hostObject.Protected == 'Y')

Structure of the generated templates Generating templates

92 WebTransactions for openUTM

 {
 taggedOutput(hostObject);
 return;
 }
 currentLength = hostObject.Length;
 input = '<input type='+(hostObject.Visible== 'N' ? '"password"'
'"text"');
 if (WT_BROWSER && (WT_BROWSER.is_ie || WT_BROWSER.is_ns61up))
 {
 input += ' class="box" style="width:' + (currentLength *
 WT_BROWSER.charWidth + 1) + 'px';
 input += (hostObject.Blinking =='Y' ? '; background-
color:#FFC0C0' : '');
 input += (hostObject.Underline == 'Y' ? (hostObject.Intensity
== 'N' ?
 '; color:#A0A0FF' : '; color:#0000A0') :
 (hostObject.Intensity == 'N' ? '; color:#A0A0A0' : ''
)) + '"';
 }
 input += ' name="' + hostObject.Name + '" size="' + currentLength
 + '" maxlength="' + currentLength
 + '" value="' + hostObject.Value
 + (hostObject.DataType == 'Numeric'?'"
numeric="1':'')
 + (hostObject.Detectable == 'Y'?'"
markable="1':'')
 + '"/>';
 document.write(input);
 }

 function taggedOutput(hostObject)
 {
 if (hostObject.Protected == 'N')
 {
 taggedInput(hostObject);
 return;
 }
 if (hostObject.Visible == 'Y')
 {
 output = hostObject.HTMLValue;
 if (hostObject.Inverse == 'Y')
 {
 if (hostObject.Color && hostObject.Color.toUpperCase() !=
'N')
 output = '<font color=#000000 style=\"background-color:' +
 colors[hostObject.Color-1] +
'\">'+output+'';
 }

Generating templates Structure of the generated templates

WebTransactions for openUTM 93

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
5

 else if (hostObject.Color && hostObject.Color.toUpperCase() !=
'N')
 output = '' +
 output + '';
 if (hostObject.Intensity == 'H')
 output = '' + output + '';
 if (hostObject.Blinking == 'Y')
 output = '<i>' + output + '</i>';
 if (hostObject.Underlined == 'Y')
 output = '<u>' + output + '</u>';
 document.write(output);
 }
 else
 {
 document.write(space80.substr(0,hostObject.Length));
 }
 }
 //-->
 </wtoncreatescript>

In this section, the contents of the format are mapped to HTML tags and the table is closed.

 <!--
- - - -->
 <!-- begin of host screen section
-->
 <!--
- - - -->
<div style="color:#000000"><pre>\
*TRAV3 U T M D E M O T r a v e l A g e n c y \
##UTM_0.ACT_DATE.HTMLValue#
INFO3 INFORMATION \
##UTM_0.ACT_TIME.HTMLValue#
</PRE></TD></TR><TR><TD><PRE>\

 Golf course \
##UTM_0.GOLF_COURSE.HTMLValue# in \
##UTM_0.GOLF_COUNTRY.HTMLValue#
 From \
##UTM_0.FIRST_DAY_YEAR.HTMLValue#-\
##UTM_0.FIRST_DAY_MONTH.HTMLValue#-\
##UTM_0.FIRST_DAY_DAY.HTMLValue# to \
##UTM_0.LAST_DAY_YEAR.HTMLValue#-\
##UTM_0.LAST_DAY_MONTH.HTMLValue#-\
##UTM_0.LAST_DAY_DAY.HTMLValue# for \
##UTM_0.PERSONS_NBR.HTMLValue# persons

Structure of the generated templates Generating templates

94 WebTransactions for openUTM

 Hotels Category EURO/day

 \
<input type="##(UTM_0.HOTEL_SELECT.Visible == 'N') ? 'password' : 'text'#"
##(WT_BROWSER.acceptClass) ? 'class="box" style="width:9px"' : ''#
name="HOTEL_SELECT" size="1" maxlength="1"
value="##UTM_0.HOTEL_SELECT.Value#"/> 1. \
##UTM_0.HOTEL_NAME$000.HTMLValue# \
##UTM_0.HOTEL_CATEGORY$000.HTMLValue# \
##UTM_0.HOTEL_PRICE$000.HTMLValue#
 \
##UTM_0.HOTEL_ADDRESS$000.HTMLValue#

 2. \
##UTM_0.HOTEL_NAME$001.HTMLValue# \
##UTM_0.HOTEL_CATEGORY$001.HTMLValue# \
##UTM_0.HOTEL_PRICE$001.HTMLValue#
 \
##UTM_0.HOTEL_ADDRESS$001.HTMLValue#

 3. \
##UTM_0.HOTEL_NAME$002.HTMLValue# \
##UTM_0.HOTEL_CATEGORY$002.HTMLValue# \
##UTM_0.HOTEL_PRICE$002.HTMLValue#
 \
##UTM_0.HOTEL_ADDRESS$002.HTMLValue#

</PRE></TD></TR><TR><TD><PRE>\

 Command ===> \
<input type="##(UTM_0.COMMAND.Visible == 'N') ? 'password' : 'text'#" ##(
WT_BROWSER.acceptClass) ? 'class="box" style="width:65px"' : ''#
name="COMMAND" size="8" maxlength="8" value="##UTM_0.COMMAND.Value#"/> (
CONFIRM / QUIT=main menue)
</PRE></TD></TR><TR><TD><PRE>\

##UTM_0.WARNING_AREA.HTMLValue#
##UTM_0.INFO_AREA.HTMLValue#
<wtoncreatescript>
<!--
 wtInputFields = {HOTEL_SELECT:UTM_0.HOTEL_SELECT,COMMAND:UTM_0.COMMAND};
//-->
</wtoncreatescript></pre></div>
 <!--
- - - -->

Generating templates Structure of the generated templates

WebTransactions for openUTM 95

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
5

 <!-- end of host screen section
-->
 <!--
- - - -->
 </td>
 </tr>
 </table>

A loop is used across the input fields for all the browsers which ignore the maxlength
attribute in the <input> tag. The loops add the client-side attribute maxLength to the appro-
priate script object as this is not available automatically. For all browsers which do not
accept attributes in the <input> tag, the attribute markable is set, provided that the appro-
priate host object is markable.

<script type="text/javascript">
 <!--
 <wtoncreatescript>
 <!--
 for(element in wtInputFields)
 {
 if (!WT_BROWSER.acceptMaxLength)
 document.writeln('wtSetMaxLength(\'', element, '\',', wtInputFields[
element].Length, ');');
 if (!WT_BROWSER.acceptInputAttributes)
 {
 //if (wtInputFields[element].DataType == 'NUMERIC')
 // document.writeln('wtSetInputAttribute("numeric", "', element,
'");');
 if (wtInputFields[element].Detectable == 'Y')
 document.writeln('wtSetInputAttribute("markable", "', element,
'");');
 }
 }
 //-->
 </wtoncreatescript>
 //-->
 </script>
</form>

Structure of the generated templates Generating templates

96 WebTransactions for openUTM

The focus in the Web browser window is then set to the field in whose corresponding screen
field the cursor was positioned (provided that the field is an input field).

<wtrem** initial focus selection ***>
<script type="text/javascript">
<!--
<wtif(UTM_0[UTM_0.WT_HOST_MESSAGE.CursorField] &&
 UTM_0[UTM_0.WT_HOST_MESSAGE.CursorField].IOType == 'INPUT') >
 wtSetFocus('##UTM_0.WT_HOST_MESSAGE.CursorField#');
<wtelse>
 wtBuildFieldList();
</wtif>
//-->
</script>

In a wtOnReceiveScript, the posted values for the individual fields are written back to the
corresponding host objects.

<wtrem** Script executed after post of HTML page ***************************>
<wtonreceivescript>
<!--
 //{{WebLab(processPostedData)
 UTM_0.HOTEL_SELECT.Value = WT_POSTED.HOTEL_SELECT;
 UTM_0.COMMAND.Value = WT_POSTED.COMMAND;

The selected fields are determined.

wtMarkedFields = WT_POSTED.wt_markedFields.split(',');
 for(i=1; i<wtMarkedFields.length; i++)
 {
 UTM_0[wtMarkedFields[i]].InputState = 'D';
 UTM_0[wtMarkedFields[i]].InputStateAct = 'D';
 }

If the Suspend key is not activated, there is one call each to send() and receive() in order
to synchronize the WebTransactions dialog cycles and the host dialog steps. Finally, the
setNextPage() function defines the next template to be processed.

//}}
 //{{WebLab(processHostCommunication)
 if (WT_POSTED.wt_special_key == 'Suspend' || UTM_0_system.SUSPEND)
 {
 UTM_0_system.SUSPEND = false;
 }
 else
 {
 try {

Generating templates Structure of the generated templates

WebTransactions for openUTM 97

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
5

 UTM_0.send();
 UTM_0.receive();
 if(UTM_0_system.APPLICATION_PREFIX)
 setNextPage(UTM_0_system.APPLICATION_PREFIX + '@' + UTM_0_system.FLD
);
 else
 setNextPage(UTM_0_system.FLD);
 }
 catch (e) {
 if (WT_SYSTEM.COMMUNICATION_ERROR_FORMAT)
 setNextPage(WT_SYSTEM.COMMUNICATION_ERROR_FORMAT);
 }
 }
 //}}
//-->
</wtonreceivescript>
</body>
<wtif (UTM_0_system.EPILOG)>
 <wtinclude Name="##UTM_0_system.EPILOG#">
</wtif>
</html>

Structure of the generated templates Generating templates

98 WebTransactions for openUTM

WebTransactions for openUTM 99

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
6

6 Editing templates
The interface of automatically generated templates echoes the appearance and function-
ality of the terminal formats. This interface can be edited generally in the master template
or specifically in the individual templates:

● The openUTM-specific master template UTM.wmt defines the general layout for fixed
areas. It is used when generating format-specific templates and can be adapted for
specific applications (see section “Master template UTM.wmt” on page 100).

● It is possible to alter the graphical layout of each generated template, e.g. convert a
selection menu into a drop-down list, by editing the templates directly. This is carried out
using the template language, which is described in detail in the WebTransactions
manual “Template Language”.

The WebLab editor provides a particularly comfortable and convenient way of editing
templates. For basic information on WebLab refer to the WebTransactions manual
“Concepts and Functions”. A detailed description can also be found in the WebLab
extensive online help texts.

The following is simply a brief presentation of the design possibilities - which are by and
large the same for all WebTransactions product variants. The focal point of this chapter
resides in the openUTM-specific characteristics: templates for FHS and FORMANT partial
formats and the openUTM line mode.

Master template UTM.wmt Editing templates

100 WebTransactions for openUTM

6.1 Master template UTM.wmt

WebTransactions uses master templates as a model for the generation of format-specific
templates. They therefore ensure a consistent layout. Like any other template, master
templates can contain fixed HTML areas and any WTML tags and WTScripts. However, in
master templates you can also use special master template tags, known as MT tags, which
are described in the WebTransactions manual “Template Language”.

The use of master templates is especially effective in the case of host applications in which
large numbers of formats possess a similar structure: e.g. a fixed subdivision into header,
workspace and footer. In such cases, it is sufficient to define the layout once in a master
template and then apply this master template when generating the format-specific
templates. All generated templates are thus automatically structured as defined.

WebTransactions for openUTM is supplied with the standard master templates UTM.wmt and
UTMpartial.wmt for partial formats. These can be used in their current form or adapted
individually as you wish. UTMpartial.wmt is described on section “Structure of the master
template UTMpartial.wmt” on page 106.

The standard master templates already contain all the WTML tags and WTScripts that are
the same for all the templates of the supply unit in question, for example, checks to establish
whether a connection-specific system object exists.

Via the WebLab graphical user interface, you can specify which master template is to be
used for generation. You can define certain generation options (e.g. the generation method)
both in the master template or directly in WebLab. The specifications which you make in
WebLab override the corresponding specifications in the master template.

Editing templates Designing templates

WebTransactions for openUTM 101

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
6

6.2 Designing templates

The interface of format-specific templates echoes the appearance and functionality of the
terminal representation. If you wish to alter the graphical layout of the generated templates,
e.g. convert a selection menu into a drop-down list, you must edit the templates directly.
This is carried out using the template language, which is described in detail in the
WebTransactions manual “Template Language”.

The WebLab editor provides a particularly comfortable and convenient way of editing
templates. For basic information on WebLab refer to the WebTransactions manual
“Concepts and Functions”. A detailed description can also be found in the WebLab
extensive online help texts.

There are no limits to the ways in which you can design your WebTransactions templates:
moving, clickable images, Java scripts and applets, ActiveX controls, video and audio
sequences etc. can all be inserted. The WebTransactions template language is open: you
can use all the language resources supported by your Web browser.

6.2.1 Defining the global layout

There are three options for defining a global layout for all templates:

– include templates

– use master templates

– the system object attributes EPILOG, FORMTPL and PROLOG

Including templates

In order to apply certain design features globally to all templates, e.g. insert company logos
or general information on all pages, it is possible to create the corresponding objects in a
separate file and incorporate this in the templates using include tags. This makes it easier
to manage the templates. If modifications are required, they need only be made once in the
central include template.

Designing templates Editing templates

102 WebTransactions for openUTM

Using master templates

You can also define the global layout in master templates. To do this, you must edit the
master template before generating the format-specific templates.

In the Generate FLD and Template field of WebLab, enter the master template to be used
for the generation. Some generation options (e.g. the generation method) can be defined
either in the master template or directly with WebLab.

The settings in the master template are transferred to the dialog box as default values.
These can be modified in the dialog box if you wish, in which case your new values override
the corresponding specifications in the master template. This means that the values
displayed in the dialog box always apply when generating a template.

System object attributes: EPILOG, FORMTPL and PROLOG

You can also use the attributes EPILOG, FORMTPL and PROLOG to make global template design
definitions. The master template generates these attribute calls in the templates. The
attributes are then evaluated the next time the generated template is executed.

The attributes each have the name of a template which is executed at different times
depending on the attribute:

PROLOG at the start of the current template

FORMTPL before execution of the DataForm tag in the current template

EPILOG at the end of the current template

Editing templates Designing templates

WebTransactions for openUTM 103

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
6

6.2.2 Customizing the interface

It is possible to incorporate standard enhancements in the interface automatically using the
WebLab wizards. These wizards replace generated input fields (INPUT tags of type “Text”)
with graphical elements, such as drop-down lists, radio buttons, check boxes or
pushbuttons (an example can be found in section “Editing templates” on page 53).

WebLab provides you with support for the most important HTML tags (command:
Add/HTML). However, you can also design the HTML user interface with an HTML editor
quite independently of the generated templates and then use the WebLab Design/Merge
command within a wizard to convert the interface into templates.

WTBeans

You use WTBeans to edit the functionality of your templates and define how data is
displayed in the browser.

WTBeans are re-usable components which you use, for example, to design the GUI of a
WebTransactions application or establish a connection to a host application. A distinction is
made between inline and standalone WTBeans. An inline WTBean corresponds to a part
of a template and is inserted in an existing template. A standalone WTBean corresponds to
an autonomous template, for example the WTBean that is used to generate the start
template.

You can insert inline WTBeans in your templates or use a standalone WTBean to generate
a separate template. For more information, refer to the WebTransactions manual “Concepts
and Functions”.

6.2.3 Designing the dialog sequence

WebTransactions not only offers you options for giving your host applications a “face-lift”. It
also allows you to redesign the dialog sequence. The strict 1:1 correspondence between
HTML pages and host formats thus no longer applies. With WebTransactions you can
actively modify the dialog strategies provided by the host applications: input/output
elements can be filtered out or added, and dialog steps can be combined or split up.

Special characteristics of FHS/FORMANT partial formats Editing templates

104 WebTransactions for openUTM

6.3 Special characteristics of FHS/FORMANT partial formats

WebTransactions supports openUTM applications that use partial formats of the FHS and
FORMANT formatting systems with the master template for partial formats
UTMpartial.wmt. If your openUTM application works with partial formats, you need only
generate partial templates from the partial formats using the UTMpartial.wmt master
template.

These partial format templates differ from the full format templates. This section describes
– the communications sequence for partial formats
– the structure of the master template UTMpartial.wmt
– the structure of partial format templates

and provides a number of comments concerning the enhancement of partial formats.

6.3.1 Communications sequence

In the case of full formats, the openUTM application alternately sends and receives
messages. The data path is as follows:

The openUTM application sends a message. WebTransactions saves this as a host data
object. The template controls the generation of the HTML page which is then sent to the
browser. The returned data is copied to the host data objects in accordance with the
OnReceive tag. These host data objects are sent in a message to the openUTM application.

Browser WebTransactions openUTM

Full format

Full format

Template

HTML

onReceive

Host objects

Editing templates Special characteristics of FHS/FORMANT partial formats

WebTransactions for openUTM 105

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
6

In the case of partial formats, the data takes the following path:

openUTM sends the 1st partial format and WebTransactions saves it in host data objects.
The 1st template generates the basic HTML structure. The contents of the host data object
are saved below the communication object in the wtPartialFormats array. In the same way,
the 2nd - nth partial formats are then received in sequence and stored in the form of host
data objects (2nd - nth generation). HTML is generated and the host data objects are saved.
The entire generation result is sent to the browser as an HTML page.

The posted data is now sent to the host application in a number of steps:

First the 1st host data object generation is restored from the backup. The associated posted
data is copied to the host data objects and these are then sent to the openUTM application
(OnReceive tags of 1st template). In the same way, the 2nd to nth generations of host data
objects are restored, filled with the corresponding posted data and sent to the openUTM
application (OnReceive tags of the 2nd - nth generations).

Browser WebTransactions openUTM

1st partial format

2nd Template

HTML

onReceive

Host objects

1st Template

HTML

onReceive

nth Template

HTML

onReceive

(1st generation)

Host objects
(2nd generation)

Host objects
(nth generation)

2nd partial format

nth partial format

...

...

1st partial format

2nd partial format

nth partial format

...

Special characteristics of FHS/FORMANT partial formats Editing templates

106 WebTransactions for openUTM

6.3.2 Structure of the master template UTMpartial.wmt

If partial formats are used in your application, you must use the master template
UTMpartial.wmt when generating templates. UTMpartial.wmt has a similar structure to
UTM.wmt. This section focuses on the partial-format-specific details of UTMpartial.wmt.

For the sake of clarity, the template has been divided into numbered sections which are
explained separately. These sections are also referred to under section “Editing with partial
format templates” on page 117.

Section (1)

The template begins with a header containing generation information. The first
wtOnCreateScript sets the variables %%CommObj% and %%CommObj%_system with a reference
to the current communication object and the system object to be used for communication.

The edit mode (insert or overwrite) is set to isOverwrite according to the specification in
EDIT_MODE.

Below the communication object, an array wtPartialFormats is created in which the prefix
FORMAT_SEQ and the contents of the partial formats are saved. The first template used for a
sequence of partial formats initializes the wtPartialFormats object. If the object is found
and the current attribute is < 0, this indicates that the page has been recalled following
interruption with the Suspend key. If this occurs, the Suspend flag is set. This controls
whether data is to be retrieved from the host or from the backup in wtPartialFormats when
setting up the page.

%%GlobalSettings Protocol="UTM"%
<!--
 //{{WebLab(assignCommunicationObject)
 %%CommObj% = WT_HOST.active || WT_HOST.%%CommObj%;
 if (%%CommObj%.WT_SYSTEM != null)
 %%CommObj%_system = %%CommObj%.WT_SYSTEM; // communication specific
system object
 else
 %%CommObj%_system = WT_SYSTEM; // global system object
 //}}
 // propagate communication object to included WTML documents //////////////
 wtCurrentComm = %%CommObj%;
 wtCurrentComm_system = %%CommObj%_system;
 if (wtCurrentComm_system.EDIT_MODE)
 {
 if (typeof wtCurrentComm_system.isOverwrite == 'undefined' &&
wtCurrentComm_system.EDIT_MODE.match(/OVERWRITE/))
 wtCurrentComm_system.isOverwrite = true;
 else if (wtCurrentComm_system.EDIT_MODE == 'OVERWRITE')
 wtCurrentComm_system.isOverwrite = true;

Editing templates Special characteristics of FHS/FORMANT partial formats

WebTransactions for openUTM 107

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
6

 else if (wtCurrentComm_system.EDIT_MODE == 'INSERT')
 wtCurrentComm_system.isOverwrite = false;
 } else
 wtCurrentComm_system.isOverwrite = false;

 // create array for contents of all parial formats ////////////////////////
 if(! %%CommObj%.wtPartialFormats)
 {
 // first format in a sequence of partial formats
 %%CommObj%.wtPartialFormats = new Array;
 %%CommObj%.wtPartialFormats.current = 0;
 %%CommObj%.wtPartialFormats[0] = new Object;
 %%CommObj%.wtPartialFormats[0].FORMAT_SEQ =
%%CommObj%_system.FORMAT_SEQ;
 %%CommObj%.wtPartialFormats[0].Contents =
%%CommObj%.WT_HOST_MESSAGE.Contents;
 }
 else if(%%CommObj%.wtPartialFormats.current < 0)
 {
 // wtPartialFormats exits but current<0 means recovery from suspend
 %%CommObj%.wtPartialFormats.suspended = true;
 %%CommObj%.wtPartialFormats.current = 0;
 }
//-->
</wtOnCreateScript>

Section (2)

In addition, the FORMAT_SEQ attribute is provided with the index of the partial message and
the message buffer of the host adapter (%%CommObj%.WT_HOST_MESSAGE.Contents) is
updated, the corresponding partial message being taken from the backup in
wtPartialFormats (see Section (5)).

<wtOnReceiveScript>
<!--
 // restore partial format ///
 if(%%CommObj%.wtPartialFormats.current < 0)
 %%CommObj%.wtPartialFormats.current = 0;
 else
 {
 %%CommObj%.wtPartialFormats.current++;
 %%CommObj%_system.FORMAT_SEQ =
 %%CommObj%.wtPartialFormats[%%CommObj%.wtPartialFormats.current
].FORMAT_SEQ;
 %%CommObj%.WT_HOST_MESSAGE.Contents =
 %%CommObj%.wtPartialFormats[%%CommObj%.wtPartialFormats.current
].Contents;

Special characteristics of FHS/FORMANT partial formats Editing templates

108 WebTransactions for openUTM

 }
//-->
</wtOnReceiveScript>

Section (3)

This section contains code which may only be run once per HTML page. This must always
occur in the first partial format. This decision can be made using the FORMAT_SEQ system
object attribute. In the case of full formats, this attribute is empty and for partial formats the
host adapter supplies a sequential number.

The following steps are carried out:

– execution of a PROLOG template, if available.
– output of the basic HTML framework.
– output of CSS definitions, if the browser supports style sheets.
– opening of an HTML form.
– opening of a table which frames the entire format.
– calling of the centrally modifiable templates wtBrowserFunctions.htm (cursor control)

and wtKeysUTM.htm (functions for operating the page).
– definition of the functions taggedInput() and taggedOutput() which can be used to

prepare unprotected (input) and protected fields.

<wtRem** page header only generated for first partial format ***************>
<wtIf (%%CommObj%_system.FORMAT_SEQ == "1" || %%CommObj%_system.FORMAT_SEQ
== "")>
<wtIf (%%CommObj%_system.PROLOG)>
 <wtInclude Name="##%%CommObj%_system.PROLOG#">
</wtIf>
<html>
<head>
<title>WebTransactions V7.5 - application
##%%CommObj%_system.SYM_DEST#</title>
##WT_SYSTEM.CGI.HTTP_USER_AGENT.indexOf('MSIE') >= 0 ?
 '<meta http-equiv="Pragma" content="no-cache"/>' :
 '<meta http-equiv="Cache-Control" content="no-cache"/>'#
<wtIf (WT_BROWSER.acceptClass)>
 <style type="text/css">
 input {
 font-size: ##WT_BROWSER.charSize#px;
 font-family: courier new, monospace;
 }
 input.box {
 border: 0 solid;
 padding: 1px 0 1px 0;
 margin-left: -1px;
 margin-top: ##WT_BROWSER.marginTop#px;

Editing templates Special characteristics of FHS/FORMANT partial formats

WebTransactions for openUTM 109

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
6

 font-size: ##WT_BROWSER.charSize#px;
 font-family: courier new, monospace;
 color: #000000;
 background-color: #FFFFFF;
 }
 input.button {
 font-size: ##WT_BROWSER.charSize#px;
 font-family: courier new, monospace;
 border-width: 1pt;
 margin-left: -1pt;
 }
 select {
 font-size: ##WT_BROWSER.charSize#px;
 font-family: courier new, monospace;
 }
 pre {
 font-size: ##WT_BROWSER.charSize#px;
 font-family: courier new, monospace;
 margin: 0;
 }
 </style>
</wtIf>
</head>
<body bgcolor="#C0C0C0">
<form WebTransactions>
 <table frame="border" rules="all">
 <tr>
 <td>
 <wtInclude name="wtBrowserFunctions">
 <wtInclude name="wtKeysUTM">
 <wtIf (%%CommObj%_system.FORMTPL)>
 <wtInclude Name="##%%CommObj%_system.FORMTPL#">
 </wtIf>
 </td>
 </tr>
 <tr>
 <td>
 <wtOnCreateScript>
 <!--
 colors = new Array('RED','GREEN','YELLOW','BLUE','MAGENTA', 'CYAN',
'WHITE');
 space80 = "
";

 wtInputFields = new Object();
function taggedInput(hostObject)
 {
 if (hostObject.Protected == 'Y')

Special characteristics of FHS/FORMANT partial formats Editing templates

110 WebTransactions for openUTM

 {
 taggedOutput(hostObject);
 return;
 }
 currentLength = hostObject.Length;
 input = '<input type=' + (hostObject.Visible == 'N' ?
'"password"' : '"text"');
 if (WT_BROWSER && (WT_BROWSER.is_ie || WT_BROWSER.is_ns61up))
 {
 input += ' class="box" style="width:' + (currentLength *
WT_BROWSER.charWidth + 1) + 'px';
 input += (hostObject.Blinking == 'Y' ? '; background-
color:#FFC0C0' : '');
 input += (hostObject.Underline == 'Y' ? (hostObject.Intensity
== 'N' ? '; color:#A0A0FF' : '; color:#0000A0') :
 (hostObject.Intensity
== 'N' ? '; color:#A0A0A0' : '')) + '"';
 }
 input += ' name="_' + %%CommObj%_system.FORMAT_SEQ+ '_' +
hostObject.Name
 + '" size="' + currentLength
 + '" maxlength="' + currentLength
 + '" value="' + hostObject.Value
 + (hostObject.DataType == 'Numeric'?'"
numeric="1':'')
 + (hostObject.Detectable == 'Y'?'"
markable="1':'')
 + '"/>';
 document.write(input);
 }

function taggedOutput(hostObject)
 {
 if (hostObject.Protected == 'N')
 {
 taggedInput(hostObject);
 return;
 }
 if (hostObject.Visible == 'Y')
 {
 output = hostObject.HTMLValue;
 if (hostObject.Inverse == 'Y')
 {
 if (hostObject.Color && hostObject.Color.toUpperCase() !=
'N')
 output = '<font color="#000000" style=\"background-color:'
+ colors[hostObject.Color-1] + '\">'+output+'';
 }

Editing templates Special characteristics of FHS/FORMANT partial formats

WebTransactions for openUTM 111

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
6

 else if (hostObject.Color && hostObject.Color.toUpperCase() !=
'N')
 output = ''
+ output + '';
 if (hostObject.Intensity == 'H')
 output = '' + output + '';
 if (hostObject.Blinking == 'Y')
 output = '<i>' + output + '</i>';
 if (hostObject.Underlined == 'Y')
 output = '<u>' + output + '</u>';
 document.write(output);
 }
 else
 {
 document.write(space80.substr(0,hostObject.Length));
 }
 }
 //-->
 </wtOnCreateScript>

<!--
- - - -->
 <!-- begin of host screen section
-->
 <!--
- - - -->
</wtIf>

Special characteristics of FHS/FORMANT partial formats Editing templates

112 WebTransactions for openUTM

Section (4)

As with full formats, this section contains all constant elements of the format as well as
HTML input tags for input fields.

<div style="color:#000000"><pre>\
%%LINES CellsDelimiter="-" TaggedInput=Enabled
TaggedOutput=Enabled%</pre></div>
<wtOnCreateScript>
<!--
 if(%%CommObj%[%%CommObj%.WT_HOST_MESSAGE.CursorField] &&
 %%CommObj%[%%CommObj%.WT_HOST_MESSAGE.CursorField].IOType ==
'INPUT')
 wtCursor = '_' + %%CommObj%_system.FORMAT_SEQ + '_' +
 %%CommObj%.WT_HOST_MESSAGE.CursorField;
 //-->
 </wtOnCreateScript>
 <script type="text/javascript">
 <!--
 <wtOnCreateScript>
 <!--
 for(element in wtInputFields)
 {
 if (!WT_BROWSER.acceptMaxLength)

document.writeln('wtSetMaxLength("_',%%CommObj%_system.FORMAT_SEQ,'_',
element, '","', wtInputFields[element].Length, '");');
 if (!WT_BROWSER.acceptInputAttributes)
 {
 //if (wtInputFields[element].DataType == 'NUMERIC')
 // document.writeln('wtSetInputAttribute("numeric",
"_',%%CommObj%_system.FORMAT_SEQ,'_', element, '");');
 if (wtInputFields[element].Detectable == 'Y')
 document.writeln('wtSetInputAttribute("markable",
"_',%%CommObj%_system.FORMAT_SEQ,'_', element, '");');
 }
 }
 //-->
 </wtOnCreateScript>
 //-->
 </script>

Editing templates Special characteristics of FHS/FORMANT partial formats

WebTransactions for openUTM 113

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
6

Section (5)

This section contains code which may only be executed once at the end of an HTML page
(similar to Section (3)). This must always occur in the last partial format. The decision can
be made using the FORMAT_SEQ system object attribute. For full formats, this attribute is
empty and for the last partial format of the sequence, the host adapter supplies the value
LAST.

All the HTML elements opened in Section (3) are closed (except <html>).

The cursor is positioned, as specified by the application, in an input field.

<wtIf (%%CommObj%_system.FORMAT_SEQ == "LAST" ||
%%CommObj%_system.FORMAT_SEQ == "")>
<!-- -
->
 <!-- end of host screen section
-->
 <!--
- - - -->
 </td>
 </tr>
 </table>
</form>
<wtRem** initial focus selection ***>
<script type="text/javascript">
<!--
 <wtIf(wtCursor) >
 wtSetFocus('##wtCursor#');
 <wtElse>
 wtBuildFieldList();
 </wtIf>
 //-->
</script>
</body>
</wtIf>

Section (6)

In this section, the data posted by the browser is copied to the host objects. If the Suspend
key was activated, the partial format is saved once again to wtPartialFormats. Otherwise,
the partial message is sent to the host.

When the last partial message is sent to the host, the entire backup in wtPartialFormats
is deleted and the next message from the host is read.

<wtRem** Script executed after post of HTML page ***************************>
<wtOnReceiveScript>
<!--

Special characteristics of FHS/FORMANT partial formats Editing templates

114 WebTransactions for openUTM

 if (%%CommObj%_system.EDIT_MODE
&&%%CommObj%_system.EDIT_MODE.match(/USER/))
 %%CommObj%_system.isOverwrite = (WT_POSTED.wt_isOverwrite=='1');
 //{{WebLab(processPostedData)
 %%OnReceiveCopies%
 wtMarkedFields = WT_POSTED.wt_markedFields.split(',');
 elementPrefix = '_'+%%CommObj%_system.FORMAT_SEQ+'_';
 for(i=1; i<wtMarkedFields.length; i++)
 if (wtMarkedFields[i].indexOf(elementPrefix) == 0)
 {
 var elementName = wtMarkedFields[i].substr(elementPrefix.length);
 %%CommObj%[elementName].InputState = 'D';
 %%CommObj%[elementName].InputStateAct = 'D';
 }
 //}}
 //{{WebLab(processHostCommunication)
 if (WT_POSTED.wt_special_key == 'Suspend' || %%CommObj%_system.SUSPEND)
 {
 %%CommObj%_system.SUSPEND = false;
 %%CommObj%.wtPartialFormats[%%CommObj%.wtPartialFormats.current
].Contents =
 %%CommObj%.WT_HOST_MESSAGE.Contents;
 if(%%CommObj%_system.FORMAT_SEQ == "LAST" ||
%%CommObj%_system.FORMAT_SEQ == "")
 {
 %%CommObj%.wtPartialFormats.current = -1;
 %%CommObj%_system.FORMAT_SEQ = %%CommObj%.wtPartialFormats[0
].FORMAT_SEQ;
 %%CommObj%.WT_HOST_MESSAGE.Contents = %%CommObj%.wtPartialFormats[0
].Contents;
 }
 }

else
 {
 try {
 %%CommObj%.send();
 if(%%CommObj%_system.FORMAT_SEQ == "LAST" ||
%%CommObj%_system.FORMAT_SEQ == "")
 {
 delete %%CommObj%.wtPartialFormats;
 %%CommObj%.receive();
 if(%%CommObj%_system.APPLICATION_PREFIX)
 setNextPage(%%CommObj%_system.APPLICATION_PREFIX + '@' +
%%CommObj%_system.FLD);
 else
 setNextPage(%%CommObj%_system.FLD);
 }

Editing templates Special characteristics of FHS/FORMANT partial formats

WebTransactions for openUTM 115

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
6

 }
 catch (e) {
 if (WT_SYSTEM.COMMUNICATION_ERROR_FORMAT)
 setNextPage(WT_SYSTEM.COMMUNICATION_ERROR_FORMAT);
 }

 }
 //}}
//-->
</wtOnReceiveScript>

Section (7)

If the current partial message is not the last one, the next partial message is read from the
backup (restoring the page after Suspend) or retrieved from the host.

The WTML document for displaying the next partial format is included.

<wtIf (%%CommObj%_system.FORMAT_SEQ != "LAST" &&
%%CommObj%_system.FORMAT_SEQ != "")>
<wtOnCreateScript>
<!--
 if(%%CommObj%.wtPartialFormats.suspended)
 {
 %%CommObj%.wtPartialFormats.current++;
 %%CommObj%_system.FORMAT_SEQ =
 %%CommObj%.wtPartialFormats[%%CommObj%.wtPartialFormats.current
].FORMAT_SEQ;
 %%CommObj%.WT_HOST_MESSAGE.Contents =
 %%CommObj%.wtPartialFormats[%%CommObj%.wtPartialFormats.current
].Contents;
 }
 else
 {
 try {
 %%CommObj%.receive();
 }
 catch (e) {
 if (WT_SYSTEM.COMMUNICATION_ERROR_FORMAT)
 setNextPage(WT_SYSTEM.COMMUNICATION_ERROR_FORMAT);
 }
 %%CommObj%.wtPartialFormats.current++;
 %%CommObj%.wtPartialFormats[%%CommObj%.wtPartialFormats.current] = new
Object;
 %%CommObj%.wtPartialFormats[%%CommObj%.wtPartialFormats.current
].FORMAT_SEQ =
 %%CommObj%_system.FORMAT_SEQ;

Special characteristics of FHS/FORMANT partial formats Editing templates

116 WebTransactions for openUTM

 %%CommObj%.wtPartialFormats[%%CommObj%.wtPartialFormats.current
].Contents =
 %%CommObj%.WT_HOST_MESSAGE.Contents;
 }
//-->
</wtOnCreateScript>
<wtInclude name=
"##(%%CommObj%_system.APPLICATION_PREFIX ?
 %%CommObj%_system.APPLICATION_PREFIX + '@' :
 '') +
 %%CommObj%_system.FLD#">

Section (8)

In this section, the wtPartialFormats storage object is reset, EPILOG is called if required,
and the last open tag <html> is closed.

<wtElse>
<wtOnCreateScript>
<!--
 // current=-1 signals end of format sequence
 %%CommObj%.wtPartialFormats.current = -1;
 %%CommObj%_system.FORMAT_SEQ = %%CommObj%.wtPartialFormats[0].FORMAT_SEQ;
 %%CommObj%.WT_HOST_MESSAGE.Contents = %%CommObj%.wtPartialFormats[0
].Contents;
//-->
</wtOnCreateScript>
<wtIf (%%CommObj%_system.EPILOG)>
 <wtInclude Name="##%%CommObj%_system.EPILOG#">
</wtIf>
</html>
</wtIf>

Editing templates Special characteristics of FHS/FORMANT partial formats

WebTransactions for openUTM 117

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
6

6.3.3 Editing with partial format templates

In each individual case, the possibilities for retouching and editing partial format templates
depend to a large extent on the way the partial formats are used in your host application.
For this reason, this section can make no claims to completeness. It simply outlines a
number of possibilities in order to provide pointers towards possible editing.

It is possible to make this change in the master template described above (see the section
“Structure of the master template UTMpartial.wmt” on page 106) in which case your
changes apply to all generated templates or in the templates already generated.

For example, if you want to convert the layout to include HTML buttons and list boxes and
map the data received from the browser to the format interface (field file), you should restrict
yourself to Section (4) and Section (6).

If you want to modify the general layout of the page (header, footer, background etc.) you
can also edit Section (3) and Section (5).

You should leave the remaining sections unchanged to avoid disrupting the sequence of
communications with the openUTM application.

Editing with individual partial formats

If you want to edit the partial format templates individually, you can of course insert conve-
nient HTML tags to edit the user interface. However, you cannot make any basic changes
to the subdivision of the format (screen). For example, you cannot position the fields from
the second partial format in front of those of the first partial format.

New template for a screen’s partial template sequence

This section illustrates how a combination of partial formats (a logical screen) can be freely
redesigned. In this case, the generated templates must also be edited as it is generally not
sufficient to modify the master template alone.

The two cases below illustrate two fundamentally different situations:

– In the first example, the partial template sequence has a clear starting point, i.e. in this
host application, the 1st partial format occurs as such in this one screen only.

– In the second example, there is no identifiable partial format in the sequence of partial
formats from which it is possible to deduce the logical screen (combination of partial
formats). The logical screen can only be deduced from the entire combination itself. Not
until the last partial format has been ascertained can the logical screen be unambigu-
ously identified.

Special characteristics of FHS/FORMANT partial formats Editing templates

118 WebTransactions for openUTM

Unique start of partial format sequence

If you know that a given partial format is always followed by a certain sequence of partial
formats, then you can store all the associated templates in sequence in a file with the name
of the 1st partial format. You thus eliminate the include tags and combine multiple templates
to create one large one.

To do this, copy the successor template to the position of the include tag in the predecessor
template. The IF tags in Section (3), Section (5) and Section (7) can be cancelled within the
template sequence, as the order of templates is fixed. In Section (7), however, the ELSE
branch must be retained.
The body of Section (3) is inserted once at the start of the overall template, and Section (5)
appears at the end.

In this type of overall template, it is easier to rearrange the display of the contents of the
different partial formats on the HTML page. However, here again you must take account of
the generation of host data objects which is active at the moment of generation. You may
find it necessary to restore a generation at generation time (see Section (2)) or buffer a
number of template object values for later use.

Any combination to end of partial format sequence

If, despite the fact that the partial formats in your host application may be present in almost
any order, you still want to change the display of the individual combinations in the browser,
then you are advised to proceed as follows.

The partial format templates remain as individual templates. However, they do not generate
HTML, but simply save the values received at the host application for further processing. In
addition, occurrences of individual templates in the template sequence are recorded in a
special attribute. When all the partial format templates have been worked through, a new
template (combination template) is called. This generates the HTML page from the buffered
data of the entire partial format sequence and contains the OnReceive tags.

1. Delete the sections which generate HTML, namely from Section (3), Section (4) and
Section (5) of the partial format templates. These sections are recombined in the combi-
nation template or are adapted as required.

2. Replace section (4) with a wtOnCreate script which copies the contents of the host data
objects to unambiguous attributes of a template object. For example, you can use
FORMAT_SEQ as a level in this object structure:

collect = new Object;
collect['_'+host_system.FORMAT_SEQ] = new Object;
collect['_'+host_system.FORMAT_SEQ].object = %%ComObj%.object.Value;
...

(In a generated template, %%CommObj% is replaced by the current communication object.)

Editing templates Special characteristics of FHS/FORMANT partial formats

WebTransactions for openUTM 119

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
6

3. Delete Section (6) and write the corresponding statements to the combination template.

4. Add a statement defining the sequence of templates in a template object attribute.

if (COMBINATION_TEMPLATE)
 COMBINATION_TEMPLATE += %%CommObj%_system.FLD;
else
 COMBINATION_TEMPLATE = %%CommObj%_system.FLD

(In a generated template, %%CommObj% is replaced by the current communication object.)

5. Add an include tag that calls a template for the received sequence of partial formats.

<wtInclude Name="##COMBINATION_TEMPLATE#">

6. The COMBINATION_TEMPLATE for the sequence in question is now able to generate the
complete HTML page. To do this, the data stored in the template object is accessed. It
contains an OnReceive script for all the partial formats which occur in the sequence to
make it possible to send the posted data back to the openUTM application in individual
partial messages. Finally there is a receive tag which receives the next message from
the openUTM application.

Support for openUTM line mode Editing templates

120 WebTransactions for openUTM

6.4 Support for openUTM line mode

WebTransactions supports messages in openUTM line mode. If an unformatted message
is issued by the openUTM application, WebTransactions automatically uses the special line
mode template wtlnmode.htm for display purposes. When the base directory is created,
this template is stored as a link or copy in basedir\config\forms. It appears in the browser
as illustrated below:

Editing templates Support for openUTM line mode

WebTransactions for openUTM 121

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
6

The line mode template contains the following dialog components:

Terminal screen:
This displays the last message received from the openUTM application. Commands
can also be entered here in the same way as on the terminal. Data between the first
modified position and the next end mark is taken into consideration.

At the start of the conversation, the first 8 characters (maximum) are used as the
TAC to address the conversation; for this purpose, you must select blank spaces in
the CONVERSATION_TAC field. The remaining data will be sent to the program
unit as a message. During the conversation, the complete data will be sent to
openUTM as a message. The end marker is represented by the ~ (tilde) character.

The form can be confirmed using the “Enter” key or the Send Data button. Line
breaks can be inserted in the text area using the key combination, “Shift+Enter”.

Next TAC
Here you can enter the next TAC. To do this, select the TAC option in the
CONVERSATION_TAC field.

CONVERSATION_TAC
Here select how the TAC is to be given to address the next openUTM conversation:

blank space The TAC must be at the start of the message (see
Terminal screen).

TAC The TAC must be entered in the TAC field.

SYM_DEST The TAC is determined from the corresponding entry in the
upicfile (see or next SYM_DEST).

UTM Partner directly
Here you can enter the address of the openUTM application directly. Enter the
name of the host application in the first field and the name of the computer on which
the host application runs in the second. Instead of entering the computer name, you
can enter its IP address in the third field.

or next SYM_DEST
Here you can specify a symbolic destination name from the upicfile, in order to
continue with a different conversation. These conversations must start with a
program unit that does not expect any input, as no send is performed.

UTM User
Each command that is entered in line mode runs in a separate conversation.
You can specify individual authentication levels for these conversations
(NONE|USER|PASSWORD), enter user name and password and change the password.

Stop Conversation
This button can be used to stop a conversation in an emergency.

Support for openUTM line mode Editing templates

122 WebTransactions for openUTM

Startpage
Here you can return to the start template, wtstart.htm, if the new conversation that
is to be started requires additional specifications. In this way, it is possible to start a
conversation that starts with a program unit that expects some input (send on
conversation start).

Terminate session
To exit line mode and terminate the entire session, use the Quit button.

Adapting the line mode template

You can also copy and modify the line mode template wtlnmode.htm. However, the name of
the line mode template must not be changed.

The structure of unformatted messages is described in the file wtlnmode.fld, which is
located in the basedir/config directory. The message contents are written to the host data
object CONTENTS, which has a length of 32767 bytes.

Sending unformatted messages to openUTM

When sending a message to a openUTM program unit, CONTENTS.Value is set to the appro-
priate value and the send method is called. The message sent by WebTransactions consists
only of the contents of CONTENTS up to the first binary zero. Binary zeros are used as fill
characters in the CONTENTS field. If a value shorter than 32767 bytes is assigned to
CONTENTS.Value, the rest of the field is padded with zeros. This makes to possible to send
unformatted messages of different lengths.

Up to the version WebTransactions V3.0 the content of the FLD attribute was decisive,
whether to send a formatted or an unformatted message. As of version WebTransactions
V4.0 the decisive factor is the property FormatType=- in the FLD file, the FLD attribute is
pointing to.

If customer-specific changes are made in wtlnmode.fld or wtlnmode.htm, you must make
sure that these two files remain consistent on a version change.

Receiving unformatted messages from openUTM

When receiving unformatted messages, WebTransactions stores the contents in
CONTENTS.Value. If several unformatted partial messages are sent to WebTransactions,
these are collated in the CONTENTS.value up to a length of 32767 bytes by calling the
receive method. If further unformatted messages are subsequently received,
WebTransactions handles them in the same way as partial formats by setting the
FORMAT_SEQ attribute to 1. To retrieve the complete message, the receive method must be
called repeatedly until FORMAT_SEQ reaches the value LAST.

If it is not known from the outset how many partial messages have been received, the entire
message can be structured in a loop:

Editing templates Support for openUTM line mode

WebTransactions for openUTM 123

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
6

for(host.receive(), msg=host.CONTENTS.Value;
 host.WT_SYSTEM.FORMAT_SEQ!="" && host.WT_SYSTEM.FORMAT_SEQ!="LAST";
 host.receive(), msg+=host.CONTENTS.Value);

Example: Adapted line mode template

The example above depicts a line mode template which simply makes one output and then
continues with a specific conversation.

An HTML page is generated in area (1). This outputs the contents of the message from the
Value attribute of the host data object CONTENTS. The page contains a button for the contin-
uation of the session. If this is pressed, WebTransactions continues processing with the
wtOnReceiveScript tag (area (2)).

In area (2), CONTENTS is deleted in order to prevent conversation chaining. A particular
conversation is selected by specifying the SYM_DEST attribute.
receive implicitly opens the conversation and retrieves the next message.

In the connection specific system object, receive supplies the FLD attribute with the format
name. If the received format is another line mode message, the value will again be
wtlnmode.In order to ensure that the format can definitely be presented to the appropriate
template, you should use setNextPage() to ensure that the format name is taken as the
next template to be executed.

<html>
<head>
<title>Bulletin</title>
</head>

<body>
<pre>##UTM_0.CONTENTS.Value#</pre>
<wtDataForm>
<input type="submit" name="GO" value="Fortsetzen">

</wtDataForm>
</body>
</html>

(1)

<wtOnReceiveScript>
<!--

UTM_0.CONTENTS.Value="";
WT_SYSTEM.SYM_DEST="MAIN ENTER">;
UTM_0.receive();
setNextPage(UTM_0.WT_SYSTEM.FLD);

//-->
</wtonReceiveScript>

(2)

Binary data support Editing templates

124 WebTransactions for openUTM

6.5 Binary data support

Using WebTransactions for openUTM, you can also send any kind of data, including binary
data. These data can be read from a file for sending and written to a file on reception.

The name of the file is specified in the system attribute, COMMUNICATION_FILE_NAME. This file
will then be used as input to the next send or for output from the following receive. The
name specified in COMMUNICATION_FILE_NAME only ever applies for the immediately
following communication step. After use, the attribute is reset, i.e. the next input/output is
handled by host data objects.

Example

Using WebTransactions, a SESAM/SQL database is to be accessed via openUTM, which
also contains picture files. This database is used for the administration of personnel data
and contains, in addition to the personal details (date of birth, address, etc.), picture files
with passport photos of employees.

The following code example shows how these photos can be stored in the database and
how they can be viewed.

<wtOnCreateScript>

// storing the photo, using own TAC if required

UTM_0_SYSTEM.COMMUNICATION_FILE_NAME = "john smith.gif";

UTM_0.send();

 ...

// picture retrieval and display

UTM_0_SYSTEM.COMMUNICATION_FILE_NAME = "john smith.gif";

UTM_0.receive();

...

</wtOnCreateScript>

Processing of binary data with WTML

Binary data can also be represented in Hexadecimal form. This is done using the host data
object, HexStringValue. This attribute converts any binary character string to the usual
hexadecimal representation (00 to FF).

WebTransactions for openUTM 125

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
7

7 Configuring connections
WebTransactions forms the link between Web browsers and host applications. While
WebTransactions functions as a server from the point of view of the Web browser, it acts as
a client as far as the host application is concerned.

To communicate with the host application, the supply unit “WebTransactions for openUTM”
uses the UPIC (Universal Programming Interface for Communications) client/server
communications protocol. UPIC is a complex communications protocol which offers more
than the simple exchange of net data. For example, connecting via UPIC allows
WebTransactions to use the openUTM user concept and the openUTM automatic restart
facility. Since this protocol also permits the transfer of information about format names and
openUTM function keys no changes to the openUTM program units are required for the
Web connection.

All the communication components - browser, HTTP daemon with WebTransactions,
openUTM application and the associated data storage facilities - can be distributed as
required over a variety of platforms (multitier architecture). WebTransactions controls the
transaction-monitored information exchange between client and server and guarantees
reliability/availability, data security and performance even in complex distributed structures.

UPIC-R and UPIC-L

UPIC is available as UPIC-R (remote) and, additionally for Solaris and Linux, as UPIC-L
(local).

You can use UPIC-L if WebTransactions and the openUTM host application are both
present on the same Unix host. In this case, you declare the UPIC-L library via the system
object’s UPIC_LIB attribute and the path under which the openUTM application is installed
via the UTM_PATH attribute.

In all other cases, UPIC-R is used.

Configuring connections

126 WebTransactions for openUTM

UPIC libraries

The UPIC libraries are components of the WebTransactions product:

● For BS2000/OSD, the UPIC library (UPIC-R) is an integrated part of the WTHolder
program.

● In the case of Solaris and Linux, two UPIC libraries are shipped with WebTransactions
(for UPIC-R and UPIC-L respectively). If you want to work with UPIC-L, you must set
the path name of this library in the system object’s UPIC_LIB attribute. If you do not set
this attribute, WebTransactions always uses a default UPIC-R library which is an
integrated part of the WTHolder program.

● In the case of Windows, a UPIC-R library (upicws32.dll) is shipped with
WebTransactions. Under Windows, UPIC is dynamically linked by default from this
library.

Unicode support

The host adapter in WebTransactions for openUTM can also interpret data as Unicode
characters at the UPIC interface.

The BS2000/OSD program IFG2FLD reads format descriptions from an IFG library and
stores them in a format description source. The fields in an IFG library can contain the new
attribute Unicode. As of Version 8.3, IFG2FLD calculates the offsets of the individual fields in
the UPIC buffer dependently of this attribute.

You can use WebLab to generate templates and field files (FLD files) from the format de-
scription source. During this conversion, the Unicode marker is automatically taken into ac-
count as of IFG2FLD Version 8.3 (see chapter “Generating templates” on page 75).

FLD files

The FLD files must be re-generated for all the formats that contain Unicode fields.

Templates

Existing templates can be retained unchanged if the only change in a format was the
change to Unicode fields. However, the assignment of the value UTF-8 to the global system
object attribute CHARSET must be inserted (see section “Host control object
WT_HOST_MESSAGE” on page 165).

WebTransactions for openUTM creates data encoded in UTF-8, which is passed straight
through to the browser and back. To achieve this, the following rules must be observed with
respect to new templates:

Configuring connections Aligning WebTransactions and the host

WebTransactions for openUTM 127

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
7

– The templates must use charset to inform the browser what character encoding is to
be used to display the data and to send the response. The browser receives this
information

– either in the meta tag:
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />

– or by setting the attribute charset in the HTTP header field Content-Type.

– The templates are only allowed to contain ASCII characters.
If a template contains special characters (such as German umlauts) directly in the form
of ANSI characters in character strings, these must be replaced by HTML escape
sequences. The escape sequences themselves are made up of ASCII characters only
and can therefore be used in UTF-8.

– String operations can produce incorrect results if UTF-8 characters are included in the
string. Operations of this sort do not occur in the templates generated by
WebTransactions.

ASCII-to-EBCDIC conversion

WebTransactions applications that have previously used the ASCII-to-EBCDIC conversion
facility integrated in UPIC must be converted to use the ASCII-to-EBCDIC conversion facil-
ity provided by WebTransactions (see “HOST_CHAR_CODE” on page 149).

7.1 Aligning WebTransactions and the host

To establish communications via UPIC-R, you must declare the communication partners
- WebTransactions and the openUTM application - to one another. This must be done both
at the client and at the server.

To provide its services, UPIC uses the facilities of the platform-specific communication
system which permits access to the transport system and manages the transport connec-
tions:

● in the case of BS2000/OSD this is BCAM. For BCAM (BS2000/OSD), appropriate
BCMAP entries are only required in exceptional cases (see section “BCMAP entries
(BS2000/OSD)” on page 142).

● For Solaris, Linux and Windows, the required transport system components are
integrated in UPIC; the CMX (Solaris and Linux) and PCMX (Windows) transport
systems must therefore no longer be used.

The platform-specific communication system is also responsible for host-side communica-
tions between the transport system and the openUTM host application.

Aligning WebTransactions and the host Configuring connections

128 WebTransactions for openUTM

In practice, there are three types of coupling:

Since the configuration is very similar in Solaris, Linux and Windows systems, these will be
considered together. Theoretically, there is the fourth possible combination of
WebTransactions under BS2000/OSD and openUTM host application under Solaris, Linux
or Windows. However, such a combination is unlikely to occur in practice and is not
therefore described here.

For all these variations, the following is required on the WebTransactions side:

● For the local WebTransactions application:

Entries in the localapps file, see page 132

● for the openUTM application:

Entries in the upicfile (see page 134) or provision of the corresponding system
attributes APPLICATION_NAME, HOST_NAME, TAC, ... (see page 133).

The figures on the following pages illustrate the various possible combinations and the
relations between the entries. For more detailed information and examples for the individual
entries, refer to section “Configuring the WebTransactions side” on page 132 and section
“Configuring the openUTM (host) side” on page 138 which follow the figures.

WebTransactions platform Host platform

Solaris, Linux or Windows BS2000/OSD

Solaris, Linux or Windows Solaris, Linux or Windows

BS2000/OSD BS2000/OSD

Configuring connections Aligning WebTransactions and the host

WebTransactions for openUTM 129

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
7

WebTransactions under Solaris, Linux or Windows – openUTM host under
BS2000/OSD

In this example, the parameters for the openUTM application were entered in the system
object attributes. Alternatively, you can use the upicfile, see page 134. In this case, you
must provide the system object attribute, SYM_DEST.

Server:
openUTM app.
HOST01
(OSD)

Client:
WebTransactions
application
(Solaris, Linux or
Windows)

KDCFILE
PTERM entries

ptermname PTYPE BCAMAPPL LTERM

CLIENT1 UPIC-R UTMAPPL1 lterm1

BCAMAPPL entries

appliname T-PROT

UTMAPPL1 ISO

Constant Local name

FREE
FREE
...

CLIENT1
CLIENT2
...

localapps

2 HOST01 must be assigned an IP address in the TCP/IP name service (DNS, Hosts file, etc.)

Template

WT_SYSTEM.APPLICATION_NAME=“UTMAPPL1“;1

WT_SYSTEM.HOST_NAME=“HOST01“;2

WT_SYSTEM.UPIC_CODE_CONVERSION=“YES“;
WT_SYSTEM.TAC=....

1 WT_SYSTEM here means the connection specific system object

Aligning WebTransactions and the host Configuring connections

130 WebTransactions for openUTM

WebTransactions under Solaris, Linux or Windows –
openUTM host under Solaris, Linux or Windows (via UPIC-R)

In this example, the parameters for the openUTM application were entered in the system
object attributes. Alternatively, you can use the upicfile, see page 134. In this case, you
must provide the system object attribute, SYM_DEST.

Server:
openUTM app.
HOST01
(Solaris, Linux
or
Windows)

KDCFILE
PTERM entries

ptermname PTYPE BCAMAPPL LTERM

CLIENT1 UPIC-R UTMAPPL1 lterm1

BCAMAPPL entries

appliname

UTMAPPL1

TNS

Entries for remote applications

TNS name Host T selector Port

CLIENT1 123.4.5.6 CLIENT1 12345

Entries for local applications

TNS name T selector ...

UTMAPPL1 UTMAPPL1

Client:
WebTransactions
application
(Solaris, Linux or
Windows)

localapps

Constant Local name

FREE
FREE
...

CLIENT1
CLIENT2
...

2 HOST01 must be assigned an IP address in the TCP/IP name service (DNS, Hosts file, etc.)

Template

WT_SYSTEM.APPLICATION_NAME=“UTMAPPL1“;1

WT_SYSTEM.HOST_NAME=“HOST01“;2

WT_SYSTEM.UPIC_CODE_CONVERSION=“NO“;
WT_SYSTEM.LOCAL_PORT=“12345“;
WT_SYSTEM.TAC=....

1 WT_SYSTEM here means the connection specific system object

Configuring connections Aligning WebTransactions and the host

WebTransactions for openUTM 131

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
7

WebTransactions under BS2000/OSD – openUTM host under BS2000/OSD
(usual case: without BCMAP entries)

BCMAP entries are only necessary in exceptional cases (see section “BCMAP entries
(BS2000/OSD)” on page 142).

In this example, the parameters for the openUTM application were entered in the system
object attributes. Alternatively, you can use the upicfile, see page 134. In this case, you
must provide the system object attribute, SYM_DEST.

Server:
openUTM app.
HOST01
(BS2000/OSD)

Client:
WebTransactions
application
(BS2000/OSD)

KDCFILE
PTERM entries

ptermname PTYPE BCAMAPPL LTERM

CLIENT1 UPIC-R UTMAPPL1 lterm1

BCAMAPPL entries

appliname T-PROT

UTMAPPL1 ISO

localapps

Constant Local
name

FREE
FREE
...

CLIENT1
CLIENT2
...

HOST01 must be entered as the name of the remote openUTM host computer in the BCAM-RDF (re-
source definition file) of the computer on which WebTransactions is running.

2

Template

WT_SYSTEM.APPLICATION_NAME=“UTMAPPL1”;1

WT_SYSTEM.HOST_NAME=“HOST01”;2

WT_SYSTEM.UPIC_CODE_CONVERSION=“NO”;
WT_SYSTEM.TAC=....

1 WT_SYSTEM here means the connection specific system object

Configuring the WebTransactions side Configuring connections

132 WebTransactions for openUTM

7.2 Configuring the WebTransactions side

On the WebTransactions side, you must configure the following:

● The local WebTransactions application by making entries in the localapps file

● The openUTM application. Here there are two possibilities:

– via system attributes, see page 133

– via the upicfile, see page 134

In some configurations, it is also necessary to set the outgoing port number of the local
socket connection in the LOCAL_PROT attribute, see also page 149.

7.2.1 localapps file

The WTHolder program logs on to the communication system under a local name. The
communication system converts this name into a name which is known to the underlying
transport system.

If multiple instances of the WTHolder program are to run simultaneously, then a separate
local name is required for each parallel connection. The communication system converts
each of these names into a T selector.

WebTransactions controls the assignment of local names to the WTHolder programs via the
file localapps. This file must be located in the WebTransactions base directory and must
contain the following entries:

– one entry for each simultaneous program run
– the text “FREE” as of column 1 (the session ID is entered here while an entry is in use)
– local name as of column 16

The file can also contain comments. These start with an asterisk (*) in column 1.

 localapps is created automatically when a base directory is generated and already
contains default entries.

Example localapps

*<Session-ID> <Name>
FREE LOCAL1
FREE LOCAL2

i

Configuring connections Configuring the WebTransactions side

WebTransactions for openUTM 133

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
7

WebTransactions under BS2000/OSD: automatic mapping

In the case of BCAM, configuration entries for the BCAM communication system (BCMAP
entries) are now only necessary in exceptional cases (for more information see section
“BCMAP entries (BS2000/OSD)” on page 142).

Local names for UPIC-L (Solaris, Linux)

In the case of local connections via UPIC-L, the local names defined in localapps must
either correspond to a PTERM name of the openUTM application or KDCDEF statement
TPOOL with PTYPE=UPIC-L must be specified on openUTM generation.

7.2.2 Addressing the openUTM application using system attributes

The openUTM application service can also be addressed directly using system attributes,
without using an entry in the upicfile, which the SYM_DEST system attribute refers to. An
entry which is preconfigured by the current WebTransactions versions is then necessary in
the upicfile. This entry could miss if it is tranferred from an old WebTransactions installation.

In the BS2000/OSD, the line is:
HD.DEFAULT NOCONN;
Also refer to the notes in section “Preparing upicfile in the DMS user ID (BS2000/OSD)”
on page 73.

In Windows/Linux/Solaris, the line is:
SD.DEFAULT NOCONN

The following attributes are available for addressing directly:

APPLICATION_NAME
Name of the openUTM application

HOST_NAME or HOST_IP_ADDRESS
Name or IP address of the computer on which the openUTM application is running.

HOST_PORT
Port number on which the openUTM application listens. The port number must only
be specified if the openUTM application is not listening on port 102.

TAC Transaction code with which openUTM starts the service.

UPIC_CODE_CONVERSION
Indicates whether a code conversion should be carried out.

LOCAL_PORT
Port number used in the client computer as outgoing port, only necessary in special
configurations.

Configuring the WebTransactions side Configuring connections

134 WebTransactions for openUTM

For a detailed description of these attributes, see page 146.

7.2.3 upicfile

The upicfile contains the data required for communication with the openUTM application.
The SYM_DEST systemattribute (see page 151) is used determine the entry in the upicfile.

The upicfile entry provides UPIC with the actual target for the symbolic target entry in the
SYM_DEST system attribute by assigning a host application name, a host name and a trans-
action code.

In order for UPIC to be able to access the upicfile, it must be in the base directory under
Solaris, Linux and Windows, for BS2000/OSD it must be copied to the DVS (see page 73).

 The upicfile is automatically generated when a base directory is created and
contains example entries, including the entry, SD.DEFAULT NOCONN.

The upicfile is always evaluated if it exists in the base directory, even if a host
application is addressed directly using system object attributes.

Contents of upicfile

The upicfile must contain the following entries in uppercase:

– identifier for ASCII/EBCDIC conversion (HD or SD)
– symbolic destination name via which UPIC accesses the entries in the upicfile
– name of the host application and the host on which the openUTM application is running.
– transaction code of the first program unit of a openUTM conversation (conversation

TAC)
– where applicable, the port number on which the openUTM application listens.

Under BS2000/OSD, each line in the upicfile must end with a semi-colon and must not
contain any comments.

Under Windows, each line of the upicfile, including the last, must end with CR LF
(Return/Enter key). Under Solaris, Linux and Windows, the upicfile may contain comment
lines. These always begin with the character * in the first column.

A communication destination is entered as follows:

 {HD|SD}sym_dest utmappl[.host] tac [PORT=portnumber] [PROTOCOL={34|40}]

i

Configuring connections Configuring the WebTransactions side

WebTransactions for openUTM 135

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
7

Meaning

{HD|SD} sets the automatic code convertion between ASCII and EBCDIC for communi-
cation with the host.

HD The data is sent by the host in EBCDIC and expected as such on
receipt.

SD The data is sent by the host in ASCII and expected as such on receipt.

 Conversion of data is only carried out as required, i.e. only when the
client system uses a code that differs from that of the host system.

sym_dest Symbolic name via which UPIC accesses the entries in the upicfile. UPIC
always uses the entry whose sym_dest name corresponds to the current value
of the SYM_DEST system attribute. sym_dest must be exactly 8 characters in
length and must be appended to the conversion identifier without ay intervening
space.

utmappl.utmhost
 identifies the openUTM application.

When using UPIC-R, the name must be given in two sections separated by a
period (dot). utmappl is the name of the openUTM application and utmhost is the
name of the computer on which the openUTM application is running.
utmappl.utmhost must be preceded by a space.

When using UPIC-L, only the first section of the name must be given (without
utmhost). utmappl can have up to 8 characters.

tac Transaction code with which openUTM starts the service. This transaction code
must have been created in the openUTM configuration, either by the KDCDEF
statement TAC or by means of dynamic configuration.

PORT=portnumber
Port number over which the openUTM application is reached. This operand is
only required if the openUTM application cannot be reached on port 102.

PROTOCOL={34|40}
In PROTOCOL you specify whether communications should be performed via the
extended V4.0 UPIC protocol (PROTOCOL=40) or the Version 3.4 UPIC protocol
(PROTOCOL=34). The PROTOCOL specification is optional.

If you omit to specify PROTOCOL, UPIC first attempts to establish a conversation
on the basis of the extended protocol (40). If this is not possible, UPIC then tries
to establish the conversation using the V3.4 protocol (34).

i

Configuring the WebTransactions side Configuring connections

136 WebTransactions for openUTM

Example upicfile

HDSERVICE4 UTMAPPLI.HOST0001 TAC4

UPIC uses this entry if the current value of the WT_SYSTEM.SYM_DEST attribute is SERVICE4.
UPIC uses the name UTMAPPLI.HOST0001 to identify the host application. HOST0001 is the
host name, that is registered in the TCP/IP Name Service, see also section “Declaring the
server computer name” on page 137.
UTMAPPLI stands for the host application name. If the openUTM application is working
without TNS (Solaris, Linux and Windows) or without BCAMP entries (BS2000/OSD), then
UTMAPPLI is the name that is generated in openUTM using BCAMAPPL, see page 138. If
the openUTM application uses TNS or BCAMP, then UTMAPPLI is the name in the corre-
sponding TNS or BCMAP entry.

In this case, port 102 is used, as PORT= was not specified.

Since PROTOCOL is not specified in this example, UPIC first tries to establish a connection
via the Version 4.0 protocol. If this attempt is unsuccessful, the connection is established
using the Version 3.4 protocol.

Configuring connections Configuring the WebTransactions side

WebTransactions for openUTM 137

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
7

7.2.4 Declaring the server computer name

The client and server computers must be declared to one another. There are two ways of
doing this:

● Both computers are configured for the DNS (Domain Name Service). In this case, no
further entries are necessary.

● Otherwise, the server computer on which the openUTM application is running must be
entered at the client computer together with its Internet address:

– For Solaris, Linux and Windows, in the hosts file:

IP address UTM host

example: 123.4.5.6 HOST0001

– In the case of BS2000/OSD, the symbolic name must be entered either statically in
the BCAM-RDF (resource definition file) or dynamically via BCIN.

– Alternatively you can use the connection specific system object attribute
HOST_IP_ADDRESS (see section “Addressing the openUTM application using system
attributes” on page 133).

Configuring the openUTM (host) side Configuring connections

138 WebTransactions for openUTM

7.3 Configuring the openUTM (host) side

Client computers and applications must be declared on the host computer on which the
openUTM application is running. This is performed using KDCDEF control statements
during openUTM generation.

If the openUTM application is running under Windows, Solaris or Linux, TNS entries on the
host side may be required for communication with WebTransactions. These can be
generated automatically during the KDCDEF run (see openUTM manual “Generating Appli-
cations”).

If the openUTM application is running on a BS2000/OSD platform, corresponding host-side
BCMAP entries are required only in exceptional cases (see section “BCMAP entries
(BS2000/OSD)” on page 142).

7.3.1 Adapting the openUTM generation

You declare the local names of the WebTransactions applications by means of the following
KDCDEF control statements during KDCDEF generation.

BCAMAPPL statement

The BCAMAPPL statement defines the local name of the openUTM host application.

utmappl local name of the openUTM host application.
Under Solaris, Linux and Windows, there must be a TNS entry for utmappl that
maps utmappl to a T selector. Under BS2000/OSD and when working without
BCMAP entries, utmappl must directly match the agreed partner name in the
upicfile or the APPLICATION_NAME attribute.

 When working without TNS on a Solaris, Linux or Windows host platform, the
operand LISTENER-PORT=number must also be defined. number is the number of the
port on which the openUTM application can be reached. If number ≠102, this port
number must also be entered on the client in the upicfile or the HOST_PORT
attribute.

 BCAMAPPL utmappl, T-PROT=RFC1006

i

Configuring connections Configuring the openUTM (host) side

WebTransactions for openUTM 139

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
7

Individual access points using PTERM-/LTERM statements

You define an access point for a WTHolder program by means of a pair of PTERM and LTERM
statements. You must therefore specify a separate PTERM/LTERM- pair for each parallel
connection.

● PTERM statement

upic_client Name of the client. Under Solaris, Linux and Windows, there must be a TNS
entry for upic_client which maps upic_client to a T selector. if you are working
without BCMAP entries - correspond directly to one of the local names
declared in the file localapps.

lterm_name
Name of an LTERM partner (see LTERM statement).

utmappl Local name of the openUTM host application.

client_processor
Symbolic name of the client computer. The symbolic name is mapped to the
Internet address (e.g. via the Domain Name Service DNS). The PRONAM
operand is only obligatory for Solaris, Linux and Windows if client_processor
is specified in the TNS entry for the remote client (as name part 4). In the
case of BS2000/OSD, the PRONAM operand is always obligatory.

Under Solaris, Linux and Windows UPIC is also available in the UPIC-L version (for
local connections). Select this if you set PTYPE=UPIC-L in the PTERM statement.

PTERM statement without TNS (Solaris, Linux, Windows)

When working under Solaris, Linux or Windows without TNS, the PTERM statement
must be in the following form:

PTERM upic_client, PTYPE=UPIC-R, LTERM=lterm_name, BCAMAPPL=utmappl,
LISTENER-PORT=number, TPROT=RFC1006, PRONAM=client_processor

LISTENER-PORT=number defines the port number used as outgoing port at the client
computer. This port number must also be defined for WebTransactions in the
LOCAL_PORT attribute. The PRONAM operand is obligatory in this case.

 PTERM upic_client, PTYPE=UPIC-R, LTERM=lterm_name, BCAMAPPL=utmappl,
PRONAM=client_processor, ...

Configuring the openUTM (host) side Configuring connections

140 WebTransactions for openUTM

● LTERM statement

lterm_name
Name of an LTERM partner (=logical access point for the openUTM
application). Any lterm_name can be selected. openUTM requires this
symbolic name for internal management purposes.

[operands]
In the LTERM statement, you can also define properties for this access point
by specifying additional optional operands. For example, you can set
special access rights.

Example (BS2000/OSD)

BCAMAPPL UTMAPPL1, T-PROT=RFC1006

PTERM CLIENT1, PTYPE=UPIC-R, LTERM=lterm_name1,
BCAMAPPL=UTMAPPL1, PRONAM=HOST002, ...

LTERM lterm_name1 [operands]

PTERM CLIENT2, PTYPE=UPIC-R, LTERM=lterm_name2,
BCAMAPPL=UTMAPPL1, PRONAM=HOST002, ...

LTERM lterm_name2 [operands]

PTERM upic_client, PTYPE=UPIC-R, LTERM=lterm_name, BCAMAPPL=utmapp1,
PRONAM=client_processor, ...

LTERM lterm_name, [operands]

Access point pool using the TPOOL statement

As an alternative to using multiple PTERM and LTERM statements, you can also use the TPOOL
statement to define a limited number of access points. In this case, there is no fixed name
assignment between the entries created on KDCDEF generation and the TNS entries.

The operand LTERM=prefix defines a prefix from which openUTM creates internal LTERM
names for the individual access points in the pool in order to differentiate between the
WTHolder programs which make parallel access attempts. The internally formed LTERM
name is a maximum of eight characters in length and consists of the specified prefix
followed by a serial number (e.g. UPIC0001, UPIC0002,....).

 LTERM lterm_name, [operands]

 TPOOL BCAMAPPL=utmappl, PTYPE=UPIC-R, LTERM=prefix, NUMBER=1000, PRONAM=*ANY

Configuring connections Configuring the openUTM (host) side

WebTransactions for openUTM 141

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
7

Example

TPOOL BCAMAPPL=UTMAPPL1, LTERM=CLNT, NUMBER=1000,PTYPE=UPIC-R,PRONAM=*ANY

● The BCAMAPPL operand is optional for Solaris, Linux and Windows. It is obligatory for
BS2000/OSD. The specified name must be defined in a BCAMAPPL statement.

● LTERM and NUMBER generate permissible LTERM names in the form CLNT0001,
CLNT0002, ...

● PTYPE=UPIC-R: the physical partner is a UPIC client
(under Solaris and Linux it is also possible to specify UPIC-L)

● PRONAM=*ANY: any computer which knows the partner name (UTMAPPL1) can commu-
nicate with this host application via UPIC.

7.3.2 Declaring the client computer

The client and server computers must be declared to one another. There are two ways of
doing this:

● Both computers are configured for the DNS (Domain Name Service). In this case, no
further entries are necessary.

● Otherwise, the client computer on which WebTransactions is running must be entered
at the server computer together with its Internet address:

– For Solaris, Linux and Windows, in the hosts file:

IP address client computer name

example: 123.4.5.6 WTCOMPUTER

– In the case of BS2000/OSD, the symbolic name of the client computer must be
entered statically in the BCAM-RDF (resource definition file) or dynamically via
BCIN.

BCIN example:

/BCIN HOST002, INI=ALL, ACTIVE=ALL, IPA=(123,4,5,6), PROT=(TCP,IP)

The Internet address of the client computer is specified by means of the IPA
parameter. Commas are used as separators.

BCMAP entries (BS2000/OSD) Configuring connections

142 WebTransactions for openUTM

7.4 BCMAP entries (BS2000/OSD)

Global BCMAP entries are only required in cases in which automatic mapping is not
possible (e.g. because the names used are longer than eight characters).

An overview of the relations between the BCMAP entries which may be necessary is
presented on the following page.

● Entries on the WebTransactions side:

Make the following local entries for the WebTransactions application:

/BCMAP FU=DEFINE, SU=LOCAL, APPL=(OSI, LOCAL1), TSEL-I=(8, C‘CLIENT1‘),
TSEL-N=CLIENT1

/BCMAP FU=DEFINE, SU=LOCAL, APPL=(OSI, LOCAL2), TSEL-I=(8, C‘CLIENT2‘),
TSEL-N=CLIENT2

...

Make the following global entries for the remote openUTM application:

/BCMAP FU=DEFINE, SU=GLOBAL, NAME=(OSI, SERVER1), ES=HOST0001,
PTSEL-I=(8, C‘UTMAPPL1‘), PTSEL-N=UTMAPPL1

This mapping is only necessary if the openUTM application and WebTransactions are
not running on the same computer.

The precise BCMAP command specification may vary depending on the transport
system.

● Entries on the host side:

BCMAP entries are only necessary here if default mapping (i.e. names correspond, the
transport system transparently forwards the host application name, etc.) fails to find the
host application.

Configuring connections BCMAP entries (BS2000/OSD)

WebTransactions for openUTM 143

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
7

Server: UTM app. HOST01 (BS2000/OSD)

Client: WebTransactions application (BS2000/OSD)

KDCFILE
PTERM entries

ptermname PTYPE BCAMAPPL LTERM

CLIENT1 UPIC-R UTMAPPL1 lterm1

BCAMAPPL entries

appliname T-PROT

UTMAPPL1 ISO

localapps

Const
ant

Local
name

FREE
FREE
...

LOCAL1
LOCAL2
...

upicfile

K SYM_DEST Partner TAC

HD SERVICE4 APPL1 TAC4

Template

WT_SYSTEM.SYM_DEST
=“SERVICE4“

BCMAPs for remote app.

/BCMAP PTSEL-I=(8,C'UTMAPPL1'), PTSEL-N=UTMAPPL1
ES=HOST01, FU=DEFINE, SU=GLOBAL,
NAME=(OSI,APPL1);

BCMAPs for loc. app.

/BCMAP FU=DEFINE, SU=LOCAL, NAME=(OSI,UTMAPPL1)
ES=HOST01, PTSEL-I=(8,C'UTMAPPL1'), PTSEL-
N=UTMAPPL1;

BCMAPs for loc. app.

/BCMAP TSEL-I=(8,C'CLIENT1'),FU=DEFINE,
APPL=(OSI,LOCAL1), TSEL-N=CLIENT1, SU=LOCAL

BCMAPs for remote app.

/BCMAP APPL=(OSI,CLIENT1), FU=DEFINE, SU=GLOBAL,
TSEL-I=(8,C'CLIENT1'),PTSEL-N=CLIENT1, ES=HOST01;

BCMAP entries (BS2000/OSD) Configuring connections

144 WebTransactions for openUTM

WebTransactions for openUTM 145

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
8

8 Controlling communication

8.1 openUTM-specific attributes of the system object

Certain system object attributes can be used to control communication between
WebTransactions and the openUTM application.

If there is a WT_SYSTEM object (“connection-specific system object”) in the communication
object used, then these attributes must be defined in this object. Otherwise they should be
declared as attributes of the global system object WT_SYSTEM. For basic information on
connection-specific and global system objects, refer to the WebTransactions manual
“Concepts and Functions”.

When you start WebTransactions you can set these attributes in the first template (start
template) and then retain them for the entire session or control them actively during the
session (see the WebTransactions manual “Concepts and Functions”, keyword “active
dialog”).

Here we describe only those attributes which exist specifically for openUTM or which have
a special significance for openUTM. System object attributes which have the same meaning
for all WebTransactions product variants are described in the WebTransactions manual
“Concepts and Functions”.

openUTM-specific attributes of the system object Controlling communication

146 WebTransactions for openUTM

8.1.1 Overview

The table below provides an overview of the attributes and their effect.

The system object attributes are divided into the following categories:

The category to which each attribute belongs is indicated in the right-hand column of the
table below.

o (open)
Attributes that are used with open

t (temporary)
Attributes used during communication which can be modified in the templates at any
time

r (read only)
Attributes used during communication which cannot be modified in the templates

c (communication module)
Attributes set automatically by the communication module

Attribute name Meaning Description/category

APPLICATION_NAME Name of the openUTM
application

This attribute is used to establish communication with
the openUTM application. If this attribute is set, the
upicfile is ignored.

o

APPLICATION_PREFIX Prefix for the host appli-
cation name

This prefix makes it possible to identify FLD and
template files which possess the same “format names”
but belong to different applications. These FLD and
template files must be saved in the following form:
application_prefix@formatname.fld or
application_prefix@formatname.htm
The host adapter evaluates the attribute when reading
the FLD file. Evaluation of the format is template-
controlled.

o

BADTAC Specifies a BADTAC
transaction code

If an attempt is made to start a openUTM conversation
with an invalid transaction code, a conversation with the
transaction code specified in the attribute BADTAC is
started automatically (see section “BADTAC - simulating
the BADTAC event service” on page 200).

t

Controlling communication openUTM-specific attributes of the system object

WebTransactions for openUTM 147

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
8

COMMUNICATION_FILE_
NAME

File name for incoming
or outgoing data

Using this attribute, a file can be specified to which the
data fetched by receive are written or from which the
data to be sent are read. Once used, the attribute is
reset.
The file must be located in the base directory; it is
permissible to place it in the sub-directory, wwwdocs.
Default value: empty, i.e. no file will be used.

t

COMMUNICATION_
INTERFACE_VERSION

Interface version, used
for compatibility

Global WT_SYSTEM attribute:
– If this variable contains a value < "3.0", then the

name of the host format is entered in the global
system attribute FORMAT on reception of a
message from the host (receive).

– If this variable contains the value "3.0" or higher,
then no value is entered for FORMAT since the
choice of the next page (format) is made by the
templates themselves (generally by evaluating the
FLD attribute).
Default value: 7.5

t

CONVERSATION_TAC Controls conversation
connection

With this attribute, a conversation connection is
attempted via the openUTM control field or the first 8
Bytes of the format (see section “Automatic conversation
chaining” on page 201).

o

CUT_TAC_FIELD Removes the TAC field
from the first message

In the case of *formats and +formats which a program
unit sends on the start of a conversation, openUTM
removes the transaction code in terminal mode: in the
case of *formats the first 8 characters (TAC), and for
+formats the first 10 characters (attribute field plus TAC).
This behavior is simulated by WebTransactions by
default. If the transaction code in the first message of a
conversation is not to be removed (e.g. because the
openUTM application inserts an Input Exit and the trans-
action code is not therefore allocated at the start of the
message), then this attribute must be set to NO. In all
other cases, the transaction code is removed.

t

DISPLAY_EURO Display Euro symbol If this attribute is set to Yes then the character that corre-
sponds to code X’A4’ of the ISO-8859 code table is
output as the Euro character.
If DISPLAY_EURO=No (default) then the currency symbol
(¤) is displayed for X’A4’.

t

Attribute name Meaning Description/category

openUTM-specific attributes of the system object Controlling communication

148 WebTransactions for openUTM

EPILOG Epilog This attribute contains the name of a template (without
the suffix '.htm'). If the attribute is defined then the corre-
sponding template is included at the end of the
generated template.
Default: No inclusion

 The attribute is only evaluated by the
generated standard template and not by
the host adapter.

See also PROLOG and FORMTPL

t

FLD Name of the current
field file

The value of this attribute is set by the receive call and
should not be changed. It points to the field file that
contains the structure of the message just received from
the host application. The same value is expected by the
following send call. If the openUTM application does not
supply any format names, FLD is set to the default
names from the line mode template wtlnmode.htm.
See also FORMAT and APPLICATION_PREFIX

r

FORMAT_SEQ Number of a partial
format

This attribute is set by the receive call. If a partial
format has been received, its number is stored in this
attribute: 1,2,3, In the case of the last partial format of
a message, the value of this attribute is LAST. If a full
format has been received, this attribute contains an
empty string.

r

FORMTPL Form field This attribute contains the name of a template (without
the suffix '.htm'). If the attribute is defined then the
corresponding template is included at the start of the
wtDataForm in the generated templates.
Default: No inclusion

 The attribute is only evaluated by the
generated standard template and not by
the host adapter.

See also PROLOG and EPILOG.

t

Attribute name Meaning Description/category

i

i

Controlling communication openUTM-specific attributes of the system object

WebTransactions for openUTM 149

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
8

HOST_CHAR_CODE Character coding used This attribute specifies whether communication with the
host application is to be carried out in ASCII ("A") or
EBCDIC ("E"). You can also specify the name of a file
that contains a conversion table,
("T[ABLE]:asciifilename"). This table is searched for
under the base directory. A standard version is supplied
in /install_dir/lib/ASCII.EBCDIC.G.
In the case of FHS + formats or # formats with attribute
combination, the conversion in UPIC must be disabled
(see upicfile and UPIC_CODE_CONVERSION attribute)
and HOST_CHAR_CODE must be used.
By default, no value is set for HOST_CHAR_CODE, i.e. no
conversion is performed.

t

HOST_IP_ADDRESS IP address of the
computer on which the
openUTM application is
running

This attribute is used to establish communication with
the openUTM application.

o

HOST_NAME Name of the host
computer

This attribute is used to establish communication with
the openUTM application.

o

HOST_PORT Port number of the
openUTM application

This attribute is used to establish communication with
the openUTM application. It must only be set if the
partner application is not reachable on port 102.
Default setting: 102

o

LOCAL_APPLICATION Name used by
WebTransactions to log
onto the transport
system

If a fixed application name is to be used to establish the
connection instead of the first free entry in the
localapps file, this name must be set in
LOCAL_APPLICATION (see section “Targeted logon via
specific LTERMs” on page 204). The localapps file is
then ignored.
Default value: empty

o

LOCAL_PORT Number of the local
port

If this attribute is set, this port will be used by the socket
connection as the output port on the local system.

o

PASSWORD Password WebTransactions uses this password for user logons to
openUTM.
This is only useful in combination with the USER attribute
and SECURITY_TYPE=PASSWORD.

o

Attribute name Meaning Description/category

openUTM-specific attributes of the system object Controlling communication

150 WebTransactions for openUTM

NEW_PASSWORD New password This attribute can be used to allocate a new password for
the openUTM user recognition. This is only useful in
combination with the USER attribute and
SECURITY_TYPE=PASSWORD.
The new password can only be allocated if the old
password has expired and provided that the openUTM
application has been appropriately generated (grace
sign-on).
After a subsequent receive call, it should be checked
by using the RECEIVE_ERROR attribute whether the
password was successfully changed, see also
page 156.

o

PROLOG Prolog This attribute contains the name of a template (without
the suffix '.htm'). If the attribute is defined then the
corresponding template is included at the start of the
generated template.
Default: No inclusion

 The attribute is only evaluated by the
generated standard template and not by
the host adapter.

See also EPILOG and FORMTPL

t

RECEIVE_ERROR UPIC return code after
receive

The UPIC return code is passed in this attribute following
a receive call. This permits improved error handling in
the template. For possible values, see page 156.

t

RECEIVE_SECONDARY_
INFORMATION

Secondary UPIC return
code after receive

The secondary UPIC return code gives information on
the precise cause of error. This permits detailed error
handling.

t

RESTART Conversation
restart

This attribute specifies a start with or without automatic
restart. Possible values: YES, NO. Default value is NO. The
value YES is only useful if SECURITY_TYPE≠NONE.

o

RETRY Retry
repeats

If this attribute is set at start time, it specifies the number
of times WebTransactions should repeat an attempt to
call the open method if it does not succeed - e.g.
because of a lack of openUTM resources.

o

SECURITY_TYPE openUTM security level This attribute is set on start. The possible values are:
– NONE (preset value: neither the user name nor

password are used)
– USER (logon under user name but without password)
– PASSWORD (logon with user name and password)

o

SPECIAL_KEY Special keys This attribute can be used to transfer F and K keys to the
openUTM application. Possible values are F1-F24 and
K1-K14 (K1-K14 only for openUTM on BS2000/OSD)

t

Attribute name Meaning Description/category

i

Controlling communication openUTM-specific attributes of the system object

WebTransactions for openUTM 151

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
8

SYM_DEST Symbolic Destination This attribute must only be set if the parameter for the
connection to the openUTM application is read from the
upicfile file. In this case, the attribute must be set
before the open call. With active dialog control, you must
provide the attribute before a renewed open call.
SYM_DEST must be exactly 8 characters long.
Default setting: undefined, i.e. the connection param-
eters must be set individually using the appropriate
system attributes.

t

TAC Transaction code This attribute is used to address the service that is to be
called in the openUTM application.

o

TIMEOUT Maximum waiting time
for receive

This attribute controls the maximum time the system
waits for a response from the host during a receive.
If TIMEOUT is greater than the global system object
attribute TIMEOUT_APPLICATION or is not set, a value
derived from the TIMEOUT_APPLICATION is used:
– TIMEOUT_APPLICATION > 10:

TIMEOUT is TIMEOUT_APPLICATION -5
– TIMEOUT_APPLICATION > 1:

TIMEOUT is TIMEOUT_APPLICATION -1
– TIMEOUT_APPLICATION =1

TIMEOUT is TIMEOUT_APPLICATION
The value must be specified in complete seconds.

t

UPIC_CODE_CONVERSION Controls the UPIC code
conversion

If this attribute is set to "Yes", code conversion (ASCII -
EBCDIC) will be forced. In this case, the
HOST_CHAR_CODE attribute must not be set.
 "No" means no conversion. This is required for FHS
+format or #format with attribute combination. In this
case, HOST_CHAR_CODE_ must be set, see page 149.
Default setting: "Yes"

o

UPIC_LIB Library name including
path of the dynamically
linked UPIC library
(only relevant for Unix
systems with UPIC-L)

This attribute supplies the complete file name of the
dynamically linked UPIC library. It is evaluated each time
a link is established to the openUTM application
provided that the value is not an empty string.

o

UPIC_TRACE Switch for enabling
UPIC trace (does not
apply for Windows)

This attribute is evaluated when the connection is estab-
lished. If the value of this attribute is not 'empty string',
the UPIC trace is enabled and stored in the directory,
BASEDIR/tmp/SESSION.
On the BS2000 system, the trace is stored in the same
place that the upicfile must be stored, namely under
the ID under which the Web server is started (see
page 73).

o

Attribute name Meaning Description/category

openUTM-specific attributes of the system object Controlling communication

152 WebTransactions for openUTM

USER User name WebTransactions uses the user name specified here for
user logon to openUTM. This is only of use together with
SECURITY_TYPE≠NONE.

o

UTM_PATH Path under which
openUTM is installed;
(only relevant for Unix
platforms when using
UPIC-L)

This attribute is evaluated each time a connection is
established to the openUTM application if a library for
UPIC-L is specified in UPIC_LIB.

o

Attribute name Meaning Description/category

Controlling communication openUTM-specific attributes of the system object

WebTransactions for openUTM 153

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
8

8.1.2 Interaction between system object attributes and actions/methods

This section provides information on which openUTM-specific attributes of the communi-
cation-specific system object are relevant for which method calls.

Establishing a connection - open

A call to the open method opens a connection to the openUTM application. The following
attributes of the system object control the open call:

Attribute Meaning

APPLICATION_
PREFIX

Prefix for the host application name.
This prefix makes it possible to identify FLD files which possess the same
“format names” but belong to different host applications. These FLD files
must be saved in the following form:
application_prefix@formatname.fld

APPLICATION_NAME Name of the openUTM application If this attribute is set, the upicfile
(SYM_DEST entry) is ignored.

HOST_NAME Name of the computer on which the openUTM application is running

HOST_IP_ADDRESS IP address of the computer on which the openUTM application is running If
this attribute is set, any name set by means of HOST_NAME is ignored.

HOST_PORT Port number of the openUTM application; this attribute must only be set if
the openUTM application is not reachable on port 102.
Default setting: 102

LOCAL_PORT Number of the local port

TAC Transaction code of the service that is to be called in the openUTM appli-
cation.

UPIC_CODE_
CONVERSION

If this attribute is set to "Yes", code conversion (ASCII - EBCDIC) will be
forced. "No" means no conversion.

SYM_DEST Specifies the symbolic destination name from the file, upicfile. This
attribute must only be set if the service of the openUTM application is not
addressed using the APPLICATION_NAME, HOST_NAME...,TAC attribute
named above. The addressing parameters required must then be stored in
the upicfile.
The symbolic destination name is 8 characters long.

SECURITY_TYPE Security level: NONE, USER or PASSWORD (see page 195)

USER openUTM user name (see page 195)

PASSWORD openUTM user password (see page 196)

NEW_PASSWORD New openUTM user password (see page 196)

RESTART Restart: Yes or NO (see page 197)

openUTM-specific attributes of the system object Controlling communication

154 WebTransactions for openUTM

In addition, all attributes marked “o” in the table in section “Overview” on page 146 are
evaluated on connection setup.

Sending data - send

A call to the send method sends a message to the openUTM application. The following
system object attributes are evaluated or set:

ERROR Error message. If an error occurs in the execution of open, a corresponding
message is passed to the system object attribute ERROR. If the call is
successful, this attribute remains empty.

RECEIVE_ERROR If SECURITY_TYPE ≠ NONE but the USER attribute is empty, an error message
(CM_SECURITY_NOT_VALID) is passed to this attribute as soon as an
attempt is made to establish a connection.

RECEIVE_
SECONDARY_
INFORMATION

Secondary UPIC return code, giving information on the precise cause of
error.

LOCAL_APPLICATION Logon via fixed host application name.

Attribute Meaning

FLD Name of the field file. WebTransactions uses the FLD attribute to determine
the corresponding field file for the interpretation of the data sent to the
openUTM application. The value of the attribute is generally set correctly by
an earlier receive call. The current host data objects are now sent as a
message to the openUTM application.

ERROR Error message. If an error occurs in the execution of send, a corresponding
message is passed to the system object attribute, ERROR. If the call is
successful, this attribute remains empty.

COMMUNICATION_
FILE_NAME

Name of the file whose data is to be sent. The file must be located in the
base directory; it can be stored in the sub-directory, wwwdocs.

Attribute Meaning

Controlling communication openUTM-specific attributes of the system object

WebTransactions for openUTM 155

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
8

Receiving data - receive

The call to the receive method receives a message from the openUTM application and sets
the following system object attributes:

Attribute Meaning

FLD Name of the received format / partial format. The corresponding field file
receives the same name with the extension, .fld. WebTransactions uses
this file to determine the structure of the received data. Following a receive
call, the data can be accessed in the form of host data objects.

FORMAT_SEQ Serial number of the received partial format (starting with 1). On the last
partial format, FORMAT_SEQ is assigned the value, LAST. When partial
formats are used, each receive call receives one partial format. You must
therefore issue multiple calls in order to receive all the partial formats (see
section “Special characteristics of FHS/FORMANT partial formats” on
page 104). In the case of full formats, this attribute is not relevant and
contains

COMMUNICATION_
FILE_NAME

Name of the file to to be used in place of the host data objects for send or
receive. The file must be located in the base directory; it can be stored in
the sub-directory, wwwdocs.

ERROR Error message. If an error occurs in the execution of receive, a corre-
sponding message is passed to the system object attribute, ERROR. If the call
is successful, this attribute remains empty.

RECEIVE_
ERROR

UPIC return code. The UPIC return code is passed in this attribute following
a receive call. This permits improved error handling in the template
(possible values, see following section).

RECEIVE_
SECONDARY_
INFORMATION

Secondary UPIC return code, giving information on the precise cause of
error.

openUTM-specific attributes of the system object Controlling communication

156 WebTransactions for openUTM

UPIC return codes after receive

The RECEIVE_ERROR attribute passes the UPIC return code following a receive call.
The following vales are possible:

CM_OK
The call was successful

CM_SECURITY_NOT_VALID
Possible causes:
– invalid openUTM user name
– invalid password
– the openUTM application was generated without USER
– the user cannot log onto the openUTM application because of a resource

bottleneck
In the RECEIVE_SECONDARY_INFORMATION attribute is output the precise error reason,
see page 157.

CM_TPN_NOT_RECOGNIZED
Possible causes:
– Invalid transaction code (TAC) in the upicfile, e.g.:

– TAC not generated
– no authorization to call this TAC
– TAC only permitted as follow-up TAC
– TAC is not a dialog TAC

– Conversation restart rejected since no openUTM user name has been
generated with RESTART=YES.

CM_TP_NOT_AVAILABLE_NO_RETRY
Conversation restart is not possible since the openUTM application has been
regenerated.

CM_TP_NOT_AVAILABLE_RETRY
Conversation restart was rejected since the openUTM application is being termi-
nated.

CM_DEALLOCATED_ABEND
Possible causes:
– Abnormal termination of the openUTM conversation
– End of openUTM application
– Disconnection by openUTM administration
– Disconnection by the transport system
– Disconnection by openUTM because maximum permitted number of users

exceeded (MAX statement, CONN-USERS=). The cause may also lie in the fact that
an administrator USER has been passed even though the user assigned in the
LTERM ...USER= statement is not an administrator USER.

Controlling communication openUTM-specific attributes of the system object

WebTransactions for openUTM 157

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
8

CM_DEALLOCATED_NORMAL
A PEND-FI call has been executed in the openUTM conversation.

CM_RESOURCE_FAILURE_RETRY
A temporary resource bottleneck has resulted in the termination of the conver-
sation. Possibly no more data can be buffered in the openUTM page pool.

CM_RESOURCE_FAILURE_NO_RETRY
An error has occurred which resulted in the premature termination of the conver-
sation (e.g. a protocol error or premature loss of the network connection).

CM_MAP_ROUTINE_ERROR
Only occurs with openUTM-V3.4 applications which WebTransactions accesses
with PROTOCOL=UTM_V4.

CM_PROTOCOL_ERR
Only occurs with openUTM-V4.0 applications which WebTransactions accesses
with PROTOCOL=UTM.

CM_UNKNOWN_ERR
Programming error.

CM_PROGRAM_PARAMETER_CHECK
Programming error.

Secondary UPIC return codes in RECEIVE_SECONDARY_INFORMATION

After a receive call with RECEICE_ERROR=CM_SECURITY_NOT_VALID, the secondary UPIC
return code is passed to the RECEIVE_SECONDARY_INFORMATION attribute. The following
vales are possible:

CM_SECURITY_USER_UNKNOWN
The specified user name is not generated in the openUTM application.

CM_SECURITY_STA_OFF
The specified user name is locked out at present.

CM_SECURITY_USER_IS_WORKING
The specified user name is currently being used by another user.

CM_SECURITY_OLD_PSWORD_WRONG
The old password entered is incorrect (when changing a password).

CM_SECURITY_NEW_PSWORD_WRONG
The new password entered does not match (e.g. error on repeating password).

CM_SECURITY_PASSWORD_EXPIRED_NO_RETRY
The password has expired and can no longer be changed by the user. Please inform
the administrator of the openUTM application.

openUTM-specific attributes of the system object Controlling communication

158 WebTransactions for openUTM

CM_SECURITY_PASSWORD_EXPIRED_RETRY
The password has expired but can still be changed by the user. After changing the
password, the user can log onto the openUTM application again.

CM_SECURITY_COMPLEXITY_ERROR
The new password is too simple. Enter a more complex password, e.g. with special
characters, digits and fewer repeated characters.

CM_SECURITY_PASSWORD_TOO_SHORT
The new password is too short.

CM_SECURITY_UPD_PSWORD_WRONG
The changed password is too simple. Enter a more complex password.

CM_SECURITY_TA_RECOVERY
The user must restart the transaction.

CM_SECURITY_PROTOCOL_CHANGED
The LTERM may not continue the open transaction

CM_SECURITY_SHUT_WARN
Warning from the administrator: The openUTM application is about to be shut down.
Please log off immediately.

CM_SECURITY_ENC_LEVEL_TOO_HIGH
Data encryption error: the encryption mechanism required to continue the open
conversation is not available on the connection.

CM_SECURITY_NO_CARD_READER
No card reader was found.

CM_SECURITY_CARD_INFO_WRONG
The data on the card are incorrect.

CM_SECURITY_NO_RESOURCES
No more resources available

CM_SECURITY_TAC_KEY_MISSING
The LTERM may not continue the open conversation

Controlling communication Host objects and attributes

WebTransactions for openUTM 159

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
8

8.2 Host objects and attributes

Two types of host objects are involved in UPIC-based communications between
WebTransactions and the openUTM application:

● Host data objects

These are objects which correspond to the fields in a format:
WT_HOST.handle.fieldname (see section “Host objects for the individual format fields (host
data objects)” on page 159)

For binary transmission, there is a separate host data object to represent the data.

● Host control objects:

These are objects which manage global data and have reserved names:
WT_HOST.handle.WT_HOST_MESSAGE (see section “Host control object
WT_HOST_MESSAGE” on page 165)
WT_HOST.handle.WT_HOST_GLOBALS (see section “Host control object
WT_HOST_GLOBALS” on page 169)
WT_HOST.handle.$FIRST and WT_HOST.handle.$NEXT (see section “Host control objects
$FIRST and $NEXT” on page 170)

If necessary, WebTransactions also creates a connection-specific WT_SYSTEM object under
the root WT_HOST.handle in which the openUTM-specific system object attributes are
created. This is described in section “openUTM-specific attributes of the system object” on
page 145.

8.2.1 Host objects for the individual format fields (host data objects)

Host data objects correspond to the fields of a format. Their names are determined from the
field file (see page 85).

In the case of # formats, the attribute names correspond to the FHS attribute names. In the
case of + formats, WebTransactions maps the attribute bits to the attribute names. If, for
example, the bit for “Blinking” is set in a + format, then WebTransactions sets VISIBILITY=S
for the corresponding host data object.

For these host data object attributes, the following types of access are possible: read (r) or
read/write (w).

Unlike other objects and attributes, the attribute names of host objects are not case-
sensitive and no distinction is made between upper and lower case.

Host objects and attributes Controlling communication

160 WebTransactions for openUTM

Attribute Description Access

Attributes for all host data objects

Value Field contents in 8-bit characters (see page 163) w

HTMLValue Field contents in 7-bit characters in HTML notation (see page 163) r

RawValue Field contents as a sequence of 8-bit characters which are not
converted, apart from binary zeros which are converted to blanks
(see page 163)

w

HexStringValue Field content in the form of printable half-bytes (see page 163). w

Static attributes from the IFG format definition, valid for all host objects

Align Static field attribute Align (used in class templates) r

AutoInput Static field attribute AutoInput (Y / N)
(used in class templates)

r

Blink Static field attribute Blink (used in class templates) r

Case Static field attribute Case
(used in class templates)

r

DataType Static field attribute DataType
(used in class templates)

r

DefaultCursor Static field attribute DefaultCursor r

FloatSign Static field attribute FloatSign r

GroupDigit Static field attribute GroupDigit r

IOType Static field attribute IOType
(used in class templates)

r

Length Static field attribute Length
(used in class templates)

r

Name Name of the field, e.g. in order to address the same field again
after $NEXT

r

NumDecimals Static field attribute NumDecimals r

Signed Static field attribute Signed r

StartColumn Static field attribute Column: column in which the format field
begins

r

StartLine Static field attribute Line: line in which the format field begins r

SuppressZero Static field attribute SuppressZero r

Controlling communication Host objects and attributes

WebTransactions for openUTM 161

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
8

Unicode Static field attribute Unicode (Y / N)
Y (YES):
The host data in the UPIC buffer is converted to and from UTF-8
for forwarding to and from the browser for all fields marked
Unicode == 'Y'.
No ASCII-to-EBCDIC conversion is performed.
N (NO):
The host data is not converted to UTF-8.
ASCII-to-EBCDIC conversion is carried out in dependence on the
system object attribute HOST_CHAR_CODE.

r

Linking of static and dynamic attributes (# and + formats only)

Blinking Result of the static field attribute (see FLD file, Section
<fieldname>, "Blink" and possibly the dynamic field attribute
(Visibility = S). Possible values: Y (Yes), N (No)

r

Detectable Result of the static field attribute (see FLD file, <Fieldname>
section, “Detectable” on page 87) and if necessary of the dynamic
field attribute (Protection=D): Y (Yes), N (No)

r

Mandatory Result of the static field attribute (see FLD file, <Fieldname>
section, “Mandatory” on page 88) and if necessary of the dynamic
field attribute (Input Control=M): Y (Yes), N (No)

r

Protected Result of the static field attribute (see FLD file, <Fieldname>
section, “Protection” on page 88) and if necessary of the dynamic
field attribute (Protection=U/D): Y (Yes), N (No)

r

Underlined Result of the static field attribute (see FLD file, <Fieldname>
section, “Underline” on page 88) and if necessary of the dynamic
field attribute (Underline=Y/N): Y (Yes), N (No)

r

Visible Result of the static field attribute (see FLD file, <Fieldname>
section, “Visibility” on page 88) and if necessary of the dynamic
field attribute (Visibility=Y/N): Y (Yes), N (No)

r

Dynamic attributes for # formats if selected via the IFG profile

Color Dynamic field attribute Color, possible values:
1=red, 2=green, 3=yellow, 4=blue, 5=magenta,
6=cyan, 7=white, N=no color

w

Cursor Dynamic field attribute Cursor, possible values:
Y (Yes), N (No), H (Hold)

w

EditState Dynamic field attribute EditState, possible values:
V (Valid), I(Invalid), M (Must error), ’ ’ (blank means ’not checked’)

w

InputControl Dynamic field attribute InputControl, possible values:
N (Normal), M (Must), P (Potmust), A (Autoret)

w

Attribute Description Access

Host objects and attributes Controlling communication

162 WebTransactions for openUTM

InputState Dynamic field attribute InputState, possible values:
M (Modified), C (Cleared), D (Detected), U (Undefined), ’ ’ (blank
means “not touched”)

w

InputStateAct Dynamic field attribute InputStateAct,
see InputState

w

Intensity Dynamic field attribute Intensity, possible values:
N (Normal), H (High), D (Dark)

w

Inverse Dynamic field attribute Inverse, possible values:
Y (Yes), N (No)

w

OutputControl Dynamic field attribute OutputControl, possible values:
I (Init), D (Data), U (Undefined)

w

Protection Dynamic field attribute Protection, possible values:
A (Askip), P (Protected), U (Unprotected), D (Detectable)

w

Underline Dynamic field attribute Underline, possible values:
Y (Yes), N (No)

w

Visibility Dynamic field attribute Visibility, possible values:
V (Visible), S (Signaling), I (Invisible)

w

Dynamic attributes which are sometimes mapped for *- and + formats in the same way as for # formats

InputState Dynamic field attribute InputState, possible values:
M (Modified), D (Detected), ’ ’ (blanks mean ’not touched’)

w

Dynamic attributes which are sometimes mapped for # formats with the field attribute group ’Attribute combi-
nation’ and for + formats in the same way as for # formats. Write access is ignored and no message is output.

Cursor Dynamic field attribute Cursor, possible values:
Y (Yes), N (No)
(mapped from Cursor position in this field)

r

InputControl Dynamic field attribute InputControl, possible values:
N (Normal), A (Autoret)
(mapped from autoret)

r

Intensity Dynamic field attribute Intensity, possible values:
N (Normal), H (High), D (Dark)
(mapped from bright, normal, dark)

r

Inverse Dynamic field attribute Inverse, possible values:
Y (Yes), N (No) (mapped from inverse)

r

Protection Dynamic field attribute Protection, possible values:
A (Askip), P (Protected), U (Unprotected), D (Detectable)
(mapped from protected, unprotected, detectable)

r

Underline Dynamic field attribute Underline, possible values:
Y (Yes), N (No) (mapped from underline (italic))

r

Attribute Description Access

Controlling communication Host objects and attributes

WebTransactions for openUTM 163

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
8

Attributes Value, HTMLValue, RawValue and HexStringValue

There are three options for accessing the contents of a data field. In all cases, zeros (binary
zero, \0) are converted into blanks:

● as the "Value" attribute:

The contents of the data field are returned without appended blanks. Double quotes,
single quotes and ampersands (&) are replaced by the corresponding HTML hex
notation (&#nn;). All other characters (including umlauts) are output as 8-bit characters,
i.e. in the form in which they are output and understood by the host application. This
attribute is therefore suitable for presetting values in HTML tags of type “Input”.

You can also write to this attribute, if the corresponding field is not write protected.

In the case of host objects whose IOType is INPUT or OUTPUT, the corresponding value
is read from the message buffer. If IOType is TEXT or FIXTEXT, the text defined with the
IFG is transferred.

● as the "HTMLValue" attribute:

The contents of the data field are returned untruncated. Double quotes, single quotes
and ampersands (&) are replaced by the corresponding HTML hex notation (&#nn;). In
addition, certain special characters are converted for subsequent output in HTML:
<, >, ä, ö, ü, Ä, Ö, Ü, ß. This attribute is suitable for constant HTML body texts. It is a
read-only attribute.

● as the "RawValue" attribute:

The contents of the data field are returned unchanged (apart from the conversion of
binary zeros into blanks).

● as attribute "HexStringValue":

The content of the data field is returned in the form of printable half-Bytes. In this way,
binary data and control characters can be made readable.

Example

hello<CR>world (<CR> = Windows carriage return) is represented as
68656B6B6F0A776F726B64 (ISO 8859 coding)

Visibility Dynamic field attribute Visibility, possible values:
V (Visible), S (Signaling), I (Invisible)
(mapped from blinking, dark)

r

Attribute Description Access

Host objects and attributes Controlling communication

164 WebTransactions for openUTM

Unicode support

Operations on strings
Since the WebTransactions kernel itself does not support Unicode, you should take
care when applying operations to strings.

String operations can return incorrect results if the string contains UTF-8
characters. The length attribute does not return the number of characters, but
rather the number of bytes. When comparing and manipulating such strings, you
must take account of the representation of the UTF-8 characters.

Such operations do not occur in the templates generated by WebTransactions.

Diagnostics –

– Unicode characters are represented by replacement characters in traces and in
online displays of host objects.

– In WebLab, host objects can only be overwritten by 8-bit characters.

Setting data contents (with # formats)

When you set data contents, the attributes Inputstate and InputStateAct as well as the
global attribute FieldsMod are set to M (modified). EditState is preset to V.

IOType attribute - class templates

You can evaluate the data fields in accordance with their IOType class. Host data objects at
the UPIC interface belong to the class INPUT (text boxes/output fields), to the class OUTPUT,
or to the class TEXT or FIXTEXT (text fields). For instance, if you address a class template
with the name INPUT.clt via the evaluation operator, all INPUT fields of this class template
are evaluated. A class template OUTPUT.clt is used for the evaluation of all OUTPUT fields.
Further information on class templates can be found in the WebTransactions manual
“Template Language”.

Controlling communication Host objects and attributes

WebTransactions for openUTM 165

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
8

8.2.2 Host control object WT_HOST_MESSAGE

In addition to the host data objects for the individual fields, an additional host object in the
form of the host control object WT_HOST_MESSAGE is always available for UPIC connections
to openUTM. This is used to manage global data. The object’s attributes can be accessed
as follows: read (r) or read and write (w).

Unlike other objects and attributes, the attribute names of host objects are not case-
sensitive, i.e. no distinction is made between upper and lower case.

Attribute Contents Format
type

Access

BackgroundColor Background color # r

Contents Contents of the entire host message all w

Content_<offset>
_<length>

Content of the UPIC buffer all r

CursorControl Global attribute CursorControl # r

CursorField Position of cursor (for details see next page) all w

CursorPosition Global attribute CursorPosition # r

DateFormat Static field attribute DateFormat all w

DecimalSeparator Static field attribute DecimalSeparator all r

DigitSeparator Static field attribute DigitSeparator all r

FieldsDetect Global attribute FieldsDetect # r

FieldsMod Global attribute FieldsMod # w

FieldsValid Global attribute FieldsValid # w

FormatLength Length of message all w

FormatName Name of format all r

FormattingSystem Formatting system: FHS, FORMANT all r

FormatType Type of format: #, +, * all r

Hex_Content_<off
set>_<length>

Content of the UPIC buffer all r

InputKeyClass Global attribute InputKeyClass # r

InputKeyNumber Global attribute InputKeyNumber # r

Level_Selection Global attribute Level_Selection # r

P_Key_Set Global attribute P_Key_Set # r

TimeFormat Static field attribute TimeFormat all w

UserexitRc Global attribute Userexit Rc # r

UndefinedValues Global attribute Undefined Values # w

Host objects and attributes Controlling communication

166 WebTransactions for openUTM

WT_HOST_MESSAGE provides read access to a number of attributes which describe the
properties of the format. In the case of # formats, you can use the WT_HOST_MESSAGE object
to obtain read and write access to all of the format’s global attributes.

The Contents attribute

You can use the Contents attribute to address the entire host message in order to store this
in a template or system object attribute before being subsequently copied back. This
functionality can, for example, be extremely useful when processing partial formats (see
section “Special characteristics of FHS/FORMANT partial formats” on page 104).

The Content_<offset>_<length> attribute

Makes the contents of the UPIC buffer available with no preparation as of <offset> at the
length <length>. This means that if the buffer contains binary zeros, the returned string
terminates at the first binary zero.

The CursorField attribute

This WT_HOST_MESSAGE attribute supplies the name of the format field in which the cursor is
located:

● In the case of # formats, the Cursor field attribute is considered if
WT_HOST_MESSAGE.CursorControl has the value F (Field Cursor) or R (Relative Cursor).
In this case, WT_HOST_MESSAGE.CursorField contains the name of the first unprotected
field whose Cursor field attribute has the value Y or H. If the Cursor field attribute of this
field has the value Y, it is implicitly set to blanks before the format is sent.

If WT_HOST_MESSAGE.CursorControl has a value other than{F/R} or if none of the
Cursor field attributes is set in an unprotected field then the system responds as follows:
if a field is assigned the DefaultCursor attribute, then WT_HOST_MESSAGE.CursorField
contains the name of this field. Otherwise, it contains the name of the first unprotected
input field.

Unicode Indicates that at least one field where
Unicode == 'Y' is contained in the current
message. For details see page 168.

all r

Version Version of converter all r

Attribute Contents Format
type

Access

Controlling communication Host objects and attributes

WebTransactions for openUTM 167

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
8

● In the case of + formats, WT_HOST_MESSAGE.CursorField contains the name of the first
unprotected field whose Cursor field attribute is set. If no such field exists but a field has
been assigned the DefaultCursor attribute, then WT_HOST_MESSAGE.CursorField
contains the name of this field. Otherwise, it contains the name of the first unprotected
input field.

● In the case of * formats, WT_HOST_MESSAGE.CursorField contains the name of the field
which is assigned the DefaultCursor attribute. Otherwise, it contains the name of the
first unprotected input field.

● In the case of partial formats, a blank string is returned if the field containing the cursor
is not located in the current partial format.

 WebTransactions provides the wtBrowserFunctions.htm template for setting the
cursor. This is included in the template generation as standard.

The Hex_Content_<offset>_<length> attribute

See the section “The Content_<offset>_<length> attribute” on page 166.

The contents of the buffer are, however, converted to a string, i.e. each byte is represented
by two characters.

Example

Hexadecimal in the UPIC buffer 000102030405...

Hex_Content_0_3 returns "000102" as character string.

The Level_Selection attribute

The Level_Selection attribute usually does not have any significance for openUTM
dialogs with WebTransactions. In conjunction with the P_Key_Set attribute, the value "P"
can be evaluated as “P_Key_Set is valid”, see the manual “Format-Handling System for
UTM, TIAM, DCAM”.

The P_Key_Set attribute

Indicates which definitions of programmable keys are to be loaded for terminal operation via
FHS.

● If the openUTM application is being operated via UPIC with WebTransactions, this
attribute has no direct effect, because a terminal emulation is not participating.

● When you are mapping programmable keys with client-side Java script, you use the
attribute with WebTransactions.

i

Host objects and attributes Controlling communication

168 WebTransactions for openUTM

See the manual “Format-Handling System for UTM, TIAM, DCAM”.

Attribut Unicode

If the attribute Unicode is assigned to the host control object WT_HOST_MESSAGE, this
indicates that at least one field where Unicode == 'Y' is contained in the current message.

The global system object attribute CHARSET can be set to the value UTF-8 depending on this
attribute. In this event, the field Content-Type thus has the correct contents in the HTTP
header and the browser can interpret the data correctly.

All templates that WebTransactions generates for this host adapter automatically include
this assignment. This assignment must be manually inserted into existing templates which
are not to be re-generated.

For further information refer to section “Unicode support” on page 126.

Controlling communication Host objects and attributes

WebTransactions for openUTM 169

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
8

8.2.3 Host control object WT_HOST_GLOBALS

WT_HOST_GLOBALS is a host object for the control of communication with the host.
This object is only relevant for + formats and * formats. All its attributes can be overwritten.
You should set the values of these attributes once in the start template after a call to the
open method.
For information on the possible and preset values of these attributes, refer to the FHS
manual “Format-Handling System for UTM, TIAM, DCAM”, chapter “FHS for openUTM
Users”, section “Start Parameter” (however, WT_HOST_GLOBALS does not contain a corre-
sponding attribute for all the openUTM start parameters described in this manual):

Attribute Description

Padding
Asterisk,
Padding
PlusAttr,
Padding
PlusData

These specify the character used to fill a field before changes are entered. The
default setting is OUTMSG (the field content as sent by the host application). Any value
that differs from this must be entered as a decimal value or as a hexadecimal value
(’#xx’). This value corresponds to the start parameter, PADDING. For Unix platforms
and Windows platforms, it should be noted that the value may be converted on trans-
mission to the openUTM application (see system object attributes,
UPIC_CODE_CONVERSION and HOST_CHAR_CODE, or the conversion identifier in the
upicfile).

PaddingAsterisk affects the data fields of *formats
PaddingPlusData affects the data fields of +formats
PaddingPlusAttr affects the attribute fields of +formats
These three attributes replace the Padding attribute. Padding continues to be
supported for compatibility. If Padding is set, all of the three new attributes are
assigned the transferred value. The meaning is basically the same.

In the FHS start parameters, there is only a distinction between the formats + and *:
Example
.FHS PADDING=(FORM*=' ',FORM=X'00')
The additional distinction in WebTransactions can be used to, for example, configure
situations in which the attribute fields of the + formats are filled with binary zeros by
FHS, and the data field of an FHS format exit is filled with SPACE.

Cursor Specifies the method used to position the cursor. Possible values:
A: Cursor set using attribute fields (ATTR), default value
N: Cursor set using KDCSCUR (NATTR)

Detect Specifies the character used to fill a field that is selected. Default value is 255. The
value can be derived from the start parameter, MAPDET. For Unix platforms and
Windows platforms, it should be noted that the value may be converted on trans-
mission to the openUTM application (see system object attributes,
UPIC_CODE_CONVERSION and HOST_CHAR_CODE, or the conversion identifier in the
upicfile).

Host objects and attributes Controlling communication

170 WebTransactions for openUTM

8.2.4 Host control objects $FIRST and $NEXT

These two objects are used to edit host objects.

UnDetect Specifies the character used to fill a field which is not selected. Default value is 0.
The value can be derived from the start parameter, MAPDET. For Unix platforms and
Windows platforms, it should be noted that the value may be converted on trans-
mission to the openUTM application (see system object attributes,
UPIC_CODE_CONVERSION and HOST_CHAR_CODE, or the conversion identifier in the
upicfile).

Read Specifies the mode in which the host application expects the data on a read
operation. Possible values: M (Modified) or U (Unprotected). The value can be
derived from the start parameter ISTD.

FieldLength Specifies the values to be set for the fields’ attribute field/length field before a
message is sent to the host. Possible values: E (Effective length), D (Defined
length), N (Not modified). The value can be derived from the start parameter
EFFLEN.

Update – If the attribute has the value O (for ONLY), then, if possible, the value is taken
over from the previous message for all fields whose contents are binary zero. O
is the default value.

– In the value is P (for PSTN), then such fields are filled with output fill characters.
Restriction: Mode O does not function with partial formats.

Object name Attribute Meaning

$FIRST Name Full name of the first field in the current format. If no such field
exists, the name $END is returned.

plus all attributes of dynamic host data objects (see section “Host objects for
the individual format fields (host data objects)” on page 159)

$NEXT Name Full name of the next field in the current format starting from
the last field accessed. This object enables you to work step-
by-step through all fields in the format.
If no such field exists, the name $END is returned.

plus all attributes of dynamic host data objects (see section “Host objects for
the individual format fields (host data objects)” on page 159).

Attribute Description

Controlling communication Terminal functions supported by the browser

WebTransactions for openUTM 171

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
8

8.3 Terminal functions supported by the browser

In WebTransactions for openUTM you can display host application formats in the browser
without any post-editing (1:1 conversion). In order to be able to use the terminal functions,
you need to use the master template UTM.wmt. The templates that you have generated via
the master template include the templates wtBrowserFunctions.htm and wtKeysUTM.htm
which provide the functions required.

wtBrowserFunctions.htm in turn includes the following Javascript files:

wtCommonBrowserFunctions.js
contains the Javascript code that will be run for all browsers.

wt<browser>BrowserFunctions.js
contains the Javascript code for the current browser.

wtKeysUTM.htm contains the openUTM-specific buttons for the standard keys and include
the Javascript files wtKeysUTMFHS.js and wtKeysUTMFormant.js which contain the
FHS-/Formant-specific special key mapping for WebTransactions for openUTM. In these
files you can adapt the key mapping to your needs and also extend it (see section “Mapping
keys in wtKeysUTMFHS.js and wtKeysUTMFormant.js” on page 174).

8.3.1 Terminal functions supported

The following terminal functions are provided:

● Pixel-precise layout of text and entry fields with the help of style sheets.

● Support for terminal special keys sent to WebTransactions. For some of these keys
there are equivalents on the PC keyboard (e.g. the “F” keys). In some cases key combi-
nations are be used to start terminal functions.

● Support for terminal special keys which work directly in the browser form (e.g. cursor
positioning keys). For some of these keys there are equivalents on the PC keyboard.
In other cases, terminal functions are started using key combinations.

● Autotab:
When the maximum length of an entry field is reached the cursor automatically moves
to the next entry field.

Terminal functions supported by the browser Controlling communication

172 WebTransactions for openUTM

● Overwriting fields:
Like a terminal, the browser overwrites the characters already present in the entry field
and does not insert text between the characters as per the browser default settings.

● Transfer of the cursor position from the browser to the host application:
Depending on the browser functions available, the browser transfers the exact cursor
position or only the corresponding entry field to WebTransactions.

● Tabulator remains inside the form:
The entry focus does not leave the form generated by WebTransactions. Using the
tabulator key in the browser also automatically moves the focus onto the browsers
controls.

Which of the terminal functions (F keys, cursor positioning keys ...) is actually displayed on
the browser will depend on the type and version of the browser. The tables below show the
terminal functions supported by the various browser types.

Terminal
function

Browser support

Non specialized
browser

Netscape V6.0 or
higher or Mozilla

Firefox

Internet Explorer
V4.0 or higher

Layout of text and
entry fields

no yes yes

Support for terminal
special keys sent to
WebTransactions

only via a pick list or
button

by individual configurable mapping via keys or
pick lists or buttons

Support for terminal
special keys which
work directly in the
browser form

no by individual configurable mapping via a key

Autotab no yes yes

Overwriting fields yes
(simulated in the browser by automatic selection of
field content)

yes

Transmits the cursor
position

Only the position at the
start of the last entry field
used

Position at the start of
the last entry field used
and the exact position in
protected fields.

Exact position in
protected fields and in
entry fields (V5.0 or
higher)

Tabulator remains
inside the form

no yes

Controlling communication Terminal functions supported by the browser

WebTransactions for openUTM 173

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
8

Key support by Internet Explorer V4.0 or higher or by a Gecko-based browser

If you use Internet Explorer V4.0 or higher or a Gecko-based browser (Netscape V6 or
higher), then the browser terminal keys are mapped as follows:

Key1 used in the browser

1 Here, '+' means that the keys specified must be pressed together at the same time. On some keyboards the
STRG key is marked with CTRL.

Corresponding key at the terminal2

2 K keys are only possible with openUTM applications on BS2000/OSD.

ENTER ENTER

F1 ... F12 F1 ... F12

Shift+F1 ... Shift+F12 F13 ... F24

STRG+F1 ... STRG+F12 K1 ... K12

STRG+Shift+F1
STRG+Shift+F2

K13
K14

STRG+Shift+F12 MAR

INS INS

Terminal functions supported by the browser Controlling communication

174 WebTransactions for openUTM

8.3.2 Mapping keys in wtKeysUTMFHS.js and wtKeysUTMFormant.js

The browser used will accept all keyboard entries. For the application-defined mapping of
special function keys, WebTransactions provides an interface with the files wtKey-
sUTMFHS.js (for FHS formats) and wtKeysUTMFormant.js (for Formant formats). You can
use this interface, no special knowledge of browser templates is required.

After creation of the base directory, these two files are in the directory
<basedir>/wwwdocs/javascript. The interface to be used for WebTransactions application
mapping of the keys is the table (array) wtKeyMappingTableInput given in the corre-
sponding file.

The wtKeyMappingTableInput table defines an object with several attributes for each of the
key maps (see table in page 175). These attributes describe:

– the key or key combination

– the action to be triggered when the key (or combination) is pressed

– if this function is also available on a selection list.

Example

wtKeyMappingTableInput = [
{ sl:'title of my select list'},
{ la:'Select', ac:doToggleMark, kc:VK_F12, mk:MK_CTRL+MK_SHIFT },
{ la:'F1', ac:'F1' },
{ la:'K1, 'ac:'K1', kc:VK_F1, mk:MK_CTRL }
];

In this definition the mapping is as follows:
– CTRL+SHIFT+F12 calls the function doToggleMark()
– CTRL+F1 sends the function code K1 to WebTransactions

This definition creates a selection list with the following content:

no function

calls up the function doToggleMark()

sends the function code to WebTransactions (F1 or K1)

title of my select list

Select

F1

K1

Controlling communication Terminal functions supported by the browser

WebTransactions for openUTM 175

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
8

In the wtKeyMappingTableInput table you can enter the following attributes:

Description Attribute Meaning

la label Label, e.g. for entry in the selection list. If the attribute is not
specified, no entry will be generated for the list. The corresponding
key will, however, be mapped on a function.

co comment Comment. This attribute is not evaluated.
This attribute has been provided as an alternative to the attribute la;
by changing the attribute from la to co you can, for example, remove
a key from the selection list.

ac action Action to be executed when the mapped key is pressed or when the
action is selected from a list.

If this attribute is a string type, the content will be transferred to
wt_special_key.value and sent to WebTransactions. This means
that the form is transferred to WebTransactions and as a special
function is given the value of ac (e.g. "@1" for the PF1 key).

If this attribute is a function type, a client-side function with this
name will be called. This function must be defined.

The Javascript files wt<browser>BrowserFunctions.js provide
the following functions:
– doCursorHome
– doCursorUp
– doCursorDown
– doCursorLeft
– doCursorRight
– doTab
– doBackTab
– doToggleMark
– doToggleInsert.
The implementation of these functions can be empty; this depends
on the browser capabilities (see the section “Callback functions in
key mapping” on page 180).
If this attribute is not defined, no action can be executed. Editing of
the keyboard entries is left to the browser.

kc key code Number assigned to the pressed key in the keyboard driver.
The script wtCommonBrowserFunctions.js has a symbol for many
of the keys; the symbol name begins with VK_.
For key combinations there is also the modifier key (mk).

Terminal functions supported by the browser Controlling communication

176 WebTransactions for openUTM

mk modifier
key

Additional modifier key pressed (see definition in
wtCommonBrowserFunctions.js):
– 0 = MK_NONE (= no modifier key pressed)
– 1 = MK_CTRL
– 2 = MK_ALT
– 4 = MK_SHIFT

In key combinations the corresponding values are added:
– 3 = MK_CTRL + MK_ALT
– 5 = MK_CTRL + MK_SHIFT
– etc.
If no mk is specified then the value 0 = MK_NONE is used.

sl select
list

At the start of each selection list to be generated, a component with
the index 0 will be generated as a header. The component has no
function. The text for this “0” component is specified in the attribute
sl.
Any selection lists created previously will be closed when the
attribute sl occurs.
For improved readability, sl can be made to be the only attribute in
the table object.

Description Attribute Meaning

Controlling communication Terminal functions supported by the browser

WebTransactions for openUTM 177

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
8

Structure of wtKeysUTMFHS.js and wtKeysUTMFormant.js

The following section describes the wtKeyMappingTableInput table from the wtKey-
sUTMFHS.js and the wtKeysUTMFormant.js file supplied with WebTransactions:

The object wtKeyMappingTableInput is created as literal.

wtKeyMappingTableInput = [

The attribute sl indicates the start of the selection list with the label more.

{ sl:'more'},

The attribute co indicates a comment for better readability. There is no la attribute for the
following entries. The entries should not appear in the selection list. Use kc and mk to find
the mapping for a PC key. With ac JavaScript functions are specified which are to be
processed when the appropriate key or key combination is pressed.

{ co:’MAR’, ac:doToggleMark, kc:VK_F12, mk:MK_CTRL+MK_SHIFT },
{ co:'MAR', ac:doToggleMark, kc:VK_MAR, mk:0 },
{ co:'Insert', ac:doToggleInsert, kc:VK_INS },
{ co:'CursorUP', ac:doCursorUp, kc:VK_UP },
{ co:'CursorDOWN', ac:doCursorDown, kc:VK_DOWN },
{ co:'CursorLEFT', ac:doCursorLeft, kc:VK_LEFT },
{ co:'CursorRIGHT', ac:doCursorRight, kc:VK_RIGHT },
{ co:'HOME', ac:doCursorHome, kc:VK_HOME },
{ co:'TAB', ac:doTab, kc:VK_TAB },
{ co:'BACKTAB', ac:doBackTab, kc:VK_TAB, mk:MK_SHIFT },

The function keys appear in the selection list. With FHS, these are the keys K1 to K14 and
F1 to F24 (see below), with Formant only the keys F1 to F24.

{ la:’K1’, ac:’K1’, kc:VK_F1, mk:MK_CTRL },
{ la:'K2', ac:'K2', kc:VK_F2, mk:MK_CTRL },
{ la:'K3', ac:'K3', kc:VK_F3, mk:MK_CTRL },
{ la:'K4', ac:'K4', kc:VK_F4, mk:MK_CTRL },
{ la:'K5', ac:'K5', kc:VK_F5, mk:MK_CTRL },
{ la:'K6', ac:'K6', kc:VK_F6, mk:MK_CTRL },
{ la:'K7', ac:'K7', kc:VK_F7, mk:MK_CTRL },
{ la:'K8', ac:'K8', kc:VK_F8, mk:MK_CTRL },
{ la:'K9', ac:'K9', kc:VK_F9, mk:MK_CTRL },
{ la:'K10', ac:'K10', kc:VK_F10, mk:MK_CTRL },
{ la:'K11', ac:'K11', kc:VK_F11, mk:MK_CTRL },
{ la:'K12', ac:'K12', kc:VK_F12, mk:MK_CTRL },

{ la:'K13', ac:'K13', kc:VK_F1, mk:MK_CTRL+MK_SHIFT },

Terminal functions supported by the browser Controlling communication

178 WebTransactions for openUTM

{ la:'K14', ac:'K14', kc:VK_F2, mk:MK_CTRL+MK_SHIFT },

{ la:'F1', ac:'F1', kc:VK_F1, mk:0 },
{ la:'F2', ac:'F2', kc:VK_F2 },
{ la:'F3', ac:'F3', kc:VK_F3 },
{ la:'F4', ac:'F4', kc:VK_F4 },
{ la:'F5', ac:'F5', kc:VK_F5 },
{ la:'F6', ac:'F6', kc:VK_F6 },
{ la:'F7', ac:'F7', kc:VK_F7 },
{ la:'F8', ac:'F8', kc:VK_F8 },
{ la:'F9', ac:'F9', kc:VK_F9 },
{ la:'F10', ac:'F10', kc:VK_F10 },
{ la:'F11', ac:'F11', kc:VK_F11 },
{ la:'F12', ac:'F12', kc:VK_F12 },

{ la:'F13', ac:'F13', kc:VK_F1, mk:MK_SHIFT },
{ la:'F14', ac:'F14', kc:VK_F2, mk:MK_SHIFT },
{ la:'F15', ac:'F15', kc:VK_F3, mk:MK_SHIFT },
{ la:'F16', ac:'F16', kc:VK_F4, mk:MK_SHIFT },
{ la:'F17', ac:'F17', kc:VK_F5, mk:MK_SHIFT },
{ la:'F18', ac:'F18', kc:VK_F6, mk:MK_SHIFT },
{ la:'F19', ac:'F19', kc:VK_F7, mk:MK_SHIFT },
{ la:'F20', ac:'F20', kc:VK_F8, mk:MK_SHIFT },
{ la:'F21', ac:'F21', kc:VK_F9, mk:MK_SHIFT },
{ la:'F22', ac:'F22', kc:VK_F10, mk:MK_SHIFT },
{ la:'F23', ac:'F23', kc:VK_F11, mk:MK_SHIFT },
{ la:'F24', ac:'F24', kc:VK_F12, mk:MK_SHIFT },

Do not close the last entry in the table with a comma. If you do close the entry with a comma,
the program will wait for a further entry before the literal end (]).

{ la:'InsClip', ac:doInsertClipBoard, kc:VK_V, mk:MK_CTRL+MK_SHIFT }
];
// END_OF_KEY_TABLE

Controlling communication Terminal functions supported by the browser

WebTransactions for openUTM 179

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
8

8.3.3 Interaction between wtCommonBrowserFunctions.js and
wt<browser>BrowserFunctions.js

The file wtCommonBrowserFunctions.js contains the Javascript code which will be run for
all browsers. The wt<browser>BrowserFunctions.js files contain the Javascript code
which will be run depending on the current browser. For example, wtGeckoBrowserFunc-
tions.js contains the Javascript code for Gecko-based browsers.

After creation of the base directory, the files are located in the directory
<basedir>/wwwdocs/javascript.

If you want to adapt the Javascript code in these files you will need specialist knowledge of
browser behavior and browser interaction with WebTransactions. The following text
describes the interaction between the functions and data structures as supplied with the
product.

Symbols

The file wtCommonBrowserFunctions.js will be called before the files
wt<browser>BrowserFunctions.js and wtKeysUTMFHS.js and wtKeysUTMFormant.js. This
file contains the definition of the variables for symbolically invoking the keys in the other
*.js files.

// some symbolic keycodes /////////
VK_TAB = 9;
VK_RETURN= 13;
VK_SHIFT = 16;
VK_CTRL = 17;
VK_ALT = 18;
VK_PAUSE = 19;
VK_ESC = 27;
VK_PGUP = 33;
VK_PGDN = 34;
VK_END = 35;
VK_HOME = 36;
VK_LEFT = 37;
VK_UP = 38;
VK_RIGHT = 39;
VK_DOWN = 40;
VK_INS = 45;
VK_0 = 48;
VK_1 = 49;
...
MK_NONE = 0;
MK_CTRL = 1;
MK_ALT = 2;
MK_SHIFT = 4;

Terminal functions supported by the browser Controlling communication

180 WebTransactions for openUTM

Key mapping functions

function wtCreateKeyMap()
Generates, from the wtKeyMappingTableInput table, a structure which is simpler
and quicker to access at runtime. The call is made from wtKeysUTM.htm. The call is
absolutely necessary; without this call, mapping cannot take place.

function wtCreateKeySelectList()
Generates, from the wtKeyMappingTableInput table, one or more selection lists.
The call is made from wtKeysUTM.htm. It is possible to suppress the list by leaving
out the call for this function in wtKeysUTM.htm; the function keys will remain
operative.

Following this example it is easy to describe other functions. You can, for example,
generate a key or a table component for each function.

function wtHandleKeyboard(modifier, keyCode)
Called from wt<browser>BrowserFunctions.js when a key is pressed. wtHandle-
Keyboard(), on the basis of the structure generated by wtCreateKeyMap(), can now
establish if an action has been assigned to this key: If an action has been assigned,
it will be run. If no action has been assigned, the keyboard event will be left to the
browser.

Callback functions in key mapping

The file wtCommonBrowserFunctions.js also provides functions used by the table wtKey-
MappingTableInput (see the attribute ac on page 175).

Most of these functions return false as a result in order to indicate that no general mapping
for these keyboard entries is available. In this case you should use the default behavior of
the current browser. This default behavior will be uploaded to the wt<browser>BrowserFunc-
tions files where required by functions with the same names (see page 182).

Controlling communication Terminal functions supported by the browser

WebTransactions for openUTM 181

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
8

Procedure

The behavior described above is obtained as follows:

1. Whenever a PC key is pressed, the browser calls the function onKeyDown from the file
wt<browser>BrowserFunctions.js.

2. The function onKeyDown transmits the modifier key and the key code (see the wtKey-
MappingTableInput table on page 175), and then calls the function wtHandleKeyboard
(if this is present) in the file wtCommonBrowserFunctions.js.

3. The function wtHandleKeyboard recognizes if an action is defined for this key in the table
wtKeyMappingTableInput under ac (see page 175).

If there is a function pointer under ac, the procedure continues as follows:

4. wtHandleKeyboard calls the function and then returns the callback value at onKeyDown.

This occurs with actions such as HOME, TAB or CursorDown. The callback function is used
at this stage to process actions on the client PC with the aid of the browser.

5. The function onKeyDown signals to the browser that the key has just been pressed
(callback value true). In this case the browser will no longer react to the key. If this is
not the case, the browser will run its standard reaction for the current keyboard entry.

If there is a character string under ac, the procedure continues as follows:

6. The content of the string is transferred to the SPECIAL_KEY attribute (see page 150).
The form is transferred to WebTransactions together with the value of ac (e.g. F1 as
function key) as a special function.

7. In this case the callback value to the browser is always true (the key is processed
immediately. The browser no longer reacts to the key.

If the attribute ac is not defined (i.e. no action has been assigned to the key pressed), the
callback value false will be signalled to indicate that the browser will handle the keyboard
entry.

Terminal functions supported by the browser Controlling communication

182 WebTransactions for openUTM

WebTransactions-specific callback functions

WebTransactions provides a series of special implementations of the callback functions
designed for individual browser types.

Some of the following functions are uploaded by wtGeckoBrowserFunctions.js depending
on the capabilities of the Gecko browser. wtExplorerBrowserFunctions.js will upload all
these functions (most of the possibilities are recognized by Internet Explorer) and then run
the functions described below.

 You can also develop customized callback functions in order to extend the user
interface. In this case, you should ensure that a function invoked in the tablewtKey-
MappingTableInput (see page 175) is also defined in the file wtCommon-
BrowserFunctions.js and in the corresponding file wt<browser>BrowserFunc-
tions.js.

function doCursorUp()
Positions the cursor in the entry field above the current cursor position.

function doCursorDown()
Positions the cursor in the entry field below the current cursor position.

function doCursorLeft()
If the cursor is at the start of an entry field, moves the cursor to the end of the
previous entry field. Otherwise, the browser will react to the key entry (moving the
cursor inside the field).

function doCursorRight()
If the cursor is at the end of an entry field, moves the cursor to the start of the next
entry field. Otherwise, the browser will react to the key entry (moving the cursor
inside the field).

function doCursorHome()
Positions the cursor at the start of the first entry field.

function doTab()
Skips to the start of the next entry field.

function doBackTab()
Skips to the start of the previous entry field.

function doToggleMark()
The marking of the entry field where the focus is located, is toggled.

function doToggleInsert()
Toggles between the Insert and Overwrite modes.

i

Controlling communication Terminal functions supported by the browser

WebTransactions for openUTM 183

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
8

8.3.4 Using the WT_BROWSER object

In order to avoid having to transmit the browser properties and font sizes many times during
a session, WebTransactions creates the object WT_BROWSER at the beginning of each
session. This object is then available globally throughout the entire session.

The WT_BROWSER object contains the following attributes:

– Browser ID
– Browser version
– Browser properties
– Font size to be used

These attributes are used in the following templates:

– All templates generated with the master templates UTM.wmt.

– wtBrowserFunctions.htm
wtBrowserFunctions.htm includes wt<browser>BrowserFunctions.js and gives the
font size (and other properties).

Font size in the attribute WT_BROWSER.charSize

In the WT_BROWSER object the attribute WT_BROWSER.charSize has the default setting 14
(previous static value).

If the attribute WT_POSTED.wtCharSize already exists at the start of a session then its value
will automatically be taken over by WT_BROWSER.charSize. This feature makes it possible for
individual users to set their own font sizes (depending on the screen resolution setting).

The value of WT_BROWSER.charSize can also be set while a session is running by using the
method WT_BROWSER.setCharSize.

 You should not try to edit the attribute WT_BROWSER.charSize directly because other
attributes depend on this value.

You can re-initialize the object WT_BROWSER using the method WT_BROWSER.refresh. This will
also refresh the attributes WT_SYSTEM.CGI.HTTP_USER_AGENT and WT_POSTED.wtCharSize.
This procedure would make sense, for example, when a running session in a roaming
session is taken over by another browser (for details on roaming sessions, see the
WebTransactions manual “Concepts and Functions”).

i

Terminal functions supported by the browser Controlling communication

184 WebTransactions for openUTM

Example application of WT_BROWSER.charSize

Allows a user on the call page of a WebTransactions application to select the font size to be
used for displaying the application (e.g. via a selection list):

Font Size:
<select name="wtcharSize">

<option value="12">12
<option value="14" SELECTED>14
<option value="17">17
<option value="20">20

</select>

At the start of the session, these entries will automatically be taken over when the attribute
WT_POSTED.wtCharSize is evaluated. All the size settings in the generated templates will
depend on this value.

You can also use Javascript to make the entry field for wtcharSize dependent on the screen
width. You can do this, for example, when you call up a page via a Submit button with an
entry field for the font size:

<body onload="document.forms.wtaform.wtCharSize.value =
Math.round(screen.width/75)">

<form method="post" name="wtaform"
action="/scripts/WTPublish.exe/D:/webta/basedir?Start">

<input type="submit" value="Start">
Font Size:
<input type="text" name="wtCharSize">
...
</form>
</body>

Controlling communication Start templates for openUTM

WebTransactions for openUTM 185

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
8

8.4 Start templates for openUTM

Once a WebTransactions application has been started (via an entry page or the direct
specification of a URL) the parameters for the connection with the host application must be
set in a start template.

WebTransactions provides you with ready-to-run start templates which you can use as a
basis for the development of your own start templates. There are two different possibilities:

● Start template set

This start template set is ready for immediate use. The necessary parameters are re-
entered each time the application is started, though most are preset to appropriate
values. It is suitable both for the start of an individual host application and for the start
of multiple host applications that are integrated in a WebTransactions application. The
set consists of the general start template, wtstart.htm, which enables you, for
example, to create communication objects and to switch between different parallel host
connections, and of specific start templates for the individual host adapters. The start
template, wtstartUMTV4.htm is supplied especially for “WebTransactions for openUTM”.
This openUTM-specific start template is presented in section “The openUTM-specific
start template in the start template set (wtstartUTMV4.htm)” on page 186. For an
illustration of the general start template, refer to the WebTransactions manual
“Concepts and Functions”.

● WTBean for the generation of a start template

To connect an individual openUTM application, you should use a specially generated
start template. The WTBean wtcStartUTM.wtc helps you to generate such templates.

Start templates for openUTM Controlling communication

186 WebTransactions for openUTM

8.4.1 The openUTM-specific start template in the start template set
(wtstartUTMV4.htm)

If you have selected the UTMV4 protocol and created a new communication object in the
general start template wtstart.htm (described in the WebTransactions manual “Concepts
and Functions”), then processing switches to the template wtstartUTMV4.htm. This
template makes it possible to set the openUTM-specific parameters in two successive
steps:

1. In the first step, you can define the connection parameters and open a connection to a
openUTM application.

2. Once this connection has been opened, the template is redisplayed. It now possesses
additional input possibilities (WT_HOST_GLOBALS settings) and contains buttons for
communications with the openUTM application.

Both steps (and therefore both pages) are implemented internally by means of the same
template, namely wtstartUTMV4.htm. In either case, an IF structure ensures that
processing is switched to the correct template.

Controlling communication Start templates for openUTM

WebTransactions for openUTM 187

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
8

Step 1: Setting the connection parameters and opening the connection

In the connection parameters directly section the following attributes with which the
service in the openUTM application is addressed can be defined:

APPLICATION_NAME
Name of the openUTM application

Start templates for openUTM Controlling communication

188 WebTransactions for openUTM

HOST
Name (NAME) or IP address (IP_ADDRESS) with port number (HOST_PORT) of the computer
on which the openUTM application is running.

TAC
Transaction code of the service that is to be called in the openUTM application.

UPIC_CODE_CONVERSION
If this option is selected, a code conversion (ASCII-EBCDIC) is forced. In this case the
option HOST_CHAR_CODE may not be set.

Alternatively, in the section, ... or via upicfile, you can enter:

SYM_DEST
Here a value can be selected that specifies the desired service and is stored in the
SYM_DEST attribute. The selection is automatically determined from the contents of the
upicfile.

In the additional connection parameters section further optional parameters can be
entered:

APPLICATION_PREFIX
If this option is selected, the APPLICATION_PREFIX attribute is set to the name of the
communication object.

CONVERSATION_TAC, CUT_TAC_FIELD
Sets the attribute of the same name.

HOST_CHAR_CODE
Here you must specify whether messages are to be exchanged with the server in ASCII
or EBCDIC code. If TABLE is selected, then you must specify the name of your
conversion table in the right-hand text box. The contents of your selection are stored in
the attribute HOST_CHAR_CODE.

This option must not be used in conjunction with UPIC_CODE_CONVERSION.

FLD
Here you can select one of the installed field files. The selection is stored in the FLD
attribute and is subsequently important if communications start with the sending of a
message.

BADTAC, LOCAL_APPLICATION, UPIC_TRACE, UPIC_LIB, UTM_PATH,
SECURITY_TYPE, USER, PASSWORD, NEW_PASSWORD, RESTART

set the attributes of the same names.

Controlling communication Start templates for openUTM

WebTransactions for openUTM 189

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
8

The workflow section allows you to determine the next action.

destination
Here you can select the template with which you wish to continue. Click on go to to go
to the selected page. main menu is proposed by default: This makes it possible to
return to the general entry page wtstart.htm. If multiple connections are open, they are
also proposed as possible selections; processing then branches to the appropriate host
adapter-specific start templates for this connection.

access host
The actions which can currently be performed in the session are proposed here. If no
connection has as yet been opened, open and open in linemode are available. These
buttons can be used to open the connection.

For more details about open in linemode, please refer to section “Support for
openUTM line mode” on page 120.

parameters
reset is used to reset all the parameters to the state they were in when received by the
browser.

update is used to send the page values to WebTransactions without initiating commu-
nications with the host. This may, for example, be of use, if the FLD field was not set prior
to the establishment of the connection and enter dialog is not therefore possible. If a
value is then entered for FLD, the enter dialog button becomes visible once update has
been clicked.

Step 2: Beginning communication and setting host attributes

As soon as a connection is opened, the following buttons for communication with the host
application are provided in the workflow area under access host. In addition, a new
section, global host attributes, is available in which you can specify the attributes Padding,
Detect, Undetect, Read, FieldLength, Update and Cursor of the WT_HOST_GLOBALS host
control object.

If you selected open in step 1, the buttons send, receive, close and enter dialog (as the
case may be) are available:

receive / send
The buttons receive and send are shown alternately.

receive retrieves the next message from the host application and extends the start
template for setting the host attributes. send sends a message to the host application.
If you wish to send a screen containing modified data to the host application, you should
select enter dialog.

Start templates for openUTM Controlling communication

190 WebTransactions for openUTM

close
This button closes the connection to the host application and returns to the page
displayed in step 1. There you can select and open a new connection.

enter dialog
This button branches directly to the next host application screen. You can then complete
this screen and send it to the host application.

If you return to this page from an active host application by selecting the suspend
button, the resume dialog button appears in place of the enter dialog button.

Starting a conversation which expects neither data nor a basic format

If the first program unit of a conversation requires no data and does not expect any basic
format, and instead outputs the first screen itself, then you can start the conversation as
follows:

First page: Select the conversation and define the message coding (via connection
parameters directly or by SYM_DEST and/or HOST_CHAR_CODE), any other
start parameters, select open.

Second page: If necessary, modify the attributes of WT_HOST_GLOBALS, select receive. The
page is then redisplayed. Now select enter dialog.

Starting a conversation which expects data or a basic format

If the first program unit of a conversation requires defined data or expects a basic format,
then you can start the first conversation as follows:

First page: Select the conversation, define the message coding (via connection
parameters directly or by SYM_DEST and/or HOST_CHAR_CODE), determine
the message (FLD) and any other start parameters, select open.

Second page: If necessary, modify the attributes of WT_HOST_GLOBALS,
Select enter dialog.

Controlling communication Start templates for openUTM

WebTransactions for openUTM 191

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
8

8.4.2 WTBean wtcStartUPIC.wtc for the generation of a start template

To connect an individual openUTM application you can generate an application-specific.
start template. To do this, you use the WTBean wtcStartUPIC.wtc. This is a standalone
WTBean.

wtcStartUPIC.wtc contains the inline WTBean wtcUPIC.wtc which is used to create a new
openUTM communication object and thus establish a connection to an openUTM appli-
cation (see the section “Creating a new openUTM communication object (wtcUPIC)” on
page 193).

 Before you can access WTBeans there must be a connection to a WebTransactions
application.

You use the File/New/wtcStartUPIC command to open the WTBean for editing. WebLab
uses the source file to generate the Add:wtcStartUPIC dialog box which contains six tabs:

● In the wtcStartUPIC tab you specify the name of the start template you want to
generate.

● In the WT_SYSTEM attributes tab you specify the most important system object
attributes.

● In the tabs UTM connection parameter, upicfile and non upicfile you specify the
most important connection parameters.

● In the Further options tab you can edit all the parameters for the connection to the
openUTM application within a tree structure.

i

Start templates for openUTM Controlling communication

192 WebTransactions for openUTM

The generated start template itself does not generate any pages in the browser. When
WebTransactions is started, the template corresponding to the first format received from the
host application is displayed. This is due to the wtinclude tag at the end of the start
template.

Controlling communication Creating a new openUTM communication object (wtcUPIC)

WebTransactions for openUTM 193

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
8

8.5 Creating a new openUTM communication object (wtcUPIC)

The WTBean wtcUTM is supplied in order to enable you to create a new openUTM commu-
nication object in a template and thus establish a connection to an openUTM application.
You can also use this WTBean to open multiple connections in parallel. wtcUTM is an inline
WTBean. For more information, refer to the WebTransactions manual “Concepts and
Functions”.

 Before you can access inline WTBeans, there must be a connection to the
WebTransactions application and the template in which you want to insert the
WTBean must be open.

You use the Add/WTBean/wtcUPIC command to open the WTBean for editing. WebLab
generates the Add:wtcUPIC dialog box:

In this dialog box you can edit the parameters for the new communication object.

Ê On the tab UTM connection parameters, you must enter the name of the communi-
cation object and select, whether the connection parameters are to be read from the
upicfile (upicfile option) or entered directly (non upicfile option).

Ê Depending on the selection, either the upicfile tab or the non upicfile tab is to be filled
in.

Ê You can edit all the other parameters in a tree structure in the Further options tab.

i

Creating a new openUTM communication object (wtcUPIC) Controlling communication

194 WebTransactions for openUTM

Once you have entered values for the parameters and clicked OK to confirm your settings,
the code of the WTBean is generated from the parameters and the description file and is
inserted at the cursor position in the opened template.

The WTBean is made up of protected and unprotected code areas. The protected areas are
grayed out. These areas can only be accessed via the interface of the WTBean. In the
context menu of the start line of the WTBean (pink), select the Edit WTBean command (see
the WebTransactions manual “Concepts and Functions”).

Controlling communication Security through the openUTM user concept

WebTransactions for openUTM 195

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
8

8.6 Security through the openUTM user concept

WebTransactions allows you to employ the openUTM user concept. This means that you
can use openUTM’s system and data access control mechanisms even when performing
Web accesses. You can also use scalable authorizations by implementing openUTM’s
lock/keycode concept.

Logging on under an openUTM user name

For the use of the openUTM user concept, there are special system object attributes,
SECURITY_TYPE, USER, PASSWORD and NEW_PASSWORD. With each open call, WebTransactions
checks the SECURITY_TYPE attribute and, if required, returns USER, PASSWORD and
NEW_PASSWORD.

 A security check is therefore performed on each conversation start.

SECURITY_TYPE
Specifies the security level. Possible values:

NONE On logon, WebTransactions does not pass the name of a openUTM user
name or a openUTM password to the openUTM application. An empty
string in SECURITY_TYPE has the same effect.

USER The name of a user name stored in the USER attribute is passed to the
openUTM application on logon. However, no password is passed.

PASSWORD
When logging on to the openUTM application, the name of a user name
stored in USER is used together with the password stored in PASSWORD.

USER Name of the openUTM user name which may sometimes be passed to the
openUTM application for an authorization check.

PASSWORD
Password of the transferred openUTM user name (permissible characters as in
openUTM, i.e. only printing characters are permitted).

NEW_PASSWORD
New password for the openUTM user name returned (character set as for
openUTM, i.e. only printable characters are permitted).

i

Security through the openUTM user concept Controlling communication

196 WebTransactions for openUTM

 The event service SIGNON is supported as of UPIC V5.0 in conjunction with
openUTM V5.0 or later.
However, with openUTM applications < V5.0 the SIGNON service cannot be used
via WebTransactions. If you connect terminal host applications which use the
SIGNON event service to the Web, you must integrate the SIGNON processing
steps in a separate program unit and call this from the start template.

Invalid user name or invalid password

If, when logging on, an invalid user name or invalid password is used, WebTransactions sets
the RECEIVE_ERROR attribute after the first receive with the value CM_SECURITY_NOT_VALID.
The error can then be handled individually in the template by evaluating the attribute,
RECEIVE_SECONDARY_INFORMATION. The values of this attribute are described on page 157.

If the USER attribute is empty but SECURITY_TYPE is set to USER or PASSWORD, WebTransactions
sets the RECEIVE_ERROR attribute to CM_SECURITY_NOT_VALID as soon as a connection is
established (open).

Change password

The password for an openUTM user name can be changed by setting the NEW_PASSWORD
attribute in addition to the PASSWORD attribute. In PASSWORD you must enter the existing
password and in NEW_PASSWORD the new password.

If the openUTM application is generated with grace sign-on, the password can still be
changed after it has expired.

Logon with no restart information requested

If restart information for the employed user name is available at logon time even though no
such information has been requested for this user name, then WebTransactions determines
whether or not a message was sent to the openUTM application in the previously rolled
back transaction:

● If no attempt has been made to send a message (open + receive) in the reset trans-
action, WebTransactions automatically reopens the connection, discarding the restart
information.

● If an attempt has been made to send a message
(open + send + receive) in the reset transaction, WebTransactions sets the
RECEIVE_ERROR attribute to CM_DEALLOCATED_ABEND. The error can now be handled
individually in the template.

i

Controlling communication RESTART - automatic restart

WebTransactions for openUTM 197

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
8

8.7 RESTART - automatic restart

In the case of openUTM applications based on an openUTM version V3.4 or higher (for
UPIC under BS2000/OSD: V4.0 or higher), the openUTM restart functions are also
available in client/server environments and can therefore be used by WebTransactions.

“Restart” means that a openUTM conversation which has been rolled back to the last
synchronization point because of an error or malfunction (e.g. loss of connection due to a
reboot) can be continued as of this point when the client logs on again.

Since openUTM always performs user-specific back-ups of conversation contexts, a restart
is not possible unless you are working with user names (SECURITY_TYPE=USER/PASSWORD).
The RESTART attribute must also be set to YES.

Restart on start

If the WT_SYSTEM.RESTART attribute is set to YES in the WebTransactions application start
template and a user name is specified, WebTransactions first internally uses the restart
transaction code KDCDISP for an automatic restart without regard to WT_SYSTEM.TAC or
WT_SYSTEM.SYM_DEST attribute. Only if this fails the system continues with the transaction
code specified by the WT_SYSTEM.TAC attribute (direct entry) or by WT_SYSTEM.SYM_DEST in
the upicfile.

If WT_SYSTEM.RESTART does not have the value YES or if no user name is given,
WebTransactions starts immediately with the transaction code specified in WT_SYSTEM.TAC
or WT_SYSTEM.SYM_DEST.

Reaction if no restart is possible

It is often not possible to perform a restart. The way in which WebTransactions reacts to this
type of situation depends on the cause and on whether an attempt was made to send a
message to the openUTM application in the rolled back transaction.

● If no restart is possible because the openUTM application has been regenerated since
the connection was lost or because the user was previously logged on via a terminal:

– If no attempt has been made to send a message (only open + receive) in the reset
transaction, the system will start with the transaction code that is identified in the
TAC attribute or by the SYM_DEST attribute in the upicfile.

– If an attempt has been made to send a message (open + send + receive) in the
reset transaction, WebTransactions sets the RECEIVE_ERROR attribute to
CM_TP_NOT_AVAILABLE_NO_RETRY. The error can now be handled individually in the
template.

RESTART - automatic restart Controlling communication

198 WebTransactions for openUTM

● If no restart is possible because RESTART=NO is set for this user name in the openUTM
configuration, then WebTransactions reacts in exactly the same way as described
above (only difference: different RECEIVE_ERROR value):

– If no attempt has been made to send a message (only open + receive) in the reset
transaction, the system will start with the transaction code that is identified in the
TAC attribute or by the SYM_DEST attribute in the upicfile.

– If an attempt has been made to send a message (open + send + receive) in the
reset transaction, WebTransactions sets the RECEIVE_ERROR attribute to
CM_TPN_NOT_RECOGNIZED.
The error can now be handled individually in the template.

Reaction if restart reports end of conversation (only for connections via UPIC)

If the restart returns a conversation end, WebTransactions writes the value
CONVERSATION_END in the system attribute RESTART. Only after the next receive call is
RESTART reset to empty string.

This makes it possible to recognize a restart in the “logoff screen” and process it accordingly
in the corresponding template.

Example

The following example shows a typical template for a restart logon using the upicfile.

<wtIf (host_system.RESTART == "CONVERSATION_END")>

<wtOnCreateScript>

host_system.CONVERSATION_TAC = "SYM_DEST";
host_system.SYM_DEST = "MAINENTR";

host.open();

(1)

host.receive();
host.system.CONVERSATION_TAC = "";

</wtOnCreateScript>

<wtInclude name="##wt_system.FORMAT#>

(2)

<wtElse>

Controlling communication RESTART - automatic restart

WebTransactions for openUTM 199

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
8

The first branch of the <wtif> handles the restart. If this end template is reached on a
restart attempt then clearly no end message should be output and no disconnection
operation should be performed. Instead, processing should continue with the host appli-
cation’s entry page. That is why a new conversation is selected in section 1. Before open is
called, the CONVERSATION_TAC attribute is set to SYM_DEST to prevent a openUTM control field
or the start of the screen message being interpreted as a TAC. Section 2 then starts by
addressing the first TAC as on initial logon (depending on the host application, it may be
necessary to enter an additional send here).

The <wtelse> branch specifies the behavior of the final page. Section 3 generates a
message to the user and section 4 logs off from the host application and closes the
WebTransactions session.

<html>
<head>
<title>TRSGNOF</title>
</head>
 bye bye ...
<body bgColor="#C0C0C0">
</body>
</html>

(3)

<wtOnCreateScript>
 host.close();
</wtOnCreateScript>

(4)

<wtEndIf>

BADTAC - simulating the BADTAC event service Controlling communication

200 WebTransactions for openUTM

8.8 BADTAC - simulating the BADTAC event service

You can configure a openUTM application in such a way that a special conversation is
started whenever an invalid transaction code is specified in line mode or via a format’s
openUTM control field. This special conversation is the BADTAC event service.

The BADTAC event service is a conversation defined by you for which the transaction code
KDCBADTC has been generated.

However, in the case of communications via UPIC, the BADTAC event service cannot be used
directly since the transaction code KDCBADTC cannot be started via UPIC.

Nevertheless, the system object’s BADTAC attribute allows you to simulate this event service
for WebTransactions. To do this, you generate any transaction code other than KDCBADTC for
the program unit which is to start automatically when an invalid transaction code is
generated and store this transaction code in the BADTAC attribute. This program unit should
not expect any messages. If you want, you can use the same program as for the BADTAC
event service. However, in this case you must generate another transaction code in addition
to KDCBADTC and use this transaction code for the BADTAC attribute.

If the BADTAC attribute is not set then invalid transaction codes are not automatically inter-
cepted: a call to the receive method following the invalid entry leads to an error.

Controlling communication Automatic conversation chaining

WebTransactions for openUTM 201

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
8

8.9 Automatic conversation chaining

The product variant “WebTransactions for openUTM” communicates with the openUTM
application using UPIC. In this communication protocol, the client (here WebTransactions)
selects a openUTM conversation by giving a transaction code. The selection is controlled
from the template by the TAC or SYM_DEST system attribute. During a conversation, the
openUTM application now determines the sequence of the program segments to be
executed (exception: active dialog). At the end of the conversation, the initiative is handed
back to WebTransactions: if desired, a further conversation can be selected and started.

In the terminal mode, it is possible to start the next conversation automatically using a
openUTM control field or the first 8 characters of the format. This behavior is simulated by
WebTransactions. At the end of a conversation, WebTransactions determines, from the
openUTM control field or the first 8 characters of the current format, the transaction code
for the following conversation. This conversation is then started implicitly by the next call to
the send method.

This means that template programmers do not have to perform any adaptations for
automatic conversation chaining.

Simulating function keys Controlling communication

202 WebTransactions for openUTM

8.10 Simulating function keys

TACs and return codes for function keys can be generated in a openUTM application
(F1,F2,...,F24 and for BS2000/OSD additionally K1 to K14). On openUTM generation
(KDCDEF statement SFUNC), each function key can be assigned a specific function which
openUTM performs when the user presses the corresponding key at the terminal.

As of Version 4.0, openUTM makes it possible to simulate the pressing of function keys
during communications via UPIC. This facilitates the integration into client/server environ-
ments of terminal host applications which use openUTM function keys.

You can use this function in WebTransactions by setting the SPECIAL_KEY attribute of the
system object to the values F1-F24 or K1-K14. With the next send, WebTransactions will then
send this function key to the openUTM application. After transmission, the attribute of
WebTransactions is reset to prevent continued transmission of the function key.

To facilitate the selection of a function key, WebTransactions makes the files
wtKeysUTM. htm and wtBrowserFunctions.htm available, which you can integrate in a FHS
or FORMANT based template using the Include tag. wtBrowserFunctions.htm includes the
files wtKeysUTMFHS.js and wtKeysUTMFormant.js for browser handling, see also page 174.

When generating the templates, Include tags for wtKeysUTM. htm and wtBrowserFunc-
tions.htm are created automatically. These files define buttons for all F and K keys and
ensure that the SPECIAL_KEY attribute is set to the value corresponding to the key selected.
In practice, the files should be copied and reduced to only those keys which are actually
generated in the openUTM application.

Assigning the corresponding global attribute values for # formats

Independently of this transmission of a function key as a openUTM return code, when
formats are used, FHS and FORMANT return information on pressed function keys in the
global attributes InputKeyClass and InputKeyNumber. These attributes can be set in the
template (via the corresponding attributes of the WT_HOST_MESSAGE object). The corre-
sponding statements are already present in generated templates (see section “Structure of
the generated templates” on page 89).

Controlling communication Support for KDCSCUR

WebTransactions for openUTM 203

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.k

0
8

8.11 Support for KDCSCUR

If a dialog step of a openUTM program unit includes format output and the cursor is to be
positioned on a field by means of a KDCSCUR call, this information is passed to UPIC.
UPIC then analyzes this information and forwards it to WebTransactions.

To ensure that WebTransactions can implement this information, the
WT_HOST_GLOBALS.Cursor attribute must be set to N. wtBrowserFunctions.htm evaluates
WT_HOST_GLOBALS.Cursor and uses a Java script to set the focus in the browser window.
After output on the browser, the cursor is then positioned in the field provided by the
openUTM application for the relevant dialog step.

WT_HOST_GLOBALS.Cursor is set independently of the wtBrowserFunctions.htm template.

Targeted logon via specific LTERMs Controlling communication

204 WebTransactions for openUTM

8.12 Targeted logon via specific LTERMs

openUTM allows you to configure specific properties for LTERM partners (logical access
points) and, for example, integrate these in the lock/keycode concept:
In the openUTM configuration, you can define lockcodes not only for services (openUTM
conversations) but also for LTERM partners. You can also define keycodes for LTERM
partners in the same way as for openUTM user names:

● A client program can only log on if a keycode which matches the lockcode of the
associated LTERM partner has been assigned to the specified user name.

● A client program can only call a service if the keysets of both the user name in question
and the LTERM partner contain a keycode which corresponds to the lockcode of the
service.

When access is performed via WebTransactions, the LTERM partner which uses the
WTHolder program depends on the localapps name which is used. Since
WebTransactions always allocates the first free localapps name by default at runtime, this
allocation is random (free allocation). If a WTHolder program needs to connect via a specific
LTERM partner, you can enter a specific local host application name in the system object’s
LOCAL_APPLICATION attribute (fixed allocation). In this case, the localapps file is ignored.

If you decide to use a fixed allocation, WebTransactions cannot ensure that a so far unused
host application name is used for each session; this must be guaranteed in some other way
when the WebTransactions application is implemented.

 If a logon via the UPIC_V4 protocol fails and the PROTOCOL parameter is not specified
in the upicfile, then UPIC attempts to perform the logon using the UPIC Version
3.4 protocol. For this reason, error messages indicating a failed logon may contain
an “incorrect” version specification. The correct version will be output in such
messages if you specify PROTOCOL=40 in the corresponding entry in the upicfile.

i

WebTransactions for openUTM 205

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
ul

i 2
0

10
 S

ta
nd

 0
9:

26
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7.

5
\M

a
nu

a
le

\1
00

35
04

_
U

T
M

\e
n\

ut
m

.m
ix

Glossary
A term in ->italic font means that it is explained somewhere else in the glossary.

active dialog
In the case of active dialogs, WebTransactions actively intervenes in the control
of the dialog sequence, i.e. the next ->template to be processed is determined
by the template programming. You can use the ->WTML language tools, for
example, to combine multiple ->host formats in a single ->HTML page. In this
case, when a host ->dialog step is terminated, no output is sent to the ->browser
and the next step is immediately started. Equally, multiple interactions between
the Web ->browser and WebTransactions are possible within one and the same
host dialog step.

array
->Data type which can contain a finite set of values of one data type. This data
type can be:
– ->scalar
– a ->class
– an array
The values in the array are addressed via a numerical index, starting at 0.

asynchronous message
In WebTransactions, an asynchronous message is one sent to the terminal
without having been explicitly requested by the user, i.e. without the user having
pressed a key or clicked on an interface element.

attribute
Attributes define the properties of ->objects.
An attribute can be, for example, the color, size or position of an object or it can
itself be an object. Attributes are also interpreted as ->variables and their values
can be queried or modified.

Glossary

206 WebTransactions for openUTM

Automask template
A WebTransactions ->template created by WebLab either implicitly when gener-
ating a base directory or explicitly with the command Generate Automask. It is
used whenever no format-specific template can be identified. An Automask
template contains the statements required for dynamically mapping formats
and for communication. Different variants of the Automask template can be
generated and selected using the system object attribute AUTOMASK.

base directory
The base directory is located on the WebTransactions server and forms the
basis for a ->WebTransactions application. The base directory contains the
->templates and all the files and program references (links) which are necessary
in order to run a WebTransactions application.

BCAM application name
Corresponds to the openUTM generation parameter BCAMAPPL and is the name
of the −>openUTM application through which −>UPIC establishes the
connection.

browser
Program which is required to call and display ->HTML pages. Browsers are, for
example, Microsoft Internet Explorer or Mozilla Firefox.

browser display print
The WebTransactions browser display print prints the information displayed in
the ->browser.

browser platform
Operating system of the host on which a ->browser runs as a client for
WebTransactions.

buffer
Definition of a record, which is transmitted from a ->service. The buffer is used
for transmitting and receiving messages. In addition there is a specific buffer for
storing the ->recognition criteria and for data for the representation on the
screen.

capturing
To enable WebTransactions to identify the received ->formats at runtime, you
can open a ->session in ->WebLab and select a specific area for each format and
name the format. The format name and ->recognition criteria are stored in the
->capture database. A ->template of the same name is generated for the format.
Capturing forms the basis for the processing of format-specific templates for the
WebTransactions for OSD and MVS product variants.

Glossary

WebTransactions for openUTM 207

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
ul

i 2
0

10
 S

ta
nd

 0
9:

26
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7.

5
\M

a
nu

a
le

\1
00

35
04

_
U

T
M

\e
n\

ut
m

.m
ix

capture database
The WebTransactions capture database contains all the format names and the
associated ->recognition criteria generated using the ->capturing technique. You
can use ->WebLab to edit the sequence and recognition criteria of the formats.

CGI
(Common Gateway Interface)
Standardized interface for program calls on ->Web servers. In contrast to the
static output of a previously defined->HTML page, this interface permits the
dynamic construction of HTML pages.

class
Contains definitions of the ->properties and ->methods of an ->object. It provides
the model for instantiating objects and defines their interfaces.

class template
In WebTransactions, a class template contains valid, recurring statements for
the entire object class (e.g. input or output fields). Class templates are
processed when the ->evaluation operator or the toString method is applied to a
->host data object.

client
Requestors and users of services in a network.

cluster
Set of identical ->WebTransactions applications on different servers which are
interconnected to form a load-sharing network.

communication object
This controls the connection to an ->host application and contains information
about the current status of the connection, the last data to be received etc.

conversion tools
Utilities supplied with WebTransactions. These tools are used to analyze the
data structures of ->openUTM applications and store the information in files.
These files can then be used in WebLab as ->format description sources in order
to generate WTML templates and ->FLD files.
COBOL data structures or IFG format libraries form the basis for the conversion
tools. The conversion tool for DRIVE programs is supplied with the product
DRIVE.

daemon
Name of a process type in Unix system/POSIX systems which runs in the
background and performs no I/O operations at terminals.

Glossary

208 WebTransactions for openUTM

data access control
Monitoring of the accesses to data and ->objects of an application.

data type
Definition of the way in which the contents of a storage location are to be inter-
preted. Each data type has a name, a set of permitted values (value range), and
a defined number of operations which interpret and manipulate the values of
that data type.

dialog
Describes the entire communication between browser, WebTransactions and -
>host application. It will usually comprise multiple ->dialog cycles. WebTransac-
tions supports a number of different
types of dialog.
– ->passive dialog
– ->active dialog
– ->synchronized dialog
– ->non-synchronized dialog

dialog cycle
Cycle that comprises the following steps when a ->WebTransactions application is
executed:
– construct an ->HTML page and send it to the ->browser
– wait for a response from the browser
– evaluate the response fields and possibly send them to the->host application

for further processing
A number of dialog cycles are passed through while a ->WebTransactions appli-
cation is executing.

distinguished name
The Distinguished Name (DN) in ->LDAP is hierarchically organized and
consists of a number of different components (e.g. “country, and below country:
organization, and below organization: organizational unit, followed by: usual
name”). Together, these components provide a unique identification of an object
in the directory tree.
Thanks to this hierarchy, the unique identification of objects is a simple matter
even in a worldwide directory tree:
– The DN "Country=DE/Name=Emil Person" reduces the problem of achiev-

ing a unique identification to the country DE (=Germany).
– The DN "Organization=FTS/Name=Emil Person" reduces it to the organiza-

tion FTS.
– The DN "Country=DE/Organization=FTS/Name=Emil Person" reduces it to

the organization FTS located in Germany (DE).

Glossary

WebTransactions for openUTM 209

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
ul

i 2
0

10
 S

ta
nd

 0
9:

26
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7.

5
\M

a
nu

a
le

\1
00

35
04

_
U

T
M

\e
n\

ut
m

.m
ix

document directory
->Web server directory containing the documents that can be accessed via the
network. WebTransactions stores files for download in this directory, e.g. the
WebLab client or general start pages.

Domain Name Service (DNS)
Procedure for the symbolic addressing of computers in networks. Certain
computers in the network, the DNS or name server, maintain a database
containing all the known host names and IP numbers in their environment.

dynamic data
In WebTransactions, dynamic data is mapped using the WebTransactions
object model, e.g. as a ->system object, host object or user input at the browser.

EHLLAPI
Enhanced High-Level Language API
Program interface, e.g. of terminal emulations for communication with the SNA
world. Communication between the transit client and SNA computer, which is
handled via the TRANSIT product, is based on this interface.

EJB
(Enterprise JavaBean)
This is a Java-based industry standard which makes it possible to use in-house
or commercially available server components for the creation of distributed
program systems within a distributed, object-oriented environment.

entry page
The entry page is an ->HTML page which is required in order to start a
->WebTransactions application This page contains the call which starts
WebTransactions with the first ->template, the so-called start template.

evaluation operator
In WebTransactions the evaluation operator replaces the addressed
->expressions with their result (object attribute evaluation). The evaluation
operator is specified in the form ##expression#.

expression
A combination of ->literals, ->variables, operators and expressions which return
a specific result when evaluated.

FHS
Format Handling System
Formatting system for BS2000/OSD applications.

Glossary

210 WebTransactions for openUTM

field
A field is the smallest component of a service and element of a ->record or
->buffer.

field file (*.fld file)
In WebTransactions, this contains the structure of a ->format record (metadata).

filter
Program or program unit (e.g. a library) for converting a given ->format into
another format (e.g. XML documents to ->WTScript data structures).

format
Optical presentation on alphanumeric screens (sometimes also referred to as
screen form or mask).

In WebTransactions each format is represented by a ->field file and a ->template.

format type
(only relevant in the case of ->FHS applications and communication via ->UPIC)
Specifies the type of format: #format, +format, -format or *format.

format description sources
Description of multiple ->formats in one or more files which were generated from
a format library (FHS/IFG) or are available directly at the ->host for the use of
“expressive” names in formats.

function
A function is a user-defined code unit with a name and ->parameters. Functions
can be called in ->methods by means of a description of the function interface (or
signature).

holder task
A process, a task or a thread in WebTransactions depending on the operating
system platform being used. The number of tasks corresponds to the number
of users. The task is terminated when the user logs off or when a time-out
occurs. A holder task is identical to a ->WebTransactions session.

host
The computer on which the- >host application is running.

host adapter
Host adapters are used to connect existing ->host applications to
WebTransactions. At runtime, for example, they have the task of establishing
and terminating connections and converting all the exchanged data.

Glossary

WebTransactions for openUTM 211

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
ul

i 2
0

10
 S

ta
nd

 0
9:

26
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7.

5
\M

a
nu

a
le

\1
00

35
04

_
U

T
M

\e
n\

ut
m

.m
ix

host application
Application that is integrated with WebTransactions.

host control object
In WebTransactions, host control objects contain information which relates not
to individual fields but to the entire ->format. This includes, for example, the field
in which the cursor is located, the current function key or global format
attributes.

host data object
In WebTransactions, this refers to an ->object of the data interface to the ->host
application. It represents a field with all its field attributes. It is created by
WebTransactions after the reception of host application data and exists until the
next data is received or until termination of the ->session.

host data print
During WebTransactions host data print, information is printed that was edited
and sent by the ->host application, e.g. printout of host files.

host platform
Operating system of the host on which the ->host applications runs.

HTML
(Hypertext Markup Language)
See ->Hypertext Markup Language

HTTP
(Hypertext Transfer Protocol)
This is the protocol used to transfer ->HTML pages and data.

HTTPS
(Hypertext Transfer Protocol Secure)
This is the protocol used for the secure transfer of ->HTML pages and data.

hypertext
Document with links to other locations in the same or another document. Users
click the links to jump to these new locations.

Hypertext Markup Language
(Hypertext Markup Language)
Standardized markup language for documents on the Web.

Glossary

212 WebTransactions for openUTM

Java Bean
Java programs (or ->classes) with precisely defined conventions for interfaces
that allow them to be reused in different applications.

KDCDEF
openUTM tool for generating ->openUTM applications.

LDAP
(Lightweight Directory Access Protocol)
The X.500 standard defines DAP (Directory Access Protocol) as the access
protocol. However, the Internet standard “LDAP” has proved successful specif-
ically for accessing X.500 directory services from a PC.
LDAP is a simplified DAP protocol that does not support all the options available
with DAP and is not compatible with DAP. Practically all X.500 directory services
support both DAP and LDAP. In practice, interpretation problems may arise
since there are various dialects of LDAP. The differences between the dialects
are generally small.

literal
Character sequence that represents a fixed value. Literals are used in source
programs to specify constant values (“literal” values).

master template
WebTransactions template used to generate the Automask and the format-
specific templates.

message queuing (MQ)
A form of communication in which messages are not exchanged directly, rather
via intermediate queues. The sender and receiver can work at separate times
and locations. Message transmission is guaranteed regardless of whether or
not a network connection currently exists.

method
Object-oriented term for a ->function. A method is applied to the ->object in
which it is defined.

module template
In WebTransactions, a module template is used to define ->classes, ->functions
and constants globally for a complete ->session. A module template is loaded
using the import() function.

MT tag
(Master Template tag)
Special tags used in the dynamic sections of ->master templates.

Glossary

WebTransactions for openUTM 213

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
ul

i 2
0

10
 S

ta
nd

 0
9:

26
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7.

5
\M

a
nu

a
le

\1
00

35
04

_
U

T
M

\e
n\

ut
m

.m
ix

multitier architecture
All client/server architectures are based on a subdivision into individual
software components which are also known as layers or tiers. We speak of
1-tier, 2-tier, 3-tier and multitier models. This subdivision can be considered at
the physical or logical level:
– We speak of logical software tiers when the software is subdivided into

modular components with clear interfaces.
– Physical tiers occur when the (logical) software components are distributed

across different computers in the network.
With WebTransactions, multitier models are possible both at the physical and
logical level.

name/value pair
In the data sent by the ->browser, the combination, for example, of an ->HTML
input field name and its value.

non-synchronized dialog
Non-synchronized dialogs in WebTransactions permit the temporary deacti-
vation of the checking mechanism implemented in ->synchronized dialogs. In this
way, ->dialogs that do not form part of the synchronized dialog and have no
effect on the logical state of the ->host application can be incorporated. In this
way, for example, you can display a button in an ->HTML page that allows users
to call help information from the current host application and display it in a
separate window.

object
Elementary unit in an object-oriented software system. Every object possesses
a name via which it can be addressed, ->attributes, which define its status
together with the ->methods that can be applied to the object.

openUTM
(Universal Transaction Monitor)
Transaction monitor from Fujitsu Technology Solutions, which is available for
BS2000/OSD and a variety of Unix platforms and Windows platforms.

openUTM application
A ->host application which provides services that process jobs submitted by
->clients or other ->host applications. openUTM responsibilities include trans-
action management and the management of communication and system
resources. Technically speaking, the UTM application is a group of processes
which form a logical unit at runtime.
openUTM applications can communicate both via the client/server protocol
->UPIC and via the emulation interface (9750).

Glossary

214 WebTransactions for openUTM

openUTM-Client (UPIC)
The openUTM-Client (UPIC) is a product used to create client programs for
openUTM. openUTM-Client (UPIC) is available, for example, for Unix platforms,
BS2000/OSD platforms and Windows platforms.

openUTM program unit
The services of an ->openUTM application are implemented by one or more
openUTM program units. These can be addressed using transaction codes and
contain special openUTM function calls (e.g. KDCS calls).

parameter
Data which is passed to a ->function or a ->method for processing (input
parameter) or data which is returned as a result of a function or method (output
parameter).

passive dialog
In the case of passive dialogs in WebTransactions, the dialog sequence is
controlled by the ->host application, i.e. the host application determines the next
->template which is to be processed. Users who access the host application via
WebTransactions pass through the same dialog steps as if they were accessing
it from a terminal. WebTransactions uses passive dialog control for the
automatic conversion of the host application or when each host application
format corresponds to precisely one individual template.

password
String entered for a ->user id in an application which is used for user authenti-
cation (->system access control).

polling
Cyclical querying of state changes.

pool
In WebTransactions, this term refers to a shared directory in which WebLab can
create and maintain ->base directories. You control access to this directory with
the administration program.

post
To send data.

posted object (wt_Posted)
List of the data returned by the ->browser. This ->object is created by WebTrans-
actions and exists for the duration of a ->dialog cycle.

Glossary

WebTransactions for openUTM 215

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
ul

i 2
0

10
 S

ta
nd

 0
9:

26
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7.

5
\M

a
nu

a
le

\1
00

35
04

_
U

T
M

\e
n\

ut
m

.m
ix

process
The term “process” is used as a generic term for process (in Solaris, Linux and
Windows) and task (in BS2000/OSD).

project
In the WebTransactions development environment, a project contains various
settings for a ->WebTransactions application. These are saved in a project file
(suffix .wtp). You should create a project for each WebTransactions application
you develop, and always open this project for editing.

property
Properties define the nature of an ->object, e.g. the object “Customer” could
have a customer name and number as its properties. These properties can be
set, queried, and modified within the program.

protocol
Agreements on the procedural rules and formats governing communications
between remote partners of the same logical level.

protocol file

● openUTM-Client: File into which the openUTM error messages as are writ-
ten in the case of abnormal termination of a conversation.

● In WebTransactions, protocol files are called trace files.

roaming session
->WebTransactions sessions which are invoked simultaneously or one after
another by different ->clients.

record
A record is the definition of a set of related data which is transferred to a ->buffer.
It describes a part of the buffer which may occur one or more times.

recognition criteria
Recognition criteria are used to identify ->formats of a ->terminal application and
can access the data of the format. The recognition criteria selected should be
one or more areas of the format which uniquely identify the content of the
format.

scalar
->variable made up of a single value, unlike a ->class, an ->array or another
complex data structure.

Glossary

216 WebTransactions for openUTM

service (openUTM)
In ->openUTM, this is the processing of a request using an ->openUTM appli-
cation. There are dialog services and asynchronous services. The services are
assigned their own storage areas by openUTM. A service is made up of one or
more ->transactions.

service application
->WebTransactions session which can be called by various different users in turn.

service node
Instance of a ->service. During development and runtime of a ->method a service
can be instantiated several times. During modelling and code editing those
instances are named service nodes.

session
When an end user starts to work with a ->WebTransactions application this opens
a WebTransactions session for that user on the WebTransactions server. This
session contains all the connections open for this user to the
->browsers, special ->clients and ->hosts.
A session can be started as follows:
– Input of a WebTransactions URL in the browser.
– Using the START_SESSION method of the WT_REMOTE client/server interface.
A session is terminated as follows:
– The user makes the corresponding input in the output area of this

->WebTransactions application (not via the standard browser buttons).
– Whenever the configured time that WebTransactions waits for a response

from the ->host application or from the ->browser is exceeded.
– Termination from WebTransactions administration.
– Using the EXIT_SESSION method of the WT_REMOTE client/server interface.
A WebTransactions session is unique and is defined by a ->WebTransactions
application and a session ID. During the life cycle of a session there is one
->holder task for each WebTransactions session on the WebTransactions server.

SOAP
(originally Simple Object Access Protocol)
The ->XML based SOAP protocol provides a simple, transparent mechanism
for exchanging structured and typecast information between computers in a
decentralized, distributed environment.
SOAP provides a modular package model together with mechanisms for data
encryption within modules. This enables the uncomplicated description of the
internal interfaces of a ->Web-Service.

Glossary

WebTransactions for openUTM 217

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
ul

i 2
0

10
 S

ta
nd

 0
9:

26
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7.

5
\M

a
nu

a
le

\1
00

35
04

_
U

T
M

\e
n\

ut
m

.m
ix

style
In WebTransactions this produces a different layout for a ->template, e.g. with
more or less graphic elements for different->browsers. The style can be changed
at any time during a ->session.

synchronized dialog
In the case of synchronized dialogs (normal case), WebTransactions automati-
cally checks whether the data received from the web browser is genuinely a
response to the last ->HTML page to be sent to the ->browser. For example, if
the user at the web browser uses the Back button or the History function to
return to an “earlier” HTML page of the current ->session and then returns this,
WebTransactions recognizes that the data does not correspond to the current
->dialog cycle and reacts with an error message. The last page to have been
sent to the browser is then automatically sent to it again.

system access control
Check to establish whether a user under a particular ->user ID is authorized to
work with the application.

system object (wt_System)
The WebTransactions system object contains ->variables which continue to
exist for the duration of an entire ->session and are not cleared until the end of
the session or until they are explicitly deleted. The system object is always
visible and is identical for all name spaces.

TAC
See ->transaction code

tag
->HTML, ->XML and ->WTML documents are all made up of tags and actual
content. The tags are used to mark up the documents e.g. with header formats,
text highlighting formats (bold, italics) or to give source information for graphics
files.

TCP/IP
(Transport Control Protocol/Internet Protocol)
Collective name for a protocol family in computer networks used, for example,
in the Internet.

Glossary

218 WebTransactions for openUTM

template
A template is used to generate specific code. A template contains fixed infor-
mation parts which are adopted unchanged during generation, as well as
variable information parts that can be replaced by the appropriate values during
generation.
A template is a ->WTML file with special tags for controlling the dynamic gener-
ation of a ->HTML page and for the processing of the values entered at the -
>browser. It is possible to maintain multiple template sets in parallel. These then
represent different ->styles (e.g. many/few
graphics, use of Java, etc.).
WebTransactions uses different types of template:
– ->Automask templates for the automatic conversion of the ->formats of MVS

and OSD applications.
– Custom templates, written by the programmer, for example, to control an -

>active dialog.
– Format-specific templates which are generated for subsequent post-pro-

cessing.
– Include templates which are inserted in other templates.
– ->Class templates
– ->Master templates to ensure the uniform layout of fixed areas on the

generation of the Automask and format-specific templates.
– Start template, this is the first template to be processed in a

WebTransactions application.

template object
->Variables used to buffer values for a ->dialog cycle in WebTransactions.

terminal application
Application on a ->host computer which is accessed via a 9750 or 3270
interface.

terminal hardcopy print
A terminal hardcopy print in WebTransactions prints the alphanumeric repre-
sentation of the ->format as displayed by a terminal or a terminal emulation.

transaction
Processing step between two synchronization points (in the current operation)
which is characterized by the ACID conditions (Atomicity, Consistency, Isolation
and Durability). The intentional changes to user information made within a
transaction are accepted either in their entirety or not at all (all-or-nothing rule).

Glossary

WebTransactions for openUTM 219

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
ul

i 2
0

10
 S

ta
nd

 0
9:

26
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7.

5
\M

a
nu

a
le

\1
00

35
04

_
U

T
M

\e
n\

ut
m

.m
ix

transaction code/TAC
Name under which an openUTM service or ->openUTM program unit can be
called. The transaction code is assigned to the openUTM program unit during
configuration. A program unit can be assigned several transaction codes.

UDDI
(Universal Description, Discovery and Integration)
Refers to directories containing descriptions of ->Web services. This information
is available to web users in general.

Unicode
An alphanumeric character set standardized by the International Standardisa-
tion Organisation (ISO) and the Unicode Consortium. It is used to represent
various different types of characters: letters, numerals, punctuation marks, syl-
labic characters, special characters and ideograms. Unicode brings together all
the known text symbols in use across the world into a single character set.
Unicode is vendor-independent and system-independent. It uses either two-
byte or four-byte character sets in which each text symbol is encoded. In the ISO
standard, these character sets are termed UCS-2 (Universal Character Set 2)
or UCS-4. The designation UTF-16 (Unicode Transformation Format 16-bit),
which is a standard defined by the Unicode Consortium, is often used in place
of the designation UCS-2 as defined in ISO. Alongside UTF-16, UTF-8 (Unicode
Transformation Format 8 Bit) is also in widespread use. UTF-8 has become the
character encoding method used globally on the Internet.

UPIC
(Universal Programming Interface for Communication)
Carrier system for openUTM clients which uses the X/Open interface, which
permity CPI-C client/server communication between a CPI-C-Client application
and the openUTM application.

URI
(Uniform Resource Identifier)
Blanket term for all the names and addresses that reference objects on the
Internet. The generally used URIs are->URLs.

URL
(Uniform Resource Locator)
Description of the location and access type of a resource in the ->Internet.

user exit
Functions implemented in C/C++ which the programmer calls from a
->template.

Glossary

220 WebTransactions for openUTM

user ID
User identification which can be assigned a password (->system access control)
and special access rights (->data access control).

variable
Memory location for variable values which requires a name and a ->data type.

visibility of variables
->Objects and ->variables of different dialog types are managed by WebTrans-
actions in different address spaces. This means that variables belonging to a -
>synchronized dialog are not visible and therefore not accessible in a
->asynchronous dialog or in a dialog with a remote application.

web server
Computer and software for the provision of ->HTML pages and dynamic data
via ->HTTP.

web service
Service provided on the Internet, for example a currency conversion program.
The SOAP protocol can be used to access such a service. The interface of a
web service is described in ->WSDL.

WebTransactions application
This is an application that is integrated with ->host applications for internet/
intranet access. A WebTransactions application consists of:
– a ->base directory
– a start template
– the ->templates that control conversion between the ->host and the

->browser.
– protocol-specific configuration files.

WebTransactions platform
Operating system of the host on which WebTransactions runs.

WebTransactions server
Computer on which WebTransactions runs.

WebTransactions session
See ->session

WSDL
(Web Service Definition Language)
Provides ->XML language rules for the description of ->web services. In this
case, the web service is defined by means of the port selection.

Glossary

WebTransactions for openUTM 221

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
ul

i 2
0

10
 S

ta
nd

 0
9:

26
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7.

5
\M

a
nu

a
le

\1
00

35
04

_
U

T
M

\e
n\

ut
m

.m
ix

WTBean
In WebTransactions ->WTML components with a self-descriptive interface are
referred to as WTBeans. A distinction is made between inline and standalone
WTBeans:
– An inline WTBean corresponds to a part of a WTML document
– A standalone WTBean is an autonomous WTML document

A number of WTBeans are included in of the WebTransactions product, addi-
tional WTBeans can be downloaded from the WebTransactions homepage
ts.fujitsu.com/products/software/openseas/webtransactions.html.

WTML
(WebTransactions Markup Language)
Markup and programming language for WebTransactions ->templates. WTML
uses additional ->WTML tags to extend ->HTML and the server programming
language ->WTScript, e.g. for data exchange with ->host applications. WTML
tags are executed by WebTransactions and not by the ->browser (serverside
scripting).

WTML tag
(WebTransactions Markup Language-Tag)
Special WebTransactions tags for the generation of the dynamic sections of an
->HTML page using data from the->host application.

WTScript
Serverside programming language of WebTransactions. WTScripts are similiar
to client-side Java scripts in that they are contained in sections that are intro-
duced and terminated with special tags. Instead of using ->HTML-SCRIPT tags
you use ->WTML-Tags: wtOnCreateScript and wtOnReceiveScript. This indicates
that these scripts are to be implemented by WebTransactions and not by the
->browser and also indicates the time of execution. OnCreate scripts are
executed before the page is sent to the browser. OnReceive scripts are
executed when the response has been received from the browser.

XML
(eXtensible Markup Language)
Defines a language for the logical structuring of documents with the aim of
making these easy to exchange between various applications.

XML schema
An XML schema basically defines the permissible elements and attributes of an
XML description. XML schemas can have a range of different formats, e.g. DTD
(Document Type Definition), XML Schema (W3C standard) or XDR (XML Data
Reduced).

Glossary

222 WebTransactions for openUTM

WebTransactions for openUTM 223

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:2

6
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
04

_U
T

M
\e

n\
ut

m
.a

b
k

Abbreviations
BO Business Object

CGI Common Gateway Interface

DN Distinguished Name

DNS Domain Name Service

EJB Enterprise JavaBean

FHS Format Handling System

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IFG Interaktiver Format Generator

ISAPI Internet Server Application Programming Interface

LDAP Lightweight Directory Access Protocol

LPD Line Printer Daemon

MT-Tag Master-Template-Tag

MVS Multiple Virtual Storage

OSD Open Systems Direction

SGML Standard Generalized Markup Language

SOAP Simple Object Access Protocol

Abbreviations

224 WebTransactions for openUTM

SSL Secure Socket Layer

TCP/IP Transport Control Protocol/Internet Protocol

Upic Universal Programming Interface for Communication

URL Uniform Resource Locator

WSDL Web Services Description Language

wtc WebTransactions Component

WTML WebTransactions Markup Language

XML eXtensible Markup Language

WebTransactions for openUTM 225

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
ul

i 2
0

10
 S

ta
nd

 0
9:

26
.5

3
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

a
nu

a
le

\1
00

35
04

_
U

T
M

\e
n\

ut
m

.li
t

Related publications

WebTransactions manuals

You can download all manuals from the Web address http://manuals.ts.fujitsu.com.

WebTransactions
Concepts and Functions
Introduction

WebTransactions
Template Language
Reference Manual

WebTransactions
Client APIs for WebTransactions
User Guide

WebTransactions
Connection to OSD Applications
User Guide

WebTransactions
Connection to MVS Applications
User Guide

WebTransactions
Access to Dynamic Web Contents
User Guide

WebTransactions
Web Frontend for Web Services
User Guide

http://manuals.ts.fujitsu.com

Related publications

226 WebTransactions for openUTM

Other publications

The manuals are available as online manuals, see http://manuals.ts.fujitsu.com, or in printed
form which must be paid and ordered separately at http://manualshop.ts.fujitsu.com.

openUTM
Concepts and Functions
User Guide

openUTM
Programming Applications with KDCS for COBOL, C and C++
Core Manual

openUTM
Generating Applications
User Guide

openUTM
Administering Applications
User Guide

FHS (BS2000/OSD)
Format-Handling System for UTM, TIAM, DCAM
User Guide

http://manuals.ts.fujitsu.com
http://manualshop.ts.fujitsu.com

WebTransactions for openUTM 227

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

.
Ju

ly
 2

01
0

 S
ta

n
d

09
:2

6.
54

P
fa

d:
 F

:\W
eb

TA
\V

7.
5\

M
an

u
al

e\
10

03
50

4
_U

T
M

\e
n\

ut
m

.s
ix

Index

$FIRST (host control object) 170
$NEXT (host control object) 170
*.fld file see field file
*.htm file see template

A
access point (LTERM) 204
active dialog 205, 208
Align (field file) 87
Align (host data object attribute) 160
APPLICATION_NAME (system object

attribute) 133, 146, 153
APPLICATION_PREFIX (system object

attribute) 146, 153
architecture

WebTransactions 9
array 205
ASCII-to-EBCDIC conversion 127, 161
assistant 103
asynchronous message 205
attribute 205

WT_HOST_GLOBALS 169
WT_HOST_MESSAGE 165

AttributeCombination 86
AttributeLength (field attribute block) 86
AttributeLength (global attribute block) 85
AttributOffset (field file) 87
AttributOffsets section (field file) 85
AutoInput (field file) 87
AutoInput (host data object attribute) 160
automask template 206
automatic restart 150

B
BackgroundColor (field file) 85
BackgroundColor (WT_Host_Message

attribute) 165
BADTAC (system object attribute) 146, 200
BADTAC event service 200
base data type 205
base directory 206

converting to a new version 72
creating 71
example 36
localapps 73
upicfile 73

BaseVariant (field file) 85
basic format 190
BCAM application name 206
BCAMAPPL 206
binary data 124
Blink (field file) 87
Blink (host data object attribute) 160
browser 206

terminal functions 171
browser display print 206
browser platform 206
buffer 206

C
capture database 207
capturing 206
Case (field file) 87
Case (host data object attribute) 160
CGI (Common Gateway Interface) 207
change

password 196
character coding (openUTM) 149

Index

228 WebTransactions for openUTM

CHARSET (system object attribute) 10, 126, 168
class 207

templates 164, 207
clickable image 62
client 207
cluster 207
Color (field file) 86, 87
Color (host data object attribute) 161
Column (field file) 87
command

in line mode 121
communication object 207

connection parameters 193
creating 193

COMMUNICATION_ INTERFACE_VERSION
(system object attribute) 147

COMMUNICATION_FILE_NAME (system object
attribute) 147, 154, 155

connection
opening multiple 193

Content_ (WT_HOST_MESSAGE attribute) 165,
166

Contents (WT_Host_Message attribute) 165
Content-Type (HTTP header field) 168
conversation

chaining 201
starting 190

CONVERSATION_TAC (system object
attribute) 147

conversion tools 207
create

base directory 71
project 35
start template 64

Cursor (field file) 86
Cursor (host control object attribute) 169
Cursor (host data object attribute) 161, 162
CursorControl (field file) 85
CursorControl (WT_HOST_MESSAGE

attribute) 165
CursorField (WT_HOST_MESSAGE

attribute) 165, 166
CursorPosition (field file) 85

CursorPosition (WT_HOST_MESSAGE
attribute) 165

CUT_TAC_FIELD (system object attribute) 147

D
daemon 207
data

dynamic 209
data access control 208
data type 208
DataOffset (field file) 87
DataType (field file) 87
DataType (host data object attribute) 160
DateFormat (field file) 85
DateFormat (host data object attribute) 165
DecimalSeparator (field file) 85
DecimalSeparator (host data object

attribute) 165
DefaultCursor (field file) 87
DefaultCursor (host data object attribute) 160
define

epilog 148
form field 148
prolog 150

Detect (WT_HOST_GLOBALS attribute) 169
Detectable (field file) 87
Detectable (host data object attribute) 161
dialog 208

active 208
non-synchronized 208, 213
passive 208, 214
synchronized 208, 217
types 208

dialog cycle 208
DigitSeparator (field file) 85
DigitSeparator (host data object attribute) 165
disconnection 156
display

picture file 124
DISPLAY_EURO (system object attribute) 147
DisplayLength (field file) 87
distinguished name 208
document directory 209
Domain Name Service (DNS) 209

Index

WebTransactions for openUTM 229

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

.
Ju

ly
 2

01
0

 S
ta

n
d

09
:2

6.
54

P
fa

d:
 F

:\W
eb

TA
\V

7.
5\

M
an

u
al

e\
10

03
50

4
_U

T
M

\e
n\

ut
m

.s
ix

drop-down list 54

E
edit

template (example) 53
EditRC (field file) 86
EditState (field file) 86
EditState (host data object attribute) 161, 164
EHLLAPI 209
EJB 209
enter licenses (example) 28
entry page 209
EPILOG (system object attribute) 148
ERROR (system object attribute)

on open 154
on receive 154, 155

evaluation operator 209
event service

BADTAC 200
SIGNON 196

expression 209

F
FHS 209
FHS format

convert to template 76
FHS partial formats 104
field 210
field file 75, 210

keywords 85
sections 85
specifying 148

field files 10, 126
FieldLength (field file, offset) 86
FieldLength (WT_HOST_GLOBALS

attribute) 170
Fieldname section (field file) 85
FieldsDetect (field file) 85
FieldsDetect (WT_HOST_MESSAGE

attribute) 165
FieldsMod (field file) 85
FieldsMod (host data object attribute) 164
FieldsMod (WT_HOST_MESSAGE

attribute) 165

FieldsValid (field file) 86
FieldsValid (WT_HOST_MESSAGE

attribute) 165
FillCharInput (field file) 87
FillCharOutput (field file) 87
filter 210
first template see start template
FLD (system object attribute) 148

on receive 154, 155
FLD file 81
fld file 210
FLD files 126
FloatSign (host data object attribute) 160
font size 183
FORMANT 82

partial formats 104
format 210

#format 210
*format 210
+format 210
-format 210

format description source 10, 126, 210
format type 210
FORMAT_SEQ (system object attribute) 148

on receive 155
FormatLength (field file) 86
FormatLength (WT_HOST_MESSAGE

attribute) 165
FormatName (field file) 86
FormatName (WT_HOST_MESSAGE

attribute) 165
FormattingSystem (field file) 86
FormattingSystem (WT_HOST_MESSAGE

attribute) 165
FormatType (field file) 86
FormatType (WT_HOST_MESSAGE

attribute) 165
FormProperties section (field file) 85
FORMTPL (system object attribute) 148
function 210

doBackTab() 182
doCursorDown() 182
doCursorHome() 182
doCursorLeft() 182

Index

230 WebTransactions for openUTM

doCursorRight() 182
doCursorUp() 182
doTab() 182
doToggleInsert() 182
doToggleMark() 182
wtCreateKeyMap() 180
wtCreateKeySelectList() 180
wtHandleKeyboard() 180

function key 150, 202

G
grace sign-on 150, 196
GroupDigit (field file) 87
GroupDigit (host data object attribute) 160

H
Hex_Content__ (WT_HOST_MESSAGE

attribute) 165, 167
hexadecimal representation 124
HexStringValue (host data object attribute) 124,

160, 163
holder task 210
host 210
host adapter 210
host application 211
host control object 211

WT_HOST_MESSAGE 165
host data object 159, 211
host data print 211
host platform 211
HOST_CHAR_CODE (system object

attribute) 149
HOST_IP_ADDRESS (system object

attribute) 133, 149, 153
HOST_NAME (system object attribute) 133, 149,

153
HOST_PORT (system object attribute) 133, 149
HTML 211
HTMLValue (host data object attribute) 160, 163
HTTP 211
HTTPS 211
hypertext 211
Hypertext Markup Language (HTML) 211

I
IFG library 10, 126
IFG2FLD 10, 126

example 42
using 77

image
clickable 62

include tag 101
inline WTBean 221
INPUT field 164
INPUT.clt 164
InputControl (field file) 86
InputControl (host data object attribute) 161, 162
InputKeyClass (field file) 86
InputKeyClass (WT_HOST_MESSAGE

attribute) 165
assigning values 202

InputKeyNumber (field file) 86
InputKeyNumber (WT_HOST_MESSAGE

attribute) 165
assigning values 202

InputState (field file) 86
InputState (host data object attribute) 162, 164
InputStateAct (field file) 86
InputStateAct (host data object attribute) 162,

164
insert

button 60
inline WTBean 193
standalone WTBean 191

installation
BS2000/OSD 23
host adapter 17
Linux 22
silent 19
Solaris 21
WebLab 23
WebTransactions 17

integrated UPIC protocol 9
Intensity (field file) 86, 87
Intensity (host data object attribute) 162
Invers (field file) 87
Inverse (field file) 86
Inverse (host data object attribute) 162

Index

WebTransactions for openUTM 231

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

.
Ju

ly
 2

01
0

 S
ta

n
d

09
:2

6.
54

P
fa

d:
 F

:\W
eb

TA
\V

7.
5\

M
an

u
al

e\
10

03
50

4
_U

T
M

\e
n\

ut
m

.s
ix

IOType (field file) 88
IOType (host data object attribute) 160

J
Java Bean 212

K
KDCBADTC 200
KDCDEF 212
key mapping

defining 174
wtKeysUTMFHS.js 174
wtKeysUTMFormant.js 174

key support 173
keyword (field file) 85

L
layout

enhancing 99, 101
LDAP 212
Length (field file) 88
Length (host data object attribute) 160
Level_Selection (WT_HOST_MESSAGE

attribute) 165, 167
licensing 24
Line (field file) 88
line mode 120
line mode template 120
literals 212
load

services (example) 25
local application name, example 46
LOCAL_APPLICATION (system object

attribute) 149, 154, 204
LOCAL_PORT (system object attribute) 133,

149, 153
localapps (base directory) 73
lockcode/keycode concept 195, 204
logon (for openUTM) 195

via specific LTERM partner 204
LTERM partner 204

M
Mandatory (field file) 88

Mandatory (host data object attribute) 161
master template 212, 218

tag 212
UTM.wmt 100
UTMpartial.wmt 106

message queuing 212
metadata 84
method 212
module template 212
MT tag 212
multitier architecture 213

N
Name (host data object attribute) 160
name/value pair 213
NEW_PASSWORD (system object

attribute) 150, 195
next SYM_DEST (line mode) 121
non-synchronized dialog 208, 213
NumAttributes (field file) 86
NumDecimal (field file) 88
NumDecimals (host data object attribute) 160

O
object 213
openUTM 213

application 213
Client 214
line mode 120
page pool 157
partner (line mode) 121
program unit 214
service 216
user concept 195

openUTM password 195
openUTM user name 195

invalid 156, 196
openUTM version

earlier than V4.0, UPIC protocol for 135
operations 208
OUTPUT field 164
OUTPUT.clt 164
OutputControl (field file) 87
OutputControl (host data object attribute) 162

Index

232 WebTransactions for openUTM

P
P_Key_Set (WT_HOST_MESSAGE

attribute) 165, 167
Padding (WT_HOST_GLOBALS attribute) 169
PaddingAsterix (WT_HOST_GLOBALS

attribute) 169
PaddingPlusAttr (WT_HOST_GLOBALS

attribute) 169
PaddingPlusData (WT_HOST_GLOBALS

attribute) 169
parameter 214
partial format

FHS/FORMANT 104
partial format template

enhancement 117
structure 106

passive dialog 208, 214
password 195, 214

expired 150
invalid 156
new 195

PASSWORD (system object attribute) 149, 195
password protection (openUTM) 149
picture file

display 124
polling 214
pool 214
PopUp (field file) 86
posted object 214
posting 214
process 215
project 215

creating 35
example 35, 40
saving 40

PROLOG (system object attribute) 150
property 215
Protected (host data object attribute) 161
Protection (field file) 87, 88
Protection (host data object attribute) 162
protocol 215
Protocol (field file) 86
protocol file 215

R
RawValue (host data object attribute) 160
Read (WT_HOST_GLOBALS attribute) 170
RECEIVE_ERROR (system object attribute) 150

on receive 155
RECEIVE_SECONDARY_INFORMATION (sys-

tem object attribute) 150
possible values 157

recognition criteria 215
record 215
record structure 210
restart 150
RESTART (system object attribute) 150, 197
RETRY (system object attribute) 150

S
save

picture file 124
project 40

scalar 215
ScreenDimensions (field file) 86
SD.DEFAULT 134
secondary UPIC return code 157
sections

field file 85
security functions

openUTM user concept 195
SECURITY_TYPE (system object attribute) 150,

195
service (openUTM) 216
service node 216
session 216

start templates 185
WebTransactions 216

SFUNC (KDCDEF statement) 202
Sign (field file) 88
Sign (host data object attribute) 160
SignFloat (field file) 88
SIGNON event service 196
SOAP 216
SPECIAL_KEY (system object attribute) 150
specify partial format 148
standalone WTBean 221

inserting 191

Index

WebTransactions for openUTM 233

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

.
Ju

ly
 2

01
0

 S
ta

n
d

09
:2

6.
54

P
fa

d:
 F

:\W
eb

TA
\V

7.
5\

M
an

u
al

e\
10

03
50

4
_U

T
M

\e
n\

ut
m

.s
ix

start
start template 185
WebTransactions 64

start template 185, 218
creating custom 64
setting system object attributes 187
setting WT_HOST_GLOBALS attributes 189

StartColumn (host data object attribute) 160
StartLine (host data object attribute) 160
Startpage button (line mode) 122
Stop Conversation (line mode) 121
string operations 127, 164
style 217
SuppressZero (field file) 88
SuppressZero (host data object attribute) 160
SYM_DEST (system object attribute) 151

on open 153
symbolic destination name 151

upicfile 134
synchronized dialog 208, 217
system access control 217
system object 217

interaction between attributes and calls 153
openUTM-specific attributes 145
set attributes in the start template 187

system object attribute
CHARSET 10, 126, 168

T
TAC 219
TAC (system object attribute) 133, 151, 153
TAC in line mode 121
tag 217
TCP/IP 217
template 75, 218

class 207
edit 99, 101
for openUTM line mode 121
generate from FHS format 42, 76
master 218
object 218
start 218

templates 10, 126
terminal application 218

terminal functions 171
terminal hardcopy printing 218
Terminal screen (line mode) 121
terminate

session (line mode) 122
Text (field file) 88
Thread 210
TimeFormat (field file) 86
TimeFormat (host data object attribute) 165
traces 164
transaction 218
transaction code

deleting 147
invalid 156

transaction code/TAC 219

U
UDDI 219
umlauts 127
UndefinedValues (field file) 86
UndefinedValues (WT_Host_Message

attribute) 165
Underline (field file) 87, 88
Underline (host data object attribute) 162
Underlined (host data object attribute) 161
UnDetect (WT_HOST_GLOBALS attribute) 170
Unicode 219

diagnostics 164
operations on strings 164

Unicode (host data object attribute) 161
Unicode (WT_HOST_MESSAGE attribute) 166,

168
Unicode support 126, 164
update

base directory 72
Update (WT_HOST_GLOBALS attribute) 170
UPIC 219
UPIC interface 10, 126
UPIC return code 156

secondary 157
UPIC_CODE_CONVERSION (system object

attribute) 133
UPIC_LIB (system object attribute) 151
UPIC_TRACE (system object attribute) 151

Index

234 WebTransactions for openUTM

upicfile 153
base directory 73
default entry 134

UPIC-R distribution over computers 125
URI 219
URL 219
USER (system object attribute) 152, 195
user exits 219
user ID 220
user name 195

invalid 156, 196
UserexitRc (field file) 86
UserexitRc (WT_Host_Message attribute) 165
UTM see openUTM
UTM user (line mode) 121
UTM.wmt 100
UTM_PATH (system object attribute) 152
UTMControl (field file) 88
UTMpartial.wmt 106

V
Value (host data object attribute) 160, 163
value range of a data type 208
variable 220
Version (field file) 86
Version (WT_Host_Message attribute) 166
visibility 220
Visibility (field file) 87, 88
Visibility (host data object attribute) 162, 163
Visible (host data object attribute) 161

W
web server 220
web service 220
WebLab 10, 164

editor 99, 101
installing 23

WebTransactions
architecture 9
distribution over computers 125
session 216
starting 64

WebTransactions application 220
WebTransactions platform 220

WebTransactions server 220
WSDL 220
WT_Browser 183

font size 183
WT_HOST_GLOBALS 169
WT_HOST_MESSAGE 165
WTBean 221

wtcStartUTM 191
wtcUTM 193

wtBrowserFunctions.htm 171
wtCommonBrowserFunctions.js 179
wtcStartUTM 191
wtcUTM 193
wtKeyMappingTableInput 174
wtKeysUTM.htm 171
wtKeysUTMFHS.js 174

structure 177
wtKeysUTMFormant.js

structure 177
wtlnmode.htm 120
WTML 221
WTML tag 221
WTScript 221
wtstart.htm 47, 185
wtstartUMTV4.htm 185
WWW browser 206
WWW server 220

X
XML 221
XML schema 221

Z
Zeichenkettenoperationen

Unicode 164

	Contents
	Preface
	Product characteristics
	Architecture of WebTransactions for openUTM
	WebTransactions documentation
	Structure and target group of this manual
	New features
	Notational conventions

	Installing WebTransactions
	Installation
	Windows
	Installation via the user interface
	Silent installation

	Solaris
	Linux
	BS2000/OSD
	WebLab installation

	Licensing

	Example session
	Administering the WebTransactions server
	Setting the browser
	Starting the administration program
	Entering licenses
	Creating users
	Creating a pool
	Assigning the pool to a user

	Connecting a host application to the Web
	Creating a project
	Creating a base directory

	Saving the project
	Generating templates from FHS formats
	Generating the description file with IFG2FLD
	Generating templates and field files from the description file

	Define local host application names
	Starting a session

	Editing templates
	Inserting a drop-down list for selecting a country
	Replacing command input with buttons
	Inserting a clickable image

	Starting WebTransactions
	Creating a start template
	Starting a session with WebLab
	Alternative ways of starting a WebTransactions application

	Creating the base directory
	Creating a base directory with WebLab
	Structure of a base directory

	Generating templates
	Generating templates from FHS formats
	Using IFG2FLD
	Using WebLab to generate templates and FLD files from the format description source

	Generating templates from FORMANT formats
	Generating templates and FLD files using WebLab

	Structure of the field files (FLD files)
	Structure of the generated templates

	Editing templates
	Master template UTM.wmt
	Designing templates
	Defining the global layout
	Customizing the interface
	Designing the dialog sequence

	Special characteristics of FHS/FORMANT partial formats
	Communications sequence
	Structure of the master template UTMpartial.wmt
	Editing with partial format templates

	Support for openUTM line mode
	Binary data support

	Configuring connections
	Aligning WebTransactions and the host
	Configuring the WebTransactions side
	localapps file
	Addressing the openUTM application using system attributes
	upicfile
	Declaring the server computer name

	Configuring the openUTM (host) side
	Adapting the openUTM generation
	Declaring the client computer

	BCMAP entries (BS2000/OSD)

	Controlling communication
	openUTM-specific attributes of the system object
	Overview
	Interaction between system object attributes and actions/methods

	Host objects and attributes
	Host objects for the individual format fields (host data objects)
	Host control object WT_HOST_MESSAGE
	Host control object WT_HOST_GLOBALS
	Host control objects $FIRST and $NEXT

	Terminal functions supported by the browser
	Terminal functions supported
	Mapping keys in wtKeysUTMFHS.js and wtKeysUTMFormant.js
	Interaction between wtCommonBrowserFunctions.js and wt<browser>BrowserFunctions.js
	Using the WT_BROWSER object

	Start templates for openUTM
	The openUTM-specific start template in the start template set (wtstartUTMV4.htm)
	WTBean wtcStartUPIC.wtc for the generation of a start template

	Creating a new openUTM communication object (wtcUPIC)
	Security through the openUTM user concept
	RESTART - automatic restart
	BADTAC - simulating the BADTAC event service
	Automatic conversation chaining
	Simulating function keys
	Support for KDCSCUR
	Targeted logon via specific LTERMs

	Glossary
	Abbreviations
	Related publications
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

