
Edition August 2010

©
 S

ie
m

en
s

N
ix

do
rf

 In
fo

rm
at

io
n

ss
ys

te
m

e
A

G
 1

99
5

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

ua
le

\1
00

35
0

8_
W

eb
_F

ro
nt

en
d\

en
\o

pe
n

se
as

.v
or

User Guide - English

WebTransactions V7.5
Web Frontend for Web Services

Comments… Suggestions… Corrections…
The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
manuals@ts.fujitsu.com

Certified documentation
according to DIN EN ISO 9001:2008
To ensure a consistently high quality standard and
user-friendliness, this documentation was created to
meet the regulations of a quality management system which
complies with the requirements of the standard
DIN EN ISO 9001:2008.

cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

This manual is printed
on paper treated with
chlorine-free bleach.

Copyright © Fujitsu Technology Solutions GmbH 2010.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

mailto:manuals@ts.fujitsu.com
http://www.cognitas.de

Web Frontend for Web Services

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
ul

y
20

1
0

 S
ta

nd
 1

4
:1

1.
15

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
8_

W
eb

_F
ro

nt
en

d\
en

\o
p

en
se

as
.iv

z

Contents

1 Preface . 5

1.1 Product characteristics . 5

1.2 Architecture of the web frontend for web services 7

1.3 WebTransactions documentation . 8

1.4 Structure and target group of this manual . 10

1.5 New features . 10

1.6 Notational conventions . 11

2 Concept of the web frontend . 13

3 Creating a base directory . 15

3.1 Creating a base directory with WebLab . 15

3.2 Structure of a base directory . 16

4 Generating a template . 17

5 Testing the web frontend . 21

5.1 General start template . 22

5.2 Web frontend for a web service . 23

Contents

 Web Frontend for Web Services

6 Editing templates . 25

6.1 Accessing objects . 26
6.1.1 Integration via SOAP . 26
6.1.2 Example of a simple data type . 28
6.1.3 Example of a complex data type . 29

6.2 Master template . 31

6.3 Generated template . 32

Glossary . 43

Abbreviations . 61

Related publications . 63

Index . 65

Web Frontend for Web Services 5

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
li

2
01

0
 S

ta
n

d
14

:1
1.

16
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
u

al
e\

10
03

50
8

_W
eb

_F
ro

n
te

nd
\e

n\
op

en
se

a
s.

k0
1

1 Preface
Over the past years, more and more IT users have found themselves working in heteroge-
neous system and application environments, with mainframes standing next to Unix
systems and Windows systems and PCs operating alongside terminals. Different hardware,
operating systems, networks, databases and applications are operated in parallel. Highly
complex, powerful applications are found on mainframe systems, as well as on Unix servers
and Windows servers. Most of these have been developed with considerable investment
and generally represent central business processes which cannot be replaced by new
software without a certain amount of thought.

The ability to integrate existing heterogeneous applications in a uniform, transparent IT
concept is a key requirement for modern information technology. Flexibility, investment
protection, and openness to new technologies are thus of crucial importance.

1.1 Product characteristics

With WebTransactions, Fujitsu Technology Solutions offers a best-of-breed web integration
server which will make a wide range of business applications ready for use with browsers
and portals in the shortest possible time. WebTransactions enables rapid, cost-effective
access via standard PCs and mobile devices such as tablet PCs, PDAs (Personal Digital
Assistant) and mobile phones.

WebTransactions covers all the factors typically involved in web integration projects. These
factors range from the automatic preparation of legacy interfaces, the graphic preparation
and matching of workflows and right through to the comprehensive frontend integration of
multiple applications. WebTransactions provides a highly scaleable runtime environment
and an easy-to-use graphic development environment.

Product characteristics Preface

6 Web Frontend for Web Services

On the first integration level, you can use WebTransactions to integrate and link the
following applications and content directly to the Web so that they can be easily accessed
by users in the internet and intranet:

– Dialog applications in BS2000/OSD
– MVS or z/OS applications
– System-wide transaction applications based on openUTM
– Dynamic web content

Users access the host application in the internet or intranet using a web browser of their
choice.

Thanks to the use of state-of-the-art technology, WebTransactions provides a second
integration level which allows you to replace or extend the typically alphanumeric user inter-
faces of the existing host application with an attractive graphical user interface and also
permits functional extensions to the host application without the need for any intervention
on the host (dialog reengineering).

On a third integration level, you can use the uniform browser interface to link different host
applications together. For instance, you can link any number of previously heterogeneous
host applications (e.g. MVS or OSD applications) with each other or combine them with
dynamic Web contents. The source that originally provided the data is now invisible to the
user.

In addition, you can extend the performance range and functionality of the WebTransactions
application through dedicated clients. For this purpose, WebTransactions offers an open
protocol and special interfaces (APIs).

Host applications and dynamic Web content can be accessed not only via WebTransactions
but also by “conventional” terminals or clients. This allows for the step-by-step connection
of a host application to the Web, while taking account of the wishes and requirements of
different user groups.

Preface Architecture of the web frontend

Web Frontend for Web Services 7

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
li

2
01

0
 S

ta
n

d
14

:1
1.

16
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
u

al
e\

10
03

50
8

_W
eb

_F
ro

n
te

nd
\e

n\
op

en
se

a
s.

k0
1

1.2 Architecture of the web frontend for web services

The figure below shows the architecture of the web frontend for web services:

Figure 1: Architecture of the web frontend for web services

WebTransactions uses this web frontend for web services to access general web services.

Browser

frontend

Web service

Generated
template

WSDL
file

Kernelwith

SOAP

WebTransactions

w
eb

 s
er

ve
r

W
T
_
S
O
A
P

Architecture of the web frontend Preface

8 Web Frontend for Web Services

1.3 WebTransactions documentation

The WebTransactions documentation consists of the following documents:

● An introductory manual which applies to all supply units:

Concepts and Functions

This manual describes the key concepts behind WebTransactions:

– The various possible uses of WebTransactions.

– The concept behind WebTransactions and the meanings of the objects in
WebTransactions, their main characteristics and methods, their interaction and life
cycle.

– The dynamic runtime of a WebTransactions application.

– The administration of WebTransactions.

– The WebLab development environment.

● A Reference Manual which also applies to all supply units and which describes the
WebTransactions template language WTML. This manual describes the following:

Template Language

After an overview of WTML, information is provided about:

– The lexical components used in WTML.

– The class-independent global functions, e.g. escape() or eval().

– The integrated classes and methods, e.g. array or Boolean classes.

– The WTML tags which contain functions specific to WebTransactions.

– The WTScript statements that you can use in the WTScript areas.

– The class templates which you can use to automatically evaluate objects of the
same type.

– The master templates used by WebTransactions as templates to ensure a uniform
layout.

– A description of Java integration, showing how you can instantiate your own Java
classes in WebTransactions and a description of user exits, which you can use to
integrate your own C/C++ functions.

– The ready-to-use user exits shipped together with WebTransactions.

– The XML conversion for the portable representation of data used for communication
with external applications via XML messages and the conversion of WTScript data
structures into XML documents.

Preface Architecture of the web frontend

Web Frontend for Web Services 9

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
li

2
01

0
 S

ta
n

d
14

:1
1.

16
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
u

al
e\

10
03

50
8

_W
eb

_F
ro

n
te

nd
\e

n\
op

en
se

a
s.

k0
1

● A User Guide for each type of host adapter with special information about the type of
the partner application:

Connection to openUTM applications via UPIC

Connection to OSD applications

Connection to MVS applications

All the host adapter guides contain a comprehensive example session. The manuals
describe:

– The installation of WebTransactions with each type of host adapter.

– The setup and starting of a WebTransactions application.

– The conversion templates for the dynamic conversion of formats on the web
browser interface.

– The editing of templates.

– The control of communications between WebTransactions and the host applications
via various system object attributes.

– The handling of asynchronous messages and the print functions of
WebTransactions.

● A User Guide that applies to all the supply units and describes the possibilities of the
HTTP host adapter:

Access to Dynamic Web Contents

This manual describes:

– How you can use WebTransactions to access a HTTP server and use its resources.

– The integration of SOAP (Simple Object Access Protocol) protocols in
WebTransactions and the connection of web services via SOAP.

Architecture of the web frontend Preface

10 Web Frontend for Web Services

● A User Guide valid for all the supply units which describes the open protocol, and the
interfaces for the client development for WebTransactions:

Client APIs for WebTransactions

This manual describes:

– The concept of the client-server interface in WebTransactions.

– The WT_RPC class and the WT_REMOTE interface. An object of the WT_RPC class repre-
sents a connection to a remote WebTransactions application which is run on the
server side via the WT_REMOTE interface.

– The Java package com.siemens.webta for communication with WebTransactions
supplied with the product.

1.4 Structure and target group of this manual

This manual is intended for anyone who wishes to integrate general web services in
WebTransactions, and describes the procedures involved in detail.

It is designed to supplement the introductory WebTransactions manual “Concepts and
Functions” and the reference guide “Template Language” to provide all the information you
need in order to integrate general web services in WebTransactions.

Scope of the manual

The web frontend for web services runs on Solaris, Linux, Windows and BS2000/OSD. The
information provided in this manual applies for all of these system platforms, unless
indicated otherwise.

1.5 New features

You will find an overview of all the changes in WebTransactions V7.5 in the
WebTransactions manual “Concepts and Functions”.

The support of business objects is omitted.

Preface Architecture of the web frontend

Web Frontend for Web Services 11

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
li

2
01

0
 S

ta
n

d
14

:1
1.

16
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
u

al
e\

10
03

50
8

_W
eb

_F
ro

n
te

nd
\e

n\
op

en
se

a
s.

k0
1

1.6 Notational conventions

The following notational conventions are used in this documentation:

Name Description

typewriter font Fixed components which are input or output in precisely this
form, such as keywords, URLs, file names

 italic font Variable components which you must replace with real speci-
fications

bold font Items shown exactly as displayed on your screen or on the
graphical user interface; also used for menu items

[] Optional specifications; do not enter the square brackets
themselves

{alternative1 | alternative2 } Alternative specifications. You must select one of the expres-
sions inside the curly brackets. The individual expressions are
separated from one another by a vertical bar. Do not enter the
curly brackets and vertical bars themselves.

... Optional repetition or multiple repetition of the preceding
components

Important notes and further information

Ê Prompt telling you to do something.

Refers to detailed information

i

Architecture of the web frontend Preface

12 Web Frontend for Web Services

Web Frontend for Web Services 13

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
li

2
01

0
 S

ta
n

d
14

:1
1.

16
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
u

al
e\

10
03

50
8

_W
eb

_F
ro

n
te

nd
\e

n\
op

en
se

a
s.

k0
2

2 Concept of the web frontend
Working with WebTransactions you can incorporate in your WebTransactions application
any web service via the WT_SOAP interface. Information on integrating the SOAP protocol in
WebTransactions is provided in the WebTransactions manual “Access to Dynamic Web
Contents”.

In addition to the functions of the WT_SOAP interface WebTransactions offers a basic
interface, or web frontend, for the integration of web services which are freely available in
the network.

The web frontend is implemented in a template, that you can generate with WebLab. It
controls the display on the browser and the communication with the web service. WebLab
requires for the generation of this template a description file in WSDL format (Web Service
Description Language), that describes the operations of the web service.

Via the web frontend you can provide users with the functionality of the web service. Alter-
natively you profit from it by obtaining an overview of their functionality, and adapting the
generated template to suit your needs.

Figure 2: Flowchart for the web frontend

Browser

frontend

Web service

WSDL
file

Kernelwith

SOAP

WebTransactions

w
eb

 s
er

ve
r

W
T
_
S
O
A
P

Generated
template

Concept of the web frontend

14 Web Frontend for Web Services

At runtime, WebTransactions uses the template to generate an HTML page for the browser,
as well as an instance of the WT_SOAP class for web services. It then uses these instances
to communicate with the relevant components. It is possible for you to influence the commu-
nication process and to subsequently edit the template to suit your needs.

To connect a component to WebTransactions via a web frontend, proceed as follows:

Ê Using WebLab, create a base directory.

Ê Create or supply the WSDL file.

Ê Generate the template for the web frontend.

Ê Run the template.

Ê Edit the template to suit your needs.

These steps are described in the following chapters.

Web Frontend for Web Services 15

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
li

2
01

0
 S

ta
n

d
14

:1
1.

16
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
u

al
e\

10
03

50
8

_W
eb

_F
ro

n
te

nd
\e

n\
op

en
se

a
s.

k0
3

3 Creating a base directory
Once you have installed WebTransactions on the WebTransactions server and WebLab on
your Windows PC, you can use WebLab to create one or more base directories. A base
directory includes all the files which configure WebTransactions for a specific application
scenario.

If you de-install WebTransactions or install a new product version, the individual configura-
tions are therefore retained.

3.1 Creating a base directory with WebLab

Before you can create a base directory for a WebTransactions application, the
WebTransactions administrator must have created a user ID for you and then subsequently
released one or more pools for this user ID in which you can create a base directory.

Before you create a base directory, it is recommended that you first create a project to store
most important data required by WebLab when working with the WebTransactions appli-
cation. When creating a project, you are automatically offered the opportunity to create a
base directory.

To do this, proceed as follows:

Ê Call WebLab, e.g. via Start/Programs/WebTransactions 7.5/WebLab

Ê There are two possibilities for starting to create a base directory:

Ê Select the Project/New... command and when asked whether you want to create a
base directory, answer Yes.

or

Ê Choose the Generate/Basedir... command and specify that a new project is to be
created when the relevant query appears.

In both instances, the Connect dialog box is opened.

Ê In the Connect dialog box, enter the connection parameters and confirm with OK.

Ê In the next dialog box, enter your user ID and password and click OK.

Structure of a base directory Creating a base directory

16 Web Frontend for Web Services

Ê In the Create Basedir dialog box, make the following entries:
– Select the directory under which your base directory is to be created.
– Enter a name for the new base directory.
– Click OK.

Structure and contents of a base directory are described in the WebTransactions manual
“Concepts and Functions” and in section “Structure of a base directory” on page 16.

Converting a base directory to a new version

Ê Select Generate/Update Base Directory. This opens the Update Base Directory
dialog box.

Ê If you only want to change the links from the base directory to the new installation
directory, select the Update all links option. Select this option when you have updated
the files that are supplied or generated by WebTransactions.

Ê If all files which are copied or generated on creation of the base directory need to be
recreated, select the Overwrite all files option.

3.2 Structure of a base directory

This section only describes the specifics of the base directory of the web frontend for web
services.

 For general information on the structure of base directories see WebTransactions
manual “Concepts and Functions”.

wsdl subdirectory

This subdirectory is created not with the base directory, but when you use web services.
The WSDL files of the web services used, which are required by WebTransactions at
runtime are stored in wsdl.

i

Web Frontend for Web Services 17

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
li

2
01

0
 S

ta
n

d
14

:1
1.

16
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
u

al
e\

10
03

50
8

_W
eb

_F
ro

n
te

nd
\e

n\
op

en
se

a
s.

k0
4

4 Generating a template
Once you have created a base directory for web services or you are connected to such a
base directory, you can use WebLab to generate a template with the
Generate/Templates/for WebServices ... command.

With this command you can generate templates for integrating general web services in
WebTransactions.

To generate the required templates, you also need the following:

– a description file (WSDL file)

– the corresponding master template

WSDL file

In the course of the generation process, you specify one or more description files, known
as WSDL files (WebService Description Language). Each WSDL file will contain a
description of precisely one component. If you specify several WSDL files, a template will
be generated for each of the associated components. WSDL files can be stored locally on
your own system or under the base directory.

Most web services are already described in WSDL, which means that a WSDL file for the
respective service will be readily available on the web.

Generating templates

18 Web Frontend for Web Services

Master template

A template is generated for each WSDL file on the basis of the special master template
WSDL.wmt. This master template is stored in the subdirectory weblab under the WebLab
installation directory, and can be customized to suit your needs. The master template tags
are described in the WebTransactions manual “Template Language”.

Figure 3: Generating templates for web services

The templates generated for general web services on the basis of WSDL files and a master
template have the following predefined name:

wtWebService_componentname.htm

where componentname is dependent on the name of the WSDL file. They are stored in the
base directory under config/forms, unless specified otherwise. If you wish to use another
target directory, this must be located under basedir/config.

The generated templates can then be used as is or as the basis for more sophisticated
visual layouts.

Generated templates
for web services

Master template

WSDL files

Generating templates

Web Frontend for Web Services 19

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
li

2
01

0
 S

ta
n

d
14

:1
1.

16
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
u

al
e\

10
03

50
8

_W
eb

_F
ro

n
te

nd
\e

n\
op

en
se

a
s.

k0
4

Generating a template for a general web service with SOAP integration

Before generating a template, make sure that the following files are available:

– the WSDL file

– the master template WSDL.wmt

To generate a template for web services, proceed as follows:

Ê In WebLab, choose Generate/Templates/for WebServices to open the
Create Templates for WebServices dialog box.

Ê Specify the directory containing the WSDL files to be used as the basis for generating
the template, either by entering the directory path directly or by clicking Browse and
making the appropriate selection. The WSDL documents for Generation list will then
display all files in the specified directory.

Ê In WSDL documents for Generation, select the WSDL files to be used as the basis
for generating the template.

Ê Check that the master template is set correctly (WSDL.wmt).

Ê In WTML Directory, enter the subdirectory under the base directory in which the
generated template is to be stored.

Ê Click Generate to generate a template for integrating the web service in accordance
with your specifications. In the process, the subdirectory wsdl will be created under the
base directory and the specified WSDL file will be copied to this subdirectory.

Generating templates

20 Web Frontend for Web Services

Web Frontend for Web Services 21

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
li

2
01

0
 S

ta
n

d
14

:1
1.

16
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
u

al
e\

10
03

50
8

_W
eb

_F
ro

n
te

nd
\e

n\
op

en
se

a
s.

k0
5

5 Testing the web frontend
Once you have generated the template for integrating a web service, you are ready to test
the web frontend. The generated template can be used as is and form a modifiable web
frontend.

The wsdl subdirectory must contain the WSDL file for the web service. If the web service is
modified in some way since the generation of the template, it is recommended that you
regenerate the template with the new WSDL file.

For the flowchart for a web service frontend refer to figure “Flowchart for the web frontend”
on page 13.

This chapter describes

– the general start template
– the web frontend

General start template Testing the web frontend

22 Web Frontend for Web Services

5.1 General start template

To start a web service frontend, proceed as follows:

Ê In WebLab, open a session by selecting File/Start Session.

Ê In the Start Session dialog box, enter the required data on the WebTransactions host
and the base directory.

Ê Set the start template to wtstart and confirm with OK. The start template will then be
displayed in the predefined browser.

Ê Click WebService. This opens the start template for the web service in the browser.

The web service access list will include all templates

– whose names begin with wtWebService_

– which are located in the directory defined by the system object’s STYLE and LANGUAGE
attributes

Ê Choose a web service and confirm with access Webservice.

Testing the web frontend Web frontend for a web service

Web Frontend for Web Services 23

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
li

2
01

0
 S

ta
n

d
14

:1
1.

16
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
u

al
e\

10
03

50
8

_W
eb

_F
ro

n
te

nd
\e

n\
op

en
se

a
s.

k0
5

5.2 Web frontend for a web service

A web service is represented by a WebTransactions template. The interface itself is
designed with the help of the WTBean wtcTabs. It includes a tab sheet for the web service,
which is named after the web service in question. Here you can define general settings,
such as the proxy settings for the integration via SOAP. Each method also has its own tab
sheet containing the following information:

– the output or return value
– the last parameters entered
– the prescribed input parameters

A method is called by clicking the execute button.

Figure 4: Tab sheet containing the web service BabelFish method

Web frontend for a web service Testing the web frontend

24 Web Frontend for Web Services

Web Frontend for Web Services 25

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
li

2
01

0
 S

ta
n

d
14

:1
1.

16
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
u

al
e\

10
03

50
8

_W
eb

_F
ro

n
te

nd
\e

n\
op

en
se

a
s.

k0
6

6 Editing templates
As a template programmer, you can feel free to edit the generated templates in WebLab,
e.g. in order to make the resulting interface more attractive to the eye.

When working with WebLab, WebTransactions offers a considerable degree of support,
particularly when it comes to things like using objects to transfer parameters, for example.
For this purpose, WebTransactions generates an object for each structure used. Once the
template is run, these objects are created and displayed in the WebLab object tree, from
where they can be easily incorporated in the code using the normal WebLab utilities.

This chapter contains information on the following:

– accessing objects
– enhancing the layout of the generated interfaces
– master templates

At the end of the chapter, you will find a commented listing of the generated template.

Accessing objects Editing templates

26 Web Frontend for Web Services

6.1 Accessing objects

6.1.1 Integration via SOAP

In the case of integration via SOAP, each web service is mapped to a WT_SOAP object when
generating the web frontend.

WT_SOAP class

The WT_ SOAP class is implemented in the template wtSOAP.htm and provides an access to
web services via the SOAP protocol:

An instance of this class represents a web service which must be described in a WSDL file.
WT_SOAP analyzes the WSDL file and provides the operations of a web service as methods
(proxy methods) of the WT_SOAP class.

You will find a detailed description of the WT_SOAP class and corresponding methods in the
WebTransactions manual “Access to Dynamic Web Contents”.

Representation of a web service by a WT_SOAP object

A web service is represented by an object of the WT_SOAP class. For each web service an
instance of the WT_SOAP class is created. This instance is labeled WSDL_serial_number.

Calling web service operations

It is possible to call proxy methods at a WT_SOAP object. In WebLab, a method call is inserted
simply by dragging it from the object tree into the current template.

Editing templates Accessing objects

Web Frontend for Web Services 27

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
li

2
01

0
 S

ta
n

d
14

:1
1.

16
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
u

al
e\

10
03

50
8

_W
eb

_F
ro

n
te

nd
\e

n\
op

en
se

a
s.

k0
6

Mapping SOAP data types to WTScript data types

During generation, a method call including all the necessary parameters is generated for
each web service operation. The table below shows how the parameter data types are
mapped:

SOAP data type WTScript data type

string string

boolean boolean

float number

double number

int number

short number

long number

decimal number

struct (complexType) Object

array Array

Accessing objects Editing templates

28 Web Frontend for Web Services

6.1.2 Example of a simple data type

An entry field and an associated value is generated on the web frontend for each method
parameter. If the parameter has a simple data type, the user input will be forwarded directly
to the method.

Example of a web frontend for a web service

The purpose of the following web service is to translate a piece of text. The first
parameter specifies the direction of the translation process, while the second contains
the actual text to be translated.

Generating the entry fields

Two entry fields are generated:

<TABLE BGCOLOR="#99CCCC">
 <TR>
 <TD>translationmode:</TD>
 <TD><INPUT TYPE="TEXT" CLASS="BOX"
NAME="translationmode_Translate" SIZE=32></TD>
 </TR>
 <TR>
 <TD>sourcedata:</TD>
 <TD><INPUT TYPE="TEXT" CLASS="BOX"
NAME="sourcedata_Translate" SIZE=32></TD>
 </TR>
 </TABLE>

Calling the web service

 WSDL_0.service.Translate.port.TranslatePort.operation.Translate(
 WT_POSTED.translationmode_Translate, WT_POSTED.sourcedata_Translate);

If you wish, you can change the graphical layout of the interface, e.g. by replacing one
of the entry fields with a pick list:

<TR>
 <TD>translationmode:</TD>
 <TD>
 <SELECT NAME="translationmode_Translate">
 <OPTION VALUE="de_en" >German->English</OPTION>
 <OPTION VALUE="en_de" >English->German</OPTION>
 </SELECT>
 </TR>

Since this pick list has the same name as the entry field, the operation call remains
unchanged.

Editing templates Accessing objects

Web Frontend for Web Services 29

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
li

2
01

0
 S

ta
n

d
14

:1
1.

16
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
u

al
e\

10
03

50
8

_W
eb

_F
ro

n
te

nd
\e

n\
op

en
se

a
s.

k0
6

6.1.3 Example of a complex data type

If you wish to incorporate more complex data structures in the interface, you must ensure
that the user has some means of entering individual values for the various elements within
the data structure at the interface. This is because only one entry field will initially be
generated for each complex data type. Proceed as follows:

Ê At the appropriate location in the template, replace the INPUT tag generated for the
entire structure with several INPUT tags for each attribute of the structure.

Ê After sending, copy this posted data to the object attributes in the Receive script before
the method call.

Example of a web frontend for a web service with integration via SOAP

The following is generated:

<wtOnCreateScript>
p0_Object_getTest = new Object(); //Object for the complex data structure
</wtOnCreateScript>

<input type="text" name="p0_Object_getTest" value=""/>

<wtOnReceiveScript>

/* Method call; The object for the complex data structure is passed as a
parameter*/

...getTest(proxyObjects.getTest_p0, ...);

</wtOnReceiveScript>

Extend the script as follows:

Ê Specify a separate INPUT tag for each attribute:

...
<input type="text" name="p0_Object_getTest_minutes" value=""/>
...

Ê For each attribute, add the following lines to the receive script before the method
call (this example applies for the minutes attribute):

...
proxyObjects.getTest_p0.minutes = WT_POSTED.p0_Object_getTest_minutes;
...
<input type="text" name="p0_Object_getTest" value=""/>

This procedure allows you to generate the attribute and assign it the value entered by
the user at the interface.

Accessing objects Editing templates

30 Web Frontend for Web Services

Other substitutions that must be carried out include:

<input type="text" name="p0_Object_getTest.minutes" value="">
<input type="text" name="p0_Object_getTest.seconds" value="">
<input type="text" name="p0_Object_getTest.hours" value="">
<input type="text" name="p0_Object_getTest.date" value="">
<input type="text" name="p0_Object_getTest.month" value="">
<input type="text" name="p0_Object_getTest.year" value="">

Editing templates Master template

Web Frontend for Web Services 31

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
li

2
01

0
 S

ta
n

d
14

:1
1.

16
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
u

al
e\

10
03

50
8

_W
eb

_F
ro

n
te

nd
\e

n\
op

en
se

a
s.

k0
6

6.2 Master template

The master template WSDL.wmt is supplied:

The supplied master template is installed under installdir/Weblab.

The table below lists a number of new master template tags (MT tags), which have been
introduced for the WSDL protocol options only:

The following MT tags may not be used for the generation of web frontends for web services
in the master template:

– %%Lines...%
– %%ReceiveCopies%

MT tag Explanation

%%SOURCE% Replaced by the name of the copied WSDL file in the base
directory (e.g. WSDL/BabelFishService.wsdl)

%%ObjectCreate% Initiates the generation of objects for complex structures

%%MethodInterface% Initiates the generation of the interface and further processing of
individual methods

Generated template Editing templates

32 Web Frontend for Web Services

6.3 Generated template

This section describes the generated template and the presentation of the associated
interface for the support for general web services via SOAP integration.

The text below shows the wtWebService_BabelFishService.htm template, generated in
section “Generating a template for a general web service with SOAP integration” on
page 19.

Generation options

<html>
<wtrem>**
**</wtrem>
<wtrem>** WTML document: BabelFishService
**</wtrem>
<wtrem>**
**</wtrem>
<wtrem>**
**</wtrem>
<wtrem>** Document generation based on Master Template :
**</wtrem>
<wtrem>** C:\Programme\WebTransactionsV75\weblab\WSDL.wmt
**</wtrem>
<wtrem>**
**</wtrem>
<wtrem>** Generated at Mon Jan 10 11:06:12 2010 **</wtrem>
<wtrem>**
**</wtrem>
<wtrem>** Options used by the generator :
**</wtrem>
<wtrem>** - %OPTIONS:
**</wtrem>
<wtrem>** CommObj = WSDL_0
**</wtrem>
<wtrem>** Source = wsdl/BabelFishService.wsdl
**</wtrem>
<wtrem>**
**</wtrem>
<wtrem>** WebTransactions V7.5 Fujitsu Technology Solutions GmbH, 2010
**</wtrem>
<wtrem>**
**</wtrem>

Editing templates Generated template

Web Frontend for Web Services 33

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
li

2
01

0
 S

ta
n

d
14

:1
1.

16
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
u

al
e\

10
03

50
8

_W
eb

_F
ro

n
te

nd
\e

n\
op

en
se

a
s.

k0
6

Creating a proxy object with WT_SOAP

<wtOnCreateScript>
<!--
include ('wtSOAP');
if (typeof WT_SYSTEM.WSDL_0 == 'undefined')
 WT_SYSTEM.WSDL_0 = new Object();
if (typeof WT_SYSTEM.WSDL_0["BabelFishService"] == 'undefined')
 WT_SYSTEM.WSDL_0["BabelFishService"] = new Object();
if (typeof WT_SYSTEM.WSDL_0["BabelFishService"].instance == 'undefined')
{
 try
 {
 WSDL_0 = WT_SYSTEM.WSDL_0["BabelFishService"].instance = new
WT_SOAP('wsdl/BabelFishService.wsdl');
 WSDL_0.proxyObjects = proxyObjects;
 }
 catch (exc)
 {
 document.writeln(exc);
 WT_SYSTEM.WSDL_0["BabelFishService"].ret_value = exc;
 }
}
else {
 WSDL_0 = WT_SYSTEM.WSDL_0["BabelFishService"].instance;
 proxyObjects = WSDL_0.proxyObjects;
}
WSDL_0_system = WT_SYSTEM;

//-->
</wtoncreatescript>

<wtif (WSDL_0_system.PROLOG)>
 <wtinclude Name="##WSDL_0_system.PROLOG#">
</wtif>

HTML header: defining the WebTransactions format

<head>
<title>WebTransactions V7.5 - WebService BabelFishService</title>
##WT_SYSTEM.CGI.HTTP_USER_AGENT.indexOf('MSIE') >= 0 ?
 '<meta http-equiv="Pragma" content="no-cache"/>' :
 '<meta http-equiv="Cache-Control" content="no-cache"/>'#
<wtif (WT_BROWSER.acceptClass)>
 <style type="text/css">
 input {
 font-size: ##WT_BROWSER.charSize#px;
 font-family: courier new, monospace;

Generated template Editing templates

34 Web Frontend for Web Services

 }
 input.box {
 border: 0 solid;
 padding: 1px 0 1px 0;
 margin-left: -1px;
 margin-top: ##WT_BROWSER.marginTop#px;
 font-size: ##WT_BROWSER.charSize#px;
 font-family: courier new, monospace;
 color: #000000;
 background-color: #FFFFFF;
 }
 input.button {
 font-size: ##WT_BROWSER.charSize#px;
 font-family: courier new, monospace;
 border-width: 1pt;
 margin-left: -1pt;
 }
 select {
 font-size: ##WT_BROWSER.charSize#px;
 font-family: courier new, monospace;
 }
 pre {
 font-size: ##WT_BROWSER.charSize#px;
 font-family: courier new, monospace;
 margin: 0;
 }
 </style>
</wtif>
</head>
 <body bgcolor="#336666" text="#000000">
 <form WebTransactions name="BabelFishService">
 <table cellspacing="1" cellpadding="2">
 <tr>
 <td colspan="3" align="right">

 </td>
 </tr>
 <tr>
 <td>
 <wtif (WSDL_0_system.FORMTPL)>
 <wtinclude Name="##WSDL_0_system.FORMTPL#">
 </wtif>
 </td>
 </tr>

Editing templates Generated template

Web Frontend for Web Services 35

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
li

2
01

0
 S

ta
n

d
14

:1
1.

16
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
u

al
e\

10
03

50
8

_W
eb

_F
ro

n
te

nd
\e

n\
op

en
se

a
s.

k0
6

Button for general control

 <tr bgcolor="#99CCCC">
 <td colspan="3" align="center">
 <h2>control</h2>
 </td>
 <td align="center"><h3>return to component selection</h3>
 </td>
 <td align="center">
 <input type="submit" name="Control" value="back"/>
 </td>
 </tr>
 </table>

General control

 <!--
- -->
 <!-- main template control section
-->
 <!--
- -->
 <wtonreceivescript>
 if (WT_POSTED.Control)
 {
 WT_SYSTEM.FORMAT = WT_SYSTEM.PREVIOUS_CONTROL_FORMAT;
 delete WT_SYSTEM.PREVIOUS_CONTROL_FORMAT;
 exitReceiveProcessing();
 }
 if (WT_POSTED.SetParameter)
 {
 if (WT_POSTED.Proxy)
 {
 if (WT_POSTED.ProxyPort)
 WSDL_0.setProxy(WT_POSTED.Proxy, WT_POSTED.ProxyPort);
 else WSDL_0.setProxy(WT_POSTED.Proxy);
 }
 if (WT_POSTED.ProxyUser)
 {
 if (WT_POSTED.ProxyPwd)
 WSDL_0.setProxyAuthorization(WT_POSTED.ProxyUser,
WT_POSTED.ProxyPwd);
 else WSDL_0.setProxyAuthorization(WT_POSTED.ProxyUser);
 }
 }
 </wtonreceivescript>

Generated template Editing templates

36 Web Frontend for Web Services

web service header

 <!--
- -->
 <!-- begin of service operations section
-->
 <!--
- -->
 <wtc name="wtcTabs" type="inline" version="7.5">
<wtcTitle>Tab Control <wtcPar
name="objectname">ComponentTabs</wtcPar></wtcTitle>
<script language="Javascript"
src="##WT_SYSTEM.WWWDOCS_VIRTUAL#/javascript/wtcTabs_browserFunctions.js"
type="text/javascript">
</script>
<script>
<wtcPar name="objectname">ComponentTabs</wtcPar> = new wtcTabs(<wtcPar
name="width">950</wtcPar>,<wtcPar name="tabHeight">20</wtcPar>,'<wtcPar
name="ident">compTabs</wtcPar>',<wtcPar
name="foregroundColor">'#333333'</wtcPar>,<wtcPar
name="backgroundColor">'#DDDDDD'</wtcPar>,<wtcPar
name="borderColor">'#FFFFFF'</wtcPar>,<wtcPar
name="foregroundColorDimmed">'#999999'</wtcPar>,<wtcPar
name="backgroundColorSelectedDimmed">'#CCCCCC'</wtcPar>,<wtcPar
name="borderColorDimmed">'#DDDDDD'</wtcPar>);
</script>
<!----------------------------------->
<!-- begin of list of tabs -->
<!----------------------------------->
<wtcList name="Tab-List" minLength="1">
<wtcTitle>List of Tabs</wtcTitle>

Editing templates Generated template

Web Frontend for Web Services 37

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
li

2
01

0
 S

ta
n

d
14

:1
1.

16
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
u

al
e\

10
03

50
8

_W
eb

_F
ro

n
te

nd
\e

n\
op

en
se

a
s.

k0
6

Tab sheets for controlling access via HTTP

<!----------------------------------->
<!-- begin of list item -->
<!----------------------------------->
<wtcListItem>
 <script language="JavaScript" type="text/javascript">
<wtcPar name="objectname">ComponentTabs</wtcPar>.addTab(<wtcPar
name="titlename">'BabelFishService'</wtcPar>, <wtcPar
name="titlewidth">150</wtcPar>);
 </script>
<wtcBlock>
<wtcTitle><wtcPar name="titlename">'BabelFishService'</wtcPar></wtcTitle>
 <table cellspacing="3" cellpadding="2">
 <tr bgcolor="#669999">
 <td>
 further parameters:
 </td>
 <td>
 HTTP parameters:
 </td>
 </tr>
 <tr bgcolor="#99CCCC">
 <td>
 <table>
 <tr>
 <td>##WT_POSTED.Proxy || ' '#</td>
 <td> </td>
 </tr>
 <tr>
 <td>##WT_POSTED.ProxyPort || ' '#</td>
 <td> </td>
 </tr>
 <tr>
 <td>##WT_POSTED.ProxyUser || ' '#</td>
 <td> </td>
 </tr>
 <tr>
 <td> </td>
 <td> </td>
 </tr>
 </TABLE>
 </td>
 <td>
 <TABLE>
 <tr>
 <td>Proxy:</td>
 <td><input type="text" name="Proxy" size="32"/></td>

Generated template Editing templates

38 Web Frontend for Web Services

 </tr>
 <tr>
 <td>Proxy-Port:</td>
 <td><input type="text" name="ProxyPort" size="6"/></td>
 </tr>
 <tr>
 <td>Proxy-User:</td>
 <td><input type="text" name="ProxyUser" size="32"/></td>
 </tr>
 <tr>
 <td>Proxy-Password:</td>
 <td><input type="password" name="ProxyPwd" size="32"/></td>
 </tr>
 </table>
 </td>
 <td>
 <input type="submit" name="SetParameter" value="set parameters"/>
 </td>
 </tr>
 </table>
 </wtcBlock>
 </div>
 </wtcListItem>
 <!----------------------------------->
 <!-- end of list item -->
 <!----------------------------------->

There are blocks such as the one shown below for each method

<!----------------------------------->
<!-- begin of list item -->
<!----------------------------------->
<wtcListItem>
 <script language="JavaScript" type="text/javascript">
 <wtcPar name="objectname">ComponentTabs</wtcPar>.addTab(<wtcPar
name="titlename">'BabelFishPortType_BabelFish'</wtcPar>, <wtcPar
name="titlewidth">120</wtcPar>);
 </script>
 <wtcBlock>
 <wtcTitle><wtcPar
name="titlename">'BabelFishPortType_BabelFish'</wtcPar></wtcTitle>

Editing templates Generated template

Web Frontend for Web Services 39

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
li

2
01

0
 S

ta
n

d
14

:1
1.

16
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
u

al
e\

10
03

50
8

_W
eb

_F
ro

n
te

nd
\e

n\
op

en
se

a
s.

k0
6

User interface
– displaying return information
– displaying the last parameters specified
– generating entry fields for the method input parameters
– button for initiating the method

 <table cellspacing="3" cellpadding="2">
 <tr bgcolor="#669999">
 <td>
 return value:
 </td>
 <td>
 previous parameters:
 </td>
 <td>
 input parameters:
 </td>
 <td> </td>
 </tr>

Displaying return information

<tr bgcolor="#99CCCC">
 <td>
 <table>

<tr><td>##WT_SYSTEM.WSDL_0["BabelFishService"].ret_BabelFishPortType_BabelFis
h#</td>
</tr>
 </table>
 </td>

Displaying the last parameters specified

 <td>
 <table bgcolor="#99CCCC">
 <tr>
 <td>
 ##WT_POSTED.translationmode_BabelFishPortType_BabelFish ||
' '#
 </td>
 </tr>
 <tr>
 <td>
 ##WT_POSTED.sourcedata_BabelFishPortType_BabelFish ||
' '#
 </td>

Generated template Editing templates

40 Web Frontend for Web Services

 </tr>
 </table>
 </td>

Generating entry fields for the method input parameters

 <td>
 <table bgcolor="#99CCCC">
 <tr>
 <td>translationmode:</td>
 <td><input type="text"
name="translationmode_BabelFishPortType_BabelFish" size="32"/></td>
 </tr>
 <tr>
 <td>sourcedata:</td>
 <td><input type="text"
name="sourcedata_BabelFishPortType_BabelFish" size="32"/></td>
 </tr>
 </table>
 </td>

Button for initiating the method

 <td>
 <input type="submit" name="BabelFishPortType_BabelFish"
value="execute"/>
 </td>
 </tr>
 </table>

Calling the proxy method with type-specific parameters (corresponding sections generated
for each method)

 <wtOnReceiveScript>
 if (WT_POSTED.BabelFishPortType_BabelFish)
 {
 try {
 WT_SYSTEM.WSDL_0["BabelFishService"].ret_BabelFishPortType_BabelFish
= WSDL_0.service.BabelFishService.port.BabelFishPort.operation.BabelFish(
WT_POSTED.translationmode_BabelFishPortType_BabelFish,
WT_POSTED.sourcedata_BabelFishPortType_BabelFish);
 }
 catch (exc) {

WT_System.WSDL_0["BabelFishService"].ret_BabelFishPortType_BabelFish = exc;}
 exitReceiveProcessing();
 }

Editing templates Generated template

Web Frontend for Web Services 41

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
li

2
01

0
 S

ta
n

d
14

:1
1.

16
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
u

al
e\

10
03

50
8

_W
eb

_F
ro

n
te

nd
\e

n\
op

en
se

a
s.

k0
6

 </wtonreceivescript>
 </wtcBlock>
 </div>
 </wtcListItem>
<!----------------------------------->
<!-- end of list item -->
<!----------------------------------->

End of the template: activating the tab sheets

</wtcList>
<!----------------------------------->
<!-- end of list of tabs -->
<!----------------------------------->

<script language="JavaScript" type="text/javascript">
<wtcPar name="objectname">ComponentTabs</wtcPar>.adjust();
<wtcPar name="objectname">ComponentTabs</wtcPar>.redefineFocus();
<wtcPar
name="objectname">ComponentTabs</wtcPar>.activate(##WT_POSTED['wtcTabs_<wtcPa
r name="ident">compTabs</wtcPar>_ActiveTab']||0#);
</script>
</wtc>

 <!--
- -->
 <!-- end of service operations section
-->
 <!--
- -->

 </form>
 </body>
 <wtif (WSDL_0_system.EPILOG)>
 <wtinclude Name="##WSDL_0_system.EPILOG#">
 </wtif>
</html>

Generated template Editing templates

42 Web Frontend for Web Services

Web Frontend for Web Services 43

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
u

li
2

01
0

 S
ta

nd
 1

4:
11

.1
6

P
fa

d:
 F

:\W
eb

TA
\V

7
.5

\M
an

ua
le

\1
0

03
5

08
_W

eb
_

Fr
on

te
nd

\e
n\

op
e

ns
ea

s.
m

ix

Glossary
A term in ->italic font means that it is explained somewhere else in the glossary.

active dialog
In the case of active dialogs, WebTransactions actively intervenes in the control
of the dialog sequence, i.e. the next ->template to be processed is determined
by the template programming. You can use the ->WTML language tools, for
example, to combine multiple ->host formats in a single ->HTML page. In this
case, when a host ->dialog step is terminated, no output is sent to the ->browser
and the next step is immediately started. Equally, multiple interactions between
the Web ->browser and WebTransactions are possible within one and the same
host dialog step.

array
->Data type which can contain a finite set of values of one data type. This data
type can be:
– ->scalar
– a ->class
– an array
The values in the array are addressed via a numerical index, starting at 0.

asynchronous message
In WebTransactions, an asynchronous message is one sent to the terminal
without having been explicitly requested by the user, i.e. without the user having
pressed a key or clicked on an interface element.

attribute
Attributes define the properties of ->objects.
An attribute can be, for example, the color, size or position of an object or it can
itself be an object. Attributes are also interpreted as ->variables and their values
can be queried or modified.

Glossary

44 Web Frontend for Web Services

Automask template
A WebTransactions ->template created by WebLab either implicitly when gener-
ating a base directory or explicitly with the command Generate Automask. It is
used whenever no format-specific template can be identified. An Automask
template contains the statements required for dynamically mapping formats
and for communication. Different variants of the Automask template can be
generated and selected using the system object attribute AUTOMASK.

base directory
The base directory is located on the WebTransactions server and forms the
basis for a ->WebTransactions application. The base directory contains the
->templates and all the files and program references (links) which are necessary
in order to run a WebTransactions application.

BCAM application name
Corresponds to the openUTM generation parameter BCAMAPPL and is the name
of the −>openUTM application through which −>UPIC establishes the
connection.

browser
Program which is required to call and display ->HTML pages. Browsers are, for
example, Microsoft Internet Explorer or Mozilla Firefox.

browser display print
The WebTransactions browser display print prints the information displayed in
the ->browser.

browser platform
Operating system of the host on which a ->browser runs as a client for
WebTransactions.

buffer
Definition of a record, which is transmitted from a ->service. The buffer is used
for transmitting and receiving messages. In addition there is a specific buffer for
storing the ->recognition criteria and for data for the representation on the
screen.

capturing
To enable WebTransactions to identify the received ->formats at runtime, you
can open a ->session in ->WebLab and select a specific area for each format and
name the format. The format name and ->recognition criteria are stored in the
->capture database. A ->template of the same name is generated for the format.
Capturing forms the basis for the processing of format-specific templates for the
WebTransactions for OSD and MVS product variants.

Glossary

Web Frontend for Web Services 45

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
u

li
2

01
0

 S
ta

nd
 1

4:
11

.1
6

P
fa

d:
 F

:\W
eb

TA
\V

7
.5

\M
an

ua
le

\1
0

03
5

08
_W

eb
_

Fr
on

te
nd

\e
n\

op
e

ns
ea

s.
m

ix

capture database
The WebTransactions capture database contains all the format names and the
associated ->recognition criteria generated using the ->capturing technique. You
can use ->WebLab to edit the sequence and recognition criteria of the formats.

CGI
(Common Gateway Interface)
Standardized interface for program calls on ->Web servers. In contrast to the
static output of a previously defined->HTML page, this interface permits the
dynamic construction of HTML pages.

class
Contains definitions of the ->properties and ->methods of an ->object. It provides
the model for instantiating objects and defines their interfaces.

class template
In WebTransactions, a class template contains valid, recurring statements for
the entire object class (e.g. input or output fields). Class templates are
processed when the ->evaluation operator or the toString method is applied to a
->host data object.

client
Requestors and users of services in a network.

cluster
Set of identical ->WebTransactions applications on different servers which are
interconnected to form a load-sharing network.

communication object
This controls the connection to an ->host application and contains information
about the current status of the connection, the last data to be received etc.

conversion tools
Utilities supplied with WebTransactions. These tools are used to analyze the
data structures of ->openUTM applications and store the information in files.
These files can then be used in WebLab as ->format description sources in order
to generate WTML templates and ->FLD files.
COBOL data structures or IFG format libraries form the basis for the conversion
tools. The conversion tool for DRIVE programs is supplied with the product
DRIVE.

daemon
Name of a process type in Unix system/POSIX systems which runs in the
background and performs no I/O operations at terminals.

Glossary

46 Web Frontend for Web Services

data access control
Monitoring of the accesses to data and ->objects of an application.

data type
Definition of the way in which the contents of a storage location are to be inter-
preted. Each data type has a name, a set of permitted values (value range), and
a defined number of operations which interpret and manipulate the values of
that data type.

dialog
Describes the entire communication between browser, WebTransactions and -
>host application. It will usually comprise multiple ->dialog cycles. WebTransac-
tions supports a number of different
types of dialog.
– ->passive dialog
– ->active dialog
– ->synchronized dialog
– ->non-synchronized dialog

dialog cycle
Cycle that comprises the following steps when a ->WebTransactions application is
executed:
– construct an ->HTML page and send it to the ->browser
– wait for a response from the browser
– evaluate the response fields and possibly send them to the->host application

for further processing
A number of dialog cycles are passed through while a ->WebTransactions appli-
cation is executing.

distinguished name
The Distinguished Name (DN) in ->LDAP is hierarchically organized and
consists of a number of different components (e.g. “country, and below country:
organization, and below organization: organizational unit, followed by: usual
name”). Together, these components provide a unique identification of an object
in the directory tree.
Thanks to this hierarchy, the unique identification of objects is a simple matter
even in a worldwide directory tree:
– The DN "Country=DE/Name=Emil Person" reduces the problem of achiev-

ing a unique identification to the country DE (=Germany).
– The DN "Organization=FTS/Name=Emil Person" reduces it to the organiza-

tion FTS.
– The DN "Country=DE/Organization=FTS/Name=Emil Person" reduces it to

the organization FTS located in Germany (DE).

Glossary

Web Frontend for Web Services 47

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
u

li
2

01
0

 S
ta

nd
 1

4:
11

.1
6

P
fa

d:
 F

:\W
eb

TA
\V

7
.5

\M
an

ua
le

\1
0

03
5

08
_W

eb
_

Fr
on

te
nd

\e
n\

op
e

ns
ea

s.
m

ix

document directory
->Web server directory containing the documents that can be accessed via the
network. WebTransactions stores files for download in this directory, e.g. the
WebLab client or general start pages.

Domain Name Service (DNS)
Procedure for the symbolic addressing of computers in networks. Certain
computers in the network, the DNS or name server, maintain a database
containing all the known host names and IP numbers in their environment.

dynamic data
In WebTransactions, dynamic data is mapped using the WebTransactions
object model, e.g. as a ->system object, host object or user input at the browser.

EHLLAPI
Enhanced High-Level Language API
Program interface, e.g. of terminal emulations for communication with the SNA
world. Communication between the transit client and SNA computer, which is
handled via the TRANSIT product, is based on this interface.

EJB
(Enterprise JavaBean)
This is a Java-based industry standard which makes it possible to use in-house
or commercially available server components for the creation of distributed
program systems within a distributed, object-oriented environment.

entry page
The entry page is an ->HTML page which is required in order to start a
->WebTransactions application This page contains the call which starts
WebTransactions with the first ->template, the so-called start template.

evaluation operator
In WebTransactions the evaluation operator replaces the addressed
->expressions with their result (object attribute evaluation). The evaluation
operator is specified in the form ##expression#.

expression
A combination of ->literals, ->variables, operators and expressions which return
a specific result when evaluated.

FHS
Format Handling System
Formatting system for BS2000/OSD applications.

Glossary

48 Web Frontend for Web Services

field
A field is the smallest component of a service and element of a ->record or
->buffer.

field file (*.fld file)
In WebTransactions, this contains the structure of a ->format record (metadata).

filter
Program or program unit (e.g. a library) for converting a given ->format into
another format (e.g. XML documents to ->WTScript data structures).

format
Optical presentation on alphanumeric screens (sometimes also referred to as
screen form or mask).

In WebTransactions each format is represented by a ->field file and a ->template.

format type
(only relevant in the case of ->FHS applications and communication via ->UPIC)
Specifies the type of format: #format, +format, -format or *format.

format description sources
Description of multiple ->formats in one or more files which were generated from
a format library (FHS/IFG) or are available directly at the ->host for the use of
“expressive” names in formats.

function
A function is a user-defined code unit with a name and ->parameters. Functions
can be called in ->methods by means of a description of the function interface (or
signature).

holder task
A process, a task or a thread in WebTransactions depending on the operating
system platform being used. The number of tasks corresponds to the number
of users. The task is terminated when the user logs off or when a time-out
occurs. A holder task is identical to a ->WebTransactions session.

host
The computer on which the- >host application is running.

host adapter
Host adapters are used to connect existing ->host applications to
WebTransactions. At runtime, for example, they have the task of establishing
and terminating connections and converting all the exchanged data.

Glossary

Web Frontend for Web Services 49

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
u

li
2

01
0

 S
ta

nd
 1

4:
11

.1
6

P
fa

d:
 F

:\W
eb

TA
\V

7
.5

\M
an

ua
le

\1
0

03
5

08
_W

eb
_

Fr
on

te
nd

\e
n\

op
e

ns
ea

s.
m

ix

host application
Application that is integrated with WebTransactions.

host control object
In WebTransactions, host control objects contain information which relates not
to individual fields but to the entire ->format. This includes, for example, the field
in which the cursor is located, the current function key or global format
attributes.

host data object
In WebTransactions, this refers to an ->object of the data interface to the ->host
application. It represents a field with all its field attributes. It is created by
WebTransactions after the reception of host application data and exists until the
next data is received or until termination of the ->session.

host data print
During WebTransactions host data print, information is printed that was edited
and sent by the ->host application, e.g. printout of host files.

host platform
Operating system of the host on which the ->host applications runs.

HTML
(Hypertext Markup Language)
See ->Hypertext Markup Language

HTTP
(Hypertext Transfer Protocol)
This is the protocol used to transfer ->HTML pages and data.

HTTPS
(Hypertext Transfer Protocol Secure)
This is the protocol used for the secure transfer of ->HTML pages and data.

hypertext
Document with links to other locations in the same or another document. Users
click the links to jump to these new locations.

Hypertext Markup Language
(Hypertext Markup Language)
Standardized markup language for documents on the Web.

Glossary

50 Web Frontend for Web Services

Java Bean
Java programs (or ->classes) with precisely defined conventions for interfaces
that allow them to be reused in different applications.

KDCDEF
openUTM tool for generating ->openUTM applications.

LDAP
(Lightweight Directory Access Protocol)
The X.500 standard defines DAP (Directory Access Protocol) as the access
protocol. However, the Internet standard “LDAP” has proved successful specif-
ically for accessing X.500 directory services from a PC.
LDAP is a simplified DAP protocol that does not support all the options available
with DAP and is not compatible with DAP. Practically all X.500 directory services
support both DAP and LDAP. In practice, interpretation problems may arise
since there are various dialects of LDAP. The differences between the dialects
are generally small.

literal
Character sequence that represents a fixed value. Literals are used in source
programs to specify constant values (“literal” values).

master template
WebTransactions template used to generate the Automask and the format-
specific templates.

message queuing (MQ)
A form of communication in which messages are not exchanged directly, rather
via intermediate queues. The sender and receiver can work at separate times
and locations. Message transmission is guaranteed regardless of whether or
not a network connection currently exists.

method
Object-oriented term for a ->function. A method is applied to the ->object in
which it is defined.

module template
In WebTransactions, a module template is used to define ->classes, ->functions
and constants globally for a complete ->session. A module template is loaded
using the import() function.

MT tag
(Master Template tag)
Special tags used in the dynamic sections of ->master templates.

Glossary

Web Frontend for Web Services 51

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
u

li
2

01
0

 S
ta

nd
 1

4:
11

.1
6

P
fa

d:
 F

:\W
eb

TA
\V

7
.5

\M
an

ua
le

\1
0

03
5

08
_W

eb
_

Fr
on

te
nd

\e
n\

op
e

ns
ea

s.
m

ix

multitier architecture
All client/server architectures are based on a subdivision into individual
software components which are also known as layers or tiers. We speak of
1-tier, 2-tier, 3-tier and multitier models. This subdivision can be considered at
the physical or logical level:
– We speak of logical software tiers when the software is subdivided into

modular components with clear interfaces.
– Physical tiers occur when the (logical) software components are distributed

across different computers in the network.
With WebTransactions, multitier models are possible both at the physical and
logical level.

name/value pair
In the data sent by the ->browser, the combination, for example, of an ->HTML
input field name and its value.

non-synchronized dialog
Non-synchronized dialogs in WebTransactions permit the temporary deacti-
vation of the checking mechanism implemented in ->synchronized dialogs. In this
way, ->dialogs that do not form part of the synchronized dialog and have no
effect on the logical state of the ->host application can be incorporated. In this
way, for example, you can display a button in an ->HTML page that allows users
to call help information from the current host application and display it in a
separate window.

object
Elementary unit in an object-oriented software system. Every object possesses
a name via which it can be addressed, ->attributes, which define its status
together with the ->methods that can be applied to the object.

openUTM
(Universal Transaction Monitor)
Transaction monitor from Fujitsu Technology Solutions, which is available for
BS2000/OSD and a variety of Unix platforms and Windows platforms.

openUTM application
A ->host application which provides services that process jobs submitted by
->clients or other ->host applications. openUTM responsibilities include trans-
action management and the management of communication and system
resources. Technically speaking, the UTM application is a group of processes
which form a logical unit at runtime.
openUTM applications can communicate both via the client/server protocol
->UPIC and via the emulation interface (9750).

Glossary

52 Web Frontend for Web Services

openUTM-Client (UPIC)
The openUTM-Client (UPIC) is a product used to create client programs for
openUTM. openUTM-Client (UPIC) is available, for example, for Unix platforms,
BS2000/OSD platforms and Windows platforms.

openUTM program unit
The services of an ->openUTM application are implemented by one or more
openUTM program units. These can be addressed using transaction codes and
contain special openUTM function calls (e.g. KDCS calls).

parameter
Data which is passed to a ->function or a ->method for processing (input
parameter) or data which is returned as a result of a function or method (output
parameter).

passive dialog
In the case of passive dialogs in WebTransactions, the dialog sequence is
controlled by the ->host application, i.e. the host application determines the next
->template which is to be processed. Users who access the host application via
WebTransactions pass through the same dialog steps as if they were accessing
it from a terminal. WebTransactions uses passive dialog control for the
automatic conversion of the host application or when each host application
format corresponds to precisely one individual template.

password
String entered for a ->user id in an application which is used for user authenti-
cation (->system access control).

polling
Cyclical querying of state changes.

pool
In WebTransactions, this term refers to a shared directory in which WebLab can
create and maintain ->base directories. You control access to this directory with
the administration program.

post
To send data.

posted object (wt_Posted)
List of the data returned by the ->browser. This ->object is created by WebTrans-
actions and exists for the duration of a ->dialog cycle.

Glossary

Web Frontend for Web Services 53

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
u

li
2

01
0

 S
ta

nd
 1

4:
11

.1
6

P
fa

d:
 F

:\W
eb

TA
\V

7
.5

\M
an

ua
le

\1
0

03
5

08
_W

eb
_

Fr
on

te
nd

\e
n\

op
e

ns
ea

s.
m

ix

process
The term “process” is used as a generic term for process (in Solaris, Linux and
Windows) and task (in BS2000/OSD).

project
In the WebTransactions development environment, a project contains various
settings for a ->WebTransactions application. These are saved in a project file
(suffix .wtp). You should create a project for each WebTransactions application
you develop, and always open this project for editing.

property
Properties define the nature of an ->object, e.g. the object “Customer” could
have a customer name and number as its properties. These properties can be
set, queried, and modified within the program.

protocol
Agreements on the procedural rules and formats governing communications
between remote partners of the same logical level.

protocol file

● openUTM-Client: File into which the openUTM error messages as are writ-
ten in the case of abnormal termination of a conversation.

● In WebTransactions, protocol files are called trace files.

roaming session
->WebTransactions sessions which are invoked simultaneously or one after
another by different ->clients.

record
A record is the definition of a set of related data which is transferred to a ->buffer.
It describes a part of the buffer which may occur one or more times.

recognition criteria
Recognition criteria are used to identify ->formats of a ->terminal application and
can access the data of the format. The recognition criteria selected should be
one or more areas of the format which uniquely identify the content of the
format.

scalar
->variable made up of a single value, unlike a ->class, an ->array or another
complex data structure.

Glossary

54 Web Frontend for Web Services

service (openUTM)
In ->openUTM, this is the processing of a request using an ->openUTM appli-
cation. There are dialog services and asynchronous services. The services are
assigned their own storage areas by openUTM. A service is made up of one or
more ->transactions.

service application
->WebTransactions session which can be called by various different users in turn.

service node
Instance of a ->service. During development and runtime of a ->method a service
can be instantiated several times. During modelling and code editing those
instances are named service nodes.

session
When an end user starts to work with a ->WebTransactions application this opens
a WebTransactions session for that user on the WebTransactions server. This
session contains all the connections open for this user to the
->browsers, special ->clients and ->hosts.
A session can be started as follows:
– Input of a WebTransactions URL in the browser.
– Using the START_SESSION method of the WT_REMOTE client/server interface.
A session is terminated as follows:
– The user makes the corresponding input in the output area of this

->WebTransactions application (not via the standard browser buttons).
– Whenever the configured time that WebTransactions waits for a response

from the ->host application or from the ->browser is exceeded.
– Termination from WebTransactions administration.
– Using the EXIT_SESSION method of the WT_REMOTE client/server interface.
A WebTransactions session is unique and is defined by a ->WebTransactions
application and a session ID. During the life cycle of a session there is one
->holder task for each WebTransactions session on the WebTransactions server.

SOAP
(originally Simple Object Access Protocol)
The ->XML based SOAP protocol provides a simple, transparent mechanism
for exchanging structured and typecast information between computers in a
decentralized, distributed environment.
SOAP provides a modular package model together with mechanisms for data
encryption within modules. This enables the uncomplicated description of the
internal interfaces of a ->Web-Service.

Glossary

Web Frontend for Web Services 55

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
u

li
2

01
0

 S
ta

nd
 1

4:
11

.1
6

P
fa

d:
 F

:\W
eb

TA
\V

7
.5

\M
an

ua
le

\1
0

03
5

08
_W

eb
_

Fr
on

te
nd

\e
n\

op
e

ns
ea

s.
m

ix

style
In WebTransactions this produces a different layout for a ->template, e.g. with
more or less graphic elements for different->browsers. The style can be changed
at any time during a ->session.

synchronized dialog
In the case of synchronized dialogs (normal case), WebTransactions automati-
cally checks whether the data received from the web browser is genuinely a
response to the last ->HTML page to be sent to the ->browser. For example, if
the user at the web browser uses the Back button or the History function to
return to an “earlier” HTML page of the current ->session and then returns this,
WebTransactions recognizes that the data does not correspond to the current
->dialog cycle and reacts with an error message. The last page to have been
sent to the browser is then automatically sent to it again.

system access control
Check to establish whether a user under a particular ->user ID is authorized to
work with the application.

system object (wt_System)
The WebTransactions system object contains ->variables which continue to
exist for the duration of an entire ->session and are not cleared until the end of
the session or until they are explicitly deleted. The system object is always
visible and is identical for all name spaces.

TAC
See ->transaction code

tag
->HTML, ->XML and ->WTML documents are all made up of tags and actual
content. The tags are used to mark up the documents e.g. with header formats,
text highlighting formats (bold, italics) or to give source information for graphics
files.

TCP/IP
(Transport Control Protocol/Internet Protocol)
Collective name for a protocol family in computer networks used, for example,
in the Internet.

Glossary

56 Web Frontend for Web Services

template
A template is used to generate specific code. A template contains fixed infor-
mation parts which are adopted unchanged during generation, as well as
variable information parts that can be replaced by the appropriate values during
generation.
A template is a ->WTML file with special tags for controlling the dynamic gener-
ation of a ->HTML page and for the processing of the values entered at the -
>browser. It is possible to maintain multiple template sets in parallel. These then
represent different ->styles (e.g. many/few
graphics, use of Java, etc.).
WebTransactions uses different types of template:
– ->Automask templates for the automatic conversion of the ->formats of MVS

and OSD applications.
– Custom templates, written by the programmer, for example, to control an -

>active dialog.
– Format-specific templates which are generated for subsequent post-pro-

cessing.
– Include templates which are inserted in other templates.
– ->Class templates
– ->Master templates to ensure the uniform layout of fixed areas on the

generation of the Automask and format-specific templates.
– Start template, this is the first template to be processed in a

WebTransactions application.

template object
->Variables used to buffer values for a ->dialog cycle in WebTransactions.

terminal application
Application on a ->host computer which is accessed via a 9750 or 3270
interface.

terminal hardcopy print
A terminal hardcopy print in WebTransactions prints the alphanumeric repre-
sentation of the ->format as displayed by a terminal or a terminal emulation.

transaction
Processing step between two synchronization points (in the current operation)
which is characterized by the ACID conditions (Atomicity, Consistency, Isolation
and Durability). The intentional changes to user information made within a
transaction are accepted either in their entirety or not at all (all-or-nothing rule).

Glossary

Web Frontend for Web Services 57

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
u

li
2

01
0

 S
ta

nd
 1

4:
11

.1
6

P
fa

d:
 F

:\W
eb

TA
\V

7
.5

\M
an

ua
le

\1
0

03
5

08
_W

eb
_

Fr
on

te
nd

\e
n\

op
e

ns
ea

s.
m

ix

transaction code/TAC
Name under which an openUTM service or ->openUTM program unit can be
called. The transaction code is assigned to the openUTM program unit during
configuration. A program unit can be assigned several transaction codes.

UDDI
(Universal Description, Discovery and Integration)
Refers to directories containing descriptions of ->Web services. This information
is available to web users in general.

Unicode
An alphanumeric character set standardized by the International Standardisa-
tion Organisation (ISO) and the Unicode Consortium. It is used to represent
various different types of characters: letters, numerals, punctuation marks, syl-
labic characters, special characters and ideograms. Unicode brings together all
the known text symbols in use across the world into a single character set.
Unicode is vendor-independent and system-independent. It uses either two-
byte or four-byte character sets in which each text symbol is encoded. In the ISO
standard, these character sets are termed UCS-2 (Universal Character Set 2)
or UCS-4. The designation UTF-16 (Unicode Transformation Format 16-bit),
which is a standard defined by the Unicode Consortium, is often used in place
of the designation UCS-2 as defined in ISO. Alongside UTF-16, UTF-8 (Unicode
Transformation Format 8 Bit) is also in widespread use. UTF-8 has become the
character encoding method used globally on the Internet.

UPIC
(Universal Programming Interface for Communication)
Carrier system for openUTM clients which uses the X/Open interface, which
permity CPI-C client/server communication between a CPI-C-Client application
and the openUTM application.

URI
(Uniform Resource Identifier)
Blanket term for all the names and addresses that reference objects on the
Internet. The generally used URIs are->URLs.

URL
(Uniform Resource Locator)
Description of the location and access type of a resource in the ->Internet.

user exit
Functions implemented in C/C++ which the programmer calls from a
->template.

Glossary

58 Web Frontend for Web Services

user ID
User identification which can be assigned a password (->system access control)
and special access rights (->data access control).

variable
Memory location for variable values which requires a name and a ->data type.

visibility of variables
->Objects and ->variables of different dialog types are managed by WebTrans-
actions in different address spaces. This means that variables belonging to a -
>synchronized dialog are not visible and therefore not accessible in a
->asynchronous dialog or in a dialog with a remote application.

web server
Computer and software for the provision of ->HTML pages and dynamic data
via ->HTTP.

web service
Service provided on the Internet, for example a currency conversion program.
The SOAP protocol can be used to access such a service. The interface of a
web service is described in ->WSDL.

WebTransactions application
This is an application that is integrated with ->host applications for internet/
intranet access. A WebTransactions application consists of:
– a ->base directory
– a start template
– the ->templates that control conversion between the ->host and the

->browser.
– protocol-specific configuration files.

WebTransactions platform
Operating system of the host on which WebTransactions runs.

WebTransactions server
Computer on which WebTransactions runs.

WebTransactions session
See ->session

WSDL
(Web Service Definition Language)
Provides ->XML language rules for the description of ->web services. In this
case, the web service is defined by means of the port selection.

Glossary

Web Frontend for Web Services 59

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
u

li
2

01
0

 S
ta

nd
 1

4:
11

.1
6

P
fa

d:
 F

:\W
eb

TA
\V

7
.5

\M
an

ua
le

\1
0

03
5

08
_W

eb
_

Fr
on

te
nd

\e
n\

op
e

ns
ea

s.
m

ix

WTBean
In WebTransactions ->WTML components with a self-descriptive interface are
referred to as WTBeans. A distinction is made between inline and standalone
WTBeans:
– An inline WTBean corresponds to a part of a WTML document
– A standalone WTBean is an autonomous WTML document

A number of WTBeans are included in of the WebTransactions product, addi-
tional WTBeans can be downloaded from the WebTransactions homepage
ts.fujitsu.com/products/software/openseas/webtransactions.html.

WTML
(WebTransactions Markup Language)
Markup and programming language for WebTransactions ->templates. WTML
uses additional ->WTML tags to extend ->HTML and the server programming
language ->WTScript, e.g. for data exchange with ->host applications. WTML
tags are executed by WebTransactions and not by the ->browser (serverside
scripting).

WTML tag
(WebTransactions Markup Language-Tag)
Special WebTransactions tags for the generation of the dynamic sections of an
->HTML page using data from the->host application.

WTScript
Serverside programming language of WebTransactions. WTScripts are similiar
to client-side Java scripts in that they are contained in sections that are intro-
duced and terminated with special tags. Instead of using ->HTML-SCRIPT tags
you use ->WTML-Tags: wtOnCreateScript and wtOnReceiveScript. This indicates
that these scripts are to be implemented by WebTransactions and not by the
->browser and also indicates the time of execution. OnCreate scripts are
executed before the page is sent to the browser. OnReceive scripts are
executed when the response has been received from the browser.

XML
(eXtensible Markup Language)
Defines a language for the logical structuring of documents with the aim of
making these easy to exchange between various applications.

XML schema
An XML schema basically defines the permissible elements and attributes of an
XML description. XML schemas can have a range of different formats, e.g. DTD
(Document Type Definition), XML Schema (W3C standard) or XDR (XML Data
Reduced).

Glossary

60 Web Frontend for Web Services

Web Frontend for Web Services 61

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
li

2
01

0
 S

ta
n

d
14

:1
1.

16
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
u

al
e\

10
03

50
8

_W
eb

_F
ro

n
te

nd
\e

n\
op

en
se

a
s.

ab
k

Abbreviations
BO Business Object

CGI Common Gateway Interface

DN Distinguished Name

DNS Domain Name Service

EJB Enterprise JavaBean

FHS Format Handling System

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IFG Interaktiver Format Generator

ISAPI Internet Server Application Programming Interface

LDAP Lightweight Directory Access Protocol

LPD Line Printer Daemon

MT-Tag Master-Template-Tag

MVS Multiple Virtual Storage

OSD Open Systems Direction

SGML Standard Generalized Markup Language

SOAP Simple Object Access Protocol

Abbreviations

62 Web Frontend for Web Services

SSL Secure Socket Layer

TCP/IP Transport Control Protocol/Internet Protocol

Upic Universal Programming Interface for Communication

URL Uniform Resource Locator

WSDL Web Services Description Language

wtc WebTransactions Component

WTML WebTransactions Markup Language

XML eXtensible Markup Language

Web Frontend for Web Services 63

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
u

li
2

01
0

 S
ta

n
d

14
:1

1.
17

P
fa

d:
 F

:\W
eb

TA
\V

7
.5

\M
an

ua
le

\1
0

03
5

08
_W

eb
_

Fr
on

te
nd

\e
n\

op
en

se
a

s.
lit

Related publications

WebTransactions manuals

You can download all manuals from the Web address http://manuals.ts.fujitsu.com.

WebTransactions
Concepts and Functions
Introduction

WebTransactions
Template Language
Reference Manual

WebTransactions
Client APIs for WebTransactions
User Guide

WebTransactions
Connection to openUTM Applications via UPIC
User Guide

WebTransactions
Connection to OSD Applications
User Guide

WebTransactions
Connection to MVS Applications
User Guide

WebTransactions
Access to Dynamic Web Contents
User Guide

http://manuals.ts.fujitsu.com

Related publications

64 Web Frontend for Web Services

Web Frontend for Web Services 65

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
ul

y
20

1
0

 S
ta

nd
 1

4
:1

1.
17

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
8_

W
eb

_F
ro

nt
en

d\
en

\o
p

en
se

as
.s

ix

Index

A
access

objects 25
active dialog 43, 46
architecture

web frontend 7
array 43
asynchronous message 43
attribute 43
automask template 44

B
base data type 43
base directory 44

converting to a new version 16
creating 15

basic interface
general web frontend 13

BCAM application name 44
BCAMAPPL 44
browser 44
browser display print 44
browser platform 44
buffer 44

C
capture database 45
capturing 44
CGI (Common Gateway Interface) 45
class 45

templates 45
WT_SOAP 26

client 45
cluster 45
communication object 45

concept of the web frontend 13
conversion tools 45

D
daemon 45
data

dynamic 47
data access control 46
data type 46

WT_SOAP 27
dialog 46

active 46
non-synchronized 46, 51
passive 46, 52
synchronized 46, 55
types 46

dialog cycle 46
distinguished name 46
document directory 47
Domain Name Service (DNS) 47

E
edit

templates 25
EHLLAPI 47
EJB 47
entry page 47
evaluation operator 47
expression 47

F
FHS 47
field 48
field file 48
filter 48

Index

66 Web Frontend for Web Services

fld file 48
flowchart

frontend 13
format 48

#format 48
*format 48
+format 48
-format 48

format description source 48
format type 48
function 48

G
generate

template 19
generated template 18, 31, 32

H
holder task 48
host 48
host adapter 48
host application 49
host control object 49
host data object 49
host data print 49
host platform 49
HTML 49
HTTP 49
HTTPS 49
hypertext 49
Hypertext Markup Language (HTML) 49

I
inline WTBean 59

J
Java Bean 50

K
KDCDEF 50

L
LDAP 50
literals 50

M
master template 18, 25, 50, 56

tag 50
message queuing 50
method 50
module template 50
MT tag 31, 50
multitier architecture 51

N
name/value pair 51
non-synchronized dialog 46, 51

O
object 51

accessing 25
openUTM 51

application 51
Client 52
program unit 52
service 54

operations 46

P
parameter 52
passive dialog 46, 52
password 52
polling 52
pool 52
posted object 52
posting 52
process 53
project 53
property 53
protocol 53
protocol file 53

R
recognition criteria 53
record 53
record structure 48

S
scalar 53

Index

Web Frontend for Web Services 67

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
ul

y
20

1
0

 S
ta

nd
 1

4
:1

1.
17

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
8_

W
eb

_F
ro

nt
en

d\
en

\o
p

en
se

as
.s

ix

service (openUTM) 54
service node 54
session 54

WebTransactions 54
SOAP 54
SOAP protocol 13
standalone WTBean 59
start template 22, 56
style 55
subdirectory

wsdl 16
synchronized dialog 46, 55
system access control 55
system object 55

T
TAC 57
tag 55
TCP/IP 55
template 56

class 45
edit 25
generating 19
master 56
object 56
start 56
testing 22

terminal application 56
terminal hardcopy printing 56
test

template 22
Thread 48
transaction 56
transaction code/TAC 57

U
UDDI 57
Unicode 57
UPIC 57
URI 57
URL 57
user exits 57
user ID 58
UTM see openUTM

V
value range of a data type 46
variable 58
visibility 58

W
web frontend

architecture 7
basic interface 13
concept 13
flowchart 13
web service 23

web server 58
web service 13, 58
WebTransactions

session 54
WebTransactions application 58
WebTransactions platform 58
WebTransactions server 58
WSDL 58
wsdl

subdirectory 16
WSDL file 13, 17
WT_SOAP 26

data types 27
WTBean 59
WTML 59
WTML tag 59
WTScript 59
WWW browser 44
WWW server 58

X
XML 59
XML schema 59

Index

68 Web Frontend for Web Services

	Contents
	Preface
	Product characteristics
	Architecture of the web frontend for web services
	WebTransactions documentation
	Structure and target group of this manual
	New features
	Notational conventions

	Concept of the web frontend
	Creating a base directory
	Creating a base directory with WebLab
	Structure of a base directory

	Generating a template
	Testing the web frontend
	General start template
	Web frontend for a web service

	Editing templates
	Accessing objects
	Integration via SOAP
	Example of a simple data type
	Example of a complex data type

	Master template
	Generated template

	Glossary
	Abbreviations
	Related publications
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

