| ®
Reference Manual - English FUJ[TSU

WebTransactions V7.5

Template Language

Edition August 2010

Comments... Suggestions... Corrections...

The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
manuals @ts.fujitsu.com

Certified documentation
according to DIN EN ISO 9001:2008

To ensure a consistently high quality standard and
user-friendliness, this documentation was created to

meet the regulations of a quality management system which
complies with the requirements of the standard

DIN EN ISO 9001:2008.

cognitas. Gesellschaft fir Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

Copyright © Fujitsu Technology Solutions GmbH 2010.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

mailto:manuals@ts.fujitsu.com
http://www.cognitas.de

Contents

1 Preface L e e e e e e e e e e e e e s 15
1.1 Product characteristics e 15
1.2 WebTransactions documentation 17
1.3 Structure and target group of thismanual 19
14 New features @ i i i i i i i i i e e e e e e e e e e 20
1.5 Notationalconventions 21
2 Overview of the WTML templatelanguage 23
2.1 WebLab - WebTransactions development environment 23
2.2 Overview of language resourcest v v v i v i n e 24
2.3 Example: template structure 0 oo 27
3 Lexicalelements e e e 29
3.1 Characterset @ i i i i i i it e e e e e e e e 29
3.2 White spacecharacters i e e e e 30
3.3 Separators L e e e e e e e e e e e e e e e e e e 31
34 Line-endcharacters o i e e e e e 31
3.5 Comments i i e e e e e e e e e e e e e e e e 31
3.6 Keywords o . i i i e e e e e e e e e e e e e e e 32
3.7 Literals e e e e e e e e e e e e e 33
3.71 Textliterals e e 33
3.7.2 Natural numbers 34
3.7.3 Floating-pointvalues e 34

WebTransactions Template Language

Contents

3.7.4
3.7.5
3.7.6
3.7.7
3.7.8
3.7.9

3.8

41

411
41.2
41.3
41.4
41.5
41.6
41.7
41.8

4.2
4.3
4.4

4.5

451
452
4.5.3

4.6
4.7

5.1
5.2
5.3

Strings (string literals) 35
Logical values e 36
Literal foranarray object 36
Literalforanobject 36
Literal forthe nullobject 37
Literals for regular expressions 38
Nameelements @ i i i i e e 42
Data types, variables,andnames 43
Datatypes o i i i i e e e e e e e e e e e e e e e e e 44
nuUMbEr e e e e e e 45
boolean L e 45
undefined L e e e 45
StHNG . . . e 46
object e 46
function L e 46
Stringlike datatypes 47
Type conversion e e e 47
Local and global variables, 49
Lifetime of variables e e 51
Initialization e e e e 53
Name structure e e e e e e e e e e e e e 53
Fully qualified specifications L 54
Relative specifications L 55
Assigningnamestoobjects L 56
User-definedclasses i i i i i i 57
Object hierarchy and inheritance 59
Expressionsandoperators Lot e e e e e . 63
Different types of expressions o e e e 64
Arithmeticoperators e e e e e 65
Comparisonoperators o i i i i e e e e e e e e e e 66

WebTransactions Template Language

Contents

5.4
5.4.1
5.4.2

5.5
5.6
5.7

5.8
5.8.1
5.8.2
5.8.3
5.8.4
5.8.5
5.8.6
5.8.7
5.8.8
5.8.9
5.8.10
5.8.11

5.9

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12

Bitwise operators L. e e e e e e e e e 68
Bitwise logical operators (&, I, A, ~) 68
Bitwise shift operators (<<, >>,>>>) L. oo 69
Boolean operators (&&,Il,!1) e 70
Assignmentoperators L. L L. L e e e e e e e e 71
String concatenationoperator (+) L L e 72
Specialoperators L e e e e e e e e e e e e e e 73
Condition operator (?:) e 73
Commaoperator (,) e e e e 74
new operator L e e e e e e e 75
delete operator 76
inoperator L e e e e 76
instanceof operator 77
WT_THIS (for class templatesonly) 77
this . . o e 77
Evaluation operator ##..# L 79
typeof operator L L 80
void operator L 81
Evaluation sequence i i i i i i e e e e e e e e e e e e 82
Global functions e e e e e e 83
copyFile()function e e 83
createFolder() function e 84
deleteFile()function. e e 85
escape()functiono L e e e e e e e e e 86
eval()function e e e e e e e e e 87
evaluate() function e e e e e e 88
exitDialogStep() function e e 90
exitReceiveProcessing() functiono 0oL, 91
exitScript() function L e e e e e 92
exitSession() function L L e e 94
exitTemplate() function i 95
forward() function e e e e e 96

WebTransactions Template Language

Contents

6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27

71
711
71.2
71.3
71.4
715
7.1.6
7.7
7.1.8
719
7.1.10
7.1.11
7.1.12
7113
7114
7.1.15
7.1.16

importfunction() L e e e e e e 98
include() function e e e e 929
isRequestWaiting() function, 102
listFolder() function e e e 104
moveFile() function e e 106
Number() function e e e e 107
parseFloat() function e 108
parseint()function e 109
setNextPage() function e 110
setSingleStep() function L e 111
setTimeout() function 112
setTraceLevel()function. i e 113
String() function L e e e e e 113
unescape() function L. e e e 114
writeToTrace() function i i 115
Built-inclassesand methods, 117
Array class o e e e e e e e e e e e e e e e e e e s 118
Constructors e e e e 118
Attributes e 120
concatmethod 121
equals method L 122
getClassName method 123
joinmethod L 124
popmethod 125
pushmethod 126
reverse method L 127
shiftmethod 128
slicemethod L 129
sortmethod L 130
splicemethod 133
toStringmethod 134
unshiftmethod 135
valueOf method 136

WebTransactions Template Language

Contents

7.2

7.21
7.2.2
7.2.3
7.2.4
7.25
7.2.6

7.3
7.3.1
7.3.2
7.3.3
7.3.4
7.3.5
7.3.6
7.3.7
7.3.8
7.3.9
7.3.10

7.4

7.41
7.4.2
7.4.3
7.4.4
7.4.5
7.4.6
7.4.7
7.4.8
7.4.9

7.5

7.5.1
7.5.2
7.5.3

7.6

7.6.1
7.6.2
7.6.3
7.6.4

7.7

7.7
7.7.2
7.7.3

Booleanclass i i e e e e e e e e e e e e e e e e 137
Constructors e 137
equals method 137
getClassNamemethod 138
setValue method 138
toStringmethod L 139
valueOf method 140
Dateclass @ @ @ i i i i i e e e e e e e e e e e e e e e e 141
Constructors e e e e 141
equalsmethod e 142
getClassNamemethod 142
get...methods 143
getTimezoneOffset method 144
set..methods e 145
toGMTStringmethod L 145
toLocaleStringmethod L L 146
toStringmethod L 146
valueOf method 147
Documentclass i i i e e e e e e e e e e e e e 148
Constructor e e 148
clearmethod e e 149
closemethod e 149
equals method 150
getClassNamemethod 150
openmethod L e 151
readmethod e 152
valueOf method 152
write /writelnmethod L. L 153
Host dataobjectclass i i i i i it i 154
getClassNamemethod 154
toStringmethod L 155
valueOf method 156
Functionclass i i i i i i e e e e e e e e e e e e e e e 157
Constructors e e e e e 157
Attributes e e 158
equals method 160
getClassNamemethod 160
Mathclass o 0 i e e e e e e e e e e e e e e e e e e 161
Classattributes e 161
absmethod 161
acosmethod e 162

WebTransactions Template Language

Contents

7.7.4
7.7.5
7.7.6
7.7.7
7.7.8
7.7.9
7.7.10
7.7.11
7.7.12
7.7.13
7.7.14
7.7.15
7.7.16
7717
7.7.18

7.8

7.8.1
7.8.2
7.8.3
7.8.4
7.8.5
7.8.6
7.8.7

7.9

7.91
7.9.2
7.9.3
7.9.4
7.9.5

7.10

7.10.1
7.10.2
7.10.3
7.10.4
7.10.5
7.10.6
7.10.7
7.10.8

7.11

7111
711.2
7.11.3

asinmethod L e 162
atanmethod L e 163
ceilmethod e 163
cosmethod L e e 164
expmethod 164
floormethod e 165
logmethod 165
maxmethod e e e e 166
minmethod e e e e 166
powmethod e 167
randommethod 167
round method e 168
sinmethod L e e 169
sgrtmethod e 169
tanmethod e 169
Numberclass @ . i i @ i i et e e e e e e e e e e e e e 170
Constructors e e e e 170
Class attributes e 170
equalsmethod e 171
getClassName method 171
setValuemethod e 172
toStringmethod L 172
valueOf method e 172
Objectclass i i i i e e e e e e e e e e e e 173
Constructors e e e 173
equalsmethod e 174
getClassName method 174
toStringmethod L 175
valueOf method e 179
RegExXpclass. o i i i e e e e e e e e e e e e 180
Constructors L e e e e 180
Attributes of objects of the RegExpclass 182
Predefined RegExp object 183
compilemethod 184
equalsmethod L 185
execmethod e 186
getClassName method 189
testmethod e 190
Stringclass. L e e e e e e e e e e e 191
Constructors L e e e 191
Attributes L e 191
charAtmethod e 192

WebTransactions Template Language

Contents

7.11.4
7.11.5
7.11.6
711.7
7.11.8
7.11.9
7.11.10
7.11.11
7.11.12
7.11.13
7.11.14
7.11.15
7.11.16
7.11.17
7.11.18
7.11.19
7.11.20
7.11.21
7.11.22

7.12

7.12.1
7.12.2
7.12.3
7.12.4
7.12.5
7.12.6
7.12.7
7.12.8

713

7.13.1
7.13.2
7.13.3
7.13.4
7.13.5
7.13.6
7.13.7
7.13.8

714

7.14.1
7.14.2
7.14.3
7.14.4

charCodeAt method e 193
concatmethod 194
equals method 195
fromCharCode method 195
getClassNamemethod 196
indexOf method e 197
lastindexOf method 198
match method e 199
replacemethod L L 201
searchmethod e 203
setValuemethod e 204
slicemethod e 205
splitmethod L 206
substrmethod e 207
substringmethod 208
toLowerCase method e 209
toStringmethod 209
toUpperCasemethod 210
valueOf method e 210
WT_Communicationclass @ 0 i i i i ittt e e e e e e e 211
Constructors e e e e e 211
closemethod e 212
equalsmethod 212
getClassNamemethod 213
getModule method L 213
openmethod 214
receivemethod L e 214
sendmethod e e 215
WT_ Filterclass i i i e e e e e e e e e e e e e e e e 216
dataObjectToXML method 217
dataObjectToFormattedXML method 219
methodCallToXML method . 222
objectTreeToXML method Lo 223
XMLToDataObject method 224
XMLToMethodCall method e 225
XMLToObjectTree method 226
Methode XML_SAXParse e e 227
WT_LdapConnectionclass i i i i i i it e e e e e e 234
Overview of the LDAP directory service 234
LDAP errormessages e e e e 235
Constructor e e e e 236
addmethod e e 237

WebTransactions Template Language

Contents

7.14.5

7.14.6

7.14.7

7.14.8

7.14.9

7.14.10
7.14.11
7.14.12
7.14.13
7.14.14
7.14.15
7.14.16
71417
7.14.18
7.14.19
7.14.20
7.14.21
7.14.22
7.14.23

7.15
7.15.1
7.15.2

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

bindmethod 238
bindSaslmethod 239
compare method L 240
deleteEntry method L L 241
equalsmethod e 241
explodeDnmethod 242
firstEntry method 243
getClassName method 244
getDnmethod L 244
getEntriesmethod L 245
getOptionmethod 246
modify method 247
nextEntry method 248
searchmethod L 249
setOptionmethod e 253
toStringmethod L L 254
unbind method 254
valueOf method e 255
WebTransactions and LDAP: examples 255
WT_ Userexitclass o o i i i i et e e e e e e e e 258
Constructors L e e e 258
Methods e 259
WTMLtags & o ot o e o e s 261
Rem - insertingcomments 0o 264
Dataform - definingformareas, 265
Exit - terminatingprocessing Lo e 267
Include - includingtemplates, 268
IF/ELSE/ENDIF control structure 269
DOWHILEIOOP & i i i it e 271
DOUNTILIOOP . - . .« i i e 272
OnCreateScript - WTScript at generationtime 274
OnReceiveScript - WTScript after the receipt of browserdata 275

WebTransactions Template Language

Contents

9.1
9.2
9.3

9.4

9.4.1
9.4.2
9.4.3
9.4.4
9.4.5
9.4.6
9.4.7
9.4.8

9.5
9.6
9.7
9.8
9.9

9.10

9.10.1
9.10.2
9.10.3

10

10.1
10.2

11

11.1

11.2
11.2.1
11.2.2

WTScript statements (in OnCreateScript/OnReceiveScript) 277
Emptystatements e e 278
Expressionasastatement oo 278
Statement blockasastatement 000, 279
Sequence control statements L. ool 279
ifbranch L e 279
whileloop L 281
do/whileloop e e 283
forloop e 284
forfinloop e 286
switch statement 288
break statement 290
continue statement 292
returnstatement e e e e 294
varstatement L e e e e e e e e e 295
functionstatement 297
Functionliteral e e e e 300
withstatement e e e e 301
Exceptionhandling 0 o e e e e 302
Errorobject L 302
Explicit exceptions L 304
Exception handling procedure L Lo 305
Classtemplates (*clt) i i i 309
WT_THIS - accessing the callingobject 310
Example: class templatesand WT_THIS 311
Master templates (wmt) e 313
Linestag o o i i i e e e e e e e e e e e e e e e s 315
Optionstag i i i i it e e e e e e 321
Options tag (standard syntax) 321
Options tag (extended syntax) e 323

WebTransactions Template Language

11.3
11.4
11.5
11.6
11.7
11.8
11.9
11.10
11.11
11.12
11.13
11.14
11.15

12

12.1
12.1.1
12.1.2
12.1.3
12.1.4
12.1.5
12.1.6
12.1.7
12.1.8
12.1.9
12.1.10
12.1.11

12.2

12.21
12.2.2
12.2.3
12.2.4

Remtag o i e e e e e e e e e e 327
OnReceiveCopiestag« 0t i it i e e e e e e e e 328
Generationinfotag 329
Formattag 0 i i i e e e e e e e 330
CommObjtag i i i e e e e e e e 330
NationalVarianttag i i i i it i e 330
GlobalSettingstag o e e e e e e 331
Sourcetag i i e e e e e e e e e e e e e s 331
ObjectNametag o i i i i e e e e e 331
PackageNametag @ i i i i i it i e 332
BinaryFiletag @ i i e e e e 332
ArchiveNametag 0 o o i i i e e e e e e 332
Methodinterfacetag o e 333
Server-side interfaces - Java integration and userexits 335
Java integration in WebTransactions 336
Installing the Java runtime environment 338
Activating Java support 338
Defining parameters for the Java Virtual Machine (JVM) 340
Creating Java objects in WTScript oL 341
Using Java objects in WTScript, 342
Accessingclasselements L Lo 343
Invoking Java methods in WTScript 344
Reading and modifying attributes oo 346
Creating and using Java arrays in WTScript 347
Using WTScript operators with Java objects 348
Example 349
Using C/C++userexits o i v i i i it e e e e e e 350
Files supplied for supporting C/C++ userexits 350
Defining C/C++userexits 351
Linking C/C++userexits e 351

Examples of C/C++ userexits 353

Contents

12.3
12.3.1
12.3.2
12.3.3
12.3.4
12.3.5
12.3.6
12.3.7
12.3.8
12.3.9
12.3.10
12.3.11
12.3.12
12.3.13
12.3.14
12.3.15
12.3.16
12.3.17
12.3.18
12.3.19

13

13.1
13.1.1
13.1.2

13.2

14

141
14.2
14.3

15

15.1
15.2

Ready-made C/C++ user exits supplied with WebTransactions 355
CheckLogin e 357
CheckProcess e 357
Creationtime e 358
Delfile e e e e 359
FreeBuffer e 359
FreeNamelnPool e 359
Getdate e 360
Getdir e 360
Getfile e e 360
GetlnstallDir e e e 361
Gettime L e 361
LockNamelnPool e 362
Modificationtime e 362
Putfile e 363
ReleaseStationName 363
ReplaceByConfigFile e 364
ReserveStationName 364
SendMail e 365
WTSIeep o e e e e 366
XMLconversion i i i i it ot et e e e e e e e e e e e e e 367
Importing and exporting XML documents 367
Structure of an imported XML object Lo o oo 368
Representation of XML elementso oL 369
Exporting data structures o o . 372
Examples 0 i e e e e e e e e e e e e e e e e s 375
Changingstyles i i i i e e e e 375
Polling the Exitbutton 376
Saving data with XML conversion o0 it i i i v i e 377
Shortreferenceguide. Lo e 379
WTMLtags . - . . & v v e o e 379
WTScript statements (alphabethicorder) 380

WebTransactions Template Language

Contents

GloSSary i i e e e e e e e e e e e e e e e e e s 381
Abbreviations e e e e e e e 399
Related publications e 401
Index e e e e e e e e e e e e e e e e e e 403

WebTransactions Template Language

1 Preface

Over the past years, more and more IT users have found themselves working in heteroge-
neous system and application environments, with mainframes standing next to Unix
systems and Windows systems and PCs operating alongside terminals. Different hardware,
operating systems, networks, databases and applications are operated in parallel. Highly
complex, powerful applications are found on mainframe systems, as well as on Unix servers
and Windows servers. Most of these have been developed with considerable investment
and generally represent central business processes which cannot be replaced by new
software without a certain amount of thought.

The ability to integrate existing heterogeneous applications in a uniform, transparent IT
concept is a key requirement for modern information technology. Flexibility, investment
protection, and openness to new technologies are thus of crucial importance.

1.1 Product characteristics

With WebTransactions, Fujitsu Technology Solutions offers a best-of-breed web integration
server which will make a wide range of business applications ready for use with browsers
and portals in the shortest possible time. WebTransactions enables rapid, cost-effective
access via standard PCs and mobile devices such as tablet PCs, PDAs (Personal Digital
Assistant) and mobile phones.

WebTransactions covers all the factors typically involved in web integration projects. These
factors range from the automatic preparation of legacy interfaces, the graphic preparation
and matching of workflows and right through to the comprehensive frontend integration of
multiple applications. WebTransactions provides a highly scaleable runtime environment
and an easy-to-use graphic development environment.

WebTransactions Template Language 15

Product characteristics Preface

On the first integration level, you can use WebTransactions to integrate and link the
following applications and content directly to the Web so that they can be easily accessed
by users in the internet and intranet:

Dialog applications in BS2000/0SD

MVS or z/OS applications

System-wide transaction applications based on openUTM
— Dynamic web content

Users access the host application in the internet or intranet using a web browser of their
choice.

Thanks to the use of state-of-the-art technology, WebTransactions provides a second
integration level which allows you to replace or extend the typically alphanumeric user inter-
faces of the existing host application with an attractive graphical user interface and also
permits functional extensions to the host application without the need for any intervention
on the host (dialog reengineering).

On a third integration level, you can use the uniform browser interface to link different host
applications together. For instance, you can link any number of previously heterogeneous
host applications (e.g. MVS or OSD applications) with each other or combine them with
dynamic Web contents. The source that originally provided the data is now invisible to the
user.

In addition, you can extend the performance range and functionality of the WebTransactions
application through dedicated clients. For this purpose, WebTransactions offers an open
protocol and special interfaces (APIs).

Host applications and dynamic Web content can be accessed not only via WebTransactions
but also by “conventional” terminals or clients. This allows for the step-by-step connection
of a host application to the Web, while taking account of the wishes and requirements of
different user groups.

16

WebTransactions Template Language

Preface

WebTransactions documentation

1.2 WebTransactions documentation

The WebTransactions documentation consists of the following documents:

e An introductory manual which applies to all supply units:

Concepts and Functions

This manual describes the key concepts behind WebTransactions:

The various possible uses of WebTransactions.

The concept behind WebTransactions and the meanings of the objects in
WebTransactions, their main characteristics and methods, their interaction and life
cycle.

The dynamic runtime of a WebTransactions application.
The administration of WebTransactions.

The WebLab development environment.

e A User Guide for each type of host adapter with special information about the type of
the partner application:

Connection to openUTM applications via UPIC

Connection to OSD applications

Connection to MVS applications

All the host adapter guides contain a comprehensive example session. The manuals
describe:

The installation of WebTransactions with each type of host adapter.
The setup and starting of a WebTransactions application.

The conversion templates for the dynamic conversion of formats on the web
browser interface.

The editing of templates.

The control of communications between WebTransactions and the host applications
via various system object attributes.

The handling of asynchronous messages and the print functions of
WebTransactions.

WebTransactions Template Language 17

WebTransactions documentation Preface

e A User Guide that applies to all the supply units and describes the possibilities of the

HTTP host adapter:

Access to Dynamic Web Contents

This manual describes:

— How you can use WebTransactions to access a HTTP server and use its resources.

— The integration of SOAP (Simple Object Access Protocol) protocols in
WebTransactions and the connection of web services via SOAP.

A User Guide valid for all the supply units which describes the open protocol, and the
interfaces for the client development for WebTransactions:

Client APIs for WebTransactions
This manual describes:
— The concept of the client-server interface in WebTransactions.

— The WT_RPC class and the WT_REMOTE interface. An object of the WT_RPC class repre-
sents a connection to a remote WebTransactions application which is run on the
server side via the WT_REMOTE interface.

— The Java package com.siemens.webta for communication with WebTransactions
supplied with the product.

A User Guide valid for all the supply units which describes the web frontend of
WebTransactions that provides access to the general web services:

Web-Frontend for Web Services
This manual describes:
— The concept of the web frontend for object-oriented backend systems.

— The generation of templates for the connection of general web services to
WebTransactions.

— The testing and further development of the web frontend for general web services.

18

WebTransactions Template Language

Preface

Structure and target group of this manual

1.3 Structure and target group of this manual

This manual is intended for anyone who wishes to design his/her own WebTransactions
applications. It describes all the WTML template language resources available, allowing you
to adapt the results of automatic conversion to meet your own needs when integrating host
applications in the web.

The manual is designed as a reference guide in which you can look up information quickly.
However, it also contains numerous examples which illustrate the presented language
resources.

You will find this manual easier to follow if you are already familiar with the basic principles
of the HTML markup language. Although knowledge of a high-level programming language
is also desirable, it is by no means essential.

The chapters in this manual can be subdivided into four blocks:

e Introduction
Chapter 2 starts by presenting a brief overview of the concepts on which the template
language is based.

e Reference
Chapters 3 through 12 contain a complete description of all the language resources.
Chapter 13 describes the basic concepts of XML conversion.

e Examples
Chapter 14 contains examples which illustrate the way the language resources interact.

e Overview and reference aids
The short reference list in chapter 15 is designed to give you an overview and help you
track down the required information quickly and easily.

WebTransactions Template Language 19

New features

Preface

1.4 New features

This section describes only those new features which relate to the template language. For
a general overview of new features and functions, refer to the WebTransactions manual

“Concepts and Functions”.

Type of new feature Description
Global functions:
— New function copyFile() page 83
— New function isRequestWaiting() page 102
— New function moveFile() page 106
— New parameter a1l in TistFolder() page 104
Built-in classes and methods:
— New method string.charCodeAt page 193
— New method string.fromCharCode page 195
— New method

WT_Filter.dataObjectToFormattedXML page 219
— Change for the output of the toString() method

on objects and arrays: better

serialization/deserialization
Exceptions:
New attributes striLine, strColumn and strText atthe | page 303
exception object
C/C++ user exits:
New argument SendMail page 365

20

WebTransactions Template Language

Preface

Notational conventions

1.5 Notational conventions

The following notational conventions are used in this documentation:

typewriter font

Fixed components which are input or output in precisely this
form, such as keywords, URLSs, file names

italic font Variable components which you must replace with real speci-
fications
bold font Iltems shown exactly as displayed on your screen or on the

graphical user interface; also used for menu items

[]

Optional specifications; do not enter the square brackets
themselves

{alternativel | alternative2 }

Alternative specifications. You must select one of the expres-
sions inside the braces. The individual expressions are
separated from one another by a vertical bar. Do not enter the
braces (curly brackets) and vertical bars themselves.

Optional repetition or multiple repetition of the preceding
components

i @

Important notes and further information

WebTransactions Template Language

21

Notational conventions

Preface

22

WebTransactions Template Language

2 Overview of the WTML template language

The WTML (WebTransactions Markup Language) template language allows you to apply
individual designs to your WebTransactions applications, not only to the visual design of the
user interface but also to the processing logic: you can use WTML in order to actively control
the dialog with the host application or to integrate multiple host applications within a single
web interface.

WebTransactions is therefore more than simply a link module which transfers messages
between the browser and the host application. The powerful resources of the template
language also permit genuine application integration: WebTransactions thus allows you to
redesign your IT infrastructure without having to modify your host applications.

To avoid misunderstandings:

You do not have to do any programming to use WebTransactions. Instead, you can use the
WebTransactions conversion tools to connect your host applications to the web without
having to program a single line. The conversion tools use default specifications to generate
a template from every component of the user interface (page/sheet). For more detailed
information on this subject, please refer to the manuals for the individual product variants.
You can use these standard templates unchanged or take them as a starting point for your
own individual adaptations.

2.1 WebLab - WebTransactions development environment

You can use any text editor to edit templates. However, the WebTransactions development
environment, WebLab, offers a particularly convenient way of processing templates. With
WebLab you can, for example, insert WTML language resources in a template by simply
clicking with the mouse, or define default operations via menus and dialog boxes.
WebLab also allows you to modify templates “on the fly” while your WebTransactions appli-
cation is running. The current objects are displayed graphically and can be modified directly.

For basic information on WebLab, please refer to the WebTransactions manual
“Concepts and Functions”. A detailed description is available in WebLab’s online
help function

i @

WebTransactions Template Language 23

Overview of language resources Overview of the WTML template language

2.2 Overview of language resources

The figure below presents the language resources which you can use when actively
designing your templates. The different colors are intended to indicate that HTML and
client-side JavaScript are not inflexible components of WTML: the HTML or JavaScript
resources which you use here do not depend on WebTransactions but on the employed
Web browser. This means that you can always implement the most recent HTML and
JavaScript features in your templates. For an example, you can use VBScript or JScript in
the Microsoft Internet Explorer. All the tools available for designing web pages are also
available for templates.

Although HTML tags and client-side JavaScript are described briefly below, they are not
described separately in this manual.

WTML
template language

HTML tags Client-side
Fixed text JavaScript

WTML tags WTScript

Standard HTML tags and text

In templates, you can use all the HTML tags and constant texts which the user’s browser
can interpret. These HTML areas of the template (HTML tag and text) are sent to the
browser unchanged.

24 WebTransactions Template Language

Overview of the WTML template language Overview of language resources

JavaScript (client-side)

You can use all HTML tags in your templates, i.e. including <SCRIPT> tags. This means that
you can make use of all the JavaScript language components which can be interpreted by
the browser used. Since scripts such as these, like the standard HTML tags, are not inter-
preted by WebTransactions but by the browser, this is sometimes referred to as client-side
JavaScript.

These client-side JavaScript scripts are sent unchanged to the browser in the same way as
HTML tags and fixed texts. As far as WebTransactions is concerned, they belong to the
HTML area.

WTML tags

WTML tags allow you to generate or modify HTML pages dynamically, and to control your
WebTransactions application. They are used, for example, to calculate values or transfer
information from the host application.

WTML tags are WebTransactions-specific functions “dressed up as HTML". In other words,
all the functions which WebTransactions provides for the processing of templates and data
or for the control of WebTransactions applications are present in the WTML tags. They have
the form: <wt...>. This means that the syntax of the templates is based on the HTML
standard. As a result, you can edit templates either with the WebTransactions editor,
WebLab, or with an HTML editor provided that this does not attempt to correct unknown
tags automatically. You can also view the template offline directly in the browser; in this
case, the WTML tags are simply ignored as “unknown” HTML tags.

Areas containing WTML tags are not sent to the browser. Thus, they do not form part of an
HTML area.

The WTML tags are described in detail in chapter “WTML tags” on page 261. For an
overview, refer to section “WTML tags” on page 379.

WebTransactions Template Language 25

Overview of language resources Overview of the WTML template language

WTScripts

WTScript scripts are similar to client-side JavaScript scripts in areas which start and end
with special tags. However, instead of HTML SCRIPT tags, you use the WTML tags
WTOnCreateScript and WTOnReceiveScript. This indicates that these scripts are to be
executed by WebTransactions rather than by the browser and also identifies the required
time of execution. OnCreate scripts are executed before the page is sent to the browser.
OnReceive scripts are not executed until the response has been received from the browser.

WTScript scripts allow you to use numerous JavaScript language resources (the state-
ments are listed in chapter “WTScript statements (in OnCreateScript/OnReceiveScript)” on
page 277) together with special WebTransactions classes and functions - e.g. for the
exchange of messages with host applications (see section “Host data object class” on
page 154 and section “WT_Communication class” on page 211).

Like WTML tag areas, WTScript areas are not sent to the browser and do not therefore form
part of the HTML area.

Evaluation operators

Evaluation operators allow you to analyze expressions, €.g. the values of objects and
attributes. When you do this, the evaluation operators are replaced by the current values,
i.e. they are used like variables.

You can use evaluation operators in text, in HTML tags, or in WTML tags. They have the
form: ## ... #. You can use any WTScript expression in an evaluation operator: thus you
can determine the value which is to be output directly in an evaluation operator in an
operation of any degree of complexity and - if you wish - also assign this value to a variable
which then makes the determined value globally available in the template.

Evaluation operators are described in section “Evaluation operator ##...#” on page 79 and
in the chapter “Class templates (*.clt)” on page 309.

26 WebTransactions Template Language

Overview of the WTML template language Example: template structure

2.3 Example: template structure

Here is a simple example which illustrates the structure of a template:

<htm1> 1)
<head>

<tit1e>TRAVEL Main Menue</title>

</head>

<body>

<wtinclude Name="header'> (2)
<form WebTransactions name="myForm"> 3)
<wtoncreatescript>

WT_HOST.0SD_0.receive(); (4)
<</wtoncreatescript>

Date: ##WT_Host.COMM1.DATE.Value#
 (5)

<input type="button"' name="SELBUTTON" value="Book" >

<input type="button" name="SELBUTTON" value="Inquire" >
<input type="button' name="SELBUTTON" value="Cancel" >
<input type="button"' name="SELBUTTON" value="Connect" >

<wtonreceijvescript> (6)

</wtonreceivescript> (8)
9
</form> (10)
</body>
</html>

(1) The example starts with an HTML area which is passed to the browser unchanged.

WebTransactions Template Language 27

Example: template structure Overview of the WTML template language

(2)

The first WTML tag is a wtinclude which includes the contents of the file header.htm
at this point. You can assign any file name, but it must have the suffix . htm. This file can
contain any text together with HTML and WTML code. For example, you may want to
store the definition of a form header in this type of include file to ensure that the
generated HTML pages have a uniform “look and feel” which can be easily modified at
a later point.

Next comes the WTML tag form WebTransactions. Internally, this is replaced by an
HTML FORM tag and a series of hidden fields. This tag marks the start of a form area
containing data which is to be sent back by the browser to the WebTransactions appli-
cation.

The next element is a wtoncreatescript script which WebTransactions executes
immediately when generating the HTML output. In this example, the receive function
is called at a communication object. This means that WebTransactions should read a
message from the host application at this point. The data received from the host appli-
cation is then immediately available in the form of host data objects which correspond
to the individual fields of the converted format.

In the following HTML area, an evaluation operator is used to directly access the Value
attribute of one of these host data objects. The evaluation operator ensures that the
ascertained value is integrated at the relevant position in the HTML area. A series of
buttons are also defined in this HTML area.

The next tag is another WTML tag: wtonreceivescript indicates that a WTScript area
follows. It also indicates that the following WTScript script is not to be executed immedi-
ately, but rather “onReceive”, i.e. after the HTML page has been generated and sent to
the browser and the response posted by the browser has been received.

Since WebTransactions “remembers” the steps defined in this WTScript script and does
not execute them until the response has been received from the browser, you can define
how the response is to be processed at this stage: the values returned for SELBUTTON
are evaluated and assigned to the corresponding host data object. The final action is to
send the host data objects to the host application.

The concluding WTML tag /wtonreceivescript indicates the end of the WTScript
script.

Here you could, for example, define further HTML tags in order to generate further
buttons or text boxes. In the browser display, these would immediately follow the buttons
generated in (5). The buttons defined here in (9) could then also be evaluated by the
WTScript script in (7) or in another onReceive script.

(10) The concluding WTML tag /form terminates the form area.

i @

For further information on the dynamic sequence of communications and on the tag
processing sequence, see the WebTransactions manual “Concepts and Functions”.

28

WebTransactions Template Language

3 Lexical elements

This chapter describes the lexical elements of the template language:

— Character set (page 29)

— White spaces (page 30)

— Separators (page 31)

— Line-end characters (page 31)
— Comments (page 31)

— Keywords (page 32)

— Literals (page 33)

— Name elements (page 42)

It is also necessary to consider the operators: although operators also belong to the basic
lexical elements, they are not described here but in chapter “Expressions and operators” on
page 63ff.

3.1 Character set

All the characters in 8-bit characters sets (e.g. ISO character sets such as 1ISO-8859-1 or
Windows character sets such as Windows-1250) are permitted in WebTransactions
templates

These character sets contain 256 characters. Of these, the first 128 are identical with the
classical 7-bit-ASCIlI-character set. The second 128 characters contain all the special
characters and letters used in certain languages, e.g. "6", "B" or "a".

WebTransactions Template Language 29

White space characters Lexical elements

3.2 White space characters

The term white space characters covers all the characters which have no significance for
WebTransactions and are ignored during the sequential processing of the template. The
sole function of white spaces is to make the coding of the template easier to follow for
human readers. The space, tab, new line, and form feed characters often act as white
spaces.

Whether or not WebTransactions ignores a character as a white space depends on the
context: for example, spaces used to indent a statement in an OnCreate or OnReceive script
are white spaces and are therefore ignored. In contrast, a white space which separates a
keyword from a name element within such a statement is not a white space but instead
functions as a separator.

Example

function myfunction(paraml,param2) {
var x = 99999;
vary 99999;

}

Explanation

In the first allocation, the keyword var is used to define the local variable x. In the second
allocation, a global variable with the name vary is defined. The space between var and x
is therefore meaningful, and is consequently not a white space. The same applies to the
space between function and myfunction. All the other characters are white spaces: they
are used enhance the visual appearance and are ignored by WebTransactions.

However, the foregoing is only true if the function is defined within an OnCreate or OnReceive
script. If it appears within a client-side script (between the HTML tags <SCRIPT> and
</SCRIPT>), then it is part of an HTML literal: all the characters within an HTML literal are
sent unchanged to the browser. In this case, there are therefore no white spaces.

30 WebTransactions Template Language

Lexical elements Separators

3.3

3.4

3.5

Separators

The following separators are used:

“meaningful” spacer characters
(spaces, tabs, new lines, form feeds)

0 for bracketing text expressions.
{} for forming blocks.

for separating parameters in function definitions and function calls.
Please note that in other contexts the comma functions as an operator (see section
“Comma operator (,)” on page 74).

; to terminate statements.

Line-end characters

Lines are considered to be terminated by the characters CR (carriage return), LF (line feed),
or the sequence CR LF (where CR LF represents only one end-of-line). As a result, templates
created on Unix systems or under Windows can be processed in the same way.

Line-end characters inside OnCreate or OnReceive scripts are white spaces or separators.
WebTransactions recognizes the end of a statement by the presence of the separator “;”

which is mandatory as the end-of-statement character in server-side scripts (in client-side
scripts, the concluding semicolon can be omitted if the statement is located in a line of its

own).

Comments

Comments in HTML areas are identified by wtRem tags (see section “Rem - inserting
comments” on page 264).

You can also use wtRem tags for comments in WTML tags and script areas in the same way
as in HTML areas. In addition, it is possible to use multi-line and one-line comments in
JavaScript format. Comments in this format cannot be nested:

// Comment (One-line comment)
/* Comment*/ (one or multi-line comment)

WebTransactions Template Language 31

Keywords Lexical elements
3.6 Keywords

The following keywords can be used within WTML tags, and are not case-sensitive.

action toAttribute wtEndIf

case toObject wtExit

default type wtlf

fromAttribute upper wtinclude

fromObject value wtOnCreate

function wtArgument wtOnCreateScript

Tower wtDataForm wtOnReceive

name wtDo wtOnReceiveScript

onSubmit wtDoWhiTle wtUntil

scope wtElse

The following keywords can be used within OnCreate and OnReceive script areas. These

keywords are case-sensitive.

break function try

catch if typeofvar

continue in void

delete instanceof while

do new with

else prototype WT_THIS

finally return

for this

i Keywords cannot be used as hame elements.
Although many other expressions, such as true and false, initially appear to be
keywords, they are technically speaking specific values. However, these values are
also impermissible as name elements.
32 WebTransactions Template Language

Lexical elements Literals

3.7 Literals

Literals are used to specify constants directly in templates (“literal” specification of a value).

There are literals for HTML areas, natural numbers, floating-point values, strings, logical
values, the null object, and regular expressions.

3.7.1 Text literals

Each HTML area consists of a text literal which is passed unchanged to the browser. Text
literals may contain any number of HTML tags, fixed texts for output, and client-side
JavaScript code.

The characters present in HTML literals are passed unchanged to the browser. The only
exception is a backslash at line end which cancels the end-of-line: \1ine-end is replaced
by nothing. If in the HTML page you want to output a backslash at line-end or characters
which normally terminate the HTML area, use either the following HTML escape sequences
or octal or hexadecimal input:

Character for display in HTML in client-side Javascript
(within a string)

\ at line-end \end-of-line \134 or \x5C

#i# ## \43\43 or \x23\x23

< < or < \74 or \x3C

Example

<p> The evaluation operator has the following form: ##...# </p>

Output in the browser:
The evaluation operator has the following form: ##...#

WebTransactions Template Language 33

Literals Lexical elements

3.7.2 Natural numbers

Literals for natural numbers (integer values) can be entered in decimal, octal, or
hexadecimal notation. The prefix 0 indicates octal notation; 0x or 0X indicates hexadecimal

notation:

Type of literal Format Max. value
Octal literals 0 octalDigit ... 037777777777
Decimal literals 0 | { digitl U digit ... 1} 4294967295
Hexadecimal literals [0 {x | X} hexDigit .. OxFfffffff

octalDigit ~ one of the characters 0-7.
digitl one of the characters 1-9.
digit one of the characters 0-9.

hexDigit one of the characters 0-9,A-F, a—f.

3.7.3 Floating-point values

Literals for floating-point values can be specified as sequences of digits with positions
before or after the decimal point. Exponential notation is also possible.

A literal for a floating-point value must have the following form:

{digit[digit..] [{e|E}[+|-1digit.. 1} |
{ Udigit ..1.digit ... [{e|E}(+]|-1digit.. 1} |
{digit ... {e|E}[+|-1digit... }

where digit is one of the characters 0-9.

The number range and the accuracy of the conversion of the literals into the internal repre-
sentation is machine-dependent.

Examples

3.1415
31415.e—4
.031415E2
31415E-4

34 WebTransactions Template Language

Lexical elements Literals

3.7.4 Strings (string literals)

String literals are enclosed by single (') or double (") quotes. The same type of quote must
be used to open and close the literal. If the type of quote used to open and close the literal
occurs within the string, then it must be preceded by a backslash to deactivate its quote
function.

String literals have the following format:

{"Cl{charl | \"}1 .. "} | {'C{char2 | \'}1 .. '}

where charl is a character other than " and char2 is a character other than '.

Escape sequences in strings

The backslash (\) is used to initiate an escape sequence which is interpreted as an alter-
native meaning of a specific character. The table below lists the possible escape

sequences:
Escape sequence Conversion
\b Backspace BS
\t Horizontal tab HT
\n Line feed LF
\f Form feed FF
\r Carriage return CR
\" Double quote "
\! Single quote'
\1Tine-end Nothing
\\ Backslash \
\octalDigit... Character corresponding to octal value
\xhexDigit... Character corresponding to hexadecimal value
\char For any other character: char
Example

document.write("the words \n\"apple\"");
document.write(' and "pear"');

Output:

the words
"apple" and "pear"

WebTransactions Template Language 35

Literals

Lexical elements

3.7.5

3.7.6

3.7.7

Logical values

The possible logical (Boolean) literals are true and false.

Literal for an array object

Arrays can be specified as literals with the following format in assignments or function call
arguments:

Lelementl, element2, ...]

Examples

x=[1,2,3]; // X is now an array with three elements 1, 2, and 3

c = f([1,2]1); // f is called with an array containing the elements
// 1 and 2

Literal for an object

Objects can be specified as literals with the following format in assignments or function call
arguments:

{attributel : valuel , attribute2: value2, ... }

Examples

x={y:1, z:23}; // x is now an object with the attributes y and z,
// which are set to the values 1 and 23 respectively
c = f({Name: "Inge Neumann"', Division: "Development"});
// f is called with a single argument, namely the
// object with the attributes Name and Division

36

WebTransactions Template Language

Lexical elements Literals

3.7.8 Literal for the null object

The literal nu11 refers to the nu11 object. The nul1 object is a special object which refer-
ences “no object”. Certain methods, e.g. the string method match, return the nu11 object if
the search pattern is not found. Other methods return the nu11 object if errors occur, e.g.
the communication object methods send and receive.

You can also use the nu11 literal in queries in order to check whether or not a particular
object exists.

Example

<wtOnCreateScript>
<!—
host = WT_HOSTLWT_SYSTEM.HANDLE];
if (host.WT_SYSTEM != null)
host_system = host.WT_SYSTEM;
else
host_system = WT_SYSTEM;
//=—>
</wtOnCreateScript>

The i f statement in this script queries whether there is a connection-specific system object.
The query if(host.WT_SYSTEM) would have the same meaning. However, the use of the
null literal makes the meaning of the if statement easier to identify for human readers.

WebTransactions Template Language 37

Literals

Lexical elements

3.7.9 Literals for regular expressions

Literals for regular expressions are enclosed in slashes (/). Any slashes or backslashes
which occur within the slashes must be deactivated by a preceding backslash. Literals for
regular expressions must not start with an asterisk and must not be empty, as otherwise
they are interpreted as the start of a comment.

Between the slashes you can enter any regular expression as described in the table below.
The terminating slash may be followed by an i and/or g, meaning ignore
uppercase/lowercase or global search respectively.

Example

/pattern/ig

Regular expressions are structured as in JavaScript or Perl. The table below summarizes
the scope and meaning of the metacharacters for these regular expressions.

. If you wish to process regular expressions as string literals, you must deactivate the
1 following metacharacters individually using a backslash:

Example

str = "Amsterdam| Brussels|Chemnitz|Dortmund";
document.write(str.split("\\\|"));

Output in the browser:

[Amsterdam,Brussels,Chemnitz,Dortmund]

Meta- Meaning
character
\ Deactivates the following metacharacter:

For example, the character * is a metacharacter which means zero or more repeti-
tions of the preceding character (e.g. /a*/ means no a, a single a, or a sequence
consisting of multiple a’s).

To search for the character * itself, you must precede it with a backslash

(e.g. /b*a/ corresponds to the string b*a).

Please note that many metacharacters already possess the backslash as one of their
components, e.g. \n for line feed. If you do not want to search for a line feed but
instead for the character sequence \n, you must precede the sequence with a
backslash: \\n

38

WebTransactions Template Language

Lexical elements

Literals

Meta-
character

Meaning

~

Start of the searched through string or start of the line.
The regular expression/~a/ corresponds to the a in the string "another b", but not
to the a in the string "Another a".

End of the searched through string or start of the line

For example, the regular expression /d$/ corresponds to the d in "head", but not to
the d in "header".

Any character apart from a line feed.

/. T/, for example, only corresponds to the CT in "WEB\nTRANSACTIONS",
but not to \nT.

Lchars]

One of the characters in chars. You can use a hyphen to specify a character range.

/Labcdefgl/ means the same as /[a—g]/ and corresponds to the g in
"spring".

["“chars]

None of the characters in chars. You can use a hyphen to specify a character range.
This type of regular expression corresponds to all the characters which are not
specified.

/[~abcdefgl/ thus means the same as /["a—gl/ and corresponds to all the
characters in "spring" with the exception of the g.
/[~1-51/ matches x and 6 in "x246".

Separation of multiple alternatives.

/Dampf|Diesel/ thus matches Dampf in "Dampfschiff" andDiesel in"Diesel-
schiff".

()

For grouping search pattern components and storing the corresponding sections of
the target: you can access the components of the target which match the bracketed
search pattern components via the components of the result array or via the $1,...$9
attributes of the predefined object RegExp.

For example, in the string "Dampfschifffahrtsgesellschaft",

/(Dampf) ((schiff)(fahrt))/ matches Dampfschifffahrt.

The components of the target which correspond to the four bracketed partial expres-
sions are then stored in the attributes of the RegExp object:

$1: Dampf

$2: schifffahrt

$3: schiff

$4: fahrt

WebTransactions Template Language 39

Literals

Lexical elements

Meta- Meaning

character

\n Is a reference to the n-th bracketed search pattern component, where r is a positive
integer.

In /(Dampf)((schiff)(fahrt)).*\3/ forexample \3 stands for the 3rd search
pattern component (schiff). Thus in the string

"Dampfschifffahrt oder Dieselschiffahrt" the search pattern corresponds
to "Dampfschifffahrt oder Dieselschiff".

* Preceding expression any number of times (not at all, once, or multiple times).
/ba*/ thus correspondsto ba in "bang!", baaaa in "baaaang!", aswellas b
in "bong!".

+ Preceding expression at least once (once or multiple times).

/ba+/ thus correspondsto ba in "bang!" and baaaa in "baaaang!"
butnottothe b in "bong!".

? Preceding expression not at all or once.

/ba?/ thus corresponds to ba in "bang!",to ba in "baaaag!"
andto b in "bong!".

{n} Preceding expression n times (where n is a positive whole number).

/ba{3}/ thus corresponds to baaa in "baaaaag!" but has no match in either
"bang!" or "bong!".

{n,} Preceding expression at least n times (where n is a positive whole number).
/bai{3,}/ thus correspondsto baaaaa in "baaaaag!" but has no match in
"baang!".

{n,m} Preceding expression n to m times (where n and m are positive whole numbers).
/ba{2,3}/ thus corresponds to baaa in "baaaaag!" andto baa in "baang",
but has no match in "bang!".

\t Tabulator.

\n New line.

\r Carriage return.

\f Form feed.

\Vv Vertical tab.

\octalDigit... | Octal number (where octalDigit is a digit between 0 and 7).

This specification allows you to embed octal escape sequences for ASCII characters
in regular literals.

40

WebTransactions Template Language

Lexical elements

Literals

Meta-
character

Meaning

\xhexDigit...

Hexadecimal number (where hexDigit is one of the characters 0-9,A-F, or a—f).
This specification allows you to embed hexadecimal escape sequences for ASCII
characters in regular literals.

\CcA

Where A specifies a control character to be searched for.

\cJ\ thus corresponds to a line feed and \cM\ to a carriage return.

\b

Word boundary.

Thus in the string "WebTransactions", /.ns\b/ corresponds to ons
but not to ans.

\B

No word boundary.

Thus in the string "WebTransactions", /.ns\B/ correspondsto ans
but not to ons.

\w

One of the characters a-z A-Z 0-9 or underscore(_).
\w thus means the same as [A-Za—-z0-9_1.

In"Ix my_Array 77", /\w+/ correspondsto x, my_Array,and 77.

\W

None of the characters a-z A-Z 0-9 or underscore(_).
\W thus means the same as [“A-Za-z0-9_1.

In"!x my_Array 77", /\W+/ correspondsto ! and to the two spaces (before
myArray and before 77).

\s

Single white space character (blank, horizontal/vertical tab, carriage return, form or
line feed).
\'s thus means the same as [\t\v\r\n\fl.

In "tool bar", /\s\w+/ correspondsto " bar".

\S

Any character apart from a white space character.
\S thus means the same as [~ \t\v\r\n\fl.

In "tool bar", /\S\w+/ correspondsto "tool" andto "bar".

\d

A digit (one of the characters 0-9).
\d means the same as [0-91.

In "57a", /\d/ therefore correspondsto 5 and 7.

\D

Not a digit (none of the characters 0-9).
\D means the same as ["0-91.

In "57a", /\D/ therefore corresponds to a.

WebTransactions Template Language 41

Name elements Lexical elements

3.8 Name elements

Name elements are basic elements which are used to form names.

In the case of simple names, a name element corresponds to a name (e.g. “x” in x=9). In
the case of qualified names, the name consists of multiple name elements including either
the point operator (e.g. myarray.length) or the index operator (e.g. myarray[31],
myarray["Tength"1). Since such qualified names are not basic lexical elements but rather
combinations of these elements, they are not discussed in this chapter but in section “Name
structure” on page 53.

Structure of name elements

The following characters are permitted in name elements:
A-7Z,a-z (uppercase and lowercase)

0-9 (digits)

_ (underscore)

$ (dollar character)

The first character of a name element must not be a digit and the name element must not
be the same as any keyword. Name elements may be of any length.

Uppercase/lowercase

Name element names are usually case-sensitive. The name elements for the predefined
objects WT_SYSTEM, WT_HOST and WT_POSTED represent an exception and can be specified in
uppercase or lowercase.

ResultArray and resultarray therefore designate different variables whereas Wt_System,
wt_system, and WT_SYSTEM refer to one and the same object.
Examples

Permissible name elements: ResultArray, my_array, $inputl, _hits

42

WebTransactions Template Language

4 Data types, variables, and names

Variables are named storage areas in which you can store data which you require in your
template. The contents stored in a variable are known as its “value”.

Alongside its value, every variable is of a certain type. The template language type concept
corresponds to that of JavaScript (see section “Data types” on page 44).

Just as in JavaScript, the template language offers you far more freedom than many other
programming languages in the way you handle variables:

You do not have to declare variables separately.

The template language uses “loose typing”: even when you explicitly declare a variable
using a var statement, you do not specify its type. The variable’s type is determined
dynamically by the type of value assigned to it.

Thus you can change both the value and type of a variable at any time:

a=10; // typeof a is number
a="10"; // typeof a is string

You do not need to use different variable types in the case of natural numbers (integers)
and floating-point values. The number type is suitable for both kinds of value.

Data types are converted automatically if required at runtime (see section “Type
conversion” on page 47). For example, the contents of numeric variables can be
integrated into output strings without any explicit conversion (see also examples on
page 72):

a=4+2;
document.write("The result is: " + a);

WebTransactions Template Language 43

Data types Data types, variables, and names

4.1 Data types

Like every literal or constant value, each variable possesses a certain data type. The
template language type concept corresponds to that used in JavaScript.

The following data types exist: undefined, number, boolean, string, object, and function.
These are presented in sections “number” on page 45 through “function” on page 46.
Section “Stringlike data types” on page 47 explains the term “stringlike”, while section “Type
conversion” on page 47 describes the rules which WebTransactions uses to perform
automatic type conversion.

Simple data types and reference data types

The data types number, boolean, and undefined are frequently referred to as simple data
types, whereas the data types string, object, and function are all known as reference
data types. The reason for this is as follows:

In the case of simple data types, the value of the variable is “simply” stored at the storage
location which is symbolically designated by the variable name: for example, if you define
five variables with the value 1000, then this value is stored at five different locations.

In the case of a variable with a reference data type, however, the internal value is the
address of the value itself or - in other words - a reference: if, for example, you define five
different names for a function, the function is nevertheless stored only once in memory. You
can then “reference” this function with each of the five names.

Example: The different data types

document.writeln (typeof a); // Output: undefined (not yet allocated)

a=4.118;
document.writeln (typeof a); // Output: number

a="Peter";
document.writeln (typeof a); // Output: string

a=false;
document.writeln (typeof a); // Output: boolean

a=new Array();
document.writeln (typeof a); // Output: object

function myfunction() { // Function definition
return 10 }

a=myfunction;

document.writeln (typeof a); // Output: function

document.writeln (a()); // Output: 10 (Calls the function under
// the new name a)

44 WebTransactions Template Language

Data types, variables, and names Data types

411

41.2

41.3

number

The number data type covers both natural numbers and floating-point values. As in
JavaScript, the arithmetic processing of floating-point values is based on the
IEEE 754-1985 standard (IEEE, New York).

The values which can be displayed at the computer lie in the range
4.94065645841247e-324 and 1.79769313486232e+308.

There are also certain special numbers:

NaN (not a number)
This value is returned as the result of undefined arithmetic operations, for example
if you attempt to multiply two strings such as “Peter” and “Mary”.
NaN is not part of the linear numberline: the comparison operators ==, <, <=, >,
and >= return false if one or both of the operands is NaN; != returns true if one or
both of the operands is NaN.

—-Infinity (minus infinity)
This value is returned when a number is lower than the smallest negative number
which can be represented.

Infinity (plus infinity)
This value is returned when a number is greater than the largest number which can
be represented.

boolean

The booTlean data type can assume either of the two logical values true and false.
You can apply the Boolean operators to operands of type boolean (see section “Boolean
operators (&&, Il,)" on page 70).

undefined

Any variable to which no value has as yet been assigned has the type undefined and the
value undefined.

WebTransactions Template Language 45

Data types

Data types, variables, and names

41.4

41.5

4.1.6

string

A string is a sequence of ASCII characters. Every string has a predefined length attribute
(string . Tength) which specifies the number of characters. There are a number of
predefined methods for objects of the String class (see section “String class” on page 191)
which, after conversion, also apply to the type string.

You can use the + operator to link operands of type string (see section “String concate-
nation operator (+)” on page 72).

object

A variable of type object is a container for named attributes. It is therefore an associative
array. The value of an object of this type is the reference to such a container or the nu11
reference. For example, if you assign an object to a variable, you subsequently have a new
name for this object and not two distinct objects.

The attributes can be of any type. You can use any name element or integer for their names;
in the latter case, the attribute may also be known as an index (see section “Name structure”
on page 53).

There is also a special object known as the nu11 object:

The nu11 object references “no object”. Certain methods, for example the string method
match, return the nu11 object if the search pattern is not found. Other methods return the
null object if an error occurs, e.g. the communication object methods send and receive.

You use the new operator to create objects and the delete operator to delete them (see
page 75).

function
A function is defined by means of a function statement or as an object of the Function

class (see page 297). This definition creates a function object with the name of the defined
function.

46

WebTransactions Template Language

Data types, variables, and names

Data types

4.1.7

4.1.8

Stringlike data types

In certain operations, for example string operations, the level of similarity of a data type to
a string is important. The data types string and function, as well as all objects of classes
whose value0f method returns a string, are said to be “stringlike” (currently such objects
belong either to the String class or to a user-defined class).

For more information on the term “stringlike”, refer to the section “Example: Arithmetical
addition compared to string concatenation” on page 72.

Type conversion

As already mentioned at the start of this chapter, you have a certain amount of freedom in
the way you handle data types. If the data type of an expression is inappropriate in a certain
application context, WebTransactions converts the expression to the appropriate data type
wherever this is possible. For example, if you try to multiply two strings, these strings are
converted to the data type number. If the strings are numerical then multiplication is
performed as normal. If they are non-numerical, the multiplication returns the result NaN
(Not a Number) thus indicating an illegal numerical operation.

The table below presents the rules used by WebTransactions for type conversion:

Initial data Target data type

type function object number boolean string

undefined | Error null “NaN" false "undefined"

function - Error Error true Header'

object

(not null) Error - valueOf/ valueOf/ toString/

"NaN" true valueOf

(null) Error - 0 false "null"

number

(zero) Error Number - false "0"

(nonzero) Error Number - true Numerical
string

(NaN) Error Number - false "NaN"

(Infinity) Error Number - true "+Infinity"

(-Infinity) Error Number - true "-Infinity"

boolean

(false) Error Boolean 0 - "false"

(true) Error Boolean 1 - "true"

WebTransactions Template Language

47

Data types Data types, variables, and names

Initial data Target data type

type function object number boolean string

string

(empty) Error String 0 false -

(non-empty) | Error String Numerical true -
value / "NaN"

User- In the case of user-defined classes, the data type is determined by the base class.

defined You should therefore refer to the appropriate table entry.

1 Only the header of the function is converted and not - unlike JavaScript - the entire program text.

Notes on table

The individual cells in the table specify the result supplied by WebTransactions when
attempting to convert the initial data types entered in the left-hand column into the data
types specified in the top row. Where a cell contains two possibilities - separated by a
slash - WebTransactions first attempts the first possibility and - if this fails - then attempts
the second.

This results in the following:

undefined, function, object, number boolean, string
Variable or values of the corresponding data type

Number, Boolean, String

Variable or values of the object type of the corresponding class
toString

Result of the toString method

valueOf
Result of the valueOf method if this returns a result of the target data type

48 WebTransactions Template Language

Data types, variables, and names Local and global variables

4.2 Local and global variables

All variables declared outside a function are global, irrespective of whether the keyword var
is used. A variable declared within a function is only local if you declare it using the keyword
var. Otherwise it is automatically global.

A global variable is valid everywhere in the WTScript code.

A local variable is valid within the whole of the function in which it is declared, regardless of
where in the function it has been defined.

If you declare a variable in a function using var and already have a global variable (or in the
case of nested functions, a local variable in the outer function) with the same name, the lo-
cal variable is used within the function, thus the local variable takes priority over the global
one. Outside the function, the global variable is addressed.

Example 1

<wtoncreatescript>

<!—

var scope = "global"; // Global variable

function test_scope()

{

var scope = "local"; // Homonymous local variable
document.write("Scope=" + scope + "
"); // Local variable is used

}

test_scope(); // Qutputs "Scope=local"
/===

</wtoncreatescript>

If the context in which a function is used is not fully known, it is recommended that you al-
ways use the keyword var. You can thus ensure that global variables are not overridden.
The example below shows what happens when you do not use the var keyword.

Example 2

<wtoncreatescript>
<!l—
scope = "global"; // Global variable
function test_scope()
{
scope = "local"; // Global variable is
// overwritten !!!
document.write("Scope=" + scope + "
");// Global variable is used
newScope = "local"; // Declares another
// global variable

WebTransactions Template Language 49

Local and global variables Data types, variables, and names

test_scope() ; // Outputs "Scope=local"
document.write("Scope=" + scope + "
"); // Outputs "Scope=local"
document.write("Scope=" + newScope + "
"); // Outputs "Scope=local"

//==>
</wtoncreatescript>

You can nest function calls. Since each function has its own local scope, it is possible to
have a number of nested scopes. If the called function is defined within the calling function,
the called function has access to the global and local variables (and arguments) of the call-
ing function. If the functions are defined independently of each other, the local variables of
the calling function are hidden from the called function.

Example 3

<wtoncreatescript>
<l—
scope = "global"; // Global variable
function test_scope()
{
var scope = "local"; // Homonymous local
// variable
function nested()
{
var scope="nested"; // Local in nested
// function
document.write("Scope=" + scope + "
"); // Outputs "Scope=nested"
}
nested();
document.write("Scope=" + scope + "
"); // Outputs "Scope=local"

}
test_scope();
document.write("Scope=" + scope + "
"); // Outputs "Scope=global"

/==
</wtoncreatescript>

50 WebTransactions Template Language

Data types, variables, and names Lifetime of variables

4.3 Lifetime of variables

In WebTransactions, as in JavaScript, there are four rules for the lifetime of variables:

Global variables:

Global variables created by means of WTML tag actions or in the template’s script areas
survive from their creation until the last OnReceiveScript script of the template has
been processed, or until they are explicitly deleted by means of the delete operator.

Object attributes:
Attributes survive for as long as the object to which they belong or until they are explicitly
deleted.

Current parameters:
The current parameters of a function call survive from the moment the function is called
until the function ends or until they are explicitly deleted.

Local variables of a function:

All variables defined within a function using the keyword var are local variables of this
function. They survive from the moment they are created until the function ends, or until
they are explicitly deleted.

Lifetime of predefined objects

With WebTransactions, you can not only define your own variables; there are also a number
of predefined objects to which special rules apply:

e System object:

WebTransactions creates the system object as a global object of type object with the

name WT_SYSTEM. This system object survives for the entire duration of the session. It

possesses a number of attributes which are of importance for the control of WebTrans-
actions.

Posted object:

WebTransactions creates the posted object as a global object of type object with the
name WT_POSTED. This posted object survives for the entire duration of the session. Its
attributes are given by the data most recently sent by the browser.

Host root object:
The predefined object WT_HOST is a container for all the communication objects. It
survives for the entire duration of the session.

Communication objects:

A communication object is created as an attribute of WT_HOST by the constructor call
WT_Communication. This communication object survives for the entire duration of the
session.

WebTransactions Template Language 51

Lifetime of variables

Data types, variables, and names

Communication objects can therefore survive for multiple dialog steps. They allow you
to handle parallel connections, and thus to integrate multiple host applications within a
single WebTransactions application.

e Host data objects:

Host data objects represent the sections (e.qg. fields) of the actual message body which
WebTransactions exchanges with the host. They are created by the method receive.
When new host data objects are created, older objects are destroyed.

i @

Overview: name spaces for variables

For detailed information on these predefined objects, please refer to the
WebTransactions manual “Concepts and Functions”.

The figure below illustrates the name spaces. The predefined objects are located together
with the global variables created in the script in a global variable space. There is a local
variable space for each function currently called. This space contains the local user
variables declared using the keyword var, together with the current parameters for the

function.

Global variables

Local variables
of the individual
functions

variables

ot:oT’

000

variables

var user "

Z
I Z

52

WebTransactions Template Language

Data types, variables, and names Initialization

4.4

4.5

Initialization

In WebTransactions, every variable has a value. Certain system object attributes are
initialized by WebTransactions at start time. Communication and host data objects are
initialized by the communication modules. You can assign a value to initialize any variables
which you have created yourself. Any variable to which no value has been assigned has the
type undefined and the value undefined. A parameter in a function call is assigned the
current value from the function call. If the call contains no corresponding argument, then the
current parameter has the type and value undefined.

Name structure

Names designate variables and their substructures as well as functions. There are both
simple and compound names. A simple name consists of a single name element. A
compound name consists of a sequence of name elements separated by point operators or
index operators.

Point operator

Since name elements must not start with a digit, no index specifications are possible after
the point operator.

name element.name element

Examples

myarray.length
WT_HOST.KOMM1 .Command.Value

Index operator

The index operator [1 makes it possible to access all an object’s attributes.

name element[expression]

If the square brackets contain an expression which returns a whole number, then a
reference to the corresponding index is issued:

name elementl index]

If the square brackets contain an expression which returns a string, then a reference to the
corresponding attribute is issued:

WebTransactions Template Language 53

Name structure Data types, variables, and names

4.5.1

name elementl["name element2"] and name elementl . name element2 therefore have the
same meaning.

Example
for (i=0 ; i < myarray["length"l ; i++) document.writeln(myarraylil);

This for loop outputs all the elements of the array myarray.

Fully qualified specifications

In the case of fully qualified specifications, all the components of the name are specified. A
fully qualified name specification provides a unique identification of the designated object
independently of the context. Similarly to fully qualified file names in a hierarchical directory
structure, each element is identified by a “path specification” which starts at the “root”.

Example

You could think of a name element as a signpost which points to the designated element.
You then obtain the fully qualified name of the element by joining together all the signposts
along the path taken to reach the object by means of point or index operators.

y
@ Pf\o
d t@ct
o eq
o> @ % @
s B> () [(8) [t > (w)
point
% ©
S :
D
p

54

WebTransactions Template Language

Data types, variables, and names Name structure

The figure above results in, for example, the following fully qualified names:

Fora: WT_HOST Ford: WT_HOST.C1.Command.Value
WT_HOST.C1C"Command"JI["Value"]

Forb: WT_HOST.Cl WT_HOST.C1.formats[0J.Value

WT_HOSTL"C1"]

Forc: WT_HOST.C1.Command
WT_HOST.C1L["Command"]
WT_HOST.C1.formats[0]

Forg: WT_HOST.Cl.formats[11.Protected
WT_HOST.CI1C"formats"JL1J1["Protected"]

4.5.2 Relative specifications

Instead of fully qualified names, you can also specify incomplete names.

In this case, the path is not specified all the way from the root, but from a different starting
point. The specification therefore designates the object relative to this starting point.

For example, in the case presented on the previous page, Command.Value designates
object d relative to b.
Relative to ¢, value is a name for d; relative to 1, itis a name for f.

WebTransactions Template Language 55

Name structure Data types, variables, and names

453

Assigning names to objects

WebTransactions obeys the following rules when assigning an object to the specified name:

1. If the name is located in a with statement (see section “with statement” on page 301),
then a check is performed from the inside outwards for each surrounding with
statement to determine whether the name designates an existing object relative to the
object in question. If this is the case, the search is concluded successfully.

2. Ifthe name is located in a function, then a check is performed to determine whether the
name designates an object relative to the function object (local variable or parameter of
the function). If this is the case, the search is concluded successfully.

3. If steps 1 and 2 fail to yield a positive result, the name is interpreted as a fully qualified
name and a check is performed to determine whether a corresponding global object
exists. If this is the case, the search is concluded successfully.

4. Finally, a check is performed to determine whether the name designates an object
relative to the predefined communication object WT_HOST . handle (where handle repre-
sents the contents of the HANDLE attribute of the global system object). If this is the case,
the search is concluded successfully.

If, after the application of these rules, no object is found, the name is invalid:
— On aread access, the value undefined is returned.

— On a write access then, in the case of single-part names (such as x or result), an
object of this name is implicitly defined.

In the case of multi-part names (such as result.value), an initial check is performed
to determine whether the name, when reduced to its final component, designates an
object of type object. If this is the case, then - in the same way as for single-part names
- a new object is generated. Otherwise an error is reported.

Example
document.writeln("type of x: " + typeof(x)); //Qutput: undefined
x.colour = "red"; //Error because x is not defined as an object

x=new Object("car");
x.colour="red";
document.writeln("now there's a car and its colour is " + x.colour);

56

WebTransactions Template Language

Data types, variables, and names User-defined classes

4.6 User-defined classes

Special language components are provided which enable you to create your own classes
so that you can define similar objects in WebTransactions. These can be used to define new
classes, attributes, and methods.

The procedure for defining your own classes consists of two steps:
1. Describing the class and its attributes

2. Defining the methods

Describing the class and its attributes

In order to define a new class, you must first define the constructor for objects of this class
in the form of a script function. For example:

// Constructor for class "Employee":
function Employee() {
// Definition of class attributes:

this.name ="";
this.division = "development";
this.machine = "computer";

this.worktime 35;

}

This defines a constructor for objects of the user-defined class Employee. The name of the
constructor is also the class name. The keyword this is used to define the class attributes
and set the default values (in this case, name, division, machine, and worktime).

You can now generate objects for this class, in which all attributes are initially set to the
default values defined in the constructor. These default values can be overwritten if desired:

// An object of the class Employee returns with the attributes
// name = "Manuella Mueller", division = "development",

// machine = "computer" and worktime = 30

angest = new Employee();

angest.name = "Manuella Mueller";

angest.worktime = 30;

You can also define additional attributes for individual instances of the new class at any time
should this prove necessary for the WebTransactions application. Please note, however,
that such attributes apply only to that particular instance.

angest.homework = true;

WebTransactions Template Language 57

User-defined classes Data types, variables, and names

Defining the methods

In order to define a method for a user-defined class, you must first define a script function
for this method and then create a reference to this function in the class constructor:

// Method for Employee:
function gibName() {
return (this.name);

}

// Constructor for class "Employee":
function Employee() {
// Definition of class attributes:

this.name ="'y
this.division = "development";
this.machine = "computer";

this.worktime = 35;

// Reference to method:
this.gibName = gibName;
}

The new method (in this case, gibName) can now be used as normal:
j = angest.gibName();

Such user-defined data types can also be derived from defined classes resulting in an
object hierarchy. When objects are derived from classes, they inherit certain properties
(attributes and methods). Further information can be found in the following section.

58 WebTransactions Template Language

Data types, variables, and names Object hierarchy and inheritance

4.7 Obiject hierarchy and inheritance

In WebTransactions, it is possible to derive new classes from existing classes or objects.
During this process, objects of the new class inherit attributes and methods from the original
class. This section contains a step-by-step description of how classes are derived, and
points out a number of issues to be noted. We will use the example from the previous
section:

// Method for Employee:
function gibName() A
return (this.name);

}

// Constructor for class "Employee":
function Employee() {
// Definition of class attributes:

this.name ="";
this.division = "development";
this.machine = "computer";

this.worktime 35;
// Reference to method:
this.gibName = gibName;
}

This class defines an employee with the same basic properties as all other employees in
the company. However, we now need further properties for the different types of employees
which vary from one type to the next. For instance, a sales employee may be responsible
for different sales regions, or an engineer may be involved in different projects. As the basic
properties remain the same for all employees, it makes sense to derive them.

For example, to define an employee of type SalesManager, proceed as follows:

// Constructor for class "SalesManager"

function SalesManager() {
// Definition of additional class attributes:
this.area = 8; // Sales region, default 8
this.quota = 100; // Sales quota

}

// Deriving all other attributes from "Employee"

SalesManager.prototype = new Employee();

WebTransactions Template Language 59

Object hierarchy and inheritance Data types, variables, and names

The keyword prototype creates a reference to a new object of the class Employee, whereby
all class attributes from Employee are inherited (in the form of a reference) by all new
instances of the class SalesManager. The keyword prototype refers to a real object. In this
case, it is not necessary to define a new object of an existing class with new. Instead, you
can refer to an existing object. The following example illustrates how the class
SalesManager is derived, but this time from an object:

proto = new Object;

proto.name ="'y
proto.division = "development";
proto.machine "computer";
proto.worktime 35;

// Deriving the new class "SalesManager" from the object

// "proto"

function SalesManager() {
// Definition of additional class attributes:
this.area = 8; // Sales region, default 8
this.quota = 100; // Sales quota

b

// Deriving all other attributes from the object "proto"

SalesManager.prototype = proto;

Note that the derived attributes from the prototype object are created initially in the form of
references. It is not until you assign a value to such a derived attribute in an instance that
an instance attribute is actually created with the new value:

managerl = new SalesManager();

managerl.worktime = 60; // Instance attribute
document.write("Division = " + managerl.division +"
");
document.write("Worktime = " + managerl.worktime +"
");
proto.division = "marketing"; // Change in prototype
proto.worktime = 30; // Change in prototype
document.write("Division = " + managerl.division +"
");
document.write("Worktime = " + managerl.worktime +"
");

60 WebTransactions Template Language

Data types, variables, and names Object hierarchy and inheritance

This gives the following output:

Division = development
Worktime = 60
Division = marketing

Worktime = 60

If an attribute of a derived object is deleted explicitly (with the delete operator), itis
merely identified as deleted in the derived object. It is retained in the prototype
object.

i

It is also possible to derive new classes from predefined classes. This is illustrated in the
example below:

// Deriving a new class "NamedArray" from the class "Array":
function NamedArray (n) A

this.name = n;
b

NamedArray.prototype = new Array;

MyArray = new NamedArray('first");

The new class NamedArray contains all methods of the class Array plus the additional
attribute name. MyArray is now an array of length 0 with the name first.

As in the SalesManager example above, these classes can also be derived directly from an
object of the class Array:

// Deriving a new class "NamedArray" from an "Array" object:
a = new Array;
for (i=0; i<= 10; i++)

alil = 0;

function NamedArray (n) A
this.name = n;

}

NamedArray.prototype = a;

MyArray = new NamedArray("second");

In this case, MyArray is an array of length 11 with the name second whose elements are
preset to 0.

WebTransactions Template Language 61

Object hierarchy and inheritance Data types, variables, and names

62 WebTransactions Template Language

5 Expressions and operators

This chapter starts by providing an overview of the expressions used in the template
language. The following sections “Arithmetic operators” on page 65 through “Special
operators” on page 73 present the individual operators. The order in which these operators
are evaluated is described at the end of this chapter in section “Evaluation sequence” on
page 82.

Expressions are combinations of literals, variables, operators, and expressions, which
provide a particular result when evaluated.

The following results are possible in the case of WebTransactions expressions:

— avalue
43+7 for example returns a value of type number

— areference to an object
For example, an expression which calls a constructor returns a reference to an object:
myArray=new Array()

- undefined
An expression is undefined if an uninitialized variable, a call to a function without a
return value, or the void operator is used. undefined is, however, a value in itself - all
expressions provide a result.

WebTransactions Template Language 63

Types of expressions Expressions and operators

5.1 Different types of expressions

WebTransactions supports all the expressions which are possible in JavaScript. These
expressions may occur in the WTScript areas and within an evaluation operator.

Some expressions assign a value to a variable, whereas others simply possess a value.
For example, the expression x=4+5 assigns the value of the expression 4+5 to the
variable x and itself represents this value. Such expressions use assignment operators.
In contrast, an expression such as 4+5 contains no assignment but simply provides the
result 9.

There are elementary expressions which correspond to lexical units (such as a variable
like x or a literal such as 42 or “hello world”), and complex expressions which are
composed of elementary expressions. In this case, the evaluation rules presented in
section “Evaluation sequence” on page 82 apply. However, you may also use brackets
() to force a particular evaluation sequence.

Depending on the number of operands linked by an operator, it is common to distinguish
between one-position and two-position expressions. Using the condition operator “?:”
(see page 73), it is even possible to form three-position expressions.

Expressions involving related operators are frequently referred to together using a
single term, e.g. a distinction is made between arithmetic expressions and comparison
expressions.

Enhancements compared to JavaScript expressions

The following enhancements have also been incorporated:

For reasons of compatibility, the conditions of the WTML tags <wtIf ...>,
<wtDoWhile ...>, and <wtUntil...>may also contain the comparison operators #==,
#l=, #>, #<, #>=, and #<=.

For reasons of compatibility, strings within WTML tags may contain both fixed
characters (string literals) and evaluation operators.

64

WebTransactions Template Language

Expressions and operators

Arithmetic operators

5.2 Arithmetic operators
Arithmetic operators are used with numerical values and return a single numerical value as
their result.
Operator | Meaning Example
+ Addition. 44X
Adds two number operands. If one of the operands is of type
string or is stringlike, the + sign acts as a concatenation operator
(see page 72 and following example).
++ Increment. X++
This single-position operator increases the value of an operand | (results in 3 if x
by 1. The operand must be a variable with a value which is either | was originally equal to
of type number or which can be converted to this type. The 3; new value of x is 4)
increased value is assigned to the operand. If the operator is ++x
located before the operand, the incremented value is returned. | (results in 4 if x was
In contrast, if the operator is located after the operand, the originally equal to 3;
original value is returned before incrementation is performed. new value of x is 4)
- Subtraction or single-position minus: two-position: y-4
— If the minus sign is located between two operands then the
second operand is subtracted from the first. single-position: —x
— As a single-position minus operator, the minus sign is (-x results in -3 if x
located before the operand. The operand is negated, i.e. the | equals 3; x keeps the
sign is inverted. value 3)
- Decrement. X—=
This single-position operator reduces the value of an operand by | (results in 3 if x
1. The operand must be a variable with a value which is either of | was originally equal to
type number or which can be converted to this type. The reduced | 3; new value of x is 2)
value is assigned to the operand. If the operator is located —=X
before the operand, the decremented value is returned. In (results in 2 if x was
contrast, if the operator is located after the operand, the original | originally equal to 3;
value is returned before decrementation is performed. new valueof x is 2)
* Multiplication. 4%x
Multiplies the two operands.
/ Division. 17/4 (results in 4.25)
Divides the two operands.
% Modulus. 17%4
Returns the integer remainder of the division of the two (results in 1)
operands.

WebTransactions Template Language

65

Comparison operators Expressions and operators

5.3

The operators *, / and % always return the result at the greatest possible level of precision.
Even operations involving whole numbers may yield floating-point results (for example, 17/4
gives the result 4.25).

If one of the operands in an arithmetic operation is NaN (Not a Number), then the result is
always NaN.

Comparison operators

A comparison operator compares the associated operands and results in a logical value:
true if the comparison is correct; otherwise false.

Operator | Meaning Example
== equal to; results in the value true if the operands are equal 3 =23
1= not equal to; results in the value true if the operands are not equal 3 1=14
> greater than; results in the value true if the left-hand operand is greater |4 > 3

than the right-hand operand

>= greater than or equal to; results in the value true if the left-hand 4 >= 4
operand is greater than or equal to the right-hand operand

< smaller than; results in the value t rue if the left-hand operand is smaller |3 < 4
than the right-hand operand

<= smaller than or equal to; results in the value true if the left-hand 3 <=4
operand is smaller than or equal to the right-hand operand

The numerical value NaN does not form part of the linear numberline. A comparison
in which one of the operands is NaN always returns the value false. This is also true
in the case of NaN==NaN.

i @

Evaluation of the relational comparison operators (>, >=, <, >=)

If both operands are stringlike (see section “Stringlike data types” on page 47), then both
are converted into strings and the result of the lexicographic comparison of these two
operands is returned. If one of the operands is undefined or the nu11 object, then the result
is false. Otherwise, both operands are converted to type number and the result of the
numerical comparison of these two operands is returned.

66

WebTransactions Template Language

Expressions and operators Comparison operators

Evaluation of the equivalence comparison operators (==, !=)

If both operands are of type object or function, then the comparison tests whether both
operands reference the same object. If one of the operands is the nu11 object, then the
other operand is converted to type object and a comparison is performed.

If one operand is a string and the other stringlike (see section “Stringlike data types” on
page 47), then both operands are converted to type string and the result of the
comparison is returned.

In all other cases, the two operands are converted to type number and a numerical
comparison is performed.

Comparison operators which force a numerical comparison (only in WTML tags)

The operators #==, #!=, #>, #<, #>=, and #<=convert the operands to the numerical
data type and return the result of the corresponding numerical comparison. These
operators are supported in order to ensure compatibility with WebTransactions V1.x, and
are only permitted in the conditions of the WTML tags <wtIf ...>, <wtDoWhile ...>, and
<wtUntil ...>. They are not permitted at any other location in the template.

Examples

"7" > "10"; //Returns true
"7" > 10; //Returns false
"7" #> "10" //Returns false (only permitted in WTML tag conditions)

WebTransactions Template Language 67

Bitwise operators Expressions and operators

5.4 Bitwise operators

5.4.1

Bitwise operators treat their operands as sequences of bits (zeros and ones). For example,
the decimal number 9 is represented by the bit sequence 1001.

Although bitwise operators transform bit sequences, they return the result as a normal
numerical value.

There are bitwise logical operators and bitwise shift operators. It must be possible to convert
all the operands to type number.

Bitwise logical operators (&, I, *, ~)

Bitwise logical operators function as follows:
— The operands are converted into 32-bit numbers.

— The bits in the two operands are compared pair by pair: the first bit of the left-hand
operand corresponds to the first bit of the right-hand operand, the second bit to the
second bit, etc.

— The operand is applied to each of these bit pairs and the bitwise result is constructed
from the individual partial results.

An exception here is the bitwise NOT operator (~) which is the only one to be single-
position, i.e. to take only a single operand. This operator inverts the bits in the operand, i.e.
0 becomes 1 and 1 becomes 0.

The table below illustrates the mode of operation of the bitwise logical operators:

Operator | Description Example
& bitwise AND 15 & 9 resultsin 9
Returns 1 for all bit pairs in which both bits have | (1111 & 1001 = 1001)
the value 1.
bitwise OR (inclusive) 15 | 9 resultsin 15

Returns 1 for all bit pairs in which one or both | (1111 | 1001 = 1111)
bits have the value 1.

” bitwise XOR (exclusive) 15 ~ 9 resultsin 6
Returns 1 for all bit pairs in which exactly one bit | (1111 & 1001 = 0110)
has the value 1.

~ bitwise NOT (complement) ~15 resultsin -16
Inverts each bit in the operand. (~00...001111 = 11...110000)

68

WebTransactions Template Language

Expressions and operators

Bitwise operators

5.4.2 Bitwise shift operators (<<, >>, >>>)

In all cases, the left-hand operand represents the starting value and the right-hand operand
specifies the number of positions to be shifted. Shift operators convert their operands into
32-bit numbers and return a value of type number.

Operator | Description Example

<< Left shift. 9 << 2 resultsin 36
The binary representation of the first operand is shifted to the | (1001 by two bits to
left by the number of positions specified in the second operand. | the left: 100100)
Bits shifted beyond the left-hand edge are ignored and vacant
bits at the right-hand edge are filled with the value 0.

>> Right shift, taking account of the sign. 9 >> 2 resultsin 2
The binary representation of the first operand is shifted to the | (1001 by two bits to
right by the number of positions specified in the second the right: 10)
operand. Vacant bits at the left-hand edge are filled with the
value of the sign (0 for +, 1 for -). -9 >> 2 resultsin -3
Bits shifted beyond the right-hand edge are ignored.

>>> Right shift, ignoring the sign. 19 >>> 2 resultsin 4
The binary representation of the first operand is shifted to the | (10011 by two bits to
right by the number of positions specified in the second the right: 100)
operand.
Bits shifted beyond the right-hand edge are ignored. Vacant bits | -9 >>> 2 results in
at the left-hand edge are filled with the value 0. 1073741821
In the case of non-negative numbers, the operator >>> gives the
same result as the operator >>.

WebTransactions Template Language

69

Boolean operators

Expressions and operators

5.5 Boolean operators (&&, I, !)

When boolean (= logical) operators are used, the first operand (in the case of a logical NOT,
this is the only operand) is evaluated and converted to type boolean if necessary. The
return value is either this boolean value or the value of an operand:

Operator

Description

Example

&&

Logical AND.

Returns false if the evaluation of the left-hand operand, after
conversion to type boolean, results in the value false. In this
case, the right-hand operand is not evaluated. Otherwise, the
value of the right-hand operand is returned.

Ilboyll && Ilg-i r"l n
results in; "girl"

3==4 && "girl"
results in: false

Logical OR.

Returns the value of the left-hand operand if this is evaluated
as true. In this case, the right-hand operand is not evaluated.
Otherwise, the value of the right-hand operand is returned.

Ilboyll | | Ilg-ir“lvl
results in: true

3==4 || "girl"
results in; "girl"

Logical NOT.
Returns true if the evaluation of the operand results in the

1"girl" resultsin:
false

1(3==4) results in:
true

value false; otherwise false.

Truncated evaluation

Boolean expressions are evaluated from left to right. As soon as the result is known, evalu-
ation is aborted.

— false && anything
In the case of a logical AND, if the evaluation of the first operand gives the value false,
then the second operand is not evaluated.

— true || anything
In the case of a logical OR, if the evaluation of the first operand gives the value true,
then the second operand is not evaluated.

In the examples above, the expression anything is not evaluated. Any possible side effects,
for example assignments within anything, are therefore not considered.
Example

x=0;
document.write(false && (x=99)); //Output: false
document.write(x); //Qutput: 0

70

WebTransactions Template Language

Expressions and operators Assignment operators

5.6 Assignment operators

An assignment operator is located between two operands. It assigns the left-hand operand
a value which is based on that of the right-hand operand.

Equals sign

The most basic assignment operator is the equals sign (simple assignment):

operandl =operand2

The right hand operand is evaluated and the result is assigned to the left-hand operand.
The assignment expression itself represents the value. For example, the expression x=y+1
assigns the value of y +1 to x and itself represents the value y+1. In the expression
z=(x=y+1), this value is assigned to the variable z.

If the result of the right-hand operand is of type object or function, a reference is assigned.
In all other cases, a value is assigned.

Please note that the type of the left-hand operand may be modified by an assignment

operation.

Example

x=7; // x is of type number
x="otto"; // x is now of type string

x=[1,2,3]; // x is now an array with three elements 1, 2, and 3
x={y:1, z:23}; // x is now an object with the attributes y and z

Assignment operators for standard operations

All the other assignment operators are abbreviated forms of standard operations, as the
tables below illustrate:

Operator Meaning
X +=y X =X +y
X ==y X =X-Yy
X *=y X =X *y
X /=y X=x/Yy
X %=y X=X2%Yy

Assignment operators for arithmetical operations

WebTransactions Template Language 71

String concatenation operator (+) Expressions and operators

5.7

Operator Meaning
X <<=y X=X<<Yy
X>>=y X=X>>Yy
X>>>=y X=X>>>Y
X &=y xX=x&y
XA=y X=X"y
Xl=y x=xly

Assignment operators for bitwise operations

String concatenation operator (+)

Alongside the comparison operators, which can also be used with string operands, there is
also the concatenation operator + which applies solely to strings:

stringl + string2

The + operator concatenates the values of the two operands: The result is a single string
value.

For example, the operation "good " + "morning" results in the string "good morning".

A precondition is that at least one of the two operands is stringlike. The data types string
and function as well as all objects which possess no value0f method or whose valueOf
method returns a string are considered to be stringlike.

The abbreviated assignment operator += can also be used with string operands:

If, for example, mystring has the value "good " then mystring += "evening" results in
the string "good evening".

Example: Arithmetical addition compared to string concatenation
document.writeln(4 + 4); //Qutput: 8
document.writeln(4 + "4"); //Qutput: 44

myString=new String(4);
document.writeln(4 + myString); //Output: 44

The object myString is stringlike since its value0f method returns a string.

72

WebTransactions Template Language

Expressions and operators Condition operator

5.8 Special operators

5.8.1 Condition operator (?:)

The condition operator is frequently used as a fast alternative to a simple IF statement. It is
the only JavaScript operator to have three operands:

condition ? expressionl : expression2

condition is evaluated. If, when converted to the type boolean, condition has the value true,
then the condition operator returns the value of expressionl; otherwise, it returns the value
of expression2. In either case, the other expression is not evaluated (see Example 2 below).

Example 1

document.write(age >= 30 ? "you're a senior!" : "you're a Jjunior!");
Example 2

document.write(true ? x="Peter" : y="Paul"); //Output: Peter
document.write(typeof y); //0utput: undefined
Example 3

This example generates a drop-down list. The condition operator generates a default: for
example, if the COUNTRY attribute currently has the value 2 then “USA” is displayed by default
in the browser.

The evaluation operator ##...# ensures that the current value of the condition expression
("SELECTED" or "") is immediately effective in the HTML output.

<SELECT Name="COUNTRY" Size=1>

<OPTION ##host.COUNTRY.Value == 1 ? "SELECTED" : ""# Value="1">Belgium

<OPTION ##host.COUNTRY.Value == 2 ? "SELECTED" : "'"# Value="2">USA

<OPTION ##host.COUNTRY.Value == 3 ? "SELECTED" : "'"# Value="3">Germany
</SELECT>

WebTransactions Template Language 73

Comma operator Expressions and operators

5.8.2 Comma operator (,)

The comma operator first evaluates the left-hand and then the right-hand operands, and
returns the value of the right-hand operand:

expressionl , expression2

It allows you to perform multiple separate evaluations within a single expression. It is
frequently used in for loops (see Example 2) or in cases where a number of different opera-
tions have to be performed within an evaluation operator (see Example 3).

Example 1
x=((y=5),4)

Although this example is of little practical relevance, it does demonstrate the principle:
following the assignment, x has the value 4 and y the value 5.

Example 2

The comma operator is used in the last for loop of the example
(the other loops simply create a two-dimensional array and assign values).

It makes it possible to run another variable alongside the loop counter i within the condi-
tions of the for loop.

d=new Array(10);
for (i=0;1<=9;i++) d[il=new Array(9);
for (i=0;i<=9;i++) {
for (j=0;3<=9;j++) {
diiJljl= i + ":" +3;
}
}

for (i=0,3=9 ; i<=9 ; i++,j—)
document.write(dCilCj] + " ; ")

This example outputs the values of the “diagonal” array elements:
09:18;2:7;36;45;54;6:3;7:2;8:1;9:0;

74 WebTransactions Template Language

Expressions and operators new operator

Example 3
##a=1,b=42, ..., "

All comma-separated operations are performed. If an empty string is entered as the last
operand of the comma operator, then no output is generated. Within an HTML area, the
output of this evaluation operator would therefore be “invisible”.

5.8.3 new operator

The new operator allows you to create object instances of predefined and user-defined
classes.

objectname = new objecttype([parameters] . ..)

objectname
Name of the new object instance

objecttype
Object type. This is the name of the associated constructor function. In server-side
scripts, the following object types are currently possible:
{Object|Boolean|Date|Document |Number|String|Array|RegExp|
WT_Communication|WT_Userexit|user-defined objects}

[parameters]
When you call the constructor functions, you can specify parameters and thereby
assign values to the attributes of the new object. The parameters which are actually
specified depends on the constructor function in question. Further details can be
found in chapter “Built-in classes and methods” on page 1171f.

Example

myarray = new Array(20);

This expression creates an array object with the name myarray, whose first (and at this point
whose only) element is assigned the value 20."

T Up to WTML version 2.0 this method was used to create an array with 20 elements.

WebTransactions Template Language 75

delete operator Expressions and operators

5.8.4

5.8.5

delete operator

The delete operator deletes an object, an object attribute or an array element and releases
the reserved memory.

The operator returns undefined.

in operator

The in operator returns a boolean value which indicates whether a particular attribute is
contained in a specified object.

attributeNameOrIndex in object

attributeNameOrlIndex
String or numerical expression which represents the name of the attribute or an
array index

objectname
Name of the object to be examined for the attribute or array index specified in
attributeNameOrIndex

Example

a = new Object();

a.b = "abc";
if ("b" in a) // Returns true
if ("c" in a) // Returns false

76

WebTransactions Template Language

Expressions and operators instanceof operator

5.8.6 instanceof operator

The instanceof operator returns a boolean value which indicates whether a particular ob-
ject is derived from a specified class.

objectname instanceof objecttype

objectname
Object to be examined to ascertain whether or not it has been derived from the built-
in class objecttype

objecttype
Class for which the object objectname is to be examined

Example

a= new String ("abc");

b = "abc";

if (a instanceof String) . . . // Returns true

if (b instanceof String) . . . // Returns false, since specified object

// is not a string object

5.8.7 WT_THIS (for class templates only)
Within a class template, this keyword returns a reference to the calling host data object. This
makes it possible to access the calling host data object in the class template.

For more information on class templates and WT_THIS, refer to chapter “Class templates
(*.clt)” on page 309.

5.8.8 this
This keyword returns a reference to the calling object within a constructor or method.

Example

// Method for new class "Employee":
function gibName() {
return (this.name);

}

// Constructor for class "Employee":
function Employee() {
// Definition of class attributes:

WebTransactions Template Language 77

this

Expressions and operators

this.name = ;
this.division = "development";
this.machine = "computer";
this.worktime = 35;

// Reference to method:
this.gibName = gibName;

Outside constructors and methods, this returns the global object which contains all global-
ly defined variables.

i

The objects WT_SYSTEM, WT_POSTED, WT_HOST and globally defined variables that
have been created by modules are not attributes of the global object and are thus

not returned as attributes of this.

Example

(i in this)
document.writeln(i,': ',thislil);

returns the folowing output:

O T o

1
2
3

You can also use the this literal to access global variables within a function that are ob-
scured by local variables of the same name.

Example

a=6;
function f(x)
{
var a=7/;
..return this.a*x;

}
res=f(7);

In res, 42 is returned as usual. this.a is used to reference a global variable a although
a local variable exists with the same name.

78

WebTransactions Template Language

Expressions and operators Evaluation operator

5.8.9 Evaluation operator ##...#

The evaluation operator evaluates the expression it contains and returns the result as a
string. Only exception: if the result is undefined, then an empty string rather than the string
"undefined" is returned.

expression

expression Any expression.

The evaluation operator allows you, for example, to access the current values of objects or
object attributes in the template. When you do this, the evaluation operators are replaced
by the current values, i.e. they are used in a similar way to a variable.

However, evaluation operators can also be used in contexts in which it is not possible to
work with variables:

— infixed HTML text

— within HTML tags and many WTML tags in order, for example, to set tag properties
dynamically. In this case, the evaluation operator may even be located within the string
delimiter " " or ' . Such strings containing evaluation operators are also known as
simple string expressions.

The evaluation operator is not permitted within OnCreate and OnReceive scripts. However,
you can instead use the toString method of the string in question since this offers compa-
rable functionality.

Examples

#H#WT_SYSTEM.BASEDIR# //Returns the value of the system object attribute
//BASEDIR

##++index# //Returns the index of the template object
//incremented by 1

##void a+=6*7# //Returns an empty string

#H#WT_HOST.STD.SELECT# //Returns the evaluation of the class template for
//the host data object SELECT

See also “Example 3” on page 73.

WebTransactions Template Language 79

typeof operator Expressions and operators

5.8.10

Objects in the evaluation operator

The toString method is always used for an object which exists only within an evaluation
operator. For example, ##hostobject# has the same meaning as
##hostobject.toString()#. Thus, in the case of host data objects, the corresponding class
template is executed if necessary (see chapter “Class templates (*.clt)” on page 309ff).

It is also possible, for example, to write ##WT_SYSTEM# . In this case, the result is a list of all
WT_SYSTEM attributes and their values (see section “toString method” on page 175).

typeof operator

The typeof operator determines the type of the operand and returns the result as a string.
Possible values are: undefined, object, function, number, boolean, Or string.

typeof operand

Example

myArray=new Array("Peter", 49, false, null);
document.writeln("type of myArray is: " + typeof myArray +"
");
document.writeln("type of myarray is: " + typeof myarray+"
");
document.writeln("type of myArray.length is: "

+ typeof myArray.length+"
");

for (i in myArray)
document.writeIn("type of " + myArray[il + " is: "
+ typeof myArray[il+"
");

The example generates the following output:

type of myArray is: object

type of myarray is: undefined
type of myArray.length is: number
type of Peter is: string

type of 49 is: number

type of false is: boolean

type of null is: object

1 Up to WTML Version 2.0 the result was the same as the result of the toString method, namely [Cobject Object].

80

WebTransactions Template Language

Expressions and operators void operator

5.8.11 void operator

The void operator evaluates the operands but does not return the result of the evaluation.
It does not return a “genuine” value but instead the value undefined.

void operand

Example
document.writeln("the 'value' of the void expression is: " + void(x=4));
document.writeln("the value of x is: " + X);

The example generates the following output:

the 'value' of the void expression is: undefined
the value of x is: 4

WebTransactions Template Language 81

Evaluation sequence

Expressions and operators

5.9 Evaluation sequence

The individual operators are distributed over 16 levels of priority:
— operators of the same level are processed in sequence (normally from left to right)
— if the operators belong to different levels then the highest-level operator is processed

first

The following table shows the 16 priority levels, starting with the highest priority and ending

with the lowest:

Operator type

Individual operators

Call, access, brackets

Q) on function calls
L] e.g..myArrayl[2+3]
e.g.. myArray.length

Single-position operators

I ~ — ++ — typeof void

Multiplication, division, modulus

* /%

Addition/string concatenation, subtraction

Bitwise shift operators

Relational comparison operators

Equality/inequality

Bitwise AND

Bitwise XOR

Bitwise OR

Logical AND

Logical OR

Condition operator

Assignment operators

Comma operator

Evaluation operator

With the exception of the operators &&, | | and ?:, all operands are always evaluated.

Examples

document.writeln(true && true != true && false);//Output: false

x = false 7 1 : 2;
document.writeln(2+3*4);
document.writeln(typeof 2+42)

// x is 2 (not false)
//Qutput: 14 (not 20)
//Qutput: number 42 (not number)

82

WebTransactions Template Language

6 Global functions

6.1

This chapter describes the non-class-specific global functions. For function trouble-
shooting, see also section “Exception handling” on page 302.

copyFile() function

The global function copyFile() copies an existing file.

copyFile(source, destination)

source
Path and name of the file to be copied.

destination
Path and name of the destination file.

Both files must be located within the base directory. source and destination can be given
relative to the base directory or as absolute specifications.

Example
copyFile("folder/filel","folder/filenew");

WebTransactions Template Language

83

createFolder() function Global functions

6.2 createFolder() function

The createFolder() function creates the specified folder in the base directory. The folder
declaration is always made relative to the base directory. If the parent directories specified
in the path are not available, the parents parameter (if it gives the boolean result true) can
specify that they should be generated.

createFolder (foldernamel , parents])

foldername
Name of the folder relative to the base directory.

parents
Specifies that all non-existing parent directories should also be created for this path.
Result

Boolean value that specifies whether the folder has been created or not.

84 WebTransactions Template Language

Global functions deleteFile() function

6.3 deleteFile() function

The deleteFile() function deletes files and folders from the base directory. Empty folders
as well as files are deleted. Folders that are not empty are deleted together with their
contents if the recursive parameter is set (boolean converted true).

deleteFile(filenamel , recursivel)

filename Name of the file or folder relative to the base directory.
recursive Specifies that non-empty folders are deleted together with content.
Result

Boolean value indicating whether file or folder was deleted or not.

Example
deleteFile("Storage",true);

deletes the Storage in the base directory together with contents.

WebTransactions Template Language 85

escape() function Global functions

6.4 escape() function

The global escape() function converts special characters within an ASCII string into
hexadecimal format. All special characters outside the set { 'A’-’7’, ’a’-’2’, ’0’-’9’, '+, =, "%,
/7, 0,’@, . } are converted into hexadecimal representations in the format %nn.

escape(string)

string ASCII string

Result

The string transferred as an argument, in which all special characters have been converted
to hexadecimal format

Example

document.writeln("
" + escape("The_rain. In Spain, Ma’am!"));
This example gives the following output:
The_rain.%20In%20Spain%2C%20Ma%27am%21

See also

“unescape() function” on page 114.

86

WebTransactions Template Language

Global functions eval() function

6.5 eval() function

This function checks the string specified as an argument. If this proves to be one or more
valid WTScript statements, the string is executed. If it is an expression, the result is calcu-
lated and returned.

The eval () function can also be used to dynamically generate WTScript statements or
arithmetic expressions in the form of strings, which are then executed or evaluated.

eval (string)

string String containing either WTScripts statement or an expression

Result

string is converted to a character string, which is then executed or evaluated as a WTScript
program or an expression.

Example

document.writeln("
" + eval("3+7")); // Expression

// WTScript statement:

x=39;

y=2;

eval ("if((x+y+1) == 42) abc='yes'; else abc='no';");
document.writeln("
" + abc);

This example gives the following output:

10
yes

WebTransactions Template Language 87

evaluate() function Global functions

6.6

evaluate() function

This function calls the specified template as a type of subroutine and returns the generated
HTML text as a string. You can then process this string as required.

The evaluate() function acts in the same way as the include() function, except for the
fact that output that is usually sent to the HTML output stream and then output in the brows-
er is written to a string. In particular, OnReceive sections located in the evaluated template
are not executed until the next Receive point.

. If you call evaluate () within a function, the same considerations apply as described
1 in “Notes regarding the use of the include() function within a function” on page 100.

evaluate(template)

template
String with the name of a template. template is a relative file name. You do not need
to specify the file name suffix . htm for this file name. WebTransactions searches for
the corresponding template on the basis of the set language and style.

The usual search sequence for templates applies here. For more information, refer
to the WebTransactions manual “Concepts and Functions”.

Result

The contents of the template are executed and the result is returned as a string. The string
is then available for further processing for queries or calculations.

Example
Template test.htm:

<H4> This is a test by USER </H4>
<wtoncreatescript>

<l—

stringInTest = "Hello";

/>

</wtoncreatescript>

88

WebTransactions Template Language

Global functions evaluate() function

The calling template contains:

<wtoncreatescript>

<!|—

document.write("

<H2>*******aygluate Test****x***</H2>
");
str = evaluate("test");

//Modify and output string

newStr = str.replace("by USER","by the WebTransactions team");
document.write(newStr);

// Variables defined in "test" can now be accessed
document.write(stringInTest);

//—>

</wtoncreatescript>

<Hl>End of test template</Hl>

The example generates the following output:

*******eval uate Test********

This is a test by the WebTransactions team
Hello

End of test template

See also

“include() function” on page 99.

WebTransactions Template Language 89

exitDialogStep() function Global functions

6.7

exitDialogStep() function
The global function exitDialogStep() terminates the processing of all the templates
involved in this dialog step.

Dialog control is described in detail in the WebTransactions manual “Concepts and Func-
tions”.

exitDialogStep()

Example
Template testl.htm:

<wtOnCreateScript>
<!—
document.write("before exitDialogStep
");
exitDialogStep();
document.write("after exitDialogStep
");
//==>
</wtOnCreateScript>

The calling template contains:

<wtOnCreateScript>

<!—

document.write("

<H2>******exitDialogStep Test******</H2>
");
include("testl");

document.write("OQutput of calling template
");

//==>

</wtOnCreateScript>

The example generates the following output:

rextraxitDialogStep Test********

before exitDialogStep
Comment:

In this case, exitDialogStep() terminates both the included and the calling template.

See also

“exitReceiveProcessing() function” on page 91, “exitScript() function” on page 92, “exitSes-
sion() function” on page 94, and “exitTemplate() function” on page 95.

90

WebTransactions Template Language

Global functions exitReceiveProcessing() function

6.8 exitReceiveProcessing() function

This function is valid only in a ReceiveScript area. It terminates all current and subsequent
Receive rules, and does not return any result.

exitReceiveProcessing()

See also

“exitDialogStep() function” on page 90, “exitScript() function” on page 92, “exitSession()
function” on page 94, and “exitTemplate() function” on page 95.

WebTransactions Template Language 91

exitScript() function

Global functions

6.9

exitScript() function

The global function exitScript() terminates the processing of the current script area. Pro-
cessing then continues with the first statement after the script area

exitScript()

Example 1
Template testl.htm:

<wtOnCreateScript>
<!l—
document.write("before exitScript
");
exitScript();
document.write("after exitScript
");
//==>
</wtOnCreateScript>

The calling template contains:

<wtoncreatescript>
<!—

document.write("

<H2>*******exitScript Testr*******</H2>
");

include("testl");

document.write("OQutput of calling template
");

//==>
</wtoncreatescript>

The example generates the following output:

*******exitscript Test********

before ExitScript

92

WebTransactions Template Language

Global functions exitScript() function

Example 2

<wtOnCreateScript>

<!—

document.write ("Before exitScript()
");
exitScript();

document.write ("After exitScript()
");
//==>

</wtOnCreateScript>

<wtOnCreateScript>

<!—
document.write ("New script area
");
/===

</wtOnCreateScript>
This example generates the following output:

Before exitScript()
New script area

See also

“exitDialogStep() function” on page 90, “exitReceiveProcessing() function” on page 91, and
“exitTemplate() function” on page 95.

WebTransactions Template Language 93

exitSession() function Global functions

6.10 exitSession() function

This function terminates the current WebTransactions session at the earliest possible
opportunity. This depends on the location of the exitSession() function call:

— When called within a wtOnCreateScript, the result of the current WTML document is
the last page sent to the browser.

— When called within a wtOnReceiveScript, the WebTransactions session is closed
following generation of the next synchronized output.

This function behaves in the same way as WT_SYSTEM.EXIT_SESSION="TRUE".

exitSession()

exitSession() terminates processing at the current position and closes the
WebTransactions session after this dialog step. If you want to terminate the session
immediately, you must also call the exitDialogStep() function. Otherwise, the
statements following exitSession() will still be executed before the session is
terminated.

i @

See also

Global system object attribute PREVENT_EXIT_SESSION (see the WebTransactions manual
"Concepts an Functions"), “exitDialogStep() function” on page 90,
“exitReceiveProcessing() function” on page 91, “exitScript() function” on page 92 and
“exitTemplate() function” on page 95.

94 WebTransactions Template Language

Global functions exitTemplate() function

6.11 exitTemplate() function
This function terminates processing of the current template. Processing continues with the
next statement in the calling template. This can be thought of as a return from a subroutine.

The result of an exitTemplate() function call at the top template level is the same as that
of an exitDialogStep() function call.

exitTemplate()

Example
Template testl.htm:

<wtOnCreateScript>
<!—
document.write("before exitTemplate
");
exitTemplate();
document.write("after exitTemplate
");
//==>
</wtOnCreateScript>

The calling template contains:

<wtOnCreateScript>

<!—

document.write("

<H2>*****exitTemplate Test********</H2>
");
include("testl");

document.write("Output of calling template
");

//—=>

</wtOnCreateScript>

The example generates the following output:
reerexitTemplate Test* ******

before exitTemplate

Output of calling template

Comment

This terminates only the processing of the included template. Processing of the calling
template continues.
See also

“exitDialogStep() function” on page 90, “exitReceiveProcessing() function” on page 91,
“exitScript() function” on page 92, and “exitSession() function” on page 94.

WebTransactions Template Language 95

forward() function Global functions

6.12 forward() function

This function searches for the template specified in the argument and starts to process it.
Control is passed to this template and is not returned to the calling template. This means
that all the statements in the calling template that follow the forward () call are not executed.
Any Receive rules that have been read up to this point are executed on the next Receive.

If the specified template is not found, then an error message is output and the WTScript
script continues after forward().

When you call forward() within a function, the same considerations apply as de-
scribed in “Notes regarding the use of the include() function within a function” on
page 100.

i

forward (template)

template
String with the name of a template. template is a relative file name. You do not need
to specify the file name suffix . htm for this file name. WebTransactions searches for
the corresponding template on the basis of the set language and style

The usual search sequence for templates applies here. For more information, refer
to the WebTransactions manual “Concepts and Functions”.

Result

Processing control is passed to the specified template.

Example
Template test.htm:

<H4> This is a test by USER </H4>
<wtoncreatescript>

<l—

stringInTest = "Hello";

/>

</wtoncreatescript>

96

WebTransactions Template Language

Global functions forward() function

The calling template contains:

<wtoncreatescript>

<!—

document.write("
<pr><HZ>*******forward Test********</H>
");
forward("test");

document.write("This text is displayed only if an error occurs");
//——>

</wtoncreatescript>

The example generates the following output:

*******fo rwa rd Test********

This is a test by USER

See also

“evaluate() function” on page 88 and “include() function” on page 99.

WebTransactions Template Language 97

import() function Global functions

6.13 import function()

The import () function enables you to load a template as a module. Functions and
variables that you define in modules are available throughout the entire WebTransactions
session.

You can find more information about modules and the procedure to follow to load a template
in the WebTransactions manual “Concepts and Functions”, section 'Master, class and
module templates'.

import (template)

template
Character string with the name of a template. remplate is a relative file name. You do
not need to specify the file name suffix . htm for this file name. WebTransactions
searches for the corresponding template on the basis of the set language and style.

The template is found using the search sequence of WebTransactions; see also the
WebTransactions manual “Concepts and Functions”.

The folder <webTA Install Directory>/modules is added to the search path for
templates in the last position in order to enable explicit loading of optional standard
modules.

98 WebTransactions Template Language

Global functions include() function

6.14

include() function

This function calls the specified template as a type of subroutine. The results of the included
template are output directly in the HTML output stream.

The include() function can also be used to include templates in WTScript areas.

include (template)

template
String with the name of a template. template is a relative file name. You do not need
to specify the file name suffix . htm for this file name. WebTransactions searches for
the corresponding template on the basis of the set language and style

The usual search sequence for templates applies here. For more information, refer
to the WebTransactions manual “Concepts and Functions”.

Result

The included template is inserted in full. Within the included template, you can use the same
language elements as in any other template, including wtOnCreate scripts and wtOnReceive
scripts. However, the WTML tags must be syntactically complete in each template, e.qg. itis
not permissible to start an IF control structure in the including template and then close it in
the included template.

Example
Template test.htm:

<H4> This is a test by USER </H4>
<wtoncreatescript>

<!—

stringlnTest = "Hello";

//=—>

</wtoncreatescript>

WebTransactions Template Language 99

include() function Global functions

The calling template contains:

<wtoncreatescript>

<!|—

document.write("

<HZ>*******Include Test*****x**</H2><pr>");
include("test");

// Variables defined in "test" can now be accessed
document.write(stringInTest);

/==

</wtoncreatescript>

<Hl>End of test template</HI1>

The example generates the following output:

*******Include Test********

This is a test by USER
Hello

End of test template

See also

“evaluate() function” on page 88, “forward() function” on page 96 and “import function()” on
page 98.

Notes regarding the use of the include() function within a function

If you call include() (or forward() and evaluate()) within a function, functions and vari-
ables are available within this function which are defined in the included template using the
var keyword. These are then local variables and functions.

Functions from the included template can call each other. Constructors and method defini-
tions in the included templates can also be executed locally.

If a constructor from the included template is used to create an object that exists for longer
than the function in which it was defined, then the following problem may occur: Global help
functions defined in the included template and used within the methods are no longer avail-
able after the outer function has been completed.

For this reason, you should always define and use these help functions as methods of the
object.

100

WebTransactions Template Language

Global functions include() function

Example

The include function for including the myClass.htm template is called within the ocuter()
function:

function outer()
{
include('myClass.htm');
return new myClass();
}
myObject= outer();
myObject.myMethod();

Problems occur when myClass.htm defines the class in the following manner:
The twice () help function is used in the myMethod () function and is no longer available out-
side the outer() function.

function myClass()

{ this.myMethod=myMethod;
;unction myMethod ()

{ document.write(twice(21));
;unction twice(x)

{ return 2*x;

}

It is recommended that the twice () help function is also defined as a method in order to
make sure that twice() remains available after completion of the outer () function.

function myClass()

{ this.myMethod=myMethod;
this.twice=twice;

;unction myMethod ()

{ document.write(this.twice(21));

;unction twice(x)

{ return 2*x;

}

WebTransactions Template Language 101

isRequestWaiting() function Global functions

6.15

isRequestWaiting() function

The global function isRequestWaiting() queries whether a new request is waiting for
processing (e.g. data posted by the browser).

No new requests can be sent to a WebTransactions process as long as the process is in a
loop in a function triggered by setTimeout (). isRequestWaiting() can be used in aloop of
this sort to query whether a new request is waiting.

isRequestWaiting()

Result

Boolean value specifying whether a new request is waiting for processing.

Example

<html>
<body>
<wtoncreatescript>
if(typeof WT_SYSTEM.counter != 'number')
WT_SYSTEM.counter=0;
if(WT_POSTED.quit)
{
document.write('bye '+WT_SYSTEM.counter);
exitSession();exitTemplate();
}
WT_SYSTEM.ex = new WT_Userexit("WTSystemExits");
function backgroundlLoop()
{
do
{
WT_SYSTEM.ex.WTSTeep(1000) ;WT_SYSTEM.counter++;
} while(! isRequestWaiting());
}
</wtoncreatescript>
<form webtransactions>
#HWT _SYSTEM. counter++#
<input type="submit" name="step" value="step">
<input type="submit" name="background" value="background">
<input type="submit" name="quit" value="quit">
<wtOnReceiveScript>
if(WT_Posted.background)
setTimeout ('backgroundLoop()', 500);
</wtOnReceiveScript>
</form>

102

WebTransactions Template Language

Global functions isRequestWaiting() function

</body>
</html>

WebTransactions Template Language 103

listFolder() function Global functions

6.16 listFolder() function

The 1istFolder() function provides the contents list of a folder from the base directory. It
returns an array of string objects, where each string object describes a contained file named
in correspondence to the optional pattern parameter. The folders "' (dot) and '.." (dotdot) are
not housed in the array. Links are not resolved but in Windows the extension ".ink' is
removed from the file name. The value of the string object is the name of the file.

The directories '.' (dot) and '.." (dot dot) are by default not included in the array. The
parameter «li (if it returns true after conversion to boolean) can be used to specify that file
names that start with '.' (dot) are also to be listed.

The object has the following attributes:
isDir Of boolean type. Specifies whether the described file is a folder.
size Of number type. Indicates file size in bytes.

lastAccess
Of number type. Date of last access in milliseconds (see example).

lastModified
Of number type. Date of last modification in milliseconds (see example).

listFolder(foldernamel , pattern [, alll1])

foldername
Name of the folder relative to the base directory. If you wish to list the base
directory a slash (/') must be used for the foldername.

pattern
Pattern to which the foldername must correspond (optional).

The pattern complies with the rules for specifying a partially qualified file name on
the platform on which WebTransactions is deployed.

all Specifies that file names that start with '.' (dot) are also to be listed (optional).

Result

Array of string objects. If the folder does not exist, undefined is returned.

104

WebTransactions Template Language

Global functions listFolder() function

Example 1
Output of all .htm files in config/forms folder:

dirList=TistFolder("config/forms","*.htm");
for (i=0;i<dirList.length;i++)
document.write(dirListlil+"
");

The example generates the following output:

AutomaskOSD.htm
example.htm
StartTemplateHTTP.htm
StartTemplateOSD.htm
wtasync.htm
wtBrowserFunctions.htm
wtKeysOSD.htm
wtPkeyFunctions.htm
wtPKEYS.htm
wtPKeyValues.htm

Example 2

Use of pattern and the attributes lastAccess and lastModified for output as date string:
fileArr = 1istFolder('/config/forms',"*.htm");

document.write("Last access on " + fileArr[0] + ": ")
document.writeln((new Date(fileArr[0].lastAccess)).tolLocaleString());
document.write("
Last modification to " + fileArr[0] + ": ");

document.writeln((new Date(fileArr[0].lastModified)).tolLocaleString());
The example generates the following output:

Last access on AutomaskQSD.htm: 04/02/03 13:22:24
Last modification to AutomaskOSD.htm: 04/02/03 13:22:24
Example 3

listFolder("folder");
lTistFolder("folder","*.txt");

Use of all to also list filenames starting with " (dot):
listFolder("folder","*" true);

This example generates the following output:

[(new String("file.txt")),(new String("filel"))]
[(new String("file.txt"))]
[L(new String(".invisible")),(new String("file.txt")),(new String("filel"))]

WebTransactions Template Language 105

moveFile() function Global functions

6.17

moveFile() function

The global function moveFile() moves a file to a different directory in the base directory or
renames a file.

moveFile(name_I, name_2)

name_1
Path and name of the file to be moved/renamed.

name_2
Path and name of the destination file.

Both files must be located within the base directory. name_1 and name_2 can be given as
relative to the base directory or as absolute specifications.
Example

moveFile("/folder/filenew","/folder/filerename");

106

WebTransactions Template Language

Global functions Number() function

6.18 Number() function

The global function Number () converts an expression to the data type number or, if this is not
possible, to NaN.

Number (expression)

expression
Any expression

Result

The conversion process is performed as described for the target data type number in section
“Type conversion” on page 47.

If expression cannot be converted to numerical format, NaN is returned.

Example

objectl="hello world!";

document.writeln("
" + "The value of " + objectl + " is:
Number (objectl));

object2=new String("42");

document.writeln("
" + "The value of " + object?2 + " is: " +
Number(object2));

This example gives the following output:

The value of hello world! is: NaN
The value of 42 is: 42

WebTransactions Template Language 107

parseFloat() function Global functions

6.19 parseFloat() function

This function converts a string to its numeric value or, if the string is not a number, to NaN.

parseFloat(string)

string String with numerical contents

Result

The numerical value of siring if string contains a numerical representation; otherwise, NaN.

If parseFloat() detects a character that is not a numerical value in its argument, the value
is evaluated up to this point and returned. The rest of the argument is ignored. Thus "22a"
gives 22,"2.3.4" gives 2.3.

Leading and trailing spaces are permitted.

Example

stringl="hello world!";

document.writeln("
" + "The value of \"" + stringl + "\" is: " +
parseFloat(stringl));

string2=" +3.1415927 ";

document.writeln("
" + "The value of \"" + string2 + "\" is: " +
parseFloat(string2));

This example gives the following output:

The value of "hello world!" is: NaN
The value of "+3.1415927" is: 3.1415927

108

WebTransactions Template Language

Global functions parselnt() function

6.20 parselnt() function

This function converts a string to its numerical value or, if the string is not a number, to NaN.
It can take into consideration the number notation used.

parselnt (stringl, basel)

string ~ String with numerical contents

base Base for the number specified in string. This must be an integer greater than 1 but
less than or equal to 36. If base is not specified, the default value is 10.

Result

Numerical value of string if string contains the representation of an integer; otherwise, NaN.

If string contains a character other than a digit in the specified base, the value is evaluated
up to that character and returned. The rest of the argument is ignored. Leading and
following blanks are permitted.

Example

document.writeln("
" + parselnt("F", 16));
document.writeln("
" + parselnt("1111", 2));
document.writeln("
" + parselnt("F", 10));
document.writeln("
" + parselnt("15"));
document.writeln("
" + parselnt("4.2"));

This example gives the following output:

15
15
NaN
15
4

WebTransactions Template Language 109

setNextPage() function Global functions

6.21

setNextPage() function

This function defines the WTML document to be used for the next synchronized dialog step.

It sets the WT_SYSTEM. FORMAT attribute to the name of the new document.

setNextPage (documentName)

documentName
This argument is converted to a string which is interpreted as a file name. The file
name extension .htm may be omitted. The specified document is then located and
selected in accordance with the system object settings for the style
(WT_SYSTEM.STYLE) and language (WT_SYSTEM. LANGUAGE) and the search strategy
defined in WT_SYSTEM. FORMAT.

The generally valid search sequence for templates applies. For more information
see the WebTransactions manual “Concepts and Functions”.

110

WebTransactions Template Language

Global functions setSingleStep() function

6.22

setSingleStep() function

The function setSingleStep() is used in conjunction with the WebLab Offline Single Step
Tracking, a utility used when generating pages and running Recei ve scripts to log each line
executed together with the associated variables and their values in a file. Once generation
is complete,

WebLab can then process this file and track the code sequence.

The setSingleStep () function allows you to control the amount of information logged.
setSingleStep("on") switches the logging function on, while setSingleStep("off")
switches it off. You can switch the logging function on and off repeatedly within a template
by inserting setSingleStep() calls at the appropriate locations. In this case, only steps car-
ried out between the setSingleStep("on") and setSingleStep("off") calls will be record-
ed.

. ”On”
setS1ng1eStep(-{”off” })

"on Activates the logging of single steps

"off* Deactivates the logging of single steps
Example

In the following example, only taggedOutput calls are logged in the AutomaskO0SD.

<wtOnCreateScript>
<!—

for (element

= 0SD_0.$FIRST.Name; 0SD_0 && element != '$END';
element = 0SD_0.$NEXT.Name)
{
if (currentHostObject.Type == 'Protected' &&
currentHostObject.Markable == 'No')

{
setSingleStep ("on");
taggedOutput(currentHostObject);
setSingleStep ("off");

}

}
//—>
</wtOnCreateScript>

WebTransactions Template Language 111

6.23 setTimeout() function

The global setTimeout () function is used to execute delayed processing. The script is
always handled without interruption (see, however, “isRequestWaiting() function” on
page 102).

The Timeout script is not handled until the specified time has elapsed. During the wait time
outside queries, e.g. user browser inputs, can be handled. The start of the Timeout script
is, if necessary, further delayed through "simultaneous" user inputs or asynchronous
WebTransactions queries to the session. As a rule however, no noticeable delay occurs. Ir
this way it is possible to combine page generation and delayed handling of scripts withou
unnecessary wait time.

Delayed handling of script parts that have not yet been started is prevented or suppressec
by termination of the session.

Handling always takes place in a synchronous context.

setTimeout (script, milliseconds)

script Character string that either contains an expression or WTScript statements that
have to be executed.

milliseconds
Minimum number of milliseconds that must elapse before the execution of scripr.
Result
None.
Example

Example of continuous processing at 15-second intervals:

<wtOn...Script>

function doit () { // do anything;}!;
WT_SYSTEM.doit = doit;
WT_SYSTEM.endlessTask = "WT_SYSTEM.doit();";

WT_SYSTEM.endlessTask += "setTimeout(WT_SYSTEM.endlessTask, 15000);"
setTimeout(WT_SYSTEM.endlessTask, 15000);
</wtOn...Script>

. In the WTScript statements that you want to execute with a delay, access only
1 functions and variables that are available throughout the entire session and
therefore stored, for example, under WT_SYSTEM.

If no further dialog steps are received from the browser, the session terminates
when WT_SYSTEM.TIMEOUT_USER has expired.

Global functions setTracelLevel() function

6.24

6.25

setTraceLevel() function

The global function setTracelLevel () is used to turn a trace on or off while a session is
running. The trace can thus be restricted to certain parts of templates to keep the trace file
small and focussed on specific sections of the session.

setTracelevel (string)

string The string "FULL" (full trace activated) or "NONE" (trace deactivated)

See also

“writeToTrace() function” on page 115.

String() function

This function converts the result of an expression into string format.

String(expression)

expression
Any expression

Result

A string that represents the object

The conversion process is performed as described for the target data type stringin section
“Type conversion” on page 47.

Example

valuel = true;
document.writeln("
valuel = " + String(valuel));

timeNow = new Date ();
document.writeln("
The current date and time is " + String(timeNow));
This example gives the following output:

valuel = true
The current date and time is Mon Jul 05 16:33:06 1999

WebTransactions Template Language 113

unescape() function Global functions

6.26 unescape() function

The global function unescape () converts hexadecimal representations in the format %nn of
characters within an ASCII string back into the original characters.

unescape (string)

string ASCII string containing characters in hexadecimal format

Result

The string transferred as the argument, in which all hexadecimal character representations
are converted back into the original characters

Example

document.writeln("
" +
unescape("The_rain.%20In%20Spain%2C%20Ma%27am%21")) ;

This example gives the following output:

The_rain. In Spain, Ma'am!

See also

“escape() function” on page 86.

114 WebTransactions Template Language

Global functions writeToTrace() function

6.27 writeToTrace() function

This function writes an entry in the WebTransactions trace file each time the trace option is
activated. This trace entry is preceded by the text writeToTrace(): for identification
purposes.

writeToTrace (expression)

expression
Any expression. This expression is converted to the data type String and written to
the trace file each time the trace option is activated.

See also

“setTraceLevel() function” on page 113.

WebTransactions Template Language 115

writeToTrace() function Global functions

116 WebTransactions Template Language

7 Built-in classes and methods

Every variable of type object belongs to a specific class, which determines the methods
which are available for the object. For example, the replace method can be used with all
objects of the String class. For many classes, there are also predefined attributes which
are automatically possessed by every object in this class. For instance, all strings have the
Tength attribute, which specifies the number of characters in the string.

This chapter describes the built-in classes and the predefined attributes and methods which
are supported by WebTransactions in alphabetical order. These classes behave in the
same way as the corresponding JavaScript classes.

WebTransactions Template Language 117

Array class

Built-in classes and methods

7.1

711

Array class

Arrays are objects whose attributes are named by means of indices. Indices are non-
negative integers beginning with 0.

Arrays are created with a specified length and can be dynamically extended. The individual
attributes of an array may be of different types. An array may contain another array as one
of its attributes. In this way, you can create multidimensional arrays (see “Example 2: Two-
dimensional array” on page 119).

Constructors

Array()
Array (comp)

Array(comp, comp, ...)

Return value

Obiject of the Array class

Parameters

comp Component of the array

If the constructor is called without an argument, an array of length 0 is created without
attributes.

If the constructor is called with a single argument, an array of length 1 is created; an
attribute is generated for the argument and the argument is assigned to it.!

If the constructor is called with several arguments, an array of the corresponding length is
created. An attribute is generated for each argument and assigned to it.

An array can also be created directly by means of assignment in the literal notation
(see Example 1 below).

i

1 Up to WTML version 2.0, this constructor is used to create an argument of the given length.

118

WebTransactions Template Language

Built-in classes and methods Array class

Example 1

a = new Array();

b = new Array(25);

c = new Array(4,"Peter");
d=[1, "stringl"J;

Explanation:
a is an array with no attributes, i.e. of length 0.
b is an array of length 1. The attribute bL01 is of type number and has the value 25.1

c is an array of length 2. The attribute c[01 is of type number and has the value 4;
c[1] is of type string and has the value "Peter".

d is an array of length 2. The attribute dC01] is of type number and has the value 1;
d[1] is of type string and has the value "stringl".

Example 2: Two-dimensional array

d=new Array();
for (i=0;i<=2;i++) dl[il=new Array();

for (i=0;i<=2;i++) {
str=1+1 + ".Row: | ";
for (j=0;j<=4;j++) {
dLiICg=ier . +j+r | "
str+=dl[iJ[j];
}

document.write(str+"
");

}

Explanation:

The first two lines of this example define a two-dimensional array.
The subsequent nested for loops assign values to the array elements (in each case a string
containing the indices). The values for each row are combined in the string str and output.

This example gives the following output:

1.Row: | 0,0 | 0,1 | 0,2 | 0,3 | 0,4 |
2.Row: | 1,0 | 1,1 | 1,2 | 1,3 | 1,4 |
3.Row: | 2,0 | 2,1 | 2,2] 2,3 | 2,4 |

T Up to WTML version 2.0, b is ceated as an array with a length of 25.

WebTransactions Template Language 119

Array class Built-in classes and methods

7.1.2 Attributes

length

The Tength attribute is an integer which specifies the number of elements in the array.
An initial length is always defined implicitly by the constructor.

If new indices are assigned and created, then the length of the array is always 1 greater
than the largest index used (since the indices start at O rather than at 1).

In the case of multi-dimensional arrays, only the elements of the first dimension are taken
into account. This is because the array objects of other dimensions are themselves
independent objects (see the two-dimensional array g in the example below).

Example

e=new Array();
document.write("Length of array e is: " + e.length + "
");

f=new Array(25);
document.write("Length of array f is: " + f.length + "
");

f[991="1ast element";
document.write("New length of array f is:

"+ f.length + "
");

g=new Array();
for (i=0;i<=2;i++) glil=new Array(6);
document.write("Length of array g is: " + g.length + "
");

This example gives the following output:

Length of array e is: 0
Length of array f is: 1
New Tength of array f is: 100
Length of array g is: 3

120 WebTransactions Template Language

Built-in classes and methods Array class

7.1.3 concat method

This method joins the calling array with another array transferred in the array argument to
form a result array. The calling array and the array transferred in array remain unchanged

concat (array)

Return value

An array consisting of the calling array and the array transferred in the array argument

Parameters

array Array which is to be appended to the calling array to form a result array

Example

h=new Array("Maria","Lena","Hilda");
i=new Array("Frank","Oscar","Harry");
Jj=h.concat(i);
document.write(j.length + " ");
document.write(j);

This example gives the following output:

6 ["Maria","Lena","Hilda","Frank","Oscar","Harry"]

WebTransactions Template Language 121

Array class

Built-in classes and methods

7.1.4 equals method

This method compares the calling array object with the object transferred in the object argu-
ment for equality of class, attributes, and values.

Two arrays are said to be equal if they have the same number of elements and the same
values for corresponding array elements (elements with the same index or the same at-
tribute names in the case of associative arrays).

equals (object)

Return value

Boolean return value: true if the two objects are equal, false if not

Parameters

object Object with which the calling object is to be compared

Example

myArrayl = new Array("a","b","c");
myArray2 = new Array("a","b","c");

document.write(myArrayl.equals(myArray2)? "Arrays equal": "Arrays unequal");
This example gives the following output:

Arrays equal

122

WebTransactions Template Language

Built-in classes and methods Array class

7.1.5 getClassName method

This method returns a string specifying the name of the class to which the calling object
belongs.

getClassName()

Return value

String specifying the class to which the calling object belongs, in this case Array

Parameters

None

Example

arr = new Array();
arrClass = arr.getClassName(); // arrClass is a string containing
// the class name "Array"

WebTransactions Template Language 123

Array class

Built-in classes and methods

7.1.6 join method

This method converts all the elements of an array into strings and combines them in a single
string. Undefined elements are converted into blank strings.
join()
Join(separator)
Return value
String formed from the elements of the calling array object
Parameters
separator

String expression which is to be used to separate the individual elements. If

separator is not already of type string, it is converted to this type. If separator is not

specified, the elements are separated by commas (optional).
Example 1
h=new Array("Maria","Lena","Harry");
document.write(h.join(" = ") + ".");
This example gives the following output:
Maria — Lena — Harry.
Example 2
d=new Array();
for (i=0;i<=2;i++) dlil=new Array();
for (i=0;i<=2;i++) {

for (j=0;j<=4;j++) {
diiJljl=i+":"+j;
b
b
document.write(d.join("
"));
This example gives the following output:
[lIO:OII s IIO:1II s IIO:ZII s IIO:3VI S IIO:4II]
["1:0" ,II1:1II ’II1:2II ,II1:3VI ’II1:4II]
["2:0" s II2:1II S II2:2II s lI2:3VI S II2:4II]
124 WebTransactions Template Language

Built-in classes and methods Array class

7.1.7 pop method

This method deletes the last array element and returns its value. It modifies the calling ob-
ject.

pop ()

Return value

Value of the last array element

Parameters

None

Example

See push method

WebTransactions Template Language 125

Array class Built-in classes and methods

7.1.8 push method

This method appends the specified elements eleml, elem2, etc. to the calling array and re-
turns the new array length. It modifies the calling object.

push(eleml)
push(eleml, elem2)

push(eleml, elem2, ...)

Return value

Length of the array after the push call

Parameters

eleml, elem2, ...
Elements to be appended to the array

Example

J=new Array();
k=j.push("a", "b", "c");
1=j.pop();

document.write(k + "
");
document.write(l + "
");
document.write(j);

This example gives the following output:
3

"a”,”b”]

126 WebTransactions Template Language

Built-in classes and methods Array class

7.1.9 reverse method

This method reverses the sequence of the array elements, so that the first element be-
comes the last element and the last element becomes the first. It modifies the calling object.

. If the reverse method is applied to an object belonging to a class derived from the
1 Array class, the inheritance principle is implicitly violated (see example). This is be-
cause this method assigns the respective prototype value to the corresponding in-
stance attribute for all array elements before execution.
reverse()

Return value

Reference to the calling object

Parameters

None

Example

// "Normal" arrays:

jl=new Array("a","b","c");
kl=jl.reverse();

document.write("kl: " + k1l + "
");
document.write("jl: " + jl + "
");

// Derived classes:

j2=new Array("a","b","c");
function MyArray() {1}
MyArray.prototype = j2;
k2=new MyArray();
k2.reverse();

jerol="d";
document.write("k2: " + k2 + "
");
document.write("j2: " + j2);

This example gives the following output:

kl:
jl:
k2:
je:

['c'.'b"."a
["c","b","a
["c","b","a"
['d"."b"."c

WebTransactions Template Language 127

Array class Built-in classes and methods

7.1.10 shift method

This method deletes the first array element.

shift()

Return value

Deleted array element

Parameters

None

Example
See unshift method on page 135.

128 WebTransactions Template Language

Built-in classes and methods Array class

7.1.11 slice method

This method returns the section of the calling array which extends from indexI 10 index2-1.
It does not modify the calling object.

s1ice(indexl)
slice(incexl, index2)

Return value

Section of the calling array which extends from index1I to index2-1

Parameters

index] Index of the element in the calling array which is to be the first element of the result
array.
If indexl < O or is greater than the length of the array, an empty array is returned.

index2 Index of the first element in the calling array which is not to be included in the result
array.

If index2 is not specified, the result array extends to the end of the calling array
(same as slice(indexl, callingArray.1ength)).

If index2 is less than index1, an empty array is returned.

If index2 < 0, it specifies the offset from the end of the array

(same as slicelindexl, callingArray.1ength+index2-1). If this index is smaller than
indexl, an empty array is returned.

Example

J=new Array("a", "b", "c", "d", "e");
k=j.slice(1,3);

1=j.slice(2,-1);

document.write(j + "
");
document.write(k + "
");
document.write(l + "
");

This example gives the following output:

[”a”,”b”,”C”,”d”,”e”]
["b”,"C”]
I:”C”,”d”]

WebTransactions Template Language 129

Array class Built-in classes and methods

7.1.12 sort method

This method sorts an array in ascending order. It modifies the calling array. If the method is
called without any arguments then the values of all the defined indices are converted into

strings and sorted lexicographically (for example, “14” will come before “3”). Undefined ar-
ray elements are converted into empty strings and entered at the end of the array (see “Ex-
ample 2” on page 131).

sort()
sort (compareFunction)

Return value

Calling array sorted in ascending order

Parameters

compareFunction
If you want to apply a different sort order, then you must specify the name of a
function which is defined as follows:
function compareFunction(a,b){...return ..}

The return value controls the comparison:

— If ais to precede b, then the function must return a numerical value less than 0.

— Ifbisto precede a, then the function must return a numerical value greater than
0.

— If the order in which a and b occur is of no significance, then the function must
return the value 0.

If you want to compare numbers rather than strings, then the comparison function simply
needs to subtract b from a (see “Example 3” on page 131).

. If the sort method is applied to an object belonging to a class derived from the
1 Array class, the inheritance principle is implicitly violated (see “Example 5” on
page 132). This is because this method assigns the respective prototype value to
the corresponding instance attribute for all array elements before execution.

130 WebTransactions Template Language

Built-in classes and methods Array class

Example 1

myArray=new Array("Pit","Zoe","Adam");
document.write(myArray.sort());

This example gives the following output:
["Adam","Pit","Zoe"]

Example 2

a=new Array();
al0J="Zoe";
al4]="Adam";
b=a.sort();
document.write(b[1]);

This example gives the following output:
/Zoe

Example 3

function compareNumber(a,b) {
return a—-b;

}

myArray=new Array(14,3,9,"-2",-8);

sortedArray=myArray.sort();

document.write(sortedArray + " (without comparison function)
");
sortedArray=myArray.sort(compareNumber) ;

document.write(sortedArray + " (with comparison function)");

This example gives the following output. The output illustrates that numbers are correctly
sorted in numerical order if the comparison function is used - even when numerical strings
are being processed ("-2"). This is because the operands of the two-position minus
operator are converted to type number.

["-2",-8,14,3,9]1 (without comparison function)
[-8,"-2",3,9,141 (with comparison function)

WebTransactions Template Language 131

Array class Built-in classes and methods

Example 4

function Comparelength(a,b) {
if (a.length < b.length)
return —-1;
if (a.length > b.length)
return 1;
return 0;
b
myarray=new Array("Sebastian","Eva", "Roberta","Mike","Martin","Ursula");
sorted_array=myarray.sort(ComparelLength);
document.write(sorted_array.join("
"));

This example gives the following output:

Eva
Ursula
Mike
Martin
Roberta
Sebastian

Example 5
a = 1[5, 7, 41;

function MyArray() {1}
MyArray.prototype = a;

b = new MyArray(); // b =15, 7, 4]

al3] = 1;

alll = 9; // b =105, 9, 4, 11 (due to inheritance)
b.sort(); // b =11, 4, 5, 9]

alll = 7; // b =11, 4, 5, 9] (inheritance violated)

132 WebTransactions Template Language

Built-in classes and methods Array class

7.1.13 splice method

This method returns a section of the calling array and if necessary replaces it with the op-
tional elements specified. It modifies the calling object.

splice(index, count)
splice(index, count, eleml)
splice(index, count, eleml, elem2)

splice(index, count, eleml, elem2, ...)

Return value

Array containing the elements removed from the calling array

Parameters

index Index of the first element to be deleted in the calling array
If index<0, index=0 is assumed.
count Number of elements to be deleted from the calling array.

If count=0, no array elements are deleted.

If count is greater than the number of remaining elements in the array, all remaining
elements are deleted.

If count < 0, no elements are deleted.

eleml, elem2, ...
(Optional) If at least one element is specified, this is inserted together with all other
specified elements at the position in the calling array at which elements were previ-
ously deleted.

Example

j=new Array('a", "b", "c", "d");
document.write(j + "
");
k=j.splice(2,1,"z");

document.write("Deleted: " + k + "!" + "
");
document.write(j + "
");

This example gives the following output:

I:”a”,”b”,”C”,”d”:l
Deleted: ["c"]!
I:”a”,”b”,”Z”,”d”:l

WebTransactions Template Language 133

Array class Built-in classes and methods

7.1.14 toString method
This method transforms the calling array into a string containing the values of the array el-
ements separated by commas:
["element0", "elementl", ...]

In order to avoid endless chains, the toString method will terminate output in the event of
recursion, i.e. output will be stopped as soon as the same object reference is encountered
a second time

toString()

Return value

String containing values of the elements of the calling array, separated by commas

Parameters

None

Example

myArray = new Array('This", "is", "a", "string");

document.write(myArray.toString());
myArray[4] = new String("and an object");
document.write(myArray.toString());

This example gives the following output:1

I:llTh-iSH,Il-isll,Ilall,llstr-ingll:l
["This","is","a","string", (new String("and an object"))]

You will find an example illustrating recursion in the description of Object.toString() on
page 175.

T Up to WTML version 2.0, there are no square brackets [] in the entry.

134 WebTransactions Template Language

Built-in classes and methods Array class

7.1.15 unshift method

This method inserts the specified elements eleml, elem2, etc. at the start of the calling array
and returns the new array length.

unshift(eleml)
unshift(eleml, elem2)

unshift(eleml, elem2, ...)

Return value

Length of the calling array after the unshift call

Parameters

eleml, elem?2, ...
Values to be inserted at the start of the calling array

This method modifies the calling object.

. If the unshift method is applied to an object belonging to a class derived from the
1 Array class, the inheritance principle is implicitly violated. This is because this
method assigns the respective prototype value to the corresponding instance
attribute for all array elements before execution.
Example

Jj=new Array();

k=j.unshift("a", "b", "c");
document.write(j + "
");
document.write(k + "
");

1=j.shift();
document.write(l + "
");
document.write(j);

This example gives the following output:

"a”,"b”,"C”]

WebTransactions Template Language 135

Array class

Built-in classes and methods

7.1.16

valueOf method

This method returns a reference to the calling array object.

valueOf()

Return value

Reference to the calling array object
Parameters
None

Example

myArray = new Array("l1","2","3");

document.write(myArray.valueOf()[1]1);

This example gives the following output:
2

136

WebTransactions Template Language

Built-in classes and methods Boolean class

7.2 Boolean class

An object of the Boolean class represents a logical value. There are no predefined attributes
for this class.

7.2.1 Constructors

Boolean (expression)
Boolean()

Return value

Object of the Boolean class

Parameters

expression
The expression expression is evaluated and converted to type boolean if necessary.
An object with this value is created. If the constructor is called without an argument,
an object with the value false is created.

7.2.2 equals method

This method compares the calling boolean object with the object transferred in the object
argument for equality of class and value.

equals (object)

Return value

Boolean return value: true if the two objects are equal, false if not

Parameters

object Boolean object with which the calling boolean object is to be compared

WebTransactions Template Language 137

Boolean class Built-in classes and methods

7.2.3

7.2.4

getClassName method

This method returns a string specifying the name of the class to which the calling object
belongs.

getClassName()

Return value

String specifying the class to which the calling object belongs, in this case Boolean
Parameters
None

Example

boolobj = new Boolean();
boolClass = boolobj.getClassName(); // boolClass is a string containing
// the class name "Boolean"

setValue method

This method assigns a new value to the calling boolean object.

setValue(value)

Return value
None
Parameters

value New value for the calling boolean object

138

WebTransactions Template Language

Built-in classes and methods Boolean class

7.2.5 toString method

This method converts the boolean values true and false into the corresponding string val-
ues "true" and "false".

toString()

Return value

String "true" or "false", depending on the value of the calling boolean object

Parameters
None

Example

boolVar = new Boolean(true);
document.write(boolVar.toString());

This example gives the following output:

true

WebTransactions Template Language 139

Boolean class Built-in classes and methods

7.2.6 valueOf method

This method returns the boolean value true or false, depending on the value of the object.

valueOf()

Return value

Boolean value true or false

Parameters
None

Example

boolVar = new Boolean(true);
document.write(boolVar.valueOf());

This example gives the following output:

true

140 WebTransactions Template Language

Built-in classes and methods Date class

7.3 Date class

7.3.1

An object of the Date class represents a date.

Constructors

Date()

Date (milliseconds)

Date(year, month, day)

Date(year, month, day, hour)

Date(year, month, day, hour, minute)
Date(year, month, day, hour, minute, second)

Return value

Object of the Date class

Parameters

If the constructor is called without an argument, the new object is initialized with the current
date and time.

If a single argument (milliseconds) is specified, this is converted to type number and inter-
preted as the number of milliseconds since 1.1.1970 00:00:00 GMT. The new object is then
initialized with this time. If the specified time lies outside the permitted range (1970-9999),
the object is initialized with the current time.

For the arguments month, day, hour, minute and second the following ranges are valid:

month. 0-11
day: 1-31
hour: 0-23

minute , second: 0—59

If three or more arguments are specified, these are converted to type number and inter-
preted as a local time specification in the format year, month, day, hour, minute, second.
Missing arguments are set to 0 by default.

WebTransactions Template Language 141

Date class Built-in classes and methods

7.3.2 equals method

This method compares the calling date object with the object transferred in the object argu-
ment for equality of class, attributes, and values.

equals (object)

Return value

Boolean return value: true if the two objects are equal, false if not

Parameters

object Object with which the calling object is to be compared

7.3.3 getClassName method

This method returns a string specifying the name of the class to which the calling object
belongs.

getClassName()

Return value

String specifying the class to which the calling object belongs, in this case Date

Parameters

None

142 WebTransactions Template Language

Built-in classes and methods Date class

7.3.4 get... methods

getDate()
getDay ()
getHours()
getMinutes()
getMonth()
getSeconds ()
getYear()

Return values

getDate() returns the day of the month.

getDay () returns the day of the week (in numerical form, i.e. Sunday = 0, Monday=1, etc.).
getHours () returns the hour.

getMinutes () returns the minute.

getSeconds () returns the second.

getMonth () returns the month (in numerical form, i.e. January = 0, February =1, etc).
getYear() returns the year

These methods return the value of the associated attribute in the local date and time.

Parameters

None

WebTransactions Template Language 143

Date class Built-in classes and methods

7.3.5getTimezoneOffset method

This method indicates the time difference between local time and GMT. The difference is
given in minutes.

getTimezoneOffset()

Return value

number data type value in minutes giving the time difference.
Parameter

None

Example

christmasTime = new Date(2002, 11, 25);

output = 'Local time on Christmas Day 2002 is different from GMT by ';
output += christmasTime.getTimezoneOffset();

output += ' minutes!';

document.writeln(output);

In the Central European time belt the examples generates the following output:
Local time on Christmas Day 2002 is different from GMT by 60 minutes!

144 WebTransactions Template Language

Built-in classes and methods Date class

7.3.6

7.3.7

set... methods

setDate(Day)
setHours (Hour)
setMinutes (Minute)
setMonth(Month)
setSeconds (Second)
setYear (Year)

These methods set the value of the associated attribute to the specified value.

Return value

None

Parameters

If the value specified for the argument hour, minute, second, or month is not valid, the
argument is set to 0 by default. If the value specified for the argument day is not valid, this
is set to 1. No check is carried out to establish whether the value specified in day is valid for
the corresponding month. If the value specified in year lies outside the permitted range
(1970-9999), the object is not modified.

All arguments must be specified in local time.

toGMTString method

This method returns a string in the format "Mon, Dec 20 1999 17:23:45 GMT" for the calling
date object. In other words, it converts the local date and time to GMT.

toGMTString()

Return value
String containing the date of the calling object in the format described above
Parameters

None

WebTransactions Template Language 145

Date class Built-in classes and methods

7.3.8 toLocaleString method

This method returns a string in the format "12/20/99 17:23:45" containing the local date
and time for the date object. Years prior to 2000 are shown using two figures, years after
2000 use all four figures.

tolLocaleString()

Return value

String containing the date of the calling object in the format described above
Parameters

None

7.3.9 toString method

This method returns for the Date object a string in the format
"Mon Dec 20 17:23:45 1999" in local time.

toString()

Return value

String containing the date of the calling object in the format described above
Parameters

None

Example

<wtoncreatescript>

<!|—

d=new Date();

o=new Object();

0.d=d;
document.writeln('
",d.toString());
document.writeln('
",0.toString());
/==

</wtoncreatescript>

The examples generates the following output:
Tue Jun 15 20:26:41 2010 {d: (new Date(1276626401171))}

146 WebTransactions Template Language

Built-in classes and methods Date class

7.3.10 valueOf method

This method returns a value of data type number for the date object. This value specifies the
number of milliseconds since 01.01.1970 00:00:00h GMT.

valueOf()

Return value
Value of data type number which represents the value of the calling date object
Parameters

None

WebTransactions Template Language 147

Document class Built-in classes and methods

7.4 Document class

7.4.1

The Document class allows you access the HTML output stream and files.
Within WTScript, Document has no predefined attributes.

Within client-side JavaScript (which is executed in the browser and not on the
WebTransactions system), you can of course use all attributes and methods of the
document object which are defined in JavaScript.

Constructor

At least one instance of the Document class is always automatically available. This can be
used to access the HTML output stream.

The constructor also allows you to generate instances of the Document class for accessing
files.

Document (filename)

Return value

Instance of the Document class for accessing files

Parameters

filename
Name of the file you wish to access. This must be located under the base directory.
Relative file names refer to the session directory. The system searches for files in
the Session directory (tmp/session-number). You can also specify absolute path
names.

The constructor creates an object of the Document class. The specified file is not
opened implicitly (see section “open method” on page 151).

i @

148

WebTransactions Template Language

Built-in classes and methods Document class

7.4.2 clear method

This method deletes the previous content of the output file or the HTML output stream. It
has no return value.

It can be applied to the HTML output stream (document.clear()) and to objects that were
created with new Document (file) and opened for writing with open () (i.e. without the READ
parameter).

clear()

Return value

None

Parameters

None

7.4.3 close method

This method closes the output file currently open and returns a reference to the object. It
can only be applied to objects created with new Document (file), and not to the HTML output
stream.

close()

Return value

Reference to the calling object

Parameters

None

WebTransactions Template Language 149

Document class Built-in classes and methods

74.4

7.4.5

equals method

This method compares the calling document object with the object transferred in the object
argument for equality of class, attributes, and values.

equals (object)

Return value

Boolean return value: true if the two objects are equal, false if not

Parameters

object Object with which the calling object is to be compared

getClassName method

This method returns a string specifying the name of the class to which the calling object
belongs.

getClassName()

Return value

String specifying the class to which the calling object belongs, in this case "Document"

Parameters

None

150

WebTransactions Template Language

Built-in classes and methods Document class

7.4.6 open method

This method opens the file specified in the constructor and returns a reference to the object.
If it is not explicitly preceded by a close() call, the close() method is executed implicitly.

open()
open (openmode)

openmode ::= "WRITE"[,"APPEND"J|"READ"|"RCEADIWLRITEI"L,"APPEND" 1| "APPEND"

Return value

Reference to the document object

Parameters

WRITE (default)
The file is opened in write mode. You can then use the methods write() and
writeln() to enter the output text in the file. If the file does not yet exist, it is created
automatically.

WRITE, APPEND
The file is opened in write mode. You can then use the methods write() and
writeln() to enter the output text in the file. If the file does not yet exist, it is created
automatically. If the file already exists, the new text is appended to it.

READ The file is opened in read-only mode and must already exist.

READWRITE
The file must exist and is opened in write mode. You can then use the methods
write() andwriteln() to enter the output text in the file. The existing contents are
deleted on the first writel1n1().

READWRITE, APPEND
If the file does not yet exist, it is created automatically. If the file already exists, the
new text is appended to it.

APPEND
The file is opened in write mode. You can then use the methods write() and
writeln() to append the output text to the end of the file. If the file does not yet
exist, it is created automatically. If the file already exists, the new text is appended
to it.

WebTransactions Template Language 151

Document class Built-in classes and methods

7.4.7

7.4.8

read method

This method reads the complete contents of the file that is assigned to the document object
and returns them. It can only be used for objects that were created with new Document (file)
and opened for reading with open() and the parameter READ or READWRITE.

read()

Return value

Contents of the file assigned to the document object

Parameters

None

Example

file = new Document("../greetings.txt");
file.open("READ");
if (WT_SYSTEM.ERROR == "")

str = file.read();

document.write(str);

valueOf method

This method returns the name of the file which is assigned to the document object. If the
method is used with the predefined document object, then the string " (nu11) " is returned.

valueOf()

Return value

Name of the file assigned to the document object

Parameters

None

152

WebTransactions Template Language

Built-in classes and methods Document class

7.4.9 write / writeln method

These two methods output the arguments, converted to string form, in the output stream to
the browser or to an open output file. This means that you can generate output within
OnCreate and OnReceive scripts. writeln also generates a terminating line feed. However,
since by default HTML simply treats line feeds as separators, writeln only generates line
feeds in the case of preformatted text, e.g. within <PRE> tags.

write()
write(expression)
write(expression, expression)

write(expression, expression, ...)

writeln()
writeln(expression)
writeln(expression, expression)

writeln(expression, expression, ...)

Return value

None

Parameters

expression
One or more expressions to be written to the output stream in string format.
write and writeln can be called with any number of arguments.

Example

document.write("Good");
document.write("Morning");
document.write("
");
document.writeln("Good");
document.writeln("Morning");

This example gives the following output:

(Output as part of preformatted text:)
GoodMorning

Good

Morning

(Output outside preformatted text:)
GoodMorning
Good Morning

WebTransactions Template Language 153

Host data object class Built-in classes and methods

7.5 Host data object class

7.5.1

All the data which WebTransactions receives from or sends to the host application is stored
in host data objects (for more information, see the WebTransactions manual “Concepts and
Functions”).

When messages are received from the host, host data objects are created as attributes of
the corresponding communication object. There are no explicit constructors.

getClassName method

This method returns a string specifying the name of the class to which the calling object
belongs.

getClassName()

Return value

String specifying the class to which the calling object belongs, in this case
"WT_OIldHostobject".

Parameters

None

154

WebTransactions Template Language

Built-in classes and methods Host data object class

7.5.2 toString method

This method evaluates the calling object in accordance with the class template and returns
the result as a string.

toString()
toString(expression)

Return value

String containing the result of the class template evaluation

Parameters

expression
The class template expression.c1t is used. This allows you to define additional class
templates independently of the type of host data object and call these as required.

If no argument is specified, WebTransactions uses the class template which corre-
sponds to the type of the calling host data object (rype.c1t). The possible types de-
pend on the communication module: in the case of openUTM, the 10TYPE attribute
is evaluated whereas for OSD and MVS, the Type attribute is also evaluated.

For further information on class templates, see chapter “Class templates (*.clt)” on
page 309.

The evaluation operator is described in section “Evaluation operator ##...#” on
page 79.

i @

WebTransactions Template Language 155

Host data object class Built-in classes and methods

7.5.3 valueOf method

This method returns a reference to the object itself.

valueOf()

Return value

Reference to the calling host object

Parameters

None

156 WebTransactions Template Language

Built-in classes and methods Function class

7.6 Function class
The Function class is used to define and handle functions as objects. It recognizes a
constructor and attributes, but not methods for Function objects.
Dynamically generated functions have two advantages over interpreted functions:
e They run quicker as quite a few operations need only be performed once.

e The function body can be generated dynamically, i.e. depending on the data available.

7.6.1 Constructors

Function(body)
Function(argl, body)
Function(argl, arg2, body)

Function(argl, ..., argn, body)

Return value

Instance of the Function class
Parameters

argl, ..., argn
Formal arguments of the new function

body String with WTScript statements

The constructor creates a new object of the Function class with the optional formal
arguments argl through argn and the statements defined in body.

WebTransactions Template Language 157

Function class Built-in classes and methods

7.6.2

Example

The following functions are to be created using the constructor, rather than by means of a
fixed definition:

function fl(no) {
document.writeln(no.getDay()+' '.substring(0,4),
no.getMonth()+' '.substring(0,4),
no.getYear()+' '.substring(0,6),
no J;

}
A corresponding function created using the constructor might look like this, for example:

f1l = new Function("no", "{document.writeln (no.getDay()+' '.substring(0,4)
+ no.getMonth()+' '.substring(0,4)
+ no.getYear()+' '.substring(0,6)
, no);t');

Attributes

arity
caller
prototype
arguments
callee

arity
This attribute contains the number of defined arguments.

caller
The local variable caller contains a reference to the calling function. It is valid only
when it appears in the function body. If the function was called from the top script
level, caller has the value nul1.

prototype
This attribute contains all class properties, which are inherited by all instances of
that class.

arguments
When processing the constructor, the arguments attribute provides an array which
can be used to access the current parameters of the function.

callee
This attribute contains a reference to the function itself. It is valid only when it
appears in the function body, and is used to create recursive calls.

158

WebTransactions Template Language

Built-in classes and methods Function class

Example

The following example demonstrates how to use the Function class to define a recursive
function:

functStr = "{if (a == 3) { b += a;}

calleeTyp = typeof callee;

functCallee = callee;

functCalleeString = callee.toString();

if (caller)

{ callerTyp = typeof caller;
functCaller = caller;
functCallerString = caller.toString();

t

if (a == [| b ==0)

{ document.writeln(\"<TR><TD>Function terminated prematurely as

argument = 0!</TD></TR>\");

return 0;

t

document.writeln(\"<TR><TD>Recursive call of calleel!</TD><TD>\"
+ callee(0, 0) + \"</TD></TR>\");

return b;
b
functParl = "a";
functPar?2 = "b";
funct0l = new Function (functParl, functPar2, functStr);

document.writeln("<TABLE>");

document.writeln("<TR><TD>Number of function parameters for
funct01():</TD><TD>" + functOl.arity + "</TD></TR>");

document.writeln("<TR><TD>Names of the function parameters:</TD></TR>");

document.writeln("<TR><TD>1. ," + functParl.toString() + "';</TD><TD>2. ," +
functPar2.toString() + "';</TD></TR>");

document.writeln("<TR><TD> Here are the <BIG>calls</BIG> of
funct01 () !</TD></TR>");

document.writeln("<TR><TD> funct01(4, 2) returns:</TD><TD>" + funct01(4, 2) +
"</TD></TR>");

document.writeln("<TR><TD> funct01(3, 2) returns:</TD><TD>" + funct01(3, 2) +
"</TD></TR>");

This example gives the following output:

Number of function parameters for funct0l(): 2
Names of the function parameters:
1. ,a'; 2. ,b';

Here are the calls of funct0l()!
Function terminated prematurely as argument = 0!
Recursive call of callee! 0

funct01(4, 2) returns: 2

Function terminated prematurely as argument

I
o

WebTransactions Template Language 159

Function class Built-in classes and methods

Recursive call of callee! 0
funct01(3, 2) returns: 5

7.6.3 equals method

This method compares the calling function object with the object transferred in the object
argument for equality of class, attributes, and values.

equals (object)

Return value

Boolean return value: true if the two objects are equal, false if not

Parameters

object Object with which the calling object is to be compared

7.6.4 getClassName method

This method returns a string specifying the name of the class to which the calling object
belongs.

getClassName()

Return value

String specifying the class to which the calling object belongs, in this case Function

Parameters

None

160 WebTransactions Template Language

Built-in classes and methods Math class

7.7 Math class

The Math class is used for mathematical operations and does not permit instantiation. It
therefore has no constructor. The methods are available only as class methods, i.e. they are
called directly using the class name: Math. function().

7.7.1 Class attributes

The following class attributes exist.

E Base of the natural logarithm (Eulerian number e, approx. 2.718281828)
LN10 Natural logarithm of 10 (approx. 2.302585)

LN2 Natural logarithm of 2 (approx. 0.693147)

LOG2E Logarithm to the base 2 of E (approx. 1.442695)

LOG1O0E Decimal logarithm of E (approx. 0.434294)

PI Value of &t (approx. 3.141592)

SQRT2 Square root of 2 (approx. 1.414213)

SQRT1_2 Square root of ¥z (approx. 0.707106)

7.7.2 abs method

This method returns the absolute value of number.

abs (number)

Return value
Absolute value of number
Parameters

number Any floating-point number whose absolute value is to be returned

WebTransactions Template Language 161

Math class

Built-in classes and methods

7.7.3 acos method

7.7.4

This method returns the arccosine of the value specified in number.

acos (number)

Return value

If the argument is a value between -1 and +1, the result is returned in the radian 0 to +m.
Otherwise, NaN is returned.
Parameters

number Floating-point number between -1 and +1

asin method

This method returns the arcsine of the value specified in number.

asin(number)

Return value

If the argument is a value between -1 and +1, the result is returned in the radian -r/2 to +m/2.
Otherwise, NaN is returned.

Parameters

number Floating-point number between -1 and +1

162

WebTransactions Template Language

Built-in classes and methods Math class

7.7.5 atan method

This method returns the arctangent of the value specified in number.

atan (number)

Return value

The result is returned in the radian -nt/2 to +m/2.
Parameters

number Floating-point number between —-Infinity and +Infinity

7.7.6 ceil method

This method returns the lowest integer that is not less than the value specified in number.

ceil (number)

Return value

If number is an integer, the result is identical to the argument. Otherwise, the next highest
integer to number is returned.

Parameters

number Any floating-point number

Example

document.writeln(("
ceil(-3.14) is " + Math.ceil(=3.14) + "1"));
document.writeln(("
ceil(3.14) is " + Math.ceil(3.14) + "1"));

This example gives the following output:

ceil(-3.14) is -3!
ceil(3.14) is 4!

WebTransactions Template Language 163

Math class

Built-in classes and methods

7.7.7

7.7.8

cos method

This method returns the cosine of the value specified in number.

cos (number)

Return value

Value between -1 and 1
Parameters

number Floating-point number in the radian

exp method

This method returns €"">¢" (e to the power of number)

exp (number)

Return value
e™mber (g to the power of number)
Parameters

number Floating point number

164

WebTransactions Template Language

Built-in classes and methods Math class

7.7.9 floor method

This method returns the highest integer that is not greater than the value specified in
number.

floor (number)

Return value

If number is an integer, the result is identical to the argument. Otherwise, the next lowest
integer to number is returned.

Parameters

number Floating point number

Example

document.writeln(("
floor(-=3.14) is " + Math.floor(=3.14) + "1"));
document.writeln(("
floor(3.14) is " + Math.floor(3.14) + "1"));

This example gives the following output:

floor(=3.14) is —4!
floor(3.14) is 3!

7.7.10 log method

This method returns the natural logarithm of the value specified in number.

1og (number)

Return value
Natural logarithm of the value specified in number. If number is less than 0, NaN is returned.
Parameter

number Floating point number whose natural logarithm is to be returned

WebTransactions Template Language 165

Math class

Built-in classes and methods

7.711

7.7.12

max method

This method returns the greater of two floating-point numbers.

max (numberl , number2)

Return value

Value of the greater of the two arguments
Parameters

numberl
number2
Floating-point numbers whose maximum is to be returned

min method

This method returns the lesser of two floating-point numbers.

min(numberl , number2)

Return value

Value of the lesser of the two arguments
Parameters

numberl
number?2
Floating-point numbers whose minimum is to be returned

166

WebTransactions Template Language

Built-in classes and methods Math class

7.7.13 pow method

This method returns a floating-point number raised to the power of another floating-point
number.

pow (numberl , number2)

Return value

number™"%¢" (number] to the power of number2), provided the arguments are valid. Other-
wise, NaN is returned.

Parameters

numberl
Any floating-point number

number2
Any floating-point number

7.7.14 random method

This method returns a pseudo random number.

random()

Return value

A random number of type number, which is derived from the current time.
This value will be greater than or equal to 0 and less than 1.
Parameters

None

WebTransactions Template Language 167

Math class Built-in classes and methods

7.7.15 round method

This method returns the value specified in number rounded to the nearest integer. The value
.5 is rounded up to the nearest integer.

round (number)

Return value

Value specified in number rounded off to the nearest integer
Parameters

number Any floating-point number

Example

document.writeln(("
round(0.500) is " + Math.round(0.5) + "!1"));
document.writeln(("
round(0.499) is " + Math.round(0.499) + "1"));
document.writeln(("
round(-0.500) is " + Math.round(-0.5) + "!"));
document.writeln(("
round(-0.501) is " + Math.round(=0.501) + "1"));

This example gives the following output:

round(0.500) is 1!
round(0.499) is 0!
round(-0.500) is 0!
round(-0.501) is -1!

168 WebTransactions Template Language

Built-in classes and methods Math class

7.7.16 sin method

This method returns the sine of a floating-point number.

sin(number)

Return value

Sine of the value specified in number. The result is a value between -1 and 1.
Parameters

number Any floating-point number

7.717 sqgrt method

This method returns the square root of the value specified in number.

sqrt (number)

Return value

Square root of the value specified in number, provided number >=0. Otherwise, NaN is re-
turned.

Parameters

number Floating-point number >=0

7.7.18 tan method

This method returns the tangent of a floating-point number.

tan (number)

Return value
Tangent of the value specified in number
Parameters

number Any floating-point number

WebTransactions Template Language 169

Number class Built-in classes and methods

7.8

7.8.1

7.8.2

Number class

An object belonging to the Number class represents a numerical value.

Constructors

Number (expression)
Number ()

Return value

Object of type Number

Parameters

expression
The expression expression is evaluated and converted to type number if necessary.
An object with the corresponding value is created.
If expression is not specified then an object with the value 0 is created.

Class attributes

MAX_VALUE The largest value that can be represented in WebTransactions
MIN_VALUE The smallest positive amount that can be represented in WebTransactions
NaN The value NaN (not a number)

These attributes are class attributes. Objects belonging to the Number class do not possess
these attributes.

Example

my_number=new Number();
document.write(my_number.NaN); //Qutput: undefined
document.write(Number.NaN); //0utput: NaN

170

WebTransactions Template Language

Built-in classes and methods Number class

7.8.3 equals method

This method compares the calling number object with the object transferred in the object ar-
gument for equality of class and value.

equals (object)

Return value

Boolean return value: true if the two objects are equal, false if not

Parameters

object Object with which the calling object is to be compared

7.8.4 getClassName method

This method returns a string specifying the name of the class to which the calling object
belongs.

getClassName()

Return value

String specifying the class to which the calling object belongs, in this case Number

Parameters
None

Example

myNumber = new Number();
document.write(myNumber.getClassName());

This example gives the following output:

Number

WebTransactions Template Language 171

Number class Built-in classes and methods

7.8.5

7.8.6

7.8.7

setValue method

This method assigns a new value to the calling number object.

setValue(value)

Return value

None
Parameters

value New value for the calling number object

toString method

This method returns the numerical value of the calling object converted back into string for-
mat.

toString()

Return value

String representing the value of the calling object
Parameters

None

valueOf method

This method returns the value of the calling object in number format

valueOf()

Return value
Value of type number which represents the value of the calling number object
Parameters

None

172

WebTransactions Template Language

Built-in classes and methods Object class

7.9 Object class

Objects of the Object class are containers for known attributes. You can therefore create as
many attributes as necessary. However, there are no predefined attributes.

7.9.1 Constructors

Object()
Object (expression)

If you call the constructor without specifying expression, it creates an object of the class
Object. This is an empty container for which attributes can now be created.

If the constructor is called with expression specified, then expression is evaluated. If the
expression is a reference to an object, then a new reference to this object is created.
Otherwise a new object belonging to the class Boolean, Number, or String is created
depending on the type of the expression.

Example
a = new Object(); //creates a new object of class Object
b = new Object(false); //creates a new object of class Boolean

c new Object(a); //supplies a reference to object a,

//not a new object!

Objects of the Object class can also be created directly:

i

d = lattr:wert, attr:wert} ;

WebTransactions Template Language 173

Object class Built-in classes and methods

7.9.2 equals method

7.9.3

This method compares the calling object with the object transferred in the object argument
for equality of class, attributes, and values.

equals (object)

Return value

Boolean return value: true if the two objects are equal, false if not

Parameters

object Object with which the calling object is to be compared

Example

0bj0l = new Object();

obj0l.num = 42;

obj0l.str = "forty two";

obj0l.bool = true;

0bj02 = new Object();

obj02.num 21+21;

obj02.str = "forty two";

obj02.bool = true;

if (objOl.equals(obj02)) // returns true

getClassName method

This method returns a string specifying the name of the class to which the calling object
belongs.

getClassName()

Return value

String specifying the class to which the calling object belongs, in this case Object

Parameters

None

174

WebTransactions Template Language

Built-in classes and methods Object class

7.9.4 toString method
This method returns a string listing each attribute and the associated value. If an attribute
is an object of type function, then the function definition is returned instead of the value.
You can use this method to create a new object with identical attribute values.

In order to avoid endless chains, the toString method will terminate output in the event of
recursion, i.e. output will be stopped as soon as the same object reference is encountered
a second time.

toString()

Return value

String listing each attribute and the associated value
Parameters

None

Example 1: Output with recursion

= new Object();
Object();
"String a";

o
>
D
oI =

"String b";

oo o9 o oo
nw o n |l
o+
= 1 -

Q
Q

document.write(a.toString());
// Output: {b: {a: {}, str: "String b"}, str: "String a"}

WebTransactions Template Language 175

Object class

Built-in classes and methods

Example 2

<wtoncreatescript>
<!—

document.write("

<h3>*******Qhject Testr*******x</h3><phr>");

obj = new Object();
obj.b = "hello \"World!\"";
obj.c = new String ("hello World!");
obj.d = new String ("hello \'"World\"!");
obj.e = new Number(21+21);
obj.f = new Boolean(true);
obj.g = false;
o)

obj.o = new Object();
obj.o.text="Hallo";

obj.h = new Function("param", "{if (wt_system.abc)
wt_system.abc+=42; else wt_system.abc=0;}");

obj.i = new Document("file");

obj.j = 84/2;

obj.k = new Date(2010,1,1);

obj.1 = this_variable_does_not_exist;
obj.m = null;

objString = obj.toString();
document.writeln(objString);

//Save object

file = new Document("../../objsave.txt");
file.open("WRITE");
file.write(objString);

file.close();

//Restore object

file = new Document("../../objsave.txt");
file.open("READ");

newStr= file.read();

eval("neuesObj = " + newStr + ";");

//1t is now possible to access the new object in the same way as the old one
document.write("
<h3>*******x7ygriff auf neues Objekt********x</h3>");

document.write(neuesObj.o.text);
//==>

</wtoncreatescript>
<wtoncreatescript>

<!—

// This is an example for functions only
objl = new Object();

objl.f = new Function("param", "{if (wt_system.abc) \
wt_system.abc+=42; else wt_system.abc=0;}");

objString = objl.toString();

176

WebTransactions Template Language

Built-in classes and methods Object class

document.write("
<h3>****x**Aysgabe Funktions—0bjekt*******x*</h3>");
document.writeln(objString);

wt_system.abc=42;

neuesObj.h();

document.write("
<h3>*******Aysgabe Aufruf Funktionsaufruf*****xx*</h3>");
document.write(wt_system.abc);

/=

</wtoncreatescript>

This example gives the following output:

*******o bj ect Test********

{b: "hello \"World!\"", c: (new String("hello World!")), d: (new
String("hello \"World\"!")), e: (new Number(42)), f: (new Boolean(true)), g:
false, h: function (param){if (wt_system.abc)

wt_system.abc+=42; else wt_system.abc=0;}, i: (new Document("file")), j: 42,
k: (new Date(1264978800000)), 1: undefined, m: null, o: {text: "Hello"}}
ekt Access to new object*** ****

Hello

ekt Qutput of function object********

{f: function (param){if (wt_system.abc) wt_system.abc+=42; else
wt_system.abc=0;}}

e Output of function call********

84

WebTransactions Template Language 177

Object class Built-in classes and methods

Example 3

o=new Object();
o.s='abc'; 0.n=42; o.b=true;

0.S=new String('ABC'); o.N=new Number(43); o.B=new Boolean(false);
0.D=new Date();

0.U=a; // a ist nicht definiert

o.nu=null;

0.0={n:1, m:2};

0.A=[1,2,,3,,]1;

document.writeln(o.toString());

The example generates the following output:

{A: [1,2,,3,,], B: (new Boolean(false)), D: (new Date(1275668431340)), N:
(new Number(43)), 0: {m: 2, n: 1}, S: (new String("ABC")), b: true, n: 42,
nu: null, s: "abc", u: undefined!}

178 WebTransactions Template Language

Built-in classes and methods Object class

7.9.5 valueOf method

This method returns a reference to the object itself.

valueOf()

Return value

Reference to the calling object itself
Parameters

None

WebTransactions Template Language 179

RegExp class Built-in classes and methods

7.10 RegExp class

An object of the RegExp class contains the specification of a regular expression. Regular
expressions are search patterns which are used to locate specific character combinations
in strings.

7.10.1 Constructors

RegExp()
RegExp (expression)
RegExp (expression ,mode)
variable = RegExplLiteral
Return value
Object of type RegExp
expression

Expression of type string which specifies the regular expression (see section

“Literals for regular expressions” on page 38).
mode Expression of type string which specifies the mode:

i (ignore) Ignore uppercase/lowercase.

g (global) Find all suitable matches.

ig orgi

Ignore uppercase/lowercase and find all suitable matches.

RegExplLiteral

Assigning a literal for a regular expression also creates an object of class RegExp.
Note that while a string is specified in the RegExp constructor function, a regular expression
is specified when you make a direct assignment using RegExpLiteral (see examples on the
following pages). String literals must be enclosed in quotes, whereas RegExp literals must
be delimited by slashes.
Except in escape sequences, backslashes are of no significance in string literals, i.e.
"\char" means the same as "char" and "a*" means the same as "a*" (see page 35).
In contrast, a backslash in a RegExp literal invalidates the following metacharacter. In this
way, for example, you can use /a*/ to search for the character sequence "a*" but not for
a sequence of a’s. If you want to define this type of search pattern using the constructor
function, you must specify the string "a*" as an argument.

180 WebTransactions Template Language

Built-in classes and methods RegExp class

If you want to use two-character metacharacters in string literals (e.g. \d as a metacharacter
representing any digit), you must enter a double backslash. This is because \char and char
have the same meaning in string literals. /\d/ therefore has the same meaning as

new RegExp("\\d").

Examples

In each case, the assignment of the literal generates the same regular expression as the
constructor function call which follows it:

re_1 = /abc/i;
re_1l = new RegExp("abc","i");

re_2 = /ab+c/;
re_2 = new RegExp("ab\+c");

re_3 = /\wt/;
re_3 = new RegExp("\\w+");
re_4 = /\\d/;

re_4 = new RegExp("\\\\d");

WebTransactions Template Language 181

RegExp class

Built-in classes and methods

7.10.2 Attributes of objects of the RegExp class

Every object in the RegExp class possesses the following attributes after creation:

Attribute Data type |Meaning

source string Specifies the search pattern which was entered as the source
without surrounding slashes and without flags (i or g).

ignoreCase boolean |Specifies whether the i flag for ignoring uppercase/lowercase is
set (true) or not (false).

global boolean |Specifies whether the g flag for global search is set (true) or not
(false).

lTastIndex number Index of the character at which the next search begins.

lastIndexisonly setfor global searches. Before the first search,
TastIndex=0. If another search is to be performed and if the new
search is once again to start at the beginning of the string, you
must first reset TastIndex to 0.

The rules listed below apply to TastIndex.

i @

You cannot modify the source and ignoreCase attributes by means of a direct
assignment. To do this, you must use the compile method (see section “compile

method” on page 184).

Rules for lastindex

The following rules apply to TastIndex:

If TastIndex is greater than the length of the string to be searched through, the method
regexp . test returns the value false and regexp.exec the value nul1.
lastIndex is setto 0.

If TastIndex is equal to the length of the string to be searched and the regular
expression corresponds to an empty string, the method regexp . test returns the value
true and regexp . exec returns a result array. TastIndex is unchanged.

If TastIndex is equal to the length of the string to be searched and the regular
expression does not correspond to an empty string, the method regexp . test returns the
value false and regexp.exec the value null. TastIndex is set to 0.

In all other cases, 1astIndex is set to the index position which follows the last located
match.

182

WebTransactions Template Language

Built-in classes and methods

RegExp class

7.10.3 Predefined RegExp object

A predefined RegExp object is available in all templates. WebTransactions stores partial
results in the attributes of this object after the following method calls:

— RegExp method calls exec and test
— String method calls match and replace

Although this predefined object has the name RegExp, it belongs to the Object class.
It has the following attributes (all of type string):

Attribute

Meaning

lastMatch

Character sequence of last located match (= position)

leftContext

Substring to the left of the position

rightContext

Substring to the right of the position

$1.$2..%9

The character sequence at the located position which corresponds to the nth
bracketed partial expression of the search pattern is stored in $n (see
“Example 2” on page 202) - provided that the search pattern does not contain
more than nine bracketed partial expressions.

Although there is no limit to the number of bracketed partial expressions which
a search pattern can contain, the predefined RegExp object can only
"remember" nine of them. If the search pattern contains more than nine
bracketed partial expressions, then the matches for the last nine bracketed
partial expressions are stored in $1-$9. You can access the matches for all the
bracketed partial expressions via the indices of the associated result array.

TastParen

The character sequence at the located position which corresponds to the last
bracketed partial expression of the search pattern is stored in TastParen.

input

Default string which is used if no string to be searched through is specified when
the RegExp methods exec or test are called. If you want to use the input
attribute, you must assign it a string expression which specifies the default
search pattern.

WebTransactions Template Language

183

RegExp class Built-in classes and methods

7104

compile method

This method compiles a search pattern which is specified by a string expression. The
arguments correspond to those of the constructor function.

compi e (expression)
compi 1e (expression, mode)

Return value

Reference to the calling object itself
Parameters

expression
Expression of type string which specifies the regular expression (see section
“Literals for regular expressions” on page 38)

mode Expression of type string which specifies the mode:
i (ignoreCase) Ignore uppercase/lowercase.
g (global) Find all suitable matches.

ig orgi
Ignore uppercase/lowercase and find all suitable matches.

You can use the compile method to assign a new regular expression to an existing RegExp
object. The arguments correspond to those used in the constructors. The following object
attributes are reset: source, ignore, global, and 1astIndex. The regular expression is
stored in compiled form in the calling object.

184

WebTransactions Template Language

Built-in classes and methods RegExp class

7.10.5 equals method

This method compares the calling object with the object transferred in the object argument
for equality of class, attributes, and values.

equals (object)

Return value

Boolean return value: true if the two objects are equal, false if not

Parameters

object Object with which the calling object is to be compared

WebTransactions Template Language 185

RegExp class Built-in classes and methods

7.10.6 exec method

This method searches in the specified string in accordance with the calling regular expres-
sion.

Each exec method call returns a maximum of one match:

— Ifthe g1obal flag of the regular expression is not set (i.e. regexp.global=false), then
the exec method always returns the first match. In this case, the call
regExp . exec (searchStr) corresponds to the call searchStr.match(regExp).

— Ifthe global flag of the regular expression is set (=true) and if exec is called a number
of times in succession, then the next match is found on each call. The search always
starts after the last located match. The left-hand context also starts after the preceding
located match and not at the start of the string.

If the i flag of the regular expression is set (=true), then the uppercase/lowercase distinc-
tion is ignored for the purposes of the comparison.

regexp .exec ()
regexp . exec(string)

Return value

If a match is found, exec returns a result array and sets the attributes of the predefined
RegExp object to the current values. If the g flag is set (i.e. regexp.global=true), then the
TastIndex attribute of the calling object regexp is reset.

If no match is found, the value nul11 is returned and the attribute values of the predefined
RegExp object are deleted.

Parameters
regexp Regular expression. This can be the name of an object or a literal.

string (optional) String expression to be searched through. If string is not already of type
string then it is converted to this type. If string is not specified, RegExp. input is
used.

186 WebTransactions Template Language

Built-in classes and methods RegExp class

Result array of the exec method

The exec method returns an array with the following attributes:

[0l Substring of string matching the regular expression

[n] Concrete contents of n=1st 2nd ... nth brackets of the regular expression
index Index of the first character of the located match

input String string

Example: exec call first without and then with g flag
The following regular expression searches for double characters.
regTest = /((\w)\2)/i;

The outside brackets are not essential but make the pattern easier to follow. The word
“Dampfschifffahrtsgesellschaft” is to be searched through:

text = "Dampfschifffahrtsgesellschaft";
result = regTest.exec(text);

This gives the following result:
— Attributes of the RegExp object regTest:

global: false
ignoreCase: true
lTastIndex: 11
source: "((\w)\2)"

— Attributes of the result array result:

index: 9

input: "Dampfschifffahrtsgesellschaft"'
0: "ff"

1: "ff"

2: "f"

— Attributes of the predefined RegExp object:

$1: "ff"

$2: "f"

lastMatch: "ff"

lastParen: "f"

lTeftContext: "Dampfschi"
rightContext: "fahrtsgesellschaft"

If we call regTest.exec(text) again, we obtain the same results since the g flag is not set.

WebTransactions Template Language 187

RegExp class

Built-in classes and methods

In contrast, if we define a global search:

regTest = /((\w)\2)/ig;

then only the first exec call returns the results presented above. After the second call we get:

Attributes of the RegExp object regTest:

global: true
ignoreCase: true
lastIndex: 23
source: "((\w)\2)"

Attributes of the result array result:

index: 21

input: "Dampfschifffahrtsgesellschaft"
0: "11°"

1. "11°"

2: "1

Attributes of the predefined object RegExp:

$1: "11"

$2: "1"

lastMatch: "11"
lastParen: "1"
leftContext: "fahrtsgese"
rightContext: "schaft"

and on the third call:

Attributes of the RegExp object regTest:

global: true
ignoreCase: true
lastIndex: 0O
source: "((\w)\2)"

result = null
Attributes of the predefined RegExp object:

lastMatch: ""
lastParen: ""
leftContext: ""
rightContext: "'

188

WebTransactions Template Language

Built-in classes and methods RegExp class

7.10.7 getClassName method

This method returns a string specifying the name of the class to which the calling object
belongs.

getClassName()

Return value

String specifying the class to which the calling object belongs, in this case "RegExp".

Parameters

None

WebTransactions Template Language 189

RegExp class Built-in classes and methods

7.10.8 test method

This method checks whether the string string contains a substring which matches the reg-
ular expression. If it does, true is returned; otherwise false. If the g (global) flag is set in
the calling object, the search starts at TastIndex. Otherwise, it starts at the beginning of
string. If no argument is specified, RegExp.input is used.

test (string)
test()

Return value

true if the string specified in string contains a substring which matches the regular expres-
sion, or false otherwise

Parameters

string
String to be searched to establish whether or not it contains a substring that match-
es the regular expression. This argument is converted to type string.

Example

function check(str,re) {
if(re.test(str))
result=" contains the pattern: ";
else
result=" does not contain the pattern: ";
document.write(str+result+re.source);

}
check("WebTransactions",/bt/i);

The call checks whether WebTransactions contains a match for the regular expression
/bt/1. Since the i flag is set, uppercase/lowercase notation is ignored and a match is
found. The output also indicates that there are no flags present in the re.source property:

WebTransactions contains the pattern: bt

190 WebTransactions Template Language

Built-in classes and methods String class

7.11

7111

7.11.2

String class

A string object represents a string.

A string can be considered to be a type of character array: you can address each individual
character via its index.

The string constructor makes it possible to initiate the conversion of an expression into a
string. You can only create additional individual attributes for a string object which has been
created by means of a constructor.

Constructors

String(expression)
String()

Return value

Object of the String class

The expression expression is evaluated and converted to type string. An object with the
corresponding value is created. If expression is not specified then an object with the value
empty string is created.

Attributes

length
Lnumber]

Tength specifies the current length of the string.

You can use the index expression [number] to address the individual characters in the
string. Thus, for example, al71] returns the 8th character of the string object a.

WebTransactions Template Language 191

String class Built-in classes and methods

7.11.3 charAt method

This method returns the character located at the position in the calling string indicated by
Index.

charAt (Index)

Return value

The result is returned as a string. If the value of Index does not lie between 0 and
callingString . 1ength - 1, then an empty string is returned.

Parameters

Index Expression which specifies the position in the calling string object at which the char-
acter to be returned is located

Example
document.write("WebTransactions".charAt(0)); // 1st character
document.write("WebTransactions".charAt(16)); // Index greater than

// string length
document.write("WebTransactions".charAt(4-1)); // 4th character

This example gives the following output:
WT

192 WebTransactions Template Language

Built-in classes and methods String class

7.11.4 charCodeAt method

This method returns the numeric code of the character located at the position specified by
the expression r in the calling String object.

charCodeAt(n)

Return value

The result is returned as a number or numeric value. If n does not lie between 0 and
callingString . Tength - 1, NaN (not a number) is returned.

Parameter

n Expression specifying the position of the character to be returned in the calling
string object.
Example

NL = String.fromCharCode(015,012); // octal
document.writeln("
NL[OJ=",NL.charCodeAt(0), ',
","NLL1]=",NL.charCodeAt(1l));

This example generates the following output:
NLLCOJ=13, NL[11=10

WebTransactions Template Language 193

String class

Built-in classes and methods

7.11.5 concat method

This method joins the calling string with the string specified in string

concat (string)

Return value

The concatenated string. Neither the calling string object nor the string transferred in the
string argument is modified.

Parameters

string String with which the calling string object is to be joined

Example

strObj = new String ("Good Morning");

str = "Goodbye";

resStrl = strObj.concat(", Mr. President!");
resStr2 = str.concat(", Mr. President!");
document.write("
" + resStrl);
document.write("
" + resStr2);

This example gives the following output:

Good Morning, Mr. President!
Goodbye, Mr. President!

194

WebTransactions Template Language

Built-in classes and methods String class

7.11.6 equals method

This method compares the calling string object with the object transferred in the object ar-
gument for equality of class and value.

equals (object)

Return value

Boolean return value: true if the two objects are equal, false if not

Parameters

object Object with which the calling object is to be compared

7.11.7 fromCharCode method

This method returns a string formed from the codes of the numeric codes passed as
arguments. fromCharCode() is a static method of the String constructor.

String.fromCharCode(codel [, code2, [..,1 1);

Return value

The result is returned as a string.

Parameters

codel, code2, ...
Numeric codes from which the output string is to be formed.

Example

NL String.fromCharCode(13,10); //decimal

NL String.fromCharCode(0x0d,0x0a) ; //hex

NL = String.fromCharCode(015,012); //octal
WT_SYSTEM.HTTP_HEADER = 'Content-type: text/html'+NL+'Connection:
close'+NL+NL;

This example generates the following output:

HTTP_HEADER: Content-type: text/html
Connection: close

WebTransactions Template Language 195

String class Built-in classes and methods

7.11.8 getClassName method

This method returns a string specifying the name of the class to which the calling object
belongs.

getClassName()

Return value

String specifying the class to which the calling object belongs, in this case String

Parameters

None

196 WebTransactions Template Language

Built-in classes and methods String class

7.11.9

indexOf method

This method searches the calling string object from beginning to send for the string speci-
fied in searchValue. If fromIndex is specified, then the search starts at this index. Otherwise,
it starts at 0. While searching, the method distinguishes between uppercase and lowercase.

indexO0f (searchValue)
indexOf (searchValue, fromlndex)

Return value

Index of the first character of the match closest to the start of the string, or -1 if searchValue
is not found

Parameters

searchValue
String to be searched for

fromIndex
Position in the calling string object at which the search for the string specified in
searchValue is to begin
Default: 0

Example

str = "The a the b and the c.";
document.write(str.indexOf("the") + ",");
document.write(str.index0f("the",7));

This example gives the following output:
6,16

Since the search is case-sensitive, the index of the first match is not 0 but 6. If the search
were to start at index 7, then the second lowercase "the" would be found (index 16).

WebTransactions Template Language 197

String class Built-in classes and methods

7.11.10 lastindexOf method
This method searches the calling string from beginning to end for the string specified in
searchValue. If fromIndex is specified, then the search starts at this index. Otherwise, it starts
at string . 1ength -1. While searching, the method distinguishes between uppercase and
lowercase
lastIndexOf (searchValue)
lastindexOf (searchValue, fromindex)
Return value
Index of the first character of the match closest to the end of the string, or -1 if searchValue
is not found
Parameters
searchValue
String to be searched for
fromIndex
Position in the calling string object at which the search for the string specified in
searchValue is to begin
Default: string.1ength - 1
Example
str = "The a the b and the c.";
document.write(str.lastIndex0f("the") + ",");
document.write(str.lastIndexOf("the",6) + ",");
document.write(str.lastIndex0f("the",5));
This example gives the following output:
16,6,-1
The index of the match closest to the end is 16.
6 is the smallest index at which the string "the" is found when searching from the right. This
illustrates the distinction between uppercase and lowercase.
198 WebTransactions Template Language

Built-in classes and methods String class

7.11.11 match method

This method searches the calling string for the search pattern specified in pattern.

If the expression partern is a RegExp object, then matching substrings are searched for in the
calling string. Otherwise, pattern is converted to type string. In this case, the second pa-
rameter mode (of type string) is taken into account.

If pattern is of type string and if mode contains the character g, or if pattern is a regular ex-
pression with the g flag (global search), then each substring of the calling string which

matches the pattern is entered in precisely one element of the result array. Otherwise, match
operates like the exec method for regular expressions, i.e. only the first match is considered.

match(pattern)
match (pattern, mode)

Return value

If a substring matching pattern is found in the calling string, a result array is returned in the
format described above. Otherwise, the value nul11 is returned.

Parameters

pattern
A search pattern.
pattern can be an expression of type string or a RegExp object (see section
“RegExp class” on page 180).

mode Expression of type string which specifies the mode (this type of mode specification
is only taken into account if pattern is not a RegExp object):

i (ignoreCase) Ignore uppercase/lowercase.
g (global) Find all suitable matches.
ig orgi
Ignore uppercase/lowercase and find all suitable matches.
Example 1 (with g flag)

str="Gabi, Alice, A,Karla, another, Andreas, Martin, Andy, Pit";
re=/(A(\w+))/g;
resultArray=str.match(re);

for (attr in resultArray)
document.write("resultArry." + attr + ": " + resultArraylattr]l + "
");

for (attr in re)
document.write("re."+attr + ": " + relattrl + "
");

WebTransactions Template Language 199

String class

Built-in classes and methods

This example gives the following output:

resultArry.0: Alice
resultArry.1l: Andreas
resultArry.2: Anke
re.global: true
re.ignoreCase: false
re.lastIndex: 0O
re.source: (A(\w+))

Example 2 (without g flag)

str="Gabi, Alice, A,Karla, another, Andreas, Martin, Andy, Pit";
re=/(A(\w+))/;
resultArray=str.match(re);

for (attr in resultArray)
document.write("resultArry." + attr + ": " + resultArraylattr]l + "
");

for (attr in re)
document.write("re."+attr + ": " + relattr] + "
");

for (attr in RegExp)
document.write("Regkxp." + attr + ": " + RegExplattrl + "
");

This example gives the following output:

resultArry.0: Alice

resultArry.1: Alice

resultArry.2: lice

resultArry.index: 6

resultArry.input: Gabi, Alice, A,Karla, another, Andreas, Martin, Anke, Pit
re.global: false

re.ignoreCase: false

re.lastindex: 12

re.source: (A(\w+))

RegExp.$1: Alice

RegExp.$2: Tice

RegExp.input:

RegExp.TastMatch: Alice

RegExp.lastParen: lice

RegExp.TeftContext: Gabi,

RegExp.multiline: false

RegExp.rightContext: , A,Karla, another, Andreas, Martin, Anke, Pit

200

WebTransactions Template Language

Built-in classes and methods String class

7.11.12

replace method

This method replaces substrings of the calling string with the result of the ReplaceString ex-
pression. The modified string is returned, while the calling string itself remains unchanged.

replace(Pattern, ReplaceString)

Return value
Modified string in which substrings of the calling string have been replaced as specified
Parameters

Pattern
Expression of type string or RegExp object, which specifies a pattern for the sub-
strings that are to be replaced

ReplaceString
Replacement string that may contain the following $ variables, which are deter-
mined from the matching substrings for replacement and their context:

$& Entire matching string
$+ Match for last bracketed expression
$1,%2,..,$9 Match for 1st, 2nd, ... 9th bracketed expression
$° Left-hand context
$” Right-hand context

Example 1

re = /monday/gi;

str = "Monday morning and monday evening";
newstr = str.replace(re, "tuesday");
document.write(newstr);

The specification of the regular literal re sets the flags g (global) and i (ignoreCase). In this
example, both flags are necessary in order to replace the Mondays. This example gives the
following output: "tuesday morning and tuesday evening".

WebTransactions Template Language 201

String class

Built-in classes and methods

Example 2

re = /O\wt)\s(\w+)/;

str = "today not!John Smith";
newstr = str.replace(re, "$2 $1");
document.write(newstr);

A literal is specified for the regular expression re. This searches for the first space character
located between two character sequences each of which contains at least one alphanu-

merical character. Thanks to the use of the brackets, the character sequence to the left of
the space ("today") is stored in property $1 while the character sequence to the right of it

("not") is stored in $2.

This example gives the following output: "not today!John Smith".

202

WebTransactions Template Language

Built-in classes and methods String class

7.11.13 search method

This method searches the calling string for a regular expression

search(pattern)

Return value
Position of the first matching substring, or -1 if no match is found
Parameters

pattern
Regular expression to be searched for in the calling string. pattern can be an expres-
sion of type string or a RegExp object (see section “RegExp class” on page 180).

If you simply want to know whether or not a particular character combination occurs
in a string, use the search method. Although the match() method provides more
information, it also takes longer to execute.

1]

Example

function check(str,re) {
if(str.search(re) != -1)
result=" contains the pattern:
else
result=" does not contain the pattern:
document.write(str+result+re.source);

}

check("WebTransactions",/bt/i);

This call checks whether WebTransactions contains a match for the regular expression
/bt/1. Since the i flag is set, uppercase/lowercase notation is ignored and a match is
found. The output also indicates that the specified flags are not present in the re.source
property:

WebTransactions contains the pattern: bt

WebTransactions Template Language 203

String class

Built-in classes and methods

7.11.14

setValue method

This method assigns a new value to the calling string object.

setValue(value)

Return value
None
Parameters

value New value for the calling string object

204

WebTransactions Template Language

Built-in classes and methods

String class

7.11.15 slice method

This method returns the section of the calling string which lies between the two specified

indices.

slice()
s1ice(indexA)
s1ice(indexA ,indexB)

Return value

Section of the calling string which lies between the two specified indices (including the char-
acter specified by the smaller index but excluding the character specified by the larger in-

dex)

Parameters

indexA Expression specifying the index for the start of the substring

If indexA is less than 0, the value 0 is assumed.

If indexA is greater than indexB, an empty string is returned.

If indexA is greater than callingString . 1ength, an empty string is returned.

Default: 0
indexB

Expression specifying the index for the end of the substring

If indexB is less than 0, it specifies the offset from the end of the string
(callingString . 1ength+indexB).
If indexB is greater than callingString . 1ength, the value callingString . Tength is

assumed.

Default: callingString . 1ength
If indexB is not specified, the value callingString . 1ength is assumed for indexB, i.e.
the substring from indexA through to the end of callingString is returned.

If both indices are identical, an empty string is returned.

Example

document.write("
"
document.write("
"
document.write("
"
document.write("
"

+ o+ 4+ o+

"WebTransactions"
"WebTransactions"
"WebTransactions"
"WebTransactions"

.s1ice(0,3));
.slice(4,3));
.slice(3));
.slice(0,-12));

WebTransactions Template Language

205

String class Built-in classes and methods

7.11.16

This example gives the following output:
Web

Transactions
Web

split method

This method returns an array of substrings of the calling string.

split()
split(pattern)
split(pattern, limit)

Return value

Result array containing elements formed from the set of characters from the start to the first
separator, between each pair of separators, and between the last separator and the end of
the string. The separators themselves are not present in the result.

Parameters
pattern Object of type RegExp or String. pattern specifies a pattern for a separator.
If pattern is not specified, sp1it returns a single entry for the entire string.

If the separator is an empty string, sp1it returns a separate entry for each character
in the calling string.

limit The maximum number of separators

Example

numberString = ";7.1;687.1;32.634;.56;";
document.write ("input string: " + numberString + "
");
numberArray = numberString.split(";");
document.write("resulting array: |");
for (i in numberArray)

document.write(numberArraylil + "|");

The sp1it call removes the separating semi-colons and organizes the numbers in an array.
This example gives the following output:

input string: ;7.1;687.1;32.634;.56;
resulting array: |]7.1]1687.1]32.634]|.56]|

206

WebTransactions Template Language

Built-in classes and methods

String class

7.11.17 substr method

This method returns the section of the calling string which begins at the specified index and

has the specified length.

substr (index)
substr (index,length)

Return value

Section of the calling string which begins at the specified index (including the character
specified by the index) and has the specified length

Parameters

index Expression specifying the index for the start of the substring

If index is less than 0, it specifies the offset from the end of the string

(callingString . 1ength+index). If this offset is located before the start of the calling
string, the value 0 is assumed.
If index is greater than or equal to callingString . 1Tength, an empty string is returned.

length Expression specifying the length of the substring

If length is not specified, the substring from the index to the end of callingString is

returned.

If length is less than or equal to 0, an empty string is returned.

Example

document.write("
"
document.write("
"
document.write("
"
document.write("
"

+ o+ o+ o+

"WebTransactions"
"WebTransactions"
"WebTransactions"
"WebTransactions"

This example gives the following output:

Trans

Transactions
Tr

.substr(3,5));
.substr(4,0));
.substr(3));
.substr(-12,2));

WebTransactions Template Language

207

String class Built-in classes and methods

7.11.18 substring method

This method returns the section of the calling string which lies between the two specified
indices.

substring(indexA)
substring(indexA ,indexB)

Return value

Section of the calling string which lies between the two specified indices (including the char-
acter specified by the smaller index but excluding the character specified by the larger in-
dex)

Parameters

indexA, indexB
Expressions specifying indices

If indexB is not specified then the value callingString . Tength is assumed for indexB, i.e. the
substring from indexA to the end of callingString is returned.

If an index lower than 0 is specified, then the value 0 is assumed. If an index greater than
or equal to callingString . 1ength is specified, then callingString . 1ength is assumed.

If the two indices are identical, an empty string is returned. If indexA is greater than indexB,
the two arguments are swapped, and the substring in the middle is returned.

Example

document.writeln("
"
document.writeln("
"
document.writeln("
"
document.writeln("
"

"WebTransactions".substring(0,3));
"WebTransactions".substring(99,3));
"WebTransactions".substring(0));
"WebTransactions".substring(=99)+"!111");

+ o+ o+

This example gives the following output:

Web

Transactions
WebTransactions
WebTransactions!!!

208 WebTransactions Template Language

Built-in classes and methods String class

7.11.19 toLowerCase method

This method returns the value of the calling string with all uppercase characters (A-7) con-
verted to the corresponding lowercase characters. The calling string is not modified.

toLowerCase()

Return value

String generated from the calling string by converting all uppercase characters (A-7) to the
corresponding lowercase characters

Parameters

None

Example

a="DaDa";
b=a.toLowerCase();
document.write(b+a);

This example gives the following output:
dadaDaDa

7.11.20 toString method

This method returns the value of the calling object in string format.

toString()

Return value

Value of type string
Parameters

None

WebTransactions Template Language 209

String class Built-in classes and methods

7.11.21 toUpperCase method

This method returns the value of the calling string with all lowercase characters (a-z) con-
verted to the corresponding uppercase characters. The calling string is not modified.

toUpperCase()

Return value

String generated from the calling string by converting all lowercase characters (a-z) to the
corresponding uppercase characters

Parameters

None

Example

a="DaDa";
b=a.toUpperCase();
document.write(b+a);

This example gives the following output:
DADADaDa

7.11.22 valueOf method

This method returns the value of the calling object in string format.

valueOf()

Return value
Value of type string which represents the value of the calling object
Parameters

None

210 WebTransactions Template Language

Built-in classes and methods WT_Communication class

7.12 WT_ Communication class

Objects belonging to the WT_Communication class are known as communication objects.
These communication objects allow you to handle parallel connections and thus integrate
multiple host applications within a single WebTransactions application. The communication
objects contain information about the communication module in use, the current connection
status, the data most recently received from the host application, etc. (for more information,
refer to the WebTransactions manual “Concepts and Functions”).

7.12.1 Constructors

The constructors create a new communications object. The return value is a reference to
this object which can be used when the object has to be referenced again.

WT_Communication()
WT_Communication(handle)

Return value

Communication object of the WT_Communication class

Parameters

handle
Name of the communication object. WebTransactions creates the communication
object in the host root object WT_HOST. In addition, a connection-specific system ob-
ject is created in this newly created communication object and the attributes of this
system object are used to control the connection in question.

If the constructor is called without an argument, WebTransactions determines the
name from the global system object’s HANDLE attribute. If this is also not set, then
an error occurs.

WebTransactions Template Language 211

WT_Communication class Built-in classes and methods

7.12.2 close method

This method terminates the connection to the host application but does not delete the
communication object: if followed by an open call, the connection can then be reopened.
Communication objects survive until the end of the session.

close()

Return value
None
Parameters

None

7.12.3 equals method

This method compares the calling WT_Communication object with the object transferred in
the object argument for equality of class, attributes, and values.

equals (object)

Return value

Boolean return value: true if the two objects are equal, false if not

Parameters

object Object with which the calling object is to be compared

212 WebTransactions Template Language

Built-in classes and methods WT_Communication class

7.12.4 getClassName method

This method returns a string specifying the name of the class to which the calling object
belongs.

getClassName()

Return value

String specifying the class to which the calling object belongs, in this case
"WT_Communication".

Parameters

None

7.12.5 getModule method

This method returns the name of the communication module in a string.

getModule()

Return value
String containing the name of the communication module
Parameters

None

WebTransactions Template Language 213

WT_Communication class Built-in classes and methods

7.12.6 open method

The method establishes a connection to a host application. To call the open() method, the
associated communication object must already exist.

If the action returns an error code, this is stored as an ERROR attribute in the global system
object.

open()
open (protocol)

Return value

Reference to an object of the WT_Communication class
Parameters

protocol
Allows you to select one of the communication modules linked to WebTransactions.
If you call open without any argument, WebTransactions determines the communi-
cation module from the global system object’s PROTOCOL attribute. If this is also not
set, WebTransactions reports an error.

7.12.7 receive method

This method receives a message from the host and stores it in the calling object. It is then
possible to access the stored data via the host data objects.

receive()

Return value

The calling object if the function is successful, or nu11 otherwise. A corresponding error
message is stored in the global system object’s ERROR attribute.

Parameters

None

214 WebTransactions Template Language

Built-in classes and methods WT_Communication class

7.12.8 send method

This method sends the message stored in the host data objects of the calling communi-
cation object to the host.

send()

Return value

The calling object if the function is successful, or nu11 otherwise. A corresponding error
message is stored in the global system object’s ERROR attribute.

Parameters

None

WebTransactions Template Language 215

WT_Filter class Built-in classes and methods

7.13 WT Filter class

The WT_Filter class is a universal filter task used for the following tasks:

e The portable representation of data for communication with external applications via
XML messages (XML=eXtended Markup Language).

This allows you to convert data from WTScript programs into XML documents for further
processing with external applications, and to process data supplied from external
sources in the form of XML documents in WebTransactions.

This is described in detail in section “Importing and exporting XML documents” on
page 367.

e The conversion of WTScript data structures into XML documents and vice versa.

For instance, this allows you to receive internal data even after the end of a session,
which is converted by calling WT_Fi1ter methods and stored using document methods.

This is described in detail in section “Exporting data structures” on page 372.

e The conversion of WTScript method calls into XML documents and vice versa in order
to allow communication between WebTransactions applications.

This is described in detail in the WebTransactions manual “Client APIs for
WebTransactions”.

e Processing of any XML document with freely-selectable callback functions. An example
is given on page 230.

The methods described below are also available as class methods.

216 WebTransactions Template Language

Built-in classes and methods

WT_Filter class

7.13.1 dataObjectToXML method

This method generates an XML document from a WTScript data object. The generated
document has the XML format described in section “Exporting data structures” on

page 372.

dataObjectToXML (objectPattern)
dataObjectToXML (objectPattern, objectName, .. .)

Return value

XML document generated from a WTML script

Parameters

objectPattern

WTScript data from whose structures an XML document is to be generated and

returned.

object

object.

object..

object..value

object..valllval2

Any object.

The data object object and all its attributes. If these
attributes are themselves objects, conversion takes place
recursively for these objects.

Any object without attributes.
The data object object. The terminating period prevents the
attributes of this object from being converted.

Any object but not its subordinate objects.

The data object object and all its attributes (since nothing is
specified between the two subsequent periods). The termi-
nating period prevents the subattributes of subordinate
objects under object from being converted.

All attributes with the same name located on the level
below an object.

All attributes with the name value which are contained in
objects directly underneath the data object object.

Several attributes with the same name located on the level
below an object.

All attributes with the name vall or val2 which are
contained in objects directly underneath the data object
object.

WebTransactions Template Language

217

WT_Filter class

Built-in classes and methods

If you want to convert the calling object within a method, then you should not use
the "this" string as the pattern. However, you can use a local variable to point to the
calling object and then use this variable:

dummyl = this;
text=dataObjectToXML("dummyl") ;

In the same way, an XML document can be unpacked for the calling object:

dummy?2=this;
XMLToDataObject(text, "dummy2") ;

objectName

(Optional) This argument allows you to override the top-level name.

Object methods will not be serialized with WT_Filter.dataObjectToXML. The names
will be serialized and restored but it will not be possible to call them (they will be
indicated as obsolete). WT_Filter.dataObjectToXML and WT_Filter.XMLTo-
DataObject are designed for data objects only.

218

WebTransactions Template Language

Built-in classes and methods WT_Filter class

7.13.2 dataObjectToFormattedXML method

This method creates a formatted XML document from a WTScript data object in accordance
with the XML representation described in the section “Exporting data structures” on
page 372.

dataObjectToFormattedXML (objectPattern, format)
dataObjectToFormattedXML(objectPattern, format, objectName, ...)

Return value

XML document created from a WTScript.

Parameters

objectPattern
This argument specifies the names of WTScript data from whose structures an XML
document is to be created and returned.

object Any object.
The data object object and all its attributes. If attributes are
in turn objects, conversion is performed recursively for
these objects.

object. Any object without attributes.
The data object object. The final dot, however, ensures that
no attributes of this object are converted.

object.. Any object without child objects.
The data object object and all the attributes of this data
object (because no specification was made between the
dots). The final dot ensures that no child attributes of child
objects in object are converted.

object..value All matching attributes of one level within an object.
All objects with the name value contained in objects directly
below the data object object.

object..valuellvalue2 Multiple matching attributes one level below an object.
All objects with the name valuel or value2 contained in
objects directly below the data object object.

If you wish to convert the calling object within a method, you must not specify the
string "this" as the pattern. You can, however, point a local variable to the calling
object and use this:

WebTransactions Template Language 219

WT_Filter class

Built-in classes and methods

format

dummyl = this;
text=dataObjectToXML("dummyl") ;

An XML document can be unpacked to the calling object in the same way:

dummy?2=this;
XMLToDataObject (text, "dummy2") ;

String with format specifications. No distinction is drawn between uppercase and
lowercase.

WebTransactions V7.5 currently only supports the value NL for format:

NL A new line is additionally created after the end of each tag,
i.e. after the closing angle bracket (>).
This improves readability of the XML output and allows
different versions to be compared.

If you do not specify format, the XML output is made up of a single line.

objectName

(optional) This argument allows the top-level names to be overwritten.

Methods of objects are not serialized with WT_Filter.dataObjectToXML. Only the
names are serialized and restoration creates methods that cannot be called (known
as 'obsolete’).

WT_Filter.dataObjectToXML and WT_Filter.XMLToDataObject are only intended
to be used with data objects.

Example

o=new Object();
0.s='abc'; 0.n=42; o.b=true;

O O O o0 O O

.S=new String('ABC'); o.N=new Number(43); o.B=new Boolean(false);
.D=new Date();

.u=a; // a is not defined

.nu=null;

.0={n:1, m:2};

A=01,2,.,3,.1;

xml=WT_Filter.dataObjectToFormattedXML('o",'n1"');

220

WebTransactions Template Language

Built-in classes and methods WT_Filter class

This example generates the following output:

<data>

<object name="0" class="0bject"><object name="A" class="Array"><number
name="0">1</number>

<number name="1">2</number>

<number name="3">3</number>

</object>

<object name="B" class="Boolean">false</object>

<object name="D" class="Date">1275668587840</0object>
<object name="N" class="Number">43</object>

<object name="0" class="0bject"><number name="m">2</number>
<number name="n">1</number>

</object>

<object name="S" class="String">ABC</object>

<pboolean name="b">true</boolean>

<number name="n">42</number>

<object name="nu" class="Undefined"></object>

<string name="s'">abc</string>

<undefined name="u"/></object>

</data>

WebTransactions Template Language 221

WT_Filter class Built-in classes and methods

7.13.3 methodCallToXML method

This method generates an XML document for calling a method. It is used to prepare a
WebTransactions method call of another WebTransactions application for transmission to
the WT_REMOTE interface (for more information, see the WebTransactions manual “Client
APIs for WebTransactions”).

methodCal1ToXML (methodName)
methodCal1ToXML (methodName, argArray)
methodCal1ToXML (methodName, argArray, codeBase)

Return value

String containing the XML document for calling a method
Parameters

methodName
Name of a method

argArray
Array with the arguments for the method (if required)

codeBase
WTML document containing the function definition in the remote WebTransactions
application

222

WebTransactions Template Language

Built-in classes and methods WT_Filter class

7.13.4 objectTreeToXML method

This method requires you to specify a WTScript data structure that complies with certain
conventions, and converts this into an XML document which is returned as the result.

objectTreeToXML(xmlObject)

Return value

XML document generated on the basis of the specified WTScript data structure
Parameters

xmlObject
WTScript data structure, as described in section “Exporting data structures” on
page 372. The child attribute may be omitted here.

If xmlobject contains syntax errors, an error message is output. In this case, the
method returns an XML document which has been generated as far as possible.

WebTransactions Template Language 223

WT_Filter class Built-in classes and methods

7.13.5 XMLToDataObject method

This method performs the reverse operation to dataObjectToXML (described in
section “dataObjectToXML method” on page 217). It generates a WTScript data structure
from XML text (see also section “Exporting data structures” on page 372)

This method is additive. This means that if the XML serialized object already exists, it will
not be completely replaced by WT_Filter.XMLToDataObject, instead the attribute contained
in the XML document will be extended. Previously existing attributes (and methods) will
remain unchanged.

XMLToDataObject(xmlObjectTextl, suppressWhitespacel)
XMLToDataObject(xmlObjectText, objectName, ...[, suppressWhitespacel)

Return value

There is no return value in the strict sense of the word. The function creates an object which
is saved in xmlObjectText (Where possible under the name objectName).

Parameters

xmlObjectText
XML text that describes a WTScript data object

objectName
(Optional) Allows you to override the top-level name

suppressWhitespace
(optional) Handling of the XML document free data. This attribute will be converted
to the boolean type if necessary. If this returns true, the leading and trailing
whitespace characters of the data string will be suppressed.
The default value is false.

If you want to convert the calling object within a method, then you should not use
the "this" string as the pattern. However, you can use a local variable to point to the
calling object and then use this variable:

i @

dummyl = this;
text=dataObjectToXML("dummyl");

In the same way, an XML document can be unpacked for the calling object:

dummy?2=this;
XMLToDataObject(text, "dummy2") ;

224

WebTransactions Template Language

Built-in classes and methods WT_Filter class

7.13.6 XMLToMethodCall method

This method interprets an XML document that describes a method call and executes it if
necessary (for more information, see the WebTransactions manual “Client APIs for
WebTransactions”).

XMLToMethodCal1 (xmlInvokeText)

Return value

Return value of the function described in the interpreted XML document
Parameters

xmlInvokeText
This argument is converted to type string and interpreted as an XML document. If
the document contains a method call, the method is sought in the specified WTML
document and executed. The parameters specified in the reverse method
methodCal1ToXML are also taken into consideration here.

WebTransactions Template Language 225

WT_Filter class Built-in classes and methods

7.13.7 XMLToObjectTree method

This method performs the reverse operation to objectTreeToXML (described in section
“objectTreeToXML method” on page 223). It requires you to enter a syntactically correct
XML text and transforms this into a corresponding WTScript data structure which is
returned as the result (see also section “Importing and exporting XML documents” on
page 367).

XMLToObjectTree(xmiTextl, suppressWhitespacel)

Return value

WTScript data structure generated on the basis of the specified XML text
Parameters

xmlText
Syntactically correct XML text in string format

suppressWhitespace
(optional) Handling of the XML document free data. This attribute will be converted
to the boolean type if necessary. If this returns true, the leading and trailing
whitespace characters of the data string will be suppressed.
The default value is false.

If xmiText contains syntax errors, XML entities, or processing statements, an error message
is output. In this case, the method returns only a fragment of a WTScript data structure
which matches the semantics of the XML text as far as possible.

226

WebTransactions Template Language

Built-in classes and methods

WT_Filter class

7.13.8 Methode XML_SAXParse

This method enables an XML document to be interpreted. This method analyses the XML
document and starts a corresponding callback function when recognizing start or end tags,
data or processing statements. These callback functions must be made available in the

form of WTScript functions or function objects. The functions are transferred to the method
by means of a handler object.

XML_SAXParse (xmlDocument, HandlerObject [, suppressWhitespacel)

Return value

Return value of the integrated XML parsers as a type object with the ErrorCode attributes
of the number type and ErrorText of the string type with the following contents:

ErrorCode

ErrorText

Meaning

XML_ERROR_NONE

Everything OK

XML_ERROR_NO_MEMORY

No more memory available

XML_ERROR_SYNTAX

Syntax fault in document

XML_ERROR_NO_ELEMENTS

No element found

XML_ERROR_INVALID_TOKEN

Not well formed

XML_ERROR_UNCLOSED_TOKEN

No closed token

XML_ERROR_PARTIAL_CHAR

No closed token

XML_ERROR_TAG_MISMATCH

Tag mismatch

XML_ERROR_DUPLICATE_ATTRIBUTE

Double attribute

XML_ERROR_JUNK_AFTER_DOC_ELEMENT

Invalid item after document element

XML_ERROR_PARAM_ENTITY_REF

Impermissible reference to entity

XML_ERROR_UNDEFINED_ENTITY

Undefined entity

XML_ERROR_RECURSIVE_ENTITY_REF

Recursive entity reference

XML_ERROR_ASYNC_ENTITY

Asynchronous entity

XML_ERROR_BAD_CHAR_REF

Reference to invalid character

XML_ERROR_BINARY_ENTITY_REF

Reference to binary entity

ololrlolin|d2|loo|o|N|ojo|rlw v =

XML_ERROR_ATTRIBUTE_EXTERNAL_ENTITY_REF

Reference to external entity in
attribute

17

XML_ERROR_MISPLACED_XML_PI

Processing statements not at
beginning of an external entity

18

XML_ERROR_UNKNOWN_ENCODING

Unknown encoding

19

XML_ERROR_INCORRECT_ENCODING

Defined encoding is incorrect

WebTransactions Template Language

227

WT_Filter class

Built-in classes and methods

ErrorCode | ErrorText Meaning
XML_ERROR_UNCLOSED_CDATA_SECTION CDATA not closed.
XML_ERROR_EXTERNAL_ENTITY_HANDLING Fault in processing of an external

entity
Parameter
xmlDocument

XML-Dokument to be interpreted. If this is an object of the document class, the
content of the corresponding file is interpreted. Every other type is if necessary
converted to string type and is then interpreted.

HandlerObject

Declaration of callback functions. This is an object of the object class and has the
following layout:

StartElementHandler:
reference to the callback function that processes the start tags.

EndETementHandler:
reference to the callback function that processes the end tags.

CharacterDataHandler:
reference to the callback function that processes the data.

ProcessingInstructionHandler:
reference to the callback function that processes the processing statements

The attributes are optional. If they are not defined or if they do not reference a
function or a function object, no corresponding handler is started.

suppressWhitespace

(optional) processing of the free data of the XML document. This attribute is if
necessary converted to boolean type. If this returns true, all the leading and
concluding Whitespace characters of the data string are suppressed.

Default value is false.

228

WebTransactions Template Language

Built-in classes and methods WT_Filter class

Prototype of single callback function
The callback routines for the XML parser must have the following form. Validity is not tested.
StartTagHandler (string tagname, Objectl(] namelValuel, string namespacel)

tagname
The name of the opened tag is transferred here (without namespace prefix).

nameValue
In this array the name value pairs of the tag attributes are transferred as single
objects. The attribute names of the objects are name und value.

namespace
Contains the namespace the tag belongs to or an empty string.

EndTagHandler (string tagnamel, string namespacel)

tagname
The name of the closing tag is transferred here (without namespace prefix).

namespace
The name of any valid namespace or empty string is transferred here.

CharacterDataHandler (string data)

data Free data is transferred here.

ProcessinglnstructionHandler (string target, string data)
target The name of the processing statement is transferred as a string here.

data The found processing statement is transferred as a string here.

WebTransactions Template Language 229

WT_Filter class Built-in classes and methods

Example

The basis for the following examples is the XML file al1eTements.xm1. This file contains a
list of all chemical elements and their features.

<PERIODIC_TABLE>
<ATOM>

<NAME>Actinium</NAME>

<ATOMIC_WEIGHT>227</ATOMIC_WEIGHT>

<ATOMIC_NUMBER>89</ATOMIC_NUMBER>

<OXIDATION_STATES>3</0OXIDATION_STATES>

<BOILING_POINT UNITS="Kelvin">3470</BOILING_POINT>

<SYMBOL>Ac</SYMBOL>

<DENSITY UNITS="grams/cubic centimeter'"><!-— At 300K —>
10.07

</DENSITY>

<ELECTRON_CONFIGURATION>[Rn] 6d1 7s2 </ELECTRON_CONFIGURATION>

<ELECTRONEGATIVITY>1.1</ELECTRONEGATIVITY>

<ATOMIC_RADIUS UNITS="Angstroms">1.88</ATOMIC_RADIUS>

<ATOMIC_VOLUME UNITS="cubic centimeters/mole">
22.5

</ATOMIC_VOLUME>

<SPECIFIC_HEAT_CAPACITY UNITS="Joules/gram/degree Kelvin">
0.12

</SPECIFIC_HEAT_CAPACITY>

<IONIZATION_POTENTIAL>5.17</I0ONIZATION_POTENTIAL>

<THERMAL_CONDUCTIVITY UNITS="Watts/meter/degree Kelvin">
<!— At 300K ——>
12
</THERMAL_CONDUCTIVITY>
</ATOM>

<ATOM>
<NAME>ATuminum</NAME>

</ATOM>
</PERIODIC_TABLE>

230

WebTransactions Template Language

Built-in classes and methods

WT_Filter class

The following document has to be read and transformed into a WTScript data structure that

contains an attribute for each element with the symbol of the element:

- 4" perodicT able
- A
2 ATOMIC_MUMBER
-4 ATOMIC_RADIUS
B unit
-« ATOMIC_WOLUME
B unit
+-om ATOMIC_WEIGHT
+- 4% BOILING_POINT
+- 4% DENSITY
+- 4% ELECTRONEGATIITY
+- 4% IONIZATION_POTEMTIAL
+- 4" OXIDATION_STATES
+- 4" SPECIFIC_HEAT_CaAPACITY
+- 4" THERMAL_CONDUCTRATY
B . ELECTRON_COMFIGURATION
B NAME
-4 B
+ 4l A
+- 4’ A

The following function is called when an opening XML tag is captured.

It stores the

attributes of the tag in the global variable CurrentAttributes, so that the variable is
available in the end tag handler. If a new description of a chemical element begins a new

WTScript object is generated that represents this description.

function StartChemie (name,attributes)

{
CurrentAttributes
CurrentData = "";
if (name == "ATOM"
CurrentObject

N

attributes;

new Object();

The following function is called if data has been found. Stores data for the end tag handler:

function DataChemie (data)
{

CurrentData = data;

WebTransactions Template Language

231

WT_Filter class Built-in classes and methods

The following function is called when a closing XML tag is recognized. It executes different
actions depending on the name of the closing tag.

e If SYMBOL is recognized the name is temporarily stored from the relevant data and is
used as an attribute name in the WTScript data structure.

e If ATOM is recognized, the description of a chemical element is complete and can be
stored under the symbol name.

e All other elements are enterd under the tag name into the object that describes the
chemical element.

e Ifthe current tag describes numerical data, the unit of the data may have been specified
in the UNIT attribute. This information is supplied by the attributes temporarily stored
in the start tag handler and is entered into the data structure.

function EndChemie (name)
{
switch (name)
{
case "SYMBOL":
CurrentName = CurrentData;
break;
case "ATOM":
//End of element description: add whole element to WTScript
// object
periodicTablelCurrentNamel = CurrentObject;
delete CurrentObject;
break;
case "NAME":
case "ELECTRON_CONFIGURATION":
CurrentObjectlname] = CurrentData;
break;
case "PERIODIC_TABLE": //end of description: cleanup
delete CurrentName;
delete CurrentData;
delete CurrentObject;
break;
default:
//A11 the other information about a chemical element contain
// numerical data and may contain the attribut UNIT, so create
// as Number object and add the
// attribute unit to this object if necessary
CurrentObjectlnamel = new Number(CurrentData);
if (CurrentAttributes.length ==
&& CurrentAttributes[0l.name == "UNITS")
CurrentObjectlnamel.unit = CurrentAttributesl[Ol.value;

232

WebTransactions Template Language

Built-in classes and methods WT_Filter class

}

// Create a document object for the XML file
doc = new Document(WT_SYSTEM.BASEDIR + "/allelements.xml");

// Prepare the handler document

handlerObject = new Object();
handlerObject.StartETementHandler = Start chemical element;
handlerObject.EndElementHandler = End chemical element;
handlerObject.CharacterDataHandler = Data chemical element;

//Data structure for information from the XML file. The element handler enters
the information here.
periodicTable = new Object();

//Call filter
try {
WT_Filter.XML_SAXParse(doc, handlerObject,true);
}
catch (exc) {
document.writeln(exc);
exitTemplate();

WebTransactions Template Language 233

WT_LdapConnection class Built-in classes and methods

7.14

71441

WT_LdapConnection class

In order to ensure support for the Internet communication protocol LDAP (Lightweight
Directory Access Protocol) in WebTransactions, the WT_LdapConnection class has been de-
fined in WTScript. WT_LdapConnection only supports synchronous operations, and does not
allow for extended operations.

This section contains the following information:

— an overview of the LDAP directory service

the LDAP error messages

built-in methods of the WT_LdapConnection class
examples

Overview of the LDAP directory service

This section is based on the "SLAPD and SLURPD Administrators Guide" published by the
University of Michigan, and is intended to provide a brief overview of the LDAP directory
service. For further information on LDAP in BS2000/0OSD, please refer to the "interNet Ser-
vices" Administrators Guide.

What is a directory service?

A directory is like a database, but tends to contain more descriptive, attribute-based infor-
mation. The information in a directory is generally read more often than it is written. As a
consequence, directories don’t usually implement the complicated transaction or roll-back
schemes regular databases use for doing high-volume complex updates. Directory updates
are typically simple all-or-nothing changes, if they are allowed at all. Directories are tuned
to give quick responses to high-volume lookup or search operations. They may have the
ability to replicate information widely in order to increase availability and reliability, while re-
ducing response time. When directory information is replicated, temporary inconsistencies
between the replicas may be OK, as long as they get in sync eventually.

There are many different ways to provide a directory service. Different methods allow differ-
ent kinds of information to be stored in the directory, place different requirements on how
that information can be referenced, queried, and updated, how it is protected from unautho-
rized access etc. Some directory services are local, providing service to a restricted context
(e.g. the finger service on a single machine). Other services are global, providing service
to a much broader context (e.g. the entire Internet). Global services are usually distributed,
meaning that the data they contain is spread across many machines, all of which cooperate
to provide the directory service. Typically a global service defines a uniform namespace
which gives the same view of the data no matter where you are in relation to the data itself,
i.e. it always responds to a request with the same result irrespective of the machine on
which the request was issued.

234

WebTransactions Template Language

Built-in classes and methods WT_LdapConnection class

What is LDAP and how does it work?

LDAP is a directory service protocol that runs over TCP/IP. The nitty-gritty details of LDAP
are defined in RFC 1777 "The Lightweight Directory Access Protocol".

The LDAP directory service is based on a client/server model. One or more LDAP servers
contain the data making up the LDAP directory tree. An LDAP client connects to an LDAP
server and asks it a question. The server responds with the answer, or with a pointer to
where the client can get more information (typically, another LDAP server). No matter which
LDAP server a client connects to, it sees the same view of the directory; a name presented
to one LDAP server references the same entry it would at another LDAP server. This is an
important feature of a global directory service, like LDAP.

The LDAP directory service model is based on entries. An entry is a collection of attributes
that has a name, called a distinguished name (DN). The DN is used to refer to the entry
unambiguously. Each of the entry’s attributes has a type and one or more values. The types
are typically mnemonic strings, like cn for common name, or mail for email address. The val-
ues depend on what type of attribute it is. For example, a mail attribute might contain the
value babs@umich.edu. A jpegPhoto attribute would contain a photograph in binary
JPEG/JFIF format.

In LDAP, directory entries are arranged in a hierarchical tree-like structure that reflects po-
litical, geographic, and/or organizational boundaries. Entries representing countries appear
at the top of the tree. Below them are entries representing states or national organizations.
Below them might be entries representing people, organizational units, printers, docu-
ments, or just about anything else you can think of.

7.14.2 LDAP error messages

Message number Message text
0300 0300:Error: LDAP(%d) - %s
0301 0301:Error: LDAP - invalid arguments.
0302 0302:Error: LDAP initialization - cannot initialize a LDAP session.
0303 0303:Error: LDAP handle - handle not found.

Error handling in WTScript is described in the WebTransactions manual “Concepts and
Functions”. An example of the handling of an 1dapError exception can be found on
page 257.

WebTransactions Template Language 235

WT_LdapConnection class Built-in classes and methods

7.14.3 Constructor

The constructor of the WT_LdapConnection class creates an LDAP object, and opens a con-
nection with the host specified in hostname and the port number specified in port.

WT_LdapConnection()
WT_LdapConnection (hostname)
WT_LdapConnection(hostname, port)

Return value

Reference to the LDAP object created or NULL

Parameters

hostname
Name of the connection host
Default: "localhost"

port
Port number of the connection
Default: 389

Example

L=new WT_LdapConnection("localhost");
// Execute LDAP operations
delete L;

236 WebTransactions Template Language

Built-in classes and methods WT_LdapConnection class

7.14.4 add method

This method adds entries to the LDAP directory. Its parameters include the distinguished
name of the new entry (dn) and an array containing its attributes. The attribute values can
be specified in string format or in the form of arrays.

add(dn, entry)

Return value

None

Parameters

dn Distinguished name (DN) of the new entry

entry Information on the entry

Example

dn="cn= Harry G. Miller, ou=board, o=FTS, c=DE";

entry= new object();

entry.sn="Harry";

entry.mail=new Array("Harry@my_company.net",
"HGMi11er@my_company.net",
"NNN@my_company.net");

entry.objectclass="Person";

L=new WT_LdapConnection("localhost");

L.bind();

L.add(dn, entry);

L.unbind();

delete L;

WebTransactions Template Language 237

WT_LdapConnection class

Built-in classes and methods

7.14.5 bind method

This method opens an LDAP session. The bind_rdn and bind_password parameters are used
to control access to the LDAP directory. If a bind call is issued with no argument specified
for these two optional parameters, access will be anonymous. Only LDAP V3 is supported.

bind()
bind(bind_rdn)
bind(bind_rdn, bind_password)

Return value

None

Parameters

bind_rdn
User ID
Default: anonymous user ID

bind_password
Password

Example

L=new WT_LdapConnection("localhost");

L.bind();

// Execute LDAP operations
L.unbind();

delete L;

238

WebTransactions Template Language

Built-in classes and methods WT_LdapConnection class

7.14.6 bindSasl method

This method opens an LDAP session with SASL.

bindSas1 (bind_rdn, mechanism, credentials, userid, realm)

Parameters

bind_rdn
Specifies an entry in the LDAP directory

mechanism
Specifies the desired SASL mechanism

credentials
Specifies the credentials of the required SASL mechanism

userid Specifies a user ID.

realm Specifies a workgroup. If this is not required, enter an empty string.

Return value
None

Example

L=new WT_LdapConnection("localhost");
L.setOption("LDAP_OPT_PROTOCOL_VERSION","LDAP_VERSION3");

L.bindSas1("cn=admin,o=FTS,c=de", "DIGEST-MD5", "secret" , "admin", "");
// Execute LDAP operations

L.unbind();

delete L;

WebTransactions Template Language 239

WT_LdapConnection class Built-in classes and methods

7.14.7 compare method

This method compares an attribute value with an entry.

compare(dn, attribute, value)

Return value

Boolean return value: true if the two objects are equal, false if not

If an attribute consists of several values, the value true is returned as soon as the first
match is found.

Parameters

dn Distinguished name (DN) used to address the entry in the directory

attribute
Attribute with the entry addressed by dn

value Value of the attribute astribute with the entry addressed by dn in the directory

Example

dn="cn= Harry G. Miller, ou=board, o=FTS, c=DE";
att="password";

val=“secret®

L=new WT_LdapConnection("localhost");
L.bind();

r=_L.compare(dn, att, val);

if (r == true)

{ // Match }

else

{ // No match }

L.unbind();

delete L;

240 WebTransactions Template Language

Built-in classes and methods WT_LdapConnection class

7.14.8 deleteEntry method

This method deletes the entry specified in the dn parameter from the LDAP directory.

deleteEntry (dn)

Return value

None

Parameters

dn Distinguished name (DN) used to address the entry to be deleted

Example

dn="cn= Harry G. Miller, ou=board, o=FTS, c=DE";
L=new WT_LdapConnection("localhost");

L.bind();

L.deleteEntry(dn);

L.unbind();

delete L;

7.14.9 equals method

This method compares the calling LDAP object with the object transferred in the object ar-
gument for equality of class, attributes, and values.

equals (object)

Return value

Boolean return value: true if the two objects are equal, false if not

Parameters

object LDAP object with which the calling object is to be compared

WebTransactions Template Language 241

WT_LdapConnection class Built-in classes and methods

7.14.10 explodeDn method

This method splits the specified DN, which is supplied by the getDn method, into its individ-
ual components. The individual components correspond to the RDNs.

explodeDn(dn, with_attrib)

Return value

Array consisting of the components of the DN
Parameters

dn DN of the entry to be exploded

with_attrib
Specifies whether or not RDNs are to be displayed with attribute names.

If so, the with_attrib parameter must be set to true. If with_attrib is setto false, only
the attribute values will be returned.

Example

basedn="0=FTS, c=DE";
filter="((ou=board) (cn=Harry G. Miller))";
scope="LDAP_SCOPE_SUBTREE"
justthese=new Array("ou","cn","mail");
[=new WT_LdapConnection("localhost");
L.bind();
Count=L.search(basedn, filter, scope, justthese);
Id=L.firstEntry();
if((dn=L.getDn(Id))!=NULL)
{
document.writeln(dn);
// Qutput:
// cn=Harry G. Miller, ou=board, o=FTS, c=DE
A=L.explodeDn(dn, true);
document.writeln(A);
// Qutput:
// L[cn=Harry G. Miller,ou=board,o=FTS,c=DE]
B=L.explodeDn(dn, false);
document.writeln(B);
// Qutput:
// [Harry G. Miller,board,FTS,DE]
}
L.unbind();
delete L;

242 WebTransactions Template Language

Built-in classes and methods WT_LdapConnection class

7.14.11 firstEntry method

This method returns the result entry ID of the first entry of a particular result.

You can use the firstEntry and nextEntry methods to read result entries sequentially. In
this case, the value returned by the firstEntry method is transferred to the nextEntry
method as an argument.

firstEntry()

Return value

Result entry ID of the first entry

Parameters

None

Example

basedn="o0=FTS, c=DE";
filter="((ou=marketing) (cn=Harry*))";
scope="LDAP_SCOPE_SUBTREE" ;
justthese=new Array('"ou","cn","mail");
L=new WT_LdapConnection("localhost");
L.bind();
Count=L.search(basedn, filter, scope, justthese);
for(Ild=L.firstEntry();Id!=0;Id=L.nextEntry(Id))
{
if((dn=L.getDn(Id))!=NULL)
document.writeln("DN: "+dn);
b
L.unbind();
delete L;

WebTransactions Template Language 243

WT_LdapConnection class Built-in classes and methods

7.14.12

7.14.13

getClassName method

This method returns a string specifying the name of the class to which the calling object
belongs.

getClassName()

Return value

String specifying the class to which the calling object belongs, in this case
WT_LdapConnection

Parameters

None

getDn method

This method returns the Distinguished Name (DN) of a result entry.

getDn (result_entry_id)

Return value

DN of an entry

Parameters

result_entry_id
ID of the entry whose DN is to be returned.
result_entry_id has to be a valid value.

Example

See firstEntry

244

WebTransactions Template Language

Built-in classes and methods WT_LdapConnection class

7.14.14 getEntries method

This method makes it easier to read several result entries (together with their attributes and
values). It returns all the information available on the result of a query to LDAP (search
method, see page 249) in the form of a WTScript object.

getEntries()

Return value

Object of the Array class, which contains an object for all found entries.
Each array element is an object with the following attributes:

— attr: Object containing the attributes of the found entry
— dn: DN of the found entry
— count: Number of attributes

Binary values are shown in the form of Base64-coded strings.

Example

basedn="o0=FTS, c=DE";

filter="((ou=marketing) (cn=Harry*))";
scope="LDAP_SCOPE_SUBTREE";

justthese=new Array('"ou","cn","mail");

L=new WT_LdapConnection("localhost");

L.bind();

Count=L.search(basedn, filter, scope, justthese);
ResultObject=L.getEntries();

L.unbind();

delete L;

WebTransactions Template Language 245

WT_LdapConnection class Built-in classes and methods

7.14.15 getOption method

This method returns the current value of a particular option.

getOption(option)

Return value

String containing the value of option

Parameters

option Option whose value is to be returned
The following values can be specified for option:

"LDAP_OPT_DEREF"
"LDAP_OPT_SIZELIMIT"
"LDAP_OPT_TIMELIMIT"
"LDAP_OPT_PROTOCOL_VERSION"
"LDAP_OPT_ERROR_NUMBER"
"LDAP_OPT_REFERRALS"
"LDAP_OPT_RESTART"
"LDAP_OPT_ERROR_STRING"
"LDAP_OPT_MATCHED_DN"
"LDAP_OPT_HOST_NAME"

These values are described in the following document:

http://www.openldap.org/devel/cvsweb.cgi/~checkout~/doc/drafts/draft-ietf-ldapext-ldap-c-api-xx.txt

Example

[=new WT_LdapConnection("localhost");
L.bind();
sizelimit=L.getOption("LDAP_OPT_SIZELIMIT");
L.unbind();

delete L;

246 WebTransactions Template Language

http://www.openldap.org/devel/cvsweb.cgi/~checkout~/doc/drafts/
draft-ietf-ldapext-ldap-c-api-xx.txt

Built-in classes and methods WT_LdapConnection class

7.14.16 modify method

This method modifies an existing entry in the LDAP directory.

modify(dn, entry)

Return value

None

Parameters

dn Distinguished name (DN) used to address the entry to be modified

entry Information on the entry dn

Example

dn="cn=Harry G. Miller, ou=board, o=FTS, c=DE";
entry = new object();
entry.mail="Harry.G.Miller@my_company.net";
L=new WT_LdapConnection("localhost");

L.bind();

L.modify(dn, entry);

L.unbind();

delete L;

WebTransactions Template Language 247

WT_LdapConnection class Built-in classes and methods

7.14.17 nextEntry method

This method returns the result entry ID of the next result entry.

You can use the firstEntry and nextEntry methods to read result entries sequentially. In
this case, the value returned by the firstEntry method is transferred to the nextEntry
method as an argument. Similarly, the value returned by each subsequent nextEntry call
is in turn passed to the next nextEntry call as an argument.

nextEntry (result_entry_id)

Return value

Result entry ID of the next entry

Parameters

result_entry_id
Result whose entries are to be output

Example

See firstEntry

248 WebTransactions Template Language

Built-in classes and methods WT_LdapConnection class

7.14.18 search method

This method searches the LDAP directory tree based on the defined filter. It returns infor-
mation on a base entry (base_dn) in the LDAP directory in accordance with the specified
scope. Optional parameters are also provided for limiting the search result further.

search(base_dn, filter, scope)
search(base_dn, filter, scope, attributes)
search(base_dn, filter, scope, attributes, sizelimit)

Return value

Number of entries

Parameters

base_dn
Base entry at which the search is to begin

filter
Filter for the search operation, which may contain boolean operators (for further in-
formation on filters, see the "Netscape Directory SDK").

The general syntax for a filter is as follows:

filter ::= (attribute comp_op value) | (boolean_op (filterl) [(filter2)] ...)

Syntax elements

attribute
An attribute

comp_op
A comparison operator

The following comparison operators are available:

The system searches for all entries containing the attribute aztribute with
the value value.

Example
(cn=Harry)

Result: All entries in which cn=Harry

WebTransactions Template Language 249

WT_LdapConnection class

Built-in classes and methods

The system searches for all entries containing the attribute artribute with
a value greater than or equal to value.

Example
(cn>=Harry)

Result: All entries in the range cn=Harry to cn=7. ..

The search searches for all entries containing the attribute attribute with
a value less than or equal to value.

Example
(cn<=Harry)

Result: All entries in the range cn=A. .. to cn=Harry

The system searches for all entries containing the attribute artribute with
a value approximately equal to value.

Example
(cn~=Meier)

Result: Entries like cn=Meier and cn=Meyer, for example

The system searches for all entries containing the attribute arribute.
Example
(cn=*)

Result: All entries containing the attribute cn

250

WebTransactions Template Language

Built-in classes and methods WT_LdapConnection class

boolean_op
A boolean operator

The following boolean operators are available:

& The system searches for all entries that fulfill the criteria of all specified
filters.

I The system searches for all entries that fulfill the criterion of at least one
of the specified filters.

I The system searches for all entries that do not fulfill the specified filter
criterion. This operator can only be applied to a single filter.

For example, the expression (! (filterl)) is permitted, but the expres-
sion (I (filterl)(filter2)) is not.

Example

(| (cn=Harry) (cn=Henry))

Result: All entries containing the attribute cn with the value Harry or Henry

value
Specifies a value of the attribute artribute to be used as a filter criterion

Wildcards are permitted here, which means that you can search for entries
containing the attribute artribute with a value

— containing a specified character string
— beginning with a specified character string
— ending with a specified character string

Example
(cn=H*)

Result: All entries containing the attribute cn with a value beginning with the
letter H

Further examples of filters can be found in the section “WebTransactions and LDAP:
examples” on page 255.

WebTransactions Template Language 251

WT_LdapConnection class Built-in classes and methods

scope
Range of the search operation

Possible values:
— "LDAP_SCOPE_SUBTREE"

Returns all information underneath the entry specified in base_dn
— "LDAP_SCOPE_BASE"

Returns all information relating to the entry specified in base_dn
— "LDAP_SCOPE_ONELEVEL"

Returns only information on the level directly underneath the entry specified in
base_dn

attributes
Array of attribute names (DN is always displayed) which allows you to restrict the
attributes and values returned by the server:

e.g. a=new Array("mail","sn","cn");
sizelimit
Limits the number of entries found. If this is set to 0, then there is no limit.

Example

basedn="0=FTS, c=DE";
filter="((ou=marketing)(cn=Harry*))";
scope="LDAP_SCOPE_SUBTREE";

justthese=new Array("ou","cn","mail");

L=new WT_LdapConnection("localhost");

L.bind();

Count=L.search(basedn, filter, scope, justthese);
ResultObject=L.getEntries();

L.unbind();

delete L;

Further examples see page 255.

252 WebTransactions Template Language

Built-in classes and methods WT_LdapConnection class

7.14.19 setOption method

This method sets an option to a particular value.

setOption(option, newval)

Return value

None

Parameters
option Option to be set

Using the newval parameter, you can specify values for the following options:

"LDAP_OPT_DEREF"
"LDAP_OPT_SIZELIMIT"
"LDAP_OPTTIMELIMIT
"LDAP_OPT_PROTOCOL_VERSION"
"LDAP_OPT_REFERRALS"
"LDAP_OPT_RESTART"
"LDAP_OPT_HOSTNAME"
"LDAP_OPT_VERSION3"

newval Value to which the option is to be set

Example

L=new WT_LdapConnection("localhost");
L.bind();
L.setOption("LDAP_OPT_SIZELIMIT", "100");
L.unbind();

delete L;

WebTransactions Template Language 253

WT_LdapConnection class Built-in classes and methods

7.14.20 toString method
This method returns a string listing each attribute and the associated value. If an attribute
is an object of type function, then the function definition is returned instead of the value.
You can use this method to create a new object with identical attribute values.

In order to avoid endless chains, the toString method will terminate output in the event of
recursion, i.e. output will be stopped as soon as the same object reference is encountered
a second time.

toString()

Return value

String listing each attribute and the associated value
Parameters

None

7.14.21 unbind method

This method closes an LDAP session.

unbind()

Return value

None

Parameters

None

Example

See bind and bindSas1

254 WebTransactions Template Language

Built-in classes and methods WT_LdapConnection class

7.14.22 valueOf method

This method returns a reference to the calling object.

valueOf()

Return value

Reference to the calling object
Parameters

None

7.14.23 WebTransactions and LDAP: examples

This section contains three examples of how to use the WT_LdapConnection class:

— asearch operation
— acomparison operation
— LDAP exception handling in WTScript

Example of a search operation

In this example, a search is carried out on the "ou" (organizational unit), "sn" (surname),
"givenname”, and "mail" (email address) attributes for all those in the organization "FTS"
whose surname begins with the letter "H" and whose first name is "John".

<wtOnCreateScript>

dn = "o=FTS, c=DE";

filter = "(](sn=H*)(givenname=John))";
justthese = new Array("ou", "sn", "givenname", "mail");
scope = "LDAP_SCOPE_SUBTREE";

1 = new WT_LdapConnection("localhost");
1.bind();

// Search the directory

count = 1.search(dn, filter, scope, justthese);
info = 1.getEntries();

document.writeln(info);

T.unbind();

delete 1;

</wtOnCreateScript>

WebTransactions Template Language 255

WT_LdapConnection class Built-in classes and methods

Example of a comparison operation

In this example, the specified password is compared with the password entry in the direc-
tory specified by the DN.

<wtOnCreateScript>
dn = "cn=Suzy Meier, ou=development, o=FTS, c=DE";
value = "secretpassword";
attr = "password";
1 = new WT_LdapConnection ();
1.bind();
// Compare the value of the specified attribute with the directory entry
if (1.compare(dn, attr, value)) f{
document.writeln("Password correct.");
}
else {
document.writeln("Password invalid. Please try again.");
}
1.unbind();
delete 1;
</wtOnCreateScript>

256

WebTransactions Template Language

Built-in classes and methods WT_LdapConnection class

Example of exception handling in WTScript for the exception IdapError

In this example, the try block guards the sequence of statements between (1) and (2) be-
fore the 1dapError exception occurs. The subsequent catch block then executes the error
handling procedure. Further information on exception handling in WTScript can be found in
the section “Exception handling procedure” on page 305.

<wtOnCreateScript>
dn = "o=FTS, c=DE";

filter = "(](sn=H*)(givenname=John))";

justthese = new Array("ou", "sn", "givenname"', "mail");
scope = "LDAP_SCOPE_SUBTREE";

try

{ (1)
1 = new WT_LdapConnection("localhost");
1.bind();
// Search the directory
count = 1.search(dn, filter, scope, justthese);
info = 1.getEntries();"LDAP_OPT_
document.writeln(info);
T.unbind();
delete 1;
} (2)
catch(ldapEkrror)
{

document.writeln(ldapError.text);
switch(ldapError.msg#)

case 303:
1.unbind();
break;
default:
}
delete 1;
b

</wtOnCreateScript>

WebTransactions Template Language 257

WT_Userexit class Built-in classes and methods

7.15 WT Userexit class

7.15.1

Objects of the WT_Userexit class allow you to call user exits. Each object of this class corre-
sponds to one user exit library. The functions defined in this library are then available to you
as methods of this object.

Constructors

WT_Userexit()
WT_Userexit (library)

The library specification allows you to enter the name of a library. User exits which are
called via this object are searched for in the specified library.

The name is specified without a suffix. WebTransactions adds the suffix .so or .d11
depending on the operating system. It looks for the specified library in the base directory
and - if no corresponding library is found there - in the installation directory.

If library is not specified, the default library WTUserexits.[so|d111] is used.

258

WebTransactions Template Language

Built-in classes and methods WT_Userexit class

7.15.2 Methods

All user functions present in shared libraries or integrated in WebTransactions are available
as methods of WT_Userexit class objects. A function user exit can thus be called in the script
area and within an evaluation operator:

mylib . function(. . .) ;
WT_Userexit.function(...);

mylib is an object of the class WT_Userexit. The function funcrion is searched for in the
library on which the object is based.

You can use the notation WT_Userexit.function to access the class methods of the
WT_Userexit class: function is then looked for in the library WTUserexits.[d11|so] (initially
in the base directory and - if it is not located there - in the installation directory).

Dynamic libraries are not supported under BS2000/0OSD. In this case, you must link

1 the functions to the WTHolder program.

Example

In the following example, the user function myFunction is called in the library myLibrary.so
which is located in a user-defined subdirectory named myDir.

myUserExit = new WT_Userexit('myDir/myLibrary');
res = myUserExit.myFunction(1,2,3);

WebTransactions Template Language 259

WT_Userexit class Built-in classes and methods

260 WebTransactions Template Language

8 WTML tags

WTML tags contain the WebTransactions-specific functions. They have the form <wt. . .>or
</wt...> and therefore correspond to the HTML standard.

WTNML tags are interpreted by WebTransactions when the template is read. The process is
as follows:

— evaluate the control structures and statements which control construction of the HTML
page

— execute the actions and statements which prepare the data for construction of the
HTML page

— buffer actions and statements for follow-up processing of the response data received
from the browser

Any characters located outside the surrounding angle brackets belong not to the WTML tag
but to HTML or script areas. If they belong to HTML areas, they are normally displayed by
the browser - with the following two exceptions:

— If there are only blanks and tabs between the start of the line and the opening angle
bracket, then these belong to the WTML tag and are ignored during output.

— Ifa WTML tag ends at the end of a line, the following line feed belongs to the WTML tag
and is ignored on output.

This approach makes it possible to write WTML tags clearly in separate lines and structure
them by means of indents without impairing the appearance of the template.

WebTransactions Template Language 261

WTML tags

Overview of WTML tags

The WTML tags available are listed in the two tables below. These are followed by detailed
descriptions of the individual WTML tags. For examples of ways in which the WTML tags
interact, refer to chapter 11.

WTNML tag Function Syntax

Rem tag Inline documentation of the template; ignored on generation | <wtRem ...> or
of the HTML page. <wtRem> ... </wtRem>

Dataform tag Marks the area for the data resent to the WebTransactions | <wtDataform ...> ...
application; corresponds to the HTML Form tag. </wtDataform ...>

Exit tag Terminates processing of the current area. <wtExit ...>

Include tag Points to other included template files, e.g. layouts for a <wtinclude ...>
uniform, easily modifiable Look & Feel for HTML pages.

OnCreateScript tag | Opening and closing OnCreateScript tags delimit a <wtOnCreateScript> ...

WT Script script which is executed directly when the template | </wtOnCreateScript>
is read (for notes on use, see OnCreateScript tag).

OnReceiveScript tag | Opening and closing OnReceiveScript tags delimit a <wtOnReceiveScript> ...
WTScript script which is executed when data is received </wtOnReceiveScript>
from the browser (for notes on use, see OnReceiveScript
tag).

The OnCreateScript/OnReceiveScript tags can be differentiated by their execution time:

— OnCreateScript tags are executed immediately the template is read, and the value
assignments take effect directly, i.e. on generation of the current HTML page.

— OnReceiveScript tags are not executed until the HTML page has been generated and
sent to the browser and the data sent by the browser has been received, i.e. before the
next template is read. They are suitable for the follow-up processing of data from the
current dialog.

The following WTML tags are available for control structures:

WTNML tag Function Syntax
If/Else/Endif tag Simple selection on the basis of the condition. <wilf ...> ...
<wtElse> ...
<wtEndIf>
DoWhile tag Loop which is repeated until the continuation <wtDoWhile ...> ...
condition becomes invalid. </wtDoWhile>
Do/Until tag Loop which is repeated until the exit loop condition | <wtDo> ...
becomes valid. <wtuUntil(...)>
262 WebTransactions Template Language

WTML tags

Keywords in WTML tags

The WTML tags and the keywords which occur in them can be written in any combination
of uppercase and lowercase characters. Like HTML tags, WTML tags contain a sequence
of properties which are designated by certain keywords and may occur in any order. The
keyword is followed by an equals sign and a value for this property. The value can be
specified as a string or a simple string expression.

Omission of quotes

If the string which represents a value within a WTML tag contains no blanks, tabs, or line
feeds (or if any such characters are invalidated), then the enclosing quotes may be omitted:
if the first character of the value is not a quote, then all the characters up to the first white
space or up to the terminating bracket (“>”) are considered to be values.

Example

<wtInclude Name=hello\ world>

WebTransactions Template Language 263

Rem - inserting comments WTML tags

8.1 Rem - inserting comments

This tag allows you to insert inline documentation comments in the template. In contrast to
HTML comments, these comments are not sent to the browser. Rem tags may be located in
the HTML area as well as within WTML tags, and may be positioned anywhere where white
spaces are permitted. They are not recognized within string expressions (i.e. evaluated as
a fixed string).

<wtRem comments>

<wtRem>
comments
</wtRem>

Two alternative formats are possible for Rem comments:

e Inthe first format, the comment is located directly inside the pointed tag brackets. In this
variant, the comment may not contain the “>” character since this character would be
interpreted as the end of the comment. Nested or empty comments are not permitted
in this format.

e In the second format, the comment is located between an opening and a closing Rem
tag. In this case, the comment may contain the “>” character. This makes it possible to
nest comments as you wish, or deactivate WTML tags with comments. Empty
comments are also permitted.

264 WebTransactions Template Language

WTML tags

Dataform - defining form areas

8.2

Dataform - defining form areas

Opening and concluding Dataformtags enclose a form area. Within this form area, you use
the usual HTML tools to define dialog elements such as buttons, text boxes, multiline text
boxes (text areas), or selection lists. The user working with the browser can then enter data
and select functions. When the user presses the Submit button, the entries are sent to
WebTransactions.

The WebTransactions Dataform tag has the following form:

<wtDataform [Name="name"]l [OnSubmit="0OnSubmitHandler"]l [ASYNC_PAGE="asyncPage" 1>
area
</wtDataform=>

name Any name

OnSubmitHandler
JavaScript code which is executed by the browser once the user has pressed the
Submi t button (even before the data is sent). The browser may, for example, subject
the user input to a plausibility check.

asyncPage
If you set this attribute, then WebTransactions processes the page even if it does
not fit into the sequence of dialog steps (asynchronous communication). This
means that you can send WebTransactions a page which does not correspond to
the last page to be output. asyncPage specifies the template which processes this
asynchronous request (for more information, see the WebTransactions manual
“Concepts and Functions”).

area Here you use the usual HTML tools to define dialog elements such as buttons or
text boxes. The area may also contain HTML text.

At runtime WebTransactions replaces the Dataform tags with “normal” HTML form tags:

<Form Method=POST Name="name" ONSUBMIT="OnSubmitHandler"
Action=url_of_webtransactions>

<Input Type="HIDDEN" ...> ...

Area

</Form>

The Action attribute is automatically set to the value of the URL of the WebTransactions
CGl component WTPub1ish, to which the completed form is to be sent. In addition,
WebTransactions generates a series of hidden fields which are also sent. These hidden
fields help, for example, to relocate the session.

WebTransactions Template Language 265

Dataform - defining form areas WTML tags

Currently, WebTransactions simply converts the concluding </wtDataform> tag into a
</Form>. However, in order to take advantage of extensions to the concluding tag in later
versions, it is recommended that you use the WTML tag rather than the HTML form tag to
terminate the area to be sent.

There may also be multiple areas of the form <wtDataform> ... </wtDataform> within a
template. In this case, when a WebTransactions application’s Submi t button is pressed, only
the corresponding form area and associated data are sent to it.

Alternative notation

Some browsers (e.g. Netscape) do not display dialog elements which are not surrounded
by <Form> ... </Form>. If you use this type of browser when programming your templates
but nevertheless want to check the template layout off-line in the browser, you can use the
following notation for the Dataform tag:

<Form WEBTRANSACTIONS [Name="name"] [OnSubmit="submitFunction"1>
Area
</Form>

This notation has the disadvantage that the tag does not start with <wt> and is therefore not
differentiated from the standard HTML tags.

266

WebTransactions Template Language

WTML tags Exit - terminating processing

8.3 Exit - terminating processing

This tag allows you to terminate processing in the specified area of the current template. It
may be located anywhere within the HTML area. Any Receive rules that have so far been
identified are executed.

<wtExit scope={"TEMPLATE"|"DIALOGSTEP"|"SESSION"}>

scope Defines where processing is to be terminated and where it is to be recommenced:

TEMPLATE
Processing of the current template is terminated. It then continues with the

next statement in the calling template. If called at the topmost level,
scope="TEMPLATE" has the same effect as scope="DIALOGSTEP"

DIALOGSTEP
Processing of all the templates involved in this dialog step is terminated.

SESSION
The current WebTransactions session is terminated at the next possible
opportunity. The result of the current WTML document is the last page sent

to the browser.

If this parameter is set, then the behavior is equivalent to
WT_SYSTEM.EXIT_SESSION="TRUE".

See also

“exitDialogStep() function” on page 90, “exitSession() function” on page 94, and
“exitTemplate() function” on page 95

WebTransactions Template Language 267

Include - including templates WTML tags

8.4 Include - including templates

This tag allows you to include a template. It may be located anywhere in the HTML area.

The included template is fully inserted. Within the included template, you can use the same
language components as in any other template. However, in any template the WTML tags
must be syntactically complete, e.qg. it is not permissible to start an IF control structure in the
higher-level template and then finish it in the included template.

<wtInclude Name="fileName">

fileName
Name of the template which is to be included. fileName is a relative file name. You
do not need to specify the file name’s . htm suffix. WebTransactions searches for the
corresponding template on the basis of the set language and style.

You can specify fileName as a fixed string or as a simple string expression.

Example
<wtInclude Name="header">

You can, for example, include the definition of a page header to give your HTML pages a
uniform Look & Feel which can easily be modified later. The header template can contain
both HTML areas and WTML tags (for the modification of the data it displays).

268

WebTransactions Template Language

WTML tags

IF/ELSE/ENDIF control structure

8.5

IF/JELSE/ENDIF control structure

The 1F control structure may be located anywhere within the HTML area. It can contain
constant HTML text, standard HTML tags, and WTML tags. You can nest IF control struc-
tures as you wish.

<wtIf (Condition)>
Blockl

[<wtETse>
Block2]

{<wtEndIf> | </wtIf>}

Condition

Blockl
Block2

Any expression. For reasons of compatibility, the numerical comparison operators
(# ==, #!=, #>, #<, #<=, #>=) can also be used in these expressions, see also
section “Comparison operators which force a numerical comparison (only in WTML
tags)” on page 67. WebTransactions evaluates Condition when it reads the
template, converts the expression to type boolean if necessary and, depending on
the result, interprets either Blockl or Block2: If the result true, Blockl is executed.
Otherwise Block2 is executed- if available.

Depending on the evaluation of the condition when the template is read, either
Blockl or Block?2 is processed. These blocks may contain constant HTML text,
standard HTML tags, or WTML tags which may or may not be processed depending
on the condition. Block2 (the ELSE branch) is optional.

WebTransactions Template Language 269

IF/ELSE/ENDIF control structure WTML tags

Example

You want to add a button to the generated formats, which allows the user to actively close
the session.

<wtIf ("##WT_POSTED.ExitButton#" != "cancel")>

<wtREM HTML generation in accordance with automatically converted templates
including all OnReceive tags!>

<wtDataform Name="exitForm">

You can close the session if you wish
<Input Action="SUBMIT" Name="ExitButton" Value="cancel">
</wtDataform>

<wtElse>

<wtoncreatescript>
<!—
WT_HOST.0SD_0.close();
exitSession();
//==>
</wtoncreatescript>

End, You have terminated the session, Thank you for visiting us.

<wtEndIf>

WebTransactions interprets the 1F constructor when reading the template. The
condition is therefore always checked during the interpretation of the template.
Even if you write OnReceiveScript tags in a branch of the 1F control structure, the
condition is evaluated at the moment the HTML page is generated. Depending
on whether or not the condition is valid, the actions in the OnReceiveScript tag are
either buffered for subsequent execution or ignored.

i @

This type of 1F control structure is therefore not suitable if you want to make the
execution of processing steps dependent on conditions which are not evaluated
until Receive time. For example, it is not possible to write a branch which is
dependent on the posted data. In such cases, you should use the WTScript if
control structure (within an OnReceiveScript tag). The WTScript i f control
structure is described on page 279.

270 WebTransactions Template Language

WTML tags DO WHILE loop

8.6 DO WHILE loop

DO WHILE loops can be used anywhere within the HTML area. When reading the HTML
page, WebTransactions continues to evaluate the template area Block as long as Condition
is valid. Processing of the template then continues after the loop construct.

<wtDoWhile (Condition)>
Block
</wtDoWhile>

Condition
See description of the IF control structure (page 269)

Block The template area Block may contain standard HTML text, standard HTML tags, or
WTML tags.

DO WHILE loops are always processed at the moment the HTML page is
generated. The condition is therefore always checked during the interpretation of
the template. If the body of the loop contains OnReceiveScript tags, then the corre-
sponding processing steps are buffered for subsequent execution.

DO WHILE loops of this type are therefore not suitable if you want to make the
number of iterations dependent on conditions which are not evaluated until Receive
time (e.g. dependent on posted data). In such cases use the WTScript while or for
loops (within an OnReceiveScript tag). The WTScript loops are described starting
on page 281.

1]

WebTransactions Template Language 271

DO UNTIL loop WTML tags

8.7

DO UNTIL loop

DO UNTIL loops can be used anywhere within the HTML area. When interpreting the HTML
page, WebTransactions continues to evaluate the template area Block as long as Condition
is valid. Processing of the template then continues after the loop construct.

<wtDo>
Block
<wtUnti1(Condition)>

Condition
See description of the IF control structure (page 269)

Block The template area Block may contain standard HTML text, standard HTML tags, or
WTML tags.

Example

Your host application contains a format which can be scrolled through page by page. It
contains a box named POSITION in which the following entries can be made: + (page down),
- (page up), ++ (to end), and -- (to start). As long as the current page is not the last page,
the box contains the entry “+”. When the end of the list is reached, the host application
enters the value “” in the box. You can program the following loop to display the entire list
on an HTML page:

<wtRem Position at start of list>

<wtoncreatescript>
<l—
WT_HOST.OSD_O.POSITION.Value="-=";
//==>
</wtoncreatescript>

<wtDo >

<wtRem Read one page from host application>

<wtoncreatescript>

<!—
WT_HOST.O0SD_O.send();
WT_HOST.0SD_0O.receive();

/>

</wtoncreatescript>

<wtRem Output data on HTML page>
##ListLinel.Value#

##ListLine2.Value#

##ListLine3.Value#

<wtRem Read next page if end not yet reached>

272

WebTransactions Template Language

WTML tags DO UNTIL loop

<wtIf ("##POSITION.Value#" !="-—")>

<wtoncreatescript>
<!—
WT_HOST.OSD_O.POSITION.Value="+";
/==
</wtoncreatescript>

<wtEndIf>
<wtUntil("##POSITION.Valuef#" =="—")>

DO UNTIL loops are always processed at the moment the HTML page is
generated. The condition is therefore always checked during the interpretation of
the template. If the body of the loop contains OnReceiveScript tags, then the corre-
sponding processing steps are buffered for subsequent execution.

DO UNTIL loops of this type are therefore not suitable if you want to make the
number of iterations dependent on conditions which are not evaluated until Receive
time (e.g. dependent on posted data). In such cases, use the WTScriptwhile or for
loops (within an OnReceiveScript tag). The WTScript loops are described starting
on section “while loop” on page 281.

1]

WebTransactions Template Language 273

OnCreateScript - WTScript at generation time WTML tags

8.8 OnCreateScript - WTScript at generation time

Between the opening and closing OnCreateScript tags, you can formulate a program in
WTScript. This is run by WebTransactions during the interpretation of the template and thus
before the page is sent to the browser. The script is therefore executed on the
WebTransactions server (“server-side” scripts).

This differentiates WTScript programs within OnCreateScript tags from JavaScript
programs within “normal” HTML <script> tags which are interpreted by the browser (“client-
side” JavaScript).

<wtOnCreateScript>
CreateScript
</wtOnCreateScript>

CreateScript
WTScript program which is executed by WebTransactions during the interpretation
of the template. The WTScript statements which you can use here are described in
chapter “WTScript statements (in OnCreateScript/OnReceiveScript)” on
page 277ff.

If you first want to view the template off-line in the browser, you can improve the display by
hiding the WTScript program in an HTML comment:

<wtOnCreateScript>
<!—

CreateScript

/] ——>
</wtOnCreateScript>

274

WebTransactions Template Language

WTML tags

OnReceiveScript - WTScript after the receipt of browser data

8.9

OnReceiveScript - WTScript after the receipt of browser data

Between the opening and closing OnReceiveScript tags, you can formulate a program in
WTScript. WebTransactions inserts this in the sequence of the other OnReceive tags. Its
execution is therefore postponed until the data sent by the browser has been received, i.e.
until the current HTML page has been generated and sent to the browser and the data sent
by the browser has been received.

Like WTScript programs within OnCreateScript tags, WTScript programs within OnReceive
tags are interpreted by WebTransactions and not by the browser (“server-side” scripts).

<wtOnReceiveScript>
ReceiveScript
</wtOnReceiveScript>

ReceiveScript
Program in WTScript which is executed by WebTransactions after the receipt of
data posted by the browser. The WTScript statements which you can use here are
described in chapter “WTScript statements (in OnCreateScript/OnReceiveScript)”
on page 277ff.

If you first want to view the template off-line in the browser, you can improve the display by
hiding the WTScript program in an HTML comment:

<wtOnReceiveScript>
<!—

ReceiveScript

el
</wtOnReceiveScript>

WebTransactions Template Language 275

OnReceiveScript - WTScript after the receipt of browser data WTML tags

276 WebTransactions Template Language

9 WTScript statements
(in OnCreateScript/OnReceiveScript)

Within the WTScript areas which you introduce with <wtOnCreateScript> or
<wtOnReceiveScript>, you can specify WTScript statements which are executed at the
server. WTScript statements are based on JavaScript V1.2 and the same language
concepts are therefore generally supported. The only difference is that the JavaScript
object model has been replaced by a separate model, which is described in the
WebTransactions manual “Concepts and Functions”. This section describes the server-side
WTScript statements supported by WebTransactions.

Browsers output unknown WTScript code as clear text. You can prevent them from doing
this by enclosing the scripts in comments: <! — at the start and //——> at the end.

Overview of statements

WTScript statements can contain expressions and other statements, and must be termi-
nated with a semi-colon (;). They are executed in sequence. The statements may have side
effects, such as the evaluation of expressions or the assignment of values to variables.
However, unlike expressions, the statements themselves do not have any value or data

type.

This chapter describes the action of the individual statements during the processing of a
WTScript script. WebTransactions supports the following statements:

e Empty statements

e Statements for sequence control (conditional branches and loops):
if, while, do/while, for, for/in, switch, break, continue, return

e Statements for the declaration of variables and functions: var and function

e with expressions and statements which provide a shorter way of writing object refer-
ences in statements

e Statements for troubleshooting: throw, try, catch, finally

WebTransactions Template Language 277

Empty statement WTScript statements

9.1 Empty statements

No action is executed for an empty statement.

Example
The following loop searches the array a for the first undefined element:

for(i=0; i<a.length && alil; i++);

9.2 EXxpression as a statement

An expression can be made into a statement by terminating it with a semi-colon. Such
expressions include, for example, assignments, function calls, and the
increment/decrement operators.

expression ;

expression
Any expression (see chapter “Expressions and operators” on page 63)

Description

The expression expression is evaluated.

Examples

output = "Hello" + name;
WT_SYSTEM.STYLE = WT_POSTED.STYLE;

//Value assignment
document.write("welcome, " + name);
//Call to document object’s write method

counter++; //Increment operator
6*7; // Statement of no significance

278 WebTransactions Template Language

WTScript statements Statement block as a statement

9.3 Statement block as a statement

A statement block may consist of no, one, or more statements which are enclosed in braces.

{
Lstatement]

}

statement
Individual statement or statement block. These may include, for example, assign-
ments, function calls, and the increment/decrement operators.

Description

A statement block is executed by executing the individual statements in order.

9.4 Sequence control statements

Statements used for sequence control purposes, also known as control structures, control
the sequence in which a program is processed. You use conditions to specify which state-
ments are executed (branching) and how often they are executed (loops).

9.4.1 if branch

The i f branch executes a statement if the specified condition is fulfilled. If the condition is
not fulfilled (false), then other statements may (optionally) be executed. If multiple state-
ments are to be made dependent on the condition, then these must be enclosed in braces.

The condition may be any expression which can be mapped to a logical value (true/false)
(see chapter “Expressions and operators” on page 63). The statement may be nested.

if (condition) blockl [else block2]

condition
Expression which represents the condition and which is evaluated

blockl, block2
A statement or a statement block

WebTransactions Template Language 279

if WTScript statements

Description

The expression condition is evaluated and converted to data type boolean. If the result is
the value true, then blockl is executed; if it is the value false, then block2 is executed.

If nested 1t structures are used, the e1se branch always belongs to the innermost i f
statement. No other e1se branch may be associated with this i f statement.

if (expressionl)
if (expression2)
blockl
else
block2

The first i f statement contains only a true branch which consists of the second i f
statement.

Example 1

You can use an i f branch, for example, to create a variable as a reference to the global or
connection-specific system object in the start template, provided such an object exists. If a
connection-specific system object (which is not undefined) exists for the connection, then
the host_system variable is set to the value of the connection-specific system object.
Otherwise, it is set to that of the global system object.

if (WT_HOST.myComObj.WT_SYSTEM != null)
host_system = WT_HOST.myComObj.WT_SYSTEM;
else
host_system = WT_SYSTEM;

Example 2

Communication with the host application is only performed if the style has not changed.

if (WT_SYSTEM.TravStyle == "NoChange")
{

host.send();

host.receive();

280 WebTransactions Template Language

WTScript statements while

9.4.2 while loop

You can use a while loop to execute and repeat statements as long as the loop condition
is fulfilled (true). If the condition is not fulfilled (false), loop processing is terminated and then
continued using the statement directly after the while loop.

Llabel:1 while (condition) block

label Label which allows you to refer to a break or continue statement

condition
Expression which is checked before the while loop is executed for the first time and
before every repetition

block A statement or a statement block

Description

The expression condition is evaluated repeatedly and converted to data type boolean. block
continues to be executed as long as the result of the evaluation is the value true.

If the loop condition is always met, then an infinite loop occurs.
If block contains a break statement, this has the following effect:
— break without label
The loop is aborted and processing continues with the statement directly after the loop.
— break with label

The nearest statement identified in label is aborted and processing continues with the
statement immediately after the aborted statement.

If block contains a continue statement, this has the following effect:
— continue without label

The statement or statement block specified in block is aborted. condition is reevaluated
and processing of the while loop continues accordingly.

— continue with label

The statement or statement block specified in block is aborted. The value specified in
the condition parameter of the loop identified in label is reevaluated and processing con-
tinues with the loop identified in label.

WebTransactions Template Language 281

while WTScript statements

Example of an infinite loop

while(true)
{
}

Example
The following whi1e loop outputs the defined values of array a in the columns of a table row:

document.write("<tr>");
1=0;
while(i < a.length && alil)
{
document.write("<td>" + ali++] + "</td>");
}

document.write("</tr>");

282 WebTransactions Template Language

WTScript statements do/while

9.4.3 do/while loop

You can use do/while loops to execute and repeat statements for as long as the condition
is fulfilled (true). If the condition is not fulfilled (false) loop processing is terminated and then
continued with the statement directly after the do/while loop.

The statements are run in all cases at least once before the condition is checked.

Llabel:]1 do block while (condition);

label Specifies a label which allows you to refer to from a break or continue statement.
block A statement or a statement block.

condition
An expression that is checked after each loop run. The expression is converted to
data type boolean and as long as this returns true, the loop is continued.

Description

If block contains a break or continue statement, the execution flow is as described in sec-
tion “while loop” on page 281.

Example
a =0;
arr = new Array;
do {
arrlal = a;

}
while (a++<100);

WebTransactions Template Language 283

for

WTScript statements

9.4.4 forloop

The for loop allows you to repeat the execution of a statement or statement block for as
long as the loop condition is fulfilled.

Llabel:]1 for ([init 1; [condition 1; [update 1) block

label Label which allows you to refer to a break or continue statement

init An expression or a variable declaration. This corresponds to a declaration made
prior to the for loop.
init is executed once at the start of the loop. Typically, it is used to initialize a loop
counter.

The following steps are executed repeatedly:

condition
condition is evaluated and converted to the data type boolean. If the result is true
or condition is not available, block is executed. If the result is false, then the loop is
terminated.

update Expression which is evaluated once the body of the loop has been processed. This
typically modifies the value of the loop counter.

block Statement or statement block which forms the body of the loop

Description

If block contains a break statement, this has the following effect:
— break without label

The loop is aborted and processing continues with the statement directly after the loop.
— break with label

The nearest statement identified in label is aborted and processing continues with the
statement immediately after the aborted statement.

If block contains a continue statement, this has the following effect:
— continue without label

The statement or statement block specified in block is aborted and update executed. The
value specified in the condition parameter is reevaluated and processing of the loop con-
tinues accordingly.

284

WebTransactions Template Language

WTScript statements for

— continue with label

The statement or statement block specified in block is aborted. The value specified in
the condition parameter of the loop identified by label is reevaluated after update is exe-
cuted , and processing continues with the loop identified in label.

Example 1

In the following example, a counter i is defined and initialized with the value 1. Each time
the loop is repeated, the value of the counter is increased by 1. When its value is greater
than 100, the condition of the second statement is not fulfilled any longer and the loop is
terminated.

The loop counter is used to form the square of the current value on each loop run. The result
is output in the current HTML document (document.write method, see section “write /
writeln method” on page 153).

for(i = 1; i <= 100; i++)
{
var x =i * i;
document.write("
The square of " + i + " is " + Xx);

}

Example 2

The following for loop allows you to read all the fields of the current screen (if there is no
further field present, $END is returned). You can use the i f branch to check whether the end
user has modified any values and assign these to the corresponding host objects of the
OSD/MVS communication object.

for (element = WT_HOST.con.$FIRST.Name;
element != "$END";
element = WT_HOST.con.$NEXT.Name)
if (WT_POSTEDLelement] != WT_HOST.conlelementl.Value)
WT_HOST.conlelement].value = WT_POSTED[element];

For examples of for statements with labels, which are target of a break label statement or
and continue label statement, see the section “break statement” on page 290 or the
section “continue statement” on page 292.

WebTransactions Template Language 285

for/in

WTScript statements

9.4.5 for/in loop

This statement loops through the attributes of an object (object). For example, these can be
the name/value pairs, which the browser receives as the attributes of the posted object, or
the elements of an array. The variable name stores the current attribute of object.

Llabel:]1 for (L[var] name in object) block

label Label which allows you to refer to a break or continue statement

name Variable to which the name of an object attribute or the name/index of an array
element (i.e. the property of an object) is assigned (see section “Object class” on
page 173). The variable name is declared implicitly. If you call the for loop in a
function and want to create the variable locally, you must use var name (see section
“var statement” on page 295).

object Expression which defines the object whose attributes are looped through

block A statement or sequence of statements to be executed for each property

Description

The expression object is evaluated and converted to data type object if necessary. The
names of the properties are assigned to the variable name in string form. block is executed
after each value assignment, for example in order to output the names of the object
properties.

If block contains a break statement, this has the following effect:
— break without label

The loop is aborted and processing continues with the statement directly after the loop.
— break with label

The nearest statement identified in label is aborted and processing continues with the
statement immediately after the aborted statement.

If block contains a continue statement, the statement or statement block specified in block
is aborted and processing continues as follows:

— continue without label

The next attribute of the object is assigned to the variable and processing of the for/in
loop continues accordingly.

— continue with label

The system jumps to the start of the loop identified in label where the next value is as-
signed to the loop variable. Processing of this loop is then continued.

286

WebTransactions Template Language

WTScript statements for/in

Example 1

In this example, the function collects all the sales values (turnover) for the 1st quarter and
outputs them as an HTML-formatted string.

function properties(turnover) {
for (var i in turnover) {
document.write(turnoverlil + "<p>")

}

Example 2

This for/in loop outputs the names of all the host objects together with the property
HTMLValue. The communication object for the connection is named “Conn”.

for (obj in WT_HOST.Conn)
{

document.write (obj + ":" + obj.HTMLValue +"
");

}

Example 3

If an HTML page contains a list of names from which the user can select multiple entries,
then WebTransactions returns the selected entries in an array. If only one entry is selected,
a string is returned. The following for loop outputs all the selected names. If only one entry
is selected, then mu1ti is not an array and the loop is not executed.

b = "Names:";
if (WT_POSTED.multi)
{
for (@ in WT_POSTED.multi)

b += " " + WT_POSTED.multilal;
if (b == "Names:")
b += " " + WT_POSTED.multi;

else

b+ = "Nothing selected!";

WebTransactions Template Language 287

switch

WTScript statements

9.4.6 switch statement

This statement is used to select between multiple cases (case). One or more statements
are executed if the value of an expression which is checked as the input condition corre-
sponds to the value of the expression of a case (1abel). The break statement can be used
to abort the sequential processing of the individual cases.

switch (expressionl)
{

case expression2: statementl ... [break [label:]1;]
case expression2: statementl ... [break [label:]1;]

[default:] statement2 ...

expressionl
Any expression (see chapter “Expressions and operators” on page 63)

expression2
Expression whose value is compared with the value of expressionl.

statement 1
One or more statements which are executed if the expressions expressionl and
expression2 are equivalent.

statement2
One or more statements which are executed if non of the values in expression2 are
equivalent to expressionl

break [label]
Aborts the switch statement and continues processing with the next statement.
Processing continues with the statement immediately after the switch statement.

break label aborts the nearest statement containing the switch statement identified
in label, and continues processing with the statement immediately after the aborted
statement.

Description

The expression expressionl is evaluated and compared for lexical or numerical equivalence
etc. with the expression2 expressions which follow each case keyword. Execution of the
script continues with the case for which the value of expression2 corresponds to the value of
expressionl. This case and all the cases which follow it are processed.

If no identical expression is found, then any statements specified after the default keyword
are executed. If default is not specified, then no actions are performed in the switch state-
ment.

288

WebTransactions Template Language

WTScript statements switch

Example 1

You can use the following swi tch statement to map user input values, for example in a drop-
down list, to host objects. host points to the host data objects for the connection.

switch (WT_POSTED.COUNTRY)

{
case "Belgium": host.Country.Value= "1"; break;
case "France": host.Country.Value= "2"; break;
case "Germany': host.Country.Value= "3"; break;
case "Greece": host.Country.Value= "4"; break;
default: host.Country.Value= "0";

Example 2

A value is assigned to WT_SYSTEM. STYLE depending on the value posted in FORMSTYLE.

WT_SYSTEM.TravStyle = "change";
switch (WT_POSTED.FORMSTYLE)
{
case "Forms": WT_SYSTEM.STYLE = "forms";
break;
case "Simple": WT_SYSTEM.STYLE = "simple";
break;
case "Green": WT_SYSTEM.STYLE = "green";
break;
case "Enhanced": WT_SYSTEM.STYLE = "enhanced";
break;
default: WT_SYSTEM.TravStyle = "NoChange";
//WT_SYSTEM.STYLE remains unchanged!
break;

WebTransactions Template Language 289

break WTScript statements

9.4.7 break statement

This statement allows you to end a loop or a switch statement prematurely. This may be
necessary, for example, in order to query errors.

break [label]

Description

The break statement has the following functionality, depending on whether it is specified
with or without the label parameter:

— breakterminates the execution of the innermost for, for/in,while, do/while Or switch
statement, and passes control to the statement which directly follows the loop or the
switch statement.

— break label terminates the nearest statement identified in label, and continues process-
ing with the statement immediately after the aborted statement.

If the break statement occurs outside a for, for/in, while, do/while, or switch statement,
then a runtime error is reported.

Example 1

In the following example, the while loop is aborted on the fourth pass. The test function
returns as a result the value of the multiplication 3 *x.

function test(x) {
var a = 0;
while (a < 6) {
if (a == 3)
break;
a ++;
}

return a * x;

290 WebTransactions Template Language

WTScript statements break

Example 2

If the user has to enter values in a number of different text boxes in an HTML page, you can
use the following loop to check the completeness of the input.

bInputComplete = true;
for(field in WT_POSTED)
{
if WT_POSTEDLCfield]l = "" //User has not entered anything
{
bInputComplete=false;
break;
}
}
if (bInputComplete)

Example 3

If typeof alil[j]l == 'undefined', the program flow continues with the statement
statement.

start: for (i=0; i<=99; i++)
{
j=0;
nextloop: for(; j<=99; j++)
{
// End outer loop if element does not exist
if (typeof alill[j] == 'undefined')
break start;

}

statement ;

WebTransactions Template Language 291

continue

WTScript statements

9.4.8 continue statement

This statement terminates the execution of the statements in a for, for/in, while or
do/while loop and continues with the next loop cycle.

continue L[label]

Description

The continue statement interrupts the execution of the innermost for, for/in, while or
do/while loop which contains it, and continues processing of the loop as follows:

— If no label is specified, the continue statement resumes processing of the innermost
loop in which it is contained at the next iteration step.

— If alabel is specified, continue label resumes processing of the loop identified in label
at the next iteration step.

In the case of a while loop, processing continues with the evaluation of the loop condition,
whereas in the case of a for loop, it continues with the processing of update. If the loop
condition is true, the loop is executed again. In the case of a do/while loop the end condi-
tion is checked again. In the case of a for/in loop the next pass is started.

If the continue statement occurs outside of a for, for/in, while or do/while loop then
a runtime error is reported.

Example 1

You can skip the processing of fields in which the end user has made no input (nu11 value)
by querying whether the elements of the posted object have the value nu11:

for(i in WT_POSTED){
if (WT_POSTEDLil == null)
continue;
. // Processing continues here

}

Example 2
The following loop processes all user input sequentially. All empty entries are ignored.

nCount=3;
var eingabe;
for(field in WT_POSTED)
{
if (WT_POSTEDLfieldl = "") //User has not entered anything
continue;
eingabeli++]=WT_POSTEDLfield];

292

WebTransactions Template Language

WTScript statements continue

Example 3

This example finds out the country which the specified city belongs to.

cities = new Object;
cities.Germany = new Array ("Aachen", "Bonn"', "Essen"', "Frankfurt", "Munich,
"Wurzburg");
cities.GreatBritain = new Array
("Birmingham", "Exeter","Glasgow","Hull", "London", "Warwick");
cities.France = new Array ("Bourges","Cannes","Nantes", "Orleans", "Paris",
"Rennes");
function where(name)
{
outer: for (country in cities)
{
for (i=0; i< citieslcountryl.length; i++)
{
if (citieslcountryllil]l == name)
return country;

// If the array element is lexically greater

// than the name we Took for, we can continue with

// the next country.

else if (citieslcountryllil > name)

continue outer;

}

return "";

WebTransactions Template Language 293

return

WTScript statements

9.5 return statement

This statement allows a function to return the result of its execution to the calling
WebTransactions application component.

return [retValue]

retValue EXxpression which is passed as the return value

Description

The return statement terminates the execution of a function. If retValue is present and is an
expression, then it is evaluated and its value returned. If the return statement occurs
outside of a function, a runtime error is reported.

Example 1

The function below calculates the number of hours normally worked by an employee
depending on the number of working days in a month and the agreed number of hours per
day. The result can be specified as a value or an expression.

function worktime(days, hours)
{
workhours = days * hours;
return (workhours);

or

function worktime(days, hours)
{
return (days * hours);

}

Example 2

The result of calling the function square with parameter 3 is assigned to the variable result.
The result is output with the document.write method.

function square(x) {
var y=x * Xx;
return y ;
b
result= square(3);
document.write("The square of 3 is " + result);

294

WebTransactions Template Language

WTScript statements var

9.6 var statement

You can create a variable by simply assigning a value (implicitly) or by declaring it with the
keyword var (explicitly). These two ways of declaring a variable differ only within functions.
In a function, an explicit declaration creates a local variable which is only available within
this function. In contrast, an implicit variable declaration creates global variables both inside
and outside the function and these are valid for the entire template (up to the last OnReceive
processing step).

var { identifier | identifier=value } [{ ,identifier | ,identifier=value }...]

var Keyword for an explicit variable declaration

identifier
Name of the variable. The rules applying to name elements govern the formation of
variable names (see section “Name elements” on page 42).

value Assignment of an initial value, i.e. initialization of the variable. The variable is
assigned this value and the corresponding type. If you do not specify a value, the
variable is automatically assigned the value undefined. This means that nothing is
stored.

Description

You must make an explicit variable declaration whenever you want to declare a local
variable within a function. This is because a simple assignment automatically creates a
global variable.

You can declare multiple variables together. To do this, separate the variable names with
commas.

JavaScript can only handle “loose typing”, i.e. the variable type is not specified on decla-
ration. Data types are automatically converted at runtime if necessary.

Example 1

function setl()
{
var x = 17; // Local variable declaration
}
function set2()
{
document.write("The value of x is " + Xx);
// of no use since x is not recognized in this function,
//Output: The value of x is undefined

WebTransactions Template Language 295

var

WTScript statements

Example 2

function setl()
{
x = 17; //Global variable declaration
}
function set2()
{

document.write("The value of x is " + x);
// Output: The value of x is 17

}
setl();
set2();

Example 3

function calculate(transferl, transfer2)
{
var result = transferl + transfer?;
return result;

}

The result of the calculate function therefore depends on the types of the transfer param-
eters. If they are both of type number, then the result is also of type number. However, if one
of the parameters is of type string, then a string is returned.

calculate(4,7); returns the result 11

calculate("4",7); returns the result ’47’

296

WebTransactions Template Language

WTScript statements function

9.7 function statement

You use functions to group together sequences of statements which recur within a template.
Defining a function allows you to use a simple statement to trigger complex actions without
having to write out the same statements each time.

The function statement allows you to define your own functions as opposed to the
predefined functions which you can call without first having to define them yourself. The
functions of built-in classes are described in the chapter “Built-in classes and methods” on
page 117.

function [identifier 1 ([parameter [, parameter 1... 1) { [statement... 1 }

identifier
Name used to call (execute) the function. The rules for name elements apply to
identifier (see section “Name elements” on page 42).

You can also use functions anonymously by directly assigning the function definition
to a variable.

Example

erg = function(x)

{
X += 42;
}

parameter
Values which are passed from the calling WebTransactions application component
to the function to be processed. parameter can be a simple name element (see
section “Name elements” on page 42). The value of the variable is passed, not its
address (“call-by-value”). If the function modifies the value of a parameter, this
change does not apply to the calling WebTransactions application component.

Example 1

If a function is called with fewer parameters than are specified in its definition, the
other parameters are undefined.

function myFunc(a,b)
{
document.write(a + " " + b);
}
myFunc("Hello"); // Output: Hello undefined

WebTransactions Template Language 297

function

WTScript statements

Example 2

If, on calling a function, you specify more parameters than are present in the
function’s definition, then you cannot access the additional parameters by name.
However, you can access them in the function via the arguments array.

If you define the function myfunc as follows:

myfunc(wordl ,word2)

{
}

and call it as follows
myfunc("hello", "brave new", "world");

then, within the function, you can access the 1st parameter via word1 or
arguments[0] but you can only access the third parameter via arguments[2].

statement ...

A sequence of statements defines the execution logic of the function.

Description

The declaration gives the function a name and specifies the statements which are to be
executed and the parameters which are to be passed to the function. To call a function,
specify the name of the function followed by its parameters enclosed in round brackets. If
no parameters are passed, the round brackets are empty.

function statements can only be used within functions. The function statement generates
a local variable of the type function in the surrounding function.
Example

function ()

function g(x)
{
return 6*x;

}
return g(7);

The function g is no longer valid outside the function f. The function statement is thus
equivalent to the assignment of a function literal to a local variable (see section below):

function f()

var g = function (x){return 6*x;};
return g(7);

298

WebTransactions Template Language

WTScript statements function

}
Functions can not only accept but also return values (see section “return statement” on
page 294).
For examples illustrating how functions are declared and called, refer to the section “return
statement” on page 294.

299

WebTransactions Template Language

function literal WTScript statements

9.8 Function literal

Alongside the function statement (see page 297), the anonymous use of functions without
identifiers is supported - the function literal.

A function literal can be used as part of an expression in a number of places within a script
and can even be used in the evaluation operator. As a value, it returns a function which you
can assign to a variable and execute .

function ([parameter [, parameter 1... 1) { [statement ... 1 }

pammeter
Values that are passed from the calling WebTransactions application component to
the function for processing. parameter is a simple name element (see section “Name
elements” on page 42). The value of the variable is passed, not the address of the
variable ("call-by-value"). If the function changes the value of the parameter, this
change does not apply in the calling WebTransactions application component.

Statement ...
A sequence of statements defines the execution logic of the function.

Example

sq = function(x){return x*x;};
a=sq(5);

300

WebTransactions Template Language

WTScript statements with

9.9 with statement

This statement defines an object as the default object for statements. This permits a
shortened notation for statements with object references.

with (object) block

object Expression which is evaluated and converted into an object

block Individual statement or statement block

Description

Names are interpreted relative to this object in block. Nested with statements are inter-
preted from the inside out.

Example

If you want to assign posted values to a number of different attributes of the system object,
then the with statement allows for a compact notation:

with(WT_SYSTEM)
{
COMMUNICATION_ERROR_FORMAT = "wtstart";

STYLE = WT_POSTED.STYLE;

LANGUAGE = WT_POSTED.LANGUAGE ;
TIMEOUT_APPLICATION = WT_POSTED.TIMEOUT_APPLICATION;
TIMEOUT_USER = WT_POSTED.TIMEOUT_USER;

WebTransactions Template Language 301

Exception handling WTScript statements

9.10 Exception handling

The errors that occur in WebTransactions can be subdivided into the following error classes:

syntax errors (e.g. incorrect keyword)

runtime errors (e.g. object not available or array index outside the permitted range)
communication errors (e.g. connection setup failed)

global errors (e.g. template not available)

Exception handling provides a very simple means of dealing with errors that occur during
execution of a WTScript script (runtime errors). Through appropriate procedures, it allows
you to intercept fatal program errors or other exceptional situations.

9.10.1 Error object

Each time a runtime error occurs, an exception is thrown. This exception is an object of type
Error.

Error objects are structured as follows:

Attribute name Contents
type String which identifies the error type
The following error types have been defined:
— CommunicationError
— GlobalError
— RTSError
— JavaError
msgNo# Number of the error message as it appears in the message file
text Full text of the error message as it appears in the message file
position Position at which the error occurred (optional)
position.line Line in which the error occurred
position.col Column in which the error occurred
position.path Name of the template in which the error occurred

302 WebTransactions Template Language

WTScript statements Exception handling

It is possible for programmers to catch these exceptions by means of a try/catch block,
and instigate their own exception handling procedures. If exceptions are not caught, the de-
fault functionality comes into play, in which case the error messages are output with the help
of the error template.

If an exception is thrown within a section of code, processing of that code section is aborted
and no result is returned. All calling code sections are skipped until the program flow reach-
es a section of script which catches and handles the exception. Once this code section has
been processed, i.e. the exception has been handled, the exception is reset and has no af-
fect on the rest of the program flow.

There are two types of exception:

— implicit exceptions

— explicit exceptions

In the event of runtime errors, implicit exceptions are thrown by the WebTA runtime system

as instances of the error class. The error class is described in the WebTransactions manual
“Concepts and Functions”.

Error object in a dynamically generated script

It is possible for a syntax error to occur not only in a "normal” template, but also in a script
created by eval () or setTimeout (). In this event, additional information is generated to
facilitate debugging.

e The child object Position of the error object is assigned the attributes strline,
strColumn and strText.

strText contains the string that was dynamically parsed, and strLine and strColumn
refer to this string.

e ThevaluesforstrlLine, strColumnand strText are also output in the WebTransactions
trace.

e Ifthe placeholders %(strLine) , %(strColumn) and/or %(strText) are contained in the
error template, they are supplied with the current values in the case of errors that can
be localized.

WebTransactions Template Language 303

Exception handling WTScript statements

9.10.2

Explicit exceptions

Explicit exceptions can be thrown in your WTML script using the throw statement:
throw expression;

where expression specifies the value of the exception. This can be a literal or an instance of
a particular class.

Example 1: Literal exceptions

throw 42; // Generates an exception with the numeric value 42
throw "forty two"; // Generates an exception with the string value "forty two"
throw true; // Generates an exception with the boolean value “true”

Example 2: Exception as an object

function UserException (message) // Constructor for object of type UserException

{
this.message=message;
this.name="UserException";
}
myUserException=new UserkException("Invalid value");
throw myUserException; // Generates an exception of object type UserException

304

WebTransactions Template Language

WTScript statements Exception handling

9.10.3 Exception handling procedure

Up to Version 6 of WebTransactions, a try block without a subsequent catch block

1 was possible. As of Version 7, this triggers an error message.

Exception handling allows you to catch predefined implicit or explicit exceptions, and initiate
appropriate error handling procedures. For this purpose, WTScript provides the following
language elements:

— try block
— catch block
— finally block

The try ... finally block is structured as follows:

try { guarded code section } (1)

Lcatch (identifier it condition){}1 // Multiple catch block = ————————— (2)

Lcatch (identifier if condition){}]

Lcatch (identifier) {}] // Single catch block
[finally{}] (3)

(1) Guarded code section in the try block

In your script, the code section for which you wish to catch certain exceptions is entered
in a try block.

(2) Error handling in the catch block

The try block must be followed by one or more catch blocks. This is where exceptions
thrown when processing the try block are actually handled. Within the catch block,
identifier identifies the exceptions to be handled and exists only while this catch block
is being processed.

A distinction is made between a single catch block and a multiple catch block. Since
the try block can throw various types of exception, you can respond with multiple catch
blocks which catch each individual exception. It is also possible to attach a catch block
without any conditions (unconditional catch block) to the multiple catch block, which will
then catch any unexpected exceptions.

WebTransactions Template Language 305

Exception handling WTScript statements

(3) finally block

The finally block contains all statements that are to be executed regardless of wheth-
er or not an exception is thrown and/or caught.

Thrown exceptions always terminate the execution context of a function, method, or
constructor. A with statement will restore the standard object, irrespective of wheth-
er or not an exception is thrown.

i @

306 WebTransactions Template Language

WTScript statements Exception handling

Example

function throwkxception(i, j)
{
if (i =73)
throw true;
if (Math.round(100 * (i + J)) == 42)
throw 42;
if (Math.round(100 * C i + J)) == 21)
throw "twenty one'";
else {
excObj = new Object();
excObj.type = "any sum";
excObj.sum = Math.round(100 * (1 + j);
throw excObj;
}
t

try f
for (i=0; i<10; i++)
{
throwException(Math.random(), Math.random());
}
}

catch (exc if exc == 42)

{ document.write("
The sum of " + i + " + " + j + " =" 4+ exc);
iatch (exc if exc == "twenty one")

{ document.write("
The sum of " + i + " + " + j + " =" 4+ exc);
iatch (exc if exc.type == "any sum")

{

|
+

document.write("
The sum of " +exc.i+
exc.sum);

4+ " +eXC.j+ [—

}
catch (exc)
{
document.write("
"+ i + " and " + j + " are equal. That's " + exc);
}
finally
{
document.write("
following all exceptions");

}

WebTransactions Template Language 307

Exception handling WTScript statements

308 WebTransactions Template Language

10 Class templates (*.clt)

Class templates allow you to automate the evaluation of objects of the same type, for
example similar host data objects. Instead of always having the to write the same state-
ments for each host data object, you define corresponding class templates. A class
template is stored in a file with the suffix .c1t (class_template).

When a class template is evaluated, the result of the evaluation is written to the output
stream of the calling template in place of the class template call. In class templates, you can
use the same language components as in all other templates. In the class template, the
calling object is referenced as WT_THIS and its name is accessed with ##WT_THIS# or
WT_THIS.toString() (see page 310). On interpretation, each occurrence of WT_THIS is
replaced by the calling object.

Like normal templates, class templates are normally stored in the directory
basedir/config/forms. You can also define different styles and languages for class
templates, and the same search strategy is used as for normal templates.

There are two different ways of calling class templates:
— implicitly
— explicitly
Implicit call

A class template is called implicitly if the evaluation operator is used on a host data object
or if the toString method is called without an argument for a host data object:

hostobject
hostobject . toString()

In the case of an implicit call, the type of the host data object is determined and used to form
the name of the class template: rype.clt.

The type is determined from the communication module. In the case of openUTM, the
IOTYPE attribute is evaluated, and in the case of OSD/MVS, the Type attribute.

WebTransactions Template Language 309

WT_THIS - accessing the calling object Class templates (*.clt)

10.1

Explicit call

When an explicit call is issued, the name of the class template is specified in the toString
method (see section “toString method” on page 155). This means that you can define class
templates independently of the type of host data object in question and call these as
required

##hostobject . toString (name)#

The suffix .c1t is automatically appended by WebTransactions.

WT_THIS - accessing the calling object

Within a class template, you can use the WT_THIS keyword to access the calling object:

WT_THIS supplies a reference to the calling object. This allows you, for example, to query
and modify the attributes of this object (see section “Example: class templates and
WT_THIS” on page 311).

However, the evaluation operator and the toString/ value0Of methods function differently
in WT_THIS and in the calling object. They supply the name of the calling object. This
distinction is useful since otherwise, expressions such as ##WT_THIS# would result in the
class template calling itself for ever. Furthermore, in the class template it is advantageous
to access not only the object but also its name. For example, in this way you can derive
names for HTML tags at the interface from the name of the calling object:

<INPUT TYPE="TEXT" NAME="##WT_THIS#" VALUE="##WT_THIS.Value#">
Within a class template, the value posted by the browser can be queried as follows:
WT_POSTEDLWT_THIS]

310

WebTransactions Template Language

Class templates (*.clt) Example: class templates and WT_THIS

10.2 Example: class templates and WT_THIS

The example below illustrates a class template named INPUT.c1t used for text boxes in
openUTM.

The section treats protected fields that are displayed on the page as text. The display attri-
butes of each output field are checked and the display is customised on the generated
HTML page. For example, if the field requires a color display, a font tag with the corres-
ponding color is generated around the text. If it needs to be highlighted,
(wt_this.Intensity == 'H"), it will be included on the generated HTML page also in .

if (wt_this.Visible == 'Y')
{
output = wt_this.HTMLValue;

if (wt_this.Inverse == "'Y')
{
if (wt_this.Color && wt_this.Color.toUpperCase() != 'N' && wt_this.Color
=" ') output = '<font COLOR=#000000 STYLE=\"background-color:"'

+colorsfwt_this.Color-11 + '\">"+output+'"';
}
else if (wt_this.Color&&wt_this.Color.toUpperCase()!= 'N' && wt_this.Color

=1 1) output = '' +

output + '";

if (wt_this.Intensity == 'H')
output = '' + output + '';

if (wt_this.Blinking == 'Y"')
output = '<i>' + output + '</i>';

if (wt_this.Underlined == 'Y"')
output = '<u>' + output + '</u>';

document.write(output);

}

WebTransactions Template Language 311

Example: class templates and WT_THIS Class templates (*.clt)

312 WebTransactions Template Language

11 Master templates (.wmt)

Master templates are used by WebTransactions when generating the Automask and the
format-specific templates. Their purpose is to guarantee a uniform layout.

Like all other templates, they can contain fixed HTML areas as well as any number of WTML
tags or WTScript scripts. They may also include special master template tags, known as MT
tags for short. The individual MT tags are described in sections “Lines tag” on page 315
through “GlobalSettings tag” on page 331.

All master template file names have the suffix .wmt.

Strengths of the master template concept

The strengths of the master template concept are particularly evident in host applications
containing numerous formats with a similar layout, e.g. comprising a header, a work area,
and a footer. All you need to do is define the layout once in the master template, and apply
the master template when generating the format-specific templates. All generated
templates are then automatically assigned the desired layout.

This not only ensures consistency (corporate look and feel), but also reduces the devel-
opment costs for your WebTransactions applications. Any changes or adaptations to the
formats of your host applications can be made quickly and easily at a central location.

Standard master templates

Each of the supply units WebTransactions for OSD, WebTransactions for MVS and
WebTransactions for openUTM is supplied with its own standard master template, which
can be applied as is or customized if desired. The standard master templates contain all
WTML tags and WTScript scripts which are common to all templates of the respective
supply unit, e.g. a check to establish whether or not a private system object exists.

The standard templates for the different supply units are described in detail in the relevant
manuals.

WebTransactions Template Language 313

Master templates (.wmt)

Using the master template

In the WebLab graphical user interface, you specify the master template to be used for
generation. By default, this is preset to the standard master template of the relevant supply
unit.

Some generation options (e.g. the generation method or display attributes) can also be
defined directly in WebLab. If the generation option is already set in the master template,
then this setting is displayed by default. The value set with WebLab is always used for these
options and applies to the entire template. If you change a value with WebLab, then this
overrides the value set in the master template.

If you set one or more options more than once in the master template, the last value set
applies.

Syntax of MT tags

MT tags begin and end with a percentage sign. The string %% is reserved for MT tags.

Some MT tag names may be followed by a parameter list. Neither the tag names nor the
parameter names are case-sensitive. If a parameter is set a number of times, the last value
set applies.

The individual syntax elements may be separated by blanks.

All MT tags are interpreted even if they are located within HTML or WTML comments.

314

WebTransactions Template Language

Master templates (.wmt) Lines tag

11.1 Lines tag

The Lines tag defines where and how format-specific sections are to be generated.

%%kLines parametersi

The individual parameters are described in the table below:

Parameter Meaning Possible values Default
LayoutOnly Enables the Yes No
implementation of Only the layout of the host objects in
functions/methods for the template is generated. Any
transferring the input further action such as generation of
parameters. the wtInputFields objectis
suppressed.
No

Full function scope as previously:
Variables and statements for trans-
ferring inputs are generated.

Breaks Controls generation of Yes Yes
screen layout with static Line feed marks are generated after
display attributes and static | each line field. The corresponding
text. field content is also displayed on a
comment line.

No

All fields of a screen line are
displayed in the template on one
line. Comments with the field
contents at the moment of capture
are not generated.

PartialFormat Specifies the master Yes No
template for partial or full | Master template for partial format
format generation. generation

No
Master template for full format
generation

Startline First format line to be Integer 1
generated.

WebTransactions Template Language 315

Lines tag Master templates (.wmt)
Parameter Meaning Possible values Default
EndLine Last format line to be Integer Last Line

generated.
WebTransactions checks
whether EndLine is
smallerthan StartLine. If
it is, the MT Lines tag is
ignored.
StartPattern The first format line to be | String None
generated is that immedi-
ately after the line
containing the specified
string.
EndPattern The last format line to be | String None
generated is that immedi-
ately before the line
containing the specified
string.
CellsDelimiter Cell delimiter. String (individual character).
If all the characters of a format line
correspond to the character
specified in Ce11sDelimiter, the
string is replaced by that contained
inthe CellsDelimiterReplace
parameter.
. This parameter is only
1 effective for fields of type
FIXTEXT.
CellsDelimiterReplace |String used for replace- String used for a line in which all the | HTML tag for a
ment characters correspond to the value |new table cell
of CellsDelimiter.
CursorInProtectedField |Position the cursorin Yes No

protected fields.

The cursor can be positioned in
protected fields of the generated
templates.

No

The cursor cannot be positioned in
protected fields of the generated
templates.

316

WebTransactions Template Language

Master templates (.wmt)

Lines tag

Parameter Meaning

Possible values

Default

Generate Generation method.

Class

Input/output processing of host data
objects is based on class templates,
i.e. each host data object is
addressed via a class template
(INPUT.c1t orQUTPUT.c1t). This
method is recommended if global
settings are to be defined for
input/output fields. If corresponding
class templates do not yet exist,
they are created automatically.

Inline

All the steps required for HTML
representation and the processing
logic are contained in the generated
template in HTML tags, WTML tags,
and WTScript scripts. In other
words, none of the processing steps
are relocated to user exits or class
templates.

This is the most flexible option if you

wish to edit your templates later on.

InTline

DisplayAttributes Support for field display
attributes.

Dynamic

If this option is selected then the
functions taggedInput () for entry
field generation and
taggedOutput () for output field
generation may be used.

See also the taggedInput and
taggedOutput parameters.

Static

The display attribute values are
fixed in the generated template
code as defined in the FLD file or
recorded during the capturing
procedure.

No
Display attributes are not
supported.

No

WebTransactions Template Language

317

Lines tag

Master templates (.wmt)

Parameter

Meaning

Possible values

Default

StaticText
(OSD and MVS only)

Conversion of protected
fields into static HTML text.

Yes

If this option is enabled, the text
contained in protected format fields
(output fields of type "Protected") is
generated directly as text in the
HTML data stream.

This assumes that protected fields
are generally static, i.e. not supplied
with variable values by the host
application. If certain protected
fields are variable, then you must
set the corresponding values
manually, i.e. you must program the
templates accordingly.

You should use this option if only a
few protected fields of a format
contain variable text.

No
Protected fields are evaluated
dynamically by WebTransactions.

No

DisplayEuro

Display of the euro symbol.

Yes

If the format contains fixed text with
the euro symbol (previously a
currency symbol), this is converted
to the HTML escape sequence
€ (euro).

No

The previous currency symbol in
fixed text is converted to X'A4’ ()
as opposed to the euro symbol.

No

MenuBar
(MVS only)

Conversion of the first
format line into a menu bar.

Yes

Selectable fields in the first line of
the format are interpreted as menu
commands and converted to pull-
down menus. This option is recom-
mended for ISPF applications.

No
The first format line is converted as
normal.

No

318

WebTransactions Template Language

Master templates (.wmt)

Lines tag

Parameter Meaning

Possible values

Default

TaggedInput Use of the
taggedInput() function

Disabled

The taggedInput() function is
not used in the generated templates
and is not defined in the master
template.

Enabled

The taggedInput() function is
used in accordance with the display
attributes which you have specified
in the master template or in
WebLab. You should note that the
MT Lines tag may result in the gen-
eration of additional HTML tags.

Enforced

Only the taggedInput function is
used on template generation. The
MT Lines tag does not generate
any additional HTML tags.

Disabled

TaggedOutput Use of the
taggedQutput () function

Disabled

The taggedOutput() function is
not used in the generated templates
and is not defined in the master
template.

Enabled

The taggedOutput () function is
used in accordance with the display
attributes which you have specified
in the master template or in
WebLab. You should note that the
MT Lines tag may result in the gen-
eration of additional HTML tags.

Enforced

Only the taggedOutput function is
used on template generation. The
MT Lines tag does not generate
any additional HTML tags.

Enabled

WebTransactions Template Language

319

Lines tag

Master templates (.wmt)

Interaction between start and end conditions

Beginning with the first line that fulfills a start condition (StartLine or StartPattern), the
format is converted line by line. The conversion process ends with the first line that fulfills
an end condition (EndLine or EndPattern), irrespective of the parameter specified for the
start condition.

Example

%hlLines

StartlLine = 4
StartPattern = "Options"
EndPattern = "End"
EndLine=15

%

Let’'s assume that the first occurrence of the string “Options” occurs in line 2 of the format
and the first occurrence of the string “End” occurs in line 18. In this case, the converted area
extends from line 3 to line 15.

WebTransactions checks whether EndLine is smaller than StartLine. Ifitis, the MT Lines
tag is ignored.

320

WebTransactions Template Language

Master templates (.wmt)

Options

tag

11.2 Options tag

11.2.1

With the Options tag you can define both values for standard master template tags and also
individual master template tags. A standard and extended syntax are available for this

purpose.

Options tag (standard syntax)

With standard syntax you can use the parameters of the Options tag to specify global
values, which are then used in all places in which there is a tag corresponding to the
parameter. No code is generated in the templates for the Options tag itself.

If a master template contains several Options tags that set the same parameter, the last
value set explicitly for the corresponding tag applies.

%%0ptions parameters’

The individual parameters are described in the table below:

communication
object.

Parameter Meaning Possible values Default
JavaUtil Contains the name | String java.util
of the Java path for
the Java utility
package *
CommObj Reference to the | String Depends on the protocol used:

0SD_0, MVS_O or UTM_0

NationalVariant

Language variant
used for messages
exchanged
between
WebTransactions
and the host appli-
cation.

"International"
"English (UK)"
"English (USA)"
"Swedish"
"German"
"French"
"Ttalian"
"Spanish"
"Swiss"
"Norwegian"
"Danish"
"French—Belgian"

"International"

To ensure that a value setin the Options tag is taken into consideration, the parameter must
be set before you use the corresponding tag.

WebTransactions Template Language

321

Options tag Master templates (.wmt)

* Notes
1. The entries for JavaUtil are only meaningful in the master template JAVA_BO.wmt.

2. The settings are used implicitly when the ObjectCreate tag is replaced to reference the
different Java classes from which the objects are recruited.

Example
e Master template code:

%%NationalVariant?
%%0ptions NationalVariant = "Italian"%
%%NationalVariant?
%%0ptions NationalVariant = "Spanish"%
%%NationalVariant?

e Generated code:

International //(Default)
Italian
Spanish

322 WebTransactions Template Language

Master templates (.wmt) Options tag

11.2.2 Options tag (extended syntax)

You can use the extended syntax of the options tag to define your own master template
tags. This may, for example, be useful if you want to use a piece of text several times in the
master template or if you want to generate different texts, according to whether the master
template is used to generate an automask or a format-specific (individual) template.

%%0ptions
destination="Automask | Individual | Both"
tagName="ragname"

block

%

destination
The template type is indicated for the generation of which the self-defined tag is
valid.

tagname
Name of self-defined tag. Case-sensitive.

block
Text area that is marked as replacement text for the tag.

Instruction

The % end character must be specified as a single character on its own line. This ensures
that other master template tags can also be used inside a block.

When formulating the block text note the following:

1. The text must fitinto the environment in which you use the self-defined tag. This means,
for example: If a self-defined tag is to be used in a WTScript area, you can only use
WTScript in this tag.

2. Inthe block text you may use only the tags %%CommObj%, %%NationalVariant%,
%%Format%, s%Source%, %%0bjectName%, 4%PackageName%, %%Javaltil%, and the tags
that you have yourself defined. These nested tags are replaced by the content when the
outer tag is replaced.

You use the self-defined master template tags in the form
bhtagname’

The ragname that you specify must be exactly the same as the name that you have defined
for the tagName parameter (case-sensitive!).

WebTransactions Template Language 323

Options tag

Master templates (.wmt)

Examples
Example 1:

Display of an image that varies according to whether the template used is an automask or
a format-specific template.

master template:

%%GenerationInfo’

%%Rem Use fig.l for individual templates%

%%0ptions tagName="Image" destination="Individual"

%

%%Rem Use fig.2 for Automask%

%%0ptions tagName="Image" destination="Automask"

%

<body bgcolor="#C0C0CO">
»kImaged
<form WebTransactions name="%%Format%">

Code generated in the automask:

<body bgcolor="#C0C0C0">

<form WebTransactions name="Automask">

In format-specific template generated Code:

<body bgcolor="#C0C0CO">
<form
WebTransactions name="TravQ0">

324

WebTransactions Template Language

Master templates (.wmt) Options tag

Example 2:

Different generation of the taggedInput function in order to the avoid redundant queries in
the automask and thereby improve its performance.

Extract from the master template:

%%Rem for individual templates. You must also once again check that
a field that was an input field at the moment
of capture is still an input field.

%
%%0ptions destination="Individual" tagName="taggedInputCrossCall"
if (hostObject.Type == 'Protected' && hostObject.Markable == 'No')
return taggedOutput(hostObject);
%
%%Rem This query is not required in the automask%

%%0ptions destination="Automask" tagName="taggedInputCrossCall"
%

function taggedInput(hostObject)
{ %%taggedInputCrossCall%

currentLength = hostObject.Length;

input = '<input type=' + (hostObject.Visible == 'No' ? '"password"' : '"text"');

if (WT_BROWSER.is_ie || WT_BROWSER.is_ns6lup)

{

input += class="box" style="width:' + (currentlLength * WT_BROWSER.charWidth + 1) +

px !
input += (hostObject.Blinking == 'Yes' ? '; background color:#FFCOCO' : '');
input += (hostObject.Underline == 'Yes' ? (hostObject.Intensity == 'Reduced' ? ';
color:#AOAOFF' : '; color:#0000A0') :(hostObject.Intensity == 'Reduced' ?
'; color:#A0AOAD' : "')) + '"';
t
input += ' name="' + hostObject.Name + '" size="' + currentlength
+ '" maxlength="' + currentlLength
+ '" value="' + hostObject.Value
+ (hostObject.Input == 'Numeric'?'" numeric="1"':"'")
+ (hostObject.Markable == 'Yes'?'" markable="1':"'")
+ >

document.write(input);

}

WebTransactions Template Language 325

Options tag Master templates (.wmt)

Extract from the generated automask (query not generated):
function taggedInput(hostObject)

{

currentLength = hostObject.Length;

input = '<input type=' + (hostObject.Visible == 'No' ?
if (WT_BROWSER.is_ie || WT_BROWSER.is_ns6lup)

{

input += ' class="box" style="width:' + (currentlength * WT_BROWSER.charWidth + 1) +

password"' : '"text"');

px
input += (hostObject.Blinking == 'Yes' ? '; background-color:#FFCOCO' : '');
input += (hostObject.Underline == 'Yes' ? (hostObject.Intensity == 'Reduced' ? ';
color:#AOAQOFF' : '; color:#0000A0') :(hostObject.Intensity ==
'Reduced' ?
"; color:#A0AQAOD' : "')) + '
}
input += ' name="' + hostObject.Name + '" sjze="' + currentlLength
+ '" maxlength="' + currentlength
+ '" value="' + hostObject.Value
+ (hostObject.Input == 'Numeric'?'" numeric="1':"'")
+ (hostObject.Markable == 'Yes'?'" markable="1"':"")
+ />0

document.write(input);

}

Extract from an individual template (query generated):
function taggedInput(hostObject)
{
if (hostObject.Type == 'Protected' && hostObject.Markable == 'No')
return taggedOutput(hostObject);
currentLength = hostObject.Length;
input = '<input type=' + (hostObject.Visible == 'No' ? '"password"' : '"text"');
if (WT_BROWSER.is_ie || WT_BROWSER.is_ns6lup)
{
input += ' class="box" style="width:' + (currentlength * WT_BROWSER.charWidth + 1) +

px
input += (hostObject.Blinking == 'Yes' ? '; background-color:#FFCOCO' : '');
input += (hostObject.Underline == 'Yes' ? (hostObject.Intensity == 'Reduced' ? ';
color:#AOAQOFF' : '; color:#0000A0') :(hostObject.Intensity ==
'Reduced' ?
"; color:#A0AQAD' : "')) + !
}
input += ' name="' + hostObject.Name + '" size="' + currentlLength
+ '" maxlength="' + currentlength
+ '" value="' + hostObject.Value
+ (hostObject.Input == 'Numeric'?'" numeric="1':"'")
+ (hostObject.Markable == 'Yes'?'" markable="1"':"")
+ />0

document.write(input);

}

326 WebTransactions Template Language

Master templates (.wmt) Rem tag

11.3 Rem tag

This tag appears only in the master template and enables the master template developer
to comment the master template without the comment lines being transferred to the
generated template.

%%Rem comment’

The individual parameters are described in the following list:

Parameter Meaning possible values default value

comment Insert comment Any string none

327

WebTransactions Template Language

OnReceiveCopies tag Master templates (.wmt)

11.4 OnReceiveCopies tag

OnReceiveCopies tags can only be used in WTScript areas (and make sense only within
OnReceiveScript areas). In generated templates, they are replaced by statements which
transfer the values received from the browser to the corresponding host data objects.

%%0nReceiveCopies parameters’

The individual parameters are described in the table below:

Parameter Meaning Possible values | Default
StartLine First line of the format area for whose fields | Integer 1
posted values are to be transferred to host
data areas.
EndLine Last line of the format area for whose fields | Integer Last Line
posted values are to be transferred to host
data areas.
StartPattern |The first line of the format area for whose | String None

fields posted values are to be transferred to
host data areas is that immediately after the
line containing the specified string.

EndPattern The last line of the format area for whose | String None
fields posted values are to be transferred to
host data areas is that immediately before
the line containing the specified string.

Example
e Master template code:

<wtOnReceiveScript>

<l—

host .WT_FOCUS.Field = WT_CURSOR;
%%0nReceiveCopies

//==>

</wtOnReceiveScript>

e The generated code could look like this:

<wtOnReceiveScript>

<!—

host .WT_FOCUS.Field = WT_CURSOR;

/] ****** copy posted values to host objects ****
hostl.E_05_025_001.Value = WT_POSTED.E_05_025_001;
//==>

</wtOnReceiveScript>

328 WebTransactions Template Language

Master templates (.wmt) Generationinfo tag

11.5 Generationinfo tag

The GenerationInfo tag creates an WTML comment containing information on the gener-
ation options and the circumstances surrounding the generation process.

It can be specified in the fixed HTML area, within WTML tags, or within WTScript areas.

»hGenerationInfo%

This tag creates the following lines, for example:

<Wtr‘em> * kK * kK * kK * kK *x *x ***</Wtr~em>
<wtrem>** WTML document: AutomaskOSD **</wtrem>
<wtrem> KKK KKK KKK KKK * K ** ***k< /wtrem>
<wtrem>** **</witrem>
<wtrem>** Document generation based on Master Template : **</wtrem>
<wtrem>** C:\Program Files\webtransactionsv75\web1ab\0SD.wmt **</wtrem>
<wtrem>** **</witrem>
<wtrem>** Generated at Tue Jun 08 12:44:20 2010 **</wtrem>
<wtrem>** **</wtrem>
<wtrem>** Options used by the generator : **</wtrem>
<wtrem>** - %0PTIONS: **</wtrem>
<wtrem>** CommObj = 0SD_0O **</wtrem>
<wtrem>** NationalVariant = International — PartialFormatMode = No **</wtrem>
<wtrem>** - %0PTIONS: **</wtrem>
<wtrem>** self defined Tag = taggedInputCrossCall **</wtrem>
<wtrem>** — %OPTIONS: **</wtrem>
<wtrem>** self defined Tag = taggedInputCrossCall **</wtrem>
<wtrem>** — %OPTIONS: **</witrem>
<wtrem>** self defined Tag = taggedOutputCrossCall **</wtrem>
<wtrem>** - %0PTIONS: **</wtrem>
<wtrem>** self defined Tag = taggedOutputCrossCall **</wtrem>
<wtrem>** - %LINES: **</witrem>
<wtrem>** TaggedInput = Enabled - TaggedOutput = Enabled **</wtrem>
<wtrem>** DisplayAttributes = Dynamic — CursorInProtectedField = Yes **</wtrem>
<wtrem>** - %RECEIVES: **</witrem>
<wtrem>** Parameters not specified < /wtrem>
<Wtr‘em> * * kK * kK * kK *x *x ***</Wtr~em>
<wtrem>** WebTransactions V7.5 Fujitsu Technology Solutions 2010 **</wtrem>
<Wtr\em>*~k~k******************************** * k% * % * % ***</Wtr~em>

WebTransactions Template Language 329

Format tag

Master templates (.wmt)

11.6

11.7

11.8

Format tag

In generated templates, the Format tag is replaced by the name of the current converted
format.

%hFormats

Example

<wtDataform=%%Format%>

CommObj tag

In generated templates, the Comm0Obj tag is replaced by the string specified in the CommOb j
parameter of the MT Options tag (reference to the communication object). The default
value depends on the protocol: 0SD_0, MVS_0 or UTM_O.

%%Comm0bj%

Example

Master template code:

%%0ptions CommObj="hostl"%

if (%%CommObj% .WT_SYSTEM!= null)
host_system = %%CommObj%.WT_SYSTEM;

NationalVariant tag

In generated templates, the NationalVvariant tag is replaced by the string specified in the
NationalVariant parameter of the MT Options tag (language variant used for messages
exchanged between WebTransactions and the host application).

%BNationalVariants

330

WebTransactions Template Language

Master templates (.wmt) GlobalSettings tag

11.9

11.10

11.11

GlobalSettings tag

You can use the GlobalSettings tag to define the general settings for the master template.
The GlobalSettings tag can be located anywhere in the master template, but may occur
only once. If you use the G1obalSettings tag more than once in the master template, then
WebLab issues an error message and generation is not started

%%G1obalSettings parameters’

The individual parameters are described in the list below:

Parameter Meaning Possible values Default
Protocol Host application "OSD" None
protocol "MVS"
n UTMII
"JAVA"
"WSDL"
Example

%%GlobalSettings protocol="0SD"%

Source tag

The Source tag is valid only for the master template Java_B0.wmt, and contains the name
of the copied description file in the base directory (e.g. WSDL/B01.wsd1).

hhSourced

ObjectName tag

The ObjectName tag is valid only for the master templates WSDL .wmt and Java_BO.wmt
and contains the name of the Java object (either the BO or the EJB name) or the name of
the service (in the case of web service).

%%0bjectName%

WebTransactions Template Language 331

PackageName tag Master templates (.wmt)

11.12 PackageName tag
The PackageName tag is valid only for the master template Java_BO.wmt and contains the
name of the Java package in which the object is contained.
%%PackageName%
11.13 BinaryFile tag
The BinaryFile tag is valid only for the master template Java_BO.wmt, and supplies the
name of the nth copied file.
%%BinaryFile parameters’
The individual parameters are described in the list below:
Parameter Meaning Possible values Default
Number Name of the nth File name, e.g. 1
copied binary file JAVA/BO1
Example
%%BinaryFile Number=2%
11.14 ArchiveName tag
The ArchiveName tag is valid only for the master template Java_BO.wmt and contains the
name of the Java archive.
%%ArchiveNameZ
332 WebTransactions Template Language

Master templates (.wmt) Methodinterface tag

11.15 Methodinterface tag

The MethodInterface tagis valid only for the master templates wSDL.wmt and Java_BO.wmt,
and is used to generate the display of individual methods.

%%sMethodInterface%

WebTransactions Template Language 333

Methodinterface tag Master templates (.wmt)

334 WebTransactions Template Language

12 Server-side interfaces -
Java integration and user exits

It is possible to extend the functionality of your WebTransactions application as follows:

e Thanks to the integration of Java in WebTransactions, you can instantiate your own Java
class in WebTransactions, use the methods of the resulting objects, and access the ob-
ject attributes.

e With user exits, you can integrate your own C/C++ functions in WebTransactions.

You could, for example, instigate access to structured data (tables, lists) in a user exit, or
determine the coordinates of a graphic to be embedded in an HTML page.

You can also use user exits, for example, for the dynamic construction of HTML pages with-
out connecting a host application. You might, for example, read the data for presentation
from a file. In this type of application, WebTransactions can be thought of as a convenient
way into the CGl interface.

Examples of this type of application are:
— visitors’ book functions
— management and polling of telephone lists

— administrative interface for the HTTP server. In this case, user exits must read and write
the http daemon configuration file and restart the daemon.

WebTransactions provides a set of ready-made C/C++ user exits. Some of these are used
internally by WebTransactions - e.g. in the start templates - but they can also be integrated
in customized templates or in templates you have created yourself. The interfaces of these
user exits are described in section “Ready-made C/C++ user exits supplied with WebTrans-
actions” on page 355ff.

WebTransactions Template Language 335

Java integration in WebTransactions Server-side interfaces

12.1 Java integration in WebTransactions

Thanks to the integration of Java in WebTransactions, you can instantiate any Java classes
in your WebTransactions application in order to use the methods of the resulting objects and
access the object attributes.

To ensure that Java programs or applications will run on your WebTransactions system, a
Java runtime environment (Java Virtual Machine, JVM) must be installed on this system.

Please note the following regarding Java integration:

e Decimal numbers exchanged between WTScript and Java will change their
representation. For example, the value 2.1 becomes 2.099999904632568 after it is
transferred to Java and back again.

e WTScript does not support any Unicode characters. The standard conversion of strings
at the Java interface always converts from ISO 8859-1 to UTF 16 and vice versa. As of
WebTransactions V6 this conversion can be controlled by the variable
WT_SYSTEM.JAVA_CHARSET. It must be set before the first WT_JAVA access. Its value
indicates a runtime library (name without .so or .dll) that contains the appropriate
conversion functions. This runtime library is searched for in the base directory and in
the installation directory under 11b.

The standard version contains a runtime library for the character set 1SO 8859-2
(Central Europe). Other libraries can be supplied on request.

Example

<html>

<head>

<title>character set Test</title>
</head>

<body>

<Hl>Character Set Test</H2Z>

<pre style="font size: l6pt">

IS0 8859-2

<wtoncreatescript>

<!—

// convert Browser and Java to ISO 8859-2
WT_SYSTEM.CHARSET = WT_SYSTEM.JAVA_CHARSET = 'ISO 8859-2";

//character set output

hex = '0123456789ABCDEF " ;

document.writeln (' 012 3 456789 ABCDE F");
for (i=0; i<16; i++)

{

336 WebTransactions Template Language

Server-side interfaces Java integration in WebTransactions

document.write ('',hex[i],'"');
if (i<2 || i==8 || i==9)
{
document.writeln();
continue;
}
for (j=0;j<16; j++)
document.write (' ', eval ('""\\x'+hex[il+hex[jI+'""'));
document.writeln();

}

// generate Java string

a = new WT_JAVA.java.lang.String (WT_POSTED.s||"'"');
//—>

</wtoncreatescript>

<form webtransactions>

In order to test correct processing in Java, characters can be
input in the following input field and be posted to WebTA
(e.g. by Copy/Paste from the character matrix above)

They are then converted into a Java string, converted
toUpperCase and tolLowerCase using the Java methods and then
converted back to WebTA strings and displayed.

<input type="text" name="s"> <input type="submit" value="convert">
</form>

Enter: ##WT_POSTED.s#

Java toUpperCase: ##a.toUpperCase()#

Java tolLowerCase: ##a.tolLowerCase()#

</pre>

</body>

</html>

WebTransactions Template Language 337

Java integration in WebTransactions Server-side interfaces

12.1.1

12.1.2

Installing the Java runtime environment

. If you wish to take advantage of Java integration or Java user exits in
1 WebTransactions, the Java runtime environment must be installed before
WebTransactions.

If you have already installed a Java runtime environment on your WebTransactions system,
no further steps are required.

If the Java runtime environment has not yet been installed the following table tells you where
you can obtain the software:

Windows For 32-Bit Windows platforms, Solaris and Linux, the Java runtime
Solaris environment (freeware) is supplied by Sun Microsystems. You can
Linux download it directly from the Sun Java Software Website

(http:/java.sun.com).

BS2000/0SD Posix | For BS2000/0SD V3.0 or later, the Java environment JENV
(BS2000/0OSD) V1.3 is supplied as standard software but may need
to be installed and activated for Posix.

Activating Java support

WebTransactions initializes a Java Virtual Machine (VM). The Java libraries containing the
native Java functions must therefore be accessible. When installing WebTransactions, you
will be asked to specify the appropriate path. (For Unix platforms or Windows platforms, the
JRE installation directory is the directory in which the jvm.d11 library is located).
WebTransactions then sets the necessary file references automatically.

If WebTransactions cannot load the Java libraries (e.g. because the files have been moved
to another directory since WebTransactions was installed or because you are installing Java
at a later date), an error message is output. In such cases you must create the file
references yourself.

The following sections take JDK 1.3.1 as an example and specify the file references
required (depending on the Webrransaction platform).

338

WebTransactions Template Language

http://java.sun.com

Server-side interfaces Java integration in WebTransactions

Windows

In the WebTransactions installation directory, in the subdirectory 11 b, create a file reference
javasys2 to the directory containing the jvm.d11 library. For example, the reference

C:\installdir\1ib\ javasys?2 to the directory C:\jdk1.3.1\jre\bin\classic.

Solaris/Linux

In the subdirectory 11b of the WebTransactions installation directory, generate the following
symbolic links :

javalib — .../jdk1.3.1/jre/1ib/i386 (directory containing additional shared objects)
javasys —> .../jdkl.3.1/jre/1ib

javathreads —> .../jdkl1.3.1/jre/1ib/i386/native_threads

javavm —> .../jdk1.3.1/jre/1ib/i386/server (directory containing 1ibjvm.so)

where “ ...” stands for the JDK installation directory.

BS2000 OSD V2.0 or later

During public installation in the Posix environment, the file references are set automatically.
In the case of a private installation, you may need to set the file references for javasys and
javathreads explicitly. To do this, create the following symbolic links in the
WebTransactions installation directory /opt/WebTrans/7.5/11ib:

javalib —> .../jdk1.3.1/jre/11b/1386 (directory containing additional shared objects)
javasys —> .../jdk1.3.1/jre/1ib

javathreads —> .../jdkl1.3.1/jre/1ib/i386/native_threads

javavm —> .../jdk1.3.1/jre/1ib/i386/server (directory containing 1ibjvm.so)

“

...” stands for the JDK installation directory.

WebTransactions Template Language 339

Java integration in WebTransactions

Server-side interfaces

12.1.3 Defining parameters for the Java Virtual Machine (JVM)

When defining the parameters of the Java Virtual Machine (JVM) used in WebTransactions,
you have the following two options:

e Define the JVM parameters with the help of system attributes

e Define the JVM parameters with the help of the WT_SYSTEM.JAVA_OPTIONS array

Defining parameters for the Java Virtual Machine (JVM) using system attributes

The following system attributes can be used to control the Java Virtual Machine (JVM):

System attribute

Compiler option
for Java

Meaning

JAVA_CHECK_SOURCE="1°

Checks whether the source files have a
more recent date than the class files.

JAVA_CLASSPATH -classpath Sets the search path for the class files.
Multiple directories are separated by
semi-colons.

Default: basedir/ java

JAVA_DEBUG="1" -debug Activates remote debugging (only for the
debug version of the Java system library).

JAVA_DEBUG_PORT Port for remote debugging.

JAVA_DISABLE_ASYNC_GC=°1° |-noasyncgc Deactivates asynchronous garbage
collection.

JAVA_DISABLE_CLASS_GC=°1° |-noclassgc Deactivates garbage collection.

JAVA_ENABLE_VERBOSE_GC=1* |-verbosegc Prints a message on each garbage
collection.

JAVA_INITIAL_HEAP_SIZE -ms number Initializes the Java memory.

JAVA_MAX_HEAP_SIZE -mX number Sets the maximum Java memory.

JAVA_NATIVE_STACK_SIZE -SS number Sets the maximum memory size for
thread processing.

JAVA_STACK_SIZE -0Ss number Sets the minimum memory size for thread
processing.

JAVA_VERBOSE="1° -verbose Deactivates verbose mode.

JAVA_VERIFY_MODE=°0° -noverify Does not check classes.

JAVA_VERIFY_MODE="1° -verifyremote Only checks classes read via the network.

JAVA_VERIFY_MODE=“2° -verify Checks all classes.

340

WebTransactions Template Language

Server-side interfaces Java integration in WebTransactions

12.1.4

Defining parameters for the Java Virtual Machine (JVM) using the
WT_SYSTEM.JAVA_OPTIONS array

You can use the WT_SYSTEM. JAVA_OPTIONS array to transfer all default arguments to the
JVM. All parameters for the JVM must be defined before WT_JAvA is accessed for the first
time. It is not possible to make any further changes during the session.

Example
WT_SYSTEM.JAVA_OPTIONS = new Array(’—-verbose’, ’—Xmsém’);
a = new WT_JAVA.java.lang.String("Hello World!")

Creating Java objects in WTScript

Java objects are created in WTScript using the new operator:

var foo = new WT_JAVA.classname() ;

classname
Name of the Java class to be instantiated. This must be a fully-qualified class name.
In the case of constructors without parameters, the parentheses may be omitted.

Example
var myString = new WT_JAVA.java.lang.String("Hello world");

Java objects created in this way are handled by WTScript taking into consideration the fol-
lowing special features:

— Only the object itself is displayed in the WebLab object tree, i.e. attributes and methods
will not be visible. The object value is set to the result of the toString() method exe-
cuted implicitly by the object.

— ltis still possible to access all methods and attributes of the object. This applies both for
attributes defined in the associated class and for inherited attributes.

Variables of primitive Java types (char, int, double, etc.) cannot be created as de-
scribed above. These must be created in WTScript using the associated wrapper
class (in this case, Doub1e) as follows:

1]

var foo = (new WT_JAVA.java.lang.Double(value)).doubleValue();
where value specifies the value to which the variable is to be set.

The same procedure applies for char/Char, int/Int, Tong/Long, etc.

WebTransactions Template Language 341

Java integration in WebTransactions Server-side interfaces

12.1.5

Using Java objects in WTScript

Java objects can be used in WTScript in exactly the same way as they are used in Java,
apart from the following restrictions:

— WTScript objects cannot inherit from Java objects.
— Additional attributes or methods cannot be defined for Java objects in WTScript.

— WTScript has no cast operator. This is generally not required, since a check is carried
out automatically to establish the types to which a particular value can be converted
without loss of data. Casts to other object types, which may be necessary when
invoking certain methods (with the help of objects created with new) ????, are carried
out automatically provided they are permitted by Java rules. In the process, even
primitive Java data types are converted. In contrast to normal Java behavior, however,
some types may also be converted to “lesser” types (e.g. int — short) if this is possible
without loss of data.

To access class elements (i.e. attributes and methods) in WTScript, you use:

method() |

var foo = objectname. . ;
4 {atlrlbule

classname
Name of the Java class whose method merhod() is to be executed, or whose attribute
attribute is to be accessed

method()
Name of the method to be executed

attribute
Name of the attribute to be accessed

342

WebTransactions Template Language

Server-side interfaces Java integration in WebTransactions

Example
<wtOnCreateScript>
<!—

// Generating a Java String
myString = new WT_JAVA.java.lang.String("Hello world at " + new Date() +

\I\r\n\l);
// Calling a Java Method that converts the String into a ByteArray
byteArray = myString.getBytes();
// Generating Java FileOutputStream (opening the file to be appended)
fileout = new WT_JAVA.java.io.FileOutputStream("D:\\temp\\jtest.txt",
true);

// Calling Java Method; Parameter is a JavaByteArray
fileout.write (byteArray);

// Closing file
fileout.close();

/>
</wtOnCreateScript>

12.1.6 Accessing class elements

Class elements, i.e. attributes and methods, are accessed in WTScript as follows.

var foo = WT_JAVA.classname.{metﬁOd() ;
attribute

classname
Name of the Java class whose method method() is to be executed or whose attribute
attribute is to be accessed

method()
Name of the method to be executed

attribute
Name of the attribute to be accessed

WebTransactions Template Language 343

Java integration in WebTransactions Server-side interfaces

12.1.7

Invoking Java methods in WTScript

When invoking Java methods in WTScript, certain special features apply for return values,
the transfer of parameters, and exception handling.

Return values

In WTScript, the return values of Java methods are handled as follows:

e If the return value is defined with a primitive data type in the Java method signature, it
can be used in WTScript as a value of that primitive data type.

e Ifthe return value is a Java object, it is converted in the same way as a WTScript object,
provided this is possible.

e If a Java method returns the value nul11, the WTScript result is undefined.

Transferring parameters

When invoking Java methods, the following can be used as arguments:

— values of a primitive data type
— objects generated as a result of Java method calls

Other objects are not permitted as arguments when invoking Java methods.

Java objects of type Byte, Short, etc. are handled by Java as objects. Any conversions to
primitive objects must be carried out explicitly.

The permitted parameter types and the type conversions carried out during the transfer of
parameters are listed in the table on the next page.

344

WebTransactions Template Language

Server-side interfaces

Java integration in WebTransactions

WTScript type

Conversion to Java type

boolean/Boolean objects

Boolean

String objects

Default: java.lang.String

If the string consists of only one character, an attempt
will also be made to convert this to type char.

number/Number objects

Default: double

If the object cannot be converted to the default type,
an attempt will be made to convert it to all other nu-
meric types until a suitable conversion is found, pro-
vided the conversion does not result in a loss of accu-
racy.

Java objects

Default: Type used when creating the object

If the object cannot be converted to the default type,
an attempt will be made to convert it to all superclass-
es and implemented interfaces until a suitable con-
version is found.

Java primitives

Default: Corresponding primitive Java type

If the object cannot be converted to the default type,
an attempt will be made to convert it to all types for
which the object value is valid until a suitable conver-
sion is found.

char values are not handled as numeric values.

Other WTScript objects

Not permitted as arguments

Type conversions in Java method calls and assignments

WebTransactions Template Language

345

Java integration in WebTransactions Server-side interfaces

12.1.8

Executing a Java method call in WTScript
When executing a Java method call m(arg-1, arg-2, ... , arg-n), WTScript proceeds as follows:

1. It searches the current object for a Java method m whose signature matches the default
Java types:

e If successful, the method m is executed.
e If unsuccessful, WTScript repeats step 2 for each of the arguments arg-1, arg-2,

2. It searches for a method m whose signature is compatible with the relevant argument,
i.e. whose corresponding formal parameter identifies a data type into which the argu-
ment can be converted:

e If unsuccessful, a corresponding error message is output, and the method m is not
executed.

e If successful, WTScript repeats step 2 with the next parameter until all arguments
have been checked.

If WTScript succeeds in finding a Java method m whose signature is compatible with
arg-1 through arg-n, then this method is executed.

Exception handling

Any exceptions thrown when invoking a method are “converted” into WTScript exceptions
and can be caught using the WTScript try/catch mechanism (see section “Exception han-
dling” on page 302).

Reading and modifying attributes

The rules that apply when invoking methods also apply to the reading of attributes.
WTScript objects of type Number, Boolean, and String are converted to the primitive types
number, boolean, and string. A check is then carried out to determine whether or not they
are compatible with the attribute type.

If an attribute name cannot be found, this error is suppressed and no attribute is created. If
an attempt is made to read a non-existent attribute, the result will be undefined.

346

WebTransactions Template Language

Server-side interfaces Java integration in WebTransactions

12.1.9 Creating and using Java arrays in WTScript

Java objects are created in WTScript using the new operator. The elements of the array are
not initialized.

var = new WT_JAVA.classname [size];

classname
Name of the class to which the array elements belong. This must be a fully qualified
class name.

size Number of elements to be created, specified in numeric or string format (e.g. "12").
Variables may also be used here.

Strings in the format [0-9]*[0-9a-zA-Z]* will be accepted, whereby any digits at the
beginning of the string will be converted to numeric format, while the rest of the
string is ignored. If the string does not begin with a digit, the specification will be in-
valid and will result in an error.

Arrays containing elements of a primitive Java data type

Arrays containing elements of a primitive Java data type cannot be created directly in
WTScript using the new operator, but they can be created using the following class:

public class ArrayFactory {
private ArrayFactory() {
}
public static bytel] newByteArray(int i) {return new byte[i];}
public static short[] newShortArray(int i) {return new shortl[il;!}
public static int[] newIntArray(int i) {return new intl[il;!}
public static longl] newlLongArray(int i) {return new longl[il;}
public static float[] newFloatArray(int i) {return new floatl[il;!}
public static doublel] newDoubleArray(int i) {return new doubleli];}
public static charl[] newCharArray(int i) {return new charlil;}
public static booleanl] newBooleanArray(int i) {return new booleanlil;}

Multidimensional arrays

To create multidimensional arrays, you must use the interfaces of
java.lang.reflect.Array.

WebTransactions Template Language 347

Java integration in WebTransactions Server-side interfaces

Example:

m = new WT_JAVA.MyObject; (1)

c = m.getClass();

MyObjectArray = WT_JAVA.java.lang.reflect.Array.newlnstance(c,10); (2)
//Array of MyObjects, 10 elements

c = MyObjectArray.getClass(); (3)

MultiArray = WT_JAVA.java.lang.reflect.Array.newlnstance(c, 20); ———— (4)

Statements (1) - (4) correspond to the following Java statement:
MyObject[]JL] MultiArray = new MyObject[20]1[10];
Statements (1) - (2) can be replaced by the following statement:
MyObjectArray = new WT_JAVA.MyObject[101;

It is possible to access individual array elements using the usual WTScript syntax. When
assigning values to array elements, the same rules apply as for fields. In this case, however,
the transferred index is checked for validity before access takes place.

Assignments between array variables are subject to the type checking rules defined in Java.
Since the Java implementation of WTScript checks all types before assignment, it takes
care of error handling. If certain statements are found to violate the type rules, a Java ex-
ception will not be thrown.

WTScript arrays are never converted into Java arrays. They are handled in the same way
as other WTScript objects and are ignored during interaction with Java.

12.1.10 Using WTScript operators with Java objects

WTScript operators can also be applied to Java objects. When using the “+” operator, Java
objects are always converted to string format.
If you wish to perform numeric calculations, all objects must first be converted to numeric
format.
Example:
Instead of
x = o0l + 02; // String operation
use
x = 1*0l + 1%02; // Addition

348 WebTransactions Template Language

Server-side interfaces Java integration in WebTransactions

12.1.11 Example

The following example creates a Java string, converts it to a byte array, and outputsitto a
file.

<wtOnCreateScript>
<!—

// Create a Java string
myString = new WT_JAVA.java.lang.String("Hello world at " + new Date() + "\r\n");

// Invoke Java method for converting the string into a byte array
byteArray = myString.getBytes();

// Create Java FileQOutputStream (open file for writing)
fileout = new WT_JAVA.java.io.FileQutputStream("D:\\temp\\jtest.txt", true);

// Invoke Java method and transfer Java byte array as an argument
fileout.write (byteArray);

// Close the file
fileout.close();

/==
</wtOnCreateScript>

WebTransactions Template Language 349

C/C++ user exits Server-side interfaces

12.2 Using C/C++ user exits

12.2.1

C/C++ user exits are called by means of the methods of the WT_Userexit class (see section
“WT_Userexit class” on page 258).

You can also use a number of different user exit libraries.

Files supplied for supporting C/C++ user exits

To support user exits, WebTransactions provides the following files in the directory
install_dir/11b:

WTUserexit.c
Sources for user exits. A number of examples are already present and you can add
your own user exits.

WTPublic.h
Header file containing the functions which can be implemented in a user exit and
which map the WebTransactions statements and evaluation operator.

WTUserexits.so (for Unix platforms) / WTUserexits.d11 (for Windows)
Shared library in which the shipped example user exits are already included.
WebTransactions uses this library as the default library if no library is specified. You
can link your own user exits (see below). However, in this case you should copy the
library from the installation directory to the base directory. Alternatively, you can
generate your own user exit library.

WTSystemExits.so (for Unix platforms) / WTSystemExits.d11 (for Windows)
Shared library which contains the user exits used by the start templates, e.g.
Getfile (see “Example 1” on page 353).

These ready-made user exits are described in section “Ready-made C/C++ user
exits supplied with WebTransactions” on page 355. In the case of BS2000/0SD,
they are contained in the WTHolder program.

350

WebTransactions Template Language

Server-side interfaces C/C++ user exits

12.2.2

12.2.3

Defining C/C++ user exits

You define the user exit function as:

char *NewUserExit (void *holder, int ac, char *av[]);

holder Control structure for the session
ac Contains the number of arguments
av Contains the arguments specified when the WT_Userexit.function(. . .)

method is called.

The function must return a string which is read by the template.

The WebTransactions working directory is the session directory under mp. If the
user exit initiates a process whose lifetime looks set to extend beyond the end of the
current WebTransactions session, you must change the working directory for this
process. Otherwise, WebTransactions will not be able to delete the temporary ses-
sion directory at the end of the session.

1]

Linking C/C++ user exits

The way you link user exits differs depending on the WebTransactions platform.

On Unix platforms and Windows platforms, you either integrate the user exits in the shared
default library WTUserexits.{sold11} or make them available in your own shared libraries.

Under OSD, the user exits are integrated in the WTHolder program.

Windows

To compile the user exits you have defined and include these in the shared library
WTUserexits.d11, use a development environment which enables you to generate dll
libraries, e.g. Visual C++.

In the development environment, create a project that generates a dll library. You can then
add the sample source code WTUserexit.c to this project.

Since user exits are called using the name of the dll library, it is possible to create various
dll libraries with different functionalities.

If you use WebTransactions functions from WTPublic.h in user exits, you must also include
the kernel WTKernel.11b.

WebTransactions Template Language 351

C/C++ user exits Server-side interfaces

Unix platforms (only WebTransactions supply unit openUTM/OSD/MVS)

To compile the user exits which you have defined and include these in the shared library
library, enter the following call:

cc —G —share —o library.so userexitl .C ... userexitn.cC

library . so
library specifies the library. If no library library . so exists as yet then one is
generated.

userexitl .C ... userexitn.c

Sources for C/C++ functions which are to be compiled and included

OSD (only WebTransactions supply unit openUTM/OSD)

Under POSIX, you cannot use any shared libraries: all user exits must be statically linked
to the WTHolder program. To do this, remake the WTHolder program - to include the user
exits - using the shipped make file. All the WTHolder program modules are available to you
in the following library:

install_dir/1ib/1ibWTHolderUTMV4 . a (for WTHolderUTMV4)
Proceed as follows:
— Add your new user exits to the shipped file WTuserexits.c.

— Check whether the name of your user exit is the same as the name of a shipped user
exit. Since no user exit may possess the same name as the user exits shipped with
WebTransactions, you will have to rename your user exits if the names correspond. This
is particularly important if you develop exits supplied in the source code, such as
Getfile, to create your own user exits.

— Use the shipped make file (install_dir/1ib/Makefile) to generate a new program
WTHolderUTMV4.

— Copy this new program to the base directory under the name WTHolder.

You may need to adapt the names used in the make file for the UPIC and CMX
libraries to your current system.

i @

352 WebTransactions Template Language

Server-side interfaces

C/C++ user exits

12.2.4 Examples of C/C++ user exits

Example 1

The following user exit returns the contents of a text file. It can be found in the shipped user

exit library WTSystemExits.{d11]so}.

/ *) * Kk * Kk * Kk * K *) *****/
/* */
/* Getfile(file) */
/* */
/** * % * % *****/
/* */
/* The contents of the textfile file is returned. */
/* */
/* This exit is used by predefined start pages (wtstart.htm, wtstartUTM.htm,..) */
/* and should neither be modified nor removed !!! */
/* */
/*** * k% * % * % *****/
char* Getfile(void *wtholder, int ac, char *av[l)
{
FILE* p_file;
int bytesRead;
char* ct;
if (ac ==)
returnC "");
p_file = fopen (av[O], "r"); /* open file for reading */
if (p_file == NULL)
return("');
/* Since the caller does not free the returned Data reuse the buffer */
returnStringlLen = 0;
if (returnStringSize — returnStringlen < 2)
returnString = realloc(returnString, returnStringSize += 1024);
/* read the Lines in the file and append them to the return string */
while((bytesRead = fread(returnString + returnStringlLen, 1,
returnStringSize - returnStringlLen, p_file)) !=0)
{
returnStringlen += bytesRead;
if (returnStringSize - returnStringlen < 2)
returnString = realloc(returnString, returnStringSize += 1024);
}
returnStringlreturnStringlenl = "\0 ;
return returnString;
t
WebTransactions Template Language 353

C/C++ user exits Server-side interfaces

Example 2

This example illustrates the user exit UXEurope which is used to evaluate the image coordi-
nates of a “clickable image”:

char *UXEurope (wt_holderCommId *wtholder, int ac, char *av[l])
{

int x,y;

if (ac == 2)

{
x = (int) atoi (av[01);
y = (int) atoi (avl1l1);

if (x > 180 && y > 90 && x < 270 && y < 125)
return ("1"); /* Belgium */
if (x > 160 && y > 184 && x < 228 && y < 213)
return ("2"); /* France */
if (x > 232 && y > 60 && x < 325 && y < 90)
return ("3"); /* Germany */
if (x > 400 && y > 260 && x < 500 && y < 310)
return ("4"); /* Greece */
if (x > 280 && y > 210 && x < 350 && y < 260)
return ("5"); /* Italy */
if (x >0 & y > 240 && x < 100 && y < 280)
return ("6"); /* Portugal */
if (x > 40 && y > 290 && x < 120 && y < 330)
return ("7"); /* Spain */
if (x > 200 && y > 140 && x < 330 && y < 180)
return ("8"); /* Switzerland */
if (x > 70 && y > 20 && x < 250 && y < 60)
return ("9"); /* United Kingdom */
}
return ("0");
}
/wtOnCreateScript>

354 WebTransactions Template Language

Server-side interfaces Ready-made C/C++ user exits

12.3 Ready-made C/C++ user exits supplied with
WebTransactions

WebTransactions comes with a set of ready-defined C/C++ user exits, some of which are
used internally by WebTransactions, e.g. in the start templates.

The user exits described in this section, however, can also be used in templates which you
have created or customized yourself. The source code of these user exits is provided in the
file WTUserExits.c for your own use (with just one exception: the source code for the
GetInstallDir user exit is not supplied).

The ready-defined user exits can be found in different locations, depending on the
WebTransactions platform:

0OSsD

named WTSystemExits

Unix platform

In the library WTSystemExits.so

Windows

In the library WTSystemExits.d17

The following table provides an overview of these user exits:

In WTHolder; these user exits must be addressed as if they were in a library

Name Function Described in
ChecklLogin Checks whether or not the specified password is | Section “Check-
assigned to the user name. Login” on page 357
CheckProcess Checks whether or not the specified process ID Section “Check-
exists in the system and whether or not the process | Process” on
is a WTHolder process. page 357
Creationtime Returns the creation time of the specified file in Section
cfile format. “Creationtime” on
page 358
Delfile Deletes a file. This user exit can only be executed | Section “Delfile” on
within an administration process. page 359
FreeBuffer Releases the buffer shared by GetDir and Section “FreeBuffer”
GetFile. on page 359
FreeNameInPool Releases the first entry in a list reserved by the Section
process (default). This user exit can also be used | “FreeNamelnPool”
to release a particular name from the list or all on page 359
reserved entries.
Getdate Returns the specified time in cfile format. Section “Getdate” on

page 360

WebTransactions Template Language

355

Ready-made C/C++ user exits

Server-side interfaces

Name Function Described in
Getdir Returns the names of all files that are located in the | Section “Getdir” on
specified directory and (optionally) match a page 360
specified pattern.
Getfile Returns the contents of the specified file in string | Section “Getfile” on

format.

page 360

GetInstallDir

Returns the WebTransactions installation directory.
The source code of this user exit is not supplied.

Section “Getln-
stallDir” on page 361

Gettime Returns the current time in cfile format. Section “Gettime” on
page 361
LockNameInPool Reserves the first free entry in a list. This user exit | Section
can also be used to reserve a particular name in | “LockNamelnPool”
the list. on page 362
Modificationtime Returns the time at which the specified file was last | Section “Modifica-
modified. tiontime” on
page 362

Putfile

Generates a file containing the transferred
character string. This user exit can only be
executed within an administration process.

Section “Putfile” on
page 363

ReleaseStationName

Releases a name reserved with
ReserveStationName.

Section “ReleaseSta-
tionName” on
page 363

ReplaceByConfigFile

Replaces one character string with another under
the control of a replacement table.

Section “ReplaceBy-
ConfigFile” on
page 364

ReserveStationName

Ensures that all names are unique, e.g. checks
whether or not the specified station name for a
connection to an OSD application has already

been used.

Section “ReserveS-
tationName” on
page 364

SendMail Sends a message with the SMTP protocol (text Section “SendMail”
only, no MIME support). on page 365

WTSTeep places the holder on waittime for a set number of | Section “WTSleep”
milliseconds. on page 366

WebTransactions Template Language

Server-side interfaces Ready-made C/C++ user exits

12.3.1

12.3.2

CheckLogin

CheckLogin(config_file, user_name, password)

Function:
Checks whether or not the specified password is assigned to the user name.
config_file is sought relative to the base directory, and must consist of two columns
separated by white space characters (see page 30).

Result:
If the password is assigned to the user name, the user name is returned.
Otherwise, the user exit returns an empty string.

Example:

Contents of basedir/config_file:

user password
smith key
CheckProcess

CheckProcess(process_id)

Function:
Checks whether or not the specified process ID exists in the system and whether or
not the process is a WTHolder process.

Result:
"alive"
The specified process ID exists in the system and the process is a WTHolder
process.

"dead" or "" (empty string)
The specified process ID does not exist in the system or the process is not a
WTHolder process.

WebTransactions Template Language 357

Ready-made C/C++ user exits Server-side interfaces

12.3.3 Creationtime

Creationtime(file_name)

Function:
Returns the creation time of the specified file in ctime format. The path can be given
as an absolute or relative specification. Relative path specifications refer to the
temporary session directory.

Result:
The creation time in string format. If the file does not exist, a question mark is
returned.

Example

<wtoncreatescript>

<!|—

ex = new WT_Userexit('WTSystemExits');

document.writeln('
 Creationtime("session
info")="',ex.Creationtime("'../'+WT_SYSTEM.SESSION+'.info'));
document.writeln('

Creationtime(WT_SYSTEM.BASEDIR+"/basedir_file")=',ex.Creationtime(WT_SYSTEM.B
ASEDIR+'/config'));

document.writeln('

Creationtime("c:/abs_file")=',ex.Creationtime('c:/windows'));
document.writeln('

Creationtime("unknown_file")="',ex.Creationtime('unknown_file'));
/ />

</wtoncreatescript>

The example generates the following output:

Creationtime("session info")=Tue Jun 08 16:10:28 2010
Creationtime(WT_SYSTEM.BASEDIR+"/basedir_file")=Tue Jun 08 12:37:23 2010
Creationtime("c:/abs_file")=Thu Nov 02 13:18:34 2006
Creationtime("unknown_file")="?

358 WebTransactions Template Language

Server-side interfaces Ready-made C/C++ user exits

12.3.4

12.3.5

12.3.6

Delfile

Delfile(file_name)

Function:
Deletes the specified file. The path can be given as an absolute or relative specifi-
cation. Relative path specifications refer to the temporary session directory.

Result:
Empty string if the user exit is successful; otherwise, an error message.

FreeBuffer

FreeBuffer()

Function:
Releases the buffer shared by GetDir and GetFile.

Result:
No return value.

FreeNamelnPool

FreeNameInPool (config_file [, {name_if not_first_reserved_by_this_process | "ALL"} 1)

Function:
Releases the first entry in a list reserved by the process (default). This user exit can
also be used to release a particular name from the list or all reserved entries.

Result:

Name of the released entry or an empty string. An empty string is returned if all
entries were released or if it was not possible to release any entries.

See also:
LockNamelnPool
Example:

See LockNameInPool

WebTransactions Template Language 359

Ready-made C/C++ user exits Server-side interfaces

12.3.7 Getdate

Getdate(numeric_time_value)

Function:
Returns the specified time in ctime format.

Result:
Time in string format or an empty string if the time value was invalid.

12.3.8 Getdir

Getdir(dir_name_relative_to_basedir [, pattern 1)

Function:
Returns the names of all files that are located in the specified directory and
(optionally) match a specified pattern.

Result:
String containing the file names separated by new-line characters.

After the last Getdir/Getfile call, you should use FreeBuffer() to release the
buffer space used.

1]

12.3.9 Getfile

Getfile(file_name)

Function:
Returns the contents of the specified file. Relative path specifications refer to the
temporary session directory.

Result:
Contents of the file in string format.

After the last Getdir/Getfile call, you should use FreeBuffer() to release the
buffer space used.

1]

360 WebTransactions Template Language

Server-side interfaces Ready-made C/C++ user exits

12.3.10 GetinstallDir

GetInstallDir()

Function:
Returns the WebTransactions installation directory.

Result:
Installation directory.

The source code of this user exit is not supplied.

12.3.11 Gettime

Gettime()

Function:
Returns the current time in ctime format.

Result:
Time in string format.

WebTransactions Template Language 361

Ready-made C/C++ user exits Server-side interfaces

12.3.12 LockNamelnPool

LockNameInPool (config_file [,namel)

Function:
Reserves the first free entry in a list. This user exit can also be used to reserve a
particular name in the list. If a name is marked as reserved but the process that
reserved it no longer exists, it is treated as free and reassigned.

Result:
Name of the reserved entry or an empty string.

See also:
FreeNamelnPool

Example:

Contents of basedir/config_file:

FREE STATIONI comment

FREE STATION2 comment

The first 16 bytes of config_file contain "' FREE " or the process ID of the reserving

process. This is followed by a name and a comment, usually separated by white space

characters (see page 30).

12.3.13 Modificationtime

Modificationtime(file_name [, ‘N° 1)

Function:
Returns the time at which the specified file was last modified.

Result:
String in ctime format or - if the optional second argument ‘N‘ was specified in the
call - in numeric format (internal time format).

362 WebTransactions Template Language

Server-side interfaces Ready-made C/C++ user exits

12.3.14

12.3.15

Putfile

Putfile(file_name, content, length)

Function:
Generates a file containing the transferred string. Relative path specifications refer
to the temporary session directory.

Result:
Empty string if the user exit is successful; otherwise, an error message.

ReleaseStationName

ReleaseStationName (station_name)

Function:
Releases a name reserved with ReserveStationName.

Result:
OK
The station name was found and the corresponding entry was deleted from the file
containing used station names.

NOTOK
The value specified in station_name is not a valid station name.

ERROR
An error occurred while executing the user exit. In this case, you can assume that
the specified station name has not been released.

See also:
ReserveStationName

WebTransactions Template Language 363

Ready-made C/C++ user exits Server-side interfaces

12.3.16 ReplaceByConfigFile

ReplaceByConfigFile(replace_file, key_to_be_replaced)

Function:
Replaces one character string with another under the control of a replacement table
in replace_file. replace_file must consist of two columns separated by white space
characters (see page 30).

Result:

Replacement string if the entry was found; otherwise, an empty string.
Example:
Contents of basedir/replace._file:

keyl replacementl COMMENT !

123.45.6.7 STATIONZ relation ip—address to station name
123.45.6.8 USERX relation ip—address to user name
userl stationl relation user name to station

12.3.17 ReserveStationName

ReserveStationName(station_name)

Function:
Ensures that all names are unique, e.g. checks whether or not the specified station
name for a connection to an OSD application has already been used.

Result:
OK
The station name is currently not in use. It is reserved and a corresponding entry is
generated in the file containing used station names.

NOTOK
The specified station name is currently in use or is not defined.

ERROR
An error occurred while executing the user exit. In this case, you can assume that
the specified station name cannot be used.

See also:
ReleaseStationName

364 WebTransactions Template Language

Server-side interfaces Ready-made C/C++ user exits

12.3.18 SendMail

SendMail(Server,From,To,CC,BCC,Subject,Body,Header)

Function:
Sends a message with the SMTP protocol to one or more recipients. You must set
the following parameters:

Server Internet address or symbolic name of the mail server
From Mail address of the sender

K Mail address of the recipient. You can also specify multiple mail addresses
separated by a semi-colon “”

cC Abbreviation for “Carbon Copy”; mail address of the recipient of the copy.
You can also specify multiple mail addresses separated by a semi-colon “;”

BCC Abbreviation for “Blind Carbon Copy”; mail address of the recipient of the
copy. You can also specify multiple mail addresses separated by a semi-
colon ;"

Subject *Subject line of the mail.
Body Text of the mail.
Header Header line for the mail. The string must contain any necessary linefeeds.

Server, From, To, Subject and Body are mandatory parameters. The CC and BCC
parameters can also be passed as empty strings.

Result:
The SendMai1 method returns the string OK or an error message if it was not possible
to establish the connection. If an error occurs during communication with the SMTP
server then this is logged in the WebTransactions trace file.

The following return values are possible:
“OK”

“Incomplete function call”

“Memory allocation failed.”

“Function call: WSAStartup() failed”
“Creation of a socket failed.”

“Function call: gethostbyname() failed.”
“Connection to socket failed”

“Receive from socket failed.”

WebTransactions Template Language 365

Ready-made C/C++ user exits Server-side interfaces

“Send to socket failed.”

Example:

<wtoncreatescript>

<!-

var MailServer = "smtpmail.server.de";

var MailFrom = "Bundestrainer@dfb.de";

var MailTol = "Terrier <Berti.Vogts@unknown.de>";
var MailTo2 = "Franzl <Franz.Beckenbauer@fch.com>";
var MailCc = "Papst@vatican.va";

var MailBcc = "";

var MailSubject = "WM2010";

var MailBody = "Der Ball ist rund und das Spiel dauert 90 Minuten.";
var MailHeader = "Content-Type: text/plain; charset=1S0-8859-1";
SMTPExit = new WT_Userexit();
SMTPExit.SendMail(MailServer,MailFrom,MailTol+"';"'+MailTo2,MailCc,
MailBcc,MailSubject,MailBody);

delete SMTPEXxit;

//==>

</wtoncreatescript>

12.3.19 WTSleep

WTSTeep([waittime])

Function:
This system exit places the holder on waittime for a set number of milliseconds.

waittime
Expression that is converted into the type number and specifies the number
of milliseconds of wait time left. If no parameter or an invalid parameter is
specified the default value 1000 ms is used.

Note: the wait on the OSD platform always lasts at least 1 second.

Result:
The string 0K is returned.

366 WebTransactions Template Language

13 XML conversion

This chapter describes the basic principles of XML conversion for:

e the portable representation of data for communication with external applications via
XML messages (XML=eXtended Markup Language) in section “Importing and
exporting XML documents” on page 367

e the conversion of WTScript data structures to XML documents
and vice versa in section “Exporting data structures” on page 372

For information on how to use the WT_Fi1ter class for communication between
WebTransactions applications (conversion of WTML function calls), please refer to the
WebTransactions manual “Client APIs for WebTransactions”.

13.1 Importing and exporting XML documents

This section describes how to convert XML documents into WTScript data structures and
vice versa. This allows for communication with any external application that creates or
processes XML documents.

If XML documents are imported using the WT_Fi1ter class, they must be transformed into
an internal representation of a WTScript object tree. For this purpose, the structure of the
XML document is mapped to an object tree, each of whose leaves represents an XML
element. The following sections describe the format of these data objects.

If you wish to export WTScript data structures using the objectTreeToXML method, these
data structures must be converted into the XML object tree format described below before
they can be exported.

WebTransactions Template Language 367

Importing and exporting XML documents XML conversion

13.1.1 Structure of an imported XML object

In WebTransactions, XML elements are represented as follows:

name

attribute

child

0

1

name
This attribute is of data type string and specifies the name of the XML element.

attribute
This attribute is an object of type object from the Object class which contains an
attribute for each attribute of the XML element.

child
This attribute is an object of type object from the Object class. If the current XML
element contains subordinate elements, this object contains an attribute for each
subelement type with the name of the XML element type. References to the objects
0, 1, ... of the respective type are inserted as attributes of this subobject (see
description below).

0, 1,
For each XML element within the current XML element, an attribute is created with
the index of the XML subelement as the name, the data type object, and the class
Object which is in turn structured as an XML object.

368 WebTransactions Template Language

XML conversion Importing and exporting XML documents

13.1.2 Representation of XML elements

The following figures explain the elements of WTScript data structures described above.

Representation of a simple XML element

<myRoot></myRoot> or -
<myRoot/> P <object>

‘ name (="myRoot") ‘

‘ attribute ‘

‘chﬂd ‘

The XML element myRoot is mapped to an object in which the name attribute is set to the
name of the XML element (myRoot).

Representation of an XML element with attributes

<myElem myAtt="value'></myElem>or ___ g <object>
<myElem myAtt="value"/>

name (="myElem")

attribute

myAtt (="value")

child

The XML element myElem is mapped to an object in which the name attribute is set to the
name of the XML element (myE1em).

For each attribute of myE1em, the object’s attribute attribute is assigned a separate
attribute with the name of the XML attribute (in our example, myAtt) and the value of the
XML attribute (in our example, value).

WebTransactions Template Language 369

Importing and exporting XML documents XML conversion

Representation of subelements of an XML element

<myElem myAtt="value"> -
<myChild/> P <object>
</myElem>

name (="myElem")

attribute

myAtt (="value")

child
myChild
0

|name(=”myCh11d”)‘

Iattribute ‘

’chﬂd ‘

‘ name (="myChild") ‘

‘ attribute ‘

‘chﬂd ‘

The XML element myElem is mapped to an object in which the name attribute is set to the
name of the XML element (myE1em).

For each attribute of myE1em, the object’s attribute attribute is assigned a separate
attribute with the name of the XML attribute (in our example, myAtt) and the value of the
XML attribute (in our example, value).

In addition, for each subelement of myE1em, a separate subobject is created in <object>
which is named in accordance with the index of the subelement (0, 1, 2, 3, ...) and is struc-
tured recursively in this way (in our example, the object 0).

Furthermore, for each XML element type (here, myChi1d), the child attribute is assigned
an object which in turn comprises references to the subobjects (0, 1, ...) belonging to this
object type (see also the following diagram).

370

WebTransactions Template Language

XML conversion Importing and exporting XML documents

Representation of several subelements

<myE1em> P <object>
<myChild> J
any text - _
<myChild/> ‘name (="myElem") ‘
wmeten ‘attribute ‘
child
myChild
0

‘name(=”myChi1d”)|

‘attribute ‘

‘chi]d ‘

2

‘name(=”myChi1d”)‘

If there are several subelements, these are created as
described on the previous page: ‘ attribute ‘

Each subelement is assigned an object whose name ‘ child |
corresponds to the index of the subelement in the
element (here 0 for 1st myChi1d, 1 for text, 2 for 2nd

$PCDATA
myChi1d). 1 (="any text")
For each element type (here myChi1d and $PCDATA for ‘ name (=" $PCDATA™) |
standard text), the chi1d attribute is assigned a
subobject which contains references to the subobjects ‘ attribute |
0, 1, 2, ... of the object, corresponding to the respective _
element type. child |
Standard text is always stored under the name $PCDATA.
A special feature here is that the text is saved as a value 0 [name (='myChild") |
of the subobject. [attribute |

[child |

1 (="any text")
| name (="$PCDATA") |

| attribute |
| child |

2 [name (="myChild")
|attribute |
[child |

WebTransactions Template Language 371

Exporting data structures

XML conversion

13.2 Exporting data structures

This section describes how WTScript data structures are exported and imported (using the
methods XMLToDataObject and dataObjectToXML). This means that WTScript data struc-
tures can be transferred in a saveable format, then stored and reloaded (using the methods
of the document class), and subsequently reconverted into the corresponding WTScript

data structures.

The data structures are converted using the two methods XMLToDataObject and
dataObjectToXML, whereby no particular conventions need be observed. For the
conversion, WebTransactions uses the following DTD (Document Type Definition, a
description of how an XML document is structured), which is provided here for information

purposes.
WTScript XML document
data structure - >
dataObjectToXML
XML document
WTScript
data structure
XMLToDataObject

372

WebTransactions Template Language

XML conversion

Exporting data structures

DTD for representing WTScript data structures in XML
The following DTD applies to the representation of WTScript data structures as XML

documents:

<!ELEMENT data

<!ELEMENT undefined

<!ELEMENT number
<!ELEMENT boolean
<!ELEMENT string
<!ELEMENT object

<!ELEMENT function

<!ATTLIST undefined

<IATTLIST number
<IATTLIST boolean
<!IATTLIST string
<!ATTLIST object

<IATTLIST function

((undefined|number|boolean]|
string|object)*)>

EMPTY>

(#PCDATA)>

(#PCDATA)>

(#PCDATA)>

(#PCDATA?

(undefined|number|boolean]|

stringlobject|function)*)>

EMPTY>

name

name

name

name

name

class

reference

name

CDATA
CDATA
CDATA
CDATA
CDATA
CDATA
CDATA
CDATA

#REQUIRED>
#REQUIRED>
#REQUIRED>
#REQUIRED>
#REQUIRED
#IMPLIED
#IMPLIED>
#REQUIRED>

As well as its use within WebTransactions, exporting the data structures according to this
DTD also allows external applications to access WTScript data structures saved in this way.

WebTransactions Template Language

373

Exporting data structures XML conversion

374 WebTransactions Template Language

14 Examples

The examples in this chapter illustrate the ways in which the different WTML tags interact.

14.1 Changing styles

This example illustrates how you add a button to change between styles and handle the
return value in WebTransactions. In this case, the STYLE button is polled in the If condition:

— Ifitis pressed then the STYLE system attribute is reset. Since in this case there is no
communication with the host application, the FORMAT system attribute remains un-
changed. Consequently, a template is now read which corresponds to the current
template but possesses a different interface style. WebTransactions does not now
search in the standard template directory config/forms butin config/graphic.

— If the STYLE button is not pressed, communication with the host is performed. The
template for the next dialog step is therefore displayed and the interface style remains
unchanged.

HTML template:

<Input Type="SUBMIT" Name="STYLE" Value="Graphic">

<wtOnReceiveScript>

if (WT_POSTED.STYLE == "Graphic")
WT_SYSTEM.STYLE ="graphic";
else

{

WT_HOST.std.send();
WT_HOST.std.receive();
}

</wtOnReceiveScript>

WebTransactions Template Language 375

Polling the Exit button Examples

14.2 Polling the Exit button

To permit users to exit the application in a structured way, the Exit button is polled in the 1
condition. If it is pressed, a final message is output and the session is terminated with the
exitSession() global function. Otherwise communication with the host is performed

HTML template:

<Input Type="SUBMIT" Name="Exit" Value="End">

<wtRem End or communicate with host>
<wtOnReceiveScript>
if (WT_POSTED.Exit == "End")
{
document.write("End of session...");
WT_HOST.std.close();
exitSession();
}
else
{
WT_HOST.std.send();
WT_HOST.std.receive();
}

</wtOnReceiveScript>

376 WebTransactions Template Language

Examples

Saving data with XML conversion

14.3 Saving data with XML conversion

This example is based on the assumption that a WebTransactions application is to manage
user-specific data (display style, which can be selected by the user, as well as various user
data such as the user number, last usage of the application, etc.).

The user identifies himself or herself using a number, which also serves as the basis for
storing the data.

The user-specific data is stored in the following data structure:

function UserData() { // Constructor
// Class attributes:
this.objectName = ""; // Name of data object
this.userNumber = 0;
this.style = "";
this.lastUsage = new Date;
// Methods (saving and loading of data)
this.save = savelUserData;
this.load = loadUserData;
b

The two methods saveUserData and ToadUserData implement the operations for XML
conversion and data storage:

function saveUserData() f{
XMLString = new String;

// Save current style:
this.style = WT_SYSTEM.STYLE
// Convert data to XML:
XMLString = WT_Filter.dataObjectToXML(this.objectName);
// Write data to file <WT_SYSTEM.BASEDIR>/<userNumber>.wtd:
WT_Userexit.Putfile(WT_SYSTEM.BASEDIR + "/" + this.userNumber + ".wtd",
XMLString, XMLString.length);
b

function loadUserData() f{
XMLString = new String;

// Load data from file <WT_SYSTEM.BASEDIR>/<userNumber>.wtd:
XMLString = WT_Userexit.Getfile(WT_SYSTEM.BASEDIR + "/"

+ this.userNumber + ".wtd")
// Convert XML to data (in object this.objectName):
WT_Filter.XMLToDataObject(XMLString);
// Restore saved style:
WT_SYSTEM.STYLE = this.style;

WebTransactions Template Language 377

Saving data with XML conversion Examples

378 WebTransactions Template Language

15.1 WTML tags

15 Short reference guide

Function

Syntax

Comment tag

<wtRem comments>
or:
<wtRem>

comments
</wtRem>

Dataform tag

<wtDataform [Name="name"] [OnSubmit="0nSubmitHandler"]

LASYNC_PAGE="asyncPage" 1>

Area

</wtDataform>
Exit tag <wtExit scope={"TEMPLATE"|"DIALOGSTEP"|"SESSION"}>
Include tag <wtInclude Name="fileName">
IF tag <wtIf (condition)>

Blockl
[<wtElse>
Block2]

{<wtEndIf> | </wtIf>}
DO WHILE tag <wtDoWhile (condition)>

Block

</wtDoWhile>
DO UNTIL tag <wtDo>

Block

<wtUntil (condition)>
OnCreateScript <wtOnCreateScript>
tag CreateScript

</wtOnCreateScript>
OnReceiveScript |<wtOnReceiveScript>
tag ReceiveScript

</wtOnReceiveScript

WebTransactions Template Language

379

WTScript statements (alphabethic order)

Short reference guide

15.2 WTScript statements (alphabethic order)

Function Syntax
Empty statement

Expression as expression ;
statement

Statement block {block . ..}
as statement

if branch if (condition)
blockl
[else
block2]
while loop Llabel: Iwhile (condition)
block
do/while loop Clabel: Jdo block while (condition) ;
for loop Llabel: 1for ([init 1; [condition 1; [update 1)
block
for/in loop Llabel: 1for (name in object)
block

switch statement | switch (expression)

{

Ldefault: block2. . .]
}

{case label: blockl... [break;] }...

break statement break [labell;

continue continue [label];
statement

return statement | return [retValue 1 ;

Variable decla- var { identifier | identifier=value }
ration and [{ .identifier | ,identifier=value }...]
assignment
function statement | function identifier ([parameter {, parameter }... 1)
{
[block
]
}
with statement with (object)
block

380 WebTransactions Template Language

Glossary

A term in ->italic font means that it is explained somewhere else in the glossary.

active dialog

array

In the case of active dialogs, WebTransactions actively intervenes in the control
of the dialog sequence, i.e. the next ->template to be processed is determined
by the template programming. You can use the ->WTML language tools, for
example, to combine multiple ->host formats in a single ->HTML page. In this
case, when a host ->dialog step is terminated, no output is sent to the ->browser
and the next step is immediately started. Equally, multiple interactions between
the Web ->browser and WebTransactions are possible within one and the same
host dialog step.

->Data type which can contain a finite set of values of one data type. This data
type can be:

— ->scalar

— a->class

— anarray

The values in the array are addressed via a numerical index, starting at O.

asynchronous message

attribute

In WebTransactions, an asynchronous message is one sent to the terminal
without having been explicitly requested by the user, i.e. without the user having
pressed a key or clicked on an interface element.

Attributes define the properties of ->objects.

An attribute can be, for example, the color, size or position of an object or it can
itself be an object. Attributes are also interpreted as ->variables and their values
can be queried or modified.

WebTransactions Template Language 381

Glossary

Automask template

A WebTransactions ->template created by WebLab either implicitly when gener-
ating a base directory or explicitly with the command Generate Automask. It is
used whenever no format-specific template can be identified. An Automask
template contains the statements required for dynamically mapping formats
and for communication. Different variants of the Automask template can be
generated and selected using the system object attribute AUTOMASK.

base directory

The base directory is located on the WebTransactions server and forms the
basis for a ->WebTransactions application. The base directory contains the
->templates and all the files and program references (links) which are necessary
in order to run a WebTransactions application.

BCAM application name

browser

Corresponds to the openUTM generation parameter BCAMAPPL and is the name
of the —>openUTM application through which —>UPIC establishes the
connection.

Program which is required to call and display ->HTML pages. Browsers are, for
example, Microsoft Internet Explorer or Mozilla Firefox.

browser display print

The WebTransactions browser display print prints the information displayed in
the ->browser.

browser platform

buffer

capturing

Operating system of the host on which a ->browser runs as a client for
WebTransactions.

Definition of a record, which is transmitted from a ->service. The buffer is used
for transmitting and receiving messages. In addition there is a specific buffer for
storing the ->recognition criteria and for data for the representation on the
screen.

To enable WebTransactions to identify the received ->formats at runtime, you
can open a ->session in ->WebLab and select a specific area for each format and
name the format. The format name and ->recognition criteria are stored in the
->capture database. A ->template of the same name is generated for the format.
Capturing forms the basis for the processing of format-specific templates for the
WebTransactions for OSD and MVS product variants.

382

WebTransactions Template Language

Glossary

capture database
The WebTransactions capture database contains all the format names and the
associated ->recognition criteria generated using the ->capruring technique. You
can use ->WebLab to edit the sequence and recognition criteria of the formats.

CGl
(Common Gateway Interface)
Standardized interface for program calls on ->Web servers. In contrast to the
static output of a previously defined->HTML page, this interface permits the
dynamic construction of HTML pages.

class

Contains definitions of the ->properties and ->methods of an ->object. It provides
the model for instantiating objects and defines their interfaces.

class template
In WebTransactions, a class template contains valid, recurring statements for
the entire object class (e.g. input or output fields). Class templates are
processed when the ->evaluation operator or the toString method is applied to a
->host data object.

client
Requestors and users of services in a network.

cluster
Set of identical ->WebTransactions applications on different servers which are
interconnected to form a load-sharing network.

communication object
This controls the connection to an ->host application and contains information
about the current status of the connection, the last data to be received etc.

conversion tools
Utilities supplied with WebTransactions. These tools are used to analyze the
data structures of ->openUTM applications and store the information in files.
These files can then be used in WebLab as ->format description sources in order
to generate WTML templates and ->FLD files.
COBOL data structures or IFG format libraries form the basis for the conversion
tools. The conversion tool for DRIVE programs is supplied with the product
DRIVE.

daemon
Name of a process type in Unix system/POSIX systems which runs in the
background and performs no I/O operations at terminals.

WebTransactions Template Language 383

Glossary

data access control
Monitoring of the accesses to data and ->objects of an application.

data type
Definition of the way in which the contents of a storage location are to be inter-
preted. Each data type has a name, a set of permitted values (value range), and
a defined number of operations which interpret and manipulate the values of
that data type.

dialog
Describes the entire communication between browser, WebTransactions and -
>host application. 1t will usually comprise multiple ->dialog cycles. WebTransac-
tions supports a number of different
types of dialog.
— ->passive dialog
— ->active dialog
— ->synchronized dialog
— ->non-synchronized dialog

dialog cycle
Cycle that comprises the following steps when a ->WebTransactions application is
executed:
— construct an ->HTML page and send it to the ->browser
— wait for a response from the browser
— evaluate the response fields and possibly send them to the->#host application
for further processing
A number of dialog cycles are passed through while a ->WebTransactions appli-
cation is executing.

distinguished name

The Distinguished Name (DN) in ->LDAP is hierarchically organized and

consists of a number of different components (e.g. “country, and below country:

organization, and below organization: organizational unit, followed by: usual

name”). Together, these components provide a unique identification of an object

in the directory tree.

Thanks to this hierarchy, the unique identification of objects is a simple matter

even in a worldwide directory tree:

— The DN "Country=DE/Name=Emil Person" reduces the problem of achiev-
ing a unique identification to the country DE (=Germany).

— The DN "Organization=FTS/Name=Emil Person" reduces it to the organiza-
tion FTS.

— The DN "Country=DE/Organization=F TS/Name=Emil Person" reduces it to
the organization FTS located in Germany (DE).

384 WebTransactions Template Language

Glossary

document directory
->Web server directory containing the documents that can be accessed via the
network. WebTransactions stores files for download in this directory, e.g. the
WebLab client or general start pages.

Domain Name Service (DNS)
Procedure for the symbolic addressing of computers in networks. Certain
computers in the network, the DNS or name server, maintain a database
containing all the known host names and IP numbers in their environment.

dynamic data
In WebTransactions, dynamic data is mapped using the WebTransactions
object model, e.g. as a ->system object, host object or user input at the browser.

EHLLAPI
Enhanced High-Level Language API
Program interface, e.g. of terminal emulations for communication with the SNA
world. Communication between the transit client and SNA computer, which is
handled via the TRANSIT product, is based on this interface.

EJB
(Enterprise JavaBean)
This is a Java-based industry standard which makes it possible to use in-house
or commercially available server components for the creation of distributed
program systems within a distributed, object-oriented environment.

entry page
The entry page is an ->HTML page which is required in order to start a
->WebTransactions application This page contains the call which starts
WebTransactions with the first ->remplare, the so-called start template.

evaluation operator
In WebTransactions the evaluation operator replaces the addressed
->expressions With their result (object attribute evaluation). The evaluation
operator is specified in the form ##expression#.

expression
A combination of ->literals, ->variables, operators and expressions which return
a specific result when evaluated.

FHS
Format Handling System
Formatting system for BS2000/0SD applications.

WebTransactions Template Language 385

Glossary

field
A field is the smallest component of a service and element of a ->record or
->buffer.

field file (*.fld file)
In WebTransactions, this contains the structure of a ->format record (metadata).

filter
Program or program unit (e.g. a library) for converting a given ->format into
another format (e.g. XML documents to ->WTScript data structures).

format
Optical presentation on alphanumeric screens (sometimes also referred to as
screen form or mask).

In WebTransactions each format is represented by a ->field file and a ->template.

format type
(only relevant in the case of ->FHS applications and communication via ->UPIC)
Specifies the type of format: #format, +format, -format or *format.

format description sources
Description of multiple ->formats in one or more files which were generated from
a format library (FHS/IFG) or are available directly at the ->host for the use of
“expressive” names in formats.

function
A function is a user-defined code unit with a name and ->parameters. Functions
can be called in ->methods by means of a description of the function interface (or
signature).

holder task
A process, a task or a thread in WebTransactions depending on the operating
system platform being used. The number of tasks corresponds to the number
of users. The task is terminated when the user logs off or when a time-out
occurs. A holder task is identical to a ->WebTransactions session.

host
The computer on which the- >host application is running.

host adapter
Host adapters are used to connect existing ->host applications 10
WebTransactions. At runtime, for example, they have the task of establishing
and terminating connections and converting all the exchanged data.

386

WebTransactions Template Language

Glossary

host application
Application that is integrated with WebTransactions.

host control object
In WebTransactions, host control objects contain information which relates not
to individual fields but to the entire ->format. This includes, for example, the field
in which the cursor is located, the current function key or global format
attributes.

host data object
In WebTransactions, this refers to an ->object of the data interface to the ->host
application. It represents a field with all its field attributes. It is created by
WebTransactions after the reception of host application data and exists until the
next data is received or until termination of the ->session.

host data print
During WebTransactions host data print, information is printed that was edited
and sent by the ->host application, e.g. printout of host files.

host platform
Operating system of the host on which the ->host applications runs.

HTML
(Hypertext Markup Language)
See ->Hypertext Markup Language
HTTP
(Hypertext Transfer Protocol)
This is the protocol used to transfer ->HTML pages and data.
HTTPS
(Hypertext Transfer Protocol Secure)
This is the protocol used for the secure transfer of ->HTML pages and data.
hypertext

Document with links to other locations in the same or another document. Users
click the links to jump to these new locations.

Hypertext Markup Language
(Hypertext Markup Language)
Standardized markup language for documents on the Web.

WebTransactions Template Language 387

Glossary

Java Bean

KDCDEF

LDAP

literal

Java programs (or ->classes) with precisely defined conventions for interfaces
that allow them to be reused in different applications.

openUTM tool for generating ->openUTM applications.

(Lightweight Directory Access Protocol)

The X.500 standard defines DAP (Directory Access Protocol) as the access
protocol. However, the Internet standard “LDAP” has proved successful specif-
ically for accessing X.500 directory services from a PC.

LDAP is a simplified DAP protocol that does not support all the options available
with DAP and is not compatible with DAP. Practically all X.500 directory services
support both DAP and LDAP. In practice, interpretation problems may arise
since there are various dialects of LDAP. The differences between the dialects
are generally small.

Character sequence that represents a fixed value. Literals are used in source
programs to specify constant values (“literal” values).

master template

WebTransactions template used to generate the Automask and the format-
specific templates.

message queuing (MQ)

method

A form of communication in which messages are not exchanged directly, rather
via intermediate queues. The sender and receiver can work at separate times
and locations. Message transmission is guaranteed regardless of whether or
not a network connection currently exists.

Object-oriented term for a ->function. A method is applied to the ->object in
which it is defined.

module template

MT tag

In WebTransactions, a module template is used to define ->classes, ->functions
and constants globally for a complete ->session. A module template is loaded
using the import () function.

(Master Template tag)
Special tags used in the dynamic sections of ->master templates.

388

WebTransactions Template Language

Glossary

multitier architecture

All client/server architectures are based on a subdivision into individual

software components which are also known as layers or tiers. We speak of

1-tier, 2-tier, 3-tier and multitier models. This subdivision can be considered at

the physical or logical level:

— We speak of logical software tiers when the software is subdivided into
modular components with clear interfaces.

— Physical tiers occur when the (logical) software components are distributed
across different computers in the network.

With WebTransactions, multitier models are possible both at the physical and

logical level.

name/value pair
In the data sent by the ->browser, the combination, for example, of an ->HTML
input field name and its value.

non-synchronized dialog
Non-synchronized dialogs in WebTransactions permit the temporary deacti-
vation of the checking mechanism implemented in ->synchronized dialogs. In this
way, ->dialogs that do not form part of the synchronized dialog and have no
effect on the logical state of the ->host application can be incorporated. In this
way, for example, you can display a button in an ->HTML page that allows users
to call help information from the current host application and display it in a
separate window.

object
Elementary unit in an object-oriented software system. Every object possesses
a name via which it can be addressed, ->arttributes, which define its status
together with the ->methods that can be applied to the object.

openUTM

(Universal Transaction Monitor)
Transaction monitor from Fujitsu Technology Solutions, which is available for
BS2000/0SD and a variety of Unix platforms and Windows platforms.

openUTM application
A ->host application which provides services that process jobs submitted by
->clients or other ->host applications. openUTM responsibilities include trans-
action management and the management of communication and system
resources. Technically speaking, the UTM application is a group of processes
which form a logical unit at runtime.
openUTM applications can communicate both via the client/server protocol
->UPIC and via the emulation interface (9750).

WebTransactions Template Language 389

Glossary

openUTM-Client (UPIC)
The openUTM-Client (UPIC) is a product used to create client programs for
openUTM. openUTM-Client (UPIC) is available, for example, for Unix platforms,
BS2000/0SD platforms and Windows platforms.

openUTM program unit
The services of an ->openUTM application are implemented by one or more
openUTM program units. These can be addressed using transaction codes and
contain special openUTM function calls (e.g. KDCS calls).

parameter
Data which is passed to a ->function or a ->method for processing (input
parameter) or data which is returned as a result of a function or method (output
parameter).

passive dialog
In the case of passive dialogs in WebTransactions, the dialog sequence is
controlled by the ->host application, i.e. the host application determines the next
->template which is to be processed. Users who access the host application via
WebTransactions pass through the same dialog steps as if they were accessing
it from a terminal. WebTransactions uses passive dialog control for the
automatic conversion of the host application or when each host application
format corresponds to precisely one individual template.

password
String entered for a ->user id in an application which is used for user authenti-
cation (->system access control).

polling
Cyclical querying of state changes.

pool
In WebTransactions, this term refers to a shared directory in which WebLab can
create and maintain ->base directories. You control access to this directory with
the administration program.

post

To send data.

posted object (wt_Posted)
List of the data returned by the ->browser. This ->object is created by WebTrans-
actions and exists for the duration of a ->dialog cycle.

390

WebTransactions Template Language

Glossary

process
The term “process” is used as a generic term for process (in Solaris, Linux and
Windows) and task (in BS2000/0SD).

project
In the WebTransactions development environment, a project contains various
settings for a ->WebTransactions application. These are saved in a project file
(suffix .wtp). You should create a project for each WebTransactions application
you develop, and always open this project for editing.

property
Properties define the nature of an ->object, e.g. the object “Customer” could
have a customer name and number as its properties. These properties can be
set, queried, and modified within the program.

protocol
Agreements on the procedural rules and formats governing communications
between remote partners of the same logical level.

protocol file

e openUTM-Client: File into which the openUTM error messages as are writ-
ten in the case of abnormal termination of a conversation.

e In WebTransactions, protocol files are called trace files.

roaming session
->WebTransactions sessions which are invoked simultaneously or one after
another by different ->clients.

record
A record is the definition of a set of related data which is transferred to a ->buffer.
It describes a part of the buffer which may occur one or more times.

recognition criteria
Recognition criteria are used to identify ->formats of a ->terminal application and
can access the data of the format. The recognition criteria selected should be
one or more areas of the format which uniquely identify the content of the
format.

scalar
->variable made up of a single value, unlike a ->class, an ->array or another
complex data structure.

WebTransactions Template Language 391

Glossary

service (openUTM)

In ->openUTM, this is the processing of a request using an ->openUTM appli-
cation. There are dialog services and asynchronous services. The services are
assigned their own storage areas by openUTM. A service is made up of one or
more ->transactions.

service application

->WebTransactions session which can be called by various different users in turn.

service node

session

SOAP

Instance of a ->service. During development and runtime of a ->method a service
can be instantiated several times. During modelling and code editing those
instances are named service nodes.

When an end user starts to work with a ->WebTransactions application this opens

a WebTransactions session for that user on the WebTransactions server. This

session contains all the connections open for this user to the

->browsers, special ->clients and ->hosts.

A session can be started as follows:

— Input of a WebTransactions URL in the browser.

— Using the START_SESSION method of the WT_REMOTE client/server interface.

A session is terminated as follows:

— The user makes the corresponding input in the output area of this
->WebTransactions application (not via the standard browser buttons).

— Whenever the configured time that WebTransactions waits for a response
from the ->host application or from the ->browser is exceeded.

— Termination from WebTransactions administration.

— Using the EXIT_SESSION method of the WT_REMOTE client/server interface.

A WebTransactions session is unique and is defined by a ->WebTransactions

application and a session ID. During the life cycle of a session there is one

->holder task for each WebTransactions session on the WebTransactions server.

(originally Simple Object Access Protocol)

The ->XML based SOAP protocol provides a simple, transparent mechanism
for exchanging structured and typecast information between computers in a
decentralized, distributed environment.

SOAP provides a modular package model together with mechanisms for data
encryption within modules. This enables the uncomplicated description of the
internal interfaces of a ->Web-Service.

392

WebTransactions Template Language

Glossary

style
In WebTransactions this produces a different layout for a ->remplate, €.g. with
more or less graphic elements for different->browsers. The style can be changed
at any time during a ->session.

synchronized dialog

In the case of synchronized dialogs (normal case), WebTransactions automati
cally checks whether the data received from the web browser is genuinely a
response to the last ->HTML page to be sent to the ->browser. For example, if
the user at the web browser uses the Back button or the History function to
return to an “earlier” HTML page of the current ->session and then returns this,
WebTransactions recognizes that the data does not correspond to the current
->dialog cycle and reacts with an error message. The last page to have been
sent to the browser is then automatically sent to it again.

system access control
Check to establish whether a user under a particular ->user ID is authorized to
work with the application.

system object (wt_System)
The WebTransactions system object contains ->variables which continue to
exist for the duration of an entire ->session and are not cleared until the end of
the session or until they are explicitly deleted. The system object is always
visible and is identical for all name spaces.

TAC
See ->transaction code

tag
->HTML, ->XML and ->WTML documents are all made up of tags and actual
content. The tags are used to mark up the documents e.g. with header formats,
text highlighting formats (bold, italics) or to give source information for graphics
files.

TCP/IP

(Transport Control Protocol/Internet Protocol)
Collective name for a protocol family in computer networks used, for example,
in the Internet.

WebTransactions Template Language 393

Glossary

template

A template is used to generate specific code. A template contains fixed infor-

mation parts which are adopted unchanged during generation, as well as

variable information parts that can be replaced by the appropriate values during

generation.

A template is a ->WTML file with special tags for controlling the dynamic gener-

ation of a ->HTML page and for the processing of the values entered at the -

>browser. It is possible to maintain multiple template sets in parallel. These then

represent different ->styles (e.g. many/few

graphics, use of Java, etc.).

WebTransactions uses different types of template:

— ->Automask templates for the automatic conversion of the ->formats of MVS
and OSD applications.

— Custom templates, written by the programmer, for example, to control an -
>active dialog.

— Format-specific templates which are generated for subsequent post-pro-
cessing.

— Include templates which are inserted in other templates.

— ->Class templates

— ->Master templates to ensure the uniform layout of fixed areas on the
generation of the Automask and format-specific templates.

— Start template, this is the first template to be processed in a
WebTransactions application.

template object

->Variables used to buffer values for a ->dialog cycle in WebTransactions.

terminal application

Application on a ->host computer which is accessed via a 9750 or 3270
interface.

terminal hardcopy print

A terminal hardcopy print in WebTransactions prints the alphanumeric repre-
sentation of the ->format as displayed by a terminal or a terminal emulation.

transaction

Processing step between two synchronization points (in the current operation)
which is characterized by the ACID conditions (Atomicity, Consistency, Isolation
and Durability). The intentional changes to user information made within a

transaction are accepted either in their entirety or not at all (all-or-nothing rule).

394

WebTransactions Template Language

Glossary

transaction code/TAC
Name under which an openUTM service or ->openUTM program unit can be
called. The transaction code is assigned to the openUTM program unit during
configuration. A program unit can be assigned several transaction codes.

uDDI
(Universal Description, Discovery and Integration)
Refers to directories containing descriptions of ->Web services. This information
is available to web users in general.

Unicode
An alphanumeric character set standardized by the International Standardisa-
tion Organisation (ISO) and the Unicode Consortium. It is used to represent
various different types of characters: letters, numerals, punctuation marks, syl-
labic characters, special characters and ideograms. Unicode brings together all
the known text symbols in use across the world into a single character set.
Unicode is vendor-independent and system-independent. It uses either two-
byte or four-byte character sets in which each text symbol is encoded. In the ISO
standard, these character sets are termed UCS-2 (Universal Character Set 2)
or UCS-4. The designation UTF-16 (Unicode Transformation Format 16-bit),
which is a standard defined by the Unicode Consortium, is often used in place
of the designation UCS-2 as defined in ISO. Alongside UTF-16, UTF-8 (Unicode
Transformation Format 8 Bit) is also in widespread use. UTF-8 has become the
character encoding method used globally on the Internet.

UPIC
(Universal Programming Interface for Communication)
Carrier system for openUTM clients which uses the X/Open interface, which
permity CPI-C client/server communication between a CPI-C-Client application
and the openUTM application.

URI
(Uniform Resource Identifier)
Blanket term for all the names and addresses that reference objects on the
Internet. The generally used URIs are->URLs.

URL
(Uniform Resource Locator)
Description of the location and access type of a resource in the ->Internet.

user exit
Functions implemented in C/C++ which the programmer calls from a
->template.

WebTransactions Template Language 395

Glossary

user ID
User identification which can be assigned a password (->system access control)
and special access rights (->data access control).

variable
Memory location for variable values which requires a name and a ->data type.

visibility of variables
->O0bjects and ->variables of different dialog types are managed by WebTrans-
actions in different address spaces. This means that variables belonging to a -
>synchronized dialog are not visible and therefore not accessible in a
->asynchronous dialog or in a dialog with a remote application.

web server
Computer and software for the provision of ->HTML pages and dynamic data
via ->HTTP.

web service
Service provided on the Internet, for example a currency conversion program.
The SOAP protocol can be used to access such a service. The interface of a
web service is described in ->WSDL.

WebTransactions application
This is an application that is integrated with ->host applications for internet/
intranet access. A WebTransactions application consists of:
— a ->base directory
— a start template
— the ->templates that control conversion between the ->host and the
->browser.
— protocol-specific configuration files.

WebTransactions platform
Operating system of the host on which WebTransactions runs.

WebTransactions server
Computer on which WebTransactions runs.

WebTransactions session
See ->session

WSDL
(Web Service Definition Language)
Provides ->XML language rules for the description of ->web services. In this
case, the web service is defined by means of the port selection.

396

WebTransactions Template Language

Glossary

WTBean
In WebTransactions ->WTML components with a self-descriptive interface are
referred to as WTBeans. A distinction is made between inline and standalone
WTBeans:
— Aninline WTBean corresponds to a part of a WTML document
— A standalone WTBean is an autonomous WTML document

A number of WTBeans are included in of the WebTransactions product, addi-
tional WTBeans can be downloaded from the WebTransactions homepage
ts.fujitsu.com/products/software/openseas/webtransactions.html.

WTML
(WebTransactions Markup Language)
Markup and programming language for WebTransactions ->templates. WTML
uses additional ->WTML tags to extend ->HTML and the server programming
language ->WTScript, e.g. for data exchange with ->host applications. WTML
tags are executed by WebTransactions and not by the ->browser (serverside
scripting).

WTML tag
(WebTransactions Markup Language-Tag)
Special WebTransactions tags for the generation of the dynamic sections of an
->HTML page using data from the->host application.

WTScript
Serverside programming language of WebTransactions. WTScripts are similiar
to client-side Java scripts in that they are contained in sections that are intro-
duced and terminated with special tags. Instead of using ->HTML-SCRIPT tags
you use ->WTML-Tags: wtOnCreateScript and wtOnReceiveScript. This indicates
that these scripts are to be implemented by WebTransactions and not by the
->browser and also indicates the time of execution. OnCreate scripts are
executed before the page is sent to the browser. OnReceive scripts are
executed when the response has been received from the browser.

XML
(eXtensible Markup Language)
Defines a language for the logical structuring of documents with the aim of
making these easy to exchange between various applications.

XML schema
An XML schema basically defines the permissible elements and attributes of an
XML description. XML schemas can have a range of different formats, e.g. DTD
(Document Type Definition), XML Schema (W3C standard) or XDR (XML Data
Reduced).

WebTransactions Template Language 397

Glossary

398 WebTransactions Template Language

Abbreviations

BO
Cal
DN
DNS
EJB
FHS
HTML
HTTP
HTTPS
IFG
ISAPI
LDAP
LPD
MT-Tag
MVS
OsD
SGML

SOAP

Business Object

Common Gateway Interface
Distinguished Name

Domain Name Service

Enterprise JavaBean

Format Handling System

Hypertext Markup Language

Hypertext Transfer Protocol

Hypertext Transfer Protocol Secure
Interaktiver Format Generator

Internet Server Application Programming Interface
Lightweight Directory Access Protocol
Line Printer Daemon
Master-Template-Tag

Multiple Virtual Storage

Open Systems Direction

Standard Generalized Markup Language

Simple Object Access Protocol

WebTransactions Template Language

399

Abbreviations

SSL Secure Socket Layer

TCP/IP Transport Control Protocol/Internet Protocol

Upic Universal Programming Interface for Communication
URL Uniform Resource Locator

WSDL Web Services Description Language

wtc WebTransactions Component

WTML WebTransactions Markup Language

XML eXtensible Markup Language

400 WebTransactions Template Language

Related publications

WebTransactions manuals
You can download all manuals from the Web address http://manuals.ts.fujitsu.com.

WebTransactions
Concepts and Functions
Introduction

WebTransactions
Client APIs for WebTransactions
User Guide

WebTransactions
Connection to openUTM Applications via UPIC
User Guide

WebTransactions
Connection to OSD Applications
User Guide

WebTransactions
Connection to MVS Applications
User Guide

WebTransactions
Access to Dynamic Web Contents
User Guide

WebTransactions
Web Frontend for Web Services
User Guide

WebTransactions Template Language

401

http://manuals.ts.fujitsu.com

Related publications

Other publications

The manuals are available as online manuals, see http.//manuals.ts.fujitsu.com, or in printed
form which must be paid and ordered separately at http.//manualshop.ts.fujitsu.com.

interNet Services
Administrator Guide

402 WebTransactions Template Language

http://manuals.ts.fujitsu.com
http://manualshop.ts.fujitsu.com

Index

.clt 309

A
abs (Math class) 161
access

class elements 343
acos (Math class) 162
activate

Java support 338
active dialog 381, 384
add (WT_LdapConnection class) 237
addition 65
ArchiveName tag 332
arithmetic operators 65
array 381

Java object 347

multidimensional 347
Array class 118

concat 121

equals 122

getClassName 123

join 124

pop 125

push 126

reverse 127

shift 128

slice 129

sort 130

splice 133

toString 134

unshift 135

valueOf 136
asin (Math class) 162
assignment 278

assignment operators 71
asynchronous message 381
atan (Math class) 163
attribute 381

read and modify 346
automask template 382

B
base data type 381
base directory 382
BCAM application name 382
BCAMAPPL 382
BinaryFile tag 332
bind (WT_LdapConnection class) 238
bindSasl (WT_LdapConnection class)
bitwise operators 68
block 281, 283, 286
Boolean class 137
equals 137
getClassName 138
setValue 138
toString 139
valueOf 140
boolean data type 45
boolean operators 70
branch 279
branch destination see label
break 290
do/while loop 283
for loop 284
for/in loop 286
while loop 281
browser 382
browser display print 382
browser platform 382

WebTransactions Template Language

403

Index

buffer 382

C
C/C++ user exits 350
defining 351
examples 353
link 351
supplied files 350
capture database 383
capturing 382
case 288
catch block 305
ceil (Math class) 163
CGl (Common Gateway Interface) 383
change
styles (example) 375
character set 29
charAt (String class) 192
charCodeAt (String class) 193
CheckLogin 357
CheckProcess 357
class 117, 383
Array 118
Boolean 137
Date 141
Document 148
Function 157
host data object 154
Math 161
Number 170
Object 173
RegExp 180
String 191
templates 383
WT_Communication 211
WT_Filter 216
WT_LdapConnection 234
WT_Userexit 258
class element
access 343
Class tag 331
class template 309
clear (Document class) 149
client 383

close (Document class) 149
close (WT_Communication class) 212
cluster 383
code

guarded section 305
comma operator 74
comment

JavaScript format 31
commenttag 264
CommObjtag 330
communication object 211, 383
compare (WT_LdapConnection class) 240
comparison operators 66
compile (RegExp class) 184
concat (Array class) 121
concat (String class) 194
condition 279, 281, 283, 284
condition operator 73
conditional branch 277
conditional execution 279
configuration

JVM see define parameters for the Java Virtual

Machine

continue 292

do/while loop 283

for loop 284

for/in loop 286

while loop 281
control structures 279
conversion tools 383
copyFile() 83
cos (Math class) 164
create

Java object in WTScript 341
createFolder() 84
Creationtime 358

D
daemon 383
data
dynamic 385
data access control 384
data type 44, 384
boolean 45, 281

404

WebTransactions Template Language

Index

conversion 295 deleteEntry (WT_LdapConnection class) 241
function 46 deleteFile() 85
number 45 Delfile 359
object 46 dialog 384
string 46 active 384
stringlike 47 non-synchronized 384, 389
undefined 45 passive 384, 390
database synchronized 384, 393
information (LDAP) 234 types 384
Dataform tag 265 dialog cycle 384
dataObjectToFormattedXML (WT_Filter directory
class) 219 LDAP 234
dataObjectToXML (WT_Filter class) 217 lookup operation (LDAP) 234
Date class 141 search operation (LDAP) 234
equals 142 directory service
getClassName 142 provide (LDAP) 234
getDay 143 directory service protocol
getHours 143 LDAP 235
getMinutes 143 directory tree
getMonth 143 LDAP 235
getSeconds 143 distinguished name 235, 384
getTimezoneOffset 144 division 65
getYear 143 DN (LDAP)
setDay 145 distinguished name 235
setHours 145 do 283
setMinutes 145 DO UNTILtag 272
setMonth 145 DO WHILE tag 271
setSeconds 145 do/while loop 283
setYear 145 Document class 148
toGMTString 145 clear 149
toLocaleString 146 close 149
toString 146 equals 150
valueOf 147 getClassName 150
declare open 151
function 297 read 152
variable 295 valueOf 152
decrement 65 write 153
decrement operator 278 writeln 153
default object for statement 301 document directory 385
define document.write method 285
parameters for the Java Virtual Machine 340 Domain Name Service (DNS) 385
define/initialize counter 285 dynamic pages
delete without host application 335
operator 76
WebTransactions Template Language 405

Index

E
EHLLAPI 385
EJB 385
else 279
entries

LDAP 235
entry page 385
environment variables

Java 340
equals (Array class) 122
equals (Boolean class) 137
equals (Date class) 142
equals (Document class) 150
equals (Function class) 160
equals (Number class) 171
equals (Object class) 174
equals (RegExp class) 185
equals (String class) 195
equals (WT_Communication class) 212
equals (WT_LdapConnection class) 241
error object 302
Escape sequence (in strings) 35
escape() 86
euro symbol 318
eval() 87
evaluate() 88
evaluation operator 26, 385
exception 302

explicit 304

handling 302, 305
exec (RegExp class) 186
Exittag 267
exitDialogStep() 90
exitReceiveProcessing() 91
exitScript() 92
exitSession() 94
exitTemplate() 95
exp (Math class) 164
explicit exception 304
explicit variable declaration 295
explodeDn (WT_LdapConnection class) 242
expression 288, 385
expressions 63

as statements 278

F

FHS 385

field 386

field file 386

filter 386

finally block 305

firstEntry (WT_LdapConnection class) 243

fld file 386

floating-point values 34

floor (Math class) 165

for 284

for/in 286

for/in loop 285

format 386
#format 386
*format 386
+format 386
-format 386

format description source 386

Formattag 330

format type 386

forward() 96

FreeBuffer 359

FreeNamelnPool 359

fromCharCode (String class) 195

fully qualified specification 54

function 297, 300, 301, 386
copyFile() 83
createFolder() 84
deleteFile() 85
escape() 86
eval() 87
evaluate() 88
exitDialogStep() 90
exitReceiveProcessing() 91
exitScript() 92
exitSession() 94
exitTemplate() 95
forward() 96
global 83
import() 98
include() 99
isRequestWaiting() 102
listFolder() 104

406

WebTransactions Template Language

Index

local variable 286 getModule (WT_Communication class) 213
moveFile() 106 getMonth (Date class) 143
Number() 107 getOption (WT_LdapConnection class) 246
parseFloat() 108 getSeconds (Date class) 143
parselnt() 109 Gettime 361
setNextPage() 110 getTimezoneOffset (Date class) 144
setSingleStep() 111 getYear (Date class) 143
setTimeout() 112 global functions 83
setTracelLevel() 113 global services (LDAP) 234
String() 113 global variable 49, 295
unescape() 114 guarded code section 305
writeToTrace() 115
Function class 157 H
equals 160 hierarchical tree structure 235
getClassName 160 holder task 386
function data type 46 host 386
function declaration 277 host adapter 386
functions host application 387
deleteFile() 85 host control object 387
setSingleStep() 111 host data object 387
host data object class 154
G getClassName 154
Generationinfo tag 329 toString 155
getClassName (Array class) 123 valueOf 156
getClassName (Boolean class) 138 host data print 387
getClassName (Date class) 142 host platform 387
getClassName (Document class) 150 HTML 387
getClassName (Function class) 160 short reference guide 379
getClassName (host data object class) 154 HTML area 24
getClassName (Number class) 171 HTML editor 25
getClassName (Object class) 174 HTML tag, static output 24
getClassName (RegExp class) 189 HTTP 387
getClassName (String class) 196 HTTPS 387

getClassName (WT_Communication class) 213 hypertext 387

getClassName (WT_LdapConnection class) 244 Hypertext Markup Language (HTML) 387
Getdate 360

getDay (Date class) 143 I

Getdir 360 identifier 295, 297

getDn (WT_LdapConnection class) 244 if 279

getEntries (WT_LdapConnection class) 245 IFtag 269

Getfile 360 implicit variable declaration 295
getHours (Date class) 143 import() 98

GetlnstallDir 361 in operator 76

getMinutes (Date class) 143 include tag 268

WebTransactions Template Language 407

Index

include() 99

using in a function 100
increment 65
increment operator 278
index operator 53
indexOf (String class) 197
information

database (LDAP) 234
init 284
initialization 53
inline WTBean 397
instanceOf operator 77
invoke

Java method in WTScript 344
isRequestWaiting() 102

J
Java Bean 388
Java integration
environment variables 340
example 349
exception handling 346
read and modify attributes 346
system attributes 340
using arrays 347
Java method
invoke in WTScript 344
Java object
array 347
create in WTScript 341
using in WTScript 342
Java runtime environment 338
Java support
activating 338
Java user exits 338
environment variables 340
system attributes 340
Java Virtual Machine (JVM)
define parameters 340
JAVA_CHECK_SOURCE
environment variable (Java) 340
JAVA_CLASSPATH
environment variable (Java) 340

JAVA_DEBUG
environment variable (Java)
JAVA_DEBUG_PORT
environment variable (Java)
JAVA_DISABLE_ASYNC_GC
environment variable (Java)
JAVA_DISABLE_CLASS_GC
environment variable (Java)
JAVA_ENABLE_VERBOSE_GC
environment variable (Java)
JAVA_INITIAL_ HEAP_SIZE
environment variable (Java)
JAVA_MAX_HEAP_SIZE
environment variable (Java)
JAVA_NATIVE_STACK_SIZE
environment variable (Java)
JAVA_STACK_SIZE
environment variable (Java)
JAVA_VERBOSE
environment variable (Java)
JAVA_VERIFY_MODE
environment variable (Java)
JavaScript
client-side 25
server-side 277
join (Array class) 124
JVM see Java Virtual Machine

K

KDCDEF 388

keywords 32
this 77

L

label 281, 283, 284, 286, 288, 290, 292

lastindexOf (String class) 198
LDAP 234, 388
directory 234

340

340

340

340

340

340

340

340

340

340

340

directory service protocol 235

directory tree 235
entries 235

error messages 235
functionality 235
overview 234

408

WebTransactions Template Language

Index

see WT_LdapConnection class

tree structure 235

length (Array class) 120
length (String class) 191
lexical elements 29
libWTHolderUTM.a 352
lifetime

predefined object 51
variable 51

line-end characters 31
Linestag 315
listFolder() 104
literals 33, 388

floating-point values 34
logical values 36
natural numbers 34
null object 37

regular expressions 38
string 35

text 33

local variable 49, 295
LockNamelnPool 362
log (Math class) 165
logical values 36
lookup operation

directory (LDAP) 234

loop 277

end 290
repeat execution 292

loop counter 285
loose typing 43, 295

make file (for user exits) 352

master template 313, 388, 394

standard 313
tag 388

match (String class) 199
Math class 161

abs 161
acos 162
asin 162
atan 163
ceil 163

cos 164
exp 164
floor 165
log 165
max 166
min 166
pow 167
random 167
round 168
sin 169
sqgrt 169
tan 169

max (Math class) 166
MAX_VALUE 170
message queuing 388
method 117, 388
abs (Math class) 161
acos (Math class) 162
add (WT_LdapConnection class) 237
asin (Math class) 162
atan (Math class) 163
bind (WT_LdapConnection class) 238
bindSasl (WT_LdapConnection class) 239
ceil (Math class) 163
charAt (String class) 192
charCodeAt (string class) 193
clear (Document class) 149
close (Document class) 149
close (WT_Communication class) 212
compare (WT_LdapConnection class) 240
compile (RegExp class) 184
concat (Array class) 121
concat (String class) 194
cos (Math class) 164
dataObjectToFormattedXML (WT_Filter
class) 219
dataObjectToXML (WT_Filter class) 217
deleteEntry (WT_LdapConnection
class) 241
equals (Array class) 122
equals (Boolean class) 137
equals (Date class) 142
equals (Document class) 150
equals (Function class) 160

WebTransactions Template Language

409

Index

171
174
185
195

equals (Number class)
equals (Object class)
equals (RegExp class)
equals (String class)

equals (WT_Communication class) 212
equals (WT_LdapConnection class)

exec (RegExp class) 186

exp (Math class) 164

explodeDn (WT_LdapConnection class)
firstEntry (WT_LdapConnection class)

floor (Math class) 165
fromCharCode (string class) 1
getClassName (Array class)
getClassName (Boolean class)
getClassName (Date class)

getClassName (Document class)

getClassName (Function class)

getClassName (Number class)
getClassName (Object class)
getClassName (RegExp class)
getClassName (String class)

95

123

138

142

160

171
174
189

(
(
(
E
getClassName (host data object class)
(
(
(
(196
(

getClassName (WT_Communication

class) 213

getClassName (WT_LdapConnection

class) 244

getDay (Date class) 143

getEntries (WT_LdapConnection class)

143
143

getHours (Date class)
getMinutes (Date class)

getModule (WT_Communication class)

getMonth (Date class) 143

getOption (WT_LdapConnection class)

getSeconds (Date class) 143
getTimezoneOffset (Date class)

getYear (Date class) 143
indexOf (String class) 197
join (Array class) 124

lastindexOf (String class) 198
log (Math class) 165
match (String class) 199

max (Math class) 166

144

methodCallToXML (WT_Filter class)

min (Math class) 166

241

242
243

150

154

245

213

246

222

modify (WT_LdapConnection class) 247
nextEntry (WT_LdapConnection class) 248
objectTreeToXML (WT_Filter class) 223
open (Document class) 151

open (WT_Communication class) 214

pop (Array class) 125
pow (Math class) 167
push (Array class) 126

random (Math class) 167

read (Document class) 152

receive (WT_Communication class) 214
replace (String class) 201

reverse (Array class) 127

round (Math class) 168

search (String class) 203

search (WT_LdapConnection class) 249
send (WT_Communication class) 215
setDay (Date class) 145

setMinutes (Date class) 145
setMonth (Date class) 145

setOption (WT_LdapConnection class)
setSeconds (Date class) 145
setValue (Boolean class) 138
setValue (Number class) 172
setValue (String class) 204

setYear (Date class) 145

shift (Array class) 128

sin (Math class) 169

slice (Array class) 129

slice (String class) 205

sort (Array class) 130

splice (Array class) 133

split (String class) 206

sqrt (Math class) 169

substr (String class) 207

substring (String class) 208

tan (Math class) 169

test (RegExp class) 190
toGMTString (Date class) 145
toLocaleString (Date class) 146
toLowerCase (String class) 209
toString (Array class) 134

toString (Boolean class) 139

toString (Date class) 146

253

410

WebTransactions Template Language

Index

toString (host data object class) 155 CommObj 330
toString (Number class) 172 Format 330

toString (String class) 209 Generationinfo 329
toString (WT_LdapConnection class) 254 Lines 315
toUpperCase (String class) 210 Methodinterface 333
unshift (Array class) 135 NationalVariant 330
user functions (WT_Userexit class) 258 ObjectName 331
valueOf (Array class) 136 OnReceiveCopies 327, 328
valueOf (Boolean class) 140 Options 321, 323
valueOf (Date class) 147 PackageName 332
valueOf (Document class) 152 Source 331

valueOf (host data object class) 156 multidimensional array 347
valueOf (Number class) 172 multiplication 65

valueOf (Object class) 179 multitier architecture 389

valueOf (String class) 210
valueOf (WT_LdapConnection class) 255 N

write (Document class) 153 name elements 42
writeln (Document class) 153 name in expression 286
XML_SAXParse (WT_Filter class) 227 name/value pair 389
XMLToDataObject (WT_Filter class) 224 names
XMLToMethodCall (WT_Filter class) 225 assigning objects 56
XMLToObjectTree (WT _Filter class) 226 fully qualified specification 54
methodCallToXML (WT_Filter class) 222 overriding (variable) 49
Methodinterface tag 333 overview of name spaces 52
methods relative specification 55
getDay (Date class) 143 structure 53
getDn (WT_LdapConnection class) 244 NaN 170
random (Math class) 167 NationalVariant tag 330
setHours (Date class) 145 natural numbers 34
toString (Object class) 175 new operator 75
unbind (WT_LdapConnection class) 254 nextEntry (WT_LdapConnection class) 248
min (Math class) 166 non-synchronized dialog 384, 389
MIN_VALUE 170 null object 37
Modificationtime 362 Number class 170
modify equals 171
attribute 346 getClassName 171
modify (WT_LdapConnection class) 247 setValue 172
module template 388 toString 172
modulus 65 valueOf 172
moveFile() 106 number data type 45
MT tag 314, 388 Number() 107
ArchiveName 332
BinaryFile 332 o
Class 331 object 217, 301, 389

WebTransactions Template Language 411

Index

Object class 173

equals 174

getClassName 174

toString 175

valueOf 179
object data type 46
object reference 277, 301
ObjectName tag 331
objectTreeToXML (WT_Filter class) 223
OnCreateScripttag 274, 277
OnReceiveCopies tag 327, 328
OnReceiveScripttag 275, 277
open (Document class) 151
open (WT_Communication class) 214
openUTM 389

application 389

Client 390

program unit 390

service 392
operations 384
operators

arithmetic 65

assignment 71

bitwise 68

boolean 70

comma 74

comparison 66

condition 73

deleting 76

in 76

instanceOf 77

new 75

string concatenation 72

WT_THIS 77
Options tag 321

extended syntax 323

standard syntax 321

P

PackageName tag 332
parameter 297, 300, 390
parameter transfer

when invoking Java method in WTScript 344

parseFloat() 108

parselnt() 109
pass parameter 294
pass value to function 297
passive dialog 384, 390
password 390
point operator 53
poll Exit button (example) 376
polling 390
pool 390
pop (Array class) 125
posted object 390
posting 390
pow (Math class) 167
predefined objects, lifetime 51
process 391
project 391
property 391
protocol 391
protocol file 391
provide

directory service (LDAP) 234
pseudo tag see WTML tag
push (Array class) 126
Putfile 363

R
random (Math class) 167
read

attribute 346
read (Document class) 152
receive (WT_Communication class)
recognition criteria 391
record 391
record structure 386
reference data type 44
RegExp (predefined object) 183
RegExp class 180

compile 184

equals 185

exec 186

getClassName 189

test 190
regular expressions 38
relative specification 55

214

412

WebTransactions Template Language

Index

ReleaseStationName 363
Rem 264, 379
Remtag 264
replace (String class) 201
ReplaceByConfigFile 364
ReserveStationName 364
return 294

result of function 294
retValue 294
reverse (Array class) 127
round (Math class) 168

S
scalar 391
search (String class) 203
search (WT_LdapConnection class) 249
search operation

directory (LDAP) 234
send (WT_Communication class) 215
SendMail 365
separators 31
sequence control 277, 279
service

global (LDAP) 234
service (openUTM) 392
service node 392
session 392

terminating 267

terminating (exitSession()) 94

WebTransactions 392
setDay (Date class) 145
setHours (Date class) 145
setMinutes (Date class) 145
setMonth (Date class) 145
setNextPage() 110
setOption (WT_LdapConnection class) 253
setSeconds (Date class) 145
setSingleStep() 111
setTimeout() 112
setTraceLevel() 113
setValue (Boolean class) 138
setValue (Number class) 172
setValue (String class) 204
setYear (Date class) 145

shift (Array class) 128
short reference guide
HTML 379
WTML tags 379
WTScript statements 380
simple data type 44
sin (Math class) 169
slice (Array class) 129
slice (String class) 205
SOAP 392
sort (Array class) 130
Source tag 331
space characters 30
splice (Array class) 133
split (String class) 206
sqrt (Math class) 169
standalone WTBean 397
standard master template 313
start template 394

statement 279, 284, 288, 297, 300, 301

statement block 279
String class 191
charAt 192
charCodeAt 193
concat 194
equals 195
fromCharCode 195
getClassName 196
indexOf 197
lastindexOf 198
match 199
replace 201
search 203
setValue 204
slice 205
split 206
substr 207
substring 208
toLowerCase 209
toString 209
toUpperCase 210
valueOf 210
string concatenation operator
string data type 46

72

WebTransactions Template Language

413

Index

string literals 35
String() 113
stringlike 47
strings see string literals
style 393
substr (String class) 207
substring (String class) 208
subtraction 65
suffix.clt 309
switch 288
synchronized dialog 384, 393
system access control 393
system attributes

Java 340
system exit

WTSleep 366
system object 393

T
TAC 395
tag 393
tan (Math class) 169
TCP/IP 393
template 394

class 383

example 27

master 394

object 394

start 394
terminal application 394
terminal hardcopy printing 394
terminate

processing (Exit tag) 267
test (RegExp class) 190
text literals 33
this 77
Thread 386
toGMTString (Date class) 145
toLocaleString (Date class) 146
toLowerCase (String class) 209
toString (Array class) 134
toString (Boolean class) 139
toString (Date class) 146
toString (host data object class) 155

toString (Number class) 172
toString (Object class) 175
toString (String class) 209
toString (WT_LdapConnection class)
toUpperCase (String class) 210
transaction 394
transaction code/TAC 395
tree structure
hierarchical (LDAP) 235
LDAP 235
try block 305
type conversion 47

U

UDDI 395

unbind (WT_LdapConnection class)
undefined data type 45
unescape() 114
Unicode 395

unshift (Array class) 135
update 284

UPIC 395

URI 395

URL 395

user exits 258, 335, 395

dynamic pages without host application 335

user exits (C/C++) 350
defining 351
examples 353
link 351
supplied files 350
user exits (Java)
activating Java support 338
environment variables 340
system attributes 340
user exits (ready-made)
CheckLogin 357
CheckProcess 357
Creationtime 358
Delfile 359
FreeBuffer 359
FreeNamelnPool 359
Getdate 360
Getdir 360

254

254

414

WebTransactions Template Language

Index

Getfile 360
GetlInstallDir 361
Gettime 361
LockNamelnPool 362
Modificationtime 362
Putfile 363
ReleaseStationName 363
ReplaceByConfigFile 364
ReserveStationName 364
SendMail 365
user functions (WT_Userexit class) 258
userID 396
using your own functions 335
UTM see openUTM

v
value 295

pass to function 300
value range of a data type 384
valueOf (Array class) 136
valueOf (Boolean class) 140
valueOf (Date class) 147
valueOf (Document class) 152
valueOf (host data object class) 156
valueOf (Number class) 172
valueOf (Object class) 179
valueOf (String class) 210
valueOf (WT_LdapConnection class) 255
var 295
variable 43, 396

data type 43

for template 295

global 295

initialization 53

lifetime 51

local 295

local and global 49

overview of name spaces 52
variable declaration 277

explicit 295

implicit 295
variable type 295
visibility 396

w
web server 396
web service 396
WebLab 23
WebTransactions
session 392
WebTransactions application 396
WebTransactions platform 396
WebTransactions server 396
while 281, 283
white spaces 30
with 277, 301
write (Document class) 153
writeln (Document class) 153
writeToTrace() 115
WSDL 396
WT_Communication class 211
close 212
equals 212
getClassName 213
getModule 213
open 214
receive 214
send 215
WT_Filter class 216
dataObjectToFormattedXML 219
dataObjectToXML 217
methodCallToXML 222
objectTreeToXML 223
XML_SAXParse 227
XMLToDataObject 224
XMLToMethodCall 225
XMLToObjectTree 226
WT_LdapConnection class 234
add 237
bind 238
bindSasl 239
compare 240
deleteEntry 241
equals 241
explodeDn 242
firstEntry 243
getClassName 244
getDn 244

WebTransactions Template Language

415

Index

getEntries 245
getOption 246
modify 247
nextEntry 248
search 249
setOption 253
toString 254

unbind 254

valueOf 255
WT_THIS 310
WT_THIS operator 77
WT_Userexit class 258

user functions 258

WTBean 397

witD
witD
witD

ataform 265
oUntil 272
oWhile 271

witExit 267

wilf

269

wtinclude 268

WTKernel.lib 351
WTML 23, 397

WTML tag 397
WTML tags

dynamic output 25

short reference guide 379

wtDataform 265
wtDoUntil 272
wtDoWhile 271

wtExit 267

wtlF 269

wtinclude 268
wtOnCreateScript 274
wtOnReceiveScript 275
wtRem 264

wtOnCreateScript 274
wtOnReceiveScript 275
WTPublic.h 350
wtRem 264

WTScript 26, 397
WTScript operator

using with Java objects 348

WTScript statements 277

short reference guide 380

WTSleep 366
WTSystemExits.dl 350
WTSystemExits.so 350
WTUserexit.c 350
WTUserexits.dll 350
WTUserexits.so 350
WWW browser 382
WWW server 396

X

XML 397

XML schema 397

XML_SAXParse (WT_Filter class) 227
XMLToDataObject (WT_Filter class) 224
XMLToMethodCall (WT_Filter class) 225
XMLToObjectTree (WT_Filter class) 226

416

WebTransactions Template Language

	Contents
	Preface
	Product characteristics
	WebTransactions documentation
	Structure and target group of this manual
	New features
	Notational conventions

	Overview of the WTML template language
	WebLab - WebTransactions development environment
	Overview of language resources
	Example: template structure

	Lexical elements
	Character set
	White space characters
	Separators
	Line-end characters
	Comments
	Keywords
	Literals
	Text literals
	Natural numbers
	Floating-point values
	Strings (string literals)
	Logical values
	Literal for an array object
	Literal for an object
	Literal for the null object
	Literals for regular expressions

	Name elements

	Data types, variables, and names
	Data types
	number
	boolean
	undefined
	string
	object
	function
	Stringlike data types
	Type conversion

	Local and global variables
	Lifetime of variables
	Initialization
	Name structure
	Fully qualified specifications
	Relative specifications
	Assigning names to objects

	User-defined classes
	Object hierarchy and inheritance

	Expressions and operators
	Different types of expressions
	Arithmetic operators
	Comparison operators
	Bitwise operators
	Bitwise logical operators (&, |, ^, ~)
	Bitwise shift operators (<<, >>, >>>)

	Boolean operators (&&, ||, !)
	Assignment operators
	String concatenation operator (+)
	Special operators
	Condition operator (?:)
	Comma operator (,)
	new operator
	delete operator
	in operator
	instanceof operator
	WT_THIS (for class templates only)
	this
	Evaluation operator ##...#
	typeof operator
	void operator

	Evaluation sequence

	Global functions
	copyFile() function
	createFolder() function
	deleteFile() function
	escape() function
	eval() function
	evaluate() function
	exitDialogStep() function
	exitReceiveProcessing() function
	exitScript() function
	exitSession() function
	exitTemplate() function
	forward() function
	import function()
	include() function
	isRequestWaiting() function
	listFolder() function
	moveFile() function
	Number() function
	parseFloat() function
	parseInt() function
	setNextPage() function
	setSingleStep() function
	setTimeout() function
	setTraceLevel() function
	String() function
	unescape() function
	writeToTrace() function

	Built-in classes and methods
	Array class
	Constructors
	Attributes
	concat method
	equals method
	getClassName method
	join method
	pop method
	push method
	reverse method
	shift method
	slice method
	sort method
	splice method
	toString method
	unshift method
	valueOf method

	Boolean class
	Constructors
	equals method
	getClassName method
	setValue method
	toString method
	valueOf method

	Date class
	Constructors
	equals method
	getClassName method
	get... methods
	getTimezoneOffset method
	set... methods
	toGMTString method
	toLocaleString method
	toString method
	valueOf method

	Document class
	Constructor
	clear method
	close method
	equals method
	getClassName method
	open method
	read method
	valueOf method
	write / writeln method

	Host data object class
	getClassName method
	toString method
	valueOf method

	Function class
	Constructors
	Attributes
	equals method
	getClassName method

	Math class
	Class attributes
	abs method
	acos method
	asin method
	atan method
	ceil method
	cos method
	exp method
	floor method
	log method
	max method
	min method
	pow method
	random method
	round method
	sin method
	sqrt method
	tan method

	Number class
	Constructors
	Class attributes
	equals method
	getClassName method
	setValue method
	toString method
	valueOf method

	Object class
	Constructors
	equals method
	getClassName method
	toString method
	valueOf method

	RegExp class
	Constructors
	Attributes of objects of the RegExp class
	Predefined RegExp object
	compile method
	equals method
	exec method
	getClassName method
	test method

	String class
	Constructors
	Attributes
	charAt method
	charCodeAt method
	concat method
	equals method
	fromCharCode method
	getClassName method
	indexOf method
	lastIndexOf method
	match method
	replace method
	search method
	setValue method
	slice method
	split method
	substr method
	substring method
	toLowerCase method
	toString method
	toUpperCase method
	valueOf method

	WT_Communication class
	Constructors
	close method
	equals method
	getClassName method
	getModule method
	open method
	receive method
	send method

	WT_Filter class
	dataObjectToXML method
	dataObjectToFormattedXML method
	methodCallToXML method
	objectTreeToXML method
	XMLToDataObject method
	XMLToMethodCall method
	XMLToObjectTree method
	Methode XML_SAXParse

	WT_LdapConnection class
	Overview of the LDAP directory service
	LDAP error messages
	Constructor
	add method
	bind method
	bindSasl method
	compare method
	deleteEntry method
	equals method
	explodeDn method
	firstEntry method
	getClassName method
	getDn method
	getEntries method
	getOption method
	modify method
	nextEntry method
	search method
	setOption method
	toString method
	unbind method
	valueOf method
	WebTransactions and LDAP: examples

	WT_Userexit class
	Constructors
	Methods

	WTML tags
	Rem - inserting comments
	Dataform - defining form areas
	Exit - terminating processing
	Include - including templates
	IF/ELSE/ENDIF control structure
	DO WHILE loop
	DO UNTIL loop
	OnCreateScript - WTScript at generation time
	OnReceiveScript - WTScript after the receipt of browser data

	WTScript statements (in OnCreateScript/OnReceiveScript)
	Empty statements
	Expression as a statement
	Statement block as a statement
	Sequence control statements
	if branch
	while loop
	do/while loop
	for loop
	for/in loop
	switch statement
	break statement
	continue statement

	return statement
	var statement
	function statement
	Function literal
	with statement
	Exception handling
	Error object
	Explicit exceptions
	Exception handling procedure

	Class templates (*.clt)
	WT_THIS - accessing the calling object
	Example: class templates and WT_THIS

	Master templates (.wmt)
	Lines tag
	Options tag
	Options tag (standard syntax)
	Options tag (extended syntax)

	Rem tag
	OnReceiveCopies tag
	GenerationInfo tag
	Format tag
	CommObj tag
	NationalVariant tag
	GlobalSettings tag
	Source tag
	ObjectName tag
	PackageName tag
	BinaryFile tag
	ArchiveName tag
	MethodInterface tag

	Server-side interfaces - Java integration and user exits
	Java integration in WebTransactions
	Installing the Java runtime environment
	Activating Java support
	Defining parameters for the Java Virtual Machine (JVM)
	Creating Java objects in WTScript
	Using Java objects in WTScript
	Accessing class elements
	Invoking Java methods in WTScript
	Reading and modifying attributes
	Creating and using Java arrays in WTScript
	Using WTScript operators with Java objects
	Example

	Using C/C++ user exits
	Files supplied for supporting C/C++ user exits
	Defining C/C++ user exits
	Linking C/C++ user exits
	Examples of C/C++ user exits

	Ready-made C/C++ user exits supplied with WebTransactions
	CheckLogin
	CheckProcess
	Creationtime
	Delfile
	FreeBuffer
	FreeNameInPool
	Getdate
	Getdir
	Getfile
	GetInstallDir
	Gettime
	LockNameInPool
	Modificationtime
	Putfile
	ReleaseStationName
	ReplaceByConfigFile
	ReserveStationName
	SendMail
	WTSleep

	XML conversion
	Importing and exporting XML documents
	Structure of an imported XML object
	Representation of XML elements

	Exporting data structures

	Examples
	Changing styles
	Polling the Exit button
	Saving data with XML conversion

	Short reference guide
	WTML tags
	WTScript statements (alphabethic order)

	Glossary
	Abbreviations
	Related publications
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

