
Edition August 2010

©
 S

ie
m

en
s

N
ix

do
rf

 In
fo

rm
at

io
n

ss
ys

te
m

e
 A

G
 1

99
5

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
6_

D
yn

am
is

ch
e_

W
e

bI
nh

al
te

\e
n

\h
ttp

.v
or

User Guide - English

WebTransactions V7.5
Access to Dynamic Web Contents

Comments… Suggestions… Corrections…
The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
manuals@ts.fujitsu.com

Certified documentation
according to DIN EN ISO 9001:2008
To ensure a consistently high quality standard and
user-friendliness, this documentation was created to
meet the regulations of a quality management system which
complies with the requirements of the standard
DIN EN ISO 9001:2008.

cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

This manual is printed
on paper treated with
chlorine-free bleach.

Copyright © Fujitsu Technology Solutions GmbH 2010.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

mailto:manuals@ts.fujitsu.com
http://www.cognitas.de

WebTransactions Access to Dynamic Web Contents

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

.
Ju

ly
 2

01
0

 S
ta

n
d

11
:1

4.
14

P
fa

d
: F

:\W
eb

TA
\V

7.
5\

M
an

u
al

e\
10

03
50

6
_D

yn
am

is
ch

e_
W

e
bI

nh
al

te
\e

n\
h

ttp
.iv

z

Contents

1 Preface . 7

1.1 Product characteristics . 7

1.2 Architecture of WebTransactions for HTTP . 9

1.3 WebTransactions documentation . 10

1.4 Structure and target group of this manual . 12

1.5 New features . 13

1.6 Notational conventions . 13

2 Creating a base directory . 15

3 Controlling communication . 17

3.1 System object attributes . 17
3.1.1 Overview . 18
3.1.2 Interaction between system object attributes and methods 21

3.2 Host objects . 24
3.2.1 Sending a message with the host object sendData 24
3.2.1.1 Message without the sendData object . 25
3.2.1.2 Single-part messages . 26
3.2.1.3 Multipart messages . 29
3.2.2 The Header attribute . 32
3.2.3 Receiving a message in the receiveData host object 33

3.3 Processing HTTP raw data . 34
3.3.1 WTScript filters . 34
3.3.2 User exits . 34
3.3.3 Built-in filters . 35

Contents

 WebTransactions Access to Dynamic Web Contents

3.4 Start templates for HTTP . 36
3.4.1 HTTP-specific start template of the start template set (wtstartHTTP.htm) 36
3.4.2 Simple start template (StartTemplateHTTP.htm) . 40

3.5 Creating a new HTTP communication object (wtcHTTP) 45

4 Connecting web services via SOAP . 47

4.1 Concept of SOAP integration in WebTransactions 47
4.1.1 SOAP (Simple Object Access Protocol) . 47
4.1.2 Describing SOAP services with WSDL . 48
4.1.3 UDDI (Universal Description, Discovery and Integration Project) 50
4.1.4 SOAP support in WebTransactions . 50

4.2 WT_SOAP - client-side class . 52
4.2.1 Structure of a WT_SOAP object . 53
4.2.1.1 Representation in the WebLab object tree

 . 54
4.2.1.2 Example: WSDL document . 58
4.2.2 Constructor for the WT_SOAP class . 60
4.2.3 Proxy methods . 62
4.2.4 WT_SOAP class object methods . 65
4.2.4.1 initFromWSDLUri method . 65
4.2.4.2 setRunMode method . 66
4.2.4.3 executeRequest method . 67
4.2.4.4 executeGetRequest method . 68
4.2.4.5 analyseResponse method . 68
4.2.4.6 setSOAPVersion method . 69
4.2.4.7 addHeader method . 70
4.2.4.8 removeAllHeaders method . 70
4.2.4.9 getHeaderObjects method . 70
4.2.4.10 getHeaderObjectTree method . 72
4.2.4.11 createProxysWithPrefix method . 73
4.2.5 Methods for configuring access to the WT_SOAP_COM_FUNCTIONS subclass . . . 75
4.2.5.1 setAuthorization method . 75
4.2.5.2 setProxy method . 76
4.2.5.3 setProxyAuthorization method . 76
4.2.5.4 setTimeout method . 77
4.2.6 Exceptions . 77
4.2.7 WT_SOAP attributes . 79
4.2.8 Data types for the SOAP request in SOAP body . 80
4.2.9 Example: Checking the spelling of a text . 83

Contents

WebTransactions Access to Dynamic Web Contents

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

.
Ju

ly
 2

01
0

 S
ta

n
d

11
:1

4.
14

P
fa

d
: F

:\W
eb

TA
\V

7.
5\

M
an

u
al

e\
10

03
50

6
_D

yn
am

is
ch

e_
W

e
bI

nh
al

te
\e

n\
h

ttp
.iv

z

4.3 WT_SOAP_HEADER - class for support of SOAP headers 84
4.3.1 Constructor of the WT_SOAP_HEADER class . 84

5 Examples . 89

5.1 Using an existing CGI script . 89

5.2 Using information from the Web . 91

5.3 Communicating via HTTP and processing with WT_Filter 93
5.3.1 Basic concept of the WT_RPC class . 93
5.3.2 Implementation of the WT_RPC class . 95

6 Appendix . 101

6.1 HTTP error messages . 101

6.2 WSDL Schema . 103

Glossary . 109

Abbreviations . 127

Related publications . 129

Index . 131

Contents

 WebTransactions Access to Dynamic Web Contents

WebTransactions Access to Dynamic Web Contents 7

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

11
:1

4.
15

P
fa

d:
 F

:\W
eb

TA
\V

7
.5

\M
an

ua
le

\1
0

03
5

06
_D

yn
am

is
ch

e_
W

eb
In

ha
lte

\e
n\

ht
tp

.k
0

1

1 Preface
Over the past years, more and more IT users have found themselves working in heteroge-
neous system and application environments, with mainframes standing next to Unix
systems and Windows systems and PCs operating alongside terminals. Different hardware,
operating systems, networks, databases and applications are operated in parallel. Highly
complex, powerful applications are found on mainframe systems, as well as on Unix servers
and Windows servers. Most of these have been developed with considerable investment
and generally represent central business processes which cannot be replaced by new
software without a certain amount of thought.

The ability to integrate existing heterogeneous applications in a uniform, transparent IT
concept is a key requirement for modern information technology. Flexibility, investment
protection, and openness to new technologies are thus of crucial importance.

1.1 Product characteristics

With WebTransactions, Fujitsu Technology Solutions offers a best-of-breed web integration
server which will make a wide range of business applications ready for use with browsers
and portals in the shortest possible time. WebTransactions enables rapid, cost-effective
access via standard PCs and mobile devices such as tablet PCs, PDAs (Personal Digital
Assistant) and mobile phones.

WebTransactions covers all the factors typically involved in web integration projects. These
factors range from the automatic preparation of legacy interfaces, the graphic preparation
and matching of workflows and right through to the comprehensive frontend integration of
multiple applications. WebTransactions provides a highly scaleable runtime environment
and an easy-to-use graphic development environment.

Product characteristics Preface

8 WebTransactions Access to Dynamic Web Contents

On the first integration level, you can use WebTransactions to integrate and link the
following applications and content directly to the Web so that they can be easily accessed
by users in the internet and intranet:

– Dialog applications in BS2000/OSD
– MVS or z/OS applications
– System-wide transaction applications based on openUTM
– Dynamic web content

Users access the host application in the internet or intranet using a web browser of their
choice.

Thanks to the use of state-of-the-art technology, WebTransactions provides a second
integration level which allows you to replace or extend the typically alphanumeric user inter-
faces of the existing host application with an attractive graphical user interface and also
permits functional extensions to the host application without the need for any intervention
on the host (dialog reengineering).

On a third integration level, you can use the uniform browser interface to link different host
applications together. For instance, you can link any number of previously heterogeneous
host applications (e.g. MVS or OSD applications) with each other or combine them with
dynamic Web contents. The source that originally provided the data is now invisible to the
user.

In addition, you can extend the performance range and functionality of the WebTransactions
application through dedicated clients. For this purpose, WebTransactions offers an open
protocol and special interfaces (APIs).

Host applications and dynamic Web content can be accessed not only via WebTransactions
but also by “conventional” terminals or clients. This allows for the step-by-step connection
of a host application to the Web, while taking account of the wishes and requirements of
different user groups.

Preface Architecture of WebTransactions for HTTP

WebTransactions Access to Dynamic Web Contents 9

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

11
:1

4.
15

P
fa

d:
 F

:\W
eb

TA
\V

7
.5

\M
an

ua
le

\1
0

03
5

06
_D

yn
am

is
ch

e_
W

eb
In

ha
lte

\e
n\

ht
tp

.k
0

1

1.2 Architecture of WebTransactions for HTTP

The figure below illustrates the architecture of WebTransactions for HTTP:

Figure 1: Architecture of WebTransactions for HTTP

HTTP host adapter

WebTransactions uses the HTTP host adapter for managing communication between the
WebTransactions kernel and any HTTP server and for accessing dynamic Web material.

The HTTP host adapter supports data transport based on the HTTP protocol. The host
objects comply with the simple object model of this protocol with a message header and
body. However, the adapter does not support any further interpretation of the message
content, which may be encoded in HTML or XML for example.

Filter

Individual filters must be used for interpreting incoming messages and converting
WebTransactions information into HTTP messages. Some filters are supplied ready-made
(e.g. HTTP messages for WT_REMOTE), but it is also possible to implement your own filters in
the form of WTML script functions or user exits (see examples in chapter “Examples” on
page 89).

Browser HTTP server

WebTransactions

Kernel HTTP serverHTTP

Template

(dynamic
Web contents)

host adapter

Filter

WebTransactions documentation Preface

10 WebTransactions Access to Dynamic Web Contents

1.3 WebTransactions documentation

The WebTransactions documentation consists of the following documents:

● An introductory manual which applies to all supply units:

Concepts and Functions

This manual describes the key concepts behind WebTransactions:

– The various possible uses of WebTransactions.

– The concept behind WebTransactions and the meanings of the objects in
WebTransactions, their main characteristics and methods, their interaction and life
cycle.

– The dynamic runtime of a WebTransactions application.

– The administration of WebTransactions.

– The WebLab development environment.

● A Reference Manual which also applies to all supply units and which describes the
WebTransactions template language WTML. This manual describes the following:

Template Language

After an overview of WTML, information is provided about:

– The lexical components used in WTML.

– The class-independent global functions, e.g. escape() or eval().

– The integrated classes and methods, e.g. array or Boolean classes.

– The WTML tags which contain functions specific to WebTransactions.

– The WTScript statements that you can use in the WTScript areas.

– The class templates which you can use to automatically evaluate objects of the
same type.

– The master templates used by WebTransactions as templates to ensure a uniform
layout.

– A description of Java integration, showing how you can instantiate your own Java
classes in WebTransactions and a description of user exits, which you can use to
integrate your own C/C++ functions.

– The ready-to-use user exits shipped together with WebTransactions.

– The XML conversion for the portable representation of data used for communication
with external applications via XML messages and the conversion of WTScript data
structures into XML documents.

Preface WebTransactions documentation

WebTransactions Access to Dynamic Web Contents 11

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

11
:1

4.
15

P
fa

d:
 F

:\W
eb

TA
\V

7
.5

\M
an

ua
le

\1
0

03
5

06
_D

yn
am

is
ch

e_
W

eb
In

ha
lte

\e
n\

ht
tp

.k
0

1

● A User Guide for each type of host adapter with special information about the type of
the partner application:

Connection to openUTM applications via UPIC

Connection to OSD applications

Connection to MVS applications

All the host adapter guides contain a comprehensive example session. The manuals
describe:

– The installation of WebTransactions with each type of host adapter.

– The setup and starting of a WebTransactions application.

– The conversion templates for the dynamic conversion of formats on the web
browser interface.

– The editing of templates.

– The control of communications between WebTransactions and the host applications
via various system object attributes.

– The handling of asynchronous messages and the print functions of
WebTransactions.

● A User Guide valid for all the supply units which describes the open protocol, and the
interfaces for the client development for WebTransactions:

Client APIs for WebTransactions

This manual describes:

– The concept of the client-server interface in WebTransactions.

– The WT_RPC class and the WT_REMOTE interface. An object of the WT_RPC class repre-
sents a connection to a remote WebTransactions application which is run on the
server side via the WT_REMOTE interface.

– The Java package com.siemens.webta for communication with WebTransactions
supplied with the product.

Structure and target group of this manual Preface

12 WebTransactions Access to Dynamic Web Contents

● A User Guide valid for all the supply units which describes the web frontend of
WebTransactions that provides access to the general web services:

Web-Frontend for Web Services

This manual describes:

– The concept of web frontend for object-oriented backend systems.

– The generation of templates for the connection of general web services to
WebTransactions.

– The testing and further development of the web frontend for general web services.

1.4 Structure and target group of this manual

This manual is intended for all users who wish to access dynamic Web material via
WebTransactions.

The individual chapters describe the steps involved in this procedure, which is also
explained in the final chapter with the help of practical examples.

This manual supplements the WebTransactions introductory manual “Concepts and
Functions” and the WebTransactions reference manual “Template Language” with the infor-
mation required for HTTP connection.

Scope of this description

WebTransactions for HTTP runs on the Windows, Solaris, Linux and BS2000/OSD system
platforms. This documentation applies to all the platforms. If an item of information applies
only to a specific platform then this will be clearly stated in the text.

Preface New features

WebTransactions Access to Dynamic Web Contents 13

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

11
:1

4.
15

P
fa

d:
 F

:\W
eb

TA
\V

7
.5

\M
an

ua
le

\1
0

03
5

06
_D

yn
am

is
ch

e_
W

eb
In

ha
lte

\e
n\

ht
tp

.k
0

1

1.5 New features

This section lists only the HTTP-specific innovations. For a general overview of the new fea-
tures, refer to the WebTransactions manual “Concepts and Functions.

1.6 Notational conventions

The following notational conventions are used in this documentation:

Type of new feature Description

New system object attribute
COMMUNICATION_FILE_NAME

page 18

New system object attribute
COMMUNICATION_FILE_TYPE

page 18

New system object attribute METHOD page 18

Name Description

typewriter font Fixed components which are input or output in precisely this
form, such as keywords, URLs, file names

 italic font Variable components which you must replace with real speci-
fications

bold font Items shown exactly as displayed on your screen or on the
graphical user interface; also used for menu items

[] Optional specifications; do not enter the square brackets
themselves

{alternative1 | alternative2 } Alternative specifications. You must select one of the expres-
sions inside the curly brackets. The individual expressions are
separated from one another by a vertical bar. Do not enter the
curly brackets and vertical bars themselves.

... Optional repetition or multiple repetition of the preceding
components

Important notes and further information

Ê Prompt telling you to do something.

Refers to detailed information

i

Notational conventions Preface

14 WebTransactions Access to Dynamic Web Contents

WebTransactions Access to Dynamic Web Contents 15

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

11
:1

4.
15

P
fa

d:
 F

:\W
eb

TA
\V

7
.5

\M
an

ua
le

\1
0

03
5

06
_D

yn
am

is
ch

e_
W

eb
In

ha
lte

\e
n\

ht
tp

.k
0

2

2 Creating a base directory
Following the installation of one of the WebTransactions supply units on the
WebTransactions server, the files and programs required to dynamically access Web
material are automatically installed. After installing WebLab on your own personal Windows
system, you can use it to create one or more base directories. A base directory contains all
the files used to configure WebTransactions for a specific WebTransactions application.

If you deinstall WebTransactions or install a new product version, the individual configura-
tions are retained.

WebTransactions for HTTP can be used for two purposes:

● It can be used for independent access to a HTTP server, in which case you can create
one or more base directories exclusively for WebTransactions for HTTP.

● It can also be used in conjunction with one of the supply units for converting host appli-
cations (such as WebTransactions for OSD), e.g. in order to implement a Web interface
for an existing host application which allows for access to a Web search engine.In this
case, you create a base directory for HTTP and for the supply unit you have purchased
for conversion. For further information, see the chapter “Creating a base directory” in
the corresponding product manual.

The following sections describe the first scenario. They also clarify the files that must be
created for HTTP access in both cases, and the system object attributes or host objects that
are available specifically for HTTP access.

Creating a base directory with WebLab

Before you can create a base directory for a WebTransactions application, the WebTrans-
actions administrator must have created a user ID for you and then subsequently released
one or more pools for this user ID in which you can create a base directory.

Before you create a base directory, it is recommended that you first create a project to store
most important data required by WebLab when working with the WebTransactions appli-
cation. When creating a project, you are automatically offered the opportunity to create a
base directory.

Creating a base directory

16 WebTransactions Access to Dynamic Web Contents

To do this, proceed as follows:

Ê Call WebLab, e.g. via Start/Programs/WebTransactions 7.5/WebLab

Ê There are two possibilities for starting to create a base directory:

Ê Select the Project/New... command and when asked whether you want to create a
base directory, answer Yes.

or

Ê Choose the Generate/Basedir... command and specify that a new project is to be
created when the relevant query appears.

In both instances, the Connect dialog box is opened.

Ê Edit the connection parameters in the Connect dialog box using the Change button
and click OK to confirm. The parameters set in the Options menu, Preferences
command, Server tab, are displayed.

Ê In the following dialog box, type your user ID and password and click OK to confirm.

Ê Make the following settings in the Create Basedir dialog box:
– From the list of proposed pools, select the pool in which you want to create the base

directory.
– Type a name for the new directory.
– Check the HTTP box in the Host Adapter area.
– Click OK.

WebLab now sets up the base directory with all the associated files that are required to run
the WebTransactions application. The structure and contents of the base directory are
described in the WebTransactions manual “Concepts and Functions”.

Converting a base directory to a new version

Ê Select Generate/Update Base Directory. This opens the Update Base Directory
dialog box.

Ê If you only want to change the links from the base directory to the new installation
directory, select the Update all links option. Select this option when you have updated
the files that are supplied or generated by WebTransactions.

Ê If all files which are copied or generated on creation of the base directory need to be
recreated, select the Overwrite all files option.

Controlling communication System object attributes

WebTransactions Access to Dynamic Web Contents 17

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

11
:1

4.
15

P
fa

d:
 F

:\W
eb

TA
\V

7
.5

\M
an

ua
le

\1
0

03
5

06
_D

yn
am

is
ch

e_
W

eb
In

ha
lte

\e
n\

ht
tp

.k
0

3

3 Controlling communication
This chapter describes how to use WebTransactions for HTTP to access the HTTP server
and its resources. Practical examples of the concepts discussed here can be found in
chapter “Examples” on page 89.

3.1 System object attributes

To control communication between WebTransactions and an HTTP server, you use some
of the system object attributes.

This section concentrates only on those attributes which are provided specifically for HTTP
connections or which are of special significance in that context. The system object attributes
that apply to all supply units of WebTransactions are described in the WebTransactions
manual “Concepts and Functions”.

If a subobject WT_SYSTEM (private system object) exists under the communication object
used, the attributes described in this section must be defined there. Otherwise, they must
be declared as attributes of the global system object WT_SYSTEM.

 For general information on connection-specific and global system objects, please
refer to the WebTransactions manual “Concepts and Functions”.

The attributes can be set in the first template (start template) when starting
WebTransactions and can be retained for the entire session or actively modified during the
session (see the WebTransactions manual “Concepts and Functions”).

i

System object attributes Controlling communication

18 WebTransactions Access to Dynamic Web Contents

3.1.1 Overview

The table below provides an overview of the attributes and their effects. The system object
attributes can be subdivided into the categories specified in the right-hand column of table
below:

t (temporary)
Attributes used during communication and which can be modified at any time in the
templates.

c (communication module)
Attributes set automatically by the host adapter.

Attribute name Meaning Description/category

COMMUNICATION_
FILE_NAME

Name of the des-
tination file

File in which data received during a receive operation
is to be stored. The body of the message is stored.
The file must be located below the base directory. It is
not permitted to store the file in the directory
wwwdocs. You can use this attribute to transfer
graphical images, for example
(see also COMMUNICATION_FILE_TYPE below).

t

COMMUNICATION_
FILE_TYPE

Filter for storing Filter for storing a message. The attribute contains
the type of the message. Only when the type of the
received message (Content-Type field in the HTTP
header) corresponds to the value specified here is the
body of the message stored in the file you specified
with COMMUNICATION_FILE_NAME (see above).

t

HTTP_RETURN_CODE Error number Return code of a HTTP request. This attribute is set
by the receive method and specifies the return code
of the HTTP request.
The value 200 means OK. All other values indicate an
error. HTTP_RETURN_CODE is empty if no answer to
the request has been received from the HTTP server.
An overview of possible error codes and their
meaning can be found in the section “HTTP error
messages” on page 101.

c

METHOD Method for HTTP
request

The method specified here is used for the HTTP
request initiated by send()/receive().
Alternatively, GET or POST will be used, depending on
whether the object Body exists.

t

Controlling communication System object attributes

WebTransactions Access to Dynamic Web Contents 19

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

11
:1

4.
15

P
fa

d:
 F

:\W
eb

TA
\V

7
.5

\M
an

ua
le

\1
0

03
5

06
_D

yn
am

is
ch

e_
W

eb
In

ha
lte

\e
n\

ht
tp

.k
0

3

PASSWORD Password Password for the HTTP connection.. Together with
the USER attribute (see below), this attribute allows for
authentication on the remote HTTP server.
This attribute has priority over the corresponding
value in URL.1

 t

PROXY HTTP proxy Name or IP address of the system to be used as the
HTTP proxy for the HTTP connection (see also
PROXY_PORT below).

t

PROXY_PASSWOR
D

Password for the
proxy

Password for HTTP connection via a proxy system.

PROXY_PORT Port for HTTP
proxy

Port of the HTTP proxy to be used (see also PROXY).
If no port is specified, the default value is 80.

t

PROXY_USER User name for the
proxy

User name for HTTP connection via a proxy system;
in conjunction with the attribute PROXY_PASSWORD
(see above), this attribute is used for authentication at
the remote HTTP server via a proxy system.

t

SSL_CERT_FILE SSL certificate Name of the file containing one of the client-side
certifcates to be used. If the file name is not entered
as absolute, it will be relative to the base directory.

t

SSL_KEY_FILE Key to the certif-
icate

Name of the file containing the private key to the
certificate (seeSSL_CERT_FILE). If the file name is
not entered as absolute, it will be relative to the base
directory. If this attribute is not specified, the value of
SSL_CERT_FILE will be taken over. It is assumed that
the certificate and the key are contained in the same
file.

t

SSL_PASSPHRASE Passphrase for
the private key

Passphrase to be used with the private key. t

SSL_PROTOCOL SSL protocol
selected

Entry indicating which version of the SSL protocol
and the TLS protocol is to be activated.
OpenSSL supports SSL protocol versions 2 and 3,
and TLS protocol version 1.

Possible values:
SSLv2
SSLv3
TLSv1
All
Default value: All

You can enter several protocols but these should be
separated by blank spaces.

t

Attribute name Meaning Description/category

System object attributes Controlling communication

20 WebTransactions Access to Dynamic Web Contents

TIMEOUT_HTTP Timeout for HTTP
requests

Time in seconds, after a send method call, that the
system waits for an answer from the HTTP server.
If this attribute is not set, the default value of 60
seconds will be used.

If the TIMEOUT_HTTP is greater than the global
system object attribute TIMEOUT_APPLICATION, a
value derived from TIMEOUT_APPLICATION will be
used:
– If TIMEOUT_APPLICATION > 10:

TIMEOUT_HTTP corresponds to
TIMEOUT_APPLICATION -5

– If TIMEOUT_APPLICATION > 1:
TIMEOUT_HTTP corresponds to
TIMEOUT_APPLICATION -1

– If TIMEOUT_APPLICATION =1
TIMEOUT_HTTP corresponds to
TIMEOUT_APPLICATION.

t

URL Target URL Target URL of the HTTP resource addressed.
The syntax for this attribute is as follows:
[http[s]://][user[:password]@]
machine[:port]/file[/pathinfo][?query]2

If the https protocol is specified for this attribute, the
default value for the port is 443; in all other cases the
default setting is 80. The optional values for user and
password will be overwritten by the values of the
attributes USER and PASSWORD.

t

USER User name User name for the HTTP connection. Together with
the attribute PASSWORD (see above), this attribute
allows for authentication on the remote HTTP server.

This attribute takes priority over the corresponding
URL value.1

t

1 The user name, password, and port can also be specified to the HTTP server using the URL.
The format is:
[http:][//][user[:password]@]machine[:port]/...

2 Short description of the URL syntax:
user - user
password - password
machine - computer name or IP address of the HTTP server
port - port number of the HTTP server
file - file name on the HTTP server
pathinfo, query - information only relevant for the CGI program, specifying the environment variables for the CGI.

Attribute name Meaning Description/category

Controlling communication System object attributes

WebTransactions Access to Dynamic Web Contents 21

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

11
:1

4.
15

P
fa

d:
 F

:\W
eb

TA
\V

7
.5

\M
an

ua
le

\1
0

03
5

06
_D

yn
am

is
ch

e_
W

eb
In

ha
lte

\e
n\

ht
tp

.k
0

3

3.1.2 Interaction between system object attributes and methods

This section describes which HTTP-specific system object attributes play a role in which
method calls.

open - activate the HTTP host adapter

The open method call initializes a communication method object for HTTP connections.
Since the HTTP protocol does not recognize the term “session”, open does not open a
session but simply activates the HTTP host adapter for the communication object used.

System object attributes need not be taken into consideration at this point. They are signif-
icant only for the HTTP requests issued with the send and receive methods described
below. All you need to specify here is the protocol used (HTTP).

Example

http_host = new WT_Communication(’myHTTP’);
http_host.open(’HTTP’);

This example creates a new communication object with the name myHTTP under
WT_HOST, as well as a second reference http_host to this communication object. It then
activates the HTTP host adapter.

send - send the HTTP request

The send method establishes a HTTP connection using the following system object
attributes in the process:

System object
attribute

Use

URL send establishes an HTTP connection to the specified HTTP resource.

PROXY
PROXY_PORT

These system object attributes are interpreted as an HTTP proxy.

USER
PASSWORD

If these attributes are set, they are used for user authentication.

PROXY_USER
PROXY_PASSWORD

If these attributes are set, they are sent for user authentication at the proxy
system.

TIMEOUT_HTTP This attribute sets the timeout for the response from the addressed
HTTP server. Default value: 60 seconds.

Table 1: System object attributes used in send

System object attributes Controlling communication

22 WebTransactions Access to Dynamic Web Contents

 If the send method is executed several times in succession, the connection from the
previous call is first closed. This may cause the result from the previous call to be
lost.

Example

// Define the URL and the HTTP proxy:
http_host.WT_SYSTEM.URL = ’www.mycompany.de/webtransactions’;
http_host.WT_SYSTEM.PROXY = ’proxy.mycompany.de’;
http_host.WT_SYSTEM.PROXY_PORT = ’80’;
// Delete the host object sendData:
delete http_host.sendData;
// Start the HTTP request:
http_host.send();

This example executes the HTTP GET method for the WebTransactions home page. The
proxy server proxy.mycompany.de (port 80) is used, and no user is predefined. The
timeout for the server response is 60 seconds.

receive - retrieve response to the HTTP request

The receive method call returns the result of an HTTP request in the receiveData host
object (see section “Host objects” on page 24) and uses the following system object
attributes in the process:

As soon as the response data is received, the connection to the HTTP server is closed. The
response message is analyzed and its contents are stored in the receiveData host object
without further processing. In the case of a multisection message, the contents of each
section are stored in an array of objects (receiveData.0, receiveData.1, ...).

System object
attribute

Use

HTTP_RETURN_CODE This attribute is supplied with the return code. If a return code value other
than 200 is output when retrieving response data, the system object ERROR
attribute is set in the global system object.
An overview of possible error codes and their meaning can be found in the
section “HTTP error messages” on page 101.
If no response data is received, HTTP_RETURN_CODE is empty and the
system object attribute ERROR is set at the global system object.

TIMEOUT_HTTP As soon as the timer runs out, receive returns immediately without a
response, setting the ERROR attribute in the global system object and
HTTP_RETURN_CODE in the system object accordingly.

Table 2: System object attributes used in receive

i

Controlling communication System object attributes

WebTransactions Access to Dynamic Web Contents 23

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

11
:1

4.
15

P
fa

d:
 F

:\W
eb

TA
\V

7
.5

\M
an

ua
le

\1
0

03
5

06
_D

yn
am

is
ch

e_
W

eb
In

ha
lte

\e
n\

ht
tp

.k
0

3

WebTransactions does not interpret the contents of received data. This can only be carried
out using filters that have been specially adapted to suit the type of contents and their
structure (e.g. text/html, text/xml, etc.).

 If the receive method is executed without a preceding send, the send actions will be
executed implicitly, automatically taking into account the system object attributes
described in the section on send and the sendData object.

The combination of send and receive is preferable to the exclusive use of receive,
particularly if you require parallel loading, i.e. you can execute a send call one dialog
step in advance and after the dialog step use receive to query whether any data
has arrived. This allows you to minimize wait times.

Example

// Define the URL:
http_host.WT_SYSTEM.URL = ’www.mycompany.de/webtransactions’;
// Delete the host object sendData:
delete http_host.sendData;
// Start the HTTP request:
http_host.send();
// Retrieve the response data:
http_host.receive();

This example executes the HTTP GET method for the WebTransactions home page. No
proxy server is used, and no user is predefined. The timeout for the server response is
set to 60 seconds. The specified page is received and can be processed further using
http_host.receiveData.

close - deactivate the HTTP module

The close method call deactivates the HTTP host adapter. This causes the HTTP module
to release its internal memory. It should be called therefore if no further HTTP requests are
required in the WebTransactions application.

i

Host objects Controlling communication

24 WebTransactions Access to Dynamic Web Contents

3.2 Host objects

WebTransactions uses the host objects sendData and receiveData to perform data transfer
with an HTTP server:

– You can create sendData yourself if you want to send data to the HTTP server

– receiveData contains the server response data.

Both host objects may possess the following attributes:

Whenever a message is sent, a header containing predefined fields is sent together with
these attributes. The number and meaning of these fields depends on the associated HTTP
request. See the following section for more details.

3.2.1 Sending a message with the host object sendData

Depending on whether or not you want to send data to the HTTP server and, if you do, what
the nature of this data is, the host object sendData and consequently the HTTP request may
be constructed. An HTTP request consists of the GET or POST method and argument,
followed by a protocol version, a header and possibly a message. A request may therefore
have the following structure:

POST request HTTP/1.0 Header senddata

The request itself is constructed as follows:

/file[/pathinfo][?query]

You can send the following message types to the HTTP server via the host adapter

– without the sendData host object

– single-part message

– multi-part messages

These different message types are described below.

Attribute Meaning

ContentType Attribute of string type: type of HTTP message

Header Object of Array class: information for the HTTP server
For a description of the Header attribute, refer to section “The Header attribute”
on page 32

Body Attribute of string type: content of HTTP message

Table 3: Host object attributes

Controlling communication Host objects

WebTransactions Access to Dynamic Web Contents 25

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

11
:1

4.
15

P
fa

d:
 F

:\W
eb

TA
\V

7
.5

\M
an

ua
le

\1
0

03
5

06
_D

yn
am

is
ch

e_
W

eb
In

ha
lte

\e
n\

ht
tp

.k
0

3

3.2.1.1 Message without the sendData object

If you have not created a sendData host object for the first connection request then the
HTTP GET method is executed:

GET request HTTP/1.0 Header

The information sent to the HTTP server consists of a predefined header with the following
fields:

Example

host = new WT_Communication('http');
host_system = host.WT_SYSTEM;
host.open('HTTP');
host_system.URL = "//localhost/webtav75/wtadm_admin.htm";
host.send();
host.receive();

These specifications result in the following information being sent to the HTTP server

Hexadecimal: Ascii:
00000: 47 45 54 20 2f 77 65 62 74 61 76 37 35 2f 77 74 !GET /webtav75/wt!.......@./......!
00016: 61 64 6d 5f 61 64 6d 69 6e 2e 68 74 6d 20 48 54 !adm_admin.htm HT!/]_^/]_.>..._...!
00032: 54 50 2f 31 2e 30 0d 0a 48 6f 73 74 3a 20 6c 6f !TP/1.0..Host: lo!.&.......?....%?!
00048: 63 61 6c 68 6f 73 74 0d 0a 55 73 65 72 2d 41 67 !calhost..User-Ag![/%.?..........~!
00064: 65 6e 74 3a 20 57 65 62 54 72 61 6e 73 61 63 74 !ent: WebTransact!.>.....@../>./[.!
00080: 69 6f 6e 73 20 48 54 54 50 2f 37 2e 35 41 30 30 !ions HTTP/7.5A00!.?>.....&.......!
00096: 0d 0a 0d 0a !.... !.... !

Host Contains the host name from the URL (and possibly the port
number if this is not 80).

User-Agent Contains the text “WebTransactions HTTP/7.5”
(version dependent)

Authorization Contains a text generated from the USER and PASSWORD attributes by
means of uuencode (see also the system object attributes).

Proxy-Authorization Contains a text generated from the PROXY_USER and
PROXY_PASSWORD attributes by means of uuencode (see also the
system object attributes).

Host objects Controlling communication

26 WebTransactions Access to Dynamic Web Contents

3.2.1.2 Single-part messages

If you want to send a single-part message without its own header to the HTTP server then
sendData must be an object of Object class and possess the Body attribute:

The Body attribute contains the actual message to the HTTP server. WebTransactions uses
this information to formulate the POST method before sending the data to the HTTP server.
The information sent to the HTTP server consists of a predefined header with the following
fields together with sendData.Body:

The content of Body must be url-encoded. This means that some characters are replaced
by ’%’ followed by their hexadecimal value (e.g.: ’:’ by %3A, ’\’ by %5C).

Example

host.sendData = new Object();
host.sendData.ContentType = 'application/x-www-form-urlencoded';
host.sendData.Body = 'question=sense+of+universe&answer=42';
host.WT_SYSTEM.URL = 'www.deepThought.mt/cgi-bin/verify.exe';
host.WT_SYSTEM.USER = 'user27';
host.WT_SYSTEM.PASSWORD = 'pass';
host.send();
...

The following values are sent via the predefined header fields in the HHTP request:

sendData
Body

Host Contains the host name from the URL (and possibly the port
number if this is not 80).

User-Agent Contains the text "WebTransactions HTTP/7.5" (version
dependent)

Authorization Contains a text generated from the USER and PASSWORD attributes by
means of uuencode (see also the system object attributes).

Proxy-Authorization Contains a text generated from the PROXY_USER and
PROXY_PASSWORD attributes by means of uuencode (see also the
system object attributes).

Content-Length Specifies the length of sendData.body

Content-Type application/x-www-form-urlencoded

Host www.deepThought.mt

User-Agent WebTransactions HTTP/7.5

Authorization Basic dXNlcjI3OnBhc3M=

Controlling communication Host objects

WebTransactions Access to Dynamic Web Contents 27

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

11
:1

4.
15

P
fa

d:
 F

:\W
eb

TA
\V

7
.5

\M
an

ua
le

\1
0

03
5

06
_D

yn
am

is
ch

e_
W

eb
In

ha
lte

\e
n\

ht
tp

.k
0

3

If you want to supply your own header for the message then you also need the attributes
ContentType and/or Header for the sendData host object:

– If you simply want to specify the message type then you use the ContentType attribute
as before.

– You only use the Header attribute if you want to send additional information to the HTTP
server. Header must be an object of Array type. For more information, refer to section
“The Header attribute” on page 32.

The Content-Type field is added to the predefined header:

 You should note that the sequence and value of the predefined header fields may
be affected by a user-defined header, see section “The Header attribute” on
page 32.

Content-Length 36

sendData
Body
[ContentType]
[Header]

0
Name
Value
1
Name
Value

Content-Type Contains the value of the sendData.ContentType attribute or the
corresponding element from a user-defined header. If this attribute
does not exist then no such header field is sent.

i

Host objects Controlling communication

28 WebTransactions Access to Dynamic Web Contents

Example

host.sendData = new Object();
host.sendData.ContentType = 'application/x-www-form-urlencoded';
host.sendData.Header = new Array();
host.sendData.Header[0] = new Object();
host.sendData.Header[0].Name = 'Pragma';
host.sendData.Header[0].Value = 'nocache';
host.sendData.Header[1] = {Name:'Authorization'};
host.sendData.Header[2] = {Name:'ConTenT-Type', Value:'text'};
host.sendData.Header[3] = {Name:'Content-Length'};
host.sendData.Body = 'question=sense+of+universe&answer=42';
host.WT_SYSTEM.URL = 'www.deepThought.mt/cgi-bin/verify.exe';
host.WT_SYSTEM.USER = 'user27';
host.WT_SYSTEM.PASSWORD = 'pass';
host.send();
...

The Header attribute affects the sequence, notation and contents of the header fields.
The following fields are sent with the HTTP request:

Comments

1. Predefined field at start of list since the corresponding element is not present in the
array header.

2. Additional field from the array header.

3. Position controlled by the element in the array header; content is calculated inter-
nally (predefined field) because the attribute value does not exist.

4. The predefined field is ignored and the position and value of the field are deter-
mined from the array header (including the meaningless notation ConTenT-Type).

Host www.deepThought.mt 1

User-Agent WebTransactions HTTP/7.5 1

Pragma nocache 2

Authorization Basic dXNlcjI3OnBhc3M= 3

ConTenT-Type text 4

Content-Length 36 3

Controlling communication Host objects

WebTransactions Access to Dynamic Web Contents 29

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

11
:1

4.
15

P
fa

d:
 F

:\W
eb

TA
\V

7
.5

\M
an

ua
le

\1
0

03
5

06
_D

yn
am

is
ch

e_
W

eb
In

ha
lte

\e
n\

ht
tp

.k
0

3

3.2.1.3 Multipart messages

If you want to send a multipart message then you must create sendDataas an object of the
Array class. Individual message segments are elements of the sendData array and are
numbered sequentially sendData[0], senddata[1], and so on.

Each message segment (i.e. each element) must contain an object Body and can also
contain a ContentType object and a Header header.

The global body contains the message itself which is further divided into multiple message
segments for the HTTP server. A message segment thus corresponds to a single-part
message with the attributes Body, ContentType and Header. The global body has the
following predefined header fields:

Host Contains the host name from the URL (and possibly the port
number if this is not 80).

User-Agent Contains the text “WebTransactions HTTP/7.5”
(version dependent)

Authorization Contains a text generated from the USER and PASSWORD attributes by
means of uuencode (see also the system object attributes).

Proxy-Authorization Contains a text generated from the PROXY_USER and
PROXY_PASSWORD attributes by means of uuencode (see also the
system object attributes).

sendData
0
[ContentType]
[Header]
Body global

1 Body
[ContentType]
[Header]
Body

...
[ContentType]
[Header]

0
Name global
Value Header

1
Name
Value

Host objects Controlling communication

30 WebTransactions Access to Dynamic Web Contents

 You should note that the sequence and value of the predefined header fields may
be affected by a user-defined header.

If the global ContentType attribute is used for the type of global message then it must always
start with the text multipart. No distinction is made between uppercase and lowercase
notation.

Example

In this example, a global header is sent together with an individual header for each of the
message segments.

host_system.URL = "//localhost/Scripts/Cgitest.exe";
host.sendData = new Array();
host.sendData.Header = new Array();
host.sendData.Header[0] = { Name:'global-header-field', Value:'global
content' };
host.sendData[0] = new Object();
host.sendData[0].ContentType = "application/x-www-form-urlencoded";
host.sendData[0].Header = new Array();
host.sendData[0].Header[0] = { Name:'part1-header-field', Value:'header
part 1' };
host.sendData[0].Body =
"WT_SYSTEM_BASEDIR=%2Fhome1%2Fpuls%2Fhttpd%2Fpulswww&command=Refresh";
host.sendData[1] = new Object();
host.sendData[1].ContentType = "type1";
host.sendData[1].Header = new Array();
host.sendData[1].Header[0] = { Name:'part2-header-field', Value:'any
other' };
host.sendData[1].Body = "WT_SYSTEM_BASEDIR=val1&command=Refresh";
host.send();

Content-Type Contains the value of the sendData.ContentType attribute or the
corresponding element from the user-defined header. If this
attribute does not exist then the following value is sent:
multipart/mixed; boundary=<<'<<"<<42>>">>'>>

Content-Length Specifies the length of sendData.body

i

Controlling communication Host objects

WebTransactions Access to Dynamic Web Contents 31

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

11
:1

4.
15

P
fa

d:
 F

:\W
eb

TA
\V

7
.5

\M
an

ua
le

\1
0

03
5

06
_D

yn
am

is
ch

e_
W

eb
In

ha
lte

\e
n\

ht
tp

.k
0

3

These specifications result in the following information being sent to the
HTTP server:

Hexadecimal: Ascii:
00000: 50 4f 53 54 20 2f 53 63 72 69 70 74 73 2f 43 67 !POST /Scripts/Cg!
00016: 69 74 65 73 74 2e 65 78 65 20 48 54 54 50 2f 31 !itest.exe HTTP/1!
00032: 2e 30 0d 0a 43 6f 6e 74 65 6e 74 2d 54 79 70 65 !.0..Content-Type!
00048: 3a 20 6d 75 6c 74 69 70 61 72 74 2f 6d 69 78 65 !: multipart/mixe!
00064: 64 3b 20 62 6f 75 6e 64 61 72 79 3d 3c 3c 27 3c !d; boundary=<<'<!
00080: 3c 22 3c 3c 34 32 3e 3e 22 3e 3e 27 3e 3e 0d 0a !<"<<42>>">>'>>..!
00096: 48 6f 73 74 3a 20 6c 6f 63 61 6c 68 6f 73 74 0d !Host: localhost.!
00112: 0a 55 73 65 72 2d 41 67 65 6e 74 3a 20 57 65 62 !.User-Agent: Web!
00128: 54 72 61 6e 73 61 63 74 69 6f 6e 73 20 48 54 54 !Transactions HTT!
00144: 50 2f 37 2e 35 0d 0a 43 6f 6e 74 65 6e 74 2d 4c !P/7.5..Content-L!
00160: 65 6e 67 74 68 3a 20 33 35 33 0d 0a 67 6c 6f 62 !ength: 353..glob!
00176: 61 6c 2d 68 65 61 64 65 72 2d 66 69 65 6c 64 3a !al-header-field:!
00192: 20 67 6c 6f 62 61 6c 20 63 6f 6e 74 65 6e 74 0d ! global content.!
00208: 0a 0d 0a 2d 2d 3c 3c 27 3c 3c 22 3c 3c 34 32 3e !...--<<'<<"<<42>!
00224: 3e 22 3e 3e 27 3e 3e 0d 0a 43 6f 6e 74 65 6e 74 !>">>'>>..Content!
00240: 2d 54 79 70 65 3a 20 61 70 70 6c 69 63 61 74 69 !-Type: applicati!
00256: 6f 6e 2f 78 2d 77 77 77 2d 66 6f 72 6d 2d 75 72 !on/x-www-form-ur!
00272: 6c 65 6e 63 6f 64 65 64 0d 0a 43 6f 6e 74 65 6e !lencoded..Conten!
00288: 74 2d 4c 65 6e 67 74 68 3a 20 36 37 0d 0a 70 61 !t-Length: 67..pa!
00304: 72 74 31 2d 68 65 61 64 65 72 2d 66 69 65 6c 64 !rt1-header-field!
00320: 3a 20 68 65 61 64 65 72 20 70 61 72 74 20 31 0d !: header part 1.!
00336: 0a 0d 0a 57 54 5f 53 59 53 54 45 4d 5f 42 41 53 !...WT_SYSTEM_BAS!
00352: 45 44 49 52 3d 25 32 46 68 6f 6d 65 31 25 32 46 !EDIR=%2Fhome1%2F!
00368: 70 75 6c 73 25 32 46 68 74 74 70 64 25 32 46 70 !puls%2Fhttpd%2Fp!
00384: 75 6c 73 77 77 77 26 63 6f 6d 6d 61 6e 64 3d 52 !ulswww&command=R!
00400: 65 66 72 65 73 68 0d 0a 2d 2d 3c 3c 27 3c 3c 22 !efresh..--<<'<<"!
00416: 3c 3c 34 32 3e 3e 22 3e 3e 27 3e 3e 0d 0a 43 6f !<<42>>">>'>>..Co!
00432: 6e 74 65 6e 74 2d 54 79 70 65 3a 20 74 79 70 65 !ntent-Type: type!
00448: 31 0d 0a 43 6f 6e 74 65 6e 74 2d 4c 65 6e 67 74 !1..Content-Lengt!
00464: 68 3a 20 33 38 0d 0a 70 61 72 74 32 2d 68 65 61 !h: 38..part2-hea!
00480: 64 65 72 2d 66 69 65 6c 64 3a 20 61 6e 79 20 6f !der-field: any o!
00496: 74 68 65 72 0d 0a 0d 0a 57 54 5f 53 59 53 54 45 !ther....WT_SYSTE!
00512: 4d 5f 42 41 53 45 44 49 52 3d 76 61 6c 31 26 63 !M_BASEDIR=val1&c!
00528: 6f 6d 6d 61 6e 64 3d 52 65 66 72 65 73 68 0d 0a !ommand=Refresh..!
00544: 2d 2d 3c 3c 27 3c 3c 22 3c 3c 34 32 3e 3e 22 3e !--<<'<<"<<42>>">!
00560: 3e 27 3e 3e !>'>> !

Host objects Controlling communication

32 WebTransactions Access to Dynamic Web Contents

3.2.2 The Header attribute

The Header attribute is an object of Array type. You can use this array to supply the HTTP
server with additional information at send time. At receive time, it enables you to access the
information in the returned HTTP header fields.

The array is constructed as follows:

If you want to use the Header attribute to send additional header information, you should
note the following comments:

– The elements in the Header array have priority. This means that they overwrite the
predefined header fields as well as an additional sendData.ContentType attribute.

 Observe the notational difference between the host object attribute
ContentType (without a hyphen ‘-’) and content of the name attribute of the array
element senddata.Header[n].Name='Content-Type' (with a hyphen ‘-’).

Since names in WebTransactions may not contain any hyphens whereas
hyphens are frequently found in HTTP header fields, mapping with the two
attributes Name and Value in the header array was selected to make it possible
to generate each header field.

sendData.ContentType='type1';

is therefore the abbreviated notation for

sendData.Header[0]={Name:'Content-Type', Value:'type1'};

or even

sendData.Header[n]=new Object;
sendData.Header[n].Name='Content-Type';
sendData.Header[n].Value='type1';

– The header fields are generated in the same sequence and using the same notation
(no distinction is made between uppercase and lowercase) as in the Header array. Any
predefined fields not present in the array are inserted first.

– Any element in the array for which the Name but not the Value attribute is set determines
only the position within the generated header fields. The content can be determined by
a predefined field.

Field Content

n Number of the field in the array, starting with 0

n.Name Name of the header field

n.Value Value of the header field

Table 4: Structure of the header array object

i

Controlling communication Host objects

WebTransactions Access to Dynamic Web Contents 33

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

11
:1

4.
15

P
fa

d:
 F

:\W
eb

TA
\V

7
.5

\M
an

ua
le

\1
0

03
5

06
_D

yn
am

is
ch

e_
W

eb
In

ha
lte

\e
n\

ht
tp

.k
0

3

The following table summarizes the possible sequences of the header fields that are to be
sent:

The sequence of the header fields is not defined in the HTTP protocol. It is recommended
to send the general header fields first followed by the request header fields and finally
the entity header fields.

3.2.3 Receiving a message in the receiveData host object

The received host object, receiveData, has the same structure as sendData.

Predefined field Undefined field

Field not present in the Header
array

Field located before the fields
of the Header array
Value: internal

Field present in the Header array
and has the Name attribute

Field located at the position
defined in the Header array
Value: internal

Field located at the position
defined in the Header array
Value: empty

Field present in the Header array
and has the Value attribute

Field located at the position defined in the Header array
Value: defined in the array

Table 5: Sequence of header fields for sending

Single-part message Multipart message

receiveData
Body
ContentType
Header

0
Name
Value
1
Name
Value

receiveData
0

[ContentType]
[Header]
Body

1
[ContentType]
[Header]
Body

ContentType
Header

0
Name
Value
1
Name
Value

...

Processing HTTP raw data Controlling communication

34 WebTransactions Access to Dynamic Web Contents

receiveData always contains the Header attribute. The host adapter creates an element in
the Header array for each received header field.

3.3 Processing HTTP raw data

The HTTP host adapter itself merely processes complete HTTP bodies as text objects in
the host objects sendData and receiveData.

To interpret the documents exchanged via HTTP, you must use special filters. This section
describes the options available for defining your own send and receive functions with the
corresponding filter effects.

3.3.1 WTScript filters

Within WebTransactions applications, it is possible to implement WTScript functions for
processing raw data further. Examples of such functions can be found in chapter
“Examples” on page 89: section “Using an existing CGI script” on page 89 and section
“Communicating via HTTP and processing with WT_Filter” on page 93.

The functions for creating and interpreting HTTP messages enable you to:

● create HTTP messages from internal WTScript objects for sending to the HTTP server
(ContentType and Body)

● analyze data (Body) received from the HTTP server and break it down into internal
WTScript objects

3.3.2 User exits

It is also possible to use user exits in order to interpret incoming HTTP messages and
create outgoing HTTP messages. This makes sense in particular if the appropriate libraries
are readily available and only require minor adaptations.

Controlling communication Processing HTTP raw data

WebTransactions Access to Dynamic Web Contents 35

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

11
:1

4.
15

P
fa

d:
 F

:\W
eb

TA
\V

7
.5

\M
an

ua
le

\1
0

03
5

06
_D

yn
am

is
ch

e_
W

eb
In

ha
lte

\e
n\

ht
tp

.k
0

3

3.3.3 Built-in filters

WebTransactions comes with a filter class, WT_Filter, which is capable of processing
contents of type text/xml. The methods of this class allow you to:

● convert WTScript objects into an XML document and vice versa, e.g. for exchanging
data with other WebTransactions applications via WT_REMOTE

● convert XML text into a WTScript object tree and back again into XML text, e.g. for
communicating with remote applications

● analyse XML text with the integrated SAX parser

● convert WTScript method calls into XML documents and vice versa, e.g. for calling the
WT_REMOTE interface for distributed WebTransactions applications

Further information on the WT_Filter class can be found in the WebTransactions manual
“Template Language” (class description and examples), in the WebTransactions manual
“Client APIs for WebTransactions”, and in section “Communicating via HTTP and
processing with WT_Filter” on page 93 of the present manual.

Start templates for HTTP Controlling communication

36 WebTransactions Access to Dynamic Web Contents

3.4 Start templates for HTTP

When you start the WebTransactions application (from a home page or by directly speci-
fying a URL), you must define the parameters for the connection to the partner application
in a start template.

WebTransactions supplies you with a set of ready-made start templates which you can use
as the basis for your own start templates. There are two variants:

● Start template set (ready to use)

This start template set is ready to use. All required parameters can be entered in a
dialog. The start template set is suitable both for starting an individual host application
and for starting multiple host or partner applications integrated in a WebTransactions
application. It consists of the general start template wtstart.htm (which can be used,
for example, to create communication objects and switch back and forth between a
number of parallel host connections) plus specific start templates for the individual host
adapters. The start template wtstartHTTP.htm is supplied specifically for use with
WebTransactions for HTTP, and is described in section “HTTP-specific start template of
the start template set (wtstartHTTP.htm)” on page 36. The general start template is
described in the WebTransactions manual “Concepts and Functions”.

● Simple start template (must be customized)

When connecting to an individual HTTP server, you can use the simple start template
StartTemplateHTTP.htm. Thanks to its clear structure and detailed comments, this start
template is ideal for defining concrete start parameters for the immediate execution of
the WebTransactions application. Unlike the start template set, these start parameters
do not need to be defined on every restart. The simple start template is described in
section “Simple start template (StartTemplateHTTP.htm)” on page 40.

This simple start template is also suitable as a basis for your own WTScript functions
which retrieve information from the Web via HTTP.

3.4.1 HTTP-specific start template of the start template set
(wtstartHTTP.htm)

If you select the HTTP protocol in the general start template wtstart.htm (described in the
WebTransactions manual “Concepts and Functions”) and create a new communication
object, the system branches to the wtstartHTTP.htm template.

wtstartHTTP.htm allows you to interactively set the connection parameters and begin
communication.

Controlling communication Start templates for HTTP

WebTransactions Access to Dynamic Web Contents 37

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

11
:1

4.
15

P
fa

d:
 F

:\W
eb

TA
\V

7
.5

\M
an

ua
le

\1
0

03
5

06
_D

yn
am

is
ch

e_
W

eb
In

ha
lte

\e
n\

ht
tp

.k
0

3

The figure below shows the interface generated by wtstartHTTP.htm.

Start templates for HTTP Controlling communication

38 WebTransactions Access to Dynamic Web Contents

The status section contains the following information:

communication object
Name of the underlying communication object.

HTTP_RETURN_CODE
Return code of the last receive call.If no response was received, e.g. because the
addressed server is not available, then HTTP_RETURN_CODE is empty. A table with the
possible errors and their meaning is given in the section “HTTP error messages” on
page 101.

The workflow section allows you to define what happens next.

destination
Here you can actively choose between the various start templates. To branch to the
selected page, click on go to. The option main menu is proposed by default, and
allows you to return to the general start page wtstart.htm. If several connections
are open, these are also offered for selection and enable you to branch to the
respective host-adapter-specific start templates of these connections.

access URL
The buttons beside access URL are used to execute the send and receive methods.
The connection parameters defined below are transferred and activated.

parameters
With reset, you can reset all the parameters to the state they had when received
from the browser. With update, you can send the current parameter values to
WebTransactions without communicating via HTTP.

The connection parameters section specifies the system object attributes:

URL Enter the URL of the HTTP resource you require.

USER, PASSWORD
The values entered here are used for accessing protected resources.

PROXY, PROXY_PORT
If the connection is to be established via a proxy server, you must specify the appro-
priate Internet address or symbolic name under PROXY. PROXY_PORT indicates the
port of the proxy server.

PROXY_USER, PROXY_PASSWORD
Any values entered for PROXY_USER and PROXY_PASSWORD are sent in the event of
access via a proxy system.

TIMEOUT_HTTP
Sets the time spent waiting for a response from the HTTP host adapter.

Controlling communication Start templates for HTTP

WebTransactions Access to Dynamic Web Contents 39

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

11
:1

4.
15

P
fa

d:
 F

:\W
eb

TA
\V

7
.5

\M
an

ua
le

\1
0

03
5

06
_D

yn
am

is
ch

e_
W

eb
In

ha
lte

\e
n\

ht
tp

.k
0

3

SSL_CERT_FILE
Here, enter the name of the file containing the client-side certificate to be used. If
the file name is not entered as absolute, it will be relative to the base directory.

SSL_KEY_FILE
Here, enter the name of the file containing the private key of the certificate (see
CERT_FILE). If the file name is not entered as absolute, it will be relative to the base
directory.

SSL_PASSPHRASE
Here, enter the passphrase to be used with the private key.

SSL_PROTOCOL
Here, select the SSL or TLS version you wish to activate. OpenSSL supports SSL
protocol versions 2 and 3, and TLS protocol version 1. Possible values:
– SSLv2
– SSLv3
– TLSv1
– All (default)

You can enter several protocols but these should be separated by blank spaces.

The host objects section displays the sendData host object, and allows you to modify its
ContentType and Body attributes.

If data has already been received, i.e. receiveData exists, the content type of receiveData
is also output and this section contains two additional buttons:

Text Displays the contents of receiveData.Body in a separate window in the form of
HTML source code:

Start templates for HTTP Controlling communication

40 WebTransactions Access to Dynamic Web Contents

HTML Displays the contents of receiveData.Body in a separate window as they would
appear in the browser:

The receiveData.Header field also shows the header field returned.

3.4.2 Simple start template (StartTemplateHTTP.htm)

The HTTP host adapter comes with a simple WTML document containing prototypes of all
statements used to define the connection parameters and of the host object attributes. This
template can be customized in order to quickly produce WTScripts for accessing HTTP
resources.

This template can be used either as a start template (e.g. for a single-step transaction or in
the middle of a session. The following example contains detailed comments to help you
identify the meaning of the individual sections.

Template format

The start template begins with a series of HTML comments which indicate, among other
things, the format of the URL used to call the start template:

<wtRem>
 --
--
 StartTemplateHTTP
 --
--
 may be called by the url:
 http://<host>/<urlprefix>/WTPublish.exe/<basedirectory>?<starttemplate>
 (e.g. http://localhost/cgi-
bin/WTPublish.exe/c:/base_http?StartTemplateHTTP)
 this document also may be included for an HTTP call while running a
 WebTransactions application:
 <wtInclude name="StartTemplateHTTP">

Controlling communication Start templates for HTTP

WebTransactions Access to Dynamic Web Contents 41

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

11
:1

4.
15

P
fa

d:
 F

:\W
eb

TA
\V

7
.5

\M
an

ua
le

\1
0

03
5

06
_D

yn
am

is
ch

e_
W

eb
In

ha
lte

\e
n\

ht
tp

.k
0

3

 --
--
 Copyright (c) by Fujitsu Technology Solutions GmbH, 2010
</wtRem>

The actual content of this start template consists of an OnCreate script:

...
<wtoncreatescript>
<!--
 ...
//-->
</wtoncreatescript>

Code of the StartTemplateHTTP.htm template

The OnCreate script is divided into three sections:

The first section creates a new communication object and thus implicitly a private system
object. It also activates the HTTP host adapter (open).

<wtoncreatescript>
<!--
 // **
 // global part of starttemplate which is not dependent of protocol type.
 // these attributes are not relevant, if you use this template as include
 // for a running session.
 // **

 // If a specific style or language is required, you have to set the
following
 // attributes to a suitable value. Default value is empty for forms
directory.

 // WT_SYSTEM.STYLE = "";
 // WT_SYSTEM.LANGUAGE = "";

 // Application timeout and user timeout are set to standard values.

 // WT_SYSTEM.TIMEOUT_APPLICATION = "120";
 // WT_SYSTEM.TIMEOUT_USER = "600";

 // If a template should be displayed after TIMEOUT_USER and before
 // terminating the session you have to set the TIMEOUT_FORMAT attribute
 // to that specific template name.

 // WT_SYSTEM.TIMEOUT_FORMAT = "";

Start templates for HTTP Controlling communication

42 WebTransactions Access to Dynamic Web Contents

 // Now we have to create a new communication object. This is mandatory
also.
 // Further we use the private wt_system object
(WT_HOST.<myHandle>.WT_SYSTEM).

 // **
 // specific part of starttemplate for protocol type HTTP
 // **
 // A new communication object has to be created.
 // The name "myHTTPConn" of the object may be changed to any valid symbol.
 host = new WT_Communication("myHTTPConn");

 // Further the private system object (host.WT_SYSTEM) is used.
 host_system = host.WT_SYSTEM;

 // The call of open method enables the HTTP adapter
 host.open("HTTP");

The second section contains the assignments for the attributes of the private system object.
These must be set to the appropriate values.

 // The URL specifies the desired HTTP resource
 // general format is
 // [http[s]:][//][user[:password]@]hostname[:port][/pathinfo[?query]]

 host_system.URL = "myURL";
 // = "localhost/wtadm.htm" // example for GETting a static file
 // =
"//localhost/Scripts/WTPublish.exe/d:/inetpub/wwwroot/basedir/?wtstartHTTP";
 // example for calling cgi program with
method GET
 // =
"//localhost/Scripts/WTPublish.exe/d%3A%5Cinetpub%5Cwwwroot%5Cbasedir?wtstart
HTTP";
 // same example but with escape sequences for
:(=%3A) and \(=%5C)
 // maybe necessary for HTTP daemon
 // = "//localhost/Scripts/WTPublish.exe/startup";
 // same example using metod POST
 // corresponds with content of sendData
object

 // For restricted HTTP resources user authorization has to be done.

 // host_system.USER = "";
 // host_system.PASSWORD = "";

Controlling communication Start templates for HTTP

WebTransactions Access to Dynamic Web Contents 43

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

11
:1

4.
15

P
fa

d:
 F

:\W
eb

TA
\V

7
.5

\M
an

ua
le

\1
0

03
5

06
_D

yn
am

is
ch

e_
W

eb
In

ha
lte

\e
n\

ht
tp

.k
0

3

 // Address and port of HTTP proxy might be specified.

 // host_system.PROXY = "";
 // host_system.PROXY_PORT = "";

 // For restricted PROXY access user authorization has to be done.

 // host_system.PROXY_USER = "";
 // host_system.PROXY_PASSWORD = "";

 // Timeout for HTTP may be determined.

 // host_system.TIMEOUT_HTTP = "60";

 // if SSL shall be used (see URL: 'https: ...'), the following attributes
may configure the SSL connection
 // host_system.SSL_PROTOCOL = 'All'; // SSLv2, SSLv3, TLSv1 or
All, multiple values may be defined separated by space
 // host_system.SSL_CERT_FILE = ''; // file name of certifcate
 // host_system.SSL_KEY_FILE = ''; // file name of matching key,
may be omitted, if SSL_CERT_FILE contains both: certificate and key
 // host_system.SSL_PASSPHRASE = ''; // passphrase if needed for
the certifcate

 // For invocation of POST method host object sendData has to be defined.

 // host.sendData = new Object();
 // host.sendData.ContentType = "application/x-www-form-urlencoded";
 // host.sendData.Body =
"WT_SYSTEM_BASEDIR=d%3A%5Cinetpub%5Cwwwroot%5Cbasedir&WT_SYSTEM_FORMAT=wtstar
tHTTP";
 // see comment on system attribute URL

Finally, the third section contains the send and receive method calls.

 // Now the HTTP resource is requested.
 host.send();
 host.receive();

 // The response receiveData has to be analysed.
 // document.write(host.receiveData.Body);

 // Close HTTP communication
 host.close();

 // If this was the whole job, terminate the session

Start templates for HTTP Controlling communication

44 WebTransactions Access to Dynamic Web Contents

 // exitSession();

//-->
</wtoncreatescript>

Controlling communication Creating a new HTTP communication object (wtcHTTP)

WebTransactions Access to Dynamic Web Contents 45

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

11
:1

4.
15

P
fa

d:
 F

:\W
eb

TA
\V

7
.5

\M
an

ua
le

\1
0

03
5

06
_D

yn
am

is
ch

e_
W

eb
In

ha
lte

\e
n\

ht
tp

.k
0

3

3.5 Creating a new HTTP communication object (wtcHTTP)

The WTBean wtcHTTP is supplied in order to enable you to create a new HTTP communi-
cation object in a template and thus establish a connection to an HTTP server. You can also
use this WTBean to open multiple connections in parallel. wtcHTTP is an inline WTBean. For
more information, see the WebTransactions manual “Concepts and Functions”.

 Before you can access an inline WTBean, there must be a connection to the host
application and the template in which you want to insert the WTBean must be open.

You use the Add/WTBean/wtcHTTP command to open the WTBean for editing. WebLab
generates the dialog box Add:wtcHTTP:

i

Creating a new HTTP communication object (wtcHTTP) Controlling communication

46 WebTransactions Access to Dynamic Web Contents

In this dialog box, you can edit the parameters for the communication object that is to be
generated. The parameters that you can enter in the input fields of this dialog box corre-
spond to the parameters in the start template, see also section “HTTP-specific start
template of the start template set (wtstartHTTP.htm)” on page 36. The mandatory param-
eters are displayed in red.

When you have entered values for the parameters and clicked OK to confirm, the param-
eters and description file are used to generate the code of the WTBean which is then
inserted at the cursor position in the open template.

The WTBean consists of protected and unprotected code areas. The protected areas are
displayed with a gray background. You can only work in these areas via the WTBean’s user
interface. To do this, choose the Edit WTBean command in the context menu of the
WTBean’s start line (pink background) (see the WebTransactions manual ‘Concepts and
Functions’).

WebTransactions Access to Dynamic Web Contents 47

4 Connecting web services via SOAP
This chapter describes how the SOAP protocol (Simple Object Access Protocol) is
integrated into WebTransactions:

● Concept underlying SOAP integration in WebTransactions

● WT_SOAP class

● WT_SOAP_HEADER class

4.1 Concept of SOAP integration in WebTransactions

The integration of the SOAP protocol in WebTransactions is based on the WebTransactions
HTTP host adapter as well as the definitions of the SOAP and WSDL (Web Services De-
scription Language) protocols.

4.1.1 SOAP (Simple Object Access Protocol)

The XML-based SOAP protocol provides a simple, transparent mechanism for the ex-
change of structured, typed information between systems within a decentralized, distributed
environment.

SOAP provides a modular package model together with mechanisms for data encryption
within modules. This permits a simple description of the external interfaces for a remote ap-
plication that can be accessed in a web (web service).

48 WebTransactions Access to Dynamic Web Contents

Concept of SOAP integration in WebTransactions Connecting web services via SOAP

SOAP is an XML based protocol consisting of three components:

● Envelope specification

The envelope defines the guidelines that describe:

– what is present in a message,
– who is to process the message and how it is to be processed,
– whether the individual data items in the message are optional or have to be

specified (mandatory).

The namespace identifier of the envelope is:

"http://schemas.xmlsoap.org/soap/envelope"

(Here, the term “namespace” refers to the set of names that are valid in a given context.)

● A set of coding and serialization rules that describes instances of application-specific
data types.

The namespace identifier for serialization is:

"http://schemas.xmlsoap.org/soap/encoding"

● A convention for the representation of remote procedure calls (RPC) and possible
responses to these RPCs.

SOAP services are described in WSDL documents.

4.1.2 Describing SOAP services with WSDL

WSDL (Web Services Description Language) provides XML language rules for describing
the capabilities of web services. Multiple SOAP services can be described in a single WSDL
document. These SOAP services may, in turn, be available on a number of different servers.
The input and output parameters for the individual services can also be described using
WSDL.

The figure below provides an outline illustration of a WSDL document.

WebTransactions Access to Dynamic Web Contents 49

Connecting web services via SOAP Concept of SOAP integration in WebTransactions

Figure 2: Structure of a WSDL document

<types>

Description of extended data structures

<service>

<port>

Server description (address)

<message>

<binding>

Description of the concrete protocol and data format for the work steps and

<port type>

<operation>

Description of a web service function together with a <message> reference

WSDL Document

<service>

<port>

Description of the messages and associated parameters which can be sent to
the WebService or received by the WebService. If complex data types are used
as parameters, <message> contains references to <types>.

messages given by a specific port type.

50 WebTransactions Access to Dynamic Web Contents

Concept of SOAP integration in WebTransactions Connecting web services via SOAP

4.1.3 UDDI (Universal Description, Discovery and Integration Project)

The Universal Description, Discovery and Integration Project (UDDI) is a comprehensive,
platform.independent system for the documentation, among other things, of web services.
All web users have unrestricted access to the UDDI directories in which the web services
are documented.

4.1.4 SOAP support in WebTransactions

WebTransactions provides client-side access to SOAP services via the HTTP protocol us-
ing the WT_SOAP class that is written in WTML. Consequently, only the HTTP host adapter
and the WT_SOAP class are required for WebTransactions SOAP support. You can call Web
services in accordance with the SOAP standards V1.1 and V1.2.

SOAP services are described in WSDL. WebTransactions can read the WSDL from a local
file or load it from the network. When a WSDL WT_SOAP object is created, the corresponding
service is made available as a proxy method for this object. If the proxy method has call
parameters then proxy objects will be created for these parameters. When the proxy
method is executed, the query message is sent to the SOAP server via the HTTP host
adapter and the response message is received via the same path before being transformed
into a WTScript.

The figure below illustrates this process.

WebTransactions Access to Dynamic Web Contents 51

Connecting web services via SOAP Concept of SOAP integration in WebTransactions

Figure 3: Client-side SOAP support using the WT_SOAP class

If you want to test a web service, you can use WebLab to generate a default interface for
the web service (Generate/Templates/for WebServices). You can call this template from
the general start template wtstart.htm. For more detailed information on starting a web
service, see the WebTransactions manual “Web Frontend for Web-Services”.

SOAP support is a standard component of all WebTransactions supply units. During
creation of a base directory for the HTTP host adapter (see chapter “Creating a base
directory” on page 15), a corresponding reference to the wtSOAP.htm is created in the
installation directory.

WT_SOAP class

 mySoap object

Initialization

Proxy method

HTTP-
host adapter

SOAP Server

WSDL

WSDL

FILE

URI

mySoap = new WT_SOAP (...)

In the networkLocal

. . .

. . .

. . .

52 WebTransactions Access to Dynamic Web Contents

WT_SOAP - client-side class Connecting web services via SOAP

4.2 WT_SOAP - client-side class

The WT_SOAP class is implemented in the wtSOAP.htm template.
The template contains the constructor of the WT_SOAP class which generates an instance of
the class from a WSDL file of a web service. This instance makes proxy methods available
which are used to call an operation. In addition to the proxy methods, there are a whole
series of other methods which enable setting of a WT_SOAP class object.

The WT_SOAP class uses WebTransactions exception handling (see the WebTransactions
manual “Template Language”). If you use the WT_SOAP class then it is advisable to call the
methods associated with this class (including the constructor) from within a try block and
then handle any errors in a catch() block. If you do not do this, any errors present will be
perpetuated right through to the user interface.

Once the WT_SOAP class has been instantiated, certain attributes and methods are available
immediately as WT_SOAP object attributes and methods. However, most WT_SOAP object
methods are used internally, i.e. during the instantiation or execution of proxy methods (see
page 62). Consequently, the following sections describe only those methods that are
components of the user interface.

 The following special characteristics concerning SOAP functionality should be
borne in mind when the WT_SOAP class is used:

● The SOAP header is not automatically generated from the WSDL. However, you
can add a header to the message. To do this, insert the header in
WT_SOAP.envelope.header before calling the method or create the header of the
WT_SOAP_HEADER class. This is then taken over automatically.

● The simple data types ID and IDREF are not supported. The corresponding data
can be transferred as redundant.

● Only messages which use “SOAP binding” and which are sent via http are
supported.

● SOAP body encoding is only supported as specified in

"http://schemas.xmlsoap.org/soap/envelope"

 If a different schema is used for data serialization then the WT_SOAP class can
only be used as the basis for a separate class.

● Only data descriptions in XML schema (XSD) are automatically supported.

i

WebTransactions Access to Dynamic Web Contents 53

Connecting web services via SOAP WT_SOAP - client-side class

4.2.1 Structure of a WT_SOAP object

This section explains the structure of a WT_SOAP object with the aid of an example in the
WebLab object tree. The WT_SOAP object is generated from the WSDL document described
in section “Example: WSDL document” on page 58.

The individual components of a WT_SOAP object are explained in detail in the proximate
sections (as of page 60).

54 WebTransactions Access to Dynamic Web Contents

WT_SOAP - client-side class Connecting web services via SOAP

4.2.1.1 Representation in the WebLab object tree

Figure 4: Representation of a WT_SOAP object in the WebLab object tree

1

8

1

9

2

3

4

5

6
7

WebTransactions Access to Dynamic Web Contents 55

Connecting web services via SOAP WT_SOAP - client-side class

Explanation (see also section “WT_SOAP attributes” on page 79)

1. mySoap object after instantiation. The methods defined under WT_SOAP can be used in
connection with instances of the WT_SOAP class and therefore also with mySoap (see
sections “WT_SOAP class object methods” on page 65 and “Methods for configuring
access to the WT_SOAP_COM_FUNCTIONS subclass” on page 75).

2. Map of the <binding> section from the WSDL document.

3. commattr object containing the attributes that control HTTP access.

4. The envelope object contains the envelope, header and body attributes which in turn
contain the text segments used to construct the SOAP message when calling a proxy
method or the executeRequest method.

5. The http object contains the communication object for the HTTP host adapter.

6. The message object maps the <message> section of the WSDL document.

7. The portType object contains an object for each operation described in the <portType>
section of the WSDL (in this case, checkSoap).

8. The service object contains an object for each service provided by the web service.
There is a separate <service>...</service> section in the WSDL for each service (in
our example this is: check). check contains a port object and, below this, information
from the WSDL document <port> section (in our example: checkSoap). checkSoap in
turn contains the objects commattr, operation and adress as well as a number of
methods that can be used to perform port-specific operations. The most important
object is operation since this contains the proxy methods used to call the web service
operations. The comattr object contains the port-specific attributes for HTTP access
that are used when the proxy method is called. adress contains the web service URI.

When defining a service and an operation in the WSDL, you can use a documentation
element to insert comments. This information is taken over into the WT_SOAP structure.
It is helpful to provide this type of information when generating user interfaces for web
services. For this reason, the comments are stored at the following locations:
– If a documentation element is found within the service tag in the WSDL, under

WT_SOAP.service.<name of service>.port.documentation.
– If a corresponding comment is found in the operation tags in the WSDL, under the

name of the operation.

A documentation element may contain text, any required XML structure, or both. In
practice, only simple texts are found. As a result, only the text content of the
documentation element is taken over as a string into the WT_SOAP structure.

56 WebTransactions Access to Dynamic Web Contents

WT_SOAP - client-side class Connecting web services via SOAP

Example

9. The types object is used for storing the data types described in the WSDL document.

WebTransactions Access to Dynamic Web Contents 57

Connecting web services via SOAP WT_SOAP - client-side class

Web services on different hosts

A web service can be provided on different hosts. In these cases, the <service> section of
the WSDL document contains several <port> sections. Because the various servers
generally use different parameters, (proxy etc.), this is reflected in the structure of the
WT_SOAP object under service/servicename/port. In this case, therefore, the port object is
assigned several objects with differing port-specific settings.

By the same token, proxy methods for calling the web service which are provided under
service/servicename/port/portname/operation in the object tree must be present several
times. This is, however, not strictly redundant since each portname is connected to a
different internet address and thus any call on a different port communicates with a different
server on the internet.

The methods and attributes for setting hosts and access rights for access to the web service
are available both under the WT_SOAP object and under service/servicename/port/portname.
This allows you to make the settings either globally or on a port specific-basis.

58 WebTransactions Access to Dynamic Web Contents

WT_SOAP - client-side class Connecting web services via SOAP

4.2.1.2 Example: WSDL document

The section below shows a web service used to check the spelling of a text. This WDSL
document is the basis for the object tree shown on page 54. The WTScript in the section
“Example: Checking the spelling of a text” on page 83 uses this WSDL and calls the web
service.

<?xml version="1.0" encoding="utf-8"?>
<definitions xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:s="http://www.w3.org/2001/XMLSchema"
 xmlns:s0="http://ws.cdyne.com/"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"
 xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
 targetNamespace="http://ws.cdyne.com/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
 <types>
 <s:schema elementFormDefault="qualified" targetNamespace="http://ws.cdyne.com/">
 <s:element name="CheckTextBody">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="BodyText" type="s:string" />
 <s:element minOccurs="0" maxOccurs="1" name="LicenseKey" type="s:string" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="CheckTextBodyResponse">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="1" maxOccurs="1" name="DocumentSummary"

nillable="true" type="s0:DocumentSummary" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:complexType name="DocumentSummary">
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="unbounded" name="MisspelledWord"

type="s0:Words" />
 <s:element minOccurs="0" maxOccurs="1" name="ver" type="s:string" />
 <s:element minOccurs="0" maxOccurs="1" name="body" type="s:string" />
 <s:element minOccurs="1" maxOccurs="1" name="MisspelledWordCount"

type="s:int" />
 </s:sequence>
 </s:complexType>
 <s:complexType name="Words">
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="unbounded" name="Suggestions"

type="s:string" />
 <s:element minOccurs="0" maxOccurs="1" name="word" type="s:string" />
 <s:element minOccurs="1" maxOccurs="1" name="SuggestionCount" type="s:int" />
 </s:sequence>

WebTransactions Access to Dynamic Web Contents 59

Connecting web services via SOAP WT_SOAP - client-side class

 </s:complexType>
 <s:element name="DocumentSummary" nillable="true" type="s0:DocumentSummary" />
 <s:element name="string" nillable="true" type="s:string" />
 </s:schema>
 </types>
 <message name="CheckTextBodySoapIn">
 <part name="parameters" element="s0:CheckTextBody" />
 </message>
 <message name="CheckTextBodySoapOut">
 <part name="parameters" element="s0:CheckTextBodyResponse" />
 </message>
 <portType name="checkSoap">
 <operation name="CheckTextBody" parameterOrder="parameters">
 <input message="s0:CheckTextBodySoapIn" />
 <output message="s0:CheckTextBodySoapOut" />
 </operation>
 </portType>
 <binding name="checkSoap" type="s0:checkSoap">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document" />
 <operation name="CheckTextBody">
 <soap:operation soapAction="http://ws.cdyne.com/CheckTextBody"

style="document" />
 <input>
 <soap:body use="literal" />
 </input>
 <output>
 <soap:body use="literal" />
 </output>
 </operation> </binding>
 <service name="check">
 <port name="checkSoap" binding="s0:checkSoap">
 <soap:address location="http://ws.cdyne.com/SpellChecker/check.asmx" />
 </port>
 </service>
</definitions>

60 WebTransactions Access to Dynamic Web Contents

WT_SOAP - client-side class Connecting web services via SOAP

4.2.2 Constructor for the WT_SOAP class

The constructor analyses the received WSDL file and from this creates a WTScript object.
The constructor also creates a communication object named WT_SOAP_first free number
under WT_HOST. All HTTP accesses, including the loading of the WSDL document as URI
(Uniform Resource Identifier) are performed via this communication object.

Return value

Instance of the WT_SOAP class for SOAP support.

Parameters

init_document
Specifies the URI or the file containing the WSDL document. File names must be
relative to the base directory.

http_proxy_host
Specifies the PROXY host that was used on loading the WSDL document and is
also to be used by the HTTP host adapter for the actual SOAP request.

http_proxy_port
Specifies the PROXY port that was used on loading the WSDL document and is
also to be used by the HTTP host adapter for the actual SOAP request.

Example

//Initialize WT_SOAP-Object from file (file is in
<basedir>/wsdl/check.wsdl)

mySoap = new WT_SOAP('wsdl/check.wsdl', 'proxy','81');

 WT_SOAP()
WT_SOAP(init_document)
WT_SOAP(init_document, http_proxy_host)
WT_SOAP(init_document, http_proxy_host, http_proxy_port)

WebTransactions Access to Dynamic Web Contents 61

Connecting web services via SOAP WT_SOAP - client-side class

Constructor call without parameters

You must call the constructor without arguments in those cases where other attributes in
addition to http_proxy_host and http_proxy_port are required for the loading of the WSDL
document when initialization is performed. After this you will be able to use the
WT_SOAP_COM_FUNCTIONS class methods (see page 75) to make all the necessary settings.
After this, initialize the object using the WT_SOAP.initFromWsdlUri method (see page 65).

Example

mySoap = new WT_SOAP();
mySoap.setProxy ('proxy.company.com','81');
mySoap.setProxyAuthorization('puser','ppass');
mySoap.initFromWsdlUri('http://url');

Exceptions

In the event of errors, the constructor will output the exceptions SOCKET, HTTP, FILE or WSDL
(see section “Exceptions” on page 77).

62 WebTransactions Access to Dynamic Web Contents

WT_SOAP - client-side class Connecting web services via SOAP

4.2.3 Proxy methods

Initializing a WT_SOAP object in order to call a web service via interpretation of a WSDL
document dynamically generates methods. Methods generated dynamically in this way are
created on the basis of the WSDL object structure under:

service/servicename/port/portname/operation

(See “Representation in the WebLab object tree” on page 54.)

If the web service provides several functions with the same name then these functions will
be created as array. The individual methods are then accessed as elements of this array.

Proxy method calls and parameter transfers

In order to abbreviate the notation required to call proxy methods, you can create references
like this example below.

Example

myOperations =
mySoap.service.check.port.checkSoap.operation;
myOperations.CheckTextBody(. . .);

Parameters are passed as follows when a proxy method is called:

– Parameters which have a simple data type can be passed “by value” as arguments
when the proxy method is called:

myOperations.SendMail(’recipients@domain’,’sender@domain,’subject’,
 ’this is the Message’);

– For complex data types, specially structured proxy objects are created as global objects
under the proxyObjects global object; these objects can be filled with real data and
transferred as arguments at calls. The name of this proxy object is constructed from the
name of the message to be set (see the attribute inputMessage) and the parameter
name.

– Attributes in a message or response are stored in the object wt_attributes.
This has the following implications for the user interface:

– The wt_attributes object containing the attributes may be present anywhere in the
proxy objects.

If the element is a simple data type then it is converted into the corresponding object
data type (string, boolean, number) to make it possible to incorporate the attributes.

WebTransactions Access to Dynamic Web Contents 63

Connecting web services via SOAP WT_SOAP - client-side class

Example

The input parameter of a method for translating text - with the source and target lan-
guage in attributes - looks like this:

This causes the generation of the following message:

….
 <wt_tns0:GetTranslation>
 <Translate destLang="de" sourceLang="en">
 <Text>Text to translate</Text>
 </Translate>
 </wt_tns0:GetTranslation>
…

– When the response is analyzed, attributes are again stored under the object
wt_attributes.

Example l

64 WebTransactions Access to Dynamic Web Contents

WT_SOAP - client-side class Connecting web services via SOAP

Generating the SOAP message without sending it

If the web service requires a function which is not supported by the WT_SOAP class then it
will call the proxy method in the PREPARE mode (see section “setRunMode method” on
page 66). In this case the proxy method prepares the HTTP message but does not send it.
You can manipulate the data under WT_SOAP.envelope, edit the message and then send it
using WT_SOAP.executeRequest. The result can be converted into a WTScript data structure
using WT_SOAP.anlyseResponse.

For an example, see section “setRunMode method” on page 66.

Setting HTTP headers

When you execute a proxy method, the HTTP headers Content-Type and SOAPAction are
generated automatically.

If you want to add further HTTP headers to the message, you can do this using the function
setHTTPHeader(). When you have called this function, this header is added to every sub-
sequent message.

name Name of the header field

value Value of the header field

headerObj
Object with the attributes name and value which contain the name and value of the
required header field.

Return value from a proxy method

A proxy method returns an object that contains the response from the SOAP service:

● If the operation is successful then the proxy method returns a structure that corre-
sponds to the <output message=outputmessage> definition in the associated WSDL
document.

● If an error occurs, the web service should return a fault message which is converted into
the appropriate structure. The structure contains the mandatory attribute faultcode
and the optional attributes faultstring, faultfactor and detail.

If the web service sends a message whose structure does not match that of a fault
message, then the return value of the proxy method will be structured in the same way
as the returned message.

 setHTTPHeader (name, value)
setHTTPHeader (headerObj)

WebTransactions Access to Dynamic Web Contents 65

Connecting web services via SOAP WT_SOAP - client-side class

Exceptions

If an error occurs, the proxy method will output the exceptions SOCKET, HTTP or PARAMETER
(see section “Exceptions” on page 77).

4.2.4 WT_SOAP class object methods

The methods described in this section are available immediately in the instance after
instantiation of the WT_SOAP class. These methods and all WT_SOAP_COM_FUNCTIONS class
methods (see section “Methods for configuring access to the
WT_SOAP_COM_FUNCTIONS subclass” on page 75) can be called from a WT_SOAP class
object.

4.2.4.1 initFromWSDLUri method

Sometimes it is not possible for the constructor to transfer the remote WSDL when creating
an instance of the WT_SOAP class. This situation may arise, for example, when additional
parameters are required at the HTTP interface in order to transfer the WSDL file. In these
cases, you can use the initFromWSDLUri method to perform the analysis of the WSDL file.

Return value

No return value

Parameter

uri Specifies the URI (Uniform Resource Identifier) of the WSDL document that
contains the description of the web service.

Exceptions

In the event of errors, initFromWsdlUri will output the exceptions SOCKET, HTTP or WSDL (see
section “Exceptions” on page 77).

Example

mySoap = new WT_SOAP();
mySoap.setProxy ('proxy.company.com','81');
mySoap.setProxyAuthorization('puser','ppass');
mySoap.initFromWsdlUri('http://url');

 initFromWsdlUri(uri)

66 WebTransactions Access to Dynamic Web Contents

WT_SOAP - client-side class Connecting web services via SOAP

4.2.4.2 setRunMode method

The setRunMode method sets the mode for performing the proxy method (see section “Proxy
methods” on page 62).

Return value

No return value

Parameter

mode Specifies the proxy method mode.

You can enter the following values for mode:

– PREPARE:
A proxy method called after this mode prepares a data structure for HTTP
access but does not execute the access.

– DOCUMENT
The proxy method parameters will be understood as an XML document and will
be inserted without modifications directly after <body> in the SOAP message.
The result will not be converted to a WTScript data type but will be output as a
string.

– RUN
 This resets the mode, i.e. the proxy method will run the web service. The
parameters must be transferred as WTScript data types.

Exceptions

The setRunMode method does not output exceptions.

Example: setRunMode("PREPARE")

try{
mySoap = new WT_SOAP('wsdl/check.wsdl','proxy','81');
}
catch (e)
{
//do something
}
myOperations =
mySoap.service.check.port.checkSoap.operation;
mySoap.setRunMode('prepare'); //Just build the message, do not send it
//Fill Parameter with values

 setRunMode("mode")

WebTransactions Access to Dynamic Web Contents 67

Connecting web services via SOAP WT_SOAP - client-side class

proxyObjects.CheckTextBodySoapIn_parameters.LicenceKey="0";
proxyObjects.CheckTextBodySoapIn_parameters.BodyText = "This is a sample text";
try{
//call proxy method
 myOperations.CheckTextBody(proxyObjects.CheckTextBodySoapIn_parameters);
}
catch (e)
{
}
//Set additional HTTP-header
mySoap.setHTTPHeader('Additional-Header-Field','something');
try {
 mySoap.executeRequest();//Send Request
 myRet=mySoap.analyzeResponse(); //and convert answer into a WTScript-Object
}
catch (e)
{
}

4.2.4.3 executeRequest method

The executeRequest method executes the current request. The message is constructed of
the attributes envelope, header, HeaderBlocks and body of the instance envelope object
and sent via the HTTP host adapter (see section “WT_SOAP attributes” on page 79). You
will need this method together with the setRunMode("PREPARE") method which prepares a
web service message but does not send it (see section “setRunMode method” on page 66).

Return value

No return value

Exceptions

If an error occurs, executeRequest() will output the exceptions SOCKET, HTTP or PARAMETER
(see section “Exceptions” on page 77).

 executeRequest()

68 WebTransactions Access to Dynamic Web Contents

WT_SOAP - client-side class Connecting web services via SOAP

4.2.4.4 executeGetRequest method

In SOAP V1.2, you are recommended to use the HTTP GET method if information is simply
to be fetched without any header being sent. As usual, the response is returned as a SOAP
envelope.

To make this possible, WT_SOAP provides the method executeGetRequest.

WT_SOAP calls the specified URL.
If the server responds with a SOAP message then the response is analyzed and used to
generate a WTScript object in the same way as when a proxy method is executed.
If the server does not respond with a SOAP message but, for example, with an HTML
document then the content of this document is returned.

url URL containing the complete request

Exceptions

If you attempt to set an HTTP header that has already been set by WT_SOAP then the method
outputs a USAGE exception.

4.2.4.5 analyseResponse method

The analyseResponse method analyses the response to the last request (i.e. the contents
of <WT_SOAP>.http.receiveData.Body) and constructs a WTScript data structure from the
result. You will need this method together with the setRunMode("PREPARE") method (this
prepares a web service message but does not send it) and the executeRequest method
(this sends a message) (see section “setRunMode method” on page 66).

Return value

WTScript data structure

Exceptions

The analyseResponse method does not output exceptions.

 executeGetRequest(url)

 analyseResponse()

WebTransactions Access to Dynamic Web Contents 69

Connecting web services via SOAP WT_SOAP - client-side class

4.2.4.6 setSOAPVersion method

Since there is as yet no WSDL version offering SOAP V1.2 support that has been approved
by W3C, web services continue to be described in WSDL version 1.1 files. As a result,
WT_SOAP is not able to identify whether a message is to be generated for SOAP version 1.1.
or 1.2 on the basis of the WSDL file.
The method setSOAPVersion defines the format in which messages are to be exchanged.

Return value

The set version

Parameter

<version>

The following values can be specified for version:

If you specify a different value then the default value 1.1 is set.

Exceptions

The method setSOAPVersion does not output any exceptions.

Example

mySoap = new WT_SOAP('wsdl/test1.wsdl'); //Create WT_SOAP object
mySoap.setSOAPVersion("1.2"); //Set Version

 setSOAPVersion(<version>)

1.1 Generates messages in the old SOAP format and awaits re-
sponses in the old SOAP format.
This value is set by default.

1.2 Generates messages in SOAP version 1.2 format and awaits
responses in the same format.

70 WebTransactions Access to Dynamic Web Contents

WT_SOAP - client-side class Connecting web services via SOAP

4.2.4.7 addHeader method

The addHeader method sets the specified header block for the following messages. All the
defined headers are recorded in the array WT_SOAP.envelope.HeaderBlocks. When a
message is generated, XML is generated from the objects and entered in the header.

Any added headers remain valid for all subsequent proxy method calls. If they are no longer
needed, you must remove them with removeAllHeaders.

Return value

Index of the first added header.

Parameters

wtsoapHeader1,
wtsoapHeader2,…

Objects of the WT_SOAP_HEADER class that are to be added to the message.

4.2.4.8 removeAllHeaders method

The removeAllHeaders method deletes all the headers.

4.2.4.9 getHeaderObjects method

If the response to a SOAP message contains information in the SOAP header, you can, for
example, use the getHeaderObjects method to access the headers.

The getHeaderObjects method returns an object array in which each object is an instance
of the WT_SOAP_HEADER class and represents an element in the SOAP header.

 addHeader(wtsoapHeader1[,wtsoapHeader2[,…]])

 removeAllHeaders()

 getHeaderObjects()

WebTransactions Access to Dynamic Web Contents 71

Connecting web services via SOAP WT_SOAP - client-side class

Example

A response from a web service contains the following header:

<env:Header>
 <m:reservation xmlns:m="http://travelcompany.example.org/reservation"
 env:role="http://www.w3.org/2003/05/soap-envelope/role/next"
 env:mustUnderstand="true">
 <m:reference>uuid:093a2da1-q345-739r-ba5d-pqff98fe8j7d</m:reference>
 <m:dateAndTime>2001-11-29T13:20:00.000-05:00</m:dateAndTime>
 </m:reservation>
 <n:passenger xmlns:n="http://mycompany.example.com/employees"
 env:role="http://www.w3.org/2003/05/soap-envelope/role/next"
 env:mustUnderstand="true">
 <n:name>John Smith</n:name>
 </n:passenger>
 </env:Header>

The call

myObjTree= mySoap.getHeaderObjects();

returns the following data structure

72 WebTransactions Access to Dynamic Web Contents

WT_SOAP - client-side class Connecting web services via SOAP

4.2.4.10 getHeaderObjectTree method

If the response to a SOAP message contains information in the SOAP header then you can,
for example, use the getHeaderObjectTree method to access the headers.

The getHeaderObjectTree method returns a WTScript object which represents the entire
header. The object is generated in the same way as a proxy method’s response object.

Example

A response from a web service contains the following header:

<env:Header>
 <m:reservation xmlns:m="http://travelcompany.example.org/reservation"
 env:role="http://www.w3.org/2003/05/soap-envelope/role/next"
 env:mustUnderstand="true">
 <m:reference>uuid:093a2da1-q345-739r-ba5d-pqff98fe8j7d</m:reference>
 <m:dateAndTime>2001-11-29T13:20:00.000-05:00</m:dateAndTime>
 </m:reservation>
 <n:passenger xmlns:n="http://mycompany.example.com/employees"
 env:role="http://www.w3.org/2003/05/soap-envelope/role/next"
 env:mustUnderstand="true">
 <n:name>John Smith</n:name>
 </n:passenger>
 </env:Header>

The call

myObjTree= mySoap.getHeaderObjectTree();

 getHeaderObjectTree()

WebTransactions Access to Dynamic Web Contents 73

Connecting web services via SOAP WT_SOAP - client-side class

returns the following data structure:

4.2.4.11 createProxysWithPrefix method

Operations that provide a web service may possess both input parameters that have to be
specified at call time as well as input parameters that are not essential. You can use the
createProxysWithPrefix method to make this information evident in the names of the
proxy objects and their attributes.

To preserve the structure of the proxy objects, this information is stored as a prefix in the
attribute name. An m_ in front of the name indicates a mandatory attribute while an o_
indicates an optional attribute. This prefix plays no role in the generation of messages.

The createProxysWithPrefix method activates or deactivates this mode.

 The method must be called before the WDSL is analyzed. For this reason, the con-
structor must first be called without parameters and the function initFromWsdl()
must be used

Parameter

bMode Boolean value.

 createProxysWithPrefix (bMode)

true The proxy objects are generated with prefixes.

false The proxy objects are generated without prefixes.
Default setting.

i

74 WebTransactions Access to Dynamic Web Contents

WT_SOAP - client-side class Connecting web services via SOAP

Example

mySoap = new WT_SOAP();
mySoap.setProxy ('proxy.company.com','81');
mySoap.setProxyAuthorization('puser','ppass');
mySoap.createProxyWithPrefix(true);
mySoap.initFromWsdlUri('http://url');

WebTransactions Access to Dynamic Web Contents 75

Connecting web services via SOAP WT_SOAP - client-side class

4.2.5 Methods for configuring access to the WT_SOAP_COM_FUNCTIONS
subclass

The WT_SOAP_COM_FUNCTIONS class methods are immediately available under the WT_SOAP
object and also available under each port. The following methods operate globally or current
port-specific only; the type of operation used by the method depends on the object used to
call the method.

4.2.5.1 setAuthorization method

If a web service is protected, use the setAuthorization method to set the user authoriza-
tion for access to the web service. These values will be taken over by the attributes USER
and PASSWORD of the HTTP host adapter and when the proxy method is called by the HTTP
host adapter will be sent together with the proxy method (see section “Overview” on
page 18).

Return value

No return value

Parameters

user Specifies the user to be transferred.

password
Specifies the password for the user user.

 setAuthorization(user, password)

76 WebTransactions Access to Dynamic Web Contents

WT_SOAP - client-side class Connecting web services via SOAP

4.2.5.2 setProxy method

The setProxy method defines the proxy host and proxy port to be used when the WSDL
document is loaded and for the actual SOAP request by the HTTP host adapter. setProxy
therefore sets the PROXY and PROXY_PORT attributes for the host adapter in question.

Return value

No return value

Parameters

http_proxy_host
Specifies the value for the PROXY attribute.

http_proxy_port
Specifies the value for the PROXY_PORT attribute.

4.2.5.3 setProxyAuthorization method

The setProxyAuthorization method assigns a user authorization permitting access to the
proxy host which the HTTP host adapter is to use to access the web service.
setProxyAuthorization sets the attributes PROXY_USER and PROXY_PASSWORD of the HTTP
host adapter.

Return value

No return value

Parameters

http_proxy_user
Specifies the value for the PROXY_USER attribute.

http_proxy_password
Specifies the value for the PROXY_PASSWORD attribute.

 setProxy(http_proxy_host, http_proxy_port)

 setProxyAuthorization(http_proxy_user, http_proxy_password)

WebTransactions Access to Dynamic Web Contents 77

Connecting web services via SOAP WT_SOAP - client-side class

4.2.5.4 setTimeout method

The setTimeout method specifies the timeout value for the host adapter by setting the
HTTP_TIMEOUT attribute for the HTTP host adapter.

Return value

No return value

Parameter

timeout Specifies the timeout value for the HTTP host adapter.

 You should note that the attribute TIMEOUT_HTTP cannot be greater than
TIMEOUT_APPLICATION. This means that you may also have to set the attribute
TIMEOUT_APPLICATION.

4.2.6 Exceptions

In the event of errors that stop the SOAP service from responding, an exception occurs and
the proxy method does not return a result. Such errors may be caused, for example, by pa-
rameter errors on the proxy method call or failed connections to the proxy or SOAP server.

Exception objects have the following structure:

type Either a SoapError if the error was recognized only by the WT_SOAP class or one
of the other WebTransactions error types.

soapCode

Contains the SOAP error code. The following values are possible:

– SOCKET
Error accessing the web service (access impossible).

Possible causes:
no network connection, incorrect PROXY server, incorrect PROXY_PORT etc.

– HTTP
Error accessing the web service (e.g. access possible but HTTP signals a fault).

Possible causes:
PROXY_AUTHORIZATION is required; service cannot be found on the addressed
system, etc.

 setTimeout (timeout)

i

78 WebTransactions Access to Dynamic Web Contents

WT_SOAP - client-side class Connecting web services via SOAP

– FILE
The constructor was unable to find the WSDL file specified.

– WSDL
The WSDL document contains elements that could not be interpreted correctly.

– PARAMETER
The structure of the proxy method transfer parameters does not match that
required by the WSDL.

– PARSE
A syntax failure was found during execution.

– WT_SOAP_HEADER
An error occurred while generating an element of class WT_SOAP_HEADER.

– VERSION_MISMATCH
If you send a message in the wrong format to a web service that expects mes-
sages in SOAP V1.2 format then the server responds with a special error code.
If WT_SOAP receives this type of response when executing a proxy method or the
ExecuteRequest method then it outputs the exception VERSION_MISMATCH .This
has the following meaning:
A message was sent to a web service in the wrong format. If present, the ver-
sions of SOAP supported by the service are output for future changes.

soapText
Contains an explanatory text describing the error that has occurred.

 The soapCode and soapText attributes only exist if:
type == ’soapError’i

WebTransactions Access to Dynamic Web Contents 79

Connecting web services via SOAP WT_SOAP - client-side class

4.2.7 WT_SOAP attributes

The list below describes the attributes required for the WT_SOAP class. For more information
on WT_SOAP, see section “Concept of SOAP integration in WebTransactions” on page 47.

service
This is creates a WT_SOAP class object as an attribute. service contains an object
for each service provided by the web service. This is used as an interface for the
proxy method call.

envelope
This is creates a WT_SOAP class object as an attribute. envelope contains the
envelope, header, HeaderBlocks and body attributes which in turn contain the text
segments used to construct the SOAP message when calling a proxy method or the
executeRequest method.

The envelope attribute in turn contains the following attributes:

envelope
contains the envelope tag with all attributes. The attributes are supplied at
instantiation. When a message is sent, the terminating tag is created at the
end of the body.

header
contains the content of the SOAP header; after instantiation the header is
empty. header is bracketed by the matching header tags when the message
is sent.

HeaderBlocks
if you have used the addHeader() function to add header blocks then these
headers are stored here and inserted in the header following the content of
header.

body contains the contents of the SOAP body and is created at the proxy method
call. When the message is sent, the matching body tag is generated.

http Contains a reference to the HTTP communication object used. The value is usually
supplied by WT_SOAP. Developers can use http for special cases.

80 WebTransactions Access to Dynamic Web Contents

WT_SOAP - client-side class Connecting web services via SOAP

The list below gives the attributes which you can use to find out information about the
WSDL:

binding
Map of the <binding> section in the WSDL document.

comattr
Contains the attributes controlling HTTP access (http.WT_SYSTEM). These
attributes are stored here by WT_SOAP_COM_FUNCTIONS class methods (see section
“Methods for configuring access to the WT_SOAP_COM_FUNCTIONS subclass”
on page 75).

message
Map of the <message> section of the WSDL document.

portType
Map of the <portType> section of the WSDL document (for internal use). This
contains one or more WSDL objects that mirror operations described in the WSDL
<portType> section.

types
This is used for the storage of complex data types that are described in the WSDL
document.

4.2.8 Data types for the SOAP request in SOAP body

The SOAP data types are mapped to WTScript data types as specified in the table below.
The data types are from the XSD schema.

Complex data types

SOAP data type WTScript data type

– SOAP data type array
– Element from the <types> section of the

WSDL with the attribute maxOccurs > 1.

Array

All data types which in the <types> section are
defined with the complexType element.

Object

WebTransactions Access to Dynamic Web Contents 81

Connecting web services via SOAP WT_SOAP - client-side class

Simple data types

SOAP data type WTScript data type

anyURI string

base64Binary string

binary not currently supported

boolean boolean

byte number

date string

dateTime string

decimal number

double number

duration string

ENTITIES not currently supported

ENTITY string

float number

gDay string

gMonth string

gMonthDay string

gYear string

gYearMonth string

gYearMonth string

hexBinary string

ID not currently supported

IDREF not currently supported

IDREFS not currently supported

int number

integer number

language string

long number

Name string

NCName string

negativeInteger number

NMTOKEN string

NMTOKENS string

82 WebTransactions Access to Dynamic Web Contents

WT_SOAP - client-side class Connecting web services via SOAP

 All data is converted to string form when the message is sent using the toString
method.

The conversion of these values is not checked. For example, no check is performed
to determine whether integer values are passed to the proxy method in the case of
operations that require the SOAP decimal data type.

nonNegativeInteger number

nonPositiveInteger number

normalizedstring string

NOTATION not currently supported

positiveInteger number

QName string

recurringDuration string

short number

string string

time string

timeDuration string

token string

unsignedByte number

unsignedInt number

unsignedLong number

unsignedShort number

SOAP data type WTScript data type

i

WebTransactions Access to Dynamic Web Contents 83

Connecting web services via SOAP WT_SOAP - client-side class

4.2.9 Example: Checking the spelling of a text

In the following WTScript, use the WSDL shown in section “Example: WSDL document” on
page 58. Call the web service which is used to spell check texts. The result is shown in a
table.

<wtinclude name="wtSOAP">
<wtoncreatescript>
<!--
 try {

 mySoap = new WT_SOAP("wsdl/check.wsdl",
 'proxy.my_company.net','81');

 obj= new Object();
 obj.BodyText = "This is the latest speling chek";
 obj.LicenseKey = 0;
 myResult = mySoap.service.check.port.checkSoap.operation.CheckTextBody(obj);
 }
 catch(e)
 {

document.write('<P>Exception: ', e);
exitTemplate();
 }
//-->
</wtoncreatescript>

<wtrem>Evaluating result</wtrem>
<h3>Original Text</h3>
##myResult.CheckTextBodyResponse.DocumentSummary.body#
<h3>Misspelled Words</h3>
<table border="1">
<tr>
<th>word</th> <th> Possible corrections</th>
</tr>
<wtoncreatescript>
<!--
 for (i=0;i<myResult.CheckTextBodyResponse.DocumentSummary.MisspelledWord.length;i++)
 {
 document.write("<tr><td>");
 document.write
(myResult.CheckTextBodyResponse.DocumentSummary.MisspelledWord[i].word);
 document.write("</td><td>");

document.write(myResult.CheckTextBodyResponse.DocumentSummary.MisspelledWord[i].Suggest
ions.toString().slice(1,-1).replace(/,/g," ").replace(/"/g,""));
 document.write("</td></tr>");
 }
//-->
</wtoncreatescript>
</table>

84 WebTransactions Access to Dynamic Web Contents

WT_SOAP_HEADER - support for SOAP headers Connecting web services via SOAP

4.3 WT_SOAP_HEADER - class for support of SOAP headers

In SOAP version 1.2, headers are of greater importance because of the so-called SOAP
processing model. The main idea behind this model is that multiple hosts may be involved
in the execution of a web service and that these may play different roles: The body of a mes-
sage is intended for the last host (ultimateReceiver) in the chain. In contrast, the headers
are used to send information to all the hosts, including the intermediate hosts. This mech-
anism can therefore be used, for example, to perform transactions involving web services
or to implement security measures.

For a detailed description of how the headers are to be handled by the individual hosts and
the role played by the individual header attributes, see the SOAP Version 1.2 documenta-
tion, section 2 “SOAP Processing Model”.

The WT_SOAP_HEADER class is used to generate these headers in the correct form.

It represents an XML element within the SOAP header block.

Objects in the WT_SOAP_HEADER class possess the attributes name, data, role, namespace,
nsPrefix and bRelay. You can subsequently modify the individual properties of this class
by accessing these elements directly.

4.3.1 Constructor of the WT_SOAP_HEADER class

The WT_SOAP_HEADER class has only one constructor:

Parameters

name Name of the header element. You must specify a valid XML tag name here. A valid
XML tag name starts with a letter or an underscore. This may be followed by digits,
letters, underscores, hyphens or periods.

data Content of the header element. Specify a well-formed XML text.

 WT_SOAP_HEADER (name,data[,encodingStyle[,bMustUnderstand[,
 role[,namespace[,nsPrefix[,bRelay]]]]]])

WebTransactions Access to Dynamic Web Contents 85

Connecting web services via SOAP WT_SOAP_HEADER - support for SOAP headers

encodingStyle
Here you can specify the value of the encodingStyle attribute for a SOAP header
block. You can specify any URI that indicates how the header element is coded:
The following constants for values defined in SOAP are possible:

If this parameter is missing or an empty string is specified then this attribute is ig-
nored when the message is generated

bMustUnderstand
may have the following values:

role SOAP V1.2 defines roles for the host for which the header is intended. The role is
specified as a string in the form of an URL. If you do not specify role or enter an
empty string for role then the attribute is omitted.
You can specify keywords for the roles that are predefined in SOAP V1.2:

namespace
You enter a header’s namespace in this parameter.

SOAP1.1 Coding as in SOAP 1.1

SOAP1.2 Coding as in SOAP1.2

none No indication of coding.

true The host that was addressed with role must understand the header.
If you do not specify role or enter an empty string for role then the
attribute is omitted on message generation. The omission of the at-
tribute has the same effect as setting it to ultimateReceiver.

false It is not essential for the header to be understood.
Default setting

none The header may not be processed by any host that is a SOAP node.
Such hosts may only view the header.

next The header must be processed by the next host.

ultimate
Receiver

The header must be processed by the host that executes the web
service.
Default setting

anyUri If the host possesses a role defined by the web service, enter the URI
of this role here.

86 WebTransactions Access to Dynamic Web Contents

WT_SOAP_HEADER - support for SOAP headers Connecting web services via SOAP

nsPrefix
Prefix assigned to the header element. If you do not specify anything here or if the
parameter is omitted then a prefix is generated internally. Prefixes used internally
by WT_SOAP start with wt_. Do not specify any such prefixes here.

A valid prefix for an XML tag starts with a letter or an underscore. This can be
followed by numbers, letters, underscores, hyphens and dots.

bRelay
Here you can specify true or false depending on whether or not a header is to be
passed on if the intermediate host (in accordance with the SOAP processing model)
for which the header was intended is unable to process it.

Examples

Example 1 below generates a header that contains a transaction number:

myHead1= new WT_SOAP_HEADER("transaction ",
"5",
"http://example.com/encoding ",
true,
"",
"http://thirdparty.example.org/transaction");

The defined header is taken over into the message as follows:

<SOAP-ENV:Header>
 <wt_tns0:transaction
 SOAP-ENV:mustUnderstand="true"
 SOAP-ENV:encodingStyle="http://example.com/encoding"
 xmlns:wt_tns0="http://thirdparty.example.org/transaction">
 5
 </wt_tns0:transaction >
</SOAP-ENV:Header><env:Header>
 <wt_tns0:transaction
 xmlns:wt_hns0="http://thirdparty.example.org/transaction"
 env:encodingStyle="http://example.com/encoding"
 env:mustUnderstand="true" >5</<wt_tns0:transaction>
 </env:Header>

WebTransactions Access to Dynamic Web Contents 87

Connecting web services via SOAP WT_SOAP_HEADER - support for SOAP headers

Example 2 below generates a header that contains elements with reservation num-
bers and dates. Since these elements are also specified qualified with the same
namespace as the header element itself, you must also specify the prefix that is to
be used:

myHead1=new WT_SOAP_HEADER("transactionreservation",
 '<m:reference>uuid:q345-739r-ba5d-pqff98fe8j7d</m:reference>
 <m:dateAndTime>2001-11-29T13:36:50.000-05:00</m:dateAndTime>',
"",
 true,
 "Next",
 "http://travelcompany.example.org/reservation",
 "m");

The defined header is taken over into the message as follows:

<SOAP-ENV:Header>
 <m:reservation
 SOAP-ENV:mustUnderstand="true"
 SOAP-ENV:role="Next"
 xmlns:m="http://travelcompany.example.org/reservation">
 <m:reference>uuid:q345-739r-ba5d-pqff98fe8j7d</m:reference>
 <m:dateAndTime>2001-11-29T13:36:50.000-05:00</m:dateAndTime>
 </m:reservation>
</SOAP-ENV:Header><env:Header>
 <m:reservation
 xmlns:m="http://travelcompany.example.org/reservation"
 env:role="http://www.w3.org/2003/05/soap-envelope/role/next"
 env:mustUnderstand="true">
 <m:reference>uuid:q345-739r-ba5d-pqff98fe8j7d</m:reference>
 <m:dateAndTime>2001-11-29T13:36:50.000-05:00</m:dateAndTime>
 </m:reservation>
 </env:Header>

Exceptions

The constructor outputs an exception if both bMustUnderstand and bRelay have the value
true since these two values are mutually exclusive as specified.

88 WebTransactions Access to Dynamic Web Contents

WT_SOAP_HEADER - support for SOAP headers Connecting web services via SOAP

WebTransactions Access to Dynamic Web Contents 89

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

11
:1

4.
15

P
fa

d:
 F

:\W
eb

TA
\V

7
.5

\M
an

ua
le

\1
0

03
5

06
_D

yn
am

is
ch

e_
W

eb
In

ha
lte

\e
n\

ht
tp

.k
0

5

5 Examples

This chapter provides an overview of the options provided by WebTransactions for
accessing an HTTP server.

5.1 Using an existing CGI script

This example shows how to use an HTTP POST method call (send data to an HTTP server)
to call a CGI script. The CGI script (www.deepThought.mt/cgi-bin/verify.exe) expects
two parameters: a question (question) and an answer (answer) which must be analyzed.

For the sake of simplicity, the caller provides an object sendFORM containing the required
parameters in the form of attributes, e.g. sendFORM.question = 'sense+of+universe'.

The send function sendForm creates an object sendData with the appropriate attributes
ContentType and Body of the required HTTP message. For each attribute of sendFORM, the
name and value are appended to the Body attribute as a name/value pair:

function sendForm()
{
 this.sendData = new Object();
 this.sendData.ContentType = 'application/x-www-form-urlencoded';
 this.sendData.Body = '';
 for(attr in this.sendFORM)
 {
 this.sendData.Body += (this.sendData.Body ? '&' : '') +
 attr + '=' + this.sendFORM [attr];
 }
 return this.send();
}

Using an existing CGI script Examples

90 WebTransactions Access to Dynamic Web Contents

The universal receive function receiveForm interprets the body of the received HTTP
message and defines a pattern for searching for HTML input fields (in the format <INPUT
TYPE="TEXT" NAME="fieldname" VALUE="fieldvalue">). The name and value are enclosed in
brackets. Based on this pattern, the system searches the Body attribute of the receiveData
object. For each input field found, an attribute of the receiveFORM object is created with the
name of the input field and the received value.

function receiveForm()
{
 if(! this.receive())
 return null;
 this.receiveFORM = new Object();
 fieldPattern =
 /<INPUT.*+TYPE=.*TEXT.+NAME=\W*(\w+).+VALUE=["'](\w*)["'].*>/ig
 while(field = fieldPattern.exec(this.receiveData.Body))
 {
 this.receiveFORM[field[1]] = field[2];
 }
 return this;
}

The communication object is generated:

host = new WT_Communication(’myHTTP’);
host.open(’HTTP’);

These methods are now inserted in our communication object.

host.sendForm = sendForm;
host.receiveForm = receiveForm;

The HTTP request can thus be formulated as follows:

host.sendFORM = new Object();
host.sendFORM.question = 'sense+of+universe';
host.sendFORM.answer = 42;
host.WT_SYSTEM.URL = www.deepThought.mt/cgi-bin/verify.exe;
host.sendForm();
host.receiveForm();
...

Processing can now continue as required with the attributes received by the receiveForm
call and stored in the receiveFORM object (input fields of the answer).

Examples Using information from the Web

WebTransactions Access to Dynamic Web Contents 91

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

11
:1

4.
15

P
fa

d:
 F

:\W
eb

TA
\V

7
.5

\M
an

ua
le

\1
0

03
5

06
_D

yn
am

is
ch

e_
W

eb
In

ha
lte

\e
n\

ht
tp

.k
0

5

5.2 Using information from the Web

This example shows how to use the HTTP host adapter to retrieve up-to-date information
from the WWW for use in the WebTransactions application. In each session, the following
function retrieves the current exchange rate for the US dollar and the Japanese Yen from a
web site, and stores this information in the system object attributes
WT_SYSTEM.dollar_factor and WT_SYSTEM.yen_factor.

<wtoncreatescript>
 <!--
 /* Function for retrieving the dollar and Yen rates */
 function getEuroToDollarYen ()
 {
 var i,j;
 // To be executed only once per session
 if (!WT_SYSTEM.dollar_factor)
 {
 // If the communication object does not yet exist, it is created
 if (!WT_HOST.HTTPCON)
 db = new WT_Communication("HTTPCON");
 else
 db = WT_HOST.HTTPCON;
 // Prepare the HTTP connection
 db.open ("HTTP");
 db.WT_SYSTEM.URL =
 "http://waehrungen.onvista.de/devisenkurse.html";
 db.WT_SYSTEM.PROXY = "proxy.my_company.net";
 db.WT_SYSTEM.PROXY_PORT = "81";
 db.WT_SYSTEM.TIMEOUT_HTTP = "10";
 // Send the HTTP request and analyze the result
 if (db.receive())
 {
 // Search for the dollar rate
 var cellBegin = '<td align="right">';
 i = db.receiveData.Body.indexOf('Euro-US Dollar');
 //The current dollar rate is located in the 3rd table column
 for (z=0; z<3;z++)
 i = db.receiveData.Body.indexOf(cellBegin,i) +
cellBegin.length;
 j = db.receiveData.Body.indexOf(' ',i);
 help=db.receiveData.Body.substring(i,j);
 // Save the dollar rate in numeric format
 WT_SYSTEM.dollar_factor =
 db.receiveData.Body.substring(i,j).replace(/,/,".") * 1;
 if (WT_SYSTEM.dollar_factor == NaN)
 delete WT_SYSTEM.dollar_factor;
 // And while we’re here, search for the Yen rate

Using information from the Web Examples

92 WebTransactions Access to Dynamic Web Contents

 i = db.receiveData.Body.indexOf('Euro-Japanischer Yen');
 for (z=0; z<3;z++)
 i = db.receiveData.Body.indexOf(cellBegin,i) +
cellBegin.length;
 j = db.receiveData.Body.indexOf(' ',i);
 WT_SYSTEM.yen_factor =
 db.receiveData.Body.substring(i,j).replace(/,/,".") * 1;
 if (WT_SYSTEM.yen_factor == NaN)
 delete WT_SYSTEM.yen_factor;
 }
 // Conclude the procedure
 db.close();
 }
 }
 getEuroToDollarYen();
 //-->
</wtoncreatescript>
##WT_SYSTEM.dollar_factor#

##WT_SYSTEM.yen_factor#

Examples Communicating via HTTP and processing with WT_Filter

WebTransactions Access to Dynamic Web Contents 93

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

11
:1

4.
15

P
fa

d:
 F

:\W
eb

TA
\V

7
.5

\M
an

ua
le

\1
0

03
5

06
_D

yn
am

is
ch

e_
W

eb
In

ha
lte

\e
n\

ht
tp

.k
0

5

5.3 Communicating via HTTP and processing with WT_Filter

This section describes a WebTransactions application for an HTTP host adapter taking the
WebTransactions client API WT_RPC for WT_REMOTE supplied with the product as an example.
For detailed information on using the WT_RPC class, please refer to the WebTransactions
manual “Client APIs for WebTransactions”, where you will also find an example of how to
use the class. This section concentrates on the definition of the WT_RPC class as an example
of how to communicate via HTTP and process the messages received using the filters
supplied with the product.

5.3.1 Basic concept of the WT_RPC class

The HTTP host adapter allows you to integrate any information provided by web servers
into WebTransactions. In this context, the WebTransactions application acts as a client of a
Web application. At the same time, it also functions as a server providing information on the
basis of the HTTP protocol. In addition to the HTML interface, WebTransactions offers a
second server interface, WT_REMOTE. This interface enables clients to control a
WebTransactions application remotely.

As basic WebTransactions mechanisms, the WT_REMOTE interface and the HTTP host
adapter allow the distribution of applications via the network. It is possible for one
WebTransactions application to delegate certain tasks to another WebTransactions appli-
cation. The basic mechanisms allow the client to define method calls in the form of XML
documents, for example, and send them to the remote WebTransactions application. The
application, in turn, returns the result in an XML document, which can be converted back
into the corresponding data objects in the client application. The WT_RPC class is used for
handling the creation of the method call in the client, the submission of the remote call, and
the formatting of the result.

The WT_RPC class supports the remote invocation of WebTransactions functions. The
address (URL and base directory for WebTransactions) of the remote WebTransactions
application and the names of the remote functions are transferred to a WT_RPC object. The
remote functions can then be called as methods of the WT_RPC object.

Communicating via HTTP and processing with WT_Filter Examples

94 WebTransactions Access to Dynamic Web Contents

The figure below shows an example of this. The client requires the document WT_RPC.htm,
which contains the definition of the WT_RPC class. This class is used to define a connection
and make known the remote function f in the document calc.htm. The local method rtw.f
can now be called as a proxy for the remote function f.

Figure 5: Functionality of the WT_RPC class

WebTransactions client

File WT_RPC.htm

WebTransactions server

XML / HTTP

<include name="WT_RPC">
<wtoncreatescript>
rwt = new WT_RPC (
’srv/cgi/WTPublish.exe’,

 ’c:/basedir’);
rwt.WT_RPC_ADD_METHOD (
’f’, ’calc’);

answer = rwt.f(7);
</wtoncreatescript>

File lets_calc.htm

<wtoncreatescript>

function f(n) {
 return n*6;
}

</wtoncreatescript>

File calc.htm

Examples Communicating via HTTP and processing with WT_Filter

WebTransactions Access to Dynamic Web Contents 95

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

11
:1

4.
15

P
fa

d:
 F

:\W
eb

TA
\V

7
.5

\M
an

ua
le

\1
0

03
5

06
_D

yn
am

is
ch

e_
W

eb
In

ha
lte

\e
n\

ht
tp

.k
0

5

5.3.2 Implementation of the WT_RPC class

The following sections describe the implementation of the constructor and methods of the
WT_RPC class as supplied in WebTransactions. For an example of how to use this class,
please refer to the WebTransactions manual “Client APIs for WebTransactions”.

The WT_RPC constructor

The WT_RPC constructor creates a new communication object with the name WT_RPC_n,
where n=0,1,2... and represents the smallest index for which a corresponding object does
not yet exist. This communication object is used to manage the HTTP connection to the
remote WebTransactions application. It contains the methods WT_RPC_OPEN, WT_RPC_CLOSE,
WT_RPC_INVOKE, and WT_RPC_ADD_METHOD, which are described below. Any connection data
specified for the remote WebTransactions application is stored in the WT_URL and
WT_BASEDIR attributes, and the remote WebTransactions application is started:

// constructor for the remote procedure object //////////////
function WT_RPC(urlOfWebTA, basedir)
{
 // create new communication object WT_RPC_n
 var i;
 for (i = 0; WT_HOST['WT_RPC_' + i] != null; i++);
 this.WT_COM_OBJECT = new WT_Communication('WT_RPC_' + i);
 // define methods
 this.WT_RPC_OPEN = WT_RPC_OPEN;
 this.WT_RPC_CLOSE = WT_RPC_CLOSE;
 this.WT_RPC_INVOKE = WT_RPC_INVOKE;
 this.WT_RPC_ADD_METHOD = WT_RPC_ADD_METHOD;
 // start remote WebTransactions application
 if(urlOfWebTA && basedir)
 this.WT_RPC_OPEN(urlOfWebTA, basedir);
 else
 this.WT_CONNECTED = false;
}

Communicating via HTTP and processing with WT_Filter Examples

96 WebTransactions Access to Dynamic Web Contents

WT_RPC_OPEN method - start a remote WebTransactions application

This method starts a remote WebTransactions session and prepares the communication
object for method calls. If all actions are performed successfully, the function returns with
true. Otherwise, it returns with false.

The following actions are carried out.

● Any active remote WebTransactions application is terminated and the connection is
closed.

● If parameters are specified, these are transferred to the WT_URL and WT_BASEDIR
attributes.

● If an address for the remote WebTransactions application has not been made available
(by transferring parameters from this or an earlier call), the method is terminated with a
negative return code.

● Otherwise, the HTTP host adapter is activated for the communication object by calling
the com.open method.

● The URL attribute is constructed to start the remote WebTransactions application.

● The WT_REMOTE action START_SESSION requests the remote WebTransactions application
to output its session parameters.

● The sendData object is deleted in order to ensure that the GET method is executed.

● Using send and receive, access takes place via the network.

● If this action is performed successfully (HTTP_RETURN_CODE is set to 200 and XML data
is received), the sendData object can be prepared for the subsequent method calls.

This should involve a multisection HTTP message.

– The first section contains the session data used by WebTransactions to locate the
desired remote session. This includes the MIME type application/x-www-form-
urlencoded. The required values can be obtained by analyzing the response from
the preceding call using WT_Filter.

– The second section contains the actual usable information. This is encoded in the
form of an XML document and thus has the MIME type text/xml.

// method to start new remote session and connect to it //////////////
function WT_RPC_OPEN(urlOfWebTA, basedir)
{
 // terminate existing remote WebTransactions application
 if(this.WT_CONNECTED)
 this.WT_RPC_CLOSE();

 // store new connection definition if redefined

Examples Communicating via HTTP and processing with WT_Filter

WebTransactions Access to Dynamic Web Contents 97

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

11
:1

4.
15

P
fa

d:
 F

:\W
eb

TA
\V

7
.5

\M
an

ua
le

\1
0

03
5

06
_D

yn
am

is
ch

e_
W

eb
In

ha
lte

\e
n\

ht
tp

.k
0

5

 if(urlOfWebTA && basedir)
 {
 this.WT_URL = urlOfWebTA;
 this.WT_BASEDIR = basedir;
 }

 // return immediately if connection parameters missing
 if(! (this.WT_URL && this.WT_BASEDIR))
 return this.WT_CONNECTED = false;
 // start remote session
 var com = this.WT_COM_OBJECT;
 com.open('HTTP');
 com.WT_SYSTEM.URL =
 this.WT_URL + '/startup?'+
 'WT_SYSTEM_BASEDIR=' + this.WT_BASEDIR +
 '&WT_REMOTE=START_SESSION';
 if(com.sendData)
 delete com.sendData;
 com.send();
 com.receive();
 if(!WT_SYSTEM.ERROR && com.WT_SYSTEM.HTTP_RETURN_CODE == 200

&& com.ReceiveDate.ContentType='text/xml')
 {
 //store session parameters
 var remoteWtSystem;
 WT_Filter.XMLToDataObject(com.receiveData.Body,'remoteWtSystem');
 this.WT_SESSION_PARAMS ='WT_SYSTEM_BASEDIR=' + this.WT_BASEDIR +
 '&WT_SYSTEM_FORMAT_STATE=IGNORE'+
 '&WT_SYSTEM_SESSION=' + remoteWtSystem.SESSION +
 '&WT_SYSTEM_SIGNATURE=' + remoteWtSystem.SIGNATURE;
 // prepare sendData
 com.sendData = new Array();
 com.sendData[0] = new Object();
 com.sendData[0].ContentType =
 'application/x-www-form-urlencoded';
 com.sendData [0].Body =
 this.WT_SESSION_PARAMS + '&WT_REMOTE=PROCESS_COMMANDS';
 com.sendData[1] = new Object();
 com.sendData[1].ContentType = 'text/xml';
 // prepare communication object for method invocation
 com.WT_SYSTEM.URL = this.WT_URL;
 this.WT_CONNECTED = true;
 }
 else
 this.WT_CONNECTED = false;
 return this.WT_CONNECTED;
}

Communicating via HTTP and processing with WT_Filter Examples

98 WebTransactions Access to Dynamic Web Contents

WT_RPC_CLOSE method - terminate a remote WebTransactions application

This method terminates a remote WebTransactions application and deactivates the HTTP
communication module. The following actions are carried out:

● The URL attribute is constructed for accessing the remote WebTransactions application.

● The WT_REMOTE action EXIT_SESSION terminates the remote WebTransactions appli-
cation.

● The sendData object is deleted in order to ensure that the GET method is executed.

● Using send and receive, access takes place via the network.

● Finally, the close method is called to release the resources of the HTTP communication
module.

// terminate remote session and close connection ///////////
function WT_RPC_CLOSE()
{
 if(this.WT_CONNECTED)
 {
 var com = this.WT_COM_OBJECT;
 com.WT_SYSTEM.URL = this.WT_URL + '?' +
 this.WT_SESSION_PARAMS +
 '&WT_REMOTE=EXIT_SESSION';
 if(com.sendData)
 delete com.sendData;
 com.send();
 com.receive();
 com.close();
 this.WT_CONNECTED = false;
 }
}

Examples Communicating via HTTP and processing with WT_Filter

WebTransactions Access to Dynamic Web Contents 99

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

11
:1

4.
15

P
fa

d:
 F

:\W
eb

TA
\V

7
.5

\M
an

ua
le

\1
0

03
5

06
_D

yn
am

is
ch

e_
W

eb
In

ha
lte

\e
n\

ht
tp

.k
0

5

WT_RPC_INVOKE method - call a remote function

This method calls a remote function with the name functionName. It involves the creation of
an appropriate XML document using the methodCallToXML filter. In functionName the filter
receives the name of the method, in codeBase the name of the WTML document to be
implemented on the remote machine, and in argArray an array of the desired parameters
for the method call. This is sent to the remote WebTransactions application and executed.
The result is an XML document, which is then converted into a WTML script data object
using the XMLToDataObject filter and returned. If there is no connection to a remote
WebTransactions application, the return value is null.

// prepare XML document for method call and send it to remote session
function WT_RPC_INVOKE(functionName, codeBase, argArray)
{
 if(this.WT_CONNECTED)
 {
 var returnValue;
 var com = this.WT_COM_OBJECT;

com.sendData[1].Body =
 WT_Filter.methodCallToXML(functionName, argArray, codeBase);
 com.send();

com.receive();
 WT_Filter.XMLToDataObject(com.receiveData.Body, 'returnValue');
 return returnValue;
 }
 else
 return null;
}

Communicating via HTTP and processing with WT_Filter Examples

100 WebTransactions Access to Dynamic Web Contents

WT_RPC_ADD_METHOD method - define a remote function

As well as calling remote functions using the WT_RPC_INVOKE method in which the name, the
WTML document to be implemented, and a parameter array are specified as arguments, it
must also be possible to invoke remote functions directly by means of a local method of the
WT_RPC object with the same name. Such proxy methods can be created using the
WT_RPC_ADD_METHOD method. WT_RPC_ADD_METHOD creates a new function which calls
WT_RPC_INVOKE with the appropriate function and document name. The parameters of this
new function are forwarded to WT_RPC_INVOKE in an array. The new function object is stored
in the WT_RPC object with the name functionName.

// bind function to WT_RPC object //////////////////
function WT_RPC_ADD_METHOD(functionName, codeBase)
{
 this[functionName] = new Function(
 '{return this.WT_RPC_INVOKE ("' + functionName + '", "' +
 codeBase + '", arguments);}');
}

WebTransactions Access to Dynamic Web Contents 101

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

11
:1

4.
15

P
fa

d:
 F

:\W
eb

TA
\V

7
.5

\M
an

ua
le

\1
0

03
5

06
_D

yn
am

is
ch

e_
W

eb
In

ha
lte

\e
n\

ht
tp

.k
0

6

6 Appendix
The appendix provides

● a brief overview of the HTTP error messages as defined in RFC 2068

● WSDL schema

6.1 HTTP error messages

This chapter lists the HTTP error messages that may occur when connecting to an HTTP
server.

Overview as defined in RFC 2068

The table below provides a brief overview of the HTTP error codes in HTTP/ 1.1, their
names in RFC 2086, and their meaning:

Code / name Meaning

1xx Informative response codes (only in HTTP/ 1.1)

200 OK Request successful

201 Created Request executed, new contents generated

202 Accepted Request accepted but not yet completed

203 Non-Authoritative Information Metadata modified by third party

204 No Content Successful but no contents

205 Reset Content Contents modified successfully

206 Partial Content GET operation partially successful

300 Multiple Choices Localized versions available

301 Moved Permanently Moved

302 Moved Temporarily Moved temporarily

303 See Other Available under another URI

Table 6: HTTP error codes as defined in RFC 2068

HTTP error messages Appendix

102 WebTransactions Access to Dynamic Web Contents

304 Not Modified Conditional access successful but resources not
modified

305 Use Proxy Access only via proxy

400 Bad Request Request in invalid syntax

401 Unauthorized Authentication required

402 Payment Required Reserved for future extensions

403 Forbidden Access denied

404 Not Found Requested resource not found

405 Method Not Allowed Requested method not permitted for specified
resource

406 Not Acceptable Response entities do not match request

407 Proxy Authentication Required Authentication via proxy required

408 Request Timeout Timeout for client request

409 Conflict Conflict in resources status

410 Gone Resource not available

411 Length Required Content length must be specified in the header

412 Precondition Failed Condition in request header not fulfilled

413 Request Entity Too Large Request entity too long

414 Request-URI Too Long Request URI longer than permitted by server

415 Unsupported Media Type Invalid request format for required method

500 Internal Server Error Unexpected HTTP server error

501 Not Implemented Required functionality not available

502 Bad Gateway Invalid response from superordinate server

503 Service Unavailable Server cannot process request at the moment

504 Gateway Timeout Timeout in response from superordinate server

505 HTTP Version Not Supported Unsupported HTTP version of request

Code / name Meaning

Table 6: HTTP error codes as defined in RFC 2068

Appendix WSDL Schema

WebTransactions Access to Dynamic Web Contents 103

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

11
:1

4.
15

P
fa

d:
 F

:\W
eb

TA
\V

7
.5

\M
an

ua
le

\1
0

03
5

06
_D

yn
am

is
ch

e_
W

eb
In

ha
lte

\e
n\

ht
tp

.k
0

6

6.2 WSDL Schema

The following WSDL schema shows the specification for WSDL 1.1 as provided by the
World Wide Web Consortium (W3C). Sections of the schema which are not supported by
the WT_SOAP class are printed in blue.

<schema xmlns="http://www.w3.org/2000/10/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 targetNamespace="http://schemas.xmlsoap.org/wsdl/"
 elementFormDefault="qualified">
 <element name="documentation">

<complexType mixed="true">
 <choice minOccurs="0" maxOccurs="unbounded">
 <any minOccurs="0" maxOccurs="unbounded"/>
 </choice>
 <anyAttribute/>
 </complexType>
 </element>
 <complexType name="documented" abstract="true">
 <sequence>
 <element ref="wsdl:documentation" minOccurs="0"/>
 </sequence>
 </complexType>
 <complexType name="openAtts" abstract="true">
 <annotation>
 <documentation>
 This type is extended by component types
 to allow attributes from other namespaces to be added.
 </documentation>
 </annotation>
 <sequence>
 <element ref="wsdl:documentation" minOccurs="0"/>
 </sequence>
 <anyAttribute namespace="##other"/>
 </complexType>
 <element name="definitions" type="wsdl:definitionsType">
 <key name="message">
 <selector xpath="message"/>
 <field xpath="@name"/>
 </key>
 <key name="portType">
 <selector xpath="portType"/>
 <field xpath="@name"/>
 </key>
 <key name="binding">
 <selector xpath="binding"/>
 <field xpath="@name"/>
 </key>
 <key name="service">
 <selector xpath="service"/>
 <field xpath="@name"/>

WSDL Schema Appendix

104 WebTransactions Access to Dynamic Web Contents

 </key>
 <key name="import">
 <selector xpath="import"/>
 <field xpath="@namespace"/>
 </key>
 <key name="port">
 <selector xpath="service/port"/>
 <field xpath="@name"/>
 </key>
 </element>
<complexType name="definitionsType">
 <complexContent>
 <extension base="wsdl:documented">
 <sequence>
 <element ref="wsdl:import" minOccurs="0" maxOccurs="unbounded"/>
 <element ref="wsdl:types" minOccurs="0"/>
 <element ref="wsdl:message" minOccurs="0" maxOccurs="unbounded"/>
 <element ref="wsdl:portType" minOccurs="0" maxOccurs="unbounded"/>
 <element ref="wsdl:binding" minOccurs="0" maxOccurs="unbounded"/>
 <element ref="wsdl:service" minOccurs="0" maxOccurs="unbounded"/>
 <any namespace="##other" minOccurs="0" maxOccurs="unbounded">
 <annotation>
 <documentation>to support extensibility elements </documentation>
 </annotation>
 </any>
 </sequence>
 <attribute name="targetNamespace" type="uriReference" use="optional"/>
 <attribute name="name" type="NMTOKEN" use="optional"/>
 </extension>
 </complexContent>
 </complexType>
 <element name="import" type="wsdl:importType"/>
 <complexType name="importType">
 <complexContent>
 <extension base="wsdl:documented">
 <attribute name="namespace" type="uriReference" use="required"/>
 <attribute name="location" type="uriReference" use="required"/>
 </extension>
 </complexContent>
 </complexType>
 <element name="types" type="wsdl:typesType"/>
 <complexType name="typesType">
 <complexContent>
 <extension base="wsdl:documented">
 <sequence>
 <any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 <element name="message" type="wsdl:messageType">
 <unique name="part">

Appendix WSDL Schema

WebTransactions Access to Dynamic Web Contents 105

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

11
:1

4.
15

P
fa

d:
 F

:\W
eb

TA
\V

7
.5

\M
an

ua
le

\1
0

03
5

06
_D

yn
am

is
ch

e_
W

eb
In

ha
lte

\e
n\

ht
tp

.k
0

6

 <selector xpath="part"/>
 <field xpath="@name"/>
 </unique>
 </element>
 <complexType name="messageType">
 <complexContent>
 <extension base="wsdl:documented">
 <sequence>
 <element ref="wsdl:part" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <attribute name="name" type="NCName" use="required"/>
 </extension>
 </complexContent>
 </complexType>
 <element name="part" type="wsdl:partType"/>
 <complexType name="partType">
 <complexContent>
 <extension base="wsdl:openAtts">
 <attribute name="name" type="NMTOKEN" use="optional"/>
 <attribute name="type" type="QName" use="optional"/>
 <attribute name="element" type="QName" use="optional"/>
 </extension>
 </complexContent>
 </complexType>
 <element name="portType" type="wsdl:portTypeType"/>
 <complexType name="portTypeType">
 <complexContent>
 <extension base="wsdl:documented">
 <sequence>
 <element ref="wsdl:operation" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <attribute name="name" type="NCName" use="required"/>
 </extension>
 </complexContent>
 </complexType>
 <element name="operation" type="wsdl:operationType"/>
 <complexType name="operationType">
 <complexContent>
 <extension base="wsdl:documented">
 <choice>
 <group ref="wsdl:one-way-operation"/>
 <group ref="wsdl:request-response-operation"/>
 <group ref="wsdl:solicit-response-operation"/>
 <group ref="wsdl:notification-operation"/>
 </choice>
 <attribute name="name" type="NCName" use="required"/>
 </extension>
 </complexContent>
 </complexType>
 <group name="one-way-operation">
 <sequence>
 <element ref="wsdl:input"/>

WSDL Schema Appendix

106 WebTransactions Access to Dynamic Web Contents

 </sequence>
 </group>
 <group name="request-response-operation">
 <sequence>
 <element ref="wsdl:input"/>
 <element ref="wsdl:output"/>

<element ref="wsdl:fault" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </group>
 <group name="solicit-response-operation">
 <sequence>
 <element ref="wsdl:output"/>
 <element ref="wsdl:input"/>
 <element ref="wsdl:fault" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </group>
 <group name="notification-operation">
 <sequence>
 <element ref="wsdl:output"/>
 </sequence>
 </group>
 <element name="input" type="wsdl:paramType"/>
 <element name="output" type="wsdl:paramType"/>
 <element name="fault" type="wsdl:faultType"/>
 <complexType name="paramType">
 <complexContent>
 <extension base="wsdl:documented">
 <attribute name="name" type="NMTOKEN" use="optional"/>
 <attribute name="message" type="QName" use="required"/>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="faultType">
 <complexContent>
 <extension base="wsdl:documented">
 <attribute name="name" type="NMTOKEN" use="required"/>
 <attribute name="message" type="QName" use="required"/>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="startWithExtensionsType" abstract="true">
 <complexContent>
 <extension base="wsdl:documented">
 <sequence>
 <any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 <element name="binding" type="wsdl:bindingType"/>
 <complexType name="bindingType">
 <complexContent>

Appendix WSDL Schema

WebTransactions Access to Dynamic Web Contents 107

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

11
:1

4.
15

P
fa

d:
 F

:\W
eb

TA
\V

7
.5

\M
an

ua
le

\1
0

03
5

06
_D

yn
am

is
ch

e_
W

eb
In

ha
lte

\e
n\

ht
tp

.k
0

6

 <extension base="wsdl:startWithExtensionsType">
 <sequence>
 <element name="operation" type="wsdl:binding_operationType" minOccurs="0"

maxOccurs="unbounded"
/>
 </sequence>
 <attribute name="name" type="NCName" use="required"/>
 <attribute name="type" type="QName" use="required"/>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="binding_operationType">
 <complexContent>
 <extension base="wsdl:startWithExtensionsType">
 <sequence>
 <element name="input" type="wsdl:startWithExtensionsType" minOccurs="0"/>
 <element name="output" type="wsdl:startWithExtensionsType" minOccurs="0"/>
 <element name="fault" minOccurs="0" maxOccurs="unbounded">
 <complexType>
 <complexContent>
 <extension base="wsdl:startWithExtensionsType">
 <attribute name="name" type="NMTOKEN" use="required"/>
 </extension>
 </complexContent>
 </complexType>
 </element>
 </sequence>
 <attribute name="name" type="NCName" use="required"/>
 </extension>
 </complexContent>
 </complexType>
 <element name="service" type="wsdl:serviceType"/>
 <complexType name="serviceType">
 <complexContent>
 <extension base="wsdl:documented">
 <sequence>
 <element ref="wsdl:port" minOccurs="0" maxOccurs="unbounded"/>
 <any namespace="##other" minOccurs="0"/>
 </sequence>
 <attribute name="name" type="NCName" use="required"/>
 </extension>
 </complexContent>
 </complexType>
 <element name="port" type="wsdl:portType"/>
 <complexType name="portType">
 <complexContent>
 <extension base="wsdl:documented">
 <sequence>
 <any namespace="##other" minOccurs="0"/>
 </sequence>
 <attribute name="name" type="NCName" use="required"/>
 <attribute name="binding" type="QName" use="required"/>

WSDL Schema Appendix

108 WebTransactions Access to Dynamic Web Contents

 </extension>
 </complexContent>
 </complexType>
 <attribute name="arrayType" type="string"/>
</schema>

WebTransactions Access to Dynamic Web Contents 109

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
ul

i 2
0

10
 S

ta
nd

 1
1:

14
.1

5
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

a
nu

a
le

\1
00

35
06

_
D

yn
a

m
is

ch
e_

W
eb

In
ha

lte
\e

n\
ht

tp
.m

ix

Glossary
A term in ->italic font means that it is explained somewhere else in the glossary.

active dialog
In the case of active dialogs, WebTransactions actively intervenes in the control
of the dialog sequence, i.e. the next ->template to be processed is determined
by the template programming. You can use the ->WTML language tools, for
example, to combine multiple ->host formats in a single ->HTML page. In this
case, when a host ->dialog step is terminated, no output is sent to the ->browser
and the next step is immediately started. Equally, multiple interactions between
the Web ->browser and WebTransactions are possible within one and the same
host dialog step.

array
->Data type which can contain a finite set of values of one data type. This data
type can be:
– ->scalar
– a ->class
– an array
The values in the array are addressed via a numerical index, starting at 0.

asynchronous message
In WebTransactions, an asynchronous message is one sent to the terminal
without having been explicitly requested by the user, i.e. without the user having
pressed a key or clicked on an interface element.

attribute
Attributes define the properties of ->objects.
An attribute can be, for example, the color, size or position of an object or it can
itself be an object. Attributes are also interpreted as ->variables and their values
can be queried or modified.

Glossary

110 WebTransactions Access to Dynamic Web Contents

Automask template
A WebTransactions ->template created by WebLab either implicitly when gener-
ating a base directory or explicitly with the command Generate Automask. It is
used whenever no format-specific template can be identified. An Automask
template contains the statements required for dynamically mapping formats
and for communication. Different variants of the Automask template can be
generated and selected using the system object attribute AUTOMASK.

base directory
The base directory is located on the WebTransactions server and forms the
basis for a ->WebTransactions application. The base directory contains the
->templates and all the files and program references (links) which are necessary
in order to run a WebTransactions application.

BCAM application name
Corresponds to the openUTM generation parameter BCAMAPPL and is the name
of the −>openUTM application through which −>UPIC establishes the
connection.

browser
Program which is required to call and display ->HTML pages. Browsers are, for
example, Microsoft Internet Explorer or Mozilla Firefox.

browser display print
The WebTransactions browser display print prints the information displayed in
the ->browser.

browser platform
Operating system of the host on which a ->browser runs as a client for
WebTransactions.

buffer
Definition of a record, which is transmitted from a ->service. The buffer is used
for transmitting and receiving messages. In addition there is a specific buffer for
storing the ->recognition criteria and for data for the representation on the
screen.

capturing
To enable WebTransactions to identify the received ->formats at runtime, you
can open a ->session in ->WebLab and select a specific area for each format and
name the format. The format name and ->recognition criteria are stored in the
->capture database. A ->template of the same name is generated for the format.
Capturing forms the basis for the processing of format-specific templates for the
WebTransactions for OSD and MVS product variants.

Glossary

WebTransactions Access to Dynamic Web Contents 111

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
ul

i 2
0

10
 S

ta
nd

 1
1:

14
.1

5
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

a
nu

a
le

\1
00

35
06

_
D

yn
a

m
is

ch
e_

W
eb

In
ha

lte
\e

n\
ht

tp
.m

ix

capture database
The WebTransactions capture database contains all the format names and the
associated ->recognition criteria generated using the ->capturing technique. You
can use ->WebLab to edit the sequence and recognition criteria of the formats.

CGI
(Common Gateway Interface)
Standardized interface for program calls on ->Web servers. In contrast to the
static output of a previously defined->HTML page, this interface permits the
dynamic construction of HTML pages.

class
Contains definitions of the ->properties and ->methods of an ->object. It provides
the model for instantiating objects and defines their interfaces.

class template
In WebTransactions, a class template contains valid, recurring statements for
the entire object class (e.g. input or output fields). Class templates are
processed when the ->evaluation operator or the toString method is applied to a
->host data object.

client
Requestors and users of services in a network.

cluster
Set of identical ->WebTransactions applications on different servers which are
interconnected to form a load-sharing network.

communication object
This controls the connection to an ->host application and contains information
about the current status of the connection, the last data to be received etc.

conversion tools
Utilities supplied with WebTransactions. These tools are used to analyze the
data structures of ->openUTM applications and store the information in files.
These files can then be used in WebLab as ->format description sources in order
to generate WTML templates and ->FLD files.
COBOL data structures or IFG format libraries form the basis for the conversion
tools. The conversion tool for DRIVE programs is supplied with the product
DRIVE.

daemon
Name of a process type in Unix system/POSIX systems which runs in the
background and performs no I/O operations at terminals.

Glossary

112 WebTransactions Access to Dynamic Web Contents

data access control
Monitoring of the accesses to data and ->objects of an application.

data type
Definition of the way in which the contents of a storage location are to be inter-
preted. Each data type has a name, a set of permitted values (value range), and
a defined number of operations which interpret and manipulate the values of
that data type.

dialog
Describes the entire communication between browser, WebTransactions and -
>host application. It will usually comprise multiple ->dialog cycles. WebTransac-
tions supports a number of different
types of dialog.
– ->passive dialog
– ->active dialog
– ->synchronized dialog
– ->non-synchronized dialog

dialog cycle
Cycle that comprises the following steps when a ->WebTransactions application is
executed:
– construct an ->HTML page and send it to the ->browser
– wait for a response from the browser
– evaluate the response fields and possibly send them to the->host application

for further processing
A number of dialog cycles are passed through while a ->WebTransactions appli-
cation is executing.

distinguished name
The Distinguished Name (DN) in ->LDAP is hierarchically organized and
consists of a number of different components (e.g. “country, and below country:
organization, and below organization: organizational unit, followed by: usual
name”). Together, these components provide a unique identification of an object
in the directory tree.
Thanks to this hierarchy, the unique identification of objects is a simple matter
even in a worldwide directory tree:
– The DN "Country=DE/Name=Emil Person" reduces the problem of achiev-

ing a unique identification to the country DE (=Germany).
– The DN "Organization=FTS/Name=Emil Person" reduces it to the organiza-

tion FTS.
– The DN "Country=DE/Organization=FTS/Name=Emil Person" reduces it to

the organization FTS located in Germany (DE).

Glossary

WebTransactions Access to Dynamic Web Contents 113

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
ul

i 2
0

10
 S

ta
nd

 1
1:

14
.1

5
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

a
nu

a
le

\1
00

35
06

_
D

yn
a

m
is

ch
e_

W
eb

In
ha

lte
\e

n\
ht

tp
.m

ix

document directory
->Web server directory containing the documents that can be accessed via the
network. WebTransactions stores files for download in this directory, e.g. the
WebLab client or general start pages.

Domain Name Service (DNS)
Procedure for the symbolic addressing of computers in networks. Certain
computers in the network, the DNS or name server, maintain a database
containing all the known host names and IP numbers in their environment.

dynamic data
In WebTransactions, dynamic data is mapped using the WebTransactions
object model, e.g. as a ->system object, host object or user input at the browser.

EHLLAPI
Enhanced High-Level Language API
Program interface, e.g. of terminal emulations for communication with the SNA
world. Communication between the transit client and SNA computer, which is
handled via the TRANSIT product, is based on this interface.

EJB
(Enterprise JavaBean)
This is a Java-based industry standard which makes it possible to use in-house
or commercially available server components for the creation of distributed
program systems within a distributed, object-oriented environment.

entry page
The entry page is an ->HTML page which is required in order to start a
->WebTransactions application This page contains the call which starts
WebTransactions with the first ->template, the so-called start template.

evaluation operator
In WebTransactions the evaluation operator replaces the addressed
->expressions with their result (object attribute evaluation). The evaluation
operator is specified in the form ##expression#.

expression
A combination of ->literals, ->variables, operators and expressions which return
a specific result when evaluated.

FHS
Format Handling System
Formatting system for BS2000/OSD applications.

Glossary

114 WebTransactions Access to Dynamic Web Contents

field
A field is the smallest component of a service and element of a ->record or
->buffer.

field file (*.fld file)
In WebTransactions, this contains the structure of a ->format record (metadata).

filter
Program or program unit (e.g. a library) for converting a given ->format into
another format (e.g. XML documents to ->WTScript data structures).

format
Optical presentation on alphanumeric screens (sometimes also referred to as
screen form or mask).

In WebTransactions each format is represented by a ->field file and a ->template.

format type
(only relevant in the case of ->FHS applications and communication via ->UPIC)
Specifies the type of format: #format, +format, -format or *format.

format description sources
Description of multiple ->formats in one or more files which were generated from
a format library (FHS/IFG) or are available directly at the ->host for the use of
“expressive” names in formats.

function
A function is a user-defined code unit with a name and ->parameters. Functions
can be called in ->methods by means of a description of the function interface (or
signature).

holder task
A process, a task or a thread in WebTransactions depending on the operating
system platform being used. The number of tasks corresponds to the number
of users. The task is terminated when the user logs off or when a time-out
occurs. A holder task is identical to a ->WebTransactions session.

host
The computer on which the- >host application is running.

host adapter
Host adapters are used to connect existing ->host applications to
WebTransactions. At runtime, for example, they have the task of establishing
and terminating connections and converting all the exchanged data.

Glossary

WebTransactions Access to Dynamic Web Contents 115

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
ul

i 2
0

10
 S

ta
nd

 1
1:

14
.1

5
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

a
nu

a
le

\1
00

35
06

_
D

yn
a

m
is

ch
e_

W
eb

In
ha

lte
\e

n\
ht

tp
.m

ix

host application
Application that is integrated with WebTransactions.

host control object
In WebTransactions, host control objects contain information which relates not
to individual fields but to the entire ->format. This includes, for example, the field
in which the cursor is located, the current function key or global format
attributes.

host data object
In WebTransactions, this refers to an ->object of the data interface to the ->host
application. It represents a field with all its field attributes. It is created by
WebTransactions after the reception of host application data and exists until the
next data is received or until termination of the ->session.

host data print
During WebTransactions host data print, information is printed that was edited
and sent by the ->host application, e.g. printout of host files.

host platform
Operating system of the host on which the ->host applications runs.

HTML
(Hypertext Markup Language)
See ->Hypertext Markup Language

HTTP
(Hypertext Transfer Protocol)
This is the protocol used to transfer ->HTML pages and data.

HTTPS
(Hypertext Transfer Protocol Secure)
This is the protocol used for the secure transfer of ->HTML pages and data.

hypertext
Document with links to other locations in the same or another document. Users
click the links to jump to these new locations.

Hypertext Markup Language
(Hypertext Markup Language)
Standardized markup language for documents on the Web.

Glossary

116 WebTransactions Access to Dynamic Web Contents

Java Bean
Java programs (or ->classes) with precisely defined conventions for interfaces
that allow them to be reused in different applications.

KDCDEF
openUTM tool for generating ->openUTM applications.

LDAP
(Lightweight Directory Access Protocol)
The X.500 standard defines DAP (Directory Access Protocol) as the access
protocol. However, the Internet standard “LDAP” has proved successful specif-
ically for accessing X.500 directory services from a PC.
LDAP is a simplified DAP protocol that does not support all the options available
with DAP and is not compatible with DAP. Practically all X.500 directory services
support both DAP and LDAP. In practice, interpretation problems may arise
since there are various dialects of LDAP. The differences between the dialects
are generally small.

literal
Character sequence that represents a fixed value. Literals are used in source
programs to specify constant values (“literal” values).

master template
WebTransactions template used to generate the Automask and the format-
specific templates.

message queuing (MQ)
A form of communication in which messages are not exchanged directly, rather
via intermediate queues. The sender and receiver can work at separate times
and locations. Message transmission is guaranteed regardless of whether or
not a network connection currently exists.

method
Object-oriented term for a ->function. A method is applied to the ->object in
which it is defined.

module template
In WebTransactions, a module template is used to define ->classes, ->functions
and constants globally for a complete ->session. A module template is loaded
using the import() function.

MT tag
(Master Template tag)
Special tags used in the dynamic sections of ->master templates.

Glossary

WebTransactions Access to Dynamic Web Contents 117

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
ul

i 2
0

10
 S

ta
nd

 1
1:

14
.1

5
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

a
nu

a
le

\1
00

35
06

_
D

yn
a

m
is

ch
e_

W
eb

In
ha

lte
\e

n\
ht

tp
.m

ix

multitier architecture
All client/server architectures are based on a subdivision into individual
software components which are also known as layers or tiers. We speak of
1-tier, 2-tier, 3-tier and multitier models. This subdivision can be considered at
the physical or logical level:
– We speak of logical software tiers when the software is subdivided into

modular components with clear interfaces.
– Physical tiers occur when the (logical) software components are distributed

across different computers in the network.
With WebTransactions, multitier models are possible both at the physical and
logical level.

name/value pair
In the data sent by the ->browser, the combination, for example, of an ->HTML
input field name and its value.

non-synchronized dialog
Non-synchronized dialogs in WebTransactions permit the temporary deacti-
vation of the checking mechanism implemented in ->synchronized dialogs. In this
way, ->dialogs that do not form part of the synchronized dialog and have no
effect on the logical state of the ->host application can be incorporated. In this
way, for example, you can display a button in an ->HTML page that allows users
to call help information from the current host application and display it in a
separate window.

object
Elementary unit in an object-oriented software system. Every object possesses
a name via which it can be addressed, ->attributes, which define its status
together with the ->methods that can be applied to the object.

openUTM
(Universal Transaction Monitor)
Transaction monitor from Fujitsu Technology Solutions, which is available for
BS2000/OSD and a variety of Unix platforms and Windows platforms.

openUTM application
A ->host application which provides services that process jobs submitted by
->clients or other ->host applications. openUTM responsibilities include trans-
action management and the management of communication and system
resources. Technically speaking, the UTM application is a group of processes
which form a logical unit at runtime.
openUTM applications can communicate both via the client/server protocol
->UPIC and via the emulation interface (9750).

Glossary

118 WebTransactions Access to Dynamic Web Contents

openUTM-Client (UPIC)
The openUTM-Client (UPIC) is a product used to create client programs for
openUTM. openUTM-Client (UPIC) is available, for example, for Unix platforms,
BS2000/OSD platforms and Windows platforms.

openUTM program unit
The services of an ->openUTM application are implemented by one or more
openUTM program units. These can be addressed using transaction codes and
contain special openUTM function calls (e.g. KDCS calls).

parameter
Data which is passed to a ->function or a ->method for processing (input
parameter) or data which is returned as a result of a function or method (output
parameter).

passive dialog
In the case of passive dialogs in WebTransactions, the dialog sequence is
controlled by the ->host application, i.e. the host application determines the next
->template which is to be processed. Users who access the host application via
WebTransactions pass through the same dialog steps as if they were accessing
it from a terminal. WebTransactions uses passive dialog control for the
automatic conversion of the host application or when each host application
format corresponds to precisely one individual template.

password
String entered for a ->user id in an application which is used for user authenti-
cation (->system access control).

polling
Cyclical querying of state changes.

pool
In WebTransactions, this term refers to a shared directory in which WebLab can
create and maintain ->base directories. You control access to this directory with
the administration program.

post
To send data.

posted object (wt_Posted)
List of the data returned by the ->browser. This ->object is created by WebTrans-
actions and exists for the duration of a ->dialog cycle.

Glossary

WebTransactions Access to Dynamic Web Contents 119

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
ul

i 2
0

10
 S

ta
nd

 1
1:

14
.1

5
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

a
nu

a
le

\1
00

35
06

_
D

yn
a

m
is

ch
e_

W
eb

In
ha

lte
\e

n\
ht

tp
.m

ix

process
The term “process” is used as a generic term for process (in Solaris, Linux and
Windows) and task (in BS2000/OSD).

project
In the WebTransactions development environment, a project contains various
settings for a ->WebTransactions application. These are saved in a project file
(suffix .wtp). You should create a project for each WebTransactions application
you develop, and always open this project for editing.

property
Properties define the nature of an ->object, e.g. the object “Customer” could
have a customer name and number as its properties. These properties can be
set, queried, and modified within the program.

protocol
Agreements on the procedural rules and formats governing communications
between remote partners of the same logical level.

protocol file

● openUTM-Client: File into which the openUTM error messages as are writ-
ten in the case of abnormal termination of a conversation.

● In WebTransactions, protocol files are called trace files.

roaming session
->WebTransactions sessions which are invoked simultaneously or one after
another by different ->clients.

record
A record is the definition of a set of related data which is transferred to a ->buffer.
It describes a part of the buffer which may occur one or more times.

recognition criteria
Recognition criteria are used to identify ->formats of a ->terminal application and
can access the data of the format. The recognition criteria selected should be
one or more areas of the format which uniquely identify the content of the
format.

scalar
->variable made up of a single value, unlike a ->class, an ->array or another
complex data structure.

Glossary

120 WebTransactions Access to Dynamic Web Contents

service (openUTM)
In ->openUTM, this is the processing of a request using an ->openUTM appli-
cation. There are dialog services and asynchronous services. The services are
assigned their own storage areas by openUTM. A service is made up of one or
more ->transactions.

service application
->WebTransactions session which can be called by various different users in turn.

service node
Instance of a ->service. During development and runtime of a ->method a service
can be instantiated several times. During modelling and code editing those
instances are named service nodes.

session
When an end user starts to work with a ->WebTransactions application this opens
a WebTransactions session for that user on the WebTransactions server. This
session contains all the connections open for this user to the
->browsers, special ->clients and ->hosts.
A session can be started as follows:
– Input of a WebTransactions URL in the browser.
– Using the START_SESSION method of the WT_REMOTE client/server interface.
A session is terminated as follows:
– The user makes the corresponding input in the output area of this

->WebTransactions application (not via the standard browser buttons).
– Whenever the configured time that WebTransactions waits for a response

from the ->host application or from the ->browser is exceeded.
– Termination from WebTransactions administration.
– Using the EXIT_SESSION method of the WT_REMOTE client/server interface.
A WebTransactions session is unique and is defined by a ->WebTransactions
application and a session ID. During the life cycle of a session there is one
->holder task for each WebTransactions session on the WebTransactions server.

SOAP
(originally Simple Object Access Protocol)
The ->XML based SOAP protocol provides a simple, transparent mechanism
for exchanging structured and typecast information between computers in a
decentralized, distributed environment.
SOAP provides a modular package model together with mechanisms for data
encryption within modules. This enables the uncomplicated description of the
internal interfaces of a ->Web-Service.

Glossary

WebTransactions Access to Dynamic Web Contents 121

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
ul

i 2
0

10
 S

ta
nd

 1
1:

14
.1

5
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

a
nu

a
le

\1
00

35
06

_
D

yn
a

m
is

ch
e_

W
eb

In
ha

lte
\e

n\
ht

tp
.m

ix

style
In WebTransactions this produces a different layout for a ->template, e.g. with
more or less graphic elements for different->browsers. The style can be changed
at any time during a ->session.

synchronized dialog
In the case of synchronized dialogs (normal case), WebTransactions automati-
cally checks whether the data received from the web browser is genuinely a
response to the last ->HTML page to be sent to the ->browser. For example, if
the user at the web browser uses the Back button or the History function to
return to an “earlier” HTML page of the current ->session and then returns this,
WebTransactions recognizes that the data does not correspond to the current
->dialog cycle and reacts with an error message. The last page to have been
sent to the browser is then automatically sent to it again.

system access control
Check to establish whether a user under a particular ->user ID is authorized to
work with the application.

system object (wt_System)
The WebTransactions system object contains ->variables which continue to
exist for the duration of an entire ->session and are not cleared until the end of
the session or until they are explicitly deleted. The system object is always
visible and is identical for all name spaces.

TAC
See ->transaction code

tag
->HTML, ->XML and ->WTML documents are all made up of tags and actual
content. The tags are used to mark up the documents e.g. with header formats,
text highlighting formats (bold, italics) or to give source information for graphics
files.

TCP/IP
(Transport Control Protocol/Internet Protocol)
Collective name for a protocol family in computer networks used, for example,
in the Internet.

Glossary

122 WebTransactions Access to Dynamic Web Contents

template
A template is used to generate specific code. A template contains fixed infor-
mation parts which are adopted unchanged during generation, as well as
variable information parts that can be replaced by the appropriate values during
generation.
A template is a ->WTML file with special tags for controlling the dynamic gener-
ation of a ->HTML page and for the processing of the values entered at the -
>browser. It is possible to maintain multiple template sets in parallel. These then
represent different ->styles (e.g. many/few
graphics, use of Java, etc.).
WebTransactions uses different types of template:
– ->Automask templates for the automatic conversion of the ->formats of MVS

and OSD applications.
– Custom templates, written by the programmer, for example, to control an -

>active dialog.
– Format-specific templates which are generated for subsequent post-pro-

cessing.
– Include templates which are inserted in other templates.
– ->Class templates
– ->Master templates to ensure the uniform layout of fixed areas on the

generation of the Automask and format-specific templates.
– Start template, this is the first template to be processed in a

WebTransactions application.

template object
->Variables used to buffer values for a ->dialog cycle in WebTransactions.

terminal application
Application on a ->host computer which is accessed via a 9750 or 3270
interface.

terminal hardcopy print
A terminal hardcopy print in WebTransactions prints the alphanumeric repre-
sentation of the ->format as displayed by a terminal or a terminal emulation.

transaction
Processing step between two synchronization points (in the current operation)
which is characterized by the ACID conditions (Atomicity, Consistency, Isolation
and Durability). The intentional changes to user information made within a
transaction are accepted either in their entirety or not at all (all-or-nothing rule).

Glossary

WebTransactions Access to Dynamic Web Contents 123

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
ul

i 2
0

10
 S

ta
nd

 1
1:

14
.1

5
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

a
nu

a
le

\1
00

35
06

_
D

yn
a

m
is

ch
e_

W
eb

In
ha

lte
\e

n\
ht

tp
.m

ix

transaction code/TAC
Name under which an openUTM service or ->openUTM program unit can be
called. The transaction code is assigned to the openUTM program unit during
configuration. A program unit can be assigned several transaction codes.

UDDI
(Universal Description, Discovery and Integration)
Refers to directories containing descriptions of ->Web services. This information
is available to web users in general.

Unicode
An alphanumeric character set standardized by the International Standardisa-
tion Organisation (ISO) and the Unicode Consortium. It is used to represent
various different types of characters: letters, numerals, punctuation marks, syl-
labic characters, special characters and ideograms. Unicode brings together all
the known text symbols in use across the world into a single character set.
Unicode is vendor-independent and system-independent. It uses either two-
byte or four-byte character sets in which each text symbol is encoded. In the ISO
standard, these character sets are termed UCS-2 (Universal Character Set 2)
or UCS-4. The designation UTF-16 (Unicode Transformation Format 16-bit),
which is a standard defined by the Unicode Consortium, is often used in place
of the designation UCS-2 as defined in ISO. Alongside UTF-16, UTF-8 (Unicode
Transformation Format 8 Bit) is also in widespread use. UTF-8 has become the
character encoding method used globally on the Internet.

UPIC
(Universal Programming Interface for Communication)
Carrier system for openUTM clients which uses the X/Open interface, which
permity CPI-C client/server communication between a CPI-C-Client application
and the openUTM application.

URI
(Uniform Resource Identifier)
Blanket term for all the names and addresses that reference objects on the
Internet. The generally used URIs are->URLs.

URL
(Uniform Resource Locator)
Description of the location and access type of a resource in the ->Internet.

user exit
Functions implemented in C/C++ which the programmer calls from a
->template.

Glossary

124 WebTransactions Access to Dynamic Web Contents

user ID
User identification which can be assigned a password (->system access control)
and special access rights (->data access control).

variable
Memory location for variable values which requires a name and a ->data type.

visibility of variables
->Objects and ->variables of different dialog types are managed by WebTrans-
actions in different address spaces. This means that variables belonging to a -
>synchronized dialog are not visible and therefore not accessible in a
->asynchronous dialog or in a dialog with a remote application.

web server
Computer and software for the provision of ->HTML pages and dynamic data
via ->HTTP.

web service
Service provided on the Internet, for example a currency conversion program.
The SOAP protocol can be used to access such a service. The interface of a
web service is described in ->WSDL.

WebTransactions application
This is an application that is integrated with ->host applications for internet/
intranet access. A WebTransactions application consists of:
– a ->base directory
– a start template
– the ->templates that control conversion between the ->host and the

->browser.
– protocol-specific configuration files.

WebTransactions platform
Operating system of the host on which WebTransactions runs.

WebTransactions server
Computer on which WebTransactions runs.

WebTransactions session
See ->session

WSDL
(Web Service Definition Language)
Provides ->XML language rules for the description of ->web services. In this
case, the web service is defined by means of the port selection.

Glossary

WebTransactions Access to Dynamic Web Contents 125

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
ul

i 2
0

10
 S

ta
nd

 1
1:

14
.1

5
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

a
nu

a
le

\1
00

35
06

_
D

yn
a

m
is

ch
e_

W
eb

In
ha

lte
\e

n\
ht

tp
.m

ix

WTBean
In WebTransactions ->WTML components with a self-descriptive interface are
referred to as WTBeans. A distinction is made between inline and standalone
WTBeans:
– An inline WTBean corresponds to a part of a WTML document
– A standalone WTBean is an autonomous WTML document

A number of WTBeans are included in of the WebTransactions product, addi-
tional WTBeans can be downloaded from the WebTransactions homepage
ts.fujitsu.com/products/software/openseas/webtransactions.html.

WTML
(WebTransactions Markup Language)
Markup and programming language for WebTransactions ->templates. WTML
uses additional ->WTML tags to extend ->HTML and the server programming
language ->WTScript, e.g. for data exchange with ->host applications. WTML
tags are executed by WebTransactions and not by the ->browser (serverside
scripting).

WTML tag
(WebTransactions Markup Language-Tag)
Special WebTransactions tags for the generation of the dynamic sections of an
->HTML page using data from the->host application.

WTScript
Serverside programming language of WebTransactions. WTScripts are similiar
to client-side Java scripts in that they are contained in sections that are intro-
duced and terminated with special tags. Instead of using ->HTML-SCRIPT tags
you use ->WTML-Tags: wtOnCreateScript and wtOnReceiveScript. This indicates
that these scripts are to be implemented by WebTransactions and not by the
->browser and also indicates the time of execution. OnCreate scripts are
executed before the page is sent to the browser. OnReceive scripts are
executed when the response has been received from the browser.

XML
(eXtensible Markup Language)
Defines a language for the logical structuring of documents with the aim of
making these easy to exchange between various applications.

XML schema
An XML schema basically defines the permissible elements and attributes of an
XML description. XML schemas can have a range of different formats, e.g. DTD
(Document Type Definition), XML Schema (W3C standard) or XDR (XML Data
Reduced).

Glossary

126 WebTransactions Access to Dynamic Web Contents

WebTransactions Access to Dynamic Web Contents 127

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

11
:1

4.
15

P
fa

d:
 F

:\W
eb

TA
\V

7
.5

\M
an

ua
le

\1
0

03
5

06
_D

yn
am

is
ch

e_
W

eb
In

ha
lte

\e
n\

ht
tp

.a
b

k

Abbreviations
BO Business Object

CGI Common Gateway Interface

DN Distinguished Name

DNS Domain Name Service

EJB Enterprise JavaBean

FHS Format Handling System

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IFG Interaktiver Format Generator

ISAPI Internet Server Application Programming Interface

LDAP Lightweight Directory Access Protocol

LPD Line Printer Daemon

MT-Tag Master-Template-Tag

MVS Multiple Virtual Storage

OSD Open Systems Direction

SGML Standard Generalized Markup Language

SOAP Simple Object Access Protocol

Abbreviations

128 WebTransactions Access to Dynamic Web Contents

SSL Secure Socket Layer

TCP/IP Transport Control Protocol/Internet Protocol

Upic Universal Programming Interface for Communication

URL Uniform Resource Locator

WSDL Web Services Description Language

wtc WebTransactions Component

WTML WebTransactions Markup Language

XML eXtensible Markup Language

WebTransactions Access to Dynamic Web Contents 129

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
20

10
 S

ta
nd

 1
1:

14
.1

6
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

a
nu

a
le

\1
0

03
5

06
_

D
yn

a
m

is
ch

e_
W

eb
In

ha
lte

\e
n\

ht
tp

.li
t

Related publications

WebTransactions manuals

You can download all manuals from the Web address http://manuals.ts.fujitsu.com.

WebTransactions
Concepts and Functions
Introduction

WebTransactions
Template Language
Reference Manual

WebTransactions
Client APIs for WebTransactions
User Guide

WebTransactions
Connection to openUTM Applications via UPIC
User Guide

WebTransactions
Connection to OSD Applications
User Guide

WebTransactions
Connection to MVS Applications
User Guide

WebTransactions
Web Frontend for Web Services
User Guide

http://manuals.ts.fujitsu.com

Related publications

130 WebTransactions Access to Dynamic Web Contents

Other publications

SOAP Version 1.2
Part 1: Messaging Framework
http://www.w3.org/TR/soap12-part1/

SOAP Version 1.2
Part 2: Adjuncts
http://www.w3.org/TR/soap12-part2

Web Services Description Language (WSDL) 1.1
http://www.w3.org/TR/wsdl

http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part2
http://www.w3.org/TR/wsdl

WebTransactions Access to Dynamic Web Contents 131

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

.
Ju

ly
 2

01
0

 S
ta

n
d

11
:1

4.
16

P
fa

d
: F

:\W
eb

TA
\V

7.
5\

M
an

u
al

e\
10

03
50

6
_D

yn
am

is
ch

e_
W

e
bI

nh
al

te
\e

n\
h

ttp
.s

ix

Index

A
active dialog 109, 112
addHeader (WT_SOAP class) 70
analyseResponse (WT_SOAP class) 68
architecture

WebTransactions 9
array 109
asynchronous message 109
attribute 109

of WT_SOAP 79
automask template 110

B
base data type 109
base directory 110

converting to a new version 16
creating 15

BCAM application name 110
BCAMAPPL 110
binding 80
Body attribute 24
browser 110
browser display print 110
browser platform 110
buffer 110

C
call

proxy method 62
capture database 111
capturing 110
CGI (Common Gateway Interface) 111
CGI script, using (example) 89
class 111

templates 111

WT_RPC 93
WT_SOAP 51, 52
WT_SOAP_COM_FUNCTIONS 75
WT_SOAP_HEADER 84

client 111
close 23
cluster 111
comattr 80
communication object 111

activate 21
connection parameters 46
creating 45
end 23

COMMUNICATION_FILE_NAME (system object
attribute) 18

COMMUNICATION_FILE_TYPE (system object
attribute) 18

configuration
HTTP access 75

connect
web service via SOAP 47

connection
opening multiple 45

constructor
WT_SOAP_HEADER 84

Content-Type (HTTP header field) 18
ContentType (HTTP header) 64
ContentType attribute 24
conversion tools 111
createProxysWithPrefix (WT_SOAP class) 73

D
daemon 111
data

dynamic 113

Index

132 WebTransactions Access to Dynamic Web Contents

data access control 112
data type 112

SOAP object 80
dialog 112

active 112
non-synchronized 112, 117
passive 112, 118
synchronized 112, 121
types 112

dialog cycle 112
distinguished name 112
document directory 113
documentation 55
Domain Name Service (DNS) 113

E
EHLLAPI 113
EJB 113
entry page 113
envelope 79
envelope (a SOAP message) 48
evaluation operator 113
exception object 77

soapCode 78
executeGetRequest (WT_SOAP class) 68
executeRequest (WT_SOAP class) 67
expression 113

F
FHS 113
field 114
field file 114
FILE 78
filter 114

ready-made 35
user exits 34
WTScript functions 34

first template see start template
fld file 114
format 114

#format 114
*format 114
+format 114
-format 114

format description source 114
format type 114
function 114

G
generate SOAP message

proxy method 64
getHeaderObjects (WT_SOAP class) 70
getHeaderObjectTree (WT_SOAP class) 72

H
Header attribute 24
header field

Authorization 25, 26, 29
Content-Length 26, 30
Content-Type 27, 30
Host 25, 26, 29
Proxy-Authorization 25, 26, 29
sequence 33
User-Agent 25, 26, 29
user-defined 34

holder task 114
host 114
host adapter 114
host application 115
host control object 115
host data object 115
host data print 115
host object 24
host object attribute

Body 24
ContentType 24
Header 24, 32

host platform 115
HTML 115
HTTP 77, 115
http 79
HTTP error messages 101
HTTP header

proxy method 64
HTTP raw data, process 34
HTTP server

accessing from WebTransactions 89
HTTP_RETURN_CODE (system object

Index

WebTransactions Access to Dynamic Web Contents 133

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

.
Ju

ly
 2

01
0

 S
ta

n
d

11
:1

4.
16

P
fa

d
: F

:\W
eb

TA
\V

7.
5\

M
an

u
al

e\
10

03
50

6
_D

yn
am

is
ch

e_
W

e
bI

nh
al

te
\e

n\
h

ttp
.s

ix

attribute) 18, 22
HTTPS 115
hypertext 115
Hypertext Markup Language (HTML) 115

I
initFromWSDLUri (WT_SOAP class) 65
inline WTBean 125
installation

WebTransactions 34

J
Java Bean 116

K
KDCDEF 116

L
LDAP 116
literals 116

M
master template 116, 122

tag 116
message 80
message queuing 116
method 116

addHeader (WT_SOAP class) 70
analyseResponse (WT_SOAP class) 68
createProxysWithPrefix (WT_SOAP

class) 73
executeGetRequest (WT_SOAP class) 68
executeRequest (WT_SOAP class) 67
getHeaderObjects (WT_SOAP class) 70
getHeaderObjectTree (WT_SOAP class) 72
initFromWSDLUri (WT_SOAP class) 65
Proxy methods 62
removeAllHeaders (WT_SOAP class) 70
setAuthorization (WT_SOAP class) 75
setProxy (WT_SOAP class) 76
setProxyAuthorization (WT_SOAP class) 76
setRunMode (WT_SOAP class) 66
setSOAPVersion (WT_SOAP class) 69
setTimeout (WT_SOAP class) 77

WT_RPC_ADD_METHOD 100
WT_RPC_CLOSE 98
WT_RPC_INVOKE 99
WT_RPC_OPEN 96

METHOD (system object attribute) 18
module template 116
MT tag 116
multitier architecture 117

N
name/value pair 117
namespace identifier 48
non-synchronized dialog 112, 117

O
object 117
open 21
openUTM 117

application 117
Client 118
program unit 118
service 120

operations 112

P
PARAMETER 78
parameter 118
parameter transfer

proxy method 62
PARSE 78
passive dialog 112, 118
password 118
PASSWORD (system object attribute) 19
polling 118
pool 118
portType 80
posted object 118
posting 118
process 119
project 119
property 119
protocol 119
protocol file 119
PROXY (system object attribute) 19

Index

134 WebTransactions Access to Dynamic Web Contents

proxy method 62
call and parameter transfer 62
generating a SOAP message 64
HTTP header 64
return value 64

PROXY_PASSWORD (system object
attribute) 19

PROXY_PORT (system object attribute) 19
PROXY_USER (system object attribute) 19
proxyObjects 62

R
receive 22

storing data 18
recognition criteria 119
record 119
record structure 114
remote function

calling 99
defining 100

removeAllHeaders (WT_SOAP class) 70
return

value for proxy method 64

S
scalar 119
send 21
send query 21
sequence

header fields 33
service 79
service (openUTM) 120
service node 120
session 120

WebTransactions 120
setAuthorization (WT_SOAP class) 75
setHTTPHeader() 64
setProxy (WT_SOAP class) 76
setProxyAuthorization (WT_SOAP class) 76
setRunMode (WT_SOAP class) 66
setSOAPVersion (WT_SOAP class) 69
setTimeout (WT_SOAP class) 77
Simple Object Access Protocol see SOAP

SOAP 120
body 80
client-side support 51
envelope 48
integration in WebTransactions 47
request 80
service 50
service described with WSDL 48
web service connecting 47

SOAP data type 80
SOAP object

representation in object tree of WebLab 54
SOAPAction 64
soapCode (exception object) 78
SOCKET 77
SSL_CERT_FILE (system object attribute) 19
SSL_KEY_FIL (system object attribute) 19
SSL_PASSPHRASE (system object attribute) 19
SSL_PROTOCOL (system object attribute) 19
standalone WTBean 125
start template 122

simple 40
wtstartOSD.htm 36

start template set 36
StartTemplateHTTP.htm 40

code 41
store message 18
structure

WSDL document 49
WT_SOAP object 53

style 121
synchronized dialog 112, 121
system access control 121
system object 121

interaction between attribute and
methods 21

OSD-specific attributes 17
system object attribute

HTTP_RETURN_CODE 18
PASSWORD 19
PROXY 19
PROXY_PASSWORD 19
PROXY_PORT 19
PROXY_USER 19

Index

WebTransactions Access to Dynamic Web Contents 135

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

.
Ju

ly
 2

01
0

 S
ta

n
d

11
:1

4.
16

P
fa

d
: F

:\W
eb

TA
\V

7.
5\

M
an

u
al

e\
10

03
50

6
_D

yn
am

is
ch

e_
W

e
bI

nh
al

te
\e

n\
h

ttp
.s

ix

SSL_CERT_FILE 19
SSL_KEY_FIL 19
SSL_PASSPHRASE 19
SSL_PROTOCOL 19
TIMEOUT_HTTP 20
URL 20
USER 20

T
TAC 123
tag 121
TCP/IP 121
template 122

class 111
master 122
object 122
start 122

terminal application 122
terminal hardcopy printing 122
Thread 114
TIMEOUT_HTTP (system object attribute) 20, 22
transaction 122
transaction code/TAC 123
types 80

U
UDDI 50, 123
Unicode 123
Universal Description, Discovery and Integration

Project see UDDI
update

base directory 16
UPIC 123
URI 123
URL 123
URL (system object attribute) 20
USER (system object attribute) 20
user exits 123

as filters 34
user ID 124
UTM see openUTM

V
value range of a data type 112

variable 124
VERSION_MISMATCH 78
visibility 124

W
web information

using (example) 91
web server 124
web service 124

connecting via SOAP 47
on different hosts 57

Web Services Description Language see WSDL
WebLab

object tree of WT_SOAP 54
WebTransactions

architecture 9
session 120

WebTransactions application 124
starting (remote) 96
terminating (remote) 98

WebTransactions platform 124
WebTransactions server 124
WSDL 48, 78, 124

document structure 49
wt_attributes 62
WT_RPC class 93

constructor 95
implementing 95

WT_RPC_ADD_METHOD 100
WT_RPC_CLOSE 98
WT_RPC_INVOKE 99
WT_RPC_OPEN 96
WT_SOAP 51, 52

attribute 79
constructor 60
proxy methods 62

WT_SOAP method
addHeader 70
analyseResponse 68
createProxysWithPrefix 73
executeGetRequest 68
executeRequest 67
getHeaderObjects 70
getHeaderObjectTree 72

Index

136 WebTransactions Access to Dynamic Web Contents

initFromWSDLUri 65
removeAllHeaders 70
setAuthorization 75
setProxy 76
setProxyAuthorization 76
setRunMode 66
setSOAPVersion 69
setTimeout 77

WT_SOAP object, structure 53
WT_SOAP_COM_FUNCTIONS 75
WT_SOAP_HEADER 78, 84

constructor 84
WTBean 125

wtcHTTP 45
wtcHTTP 45
WTML 125
WTML tag 125
WTScript 125
WTScript filter 34
wtstartOSD.htm 36
WWW browser 110
WWW server 124

X
XML 125
XML schema 125

	Contents
	Preface
	Product characteristics
	Architecture of WebTransactions for HTTP
	WebTransactions documentation
	Structure and target group of this manual
	New features
	Notational conventions

	Creating a base directory
	Controlling communication
	System object attributes
	Overview
	Interaction between system object attributes and methods

	Host objects
	Sending a message with the host object sendData
	Message without the sendData object
	Single-part messages
	Multipart messages

	The Header attribute
	Receiving a message in the receiveData host object

	Processing HTTP raw data
	WTScript filters
	User exits
	Built-in filters

	Start templates for HTTP
	HTTP-specific start template of the start template set (wtstartHTTP.htm)
	Simple start template (StartTemplateHTTP.htm)

	Creating a new HTTP communication object (wtcHTTP)

	Connecting web services via SOAP
	Concept of SOAP integration in WebTransactions
	SOAP (Simple Object Access Protocol)
	Describing SOAP services with WSDL
	UDDI (Universal Description, Discovery and Integration Project)
	SOAP support in WebTransactions

	WT_SOAP - client-side class
	Structure of a WT_SOAP object
	Representation in the WebLab object tree
	Example: WSDL document

	Constructor for the WT_SOAP class
	Proxy methods
	WT_SOAP class object methods
	initFromWSDLUri method
	setRunMode method
	executeRequest method
	executeGetRequest method
	analyseResponse method
	setSOAPVersion method
	addHeader method
	removeAllHeaders method
	getHeaderObjects method
	getHeaderObjectTree method
	createProxysWithPrefix method

	Methods for configuring access to the WT_SOAP_COM_FUNCTIONS subclass
	setAuthorization method
	setProxy method
	setProxyAuthorization method
	setTimeout method

	Exceptions
	WT_SOAP attributes
	Data types for the SOAP request in SOAP body
	Example: Checking the spelling of a text

	WT_SOAP_HEADER - class for support of SOAP headers
	Constructor of the WT_SOAP_HEADER class

	Examples
	Using an existing CGI script
	Using information from the Web
	Communicating via HTTP and processing with WT_Filter
	Basic concept of the WT_RPC class
	Implementation of the WT_RPC class

	Appendix
	HTTP error messages
	WSDL Schema

	Glossary
	Abbreviations
	Related publications
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

