
1 Introduction

1.1 Brief product description

ASSEMBH is a language processor for the assembly and macro languages.

ASSEMBH processes one source program at a time. The text of a source program is a
series of instruction statements and remarks which may represent one or more
assembly units. As a rule, an assembly unit in an assembler source program begins
with a START or CSECT instruction and ends with an END instruction. In structured
programming (not supported by the ASSEMBH-BC basic package), these instructions
are generated by means of corresponding predefined macros. ASSEMBH creates an
object module for each assembly unit.

The following are examples of instructions in a source program:

Assembler instructions;
These cause the assembler to execute specific operations during assembly.

Machine instructions;
These cause the central processing unit to execute specific operations during the
program run.

Macro instructions (macro calls);
These cause the assembler to read in pre-coded source texts during assembly.
They are modified according to the information specified in the macro instruction,
and the resulting instruction statements are inserted in the source program.

Macro instruction statements;
With these, the text and number of generated instructions may be varied on the
basis of conditions evaluated during assembly.

The assembler instructions, macro calls, macro instruction statements, and predefined
macro calls for structured programming are described below. A detailed description of
the assembler instructions can be found in the manual "Assembler Instructions
(BS2000), Reference Manual" [3].

U5223-J-Z125-3-7600 1

Introduction

1.2 Target group

A basic knowledge of the assembly language is required in order to use this manual
effectively. It is designed not only as a reference manual, but also as a tutorial with
which new functions can be learned and existing knowledge extended.

1.3 Summary of contents

The manual is divided into three sections:

Chapters 2 to 4 describe the structure of the assembly language and the assembler
instructions.

Chapters 5 to 8 describe the structure, elements, and instructions of the macro
language.

Chapters 9 and 10 explain the structure of an assembly language program
according to the rules of structured programming and explain the predefined
macros for structured programming.

Operation of the ASSEMBH in BS2000 is described in the "ASSEMBH (BS2000) User
Guide" [1]. The debugging system AID (Advanced Interactive Debugger) is described in
the manual "AID (BS2000), Debugging of ASSEMBH Programs" [2].

References to other publications are given in abbreviated form in the text. The full title
of each publication referred to can be found in the "References" section at the back of
the manual. The relevant reference guide is also listed there.

Notes on ordering publications are provided at the end of the References section.

2 U5223-J-Z125-3-7600

Introduction

1.4 Changes since the last version of the manual

Isolated corrections made throughout the manual are not separately listed here.
The significant additions and modifications are as follows:

The functionality of the PUNCH and REPRO instsructions is not supported for modules
in LLM format (section 4.2).

The following changes have been made to the @ macro descriptions in Chapter 10:
operand description in @CONEN macro improved
DROP operand description in END macro extended
description of reg1-reg3 operands in @ENTR macro dropped
RC operand description in @EXIT macro extended
aadditions to the @ININ macro description
event name ’INTR’ added to the @STXEN macro description

The list in Appendix 11.2: ’Format of the machine instructions’ has been extended to
include the ESA instructions.

The table in Appendix 11.6: "Differences between ASSEMBH and ASSEMB" has been
updated.

Any functional changes and additions to the current product version can be found in the
chapter "Manual supplements".

U5223-J-Z125-3-7600 3

Notational conventions

1.5 Notational conventions

The following notational conventions are used in the instruction formats:

CONSTANTS Uppercase letters denote metaconstants
which must be entered in this form.

name Lowercase letters denote metavariables
for which the value relevant to the context must
be entered.

YES Underlined values denote default values that are
entered by the assembler or the operating system.

YES Braces enclose alternatives. One of the specified
values must be selected.

NO The alternatives are listed one below the other.
If one of the alternatives is a default value and
the default value is desired, no specification is
required.

[] Square brackets enclose optional specifications
which may be omitted.

() Parentheses are metaconstants and
must be included in the entry.

... Ellipses are used to indicate that the preceding unit
can be repeated more than once.

[,...] A comma followed by ellipses means that the preceding
unit may be repeated more than once, but must be
separated by a comma each time. The square brackets
indicate that the specification is optional.

{}[,...] In this instance, the single-line braces enclose the
syntactical unit which may be repeated.

Alternative representation of a space character. Used
where a space character is syntactically necessary.

4 U5223-J-Z125-3-7600

2 Assembly language structure
The text of an assembler source program consists of a series of instruction statements
and remarks.
Here, instruction statements may be assembler instructions, machine instructions or
macro instructions. Remarks are used for program documentation and have no effect
on the assembled program.
In addition to these assembly language elements (described later), various macro
language elements are permitted in the assembler source program. This facility is
described in chapter 8.

2.1 Character set

The following characters may be used when entering instruction statements:

Letters Digits Special characters

A through Z 0 through 9 + - * =
, . () /

a through z
if the option LOW-CASE- ’ (single quote)
CONVERSION=YES has been
used (see [1]) & (ampersamd)

_ (underscore) (space character)

$ where names with $ as the
first character are
reserved for operating
system applications
(see [9])

#

@

U5223-J-Z125-3-7600 5

Assembly language structure

Examples of character set usage

Character Usage Example

Alphanumeric in symbols ADR100, AB_CD

Digits as decimal self-defining 4096
terms 8192

Special chars. as operators:

+ addition AREA1+AREA2
- subtraction OUT-20
* multiplication 3*ALPHA
/ division NINE/3
+ or - unary +10, -4

as delimiters:

Space between entries ADR1 LR R5,R6
, Comma between operands OPND1,OPND2
’ Single quote - to enclose data constants C’CONSTANT’

- in an attribute reference L’AREA
() Parentheses to enclose expressions MVC AREA(12), (A+B*(C-D))

and address constants

as indicators of:

. Period - sequence symbols, .LOOP
- remark which does not go .*THIS IS A COMMENT

into the assembler listing
- decimal point, DC F’3.7C2’
- concatenations &PARAM.SAVE

* Asterisk - location counter reference *+100
- remark that is entered in *THIS IS A COMMENT

the assembler listing
= - literals, MVC FELD,=C’SIEMENS’

- keyword operands MACALL &PAR=’ABC’
& variable symbols &PARAM

6 U5223-J-Z125-3-7600

Assembly language structure

Uppercase and lowercase letters in source program text

With ASSEMBH, uppercase and lowercase letters can be used in instruction statements
and remarks. provided the LOW-CASE-CONVERSION=YES option has been used (see
ASSEMBH, User Guide [1]). Please note:

Lowercase letters are converted into uppercase and processed accordingly
in symbols in the name and operand entries,
in the operation entry and
in assembler keywords (e.g. READ, PRVLGD,...).

Lowercase letters are processed unaltered
in the remarks entry,
in remarks lines,
in C-type constants,
in character self-defining terms, and
in macro-language character values.

The original line is shown in the assembler listing in uppercase and lowercase letters.
Source program lines generated by means of a macro instruction are shown in
uppercase only.

Reference lists are shown in uppercase only.

2.2 Assembler instruction statements and remarks

Instruction statements

Instruction statements may consist of five entries:

the name entry,
the operation entry,
the operand entry,
the remarks entry and
the continuation character

These entries must conform to the above order and be separated from one another by
at least one space (except for the continuation character). Any number of continuation
lines are permitted for an instruction statement (see section 2.2.5, "Continuation
character").

The defaults for the begin, end, and continue columns are 1, 71, and 16, respectively.
These defaults can be altered via a compiler option (see "ASSEMBH User Guide" [1])
or via the ICTL instruction (see section 4.2, ICTL instruction).

U5223-J-Z125-3-7600 7

Assembly language structure

Name
entry

Operation
entry

Operand
entry

Remarks
entry

Continuation
character

Name

Empty

Mnemonic
Op code

Macro
call

Operands

Literals

Empty

Remark

Empty

Character

Empty

Expressions

Name

of an ass.
instruction

of a machine
instruction

Expression
elements

Self-defining
term

Loc. counter
reference

Length attr.
reference

Fig. 2-1 Structure of Assembly language instructions

8 U5223-J-Z125-3-7600

Assembly language structure

Remarks

Remarks are used for program documentation. They have no effect on the assembled
program.

There are two types of remarks line:

* With an asterisk in the begin column;
These remarks lines are read by the assembler and printed out in the assembler
listing.

.* With a period in the begin column, followed by an asterisk;
These remarks lines are not read by the assembler and therefore do not appear in
the assembler listing.

There are no continuation lines for remarks. Any continuation character which has been
entered is ignored. Longer remarks must be entered using several remarks lines.

Examples

Name Operation Operand Continuation char.

* YOU NEED TWO LINES X (is ignored)
* FOR THIS COMMENT
.* THIS COMMENT IS NOT PRINTED IN THE LISTING

U5223-J-Z125-3-7600 9

Assembly language structure

2.3 Name entry

In the name entry is a name - with a maximum of 64 letters and digits - which identifies
an instruction statement.

External names in modules in OM (object module) format, which are processed by the
TSOSLNK linkage editor (see section 4.2, COM, CSECT, DXD, ENTRY, EXTRN, WXTRN,
and XDSEC instructions), are limited to eight characters. Longer external names are
truncated to eight characters for further processing and provided with a message.

External names in modules generated using the COMPILER-ACT(,MODULE-
FORMAT=LLM) option (see ASSEMBH, User Guide [1]) are expanded to a length of 32
characters and are processed by the BINDER linkage editor.

The name entry may be optional. If it exists, it must start in the begin column. If the
begin column is blank, the assembler assumes that no name exists and interprets
subsequent characters as an operation code.

The assembler allocates a location counter to each name in the name entry. The same
name in the name entry may be defined only once in an assembly unit. Control section
names may occur more than once, as control sections may be interrupted and
continued at another point in the program by repeating the section name (see also
section 4.2, CSECT, DSECT, AMODE and RMODE instructions).

Location counters or names are generally relative; i.e. can have different values at the
time of execution and the time of assembly. However, if an EQU instruction is used to
assign an absolute value to a name, the value of the name does not change at
execution time. The name is then referred to as a name with an absolute value.

Rules

The first character of a name must be a letter.
The value of a name must lie between -231 and 231-1.
Underscores are permitted within the name (e.g. A_B), except in names processed
by the linkage editor.
No space characters are permitted within the name.
The special characters & (ampersand) and . (period) have a special function (see
chapter 5, Macro Language Structure).

10 U5223-J-Z125-3-7600

Assembly language structure

Examples of valid names

LOOP Field
A23456 @B4
X4F2 $A1
LOOP2 #56
LOOP_2 N
THIS_EXTREMELY_LONG_NAME_IS_REALLY_NOT_TOO_LONG_FOR_ASSEMBH

Examples of invalid specifications in the name entry

256B (first character not a letter)
BCD*34 (contains the special character *)
IN PUT (contains a space)
BUT_NOW_THIS_EXTREMELY_GREAT_LONG_NAME_IS_TOO_LONG_EVEN_FOR_ASSEMBH

Definition of names

A name is defined once it occurs in the name entry of an assembler instruction or
machine instruction, or as an operand of an EXTRN or WXTRN instruction.

The name definition contains the implicit assignment of a length attribute. The length
attribute of a name is the length of the designated memory area in bytes. Thus, a name
which designates an RX instruction, for example, has the length attribute 4.

Exception
If a name has been equated with the location counter or with a self-defining term,
the length attribute of the name is 1 (see section 4.2, EQU instruction, and 5.5.8,
"Attribute references").

The length attribute of a name is not affected by a duplication factor.

U5223-J-Z125-3-7600 11

Assembly language structure

2.4 Operation entry

The operation entry may include:

the mnemonic operation code of an assembler or machine instruction or

the name of a system or user macro (macro call).

An operation entry must be specified. At least one space character must separate it
from the name entry. If there is no name entry, it must begin at least one position to
the right of the begin column.

A valid operation entry consists of a maximum of five characters for assembler
instructions and machine instructions. If the mnemonic operation code has been
redefined via an OPSYN instruction, a maximum of 64 characters is allowed. A
maximum of 64 characters is permitted for macro names as well.

There must be no space characters within the operation entry.

The OPSYN instruction (see section 4.2, "Description of instructions") can be used to
alter the standard setting of the operation code and to create new mnemonic operation
codes.

2.5 Operand entry

The operand entry contains the operands which describe or refer to the memory areas,
masks, lengths, or data types to be processed.

If an operand entry is specified, it must be separated from the operation entry by at
least one space character.

The operand entry may consist of one or more operands, which in turn may contain
one or more expressions. Expressions comprise elements and operators.

Operands must be separated by commas. There must be no space characters between
the operands and the separating commas.

An operand must not contain space characters.

Exception
Space characters in character constants that are used as literals, direct operands, or
in a constant definition.

12 U5223-J-Z125-3-7600

Assembly language structure

2.5.1 Expressions

Expressions are the basic operand components of instruction statements. They are
used in order to calculate a value. Expressions are in turn made up of elements and
operators. They may occur in the form of simple and arithmetic expressions in
assembly language.

2.5.1.1 Simple expressions

Simple expressions consist of one element only. The value of the expression is equal to
the value of the element.

The value of a simple expression must lie between -231 and 231-1

2.5.1.2 Arithmetic expressions

Arithmetic expressions are composed of elements and arithmetic operators.

The following arithmetic operators are allowed:
+ addition

subtraction
* multiplication
/ division
+ unary plus

unary minus

The sequence in which an arithmetic expression is evaluated can be controlled by the
use of parentheses, which may also be nested.

Rules

An arithmetic expression must not begin with an operator, except for unary plus and
unary minus.

Examples

correct: -7*(A+B) incorrect: *A+15

No two elements in an arithmetic expression must follow one another in succession.

U5223-J-Z125-3-7600 13

Assembly language structure

Examples

correct: FIELD1*(A+B) incorrect: FIELD1(A+B)

15*L’FIELD 15L’FIELD

Unary plus and unary minus may directly follow all other operators.

An arithmetic expression must not contain a literal.

Values of arithmetic expressions must lie between -231 and 231-1.

Examples

Simple expressions Arithmetic expressions

FIELD *+32
C’FIELD’ FIELD-35
X’4040’ FIELD*10
L’FIELD FIELD/2
* FIELD1+FIELD2

(OUT-(IN*L’FIELD+1)+FIELD)

Evaluation of arithmetic expressions

Arithmetic expressions are evaluated according to the following rules:

1. Each element is assigned its own value.

2. Arithmetic operations are executed from left to right. Multiplication and division are
done before addition and subtraction.

3. In expressions containing parentheses, the values enclosed in them are evaluated
first. In the case of nested parentheses, the inner parenthesized expression is
evaluated first.

4. Each arithmetic expression is calculated to a precision of 32 bits.

5. Remainders obtained from divisions are ignored. The result of every division is
therefore an integer.

Example

1/(2*10) gives 0
-11/2 gives -5

6. Division by zero is allowed and returns a result of zero.

14 U5223-J-Z125-3-7600

Assembly language structure

2.5.3.1 Absolute and relocatable expressions

An expression is termed absolute if its value at program execution time is the same as
its value at assembly time.

An expression is termed relocatable if its value at program execution time may differ
from its value at assembly time.

The elements from which an expression is formed determine whether it is relocatable or
absolute.

Absolute expressions

An absolute expression is reduced to an absolute value.

An absolute expression may be:

a simple absolute expression,

Example L’FIELD

an arithmetic expression with only absolute elements,

Example L’FIELD+15

an arithmetic expression with a pair of relocatable elements with opposite signs,

Example *-FIELD

an arithmetic expression with relocatable and absolute elements.

Example (*-FIELD)*L’FIELD

All arithmetic operations are permitted with absolute elements.

If an absolute arithmetic expression is to contain relocatable elements, the following
conditions apply:

The arithmetic expression must contain an even number of relocatable elements.

The relocatable elements must be paired. In other words, the two relocatable
elements belonging to a pair must be defined in the same control section and have
opposite signs. They must not follow each other directly.

No multiplication or division is permitted with a relocatable element.

U5223-J-Z125-3-7600 15

Assembly language structure

The occurrence of paired relocatable elements in an absolute expression neutralizes
the effects of program relocation at execution time. The value that is made up of the
paired relocatable elements therefore remains constant, regardless of any program
relocation.

Example

AA=AX+RY-RZ

Value at Value at execution
assembly time time, e.g.

AX absolute element 50 50
RY relocatable element 10 110
RZ relocatable element 25 125

AA absolute expression 35 35

Relocatable expressions

The value of a relocatable expression is modified by n if the program in which it occurs
has a load address incremented by n at execution time.

A relocatable expression may be:

a simple relocatable expression,

Example *

an arithmetic expression with only relocatable elements,

Example *-FIELD1-TERM1

an arithmetic expression with relocatable and absolute elements.

Example *-FIELD1-TERM1+L’FIELD

16 U5223-J-Z125-3-7600

Assembly language structure

If a relocatable arithmetic expression is to contain only relocatable or relocatable and
absolute elements, the following conditions apply:

First option: the arithmetic expression contains an uneven number of relocatable
elements, and these elements, except for one, are paired (see above).

Example *-FIELD1-TERM1

* and FIELD1 are to appear paired, i.e. they are defined in the same control section
and have opposite signs.

Second option: several relocatable elements are defined in the same control section
and have no opposite signs. The result of their evaluation must then also be in the
same control section.
In addition to these single relocatable elements, the arithmetic expression may also
contain paired relocatable elements.

Example TERM1+TERM2+TERM3+*-FIELD1

TERM1, TERM2, and TERM3 are defined in the same control section but do not
occur in pairs. The result of their evaluation must then also be in the same control
section.

No multiplication or division is permitted with any of the relocatable elements.

A relocatable expression is reduced to a relocatable value. This is calculated from the
value of the unpaired relocatable elements, modified by the value of the absolute and
paired relocatable elements.

Example

RA=RU-RV+RU-10

Value at Value at execution
assembly time time, e.g.

RU relocatable element 10 110
RV relocatable element 5 105
10 absolute element 10 10
RU-RV paired reloc. elements 5 5

RA relocatable expression 5 105

U5223-J-Z125-3-7600 17

Assembly language structure

2.5.2 Elements of expressions

An element of an expression is the smallest assembly language unit which represents a
value.

Each element corresponds to a value. This value is either assigned by the assembler
(name, length attribute, location counter) or is directly contained in the element (self-
defining term).

Each element may represent a simple expression only, or be combined with others into
an arithmetic expression.

An element is termed absolute if its value is independent of the program load address,
i.e. if its value at execution time is the same as its value at assembly time.

An element is termed relocatable if it is relative to the program start, i.e. if it may have
a different value at execution time than at assembly time.

If two relocatable elements are combined into one expression, they may appear paired .
This means that these two elements must be defined in the same control section, and
have opposite signs.

The following elements of expressions occur in assembly language:

name (absolute or relocatable)
self-defining terms (absolute)
location counter references (relocatable)
length attribute references (absolute)

The elements of expressions and the rules for their usage are detailed below.

2.5.2.1 Names

The details given in section 2.2.1 for names in the name entry are also applicable to
names in the operand entry.

18 U5223-J-Z125-3-7600

Assembly language structure

2.5.2.2 Self-defining terms

Self-defining terms are used for direct representation of values. They are used to
specify data, masks, registers, and address increments. Self-defining terms may be one
word long at most.

Self-defining terms are absolute elements, as their value at execution time is the same
as their value at assembly time.

Self-defining terms include:

decimal,
hexadecimal,
binary, and
character values

Examples

Self-defining Decimal Binary
term value value

241 241 1111 0001 decimal
X’F1’ 241 1111 0001 hexadecimal
X’101’ 257 1 0000 0001 hexadecimal
B’1111’ 15 0000 1111 binary
B’11110001’ 241 1111 0001 binary
C’1’ 241 1111 0001 char. value
C’A’ 193 1100 0001 char. value

U5223-J-Z125-3-7600 19

Assembly language structure

Self-defining terms, constants, literals

The utilization of self-defining terms differs from that of data constants and literals:

If data constants or literals are specified in instruction statement operands, their
addresses are assembled into the instruction statement.
If, on the other hand, a self-defining term is used in an instruction statement, its
value is assembled into the instruction statement.

Example

Name Operation Operands

FIELD DS CL3
CONST DC C’ABC’
*

MVI FIELD,X’FF’ (01)
MVC FIELD,CONST (02)
MVC FIELD,=C’ABC’ (03)

(01) The value of the direct operand is to be transferred to FIELD. FF is assembled
into the generated machine instruction.

(02) The contents of CONST are to be transferred to FIELD. The address of CONST
is assembled into the generated machine instruction.

(03) The literal C’ABC’ is to be moved to FIELD. The address of the literal is
assembled into the generated machine instruction.

Decimal self-defining terms

A decimal self-defining term is an unsigned decimal number, represented by a series of
decimal numbers, in which there may also be leading zeroes.

A decimal self-defining term is assembled by the assembler into its binary equivalent.

Restrictions on the value depend on the purpose of its utilization:

A decimal self-defining term may under no circumstances consist of more than ten
digits or exceed the value 231-1.
A decimal self-defining term which is to denote a general-purpose register must
have a value of 0 to 15.
A value which represents a displacement may not exceed the highest main memory
address.

20 U5223-J-Z125-3-7600

Assembly language structure

Hexadecimal self-defining terms

A hexadecimal self-defining term is an unsigned hexadecimal number represented as a
series of hexadecimal digits. These must be enclosed in single quotes and immediately
follow the letter X.

Each hexadecimal digit is converted by the assembler into a binary value of 4 bits. This
means that a hexadecimal self-defining term which is to represent an 8 bit mask is
made up of two hexadecimal digits.

The maximum permissible hexadecimal value is X’FFFFFFFF’.

Binary self-defining terms

A binary self-defining term is a series of unsigned binary digits, used to represent any
required binary pattern. The series of digits must be enclosed in single quotes and
directly follow the letter B.

A binary self-defining term may contain up to 32 binary digits. The value is padded to
full bytes. To do this, the high-order byte is padded to the left with binary zeroes.

Binary self-defining terms are mainly used to represent the bit pattern of masks or in
logical instructions.

Example

Name Operation Operand

MASK EQU B’10101101’
ALPHA TM GAMMA,MASK

The binary self-defining term is used as a mask in a TM instruction. The contents of
GAMMA are to be compared bit by bit with the bit pattern of the mask.

Character self-defining terms

A character self-defining term can be used to represent printable characters. A
character self-defining term consists of one to four characters, enclosed in single
quotes. It can be immediately preceded by the letter C.

All letters, digits and special characters may be used in character self-defining terms.
The following rules apply to the use of single quotes (’) and ampersands (&):

The single quote (’) is used as a syntax character in the assembly language, and the
ampersand (&) as a syntax character in the macro language. Therefore, for each
single quote or ampersand to be used in a character self-defining term, two single
quotes or ampersands must be typed in. The two single quotes or ampersands are
assembled as one single quote or one ampersand.

U5223-J-Z125-3-7600 21

Assembly language structure

Examples

A’$ must be typed in as C’A’’$’

’A’ must be typed in as C’’’A’’’

2.5.2.3 Location counter reference

Using an asterisk (*) as an element of an expression, the current value of the location
counter may be referenced at any point in the source program.

The asterisk is assigned the current value of the location counter, i.e. the location
counter of the instruction statement in which the asterisk is used.

The location counter reference can be used in all machine instructions and in the
assembler instructions DC, DS, EQU, ORG and USING, which permit the asterisk in the
operand entry. In addition, the location counter can be referenced in address constants
and in literals specified as address constants (see section 4.2, DC instruction, for use of
the asterisk in address constants with a duplication factor). One special case is the use
of the asterisk in Format 2 of the USING instruction (see 4.2). Here it denotes the start
address of the memory area for the dummy register vector.

The maximum value of the location counter is 224-1. This corresponds to a module size
of 16 MB.

Examples

Loc. counter Source program statement Value of *
(hex)

LOCTN SOURCE STATEMENT

000100 NAME B *+8
000104 B NAME+8 NAME (=000100)
000108 < Target address of both branch

instructions

000120 CONSTANT DC A(*) CONSTANT (=000120)

000134 ALPHA L R5,=A(*) ALPHA (=000134)

22 U5223-J-Z125-3-7600

Assembly language structure

2.5.2.4 Length attribute reference

The length attribute of a name is referenced by inserting an L’ directly in front of the
name. The assembler replaces this expression with the implicit length of the name.

The length attribute of * (L’*) is the same as the length of the instruction statement in
which the reference name occurs. An exception is the instruction EQU * without the
length operand (see section 4.2, EQU instruction). Here the length attribute is 1.

Example

In the example, a character constant is positioned on the high or low-order byte of a
field using the length attribute.

Name Operation Operand

A1 DS CL8 (01)
B2 DC CL2’AB’ (02)
*
HIORD MVC A1(L’B2),B2 (03)
LOORD MVC A1+L’A1-L’B2(L’B2),B2 (04)

(01) A1 denotes a memory area of 8 bytes, and has a length attribute of 8.

(02) B2 indicates a character constant of 2 bytes, and has a length attribute of 2.

(03) The instruction with the address HIORD moves the contents of B2 to the two
high-order bytes of A1. The value L’B2 specifies the required length. When the
instruction is assembled, the length is put into the appropriate field in the
instruction statement.

(04) The instruction with the address LOORD moves the contents of B2 to the two
low-order bytes of A1. The arithmetic expression A1+L’A1-L’B2 gives the seventh
byte of A1 as the address. The length of A1 is added to the start address of A1,
and the length of B2 subtracted from it. The contents of B2 are therefore moved
to the seventh and eight byte of field A1. L’B2 also supplies the length
specification required for the instruction.

U5223-J-Z125-3-7600 23

Assembly language structure

2.5.3 Literals

Literals can be used to define data, e.g. numeric values, addresses or printable
characters, without specifying DC instructions. Literals may replace the second operand
of machine instructions.

Each literal is allocated a storage area in the literal pool by the assembler. The address
for the literal in the literal pool is entered in generated machine instruction code.

’chrcon’
Format of a literal: =[dup]type[Ln 1][Sn 2][En 3] ’datcon[,...]’

(adrcon[,...])

dup Duplication factor
decimal self-defining term or positive absolute parenthesized expression,
value range: 0 to 224-1

type Literal type
a single letter, may be dropped for character constants

examples of literals: C character constant
B binary constant
P, Z decimal constants
X hexadecimal constants
F, H fixed-point constants
E, D, L floating-point constants
A, Y, V address constants

Ln1 Length modifier;
n1 is a decimal self-defining term or a positive absolute expression in
parentheses

Sn2 Scale modifier
En3 Exponent modifier

n2 or n3 is a positive or negative decimal self-defining term, respectively,
or an absolute parenthesized expression.

chrcon Value of the character constants
datcon Value of the decimal, hexadecimal, binary, fixed-point, and floating-point

constants
adrcon Value of the address constants

24 U5223-J-Z125-3-7600

Assembly language structure

Rules

A literal begins with an equals sign (=). For the notation of a literal, the same rules
apply as for an operand of a DC instruction (see section 4.2, DC instruction,
especially the sections on "Modifiers" and "Types of constants").

Literals may be used in all machine instructions in which the operand is a
relocatable expression that is to be used for read accesses only.
Literals may not be used in machine instructions that contain a relocatable
expression as an operand to be used for write accesses.

Literals may not be used in assembler instructions.

A literal may not be an element of an expression.

The duplication factor in a literal may not be zero.

Address constants of type Q and S may not be used in literals.

Note

Whether the type of literal specified in a machine instruction corresponds with the
operation code of the instruction is not checked.

U5223-J-Z125-3-7600 25

Assembly language structure

Literal pool

The assembler determines the values of the literals and stores them in a specific area
of memory, the literal pool.

The literal pool is usually at the end of the first control section. In that case the literal
pool is printed after the END instruction in the assembler listing. Several literal pools
may be defined using the assembler instruction LTORG (see section 4.2), and any
desired position in the program selected for them.

The same literals are stored only once in the literal pool, unless these involve constants
with location counter reference.

Examples

Name Operation Operand

AREA1 DS 3CL4 these definitions apply
AREA2 DS PL3 to all the following
HW DS H instructions

.

.
MVC AREA1,=3CL4’ABCD’ (01)
UNPK AREA2,=P’352’ (02)
MVC HW,=H’80’ (03)
IC 5,=X’FF’ (04)
LM 4,6,=A(AREA1,HW,*) (05)

(01) C1C2C3C4C1C2C3C4C1C2C3C4 is moved to field AREA1.
(02) AREA2 contains the unpacked value F3F5C2.
(03) The value 0050 is moved to field HW.
(04) The IC instruction loads the value FF into the low-order byte of register 5.
(05) The addresses of AREA1 and HW and the current value of the location counter

are loaded into registers 4, 5, and 6.

26 U5223-J-Z125-3-7600

Assembly language structure

2.6 Remarks entry

The remarks entry contains explanations on the program which are to be included in
the assembler listing.

All valid characters, including space characters, may be used in remarks (see section
2.1, "Character set").

The remarks entry must be separated from the operand entry by at least one space
character.
Should the entry be continued in an additional line, there must be a continuation
character in the continue column.

In instruction statements which are to contain remarks but no operands, a space-
comma-space must precede the remarks entry.

Example

Name Operation Operand

CSECT , COMMENT
.
.
MVC FIELD1,FIELD2 COMMENT
.
.
END , COMMENT

U5223-J-Z125-3-7600 27

Assembly language structure

2.7 Continuation character

The first column after the end column is the continuation character column. This
column contains the continuation character. The default for the end column is column
71. The continuation character must be set if an instruction statement is
to be continued into another line. Any character, apart from the space character, may
be used for this purpose.

There must be no space character in front of the continuation character.

If the continuation character column contains a space, it will be assumed that the
instruction statement has been terminated.

The instruction statement must be continued in the continue column of the next line:

If the text in the continue column starts with a character which is not a space
character, it is interpreted as a continuation of the current entry.
If there is a space character in the continue column, the text which follows is
evaluated as the next entry.

Any number of continuation lines are allowed per instruction statement.

28 U5223-J-Z125-3-7600

3 Addressing, program sectioning and
program linking

3.1 Addressing

The address designates a storage area. It consists of the contents of a base address
register, to which the displacement is added (base/displacement addressing). For RX
instructions, the contents of an index register may also be added.

There are two options for specifying addresses in a source program:

Non-symbols

In this instance, the base address register and displacement are clearly identified (see
"Assembler Instructions" reference manual [3]).

Symbols

A symbol is first converted by the assembler into base/displacement form.
A symbol is a name or is generated via variable symbols or via a concatenation of
variable symbols and alphanumeric characters.

U5223-J-Z125-3-7600 29

Addressing

Use of symbols

To enable the assembler to convert symbols into their non-symbolic form, the
programmer must

inform the assembler by means of a USING instruction of the general-purpose
registers to be used as base registers,

specify in the USING instruction the value assigned to each of these registers as
base address, and

at program execution time, load each of the base registers with the specified value.

On assembly, the symbol is converted by the assembler into its non-symbolic form and
then converted into the object code.

If symbols are used, a program must contain a separate USING instruction for each
control section.

Base address registers assigned with the USING instruction can be released for other
purposes by means of the DROP instruction.

30 U5223-J-Z125-3-7600

Program sectioning and program linking

3.2 Program sectioning

The text of an assembler source program consists of one or more assembly units. An
assembly unit usually begins with a START or CSECT instruction and is terminated with
an END instruction. It is mostly designated as "a program".
Each assembly unit is assembled into an object module.

An assembly unit may consist of one or more control sections, which are assembled as
parts of an object module.

The corresponding instructions enable the linkage editor to link one or more object
modules into one executable program.

Example

PROG1 START
:
: (01)
:

A1 CSECT
:
: (02) an assembly unit with three
: control sections (01 to 03)

A2 CSECT
:
: (03)
:
END
:
:

PROG2 START
: an assembly unit with
: one control section
END

It is generally necessary to refer to data that has been defined in another program
section or to branch into another program section. To this end, intercommunication
between the program sections must be achieved.

Every individual program section accessed must be symbolically addressable (see
section 3.1.1, "Symbols").

The two or more assembly units which are to be linked must be linked symbolically
(see section 3.2.2, "Symbolic program linking").

U5223-J-Z125-3-7600 31

Control sections

3.3 Control sections

A control section is the smallest possible program section which may be relocated
independently of the others on loading, without affecting the operating logic of the
program. A maximum of 215-1 control sections may be contained in an assembly unit.

There are executable control sections which are converted into object code, and
reference control sections which are not converted into object code. They are used to
describe data which can be referred to from executable control sections.

Location counter in control sections

Parts of different control sections may occur in an assembly unit in mixed sequence, as
the assembler keeps a separate location counter for each control section.

The location counter of reference control sections has an initial value of zero, i.e. the
address values within a control section are relative to the start of the control section.

Executable control sections are allocated storage areas one after the other, in the order
in which they occur in the source program text. Each successive control section starts
at the next free doubleword boundary, unless the PAGE attribute has been specified
(see section 3.3.3, "Control section attributes").

The maximum value of the location counter in a control section, or the maximum value
of the entire location counter of all control sections is 224-1.

3.3.1 Executable control sections

An executable control section (code sect ion) is initiated by a START or CSECT
instruction, and converted into the object code.

First control section

The first control section in an assembly unit can be indicated by the START instruction
with which a preliminary start address of the program may be specified (see section
4.2, START instruction).

The assembler creates the literal pool at the end of first control section, provided that
the position of the pool has not been otherwise specified via the LTORG instruction.

32 U5223-J-Z125-3-7600

Control sections

If the first program section is to be continued at another point, a CSECT instruction
with the same name entry must be used for this.

Other executable control sections

If other executable control sections are to appear after the first one in an assembly unit,
these must be initiated via a CSECT instruction. These control sections may be
continued with a CSECT instruction of the same name at another point (see section
4.2, CSECT instruction).

3.3.2 Reference control sections

No object code is generated for reference control sections. They are used to describe
data which is to be accessed by executable control sections. They are initiated via a
DSECT, XDSEC, COM or DXD instruction.

Dummy section

A dummy section describes a data format which is to be projected onto a memory
area like a "template". The start of this data structure is denoted by a DSECT
instruction. The names defined in a dummy section correspond with the format
elements.

The data format is projected onto a memory area as follows:

The address of the required memory area must be loaded into a register during the
program run.

This register must be defined in the program as base address register for the
dummy section via a USING instruction. In this way, the data format is always
projected onto the memory area whose address has been loaded into the base
address register.

If names defined in a dummy section are used in machine instructions, they are
replaced during the program run by the data from the memory location onto which the
data format was projected..

U5223-J-Z125-3-7600 33

Control sections

External dummy section

An external dummy section is indicated by an XDSEC instruction. The same rules apply
to its application as are valid for a dummy section (see under), with the following
exception:

To define an external dummy section (XDSEC D), external information is transferred to
the linkage editor, which uses this information to attempt to satisfy the external
information specified for the references of an external dummy section (XDSEC R) in
another assembly unit. The location counter is set to zero in the reference of an
external dummy section (XDSEC R), and remains at zero for the entire section. The
actual location counter of a name in a reference of an external dummy section is
entered by the linkage editor in the instruction in which this name is used.

In this way, the evaluation of the location counter for names of an XDSEC R is
relocated from the assembly level to the linkage level. The advantage of this is that in
altering an XDSEC D symbol, it is only necessary to reassemble the modules which use
the names to be modified, and not all the modules which use this XDSEC.

Note

The dynamic linking loader DLL (in use up to BS2000 V9.5) does not support the use
of external dummy sections, i.e. programs must be linked with TSOSLNK, and no
dynamic loading mechanism can be used. The dynamic binder loader DBL,
introduced as of BS2000 V10.0, does support the use of external dummy sections
and dynamic loading.

Common control section

A common control section is a memory area which can be accessed from
independently assembled assembly units, which are linked and loaded as one program.
It is identified by a COM instruction.

Using DS and DC instructions, a common control section can be broken down into
subfields, defined relative to the start of the section. In other words, the structure of the
common control section is predefined. Constants defined with DC instructions in a
common control section are not assembled. Their fields can be loaded with data only
at program execution.

A common control section must be addressable in each assembly unit from which it is
to be accessed. For communication between assembly units and a common control
section, the common section must be defined identically in each.

34 U5223-J-Z125-3-7600

Control sections

Dummy registers

Dummy registers are memory areas which may be accessed from several assembly
units. They are used as work areas and for intercommunication between different
assembly units. The dummy registers may be defined at any required position in an
assembly unit, and need not appear in ascending and/or related order.

The assembler calculates the alignment and length of the dummy register and passes
this information on to the linkage editor via ESD entries. During the linkage procedure,
all dummy registers are combined from all the modules to be linked into a so-called
"dummy register vector". At the same time, the linkage editor defines alignment, length
and storage of the individual dummy registers.
When linking, the strongest attributes in the same dummy registers are used as the final
valid attributes. For example, should a dummy register be aligned on a halfword
boundary in one CSECT, and on a fullword boundary in another, this dummy register
would be aligned on the fullword boundary after linkage.

The dummy register vector combined by the linkage editor defines only the structure of
the dummy registers. The memory area for this must be loaded explicitly in an
executable control section.

The length of this dummy register vector can be entered by the linkage editor in a
word which must be reserved for this purpose using a CXD instruction.

Compared to common control sections and external dummy sections, the use of
dummy registers has the following advantages:

1. Assume CSECT1 with PSREG1 and PSREG2
CSECT2 with PSREG3 and PSREG4

Both CSECTs are to be combined into one program.

Within a CSECT, only the dummy register defined in this exact CSECT may be
accessed, i.e. in CSECT1 only PSREG1 and PSREG2. PSREG3 and PSREG4 cannot
be overwritten, either intentionally or unintentionally.

2. If the number or the data description of dummy registers are changed in a module,
only this module must be reassembled and the entire program relinked. If, on the
other hand, the data description of a common control section or external dummy
section is altered, all modules affected by a change to the contents or length need
to be altered and reassembled.

U5223-J-Z125-3-7600 35

Control sections

Note

The DLL (in use up to BS2000 V9.5) does not support the use of dummy registers,
i.e. programs must be linked with TSOSLNK, and no dynamic load mechanism may
be used. The BINDER linkage editor, introduced as of BS2000 V10.0, does support
the use of dummy registers and dynamic loading. The BINDER, introduced as of
BS2000 V10.0, does not support the use of external dummy sections and dynamic
loading.

Dummy registers can be addressed in two ways:

via a base address register

The instruction USING *PRV,8 (see section 4.2, USING instruction, format 2 and
Appendix 11.4, example 2) causes all addresses concerning dummy registers to use
register 8 as the base register, regardless of any other valid base register. Register
8 must then be loaded with the start address of the memory area for the dummy
register vector.

via Q-type constants (see Appendix 11.4, example 1)

At program runtime, the Q-type constants contain the offset of the dummy register
at the start of the dummy register vector. In other words, this value must be added
at the start of the memory area of the dummy register vector in order to be able to
access the dummy register.

Dummy registers can be defined in two ways (see examples in Appendix 11.4):

With the DXD instruction;

With the DSECT instruction, using Q-type constants;
this defines the entire dummy section as a dummy register. The DSECT structure
can be used for accesses within this dummy register.

36 U5223-J-Z125-3-7600

Control sections

3.3.3 Control section attributes

To facilitate dynamic linking and loading, it is often necessary to give all data and
instruction statements within a control section certain characteristics. The following
attributes may be specified (in any order) in the operand field of START, CSECT and
COM instructions:

PUBLIC This attribute signifies that the section contains data or instruction
statements (shareable).

READ This attribute signifies that the section cannot be modified, i.e. is
write-protected (read only).

PRVLGD This attribute indicates that the section has been assigned a
protection key and can therefore be accessed by privileged system
routines only.

PAGE This attribute indicates that the section is to begin on a page
boundary which is a multiple of 4096.

RESIDENT This attribute signifies that the specified section is loaded in
memory and is resident there.

Attributes may be specified singly or in combinations. The final set of attributes in a
control section is determined by combining all the characteristics. Attributes may
appear in the instruction which defines the beginning of the control section. Attributes
for instructions of the same name need not be repeated, although they may be for
documentation purposes.

If no attributes are specified, the control section is regarded as private, modifiable and
aligned on a doubleword boundary. Information regarding the characteristics of each
control section are stored in the object module.

Addressing mode and load attribute

These two attributes are assigned to a control section with the AMODE or RMODE
instruction.

AMODE Via this instruction, a control section is assigned a software
addressing mode, which in turn designates a hardware addressing
mode that the control section awaits for its execution.

RMODE This instruction assigns a load attribute to a control section. This
specifies the area of the address space (over or under 16
megabytes) in which the program must or can be loaded.

U5223-J-Z125-3-7600 37

Control sections

3.4 Symbolic program linking

Symbolic program linking enables symbols defined in one assembly unit to be
accessed from another unit. To do this, the assembler requires appropriate information,
which it passes on to the linkage editor via ESD entries. The linkage editor replaces
these symbolic references with actual addresses prior to or during loading.

A symbol which is to be accessed by another assembly unit must be identified to the
assembler and the linkage editor via the ENTRY instruction. It is thereby defined as a
symbol of an entry point.

In an assembly unit where symbols defined in another unit are used, these must be
identified via the EXTRN or WXTRN instruction. Since these symbols are defined in
another assembly unit, the assembler assigns a provisional value 0 and length attribute
1.
In order to access the symbol, a base register must be provided in the assembly unit
which uses the EXTRN address. The value of the addresses must be loaded into the
base register via an A-type constant (see section 4.2, DC instruction).

Another method of symbolic linking is the use of V-type constants (see section 4.2, DC
instruction). These constants are regarded as indirect linkage points, generated from an
externally defined symbol. Here, the symbol must not be identified using the EXTRN
instruction.
V-type constants may be used for branching into other assembly units, but not for
references to data in other assembly units.

An example of linking two independent assembly units is provided under the description
of the EXTRN instruction (see section 4.2).

38 U5223-J-Z125-3-7600

4 Assembler instructions

4.1 General

As opposed to machine instructions which permit the central processing unit to execute
certain operations during the program run, assembler instructions permit the assembler
to carry out certain operations during assembly. They are used to control assembly and
to handle auxiliary functions.

Programming notes

1. No literals may be used as operands in assembler instructions.

2. If assembler instructions are used as model statements in a macro definition, the
name, operation and operand entries can be generated using variable symbols
(see section 5.1.2, "Format of the macro definition", and chapter 6, "Variable
symbols").

3. In some instructions, a sequence symbol can be specified in the name entry. A
sequence symbol in the name entry identifies the instruction as a branch destination
in terms of macro language (see section 5.3.1, "Sequence symbols"). A sequence
symbol in the name entry cannot be generated with variable symbols.

Assembler instructions can be divided into the following categories:

Allocation of values and attributes

EQU equate
OPSYN assign mnemonic operation code

Definition of data areas

DC define constants
DS reserve memory area
CXD reserve memory area for the length of the dummy register vector.

U5223-J-Z125-3-7600 39

Assembler instructions

Base register statements

USING assign base address register
DROP release base address register
STACK save USING or PRINT status
UNSTK restore USING or PRINT status

Program sectioning, program linking, control section attributes

START define program start
CSECT define control section
DSECT define dummy section
XDSEC define external dummy section
COM define common control section
DXD define dummy register
END end of assembly
AMODE allocate addressing mode
RMODE allocate load attribute
ENTRY identify ENTRY address
EXTRN identify EXTRN address
WXTRN identify conditional EXTRN address

Input control

ICTL control input format
COPY copy source program text from library element

Output to object module

ORG set location counter
LTORG define literal pool
CNOP set no operation
PUNCH copy text into object module
REPRO copy continuation line into object module

40 U5223-J-Z125-3-7600

Assembler instructions

Listing control

Listing control statements identify the particulars in the assembler listing. They are
concerned only with the assembler listing, and do not generate any instructions or
constants in the source program.

TITLE listing heading
SPACE line feed
EJECT page feed
PRINT control listing contents
STACK save USING or PRINT status
UNSTK restore USING or PRINT status

Note

The number of lines per page in the assembler listing cannot be affected by any of
these statements. It must be controlled using the appropriate option (see "ASSEMBH
User Guide" [1]).

U5223-J-Z125-3-7600 41

AMODE Assembler instructions

4.2 Description of instructions

AMODE Assign addressing mode

Function

The AMODE instruction allocates an addressing mode to a control section.

Format

Name Operation Operands

name AMODE 24
[] 31

.sym ANY

name Name
.sym Sequence symbol

Description

name refers to a control section with the same name, and must correspond to
the name of a START, CSECT or COM instruction.

If the name field is blank, the AMODE instruction refers to an unnamed
control section.

.sym A sequence symbol is the same as a blank name field.

24 The control section is assigned the 24-bit addressing mode.

31 The control section is assigned the 31-bit addressing mode.

ANY The control section can be executed in both the 24-bit and the 31-bit
addressing mode.

The "addressing mode" is described in section 3.2.1.3 and in the manual "Introductory
Guide to XS Programming" [7].

Information regarding the addressing mode of a control section is shown in the ESD
entry.

42 U5223-J-Z125-3-7600

Assembler instructions AMODE

Programming notes

1. The AMODE instruction may appear at any point in the source program. The source
program may contain as many AMODE instructions as required, but a specified
name may only appear once.

2. No AMODE instruction may be set for an unknown common control section (see
section 4.2, "COM instruction").

3. The addressing mode assigned to a control section is also transferred to the ENTRY
name of this control section.

4. If no special functions are to be introduced, a control section should be assigned
the attributes AMODE = ANY and RMODE = ANY.

Combinations of AMODE and RMODE

If the AMODE instruction is set for a control section, the following combinations with
the RMODE instruction are possible for the same control section:

AMODE 24 with RMODE 24
AMODE 31 with RMODE 24 or RMODE ANY
AMODE ANYwith RMODE 24 or RMODE ANY

Default

The following defaults apply if AMODE and/or RMODE have not been set for a control
section:

Specified Default

neither AMODE AMODE 24 and
nor RMODE RMODE 24
AMODE 24 RMODE 24
AMODE 31 RMODE 24
AMODE ANY RMODE 24
RMODE 24 AMODE 24
RMODE ANY AMODE 31

Table 4-1 Defaults for AMODE or RMODE

>>>>> See also RMODE instruction

U5223-J-Z125-3-7600 43

CNOP Assembler instructions

CNOP Set no operation

Function

The location counter for the next instruction statement can be aligned on specific bytes
in a word or halfword using the CNOP instruction.

Format

Name Operation Operands

name CNOP b,w
[]

.sym

name Name
.sym Sequence symbol
b Absolute expression, possible values: 0,2,4,6
w Absolute expression, possible values: 4,8

Description

b specifies the byte in a word or doubleword to which the location counter
is to be set.

w specifies whether the byte specified in b is to be in a word (w=4) or
doubleword (w=8).

If an expression is specified for b or w, the names used need not be defined
beforehand.

The following table shows the possible combinations of b and w and their meanings.

b,w meaning

0,4 start of a word
2,4 middle of a word (second halfword)
0,8 start of a doubleword
2,8 second halfword of a doubleword
4,8 middle (third halfword or second word) of a doubleword
6,8 fourth halfword of a doubleword

Table 4-2 Permissible combinations of operands in the CNOP instruction

44 U5223-J-Z125-3-7600

Assembler instructions CNOP

The table below shows the position of a word, or doubleword, which denotes each of
these pairs of operands.

Doubleword

Word Word

Halfword Halfword Halfword Halfword

Byte Byte Byte Byte Byte Byte Byte Byte

0,4 2,4 0,4 2,4
0,8 2,8 4,8 6,8

Table 4-3 Alignment of the location counter with the CNOP instruction

Programming notes

1. If the desired alignment requires the location counter to be incremented, one to
three no-operations are generated using the CNOP instruction (see BCR and NOPR,
"Assembler Instructions" reference manual [3]). These occupy two bytes each.

2. If the location counter is already aligned as desired, the CNOP instruction is not
used to generate no-operations.

3. The name of a CNOP instruction is given the value of the location counter prior to
any incrementation required by no-operations. The CNOP instruction itself is aligned
on a halfword boundary.

U5223-J-Z125-3-7600 45

COM Assembler instructions

COM Define common control section

Function

The COM instruction identifies the beginning or continuation of a common control
section and reserves memory area for it. A common control section can be accessed
from several assembly units.

Format

Name Operation Operands

name COM [type[,...]]
[]

.sym

name Name
.sym Sequence symbol
type Attribute identification for control sections (see section 3.3.3, "Control

section attributes")

Description

The name entry identifies the name of the common control section.

A COM instruction without a name identifies an unnamed common control section. The
beginning of an unnamed COM section is logged in the ESD and XREF listing (see
"ASSEMBH User Guide" [1]).

The start address of a common control section is always aligned on a doubleword
boundary.

A common control section is given its own location counter with the initial value zero.

46 U5223-J-Z125-3-7600

Assembler instructions COM

Programming notes

1. Using DS or DC instructions, a common control section can be broken down into
subfields, which are then defined relative to its start.

2. Machine instructions or constants specified in a common control section are not
assembled. The fields of a common control section can only be loaded at program
execution (see example).

3. Several COM statements with the same name may appear in a program. The first
designates the beginning, and the others the continuation of the common control
section.

4. A common control section which is to be accessed from 2 assembly units must be
identically defined and addressable in each of the two units.

5. No AMODE or RMODE instructions may be set for an unnamed control section.

Example

Name Operation Operands

PR0G START
R2 EQU 2

.

.
L R2,=A(HCOM) (01)
USING HCOM,R2 (02)
MVC COM2,=C’12345’ (03)
.
.

HCOM COM
COM1 DS F (04)
COM2 DS CL5

.

.

(01) Loads the start address of HCOM into register R2.
(02) Specifies HCOM as the base address for the common control section and

allocates register R2 as its base address register.
(03) Enters data in the COM2 field.
(04) Defines the common control section.

>>>>> See also END, START, CSECT, DSECT and XDSEC instructions

U5223-J-Z125-3-7600 47

COPY Assembler instructions

COPY Copy source program text from library element

Function

The COPY statement copies the specified element from a library into a source program.

Format

Name Operation Operands

COPY name

Description

"name" is the name of the library element to be copied.

The COPY statement does not check whether the name is syntactically valid as regards
library management.

The copied instructions of the library element are inserted after the COPY statement in
the source program. The library or library section that has to be searched, can be
specified by the user (see "LMS" User Guide [4] and "ASSEMBH User Guide" [1]).

If several elements with the same name exist in a library, the element with the highest
version designation is used.

Programming notes

1. The nesting level of COPY statements can be specified via a //COMPILE statement
option (see "ASSEMBH User Guide" [1]). Its default is 5, and it may be a maximum
of 255.

2. COPY statements may appear both in the assembler source program and in
macros.
COPY statements within inner macro definitions are only expanded during definition
processing of the inner macro.
Copied instructions may in turn contain macro definitions.

3. The name of a COPY element may not be generated.

4. The copied text is interpreted according to any preceding ICTL instruction. As this
may be unintentional, a warning is issued.

48 U5223-J-Z125-3-7600

Assembler instructions COPY

5. The copied text must not contain an ICTL instruction.

6. Logging of the copied statements may be controlled via a //COMPILE statement
option (see "ASSEMBH User Guide" [1]) or with PRINT COPY or PRINT NOCOPY
(see section 4.2, "PRINT instruction").

U5223-J-Z125-3-7600 49

CSECT Assembler instructions

CSECT Define control section

Function

The CSECT instruction identifies the beginning or continuation of a control section.

Format

Name Operation Operands

name CSECT [type[,...]]
[]

.sym

name Name
.sym Sequence symbol
type Attribute identification for control sections (see section 3.3.3, "Control

section attributes")

Description

The name entry identifies the name of the control section which begins with or is
continued with the CSECT instruction.

A CSECT instruction without a name identifies an unnamed control section. The
beginning of an unnamed CSECT section is logged in the ESD and XREF listing (see
"ASSEMBH User Guide" [1]).

The length attribute of name is 1.

Programming notes

1. All instruction statements which appear between a CSECT instruction and the next
CSECT or DSECT instruction with other names belong to one control section.

2. Several CSECT instructions with the same name may appear in a program. The first
designates the beginning, and the others the continuation of the control section. A
second or further CSECT instruction without a name identifies the continuation of an
unnamed control section.

3. If AID is used to debug an assembler source program, the CSECT instruction which
designates the first control section must have a name. No LSD information is stored
for assembler programs whose first control section is unnamed (see "AID -
Debugging of ASSEMBH Programs" [2]).

>>>>> See also DSECT and XDSEC instructions

50 U5223-J-Z125-3-7600

Assembler instructions CXD

CXD Reserve memory area for the length of the
dummy register vector

Function

The CXD instruction reserves a word in which the linkage editor enters the total length
of the dummy register vector.

Format

Name Operation Operands

name CXD
[]

.sym

name Name
.sym Sequence symbol

Description

The value of the name entry is the address of the memory area in which the linkage
editor enters the total length of the dummy register vector.

This memory area has a length attribute of 4 and must be aligned on a fullword
boundary.

Programming notes

The CXD instruction may appear at any desired point in the source program

>>>>> See also DXD instruction

U5223-J-Z125-3-7600 51

DC Assembler instructions

DC Define constants

Function

The DC instruction defines constants in memory.

Format

Name Operation Operands

name ’chrcon’
[] DC {[dup]type[Ln 1][Sn 2][En 3] ’datcon[,...]’ }[,...]

.sym (adrcon[,...])

name Name
.sym Sequence symbol
dup Duplication factor

decimal self-defining term or a positive absolute parenthesized expression,
value range: 0 to 224-1

type Type of constant
a single letter, may be dropped for character constants

Ln1 Length modifier
n1 is a decimal self-defining term or a positive absolute parenthesized
expression

Sn2 Scale modifier
En3 Exponent modifier

n2 or n3 is a positive or negative decimal self-defining term, respectively,
or an absolute parenthesized expression.

chrcon Value of character constants
datcon Value of decimal, hexadecimal, binary, fixed-point and floating-point

constants
adrcon Value of address constants

A separate constant is generated for each operand in the DC instruction, or for each
value defined within an operand.

52 U5223-J-Z125-3-7600

Assembler instructions DC

Description

name is the name of the constant or name of the first of several constants.
The value of the name is the address of the high-order byte of the first
constant.

The length attribute of the name is the same as the length of the constant
explicitly defined in the length modifier. If no length modifier has been
specified, the length attribute is the same as the implied length of the
constant.

If there is more than one value or operand, the length attribute of "name" is
the length in bytes of the first defined constant.
The length of the first constant must be added to "name" in order to access
the other constants.

dup specifies how often a constant is to be generated.
If an expression is specified for dup, the names used in this expression
need not have been defined previously.

A duplication factor with the value zero is permitted and has the following
effect: no value is assembled, but the constant is aligned according to its
type.

type specifies the type of constant defined. If no length modifier is specified, the
type defines the alignment of the constant in memory and its length.

possible types of constant: C character constant
B binary constant
P, Z decimal constant
X hexadecimal constant
F, H fixed-point constant
E, D, L floating-point constant
A, Y, S, V, Q address constant
(see Types of Constants).

Ln1, Sn2, En3
See "modifiers" in the DC instruction

chrcon, datcon, adrcon
chrcon, datcon and adrcon are the values of the constants.

If several values are specified, the attributes described for each separate
value are applicable.

U5223-J-Z125-3-7600 53

DC Assembler instructions

Alignment of constants

The alignment of constants, i.e. the incrementation of the location counter to a specific
boundary, depends on the type of constant. If a length modifier is specified, no
alignment is ever carried out.

If the operand contains more than one constant, then only the first constant is aligned.

Type Alignment on

C byte boundary
X byte boundary
B byte boundary
P byte boundary
Z byte boundary
F fullword boundary
H halfword boundary
E fullword boundary
D doubleword boundary
L doubleword boundary
A fullword boundary
Y halfword boundary
S halfword boundary
V fullword boundary
Q fullword boundary

Table 4-4 Alignment of DC constants

54 U5223-J-Z125-3-7600

Assembler instructions DC

Padding and truncation of constants

If more space than is required is provided for the value of a constant, then the extra
space is padded.

If insufficient space has been provided for a constant, it is truncated, and a part of the
constant is lost.

Type Pad Truncate

C to the right with space chars.(X’40’) to the right
X to the left with binary zeros to the left
B to the left with binary zeros to the left
P to the left with binary zeros to the left
Z to the left with EBCDIC zeros (X’F0’) to the left
F to the left as per sign bit to the left
H to the left as per sign bit to the left
E to the right with binary zeros not applicable
D to the right with binary zeros not applicable (01)
L to the right with binary zeros not applicable
A to the left with binary zeros to the left
Y to the left with binary zeros to the left
S to the left with binary zeros to the left
V to the left with binary zeros to the left
Q to the left with binary zeros to the left

(01) Floating-point constants are not truncated, but are reported as
errors and not assembled.

Table 4-5 Padding and truncation of DC constants

Storage space

The storage space reserved per operand in a DC instruction is evaluated as follows:

length modifier x number of values x duplication factor
+ all bytes skipped for alignment.

If more than one operand is specified, the necessary storage space is calculated from
the sum of the storage space for the individual operands.

Location counter reference

When a constant is aligned, the location counter is incremented to the appropriate
boundary.

If an address constant refers to the location counter, the first byte of the constant is
used as the value of the memory address, i.e. the value of the location counter
changes from one constant to the next by the length of the constant if several address
constants in a DC instruction refer to the location counter.

U5223-J-Z125-3-7600 55

DC Assembler instructions

If a constant which refers to the location counter is specified with a duplication factor,
the constant is duplicated with the new value of the location counter.

Examples

Name Operation Operands

DUP EQU 2
.
.

CHRCON1 DC C’ABC’ (01)
CHRCON2 DC 2CL5’ABC’ (02)
CHRCON3 DC (DUP)CL5’ABC’ same meaning as in CHRCON2

.

.
HEXCON1 DC X’99’ (03)
HEXCON2 DC X’99,F7D5,0’ (04)
HEXCON3 DC XL3’A6F4E’ (05)

.

.
ADRCON1 DC A(CHRCON1) (06)
ADRCON2 DC A(*+4096) (07)
ADRCON3 DC A(*+4096,*) (08)

Generated constants Meaning

(01) C1C2C3 length: 3 bytes

(02) C1C2C34040C1C2C34040 2 constants, both padded to length 5

(03) 99 length: 1 byte

(04) 99F7D500 3 constants, length: 1 byte, 2 byte, 1 byte, address
of the 2nd or 3rd constant: HEXCON2+1, or
HEXCON2+3

(05) 0A6F4E length: 3 bytes, constant padded to the left

(06) Address of CHRCON1 length: 4 bytes

(07) Address of the 1st byte length: 4 bytes
of ADRCON2 + 4096

(08) Value of the first constant:
Address of the 1st byte of ADRCON3 + 4096,

Value of the second constant:
Address of the 1st byte of ADRCON3 + 4;
both constants have a length of 4 bytes.

56 U5223-J-Z125-3-7600

Assembler instructions DC

Modifiers

The modifiers of a constant are the length in bytes which a constant is to receive, the
scale modifier, and the exponent modifier.

Length modifier

The length modifier overwrites the implied length of a constant. It specifies the number
of bytes reserved for a constant. From this, it determines whether a constant is padded,
or its value truncated. If a length modifier is specified, the constant is not aligned.

Format of the length modifier Ln 1

n1 is a decimal self-defining term or a positive absolute parenthesized expression

If an expression is specified for n1, the names used need not have been defined
previously.

n1 may not exceed the maximum permissible value for the various types of constants.

Type Implied Possible values
length for n 1 (byte)

C 1 to 256
X 1 to 256
B (01) 1 to 256
P 1 to 16
Z 1 to 16
F 4 1 to 8
H 2 1 to 8
E 4 1 to 8
D 8 1 to 8
L 16 1 to 16
A 4 1 to 4
Y 2 1 or 2
S 2 2
V 4 3 or 4
Q 4 1 to 4

(01) The implied length is calculated according to the length of the
defined constant.

Table 4-6 Length modifiers in DC constants

U5223-J-Z125-3-7600 57

DC Assembler instructions

Scale modifier

The scale modifier may only be used in fixed- and floating-point constants. It defines
the internal positional shift for a constant, i.e. the number of binary digit positions for
fixed-point constants and hexadecimal digit positions for floating-point constants.

Format of the scale modifier Sn 2

n2 is a positive or negative self-defining term or an absolute parenthesized
expression

n2 may contain an operational sign. If no sign is specified, a plus sign is
assumed.

Type possible values
for n 2

F -187 to +346
H -187 to +346
E 0 to +14
D 0 to +14
L 0 to +28

Table 4-7 Highest values of scale modifiers in fixed- and floating-point constants

58 U5223-J-Z125-3-7600

Assembler instructions DC

Scale modifier in fixed-point constants

Here the scale modifier specifies the power of two by which a constant is to be
multiplied after its value has been converted into the internal binary notation, but before
it is assembled into the appropriate position.

Multiplication of a binary number by the power of two causes the binary point to be
moved away from its initial position and to the right, behind the last digit position.

The scale modifier therefore specifies the following:

If n2 is positive: the number of binary positions which the fractional part of the
binary number is to occupy. The integer part of the constant is
therefore shifted to the left here.

If n2 is negative: the number of binary positions to be deleted from the integer
part of the binary number. The integer part of the constant is
therefore shifted to the right here.

If positions are lost due to the scale modifier being specified or not being specified, the
position on the farthest right of the binary number is rounded off (i.e. up for a number
> 5; down for a number < 5).

If no scale modifier is specified in a fixed-point constant which contains comma
positions, the positions behind the comma are lost.

Scale modifier in floating-point constants

Here, n2 specifies the number of hexadecimal positions by which the mantissa in the
binary notation of a floating-point constant is to be moved to the right. The first position
of the mantissa is assumed to be directly behind the hexadecimal point (normalized
floating-point constant) originally.

The scale modifier creates a unnormalized floating-point constant, i.e. the positions to
the extreme left of the mantissa contain hexadecimal zeros.

n2 must be positive in this instance.

If the mantissa is moved by the scale modifier, the characteristic of floating-point
constant is corrected accordingly.

If positions are lost as a result of a scale modifier having been specified, the position
on the extreme left of the lost part is rounded off.

U5223-J-Z125-3-7600 59

DC Assembler instructions

Exponent modifier

The exponent modifier can only be used in fixed- and floating-point constants. It defines
the decimal power by which the value of a constant is to be multiplied before being
converted into its internal binary notation.

Format of the exponent modifier En 3

n3 is a positive or negative self-defining term or an absolute parenthesized
expression

n3 may contain an operational sign. If no sign is specified, a plus sign is assumed.
If an expression is specified for n3, the names used need not have been defined
previously.

The permitted range for n3 is -85 to +75.

Note

En3 should not be confused with the exponent which may be defined for a value in
the datcon field. If both types of exponent definition exist in an operand, their values
are added together before being converted into binary notation. This exponent total
must also lie within the permitted range of -85 to +75.

60 U5223-J-Z125-3-7600

Assembler instructions DC

Types of constants

"type" in the DC instruction specifies the type of constant defined (see Table 4-7). With
this as a basis, the assembler can interpret the constant and assemble it into the
appropriate machine format. If no length modifier is specified, "type" defines the
alignment of the constant in memory, and the storage space occupied by the constant.

Code Type of Constant Machine Format

C character constant 8-bit code for each character
X hexadecimal constant 4-bit code for each hexadecimal character
B binary constant binary format
F fixed-point constant binary fixed-point notation with sign,

one word
H fixed-point constant binary fixed-point format with sign,

one halfword
E floating-point constant abbreviated floating-point format,

one word
D floating-point constant full floating-point format,

one doubleword
L floating-point constant extended floating-point format,

two doublewords
P decimal constant packed decimal format
Z decimal constant zoned decimal format
A address constant address value,

one word
Y address constant address value,

one halfword
S address constant base register and displacement value,

one halfword
V address constant storage space reserved for

external symbols;
one word per address

Q address constant storage space reserved for the
offset of a dummy register relating to
the start of a dummy register vector

Table 4-8 Types of constants

The individual constants are described below.

U5223-J-Z125-3-7600 61

DC Assembler instructions

Character constant C

The character constant can be used to specify character strings. Character constants
may be formed using any printable characters. Each character specified in the chrcon
field is assembled into one byte.

There is no alignment in memory.

The greatest length modifier allowed is 256.
If no length modifier is specified, the length of the constant corresponds to the number
of characters in chrcon. If a length modifier is specified, the value of the constant is

truncated to the right if the length modifier is too small, and
padded to the right with space characters (X’40’) if the length modifier is greater
than the number of characters.

The following rules apply to the use of single quotes (’) and ampersands (&):
The single quote (’) is used as a syntax character in the assembly language, and the
ampersand (&) as a syntax character in the macro language. Therefore, for each
single quote or ampersand to be used in a character constant, two single quotes or
ampersands must be entered. The two single quotes or ampersands are assembled
as one single quote or ampersand.

Examples

Name Operation Operands

CHRCON1 DC C’ABC,DEF’ (01)
CHRCON2 DC C’&& ABC,DEF’ (02)
CHRCON3 DC 3CL4’12345’ (03)

Generated constants Meaning

(01) C1C2C36BC4C5C6 Length: 7 bytes, comma is interpreted as a
character.

(02) 5040C1C2C36BC4C5C6 Length: 9 bytes, the two ampersands are regarded
as one character.

(03) F1F2F3F4F1F2F3F4F1F2F3F4
Constant with duplication factor and length
modifier; if the defined length is too short, the
constant is truncated to the right.

62 U5223-J-Z125-3-7600

Assembler instructions DC

Hexadecimal constant X

A hexadecimal constant consists of one or more hexadecimal digits. Each hexadecimal
position defined in datcon is assembled into four bits. In an odd number of positions,
the left four bits of the high-order byte are padded with hexadecimal zero.

The greatest length modifier is 256 (bytes).
If no length modifier is specified, the implied length of the constant is equal to the
number of bytes in datcon. If a length modifier is specified, the constant is

truncated to the left if length modifier is too small, and
padded to the left with hexadecimal zeros, if the length modifier is greater than half
the number of hexadecimal positions.

Examples

Name Operation Operands

HEXCON1 DC X’FF00FFFF’ (01)
HEXCON2 DC 3XL2’BD8E7’ (02)
HEXCON3 DC 3X’BD8E7’ (03)

Generated Constants Meaning

(01) FF00FFFF The constant generates the bit pattern of a word.
HEXCON1 sets the first, third and fourth byte of a
word to 1.

(02) D8E7D8E7D8E7 Constant with duplication factor and length
modifier; since the defined length is too short, the
constant is truncated to the left.

(03) 0BD8E70BD8E70BD8E7 The length is calculated implicitly, and the constant
is padded to the left with a hexadecimal zero.

U5223-J-Z125-3-7600 63

DC Assembler instructions

Binary constant B

Using a binary constant, any desired bit pattern can be defined. It consists of a series
of the binary digits 0 and 1.

The greatest possible length modifier is 256 bytes.
If no length factor is specified, the implied length of the constant is the number of bytes
occupied by the constant. If the value of the constant does not occupy any integer
number of bytes, it is padded to the left with binary zeros. If a length modifier is
specified, the value of the constant is

truncated to the left if the length modifier is too small, and
padded to the left with binary zeros if the length modifier specified is greater than
necessary for the defined bits.

Examples

Name Operation Operands

BCON DC B’10101101’ (01)
BSHORT DC BL1’111100011’ (02)
BLONG1 DC BL1’110’ (03)
BLONG2 DC B’110’ (04)

Generated constants Meaning

(01) AD Length: 1 byte

(02) E3 The constant is truncated to the left.

(03) 06 The constant is padded to the left with binary
zeros.

(04) 06 Same effect as BLONG1, length is calculated
implicitly.

64 U5223-J-Z125-3-7600

Assembler instructions DC

Fixed-point constants F and H

Fixed-point constants define data which can be used in fixed-point instructions.

The value of a fixed-point constant is written as a decimal number which can be
followed by a decimal exponent:

The decimal number may be an integer, a fraction, or mixed, and have a positive or
negative sign. If there is no sign, it is assumed to be positive. If there is no decimal
point, the decimal number is interpreted as an integer.
If a decimal exponent is specified as the value of the constant, it must follow
immediately after the number. It is written as En, where n must be a decimal
number which may have a sign. En is interpreted as an exponent to the base 10.
The sum of the exponent and exponent modifier must not exceed the permitted
range of -85 to +75.

Assembly of fixed-point constants

1. The defined number, multiplied by 10 to the power of the exponent, is converted
into a binary number with sign. The sign is coded in the high-order bit.
A negative number is represented as a twos complement with a sign bit set to 1.

2. This number is aligned according to the specified scale modifier. If a fractional or a
mixed number is specified without a scale modifier, the fractional part is lost.

3. If necessary, the binary value is rounded off.
4. Once the constant is assembled, the duplication factor is evaluated.

Alignment, length, value range

The constant is aligned on a word or halfword boundary if no length modifier is
specified.
The implied length for word constants (F) is four bytes, and for halfword constants (H)
two bytes. With a length modifier, however, lengths of up to eight bytes may be
specified for both types of constants. The following range of representable values for
fixed-point constants is the result:

Length Representable
value range

8 -2 63 to 2 63-1
4 -2 31 to 2 31-1
2 -2 15 to 2 15-1
1 -2 7 to 2 7-1

Table 4-9 Representable value range for fixed-point constants

U5223-J-Z125-3-7600 65

DC Assembler instructions

The value range is dependent on the implied or explicit length defined.
If the constant is smaller than its defined length, it is padded to the left as per the sign
bit.
If the constant exceeds the range of values (which is possible as a result of its defined
length), the sign is lost, and the constant is truncated to the left.

Examples

Name Operation Operands

HCON1 DC H’+12’ (01)
HCON2 DC H’-12’ (02)
FCON1 DC F’12.3’ (03)
FCON2 DC FS8’12.3’ (04)
FCON3 DC FS8’123’ (05)

Generated constants Meaning

(01) 000C Length: 2 bytes

(02) FFF4 The negative value is represented as a twos
complement; the sign bit is on 1.

(03) 0000000C Word constant; the fractional part is lost because
no scale modifier was specified; rounding is
downward.

(04) 00000C4D The scale modifier reserves 1 byte for the
fractional part, and the integer part of the constant
is moved to the left; rounding is upward.

(05) 00007B00 The scale modifier reserves 1 byte for the
fractional part even if none is contained in the
value.

66 U5223-J-Z125-3-7600

Assembler instructions DC

Floating-point constants E, D and L

Floating-point constants define data which may be used in floating-point instructions.

The value of a floating-point constant is written as a decimal number, which may be
followed by an exponent:

The decimal number may be an integer, a fraction, or mixed, and have a positive or
negative sign. If there is no sign, the number is assumed to be positive. If there is
no decimal point, the number is interpreted as an integer.
If an exponent is specified for the number, it must be written in the form En, and
follow it directly. "n" must be a decimal number which may have a sign. En is
interpreted as an exponent to the base 10.
The sum of the exponent and exponent modifier must not exceed the permissible
range of -85 to +75.

Machine format of floating-point constants

The machine format for a floating-point constant consists of two parts: the exponent
part (characteristic), followed by the fractional part (mantissa). A sign bit indicates
whether a positive or negative number has been defined (see "Assembler Instructions"
reference manual [3]).

))
Abbrev. floating-point V characteristic mantissa
format (4 bytes):))

0 1 8 31

))
Full floating-point V characteristic mantissa
format (8 bytes):))

0 1 8 63

0 1 8 64
))

Extended floating-point V character. 1 mantissa (0 to 55)
format (16 bytes):))

V character. 2 mantissa (56 to 111)
))

64 72 127

- The sign in the second doubleword is the same
as in the first

- characteristi c 2 = (characteristi c 1 - 14)

U5223-J-Z125-3-7600 67

DC Assembler instructions

Assembly of floating-point constants

A floating-point constant must be converted into a fraction prior to its conversion into
machine code. The exponent is then converted into its binary equivalent, and the
fraction converted into a binary number.

The assembler assembles a floating-point constant into its binary form, as explained in
the following example:

The floating-point constant KON was defined as follows:

Name Operation Operands

KON DC E’-167.0’

1. -167.010 = -A716 Fraction converted into a binary number

2. -A716 = (-0.A7*162)16 Normalization

3. Characteristic = (exponent + 64 = 66)10 = 4216

4. The negative sign causes the high-order bit to be set to 1, which corresponds to an
addition of 8016:

8016 +4216 = C216

5. An E-type constant has an implied length of 4 bytes, i.e. the first byte contains the
characteristic and sign; the 3 bytes on the right contain the mantissa:

C2 A7 00 00 i.e. C2 = sign + characteristic
A7 00 00 = mantissa

6. If a scale modifier was defined, hexadecimal zeros are added to the left of the
normalized fractional part, and the characteristic is adjusted accordingly.

7. The fractional part is rounded off according to the implied or explicit length of the
constant.

8. A negative fractional part is not represented as a twos complement, but in direct
form with sign.

9. Once the constant is assembled, the duplication factor is evaluated.

68 U5223-J-Z125-3-7600

Assembler instructions DC

Alignment, length, value range

E-type constants are aligned on word boundaries, D and L constants on double-word
boundaries. If a length modifier is defined, there is no alignment.
The implied length for E-type constants is 4 bytes, for D-type constants 8 bytes, and for
L-type constants 16 bytes. With a length modifier, up to 8 bytes may be specified for
each length for E-type and D-type constants, and up to 16 bytes constants of type L.
The result is a range of values which can be assembled for the mantissa of floating-
point constants:

Type Mantissa Range of Values (exact) Range of Values (approx.)

E 16-65 to (1-16 -6)*16 63

D 16-65 to (1-16 -14)*16 63 5,4*10 -75 to 7,2*10 75

L 16-65 to (1-16 -28)*16 63

Table 4-10 Representable mantissa range of values in floating-point constants

If the value specified for a constant does not lie within these ranges, the constant is not
assembled and is flagged as an error.

Examples

Name Operation Operands

ECON1 DC E’167’ (01)
ECON2 DC E’16.7’ (02)
ECON3 DC ES2’16.7’ (03)
ECON4 DC EE10’16.7’ (04)
ECON5 DC E’16.7E10’ (05)

Generated constants Meaning

(01) 42A70000 Floating-point constants with a length of 4 bytes;
the first byte contains the characteristic and sign,
the 3 bytes on the right contain the mantissa.

(02) 4210B33 The characteristic remains the same; the mantissa
is altered as a comma position has been specified.

(03) 440010B33 The scale modifier causes the fractional part to be
shifted two hexadecimal positions to the right. The
characteristic is altered, since the value of the
exponent changes as a result of the shift.

(04) 4A26E1FA Because of the exponent modifier, the value 16.7
is multiplied by 1010, before it is converted.

(05) 4A26E1FA Has the same result as ECON4. 16.7*1010 is
assembled.

U5223-J-Z125-3-7600 69

DC Assembler instructions

Decimal constants P and Z

Decimal constants define data which can be used in decimal instructions.

The value of a decimal constant is written as a decimal number, which may have a
sign. If no sign is specified, the number is interpreted as positive. The decimal number
may contain a decimal point. This is not taken into consideration when the constant is
assembled into the internal format.

The greatest length modifier is 16 bytes.
If no length modifier is specified, the implied length of the constant corresponds to the
number of bytes which it occupies.
If a length modifier is specified, the value of the constant is

truncated to the left if the constant requires more bytes than specified in the length
modifier, and
padded to the left if the length modifier is greater than required. With Z-type
constants, a decimal zero is used for padding, and with P-type constants, the bits of
each byte added are set to zero.

Assembly of decimal constants

With packed decimal constants (P), each digit is assembled into its 4-bit binary
equivalent. The sign appears in the 4 bits at the extreme right of the constant.
If an even number of packed decimal positions are defined, the left 4 bits of the byte
on the extreme left are set to zero, and the 4 bits on the right contain the first position
of the decimal number.
For unpacked decimal constants (Z), each digit is converted into its 8-bit long EBCDIC
form. The sign is in the first 4 bits of the byte at the extreme right of the constant.

For both types of constant, a plus is stored as C, and a minus as D.

Examples

Name Operation Operands

PCON1 DC P’+153’ (01)
PCON2 DC P’-153’ (02)
ZCON1 DC Z’-153’ (03)
ZCON2 DC Z’-1.53’ (04)

Generated constants Meaning

(01) 153C length: 2 bytes

(02) 153D length: 2 bytes

(03) F1F5D3 length: 3 bytes

(04) F1F5D3 length: 3 bytes, the decimal point is ignored.

70 U5223-J-Z125-3-7600

Assembler instructions DC

Address constants

Address constants contain memory addresses. Address constants can be used, for
example, to initialize a base register or to link control sections.

A-type and Y-type address constants

The value of an A- or Y-type constant defined in adrcon may be an absolute or a
relocatable expression.

A-type constants are aligned on a fullword boundary and Y-type constants on a
halfword boundary if no length modifier is specified.

The implied length of A-type constants is 4 bytes, of Y-type constants 2 bytes. With the
length modifier, lengths of 1 to 4 bytes may be specified for A-type constants and 1 to
2 bytes for Y constants.

Assembly of A- and Y-type constants

adrcon is an absolute expression:

The value in adrcon is calculated to 32 bits, and then truncated to the left or
padded to the left, as the length of the constant necessitates.

adrcon is a relocatable expression:

The assembler uses the location counter as a provisional value. The actual value of the
constant is only used when loading the program into the constant.

Programming notes

1. For 31-bit addressing, only 4-byte long A-type constants may be used.

2. A relocatable expression in an A- or Y-type constant may contain external names,
and thus denote an address in an independently assembled program. In this
address constant, the assembler enters the provisional value zero (see Example 03).

3. Y-type constants are frequently used in offset addressing in tables or data areas
allocated by the executive macro REQM (see "Executive Macros" reference manual
[6]).

U5223-J-Z125-3-7600 71

DC Assembler instructions

Examples

Name Operation Operands

ACON1 DC A(*+4096) (01)
ACON2 DC A(ACON1) (02)

.

.
PROGRA START

.
EXTRN MARK
.
L 15,ACON
.

ACON DC A(MARK)
.
END (03)
.
.

PROGRB START
.
ENTRY MARK
.

MARK EQU *
.
END

Value of the constant Meaning

(01) ACON1 location counter The relocatable expression in the
+ 4096 constant contains a reference to the location

counter. The value of * is the ACON1 location
counter.

(02) ACON1 location counter

(03) Zero Possible linking of two programs. The A-type
constant in PROGRA is identified as an EXTRN
address (branch address), in PROGRB as an
ENTRY address (entry point). The branch
destination is in PROGRB.

72 U5223-J-Z125-3-7600

Assembler instructions DC

S-type address constants

S-type constants enable addresses to be filed in base-displacement form.

The value of an S-type constant may be specified as a symbol or a non-symbol A
symbol is broken down by the assembler into base register and displacement value,
while a non-symbol must be specified in the form (displacement(base register)).

An S-type constant is aligned on a halfword boundary, and its implied length is 2 bytes.
The 4 bits on the extreme left of the assembled constant contain the number of the
base register, and the remaining 12 bits contain the displacement value.

S-type constants may not be used in literals.

Programming notes

S-type constants are primarily used if a machine instruction code is not to be
generated using a mnemonic operation code, but using DC constants.

Example

Name Operation Operands

.

.
R0 EQU 0
R1 EQU 1
R11 EQU 11

.

.
BALR R11,R0
USING *,R11
.
.
L R1,ADR (01)
.
.
DC X’58’
DC X’10’ (02)
DC S(ADR)
TERM
.
.

ADR DC C’ABCD’
END

Generated object code Meaning

(01) 58 10 B026
(02) 58 The string of DC constants

10 generates an object code which
B026 corresponds to the L instruction.

U5223-J-Z125-3-7600 73

DC Assembler instructions

V-type address constants

Using V-type constants, storage space can be reserved for entry points in another
program. V-type constants may only be used as branch addresses, not for addressing
external data.

The value of the constant is specified as a name. This name must not be identified
using an EXTRN instruction, since it is automatically interpreted by the assembler as an
external address (for the sake of compatibility, however, no flag will be output even if it
is). Note: specifying a name in a V-type constant does not mean that it is reciprocally
defined as an external symbol for this program.

The value of a V-type constant is zero until the program is loaded. The correct value of
the address is inserted by the loader.

V-type constants are aligned on a fullword boundary if no length modifier is specified.
The implied length of a V-type constant is 4 bytes. With the length modifier, a length of
3 or 4 bytes may be specified. If this is the case, the relative value of the constant may
be truncated.

Programming notes

For 31-bit addressing, only V-type constants with a length of 4 bytes may be used.

74 U5223-J-Z125-3-7600

Assembler instructions DC

Example

Name Operation Operands

PROGRA START
.
L 15,VCON
BALR 14,15
.

VCON DC V(MARK)
.
END
. (01)
.

PROGRB START
ENTRY MARK
.
USING MARK,15

MARK LA ...
.
.
BR 14
.
END

(01) This example illustrates program linking achieved using a V-type constant. The
name MARK may not be identified in the same program via an EXTRN
instruction.

U5223-J-Z125-3-7600 75

DC Assembler instructions

Q-type address constants

A Q-type constant is used to reserve storage space in which the offset of a dummy
register is to be stored in the dummy register vector. In the dummy register vector, the
dummy registers are one behind the other, in a sequence determined by the linkage
editor. In other words, the Q-type constant contains the offset of the dummy register at
the start of the dummy register vector.

The value defined in a Q-type constant is the name of a dummy register defined with
DXD, or a DSECT also entered as a dummy register via referencing in a Q-type
constant. This address is entered only by the linkage editor.

For a description on the use of Q-type constants, see section 3.2.1.2, "Dummy
registers".

Note
Literals may not contain Q-type constants.

Example

Name Operation Operands

DNAME DSECT
D1 DS 3F
D2 DS CL15

.

.
CNAME CSECT

.

.
QCON DC Q(DNAME) (01)

END

(01) DNAME defines a DSECT. QCON contains the displacement from DNAME at the
start of the dummy vector.

76 U5223-J-Z125-3-7600

Assembler instructions DS

DS Reserve storage space

Function

The DS instruction reserves memory areas and allocates names to them.

Format

Name Operation Operands

name ’chrcon’
[] DS [dup]type[Ln][]

.sym ’datcon’

name Name
.sym Sequence symbol
dup Duplication factor

decimal self-defining term or positive absolute parenthesized expression,
value range: 0 to 224-1

type Type of reserved storage space, a single letter
Ln Length modifier

n is a decimal self-defining term or a positive absolute parenthesized
expression

chrcon Value specification of character area
datcon Value specification for decimal, hexadecimal, binary, fixed-point and floating-

point areas

Values specified in the operands of the DS instruction are not assembled into object
code. They are only used, where necessary, to define implied length modifiers.

Note

The entire format of the DC instruction can be specified in the operand of the DS
instruction. These extra specifications have no effect on the reserved area.

Description

name is the name of the reserved memory area. The value of the name is the
address of the byte on the extreme left of the reserved area.

The length attribute of the name is the same as the length of the area
explicitly defined in the length modifier. If no length modifier is specified, the
length attribute is the same as the implied length of the area, which is
dependent on the type specified.

U5223-J-Z125-3-7600 77

DS Assembler instructions

dup specifies how often an area is to be reserved. If an expression is specified
for dup, the names used in this expression need not have been defined
previously.

A duplication factor with the value zero is allowed, and has the following
effect: no memory area is reserved; the area is, however, aligned according
to its type, and receives a length attribute.

 type If no length modifier is specified, the type determines the alignment of the
area in memory, and its length.

Possible Type Entries: C Character areas
B Binary areas
P, Z Decimal areas
X Hexadecimal areas
F, H Fixed-point areas
E, D, L Floating-point areas
A, Y, S, V, Q Address areas

Ln specifies the length in bytes of the area which is to be reserved, and
overwrites the implied length.
If an expression is specified for n, the names used need not have been
defined previously.

If a length modifier is specified, the corresponding area is not aligned.

Type implied possible values
length for n (byte)

C 1 1 to 2 24-1
X 1 1 to 2 24-1
B 1 1 to 256
P 1 1 to 16
Z 1 1 to 16
F 4 1 to 8
H 2 1 to 8
E 4 1 to 8
D 8 1 to 8
L 16 1 to 16
A 4 1 to 4
Y 2 1 or 2
S 2 2
V 4 3 or 4
Q 4 1 to 4

Table 4-11 Length modifiers in the DS instruction

78 U5223-J-Z125-3-7600

Assembler instructions DS

chrcon,datcon
chrcon and datcon are the values which may be specified in the operand.

If no length modifier is specified for types C, B, P, Z and X, the assembler
calculates the length of the area to be reserved using the specified value.

If a value is specified for an area, it must be valid for the type of the corresponding
area (see description of Types of Constants).

Alignment of memory areas

The alignment of memory areas, i.e. incrementation of the location counter to specific
boundaries, depends on the type of area. If a length modifier is specified, no alignment
is ever carried out.

If the operand contains more than one value specification, only the first value is
aligned.

Type Alignment on

C byte boundary
X byte boundary
B byte boundary
P byte boundary
Z byte boundary
F fullword boundary
H halfword boundary
E fullword boundary
D doubleword boundary
L doubleword boundary
A fullword boundary
Y halfword boundary
S halfword boundary
V fullword boundary
Q fullword boundary

Table 4-12 Alignment of memory areas in the DS instruction

Programming notes

1. Forcing alignment:
A DS instruction can be used to align memory areas or constants that would
normally not be aligned, on a halfword, fullword or doubleword boundary. To this
end, the relevant DC or DS instruction must be preceded by a DS instruction with a
duplication factor of zero, and the appropriate type specification (e.g. H, F or D).

2. Redefinition of memory areas:
A DS instruction with a duplication factor of zero assigns a name and a length
attribute to a memory area. Subsequent DS or DC instructions can redefine this
area, i.e. fields or constants within it are defined, and accessed individually (see
examples (02)).

U5223-J-Z125-3-7600 79

DS Assembler instructions

Fields which are not to be defined in such an area must be skipped using a DS
instruction with length specification or with an ORG instruction.

3. Length calculation:
For memory areas with an implied length of 1 byte (see Table 4-8), the length
attribute can be calculated by the assembler if the appropriate values are specified
in the chrcon or datcon fields. Here, no length may be specified. The assembler
calculates the required length using the values.

4. The DS instruction reserves a memory area, but does not fill it with zeros. The
contents of the reserved area cannot be specified in advance.

Examples

Name Operation Operands

FIELD1 DS CL80 1 field, length attrib. 80
FIELD2 DS 4CL20 4 fields, lgth.attr.of 20 each
FIELD3 DS 4C 4 fields, lgth.attr. of 1 each
FIELD4 DS F 1 field, aligned on word

. boundary, length attr. 4

.
DS 0F

AREA DS XL20 (01)
.
.

RDAREA DS 0CL50
DS CL4

PERSNUM DS CL6
NAME DS CL20

DS CL4 (02)
DATE DS 0CL6
DAY DS CL2
MON DS CL2
YEA DS CL2

ORG RDAREA+L’RDAREA (03)

(01) The preceding DS instruction with duplication factor zero and type specification
F aligns the area AREA on a fullword boundary.

(02) No memory area is reserved for the RDAREA area, but it receives a length
attribute.
The subsequent instructions redefine the area, whereby the field DATE is further
subdivided. Both the individual fields and the area as a whole may be accessed.

(03) The ORG instruction at the end of the instruction string increments the location
counter to the end of the RDAREA area, thus reserving the entire area.

>>>>> See also DC instruction

80 U5223-J-Z125-3-7600

Assembler instructions DXD

DXD Define external dummy register

Function

The DXD instruction defines a dummy register.

Format

Name Operation Operands

name DXD [dup]type[Ln][’val’]

name Name
dup Duplication factor

decimal self-defining term or positive absolute parenthesized expression
type Type of dummy register, a single letter
Ln Length modifier

n is a decimal self-defining term or a positive absolute parenthesized
expression,
maximum value: dup*n 4095

val Value specification for the dummy register

Note

The entire format of an operand in the DC instruction may be specified in the
operand of the DXD instruction. These extra specifications have no effect on the
dummy register itself.

Description

name is the name of the dummy register. The value of the name is the low-
order address in the dummy register. This value is only entered during
loading. Until then, the name has a provisional value of zero.

dup specifies how often the area specified in the operand is to be reserved.
If an expression is specified for dup, the names used in this expression
need not have been defined previously.

A duplication factor with the value zero is allowed, and has the
following effect: a dummy register with a length of zero is defined, and
aligned according to its type.

U5223-J-Z125-3-7600 81

DXD Assembler instructions

type If no length modifier is specified, the type determines the alignment of the
dummy register, and its length.

Possible type entries: C character areas
B binary areas
P, Z decimal areas
X hexadecimal areas
F, H fixed-point areas
E, D, L floating-point areas
A, Y, S, V, Q address areas

 Ln specifies the length of the dummy register, and overwrites the implied
length.
If an expression is specified for n, the names used need not have been
defined previously.

If a length modifier is specified, the dummy register is not aligned.
For possible values of the length modifier and implied lengths, see DS
instruction.

val Value which may be specified in the operand.

If no length modifier is specified, the assembler uses the value specified to
calculate the required length of the dummy register.

The value specified must be valid for the type of dummy register (see
description of types of constant).

Programming notes

1. The linkage editor determines the sequence in which all the dummy registers of all
the modules to be linked are combined into a dummy register vector.

2. If a dummy register is defined in several assembly units with different lengths and
alignments, the linkage editor uses the strongest attribute as the final valid attribute.

3. Dummy registers may be defined at any desired position in the program. Definitions
of all the dummy registers need not follow in succession.

4. The DLL currently does not support the use of dummy registers, i.e. such programs
must be linked with TSOSLNK, and no dynamic loading mechanism may be used
(see "Dynamic Binder Loader / Starter" User Guide [8]).

Example see Appendix A.4

>>>>> See also DC, DSECT and CXD instructions

82 U5223-J-Z125-3-7600

Assembler instructions DROP

DROP Drop base address register

Function

The effect of the DROP instruction is to release a hitherto assigned base address
register for general utilization.

Format

Name Operation Operands

[.sym] DROP [reg[,...]]

.sym Sequence symbol
reg General-purpose register; positive absolute expressions, either

names allocated an absolute value of 0 to 15 or
decimal self-defining terms of 0 to 15

Description

"reg" denotes the base address register that was assigned in a USING instruction and
is now released again. In other words, it is no longer available as a base register.

DROP with a blank operand field releases all base address registers.

Programming notes

1. A register which was blocked with a DROP instruction can be made available at a
later stage for addressing via a new USING instruction.

2. No DROP instruction is necessary if the base address is to be altered with a USING
instruction.

>>>>> See also USING instruction

U5223-J-Z125-3-7600 83

DSECT Assembler instructions

DSECT Define dummy section

Function

The DSECT instruction indicates the beginning or continuation of a dummy section.

Format

Name Operation Operands

name DSECT

name Name

Description

"name" indicates the name of the dummy section.

An additional DSECT instruction with the same name denotes the continuation of the
dummy section.

The length attribute of name or &par is 1.

The DSECT instruction, which denotes the beginning of the dummy section, is used to
create a new location counter, and is set to an initial value of zero.

No memory area is reserved as a result of defining a dummy section.

84 U5223-J-Z125-3-7600

Assembler instructions DSECT

Programming notes

1. Those fields to be projected onto a main memory area via the dummy section are
described after the DSECT instruction.

2. The names defined in a dummy section may be used as operands in machine
instructions. For this, the following is necessary (see example):

A base address register must be made available to the assembler via a USING
instruction; this register must be effective from the start address of the dummy
section.
It must be ensured that a base address register is loaded at program execution
with the actual address of the memory area on which the dummy section is to
be projected.

3. A name which is defined in a dummy section may only be used in a A-type address
constant if it is paired with another of an opposite sign in the same dummy section.

4. A dummy register can be defined with a DSECT instruction. The name of the
DSECT instruction must then appear as an operand of a Q-type address constant.

Examples

The following example shows two separately assembled programs, PROG1 and PROG2.
PROG1 is to read in a record; PROG2 is to process parts of this record. Data is moved
from PROG1 to PROG2 via a memory area defined with a DSECT. In this example, the
base address register remains the same, and the memory contents are altered. An
input is thus read and processed using an overlayed DSECT structure.

U5223-J-Z125-3-7600 85

DSECT Assembler instructions

Name Operation Operands

PROG1 START
R0 EQU 0
R2 EQU 2
R3 EQU 3
R4 EQU 4
R14 EQU 14
R15 EQU 15

.

.
BALR R3,0
USING *,R3
.
.

READNEXT RDATA IN,ERR
.
.
LA R4,SEN (01)
L R15,=V(PROG2)
BALR R14,R15
.
.
B READNEXT

ERR TERM
.

IN DS 0CL84
DS CL4

SEN DS CL80
.
.
END
.
.
.

PROG2 START
.
.
BALR R2,R0
USING *,R2
USING BEG,R4 (02)
.
.

BEG DSECT (03)
NR DS CL2
NAME DS CL2
STREET DS CL18 (04)

.

.
END

86 U5223-J-Z125-3-7600

Assembler instructions DSECT

(01) The start address of SEN is loaded into register 4.
(02) Register 4 is assigned as base address register for the dummy section, and the

start address of the dummy section is specified.
(03) Definition of the dummy section.
(04) "Template" which is overlayed on the SEN area.

In the second example, a table is to be read. A prerequisite for this is that the table has
been filled beforehand, and that each table element has a fixed record format.
The dummy section corresponds to a table element. The table is read by incrementing
the base address register by the element length until the end of the table. In this
example, the base address register is altered in order to address other memory areas.

Name Operation Operands

CSECT
R1 EQU 1
R2 EQU 2
R15 EQU 15

.

.
EXTRN TABEND
EXTRN TAB
USING *,R15
USING TABELE,R1
LA R1,TAB
LA R2,TABEND

LOOP MVC OUT,STREET
.
.
LA R1,LTABELE(0,R1)
CR R1,R2
BL LOOP
.
.

TABELE DSECT
NR DS CL2
NAME DS CL2
STREET DS CL18
LTABELE EQU *-TABELE

.

.

>>>>> See also CSECT and XDSEC instruction

U5223-J-Z125-3-7600 87

EJECT Assembler instructions

EJECT Page feed

Function

The EJECT instruction causes a page feed on the assembler listing.

Format

Name Operation Operands

[.sym] EJECT

.sym Sequence symbol

Description

The instruction statement after the EJECT instruction in the program appears in the
assembler listing on a new page. If such an instruction is already at the start of a new
page, the EJECT instruction is ignored.

2 EJECT instructions create a blank page, etc.

>>>>> See also SPACE, TITLE and PRINT instructions

88 U5223-J-Z125-3-7600

Assembler instructions END

END End assembly

Function

The END instruction denotes the end of an assembly unit and may specify the address
of the first instruction to be executed in the program.

Format

Name Operation Operands

[.sym] END [expr]

.sym Sequence symbol
expr Positive relocatable expression

Description

The operand expr in the END instruction specifies the address of the instruction with
which execution is to begin after program loading.

Programming notes

1. The END instruction must always be the last instruction statement in a program.

2. expr may designate an address in a separately assembled program. In this case,
expr must be a V-type address constant, or be identified in an EXTRN instruction
(see second example).

3. If an END instruction is generated by a macro, the remainder of the source program
is skipped and so is not assembled (which also means this cannot be used as a
multiple assembly mechanism).

U5223-J-Z125-3-7600 89

END Assembler instructions

Examples

Name Operation Operands

PROG CSECT
R0 EQU 0
R3 EQU 3

.

.
BEGIN BALR R3,R0

USING *,R3
.
.
.
END BEGIN

The following example shows an END instruction with an external address which is
designated a V-type constant.

PROG CSECT
.
.
DC V(STARTMO)
.
.
END STARTMO

>>>>> See also START, CSECT, DSECT and XDSEC instructions

90 U5223-J-Z125-3-7600

Assembler instructions ENTRY

ENTRY Identify entry-point symbol

Function

The ENTRY instruction identifies a symbol that is defined in one assembly unit and is to
be referenced from another.

Format

Name Operation Operands

[.sym] ENTRY name[,...]

.sym Sequence symbol
name Name

Description

"name" denotes a symbol which represents an entry point. In other words, another
assembly unit may use this address as a branch destination or data address.

"name" has not yet been defined using the ENTRY instruction. The length attribute of
"name" is therefore specified by the instruction statement which defines the name.

Programming notes

1. The name of a control section does not have to be identified by an ENTRY
instruction in order to enable refererence from another program.

2. An ENTRY instruction must not contain any name that has been defined in a
dummy section.

Example see EXTRN instruction

>>>>> See also EXTRN and WXTRN instructions

U5223-J-Z125-3-7600 91

EXTRN Assembler instructions

EXTRN Identify external symbol

Function

The EXTRN instruction denotes a symbol which is referenced in one assembly unit and
defined in another.

Format

Name Operation Operands

[.sym] EXTRN name[,...]

.sym Sequence symbol
name Name

Description

"name" identifies a symbol which is defined in another assembly unit as an entry point.

As a result of the EXTRN instruction, information regarding the EXTRN reference for the
linkage editor is issued.

"name" is defined by the EXTRN instruction for this assembly unit. The assembler
assigns a length attribute of 1 and a value of 0.

Programming notes

1. Names defined in an EXTRN instruction may not appear as names of instruction
statements in the same program.

2. If names defined as EXTRN are used in arithmetic expressions, they may not appear
paired.

92 U5223-J-Z125-3-7600

Assembler instructions EXTRN

Examples of EXTRN and ENTRY

The following example shows how two independent assembly units are linked using the
ENTRY and EXTRN instructions. In PROG1, the address IN is identified as external.
PROG2 contains IN as a branch destination.

Name Operation Operands

PROG1 START
R0 EQU 0
R3 EQU 3
R4 EQU 4
R10 EQU 10
R15 EQU 15

.

.
EXTRN IN
BALR R10,R0
USING *,R10
.
.
L R15,=A(IN)
BALR R14,R15
.
.
END PROG1
.
.
.

PROG2 START
R0 EQU 0
R3 EQU 3
R4 EQU 4
R15 EQU 15

ENTRY IN
.
.

IN EQU *
USING *,R15
.
.
BR R14
END PROG2

>>>>> See also ENTRY and WXTRN instructions

U5223-J-Z125-3-7600 93

EQU Assembler instructions

EQU Equate

Function

The EQU instruction assigns the value and attributes of the expression in the operand
entry to a name.

Format

Name Operation Operands

name EQU expr[,[len][,type]]

name Name
expr Absolute or relocatable expression
len Positive absolute expression; value range: 0 to 224-1
type Self-defining term, maximum 1 byte long

Description

name The field so designated is assigned the value of expr. The value of the
name is relocatable or absolute, depending on whether expr has a
relocatable or absolute value.

"name" receives the same length attribute as expr.

If expr is an arithmetic expression, "name" receives the length and type
attributes of the name on the extreme left in the operand. If the
expression in the operand field consists of an asterisk (*) or of a self-
defining term, the length attribute of "name" is 1, and the type attribute is
U.

expr Names used in expr need not have been defined previously.

len If len is specified, the name of this value is assigned as the length
attribute.

If the length attribute is to be evaluated in macro language, len may only
be a self-defining term. If an expression or symbolic parameter is specified
for len, a default of 1 is assigned during macro resolution.

type If type is not a self-defining term, the name has the type attribute U
(undefined). The type attribute may only be evaluated in macro
processing.
The specification may be a self-defining, decimal, hexadecimal, binary or
character value.

94 U5223-J-Z125-3-7600

Assembler instructions EQU

Programming notes

1. The EQU instruction is frequently used as an aid in structured programming, e.g. in
assigning names for register numbers,
separating branch addresses and instructions by assigning the branch
destination to the current location counter,
assigning names for frequently used expressions.

Examples

Name Operation Operands

REG1 EQU 1 (01)
MARK EQU * (02)
TERM1 EQU A-B*C/2
TERM2 EQU B’101011111’ (03)
TERM3 EQU -10

(01) The name REG1 is assigned the value 1. REG1 may then be used as a
register name.

(02) The name MARK is assigned the value of the current location counter.
(03) The names TERM1, TERM2 and TERM3 are assigned the value of the

expresssion in the operand.

2. Expressions whose value is still unknown during program preparation can also be
assigned names. The names are assigned the value of the expression in the
operand, calculated by the assembler.

3. In macro resolution by the assembler, the EQU instruction is not yet effective.

Example

Name Operation Operands

REG1 EQU 1
MAC REG1

This sequence of EQU and macro instructions results in generation of the macro
MAC, with character string REG1 as the operand and not with register 1.

U5223-J-Z125-3-7600 95

EQU Assembler instructions

4. The explicit length specification in the EQU instruction is frequently used so that a
larger area can be addressed when accessing.

Examples

Name Operation Operands

LOOP1 EQU * (01)
LOOP2 EQU *,4 (02)
LOOP3 EQU *,L’LOOP2 (03)

(01) LOOP1 has the value of the current location counter and the length
attribute 1.

(02), (03)
In LOOP2 and LOOP3 the length attribute is set to 4 bytes.

5. The explicit type specification alters the original type attribute.

Example

Name Operation Operands

TERM1 EQU *,,C’A’ Both names are assigned
TERM2 EQU *,,X’C1’ type A (address constant)

96 U5223-J-Z125-3-7600

Assembler instructions ICTL

ICTL Input format control

Function

The ICTL instruction can be used to change the default for the begin, end, and
continue columns of source program instructions.

Format

Name Operation Operands

ICTL a[,e[,f]]

a Decimal self-defining term of 1 to 40
e Decimal self-defining term of 41 to 80
f Decimal self-defining term of 1 to 40

Description

a defines the begin column of source program instructions.

e defines the end column of the source program instruction. If not specified,
the default applies.

A value of 80 for e means that there are no continue lines.

f defines the continue column for source program instructions. f must be
greater than/equal to a.

If f is omitted, this means that there are no continue lines.

Programming notes

1. The defaults of the begin, end, and continue columns are columns 1, 71 and 16
(see section 2.2, "Assembler instruction statements").

2. The ICTL instruction may appear only once in an assembly unit, and must be the
first instruction in the program.

3. The ICTL instruction has no effect on macros read in.

4. The operation code of the ICTL instruction may not be generated using variable
symbols.

5. Instead of an ICTL instruction, the input format may also be controlled via an SDF
option (see "ASSEMBH User Guide" [1]).

U5223-J-Z125-3-7600 97

LTORG Assembler instructions

LTORG Define literal pool

Function

The LTORG instruction defines a literal pool, and defines its position.

Format

Name Operation Operands

name LTORG
[]

.sym

name Name
.sym Sequence symbol

Description

The LTORG instruction causes a literal pool to be created as of the next doubleword
boundary.

All valid literals which have occurred since the previous LTORG instruction or since
program start are stored in this literal pool.

Literals are aligned in the literal pool according to their type and length. They are
stored in the sequence doubleword, fullword, halfword, byte.

All literals which come after the last LTORG instruction are stored at the end of the first
control section.

The value of "name" or ".sym" is the address of the first byte of the literal pool. "name"
receives a length attribute of 1.

98 U5223-J-Z125-3-7600

Assembler instructions LTORG

Programming notes

1. If a program contains no LTORG instruction, all literals in a literal pool are stored at
the end of the first control section. In that case, the first control section must always
be addressable.

The literal pool is then listed in the assembler listing after the END instruction.

2. An LTORG instruction at the end of each control section ensures that all literals in
the respective section are always addressable.

3. Literals which occur more than once in the area of an LTORG instruction are stored
only once. An exception here are literals which contain a reference to the location
counter. These literals are stored singly together with the current value of the
location counter.

U5223-J-Z125-3-7600 99

OPSYN Assembler instructions

OPSYN Redefine mnemonic operation code

Function

The OPSYN instruction assigns the attributes of the mnemonic operation code or
macro name in the operand to a name, or ensures that it loses these attributes.

Format

Name Operation Operands

name OPSYN [code]

name Name or
Mnemonic operation code of an assembler instruction, a machine
instruction or a macro instruction or
Macro name

code Mnemonic operation code of an assembler instruction, a machine
instruction or a macro instruction,
Macro name or
Name

Description

The name entry is assigned the attributes of the entry in the operand field. Operand
entry attributes remain unchanged.

A blank operand field causes "name" to lose the attributes of a mnemonic operation
code (see example (02)/(03)).

The same entry in the name and operand fields causes "name" to assume its original
attributes again. An identical entry in the name and operand fields is only permitted for
mnemonic operation codes of assembler and machine instructions.

Programming notes

1. The OPSYN instruction may be at any point in the source program text, even in
macros.

2. The last OPSYN instruction executed remains valid until the next OPSYN instruction.
An OPSYN instruction generated in a macro is valid not only for the macro itself,
but for all successive instruction statements. If the macro or OPSYN instruction is
skipped and not executed, the OPSYN instruction does not come into force.

100 U5223-J-Z125-3-7600

Assembler instructions OPSYN

3. If "name" is the mnemonic operation code of a machine instruction or assembler
instruction, this operation code is redefined. If the operand field is blank, this
operation code is no longer recognized as a machine or assembler instruction, but
is treated as a macro instruction instead.

4. When processing an operation code which is in a macro definition, please note the
following:

In library macros, all macro statements, including the COPY statement and
REPRO instruction, are processed according to the OPSYN instruction which
was valid at the first call of the macro.
For a macro definition in the source program, all macro statements, including the
COPY and the REPRO instructions, are processed according to the OPSYN
instruction that was valid at the time the macro definition was read.
All remaining instruction statements in library macros and in source program
macros are processed according to the OPSYN instruction executed directly
before the instruction statement in question.

Example

Name Operation Operands

EOP OPSYN TERM (01)
.
.
EOP
.
.

STORE OPSYN STH (02)
STH OPSYN (03)
ABC OPSYN STORE (04)

.

.
STORE OPSYN (05)
STH OPSYN STH (06)

(01) The character string EOP is assigned the attributes of the TERM macro.
EOP in the operation field on a following line signifies the call of the TERM
macro.

(02) Redefines the machine instruction STH; STORE is thereafter interpreted as STH.
(03) With immediate effect, STH is no longer recognized as a machine instruction.
(04) ABC is also assigned, and has the same effect, as STORE.
(05) STORE loses its attributes as a machine instruction with immediate effect, but

ABC still defines the machine instruction STH.
(06) Permits the machine instruction STH to assume its original meaning.

U5223-J-Z125-3-7600 101

ORG Assembler instructions

ORG Set location counter

Function

The ORG instruction enables the current value of the location counter to be altered.

Format

Name Operation Operands

name ORG [expr]
[]

.sym

name Name
.sym Sequence symbol
expr Relocatable expression

Description

"expr" denotes the value to which the location counter is to be set. The ORG instruction
without an operand sets the location counter to the next memory location after the
highest one addressed thus far in the control section.

Names used in expr must be defined beforehand.

The value of expr must be a relocatable address in the actual control section, i.e. expr
may not contain any name defined in another control section.

The end value of the evaluation of expr must not exceed a maximum of 224-1.

Programming notes

1. expr may not assume any value which precedes the start of the control section
containing the ORG instruction.

2. If preceding ORG instructions have reset the location counter, an ORG instruction
without an operand may be used to reset the location counter to the memory
location that follows the highest one addressed thus far.

3. When resetting the location counter, no EXTRN references, no CXD instructions, and
no constants of type A, Q, V, or Y may be overwritten (i.e. no instruction statements
which would result in storage of RLD information).

102 U5223-J-Z125-3-7600

Assembler instructions ORG

Example

The example below shows the use of an ORG instruction in defining a memory area.
The ORG instruction at the end of the instruction sequence increments the location
counter to the end of the RDAREA.

Name Operation Operands

RDAREA DS CL30
ORG RDAREA
DS CL4

NAME DS CL10
DS CL4

PERSN DS CL10
.
.
ORG

U5223-J-Z125-3-7600 103

PRINT Assembler instructions

PRINT Print optional data

Function

The PRINT instruction defines those parts of the assembler listing which are to be
printed.

Format

Name Operation Operands

[.sym] PRINT BASE
NOBASE

CODE
NOCODE

COPY
NOCOPY

DATA
NODATA

GEN
NOGEN

ON
OFF

SINGLE
DOUBLE

.sym Sequence symbol
Operands 1 to 7 operands in any sequence; if more than one operand is specified,

they must be separated by commas.

Description

BASE After each USING or DROP instruction, the addressable area of the
registers (assigned as base registers with USING) is printed out. In
addition, 19 characters of the remarks entry from the USING instruction
are printed.

NOBASE The addressable areas for the base registers are not printed.

104 U5223-J-Z125-3-7600

Assembler instructions PRINT

CODE With regard to instruction statements generated by macros, the effect of
PRINT NOGEN is restricted: the text of the source line is suppressed, but
the generated code is printed out.

NOCODE The full effect of PRINT NOGEN is retained.

COPY Copied instructions are listed.

NOCOPY Copied instructions are not listed.

DATA Constants are printed out in full in the assembler listing.

NODATA Only the first 8 bytes of constants are printed in the assembler listing.

GEN All instruction statements generated by macro instructions are listed.

NOGEN Instructions statements generated by macro calls are not listed. Messages
generated by MNOTE instructions are, however, printed.

ON The listing is printed out from this point. PRINT ON is the last instruction
that is not listed.

OFF The listing is not printed out from here on. PRINT OFF is the last
instruction that is listed.

SINGLE Single-line spacing in assembler listing.

DOUBLE Double-line spacing in assembler listing

Programming notes

A program may contain any number of PRINT instructions. The conditions set by a
PRINT instruction remain valid until they are changed by another PRINT instruction.
Defaults apply until the first PRINT instruction.

>>>>> See also SPACE, EJECT, TITLE, STACK and UNSTCK instructions

U5223-J-Z125-3-7600 105

PUNCH Assembler instructions

PUNCH Copy text into object module

Function

The PUNCH instruction outputs the characters specified in the operand unprocessed to
the object module.

Format

Name Operation Operands

[.sym] PUNCH ’text’

.sym Sequence symbol
text 1 to 80 characters

Description

The assembler stores data shown in the text unprocessed in the object module.

The first character in the text is in the first column of the output format.

Neither a consecutive number nor an identification is output in the object module.

Programming notes

1. For every single quote and ampersand which is to appear in the object module, two
corresponding characters must be specified in the text. The two characters are
always counted as one.

2. PUNCH instructions may appear at any point in the program or macro definition.

3. The PUNCH instruction may make the object module unusable.

4. The functionality of the PUNCH instruction is no longer supported for module output
in LLM format. This is indicated by an error message of error weight ’warning’.

>>>>> See also REPRO instruction

106 U5223-J-Z125-3-7600

Assembler instructions REPRO

REPRO Copy continuation line into object module

Function

The REPRO instruction outputs the next source program line unprocessed to the object
module.

Format

Name Operation Operands

[.sym] REPRO

.sym Sequence symbol

Description

The assembler stores the source program line which follows the REPRO instruction
unaltered into the object module.

The first character on this line appears in the first column of the output format.

Neither a consecutive number nor an identification is output to the object module.

Each REPRO instruction creates a line in the object module.

Programming notes

1. The operation code of the REPRO instruction may not be generated using variable
symbols.

2. The REPRO instruction may make the object module unusable.

3. The functionality of the REPRO instruction is no longer supported for module output
in LLM format. This is indicated by an error message of error weight ’warning’.

>>>>> See also PUNCH instruction

U5223-J-Z125-3-7600 107

RMODE Assembler instructions

RMODE Assign load attribute

Function

The RMODE instruction assigns a load attribute to a control section.

Format

Name Operation Operands

name RMODE 24
[]

.sym ANY

name Name
.sym Sequence symbol

Description

name refers to a control section of the same name and must correspond to the
name of a START, CSECT or COM instruction.

If the name field is blank, the RMODE instruction refers to an unnamed
control section.

.sym A sequence symbol means the same as a blank name field.

24 The load attribute 24 has been assigned to the control section, i.e. this
section must only be loaded below 16 MB.

ANY The load attribute of the control section may be 24 or 31. In other words,
this section can be loaded below and above 16 MB.

The ’Load Attribute’ is described in the manual "Introductory Guide to XS Programming"
[7].

If a load module contains several sections with different load attributes, the linkage
editor/loader system selects a common load attribute for the entire load module (see
"Linkage Editor and Loaders" reference manual [8]).

Information regarding the load attribute of a control section is moved to the ESD record
of the object module.

108 U5223-J-Z125-3-7600

Assembler instructions RMODE

Programming notes

1. The RMODE instruction may appear at any position in the source program. The
source program may contain any number of RMODE instructions, but a specified
name may appear once only.

2. No RMODE instruction may be set for an unnamed common section
(see COM instruction).

3. If no special functions are to be effected, the attributes AMODE = ANY and
RMODE = ANY must be assigned to a control section.

Combinations of AMODE and RMODE

If the AMODE instruction is set for a control section, the following combinations are
possible with the RMODE instructions for the same control section:

AMODE 24 with RMODE 24
AMODE 31 with RMODE 24 or RMODE ANY
AMODE ANYwith RMODE 24 or RMODE ANY

Defaults

The following defaults apply if AMODE and/or RMODE have not been set:

Specified Default

Neither AMODE AMODE 24 and
nor RMODE RMODE 24
AMODE 24 RMODE 24
AMODE 31 RMODE 24
AMODE ANY RMODE 24
RMODE 24 AMODE 24
RMODE ANY AMODE 31

Table 4-13 Defaults for AMODE and RMODE

>>>>> See also AMODE instruction

U5223-J-Z125-3-7600 109

SPACE Assembler instructions

SPACE Line feed

Function

Using the SPACE instruction, blank lines can be inserted into the assembler listing.

Format

Name Operation Operands

[.sym] SPACE [no]

.sym Sequence symbol
no Decimal self-defining term

Description

"no" specifies the number of blank lines which are to be printed after the SPACE
instruction in the assembler listing. A blank operand entry causes an advance of one
line.

If "no" is greater than the number of lines remaining on this page, the SPACE
instruction produces a page feed.

>>>>> See also EJECT, PRINT and TITLE instructions

110 U5223-J-Z125-3-7600

Assembler instructions STACK

STACK Save USING or PRINT status

Function

The STACK instruction saves the current USING status (i.e. the base registers and the
pertinent address range) and/or the current status of the PRINT parameter.

Format

Name Operation Operands

[.sym] STACK PRINT[,...][,USING[,...]]
USING[,...][,PRINT[,...]]

.sym Sequence symbol

Programming notes

1. The STACK instruction does not alter the current USING status or current PRINT
parameter.

2. The PRINT parameter or USING status is stored in a "last-in first-out procedure". In
other words, the last information stored is recalled first by the first appropriate
UNSTK instruction.

3. In STACK instructions, the operands PRINT or USING may appear up to four times
in succession before the first UNSTK instruction must appear with the operands
PRINT or USING.

U5223-J-Z125-3-7600 111

STACK Assembler instructions

Example

The following example shows a possible application of the STACK USING instruction.
The STACK instruction at the beginning of the subroutine enables register 3 to be used
differently within the subroutine, without a DROP instruction being required beforehand.
UNSTK at the end of the subroutine resets the USING status to the old value, i.e.
register 3 is again recognized as base register, with register 5 unknown as in the
previous status.

Name Operation Operands

PROG1 START
R0 EQU 0
R3 EQU 3
R4 EQU 4
R5 EQU 5

.

.
BALR R3,0
USING *,R3
.
.
BAL R4,PROG2
.
.
TERM
.
.

PROG2 EQU *
ST R3,SAFE
STACK USING
BALR R5,0
USING *,R5
L R3,NUM
AR R3,VAL
ST R3,NUM2
L R3,SAFE
UNSTK USING
BR R4
.
.

NUM DC F’1234’
VAL DC F’55’
NUM2 DS F
SAFE DS F

.

.

>>>>> See also UNSTK instruction

112 U5223-J-Z125-3-7600

Assembler instructions START

START Define program start

Function

The START instruction identifies the start of an assembly unit, assigns a name to the
program or first control section of a program, and sets the location counter to an initial
value.

Format

Name Operation Operands

name START [dec[,type][,...]]
[]

.sym

name Name
.sym Sequence symbol
dec Self-defining term, which should be divisible by 8;

max. value: FFFFF8
type Attribute identification for control sections (see section 3.2.1.3, "Control

section attributes")

Description

name identifies the name of the program or name of the first control section.

A CSECT instruction of the same name denotes the continuation of the
first control section.

A START instruction without a name denotes an unnamed control section.

The length attribute of the name is 1.

dec dec denotes the initial value of the location counter of the program.

If dec is not divisible by 8, the location counter is set to the next
doubleword boundary.

If dec is not specified, the assembler sets the initial value of the location
counter to zero.

type denotes the attributes which are to apply to the program or first control
section (see section 3.3.3).

U5223-J-Z125-3-7600 113

START Assembler instructions

Programming notes

1. The START instruction may not precede any instruction statement which uses or
changes the location counter.

2. The START instruction may be replaced by the CSECT instruction to designate the
first control section.

3. All instruction statements between the START instruction and the next CSECT or
DSECT instruction belong to the first control section. The first control section may
be continued at another point in the program by means of a CSECT instruction with
the same name.

4. If one or more attribute identifications are specified, the operand dec may not be
omitted.

5. If an assembler source program is to be tested using AID, the START instruction
must have a name. No LSD information is stored for assembler source programs
with an unnamed first control section (see "AID - Debugging of ASSEMBH
Programs" [2]).

>>>>> See also END and CSECT instructions

114 U5223-J-Z125-3-7600

Assembler instructions TITLE

TITLE Listing heading

Function

The TITLE instruction generates page headings in the assembler listing.

Format

Name Operation Operands

name TITLE ’text’
[]

.sym

name Name, up to four alphanumeric characters long
.sym Sequence symbol
text 1 to 97 characters

Description

"text" forms the page heading in the assembler listing. Every new TITLE instruction in a
program causes a page feed and output of the new heading at the top of the
subsequent page.

Programming notes

1. If a page heading contains an ampersand or single quote, they must be represented
in the text field by two ampersands or two single quotes. The two characters are
always counted as one character, and printed out.

2. Only the first TITLE instruction in an assembly unit may ever have a name.

3. For output to the EAM file (not for output to a library), the name entry is shown as
an identification in each record of the object module.

>>>>> See also PRINT, EJECT and SPACE instructions

U5223-J-Z125-3-7600 115

UNSTK Assembler instructions

UNSTK Restore USING or PRINT status

Function

The UNSTK instruction restores the USING status or PRINT parameter, previously saved
with STACK.

Format

Name Operation Operands

[.sym] UNSTK PRINT[,...][,USING[,...]]
USING[,...][,PRINT[,...]]

.sym Sequence symbol

Programming note

The UNSTK PRINT or UNSTK USING instruction calls the values that were saved earlier
by the last STACK PRINT or STACK USING instruction. The next UNSTK instruction
calls the values saved by the corresponding STACK instruction before the last one, and
so on.

Example

Name Operation Operands

.

.
.A STACK USING (01)

.
.B STACK USING (02)

.
.P STACK PRINT (03)

.
.C STACK USING (04)

.

.
UNSTK USING (04)
.
UNSTK USING (02)
.
UNSTK PRINT (03)
.
UNSTK USING (01)

(01)-(04) The UNSTK instructions restore the current USING or PRINT status of the
STACK instruction with the same number.

>>>>> See also STACK instruction

116 U5223-J-Z125-3-7600

Assembler instructions USING

USING Allocate base register

Function

The USING instruction specifies a base address and assigns one or more general-
purpose registers to the assembler as base address register(s).

Format 1

Name Operation Operands

[.sym] USING adr,reg[[,reg][,...]]

.sym Sequence symbol
adr Positive absolute or relocatable expression
reg General-purpose register; positive absolute expressions, either

names, assigned an absolute value of 0 to 15 or
decimal self-defining terms of 0 to 15

Description

adr specifies the address value required by the assembler to create
displacement addresses.

reg specifies the general-purpose register to be used as a base address
register.

U5223-J-Z125-3-7600 117

USING Assembler instructions

Programming notes

1. The USING instruction must be coded prior to the first usage of symbolic names in
an instruction statement operand. It is required by the assembler to store addresses
in base/displacement form.

2. The USING instruction does not load registers.
For address accesses to be executed correctly at program runtime, the base
registers must also be loaded with base address values. The first is loaded with the
BALR or BASR instruction, the others with the L or LM instruction (see Example (02)
and "Assembler Instructions" reference manual [3]). The LA instruction is not suitable
for this.

3. If the USING instruction is missing, register 0 is used as the base register.

4. Registers 0 and 1 should not be used as base address registers, as they may be
altered by various machine instructions and system macros.

5. If an asterisk (*) is used for adr, the USING instruction must follow directly after the
BALR instruction, so that BALR and USING denote the same address. If there is a
name for adr, this name must contain the address of the instruction at which
displacement calculation is to begin (see Examples (01) and (02)).

6. If a base address register is insufficient for an address calculation, other registers
must be assigned as base address registers in the USING instruction. These should
be loaded with the following base address values (see Example (02)):

reg1 adr
reg2 adr+4096
reg3 adr+8192
. .
. .

7. If the value is altered in a base address register currently in use, and the
displacement calculation is continued using this new value, this new value must be
assigned with another USING instruction (see Example (03)).

8. If several registers have been assigned as base address registers for one area, the
assembler uses the register which provides the smallest displacement address.
If several registers contain the same value, the register with the highest number is
used.

9. If the operand BASE was set in a previous PRINT instruction, the addressable area
is printed in the assembler listing after each USING instruction. The 19 character-
long remarks entry of the USING instruction is also shown.

118 U5223-J-Z125-3-7600

Assembler instructions USING

Examples

Name Operation Operands

PROG START
R0 EQU 0
R1 EQU 1 valid for all
R3 EQU 3 examples
R4 EQU 4 below
R5 EQU 5

.

.
USING BEG1,R3
BALR R3,0 (01)

BEG1 EQU *
.
.
BALR R3,0
USING *,R3,R4,R5

BEG2 EQU *
LM R4,R5,ACON (02)
.
.

ACON DC A(BEG2+4096,BEG2+2*4096)
.
.
USING BEG2+1000,R3 (03)
.
DROP
.

(01) The USING instruction contains the location counter of the instruction with which
displacement calculation is to begin.

(02) R3 is to contain the current location counter, so the USING instruction is coded
immediately after the BALR instruction.
Using the LM instruction, registers R4 and R5 are loaded with the base address
values defined in ACON.

(03) Displacement calculation is continued with the value BEG2+1000 from this
USING instruction on.

U5223-J-Z125-3-7600 119

USING Assembler instructions

The following example observes standard linkage rules and allows for the connection of
other programming languages (see "ASSEMBH User Guide" [1]).

Name Operation Operands

.

.
BALR R10,0
USING *,R10
.
.
LA R15,=A(UPRO2)
BALR R14,R15
.
DROP R10
.

UPRO2 CSECT
USING UPRO2,R15 (01)
.
.
BR R14
DROP R15
.

(01) It is not necessary to load register R15 here, as the address has existed since
the call to subroutine UPRO2.
A "BALR R15,0" would, however, safeguard against any eventualities.

>>>>> See also DROP instruction

120 U5223-J-Z125-3-7600

Assembler instructions USING

Format 2

Name Operation Operands

USING *PRV,reg

reg General-purpose register; positive absolute expression, either

a name, which was assigned an absolute value from 0 to 15, or
a decimal self-defining term of 0 to 15.

Description

Format 2 of the USING instruction results in the register specified in "reg" being used
as the base address register for all instructions concerning dummy registers.

Programming note

The register specified in "reg" must also be loaded with the start address of the
memory area for the dummy register vector.

Example of Format 2: see Appendix 11.4

>>>>> See also CXD and DXD instruction

U5223-J-Z125-3-7600 121

WXTRN Assembler instructions

WXTRN Identify conditional EXTRN symbol

Function

The WXTRN instruction identifies a symbol used in one assembly unit, but defined in
another. The WXTRN instruction corresponds to the EXTRN instruction, but is
processed differently by the linkage editor.

Format

Name Operation Operands

[.sym] WXTRN name[,...]

.sym Sequence symbol
name Name

Description

The WXTRN instruction suppresses the autolink function of the linkage editor. The
linkage editor can only satisfy these external symbols if it can find the appropriate
module using another control mechanism.

For other rules, see EXTRN instruction.

>>>>> See also EXTRN and ENTRY instruction

122 U5223-J-Z125-3-7600

Assembler instructions XDSEC

XDSEC Define external dummy section

Function

The XDSEC instruction defines an external dummy section or a reference to an external
dummy section.

Format

Name Operation Operands

name XDSEC D[EFINITION]
[]

R[EFERENCE]

Description

name denotes the name of an external dummy section.

The length attribute of the name is 1.

DEFINITION, or D
must be specified when defining an external dummy section.

The XDSEC D instruction is used to reserve storage space for the external
dummy section.

A new location counter is set up for the definition of an external dummy
section, and the initial value set to zero.

The XDSEC D instruction transfers external information to the linkage
editor so that is can satisfy accesses to the external dummy section from
other programs.

REFERENCE, or R
denotes the reference of an external dummy section to allow accesses to
this dummy section.

The instruction XDSEC R sets the location counter to zero, where it
remains for the entire section.

The actual address value of an access to an external dummy section is
entered by the linkage editor in the appropriate instruction.

U5223-J-Z125-3-7600 123

XDSEC Assembler instructions

Programming notes

1. No EQU instructions may be used in external dummy sections.

2. Arithmetic expressions in operands of an EQU instruction may not differ from
XDSEC elements.

3. Type R is assumed for an XDSEC instruction where no operand or an invalid
operand is specified. If an external dummy section has already been specified with
the same name, its type is taken over.

4. In an assembly unit, an XDSEC instruction may only be type R or type D, not both
simultaneously.

Example

In the following example, an input record is initialized in PROG1 and its structure
defined. PROG2 and PROG3 process parts of the information from the input record.

Name Operation Operands

PROG1 START
R0 EQU 0
R1 EQU 1
R2 EQU 2 valid for all 3
R13 EQU 13 programs in the example
R14 EQU 14
R15 EQU 15

.

.
BALR R2,0
USING *,R2
USING INXD,R13
LA R13,IN
L R15,VPROG2
BALR R14,R15
L R15,VPROG3
BALR R14,R15
TERM
DROP R2

*
IN DC CL30’ANTON MUELLER’
VPROG2 DC V(PROG2)
VPROG3 DC V(PROG3)
*
INXD XDSEC D
FORENAME DS CL10 (01)
NAME DS CL20

END
.
.
.

PROG2 CSECT
.
.

124 U5223-J-Z125-3-7600

Assembler instructions XDSEC

USING *,R15
USING INXD,R13
MVC OVN,FORENAME (03)
BR R14
DROP R15,R13

*
OVN DS CL10
*
INXD XDSEC R (02)
FORENAME DS CL10

END
.
.
.

PROG3 CSECT
USING *,R15
USING INXD,R13
MVC ONAME,NAME (03)
BR R14
DROP

*
ONAME DS CL20
*
INXD XDSEC R (02)
NAME DS CL20

END

(01) Definition of the external dummy section.
(02) External dummy section reference.
(03) Access to the external dummy section.

>>>>> See also CSECT and DSECT instruction

U5223-J-Z125-3-7600 125

5 Macro language structure
The macro language can be regarded as an additional language, which is also
processed by the assembler. The following chapters describe the language elements
and instructions which may be used in macro language over and above those in
assembler language.

Macro language enables frequently used instruction sequences to be written once only
in the form of a macro definition, and to insert it into the program using only one
instruction, the macro instruction. Using parameters for control, the inserted instructions
may be varied for each macro call. In the macro definition, the insertion of instruction
sequences can be made dependent on specific conditions with the aid of conditional
assembler instructions. Variable symbols can also be used to create variations in the
text of generated instructions and remarks.

U5223-J-Z125-3-7600 127

Macro language structure

5.1 Macro call and definition

The macro call is an instruction in the text of the assembler source program. Macro
generation is the result after a macro instruction has been processed. It consists of
assembler statements, assembler instructions, macro statements and macro calls, which
together carry out the function expected by the macro call.

The operation entry of the macro call denotes the name of the called macro. This name
appears in the macro definition in the operation entry of the macro instruction
prototype statement (also referred to as prototype statement). The format of the macro
instruction operand must correspond to the format of the prototype statement operand
(see section 7.1, "Macro call and prototype statement").

The assembler generates macros with the aid of the macro definition. The macro
definition is modified in accordance with operand specifications in the macro call.
Macro definitions can be written by the user or placed at the user’s disposal as system
macros as part of the operating system.

The expanded macros are no longer aligned at positions 10 and 15 in the assembler
listing. The 64-character name and operation code fields allow the substituted macro
instruction to be mapped as closely as possible on the original instruction in the macro.

The following macro language description refers only to macros written by the user.
System macros and their utilization are described in the BS2000 manuals "Executive
Macros" [6] and "DMS Introductory Guide and Command Interface" [5].

128 U5223-J-Z125-3-7600

Macro language structure

5.1.1 Storing the macro definition

The definition of a macro can either be included in the source program itself, or stored
in a macro library.

If a macro definition in the source program has the same name as a macro definition in
a library, the macro definition in the source program is used. If there are macro
definitions with the same name in several libraries, the first macro definition found is
used (for search hierarchy, see "ASSEMBH User Guide" [1]).

Macro definition in the source program

A macro definition in the source program must always be specified and executed
before this macro is called for the first time. If the macro definition is skipped using
conditional statements, it is not read in either. The macro is then regarded as unknown
in the source program. If such a macro is called, the macro library is searched for the
definition, and if none is available there, the macro call is reported as an error
(unknown operation code; see "ASSEMBH User Guide" [1]).

If the same name is used for different macro definitions in the source program, the last
macro definition loaded is valid until the appearance of the next definition of the same
name. In this case, the assembler displays a warning.
Macro definitions skipped by means of conditional assembly statements are also
ignored in this instance.

Macro definition within a macro definition

It is also possible for a macro definition to be nested within another (inner macro
definition), i.e. to read a macro definition on the basis of a macro generation (see also
section 5.1.2, "Format of the macro definition").

This inner macro definition must also be executed before it is called. Only then is it
recognized in the outer macro.

Once the inner macro definition has been executed for the first time, it may also be
called independently of the outer macro.

The outer macro definition can be in the source program or stored in a library. The
inner macro definition is stored as if it were loaded from a library.

The nesting level for inner macro definitions is arbitrary, depending on memory
capacity.

U5223-J-Z125-3-7600 129

Macro language structure

Macro definition in a library

A macro definition can be made accessible to many programs if it is stored in a library.
To enable the assembler to find the macro definition, the appropriate library must be
allocated prior to assembly. (see "ASSEMBH User Guide" [1]).

If a macro definition is included in a library, it is only read in if its macro call is
executed. If the call is skipped and not executed, the macro definition is not read in.

5.1.2 Format of the macro definition

A macro definition consists of the following four sections, in the given order:

The macro definition header MACRO
This denotes the start of a macro definition and must always be the first statement
in the definition (see section 7.2, "Description of macro statements").

The macro instruction prototype statement
This specifies the name of the macro and the symbolic parameters which occur in
this macro definition.
The operand format of the prototype statement defines the operand format of the
relevant macro instruction (see section 7.1, "Macro call and prototype statement").

No, one or several model statement(s)
These produce, after assembly, the required sequence of instructions.
Model statements may be:

assembler instructions, except the ICTL instruction,
machine instructions,
macro instructions, and
macro statements.

The macro definition trailer MEND
This identifies the end of a macro definition and must always be the last statement
in the definition (see section 7.2, MEND).

In addition to the above-mentioned components, there may be remarks lines which can
be at any required position in the macro definition (see section 5.2, "Instructions and
remarks").

130 U5223-J-Z125-3-7600

Macro language structure

Example

The example shows the possible logic of a macro definition in a simple form.

Name Operation Operands

MACRO (01)
&LABEL VARPAR &A,&B (02)

LCLC &C (03)
&LABEL MVC &A,&B (04)

.

.
&C SETC ’WORK’ (05)

.

.
AIF (’&C’ EQ ’WORK’).ONE (06)
AIF (’&C’ EQ ’’).TWO (07)
.
.
AGO .TWO (08)
.
.

.ONE ANOP (09)
.
.

.TWO ANOP (10)
.
.
MEND (11)

(01) Macro definition header
(02) Prototype statement with the macro name VARPAR and the symbolic parameters

&LABEL, &A and &B
(03) Up to (10) model statements:
(03) Definition of the local SET symbolic parameter &C
(04) The symbolic parameter &LABEL represents the symbol of the macro call via

replacement in the prototype statement
(05) Value assignment for &C
(06), (07)

Conditional branches, branch destination is dependent on the contents of &C
(08) Unconditional branch
(09), (10)

Definitions of the branch destinations .ONE and .TWO
(11) Macro definition trailer

U5223-J-Z125-3-7600 131

Macro language structure

5.1.3 Inner macro definition

A macro definition within another is designated an inner macro definition.

This inner macro definition cannot be generated with variable symbols, i.e. no text is
replaced (see section 5.3.2, "Variable symbols") while the macro definition is being
inserted. The outer macro can only be used to control the insertion or non-insertion of
the inner macro definition.

A macro definition which contains an inner macro definition can only be created as
shown below.

Name Operation Operands

MACRO
Proto.Statement 1
.
.
MACRO
Proto.Statement 2
. (01)
.
MEND
.
.
MACRO
Proto.Statement 3
. (01)
.
MEND
.
.
MEND

(01) Additional inner macro definitions can be nested here.

132 U5223-J-Z125-3-7600

Macro language structure

5.2 Instructions and remarks

Just as the text of an assembler source program, the text of an assembler macro
consists of a series of instructions and remarks. The additional facilities offered by the
macro language for instructions and remarks are described below. The details given
regarding assembly language structure in chapter 2 are also applicable here.

Instructions

Macro language instructions consist basically of five entries:
the name entry,
the operation entry,
the operand entry,
the remarks entry, and
the continuation character.

These entries must appear in the above sequence and, except for the continuation
character, must be separated from one another by at least one blank.

The name, operation, and operand entries in various instructions, including assembler
and machine instructions, can be generated by means of variable symbols in
accordance with requirements.

For one macro language instruction, nine continuation lines are allowed. Here, the
macro instruction, prototype statement, the GBLx and LCLx instructions, plus Format 2
of AIF and AGO have special significance; there is an alternative format for them (see
section 7.1.4, "Alternative statement format").

Remarks

Remarks may appear anywhere in the macro definition. In macro language, as in
assembly language, there are two ways of denoting remarks:

* With an asterisk in the begin column.
These remarks lines are copied by the assembler during macro resolution, and
printed out in the assembler listing.

.* With a period in the begin column, followed by an asterisk.
These remarks lines are used only to document the macro definition. During macro
resolution, these are copied and printed by the assembler only for macro
definitions in the source program, not for macro definitions in libraries.

U5223-J-Z125-3-7600 133

Macro language structure

As in the remarks entry of instruction statements, variable symbols are not replaced in
remarks lines. Variable remarks lines may only be generated via the instruction MNOTE
*,... (see section 7.2).

Deactivating the function of instruction statements

If in the name entry of instruction statements symbolic parameters or SETC symbols
are allowed, remarks can be generated from instruction statements in the macro
definition or source program, i.e. their function can be deactivated.

In such a case, the symbolic parameter or SETC symbol is assigned an * for macro
generation (.* is not allowed). This results in the instruction being interpreted as a
remark.

134 U5223-J-Z125-3-7600

Macro language structure

5.3 Name entry

The name entry may contain a sequence of up to 64 letters and digits, which are used
to identify an instruction.

The name entry is optional. If it exists, it must begin in the begin column. If the begin
column is blank, the assembler assumes there is no name entry and interprets the
subsequent characters as the operation code.

In the name entry of an instruction statement, there may be:
a name (see section 2.3),
a sequence symbol,
a variable symbol or
a concatenation of variable symbols and alphanumeric characters.

5.3.1 Sequence symbols

A sequence symbol in the name entry enables the conditional assembly statements AIF
and AGO to refer to this instruction, i.e. to identify it as a branch destination. Thus, the
order in which instructions are processed can be varied.

Sequence symbols are local symbols, i.e. they are only recognized in the macro
definition in which they were defined. If the same sequence is used in and outside a
macro definition, or in two different macro definitions, it is always regarded as a
separate symbol.

A sequence symbol in the name entry of a generated instruction is not printed in the
assembler listing.

Rules

Sequence symbols may consist of a maximum of 65 characters.
The first character of a sequence symbol must be a period (.), the second a letter.
These may be followed by up to 63 additional letters and/or digits.
Sequence symbols in the name entry of instructions may only be written in this
standard format.
Sequence symbols in the operand entry may also be written in generated format.
Sequence symbols in generated format consist of a period, followed by a variable
symbol or a concatenation of variable symbols and alphanumeric characters (see
section 5.5, "Operand entry").
No space characters are permitted in a sequence symbol.
A maximum of 215-1 sequence symbols are allowed per macro.

U5223-J-Z125-3-7600 135

Macro language structure

Examples of valid sequence symbols

.LOOP .A123456789

.LOOP_2 .A@B4

.Loop .$ABC
.ABC&PARAM

Examples of invalid sequence symbols

AREA (first character not a period)
.1ABC (second character not a letter)
.LOOP* (contains the special char. *)
.LOOP 1 (contains a space character)

5.3.2 Variable symbols

Variable symbols are used to replace text in the name, operation, and operand entries
of an instruction. Their values may be assigned via macro statements or directly by the
assembler. Text is replaced by the actual value. There is no replacement of text in the
remarks entry. When used in conditional assembly statements, variable symbols can be
used to control assembly.

The assembly or macro language instruction statements in which variable symbols are
allowed can be seen in the relevant format descriptions. Variable symbols are generally
permitted in the name entry in machine instructions.

A maximum of 215-1 variable symbols are allowed per macro definition.

Rules

A variable symbol may consist of up to 64 characters.
The first character must be an ampersand (&).
Space characters are not allowed in a variable symbol.

Characters which replace a variable symbol in text replacement must adhere to the
syntax rules for the entry in which the variable symbol appears.

136 U5223-J-Z125-3-7600

Macro language structure

Example

&PAR in the name entry cannot be replaced by NAMEBALR

On the other hand, except for a macro call, two or more operands can be generated
from a variable symbol within the operand entry.

Example

&PAR in the operand entry can be replaced by FIELD1,FIELD2

Variable symbols include:

symbolic parameters;
These are defined in the prototype statement and are assigned new values by the
programmer for each macro instruction.

system variable symbols;
These begin with the character string &SYS... and have fixed meanings. The
assembler assigns them a value when processing a macro definition or at the start
of an assembly.

SET symbols;
These are variable auxiliary fields to which the programmer can assign a value in a
macro definition by using macro statements.

Symbolic parameters and some of the system variable symbols are local symbols. In
other words, their values are always reset at the start of macro processing. They are
therefore only recognized within a macro.

SET symbols may be local or global symbols. If they have been defined as global, they
can be used to transfer values between macros or between a macro and the assembler
source program.

Note

A detailed description of variable symbols and their application is given in
chapter 6, "Variable symbols".

U5223-J-Z125-3-7600 137

Macro language structure

5.3.3 Generated variable symbols

As a rule, the name of a variable symbol can be generated by means of one or more
additional variable symbols.

In doing so, the characters which represent the result of the text replacement must
adhere to the syntax rules of the entry in which the generated variable symbol is used.

Format of generated variable symbols

&(ele)[(d)]

ele may be:
variable symbols: &par
subscripted SET symbols (see section 6.2): &par(d)
generated variable symbols: &(ele)
generated subscripted SET symbols: &(ele)(d)
alphanumeric characters: val
concatenation of above basic elements (see section 5.2.1.4)

d may be:
index, arithmetic macro expression: arexp
operand sublist with arithmetic macro expressions (see section 7.1.2):
arexp,arexp[,...]

Examples

&(&PAR1.&(&PAR2(D1)).AB) gives &A1AB if &PAR1 SETC ’A’
&PAR2(D1) SETC ’B’
&B SETA 1

&(&(&(AB)(D1))(D2)) gives &PAR2 if &AB(D1) SETC ’PAR1’
&PAR1(D2) SETC ’PAR2’

138 U5223-J-Z125-3-7600

Macro language structure

5.3.4 Concatenation of variable symbols and alphanumeric characters

Variable symbols may be chained to each other or to alphanumeric characters. The
character string produced in the generated text as a result of the concatenation must
adhere to the syntax rules of the entry in which the concatenation appears.

If alphanumeric characters are to follow a variable symbol, they must be separated
by a period. If the period is to appear in the generated text, two periods must be
entered in the macro definition.

Example (the actual value of &PARAM is NAME)

&PARAM.ABC gives NAMEABC

&PARAM..ABC gives NAME.ABC

If a variable symbol is to follow alphanumeric characters, no period is allowed. If a
period is to appear in the generated text, only one period may be entered in the
macro definition.

Example

ABC&PARAM gives ABCNAME

ABC.&PARAM gives ABC.NAME

If variable symbols are to be chained, they can be chained by stringing them
together or by separating them with a period. If the period is to appear in the
generated text, two periods must be entered here in the macro definition.

Example (The actual value of &PARAM1 is NAME1 and of &PARAM2 NAME2)

&PARAM1&PARAM2 gives NAME1NAME2

&PARAM1.&PARAM2 gives NAME1NAME2

&PARAM1..&PARAM2 gives NAME1.NAME2

In the name entry, a concatenation of variable symbols and alphanumeric characters
may only be used in assembler and machine instructions, not in macro instructions.
In the case of operation and operand entries, the utilization of such a concatenation
is dependent on the format of the instruction.

U5223-J-Z125-3-7600 139

Macro language structure

5.4 Operation entry

The operation entry may contain:
the mnemonic operation code of a macro statement, an assembler or machine
instruction, or
the name of a system or user macro (macro call), or
a variable symbol, or
a concatenation of variable symbols and alphanumeric characters.

An operation entry is mandatory. It must be separated from the name entry by at least
one space character. If there is no name entry, it must begin at least one position to
the right of the begin column.

A valid operation entry consists of the mnemonic operation code of an assembler
instruction, a machine instruction, or macro statement. Names of user macros must be
created according to the rules for names (see section 2.2.1, "Name entry").

Variable symbols in the operation entry

The operation entry may be generated using variable symbols or through concatenation
of variable symbols and alphanumeric characters. Characters which replace a variable
symbol must adhere to the syntax rules of the operation entry.

The following instructions may not be generated with variable symbols:
all macro instruction statements
the COPY instruction
the ICTL instruction
the MNOTE instruction, and
the REPRO instruction.

All other assembly language instruction statements and also names of system and user
macros can be generated using variable symbols.

Variable symbols in the operation entry are subject to the same rules as variable
symbols in the name entry (see section 5.3.2 and chapter 6, "Variable symbols").

140 U5223-J-Z125-3-7600

Macro language structure

Example

Name Operation Operands

* Macro definition
MACRO
EXOP &OP,&BASREG
.
.
&OP &BASREG,0
USING *,&BASREG
.
.
MEND

* Macro call 1
EXOP BASR,2

* Generated instruction statements
BASR 2,0
USING *,2

* Macro call 2
EXOP BALR,2

* Generated instruction statements
BALR 2,0
USING *,2

U5223-J-Z125-3-7600 141

Macro language structure

5.5 Operand entry

The operand entry of instruction statements in macro language may consist of one or
more operands, which in turn may contain one or more expressions.

Operands must be separated by commas. There may be no space characters, except
in the alternative statement format (see 7.1.4), between operands and separating
commas.

The operand entry is optional. If specified, it must be separated from the operation
entry by at least one space character.

5.5.1 Variable symbols in the operand entry

Variable symbols may be used in the operand entry of assembler instruction statements
and macro instruction statements. In assembler instruction statements, they are used to
replace text. In macro instruction statements, whether or not a variable symbol is
possible, and how it is evaluated, can be seen from the format.

Variable symbols in the operand entry are subject to the same rules as variable
symbols in the name entry (see section 5.3.2 and chapter 6, "Variable symbols").

Example

Name Operation Operands

* Macro definition
MACRO
EX1 &PAR1,&PAR2
MVC &PAR1,&PAR2
.
.
MEND

* Macro call
EX1 FIELD1,FIELD2

* Generated instruction statements
MVC FIELD1,FIELD2
.
.

FIELD1 DS CL4
FIELD2 DC C’ABCD’

142 U5223-J-Z125-3-7600

Macro language structure

5.5.2 Sequence symbols in the operand entry

Besides macro expressions, the operand entry of AIF and AGO instructions may
contain sequence symbols. The sequence symbols in the operand entry specify the
instruction statements to which branches are to be made once the AIF and AGO
instructions have been processed.

Sequence symbols may be entered in the operand entry in standard format (see
section 5.3.1) or in generated format.

A sequence symbol in standard format begins with a period (.). The second character
must be a letter, and this may be followed by a further 63 letters and digits.

A sequence symbol in generated format also begins with a period. This is followed by a
variable symbol or a name which is chained with a variable symbol.

Examples of sequence symbols in generated format

.&LOOP

.LOOP&NAME

.&Loop

.NAME123&LOOP

.&LOOP.NAME

5.5.3 Macro expressions

In macro language, expressions are also the basic components of instruction statement
operands. They are composed of elements and operators.
In macro language, there are arithmetic macro expressions, character expressions,
relational expressions and Boolean expressions.

The type of expression and its ensuing calculation is determined by the operators.
Details of the various expressions and possible elements of expressions are illustrated
in Figure 5-1.

Arithmetic macro expressions and Boolean expressions may consist of only one
element each, without operators. The assembler interprets these simple expressions
accordingly, i.e. as arithmetic or Boolean expressions.

Character expressions consist of one element only, and contain no operators.

Relational expressions , on the other hand, comprise two elements and one operator.

U5223-J-Z125-3-7600 143

Macro language structure

Logical
expressions

Relational
expressions

Arithmetic
macro expr.

Character
expressions

EQ
NE
LT
GT
LE
GE

+
-
*
/

Unary +
Unary -

Elements:
Self-defining termst
 - binary
 - decimal
 - hexadecimal
SETA symbols
SETB symbols
Symbolic parameters with arithm. value
System var. symbol with arithm. value
Reference to attributes with arithm. value
Definition attribute reference

Elements:

Character values (1)
Substrings (2)
Concatenations
of (1) and (2)
Type attribute reference

Elements:
Relational expressions
SETB symbols
Definition attribute
reference

Arithmetic macro
expressions
Character expressions
Definition attribute
reference

AND
OR

NOT

Elements:

Fig. 5-1 Macro expressions

144 U5223-J-Z125-3-7600

Character expressions

5.5.4 Character expressions

A character expression may be:
a character value,
a character substring,
a concatenation of character values and character substrings or
a type attribute reference (see section 5.2.3.5).

A character expression contains no operators.

5.5.4.1 Character value

A character value consists of any combination of characters, enclosed in single quotes.

Format of character values ’val’

val Character string or
variable symbol or
concatenation of variable symbols and alphanumeric characters.

A variable symbol in a character value is replaced by its actual value.

If a variable symbol which represents a character value is used as an
element in a relational expression, both single quotes may be omitted.

If a SETA or SETB symbol is used, the result is the character
representation of the decimal or Boolean value, without a sign (absolute
value) and without leading zeros.

A character value may consist of a maximum of 1020 characters.
Similarly, the resolution of a variable symbol may only produce a character string of up
to 1020 characters.

U5223-J-Z125-3-7600 145

Character expressions

Single quote in character values

If, after generation, the resolution of a character value is to contain a single quote, two
single quotes must be written in the character value itself.

Examples

’NUM’’ONE’ gives NUM’ONE

’L’’SYMBOL’ gives L’SYMBOL

’’’’ gives ’

Ampersand in character values

An ampersand in a character value is interpreted by the assembler as the start of a
variable symbol. Unlike the resolution of two single quotes, two ampersands in a
character value are stored as two ampersands. In other words, if there are two
consecutive ampersands in a character value, then they are replaced by the same value
in texts as well.

A single ampersand in the resolution of a character value can only be generated by
means of a character substring (see below).

Example

Name Operation Operands

&FIRMA SETC ’NAME && CO’ (01)
DC C’&FIRMA’ (02)

* Generated instruction statement
DC C’NAME && CO’ (03)

* Generated constant NAME & CO

(01) The variable symbol &FIRMA is assigned the value NAME && CO.
(02) The C-type constant is defined with the variable symbol.
(03) After macro resolution, the contents of the C-type constant are NAME && CO.

This value adheres to assembler syntax and is assembled as NAME & CO.

146 U5223-J-Z125-3-7600

Character expressions

5.5.4.2 Character substring

Substrings enable a section to be accessed within a character value.

Format of Character Substrings [(dup)]’val’(a,b)

dup Duplication factor; arithmetic macro expression

The duplication factor is only allowed for substrings in the operand entry
of SETC instructions. Substrings in relational expressions may have no
duplication factor.

val Character value

a Number of the character at which the section of the character value is to
begin;
decimal self-defining term or arithmetic macro expression

b Number of characters which the section of the character value is to
contain;
decimal self-defining term or arithmetic macro expression

When a character substring is resolved, the section of the character value is established
first. The duplication factor is evaluated thereafter.

Following the evaluation of the duplication factor, a substring, like its resolution, may
consist of a maximum of 1020 characters only.

In a substring, if value "a" is greater than the number of characters in the character
value, the result is a blank character string. If value "b" is greater than the number of
characters, only the existing characters are inserted in the character value as the result
(see examples).

Examples

(3)’TEXT’(2,2) gives EXEXEX
’VAL &&’(1,5) gives VAL &
(3)’&PAR’(1,&A) gives ABABAB if &PAR has an actual value of ABC
’&PAR.%4’(1,4) gives ABC% and &A has the actual value of 2.
’ABCD’(12,4) gives empty string
’ABCD’(1,10) gives ABCD

U5223-J-Z125-3-7600 147

Character expressions

5.5.4.3 Concatenation of character values and substrings

Character values and substrings may be chained together in any order:

The following applies to all concatenations:

There must be a period between two successive single quotes:

Examples

’ABC’.’DEF’ gives ABCDEF

’ABC’.’DEF’(2,1) gives ABCE

There must be a period between the single quote and the left parenthesis
(duplication factor).

Examples

’ABC’.(2)’XY’ gives ABCXYXY

’BIN’.(2)’XY’(1,1) gives BINXX

There may be a period between the right parenthesis and the single quote
(substring).

Examples

’PAR123’(1,3).’AB’ gives PARAB

’PAR123’(1,3)’AB’ gives PARAB

There may be a period between the left and right parentheses.

Example

’PAR123’(1,3).(2)’AB’ gives PARABAB

’PAR123’(1,3)(2)’AB’ gives PARABAB

Note

Character substrings in relational expressions may have no duplication factor in this
case as well.

148 U5223-J-Z125-3-7600

Arithmetic macro expressions

5.5.5 Arithmetic macro expressions

An arithmetic macro expression is composed of elements and arithmetic operators (see
section 2.5.1) or of only one element without operators.

The following elements are permitted in an arithmetic macro expression:

binary, decimal and hexadecimal self-defining terms (see section 2.5.2),
SETA symbols (see section 6.2),
SETB symbols (see section 6.2),
SETC symbols, symbolic parameters and system variable symbols, provided they
have an arithmetic, binary, or hexadecimal value (see 6.1 to 6.3), and
attribute references with an arithmetic value (for length attribute, count attribute,
number attribute, scaling attribute and integer attribute; see section 5.5.8),
definition attribute references (see section 5.5.8.7).

The elements listed above are described in the relevant sections of this manual.

In an arithmetic macro expression, the sequence of processing can be altered by
means of parentheses. Parentheses may be nested.

Rules

An arithmetic macro expression may not begin with any operator other than unary
plus and unary minus.
In an arithmetic macro expression, one element may not follow immediately after
another.
Unary plus and unary minus may follow immediately after all other operators.
The final values of the calculation of arithmetic macro expressions must be between
-231 and +231-1.

Examples of valid arithmetic macro expressions

&AREA+X’2D’
&EXIT-S’&ENTRY+1
&AREA+X’2D’/(&EXIT-S’&ENTRY+1)
I’&N/25
50

U5223-J-Z125-3-7600 149

Arithmetic macro expressions

Calculation of arithmetic macro expressions

1. Each element is assigned its numeric value.

2. Arithmetic operations are performed from left to right. Multiplication and division
precede addition and subtraction.

3. In expressions containing parentheses, the values in the parentheses is calculated
first. For multiple parentheses, the inner parenthesized expression is calculated first.

4. Division by zero is allowed and returns a result of zero.

Note

If SETC symbols, symbolic parameters, and system variable symbols have no
arithmetic value, a flag is generated (not in F-ASSEMB-COMPATIBLE mode), and 0
is used as the substitution value.

150 U5223-J-Z125-3-7600

Relational expressions

5.5.6 Relational expressions

A relational expression is composed of two elements and one relational operator. The
result of a relational expression may be 0 or 1 (false or true).

The following relational operators are permitted:

EQ equal
NE not equal
LT less than
GT greater than
LE less than/equal
GE greater than/equal

The elements of the relational expression determine whether an arithmetic relation or
character relation is involved.

In an arithmetic relation , at least one of the elements must be an arithmetic macro
expression.

In a character relation , both elements are character expressions.

Rules

Relational operators must be separated from elements by a space character.
A relational expression may be parenthesized.
If variable symbols are used as character values in a relational expression, single
quotes, which in all other cases denote a character value, may be omitted.
In a character relation, elements up to a length of 1020 characters may be
compared. If the elements in a character relation are of unequal length, the shorter
element is always regarded as less than the longer one.

Examples of valid relational expressions

&CHAR1 and &CHAR2 are to be SETC symbols; &AR1 and &AR2, SETA symbols.
&PAR1 is a symbolic parameter to which a character string has been assigned; &PAR2
is a symbolic parameter to which an arithmetic value has been assigned.

’FIELD’ NE ’&CHAR1’ character relation
’FIELD’ NE &CHAR1 character relation
&PAR1 EQ &CHAR1 character relation
&AR1 GT &AR2 arithmetic relation
&AR1 GT 16*&AR2+4 arithmetic relation
&AR1 GT 20 arithmetic relation
&PAR2 EQ &CHAR1 character relation
&PAR2 EQ &AR1 arithmetic relation

U5223-J-Z125-3-7600 151

Boolean expressions

5.5.7 Boolean expressions

Boolean expressions are composed of elements and logical operators or only one
element without operators. They may contain as the result only the logical values 0
(false) or 1 (true).

Elements of a Boolean expression may be:

SETB symbols (see section 6.2),
relational expressions (see section 5.5.6) and
definition attribute references (see section 5.5.8.7).

The following logical operators are allowed:

AND logical AND
OR inclusive OR
NOT negation

The sequence of processing in a Boolean expression can be altered by means of
parentheses. Parentheses may be nested.

Rules

Logical operators must be separated from elements by a space character.
A Boolean expression may not begin with AND or OR.
In a Boolean expression, one element may not follow immediately after another.
Each element in a Boolean expression may be parenthesized. In this case, no space
character is necessary between operator and parenthesized element.
The operators AND and OR may not be combined.
The only combination allowed with NOT is AND NOT, or OR NOT.

Examples of valid Boolean expressions

&PAR1 AND &PAR2
&PARA OR &PARB
NOT &B AND &C
NOT(&BIN1 AND &BIN2)
(&BINA AND NOT &BINB)OR(&BINB AND NOT &BINA)

The following examples show valid Boolean expressions in which character relations
and arithmetic relations are used as elements.

&AREA+2 GT 29 OR &AR1
(&AREA+2 GT 20)OR(&AR1)
NOT &AR1 AND &AREA+2 GT 20
NOT &AR1 AND(&AREA+2 GT 20)

152 U5223-J-Z125-3-7600

Boolean expressions

Calculation of Boolean expressions

Boolean expressions are reduced to a single value according to the following rules:

1. Each element in the Boolean expression is evaluated and assigned the logical value
0 or 1 (false or true).

2. Logical operations are performed from left to right. NOT, however, is processed
prior to AND, and AND prior to OR.

3. In expressions containing parentheses, the parentheses are resolved from the inside
out.

U5223-J-Z125-3-7600 153

Attribute references

5.5.8 Attribute references

The assembler assigns attributes to names and variable symbols. These attributes can
be referenced, for example, so that the execution of certain instructions can be made
dependent on the corresponding attribute.

Format of an attribute reference attr’par

attr attribute designation (see below)
par name or

variable symbol

Each attribute has a specific designation with which it is accessed.

Type attribute T
Length attribute L
Scaling attribute S
Integer attribute I
Count attribute K
Number attribute N
Definition attribute D

The following table shows which attributes can be referenced for names and for
different variable symbols.

Names Symbolic SET Symbols System
Parameters Variable Symbols

T X X X X

L X X X X

S X X* only &SETC * only &SYSLIST(n) *

I X X only &SETC * only &SYSLIST(n) *

K X X X

N X X only &SYSLIST(n)
and &SYSLIST

D X X* only &SETC * only &SYSLIST(n) *

* Only valid if the value is a name

Table 5-1 Attribute references for names and variable symbols

154 U5223-J-Z125-3-7600

Attribute references

Name attributes
The value of the attribute is evaluated using the data which represents the name.

To do this, the name must be defined, i.e. it must be in the name entry of an
assembler instruction or machine instruction or in the operand entry of an EXTRN or
WXTRN instruction. The instruction in which the name is defined must be in the
assembler source program. It is also possible for the name to be defined at a later
point in the source program (see "ASSEMBH User Guide" [1], "Lookahead
mechanism"). An exception here is the definition attribute reference, which queries
whether a name is already defined at the time of the query.

Variable symbol attributes

The value of the attributes of variable symbols is evaluated using the actual value
assigned to the variable symbol.

The attributes of SET symbols and system variable symbols (except &SYSLIST) are
always calculated from the actual value.

The attributes of symbolic parameters and the system variable symbol &SYSLIST
are calculated using the operands of the corresponding macro call.

If symbolic parameters or &SYSLIST(n) are assigned new values via a SETC instruction
in the macro, the attributes are likewise evaluated on the basis of these current values.

If the operand of the macro call is a macro expression, the corresponding symbolic
parameter will be assigned the attributes of a character constant.

If the operand of an inner macro instruction is an operand sublist, either the attributes
of the sublist or any individual operand of the sublist may be designated. The type,
length, integer, and scaling attribute of a sublist is the same as the corresponding
attribute of the first element from the sublist.

U5223-J-Z125-3-7600 155

Attribute references

5.5.8.1 T’ Type attribute reference

The type attribute of a name or variable symbol is a single letter.

The type attribute reference may only be used as an element of character expressions.
It must always stand alone.

Examples

Name Operation Operands

&A SETC T’&PAR
&B SETB (T’&X NE T’&Y)
.C AIF (T’&PAR NE ’F’).D

• The following type attributes apply to names and symbolic parameters which denote
DC, DS, DXD and CXD instructions. An appropriate name as a value must be
assigned to the symbolic parameter in the macro call.

A A-type address constant, implied length, aligned on a fullword boundary, CXD
instruction

B Binary constant
C Character constant
D Floating-point constant, double precision, implied length, aligned on doubleword

boundary
E Floating-point constant, single precision, implied length, aligned
F Fullword fixed-point constant, implied length, aligned on a fullword boundary
G Fixed-point constant, explicit length
H Halfword fixed-point constant, implied length, aligned on a halfword boundary
K Floating-point constant, explicit length
L Floating-point constant, extended precision, implied length, aligned
P Decimal constant, packed
Q Relative address in an external dummy section
R A-, S-, V- or Y-type address constant, explicit length
S S-type address constant, implied length, aligned
V V-type address constant, implied length, aligned
X Hexadecimal constant
Y Y-type address constant, implied length, aligned
Z Zoned decimal constant

156 U5223-J-Z125-3-7600

Attribute references

Example

Name Operation Operands

* Macro definition
MACRO
EXTYP1 &PAR
AIF (T’&PAR EQ ’F’).FCON
.
.

.FCON DC ...
MEND

* Program with macro call
CONST DC F’3’

.

.
EXTYP1 CONST
.
.

The symbolic parameter &PAR is assigned the value CONST.

Type of CONST: C
Type of &PAR: C

• The following type attributes apply for names and symbolic parameters,
which denote instruction statements other than DC, DS, DXD and CXD
instructions or
which are defined in the operand entry of an EXTRN or WXTRN instruction.

Here too, the symbolic parameter must be assigned a name as a value in the
macro instruction.

I Machine instruction
J Name of a control section
M Macro call
T External name

U5223-J-Z125-3-7600 157

Attribute references

Example

Name Operation Operands

* Macro definition
MACRO
EXTYP2 &PAR
.
.

&PAR MVC ...
MEND

* Control section with macro call
PROG2 START

EXTRN EXNAME
.
.
EXTYP2 MNAME

* Generated instruction statements
PROG2 START

EXTRN EXNAME
.
.

MNAME MVC ...

Type of MNAME: I
Type of &PAR: I
Type of PROG2: J
Type of EXNAME: T

Note

The following applies with respect to all previously named type attributes:
Names which are defined more than once are reported as errors and receive the
type attribute of the first definition.

• The following type attributes may only have symbolic parameters which have not
been replaced by the name of an instruction statement in the macro instruction.

N In the macro call, the symbolic parameter is assigned:
a self-defining term,
a SETA symbol, or
a SETB symbol

O No value is assigned to the symbolic parameter in the macro call, and the
corresponding operand is omitted.

158 U5223-J-Z125-3-7600

Attribute references

Example

Name Operation Operands

* Macro definition 1
MACRO
EXTYPO &PAR1,&PAR2

&A SETA 2
AIF (&PAR1 EQ 5).SYMO
.
.

.SYMO ANOP
EXTYPI &A (01)
MEND

* Macro definition 2
MACRO
EXTYPI &PARIN (02)
AIF (T’&PARIN EQ ’N’).SYMI
.
.

.SYMI ANOP
MEND

* Macro call
EXTYPO 5 (03)

(01) EXTYPI instruction call; the symbolic parameter &PARIN from the prototype
statement of the inner macro (02) is assigned the SETA symbol &A as a
value.

(03) The symbolic parameter &PAR1 is assigned the decimal self-defining term 5.

Type of &PAR1: N
Type of &PARIN: N
Type of &PAR2: O, omitted operand

• The type attribute U (undefined) is given to names or variable symbols that are still
undefined at interrogation time or which cannot be assigned to any of the above-
mentioned types.

The following, in particular, have type attribute U:

names
which denote a LTORG instruction, or
which denote an EQU instruction without a third operand,

SETC symbols whose value is not a name,
system variable symbols, except &SYSLIST(n),
literals as operands of macro calls.

U5223-J-Z125-3-7600 159

Attribute references

5.5.8.2 L’ Length attribute reference

The length attribute of a name or of a variable symbol is a numeric value, which
represents the length of the designated memory area in bytes (for examples, see I’
Integer Attribute Reference).

The length attribute reference may only be used as an element of arithmetic macro
expressions.

The length attribute is 1
in names or variable symbols which denote an EQU instruction without length
specification (see section 4.2, EQU instruction) and
in names or variable symbols whose type attribute is J, T or N.
when L’* is used in DC and DS instructions and in literals.

The length attribute is 0
in names or variable symbols whose type attribute is M, O or U.

The length attribute * (L’*) is the same as the length of the instruction statement in
which the reference appears.

Examples

Name Operation Operands

&A SETB (L’&B EQ 4)
&C SETA L’&X+30

5.5.8.3 S’ Scaling attribute reference

The scaling attribute of a name or variable symbol is a numeric value which specifies
the number of positions in the fractional part of fixed-point, floating-point and decimal
constants (for examples, see I’, Integer Attribute Reference).

The scaling attribute can only be queried for names which denote the constant types
mentioned, and for a symbolic parameter or SETC symbol whose value is the name of
a corresponding constant.

The scale modifier reference may only appear as an element of arithmetic macro
expressions.

The scaling attribute of a fixed or floating-point number corresponds to the value of
the scale modifier.

The scaling attribute of a decimal number is the number of digits to the right of the
decimal point.

160 U5223-J-Z125-3-7600

Attribute references

5.5.8.4 I’ Integer attribute reference

The integer attribute of a name or variable symbol is a numeric value which refers to
the integer part of fixed-point, floating-point, and decimal numbers in object code. It is
calculated from the length and scaling attributes.

The integer attribute reference may only be interrogated for names and symbolic
parameters which denote the constant types mentioned, and for a SETC symbol whose
value is the name of a corresponding constant.

The integer attribute reference may only appear as an element of arithmetic macro
expressions.

Calculation of the integer attribute

Type Attrib. Integer Attribute

H
F I = 8*L-S-1
G

D
E
L I = 2*(L-1)-S
K

P I = 2*L-S-1

Z I = L-S

For all formulas, L = length attribute
S = scaling attribute

Examples

Name Operation Operands

CONF1 DC HS6’-15.75’ L = 2 , S = 6, I = 9
CONF2 DC FS8’100.3E-2’ L = 4 , S = 8, I = 23
*
CONFL1 DC ES2’46.415’ L = 4 , S = 2, I = 4
CONFL2 DC DS5’-3.729’ L = 8 , S = 5, I = 9
*
COND1 DC P’+1.25’ L = 2 , S = 2, I = 1
COND2 DC P’79.68’ L = 3 , S = 2, I = 3
COND3 DC Z’-543’ L = 3 , S = 0, I = 3
COND4 DC Z’79.68’ L = 4 , S = 2, I = 2

U5223-J-Z125-3-7600 161

Attribute references

5.5.8.5 K’ Count attribute reference

The count reference of a variable symbol is a numeric value.

The count attribute reference may only be used as an element of arithmetic macro
expressions.

Count attribute of symbolic parameters

The count attribute of a symbolic parameter corresponds to the number of characters
of the corresponding operand in the macro call. The count attribute of an omitted
operand is 0.

If the operand is a sublist, the count attribute includes the parentheses and commas of
the sublist. The count attribute of each suboperand can be referenced, regardless of
the nesting level (for examples, see N’ Number Attribute Reference).

If the operand of a macro call contains variable symbols, the count attribute
corresponds to the number of characters after the variable symbols have been replaced
by their actual values.

Count attribute of SET symbols and system variable symbols

SETA symbol Number of characters required to specify the actual value as a
decimal number without leading zeros.

Examples

&A1 SETA 111 K of &A1 = 3
&A2 SETA X’FF’ K of &A2 = 3
&A3 SETB (K’&A2 EQ 3) value of &A3 = 1

SETB symbol 1
SETC symbol number of characters

&SYSDATE 9
&SYSECT number of characters
&SYSLIST(n[,m]) number of characters
&SYSLIST invalid
&SYSMOD 2
&SYSNDX 4
&SYSPARM number of characters
&SYSTEM 4
&SYSTIME 6
&SYSTSEC number of characters
&SYSVERM 6
&SYSVERS 6

162 U5223-J-Z125-3-7600

Attribute references

5.5.8.6 N’ Number attribute reference

The number attribute is a numeric value and may be interrogated for a symbolic
parameter, for a SET symbol, or for the entire operand entry of a macro call.

The number attribute reference may only be used as an element of arithmetic macro
expressions.

Number attribute of a symbolic parameter

The number attribute of a symbolic parameter corresponds to the number of
suboperands in the corresponding operand sublist in the macro call. The number
attribute of each suboperand in the operand sublist can be referenced.

Via the system variable symbol &SYSLIST, positional operands in a macro call, which
have no corresponding symbolic parameter in the prototype statement, can also be
referenced.

If the symbolic parameter accessed does not correspond to any sublist, but only to a
single operand, the number attribute is 1.
If there is no operand in the macro call, the number attribute is 0.

Number attribute of SET symbols

The number attribute of a SET symbol corresponds to its actual dimension (see section
6.2, "Subscripted SET symbols").

U5223-J-Z125-3-7600 163

Attribute references

Number attribute of &SYSLIST

The number attribute of the system variable symbol &SYSLIST corresponds to the
number of positional operands in the operand entry of a macro call.

Examples

Name Operation Operands

* Prototype statement
MAC &P1,&P2,&P3,&P4

* Macro call
MAC 15,’NAME’,ADR,(X,(Y,Z))

Reference to (K’.., N’..) Value K N

&SYSLIST - 4
&SYSLIST(1) &P1 15 2 1
&SYSLIST(1,2) &P1(2) ’’ 0 0
&SYSLIST(2) &P2 ’NAME’ 6 1
&SYSLIST(3) &P3 ADR 3 1
&SYSLIST(4) &P4 (X,(Y,Z)) 9 2
&SYSLIST(4,1) &P4(1) X 1 1
&SYSLIST(4,2) &P4(2) (Y,Z) 5 2
&SYSLIST(4,2,1) &P4(2,1) Y 1 1

164 U5223-J-Z125-3-7600

Attribute references

5.5.8.7 D’ Definition attribute reference

The definition attribute indicates whether or not a name, which may have resulted
through replacement of a symbolic parameter, has already been defined.

The definition attribute reference may be used as an element in relational expressions,
in Boolean expressions, and in arithmetic macro expressions.

The definition attribute has the value 1 or 0.

1 The name or symbolic parameter referenced is defined.
0 The name or symbolic parameter referenced is not yet defined.

When using the definition attribute reference in an arithmetic macro expression, the
arithmetic values +1 or +0 are used.

The definition attribute reference can be used, for example,
in loop processing, to enquire whether a name has already been defined and
execute (or not execute) the definition accordingly (see examples under Macro
Definition 1);
to enquire whether a name has already been defined and accordingly determine
whether the attributes can be referenced (see examples under Macro Definition 2).

U5223-J-Z125-3-7600 165

Attribute references

Examples

Name Operation Operands

* Macro definition 1
MACRO
.
.
AIF (D’NAME).SYM1

NAME DC F’0’
.
.

.SYM1
SR R1,R1
AIF (T’NAME EQ ’F’).FCONST,(T’NAME EQ ’H’).HCONST
IC R1,NAME
AGO .END

HCONST ANOP
LH R1,NAME
AGO .END

FCONST ANOP
L R1,NAME

.END MEND

* Macro definition 2
MACRO
.
.
AIF (D’NAME).SYM1

&TYP SETC ’U’
AGO .SYM2
.
.

.SYM1 ANOP
&TYP SETC T’NAME
.SYM2 ANOP

.

.
MEND

166 U5223-J-Z125-3-7600

6 Variable symbols

6.1 Symbolic parameters

Symbolic parameters are defined in the prototype statement, and may then be used in
name, operation and operand entries of model statements in a macro definition. When
calling the macro, symbolic parameters must be assigned actual values. A symbolic
parameter can be generated using one or more variable symbols, except in the
prototype statement (see section 5.5.4, "Generated variable symbols").

Symbolic parameters are local symbols, i.e. are only recognized within a macro
generation, since they are assigned new values in each macro call.

Keyword and positional operands

Symbolic parameters are defined in the prototype statement in the name and operand
entries. The type of operand entry in the prototype statement determines whether a
keyword or positional operand is involved (see example and section 7.1.1, "Keyword
and positional operands").

Keyword operands are indicated in the prototype statement by an equals sign (=).
They can be assigned an initial value in the prototype statement. In the macro
instruction, the actual values are assigned via the keyword. The sequence of
keyword operands in the macro instruction is arbitrary.

The keyword in the macro instruction is the name of the variable symbol in the
prototype statement without the ampersand, or a variable symbol from which the
keyword is generated.

Positional operands are assigned current values in the macro instruction based on
their position in the operand entry. In other words, symbolic parameters and the
current values assigned must be in the same sequence both in the prototype
statement and in the macro call.

U5223-J-Z125-3-7600 167

Symbolic parameters

Rules

A symbolic parameter may consist of up to 64 characters.
The first character must be an ampersand (&).
Symbolic parameters may not begin with the character string &SYS. (see also
section 6.3, "System variable symbols").
Space characters are not allowed in a symbolic parameter.
The same variable symbol may not be defined as a symbolic parameter and a SET
symbol in the same macro definition.

Example

Name Operation Operands

* Macro definition
MACRO

&NAME MSYM &PAR1,&PARA=,&PARB= (01)
&NAME EQU *

MVC &PARB,&PARA
B &PAR1
.
.

&PAR1 EQU *
MEND

* Macro call
BEGIN MSYM STOP,PARA=CONST,PARB=FIELD (02)

* Generated instruction statements
BEGIN EQU *

MVC FIELD,CONST (03)
B STOP (04)
.
.

STOP EQU * (05)

(01) Prototype statement; &PAR1 is a positional operand, &PARA and &PARB are
keyword operands.

(02) Macro call; &PAR1 is assigned the current value STOP; &PARA is assigned the
value CONST via the keyword PARA, and &PARB the value FIELD via the
keyword PARB.

(03), (04), (05)
In these instruction statements, the symbolic parameters are replaced by the
current values assigned.

168 U5223-J-Z125-3-7600

SET symbols

6.2 SET symbols

SET symbols are variable auxiliary fields, which may be assigned values at assembly
time using SET instructions (see section 7.2). They are defined either explicitly with a
GBLx or LCLx instruction (see 7.2) or, for local SET symbols, implicitly via a SET
instruction (see 7.2). SET symbols may be used in name, operation and operand
entries of model statements. With an explicit definition, the SET symbol receives the
initial value zero, or null string. These may be subsequently altered by using SET
instructions, and new field contents may be assigned to the SET symbols. The SET
symbols in model statements are then replaced by their current values.

SET symbols may be generated using one or more additional variable symbols (see
section 5.3.3, "Generated variable symbols"). The use of SET symbols is not restricted
to macros. Local or global definitions and the use of such auxiliary fields are possible
in the entire source program (see chapter 8).

If SET symbols are explicitly defined, the definition must be processed before they are
used for the first time. In the interest of transparency, it is advisable to process all
definitions immediately after the relevant prototype statement.

Both global and local SET symbols may have an arithmetic, binary, or character value
as field contents. This is differentiated beforehand in the GBLx or LCLx instruction.

The x in both instructions can be replaced by the following characters (see section 7.2,
GBLx and LCLx instructions):

A SET symbol with an arithmetic value (SETA symbol)
B SET symbol with a binary value (SETB symbol)
C SET symbol with a character string as its value (SETC symbol)

Rules

A SET symbol may consist of a maximum of 64 characters.
The first character must be an ampersand (&).
SET symbols may not begin with the character string &SYS (see also 6.3, System
Variable Symbols).
Space characters are not permitted in SET symbols.

Programming notes

If a SET instruction includes the name of a variable defined in the source program in
the form name DS CL(A-B), ASSEMBH reports a semantic error (E35) if this definition
comes after the macro call. ASSEMBH will accept the SET instruction if this definition
comes before the macro call or if the computed valued is used instead of the
bracketed CL expression.

U5223-J-Z125-3-7600 169

SET symbols

Predefined SET symbols

Predefined SET symbols may be assigned values without prior declaration.

SETA symbols, global: &AGm
local: &ALm with 0 m 99

SETB symbols, global: &BGn
local: &BLn with 0 n 999

SETC symbols, global only: &CGm with 0 m 99

Note

Predefined SET symbols are used by various tools and supported by ASSEMBH
only on grounds of compatibility. It is therefore not advisable to use them in the
creation of new programs.

Global and local SET symbols

Global SET symbols are defined with the GBLx instruction. They may be used to
transfer values between macro definitions or between the macro definition and source
program. In the latter instance, the symbols must also be defined in the source
program.

A global SET symbol and its value is recognized in each macro definition or in the
source program if it has been defined there. Redefinition does not, however, reset the
initial value to zero.

Local SET symbols may be defined using the LCLx instruction. They are then only
recognized in the relevant macro definition or in the source program.

If the same SET symbol is also defined as local in another macro definition, it is
regarded as a separate SET symbol in each macro definition. Its respective value is not
recognized in other macro definitions, including an inner one.

In local SET symbols, implied declaration is possible. No LCLx instruction is necessary
in this case (see below).

170 U5223-J-Z125-3-7600

SET symbols

Examples

Name Operation Operands

* Macro definition 1
MACRO

&NAME LOAD1
GBLA &A (01)

*
&NAME LR 15,&A
&A SETA &A+1 (02)

MEND

* Macro definition 2
MACRO
LOAD2
GBLA &A (01)

*
LR 15,&A

&A SETA &A+1 (02)
MEND

* Macro calls
BEGIN LOAD1

LOAD2
LOAD1
LOAD2

* Generated instruction statements
.
.

BEGIN LR 15,0
LR 15,1
LR 15,2
LR 15,3
.
.

(01) Definition of the global SETA symbol &A; &A must be defined in each macro
definition in which the SETA symbol is to be used.

(02) As &A was defined as global, addition is not based on the initial value 0, but on
the result of the previous addition, regardless of the macro definition in which
this occurred.

U5223-J-Z125-3-7600 171

SET symbols

In the following example, &A is defined as local in both macro definitions. The other
instruction statements are the same as in the first example. Here, the definition of the
SETA symbol assigns the initial value 0 for each macro instruction; therefore. the SET
instruction no longer affects the value of &A in the LR instruction.

Name Operation Operands

* Macro definition 1
MACRO

&NAME LOAD1
LCLA &A

*
&NAME LR 15,&A
&A SETA &A+1

MEND

* Macro definition 2
MACRO
LOAD2
LCLA &A

*
LR 15,&A

&A SETA &A+1
MEND

* Macro calls
BEGIN LOAD1

LOAD2
LOAD1
LOAD2

* Generated instruction statements
.
.

BEGIN LR 15,0
LR 15,0
LR 15,0
LR 15,0
.
.

172 U5223-J-Z125-3-7600

SET symbols

Implicitly declared local SET symbols

Local SET symbols are already regarded as declared once they occur in the name
entry of a SET instruction. The assembler interprets each non-declared SET symbol in
the name entry of a SET instruction as a local SET symbol.

Implicitly declared local SET symbols are assigned the value specified in the operand
entry of the SET instruction as the initial value. In this case, the type of SET symbol
involved must be specified in the operation entry of the SET instruction (see section
7.2, SETA, SETB and SETC instructions).

Subscripted SET symbols

Global and local SET symbols may be defined as subscripted SET symbols.

Format of subscripted SET symbols &par(d)

&par is the name of the SET symbol under which d fields are accessed successively.

d dimension; 1 d 231-1

In the definition of the SET symbol (GBLx or LCLx), "d" specifies the number
of fields which are to appear in succession under the name &par.
Here, "d" may only be a decimal self-defining term.

Using SET instructions, the individual fields may be assigned values. In the
name entry of SET instructions, and when used in other model statements,
"d" denotes the field which is to be referenced.
In SET instructions, a value for "d" may be specified which is greater than the
value of "d" in the definition. In that case, the value of "d" in the definition is
replaced by the higher value, and this then serves as the dimension of the
SET symbol.
Here, "d" is an arithmetic macro expression.

The dimension of a SET symbol can be queried via the number attribute:

N’&par yields the current dimension.

Subscripted SET symbols, like other variable symbols, can be chained with variable
symbols or with alphanumeric characters.

U5223-J-Z125-3-7600 173

SET symbols

Example

Name Operation Operands

* Definition
LCLC &PARAM(20)

* Allocation
&PARAM(1) SETC ’FIRST’
&PARAM(2) SETC ’SECOND’

.

.

174 U5223-J-Z125-3-7600

System variable symbols

6.3 System variable symbols

System variable symbols are assigned values by the assembler. The programmer can
use them in the name, operation, and operand entries of instruction statements but can
assign no new values to them, except in &SYSMOD and &SYSLIST(n). System variable
symbols can be generated by using one or more variable symbols (see section 5.3.3,
"Generated variable symbols").

System variable symbols may be chained with alphanumeric characters. The syntax
rules applicable to the relevant entries must be observed.

There are system variable symbols with a local or global character:

Local system variable symbols are assigned values with every macro call, so they are
limited to one specific macro definition. They may only be used in macro definitions.

Local system variable symbols are:
&SYSECT,
&SYSLIST,
&SYSNDX,
&SYSTSEC, and
&SYSVERM.

Global system variable symbols are assigned values at the start of assembly, and
their value remains constant throughout the assembly.

Global system variable symbols are:
&SYSDATE,
&SYSPARM,
&SYSTEM,
&SYSTIME, and
&SYSVERS.

The system variable symbol &SYSMOD has a special significance here. Its default is
assigned at the beginning of the assembly, but it may be altered during execution of
the program.

U5223-J-Z125-3-7600 175

System variable symbols

&SYSDATE

The value of &SYSDATE is the assembly date. This value is calculated at the start of
assembly and remains constant.

Value of &SYSDATE mmddyyddd

mm month
dd day
yy year
ddd number of day in the year

The type attribute of &SYSDATE is U; the count attribute is 9.

Example

In the example, the assembly date is the 20th October 1989.

Name Operation Operands

* Macro definition
MACRO
MDATE &ENDE
.
.
B &ENDE
DC C’&SYSDATE’
DS 0H

&ENDE EQU *
MEND

* Macro call
MDATE ENDE

* Generated instruction statements
.
.
B ENDE
DC C’102089293’
DS 0H

ENDE EQU *
.
.

176 U5223-J-Z125-3-7600

System variable symbols

&SYSECT

The value of &SYSECT is the name of the current control section at the time of the
macro instruction. Additional information on &SYSECT is provided by the system
variable symbol &SYSTSEC, which contains the corresponding type of each control
section (see description of &SYSTSEC).

If &SYSECT occurs in a macro definition, its value is the name of the last START,
CSECT, DSECT, XDSEC or COM instruction processed prior to the macro call. Whether
or not the instruction was correct is ignored, provided the error has not resulted in the
control section not being defined.

For the relevant macro level, the value of &SYSECT is constant during processing of a
macro definition, regardless of CSECT, DSECT, XDSEC or COM instructions or inner
macro calls.

If, on the other hand, CSECT, DSECT, XDSEC or COM instructions appear in a macro
definition, they affect the value of &SYSECT for all subsequent inner macro instructions
in this macro definition and for all subsequent macro calls at another macro level.

The type attribute of &SYSECT is U; the count attribute corresponds to the number of
characters which represent the value of &SYSECT.

U5223-J-Z125-3-7600 177

System variable symbols

Example

Name Operation Operands

* Macro definition, outer macro
MACRO
MACA &NAME,&CSECT

&NAME DC C’&SYSECT’
&CSECT CSECT

DC C’&SYSECT’
MACI
MEND

* Macro definition, inner macro
MACRO
MACI
DC C’&SYSECT’
MEND

* Control section with macro calls
PROG START

.

.
MACA FIRST,ACSECT

MACA SECOND,BCSECT

* Generated instruction statements
FIRST DC C’PROG’ (01)
ACSECT CSECT

DC C’PROG’ (01)
DC C’ACSECT’ (02)

SECOND DC C’ACSECT’ (03)
BCSECT CSECT

DC C’ACSECT’ (03)
DC C’BCSECT’ (04)

(01) The two instructions are at the same macro level, and the macro was called in
PROG.

(02) The DC instruction originates from the instruction of the inner macro MACI. The
MACI call is only processed after the CSECT instruction ACSECT, and the value
of &SYSECT is therefore ACSECT.

(03) The two instructions are again at the same macro level, but the last preceding
CSECT instruction was ACSECT. The value of &SYSECT in both instructions is
therefore ACSECT.

(04) The instruction again comes from the inner macro instruction MACI. This is
another macro level, and &SYSECT thus assumes the name of the preceding
CSECT instruction BCSECT.

178 U5223-J-Z125-3-7600

System variable symbols

&SYSLIST

&SYSLIST can be used to reference positional operands of macro calls instead of
symbolic parameters. Using the &SYSLIST index, every positional operand, and in
particular, every sublist in a macro call can be referred to, even if no corresponding
symbolic parameter has been defined in the prototype statement.

The attributes of operands in a macro call can also be referenced in this way.

Format of &SYSLIST &SYSLIST(n[,m[,...]])

n denotes the nth positional operand in a macro call.

If n = 0, the result is the name entry of the macro call.

m denotes the mth operand of the operand sublist which is the nth operand in a
macro call.

Subscripting can be further extended to refer to each suboperand in an operand sublist
(see section 7.1.2, "Operand sublists").

n or m may be any positive arithmetic expression which may be an operand in a SETA
instruction.

If there is no operand for a value of n or m, the result is a blank character string.

Only with a number attribute reference of the operand entry in a macro call
(N’&SYSLIST, see section 5.5.8, "Attribute references") can &SYSLIST be used without
the index n or m. In this instance, the result is the number of positional operands in the
macro call.

The type attribute reference (T’&SYSLIST(n)) gives the type of operand accessed.

U5223-J-Z125-3-7600 179

System variable symbols

Example

Name Operation Operands

* Macro definition
MACRO
MLIST &PAR

&PAR DC C’&SYSLIST(2)’
DC C’&SYSLIST(3,2)’
DC C’&SYSLIST(4)’
DC C’&SYSLIST(2,1)’
DC C’&SYSLIST(3)’
MEND

* Macro call
MLIST AAA,BBB,(C,D,,F),,H

* Generated instruction statements
AAA DC C’BBB’

DC C’D’
DC C’’ blank char.string
DC C’BBB’
DC C’(C,D,,F)’

180 U5223-J-Z125-3-7600

System variable symbols

&SYSMOD

&SYSMOD can be used to control the resolution of a mode-related system macro,
depending on the addressing mode (see section 3.3.3).

At the beginning of the assembly, &SYSMOD is allocated the default 24. The value of
&SYSMOD can be altered via the system macro GPARMOD (see manual "Introductory
Guide to XS Programming" [7]).

For SYSMOD, only the values 24 and 31 are valid.

The type attribute of &SYSMOD is U, the count attribute is 2.

In the resolution of mode-related system macros, the value of &SYSMOD is used as a
default for the global parameter mode (see PARMOD and GPARMOD in "Introductory
Guide to XS Programming" [7]).

&SYSNDX

The value of &SYSNDX is a counter, which is incremented by 1 with each inner or
outer macro instruction processed in an assembly unit. The counter has four positions,
and is set to 0001 for the first macro instruction, to 0002 for the second, etc.

Since the value of &SYSNDX does not represent any valid name, &SYSNDX must
chained with a valid name if &SYSNDX is to be used for the generation of names.

The value of &SYSNDX is constant during processing of a macro definition, regardless
of any inner macro calls. &SYSNDX can therefore be used to generate unique names
for instruction statement strings which have been generated by multiple calls in the
same macro definition.

If &SYNDX appears as an element in an arithmetic expression, its value is interpreted
arithmetically.

The type attribute of &SYSNDX is U, and the count attribute is 4.

U5223-J-Z125-3-7600 181

System variable symbols

Example

Name Operation Operands

* Macro definition, inner macro
MACRO
MACI &PARAM

A&SYSNDX SR 2,5
CR 2,5
BE B&PARAM
B A&SYSNDX
MEND

* Macro definition, outer macro
MACRO

&NAME MACA &PARAM
&NAME SR 2,4
B&SYSNDX AR 2,6

MACI &PARAM
B&PARAM S 2,=F’1000’
A&SYSNDX ST 2,WORD

MEND

* 1st MACA call
ALPHA MACA XXX (01)

* Generated instruction statements
ALPHA SR 2,4
B0106 AR 2,6 (02)

MACI XXX (04)
A0107 SR 2,5 (05)

CR 2,5
BE BXXX
B A0107 (06)

BXXX S 2,=F’1000’
A0106 ST 2,WORD (03)

* 2nd MACA call
BETA MACA YYY (07)

* Generated instructions
BETA SR 2,4
B0108 AR 2,6 (08)

MACI YYY (10)
A0109 SR 2,5 (11)

CR 2,5
BE BYYY
B A0109 (12)

BYYY S 2,=F’1000’
A0108 ST 2,WORD (09)

182 U5223-J-Z125-3-7600

System variable symbols

(01) This instruction statement is to be the 106th macro instruction in this assembly
unit. A&SYSNDX is replaced by A0106, and B&SYSNDX by B0106 in instructions
(02) and (03).

(04) 107th macro instruction, A&SYSNDX is replaced by A0107; see instruction
statements (05) and (06).

(07) 108th macro call, A&SYSNDX and B&SYSNDX are replaced by A0108 and
B0108; see instruction statements (08) and (09).

(10) 109th macro call, A&SYSNDX is replaced by A0109; see instruction statements
(11) and (12).

U5223-J-Z125-3-7600 183

System variable symbols

&SYSPARM

The value of &SYSPARM is a string of up to 255 characters. These are defined in an
SDF option (see "ASSEMBH User Guide" [1]) and evaluated in the macro resolution; i.e.
an option entered externally can be used to control the processing of certain instruction
statement strings.

The type attribute of &SYSPARM is U; the count attribute corresponds to the number of
characters defined.

&SYSTEM

The value of &SYSTEM is the operating system version under which the assembly runs.

Value of &SYSTEM 2vvv

2 stands for BS2000
vvv version designation of BS2000

The type attribute of &SYSTEM is U; the count attribute is 4.

&SYSTIME

The value of &SYSTIME is the time of day of the assembly. This value is calculated at
the beginning of the assembly and remains constant.

Value of &SYSTIME hhmmss

hh hours
mm minutes
ss seconds

The type attribute of &SYSTIME is U; the count attribute is 6.

184 U5223-J-Z125-3-7600

System variable symbols

&SYSTSEC

The value of &SYSTSEC is the type of the current control section at the time of the
macro instruction. In other words, &SYSTSEC contains the the type of control section
whose name is stored in &SYSECT (see description of &SYSECT).

Control section Value of &SYSTSEC

START CSECT
CSECT CSECT
DSECT DSECT
COM COM
XDSEC XDSEC

If &SYSTSEC appears in a macro definition, its value is the type of the last START,
CSECT, DSECT, COM or XDSEC instruction processed prior to the macro call. Whether
or not the instruction was correct is ignored, provided the error has not resulted in the
control section not being defined.

The type attribute of &SYSTSEC is U; the count attribute corresponds to the number of
characters which make up the value of &SYSTSEC.

Example

Name Operation Operands

* Macro definition
MACRO
MACDSECT &NAME

&NAME DSECT
DS 4F

&SYSECT &SYSTSEC Reset to the original control
MEND section

* Control section with macro instruction
PROG START

.

.
MACDSECT ADSECT
.
.

* Generated instruction statements
ADSECT DSECT

DS 4F
PROG CSECT Continuation of 1st control

. section

.

U5223-J-Z125-3-7600 185

System variable symbols

&SYSVERM

The value of &SYSVERM is the version designation of the library macro in which this
parameter is used.

Macro definitions in the source program have no version designation; thus, it makes no
sense to use &SYSVERM in this case. Here, the version designation is replaced by
space characters (VER).

Value of &SYSVERM VERvvv

vvv version designation

A version designation which is too long is truncated to the right, while one which is too
short is padded to the right with underscores (_).

The type attribute of &SYSVERM is U; the count attribute is 6.

Examples

Version designation 002 gives VER002
Version designation 2 gives VER2__
Version designation 1234 gives VER123

&SYSVERS

The value of &SYSVERS is the version designation of the source program, provided this
is available in a library.

Source programs which are not read from a library have no version designation; it
therefore makes no sense to use &SYSVERS here. The version designation is in this
case replaced by space characters (VER).

Value of &SYSVERS VERvvv

vvv version designation

A version designation which is too long is truncated to the right, one too short is
padded to the right with underscores (_) (see &SYSVERM for examples).

The type attribute of SYSVERS is U; the count attribute is 6.

186 U5223-J-Z125-3-7600

7 Macro language instructions

7.1 Prototype statement and macro call

Function

The prototype statement specifies the name of the macro and the symbolic parameters
appearing in this macro definition.

The macro call is an instruction in the assembler source program. Processing of the
macro call initiates macro generation. Through this, the instruction statements preset by
the macro definition are inserted into the assembler program by means of variable
symbols. The macro call assigns the relevant current values to the symbolic parameters
of the prototype statement.

Format of the prototype statement

Name Operation Operands

[&par] name pos_oper[,...]
[keyw_oper[,...]]

pos_oper[,...],keyw_oper[,...]

&par Symbolic parameter
name Macro name

pos_oper Positional operand; format: &par
&par symbolic parameter

keyw_oper Keyword operand; format: &par=[vala]
&par symbolic parameter
vala initial value

Several positional and keyword operands may be mixed in a prototype statement. They
may appear in any order.

U5223-J-Z125-3-7600 187

Prototype statement/macro call

Format of the macro instruction

Name Operation Operands

valn name pos_oper[,...]
[.sym] [keyw_oper[,...]]

&par1 &par2 pos_oper[,...],keyw_oper[,...]

valn Name which is to be allocated to the symbolic parameter in the name
entry of the prototype statement

.sym Sequence symbol
&par1 Variable symbol or concatenation of variable symbols and alphanumeric

characters; the name entry must be generated from this.
The value of &par1 is allocated to the symbolic parameter &par in the
name entry of the prototype statement.

name Macro name
&par2 Variable symbol or concatenation of variable symbols and alphanumeric

characters; the value corresponds to the macro name.

pos_oper Positional operand; format: val
val Value which is to be allocated to the symbolic parameter of

the prototype statement
or variable symbol

keyw_oper Keyword operand; format: par=val
par Keyword, name of the symbolic parameter of the prototype

statement (without ampersand)
or variable symbol, where the value must be a keyword.

var Value which is to be allocated to the symbolic parameter
or variable symbol

Several positional and keyword operands may be mixed in the macro call. Keyword
operands may be in any order, but positional operands must be in the same sequence
as the positional operands in the prototype statement (for example, see section 7.1.1).

188 U5223-J-Z125-3-7600

Prototype statement/macro call

Name entry

The name entry of the macro call is assigned to the symbolic parameter in the name
entry of the prototype statement.

If the name entry of the macro call contains a variable symbol, this must
be defined in the source program if the macro call is in the source program, or
be defined in the macro definition which contains the macro call.

Operation entry

The operation entry of the prototype statement specifies the name with which the
macro must be called. This must be created in accordance with the rules for names
(see section 2.3, "Name entry"). In the case of a macro definition in a library, it must
also adhere to LMS syntax (see the "LMS" User Guide [4]).

If there are two or more macro definitions with the same name in the operation entry in
a source program, the last macro definition read in is regarded as valid until the next
macro definition of the same name appears.

For a macro definition in the source program, the mnemonic operation code of an
instruction statement can be used in the operation entry of the prototype statement,
without canceling the instruction statement with the OPSYN instruction. The macro
definition must be executed prior to its first instruction. Here, the original function of the
instruction statement is deactivated, and every time the instruction statement appears, it
is regarded as the invocation of the corresponding macro.
Note that no further macros can be read after processing a macro definition in the
source program with the operation code ’MACRO’ in the prototype statement.

If a macro definition in a library receives the mnemonic operation code of an assembler
instruction statement as a name, the corresponding operation code must first be
canceled by using the OPSYN instruction.

If the operation entry of the macro call contains a variable symbol it must
be defined in the source program if the macro call is in the source program or
be defined in the macro definition in which the macro call appears.

U5223-J-Z125-3-7600 189

Prototype statement/macro call

Operand entry

The operand entry of the prototype statement determines the format and structure of
the operand entry of the relevant macro call. The macro call assigns current values to
the symbolic parameters of the prototype statement.

If an operand is omitted in the macro call, the corresponding symbolic parameter is
assigned a null string (no characters) as the character value, or the arithmetic value
zero. Keyword parameters that have been assigned an initial value in the prototype
statement are exceptions.

Rules for macro instruction operands

A macro instruction operand may be up to 1020 characters in length, even after any
variable symbols have been replaced. In keyword operands too, the value must be
1020 characters long. The keyword and the equals sign are not counted here.

Single quotes in an operand must appear in pairs.

A single single quote in a character string must be represented by two single
quotes.

A length attribute reference (L’) of a name is permitted as an operand.

Left and right parentheses must appear in pairs, unless enclosed in single quotes. If
an operand begins with a left parenthesis, it is interpreted as a sublist. If the closing
right parenthesis is not followed by a space or comma, the entire operand is
interpreted as a character string and not as a sublist.

If several ampersands appear one after the other, their number must be even,
except if an ampersand indicates a variable symbol.

A comma denotes the end of an operand or sublist element, unless it is enclosed in
single quotes.

A space character indicates the end of the operand entry, unless it is enclosed in
single quotes.

If the operand of the macro call is a macro expression, the corresponding symbolic
parameter will be assigned the attributes of a character constant.

If a macro instruction operand contains a variable symbol as its value, this symbol
must

be defined in the source program if the macro call is in the source program, or
be defined in the macro definition in which the macro call appears.

190 U5223-J-Z125-3-7600

Prototype statement/macro call

7.1.1 Keyword and positional operands

Keyword operands are identified in the prototype statement by the equals sign (=).
They can be assigned an initial value in the prototype statement.

In the macro call, keyword operands are assigned values via the keyword. Keyword
operands may appear in any order in the macro call.

No comma may be specified if a keyword operand is omitted in the macro call.

For a keyword operand in the macro call, an additional variable symbol can be used to
generate the value to be assigned.

Positional operands are assigned on the basis of their position in the operand entry.
Symbolic parameters and the current values assigned must be in the same order in
both the prototype statement and the macro instruction.

If no value is assigned to a positional operand in a macro call, it is omitted, and the
subsequent separating comma is entered. If the last positional operand in the macro
call is omitted, the corresponding commas may also be left out.

The value to be assigned to a positional operand in the macro call may be generated
using a variable symbol.

More positional operands may appear in the macro call than specified in the prototype
statement. If this is the case, the extra operands may only be referenced via the system
variable symbol &SYSLIST (see section 6.3).

Keyword and positional operands may appear mixed in the prototype statement and
macro call. In positional operands, however, the order must be the same in both the
prototype statement and the macro call.

U5223-J-Z125-3-7600 191

Prototype statement/macro call

Examples

Name Operation Operands

* Prototype statement
&NAME MAC &P1,&P2=VAL2,&P3,&P4=,&P5

* Macro call 1
VAL MAC P4=VAL4,VAL1,VAL3,VAL5

&P1,&P3 and &P5 Positional operands; these are assigned the values VAL1 VAL3 and
VAL5.

&P2 Keyword operand with the initial value VAL2.
&P4 Keyword operand; the value VAL4 is assigned via the macro call.

* Macro call 2
VAL MAC P4=VAL4,VAL1,,VAL5

Here, no value is to be assigned to the positional operand &P3. It is replaced in the
macro call by the comma and receives the value "null string".

192 U5223-J-Z125-3-7600

Prototype statement/macro call

7.1.2 Operand sublists

The value of a positional operand in a macro call or the value of a keyword operand in
a macro call or prototype statement may be an operand sublist. In this case, the entire
sublist is regarded as an operand of the macro call and is assigned to a symbolic
parameter of the prototype statement.

Format of the operand sublist (val,val[,...])

val Value or
new operand sublist

Reference to suboperands in the operand sublist &P(n[,m[,...]])

&P Symbolic parameter from the prototype statement to which the operand
sublist has been assigned.

n denotes the nth suboperand in the operand sublist and is a positive
arithmetic macro expression.

m denotes the mth suboperand in the sublist, which in turn represents the
nth suboperand of a sublist and is a positive arithmetic macro
expression.

Subscripting can be further extended by referring to each suboperand within any
required level of the sublist.

Rules

Sublists must always begin with "(" and end with ")"; otherwise, the operand (or
sublist element) will be interpreted as a string.

Operand sublists may be nested to any desired level; the only restriction comprises
the maximum length of operands.

The maximum length of 1020 characters for macro instruction operands refers here
to the entire sublist, inclusive of suboperands, commas, and parentheses.

As with positional operands, omitted suboperands may be replaced by a comma,
and receive the value zero.

If a macro instruction operand is referenced as a sublist in an instruction statement
although it is not one, &P(1) refers to all operands. &P(n) with n > 1 then has the
value zero, or null string.

Suboperands of operand sublists can also be referenced in positional operands
using the system variable symbol &SYSLIST (see section 6.3).

U5223-J-Z125-3-7600 193

Prototype statement/macro call

If an operand sublist contains a variable symbol in the suboperand, it must be
defined

in the source program, if the macro call is in the source program, or
in the macro definition in which the macro call occurs.

Spaces are legal in operand sublists; they are interpreted as a part of a suboperand.
For example, the sublist (1 ,2, 3) has three suboperands:

sub1 = 1
sub2 = 2
sub3 = 3

Example

Name Operation Operands

* Macro definition
MACRO
SUBEX &P
AIF (&P(3,2,1) EQ ’F’ OR &P(5) EQ ’’).SYM
.
.
MEND

* Macro call
SUBEX (A,(B,C),(D,(E,F)),G,)

Operand in instr. (A,(B,C),(D,(E,F)),G,)

Suboperands &P(1) = A

&P(2) = (B,C) &P(2,1) = B
&P(2,2) = C

&P(3) = (D,(E,F)) &P(3,1) = D
&P(3,2) = (E,F) &P(3,2,1) = E

&P(3,2,2) = F

&P(4) = G

&P(5) = ’’

In the AIF instruction, &P(3,2,1) is replaced by E
and &P(5) is replaced by ’’ (empty string).

194 U5223-J-Z125-3-7600

Prototype statement/macro call

7.1.3 Outer and inner macro instructions

A macro instruction which is used in a macro definition as a model statement is an
inner macro instruction or call. The instruction in the relevant macro definition, which
contains the inner instruction, is known as the outer macro instruction. The outer macro
instruction may be in the source program, or may be an inner macro instruction in
another macro definition.

A macro instruction in the source program is also known as the first level; the inner
macro instruction in the relevant macro definition is the second level. The macro
definition pertaining to the second level instruction may contain a further inner macro
instruction, which is then a third level, etc.

In this way, a maximum of 255 levels can be nested. The possible nesting level which
can be achieved is also dependent on the complexity of the macro definitions and on
the available memory space.

Transfer of values via inner macro instructions

The values in the operand entry of the inner macro instruction replace the symbolic
parameters of the corresponding prototype statement.

Values can be transferred from an outer macro to the relevant macro definition via an
inner macro instruction.

The following are the conditions for this:
The symbolic parameter of the outer macro or
the SET symbol defined in the outer macro must be used as operands of the inner
macro instruction.

The values specified as operands in the outer macro instruction then replace the
corresponding symbolic parameters.

U5223-J-Z125-3-7600 195

Prototype statement/macro call

Example

Name Operation Operands

* Macro definition 1
MACRO

&NAME MADD &ART,&F1,&F2,&F3,&F4 (02)
.
.

&NAME MPACK &F1,&F2,&F3,&F4 (03)
.
.

&NAME AP &F1,&F2
AP &F1,&F3
AP &F1,&F4
MEND

* Macro definition 2
MACRO

&NAME MPACK &A1,&A2,&A3,&A4 (04)
&NAME PACK &A1,&A1

PACK &A2,&A2
PACK &A3,&A3
PACK &A4,&A4
MEND

* Outer macro instruction
UNP MADD U,FIELD1,FIELD2,FIELD3,FIELD4 (01)

* Generated inner macro instruction
UNP MPACK FIELD1,FIELD2,FIELD3,FIELD4

* Generated instruction statements
.
.

UNP AP FIELD1,FIELD2
AP FIELD1,FIELD3
AP FIELD1,FIELD4
.
.

FIELD1 DC CL6’000010’
.
.

(01) Outer macro instruction;
(02) Prototype statement of macro definition 1; the symbolic parameters are replaced

by the values from the macro instruction.
(03) Inner macro instruction; the values of the outer macro instruction are transferred

to the symbolic parameters in this macro instruction.
(04) Prototype statement of macro definition 2; the symbolic parameters are replaced

by those of the macro instruction (03) and thus by the values transferred.

196 U5223-J-Z125-3-7600

Prototype statement/macro call

7.1.4 Alternative statement format

The alternative statement format is an additional format option for prototype statements
and macro calls. It can not only be used for LCLx and GBLx instructions, but also for
format 2 of AIF and AGO instructions.

Format

Name Operation Operand Continuation Character

[&par] name operand, x
operand[, x
...]

Name entry See description of normal format
Operation entry See description of normal format
operand Positional or keyword operand(s), or suboperands in the case of

an operand list
x Any character other than a space character

Description

The alternative statement format allows one or more operands to be entered in a line
and continued in the next line with the next operand. This is also true for operands in
operand sublists.

The following applies with respect to the operand entry:

To enable an operand entry to be continued in the next line starting with the
continue column, the preceding operand must be followed by a comma. The
continuation character column must then contain a character other than a space.

After the comma and a space character, remarks may be entered up to and
including the end column.

A space character after an operand (but not a suboperand) indicates the end of the
operand entry.

Remarks may follow even after the end of the operand entry. If a character other
than a space character is in the continuation character column, the remarks entry is
continued in the next line, starting with the continue column.

U5223-J-Z125-3-7600 197

Prototype statement/macro call

Example

Name Operation Operand Continuation Char.

OP1 OPER1,OPER2,OPER3 COMMENT (01)
*

OP2A OPER1, COMMENT X
OPER2, COMMENT X
OPER3 COMMENT

* (02)
OP2B OPER1, COMMENT X

OPER2,OPER3,OPER4, COMMENT X
OPER5 COMMENT

*
OP3 OPER1, COMMENT X

OPER2 COMMENT X (03)
COMMENT

*
OP4 OPER1,OPER2 COMMENT X

(SUBOPER31, COMMENT X (04)
SUBOPER32)

(01) Normal format
(02) Alternative statement format with remarks entry
(03) Alternative statement format with remarks entry, continued in the next line.
(04) Alternative statement format with operand sublists

198 U5223-J-Z125-3-7600

Macro statements ACTR

7.2 Description of macro statements

ACTR Count branches

Function

The ACTR instruction is used to limit AGO and AIF branches processed in a macro
definition or in the assembler source program. This prevents continuous loops during
macro generation.

Format

Name Operation Operands

[.sym] ACTR arexp

.sym Sequence symbol
arexp Positive arithmetic macro expression

Description

The ACTR instruction sets a counter to the value specified by arexp. The counter is
decremented by one for every AGO or AIF branch.

The ACTR instruction can be set for every macro definition and for the assembler
source program. The various counters are independent of each other.

If the counter is zero prior to the branch, the following results:

For a counter which is meant for a macro definition, processing of this macro
definition and any inner macro definitions contained therein is aborted, and the next
instruction statement after the macro instruction is processed.

For a counter meant for the assembler source program, assembly is aborted, and
only errors previously found are reported.

Programming notes

If no ACTR instruction is specified, the assembler assumes the value of the counter to
be 4096.

See example under AGO instruction.

U5223-J-Z125-3-7600 199

AIF Macro statements

AIF Conditional branch

Function

The AIF instruction enables conditional branching to be executed.

Format 1

Name Operation Operands

[.sym1] AIF (logexp).sym2

.sym1 Sequence symbol in standard format

.sym2 Sequence symbol in standard format or generated
logexp Boolean expression

Note

The operation code AIFB, which can be used in the same way as AIF, is supported
only for reasons of compatibility.

Description

logexp is calculated as per the rules for Boolean expressions; the result may be true or
false:

If logexp is true, a branch is made to the instruction statement denoted by .sym2.
If logexp is false, the instruction statement after the AIF instruction is processed.

Programming notes

1. The AIF instruction can be used to branch forwards or backwards. Instruction
statements skipped as a result of a branch are not generated.

2. With the AIF instruction, no branch from one macro definition to another, or from
source program to macro definition, and vice-versa, is possible.

200 U5223-J-Z125-3-7600

Macro statements AIF

Example

The example shows a macro in which the symbolic parameter from the macro
instruction is checked for certain conditions. Only if all the necessary conditions have
been met will processing be executed.

Name Operation Operands

MACRO
&NAME TAIF ®,&ADR,&NR (01)

LCLB &ERRIN (02)
.
.
AIF (® GE 2 AND ® LE 13).OK1
MNOTE 0,’INCORRECT REG ®’

&ERRIN SETB 1
.OK1 AIF (&ADR NE ’’).OK2

MNOTE 0,’MISSING ADR’ (03)
&ERRIN SETB 1
.OK2 AIF (&NR GE 1 AND &NR LE 4).OK3

MNOTE 0,’INCORRECT NR &NR’
&ERRIN SETB 1
.OK3 ANOP

AIF (&ERRIN).MEND (04)
.
.

.MEND MEND

(01) Prototype statement with symbolic parameters ®, &ADR and &NR
(02) Definition of an "error indicator" &ERRIN
(03) The 3 AIF inquiries check whether the symbolic parameters have been specified

as per the required conditions in the macro instruction. If the parameter is
correct, a branch is made to the next inquiry.
If an error occurs, the MNOTE instruction is executed; this displays a suitable
explanation, and sets the error indicator.

(04) Inquiry as to whether the error indicator has been set anywhere. If so, there is a
branch to the end; if not, the assembler processes the next instruction
statements.

U5223-J-Z125-3-7600 201

AIF Macro statements

Format 2

Name Operation Operands

[.sym] AIF {(logexp).sym1}[,...]

.sym Sequence symbol in standard format
logexp Boolean expression
.sym1 Sequence symbol in standard format or generated

Description

Format 2 of the AIF instruction corresponds to n successive AIF instructions. Boolean
expressions are calculated one after the other, and a branch is made to the sequence
symbol whose relevant Boolean expression is true.

Programming notes

The alternative statement format (see section 7.1.4) can be used for format 2 of the AIF
instruction.

Example

Name Operation Operand Continuation Char.

AIF (’&S’ EQ ’+’).PLUS, X
(’&S’ EQ ’-’).MINUS, X
(’&S’ EQ ’=’).EQ

.

.

The example is shown in the alternative statement format. Depending on the contents
of &S, a branch is made to the relevant sequence symbol.

202 U5223-J-Z125-3-7600

Macro statements AGO

AGO Unconditional branch

Function

An unconditional branch can be made using the AGO instruction.

Format 1

Name Operation Operands

[.sym1] AGO .sym2

.sym1 Sequence symbol in standard format

.sym2 Sequence symbol in standard format or generated.

Note

The operation code AGOB, which can be used in the same way as AGO, is still
supported for reasons of compatibility.

Description

".sym2" denotes the next instruction statement which is to be processed by the
assembler.

Programming notes

1. The AGO instruction can be used to branch forwards or backwards. Instruction
statements skipped as a result of a branch are not generated.

2. With the AGO instruction, no branch from one macro definition to another, or from
source program to macro definition, and vice-versa, is possible.

U5223-J-Z125-3-7600 203

AGO Macro statements

Example

The example shows the use of AGO in a loop, in relation to an AIF inquiry.

Name Operation Operands

* Macro definition
MACRO
REG &PRE
LCLA &R
.
.
ACTR 100 (01)

.LOOP ANOP (02)
&PRE&R EQU &R
&R SETA &R+1

AIF (&R GT 15).END (03)
AGO .LOOP (04)
.
.

.END MEND

* Macro call
REG REG

* Generated instruction statements
REG0 EQU 0
REG1 EQU 1
REG2 EQU 2

.

.

(01) "Emergency brake", lest loop criterion is not achieved
(02) Start of loop
(03) Inquiry as to end criterion, and branch out of loop
(04) End of loop, and return to start

204 U5223-J-Z125-3-7600

Macro statements AGO

Format 2

Name Operation Operands

[.sym] AGO (arexp){.sym1}[,...]

.sym Sequence symbol in standard format
arexp Positive arithmetic macro expression
.sym1 Sequence symbol in standard format or generated

Description

"arexp" specifies the number of sequence symbols in the operand entry to which the
branch is to be made.

If the result of arexp is greater than the number of sequence symbols, or smaller than
1, no branch is executed.

Programming notes

The alternative statement format (see section 7.1.4) can be used in format 2 of the
AGO instruction.

Example

Name Operation Operands

AGO (&EX).LOOP1,.LOOP2,.LOOP3
.
.

Here, a branch is made to .LOOP2 if &EX assumes the value 2.
If &EX has a value greater than 3, the instruction statement after the AGO instruction is
executed.

In the alternative statement format, the same example is coded as follows:

Name Operation Operand Continuation Char.

AGO (&EX).LOOP1, X
.LOOP2, X
.LOOP3

.

.

U5223-J-Z125-3-7600 205

ANOP Macro statements

ANOP No operation

Function

With the ANOP instruction, sequence symbols can be defined as the branch

destination for a branch. It does not execute any functions.

Format

Name Operation Operands

[.sym] ANOP

.sym Sequence symbol

Description

The ANOP instruction itself does not perform any operation itself; it is merely used as a
destination for branches in the macro language. The assembler generates the next
respective instruction statement.

Programming notes

1. The ANOP instruction is mainly used if a branch is to be made to an instruction
statement which permits no sequence symbol in the name field. In this case, the
ANOP instruction must be inserted prior to the instruction statement.

2. By using ANOP for branch destinations, another instruction may be easily inserted
as the first or deleted.

Example

Name Operation Operands

AGO .SYM
.
.

.SYM ANOP insert
< AIF (D’RDEF).SYM1

RDEF DC F’123’
< .SYM1 ANOP

AIF (&A EQ 0).SYM2
.
.

206 U5223-J-Z125-3-7600

Macro statements GBLx

GBLx Define global SET symbol

Function

The GBLx instruction defines one or more global SET symbols.

Format

Name Operation Operands

A &par
GBL B [,...]

C &par(d)

&par Global SET symbol
&par(d) Subscripted global SET symbol
d Dimension; decimal self-defining term

GBLA Definition of a SETA symbol
GBLB Definition of a SETB symbol
GBLC Definition of a SETC symbol

Description

The GBLx instruction defines the global SET symbol or symbols in the operand entry,
and assigns it/them an initial value, if required. The defined SET symbols are all of the
type specified in the operation entry.

Initial values: SETA symbol 0
SETB symbol 0
SETC symbol null string

Programming notes

1. A global SET symbol is assigned an initial value only by the first GBLx instruction
processed. Subsequent GBLx instructions in another macro definition or in the
source program signify only the definition of the SET symbol, and do not assign the
initial value again.

2. SET symbols may not begin with the character string &SYS (see section 6.3,
"System variable symbols").

3. The alternative statement format (see section 7.1.4) can be used for the GBLx
instruction.

U5223-J-Z125-3-7600 207

GBLx Macro statements

Example

Name Operation Operands

GBLA &(&AR1),&AR2(20),&AR3,&AR4

&(&AR1) Global SETA symbol, whose name is to be generated using &AR1
&AR2(20) Subscripted global SETA symbol with dimension 20
&AR3, &AR4 Global SETA symbol

In the alternative statement format, the same example is coded as follows:

Name Operation Operand Continuation Char.

GBLA &(&AR1), X
&AR2(20), X
&AR3, X
&AR4

208 U5223-J-Z125-3-7600

Macro statements LCLx

LCLx Define local SET symbol

Function

The LCLx instruction defines one or more local SET symbols.

Format

Name Operation Operands

A &par
LCL B [,...]

C &par(d)

&par Local SET symbol
&par(d) Subscripted local SET symbol;
d Dimension; decimal self-defining term

LCLA Definition of a SETA symbol
LCLB Definition of a SETB symbol
LCLC Definition of a SETC symbol

Description

The LCLx instruction defines the local SET symbol or symbols in the operand entry and
assigns it/them an initial value.

The defined SET symbols are all of the type specified in the operation entry.

Initial values: SETA symbol 0
SETB symbol 0
SETC symbol blank char.string

Programming notes

1. If the same SET symbol is defined as local in both the source program and in one
or more macro definitions, it is regarded as a new SET symbol with the initial value
in each case.

2. SET symbols may not begin with the character string &SYS (see section 6.3,
"System variable symbols").

3. The alternative statement format (see section 7.1.4) can be used for the LCLx
instruction.

U5223-J-Z125-3-7600 209

LCLx Macro statements

Example

Name Operation Operands

LCLA &(&AR1),&AR2(20),&AR3,&AR4

&(&AR1) Local SETA symbol, whose name is to be generated using &AR1
&AR2(20) Subscripted local SETA symbol with dimension 20
&AR3, &AR4 Local SETA symbol

In the alternative statement format, the same example is coded as follows:

Name Operation Operand Continuation Char.

LCLA &(&AR1), X
&AR2(20), X
&AR3, X
&AR4

210 U5223-J-Z125-3-7600

Macro statements MACRO/MEND

MACRO Macro definition header

Format

Name Operation Operands

MACRO

Description

The MACRO (macro definition header) instruction identifies the start of a macro
definition. It must be the first instruction statement in each macro definition.

MEND Macro definition trailer

Format

Name Operation Operands

[.sym] MEND

.sym Sequence symbol

Description

The MEND (macro definition trailer) instruction identifies the end of a macro definition.
It must be the last instruction statement in each macro definition.

The sequence symbol .sym is used as a branch destination for AIF or AGO instructions.

U5223-J-Z125-3-7600 211

MEXIT Macro statements

MEXIT Define exit from a macro definition

Function

The MEXIT instruction defines an exit from a macro definition. During generation, this
terminates the current macro generation.

Format

Name Operation Operands

[.sym] MEXIT

.sym Sequence symbol

Description

As a result of the MEXIT instruction, the assembler terminates the current macro
generation, and processes the instruction statement which follows immediately after the
macro instruction. If the macro instruction is in the source program, the next source
program instruction statement is processed. If the macro instruction is a model
statement in an outer macro definition, the next model statement is processed.

The sequence symbol .sym is used as a branch destination for AIF or AGO instructions.

212 U5223-J-Z125-3-7600

Macro statements MEXIT

Programming notes

1. The MEXIT instruction may only be used in macro definitions.

2. The MEXIT instruction may not be interchanged with the MEND instruction. The
MEND instruction must always be the last instruction in a macro definition, even if
this contains one or more MEXIT instructions.

Example

Name Operation Operands

MACRO
.
.
LCLB &OKIN1,&OKIN2
.
.
AIF (&OKIN1).OK1 (01)
MNOTE ’NO OKIN1’
MEXIT (02)

.OK1 AIF (&OKIN2).OK2 (01)
MNOTE ’NO OKIN2’
MEXIT (02)
.
.
MEND

(01) Checks if a certain switch has been set, and branches to the next inquiry
(02) If OKIN is still on zero, the appropriate message is displayed, and generation is

terminated.

U5223-J-Z125-3-7600 213

MNOTE Macro statements

MNOTE Transmit messages

Function

The MNOTE instruction generates a message (which can be changed using variable
symbols) with a line number in the assembler listing.

Format

Name Operation Operands

[.sym] MNOTE *
[,]’text’

n

.sym Sequence symbol
n Error code, positive arithmetic macro expression;

0 n 255
text Text of message, maximum 256 characters

214 U5223-J-Z125-3-7600

Macro statements MNOTE

Description

Depending on the error code in the MNOTE instruction, warnings or error messages
can be displayed in the assembler listing. An error message displayed as the result of
an MNOTE is dealt with in the same way as an assembler flag, and the error weight is
increased accordingly.

An MNOTE reference list can be created in the same way as as the error reference list
(see "ASSEMBH User Guide" [1]).

* If an asterisk is given as the error code, then text appears as a remarks
line in the generated code, even if the instruction PRINT NOGEN has been
set. The message is purely a remark, and no error code is included. There
is no display in MNOTE-XREF.

n The error code of the MNOTE instruction and the assembler flag error
classes are related as follows:

warning n = 0
error 1 n 150
severe error 151 n 254
termination error n = 255

If n is omitted or if n > 255, the assembler assumes n = 0.
If n > 255, a warning is also displayed.

If n is not an integer, then the MNOTE instruction is regarded as an illegal
model statement.

Programming notes

1. Variable symbols in the operand entry of the MNOTE instruction are replaced by
their current value. Using MNOTE *,... remarks can be generated here.

2. An MNOTE instruction with the error code n = 255 can be used to abort assembly ,
if the appropriate termination condition has been set in the option specification (see
"ASSEMBH User Guide" [1]).

U5223-J-Z125-3-7600 215

MTRAC Macro statements

MTRAC Macro trace

Function

The MTRAC instruction is used to monitor conditional branches and to check the
contents of SET symbols.

Format

Name Operation Operands

[.sym] MTRAC

.sym Sequence symbol

Description

Macro instructions which follow after the MTRAC instruction are printed out in the
assembler listing:

MTRAC, NTRAC, ANOP, LCLx and GBLx instructions
These instructions are logged with no additional details.

AIF and AGO instructions
With these two instructions, whether or not a branch was made is indicated by a "Y" or
"N" in the assembler listing.

simple AIF computed AIF simple AGO computed AGO

Y Y: <n> Y Y: <n>
N N

Y there was a branch
N there was no branch
n is the number of the logical expression that causes the branch to be made

216 U5223-J-Z125-3-7600

Macro statements MTRAC

SETA, SETB, SETC and ACTR instructions

Here, the current value of the SET symbol or ACTR operand is printed out in the
assembler listing.

SETA symbols and ACTR operands are shown as decimal numbers with leading
zeros. Negative values in SETA symbols are printed with the preceding sign.
Numbers with more than 8 positions are truncated to the right.

The value of a SETB symbol appears as a single character:

T true, or 1
F false, or 0

SETC symbols or symbolic parameters in SETC instructions are shown as a
character string of up to 8 characters.

The character string ’ NULL’ stands for a SETC symbol which has been reset
to the initial value.

If the value of the SETC symbol is longer than 8 characters, only the first 7
characters and an asterisk (*) are printed.

Programming notes

1. If PRINT NOGEN was specified to control the contents of a listing, no MTRAC
information is output.

2. If the MTRAC instruction is in the source program or in an outer macro, it must be
executed in order to be valid for subsequent inner macro instructions.

3. The MTRAC attribute is passed down through the instruction hierarchy, in
accordance with the macro nesting level (see example in NTRAC).

U5223-J-Z125-3-7600 217

NTRAC Macro statements

NTRAC Terminate macro trace

Function

The NTRAC instruction cancels the MTRAC function.

Format

Name Operation Operands

[.sym] NTRAC

.sym Sequence symbol

Programming notes

1. If no MTRAC instruction is specified, all NTRAC instructions processed are
ineffective.

2. NTRAC resets the MTRAC instruction at the appropriate macro nesting level. NTRAC
is valid for all subsequent inner macro instructions.

218 U5223-J-Z125-3-7600

Macro statements NTRAC

Example

The example shows how the MTRAC or NTRAC attribute is passed on to a source
program which contains several nested macro instructions.

The source program calls the macro MAC1, which calls the macro MAC2, which in turn
calls the macro MAC3.

CSECT
.
.

MTRAC
. MTRAC applies
. MACRO

MAC1 > MAC1
. in MAC1, neither MTRAC nor NTRAC
. MACRO specified; i.e. MTRAC still applies

MAC2 > MAC2
. MAC2 contains NTRAC; i.e. MTRAC
. applies only up to the NTRAC instruction,

NTRAC and from here NTRAC applies
.
. MACRO

MAC3 > MAC3 in MAC3, neither MTRAC nor NTRAC
. specified; i.e. NTRAC still applies
.

< .
. MEND Return to MAC2; as previously
. at this level: NTRAC applies

< .
. MEND Return to MAC1; as previously
. at this level: MTRAC applies

< .
. MEND Return to source program;
. as previously: MTRAC applies
END

U5223-J-Z125-3-7600 219

SETA Macro statements

SETA Set SETA symbol

Function

The SETA instruction assigns the arithmetic value from the operand entry to a SETA
symbol.

Format

Name Operation Operands

&par SET[A] arexp
&par(d) &par_c

&par SETA symbol
&par(d) Subscripted SETA symbol;
d Dimension; arithmetic macro expression
arexp Arithmetic macro expression
&par_c SETC symbol

Description

&par, or &par(d)
Local or global SETA symbol, which was defined in an LCLA or GBLA
instruction.

If the SETA symbol was not defined before the SETA instruction, the
assembler interprets it as an implicitly declared local SETA symbol and
assigns the value arexp as the initial value. In this case, the mnemonic
operation code SETA must be used.

Successive SETA instructions with the same SETA symbol in the name
entry assign a new value to the symbol in each case.

arexp The value of the expression in the operand entry is calculated according
to the rules for arithmetic macro expressions, and is then assigned to the
SETA symbol.

This value is used instead of the SETA symbol if the symbol is used in an
arithmetic expression.

&par_c A SETC symbol is only allowed as an operand entry if it has an arithmetic
value.

An empty character string is converted into a 0.

220 U5223-J-Z125-3-7600

Macro statements SETA

Programming notes

If the SETA symbol is used in a non-arithmetic macro expression, the value of arexp is
converted into an integer without leading zeros.

Example

Name Operation Operands

* Macro definition
MACRO

&NAME SETAEX &PART,&PARF
LCLA &P1,&P2,&P3,&P4

.*
&P1 SETA 10 (01)
&P2 SETA 12 (02)
&P3 SETA &P1-&P2 (03)
&P4 SETA &P1+&P3 (04)
.*
&NAME ST 2,SAVAREA

L 2,&PARF&P3 (05)
ST 2,&PART&P4 (06)
L 2,SAVAREA
MEND

* Macro call
BEGIN SETAEX FIELDX,FIELDY

* Generated instruction statements
.
.

BEGIN ST 2,SAVAREA
L 2,FIELDY2
ST 2,FIELDX8
L 2,SAVAREA
.
.

(01) and (02) assign the SETA symbols &P1 and &P2 the arithmetic values 10 and 12.

(03) and (04) utilization of the SETA symbol in arithmetic macro
expressions; &P3 and &P4 contain the values -2, and +8,
respectively.

(05) and (06) utilization of the SETA symbol in non-arithmetic macro
expressions; thus, &P3 and &P4 are replaced here by 2 and
8, respectively.

U5223-J-Z125-3-7600 221

SETB Macro statements

SETB Set SETB symbol

Function

The SETB instruction assigns the logical value 1 or 0 (true or false) to a SETB symbol.

Format

Name Operation Operands

&par SET[B] 0
&par(d) 1

(0)
(1)
(logexp)
&par_c

&par SETB symbol
&par(d) Subscripted SETB symbol
d Dimension; arithmetic macro expression
logexp Boolean expression
&par_c SETC symbol

Description

&par or &par(d)
Local or global SETB symbol which was defined in an LCLB or GBLB
instruction.

If the SETB symbol was not defined before the SETB instruction, the
assembler interprets it as an implicitly declared local SETB symbol and
assigns 0 or 1 as the initial value, depending on the value of the operand
entry. In this case, the mnemonic operation code SETB must be used.

Successive SETB instructions with the same SETB symbol in the name
entry assign a new value to the symbol in each case.

0, 1, (0) or (1)
These values are assigned to the SETB symbol and used in its place if the
symbol is used in a Boolean expression.

222 U5223-J-Z125-3-7600

Macro statements SETB

logexp The logical value of the expression in the operand entry is calculated as
per the rules for Boolean expressions, then assigned to the SETB symbol.

This value is used instead of the SETB symbol if the symbol is used in a
Boolean expression.

&par_c A SETC symbol is only allowed as an operand entry if it has a value of 0
or 1.

An empty character string is converted to a 0.

Programming notes

If a SETB symbol is used in an arithmetic macro expression, the logical values 1 (true)
or 0 (false) are converted to the corresponding arithmetic values +1 or +0.

Example

Name Operation Operands

* Macro definition
MACRO

&NAME SETBEX &P1,&P2
LCLB &B1,&B2
.
.

&B1 SETB (L’&P1 EQ 4) (01)
&B2 SETB (S’&P2 EQ 0) (02)

.

.
MEND

* Macro call
BEGIN SETBEX FIELDA,FIELDB

* Source program definitions
FIELDA DC F’01’
FIELDB DC DS3’12’

.

.

(01) The Boolean expression is true; &B1 is therefore assigned the value 1.
(02) The Boolean expression is false, hence &B2 is assigned the value 0.

U5223-J-Z125-3-7600 223

SETC Macro statements

SETC Set SETC symbol

Function

The SETC instruction assigns the value of the character expression in the operand
entry to a SETC symbol or to a symbolic parameter.

Format

Name Operation Operands

&par SET[C] charexp
&par(d)
&spar
&SYSLIST(n)

&par SETC symbol
&par(d) Subscripted SETC symbol
d Dimension; arithmetic macro expression
&spar Symbolic parameter
&SYSLIST(n) System variable symbol
charexp Character expression

Description

&par or &par(d)
Local or global SETC symbol which was defined in an LCLC or GBLC
instruction.

If the SETC symbol was not defined before the SETC instruction, the
assembler interprets it as an implicit local SETC symbol and assigns
the value of charexp as the initial value. In this case, the mnemonic
operation code SETC must be used.

Successive SETC instructions with the same SETC symbol in the
name entry assign a new value to the symbol each time.

&spar, or &SYSLIST(n)
Symbolic parameter to which the value in the operand entry is to be
assigned. When &SYSLIST(n) is used, n may only denote the
symbolic parameter itself. SETC cannot be used to assign a new
value to an element in an operand sublist.

charexp The value of the character expression is used instead of the SETC
symbol if the symbol is used in an instruction statement.

224 U5223-J-Z125-3-7600

Macro statements SETC

Programming notes

When the SETC instruction is processed, the value of the operand is always interpreted
as a string and not parsed into sublists. Thus, in &PAR SETC ’(1,2)’, for example, the
value of &PAR(1) = (1,2), not 1.

Example

Name Operation Operands

* Macro definition
MACRO

&NAME SETCEX &IN,&OUT
LCLC &PRE

*
&PRE SETC ’&IN’(1,5) (01)
*
&NAME ST 2,SAVAREA

L 2,&PRE&OUT (02)
ST 2,&IN
L 2,SAVAREA
MEND

* Macro call
BEGIN SETCEX FIELDA,B

* Generated instruction statements
.
.

BEGIN ST 2,SAVAREA
L 2,FIELDB
ST 2,FIELDA
L 2,SAVAREA
.
.

(01) The SETC instruction assigns &PRE the value of the character substring (FIELD).
(02) &PRE is replaced by FIELD, and &OUT is replaced by B, i.e. &PRE&OUT

receives the value FIELDB

U5223-J-Z125-3-7600 225

8 Macro language elements in assembler
source program text
Various macro language elements may be used outside macro definitions in the text of
the assembler source program. The assembler source program can be regarded as a
large macro definition in this case, except that it has no MACRO and MEND
instructions or prototype statements.

The instruction statements generated using macro language are always shown in the
assembler listing immediately after the corresponding macro instruction statements and
are identified by a plus sign (+) in the macro level column.

The macro language elements which may be used in the assembler source program
are detailed below.

• Macro statements

Utilization outside
macro definitions

ACTR yes
AIF yes
AGO yes
ANOP yes
GBLx yes
LCLx yes
MACRO no
MEND no
MEXIT no
MNOTE yes
MTRAC yes
NTRAC yes
SETA yes
SETB yes
SETC yes

U5223-J-Z125-3-7600 227

Macro language elements in the source program

Programming notes

1. Instruction statements skipped by AIF or AGO are not read, and thus not
assembled. Names defined in skipped instruction statements are regarded as
undefined as far as the assembler is concerned. Their attributes can, however,
be accessed by means of the lookahead function of ASSEMBH (see "ASSEMBH
User Guide" [1]).

2. Instruction statements which are multiply executed a loop are also successively
read in and assembled more than once.

3. If the value of the ACTR counter is exceeded (see section 7.2, ACTR instruction),
assembly is abnormally terminated.

• Variable symbols

Utilization Outside Macro Definitions

Symbolic parameters no

SET symbols yes if defined before first utilization

Exception: implicitly declared local SET symbols
need not be defined beforehand.

System var. symbols
&SYSDATE yes
&SYSECT no
&SYSLIST no
&SYSMOD yes
&SYSNDX no
&SYSPARM yes
&SYSTEM yes
&SYSTIME yes
&SYSTSEC no
&SYSVERM no
&SYSVERS yes

Programming notes

Variable symbols may also be used in the assembler source program to generate
the name, operation, and operand entries of assembler instruction statements.

228 U5223-J-Z125-3-7600

Macro language elements in the source program

• Sequence symbols

Utilization Outside Macro Definitions

Standard format yes, the sequence symbol will be listed
Generated format yes, in the operand entry

Programming notes

Sequence symbols in the operand entry of AIF and AGO instructions must also be
defined in the name entry of an instruction statement in the source program.

• Attribute references

Utilization outside Macro Definitions

Type attribute yes, in macro statements
Length attribute yes
Scaling attribute yes, in macro statements
Integer attribute yes, in macro statements
Count attribute yes, in macro statements for SET symbols and

system variable symbols
Number attribute no
Definition attribute yes, in macro statements

U5223-J-Z125-3-7600 229

9 Structured programming with ASSEMBH

9.1 Introduction

Structured programming is not supported by ASSEMBH-BC !

Structured programming contains rules for the construction of programs. Its aim is to
ensure that the control sequence flow of the program is clear and easily
comprehensible.

Each program has a static and a dynamic aspect. The dynamic aspect is expressed in
the written draft of the program, the source program text. The dynamic aspect consists
of the series of actions which the program initiates in the computer. In the text of a
source program are instruction statements, which determine the action which is to be
carried out next. These instruction statements define the control flow of the program.

Structured programming assumes that the control flow of a program may consist only
of certain basic formats. The following basic principles have been used as a foundation
for this:

• Block principle

The block principle requires that a program is formed only by stringing together or
nesting structure blocks, which have only one entry and one exit. The control flow
of a program may only be constructed from a few basic formats of this type with a
simple inner structure.

• Procedure principle

The control flow between main programs and subroutines is regulated in the
procedure principle. A procedure in the sense of structured programming is a
program unit with one entry and one exit, which can be called using a name, with
current parameter values where necessary. A procedure is constructed from
structure blocks.

U5223-J-Z125-3-7600 231

Structured programming

• Data principle

The data principle aids the user in making rational use of memory, and relieves him
of the task of memory management which is required for reentrant procedures. The
data principle regulates the scope of all data and ensures transparency. It requires
that each procedure supply information on all data used.

ASSEMBH provides the user with aids to adapt assembler programs to the
requirements of structured programming. This is achieved with the help of a set of
predefined macros which can be used to implement the basic principles mentioned
above.

In executing a program with predefined macros, ASSEMBH uses dynamic memory
management. Accesses to and requests for memory, automatic register saving, and
parameter management are handled by the ASSEMBH runtime system. The runtime
system is implemented via a module package in the associated module library.

In addition to the set of macros and the runtime system, structured programming with
ASSEMBH includes utilities for debugging and list editing.

This chapter describes the block, procedure and data principles in ASSEMBH, as well
as the predefined macros and how to use them. The use of the utilities and the macro
library, and how to link in the runtime system, is described in the "ASSEMBH (BS2000)
User Guide" [1].

Using structured programming for program design

The basic principles of structured programming meet the requirements for a gradual,
carefully developed procedure when designing programs.

The utilization of pseudocode lends itself to the formulation of flow logic. Pseudocode
consists of formalized parts and of texts in natural language. Here, the predefined
macros of ASSEMBH can be used for the formalized sections. The control flow of a
program is formulated using predefined macros, and the function of each individual
block is described in natural language. In the next stage, the function of the individual
blocks can be worked out in detail, or individual blocks can be relocated as separate
procedures.

232 U5223-J-Z125-3-7600

Structured programming

Example

The example shows a decision (see section 9.2.2, "Selection structure blocks") in which
only macros which represent structure blocks are currently specified.

@IF
condition
@THEN
operations, where condition applies
@ELSE
operations, where condition does not apply
@BEND

The ASSEMBH utilities convert the predefined macros into clearer forms of
representation which can be output to a printer, and check the design for structural
errors. As text between the macros is not processed by the utilities, the program design
can be shown already structured with the aid of this pseudocode, without any assembly
coding being present.

If an assembler program is to be worked out from the pseudocoded design, printing
out the functions of the individual blocks in assembler instruction statements suffices.
Here, we recommend leaving the text parts of the pseudocode as comments in the
source program text. As before, the predefined macros create the control flow of the
module implemented.

ASSEMBH converts the predefined macros into assembly language instruction
statements and assembles them into the appropriate object module, along with the
other instruction statements.

U5223-J-Z125-3-7600 233

Block principle

9.2 Block principle

A prerequisite of the block principle is that the program sequence and format of a
procedure should be handled with only a few basic formats, the "structure blocks". A
procedure may consist solely of structure blocks which are strung together or nested.

Every structure block has a simple control flow which defines the sequence of work
stages contained in it. Basically, there are only three forms of control flow in a structure
block:

the sequence (several stages follow each other), section 9.2.1
the selection (one of several possible stages is executed), section 9.2.2
the loop (one stage is repeated several times), section 9.2.3.

As a result, the control flow in a structure block has only one entry and one exit.

Several structure blocks may be strung together and produce another sequence as a
result, a parent structure block. Structure blocks may also be nested. In other words,
one stage in a sequence, one alternative in a selection structure block, or the repeated
section of a loop may itself consist of a structure block.

In the structure blocks for decision, loop with pre-check, loop with unqualified terminal
condition, and count loop with unqualified terminal condition, a condition must be
specified for the macro calls @IF, @WHIL and @WHEN. There are:

simple conditions, section 9.2.4, and
compound conditions, section 9.2.5.

For graphic representation of structure blocks, Nassi-Shneiderman diagrams
(structograms) are generally used. ASSEMBH provides the user with a set of predefined
macros with which every structogram can be coded on a 1:1 basis.

All branches in a program are implemented using these macros, hence branch
instructions (B, BAL, BALR, ...) should basically not be used.

234 U5223-J-Z125-3-7600

Structure blocks Sequence

9.2.1 Sequence

The sequence structure block combines program sections into a logical unit. It can be
used anywhere, and its chief purpose is clear organization, while facilitating the
assignment of names to strings of instruction statements and structure blocks.

The sequence structure block is mandatory for delimiting sub-blocks in case
differentiation by number (@CASE).

Nassi-Shneiderman diagram

Structure block format

Name Operation Operands

[name] @BEGI

instr. statement
[,...]

structure block

[name] @BEND

U5223-J-Z125-3-7600 235

Decision Structure blocks

9.2.2 Selection structure blocks

A selection structure block consists of a series of sub-blocks and a criterion which
selects only one of the sub-blocks.

9.2.2.1 Decision

The decision involves choosing between two sub-blocks. The selection criterion is a
condition which is composed of a condition symbol and a machine instruction which
sets the condition code (see section 9.2.2, "Conditions").

Nassi-Shneiderman diagram

Condition
YES NO

YES sub-block NO sub-block

Structure block format

Name Operation Operands

[name] @IF cond_sym
[condition code setting machine instruction]

[name] @THEN
YES sub-block

[[name] @ELSE
NO sub-block]

[name] @BEND

cond_sym predefined or user-own condition symbol; specifies on what criterion the
condition may be interrogated.

sub-block string of instruction statements or other nested structure blocks.

236 U5223-J-Z125-3-7600

Structure blocks Decision

Description

The YES sub-block is initiated by the @THEN macro, and the NO sub-block by
@ELSE. @BEND ends the structure block.

If the condition (see sections 9.2.4 and 9.2.5) is true, the instruction statements or
structure blocks in the YES sub-block are executed; if not, the NO sub-block is. If the
NO sub-block is missing, the instruction statement following the @BEND macro is
executed as a result of a non-applicable condition.

Example

Name Operation Operands

@IF LE
CR R1,R2
@THEN
MVI FIELD,TRUE
@ELSE
MVI FIELD,FALSE
@BEND

If the contents of register 1 are less than/equal to those of register 2 the YES sub-
block is executed; if not, the NO sub-block is.

U5223-J-Z125-3-7600 237

Case differentiation by number Structure blocks

9.2.2.2 Case differentiation by number

In case differentiation by number, one of several sub-blocks is selected. The selection
criterion is the number of the corresponding sub-block. This number is specified in the
@CASE register.

Nassi-Shneiderman diagram

Number

1st sub-block 2nd sub-block nth sub-block

Structure block format

Name Operation Operands

[name] @CASE (reg)

[name] @BEGI
1st sub-block

[name] @BEND
.
.
.

[name] @BEGI
nth sub-block

[name] @BEND

[name] @BEND

reg @CASE register; contains the number of the sub-block to be executed
sub-block String of instruction statements or other nested structure blocks

238 U5223-J-Z125-3-7600

Structure blocks Case differentiation by number

Description

The @CASE register must be loaded with the number of the appropriate sub-block
prior to execution of the structure block. A maximum of 90 sub-blocks are possible for
the structure block.

Register 0 may not be used as @CASE register.

The contents of the @CASE register are altered during execution of the @CASE macro.

If the contents of the @CASE register is less than 1 or greater than the number of sub-
blocks defined,

the last sub-block is executed if CHECK=ON is set in the procedure heading (see
section 10.2, @ENTR);
program errors occur if CHECK=OFF is set in the procedure heading.

Sub-blocks in a case differentiation by number must be delimited with a sequence
(@BEGI, @BEND).

Example

Name Operation Operands

L R6,T2
@CASE (R6)
@BEGI
. 1st sub-block
.
@BEND
@BEGI
. 2nd sub-block
.
@BEND
. other sub-blocks
. possible
@BEND
.
.

T1 DC F’1’
T2 DC F’2’

.

.

In the example, register 6 is used for the @CASE branch. The content of register 6 is 2
in this case; hence the second sub-block is executed.

U5223-J-Z125-3-7600 239

Case differentiation by comparison Structure blocks

9.2.2.3 Case differentiation by comparison

In case differentiation by comparison, one of several sub-blocks is selected. This is
done based on a comparison of selector and comparands. The selector is specified in
the structure block heading, and the comparands in the sub-block heading.

Nassi-Shneiderman diagram

Selector
Comparand 1

1st sub-block Comparand 2

2nd sub-block

.......... Comparand n

nth sub-block

remainder sub-block

240 U5223-J-Z125-3-7600

Structure blocks Case differentiation by comparison

Structure block format

Name Operation Operands

name
[name] @CAS2 literal [,COMP=instr]

(reg)

name
[name] @OF literal [,...][,COMP=instr]

val
1st sub-block

.

.

.
[[name] @OFRE

rem. sub-block]

[name] @BEND

name or literal or (reg) in the operand entry of @CAS2
specifies the name of the field or register which contains the selector or,
in the form of a literal, the selector itself.

name or literal or val in the operand entry of a @OF
specifies the name of the field which contains the appropriate
comparands, or the comparand itself in the form of a literal or self-defining
term.

sub-block
String of instruction statements or other nested structure blocks

instr Condition code setting machine instruction

U5223-J-Z125-3-7600 241

Case differentiation by comparison Structure blocks

Description

The current value of the selector in the @CAS2 macro is compared with the
comparands in the @OF macro. The comparison is done in the given sequence of
comparands, from top to bottom, and from right to left. On finding the first selector and
comparand that match, the relevant sub-block is processed, and the structure block is
then quit.

If there is no matching comparand, the remainder sub-block is processed. If this is
missing, the structure block is quit, and the instruction statement after the @BEND
macro is processed.

The end of a sub-block is indicated by the next @OF, @OFRE or @BEND macro
which terminates the sub-block.

Comparison is conventionally carried out with the CLC instruction, and in registers with
the C instruction. A different type of comparison may be selected using the COMP=
operand. Here, the operand in @CAS2 is valid for the entire structure block, but in
@OF macros only for the sub-block concerned.

The user must himself ensure that the generated machine instructions

compare instruction selector,comparand

are correct, i.e. that implied or explicit length specifications and operand alignment are
correct.

In compare instructions, the sub-block is executed if there is equality (EQ); in
COMP=TM, if all the bits - corresponding to the mask - in the selector are set (ON); in
COMP=TRT, if a function byte unequal to zero (NZ) has been found in the comparand
(conversion table).

There is no restriction on the number of sub-blocks in the structure block and the
number of comparands in an @OF.

To enable selection of the correct sub-block, all comparisons preceding the searched
for sub-block will be carried out. It is therefore advisable to organize sub-blocks and
comparands according to expected frequency of occurrence.

242 U5223-J-Z125-3-7600

Structure blocks Case differentiation by comparison

Example

Name Operation Operands

BLOC @CAS2 KEY,COMP=CLI (01)
@OF 5 (02)
.
.
@OF 6,8 (03)
.
.
@OF END,COMP=CLC (04)
.
.
@OF X’80’,COMP=TM (05)
.
.
@BEND

(01) The selector is in the field KEY; the compare instruction for the structure block is
CLI.

(02) Comparand for the first sub-block is the self-defining term 5, i.e. the first sub-
block is executed if the current value of KEY is equal to 5.

(03) The self-defining terms 6 and 8 are specified as comparands for the second sub-
block. In other words, it is executed if the value of KEY is equal to 6 or 8.

(04) Alteration to the compare instruction for this sub-block; it is processed if the
value of KEY is equal to the value of END.

(05) For the last sub-block, another compare instruction is specified. It is executed if
the bits - corresponding to the mask - in the selector are all set.

U5223-J-Z125-3-7600 243

Loop with pre-check Structure blocks

9.2.3 Loops

A loop consists of a loop sub-block and a condition which specifies how often and/or
how long this is to be repeated.

9.2.3.1 Loop with pre-check

In a loop with pre-check, the condition is always checked prior to execution of the loop
sub-block.

Nassi-Shneiderman diagram

Condition

Loop Sub-Block

Structure block format

Name Operation Operands

[name] @WHIL cond_sym
[condition code setting machine instruction]

[name] @DO
loop sub-block

[name] @BEND

cond_sym Predefined or user-own condition symbol; specifies on what criterion the
condition is to be interrogated.

loop sub-block
String of instruction statements or other nested structure blocks.

244 U5223-J-Z125-3-7600

Structure blocks Loop with pre-check

Description

The loop sub-block is executed if the condition (see section 9.2.2) is satisfied. If the
condition is not satisfied, the loop is quit before the loop sub-block.

If the condition is not satisfied in the first check, the loop sub-block is not executed.

Example

Name Operation Operands

LOOP @WHIL EQ
CLI END,C’N’
@DO
.
.
@BEND

The loop sub-block is executed provided END is equal to "N".

U5223-J-Z125-3-7600 245

Loop with unqualified terminal condition Structure blocks

9.2.3.2 Loop with unqualified terminal condition

In a loop with unqualified terminal condition, one or more terminal conditions may be
specified at any desired points in the loop sub-block.

Nassi-Shneiderman diagram

Loop sub-block

Condition

[Condition]

Structure block format

Name Operation Operands

[name] @CYCL
.
.
.

[name] @WHEN cond_sym
[condition code setting machine instruction]

[name] @BREA
.
.
.

[name] @BEND

cond_sym Predefined or user-own condition symbol; specifies on what criterion the
condition is to be interrogated.

246 U5223-J-Z125-3-7600

Structure blocks Loop with unqualified terminal condition

Description

The loop sub-block is limited by @CYCL and @BEND. It is repeated so long as one of
the terminal conditions prevail. Then the loop is quit at the specified position with
@BREA.

The conditions set (see sections 9.2.4 and 9.2.5) are always checked when they occur.

@WHEN-@BREA can be used more than once in the loop sub-block.

Additional structure blocks may be nested in the loop sub-block. These may only be
quit with @WHEN-@BREA if they are also @CYCL loops. In @CYCL loops nested in
this way, a @WHEN-@BREA condition only terminates the loop in which it is defined,
not the entire structure block.

Example

Register 3 contains the address of a character string. This is to be searched for the
position of the field separator ’*’.

Name Operation Operands

@CYCL
@WHEN EQ
CLI 0(R3),C’*’
@BREA
AH R3,ONE
@BEND
.
.

ONE DC H’1’

U5223-J-Z125-3-7600 247

Count loop Structure blocks

9.2.3.3 Count loop

In a count loop, the sub-block is repeated as often as specified in the duplication
factor.

Nassi-Shneiderman diagram

Duplication factor

Loop sub-block

Structure block format

Name Operation Operands

[name] @CYCL (reg)
loop sub-block

[name] @BEND

reg Register whose contents specify the number of iterations

Description

reg is decremented by 1 after each execution, and checked for 0. If 0 is reached, the
structure block is quit.

If the contents of reg are already less than 1 at the start,
the loop is terminated immediately if CHECK=ON is set in the procedure heading
(see section 10.2, @ENTR),
a continuous loop ensues if CHECK=OFF is set, and the loop has no terminal
condition.

reg may not be altered in the loop sub-block.

248 U5223-J-Z125-3-7600

Structure blocks Count loop

Example

Table 2 (TAB2) is to be copied into Table 1 (TAB1). The number of elements is
specified in Field N, the length of each element in L.

Name Operation Operands

L R5,N
LA R6,TAB1-L
LA R7,TAB2-L

LOOP @CYCL (R5)
LA R6,L(0,R6)
LA R7,L(0,R7)
MVC 0(L,R6),0(R7)
@BEND

U5223-J-Z125-3-7600 249

Count loop with unqualified terminal condition Structure blocks

9.2.3.4 Count loop with unqualified terminal condition

The count loop with unqualified terminal condition combines the characteristics of the
count loop with those of the loop with unqualified terminal condition. At the same time,
there are @WHEN-@BREA terminal conditions and a duplication factor. The duplication
factor forms an upper limit for the number of executions of the loop sub-block.

Nassi-Shneiderman diagram

Duplication factor

Loop sub-block

Condition

[condition]

Structure block format

Name Operation Operands

[name] @CYCL (reg)
.
.
.

[name] @WHEN cond_sym
[condition code setting machine instruction]

[name] @BREA
.
.
.

[name] @BEND

reg Register whose contents specifies the number of iterations
cond_sym Predefined or user-own condition symbol; specifies on what criterion the

condition is to be interrogated.

250 U5223-J-Z125-3-7600

Structure blocks Count loop with unqualified terminal condition

Description

The loop sub-block is delimited by @CYCL and @BEND. It is repeated as often as
specified by the duplication factor, or as long as one of the terminal conditions prevail.
The loop is then quit at the specified position with @BREA.

The conditions set are always checked when they occur.

@WHEN-@BREA may be set more than once in a loop sub-block.

Additional structure blocks may be nested in the loop sub-block. These may only be
quit with @WHEN-@BREA if they are also @CYCL loops. In @CYCL loops nested in
this way, a @WHEN-@BREA stipulation only ends the loop in which it is defined, not
the entire structure block.

reg is decremented by 1 after each execution, and checked for 0. If 0 is reached, the
structure block is quit.

reg may not be altered in the loop sub-block.

Example

The loop in the example is executed ten times, unless the termination condition occurs
beforehand.

Name Operation Operands

L R7,NR (01)
LOOP @CYCL (R7) (02)

.

.
@WHEN EQ
CLC TEST,END (03)
@BREA
.
.
@BEND
.
.

NR DC F’10’
TEST . .
END . .

(01) Register 7 is loaded with the duplication factor
(02) Start of loop
(03) Termination condition and loop exit

U5223-J-Z125-3-7600 251

Iterative loop Structure blocks

9.2.3.5 Iterative loop

In an iterative loop, the initial and end values of the control variable determine the
number of iterations of the loop sub-block.

Nassi-Shneiderman diagram

Control variable

Loop sub-block

Structure block format

Name Operation Operands

[name] @THRU (reg2) (reg3)
(reg1), name [, name]

literal literal

[name] @DO
loop sub-block

[name] @BEND

(reg1) Register; specifies the initial value of the control variable

(reg2) or name or literal in the second operand
Register, name of a constant or literal which specifies the end value of the
control variable. The constants or literal must be aligned on a halfword for
this, and must be a halfword long.

(reg3) or name or literal in the third operand
Register, name of a constant or literal which specifies the increment. The
constant or literal must be aligned on a halfword here, and be a halfword
long.

252 U5223-J-Z125-3-7600

Structure blocks Iterative loop

Description

The first operand of @THRU (reg1) must be loaded with the initial value of the control
variable prior to the call.

Whether the sum of control variable and increment exceeds the end value is queried
prior to each execution of the sub-block. If this is the case, the structure block is quit.

After each execution of the loop sub-block, the increment is added to the initial value
or actual value of the control variable. The actual value of the control variable is always
in reg1.

The loop sub-block is repeated as often as specified by the integer part of the following
expression:

((end value-initial value)/increment)+1

If no increment is specified, register 0 may not be used for the initial value.

An @THRU macro with the initial value end value and increment 0 results in a
continuous loop.

Example

Name Operation Operands

.

.
LH R6,BEGL

LOOP @THRU (R6),ENDL,PLUS
@DO
.
.
@BEND
.
.

BEGL DC H’1’
ENDL DC H’10’
PLUS DC H’2’

In this example, the initial value of the control variable is 1, the end value 10, and the
increment 2. The loop sub-block is therefore executed 5 times.

U5223-J-Z125-3-7600 253

Conditions Structure blocks

9.2.4 Simple conditions

Format

Name Operation Operands

cond_sym
[condition code setting machine instruction]

cond_sym Predefined or user-own condition symbol (see below); specifies on what
criterion the condition is to be interrogated

condition code setting machine instruction
Instruction executed immediately before the interrogation. The instruction
which sets the interrogating condition code need not follow immediately
after the condition symbol. If it is outside the condition, the condition code
may not be altered by another instruction between the setting of the
condition code and the interrogation. Condition code interrogation is done
using @THEN, @DO and @BREA.

254 U5223-J-Z125-3-7600

Structure blocks Conditions

9.2.4.1 Predefined condition symbols

In structured programming there are a number of predefined condition symbols. In the
table below, they are classified according to the most frequent compare results.

Results of compare instructions

= EQ equal
< LT less than
> GT greater than
� NE not equal

GE greater or equal
LE less or equal

Characteristics of results of arithmetic and Boolean operations

=0 ZE zero
<0 LZ less than zero
>0 GZ greater than zero
�0 NZ not zero
overflow ON

Results of the TM instruction (test under mask)

binary ones only ON ones
binary zeros only ZE zeros
ones and zeros mixed MI mixed
zeros only or ones only ZO ZE or ON
at least one binary zero ZM ZE or MI
at least one binary one OM ON or MI

Table 9-1 Classification of predefined condition symbols according to the most frequent instruction

results

U5223-J-Z125-3-7600 255

Conditions Structure blocks

Examples

Name Operation Operands

@... LZ
LTR R1,R1

The condition is true if the contents of register R1 are negative (less than zero). The
instruction LTR R1,R1 has no effect other than setting the condition code.

@... GZ
S R1,ALPHA

The condition is true if the result of the subtraction register R1 minus ALPHA is greater
than zero, otherwise it is false. In addition to setting the condition code, the register
contents are also altered.

@... ON
TM 0(RPEGEL),MASKE

The condition is true if all the bits (selected with the MASKE mask) of the byte with the
address in register RPEGEL are binary ones.

@... EQ
CLC KANDIDAT,0(RLISTE)

The condition is true if the contents of KANDIDAT are equal to the value of the same
length, which is addressed via the register RLISTE .

256 U5223-J-Z125-3-7600

Structure blocks Conditions

9.2.4.2 User-own condition symbols

Over and above the predefined condition symbols, the user can assign individual
condition symbols to the available condition masks. These must always begin with an
’@’.

Allocation format

Name Operation Operands

@name EQU mask

The format of the mask in the operand entry of the EQU instruction can be seen in the
following table.

(Condition symbols in the same line have the same value).

Condition code Mask for the Corresponds
conditional branch to the pre-

defined con-
0 1 2 3 binary numeric dition symbol

set 1000 8 EQ ZE

set 0100 4 LT LZ MI

set 0010 2 GT GZ

set 0001 1 ON

not
set 0111 7 NE NZ OM

not
set 1011 11 GE ZO

not
set 1101 13 LE

not
set 1110 14 ZM

Table 9-2 Masks for allocation of user-own condition symbols

U5223-J-Z125-3-7600 257

Conditions Structure blocks

9.2.5 Compound conditions

A compound condition consists of two or more simple conditions, which must be linked
using the macros @TOR, @AND and @OR.

Format

Name Operation Operands

[name] @IF cond_sym
@WHEN
@WHIL

condition code setting machine instruction

[name] @TOR cond_sym
@AND
@OR

condition code setting machine instruction

cond_sym Predefined or user-own condition symbol (see section 9.2.4)

condition code setting machine instruction
Instruction that is executed immediately before the condition code
interrogation.

In a compound condition, each simple condition must contain the
condition code setting machine instruction.

In some cases, not all condition code setting instructions are executed. If,
for example, the first condition of three simple conditions in an AND
operation has been detected as not satisfied, the two remaining
conditions, including the instructions contained in them, are ignored. We
therefore recommend that, in compound conditions, only those
instructions whose only effect is to set the condition code be used.

In a compound condition,
@TOR implements "OR with priority",
@AND implements "AND", and
@OR implements "OR".

The linkage priority of macros which represent logical operators corresponds to the
sequence listed. @TOR , in the same way as @OR, implements the inclusive-OR
operation, but has higher linkage priority. In other words, by using @TOR instead of
@OR, the processing sequence is altered with regard to @AND.

258 U5223-J-Z125-3-7600

Structure blocks Conditions

Examples

Name Operation Operands

@CYCL
@WHEN EQ Condition 1
CR R1,R2
@AND EQ Condition 2
C R3,N
@TOR EQ Condition 3
C R4,M
@BREA
.
.

The loop is quit if one of the two cases is given:
Condition 1 and Condition 2 apply
Condition 1 and Condition 3 apply.

Name Operation Operands

@CYCL
@WHEN EQ Condition 1
CR R1,R2
@AND EQ Condition 2
C R3,N
@OR EQ Condition 3
C R4,M
@BREA
.
.

The second example is the same as the first, except for the use of @OR in place of
@TOR in condition 3.

The loop is quit here if one of these two cases apply:
Condition 1 and Condition 2 prevail
Condition 3 only prevails.

U5223-J-Z125-3-7600 259

Procedure principle

9.3 Procedure principle

The control flow between main programs and subroutines is regulated in the procedure
principle. A procedure in the sense of structured programming is a program unit with
one entry and one exit, which can be called using a name, if necessary with current
parameter values. For a procedure text - unlike structure blocks - the dynamic and
static end may be different.

A procedure is created from structure blocks strung together or nested. If a structure
block gets too complicated or too extensive, it can be relocated and described in a
separate procedure.

A procedure can be assembled into a separate object module. There may also be two
or more procedures in an object module, however.

One procedure may call another. During the call, the calling procedure can pass
parameters to the called procedure. On return to the calling procedure, the called
procedure can issue a return value. The calling procedure is continued with the
instruction statement which follows directly after the call.

Procedures cannot be statically nested inside each other.

Structured programming requires that programs be created from reentrant procedures.

A procedure is termed "reentrant" if several application programs run simultaneously
through a procedure code (which is present only once). If this is the case, one
program occupies the processor, while the others are in a wait state; their register
states are temporarily stored in a register save area.

Data areas which are part of the code of a reentrant procedure may thus contain only
constants; at runtime, data areas for variables must be requested and managed
separately.

In structured programming, a distinction is made between
data areas which are made ready when loading the program and which are retained
for the entire program run (static areas),
areas which are requested during the program run and released (controlled areas)
and
areas which are retained during a procedure run (automatic areas).

If the generated procedures are reentrant, statically prepared data areas may only be
used for storing constants.

A definition must be contained in the procedure for each data area accessed in a
procedure; the definition gives information regarding the storage class and type of
access.

260 U5223-J-Z125-3-7600

Procedure principle Procedure declaration and procedure end

9.3.1 Procedure declaration and procedure end

A procedure is statically delimited by the macros @ENTR (procedure start) and @END
(static procedure end). During the program run, a procedure is called with @PASS and
terminated with @EXIT (dynamic procedure end). The following figure shows the
dynamic linkage of several procedures via the @PASS call and the return to the calling
procedure with @EXIT.

C

Main procedure

Low-level procedure

Basic procedure

@ENTR TYP=B

@EXIT

@END

D

@ENTR TYP=M

@PASS NAME=B/

@EXIT

@END

@ENTR TYP=I/E

@PASS NAME=C

@PASS EXTNAME=D

@EXIT

@END

Internal or external
procedure

@ENTR TYP=L

@EXIT

@END

B

EXTNAME=B

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

C

Fig. 9-1 Dynamic procedure linkag

U5223-J-Z125-3-7600 261

Procedure declaration and procedure end Procedure principle

Procedure declaration

The @ENTR macro represents the heading for all types of procedure. Here, the type of
procedure, as well as its name, must be specified.

Over and above the main procedure, called from the operating system using the
/START-PROGRAM or /LOAD-PROGRAM (Type M), external and internal procedures
are differentiated. A procedure is termed "external" if it can be called from any module,
and "internal" if it can be called within a module only.

External procedures may be of types E, B, D; internal procedures may be of types I, L,
and D.

The @ENTR call also gives information on whether the procedure accepts parameters
from another procedure, and/or itself passes parameters to another procedure. The
number of parameters and form of passing is also indicated, as well as the data areas
which must be made ready for this (see sections 9.5 and 10.2, @ENTR).

Procedure end

Here, the static and dynamic procedure end must be differentiated.

The static procedure end is implemented by the @END macro. This macro releases all
base and addressing registers which were assigned for this procedure by ASSEMBH.

The @EXIT macro identifies the dynamic procedure end. In a main procedure, the
program is terminated using @EXIT.

In a called procedure, control is returned to the calling procedure, which is continued
with the instruction statement that follows the procedure call. A return value may be
transferred to the calling procedure.

The return value is calculated in the called procedure. Its address is is either specified,
or the return value transferred directly in the form of a self-defining term in the @EXIT
macro (see section 10.2, @EXIT). In the calling procedure, this value may then be
further processed or evaluated.

262 U5223-J-Z125-3-7600

Procedure principle Procedure types

9.3.2 Procedure types

9.3.2.1 Type M, E and I procedures

Type M, E and I procedures are connected to memory management via the runtime
system. When they are opened, the register is automatically saved, and reloaded when
they are terminated. Memory areas for saving registers and for data required at runtime
are readied dynamically.

In addition to class S and B (static and based) data areas, class A and C (automatic
and controlled) data areas may also be requested (see section 9.4, "Data principle").

The base address register allocated for all three types is register 10. It may also be
accessed using R@BASE.

Type M procedures

A type M procedure is the main procedure in a program. Program execution begins
and ends in it. Via the @ENTR macro, a CSECT instruction is generated with the name
of the program. Even when procedures from several modules are to be combined into
one program, there may be only one type M procedure.

A type M procedure may not be called by another. It may therefore not accept
parameters from another procedure.

Passing of parameters from the main procedure to other procedures may be static or
dynamic, via the STANDARD or OPTIMAL interface (see section 9.5, "Procedure linkage
and parameter passing").

Type E and I procedures

A type E procedure may be called from any module (external procedure)

A type I procedure can only be called within the module in which it lies (internal
procedure).

Procedures of both types can also call internal or external procedures. They may pass
parameters to the called procedure and also accept parameters themselves from a
calling procedure. Passing of parameters is both static and dynamic, via the
STANDARD or OPTIMAL interface; acceptance of parameters can only be done
statically (see section 9.5, "Procedure linkage and parameter passing").

U5223-J-Z125-3-7600 263

Procedure types Procedure principle

On return to the calling procedure, the registers allocated by ASSEMBH are reloaded
with the original values. This facility can be extended or limited by means of the
operand RETURNS= in the @ENTR macro (see @ENTR, format 2).

In E procedures, one CSECT instruction with the procedure name is generated as
standard by the @ENTR macro. Also one ENTRY instruction only may be generated,
parameter-controlled, instead of the CSECT instruction.

In I procedures, no CSECT instruction is generated. In other words, they belong to the
preceding control section. The user must take care that an I procedure is not in the
area of a dummy section (DSECT instruction).

Example

Name Operation Operands

MAIN @ENTR TYP=M
@DATA ...,DSECT=DUMMY,...
.
.
@EXIT
@END

DUMMY DSECT
.
.

LDUMMY EQU *-DUMMY
MAIN CSECT
INTERN @ENTR TYP=I

.

.

264 U5223-J-Z125-3-7600

Procedure principle Procedure types

9.3.2.2 Type B, L and D procedures

Type B, L and D procedures are not connected by the runtime system to memory
management. No memory areas are reserved for register saving or dynamic parameter
passing. On opening of these procedures, registers are not saved, nor are they
reloaded on termination of the procedures.

Types B, L and D are provided for procedures which are on a low level in the call
hierarchy, and accordingly execute basic functions.

In these procedures, the user himself must take care of memory management. No
memory requests (class A and C data areas, see section 9.4) may be made.

Type B and L procedures

A type B (basic procedure) can be called from any module.

A type L procedure (low-level procedure) can only be called within the module in which
it stands.

Register 15 is assigned as the standard base address register for both types. The user
can assign another register as the base address register in the BASE operand of the
@ENTR macro. This register must be loaded explicitly at the start of the procedure with
the correct value (e.g. with the machine instruction "LR reg,R15").

Loading of the base address register after each call of another subprocedure is
controlled via the operand LOADSB= in the @ENTR macro. LOADSB=YES only needs
to be specified if the procedure has an alternative base register and calls another
procedure.

Type B and L procedures may in turn call other external or internal procedures. Only
static passing of parameters to the called procedure is possible.

In type B procedures, a CSECT instruction with the procedure name is generated as
standard by the @ENTR macro. An ENTRY instruction may be generated, parameter-
controlled, instead of the CSECT instruction.

In type L procedures, no CSECT instruction is generated. In other words, they belong
to the preceding control section. The user must ensure that an L procedure does not
lie in the area of a dummy section (DSECT instruction).

U5223-J-Z125-3-7600 265

Procedure types Procedure principle

Type D procedures

Type D procedures (dummy procedures) are meant for simple operations which can be
done with little effort. For this type, the loading of the base register must also be
carried out explicitly by the user. D procedures may be both internal and external.

The following are not allowed in a type D procedure:
calling of other sub-procedures using @PASS,
return to the calling procedure with @EXIT,
memory request and memory release.

If the first procedure is a type D module, no procedure name may be specified. The
procedure receives the name of the START or CSECT instruction.

266 U5223-J-Z125-3-7600

Data principle

9.4 Data principle

The data principle of ASSEMBH assists the user in making rational use of memory, and
relieves him of the task of memory management required for the creation of reentrant
procedures. The data principle regulates the scope of definition of all data and ensures
transparency. It requires that each procedure provide information on all data used. In a
procedure, what data is used, where the data is, and how access is organized must be
specified.

The following holds true for reentrant procedures:
data areas which are part of a procedure may contain only constants.
data areas for variables must be requested at runtime.

Data areas which are reserved on loading of the program and are available during the
entire program run are accordingly differentiated from areas which are requested and
released during the program run.

With dynamically requested areas, a distinction is made between those which are
automatically released on quitting the procedure in which the request was made, and
those which are controlled and released via an explicit instruction statement.

The memory areas of a program can be subdivided into the following four classes, in
accordance with these distinctions:

static,
automatic,
controlled and
based.

Allocation of a class to an area is defined by the user in the @DATA macro. The
@DATA macro is used to implement access for static and based areas, to request
storage space and to implement access for automatic and controlled areas.

Areas of the static class are assigned by "@DATA CLASS=S" (see section 10.2, format
2 of @DATA). During loading of the program, they are allocated storage space which is
retained during the entire program run. The @DATA macro loads a base address
register for that purpose.

For areas of the automatic class, memory is reserved with "@DATA CLASS=A" (see
section 10.2, format 1 of @DATA) or via a LOCAL area request (section 9.4.2). The
memory area is reserved within the STACK area of the procedure. It is automatically
released when the procedure in which it was requested is quit using @EXIT.

U5223-J-Z125-3-7600 267

Data principle

For areas of the controlled class, "@DATA CLASS=C" (see section 10.2, format 2 of
@DATA) is used to reserve an area in the HEAP memory. It is then only released if the
user expressly requests it via the @FREE macro. This may also be done in another
procedure.

If an area which was assigned one of the classes static, automatic or controlled in a
procedure is accessed in a lower-level procedure or one which is to be executed at a
later stage, it must be identified there by "@DATA CLASS=B" (see section 10.2, format
3 of @DATA) and a register specified which contains the address of the area. This
results in it being assigned the class attribute "based" for this procedure.

Registers 0, 1, 13, 14, 15 and the procedure base register may not be used as base
address register for a data area defined using @DATA.

268 U5223-J-Z125-3-7600

Data principle Static areas

9.4.1 Data areas of the static class

Data areas of the static class are meant for constant data. Access to static areas is
implemented with "@DATA CLASS=S". These areas are defined statically in the
program, with the result that on loading the program, storage space - which is retained
until the end of the program - has already been reserved. Data in a static area is
available throughout the entire program run.

Storage space for static areas must be reserved either
internally after the static end of the procedure (after @END and before @ENTR, or
the END instruction) or
externally in a separate data module.

The register specified in the BASE operand of @DATA is assigned as the base address
register.

Internal static areas

The INIT operand of @DATA specifies the symbolic address of the data area.

Example

Name Operation Operands

EX1 @ENTR TYP=E
.
.
@DATA CLASS=S,BASE=R5,INIT=CONST
.
.
@EXIT
@END

CONST DS 0CL180
C1 DC C’ABC’

.

.

Register 5 is allocated as the base address register for the static area in the EX1
procedure. This area begins at the symbolic address CONST.

External static areas

The EXTINIT operand of @DATA specifies the symbolic address of a data area in a
separate data module. In the accessing procedure, the structure of this area must be
described using a dummy section. The operand DSECT specifies the name of this
dummy section.

U5223-J-Z125-3-7600 269

Static areas Data principle

Example

Name Operation Operands

* Accessing procedure
EX2 @ENTR TYP=I

.

.
@DATA CLASS=S,BASE=R5,EXTINIT=EXDATEN,DSECT=EX2DUMMY
.
.
@EXIT
@END

EX2DUMMY DSECT
E1 DS CL5

.

.
EEND DS CL3

* Data module
EXDATEN CSECT

@ENTR TYP=D
D DS 0CL180
D1 DC C’HALLO’

.

.
DEND DC C’END’

@END

Register 5 is allocated as the base address register for the static area of the EX2
procedure. The data area starts at the address EXDATEN. In the EX2 procedure, the
dummy section EX2DUMMY describes the structure of the accessed data area.

270 U5223-J-Z125-3-7600

Data principle Automatic areas

9.4.2 Data areas of the automatic class

Data areas of the automatic class contain modifiable data. Storage space is requested
by a procedure at runtime, and reserved in the procedure STACK. This procedure
STACK is created on activation of each procedure and is automatically released on
quitting the procedure with @EXIT (procedure-linked life).

If the procedure is called recursively, or executed by various users "simultaneously"
(reentrant), several data areas exist side-by-side.

Data areas of the automatic class may only be requested in type M, E and I
procedures.

There are two ways of requesting an automatic area:
the data area is addressed via base register 13, along with the register save area of
the procedure (LOCAL area request).
the data area is addressed via a separate register, specified explicitly by the user
(CLASS A area request).

LOCAL area request

When a procedure is opened, the procedure STACK, which contains the register save
area (SAVAREA) and the LOCAL area, is automatically made available. The base
address register for the procedure STACK and thus also for the SAVAREA and for the
LOCAL area is register 13. The LOCAL area can be accessed after execution of the
procedure heading.

The area is requested via the LOCAL operand of @ENTR (see section 10.2, formats 1
and 2 of @ENTR). The newly requested area cannot be initialized. Data in this memory
area cannot be accessed from another procedure.

The structure of this memory area is described by a dummy section, which must be
defined immediately after the static end of the procedure concerned. The dummy
section must be defined with the @PAR macro (see section 10.2, format 3 of @PAR).
The name of the dummy section must correspond to the specification in the LOCAL
operand of @ENTR.

U5223-J-Z125-3-7600 271

Automatic areas Data principle

Example

Name Operation Operands

EX1 @ENTR TYP=I,LOCAL=PRIVATE
.
.
@EXIT
@END

PRIVATE @PAR D=YES (01)
P1 DS CL5

.

.
PRIVATE @PAR LEND=YES (02)

(01) Start of the dummy section
(02) End of the dummy section

272 U5223-J-Z125-3-7600

Data principle Automatic areas

@DATA CLASS=A request

For a data area requested with "@DATA CLASS=A", the register specified in the BASE
operand of @DATA is allocated as the base address register.

Storage space is requested according to the length specified either directly in the
LENGTH= operand or calculated using an assigned dummy section. If LENGTH= is
specified, the symbolic addressing option ceases to be applicable.

The allocated dummy section describes the structure of the requested memory area. Its
definition must always begin with a DSECT instruction. The dummy section must be
terminated with the following assembler instruction:

Ldsect_name EQU *-dsect_name

Example

Name Operation Operands

MAIN @ENTR TYP=M
@DATA CLASS=A,BASE=R7,DSECT=DUMMY
.
.
@EXIT
@END

DUMMY DSECT
D DS 0CL20
D1 DS CL10
D2 DS CL10
LDUMMY EQU *-DUMMY

Automatic areas requested with @DATA CLASS=A can be initialized. In other words,
data already defined is copied into the memory area requested. This data may be in
the same module as the procedure concerned, where it can be accessed with the
operand INIT=. If the data to be copied is in another module, the name of the data
area must be specified with EXTINIT=.

Example

Name Operation Operands

MAIN @ENTR TYP=M
@DATA CLASS=A,BASE=R7,LENGTH=(R8),INIT=IDAT
.
.
@EXIT

IDAT DC C’ABC’
DC C’DEF’
.
.
@END

U5223-J-Z125-3-7600 273

Controlled areas Data principle

9.4.3 Data areas of the controlled class

Data areas of the controlled class contain modifiable data. Storage space is requested
by a procedure at runtime and made available in the HEAP memory. It lies outside the
module and can only be released explicitly by the user with @FREE (user-controlled
life).

If the procedure is called recursively, or executed by various users "simultaneously"
(reentrant), several data areas exist side-by-side for each execution of the @DATA
macro.

Data areas of the controlled class can only be requested in type M, E and I
procedures.

Data areas of the controlled class are requested with "@DATA CLASS=C", and
addressed via the base address register which is explicitly specified in the BASE
operand.

Storage space is requested according to the length specified either directly in the
LENGTH= operand or calculated using an assigned dummy section. If LENGTH= is
specified, the symbolic addressing option ceases to be applicable.

The allocated dummy section describes the structure of the requested memory area. Its
definition must begin with a DSECT instruction. The dummy section must be terminated
with the following assembler instruction:

Ldsect_name EQU *-dsect_name

Controlled areas requested with @DATA CLASS=C can be initialized. In other words,
data already defined is copied into the requested memory area. This data may be in
the same module as the procedure concerned, and is then accessed using the INIT=
operand. If the data to be copied is in another module, the name of the data area must
be specified with EXTINIT=.

The user must release the requested memory area with @FREE (see section 10.2). This
can be done before the end of the procedure in order to save space and registers, or
in a later procedure, if, e.g., the data is to be further processed.

274 U5223-J-Z125-3-7600

Data principle Based areas

Example

Name Operation Operands

MAIN @ENTR TYP=M
@DATA CLASS=C,BASE=R7,DSECT=DUMMY
.
.
@FREE BASE=R7
@EXIT
@END

DUMMY DSECT
D DS 0CL20
D1 DS CL10
D2 DS CL10
LDUMMY EQU *-DUMMY

9.4.4 Data areas of the based class

The based class is used to access a data area whose storage space is assigned in
another dynamically higher-level or earlier procedure (@DATA CLASS=S, CLASS=A or
CLASS=C).

A sub-procedure accesses an existing data area using "@DATA CLASS=B" (see 10.2,
format 3 of @DATA). The BASE operand of this macro instruction specifies the base
address register which has been allocated for this data area in a higher-level procedure.
The register must be given the start address of the area in the higher-level procedure.
This is done using @DATA CLASS=A, C or S or, for example, during parameter
passing.

To enable symbolic addressing of the accessed data area, the DSECT operand must be
specified in the @DATA macro. This either contains:

the symbolic address of the accessed data area, or
the name of a dummy section which is to describe the structure of the area. The
dummy section must be closed with the following assembler instruction:

Ldsect_name EQU *-dsect_name

U5223-J-Z125-3-7600 275

Based areas Data principle

Example

Name Operation Operands

EX1 CSECT
DUMMY DSECT
.. DS ..

. (01)

.
LDUMMY EQU *-DUMMY

* Higher-level procedure
EX1 @ENTR TYP=M

@DATA CLASS=S,BASE=R7,INIT=GLOB (02)
.
.
@PASS NAME=EX2 (03)
.
.
@EXIT
@END

GLOB DS 0C
.. . ..

.

* Sub-procedure
EX2 @ENTR TYP=I

@DATA CLASS=B,BASE=R7,DSECT=DUMMY (04)
.
.

(01) Definition of the dummy section
(02) Creation of a static area with register 7 as the base address register; the area is

initialized with the data in GLOB.
(03) Calling the sub-procedure
(04) Access to the data area initialized in EX1 and which is addressed via R7. The

structure of the memory area is described by the dummy section DUMMY for the
EX2 procedure

276 U5223-J-Z125-3-7600

Procedure linkage and parameter passing

9.5 Procedure linkage and parameter passing

Procedures are linked using @PASS (see section 10.2). This macro calls a
subprocedure from a dynamically higher ranked procedure. The called procedure
returns to the calling procedure with @EXIT.

When type M, E and I procedures are opened, the procedure STACK, which contains
chaining information, the register (SAVAREA) and any LOCAL area, is made available
automatically. The procedure STACK is addressed via register 13. The calling procedure
transfers the address of the separate procedure STACK into register 13, the called
procedure stores the registers in the procedure STACK of the calling procedure and
loads them again before return.

Register 13 is not saved at register saving.

When type B, L and D procedures are called, no procedure STACK is made available.
The user himself must provide register saving for these procedures. In particular, the
procedure return register 14 must be saved for type B or L procedures.

Parameter passing

When calling another procedure, a procedure can pass parameters to the called
procedure. A parameter is always one word long. It may contain an address or a value.
Either the parameter itself or its address is transferred to the called procedure. A
parameter list, containing the address or value for each value, is created for parameter
passing.

Various forms of parameter passing are available. These take into account

whether the parameter values to be passed during a call can be defined during
programming (static passing) or whether they are only known at runtime (dynamic
passing),

whether, in dynamic passing, parameter addresses are combined into one list,
whose address is transferred into register 1 (STANDARD interface) or whether up to
four parameter addresses or values are transferred into registers 1 - 4 (OPTIMAL
interface).

U5223-J-Z125-3-7600 277

Procedure linkage and parameter passing

In static passing, the parameter list created for @PASS consists of constants generated
at assembly time and retained during the entire life of the program. In dynamic passing,
parameter lists are treated in the same way as modifiable data. Storage space is
reserved in the procedure STACK of the calling procedure, and the parameter list is
stored there when the procedure is called (@PASS).

Whether passing is to be in STANDARD or OPTIMAL form is specified

in the calling procedure, in the PASS operand of the procedure call (@PASS),
in the called procedure, in the PASS operand of the procedure heading (@ENTR).

Both specifications should correspond.

In the program "DEMOPARA" (see Appendix 11.5), the various options for parameter
passing and acceptance are illustrated in an example.

The following table shows the possible combinations of the forms of parameter passing
with those of parameter acceptance.

Parameter acceptance:

STANDARD OPTIMAL in formal in formal par.
interface interface parameter in LOCAL

Parameter passing: (9.5.3.1) (9.5.3.2) (9.5.3.3) (9.5.3.4)

STANDARD interface,
static X - X X
(9.5.1.1)

STANDARD interface,
dynamic X - X X
(9.5.1.2)

OPTIMAL interface,
dynamic - X X X
(9.5.2)

Table 9-3 Combinations of parameter passing and parameter acceptance

278 U5223-J-Z125-3-7600

Procedure linkage Parameter passing

9.5.1 Parameter passing via the STANDARD interface

In parameter passing via the STANDARD interface, parameters are combined into a
parameter list. The address of the parameter list is transferred into register 1.

9.5.1.1 Static parameter passing

In static parameter passing, the parameter list is generated with constant values at
assembly time. It is retained until the end of the program. The parameter list is stored
using the @PAR macro (format 1) in the calling procedure, i.e. it belongs to the
corresponding module.

This form of parameter passing is allowed in type M, E, I, L and B procedures.

In the calling procedure

The PAR operand of @PASS (format 2) specifies the name of the parameter list to
be transferred. Register 1 is loaded with this address.

The parameter list must be generated with @PAR (format 1) between @EXIT and
@END. The name of @PAR specifies the name of the parameter list.

The PLIST operand of @PAR (format 1) issues names to the address constants in
the parameter list. If the PLIST operand is omitted, nameless constants are created.

The VLIST operand of @PAR (format 1) contains the actual parameters. These are
either the name of a field whose address is to be transferred, or a self-defining term.

If there is no actual parameter, an extra comma must be entered in the VLIST
operand.

In the called procedure

 The following options are available for parameter acceptance:

parameter reference via the parameter address list (STANDARD interface, see
section 9.5.3.1)
formal parameter acceptance, where fields in the called procedure correspond to
formal parameters (see section 9.5.3.3) and
formal parameter acceptance, where fields in the LOCAL area of the called
procedure correspond to formal parameters (see section 9.5.3.4).

U5223-J-Z125-3-7600 279

Parameter passing Procedure linkage

Example

Name Operation Operands

* Calling procedure
PRO1 @ENTR TYP=M

@DATA CLASS=S,BASE=R6,INIT=PRO1DAT
.
.
@PASS NAME=PRO2,PAR=PARLIST
.
.
@EXIT

PARLIST @PAR PLIST=(PAR1,PAR2,PAR3),VLIST=(FIELD,27,SET)
@END

PRO1DAT DS 0H
FIELD DC C’ABC’
SET DC C’DEF’

.

.

Procedure PRO1 calls PRO2 and passes three parameters.
The address of FIELD, the value 27, and the address of SET are passed.

* Called procedure
PRO2 @ENTR TYP=I,LOCAL=IN,PLIST=(IN1,IN2,IN3)

@DATA CLASS=S,BASE=R7,INIT=PRO2DAT
.
.
L R8,IN3
MVC FIELDB,0(R8)
.
.
@EXIT
@END

IN @PAR D=YES,LEND=YES,PLIST=(IN1,IN2,IN3)
.
.

PRO2DAT DS 0H
FIELDA DS CL3
FIELDB DS CL3

.

.

PRO2 accepts three parameters into its LOCAL area and transfers the contents of SET
to FIELDB.

280 U5223-J-Z125-3-7600

Procedure linkage Parameter passing

9.5.1.2 Dynamic parameter passing

In dynamic parameter passing, the parameter list is created at runtime and stored in
the save area of the calling procedure. On return from this procedure, the memory area
is released. The parameter list is formatted via the PLIST operand of @PASS (format 2)
in the calling procedure.

Dynamic parameter passing is only possible in type M, E and I procedures.

In the calling procedure

The MAXPRM operand of @ENTR (format 1 and 2) specifies the maximum number
of parameters the procedure may pass. Storage space is reserved accordingly in
the LOCAL area of the calling procedure for the maximum size of the parameter list.

The PLIST operand of @PASS (format 3) specifies the names of the fields or
registers whose address is to be transferred to the calling procedure (actual
parameters).

The PASS operand of @PASS (format 3) specifies that parameter passing is to be
done via the STANDARD interface.

In the called procedure

The following options are available for acceptance of parameters:

parameter reference via the parameter list address (STANDARD interface, see
section 9.5.3.1),
formal parameter acceptance, where fields in the called procedure correspond to
formal parameters (see section 9.5.3.3), and
formal parameter acceptance, where fields in the LOCAL area of the called
procedure correspond to formal parameters (see section 9.5.3.4).

U5223-J-Z125-3-7600 281

Parameter passing Procedure linkage

Example

Name Operation Operands

* Calling procedure
PRO1 @ENTR TYP=M,MAXPRM=2

@DATA CLASS=A,BASE=R6,DSECT=DUMMY,INIT=PRO1DAT
.
.
@PASS NAME=PRO2,PLIST=(D1,D2),PASS=STA
.
.
@EXIT

PRO1DAT DS 0H
FIELD DC C’ABC’
SET DC C’DEF’

@END
DUMMY DSECT
D1 DS CL3
D2 DS CL3

.

.
PRO1 CSECT

Procedure PRO1 calls PRO2 and passes two parameters. The fields whose addresses
are to be transferred are defined in DUMMY, and initialized with the values from
PRO1DAT.

* Called procedure
PRO2 @ENTR TYP=I,LOCAL=IN,PLIST=(IN1,IN2),PASS=STA

@DATA CLASS=S,BASE=R7,INIT=PRO2DAT
.
.
L R8,IN2
MVC FIELDB,0(R8)
.
.
@EXIT
@END

IN @PAR D=YES,LEND=YES,PLIST=(IN1,IN2)
.
.

PRO2DAT DS 0H
FIELDA DS CL3
FIELDB DS CL3

.

.

PRO2 accepts two parameters into its LOCAL area and passes the contents of D2 to
FIELDB.

282 U5223-J-Z125-3-7600

Procedure linkage Parameter passing

9.5.2 Parameter passing via the OPTIMAL interface

Parameters can only be passed dynamically via the OPTIMAL interface. Here, the
parameters are passed directly to registers 1 to 4. The addresses of the fields or values
which are to be passed to the called procedure are stored in these registers.

If there are more than 4 parameters, the first three are passed to registers 2 to 4. A
parameter list is created for the remaining parameters, and its address is loaded into
register 1. In other words, three parameters are passed via the OPTIMAL interface, and
the others via the STANDARD interface.

Dynamic parameter passing is only possible in type M, E and I procedures.

For linkage of programs in other programming languages, this form of parameter
passing is not permitted.

In the calling procedure

The PLIST operand of @PASS (format 3) specifies the actual parameters, i.e. the
addresses of the fields or or registers which are to be passed to the called
procedure.

The PASS operand of @PASS (format 3) specifies that passing is to be done via the
OPTIMAL interface.

In the called procedure

 The following options are available for parameter acceptance:

direct access to parameters via registers 1 to 4 (OPTIMAL interface, see 9.5.3.2),
formal parameter acceptance, where fields in the called procedure correspond to
formal parameters (see section 9.5.3.3) and
formal parameter acceptance, where fields in the LOCAL area of the called
procedure correspond to formal parameters (see section 9.5.3.4).

U5223-J-Z125-3-7600 283

Parameter passing Procedure linkage

Example

Name Operation Operands

* Calling procedure
PRO1 @ENTR TYP=M

@DATA CLASS=A,BASE=R6,DSECT=DUMMY,INIT=PRO1DAT
.
.
@PASS NAME=PRO2,PLIST=(D1,D2),PASS=OPT
.
.
@EXIT

PRO1DAT DS 0H
FIELD DC C’ABC’
SET DC C’DEF’

@END
DUMMY DSECT
D1 DS CL3
D2 DS CL3

.

.
PRO1 CSECT

Procedure PRO1 calls PRO2 and passes two parameters. The fields whose addresses
are to be passed are defined in DUMMY, and initialized with the values from PRO1DAT.

* Called procedure
PRO2 @ENTR TYP=I,LOCAL=IN,PLIST=(IN1,IN2),PASS=OPT

@DATA CLASS=S,BASE=R7,INIT=PRO2DAT
.
.
L R8,IN2
MVC FIELDB,0(R8)
.
.
@EXIT
@END

IN @PAR D=YES,LEND=YES,PLIST=(IN1,IN2)
.
.

PRO2DAT DS 0H
FIELDA DS CL3
FIELDB DS CL3

.

.

PRO2 accepts two parameters in its LOCAL area and moves the contents of D2 to
FIELDB.

284 U5223-J-Z125-3-7600

Procedure linkage Parameter acceptance

9.5.3 Parameter acceptance

Depending on the form of transfer and procedure type, there are various options for the
acceptance of parameters.

9.5.3.1 Parameter acceptance via the STANDARD interface

In STANDARD acceptance, register 1 always contains the parameter list address. The
called procedure can utilize this STANDARD interface and reference parameters via the
parameter address.

This format is allowed for all procedure types.

Example

Name Operation Operands

* Calling procedure
PRO1 @ENTR TYP=M

@DATA CLASS=S,BASE=R6,INIT=PRO1DAT
.
.
@PASS NAME=PRO2,PAR=PARLIST
.
.
@EXIT

PARLIST @PAR PLIST=(PAR1,PAR2,PAR3),VLIST=(FIELD,27,SET)
@END

PRO1DAT DS 0H
FIELD DC C’ABC’
SET DC C’DEF’

.

.

U5223-J-Z125-3-7600 285

Parameter acceptance Procedure linkage

Procedure PRO1 calls PRO2 and passes three parameters (static passing).
The address of FIELD, the value 27, and the address of SET are passed.

Name Operation Operands

* Called procedure
PRO2 @ENTR TYP=I

@DATA CLASS=S,BASE=R7,INIT=PRO2DAT
.
.
L R8,0(0,R1)
MVC FIELDA,0(R8)
L R8,8(0,R1)
MVC FIELDB,0(R8)
.
.
@EXIT
@END
.
.

PRO2DAT DS 0H
FIELDA DS CL3
FIELDB DS CL3

.

.

PRO2 accepts the parameters and moves the contents of FIELD to FIELDA, and the
contents of SET to FIELDB.

286 U5223-J-Z125-3-7600

Procedure linkage Parameter acceptance

9.5.3.2 Parameter acceptance via the OPTIMAL interface

In OPTIMAL acceptance, the parameters are passed into registers 1 to 4. The called
procedure can immediately utilize this OPTIMAL interface and access the parameters
via register 1 to 4. If there are more than four parameters, the called procedure must
also take care of the corresponding management.

In the called procedure, the @ENTR macro (format 2) of the PASS operand must
specify that passing is effected via the OPTIMAL interface.

Example

Name Operation Operands

* Calling procedure
PRO1 @ENTR TYP=M

@DATA CLASS=A,BASE=R6,DSECT=DUMMY,INIT=PRO1DAT
.
.
@PASS NAME=PRO2,PLIST=(D1,D2),PASS=OPT
.
.
@EXIT

PRO1DAT DS 0H
FIELD DC C’ABC’
SET DC C’DEF’

@END
DUMMY DSECT
D1 DS CL3
D2 DS CL3

.

.
PRO1 CSECT

U5223-J-Z125-3-7600 287

Parameter acceptance Procedure linkage

Procedure PRO1 calls PRO2 and passes two parameters. The fields whose addresses
are to be transferred are defined in DUMMY, and are initialized with the values from
PRO1DAT.

Name Operation Operands

* Called procedure
PRO2 @ENTR TYP=I,PASS=OPT

@DATA CLASS=S,BASE=R7,INIT=PRO2DAT
.
.
MVC FIELDB,0(R2)
.
.
@EXIT
@END
.
.

PRO2DAT DS 0H
FIELDA DS CL3
FIELDB DS CL3

.

.

PRO2 accepts two parameters and moves the contents of D2 to FIELDB.

288 U5223-J-Z125-3-7600

Procedure linkage Parameter acceptance

9.5.3.3 Formal parameter acceptance

In this case, those fields defined in the called procedure correspond to the formal
parameters.

This form of parameter acceptance is not practical for type B or L procedures. They
should also not be used for READ-ONLY procedures and in recursive calls.

In the called procedure

The PLIST operand of @ENTR (format 2) must contain the list of formal parameters.
The parameter list entries are accepted into these fields.

The PASS operand of @ENTR (format 2) must specify whether parameters are
accepted via the OPTIMAL or the STANDARD interface.

The data fields specified in the PLIST operand must be defined in the procedure by
the user. This is only possible with the aid of @DATA CLASS=S.

Example

Name Operation Operands

* Calling procedure
PRO1 @ENTR TYP=M

@DATA CLASS=S,BASE=R6,INIT=PRO1DAT
.
.
@PASS NAME=PRO2,PAR=PARLIST
.
.
@EXIT

PARLIST @PAR PLIST=(PAR1,PAR2,PAR3),VLIST=(FIELD,27,SET)
@END

PRO1DAT DS 0H
FIELD DC C’ABC’
SET DC C’DEF’

.

.

U5223-J-Z125-3-7600 289

Parameter acceptance Procedure linkage

The procedure PRO1 calls PRO2 and passes three parameters (static passing).
The address of FIELD, the value 27 and the address of SET are passed.

Name Operation Operands

* Called procedure
PRO2 @ENTR TYP=I,PLIST=(IN1,IN2,IN3)

@DATA CLASS=S,BASE=R7,INIT=PRO2DAT
.
.
L R8,IN3
MVC FIELDB,0(R8)
.
.
@EXIT
@END
.
.

PRO2DAT DS 0H
FIELDA DS CL3
FIELDB DS CL3
IN1 DS F
IN2 DS F
IN3 DS F

PRO2 accepts three parameters and moves the contents of SET to FIELDB.

290 U5223-J-Z125-3-7600

Procedure linkage Parameter acceptance

9.5.3.4 Formal parameter acceptance in the LOCAL area.

Here, fields which are in the LOCAL area of procedure STACKS (see 9.4.2) of the called
procedure correspond to formal parameters. The structure of this area describes a
dummy section which must match the structure of the parameter list. In the called
procedure, a formal parameter defined in the dummy section, or the corresponding
register, therefore designates the address of the constants from the calling procedure.

This form of parameter acceptance is allowed only for type E or I procedures. It is
mandatory for READ-ONLY procedures, and in recursive procedure calls.

In the called procedure

A LOCAL area in the procedure STACK in which parameters are to be accepted
must be requested via the LOCAL operand of @ENTR (format 2).

The PLIST operands of @ENTR (format 2) must contain the list of formal
parameters. Entries from the parameter list must be accepted in these fields or
registers.

The PASS operand of @ENTR (format 2) must specify whether parameters are to be
passed via the OPTIMAL or the STANDARD interface.

A dummy section must be generated immediately after the procedure using @PAR
(format 2). The name of this dummy section must match the name in the LOCAL
operand of @ENTR.

The PLIST operand of @PAR specifies the names of the formal parameter in the
dummy section, which describe the structure of the local area. The PLIST operand
of @PAR must match the PLIST operands of @ENTR.

Example see section 9.5.1, "Static parameter passing", or 9.5.2, "Dynamic
parameter passing".

U5223-J-Z125-3-7600 291

ILCS interface

9.6 ILCS interface for structured programming

With Version 1.1A of ASSEMBH the macros for structured programming (@-macros,
see chapter 10) and the assembler runtime system (ASSEMBH-RTS) have been
extended so as to allow the user additionally to write programs with ILCS capability in
assembler.
The following facilities are available in the ILCS environment:

The following ILCS functions are supported by means of new operands in the @ENTR
macro for the main procedure:

enable user-own routines for reserving and releasing memory space for stack
and heap

enable user-own termination routines

specify minimum stack extent size

In addition to these adaptations to the ILCS standard, new structure macros offer the
user access to the following procedure-independent functions of ILCS:

event handling

contingency handling

interrupt handling (STXITs)

The new macros are intended to be used in ILCS procedures instead of the necessary
system macro calls for the above types of handling.

The following functions are supported by additional new macros:

program mask handling

setting of monitoring job variables

language initialization in the case of dynamically loaded modules

The new @ macros generate the call for corresponding entries in the standard event
handler (SEH), the standard contingency handler (SCH), and the standard STXIT
handler (SSH) of the ILCS interface.

If the user does not wish to write an ILCS procedure, the macros can be called in the
same way as before. This means that existing sources that are not to be converted to
ILCS do not have to be modified or re-assembled.

292 U5223-J-Z125-3-7600

ILCS interface

9.6.1 Procedure linkage

The extensions to the @ENTR, @PASS, @PAR and @EXIT macros enable the
procedure interface to be converted to ILCS conventions.

This affects the procedure prolog, the procedure epilog with returned function value
and return code, and the procedure call with parameter passing.

Register conventions (ILCS interface and non-ILCS interface)

The conventions of the ILCS and non-ILCS interfaces are compared in the following
table in respect of

register usage at procedure call with/without parameters
register restoring at procedure end with/without function value and return code
long jump over several procedure levels at procedure end.

Register usage at procedure call

ILCS Non-ILCS

R15 contains the address as for ILCS
of the called procedure

R14 contains the return as for ILCS
address

R1 contains the address of as for ILCS
the parameter list for
STANDARD parameter passing;
the left bit is set in the
final word of the list

R0 contains the number of Number of parameters is not
actual parameters passed contained in R0; the left bit

is set in the final word of the list

OPTIMAL parameter passing OPTIMAL parameter passing permitted
is not permitted in addition to STANDARD

"Call by reference" parameter Both "call by value" and
passing, i.e. R1 contains "call by reference" parameter
the address of a parameter passing are possible.
address list

U5223-J-Z125-3-7600 293

ILCS interface

Register restoring at procedure end

ILCS Non-ILCS

R2 through R14 are restored No specification in @EXIT/@ENTR:
R2 through R14 restored
R0, R1: function value
R15: return code

RETURNS=YES (@ENTR): RETURNS=YES (@ENTR):
R0 and R1: function value R2 through R14 and R0 restored

R1: function value
R15: return code

RETURNS=NO (@ENTR): RETURNS=NO (@ENTR):
R0 and R1: undefined R0 through R14 restored

R15: return code

RESTORE=MIN (@EXIT):
R7 through R14 restored
R0 through R6: function value
R15: return code

PROG=FORTRAN (@EXIT):
R2 through R14 restored
R1: not evaluated by

FORTRAN
R0: return code

Long jump

ILCS Non-ILCS

Not allowed Via @EXIT TO = possible,
executable only in non-ILCS
environment

294 U5223-J-Z125-3-7600

ILCS interface

Parameter passing

There are two options for the passing and acceptance of parameters:
in STANDARD form
through "call by reference"
The user must specify in the list of actual parameters (@PAR/@PASS macro) the
addresses of the parameter values to be passed, and not the values themselves.

Note:
In both static and dynamic parameter passing, the left bit in the last parameter in the
parameter list will be set in accordance with the PLEND parameter.

The following are illegal:
in @ENTR: the parameter PASS=OPTIMAL
in @PASS: the parameter PASS=OPTIMAL, and in static parameter passing the
parameter PAR=(<register>).
in @EXIT: the parameter RESTORE=MIN, TO=<proc.name> and
PROG=FORTRAN.

Examples of parameter passing

1. "Call by reference"
@PASS call destination, PLIST=(par_name1, par_name2, par_reg),
PASS=STANDARD in which <par_reg>=par_name3

ILCS Non-ILCS

<R1>= address of parameter address list

<R0>= number of parameters <R0>= undefined

0 A(par_name1)

0 A(par_name2)

b A(par_name3)

b = 0 no PLEND specification b = 1 no PLEND specification
or PLEND = NO or PLEND = YES

b = 1 PLEND = YES b = 0 PLEND = NO

U5223-J-Z125-3-7600 295

ILCS interface

2. "Call by reference" and "Call by value"
@PASS call destination, PLIST=(par_name1,2, par_name3), PASS=STANDARD

ILCS Non-ILCS

Direct value allowed only if Direct value always allowed;
the calling procedure it is interpreted as an absolute
interprets this as an address or as a direct value
absolute address

<R1>= address of parameter address list

<R0>= number of parameters <R0>= undefined

0 A(par_name1)

0 A(2)

b A(par_name3)

b = 0 no PLEND specification b = 1 no PLEND specification
or PLEND = NO or PLEND = YES

b = 1 PLEND = YES b = 0 PLEND = NO

3. "Call by reference" and missing parameters
@PASS call destination, PLIST=(par_name1,, par_name3), PASS=STANDARD

ILCS Non-ILCS

Not permittted Not permitted

MNOTE (Significant Error) Mnote and flag (Severe)

<R1>= undefined <R1>= address of parameter
address list

<R0>= undefined

0 A(par_name1)

0 A(0)

1 A(par_name3)

296 U5223-J-Z125-3-7600

ILCS interface

9.6.2 Activating user-own routines

With ILCS the user can activate user-own routines during initialization:
for reserving and releasing memory space for stack and heap
for termination handling
to specify the minimum stack extent size

These routines must comply with ILCS conventions. They are valid across the entire
ILCS environment and can be defined only in the main procedure @ENTR with
TYP = M (see @ENTR, operand STREQ ff; chapter 10).

9.6.3 Event handling

With the standard event handler (SEH) ILCS provides a routine for coordinating events
occurring during ILCS programs.

The following events are handled by ILCS:
STXIT events in the BS2000 STXIT classes PROCHK and ERROR.

Non-STXIT events that are not covered by BS2000 (e.g. OPEN errors when
accessing files).

STXIT events are supplied by the system, whereas non-STXIT events must be signaled
to the standard event handler by a procedure.

The event handling routines for the various event classes are enabled by means of the
@ENTR macro with appropriate parameters.

The event handling routines specified by the user in the procedure prolog are enabled
dynamically when a procedure is called, and disabled when the procedure is exited.

These routines cannot be explicitly enabled or disabled by the user.

Control always passes to the standard event handler when an event occurs for which
the user has not registered any STXIT routine with the standard STXIT handler, or if the
standard event handler has not been terminated.

A separate stack and heap is reserved and created by ILCS for each STXIT or
contingency process initiated by an event. In the case of STXIT events in BS2000, the
status of the interrupt point is recorded by the standard event handler. When a non-
STXIT event is signaled, the user passes to the standard event handler a parameter
block containing a description of the interrupt point.

U5223-J-Z125-3-7600 297

ILCS interface

The standard event handler searches in a separate appended event handler list for the
address of the handling routine responsible for this event, starting the search from the
current save area within the save area chain. If the routine is found, it is called by the
standard event handler in accordance with ILCS conventions; the context of the
interrupt point, extended by an additional parameter block, is then passed as a
parameter to the routine by the standard event handler.

The following individual functions of the standard event handler can be called using
new structure macros:

enable event handler routines (see @ENTR,
operands ABKR, PROCHK, ERROR and OTHEVT; chapter 10)

signal non-STXIT event (see @EVTOE, chapter 10)

9.6.4 Contingency handling

As well as event handling, ILCS provides a standard contingency handler (SCH), a
routine that enables users to use contingency processes in ILCS programs.

These contingency processes are user-defined external procedures that are managed
by the standard contingency handler and called in accordance with ILCS conventions.

A contingency routine can be enabled and disabled using new structure macros.

When an event occurs it still has to be signaled by the user using the system macro
POSSIG (post signal) for an event identifier. The request for a signal must be made
using the system macro SOLSIG (solicit signal).

When an event occurs, such as a signal to an event ID, it first activates a standard
contingency handler routine assigned to the user routine; this establishes the
environment necessary for the handling routine, including a separate heap and a stack
for the save areas of the user task.

The standard contingency handler then calls the user contingency routine in
accordance with ILCS conventions.

The following individual functions can be accessed via the new macro interface:

enable contingency routine (see @CONEN, chapter 10)

disable contingency routine (see @CONDI, chapter 10)

298 U5223-J-Z125-3-7600

ILCS interface

9.6.5 STXIT handling

Users may work with their own STXIT routines within ILCS programs on the procedure
level. For this purpose ILCS provides the standard STXIT handler (SSH), a routine in
which user-enabled handling routines are called in accordance with ILCS conventions
when STXIT events occur.

These routines are enabled and disabled in the ILCS environment by new structure
macros with appropriate parameters.

All STXIT events defined in BS2000 are supported by ILCS.

In structured ILCS programs, explicit calls of BS2000 macros for STXIT handling can be
replaced by the new structure macros. In the ILCS environment these ensure that the
STXIT handler is called in accordance with ILCS conventions.

Control always passes to the standard STXIT handler when user-own STXIT routines are
enabled for an STXIT event; a separate stack and heap are set up for an STXIT
process.

The enabled STXIT routines are called by the standard STXIT handler in the defined
BS2000 processing sequence in accordance with ILCS conventions.

When all the STXIT routines have been executed, the standard STXIT handler releases
the separate stack and heap and reestablishes the environment of the interrupted
procedure.

The following ILCS functions are accessible using this macro:

enable STXIT routine (see @STXEN, chapter 10)

disable STXIT routine (see @STXDI, chapter 10)

U5223-J-Z125-3-7600 299

ILCS interface

9.6.6 Setting the program mask

With the new structure macro @SETPM (see chapter 10) the user can dynamically
modify the program mask, including the ID code, in procedures so that events
occurring during certain mathematical operations do not cause the system to interrupt
the program.

These events can include:

fixed-point overflow

decimal overflow

exponent underflow

mantissa=0

In structured ILCS programs this macro replaces the BS2000 command for setting the
program mask.

9.6.7 Setting the MONJV value in the PCD

Using the new structure macro @SETJV (see chapter 10) the user can define a value
within procedures that is entered in the corresponding field in the PCD (see "ASSEMBH
User Guide" [1], "ILCS data structures"). With this MONJV value as the parameter, the
system macro TERM is called by ILCS.

9.6.8 Language initialization for dynamically loaded modules

Modules can be dynamically loaded within structured ILCS programs. The @ININ
macro (see chapter 10) must then be called by ILCS:
ILCS checks whether language initialization is necessary. If it is, ILCS activates the
initialization routine unless it has already been called.

300 U5223-J-Z125-3-7600

10 Predefined macros for structured
programming

General programming notes

Macro instruction format

Predefined macros for structured programming are referenced via their corresponding
macro call. These macro instructions have an "@" as their first character, which is why
they are also known as "@ macros".

The format of predefined macro instructions is the same as that of the macro
instructions described in 7.1. The rules listed there also apply in this case.

The name, operation and operand entries of predefined macro instructions can be
generated under certain conditions using variable symbols (see chapter 6, "Variable
symbols").

As a rule, a sequence symbol in the name entry can be specified in a macro
instruction. Within the context of structured programming, this must be avoided at all
costs.

Macro instruction operands

Positional operands are assigned values according to their position in the operand
entry. They must therefore be in the same sequence as that specified in the format.

Keyword operands are identified by the equals sign (=). They are assigned a value in
the macro instruction via the keyword. Keyword operands may appear in any order in
the macro instruction (see 7.1.1, "Keyword and positional operands").

Names

In structured programming there are predefined names for registers. General-purpose
registers can be referenced with the names R0, R1, ..., R15, and floating-point registers,
with FA, FB, FC and FD, without any need for explicit assignment beforehand.

In addition to these predefined names, all names beginning with "@" or "R@" are
reserved for ASSEMBH and must not be used anywhere else.

U5223-J-Z125-3-7600 301

@AND Predefined macros

@AND Logical AND

Function

@AND implements the logical AND operation in compound conditions.

Format

Name Operation Operands

[name] @AND cond_sym

name Name

cond_sym Predefined or user-own condition symbol (see section 9.2.2).

Programming notes

Basically, the call to the @AND macro must be followed by a condition code setting
machine instruction (see "Assembler Instructions" manual [3]).

Example

Name Operation Operands

.

.
@IF ZE
C R4,ZERO (01)
@AND NZ
LTR R5,R5 (02)
@THEN
ST R1,POINT
@BEND
.

The @THEN branch is only executed if the first condition (01) and the second
condition (02) hold true.

>>>>> See also @OR and @TOR

302 U5223-J-Z125-3-7600

Predefined macros @BEGI/@BEND

@BEGI Sequence

Function

@BEGI forms the entry point of a sequence structure block.

Format

Name Operation Operands

[name] @BEGI[N]

@BEND Structure block end

Function

@BEND defines the block end for all types of structure block.

Format

Name Operation Operands

[name] @BEND

>>>>> See also @BEGI, @CASE, @CAS2, @CYCL, @IF, @THRU, @WHIL

U5223-J-Z125-3-7600 303

@BREA Predefined macros

@BREA Termination of a loop

Function

@BREA defines an exit from a loop with unrestricted terminal condition or a count loop
with unrestricted terminal condition.

Format

Name Operation Operands

[name] @BREA[K]

Description

@BREA appears in conjunction with the macro instruction @WHEN. If the condition
defined via @WHEN holds true, the structure block is quit with @BREA. If the condition
does not hold true, the instruction statement following @BREA is executed.

Example

Name Operation Operands

LOOP @CYCL
.
.
@WHEN NE
CLI OK,C’Y’
@BREA (01)
.
.
@WHEN LZ
SR R7,R5
@BREA (02)
.
.
@BEND

The example shows a loop with two terminal conditions and the two possible exits (01)
and (02). The structure block is quit the first time one of the two conditions holds true.

>>>>> See also @CYCL and @WHEN

304 U5223-J-Z125-3-7600

Predefined macros @CASE

@CASE Case differentiation by number

Function

@CASE forms the heading of a multiple branch. The sub-block to be executed is
selected by specifying its number.

Format

Name Operation Operands

[name] @CASE (reg)

name Name
reg General-purpose register containing one of the

following terms as a positive absolute expression:
decimal self-defining term or
predefined name of a register or
name to which a corresponding self-defining term was assigned.

Description

The contents of reg specify which sub-block in a case differentiation is to be executed.
There may be a maximum of 90 sub-blocks. The sub-block specified is selected
directly.

Register 0 may not be used.

Programming notes

1. reg must be loaded with the number of the relevant sub-block prior to calling
@CASE.

2. When using a general-purpose register for reg, the rules regarding registers must be
adhered to (see "Use of registers" in section 11.3 of the appendix).

3. If the content of the @CASE register is less than 1 or greater than the number of
sub-blocks defined,

the last sub-block is executed if CHECK=ON is set in the procedure heading
(see 10.2, @ENTR);
program errors occur if CHECK=OFF is set in the procedure heading.

U5223-J-Z125-3-7600 305

@CASE Predefined macros

Example

Name Operation Operands

L R6,T2
@CASE (R6)
@BEGI
. 1st sub-block
.
@BEND
@BEGI
. 2nd sub-block
.
@BEND
. other sub-blocks
. possible
@BEND
.
.

T1 DC F’1’
T2 DC F’2’

.

.

In the example, register 6 is used for the @CASE branch. The content of register 6 is 2
in this case, hence the second sub-block is executed.

>>>>> See also @BEGI and @BEND

306 U5223-J-Z125-3-7600

Predefined macros @CAS2

@CAS2 Case differentiation by comparison

Function

@CAS2 forms the heading of a multiple branch. The sub-block to be executed is
selected by specifying a selector.

Format

Name Operation Operands

[name1] @CAS2 name2
literal [,COMP=instr]
(reg)

name1 Name
name2 Name of the field containing the selector
literal Literal specifying the selector directly (see 2.5.3).
reg General-purpose register containing the selector, either

decimal self-defining term or
predefined name of a register or
name to which an appropriate self-defining term has been allocated

instr Machine instruction which sets a condition code (see "Assembler
Instructions" manual [3]).

Description

The selector in the @CAS2 macro is compared with the comparands of the @OF
macro. If selector and comparand match, the appropriate sub-block is executed. The
number of sub-blocks is unrestricted.

A non-standard type of comparison can be selected with the COMP=instr.

U5223-J-Z125-3-7600 307

@CAS2 Predefined macros

Example

Name Operation Operands

@CAS2 TEST
@OF =X’0005’
. 1st
. sub-block
@OF =X’0006’
. 2nd
. sub-block
@OFRE
. remainder
. sub-block
@BEND

The field TEST contains the selector. If the selector and the first comparand (X’0005’)
match, the first sub-block is executed. If the selector and the second comparand
(X’0006’) match, the second sub-block is executed. In all other cases, the remainder
sub-block is processed.

>>>>> See also @OF, @OFRE and @BEND

308 U5223-J-Z125-3-7600

Predefined macros @CONDI

@CONDI Disable contingency routine

This macro instruction is only allowed in procedures with ILCS=YES.

Function

@CONDI (Con tingency disable) deactivates a contingency routine
(see also section 9.6.4, "Contingency handling").

Format

Name Operation Operands

symb addr
[name] @CONDI CONID=

(reg)

name Name
symb addr Symbolic address of a field
reg General-purpose register containing the address of the ID code.

Description

CONID= Identifier of the routine

symb addr
Symbolic address of a field of length 4 aligned on a fullword boundary and
containing the ID code. The ID code is supplied by the @CONEN macro.

(reg) Register containing the address of the ID code.

The inline code of the macro copies the specifications from the instruction into an
ILCS-conforming parameter block; these specifications are used to activate the
corresponding entry in the standard contingency handler for disabling the contingency
routine.

When the standard contingency handler returns control to the calling procedure, R15
contains a return code which indicates whether or not the function has been executed
and which errors, if any, occurred.

U5223-J-Z125-3-7600 309

@CONEN Predefined macros

@CONEN Enable contingency routine

This macro instruction is allowed only in procedures with ILCS=YES.

Function

@CONEN (Con tingency enable) activates a contingency routine
(see also section 9.6.4, "Contingency handling").

Format

Name Operation Operands

[name] @CONEN name1
CONAME=symb addr1

(reg1)

[CONLEN=length]

symb addr2
CONID=

(reg2)

symb addr3
CONADR=

(reg3)

symb addr4
CONMSG=

(reg4)

level
[CONLEV=]

(reg5)

name Name
name1 Name of the contingency routine

symb addr1...symb addr4
Symbolic addresses of fields

reg1...reg4
General-purpose registers containing the address of a field.

length Length in bytes
level Decimal self-defining term
reg5 General-purpose register containing a priority specification.

310 U5223-J-Z125-3-7600

Predefined macros @CONEN

Description

CONAME= name of contingency routine

name1 The name of the contingency routine consists of a string of up to 54
characters. Names are terminated with a blank.

symb addr1
The name of the contingency routine is contained in a field whose symbolic
address is specified.

(reg1) The address of the name for the contingency routine is contained in a
register.

CONLEN= length of routine name

length Length of the name in bytes; required only when passing an address for
the name of the contingency routine.
Default if CONAME=symb addr1: length attribute of the symbolic address
Default if CONAME=(reg1): 54 bytes

CONID= returned ID code

symb addr2
Specifies the symbolic address of a field of length 4 aligned on a fullword
boundary, in which the ID code is to be returned.

(reg2) Specifies a register containing the address of a field of length 4 aligned on
a fullword boundary.

CONADR= start address of contingency routine

symb addr3
The start address of the contingency routine is contained in a field aligned
on a fullword boundary, whose symbolic address is specified.

(reg3) The start address of the contingency routine is contained in a register.

CONMSG= user message

symb addr4
The user message to the contingency routine is contained in a field of
length 4 aligned on a fullword boundary with the given symbolic address.

(reg4) The address of the user message to the contingency routine is contained
in a register.

CONLEV= contingency routine priority

level The priority of the contingency routine is specified as a decimal self-
defining term in the range 1 - 126.
The default is 1.

U5223-J-Z125-3-7600 311

@CONEN Predefined macros

(reg5) The priority specification of the contingency routine is contained in a
register.

The inline code of the macro copies the specifications from the macro call into an
ILCS-conforming parameter block; these specifications are used to activate the
corresponding entry in the standard contingency handler for enabling the contingency
routine.

When the standard contingency handler returns control to the calling procedure, R15
contains a return code which indicates whether or not the function has been executed
and which errors, if any, occurred.

312 U5223-J-Z125-3-7600

Predefined macros @CYCL

@CYCL Loop heading

Function

@CYCL forms the heading of a loop construction. The number of executions is
determined by a duplication factor or by a terminal condition.

Format 1: Loop with unrestricted terminal condition

Name Operation Operands

[name] @CYCL[E]

>>>>> See also @BREA, @WHEN and @BEND

Format 2: Count loop and count loop with unrestricted terminal condition

Name Operation Operands

[name] @CYCL[E] (reg)

name Name
reg General-purpose register; positive absolute expression, either

decimal self-defining term or
predefined name of a register or
name to which an appropriate self-defining term has been assigned

Description

The contents of reg specify the number of repetitions of the loop sub-block. The
maximum value of the repeat count is X’FFFFFFFF’.

reg is decremented by 1 after each execution, and checked for 0. If 0 is reached, the
structure block is quit.

U5223-J-Z125-3-7600 313

@CYCL Predefined macros

Programming notes

1. When specifying reg, the rules for registers must be adhered to (see "Use of
registers" in section 11.3 of the appendix).

2. reg may not be altered in the loop sub-block.

Example

The example shows a count loop with unrestricted terminal condition. In this case, the
loop is executed ten times, provided the termination condition does not occur
beforehand.

Name Operation Operands

L R7,NR (01)
LOOP @CYCL (R7) (02)

.

.
@WHEN EQ
CLC TEST,END (03)
@BREA
.
.
@BEND
.
.

NR DC F’10’
TEST . .
END . .

(01) Register 7 is loaded with the duplication factor
(02) Start of loop
(03) Termination condition and loop exit

>>>>> See also @BREA, @WHEN and @BEND

314 U5223-J-Z125-3-7600

Predefined macros @DATA

@DATA Data access and memory request

Function

@DATA implements access to user data and the request for the storage space required
for it. Depending on the storage class specified, appropriate instruction statements are
generated by the @DATA macro.

Format 1: Class A and C data areas

Name Operation Operands

[name] @DATA A
CLASS= ,BASE=reg1

C

,DSECT=dsect name

val
,LENGTH=

(reg2)

int name
,INIT=

[(reg3)]

,EXTINIT=ext name

name Name
reg1, reg2, reg3

General-purpose registers; positive absolute expressions, either
decimal self-defining terms or
predefined register names
names to which an appropriate self-defining term has been allocated

dsect_name
Name of a dummy section, 7 characters maximum

val Decimal self-defining term
int_name, ext_name

Names of data areas

U5223-J-Z125-3-7600 315

@DATA Predefined macros

Description

CLASS=A
This is a data area of class automatic.
CLASS=A is not allowed in type B, L or D procedures, or in any
procedures in which "ENV=C" is set in @ENTR.

CLASS=C
This is a controlled class data area.
CLASS=C is not allowed in type B, L or D procedures.

BASE=reg1
specifies the base address register to be used.

When calling @DATA, the register named is loaded with the address of
the memory area provided, and readied as the base address register.

DSECT=dsect_name
specifies the name of the dummy section with which the requested
memory area is to be overlayed.

LENGTH=
specifies the length in bytes of the area to be requested directly via val,
or via the contents of reg2.

INIT= specifies the name (int name) or address (in reg3) of an area in the
same module (internal) whose data is to be copied for initialization in the
requested memory area.

EXTINIT=ext_name
specifies the name of an area in any module (external) whose data is to
be copied for initialization in the requested memory area.

316 U5223-J-Z125-3-7600

Predefined macros @DATA

Programming notes

The dummy section specified in DSECT=dsect_name must be terminated with the
following assembler instruction:

Ldsect_name EQU *-dsect_name

Example

Name Operation Operands

EX1 @ENTR TYP=E
@DATA CLASS=A,BASE=R7,DSECT=DATA,INIT=INDATA
.
.
@EXIT
.
.

INDATA DS .. (01)
.
.
@END

DATA DSECT (02)
.. DS ..

.

.
LDATA EQU *-DATA (03)

.

.

(01) Definition of data which is to be copied into the requested memory area.
(02) Definition of the dummy section which is to overlay the requested memory area.
(03) Termination of the dummy section, length calculation.

U5223-J-Z125-3-7600 317

@DATA Predefined macros

Format 2: Class S data areas.

Name Operation Operands

[name] @DATA CLASS=S
,BASE=reg

,INIT=int name
,EXTINIT=ext name,DSECT=dsect name

name Name
reg General-purpose register; positive absolute expression, either

decimal self-defining term or
predefined name of a register
name to which an appropriate self-defining term has been allocated

int_name, ext_name
Names of data areas

dsect_name
Name of a dummy section

Description

CLASS=S
This is a static class data area.

BASE=reg
specifies the base address register to be used.

When @DATA is called, the register named is readied as the base
address register and loaded with the start address of the data area.

INIT=int_name
specifies the name of a data area which is in the same module (internal).

EXTINIT=ext_name
specifies the name of a data area which is in any desired module
(external).

DSECT=dsect_name
specifies the name of the dummy section which must describe the
structure of the area ext_name.

318 U5223-J-Z125-3-7600

Predefined macros @DATA

Example

The example shows an access to data which is defined in an external module.

Name Operation Operands

* Module A (01)
.
.
@DATA CLASS=S,BASE=R5,EXTINIT=BDATEN,DSECT=ADATEN
.
.
@EXIT
@END

ADATEN DSECT (02)
A1 DS CL5

.

.
AEND DS CL6
LADATEN EQU *-ADATEN

* Module B (03)
DATEN START

ENTRY BDATEN
BDATEN DS 0CL100 (04)
B1 DC C’HALLO’

.

.
BEND DC C’END B’

(01) Module A contains the procedure which is to access the data.
(02) Dummy section which describes the structure of the external data area.
(03) Module B is the external module containing the data definition.
(04) Data definition in the external module.

U5223-J-Z125-3-7600 319

@DATA Predefined macros

Format 3: Class B data areas

Name Operation Operands

[name] @DATA CLASS=B
,BASE=reg
,DSECT=dsect_name

name Name
reg General-purpose register, positive absolute expression, either

decimal self-defining term or
predefined name of a register or
name to which an appropriate self-defining term has been allocated

dsect_name
Name of a dummy section or a data area

Description

CLASS=B
This is a based class data area.

BASE=reg
specifies the base address register to be used.

reg must be loaded with the start address of the data area for which
storage has already been reserved in another procedure.

DSECT=dsect_name
specifies the name of a data area which already exists or the name of a
dummy section which describes the structure of the new data area.

Programming notes

In an earlier or dynamically higher-level procedure, reg must be loaded via a @DATA
call with CLASS=A, C or S with the start address of the data area.

320 U5223-J-Z125-3-7600

Predefined macros @DATA

Example

Name Operation Operands

* Higher-level procedure
FIRST @ENTR TYP=M

@DATA CLASS=S,BASE=R9,INIT=CONST (01)
.
.
@PASS NAME=SECOND (02)
@EXIT
@END

CONST DS 0D (03)
DC ..
.
.

* Lower-level procedure
SECOND @ENTR TYP=I

@DATA CLASS=B,BASE=R9,DSECT=CONST (04)
.
.

(01) Creation of the data area CONST with base address register R9.
(02) Call of the SECOND procedure.
(03) Definition of the data area CONST.
(04) Overlaying the new data area with the structure of the data area CONST.

U5223-J-Z125-3-7600 321

@DO / @ELSE Predefined macros

@DO Loop sub-block

Function

@DO indicates the start of the loop sub-block in an iterative loop and in a loop with
pre-check.

Format

Name Operation Operands

[name] @DO

>>>>> See also @BEND, @THRU and @WHIL

@ELSE NO sub-block

Function

@ELSE forms the heading of the NO sub-block in a decision.

Format

Name Operation Operands

[name] @ELSE

Description

The sub-block in an @IF branch which begins with @ELSE is only executed if the
condition set with @IF does not hold true.

>>>>> See also @IF, @THEN and @BEND

322 U5223-J-Z125-3-7600

Predefined macros @END

@END Static procedure end

Function

@END denotes the static end of a procedure opened with @ENTR.

Format

Name Operation Operands

YES (reg[,...])
[name] @END [,LTORG=][,DROP=]

NO ()

name Name
reg General-purpose register; positive absolute expression, either

decimal self-defining term or
predefined name of a register or
name to which an appropriate self-defining term has been assigned

Description

Calling the @END macro results in
generation of a LTORG instruction in all procedures, except type D. In other words,
a literal pool is created starting on the next doubleword boundary (see 4.2, LTORG
instruction).
the release of all base address registers allocated using @ENTR and @DATA (see
4.2, DROP instruction).

LTORG=YES
Causes an LTORG instruction to be generated; default for all procedures,
except type D.

LTORG=NO
No LTORG instruction is generated; default for type D procedures.

DROP=(reg[,...])
Besides the registers released conventionally, others may also be
released.

DROP=() Generates a DROP instruction without operands, releasing all base
registers previously defined with USING.

U5223-J-Z125-3-7600 323

@ENTR Predefined macros

@ENTR Procedure start

Function

@ENTR forms the heading for all types of procedure. Depending on the type specified,
various operands may be specified.

For all the following formats of @ENTR, the following general specifications are
possible, in addition to the operands specified.

Format

Name Operation Operands

... @ENTR ...
[,VERS=xxx]
[,AUTHOR=name]
[,FUNCT=’function’]

ON
[,CHECK=]

OFF

YES
[,TITLE=]

NO

xxx Version designation, specified unformatted.

name Name of the programmer.

function Documentation text; is to specify the function of the procedure;
maximum length 63 characters.

Description

CHECK= determines the generation of checks at execution time with error
recovery.

ON Checks and error recovery are generated. The function is used for
program security, at the expense of storage space and runtime.

OFF Checks and error recovery are not created.

TITLE= controls the generation of a TITLE instruction.

YES TITLE instruction is generated (default for all types of procedures, except
D). The title contains the name of the procedure, its type, the version
and the date of assembly.

NO TITLE instruction is not generated (default for procedure type D).

324 U5223-J-Z125-3-7600

Predefined macros @ENTR

Format 1: Main procedure

Name Operation Operands

name @ENTR TYP=M
[,MAXPRM=val]
[,LOCAL=dsect_name]

24 24
[,AMODE= 31 ,RMODE=]

ANY ANY

YES
[,ENV=C[,LOADR12=]]

NO

[,STACK=n]

YES
[,ILCS=]

NO

[,STREQ=symb addr1]
[,STREL=symb addr2]
[,HPREQ=symb addr3]
[,HPREL=symb addr4]
[,SLTERM=symb addr5]
[,SCTERM=symb addr6]
[,EXTMIN=val1]

YES
[,ABKR=]

NO

[,PROCHK=symb addr1]

[,ERROR=symb addr2]

[,OTHEVT=symb addr3]

name Name of the main procedure
val Decimal self-defining term; number of parameters to be passed
dsect_name

Name of a data area

symb addr1...symb addr6
Symbolic addresses of the user-own routines

U5223-J-Z125-3-7600 325

@ENTR Predefined macros

val1 Decimal self-defining term that specifies the minimum stack extent size in
bytes.

symb addr1...symb addr3
Symbolic addresses of handling routines

Description

TYP=M Specifies that this is the main procedure of a program.

If several modules are combined into an executable program, only one
module may contain a TYP=M procedure.

MAXPRM=val
Must be specified for dynamic parameter passing via the STANDARD
interface. val specifies the maximum number of parameters which are to be
passed to the called procedure with the @PASS macro (see @PASS,
format 3).

The storage space for the parameter is reserved in the procedure STACK.
The MAXPRM= specification is ignored if the operand LOCAL= is set at
the same time, as the LOCAL area and the area for the parameter overlap
in the STACK procedure.

LOCAL=dsect_name
Must be specified if a local data area is to be reserved in the STACK
procedure.

Register 13 is used as the base address register for addressing this area.

The structure of the area requested within the STACK procedure is
described by a dummy section, which must be defined with dsect_name
@PAR (see @PAR, format 3).

AMODE= Assigns an addressing mode to the procedure (see 4.2, AMODE
instruction).

RMODE= Assigns a load attribute to the procedure (see 4.2, RMODE instruction).

If there is an invalid combination of AMODE and RMODE, an MNOTE is
generated, and AMODE 24 and RMODE 24 are entered for both values.

326 U5223-J-Z125-3-7600

Predefined macros @ENTR

ENV=C Only allowed with ILCS=NO
Must be specified if the procedure concerned is to behave as a C program.
In other words, the procedure runs under the control of the C runtime
system (see "ASSEMBH User Guide" [1]).

LOADR12=YES
The address of the program manager for C programs (see "C Compiler
User Guide" [9]) is to be loaded into register 12.

LOADR12=NO
Register 12 is not loaded.

Register 12 should already contain the address of the program manager.
This is always the case if the calling procedure is a C program or if register
12 was not changed in an assembly language program with ENV=C.

STACK=n Size of the dynamically extendable initial stack in bytes.

If no entry is made, an initial stack of one page (= 4096 bytes) is
requested.

ILCS=YES Connection to ILCS

ILCS=NO Default value
Non-ILCS procedure

ILCS allows the user to enable user-own routines for reserving and releasing memory
and for termination handling at initialization time. These routines must comply with ILCS
conventions. The minimum stack extent size can also be specified. These specifications
are valid throughout the entire ILCS environment and can be defined only in the main
procedure @ENTR with TYP = M and ILCS=YES, using the following operands:

STREQ=

symb addr1
Symbolic address of the user-own memory reservation routine for stack
management
Input parameter: byte length of the memory area, with alignment on

a doubleword boundary
Return value in R0: pointer to memory area
Return code in R15: =F’0’, no errors occurred

not specified
Memory is reserved in ILCS via REQM

U5223-J-Z125-3-7600 327

@ENTR Predefined macros

STREL=

symb addr2
Symbolic address of the user-own memory release routine for stack
management
Input parameter: pointer to memory area

byte length of the memory area
Return code in R15: =F’0’, no errors occurred

not specified
Memory is released in ILCS via RELM

HPREQ=

symb addr3
Symbolic address of the user-own memory reservation routine for heap
management
Input parameter: byte length of the memory area, with alignment on

a doubleword boundary
Return value in R0: pointer to memory area
Return code in R15: =F’0’, no errors occurred

not specified
Memory reserved in ILCS via REQM

HPREL=

symb addr4
Symbolic address of the user-owm memory reservation routine for heap
management
Input parameter: pointer to memory area

byte length of the memory area
Return code in R15: =F’0’, no errors occurred

not specified
Memory is released in ILCS via RELM

SLTERM=

symb addr5
Symbolic address of the user-own termination routine

not specified
No user-own termination routine

328 U5223-J-Z125-3-7600

Predefined macros @ENTR

SCTERM=

symb addr6
Symbolic address of the user-own termination routine for STXIT and
contingency processes
in R15 error code: >0 internal error
in R0 and R1 information code:
= 0: it is an STXIT process
= 1: it is a contingency process

not specified
If internal errors occur, STXIT or contingency process is aborted with
TERM UNIT=STEP

EXTMIN=

val1
Decimal self-defining term that specifies the minimum stack extent size in
bytes. The specification is rounded up to a number of pages equal to the
next power of 2 (4096 bytes).

not specified
Minimum stack extent size is 16 pages.

With the standard event handler (SEH), ILCS provides a routine for coordinating events
that occur in ILCS programs (see also section 9.6.3, "Event handling"). Assuming
ILCS=YES has been set, the following operands are possible:

ABKR= Set/do not set abort identifier

YES An identifier for the standard event handler is entered in the appropriate
event handler list (EHL) of the procedure in order to abort the search for
handling routines within the save area chain.

NO The abort identifier is not set.

U5223-J-Z125-3-7600 329

@ENTR Predefined macros

PROCHK=

symb addr1
Symbolic address of a handling routine for STXIT events of class
’PROCHK’.

not specified
No handling routine for class ’PROCHK’ is made available to the standard
event handler.

ERROR=

symb addr2
Symbolic address of a handling routine for STXIT events of class ’ERROR’.

not specified
No handling routine for class ’ERROR’ is made available to the standard
event handler.

OTHEVT=

symb addr3
Symbolic address of a handling routine for non-STXIT events.

not specified
No handling routine for class ’OTHEVT’ is made available to the standard
event handler.

Programming notes

1. The abort identifier is required in the event handler list if the standard event handler
has to abort the search for event handling routines because of a switch from an
ILCS procedure to a non-ILCS procedure within the procedure nesting structure.

2. If you use TEST-SUPPORT=YES when assembling, there must on no account be a
CSECT instruction with a name differing from the @ENTR name entry preceding the
invocation of @ENTR Typ=M, because this CSECT is terminated by the consistency
constant generated for AID. This may result in undefined program behavior if the
program section is not exited before the constant.

330 U5223-J-Z125-3-7600

Predefined macros @ENTR

Format 2: Type I or E procedures

Name Operation Operands

name1 @ENTR I
TYP=

E

name2
[,PLIST=([,...])]

(reg)

OPT[IMAL]
[,PASS=]

STA[NDARD]

[,MAXPRM=val]

[,LOCAL=dsect_name]

YES
[,RETURNS=]

NO

ENTRY

[,ENTRY= 24 24]
CSECT[,AMODE= 31 ,RMODE=]

ANY ANY

YES
[,ENV=C[,LOADR12=]]

NO

YES
[,ILCS=]

NO

YES
[,ABKR=]

NO

[,PROCHK=symb addr1]

[,ERROR=symb addr2]

[,OTHEVT=symb addr3]

U5223-J-Z125-3-7600 331

@ENTR Predefined macros

name1 Procedure name
name2 Formal parameter
reg Register used as a formal parameter; positive absolute expression, either

decimal self-defining term or
predefined name of a register or
name to which an appropriate self-defining term has been assigned

val Decimal self-defining term; number of parameters to be passed
dsect_name

Name of a data area

symb addr1...symb addr3
Symbolic addresses of handling routines

Description

TYP=I Specifies that this is a procedure which can only be called from the
module in which it lies (internal procedure) and which is connected to
memory management and register saving.

TYP=E Specifies that this is a procedure which may be called from any module
(external procedure) and which is connected to memory management and
register saving.

PLIST= is specified for the acceptance of parameters.

The operand specifies the formal parameters, a list of data fields and
registers into which entries may be accepted when the procedure is called
(see @PAR, format 2).

For parameter acceptance into the LOCAL area of the procedure, the
PLIST operands must match the PLIST operands of the associated @PAR.

PASS=OPT
Only allowed with ILCS=NO
Must be specified if parameters are to be passed in the called procedure
via the OPTIMAL interface.

Registers 1 to 4 are used for parameter passing.

332 U5223-J-Z125-3-7600

Predefined macros @ENTR

PASS=STA Parameters are passed in the called procedure via the STANDARD
interface.

Only register 1 is used for acceptance of parameters. Register 1 contains
the address of the parameter list.

The PASS= specification must match the PASS operand in the @PASS
macro of the calling procedure (see @PASS, format 3).

MAXPRM=val
Must be specified for dynamic parameter passing via the STANDARD
interface. val specifies the maximum number of parameters which can be
transferred to a procedure (see @PASS, format 3).

LOCAL=dsect_name
Must be specified if a local data area is to be reserved in a STACK
procedure.

The base address register for this area is register 13.

The structure of the requested area is described by a dummy section,
which must be defined with dsect_name @PAR. dsect_name may

denote a @PAR which defines a local dummy section (format 3 of
@PAR) or
denote a @PAR which defines a dummy section for parameter
acceptance (format 2 of @PAR).

RETURNS=
Regulates which registers are reloaded with the original values (before
calling the procedure) on quitting the procedure via @EXIT, and whether a
function value is returned.

The operand ILCS=YES/NO has an influence on the way in which
RETURNS=YES/NO operates.

YES If ILCS=NO:
Registers 0 and 2 to 14 are reloaded, register 1 is not. This means that
register 1 can be used to send a function value to the calling procedure.
The called procedure thus becomes a "function procedure".

If ILCS=YES:
The procedure returns a function value. Registers 0 through 14 are
reloaded. The function value in register 1 is copied to register 0 in the
procedure epilog if the caller is an ILCS procedure.

U5223-J-Z125-3-7600 333

@ENTR Predefined macros

NO If ILCS=NO:
All registers 0 through 14 are reloaded.

If ILCS=YES:
The procedure does not return a function value, and thus R1 is not copied
to R0 in the procedure epilog. The register contents of R0 and R1 are
undefined. Registers 2 through 14 are reloaded.

not specified
Registers 2 to 14 are reloaded.

When ILCS=NO, the reloading of the registers can also be restricted using
the @EXIT macro operand RESTORE=MIN.

ENTRY= Specifies which input instructions are to be generated for the procedure.

ENTRY= may only be specified in type E procedures.

ENTRY, if specified, generates:

name1 DS 0D
ENTRY name1

This specification is mandatory if the AID commands %CONTROL or
%TRACE are to be used for debugging a program with more than one
procedure (see the manual "AID - Debugging of ASSEMBH Programs" [2]).

CSECT, if specified generates:

name1 CSECT

AMODE= Assigns an addressing mode to the procedure (see 4.2, AMODE
instruction).

RMODE= Assigns a load attribute to the procedure (see 4.2, RMODE instruction).

If there is an invalid combination of AMODE and RMODE, an MNOTE is
generated, and AMODE 24 and RMODE 24 are entered for both values.

ENV=C Must be specified if the procedure concerned is to behave like a C
program; that is, the procedure runs under the control of the C runtime
system (see "ASSEMBH User Guide" [1]).

It may only be specified for type E procedures with ILCS=NO.

LOADR12=YES
The address of the program manager for C programs (see "C Compiler
User Guide" [9]) is to be loaded in register 12.

334 U5223-J-Z125-3-7600

Predefined macros @ENTR

LOADR12=NO
Register 12 is not loaded.

Register 12 should already contain the address of the program manager.
This is always the case if the calling procedure is a C program or if register
12 was not changed in an assembly language program with "ENV=C".

ILCS=YES Connection to ILCS

ILCS=NO Default value
Non-ILCS procedure

With the standard event handler (SEH), ILCS provides a routine for coordinating events
that occur in ILCS programs (see also section 9.6.3, "Event handling").
If ILCS=YES has been set, the following operands are possible:

ABKR= Set/do not set abort identifier

YES An identifier for the standard event handler is entered in the appropriate
event handler list (EHL) of the procedure in order to abort the search for
handling routines within the save area chain.

NO The abort identifier is not set.

PROCHK=

symb addr1
Symbolic address of a handling routine for STXIT events of class
’PROCHK’.

not specified
No handling routine for class ’PROCHK’ is made available to the standard
event handler.

U5223-J-Z125-3-7600 335

@ENTR Predefined macros

ERROR=

symb addr2
Symbolic address of a handling routine for STXIT events of class ’ERROR’.

not specified
No handling routine for class ’ERROR’ is made available to the standard
event handler.

OTHEVT=

symb addr3
Symbolic address of a handling routine for non-STXIT events.

not specified
No handling routine for class ’OTHEVT’ is made available to the standard
event handler.

Programming notes

The abort identifier is required in the event handler list if the standard event handler has
to abort the search for event handling routines because of a switch from an ILCS
procedure to a non-ILCS procedure within the procedure nesting structure.

336 U5223-J-Z125-3-7600

Predefined macros @ENTR

Example of format 1 and format 2

Name Operation Operands

* Calling procedure
MAIN @ENTR TYP=M,MAXPRM=2,LOCAL=DUMMY (01)

.

.
@PASS NAME=PRO2,PLIST=(FIELD1,FIELD2) (02)
.
.

DUMMY @PAR D=YES
NAME1 DS ..

. (03)

.
DUMMY @PAR LEND=YES

.

.

* Called procedure
PRO2 @ENTR TYP=I,LOCAL=IN,PLIST=(INFIELD1,INFIELD2) (04)

.

.
IN @PAR D=YES,LEND=YES,PLIST=(INFIELD1,INFIELD2) (05)

.

.

(01) The procedure MAIN
is to pass a maximum of 2 parameters to another procedure (MAXPRM=2)
and
a local data area is requested for it. The structure of the local data area is
described in the dummy section, DUMMY.

(02) Calling PRO2, 2 parameters are to be passed to PRO2; they are passed
dynamically via the STANDARD interface.

(03) Definition of the dummy section DUMMY.
(04) PRO2 accepts 2 parameters; the dummy section IN describes the structure of

the data area readied for the acceptance; PLIST=... specifies the parameter list.
(05) Definition of the dummy section IN.

U5223-J-Z125-3-7600 337

@ENTR Predefined macros

Format 3: Type B or L procedures

Name Operation Operands

name @ENTR B
TYP=

L
[,BASE=reg]

YES
[,LOADSB=]

NO

ENTRY

[,ENTRY= 24 24]
CSECT[,AMODE= 31 ,RMODE=]

ANY ANY

name Procedure name
reg General-purpose register; positive absolute expression, either

decimal self-defining term or
predefined name of a register or
name to which an appropriate self-defining term has been allocated

Description

TYP=B specifies that this is a procedure which may be called from any module
(external procedure), and which is not connected to memory management
and register saving.

TYP=L specifies that this is a procedure which may only be called from the same
module (internal procedure), and which is not connected to memory
management and register saving.

BASE=reg allocates a register to the procedure as the base address register.

If this is not specified, the procedure is assigned register 15 as the base
address register by the assembler.

LOADSB=
regulates loading of the base address register after each call of another
sub-procedure with @PASS.

YES The base address register specified with the BASE operand or the
standard base address register 15 is loaded with the address of the
calling procedure.

338 U5223-J-Z125-3-7600

Predefined macros @ENTR

NO No register is loaded after the call, not even register 15.

not specified
Register 15 is loaded with the address of the calling procedure after the
call.

ENTRY= specifies which entry instruction statements are to be generated for the
procedure.

ENTRY= may only be specified in type B procedures.

If specified, ENTRY generates:

name1 DS 0D
ENTRY name1

If specified, CSECT generates:

name1 CSECT

AMODE= assigns an addressing mode to the procedure (see 4.2, AMODE
instruction).

RMODE= assigns a load attribute to the procedure (see 4.2, RMODE instruction).

If there is an invalid combination of AMODE and RMODE, a MNOTE will
be generated, and AMODE 24 and RMODE 24 are entered for both
values.

Programming notes

1. A base address register, assigned with BASE=reg, must be loaded explicitly at the
start of the procedure (after the @ENTR macro), e.g. by means of the machine
instruction: LR reg,R15

2. This procedure type is only allowed when ILCS=NO is specified.

U5223-J-Z125-3-7600 339

@ENTR Predefined macros

Format 4: Type D procedures

Name Operation Operands

[name] @ENTR TYP=D

name Procedure name

Description

This is a type D procedure, without connection to memory management and register
saving. The procedure may be external or internal.

Programming notes

1. If the procedure is the first in a module, no procedure name may be specified. The
procedure receives the name of the START or CSECT instruction.

2. This procedure type is only allowed when ILCS=NO.

340 U5223-J-Z125-3-7600

Predefined macros @EVTLC

@EVTLC Define event layout context

This macro instruction is only allowed in procedures with ILCS=YES.

Function

@EVTLC (Event Layout Context) defines the layout of the context description for the
@EVTOE macro.

Format

Name Operation Operands

[name] @EVTLC [pre]=string

name Name
pre Prefix
string Alphanumeric characters

Description

pre Prefix for the symbolic names of individual fields

= string No more than 4 characters
pre must conform to the assembler syntax for names.

U5223-J-Z125-3-7600 341

@EVTLC Predefined macros

The prefix is used to define the following DS statements for the individual fields of the
context description:

preCR0 DS F Context registers
preCR1 DS F
preCR2 DS F
preCR3 DS F
preCR4 DS F
preCR5 DS F
preCR6 DS F
preCR7 DS F
preCR8 DS F
preCR9 DS F
preCR10 DS F
preCR11 DS F
preCR12 DS F
preCR13 DS F
preCR14 DS F
preCR15 DS F
preCPC DS F Program counter
preCEVC DS F Event code
preCFP0 DS 2F Floating-point registers
preCFP2 DS 2F
preCFP4 DS 2F
preCFP6 DS 2F
preCILC DS X Instruction length code
preCCC DS X Condition code
preCPM DS X Program mask
preCSS DS X Language key

Programming notes

A prefix with more than 4 characters is truncated to 4 characters.

342 U5223-J-Z125-3-7600

Predefined macros @EVTOE

@EVTOE Signal non-STXIT event

This macro instruction is only allowed in procedures with ILCS=YES.

Function

@EVTOE (Eventing other event) signals a non-STXIT event (see also section 9.6.3,
"Event handling").

Format

Name Operation Operands

symb addr
[name] @EVTOE CONTXT=

(reg)

name Name
symb addr Symbolic address of a data area
reg General-purpose register containing the address of a data area

Description

CONTXT= Describes the environment of the event location.

symb addr
Symbolic address of a data area 112 bytes in length. The user must store
in this area the context of the program at the point where the event
occurred. This includes the contents of all standard (context) and floating-
point registers, the program counter, the program mask, and the user-
defined event code for the handling routine called by ILCS.

(reg) Optionally, a register containing the address of the data area.

See the section on the @EVTLC macro for the structure of this data area.

The inline code of the macro copies the specifications from the macro into an ILCS-
conforming parameter block; these specifications are then used to activate the
corresponding entry in the standard event handler in order to signal a non-STXIT event.

When the standard event handler returns control to the calling procedure, R15 contains
a return code which indicates whether or not the function has been executed, and
which errors, if any, occurred.

Programming notes

Individual context fields cannot be checked; the user is therefore responsible for
ensuring the accuracy and consistency of context data.

U5223-J-Z125-3-7600 343

@EXIT Predefined macros

@EXIT Dynamic procedure end

Function

@EXIT terminates the called procedure and returns control to the calling procedure.

Format 1: Return from type M, B or L procedures

Name Operation Operands

YES
[name] @EXIT [LOADR12=]

NO

Description

In type M procedures, @EXIT terminates the program.

In type B or L procedures, the program is continued with the instruction statement
which follows the @PASS macro in the calling procedure.

LOADR12=
Can only be specified for procedures in which "ENV=C" and ILCS=NO are
set.

YES The address of the program manager for C programs (see "C Compiler
User Guide" [9]) should be entered in register 12.

NO Register 12 is not loaded.

Register 12 should already contain the address of the program manager.
This is always the case if the calling procedure is a C program or if register
12 was not changed in an assembly language program with "ENV=C".

344 U5223-J-Z125-3-7600

Predefined macros @EXIT

Format 2: Return from type E or I procedures

Name Operation Operands

[name1] @EXIT name2
RC= (reg)

val
TO=proc_name

[RESTORE=MIN][,...]
PROG=FORTRAN

YES
LOADR12=

NO

name1 Name
name2 Name of a data field which contains the return value
reg General-purpose register which contains the return value or the address of

the return value; positive absolute expression, either
decimal self-defining term or
predefined name of a register or
name to which an appropriate self-defining term has been allocated

val Self-defining term which specifies the return value directly
proc_name Name of a procedure which must be higher in the call hierarchy than the

calling procedure.

Description

After @EXIT, the program is continued with the instruction statement following the
@PASS macro in the calling procedure.

Using @EXIT, registers 2 to 14 are reloaded with their values during the procedure call.

@EXIT macro instruction in an ILCS procedure (@ENTR ILCS=YES)

If the @ENTR parameter RETURNS=YES was set, the function value in register 1 is
copied to register 0. If RETURNS=NO was set, the function value is not copied.

RC= Only to be specified in procedures in which ILCS=NO is set.
Specifies a return value which was calculated in the called procedure and
is to be passed to the calling procedure. The value is passed in register 15
by default, or in register 0 in the case of non-ILCS FORTRAN programs.
If you specify val, the value is passed; if you specify name2, the address is
passed.
If you specify (reg), the register contents are transferred to the return value
register.

U5223-J-Z125-3-7600 345

@EXIT Predefined macros

TO=proc_name
can only be specified in procedures in which ILCS=NO is set.
This must be specified if there is to be no return to the calling procedure
but to a higher-level one in the call hierarchy.

The program is continued with the instruction statement which follows the
actual @PASS macro in the procedure identified by proc_name.

RESTORE=MIN
Is specified if, on return to the calling procedure, only registers 7 to 14 are
to be reloaded.

PROG=FORTRAN
Can only be specified in procedures in which ILCS=NO is set.
Must be specified if a return is to be made from a called assembler
procedure to a calling FORTRAN program. In this case, registers 2 to 14
are reloaded.

LOADR12=
Can only be specified for procedures in which ENV=C and ILCS=NO are
set.

YES The address of the program manager for C programs (see "C Compiler
User Guide" [9]) is to be loaded into register 12.

NO Register 12 is not loaded.

Register 12 should already contain the address of the program manager.
This is always the case if the calling program is a C program or if register
12 was not changed in an assembler language program with "ENV=C".

Programming notes

The @EXIT operand RC=<return code> causes the return code to be passed in
register 15. Within structured assembler programs, register 15 can be evaluated by the
user in the normal way (ILCS register conventions require only registers 2 through 14
to be reloaded in the procedure epilog). However, calling procedures in other
environments generally cannot then interrogate this return code since, according to
ILCS conventions, register 15 is regarded as having been destroyed. The @EXIT RC
operand should therefore not be used if this can be avoided and the return code
should instead be passed as a function value in register 1 or as an output parameter.

346 U5223-J-Z125-3-7600

Predefined macros @EXIT

Example

Name Operation Operands

PRO1 @ENTR TYP=M
@DATA CLASS=S,BASE=R9,INIT=CONST
@PASS NAME=PRO2 (01)
@IF EQ
CLI TEST,C’A’
@THEN (02)
.
.
@BEND
.
.
@EXIT
@END

CONST DS 0H
TEST DS CL1 (03)

.

.
PRO2 @ENTR TYP=I

@DATA CLASS=B,BASE=R9,DSECT=CONST
.
. (04)
MVI TEST,C’A’
@EXIT RC=TEST (05)
@END

(01) Calling the PRO2 procedure.
(02) Depending on the return value, instruction statements are to be executed in

PRO1.
(03) Definition of the field which contains the return value.
(04) The return value must be provided in PRO2.
(05) Return to PRO1; the name of the field containing the return value is transferred.

The same function could have been fulfilled by means of the following instruction
statements in PRO2:

LA R8,TEST
@EXIT RC=(R8)

U5223-J-Z125-3-7600 347

@FREE Predefined macros

@FREE Memory release

Function

@FREE causes the release of the memory area earlier requested via @DATA
CLASS=C.

Format

Name Operation Operands

[name] @FREE BASE=reg

name Name
reg General-purpose register, positive absolute expression, either

decimal self-defining term or
predefined name of a register or
name to which an appropriate self-defining term has been allocated

Description

reg specifies the address of the memory area to be released, and must match the
BASE operand of the relevant @DATA macro.

>>>>> See also @DATA

348 U5223-J-Z125-3-7600

Predefined macros @IF

@IF Decision

Function

@IF forms the heading of a branch in which one of two alternatives must be selected.

Format

Name Operation Operands

[name] @IF cond sym

name Name
cond_sym Predefined or user-own condition symbol (see sections 9.2.4 and 9.2.5).

Description

cond_sym specifies the condition (see sections 9.2.4 and 9.2.5) that is to be set for the
branch.

If the condition holds true, the @THEN branch of the structure block is executed, if not,
the @ELSE branch is.

Example

Name Operation Operands

@IF LE
CR R1,R2
@THEN
MVI FIELD,TRUE
@ELSE
MVI FIELD,FALSE
@BEND

If the contents of register 1 are less than or equal to those of register 2, the @THEN
sub-block is executed, otherwise the @ELSE sub-block is.

>>>>> See also @THEN, @ELSE and @BEND

U5223-J-Z125-3-7600 349

@ININ Predefined macros

@ININ Call ILCS for dynamically loaded modules

This macro instruction is allowed only in an ILCS environment. ILCS must have been
initiated at an earlier point.

Function

@ININ calls ILCS to handle retroactive initialization of a runtime system linked in by
large, dynamically loaded modules (see also section 9.6).

Format

Name Operation Operands

[name] @ININ

name Name

Description

The inline code of the macro generates the activation of the ILCS routine in order to
check and, if appropriate, perform language initialization.

Following the macro call, register 15 contains a return code which indicates whether or
not the function has been executed.

Programming notes

An error occurring during the initialization check can result in undefined program
behavior (e.g. memory bottleneck); this causes the ILCS termination routine to be
called. If this happens, all languages initialized in the ILCS environment will also be
terminated.

350 U5223-J-Z125-3-7600

Predefined macros @OF

@OF Case sub-block

Function

@OF forms the heading of a sub-block in a case differentiation by comparison, and
specifies it or the actual comparand.

Format

Name Operation Operands

[name1] @OF name2
literal [,...][,COMP=instr]
val

name1 Name
name2 Name of the field containing a comparand
literal Literal which specifies a comparand directly (see section 2.5.3)
val Self-defining term which specifies a comparand directly
instr Machine instruction which sets a condition code (see the "Assembler

Instructions" reference manual).

Description

The sub-block which begins with @OF and the actual comparand, is executed if one of
the comparands specified matches the selector from the @CAS2 macro.

Using COMP=instr, a non-standard comparison type may be selected for this sub-
block.

Programming notes

1. The user must ensure that selector and comparand correspond as regards length,
alignment and compare instruction.

2. A self-defining term may only be specified as a comparand if a machine instruction
which permits a direct operand as the second operand was specified with
COMP=instr in the @OF macro or in the @CAS2 macro.

U5223-J-Z125-3-7600 351

@OF Predefined macros

Example

Name Operation Operands

@CAS2 FIELDA (01)
@OF FIELDB (02)
.
.
@OF C’*’,COMP=CLI (03)
.
.

(01) Start of case differentiation; FIELDA is the name of the field which contains the
selector.

(02) Start of the first sub-block; this is executed if FIELDA is equal to FIELDB.
(03) Start of the second sub-block; this is executed if FIELDA coincides with *. The

compare instruction for this sub-block only is CLI.

>>>>> See also @CAS2, @OFRE and @BEND

352 U5223-J-Z125-3-7600

Predefined macros @OFRE

@OFRE Remainder sub-block

Function

In case differentiation by comparison, @OFRE forms the heading of the last sub-block

Format

Name Operation Operands

[name] @OFRE[ST]

Programming notes

In this sub-block all conditions are dealt with that did not occur in the other sub-blocks.
This block should be used for error conditions, or for conditions that are irrelevant for
case differentiation.

>>>>> See also @CAS2 and @OF

U5223-J-Z125-3-7600 353

@OR Predefined macros

@OR Logical ’OR’

Function

@OR implements the logical OR operation in compound conditions.

Format

Name Operation Operands

[name] @OR cond_sym

name Name
cond_sym Predefined or user-own condition symbol (see sections 9.2.4 and 9.2.5).

Programming notes

The call of the @OR macro must be followed by a condition code setting machine
instruction (see "Machine Instructions" manual).

Example

Name Operation Operands

.

.
@IF ZE
C R4,ZERO (01)
@OR NZ
LTR R5,R5 (02)
@THEN
ST R1,POINT
@ELSE
.
.
@BEND
.
.

The @THEN branch is executed if the first condition (01) or second condition (02)
holds true.

>>>>> See also @AND and @TOR

354 U5223-J-Z125-3-7600

Predefined macros @PAR

@PAR Definition of areas

Function

@PAR has three different functions. Depending on the format, a parameter list is
created or a dummy section defined for parameter passing, or a dummy section is
defined for parameter acceptance.

Format 1: Parameter list for static parameter passing via the STANDARD interface

Name Operation Operands

list_name @PAR name1
[PLIST=([,...]),]

(val1)

name2
VLIST=([,...])

(val2)

YES
[,PLEND=]

NO

list_name Name of the parameter list (63 characters)
name1 Name of the entries in the parameter list
val1 Decimal self-defining term; generates an unnamed entry in the parameter

list
name2 Name of the fields whose addresses are to be transferred to the parameter

list (actual parameters)
val2 Decimal self-defining term; is entered directly in the parameter list (actual

parameter)

Description

Calling @PAR causes a parameter list with constant values to be created at assembly
time.

PLIST= gives names to the parameter list entries.

A nameless address constant is created by specifying (val1).

VLIST= specifies the actual parameters whose addresses or values are included in
the parameter list.

If no actual parameter is assigned to a parameter, an extra comma must
appear at this point in the VLIST operand. This type of specification is
treated in the same way as the self-defining term 0.

U5223-J-Z125-3-7600 355

@PAR Predefined macros

PLEND= Can only be specified in procedures in which ILCS=YES is set. Specifies
whether the most significant bit is set for the last parameter when the static
parameter address list is set up.

YES The bit is set

NO The bit is not set

not specified:
If ILCS = NO, the bit is set for compatibility reasons;
if ILCS = YES, the bit is not set.

The actual parameters must be passed using "call by reference". Self-defining parameter
values may not be passed in the actual parameter list (unless absolute addresses are
involved). The list may contain empty list elements, but these should be regarded only
as "placeholders". Before calling a procedure in which the list is passed (@PASS
PAR=<par-list>), the user must fill the places left free in it with correct parameter
address values ("call by reference").

Programming notes

1. No names from dummy sections (see section 4.2, DSECT instruction) may be
specified in the VLIST operand.

2. The most significant bit of the last address constant is set to 1 to denote the end
of the parameter list. Negative values should therefore never be transferred directly.

3. @PAR must be called between @EXIT and @END of the appropriate procedure.

4. @PAR macro instruction in an ILCS procedure (@ENTR ILCS=YES):

The number of parameters is stored in a new EQU constant. The name of the
EQU constant is derived from the name of the parameter address list plus an
additional suffix character "#".

The name of the parameter list may not be more than 63 characters, since the
name of the EQU constant to be generated is exactly one character longer.

356 U5223-J-Z125-3-7600

Predefined macros @PAR

Example

Name Operation Operands

@PASS NAME=PROX,PAR=PARLIST
.
.
@EXIT

PARLIST @PAR PLIST=((1),A,B,C,D),VLIST=(ADR,4,NAME,,FIELD)
.
.

* Generated instruction statements
PARLIST DS 0F

DC A(ADR)
A DC A(4)
B DC A(NAME)
C DC A(0)
D DC A(FIELD+X’80000000’)

>>>>> See also @PASS, format 2

U5223-J-Z125-3-7600 357

@PAR Predefined macros

Format 2: Definition of a dummy section in the LOCAL area for parameter
acceptance

Name Operation Operands

dsect_name @PAR D=YES,
name

PLIST=([,...]),
(reg)

LEND=YES

dsect_name
Name of the dummy section to be generated

name Formal parameter; name of a field in which the corresponding parameter is
accepted when the call is made.

reg Register in which the corresponding parameter is accepted when the call is
made; positive absolute expression, either

decimal self-defining term or
predefined name of a register or
name to which an appropriate self-defining term has been allocated

Description

Calling @PAR causes a dummy section to be generated in the called procedure. This
specifies the list of formal parameters, i.e. it describes, or redefines, the structure of the
storage space of the LOCAL area in the procedure STACK of the called procedure.

A separate entry is generated in the dummy section for each formal parameter name
from the PLIST operand.

Format 2 of @PAR is allowed only in type E or I procedures.

Programming notes

1. The PLIST operands of @PAR must match the PLIST operands of the
corresponding @ENTR.

2. The @PAR macro must follow the appropriate procedure after the @END call.

358 U5223-J-Z125-3-7600

Predefined macros @PAR

3. If the dummy section contains data other than the list of fields and registers to be
accepted, it must be described as follows:

Name Operation Operands

.

.
name

dsect_name @PAR D=YES,PLIST=([,...])
(reg) ...

DS ...
.
.

dsect_name @PAR LEND=YES

Example

The example shows the generation of a DSECT in the LOCAL area of a called
procedure.

Name Operation Operands

PRO @ENTR TYP=E,LOCAL=IN,PLIST=(INPAR1,INPAR2,(R5),INPAR3)
.
.
@END

IN @PAR D=YES,LEND=YES,PLIST=(INPAR1,INPAR2,(R5),INPAR3)
.
.

* Generated instruction statements
IN DSECT

ORG *+96
INPAR1 DS A
INPAR2 DS A
INPAR3 DS A
LIN EQU *-IN
PRO CSECT

>>>>> See also @ENTR and @PASS, format 3

U5223-J-Z125-3-7600 359

@PAR Predefined macros

Format 3: Definition of the dummy section for the LOCAL area

Name Operation Operands

dsect_name @PAR D=YES
LEND=YES

dsect_name
Name of the dummy section to be generated

Description

D=YES @PAR with this operand denotes the start of the dummy section.

LEND=YES
@PAR with this operand denotes the end of the dummy section.

Data fields must be defined between @PAR D=YES and @PAR LEND=YES. This string
of instruction statements can be used to describe the structure of a local data area in
the procedure STACK, which was requested via @ENTR..., LOCAL=dsect_name.

Programming notes

The name of the dummy section to be generated must match the LOCAL operand of
@ENTR in the corresponding procedure.

Example

Name Operation Operands

PRO @ENTR TYP=I,LOCAL=DUMMY
.
.
@END

DUMMY @PAR D=YES
NAME1 DS ..

.

.
DUMMY @PAR LEND=YES

>>>>> See also @ENTR

360 U5223-J-Z125-3-7600

Predefined macros @PASS

@PASS Procedure call

Function

@PASS implements a sub-procedure call. Here, the calling procedure can pass
parameters to the called procedure.

Format 1: Call without parameter passing

Name Operation Operands

[name1] @PASS NAME=int_name
EXTNAME=ext_name

name2
ADDR=

(reg)

name1 Name
int_name Name of a procedure in the same module as the calling procedure (internal

procedure)
ext_name Name of a procedure in a module other than the calling procedure

(external procedure)
name2 Name of a word which contains the address of the called procedure
reg Register which contains the address of the called procedure; positive

absolute expression; either
decimal self-defining term or
predefined name of a register or
name to which an appropriate self-defining term has been allocated

Programming notes

1. A procedure called with EXTNAME=ext_name must be identified with @ENTR
TYP=E.

2. When specifying ADDR=, name2 or reg must be entered in the procedure, along
with the address of the called procedure.

U5223-J-Z125-3-7600 361

@PASS Predefined macros

Format 2: Call with static parameter passing via the STANDARD interface

Name Operation Operands

[name1] @PASS NAME=int_name
EXTNAME=ext_name list_name

name2 ,PAR=
ADDR= (list_reg)

(reg)

name1 Name
int_name Name of a procedure in the same module as the calling procedure (internal

procedure)
ext_name Name of a procedure in a module other than the calling procedure

(external procedure)
name2 Name of a word containing the address of the called procedure
reg Register containing the address of the called procedure; positive absolute

expression; either
decimal self-defining term or
predefined name of a register or
name to which an appropriate self-defining term has been allocated

list_name Name of the parameter list
list_reg Only allowed in procedures in which ILCS=NO is set.

Register which must contain the parameter list address; positive absolute
expression, either

decimal self-defining term or
predefined name of a register or
name to which an appropriate self-defining term has been allocated.

Description

list_name or list_reg specifies the name, or the address, of the parameter list generated
by the @PAR macro in the calling procedure.

The parameter list address is passed via register 1 to the called procedure.

If ILCS=YES is set, register 0 is loaded with the number of parameters.

Register 1 may not be used in the ADDR=reg operand.

362 U5223-J-Z125-3-7600

Predefined macros @PASS

Example

Name Operation Operands

PRO1 @ENTR TYP=M
.
.
@PASS NAME=PRO2,PAR=PARLIST
.
.
@EXIT

PARLIST @PAR PLIST=(PAR1,PAR2,PAR3),VLIST=(FIELD,27,SET)
@END
.
.

PRO2 @ENTR TYP=I,LOCAL=IN,PLIST=(INPAR1,INPAR2,INPAR3)
.
.
@EXIT

IN @PAR D=YES,LEND=YES,PLIST=(INPAR1,INPAR2,INPAR3)
.
.

>>>>> See also @PAR, format 1

U5223-J-Z125-3-7600 363

@PASS Predefined macros

Format 3: Call with dynamic parameter passing, STANDARD or OPTIMAL interface

Name Operation Operands

[name1] @PASS NAME=int_name
EXTNAME=ext_name

name2
ADDR=

(reg)

par_name
,PLIST=([,...])

(par_reg)

STA[NDARD]
[,PASS=]

OPT[IMAL]

YES
[,PLEND=

NO

name1 Name
int_name Name of a procedure in the same module as the calling procedure (internal

procedure)
ext_name Name of a procedure in a module other than the calling procedure

(external procedure)
name2 Name of a word which contains the address of the called procedure
reg Register which contains the address of the called procedure; positive

absolute expression; either
decimal self-defining term or
predefined name of a register or
name to which an appropriate self-defining term has been allocated

par_name Name of the field whose address is to be transferred to the called
procedure

par_reg Register whose contents are to be transferred to the called procedure;
positive absolute expression; either

decimal self-defining term or
predefined name of a register or
name to which an appropriate self-defining term has been allocated.

If ILCS=YES is set, the register must contain the address of the value to
be passed ("call by reference").

364 U5223-J-Z125-3-7600

Predefined macros @PASS

Description

PASS=STA
Parameters are passed via the STANDARD interface.

The PLIST operand specifies the actual parameters. In the LOCAL area of
the calling procedure a parameter list containing the actual parameters is
created.

Register 1 must not be used in the ADDR=reg operand.

PASS=OPT
Only allowed if ILCS=NO.
Parameters are passed via the OPTIMAL interface.

The PLIST operand specifies the actual parameters. Up to four parameters
are passed to registers 1 through 4. When there are more than four
parameters, the first three are passed to registers 2 through 4. For the rest,
a parameter list is created whose address is passed to register 1.

Registers 1 to 4 must not be used in the ADDR=reg operand.

PLEND= Can only be specified in procedures in which ILCS=YES is set. Only to be
used when specifying a PLIST.
Specifies whether the most significant bit is set for the last parameter in the
parameter address list when parameters are passed dynamically.

YES The bit is set.

NO The bit is not set.

not specified:
If ILCS = NO, the bit is set for compatibility reasons;
if ILCS = YES, the bit is not set.

If ILCS=YES is set, register 0 is loaded with the number of parameters.

Register 1 is loaded with the address of a parameter list.

The most significant bit in the address of the last parameter in the parameter address
list is set in accordance with the PLEND parameter.

When ILCS=YES, registers 0 and 1 are set to zero if no parameters are passed.

Format 3 of PASS is allowed in type M, E or I procedures only.

U5223-J-Z125-3-7600 365

@PASS Predefined macros

Programming notes

If a @PASS macro is called from within an ILCS procedure, the user is responsible for
ensuring that contents of the parameter list are correct: ILCS always requires "call by
reference". "Call by value" is also possible for non-ILCS procedures. No check can be
made by the macros at assembly time, for example because of EQU symbols.

Example

The example shows the passing of three parameters via the STANDARD interface.

Name Operation Operands

PRO1 @ENTR TYP=M,MAXPRM=3
@DATA CLASS=A,BASE=R6,DSECT=DUMMY
.
.
@PASS NAME=PRO2,PLIST=(FIELD1,(R7),FIELD4)
.
.
@EXIT
@END

DUMMY DSECT
FIELD1 DS CL10

.

.
FIELD4 DS CL25
LDUMMY EQU *-DUMMY

.

.
PRO2 @ENTR TYP=I,LOCAL=IN,PLIST=(INPAR1,INPAR2,INPAR3)

.

.
@EXIT
@END

IN @PAR D=YES,LEND=YES,PLIST=(INPAR1,INPAR2,INPAR3)
.
.

>>>>> See also @ENTR and @PAR, format 2

366 U5223-J-Z125-3-7600

Predefined macros @SETJV

@SETJV Set monitoring job variable

This macro call is only allowed in procedures with ILCS=YES.

Function

@SETJV (SET Job Variable) sets a value in the MONJV field of the PCD (see also
section 9.6.7).

Format

Name Operation Operands

monjv
[name] @SETJV [MONJV= symb addr]

(reg)

name Name
monjv Alphanumeric value
symb addr Symbolic address of a field
reg General-purpose register containing the address of the field.

Description

MONJV= Defines the new MONJV value

monjv Alphanumeric value, 4 characters in length, enclosed in single quotes.

symb addr1
Symbolic address of a field containing the string.

(reg1) Optionally, a register containing the address of
the string.

not specified
Four blanks are entered in the PCD field MONJV.

Programming notes

1. If the string of the MONJV value is longer than 4 characters, the first 4 characters
are used.

2. If the string of the MONJV value is shorter than 4 characters, the field is padded
on the right with blanks.

U5223-J-Z125-3-7600 367

@SETPM Predefined macros

@SETPM Set or reset program mask

This macro instruction is only allowed in procedures with ILCS=YES.

Function

@SETPM (SET Program Mask) sets the program mask or resets a changed program
mask (see also section 9.6.6).

Format

Name Operation Operands

symb addr
[name] @SETPM [PMASK=]

(reg)

name Name
symb addr Symbolic address of a field
reg General-purpose register containing the program mask.

Description

PMASK= Defines the new program mask.

symb addr
Symbolic address of a 1-byte field containing the new program mask in
hexadecimal form.

(reg) Optionally, a register containing the new program mask in the left byte.

not specified
The program mask is set to the ILCS default value.

Programming notes

If the program mask has been changed, it must be reset before an @EXIT, and
whenever an ILCS procedure is called in accordance with ILCS conventions. The
program mask must have the ILCS default value.

368 U5223-J-Z125-3-7600

Predefined macros @STXDI

@STXDI Disable STXIT handling routine

This macro instruction is only allowed in procedures with ILCS=YES.

Function

@STXDI (STXIT disable) deactivates an STXIT handling routine
(see also section 9.6.5, "STXIT handling").

Format

Name Operation Operands

symb addr
[name] @STXDI STXID=

(reg)

name Name
symb addr Sumbolic address of a field
reg General-purpose register containing the address of the ID code

Description

STXID ID code of the STXIT routine
The ID code is supplied by the @STXEN macro.

symb addr
Symbolic address of a 4-byte field aligned on a fullword boundary and
containing the ID code.

(reg) Optionally, a register containing the address of the ID code.

The inline code of the macro copies the specifications from the macro instruction into
an ILCS-conforming parameter block; these specifications are used to activate the
corresponding entry in the standard STXIT handler for disabling the STXIT handling
routine.

When the standard STXIT handler returns control to the calling procedure, register 15
contains a return code which indicates whether or not the function has been executed,
and which errors, if any, occurred.

U5223-J-Z125-3-7600 369

@STXEN Predefined macros

@STXEN Enable STXIT handling routine

This macro call is only allowed in procedures with ILCS=YES.

Function

@STXEN (STXIT enable) activates an STXIT handling routine
(see also section 9.6.5, "STXIT handling").

Format

Name Operation Operands

[name] @STXEN name1
STXNAME=symb addr1

(reg1)

symb addr2
STXID=

(reg2)

symb addr3
STXADR=

(reg3)

symb addr4
[STXSVC=]

(reg4)

name Name
name1 Alphabetic character string

symb addr1...symb addr4
Symbolic addresses of fields

reg1...reg4
General-purpose registers containing the address of a field.

370 U5223-J-Z125-3-7600

Predefined macros @STXEN

Description

STXNAME= Name of the STXIT event

name1 ’String’ with up to 7 characters.

The following values can be specified for the corresponding interrupt
classes:

’PROCHK ’ : "Program check"
’TIMER ’ : "CPU interval timer"
’RUNOUT ’ : "End of program runtime"
’ERROR ’ : "Unrecoverable program error"
’ABEND ’ : Class "ABEND"
’ESCPBRK’ : Class "ESCPBRK"
’TERM ’ : "Program termination"
’RTIMER ’ : "Real time interval timer"
’INTR ’ : "Message to program"
’MSG ’ : "Message to program"
’HWERROR’ : "Hardware error"
’SVC ’ : "SVC interrupt"

symb addr1
Symbolic address of a 7-byte field containing one of the above strings.

(reg1)
Optionally, a register containing the address of the string.

STXID= ID code returned

symb addr2
Symbolic address of a 4-byte field aligned on a fullword boundary.

(reg2)
Optionally, a register containing the address of the return field.

STXADR= Start address of the STXIT routine

symb addr3
Symbolic address of a 4-byte field, aligned on a fullword boundary,
containing the start address.

(reg3)
Optionally, a register containing the start address.

U5223-J-Z125-3-7600 371

@STXEN Predefined macros

STXSVC= List of SVC numbers
This parameter must be specified if ’SVC’ was specified as the event name
in the first parameter.

symb addr4
Symbolic address of a list aligned on a halfword boundary, containing the
number of entries and SVC numbers.

(reg4)
Optionally, a register containing the SVC list address.

The inline code of the macro copies the specifications from the macro instruction into
an ILCS-conforming parameter block; these specifications are used to activate the
corresponding entry in the standard STXIT handler for enabling the STXIT handling
routine.

When the standard STXIT handler returns control to the calling procedure, register 15
contains a return code which indicates whether or not the function has been executed,
and which errors, if any, occurred.

Programming notes

The ’HWERROR’ and ’MSG’ are not supported on releases earlier than BS2000 V11.0
(and they also require the correct version of ILCS).
The macro already maps ’MSG’ onto ’INTR’.

372 U5223-J-Z125-3-7600

Predefined macros @STXIM

@STXIM Define interrupt message layout

This macro instruction is only allowed in procedures with ILCS=YES.

Function

@STXIM (STXIT Interrupt Message) defines the layout of parameters that are passed to
the user routine by the standard STXIT handler (SSH).

Format

Name Operation Operands

[name] @STXIM [pre]=string

name Name
pre Prefix
string Alphanumeric characters

Description

pre = Prefix for the symbolic names of the individual fields

string No more than 4 characters
pre must conform to the assembler syntax for names.

The prefix is used to define the following DS statements for the individual fields:

preSTIW DS F STXIT interrupt weight
preSTMG DS CL64 Interrupt message

These parameters are passed to the user routine by the standard STXIT handler if an
STXIT event occurs.

Programming notes

A prefix with more than 4 characters is truncated to 4 characters.

U5223-J-Z125-3-7600 373

@THEN Predefined macros

@THEN YES sub-block

Function

@THEN forms the heading of the YES sub-block in a decision.

Format

Name Operation Operands

[name] @THEN

Description

The sub-block in an @IF branch which begins with @THEN is executed only if the
condition set with @IF holds true.

>>>>> See also @IF, @ELSE and @BEND

374 U5223-J-Z125-3-7600

Predefined macros @THRU

@THRU Iterative loop

Function

@THRU forms the heading of a loop construction. The number of executions is
determined by specifying the initial and end values of a control variable.

Format

Name Operation Operands

[name] @THRU (reg2) (reg3)
(reg1), name2 [, name3]

literal2 literal3

name Name
reg1, reg2, reg3

General-purpose registers; positive absolute expressions, either
decimal self-defining terms or
predefined names of registers or
names to which an appropriate self-defining term has been allocated

name2, name3
Names of constants or memory areas aligned on a halfword boundary and
which must always be one halfword long

literal2, literal3
Literals aligned on a halfword boundary and which must always be one
halfword long.

Description

reg1 contains the initial value for the control variable

reg2 or name2 or literal2
specifies the end value for the control variable

reg3 or name3 or literal3
specifies the increment.
Default for the increment is 1.

The increment is added to the control variable after execution of the loop sub-block. If
the sum of control variable and increment is greater than the end value, the structure
block is quit.

U5223-J-Z125-3-7600 375

@THRU Predefined macros

Programming notes

1. reg1 must be loaded with the initial value before calling the @THRU macro.

2. If no increment is specified, register 0 must not be used for the initial value.

3. A @THRU macro with initial value end value and increment 0 results in a
continuous loop.

Example

Name Operation Operands

.

.
LH R6,BEGL

LOOP @THRU (R6),ENDL
@DO
.
.
@BEND
.
.

EGL DC H’1’
ENDL DC H’10’

In this example, the initial value of the control variable is 1, the end value 10, and the
increment also 1 (default). The loop sub-block is therefore executed 10 times.

>>>>> See also @DO and @BEND

376 U5223-J-Z125-3-7600

Predefined macros @TOR

@TOR Logical ’OR with priority’

Function

In compound conditions, @TOR implements a logical OR operation, which has a higher
linkage priority than @AND.

Format

Name Operation Operands

[name] @TOR cond_sym

name Name
cond_sym Predefined or user-own condition symbol (see sections 9.2.4 and 9.2.5).

Programming notes

The call of the @TOR macro must be followed by a condition code setting machine
instruction (see "Assembler Instructions" manual [3]).

Example

Name Operation Operands

LOOP @CYCL
.
.
@WHEN EQ
CR R1,R2
@AND EQ
CR R7,R8
@TOR EQ
CLI FIELD,C’3’
@BREA
.
.
@BEND

The loop is quit, if either
R1 = R2 and R7 = R8 or
R1 = R2 and FIELD = 3.

>>>>> See also @AND and @OR

U5223-J-Z125-3-7600 377

@WHEN Predefined macros

@WHEN Loop termination condition

Function

In a loop with unrestricted terminal condition or in a count loop with unrestricted
terminal condition, @WHEN specifies the condition which results in termination of the
loop.

Format

Name Operation Operands

[name] @WHEN cond_sym

name Name
cond_sym Predefined or user-own condition symbol (see sections 9.2.4 and 9.2.5).

Description

cond_sym specifies the condition (see section 9.2.2) which is to terminate the loop. If
the condition holds true, the loop is exited with the @BREA macro.

Example See @BREA

>>>>> See also @BREA, @CYCL and @BEND

378 U5223-J-Z125-3-7600

Predefined macros @WHIL

@WHIL Loop with pre-check

Function

@WHIL forms the heading of a loop construction in which the number of executions is
determined by whether or not any condition prevails.

Format

Name Operation Operands

[name] @WHIL[E] cond_sym

name Name
cond_sym Predefined or user-own condition symbol (see sections 9.2.4 and 9.2.5).

Description

cond_sym specifies the condition (see sections 9.2.4 and 9.2.5) that initiates execution
of the loop sub-block. When the @WHIL macro is called, the condition is checked and,
if it holds true, the loop sub-block is executed.

Example

Name Operation Operands

LOOP @WHIL EQ
CLI END,C’N’
@DO
.
.
@BEND

The loop sub-block is executed provided END is equal to N.

>>>>> See also @DO and @BEND

U5223-J-Z125-3-7600 379

11 Appendix

U5223-J-Z125-3-7600 381

DC constants

11.1 Summary of DC constants

Specified Implied Length Exponent Scaling Padding,
Type by Alignment Length (byte) Modifier Modifier Factor Truncation

absolute or
A relocatable word 4 1 to 4 left

expression

binary
B digits byte as required 1 to 256 left

C characters byte as required 1 to 256 right

Padded right
D decimal double 8 1 to 8 -85 to +75 0 to 14 Truncation not

digits word applicable

Padded right
E decimal word 4 1 to 8 -85 to +75 0 to 14 Truncation not

digits applicable

decimal
F digits word 4 1 to 8 -85 to +75 -187 to +346 left

decimal
H digits halfword 2 1 to 8 -85 to +75 -187 to +346 left

Padded right
L decimal double 16 1 to 16 -85 to +75 0 to 28 Truncation not

digits word applicable

decimal
P digits byte as required 1 to 16 left

name of a
Q dummy word 4 1 to 4 left

register

symbol
S or halfword 2 2

non-
symbol

V name word 4 3 or 4 left

hexadecimal
X digits byte as required 1 to 256 left

absolute or
Y relocatable halfword 2 1 or 2 left

expression

decimal
Z digits byte as required 1 to 16 left

382 U5223-J-Z125-3-7600

Machine instructions

11.2 Format of the machine instructions

The instruction list below contains the instructions of the BS2000-NXS (SET1), BS2000-
XS (SET3) and BS2000-ESA instruction sets (the Assembler instructions are described
in the "Assembler Instructions" Language Reference Manual[]).
The BS2000-NXS instruction set supports systems with 24-bit addressing (NXS stands
for Non-eXtended System).
The BS2000-XS instruction set supports XS systems with 31-bit addressing (XS stands
for eXtended System).
The BS2000-ESA supports ESA systems, which allow for expansion of virtual address
space (ESA stands for Enterprise Systems Architecture).
The BS2000-NXS instruction set is incorporated in the BS2000-XS instruction set, and
both are incorporated the BS2000-ESA instruction set.
The instruction set to which each instruction belongs is indicated by the initial letter N,
X or E in the NXS / XS / ESA column.
In the list below, the instructions marked N represent the basic instruction set, while
those marked X or E belong to the corresponding extended instruction sets.

U5223-J-Z125-3-7600 383

Machine instructions

Mnemonic Instruction name NXS Mach. Length Operand format
code XS code

ESA

A Add N 5A 4 R1,D2(X2,B2)
AD Add normalized, long N 6A 4 R1,D2(X2,B2)
ADR Add normalized, long N 2A 2 R1,R2
AE Add normalized, short N 7A 4 R1,D2(X2,B2)
AER Add normalized, short N 3A 2 R1,R2
AH Add halfword N 4A 4 R1,D2(X2,B2)
AL Add logical N 5E 4 R1,D2(X2,B2)
ALR Add logical N 1E 2 R1,R2
AP Add decimal N FA 6 D1(L1,B1),D2(L2,B2)
AR Add N 1A 2 R1,R2
AU Add unnormalized, short N 7E 4 R1,D2(X2,B2)
AUR Add unnormalized, short N 3E 2 R1,R2
AW Add unnormalized, long N 6E 4 R1,D2(X2,B2)
AWR Add unnormalized, long N 2E 2 R1,R2
AXR Add normalized with N 36 2 R1,R2

extended length
BAL Branch and link N 45 4 R1,D2(X2,B2)
BALR Branch and link N 05 2 R1,R2
BAS Branch and link N 4D 4 R1,D2(X2,B2)
BASR Branch and link N 0D 2 R1,R2
BASSM Branch and save and set mode X 0C 2 R1,R2
BC Branch on condition N 47 4 I,D2(X2,B2)
BCR Branch on condition N 07 2 I,R2
BCT Branch on count N 46 4 R1,D2(X2,B2)
BCTR Branch on count N 06 2 R1,R2
BSM Branch and save X 0B 2 R1,R2
BXH Branch on index high N 86 4 R1,R3,D2(B2)
BXLE Branch on index low or equal N 87 4 R1,R3,D2(B2)
C Algebraic comparison N 59 4 R1,D2(X2,B2)

* CCPU Check CPU N AC 4 D1(B1),I2
CCW Define channel command word N 8 I1,I2,I3,I4
CCW0 Define channel command word X 8 I1,I2,I3,I4

(format 0)
CCW1 Define channel command word X 8 I1,I2,I3,I4

(format 1)
CD Compare long N 69 4 R1,D2(X2,B2)
CDR Compare long N 29 2 R1,R2
CDS Compare double and swap N BB 4 R1,R3,D2(B2)
CE Compare short N 79 4 R1,D2(X2,B2)
CER Compare short N 39 2 R1,R2
CH Compare halfword N 49 4 R1,D2(C2,B2)

* CIOC Check I/O controller N AD 4 D1(B1),I2
* CKC Check channel N 9F 4 D1(B1)

CL Compare logical N 55 4 R1,D2(X2,B2)
CLC Compare logical N D5 6 D1(L,B1),D2(B2)
CLCL Compare logical characters N 0F 2 R1,R2

long
CLI Compare logical N 95 4 D1(B1),I2
CLM Compare logical chars. under N BD 4 R1,M3,D2(B2)

mask

384 U5223-J-Z125-3-7600

Machine instructions

Mnemonic Instruction name NXS Mach. Length Operand format
code XS code

ESA

CLM Compare logical chars. under N BD 4 R1,M3,D2(B2)
mask

CLR Compare logical N 15 2 R1,R2
CP Compare decimal N F9 6 D1(L1,B1),D2(L2,B2)
CPYA Copy Access Register E B24D 4 R1,R2
CR Algebraic comparison N 19 2 R1,R2
CS Compare and swap N BA 4 R1,R3,D2(B2)

* CSCH Clear subchannel X B230 4 No operand
CVB Convert into binary form N 4F 4 R1,D2(X2,B2)
CVD Convert into decimal form N 4E 4 R1,D2(X2,B2)
D Divide N 5D 4 R1,D2(X2,B2)
DD Divide long N 6D 4 R1,D2(X2,B2)
DDR Divide long N 2D 2 R1,R2
DE Divide short N 7D 4 R1,D2(X2,B2)
DER Divide short N 3D 2 R1,R2

* DIG Diagnose N 83 4 D1(B1)
DP Divide decimal N FD 6 D1(L1,B1),D2(L2,B2)
DR Divide N 1D 2 R1,R2
DXR Divide extended X B22D 4 R1,R2
EAR Extract Access Register E B24F 4 R1,R2
ED Edit N DE 6 D1(L,B1),D2(B2)
EDMK Edit and mark N DF 6 D1(L,B1),D2(B2)

** EPAR Extract primary ASN X B226 4 R1
** ESAR Extract secondary AS X B227 4 R1

EX Execute N 44 4 R1,D2(X2,B2)
* FC Execute special functions N 9A 4 D1(B1),I2
* FCAL Execute special functions N B7 4 D1(B1),I2

HDR Halve long N 24 2 R1,R2
* HDV Halt device N 9E 4 D1(B1)

HER Halve short N 34 2 R1,R2
* HSCH Halt subchannel X B231 4 No operand

** IAC Insert address space control E B224 4 R1
IC Insert character N 43 4 R1,D2(X2,B2)
ICM Insert character with mask N BF 4 R1,M3,D2(B2)

* IDL Idle N 80 4 I2
** IPK Insert PSW key X B208 4 No operand

IPM Insert program mask N B222 4 R1
* ISK Interrogate memory protect key N 09 2 R1,R2

** IVSK Insert virtual storage key X B223 4 R1,R2
L Load N 58 4 R1,D2(X2,B2)
LA Load address N 41 4 R1,D2(X2,B2)
LAE Load Address Extended E 51 4 R1,D2(X2,B2)
LAM Load Access Multiple E 9A 4 R1,R3,D2(B2)
LCDR Load complement, long N 23 2 R1,R2
LCER Load complement, short N 33 2 R1,R2
LCR Load complement N 13 2 R1,R2
LD Load, long N 68 4 R1,D2(X2,B2)
LDR Load, long N 28 2 R1,R2
LE Load, short N 78 4 R1,D2(X2,B2)
LER Load, short N 38 2 R1,R2
LH Load halfword N 48 4 R1,D2(X2,B2)
LM Load multiple N 98 4 R1,R3,D2(B2)

U5223-J-Z125-3-7600 385

Machine instructions

Mnemonic Instruction name NXS Mach. Length Operand format
code XS code

ESA

ESA

LNR Load negative N 11 2 R1,R2
LPDR Load positive, long N 20 2 R1,R2
LPER Load positive, short N 30 2 R1,R2
LPR Load positive N 10 2 R1,R2
LR Load N 18 2 R1,R2
LRDR Load rounded extended to long N 25 2 R1,R2
LRER Load rounded extended to short N 35 2 R1,R2

* LSM Load shadow memory N D9 6 D1(L,B1),D2(B2)
* LSP Load scratch pad N D8 6 D1(L,B1),D2(B2)

LTDR Load and test, long N 22 2 R1,R2
LTER Load and test, short N 32 2 R1,R2
LTR Load and test N 12 2 R1,R2
M Multiply N 5C 4 R1,D2(X2,B2)
MD Multiply, long N 6C 4 R1,D2(X2,B2)
MDR Multiply, long N 2C 2 R1,R2
ME Multiply, short N 7C 4 R1,D2(X2,B2)
MER Multiply, short N 3C 2 R1,R2
MH Multiply halfword N 4C 4 R1,D2(X2,B2)
MP Multiply decimal N FC 6 D1(L1,B1),D2(L2,B2)
MR Multiply N 1C 2 R1,R2

* MSCH Modify subchannel X B232 4 D2(B2)
MVC Move characters N D2 6 D1(L,B1),D2(B2)
MVCL Move characters, long N 0E 2 R1,R2

** MVCP Move to primary X DA 6 D1(R1,B1),D2(B2),R3
** MVCS Move to secondary X DB 6 D1(R1,B1),D2(B2),R3

MVI Move immediate N 92 4 D1(B1),I2
MVN Move numerics N D1 6 D1(L,B1),D2(B2)
MVO Move with offset N F1 6 D1(L1,B1),D2(L2,B2)
MVZ Move zones N D3 6 D1(L,B1),D2(B2)
MXD Multiply long to extended N 67 4 R1,D2(X2,B2)
MXDR Multiply long to extended N 27 2 R1,R2
MXR Multiply extended N 26 2 R1,R2
N AND N 54 4 R1,D2(X2,B2)
NC AND N D4 6 D1(L,B1),D2(B2)
NI AND N 94 4 D1(B1),I2
NR AND N 14 2 R1,R2
O OR N 56 4 R1,D2(X2,B2)
OC OR N D6 6 D1(L,B1),D2(B2)
OI OR N 96 4 D1(B1),I2
OR OR N 16 2 R1,R2
PACK Pack N F2 6 D1(L1,B1),D2(L2,B2)

** PC Change function status X B218 4 D2(B2)
** PT Program transfer X B228 4 R1,R2

* RCHP Reset channel path X B23B 4 No operand
* RDD Read direct N 85 4 D1(B1),I2
* RSCH Resume subchannel X B238 4 No operand

S Subtract N 5B 4 R1,D2(X2,B2)
SAC Set address space control E B219 4 D2(B2)

386 U5223-J-Z125-3-7600

Machine instructions

Mnemonic Instruction name NXS Mach. Length Operand format
code XS code

ESA

* SAL Set address limit X B237 4 No operand
SAR Set Access Register E B24E 4 R1,R2

* SCHM Set channel monitor X B23C 4 No operand
SD Subtract normalized, long N 6B 4 R1,D2(X2,B2)
SDR Subtract normalized, long N 2B 2 R1,R2

* SDV Start device N 9C 4 D1(B1)
SE Subtract normalized, short N 7B 4 R1,D2(X2,B2)
SER Subtract normalized, short N 3B 2 R1,R2
SH Subtract halfword N 4B 4 R1,D2(X2,B2)
SL Subtract logical N 5F 4 R1,D2(X2,B2)
SLA Shift left single N 8B 4 R1,D2(B2)
SLDA Shift left double N 8F 4 R1,D2(B2)
SLDL Shift left double logical N 8D 4 R1,D2(B2)
SLL Shift left single logical N 89 4 R1,D2(B2)
SLR Subtract without overflow N 1F 2 R1,R2
SP Subtract decimal N FB 6 D1(L1,B1),D2(L2,B2)

** SPKA Set PSW key from address X B20A 4 D2(B2)
SPM Set program mask N 04 2 R1
SR Subtract N 1B 2 R1,R2
SRA Shift right single N 8A 4 R1,D2(B2)
SRDA Shift right double N 8E 4 R1,D2(B2)
SRDL Shift right double logical N 8C 4 R1,D2(B2)
SRL Shift right single logical N 88 4 R1,D2(B2)
SRP Shift and round decimal N F0 6 D1(L1,B1),D2(B2),I3

* SSCH Start subchannel X B233 4 D2(B2)
* SSK Set memory protect key N 08 2 R1,R2
* SSM Store shadow memory N DA 6 D1(L,B1),D2(B2)
* SSP Store scratch pad N D0 6 D1(L,B1),D2(B2)

ST Store N 50 4 R1,D2(X2,B2)
STAM Store Access Multiple E 9B 4 R1,R3,D2(B2)
STC Store character N 42 4 R1,D2(X2,B2)
STCK Store clock N B2 4 D1(B1)
STCM Store character with mask N BE 4 R1,M3,D2(B2)

* STCPS Store channel path status N B23A 4 D2(B2)
* STCRW Store channel report word N B239 4 D2(B2)

STD Store long N 60 4 R1,D2(X2,B2)
STE Store short N 70 4 R1,D2(X2,B2)
STH Store halfword N 40 4 R1,D2(X2,B2)
STM Store multiple N 90 4 R1,R3,D2(B2)

* STSCH Store subchannel X B234 4 D2(B2)
SU Subtract unnormalized, short N 7F 4 R1,D2(X2,B2)
SUR Subtract unnormalized, short N 3F 2 R1,R2
SVC Supervisor call N 0A 2 I
SW Subtract unnormalized, long N 6F 4 R1,D2(X2,B2)
SWR Subtract unnormalized, long N 2F 2 R1,R2

U5223-J-Z125-3-7600 387

Machine instructions

Mnemonic Instruction name NXS Mach. Length Operand format
code XS code

ESA

SXR Subtract normalized extended N 37 2 R1,R2
TAR Test Access Register E B24C 4 R1,R2

* TDV Test device N 9D 4 D1(B1)
TM Test under mask N 91 4 D1(B1),I2

* TPI Test pending interruption X B236 4 D2(B2)
TR Translate N DC 6 D1(L,B1),D2(B2)

* TRACE Trace X 99 4 R1,R3,D2(B2)
TRT Translate and test N DD 6 D1(L,B1),D2(B2)
TS Test and set N 93 4 D1(B1)

* TSCH Test subchannel X B235 4 D2(B2)
UNPK Unpack N F3 6 D1(L1,B1),D2(L2,B2)

* WRD Write direct N 84 4 D1(B1),I2
X Exclusive-OR operation N 57 4 R1,D2(X2,B2)
XC Exclusive-OR operation N D7 6 D1(L,B1),D2(B2)
XI Exclusive-OR operation N 97 4 D1(B1),I2
XR Exclusive-OR operation N 17 2 R1,R2
ZAP Zero and add N F8 6 D1(L1,B1),D2(L2,B2)

* Privileged instructions
** Semi-privileged instructions

388 U5223-J-Z125-3-7600

Assembler restrictions

11.3 Assembler restrictions

ASSEMBH cannot assemble a program of any size. There are restrictions with regard to
program size, number of names, and so on, which must be adhered to in order to
achieve a correct assembly. These ASSEMBH restrictions are detailed in this section. In
addition to these theoretical maximum values, the size of programs which ASSEMBH
can assemble is dependent on storage capacity and the complexity of the programs
and the assembler.

• Number of lines in the source program

In the source program, every single instruction and every remark is regarded as a
statement, and receives a statement number in the assembler listing. If an instruction is
continued over several lines, the instruction still only has one statement number.

After resolution of the macros and insertion of COPY elements, a source program may
contain a maximum of 231-1 statements.

• Number of names and literals

A source program may contain 231-1 names and literals, maximum, i.e. the symbol
table may contain that number of entries at most.

If more names and literals have been used in a source program, ASSEMBH issues a
message and assembly is abnormally terminated.

• Length of names

Names may have a maximum length of 64 characters. External names in modules in
OM (object module) format, which are processed by the TSOSLNK linkage editor, are
limited to eight characters.
External names in modules generated using the COMPILER-ACT(,MODULE-
FORMAT=LLM) option (see ASSEMBH, User Guide [1]) are expanded to a length of 32
characters and are processed by the BINDER linkage editor.

• Parenthesizing levels in arithmetic expressions

The result of the expression

(number of elements) + (number of operators) + (parenthesizing levels) +

(management entries)

must not exceed the limits specified by the internal assembler tables.

U5223-J-Z125-3-7600 389

Assembler restrictions

• Number of macro definitions

From the libraries allocated for an assembly and the source text, a maximum 231-1
macro definitions can be used.

• Nesting level of macros and COPY elements

The maximum possible nesting level of macros is 255.

The nesting level for COPY elements is preset at 5. This can be increased to a
maximum of 255 using the SDF option (see "ASSEMBH User Guide" [1]).

• Length of macro instruction operands

A macro instruction operand may be up to 1020 characters long.

In keyword operands, the number of characters after the equals sign is counted. If an
operand contains a variable symbol, this length applies after insertion of the actual
value. If the operand is an operand sublist, all commas and parentheses are counted as
characters.

• Variable symbols

A maximum of 215-1 variable symbols may be used per macro definition.

• Length of input records

What the assembler is to interpret as the source text is determined when reading in
from a file. This source text may be up to 255 characters in length.

The defaults for source text to be interpreted are columns 1, 71, 72, and 16. Using the
SDF option FROM-COLUMN, TO-COLUMN, the setting for the begin column can be
increased to 70, and that of the end column to a maximum of 255. With the ICTL
instruction, the begin column can be set at 40, and the end column at a maximum of
80.

• XREF listing

There may be a maximum of 231-1 references in the XREF listing.

If this number is exceeded, an error message is issued and assembly is aborted.

390 U5223-J-Z125-3-7600

Assembler restrictions

• ESID numbers

ASSEMBH can issue a maximum of 215-1 ESID numbers.

An ESID number is issued for:
each control section(Type SD)
each common control section (Type CM)
each dummy section(Type DS)
each external dummy section (Types XD, XR)
each XDSEC name (Types XD, XR)
each EXTRN name (Type ER)
each WXTRN name (Type WX)
each V-type constant (Type VC)
each dummy register (Type DX)

• Assembler instructions/macro statements

Number of LTORG instructions: any number
maximum duplication factor in DC and DS: 224-1
maximum length modifier in DC and DS: depends on constant type
maximum length specification in EQU: 224-1
maximum number of sequence symbols per macro: 215-1
maximum dimension in subscripted SET symbols: 231-1
maximum value range for arithmetic expressions: -231 to 231-1
Number of continuation lines in an instr. statement: 9
Continuation lines in alternative statement format: any number

U5223-J-Z125-3-7600 391

Assembler restrictions

Other restrictions in structured programming

• Predefined names

All names beginning with "@" or "R@" are reserved for ASSEMBH, and may not be
used elsewhere.

General-purpose registers can be accessed using R0 through R15, and floating-point
registers with FA through FD.

Use of registers

Only registers 5 to 9 can be used without limitations. All others are reserved by the
following register conventions.

Register Utilization

1 Address of the parameter list for parameter passing
1 to 4 Parameter values or addresses for parameter passing in

OPTIMAL form
10 Base address register for type M, E and I procedures
11 General-purpose register. For C programs: static areas pointer
12 Program Manager start address
13 Base address register for the STACK
14 Procedure return address
15 Procedure start address,

Standard base address register for type B and L procedures

• Names generated by ASSEMBH

A maximum of 9000 internal names can be generated by ASSEMBH. If there is an
overflow of the internal name count, ASSEMBH outputs an MNOTE with the termination
weight.

• Nesting of structure blocks

The nesting of structure blocks is defined in a SETC symbol. Nesting is limited by the
length of this symbol. If it is too long, an error message ensues.

• Module size

The size of an object module is limited by its addressability via a base address register.

392 U5223-J-Z125-3-7600

Dummy registers, examples

11.4 Dummy registers: Examples

DUMMY REGISTER EXAMPLE 1/ PART 1 14:27:36 1994-03-08 PAGE 0003

LOCTN OBJECT CODE ADDR1 ADDR2 STMNT M SOURCE STATEMENT
1 TITLE ’DUMMY REGISTER EXAMPLE 1/ PART 1’
2 *
3 * - IN THIS EXAMPLE THE LENGTH OF THE DUMMY REGISTER VECTOR (DRV) IS
4 * DEFINED AND STORED AT PROGRAMMING TIME.
5 * - THE INDIVIDUAL DUMMY REGISTERS ARE ADDRESSED BY MEANS OF
6 * Q-TYPE CONSTANTS
7 *
8 PRINT NOGEN

000000 9 PSEUDO1 START
10 EXTRN PSEUDO2

0000F4 11 ENTRY PSRVEKT
000000 05 A0 12 BALR 10,0
000002 00000002 13 USING *,10

14 *
000002 41 10 A0F2 000000F4 15 LA 1,PSRVEKT
000006 58 20 A0E6 000000E8 16 L 2,QPSREG1 R2 <- DISPLACEMENT OF DUMMY REG1
00000A 1A 21 17 AR 2,1 RELATIVE TO START OF DRV
00000C D2 09 2000A142 00000144 18 MVC 0(10,2),=C’WUNDERLICH’ TO BECOME CONTENT OF PSREG1
000012 58 20 A0EE 000000F0 19 L 2,QPSREG3 R2 <- DISPLACEMENT OF DUMMY REG3
000016 1A 21 20 AR 2,1 RELATIVE TO START OF DRV
000018 D2 4F 2000A094 00000096 21 MVC 0(80,2),TEXT TEXT TO BECOME CONTENT OF PSREG3
00001E 58 E0 A13E 00000140 22 L 14,=A(PSEUDO2)
000022 05 FE 23 BALR 15,14
000024 24 WROUT NACHR1,FEHLER

39 2 *,@DCEO 952 900503 53531004 00066200
42 1 *,WROUT 004 890217 53121058
43 *

000032 44 TERM
47 2 *,VERSION 010 00001300

000046 59 FEHLER TERM DUMP=Y
62 2 *,VERSION 010 00001300
74 *

00005C 75 NACHR1 DS 0F
00005C 0038000040 76 DC X’0038000040’ X’38’ = MESSAGE LENGTH
000061 5C5C5C5C5C5C5C5C 77 DC C’**************PROGRAMMENDE BEISPIEL 1****************’
000096 C5C9D540D4C5D5E2 78 TEXT DC C’EIN MENSCH KANNS MANCHMAL NICHT VERSTEHN,’
0000BF E3D9C9C6C6E340C5 79 DC C’TRIFFT EIN WAS ER VORAUSGESEHN ’

80 *
000000 81 PSREG1 DXD CL10 DEFINITIONS OF DUMMY REGISTERS 1
000000 82 PSREG2 DXD CL60 2
000000 83 PSREG3 DXD 20F 3

84 *
0000E8 00000000 85 QPSREG1 DC Q(PSREG1) DEFINITIONS OF Q-TYPE CONSTANTS
0000EC 00000000 86 QPSREG2 DC Q(PSREG2) FOR ADDRESSING THE INDIVIDUAL
0000F0 00000000 87 QPSREG3 DC Q(PSREG3) DUMMY REGISTERS

88 *
0000F4 89 PSRVEKT DS CL(L’PSREG1+L’PSREG2+L’PSREG3) DUMMY REGISTER VECTOR

90 *
91 END

000140 00000000 92 =A(PSEUDO2)
000144 E6E4D5C4C5D9D3C9 93 =C’WUNDERLICH’

FLAGS IN 00000 STATEMENTS, 000 PRIVILEGED FLAGS, 000 MNOTES
HIGHEST ERROR-WEIGHT : NO ERRORS
THIS PROGRAM WAS ASSEMBLED BY ASSEMBH V 1.2A00 ON 1994-03-08 AT 14:07:24

U5223-J-Z125-3-7600 393

Dummy registers, examples

EXAMPLE 1/ PART 2 14:27:37 1994-03-08 PAGE 0003

LOCTN OBJECT CODE ADDR1 ADDR2 STMNT M SOURCE STATEMENT
1 *
2 TITLE ’EXAMPLE 1/ PART 2’
3 *
4 PRINT NOGEN

000000 5 PSEUDO2 START
000000 05 B0 6 BALR 11,0
000002 00000002 7 USING *,11

8 EXTRN PSRVEKT
9 *

000002 58 10 B016 00000018 10 L 1,=A(PSRVEKT)
000006 58 20 B012 00000014 11 L 2,QPSREG2 R2 <- DISPLACEMENT OF DUMMY REG2
00000A 1A 21 12 AR 2,1 RELATIVE TO START OF DRV
00000C D2 13 2000B01A 0000001C 13 MVC 0(20,2),=C’(E.ROTH)’
000012 07 FF 14 BR 15

15 *
000000 16 PSREG2 DXD CL22
000014 00000000 17 QPSREG2 DC Q(PSREG2)

18 *
19 END

000018 00000000 20 =A(PSRVEKT)
00001C 4DC54BD9D6E3C840 21 =C’(E.ROTH)’

FLAGS IN 00000 STATEMENTS, 000 PRIVILEGED FLAGS, 000 MNOTES
HIGHEST ERROR-WEIGHT : NO ERRORS
THIS PROGRAM WAS ASSEMBLED BY ASSEMBH V 1.2A00 ON 1994-03-08 AT 14:07:24

394 U5223-J-Z125-3-7600

Dummy registers, examples

DUMMY REGISTER EXAMPLE 2/ PART 1 14:28:39 1994-03-08 PAGE 0003

LOCTN OBJECT CODE ADDR1 ADDR2 STMNT M SOURCE STATEMENT
1 TITLE ’DUMMY REGISTER EXAMPLE 2/ PART 1’
2 *
3 * - IN THIS EXAMPLE THE DUMMY REGISTER VECTOR (DRV) IS STORED
4 * AT PROGRAM RUNTIME BY REQUESTING MEMORY PAGES. THE PROGRAMMER
5 * NEED NOT CONCERN HIMSELF WITH THE LENGTH OF THE DRV, AS THIS IS
6 * ENTERED IN FIELD ’PRVLEN’ (SEE INITIALISATION ROUTINE) BY THE
7 * LINKAGE EDITOR. EVALUATION IS PERFORMED AT PROGRAM RUNTIME.
8 *
9 * - ADDRESSING THE INDIVIDUAL DUMMY REGISTERS IS EFFECTED VIA

10 * A ’DUMMY REGISTER VECTOR BASE REGISTER’.
11 *
12 PRINT NOGEN

000000 13 PSEUDO1 START
14 EXTRN PRVINIT

000000 05 A0 15 BALR 10,0
000002 00000002 16 USING *,10
000002 17 USING *PRV,8 DEFINES THE BASE REGISTER FOR

18 * ACCESS TO DRV
000002 58 E0 A0E6 000000E8 19 L 14,=A(PRVINIT)
000006 05 CE 20 BALR 12,14
000008 18 81 21 LR 8,1 R8 <- A(1ST ALLOCATED PAGE)

22 *
00000A D2 23 8000A0EA 00000000 000000EC 23 MVC PSREG1,=C’EIN MENSCH WIRD MUEDE SEINER FRAGEN:’
000010 D2 03 8000A07B 00000000 0000007D 24 MVC PSREG2,TEXT2 MOVES DATA
000016 D2 20 8000A09F 00000000 000000A1 25 MVC PSREG3,TEXT3 TO
00001C D2 07 8000A0C0 00000000 000000C2 26 MVC PSREG4,TEXT4 DUMMY REGISTERS
000022 27 WROUT NACHR,FEHLER

42 2 *,@DCEO 952 900503 53531004 00066200
45 1 *,WROUT 004 890217 53121058
46 *

000032 47 FEHLER TERM
50 2 *,VERSION 010 00001300
62 *

000048 63 NACHR DS 0F
000048 0035000040 64 DC X’0035000040’
00004D 5C5C5C5C5C5C5C5C 65 DC C’*************PROGRAMMENDE BEISPIEL 2************’
00007D D5C9C540D2C1D5D5 66 TEXT2 DC C’NIE KANN DIE WELT IHM ANTWORT SAGEN.’
0000A1 C4D6C3C840C7C5D9 67 TEXT3 DC C’DOCH GERN GIBT AUSKUNFT ALLE WELT’
0000C2 C1E4C640C6D9C1C7 68 TEXT4 DC C’AUF FRAGEN, DIE ER NIE GESTELLT. ’

69 *
000000 70 PSREG1 DXD CL36
000000 71 PSREG2 DXD 9F
000000 72 PSREG3 DXD XL33
000000 73 PSREG4 DXD 4D

74 *
000000 75 END PSEUDO1
0000E8 00000000 76 =A(PRVINIT)
0000EC C5C9D540D4C5D5E2 77 =C’EIN MENSCH WIRD MUEDE SEINER FRAGEN:’

FLAGS IN 00000 STATEMENTS, 000 PRIVILEGED FLAGS, 000 MNOTES
HIGHEST ERROR-WEIGHT : NO ERRORS
THIS PROGRAM WAS ASSEMBLED BY ASSEMBH V 1.2A00 ON 1994-03-08 AT 14:07:24

U5223-J-Z125-3-7600 395

Dummy registers, examples

DUMMY REGISTER EXAMPLE 2/ INITIALIZATION 14:28:40 1994-03-08 PAGE 0003

LOCTN OBJECT CODE ADDR1 ADDR2 STMNT M SOURCE STATEMENT
1 *
2 TITLE ’DUMMY REGISTER EXAMPLE 2/ INITIALIZATION’
3 PRINT NOGEN
4 *

000000 5 PRVINIT START
000000 05 B0 6 BALR 11,0
000002 00000002 7 USING *,11

8 *
000002 17 22 9 XR 2,2 DEFINES NUMBER OF 4K PAGES
000004 58 30 B036 00000038 10 L 3,PRVLEN REQUIRED IN ACCORDANCE WITH
000008 5D 20 B03E 00000040 11 D 2,=F’4096’ LENGTH OF DRV AND ...
00000C 5A 30 B042 00000044 12 A 3,=F’1’

13 *
000010 14 REQM (3) ... ALLOCATION OF THIS

17 2 *,VERSION 500 00001300
00001E 12 FF 24 LTR 15,15
000020 07 8C 25 BRZ 12

26 *
000022 27 TERM DUMP=Y

30 2 *,VERSION 010 00001300
42 *

000038 43 DS 0F
000038 00000000 44 PRVLEN CXD THIS IS WHERE THE LINKAGE EDITOR

45 * STORES THE LENGTH OF THE DRV
000000 46 END PRVINIT
000040 00001000 47 =F’4096’
000044 00000001 48 =F’1’

FLAGS IN 00000 STATEMENTS, 000 PRIVILEGED FLAGS, 000 MNOTES
HIGHEST ERROR-WEIGHT : NOTE
THIS PROGRAM WAS ASSEMBLED BY ASSEMBH V 1.2A00 ON 1994-03-08 AT 14:07:24

396 U5223-J-Z125-3-7600

Parameter passing, example

11.5 Parameter passing in structured programming: Example

ASSEMBH LISTING 14:29:44 1994-03-08 PAGE 0003

LOCTN OBJECT CODE ADDR1 ADDR2 STMNT M SOURCE STATEMENT
000000 1 DEMOPARA START

2 PRINT NOGEN
3 * MATRIX PROCESSING OF WORD MATRIX STORED LINE-BY-LINE

000000 4 DEMOPARA @ENTR TYP=M,MAXPRM=2, *
4 FUNCT=’DEMO PARAMETER TRANSFER/ACCEPTANCE OPTIONS’

88 3 *,VERSION 010 00001300
109 * CALCULATE MATRIX DIMENSION AND REQUEST STORAGE SPACE

000030 48 B0 A13E 00000140 110 LH R11,NUMLINES
000034 4C B0 A140 00000142 111 MH R11,NUMCOLS
000038 40 B0 A142 00000144 112 STH R11,DIMMATR
00003C 1A BB 113 AR R11,R11
00003E 1A BB 114 AR R11,R11
000040 115 @DATA CLASS=A,BASE=R11,LENGTH=(R11)

126 *
000050 41 60 A144 00000146 127 LA ARLINE,HLINE
000054 41 70 A146 00000148 128 LA ARCOLUMN,HCOLUMN

129 * PROCESS MATRIX ELEMENT-BY-ELEMENT
000058 41 80 0001 130 LA RLINE,1

131 @THRU (RLINE),NUMLINES
00005C 135 @DO
000064 40 80 A144 00000146 139 STH RLINE,HLINE
000068 41 90 0001 140 LA RCOLUMN,1

141 @THRU (RCOLUMN),NUMCOLS
00006C 145 @DO
000074 40 90 A146 00000148 149 STH RCOLUMN,HCOLUMN

150 PRINT GEN
151 EJECT

U5223-J-Z125-3-7600 397

Parameter passing, example

ASSEMBH LISTING 14:29:44 1994-03-08 PAGE 0004

LOCTN OBJECT CODE ADDR1 ADDR2 STMNT M SOURCE STATEMENT
152 * DYNAMIC PARAMETER TRANSFER (OPTIMAL)
153 *
154 * TRANSFER OF ADDRESS OF LINE AND COLUMN NUMBER AS REGISTER CONTENTS
155 * REGISTERS R1, R2 REFER TO PARAMETER VALUES
156 @PASS NAME=DO1,PASS=OPT,PLIST=((ARLINE),(ARCOLUMN))
157 1 @@OUV ,,O,U,V,@PASS,(@,T,E,D,K,G,Y,A,X,Z,B)
158 2 @@SYN K,@PASS,(@,T,E,D,K,G,Y,A,X,Z,B)
159 1 @@PPP P,R@STACK,96,2,OPT,((ARLINE),(ARCOLUMN))

000078 18 16 160 2 LR R1,ARLINE
00007A 18 27 161 2 LR R2,ARCOLUMN
00007C 58 F0 A15A 0000015C 162 1 L R@PASS,=A(DO1)

163 1 ##BALR R@EXIT,R@PASS
000080 05 EF 164 2 BALR R@EXIT,R@PASS

165 * TRANSFER OF ADDRESS OF LINE AND COLUMN NUMBER AS REGISTER CONTENTS
166 * REGISTERS R1, R2 REFER TO PARAMETER VALUES
167 @PASS NAME=DO2,PASS=OPT,PLIST=(HLINE,HCOLUMN)
168 1 @@OUV ,,O,U,V,@PASS,(@,T,E,D,K,G,Y,A,X,Z,B)
169 2 @@SYN K,@PASS,(@,T,E,D,K,G,Y,A,X,Z,B)
170 1 @@PPP P,R@STACK,96,2,OPT,(HLINE,HCOLUMN)

000082 41 10 A144 00000146 171 2 LA R1,HLINE
000086 41 20 A146 00000148 172 2 LA R2,HCOLUMN
00008A 58 F0 A15E 00000160 173 1 L R@PASS,=A(DO2)

174 1 ##BALR R@EXIT,R@PASS
00008E 05 EF 175 2 BALR R@EXIT,R@PASS

176 * TRANSFER OF ADDRESS OF LINE AND COLUMN NUMBER AS REGISTER CONTENTS
177 * REGISTERS R1, R2 REFER TO PARAMETER VALUES
178 @PASS NAME=DO3,PASS=OPT,PLIST=(HLINE,HCOLUMN)
179 1 @@OUV ,,O,U,V,@PASS,(@,T,E,D,K,G,Y,A,X,Z,B)
180 2 @@SYN K,@PASS,(@,T,E,D,K,G,Y,A,X,Z,B)
181 1 @@PPP P,R@STACK,96,2,OPT,(HLINE,HCOLUMN)

000090 41 10 A144 00000146 182 2 LA R1,HLINE
000094 41 20 A146 00000148 183 2 LA R2,HCOLUMN
000098 58 F0 A162 00000164 184 1 L R@PASS,=A(DO3)

185 1 ##BALR R@EXIT,R@PASS
00009C 05 EF 186 2 BALR R@EXIT,R@PASS

187 * TRANSFER OF LINE AND COLUMN NUMBER AS REGISTER CONTENTS
188 * REGISTERS R1, R2 CONTAIN PARAMETER VALUES
189 @PASS NAME=DO4,PASS=OPT,PLIST=((RLINE),(RCOLUMN))
190 1 @@OUV ,,O,U,V,@PASS,(@,T,E,D,K,G,Y,A,X,Z,B)
191 2 @@SYN K,@PASS,(@,T,E,D,K,G,Y,A,X,Z,B)
192 1 @@PPP P,R@STACK,96,2,OPT,((RLINE),(RCOLUMN))

00009E 18 18 193 2 LR R1,RLINE
0000A0 18 29 194 2 LR R2,RCOLUMN
0000A2 58 F0 A166 00000168 195 1 L R@PASS,=A(DO4)

196 1 ##BALR R@EXIT,R@PASS
0000A6 05 EF 197 2 BALR R@EXIT,R@PASS

198 EJECT

398 U5223-J-Z125-3-7600

Parameter passing, example

ASSEMBH LISTING 14:29:44 1994-03-08 PAGE 0005

LOCTN OBJECT CODE ADDR1 ADDR2 STMNT M SOURCE STATEMENT
199 * DYNAMIC PARAMETER TRANSFER (STANDARD)
200 *
201 * TRANSFER OF ADDRESS OF DYNAMIC PARAMETER ADDRESS LIST
202 * REGISTER 1 REFERS TO THE PARAMETER ADDRESS LIST
203 * LIST ENTRIES REFER TO PARAMETER VALUES
204 @PASS NAME=DS1,PASS=STA,PLIST=((ARLINE),(ARCOLUMN))
205 1 @@OUV ,,O,U,V,@PASS,(@,T,E,D,K,G,Y,A,X,Z,B)
206 2 @@SYN K,@PASS,(@,T,E,D,K,G,Y,A,X,Z,B)
207 1 @@PPP P,R@STACK,96,2,STA,((ARLINE),(ARCOLUMN))

0000A8 50 60 D060 208 2 ST ARLINE,96(0,R@STACK)
0000AC 50 70 D064 209 2 ST ARCOLUMN,100(0,R@STACK)
0000B0 41 10 D060 210 2 LA R@PAR,96(0,R@STACK)
0000B4 96 80 D064 211 2 OI 100(R@STACK),X’80’
0000B8 58 F0 A16A 0000016C 212 1 L R@PASS,=A(DS1)

213 1 ##BALR R@EXIT,R@PASS
0000BC 05 EF 214 2 BALR R@EXIT,R@PASS

215 * TRANSFER OF ADDRESS OF DYNAMIC PARAMETER ADDRESS LIST
216 * REGISTER 1 REFERS TO THE PARAMETER ADDRESS LIST
217 * LIST ENTRIES REFER TO PARAMETER VALUES
218 @PASS NAME=DS2,PASS=STA,PLIST=(HLINE,HCOLUMN)
219 1 @@OUV ,,O,U,V,@PASS,(@,T,E,D,K,G,Y,A,X,Z,B)
220 2 @@SYN K,@PASS,(@,T,E,D,K,G,Y,A,X,Z,B)
221 1 @@PPP P,R@STACK,96,2,STA,(HLINE,HCOLUMN)

0000BE 41 E0 A144 00000146 222 2 LA R@EXIT,HLINE
0000C2 50 E0 D060 223 2 ST R@EXIT,96(0,R@STACK)
0000C6 41 E0 A146 00000148 224 2 LA R@EXIT,HCOLUMN
0000CA 50 E0 D064 225 2 ST R@EXIT,100(0,R@STACK)
0000CE 41 10 D060 226 2 LA R@PAR,96(0,R@STACK)
0000D2 96 80 D064 227 2 OI 100(R@STACK),X’80’
0000D6 58 F0 A16E 00000170 228 1 L R@PASS,=A(DS2)

229 1 ##BALR R@EXIT,R@PASS
0000DA 05 EF 230 2 BALR R@EXIT,R@PASS

231 * TRANSFER OF ADDRESS OF DYNAMIC PARAMETER ADDRESS LIST
232 * REGISTER 1 REFERS TO THE PARAMETER ADDRESS LIST
233 * LIST ENTRIES REFER TO PARAMETER VALUES
234 @PASS NAME=DS3,PASS=STA,PLIST=(HLINE,HCOLUMN)
235 1 @@OUV ,,O,U,V,@PASS,(@,T,E,D,K,G,Y,A,X,Z,B)
236 2 @@SYN K,@PASS,(@,T,E,D,K,G,Y,A,X,Z,B)
237 1 @@PPP P,R@STACK,96,2,STA,(HLINE,HCOLUMN)

0000DC 41 E0 A144 00000146 238 2 LA R@EXIT,HLINE
0000E0 50 E0 D060 239 2 ST R@EXIT,96(0,R@STACK)
0000E4 41 E0 A146 00000148 240 2 LA R@EXIT,HCOLUMN
0000E8 50 E0 D064 241 2 ST R@EXIT,100(0,R@STACK)
0000EC 41 10 D060 242 2 LA R@PAR,96(0,R@STACK)
0000F0 96 80 D064 243 2 OI 100(R@STACK),X’80’
0000F4 58 F0 A172 00000174 244 1 L R@PASS,=A(DS3)

245 1 ##BALR R@EXIT,R@PASS
0000F8 05 EF 246 2 BALR R@EXIT,R@PASS

247 EJECT

U5223-J-Z125-3-7600 399

Parameter passing, example

ASSEMBH LISTING 14:29:44 1994-03-08 PAGE 0006

LOCTN OBJECT CODE ADDR1 ADDR2 STMNT M SOURCE STATEMENT
248 * STATIC PARAMETER TRANSFER
249 *
250 * TRANSFER OF ADDRESS OF STATIC PARAMETER ADDRESS LIST
251 * REGISTER 1 REFERS TO THE PARAMETER ADDRESS LIST
252 * LIST ENTRIES REFER TO PARAMETER VALUES
253 @PASS NAME=S1,PAR=STAPLIS
254 1 @@OUV ,,O,U,V,@PASS,(@,T,E,D,K,G,Y,A,X,Z,B)
255 2 @@SYN K,@PASS,(@,T,E,D,K,G,Y,A,X,Z,B)

0000FA 41 10 A12E 00000130 256 1 LA R@PAR,STAPLIS
0000FE 58 F0 A176 00000178 257 1 L R@PASS,=A(S1)

258 1 ##BALR R@EXIT,R@PASS
000102 05 EF 259 2 BALR R@EXIT,R@PASS

260 * TRANSFER OF ADDRESS OF STATIC PARAMETER ADDRESS LIST
261 * REGISTER 1 REFERS TO THE PARAMETER ADDRESS LIST
262 * LIST ENTRIES REFER TO PARAMETER VALUES
263 @PASS NAME=S2,PAR=STAPLIS
264 1 @@OUV ,,O,U,V,@PASS,(@,T,E,D,K,G,Y,A,X,Z,B)
265 2 @@SYN K,@PASS,(@,T,E,D,K,G,Y,A,X,Z,B)

000104 41 10 A12E 00000130 266 1 LA R@PAR,STAPLIS
000108 58 F0 A17A 0000017C 267 1 L R@PASS,=A(S2)

268 1 ##BALR R@EXIT,R@PASS
00010C 05 EF 269 2 BALR R@EXIT,R@PASS

270 * TRANSFER OF ADDRESS OF STATIC PARAMETER ADDRESS LIST
271 * REGISTER 1 REFERS TO THE PARAMETER ADDRESS LIST
272 * LIST ENTRIES REFER TO PARAMETER VALUES
273 @PASS NAME=S3,PAR=STAPLIS
274 1 @@OUV ,,O,U,V,@PASS,(@,T,E,D,K,G,Y,A,X,Z,B)
275 2 @@SYN K,@PASS,(@,T,E,D,K,G,Y,A,X,Z,B)

00010E 41 10 A12E 00000130 276 1 LA R@PAR,STAPLIS
000112 58 F0 A17E 00000180 277 1 L R@PASS,=A(S3)

278 1 ##BALR R@EXIT,R@PASS
000116 05 EF 279 2 BALR R@EXIT,R@PASS

280 PRINT NOGEN
000118 281 @BEND
000120 288 @BEND
000128 295 @EXIT

302 PRINT GEN
303 * STATIC PARAMETER ADDRESS LIST
304 STAPLIS @PAR PLIST=(LNA,CNA),VLIST=(HLINE,HCOLUMN)
305 1 @@SYN ,@PAR,,LE,1

000130 306 1 STAPLIS DS 0F
000130 00000146 307 1 LNA DC A(HLINE)
000134 80000148 308 1 CNA DC A(HCOLUMN+X’80000000’)

309 EJECT

400 U5223-J-Z125-3-7600

Parameter passing, example

ASSEMBH LISTING 14:29:44 1994-03-08 PAGE 0007

LOCTN OBJECT CODE ADDR1 ADDR2 STMNT M SOURCE STATEMENT
310 PRINT NOGEN

00000138 311 VAR EQU *
000138 00000146 312 ADRLINE DC A(HLINE)
00013C 00000148 313 ADRCOL DC A(HCOLUMN)
000140 314 NUMLINES DS H
000142 315 NUMCOLS DS H
000144 316 DIMMATR DS H
000146 317 HLINE DS H
000148 318 HCOLUMN DS H

00000006 319 ARLINE EQU R6
00000007 320 ARCOLUMN EQU R7
00000008 321 RLINE EQU R8
00000009 322 RCOLUMN EQU R9

000150 323 @END
00000009 342 L EQU R9
00000008 343 C EQU R8
00000007 344 P EQU R7

345 PRINT GEN
346 *
347 * PARAMETER TRANSFER VIA @PASS OF CALLING PROCEDURE
348 *
349 * PARAMETER ACCEPTANCE VIA @ENTR OF CALLED PROCEDURE
350 EJECT

ASSEMBH LISTING 14:29:44 1994-03-08 PAGE 0008

LOCTN OBJECT CODE ADDR1 ADDR2 STMNT M SOURCE STATEMENT
351 * REGISTERS R1, R2 CONTAIN PARAMETER ADDRESSES
352 DO1 @ENTR TYP=I,TITLE=NO
353 1 @@SYN ,@ENTR,,EQ,0

000188 354 1 DO1 DS 0D
000188 00000000 355 1 USING @SAV,R@STACK
000188 90 EC D00C 0000000C 356 1 STM R14,R12,@SAVR14
00018C 18 AF 357 1 LR R@BASE,R@PASS
00018E 00000188 358 1 USING DO1,R@BASE

359 1 @PASS EXTNAME=$NUCENTR,CNOP=(0,4),DC=(A(96),CL8’DO1’)
00018E 58 F0 A038 000001C0 360 2 L R@PASS,=V($NUCENTR)
000192 361 2 CNOP 2,4

362 2 ##BALR R@EXIT,R@PASS
000192 05 EF 363 3 BALR R@EXIT,R@PASS
000194 00000060 364 2 DC A(96)
000198 C4D6F14040404040 365 2 DC CL8’DO1’

366 PRINT NOGEN
0001A0 367 @DATA CLASS=S,BASE=R12,INIT=VAR

372 * CALCULATE MATRIX POSITION
0001A4 48 70 1000 373 LH P,0(0,R1) VALUE OF FIRST PARAMETER
0001A8 06 70 374 BCTR P,0
0001AA 4C 70 C00A 00000142 375 MH P,NUMCOLS
0001AE 4A 70 2000 376 AH P,0(0,R2) VALUE OF SECOND PARAMETER
0001B2 06 70 377 BCTR P,0
0001B4 1A 77 378 AR P,P
0001B6 1A 77 379 AR P,P

380 * PERFORM FUNCTION
0001B8 381 @EXIT
0001C0 389 @END

397 PRINT GEN
398 EJECT

U5223-J-Z125-3-7600 401

Parameter passing, example

ASSEMBH LISTING 14:29:44 1994-03-08 PAGE 0009

LOCTN OBJECT CODE ADDR1 ADDR2 STMNT M SOURCE STATEMENT
399 * ACCEPTANCE OF PARAMETER ADDRESSES FROM REGISTERS R1, R2
400 * INTO ADDRESS LIST
401 DO2 @ENTR TYP=I,TITLE=NO,LOCAL=PARLI1,PASS=OPT,PLIST=(ADRLN,ADRCN)
402 1 @@SYN ,@ENTR,,EQ,0

0001D0 403 1 DO2 DS 0D
0001D0 00000000 404 1 USING @SAV,R@STACK
0001D0 90 EC D00C 0000000C 405 1 STM R14,R12,@SAVR14
0001D4 18 AF 406 1 LR R@BASE,R@PASS
0001D6 000001D0 407 1 USING DO2,R@BASE

408 1 @PASS EXTNAME=$NUCENTR,CNOP=(0,4),DC=(A(LPARLI1),CL8’DO2’)
0001D6 58 F0 A048 00000218 409 2 L R@PASS,=V($NUCENTR)
0001DA 410 2 CNOP 2,4

411 2 ##BALR R@EXIT,R@PASS
0001DA 05 EF 412 3 BALR R@EXIT,R@PASS
0001DC 00000068 413 2 DC A(LPARLI1)
0001E0 C4D6F24040404040 414 2 DC CL8’DO2’

415 1 @DATA BASE=R@STACK,DSECT=PARLI1
0001E8 00000000 416 2 USING PARLI1,R@STACK

417 1 @@PPP E,R@PAR,0,0,OPT,(ADRLN,ADRCN)
0001E8 50 10 D064 00000064 418 2 ST R1,ADRLN
0001EC 50 20 D060 00000060 419 2 ST R2,ADRCN

420 PRINT NOGEN
0001F0 421 @DATA CLASS=S,BASE=R12,INIT=VAR

426 * CALCULATE MATRIX POSITION
0001F4 58 20 D064 00000064 427 L R2,ADRLN ADDRESS OF FIRST PARAMETER
0001F8 48 70 2000 428 LH P,0(0,R2) VALUE OF FIRST PARAMETER
0001FC 06 70 429 BCTR P,0
0001FE 4C 70 C00A 00000142 430 MH P,NUMCOLS
000202 58 20 D060 00000060 431 L R2,ADRCN ADDRESS OF SECOND PARAMETER
000206 4A 70 2000 432 AH P,0(0,R2) VALUE OF SECOND PARAMETER
00020A 06 70 433 BCTR P,0
00020C 1A 77 434 AR P,P
00020E 1A 77 435 AR P,P

436 * PERFORM FUNCTION
000210 437 @EXIT
000218 445 @END

453 PRINT GEN
454 PARLI1 @PAR D=YES,LEND=YES,PLIST=(ADRCN,ADRLN)
455 1 @@SYN ,@PAR,,LE,1

000000 456 1 PARLI1 DSECT
000000 00000060 457 1 ORG *+96
000060 458 1 ADRCN DS A
000064 459 1 ADRLN DS A

00000068 460 1 LPARLI1 EQU *-PARLI1
000228 461 1 DEMOPARA CSECT

462 EJECT

402 U5223-J-Z125-3-7600

Parameter passing, example

ASSEMBH LISTING 14:29:44 1994-03-08 PAGE 0010

LOCTN OBJECT CODE ADDR1 ADDR2 STMNT M SOURCE STATEMENT
463 * ACCEPTANCE OF PARAMETER ADDRESSES FROM REGISTERS R1, R2
464 * INTO OTHER REGISTERS
465 DO3 @ENTR TYP=I,TITLE=NO,PASS=OPT,PLIST=((L),(C))
466 1 @@SYN ,@ENTR,,EQ,0

000228 467 1 DO3 DS 0D
000228 00000000 468 1 USING @SAV,R@STACK
000228 90 EC D00C 0000000C 469 1 STM R14,R12,@SAVR14
00022C 18 AF 470 1 LR R@BASE,R@PASS
00022E 00000228 471 1 USING DO3,R@BASE

472 1 @PASS EXTNAME=$NUCENTR,CNOP=(0,4),DC=(A(96),CL8’DO3’)
00022E 58 F0 A040 00000268 473 2 L R@PASS,=V($NUCENTR)
000232 474 2 CNOP 2,4

475 2 ##BALR R@EXIT,R@PASS
000232 05 EF 476 3 BALR R@EXIT,R@PASS
000234 00000060 477 2 DC A(96)
000238 C4D6F34040404040 478 2 DC CL8’DO3’

479 1 @@PPP E,R@PAR,0,0,OPT,((L),(C))
000240 18 91 480 2 LR L,R1
000242 18 82 481 2 LR C,R2

482 PRINT NOGEN
000244 483 @DATA CLASS=S,BASE=R12,INIT=VAR

488 * CALCULATE MATRIX POSITION
000248 48 70 9000 489 LH P,0(0,L) VALUE OF FIRST PARAMETER
00024C 06 70 490 BCTR P,0
00024E 4C 70 C00A 00000142 491 MH P,NUMCOLS
000252 4A 70 8000 492 AH P,0(0,C) VALUE OF SECOND PARAMETER
000256 06 70 493 BCTR P,0
000258 1A 77 494 AR P,P
00025A 1A 77 495 AR P,P

496 * PERFORM FUNCTION
00025C 497 @EXIT
000268 505 @END

513 PRINT GEN
514 EJECT

U5223-J-Z125-3-7600 403

Parameter passing, example

ASSEMBH LISTING 14:29:44 1994-03-08 PAGE 0011

LOCTN OBJECT CODE ADDR1 ADDR2 STMNT M SOURCE STATEMENT
515 * ACCEPTANCE OF PARAMETER VALUES FROM REGISTERS R1, R2
516 * INTO OTHER REGISTERS
517 DO4 @ENTR TYP=I,TITLE=NO,PASS=OPT,PLIST=((L),(C))
518 1 @@SYN ,@ENTR,,EQ,0

000278 519 1 DO4 DS 0D
000278 00000000 520 1 USING @SAV,R@STACK
000278 90 EC D00C 0000000C 521 1 STM R14,R12,@SAVR14
00027C 18 AF 522 1 LR R@BASE,R@PASS
00027E 00000278 523 1 USING DO4,R@BASE

524 1 @PASS EXTNAME=$NUCENTR,CNOP=(0,4),DC=(A(96),CL8’DO4’)
00027E 58 F0 A038 000002B0 525 2 L R@PASS,=V($NUCENTR)
000282 526 2 CNOP 2,4

527 2 ##BALR R@EXIT,R@PASS
000282 05 EF 528 3 BALR R@EXIT,R@PASS
000284 00000060 529 2 DC A(96)
000288 C4D6F44040404040 530 2 DC CL8’DO4’

531 1 @@PPP E,R@PAR,0,0,OPT,((L),(C))
000290 18 91 532 2 LR L,R1
000292 18 82 533 2 LR C,R2

534 PRINT NOGEN
000294 535 @DATA CLASS=S,BASE=R12,INIT=VAR

540 * CALCULATE MATRIX POSITION
000298 18 79 541 LR P,L VALUE OF FIRST PARAMETER
00029A 06 70 542 BCTR P,0
00029C 4C 70 C00A 00000142 543 MH P,NUMCOLS
0002A0 1A 78 544 AR P,C VALUE OF SECOND PARAMETER
0002A2 06 70 545 BCTR P,0
0002A4 1A 77 546 AR P,P
0002A6 1A 77 547 AR P,P

548 * PERFORM FUNCTION
0002A8 549 @EXIT
0002B0 557 @END

565 PRINT GEN
566 EJECT

404 U5223-J-Z125-3-7600

Parameter passing, example

ASSEMBH LISTING 14:29:44 1994-03-08 PAGE 0012

LOCTN OBJECT CODE ADDR1 ADDR2 STMNT M SOURCE STATEMENT
567 * REGISTER R1 CONTAINS ADDRESS OF PARAMETER ADDRESS LIST
568 DS1 @ENTR TYP=I,TITLE=NO
569 1 @@SYN ,@ENTR,,EQ,0

0002C0 570 1 DS1 DS 0D
0002C0 00000000 571 1 USING @SAV,R@STACK
0002C0 90 EC D00C 0000000C 572 1 STM R14,R12,@SAVR14
0002C4 18 AF 573 1 LR R@BASE,R@PASS
0002C6 000002C0 574 1 USING DS1,R@BASE

575 1 @PASS EXTNAME=$NUCENTR,CNOP=(0,4),DC=(A(96),CL8’DS1’)
0002C6 58 F0 A040 00000300 576 2 L R@PASS,=V($NUCENTR)
0002CA 577 2 CNOP 2,4

578 2 ##BALR R@EXIT,R@PASS
0002CA 05 EF 579 3 BALR R@EXIT,R@PASS
0002CC 00000060 580 2 DC A(96)
0002D0 C4E2F14040404040 581 2 DC CL8’DS1’

582 PRINT NOGEN
0002D8 583 @DATA CLASS=S,BASE=R12,INIT=VAR

588 * CALCULATE MATRIX POSITION
0002DC 58 20 1000 589 L R2,0(0,R1) ADDRESS OF FIRST PARAMETER
0002E0 48 70 2000 590 LH P,0(0,R2) VALUE OF FIRST PARAMETER
0002E4 06 70 591 BCTR P,0
0002E6 4C 70 C00A 00000142 592 MH P,NUMCOLS
0002EA 58 20 1004 593 L R2,4(0,R1) ADDRESS OF SECOND PARAMETER
0002EE 4A 70 2000 594 AH P,0(0,R2) VALUE OF SECOND PARAMETER
0002F2 06 70 595 BCTR P,0
0002F4 1A 77 596 AR P,P
0002F6 1A 77 597 AR P,P

598 * PERFORM FUNCTION
0002F8 599 @EXIT
000300 607 @END

615 PRINT GEN
616 EJECT

U5223-J-Z125-3-7600 405

Parameter passing, example

ASSEMBH LISTING 14:29:44 1994-03-08 PAGE 0013

LOCTN OBJECT CODE ADDR1 ADDR2 STMNT M SOURCE STATEMENT
617 * ACCEPTANCE OF ADDRESSES FROM PARAMETER ADDRESS LIST
618 * INTO ANOTHER ADDRESS LIST
619 DS2 @ENTR TYP=I,TITLE=NO,LOCAL=PARLI2,PASS=STA,PLIST=(LNADR,CNADR)
620 1 @@SYN ,@ENTR,,EQ,0

000310 621 1 DS2 DS 0D
000310 00000000 622 1 USING @SAV,R@STACK
000310 90 EC D00C 0000000C 623 1 STM R14,R12,@SAVR14
000314 18 AF 624 1 LR R@BASE,R@PASS
000316 00000310 625 1 USING DS2,R@BASE

626 1 @PASS EXTNAME=$NUCENTR,CNOP=(0,4),DC=(A(LPARLI2),CL8’DS2’)
000316 58 F0 A050 00000360 627 2 L R@PASS,=V($NUCENTR)
00031A 628 2 CNOP 2,4

629 2 ##BALR R@EXIT,R@PASS
00031A 05 EF 630 3 BALR R@EXIT,R@PASS
00031C 00000068 631 2 DC A(LPARLI2)
000320 C4E2F24040404040 632 2 DC CL8’DS2’

633 1 @DATA BASE=R@STACK,DSECT=PARLI2
000328 00000000 634 2 USING PARLI2,R@STACK

635 1 @@PPP E,R@PAR,0,0,STA,(LNADR,CNADR)
000328 D2 03 D0641000 00000064 636 2 MVC LNADR(4),0(R@PAR)
00032E D2 03 D0601004 00000060 637 2 MVC CNADR(4),4(R@PAR)

638 PRINT NOGEN
000334 639 @DATA CLASS=S,BASE=R12,INIT=VAR

644 * CALCULATE MATRIX POSITION
000338 58 20 D064 00000064 645 L R2,LNADR ADDRESS OF FIRST PARAMETER
00033C 48 70 2000 646 LH P,0(0,R2) VALUE OF FIRST PARAMETER
000340 06 70 647 BCTR P,0
000342 4C 70 C00A 00000142 648 MH P,NUMCOLS
000346 58 20 D060 00000060 649 L R2,CNADR ADDRESS OF SECOND PARAMETER
00034A 4A 70 2000 650 AH P,0(0,R2) VALUE OF SECOND PARAMETER
00034E 06 70 651 BCTR P,0
000350 1A 77 652 AR P,P
000352 1A 77 653 AR P,P

654 * PERFORM FUNCTION
000354 655 @EXIT
000360 663 @END

671 PRINT GEN
672 PARLI2 @PAR D=YES,LEND=YES,PLIST=(CNADR,LNADR)
673 1 @@SYN ,@PAR,,LE,1

000000 674 1 PARLI2 DSECT
000000 00000060 675 1 ORG *+96
000060 676 1 CNADR DS A
000064 677 1 LNADR DS A

00000068 678 1 LPARLI2 EQU *-PARLI2
000370 679 1 DEMOPARA CSECT

680 EJECT

406 U5223-J-Z125-3-7600

Parameter passing, example

ASSEMBH LISTING 14:29:44 1994-03-08 PAGE 0014

LOCTN OBJECT CODE ADDR1 ADDR2 STMNT M SOURCE STATEMENT
681 * ACCEPTANCE OF ADDRESSES FROM PARAMETER ADDRESS LIST
682 * INTO REGISTERS
683 DS3 @ENTR TYP=I,TITLE=NO,PASS=STA,PLIST=((R2),(R1))
684 1 @@SYN ,@ENTR,,EQ,0

000370 685 1 DS3 DS 0D
000370 00000000 686 1 USING @SAV,R@STACK
000370 90 EC D00C 0000000C 687 1 STM R14,R12,@SAVR14
000374 18 AF 688 1 LR R@BASE,R@PASS
000376 00000370 689 1 USING DS3,R@BASE

690 1 @PASS EXTNAME=$NUCENTR,CNOP=(0,4),DC=(A(96),CL8’DS3’)
000376 58 F0 A040 000003B0 691 2 L R@PASS,=V($NUCENTR)
00037A 692 2 CNOP 2,4

693 2 ##BALR R@EXIT,R@PASS
00037A 05 EF 694 3 BALR R@EXIT,R@PASS
00037C 00000060 695 2 DC A(96)
000380 C4E2F34040404040 696 2 DC CL8’DS3’

697 1 @@PPP E,R@PAR,0,0,STA,((R2),(R1))
000388 58 20 1000 698 2 L R2,0(0,R@PAR)
00038C 58 10 1004 699 2 L R1,4(0,R@PAR)

700 PRINT NOGEN
000390 701 @DATA CLASS=S,BASE=R12,INIT=VAR

706 * CALCULATE MATRIX POSITION
000394 48 70 2000 707 LH P,0(0,R2) VALUE OF FIRST PARAMETER
000398 06 70 708 BCTR P,0
00039A 4C 70 C00A 00000142 709 MH P,NUMCOLS
00039E 4A 70 1000 710 AH P,0(0,R1) VALUE OF SECOND PARAMETER
0003A2 06 70 711 BCTR P,0
0003A4 1A 77 712 AR P,P
0003A6 1A 77 713 AR P,P

714 * PERFORM FUNCTION
0003A8 715 @EXIT
0003B0 723 @END

731 PRINT GEN
732 EJECT

U5223-J-Z125-3-7600 407

Parameter passing, example

ASSEMBH LISTING 14:29:44 1994-03-08 PAGE 0015

LOCTN OBJECT CODE ADDR1 ADDR2 STMNT M SOURCE STATEMENT
733 * REGISTER R1 CONTAINS ADDRESS OF PARAMETER ADDRESS LIST
734 S1 @ENTR TYP=I,TITLE=NO
735 1 @@SYN ,@ENTR,,EQ,0

0003C0 736 1 S1 DS 0D
0003C0 00000000 737 1 USING @SAV,R@STACK
0003C0 90 EC D00C 0000000C 738 1 STM R14,R12,@SAVR14
0003C4 18 AF 739 1 LR R@BASE,R@PASS
0003C6 000003C0 740 1 USING S1,R@BASE

741 1 @PASS EXTNAME=$NUCENTR,CNOP=(0,4),DC=(A(96),CL8’S1’)
0003C6 58 F0 A040 00000400 742 2 L R@PASS,=V($NUCENTR)
0003CA 743 2 CNOP 2,4

744 2 ##BALR R@EXIT,R@PASS
0003CA 05 EF 745 3 BALR R@EXIT,R@PASS
0003CC 00000060 746 2 DC A(96)
0003D0 E2F1404040404040 747 2 DC CL8’S1’

748 PRINT NOGEN
0003D8 749 @DATA CLASS=S,BASE=R12,INIT=VAR

754 * CALCULATE MATRIX POSITION
0003DC 58 20 1000 755 L R2,0(0,R1) ADDRESS OF FIRST PARAMETER
0003E0 48 70 2000 756 LH P,0(0,R2) VALUE OF FIRST PARAMETER
0003E4 06 70 757 BCTR P,0
0003E6 4C 70 C00A 00000142 758 MH P,NUMCOLS
0003EA 58 20 1004 759 L R2,4(0,R1) ADDRESS OF SECOND PARAMETER
0003EE 4A 70 2000 760 AH P,0(0,R2) VALUE OF SECOND PARAMETER
0003F2 06 70 761 BCTR P,0
0003F4 1A 77 762 AR P,P
0003F6 1A 77 763 AR P,P

764 * PERFORM FUNCTION
0003F8 765 @EXIT
000400 773 @END

781 PRINT GEN
782 EJECT

408 U5223-J-Z125-3-7600

Parameter passing, example

ASSEMBH LISTING 14:29:44 1994-03-08 PAGE 0016

LOCTN OBJECT CODE ADDR1 ADDR2 STMNT M SOURCE STATEMENT
783 * ACCEPTANCE OF ADDRESSES FROM PARAMETER ADDRESS LIST
784 * INTO ANOTHER ADDRESS LIST
785 S2 @ENTR TYP=I,TITLE=NO,LOCAL=PARLI3,PASS=STA,PLIST=(ALN,ACN)
786 1 @@SYN ,@ENTR,,EQ,0

000410 787 1 S2 DS 0D
000410 00000000 788 1 USING @SAV,R@STACK
000410 90 EC D00C 0000000C 789 1 STM R14,R12,@SAVR14
000414 18 AF 790 1 LR R@BASE,R@PASS
000416 00000410 791 1 USING S2,R@BASE

792 1 @PASS EXTNAME=$NUCENTR,CNOP=(0,4),DC=(A(LPARLI3),CL8’S2’)
000416 58 F0 A050 00000460 793 2 L R@PASS,=V($NUCENTR)
00041A 794 2 CNOP 2,4

795 2 ##BALR R@EXIT,R@PASS
00041A 05 EF 796 3 BALR R@EXIT,R@PASS
00041C 00000068 797 2 DC A(LPARLI3)
000420 E2F2404040404040 798 2 DC CL8’S2’

799 1 @DATA BASE=R@STACK,DSECT=PARLI3
000428 00000000 800 2 USING PARLI3,R@STACK

801 1 @@PPP E,R@PAR,0,0,STA,(ALN,ACN)
000428 D2 03 D0641000 00000064 802 2 MVC ALN(4),0(R@PAR)
00042E D2 03 D0601004 00000060 803 2 MVC ACN(4),4(R@PAR)

804 PRINT NOGEN
000434 805 @DATA CLASS=S,BASE=R12,INIT=VAR

810 * CALCULATE MATRIX POSITION
000438 58 20 D064 00000064 811 L R2,ALN ADDRESS OF FIRST PARAMETER
00043C 48 70 2000 812 LH P,0(0,R2) VALUE OF FIRST PARAMETER
000440 06 70 813 BCTR P,0
000442 4C 70 C00A 00000142 814 MH P,NUMCOLS
000446 58 20 D060 00000060 815 L R2,ACN ADDRESS OF SECOND PARAMETER
00044A 4A 70 2000 816 AH P,0(0,R2) VALUE OF SECOND PARAMETER
00044E 06 70 817 BCTR P,0
000450 1A 77 818 AR P,P
000452 1A 77 819 AR P,P

820 * PERFORM FUNCTION
000454 821 @EXIT
000460 829 @END

837 PRINT GEN
838 PARLI3 @PAR D=YES,LEND=YES,PLIST=(ACN,ALN)
839 1 @@SYN ,@PAR,,LE,1

000000 840 1 PARLI3 DSECT
000000 00000060 841 1 ORG *+96
000060 842 1 ACN DS A
000064 843 1 ALN DS A

00000068 844 1 LPARLI3 EQU *-PARLI3
000470 845 1 DEMOPARA CSECT

846 EJECT

U5223-J-Z125-3-7600 409

Parameter passing, example

ASSEMBH LISTING 14:29:44 1994-03-08 PAGE 0017

LOCTN OBJECT CODE ADDR1 ADDR2 STMNT M SOURCE STATEMENT
847 * ACCEPTANCE OF ADDRESSES FROM PARAMETER ADDRESS LIST
848 * INTO REGISTERS
849 S3 @ENTR TYP=I,TITLE=NO,PASS=STA,PLIST=((R2),(R1))
850 1 @@SYN ,@ENTR,,EQ,0

000470 851 1 S3 DS 0D
000470 00000000 852 1 USING @SAV,R@STACK
000470 90 EC D00C 0000000C 853 1 STM R14,R12,@SAVR14
000474 18 AF 854 1 LR R@BASE,R@PASS
000476 00000470 855 1 USING S3,R@BASE

856 1 @PASS EXTNAME=$NUCENTR,CNOP=(0,4),DC=(A(96),CL8’S3’)
000476 58 F0 A040 000004B0 857 2 L R@PASS,=V($NUCENTR)
00047A 858 2 CNOP 2,4

859 2 ##BALR R@EXIT,R@PASS
00047A 05 EF 860 3 BALR R@EXIT,R@PASS
00047C 00000060 861 2 DC A(96)
000480 E2F3404040404040 862 2 DC CL8’S3’

863 1 @@PPP E,R@PAR,0,0,STA,((R2),(R1))
000488 58 20 1000 864 2 L R2,0(0,R@PAR)
00048C 58 10 1004 865 2 L R1,4(0,R@PAR)

866 PRINT NOGEN
000490 867 @DATA CLASS=S,BASE=R12,INIT=VAR

872 * CALCULATE MATRIX POSITION
000494 48 70 2000 873 LH P,0(0,R2) VALUE OF FIRST PARAMETER
000498 06 70 874 BCTR P,0
00049A 4C 70 C00A 00000142 875 MH P,NUMCOLS
00049E 4A 70 1000 876 AH P,0(0,R1) VALUE OF SECOND PARAMETER
0004A2 06 70 877 BCTR P,0
0004A4 1A 77 878 AR P,P
0004A6 1A 77 879 AR P,P

880 * PERFORM FUNCTION
0004A8 881 @EXIT
0004B0 889 @END

897 END

FLAGS IN 00000 STATEMENTS, 000 PRIVILEGED FLAGS, 000 MNOTES
HIGHEST ERROR-WEIGHT : NO ERRORS
THIS PROGRAM WAS ASSEMBLED BY ASSEMBH V 1.2A00 ON 1994-03-08 AT 14:07:24
THIS LISTING WAS GENERATED BY THE LISTING GENERATOR V 1.1A00.

410 U5223-J-Z125-3-7600

Differences between ASSEMBH V1.1A and ASSEMB V30.0A

11.6 Differences between ASSEMBH V1.1A and
ASSEMB V30.0A

The tables below list the functions and language elements where there are differences
between ASSEMBH V1.2A and ASSEMB V30.0A. Functions not listed remain the same.

x Function is supported
Function is not supported

ASSEMBH V1.2A ASSEMB V30.0A

SDF user interface x -

/PARAM command - x

Task switch control in - x
DUET programming

Task switch control for the - x
MCALL option

COMOPT interface x x
*COMOPT ADIAG= x x

(not ASSEMBH-BC)
COPYMAC - x
ERRFIL x x
ISD x Creation of

(not ASSEMBH-BC)
Creation of ISD records
LSD information

MCALL - x
MDIAG - x
OUTPUT - x
PROCOM - x
SAVLST x x

(not ASSEMBH-BC)
SEQ x x
SOURCE = + - x
SYSPARM max. 255 characters max. 8 characters
UPD - x

If unsupported
options are used,
ASSEMBH outputs
a message

Object code output
in OM format x x
in LLM format x -

U5223-J-Z125-3-7600 411

Differences between ASSEMBH V1.1A and ASSEMB V30.0A

ASSEMBH V1.2A ASSEMB V30.0A

AID interface x -
(not ASSEMBH-BC)

Storage of AID constant in x -
object module

If the
TEST-SUPPORT=AID
option is set,
an 8-byte long
consistency
constant is stored
in the object
after the first
program section

IDA interface - x

ASSDIAG / ADIAG x x
(not ASSEMBH-BC)

COMOPT, OPEN commands - x
Explicit start - x
CDT instructions x -
CONTINUE-CDT command x -

Number of possible MACRO and 100 each 5
COPY libraries

ISLU - x

HALSTEAD metrics - x

Support for upper/lowercase x -

Maximum number of ESID numbers 2 31-1 2500

Maximum number of 2 15-1 512
control sections

Assignment of statement number All statements The statement
except macro number is assigned
instructions in in accordance with
macro generation PRINT control,
and macro remarks error messages and
are given a state- MTRAC control.
ment number if they Each statement
contain errors or printed is given
MTRAC is specified. a separate number.
A continuation line In macro
is given the definitions, each
number of the start continuation line
line of the receives a separate
statement. number.

412 U5223-J-Z125-3-7600

Differences between ASSEMBH V1.1A and ASSEMB V30.0A

Machine instructions, assembler instructions, remarks

ASSEMBH V1.2A ASSEMB V30.0A

Length of names 64 characters 8 characters
External names 8/32 characters 8 characters
Underscores in names x -

Names as elements in need not be defined must be defined
expressions beforehand. before being used

(exception: in the in instructions
operand of the ORG
instruction)

Arithmetic expressions Any nesting of Up to 6 levels of
parentheses parentheses

parenthesized only digits can
exist without
parentheses (error
of the assembler)

Continuation lines Any number 3

Machine instructions
EXST - x
LBF - x
LWI - x
POP - x
PUSH - x
STBF - x
STWI - x
ESA instructions x -

ISEQ instruction - x
The instruction is
treated as a
remark

COPY statement Nesting level, Nesting level,
maximum 255 maximum 5

DC instruction Duplication Duplication
factor up to 2 24-1 factor to 2 16-1

U5223-J-Z125-3-7600 413

Differences between ASSEMBH V1.1A and ASSEMB V30.0A

ASSEMBH V1.2A ASSEMB V30.0A

EJECT statement is listed before is not listed
paper advance

An MNOTE is issued Invalid operands
in case of invalid are ignored (error
operands of the assembler)

EQU instruction Negative values Only positive
are possible values

LTORG instruction Any number in the Maximum 255
source program

Missing LTORG instruction The literal pool is The literal pool is
listed after the listed before the
END statement END statement

Invalid literals are not included in are also included
the literal pool in the literal

pool

Literal storage in the literal Semantically Semantically
pool and literal XREF identical but identical but

syntactically syntactically
different literals different literals
are stored in the are stored in the
literal pool and literal pool and
literal XREF once literal XREF once
for each literal only.
definition.
Example: Literals
’=A(B)’ and
’=AL4(B)’ are both
stored.
Syntactically For syntactically
identical literals identical literals,
are stored intern- the same applies
ally in the literal as for ASSEMBH.
pool and XREF only
once. The different
forms of literal
storage can cause
differences in the
object; in certain
circumstances this
can lead to REPs
no longer being
suitable.

414 U5223-J-Z125-3-7600

Differences between ASSEMBH V1.1A and ASSEMB V30.0A

ASSEMBH V1.2A ASSEMB V30.0A

MNOTE instruction A message is issued If the space is
if the space omitted, anything
between operand and after the apostro-
remark is omitted phe is interpreted

as a remark (error
of the assembler)

OPSYN instruction also inside macros only outside macros

OPSYN instruction, processing For macro and COPY For library macros,
of model statements in macros statements and the last OPSYN in

REPRO instructions, the source applies;
the OPSYN in the for macros in the
macro definition source, the OPSYN
applies. prior to the
The OPSYN directly definition applies
before it applies
to all other inst-
ruction statements

PRINT instruction
Operand BASE The remark from the Only the

USING instruction addressable area
is also output for is output
each base address
register

CLOSED/OPEN - x
DECK/NODECK - x
NUM/NONUM - x
NOBF/DBF - x
REF/NOREF - x
xON/xOFF - x

PUNCH instruction No longer supported
REPRO instruction for module output no LLM format

in LLM format

SPACE statement is listed before is not listed
paper advance

An MNOTE is issued Invalid operands
if an operand is are ignored (error
invalid of the assembler)

TITLE statement is listed before is listed after
paper advance paper advance

The name entry The name entry is
is not output to a always output to
PLAM object module an object module

U5223-J-Z125-3-7600 415

Differences between ASSEMBH V1.1A and ASSEMB V30.0A

ASSEMBH V1.2A ASSEMB V30.0A

Register 0 A warning is output A warning is output
if a memory operand if the assembler
is accessed with uses a value of 0
base and index for the 2nd operand
register 0 of an SS-type

instruction and
there is no base
register

XDSEC instruction without R is assumed unless An error message
operand or with invalid operand an external dummy is issued

of the same name
is defined

Remarks line with .* at the treated in the same not permitted in
beginning of the assembler way as a macro the assembler
source program are definition, and not source program

printed out

416 U5223-J-Z125-3-7600

Differences between ASSEMBH V1.1A and ASSEMB V30.0A

Macro language elements

ASSEMBH V1.2A ASSEMB V30.0A

Macro definitions in the source The definition must The definition
program be executed before may be at any

the first instruc- position in the
tion of the macro source program

Redefinition of assembler The mnemonic Redefinition of
instruction statements (in macro operation code of mnemonic operation
definitions in source program) assembler instruc- code is possible

tion statements can only via the
be used as a macro OPSYN instruction.
name
The macro concerned
replaces the
corresponding inst-
ruction statement

Generated mnemonic operation The instructions The instructions
code of assembler instructions ICTL, ICTL,

COPY, START,
MNOTE and COM,
REPRO MNOTE,

must not be REPRO and
generated COPY

must not be
generated

Conditional assembly Macro definitions Macro definitions
in the source in the source
program are only are always read in
read in when they
are executed Library macros are

are always read in
Library macros are if their macro
only read in when call is in the
their call has source program
been executed

Inner macro definitions A macro definition No macro definition
may be nested may lie within
within another another

Macro definitions of the same The last The first
name in the source program or definition read in definition is
in a macro definition is valid until the valid;

next one others are treated
as errors

U5223-J-Z125-3-7600 417

Differences between ASSEMBH V1.1A and ASSEMB V30.0A

ASSEMBH V1.2A ASSEMB V30.0A

Remarks lines with .* at the are also possible are only possible
beginning before the proto- after the prototype

type statement statement

must not be must not be
generated generated

Attribute references yield valid attri- For names still to
butes even if names be defined, the
not yet defined are attributes are
referenced always undefined.

Definition attribute (D’) x -
reference

Number attribute reference (N’) yields the current is not allowed for
dimension for SET SET symbols
symbols

Generated sequence symbols are always are only recognized
recognized and if defined in a
processed GSEQ instruction.

Sequence symbols in the name are not listed are listed
entry of generated instructions

Sequence symbols defined more Error message Error message only
than once if MTRAC is

activated

Length of character values and Maximum 1020 Maximum 255
substrings characters characters

Concatenation of substrings The concatenation The concatenation
point before the point must be
duplication factor retained
of the 2nd string
may be omitted

Notation of character values The notation C’...’ is allowed.
C’...’ is not The C is ignored
allowed (error of the

assembler)

Arithmetic macro expression Character values Character values
not allowed as are converted. If
elements not possible, no

message is issued,
and 0 is used in
further computa-
tions (error of
the assembler).

418 U5223-J-Z125-3-7600

Differences between ASSEMBH V1.1A and ASSEMB V30.0A

Macro instruction and prototype statement

ASSEMBH V1.2A ASSEMB V30.0A

Macro instruction and prototype Positional and All positional
statement keyword operands operands must be

may be specified given before all
in mixed sequence. the keyword

operands.

Inner macro instructions Inner macro If the MCALL option
instructions are is specified, inner
always resolved macro instructions
when they are are resolved only
executed. if defined in an

MCALL instruction.

Location counter of the macro The current loca- The current loca-
call tion counter is tion counter is

not listed. listed.

Generated macro names Generated macro Generated macro
names are always names are only
recognized and recognized and
processed. resolved if defined

in an MCALL
instruction.

Length of macro instruction Maximum 1020 Maximum 127
operands characters characters

Expressions in macro call If the operand of If the operand of
operands a macro call is an a macro call is an

expression, the expression, the
corresponding symb. parameter has
symb. parameter has the attributes of
the attributes of the 1st name in the
a C-type constant. expression.

U5223-J-Z125-3-7600 419

Differences between ASSEMBH V1.1A and ASSEMB V30.0A

Macro statements

ASSEMBH V1.2A ASSEMB V30.0A

ACTR instruction The ACTR counter is The ACTR counter is
preset to 4096 preset to 1200

AIF and AGO instructions Extended format -
possible in both
cases (see section
7.2)
Alternative state- Normal format
ment format poss- only
ible in both cases

LCLx and GBLx instructions Alternative state- Normal format
ment format poss- only
ible in all cases

OPSYN instruction Possible even Only possible
within a macro outside the macro
definition definition

GSEQ instruction - x
MCALL instruction - x

Both instructions
are flagged with
a warning,
otherwise ignored

Listing of hexadecimal and are listed in The original
self-defining terms decimal form instruction is

listed

420 U5223-J-Z125-3-7600

Differences between ASSEMBH V1.1A and ASSEMB V30.0A

Variable symbols

ASSEMBH V1.2A ASSEMB V30.0A

Generated parameter names x -

Implicit definition of local x -
SET symbols

SETA symbols If it has an Any character
arithmetic value, expression that has
a SETC symbol may an arithmetic value
be assigned to a may be assigned to
SETA symbol a SETA symbol

SETB symbol If its value is 0 Not allowed
or 1, a SETC
symbol may be
assigned to a SETB
symbol

System variable symbol
&SYSECT is also reserved is only reserved

for names of COM for START, CSECT
and XDSEC and DSECT

&SYSLIST(n) with n=0 produces the name is not allowed
entry of the macro
instruction

&SYSPARM Max. 255 characters Max. 8 characters
&SYSTSEC x -
&SYSVERM/&SYSVERS are truncated to are truncated to

the right or padded the right or padded
to the right with _ to the left with 0

System variable symbols in the The operation entry System variable
operation entry can be generated symbols are not

with system allowed in the
variable symbols operation entry

Concatenation of variable If a concatenation In concatenations
symbols and alphanumeric is used in in assembler
characters assembler instruc- instructions, the

tions, the concate- concatenation point
nation point must may be omitted
be written. (assembler error)

U5223-J-Z125-3-7600 421

Differences between ASSEMBH V1.1A and ASSEMB V30.0A

Structured programming with ASSEMBH

ASSEMBH V1.2A ASSEMB V30.0A
COLUMBUS-ASSEMBLER
V2.2F

STACK management Dynamic STACK Static storage in
management. The memory
STACK’s logical
structure complies
with the PROSYS
standard linkage
convention

@ENTR macro
operands ENTRY= x -

AMODE= x -
RMODE= x -

STACK= x x

Size of the dynami- Minimum stack, dy-
cally extendable namically extend-
initial stack able (no STACK
No entry = one page entry) or static,
(4096 bytes) non-extendable
STACK=n signifies stack of n bytes
an initial stack of (STACK=n)
n bytes

KL5SP= - x

A KL5SP entry
is ignored with
MNOTE 0

ILCS=YES x -
STREQ x -
STREL x -
HPREQ x -
HPREL x -
SLTERM x -
SCTERM x -
EXTMIN x -

ABKR x -
PROCHK x -
ERROR x -
OTHEVT x -

Entry IASSIN (COLBIN) ignores a KL5SP supports a KL5SP
specification specification

422 U5223-J-Z125-3-7600

Differences between ASSEMBH V1.1A and ASSEMB V30.0A

ASSEMBH V1.2A ASSEMB V30.0A/
COLUMBUS-ASSEMBLER
V2.2F

@CONDI macro x -
@CONEN macro x -
@EVTLC macro x -
@EVTOE macro x -
@ININ macro x -
@SETJV macro x -
@SETPM macro x -
@STXDI macro x -
@STXEN macro x -
@STXIM macro x -

@END macro
Operand DROP= x x

additional operand
value =(), all
USING registers
are released

U5223-J-Z125-3-7600 423

U5223-J-Z125-3-7600 425

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

26
. A

pr
il

20
10

 S
ta

nd
 0

7:
32

.4
6

 P

fa
d:

 H
:\A

ng
el

a\
P

ro
je

kt
e\

B
S2

00
0-

Te
st

_a
lte

_H
an

db
ue

ch
er

\A
S

S
E

M
B

H
\u

s\
A

rb
ei

ts
da

te
ie

n\
as

se
m

b_
bs

.k
12

12 Manual supplements
This chapter is an update for the present manual valid for ASSEMB V1.2D.

12.1 SPACE instruction

Section 4.2 Description of instructions SPACE Line feed (page 110)

Description

"no" modulo 100 specifies the number of blanks which are to be printed after the SPACE
instruction in the assembler listing.

If "no" modulo 100 is greater than the number of lines remaining on this page, the SPACE
instruction produces a page feed.

12.2 Variable system parameter

Section 6.3 Variable system parameter (page 176)

&SYSDATE_ISO4

Value of &SYSDATE_ISO4: yyyy-mm-dd Counter base is 10

The year is output in 4 digits, otherwise all as with &SYSDATE.

Type S procedures Manual supplements

426 U5223-J-Z125-3-7600

12.3 Type S procedures

Section 9.3.2.2 (page 266)

Type S procedures

As with procedure types B, D and L, type S procedures are not connected to the memory
management. No new save area is provided and dynamic parameter passing is not
possible. However, in contrast to types B, D and L, the register states of the calling
procedure are saved in their save area.

The ENTRY= parameter can be used to control whether a CSECT or ENTRY statement is
generated.

By default, register 15 is assigned as the base register. The user can assign some other
register as the base register in the BASE operand of the @ENTR macro. This register must
be loaded with the correct value at the start of the procedure (e.g. with the Assembler
instruction "LR reg,R15").

Since the procedures are on a low level (no connection to the runtime system), the user has
to restore the registers manually if required, i.e. the registers are not reloaded when the
procedure terminates.

For the same reason, calling further subroutines with @PASS should be avoided, since
tracing is not possible because of the missing save area chaining.

12.4 Procedure linking and parameter passing

Section 9.5 Procedure linking and parameter passing (page 277)

No procedure stack is provided when calling type B, L, D or S procedures.

12.5 Static parameter passing

Section 9.5.1.1 Static parameter passing (page 279)

This form of parameter passing is allowed in procedures of type M, E, I, L, B and S.

Manual supplements Contingency handling

U5223-J-Z125-3-7600 427

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

28
. A

pr
il

20
10

 S
ta

nd
 0

8:
27

.4
2

P
fa

d:
 K

:\A
ng

el
a\

P
ro

je
kt

e\
B

S2
00

0-
Te

st
_a

lte
_H

an
db

ue
ch

er
\A

S
S

E
M

B
H

\u
s\

A
rb

ei
ts

da
te

ie
n\

as
se

m
b_

bs
.k

12

12.6 Contingency handling

Section 9.6.4 Contingency handling (page 298), second-last paragraph:

The standard contingency handler then calls the user contingency routine in accordance
with ILCS conventions.

The user contingency routine receives the information on the interrupted process through
R1.

R1 points to a parameter list with the following contents:

Word 1: Contingency message;
corresponds to the CONMSG parameter in the @CONEN macro (page 310)
(see also the section on 'Information transfer to contingency processes' in
section 4.3.6, 'Contingency processes', of the 'BS2000 Executive Macros'
manual.

Word 2: Event information code;
(see above manual, same section, Table 10, 'Event information codes')

Word 3: Pointer to post code;
(see above manual, same section)

12.7 STXIT handling

Section 9.6.5 STXIT handling (page 299), 3rd. paragraph:

All STXIT events defined in BS2000 are supported by ILCS. The TERM and ABEND events
are only handled internally by ILCS and are not forwarded via @STXEN to a routine
enabled by the user.

Predefined macros for structured programming Manual supplements

428 U5223-J-Z125-3-7600

12.8 Predefined macros for structured programming

Chapter 10 Predefined macros for structured programming

– @CONEN Enable contingency routine (page 310), first paragraph:
This macro instruction is allowed only in procedures with ILCS=YES and will only work
properly if the initialization with ILCS has been correctly performed.

– @CONEN Enable contingency routine (page 310), last paragraph:

Return codes in register 15:

0 Processing completed normally

1 Register 13 has an invalid value

2 ILCS is not correctly initialized

3 Invalid parameter value in CONLEV

All other return codes signal internal errors.

@ENTR (Typ=M/E/I), Parameter ILCS=YES (page 327, 335)
Full connection to ILCS, allows specifying the following parameters...

@ENTR (Typ=M/E/I), programming information (page 330, 336)

The abort identifier in the event handler list is required if the standard event handler has
to abort the search for event handling routines. Non-ILCS procedures within the
procedure nesting structure are recognized by ILCS and skipped (no event handler list
is created for non-ILCS procedures).

@ENTR (Typ=E/I), parameter RETURNS=YES (page 333)

If ILCS=YES: registers 2 through 14 are reloaded.

@ENTR (Typ=B/L), parameter TYP=B (page 338)

Defines that this is a procedure that can be called from any module (external procedure)
and is not connected to the memory management or register saving.

@ENTR with new procedure type S (page 340.1)

Manual supplements Predefined macros for structured programming

U5223-J-Z125-3-7600 429

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

26
. A

pr
il

20
10

 S
ta

nd
 0

7:
32

.4
6

 P

fa
d:

 H
:\A

ng
el

a\
P

ro
je

kt
e\

B
S2

00
0-

Te
st

_a
lte

_H
an

db
ue

ch
er

\A
S

S
E

M
B

H
\u

s\
A

rb
ei

ts
da

te
ie

n\
as

se
m

b_
bs

.k
12

Format 5: Type S procedures

Name	Operation	Operands
[name]	@ENTR	TYP=S
	[,BASE=reg],	
	[,ENTRY= {ENTRY	CSECT
	[,AMODE={24	31
	,RMODE={24	ANY}]}]

name Name of the procedure

reg General purpose register; positive absolute expression, either:

– decimal self-defined value or
– predefined name of a register or
– name to which an appropriate self-defined value was assigned.

a) Description

This is a type S procedure, without connection to the runtime system memory
management. In contrast to the type B, D and L procedures, the register states of the
calling procedure are saved with this type of procedure.

BASE=reg Assigns a register to the procedure as a base register.

If this specification is omitted, register 15 is assigned as the base
register by the Assembler.

ENTRY= Specifies which entry structures are to be generated for the procedure.

The following is generated if ENTRY is specified:

name1 DS 0D
ENTRY name1

The following is generated if CSECT is specified:

name1 CSECT

AMODE= Allocates an addressing mode to the procedure
(see 4.2, AMODE instruction)

RMODE= Allocates a load attribute to the procedure
(see 4.2, RMODE instruction)

If an invalid combination of AMODE and RMODE is specified, an
MNOTE is generated, and AMODE 24 and RMODE 24 are used for
both values.

Predefined macros for structured programming Manual supplements

430 U5223-J-Z125-3-7600

b) Programming information

1. The procedure is assigned register 15 (entry point) as the base address register by
default, unless some other register was specified with BASE.

2. The procedure may not be the first in a module.

3. The procedure type is only permitted if ILCS=NO.

@ENTR (Typ=M), parameter ENV=C (page 327)

The restriction 'only permitted if ILCS=NO' has been eliminated.

@ENTR (Typ=E/I), parameter ENV=C (page 334)

The entry is only permitted for type E procedures.

@ENTR (Typ=E/I), parameter ENTRY= (page 334)

@ENTR with the ENTRY= parameter is permitted for type E procedures as well as
for type I procedures.

If @ENTR TYP=I with the ENTRY=ENTRY and ENV=SPL... parameters is
specified a base register is attached to the internal entry point.

@ENTR (Typ=E), programming information (page 336)

1. The abort identifier ...

2. @ENTR TYP=E with the ENV=C and ENTRY=ENTRY parameters only
generates a secondary entry in the next higher procedure and not a new
procedure. In contrast to procedures without an environment entry, this
definition may not be terminated with @END.

@EXIT Format 1 (page 344)

– Format 1: Return from type M, B or L or S procedures

In type B, L or S procedures, the program is continued with the instruction that
follows the @PASS macro in the calling procedure.

@PASS programming information (page 361)

1. A procedure called with EXTNAME=ext_name must be defined with @ENTR
TYP=E/B/S.

Manual supplements Dummy registers: Examples

U5223-J-Z125-3-7600 431

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

26
. A

pr
il

20
10

 S
ta

nd
 0

7:
32

.4
6

 P

fa
d:

 H
:\A

ng
el

a\
P

ro
je

kt
e\

B
S2

00
0-

Te
st

_a
lte

_H
an

db
ue

ch
er

\A
S

S
E

M
B

H
\u

s\
A

rb
ei

ts
da

te
ie

n\
as

se
m

b_
bs

.k
12

12.9 Dummy registers: Examples

Section 11.4 Dummy registers: Examples

In Example 1/Part 1 the declaration of PSRVEKT is not correct.

It must be changed to
PSRVEKT DS CL(L'PSREG1 + L'PSREG2 + 20 * L'PSREG3)

12.10 Differences between ASSEMBH V1.2A/ASSEMB V30.0A

Section 11.6 Differences between ASSEMBH V 1.2A/ASSEMB V30.0A

In the listing for DSECT no object code is printed even if a DC or instructions are
contained in the DSECT.

References
[1] ASSEMBH (BS2000)

User Guide

[2] AID (BS2000)
Advanced Interactive Debugger
Debugging of ASSEMBH Programs
User Guide

[3] Assembler Instructions (BS2000/OSD)
Reference Manual

[4] LMS (BS2000)
 SDF Format
 User Guide

 [5] BS2000/OSD-BC
 DMS Introductory Guide
 User Guide

 [6] BS2000/OSD-BC
 Executive Macros
 User Guide

 [7] Introductory Guide to XS Programming
 (for Assembler Programmers) (BS2000)
 User’s Guide

 [8] BS2000/OSD-BC
 Dynamic Binder Loader / Starter
 User Guide

[9] C (BS2000)
 C Compiler
 User Guide

U5223-J-Z125-3-7600

Index

&SYSDATE 176
&SYSECT 177
&SYSLIST 179
&SYSMOD 181
&SYSNDX 181
&SYSPARM 184
&SYSTEM 184
&SYSTIME 184
&SYSTSEC 185
&SYSVERM 186
&SYSVERS 186
@ macros 301
@AND 258, 302
@BEGI 235, 303
@BEND 235, 303
@BREA 246, 250, 304
@CAS2 241, 307
@CASE 238, 305
@CONDI 309
@CONEN 310
@CYCL 246, 248, 250, 313
@DATA 267, 315
@DO 244, 252, 322
@ELSE 236, 322
@END 261, 262, 323
@ENTR 261, 262, 324
@EVTLC 341
@EVTOE 343
@EXIT 261, 262, 344
@FREE 274, 348
@IF 234, 236, 349
@ININ 350
@OF 241, 351
@OFRE 241, 353
@OR 258, 354

U5223-J-Z125-3-7600

@PAR 271, 279, 355
@PASS 261, 277, 281, 361
@SETJV 367
@SETPM 368
@STXDI 369
@STXEN 370
@STXIM 373
@THEN 236, 374
@THRU 252, 375
@TOR 258, 377
@WHEN 234, 246, 250, 378
@WHIL 234, 244, 379

A
A-type constant 71
absolute element 18
absolute expression 15
acceptance of parameters 285
ACTR counter 199
ACTR instruction 199
ACTR operand 199
actual parameter 279, 281, 283
address 29

external 38
address constant 71
addressing mode 37

default 43
AGO instruction 203
AIF instruction 200
alignment

CNOP instruction 45
forcing 79
of constants 54
of memory areas 79

allocation, of addressing mode 42
alteration, of mnemonic operation code 100
alternative - decision 236
alternative format 197
alternative statement format 197
AMODE instruction 42
ampersand 5

in character self-defining term 21
in character values 146

ampersand in C-type constants 62

U5223-J-Z125-3-7600

ampersands, in macro calls 190
AND 258

logical 302
ANOP instruction 206
arithmetic expression 13
arithmetic macro expression 149

calculation 150
arithmetic operators 13
arithmetic relation 151
assembler listing

contents 104
line feed 110
page feed 88
page heading 115

assembler source 5
assembler source program 31
assembly, end of 89
assembly unit 1, 31

control section 31
assigning

base address register 117
load attribute 108

assignment
of mnemonic operation code 100
of values 94

asterisk address (syn) - location counter reference 22
attributes

of control section 37
reference 154

automatic area 267, 271, 316
initialization 273

B
B-type constant 64
B-type procedure 265, 338
base address, specifying 117
base address register

assigning 117
automatic area 273
based area 275
controlled area 274
drop 83
LOCAL area 271
procedure 263, 265

U5223-J-Z125-3-7600

SAVAREA 271
STACK 271, 277
static area 269

BASE operand
@ENTR 338
CLASS=A 273, 316
CLASS=B 275, 320
CLASS=C 274, 316
CLASS=S 269, 318

base procedure 265
based area 267, 275, 320
begin column 7

change default 97
binary constant 64
binary self-defining term 21
block principle 231, 234
Boolean expression 152
branch 349

conditional 200
unconditional 203

branches, monitoring 216

C
C-type constant 62
case differentiation

by comparison 240, 307, 351, 353
by number 238, 305

CASE register - case differentiation by number 238
chaining information 277
character constant 62
character expression 145
character relation 151
character self-defining term 21
character set 5
character substring 147
character value 145

concatenation 148
CLASS=A 273, 316
CLASS=B 275, 320
CLASS=C 274, 316
CLASS=S 269, 318
CNOP instruction 44
code section - executable control section 32
columns, begin, continue, and end 7

U5223-J-Z125-3-7600

COM instruction 34, 46
commas, in macro calls 190
common control section 34

definition 46
comparand 240, 242, 307, 351
compare instruction 242
compound condition 258
concatenation

of character values and substrings 148
of variable symbols and alphanumeric characters 139

condition 234
compound 258
simple 254

condition code setting machine instruction 254, 258
condition masks 257
condition symbol 255

predefined 255
user-own 257

conditional branch (AIF) 200
conditional EXTRN address 122
constants

alignment 54
definition 52
exponent modifier 60
implied length 57
length modifier 57
location counter reference 55
padding 55
scale modifier 58
storage space 55
truncation 55
types of 61

contingency routine 298
disable 309
enable 310

continuation
of control section 50
of dummy section 84

continuation character 28
continuation character column 28
continuation line 28

copying 107
remarks 9
remarks entry 27

U5223-J-Z125-3-7600

continue column 7, 28
change default 97

control flow 232, 234
control section 31, 32

addressing mode 37
attributes 37
common 34
common, definition 46
executable 32
first 32
literal pool 26, 32
load attribute 37
reference 33

control unit, location counter 32
control variable 252, 375
controlled area 267, 274, 316

initialization 274
COPY element, nesting level 390
COPY elements copy library element 48
copy library element (COPY) 48
COPY statement 48
copying

continuation line 107
text 106

count attribute reference 162
count branches (ACTR) 199
count loop 248, 313
count loop with unqualified terminal condition 250
count loop with unrestricted terminal condition 313, 378
CSECT - executable control section 33
CSECT instruction 33, 50
CXD instruction 35, 51
CYCLE loop - loop with unqualified terminal condition 246

D
D’ - definition attribute reference 165
D-type constant 67
D-type procedure 266, 340
data area 267

automatic class 267, 271
based class 268, 275
controlled class 268, 274
static class 267, 269

data class - data area 267

U5223-J-Z125-3-7600

data module 269
external 269

data principle 232, 267
DC instruction 52
decimal constant 70
decimal self-defining term 20
decision 236, 322, 349, 374
define common control section (COM) 46
define control section (CSECT) 50
defining, program start 113
defining names 11
definition

literal pool 98
of branch destination 206
of constants 52
of control section 50
of dummy register 81
of dummy section 84
of SET symbols 207, 209

definition attribute reference 165
definition of macro names - prototype statement 130, 187
drop base address register (DROP) 83
DROP instruction 30, 83
DS instruction 77

length calculation 80
DSECT - dummy section 33
DSECT instruction 33, 84
dummy procedure 266
dummy register 35

addressing 36
definition 36
DSECT instruction 85
use of 35
USING instruction 121

dummy register vector 35
length 51
reserve memory area 51

dummy section 33
definition for parameter acceptance 358
external 34
external, definition 123
external, reference 123
local 271, 291, 360

dummy section - dummy section 33

U5223-J-Z125-3-7600

duplication factor
count loop 248, 250
DC instruction 53
DS instruction 78
DXD instruction 81

DXD instruction 36, 81
dynamic parameter passing 277, 281
dynamic procedure end 261, 262, 344

E
E-type constant 67
E-type procedure 263, 331
EJECT instruction 88
element

absolute 18
relocatable 18

elements of expressions 13, 18
end column 7

change default 97
END instruction 89
end instruction, macro language 211
end of assembly 89
entries

instruction statement 7
macro language instruction 133
XREF listing 390

ENTRY address 38
identification 91

ENTRY instruction 91
entry point 38

identification 91
EQU instruction 94
equate (EQU) 94
ESID numbers 391
event handling, ILCS 297, 298
event layout context, definition 341
executable control section 32
explicit length specification, EQU instruction 94
exponent modifier 60
expression 13

absolute 15
arithmetic 13
elements 13, 18
evaluation 14

U5223-J-Z125-3-7600

macro language 143
relocatable 15, 16
simple 13
values 14

EXTERN address, identification 92
external address 38

identification 92
external data module 269
external dummy section 34

definition 123
reference 123

external procedure 262, 263, 265
external static area 269
EXTRN address 38

conditional 122
EXTRN instruction 92

F
F-type constant 65
first control section 32

identification 113
fixed-point constant 65
floating-point constant 67

characteristic 67
machine format 67
mantissa 67

for statement - iterative loop 252
formal parameter 279, 281, 283, 289, 291

G
GBLx instruction 207
generated keyword operand 191
generated macro name 188, 189
generated positional operand 191
generated variable symbols 138
global SET symbol, definition 207
global SET symbols 170
global system variable symbols 175
GSEQ instruction 420

U5223-J-Z125-3-7600

H
H-type constant 65
hexadecimal constant 63
hexadecimal self-defining term 21

I
I’ - integer attribute reference 161
I-type procedure 263, 331
ICTL instruction 97
IDA 411
ILCS, calling for dynamically loaded modules 350
ILCS interface 292
implied length

DC constants 57
DS instruction 78
EQU instruction 94

increment 252, 375
initialization

of automatic areas 273
of controlled areas 274

inner macro definition 129, 132
inner macro instruction 195
input format control (ICTL) 97
input record 97, 390

default 390
length 390

instruction, macro language 133
instruction set

BS2000-ESA 383
BS2000-NXS 383
BS2000-XS 383

instruction statement 7
entries 7

integer attribute reference 161
internal procedure 262, 263, 265
internal static area 269
interrupt message, defining layout 373
ISEQ instruction 413
ISLU 411
iterative loop 252, 322, 375

U5223-J-Z125-3-7600

K
K’ - count attribute reference 162
keyword operand 167, 191

L
L’ - length attribute reference 23, 160
L-type constant 67
L-type procedure 265, 338
language initialization, ILCS 300
LCLx instruction 209
length, of names 10
length attribute

of names 11
reference 23
reference in macro language 160

length attribute reference, macro language 160
length factor, DS instruction 78
length modifier

DC instruction 57
DXD instruction 82

library element, copying 48
line feed 110
line number -> statement number 389
linkage of procedures 277
linking, symbolic 38
literal 24

format 24
maximum number 389
rules 25

literal pool 26
define position 98

LLM format
PUNCH instruction 106
REPRO instruction 107

load attribute 37
assigning 108
default 109

LOCAL area 271, 291
local dummy section 271, 291, 360
LOCAL operand 271, 291, 326, 333
local SET symbol, definition 209
local SET symbols 170

implicitly declared 173
local system variable symbols 175

U5223-J-Z125-3-7600

location counter
alignment with CNOP instruction 45
for names 10
in control section 32
maximum value 22
reference 22

logical AND 302
logical operators 152
logical OR 354, 377
long jump, ILCS interface 294
loop 244

count loop 248
count loop with unqualified terminal condition 250
exit 304
heading 313
iterative 252, 322, 375
sub-block 322
terminating 304

loop sub-block 244
loop with pre-check 244, 322, 379
loop with unqualified terminal condition 246
loop with unrestricted terminal condition 313, 378
low-level procedure 265
lowercase letters 7
LTORG instruction 98, 323

M
M-type procedure 263, 325
machine instruction 1

to set condition code 254
machine instructions, format 383
macro call 187

name entry 189
operand entry 190
operand sublist 193
operation entry 189
rules for operands 190

macro definition 128
format 130
in source program 129
inner 129, 132
maximum number 390
nesting level 390

macro definition header 130, 211

U5223-J-Z125-3-7600

macro definition trailer, macro language 130
macro expression 143

arithmetic 149
Boolean 152
relational expression 151

macro generation 128
MACRO instruction 211
macro instruction 128

inner 195
length of operands 390
outer 195

macro library 130
macro resolution - macro generation 128
macro trace 216

termination 218
macros, predefined 232, 301
main procedure 262, 263, 325
MAXPRM operand 281, 326, 333
MCALL instruction 420
MCALL option 411
memory area

explicit release 274, 348
redefinition 79
reserving 77

memory management 232, 267
memory request 315
MEND instruction 211
MEXIT instruction 212
mnemonic operation code

assigning 100
machine instructions 383
redefining 100

MNOTE instruction 214
model statement 130
modifier

DC instruction 53
DS instruction 78

module size 392
monitoring

conditional branches 216
termination 218

monitoring job variable 300
setting 367

MTRAC instruction 216

U5223-J-Z125-3-7600

multiple branch 305, 307

N
N’ - number attribute reference 163
name 10, 18

absolute value 10
attributes in macro language 155
definition of 11
invalid entries 11
length 10
length attribute 11
location counter 10
maximum number 389
predefined 301
reserved 301
rules 10
underscore character in 10
valid entries 11
value 10

name entry 10
invalid specifications 11
macro language 135
predefined macros 301
valid specifications 11

Nassi-Shneiderman diagram 234
nesting, of structure blocks 234
nesting level

COPY statement 48
COPY statements 390
macro definitions 129
macro instructions 195, 390

no operation (ANOP) 206
NO sub-block 237, 322
non-STXIT event, signaling 343
non-symbol 29
NTRAC instruction 218
number attribute reference 163

O
object module size 392
operand entry 12

literal 24
macro language 142
predefined macros 301

operand sublist 193

U5223-J-Z125-3-7600

operation code, OPSYN instruction 100
operation entry 12

macro language 140
predefined macros 301
valid 12

operators
arithmetic 13
logical 152
relational 151

OPSYN instruction 100
OPTIMAL interface, parameter passing 283
OR, logical 354, 377
OR with priotity 258
ORG instruction 102
outer macro instruction 195

P
P-type constant 70
padding, of constants 55
PAGE - control section attributes 37
page feed 88
page heading 115
paired relocatable elements, occurrence 16
PAR operand, @PASS 279, 362
parameter 277
parameter acceptance 285

formal parameters 289, 291
STANDARD interface 285

parameter list 277, 278, 279, 281, 355
address 285

parameter passing 262, 277
dynamic 277, 281
ILCS interface 295
OPTIMAL 277, 283
STANDARD 277
STANDARD interface 279
static 277, 279

parentheses
in arithmetic expressions 14
in macro calls 190

PASS operand
@ENTR 287, 289, 291, 332
@PASS 281, 283, 365

passing of parameters 262, 277

U5223-J-Z125-3-7600

PLIST operand
@ENTR 289, 291, 332
@PAR 279, 291, 355, 358
@PASS 281, 283, 365

positional operand 167, 191
predefined condition symbol 255
predefined macros 232, 301
predefined names 301
predefined SET symbols 170
print, assembler listing 104
PRINT instruction 104
PRINT parameter 104

resetting 116
saving 111

procedure 260
base address register 263, 265
call 260, 361
chaining information 277
external 262, 263, 265
internal 262, 263, 265
main procedure 263
reentrant 260, 267
type B 265, 338
type D 266, 340
type E 263, 331
type I 263, 331
type L 265, 338
type M 263, 325

procedure declaration 262
procedure description 324
procedure end 262

dynamic 261, 262, 344
static 261, 262, 323

procedure heading 262, 324
procedure linkage 277

ILCS interface 293
procedure principle 231, 260
procedure STACK 271, 277
procedure start 261, 324
procedure type 263
program - assembly unit 31
program design 232
program linking, symbolic 38

U5223-J-Z125-3-7600

program mask 300
setting or resetting 368

prototype statement 130, 187
name entry 189
operand entry 190
operation entry 189

PRVLGD - control section attributes 37
pseudocode 232
PUBLIC - control section attributes 37
PUNCH instruction 106

LLM format 106

Q
Q-type constant 36, 76

R
READ - control section attributes 37
redefining, memory area 79
reentrant procedure 260, 267
reference control section 33
referencing

count attributes 162
definition attributes 165
integer attributes 161
length attribute 23
location counter 22
number attributes 163

referencing attributes, macro language 154
register conventions, ILCS interface 293
register saving 260, 263, 277
relation

arithmetic 151
character 151

relational expression 151
relational operators 151
releasing, memory area 274, 348
relocatable element 18
relocatable elements, occurrence in pairs 16
relocatable expression 15, 16
remainder sub-block 240, 353
remark 9, 27
remarks, macro language 133
remarks entry 27
remarks lines 9
replacement, of text 136

U5223-J-Z125-3-7600

REPRO instruction 107
LLM format 107

reserved name 301
reserving, memory area 77
reset PRINT parameter (UNSTK) 116
reset USING status (UNSTK) 116
residence mode - load attribute 37
RESIDENT - control section attributes 37
restore PRINT parameter (UNSTK) 116
restore USING status (UNSTK) 116
return value 262, 345
RMODE instruction 108
runtime system 232, 263

S
S’ - scaling attribute reference 160
S-type constant 73
SAVAREA 277
saving

PRINT parameter 111
USING status 111

scale modifier 58
fixed-point constant 59
floating-point constants 59

scale modifier reference 160
scaling attribute, reference 160
selection structure block 236
selector 240, 242, 307, 351
self-defining term

binary 21
decimal 20
hexadecimal 21

self-defining terms 19
sequence 235
sequence symbol 135

generated format 143
name entry 135
operand entry 143
predefined macros 301
standard format 135

set arithmetic value 220
set binary value 222
set character value 224
set no operation (CNOP) 44

U5223-J-Z125-3-7600

SET symbols 137, 169
defaults - predefined SET symbols 170
global 170
local 170
subscripted 173

SETA instruction 220
SETA symbol 169

setting 220
SETB instruction 222
SETB symbol 169

setting 222
SETC instruction 224
SETC symbol 169

setting 224
setting, location counter 102
simple condition 254
simple expression 13
single quote 5

in character self-defining term 21
in character values 146
in macro calls 190

single quote in C-type constants 62
source 1
source - source program 5, 31
source deck macro - macro definition in source program 129
source program 1, 5, 31
source program text 1, 5, 31
SPACE instruction 110
STACK, procedure 271, 277
STACK instruction 111
standard contingency handler (SCH), ILCS 298
standard event handler (SEH), ILCS 297
STANDARD interface

parameter acceptance 285
parameter passing 279

standard STXIT handler (SSH), ILCS 299
START instruction 32, 113
statement number 389
static area 267, 269, 318

external 269
internal 269

static parameter passing 277, 279
static procedure end 261, 262, 323
storage class 267, 315

U5223-J-Z125-3-7600

structogram 234
structure block 234, 260

case differentiation by comparison 240
case differentiation by number 238
count loop 248
count loop with unqualified terminal condition 250
decision 236
end 303
iterative loop 252
loop with pre-check 244
loop with unqualified terminal condition 246
nesting 234
sequence 235

structured programming 231
data principle 267
ILCS interface 292
introduction 231
predefined macros 301

STXIT event 299
STXIT events 297
STXIT handling routine

disable 369
enable 370

STXIT routine 299
sub-block 236

loop 244
NO 322
remainder 240
remainder sub-block 353

sublist, of operands 193
sublist - operand sublist 193
suboperand - operand sublist 193
subscripted SET symbols 173
substring, concatenation 148
symbol 29
symbolic parameters 137, 167
symbolic program linking 38
system variable symbols 137, 175

global 175
local 175

U5223-J-Z125-3-7600

T
T’ - type attribute reference 156
term, character self-defining 21
terminal condition 246, 250
terminate macro generation - MEXIT instruction 212
terminate macro trace (NTRAC) 218
termination, of a loop 304
terms, self-defining 19
text, copying 106
TITLE instruction 115
truncation, of constants 55
type attribute, reference 156
types of constants 53

U
unconditional branch (AGO) 203
underscore 5
underscores, in names 10
UNSTK instruction 116
uppercase and lowercase 7
uppercase letters 7
user-own condition symbol 257
USING instruction 30, 117
USING status

resetting 116
saving 111

V
V-type constant 38
V-type constants 74
value

of arithmetic expressions 14
of name 10

variable symbols 136
attributes 155
concatenation 139
generated 138
name entry 136
operand entry 142
operation entry 140
predefined macros 301
remarks entry 136
remarks line 134

VLIST operand, @PAR 279, 355

U5223-J-Z125-3-7600

W
WHILE loop - loop with pre-check 244
WXTRN instruction 122

X
X-type constant 63
XDSEC - external dummy section 34
XDSEC instruction 34, 123
XREF listing 390

Y
Y-type constant 71
YES sub-block 237, 374

Z
Z-type constant 70

U5223-J-Z125-3-7600

Contents
1 Introduction 1......................
1.1 Brief product description 1..................
1.2 Target group 2.......................
1.3 Summary of contents 2...................
1.4 Changes since the last version of the manual 3..........
1.5 Notational conventions 4...................

2 Assembly language structure 5...............
2.1 Character set 5......................
2.2 Assembler instruction statements and remarks 7..........
2.3 Name entry 10.......................

Definition of names 11....................
2.4 Operation entry 12......................
2.5 Operand entry 12......................
2.5.1 Expressions 13.......................
2.5.1.1 Simple expressions 13....................
2.5.1.2 Arithmetic expressions 13...................
2.5.3.1 Absolute and relocatable expressions 15.............
2.5.2 Elements of expressions 18..................
2.5.2.1 Names 18.........................
2.5.2.2 Self-defining terms 19....................
2.5.2.3 Location counter reference 22.................
2.5.2.4 Length attribute reference 23..................
2.5.3 Literals 24.........................
2.6 Remarks entry 27......................
2.7 Continuation character 28...................

3 Addressing, program sectioning and program linking 29......
3.1 Addressing 29.......................
3.2 Program sectioning 31....................
3.3 Control sections 32.....................
3.3.1 Executable control sections 32.................

U5223-J-Z125-3-7600

Contents

3.3.2 Reference control sections 33.................
Dummy section 33.....................
External dummy section 34..................
Common control section 34..................
Dummy registers 35.....................

3.3.3 Control section attributes 37..................
3.4 Symbolic program linking 38..................

4 Assembler instructions 39..................
4.1 General 39........................
4.2 Description of instructions 42..................

AMODE Assign addressing mode 42..............
CNOP Set no operation 44..................
COM Define common control section 46............
COPY Copy source program text from library element 48......
CSECT Define control section 50................
CXD Reserve memory area for the length of the dummy register

vector 51......................
DC Define constants 52..................
Modifiers 57........................
Length modifier 57......................
Scale modifier 58......................
Exponent modifier 60....................
Types of constants 61....................
Character constant C 62...............
Hexadecimal constant X 63................
Binary constant B 64................
Fixed-point constants F and H 65.............
Floating-point constants E, D and L 67............
Decimal constants P and Z 70.............
Address constants 71....................
A-type and Y-type address constants 71.............
S-type address constants 73..................
V-type address constants 74..................
Q-type address constants 76..................
DS Reserve storage space 77...............
DXD Define external dummy register 81...........
DROP Drop base address register 83.............
DSECT Define dummy section 84...............
EJECT Page feed 88....................
END End assembly 89..................
ENTRY Identify entry-point symbol 91.............
EXTRN Identify external symbol 92..............
EQU Equate 94.....................

U5223-J-Z125-3-7600

Contents

ICTL Input format control 97................
LTORG Define literal pool 98.................
OPSYN Redefine mnemonic operation code 100..........
ORG Set location counter 102................
PRINT Print optional data 104.................
PUNCH Copy text into object module 106.............
REPRO Copy continuation line into object module 107........
RMODE Assign load attribute 108................
SPACE Line feed 110....................
STACK Save USING or PRINT status 111............
START Define program start 113................
TITLE Listing heading 115..................
UNSTK Restore USING or PRINT status 116...........
USING Allocate base register 117...............
WXTRN Identify conditional EXTRN symbol 122..........
XDSEC Define external dummy section 123............

5 Macro language structure 127.................
5.1 Macro call and definition 128..................
5.1.1 Storing the macro definition 129.................
5.1.2 Format of the macro definition 130................
5.1.3 Inner macro definition 132...................
5.2 Instructions and remarks 133..................
5.3 Name entry 135.......................
5.3.1 Sequence symbols 135....................
5.3.2 Variable symbols 136.....................
5.3.3 Generated variable symbols 138.................
5.3.4 Concatenation of variable symbols and alphanumeric characters 139...
5.4 Operation entry 140......................

Variable symbols in the operation entry 140............
5.5 Operand entry 142......................
5.5.1 Variable symbols in the operand entry 142.............
5.5.2 Sequence symbols in the operand entry 143............
5.5.3 Macro expressions 143....................
5.5.4 Character expressions 145...................
5.5.4.1 Character value 145.....................
5.5.4.2 Character substring 147....................
5.5.4.3 Concatenation of character values and substrings 148........
5.5.5 Arithmetic macro expressions 149................
5.5.6 Relational expressions 151...................
5.5.7 Boolean expressions 152...................

U5223-J-Z125-3-7600

Contents

5.5.8 Attribute references 154....................
5.5.8.1 T’ Type attribute reference 156.................
5.5.8.2 L’ Length attribute reference 160................
5.5.8.3 S’ Scaling attribute reference 160................
5.5.8.4 I’ Integer attribute reference 161................
5.5.8.5 K’ Count attribute reference 162................
5.5.8.6 N’ Number attribute reference 163...............
5.5.8.7 D’ Definition attribute reference 165...............

6 Variable symbols 167....................
6.1 Symbolic parameters 167...................
6.2 SET symbols 169......................

Global and local SET symbols 170................
Implicitly declared local SET symbols 173.............
Subscripted SET symbols 173..................

6.3 System variable symbols 175..................
&SYSDATE 176.......................
&SYSECT 177.......................
&SYSLIST 179.......................
&SYSMOD 181.......................
&SYSNDX 181.......................
&SYSPARM 184.......................
&SYSTEM 184.......................
&SYSTIME 184.......................
&SYSTSEC 185.......................
&SYSVERM 186.......................
&SYSVERS 186.......................

7 Macro language instructions 187................
7.1 Prototype statement and macro call 187..............
7.1.1 Keyword and positional operands 191...............
7.1.2 Operand sublists 193.....................
7.1.3 Outer and inner macro instructions 195..............
7.1.4 Alternative statement format 197.................
7.2 Description of macro statements 199...............

ACTR Count branches 199.................
AIF Conditional branch 200................
AGO Unconditional branch 203...............
ANOP No operation 206...................
GBLx Define global SET symbol 207..............
LCLx Define local SET symbol 209..............
MACRO Macro definition header 211..............
MEND Macro definition trailer 211...............
MEXIT Define exit from a macro definition 212..........
MNOTE Transmit messages 214................

U5223-J-Z125-3-7600

Contents

MTRAC Macro trace 216...................
NTRAC Terminate macro trace 218...............
SETA Set SETA symbol 220.................
SETB Set SETB symbol 222.................
SETC Set SETC symbol 224.................

8 Macro language elements in assembler source program text 227...

9 Structured programming with ASSEMBH 231...........
9.1 Introduction 231.......................
9.2 Block principle 234......................
9.2.1 Sequence 235........................
9.2.2 Selection structure blocks 236..................
9.2.2.1 Decision 236........................
9.2.2.2 Case differentiation by number 238................
9.2.2.3 Case differentiation by comparison 240..............
9.2.3 Loops 244.........................
9.2.3.1 Loop with pre-check 244....................
9.2.3.2 Loop with unqualified terminal condition 246............
9.2.3.3 Count loop 248.......................
9.2.3.4 Count loop with unqualified terminal condition 250..........
9.2.3.5 Iterative loop 252.......................
9.2.4 Simple conditions 254.....................
9.2.4.1 Predefined condition symbols 255................
9.2.4.2 User-own condition symbols 257.................
9.2.5 Compound conditions 258...................
9.3 Procedure principle 260....................
9.3.1 Procedure declaration and procedure end 261...........
9.3.2 Procedure types 263.....................
9.3.2.1 Type M, E and I procedures 263.................
9.3.2.2 Type B, L and D procedures 265.................
9.4 Data principle 267......................
9.4.1 Data areas of the static class 269................
9.4.2 Data areas of the automatic class 271...............
9.4.3 Data areas of the controlled class 274...............
9.4.4 Data areas of the based class 275................
9.5 Procedure linkage and parameter passing 277...........
9.5.1 Parameter passing via the STANDARD interface 279.........
9.5.1.1 Static parameter passing 279..................
9.5.1.2 Dynamic parameter passing 281.................
9.5.2 Parameter passing via the OPTIMAL interface 283..........
9.5.3 Parameter acceptance 285...................
9.5.3.1 Parameter acceptance via the STANDARD interface 285.......
9.5.3.2 Parameter acceptance via the OPTIMAL interface 287........
9.5.3.3 Formal parameter acceptance 289................

U5223-J-Z125-3-7600

Contents

9.5.3.4 Formal parameter acceptance in the LOCAL area. 291........
9.6 ILCS interface for structured programming 292...........
9.6.1 Procedure linkage 293.....................

Register conventions (ILCS interface and non-ILCS interface) 293....
Parameter passing 295....................

9.6.2 Activating user-own routines 297.................
9.6.3 Event handling 297......................
9.6.4 Contingency handling 298...................
9.6.5 STXIT handling 299......................
9.6.6 Setting the program mask 300..................
9.6.7 Setting the MONJV value in the PCD 300.............
9.6.8 Language initialization for dynamically loaded modules 300.......

10 Predefined macros for structured programming 301........
General programming notes 301.................
@AND Logical AND 302..................
@BEGI Sequence 303...................
@BEND Structure block end 303................
@BREA Termination of a loop 304...............
@CASE Case differentiation by number 305...........
@CAS2 Case differentiation by comparison 307..........
@CONDI Disable contingency routine 309............
@CONEN Enable contingency routine 310.............
@CYCL Loop heading 313..................
@DATA Data access and memory request 315..........
@DO Loop sub-block 322.................
@ELSE NO sub-block 322..................
@END Static procedure end 323...............
@ENTR Procedure start 324.................
@EVTLC Define event layout context 341.............
@EVTOE Signal non-STXIT event 343..............
@EXIT Dynamic procedure end 344..............
@FREE Memory release 348.................
@IF Decision 349....................
@ININ Call ILCS for dynamically loaded modules 350.......
@OF Case sub-block 351.................
@OFRE Remainder sub-block 353...............
@OR Logical ’OR’ 354..................
@PAR Definition of areas 355................
@PASS Procedure call 361..................
@SETJV Set monitoring job variable 367.............
@SETPM Set or reset program mask 368.............
@STXDI Disable STXIT handling routine 369...........
@STXEN Enable STXIT handling routine 370...........

U5223-J-Z125-3-7600

Contents

@STXIM Define interrupt message layout 373...........
@THEN YES sub-block 374.................
@THRU Iterative loop 375..................
@TOR Logical ’OR with priority’ 377..............
@WHEN Loop termination condition 378.............
@WHIL Loop with pre-check 379...............

11 Appendix 381........................
11.1 Summary of DC constants 382.................
11.2 Format of the machine instructions 383..............
11.3 Assembler restrictions 389...................
11.4 Dummy registers: Examples 393.................
11.5 Parameter passing in structured programming: Example 397......
11.6 Differences between ASSEMBH V1.1A and ASSEMB V30.0A 411....

Manuals supplements

References

Index.

U5223-J-Z125-3-7600

Edition June 2010

©
 S

ie
m

en
s

N
ix

do
rf

In
fo

rm
at

io
ns

sy
st

em
e

A
G

 1
99

5
P

fa
d:

 K
:\A

ng
el

a\
P

ro
je

kt
e\

B
S

20
00

-T
es

t_
al

te
_H

an
db

ue
ch

er
\A

S
S

E
M

BH
\u

s\
A

rb
ei

ts
da

te
ie

n\
as

se
m

b_
bs

.v
or

User Guide - English

ASSEMBH
Reference Manual

Valid for
ASSEMBH V1.2
With Supplement chapter for ASSEMBH V1.2D

Comments… Suggestions… Corrections…
The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
manuals@ts.fujitsu.com

Certified documentation
according to DIN EN ISO 9001:2000
To ensure a consistently high quality standard and
user-friendliness, this documentation was created to
meet the regulations of a quality management system which
complies with the requirements of the standard
DIN EN ISO 9001:2000.

cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

This manual is printed
on paper treated with
chlorine-free bleach.

Copyright © Fujitsu Technology Solutions GmbH 2010.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers

On April 1, 2009, Fujitsu became the sole owner of Fujitsu Siemens Computers. This new subsidiary of
Fujitsu has been renamed Fujitsu Technology Solutions.
This document is a new edition of an earlier manual for a product version which was released a conside-
rable time ago in which changes have been made to the subject matter.
Please note that all company references and copyrights in this document have been legally transferred to
Fujitsu Technology Solutions.
Contact and support addresses will now be offered by Fujitsu Technology Solutions and have the format
…@ts.fujitsu.com.
The Internet pages of Fujitsu Technology Solutions are available at http://ts.fujitsu.com/...

i

	Title
	Contents
	Introduction
	Brief product description
	Target group
	Summary of contents
	Changes since the last version of the manual
	Notational conventions

	Assembly language structure
	Character set
	Assembler instruction statements and remarks
	Name entry
	Definition of names

	Operation entry
	Operand entry
	Expressions
	Simple expressions
	Arithmetic expressions
	Absolute and relocatable expressions

	Elements of expressions
	Names
	Self-defining terms
	Location counter reference
	Length attribute reference

	Literals

	Remarks entry
	Continuation character

	Addressing, program sectioning and program linking
	Addressing
	Program sectioning
	Control sections
	Executable control sections
	Reference control sections
	Dummy section
	External dummy section
	Common control section
	Dummy registers

	Control section attributes

	Symbolic program linking

	Assembler instructions
	General
	Description of instructions
	AMODE Assign addressing mode
	CNOP Set no operation
	COM Define common control section
	COPY Copy source program text from library element
	CSECT Define control section
	CXD Reserve memory area for the length of the dummy register vector
	DC Define constants
	Modifiers
	Length modifier
	Scale modifier
	Exponent modifier
	Types of constants
	Character constant C
	Hexadecimal constant X
	Binary constant B
	Fixed-point constants F and H
	Floating-point constants E, D and L
	Decimal constants P and Z
	Address constants
	A-type and Y-type address constants
	S-type address constants
	V-type address constants
	Q-type address constants
	DS Reserve storage space
	DXD Define external dummy register
	DROP Drop base address register
	DSECT Define dummy section
	EJECT Page feed
	END End assembly
	ENTRY Identify entry-point symbol
	EXTRN Identify external symbol
	EQU Equate
	ICTL Input format control
	LTORG Define literal pool
	OPSYN Redefine mnemonic operation code
	ORG Set location counter
	PRINT Print optional data
	PUNCH Copy text into object module
	REPRO Copy continuation line into object module
	RMODE Assign load attribute
	SPACE Line feed
	STACK Save USING or PRINT status
	START Define program start
	TITLE Listing heading
	UNSTK Restore USING or PRINT status
	USING Allocate base register
	WXTRN Identify conditional EXTRN symbol
	XDSEC Define external dummy section

	Macro language structure
	Macro call and definition
	Storing the macro definition
	Format of the macro definition
	Inner macro definition

	Instructions and remarks
	Name entry
	Sequence symbols
	Variable symbols
	Generated variable symbols
	Concatenation of variable symbols and alphanumeric characters

	Operation entry
	Variable symbols in the operation entry

	Operand entry
	Variable symbols in the operand entry
	Sequence symbols in the operand entry
	Macro expressions
	Character expressions
	Character value
	Character substring
	Concatenation of character values and substrings

	Arithmetic macro expressions
	Relational expressions
	Boolean expressions
	Attribute references
	T' Type attribute reference
	L' Length attribute reference
	S' Scaling attribute reference
	I' Integer attribute reference
	K' Count attribute reference
	N' Number attribute reference
	D' Definition attribute reference

	Variable symbols
	Symbolic parameters
	SET symbols
	Global and local SET symbols
	Implicitly declared local SET symbols
	Subscripted SET symbols

	System variable symbols
	&SYSDATE
	&SYSECT
	&SYSLIST
	&SYSMOD
	&SYSNDX
	&SYSPARM
	&SYSTEM
	&SYSTIME
	&SYSTSEC
	&SYSVERM
	&SYSVERS

	Macro language instructions
	Prototype statement and macro call
	Keyword and positional operands
	Operand sublists
	Outer and inner macro instructions
	Alternative statement format

	Description of macro statements
	ACTR Count branches
	AIF Conditional branch
	AGO Unconditional branch
	ANOP No operation
	GBLx Define global SET symbol
	LCLx Define local SET symbol
	MACRO Macro definition header
	MEND Macro definition trailer
	MEXIT Define exit from a macro definition
	MNOTE Transmit messages
	MTRAC Macro trace
	NTRAC Terminate macro trace
	SETA Set SETA symbol
	SETB Set SETB symbol
	SETC Set SETC symbol

	Macro language elements in assembler source program text
	Structured programming with ASSEMBH
	Introduction
	Block principle
	Sequence
	Selection structure blocks
	Decision
	Case differentiation by number
	Case differentiation by comparison

	Loops
	Loop with pre-check
	Loop with unqualified terminal condition
	Count loop
	Count loop with unqualified terminal condition
	Iterative loop

	Simple conditions
	Predefined condition symbols
	User-own condition symbols

	Compound conditions

	Procedure principle
	Procedure declaration and procedure end
	Procedure types
	Type M, E and I procedures
	Type B, L and D procedures

	Data principle
	Data areas of the static class
	Data areas of the automatic class
	Data areas of the controlled class
	Data areas of the based class

	Procedure linkage and parameter passing
	Parameter passing via the STANDARD interface
	Static parameter passing
	Dynamic parameter passing

	Parameter passing via the OPTIMAL interface
	Parameter acceptance
	Parameter acceptance via the STANDARD interface
	Parameter acceptance via the OPTIMAL interface
	Formal parameter acceptance
	Formal parameter acceptance in the LOCAL area.

	ILCS interface for structured programming
	Procedure linkage
	Register conventions (ILCS interface and non-ILCS interface)
	Parameter passing

	Activating user-own routines
	Event handling
	Contingency handling
	STXIT handling
	Setting the program mask
	Setting the MONJV value in the PCD
	Language initialization for dynamically loaded modules

	Predefined macros for structured programming
	General programming notes
	@AND Logical AND
	@BEGI Sequence
	@BEND Structure block end
	@BREA Termination of a loop
	@CASE Case differentiation by number
	@CAS2 Case differentiation by comparison
	@CONDI Disable contingency routine
	@CONEN Enable contingency routine
	@CYCL Loop heading
	@DATA Data access and memory request
	@DO Loop sub-block
	@ELSE NO sub-block
	@END Static procedure end
	@ENTR Procedure start
	@EVTLC Define event layout context
	@EVTOE Signal non-STXIT event
	@EXIT Dynamic procedure end
	@FREE Memory release
	@IF Decision
	@ININ Call ILCS for dynamically loaded modules
	@OF Case sub-block
	@OFRE Remainder sub-block
	@OR Logical 'OR'
	@PAR Definition of areas
	@PASS Procedure call
	@SETJV Set monitoring job variable
	@SETPM Set or reset program mask
	@STXDI Disable STXIT handling routine
	@STXEN Enable STXIT handling routine
	@STXIM Define interrupt message layout
	@THEN YES sub-block
	@THRU Iterative loop
	@TOR Logical 'OR with priority'
	@WHEN Loop termination condition
	@WHIL Loop with pre-check

	Appendix
	Summary of DC constants
	Format of the machine instructions
	Assembler restrictions
	Dummy registers: Examples
	Parameter passing in structured programming: Example
	Differences between ASSEMBH V1.1A and ASSEMB V30.0A

	Manual supplements
	SPACE instruction
	Variable system parameter
	Type S procedures
	Procedure linking and parameter passing
	Static parameter passing
	Contingency handling
	STXIT handling
	Predefined macros for structured programming
	Dummy registers: Examples
	Differences between ASSEMBH V1.2A/ASSEMB V30.0A

	References
	Ordering manuals

	Index
	A
	B
	C...
	Co...

	D...
	Da...

	E
	F-G
	I-H
	K-L
	M
	N-O
	P...
	PL...

	Q-R
	S...
	SET...
	stru

	T-V
	W-Z

