

1 Preface
The data communication system DCM (data communication methods) in
BS2000 is part of the data communication system. This systerm
incorporates hardware for structuring networks and connecting general-purpose
computers, PCs and terminals, as well as software for configuring, managing and
controlling data communication via these networks. DCM provides the
services of these networks as functions in BS2000 in a form that is independent of the
type of network and its configuration. DCAM (data communication access method) with
all other access methods and access options is embedded in the DCM data
communication method of BS2000. The DCAM dynamic subsystem is the access
method for program-to-program and program-terminal communication. DCM is
composed of the modules:

DCAM (Data Communication Access Method) for the implementation of the
DCAM interface in ASSEMBLER and COBOL.

VTSU (Virtual Terminal Support) for the implementation of the virtual terminals.

TIAM (Terminal Interactive Access Method) for the implementation of the RTIO
ASSEMBLER interface (remote terminal input output).

UTM (Universal Transaction Monitor) for the implementation of the UTM interface.

These modules, in turn, have a defined interface to BCAM (Basic Communication
Access Method) . The tasks common to all access methods, such as transport
management, buffering etc. are implemented in this basic module.

DCM is mounted on decoupled BS2000 interfaces and also provides decoupled
interfaces. DCM offers the following facilities:

DCAM access method for communication between programs or programs and
terminal.

support of terminal programming through the application of virtual terminals ;

general C program interface SOCKETS for accessing TCP/IP networks;

general C interface ICMX offering the OSI transport functionality;

administration at optional operator consoles, also, if desired, in a DCAM program
using the multiconsole operation module (UCON) ;

powerful support of the established interfaces for timesharing (RTIO) .

U1786-J-Z135-5-7600 1

Preface

DCAM opens up to the user the wide-ranging potential of the data communication
system, enabling unrestricted data communication with all the partners (applications
and terminals).

BS2000

- -

DCM

F - OSI appli- TCP/IP
H UTM TIAM DCAM cations e.g. applic-

- S FTOS ations
application application application e.g.

X
Application Layer OSS DFS

H OSI Services

C
Program interface

S

UTM TIAM DCAM ICMX SOCKET
adapter adap-

VTSU individual ter
DC applic.

OLTP Online
Transaction Timesharing Individual
Processing DC application

BCAM
Basic Communication Access Method

Transport Layer

- -

Interfaces to Interface to Interface to Interface
another front end locally via channel
host computer processor connected to LAN

(WAN) terminals

Structure of DCM
XHCS can only be used with BS2000 V10 or higher.

2 U1786-J-Z135-5-7600

Preface

This description of the DCAM (Data Communication Access Method) program
interfaces is intended for various user groups:

O and M specialists and application engineers who want a guide to the scope and
capabilities of the interface.

Programmers (ASSEMBLER, COBOL) wanting to acquire a basic knowledge of the
subject in order to understand and use the more detailed information contained in
the programming manuals.

System and network administrators who do not need to be experts on the interface
but would like to have a general knowledge of DCAM.

All readers should be familiar with BS2000. The use of DCAM also presupposes a
knowledge of either ASSEMBLER or COBOL as well as of the OSI Reference Model.

U1786-J-Z135-5-7600 3

Preface

1.1 Summary of contents

The description of the DCAM communication access method is divided between three
manuals:

"DCAM Program Interfaces"
"DCAM COBOL Calls"
"DCAM Macros"

The general description of the DCAM program interface contains basic information for
the DCAM programmer, but is also suitable for those wanting a guide to the scope and
capabilities of the DCAM interface. The DCAM programmer will then find details on
programming in the descriptions of the DCAM COBOL and DCAM ASSEMBLER
interface according to the language used.

This DCAM manuals contain the descriptions for both DCAM(ISO) transport service
applications and DCAM(NEA) transport service applications. Differences between the
two are discussed where applicable. Passages, sections and entire chapters that apply
only to DCAM(NEA) transport service applications are indicated by a

at the start of the text.

This manual is subdivided as follows:

The chapter ’Introduction to the DCAM interface’ contains general information on
the DCAM interface, and explains basic concepts and points for consideration in the
planning of programs and program systems.

The chapter ’DCAM functions’ describes the functions of all DCAM calls and
notifications.

The chapter ’Support for virtual terminals’ contains a brief description of format
terminals, logical line terminals and edit options.

The chapter ’DCAM programs’ outlines the coding of DCAM programs in
Assembler and COBOL and describes the execution of these programs.

The Appendix lists the DCAM calls and limit values, and shows how a connection
is set up by the terminal.

4 U1786-J-Z135-5-7600

Preface

The layout of the function description for all DCAM calls and notifications is identical to
the corresponding sections in the manuals for the users of ASSEMBLER and COBOL.
This facilitates parallel use of the manuals.

A glossary, list of references and an index are to be found at the end of this manual.

A number of books and guides on computer networks and remote data processing with
BS2000 deal with topics related to those discussed in this User Guide. Subjects such
as generation and administration, programming communication processors and
terminals, and support for virtual terminals are dealt with in separate manuals.

1.2 Changes since the last version of the manual

Support of logical terminals

This chapter entitled ’Support for virtual terminals’ is shorter than in previous editions.
See the "VTSU User Guide" for a detailed description of the VTSU interface, the VTSU
control block, the logical control characters and the status information.

Readme file

Information on any functional changes and additions to the current product version can
be found in the product-specific README file. You will find the file on your BS2000
computer under the name SYSDOC.product.version.READ-ME.D . The user ID under
which the README file is cataloged can be obtained from your system administrator.
You can view the README file using the /SHOW-FILE command or an editor, and print
it out on a standard printer using the following command:

PRINT-FILE FILE-NAME=filename,LAYOUT-CONTROL=PARAMETERS(CONTROL-CHARACTERS=EBCDIC)

U1786-J-Z135-5-7600 5

2 Introduction to the DCAM interface
The structure of the DCAM programs is determined by the use of the DCAM interface
and access to the communication system. This chapter describes the
following:

the DCAM access method

traffic relations in the data communication system with DCAM

explanation of essential basic concepts

characteristics determining the performance capability of the DCAM interface

the basic structure of a DCAM program

DCAM program planning

U1786-J-Z135-5-7600 7

Introduction DCAM interface

2.1 The Data Communication Access Method DCAM

DCAM offers two different sets of functions:

DCAM(NEA) transport service functions and

DCAM(ISO) transport service functions

DCAM(NEA) transport services

In network architecture (NEA), DCAM is assigned to the user services
level. This enables programmers and terminal users access to the data communication
system.

Programs User level

-

XHCS VTSU DCAM TIAM User services level

-

BCAM Transport services level

User services level in BS2000 (NEA)

DCAM(NEA) transport services include the following:

Provision with partner characteristics
Definition of rules of communication
Exchange of user data
Presentation function for communication with terminals

In order to realize functions for both partners the agencies concerned exchange
information adhering to fixed protocols. These protocols provide the framework for
DCAM(NEA) transport service applications.

8 U1786-J-Z135-5-7600

DCAM interface Introduction

DCAM(ISO) transport services

The DCAM(ISO) transport services enable you to effect data communication on the
basis of the transport services standardized by the ISO. The DCAM interface has been
adapted in accordance with these transport services.

Overview of the OSI Reference Model

The OSI Reference Model (OSI = "Open Systems Interconnection"), establishes a
framework for the classification of services, functions and interfaces. Hence it provides
the basis for non-proprietary communication protocols that allow the interconnection of
"open systems".

The following diagram summarizes this model with the 7 layers and their respective
functions.

For more information please consult the brochure "Ways to Open Communications".

U1786-J-Z135-5-7600 9

Introduction DCAM interface

Layer Designation Functions

Controls the execution
7 Application Layer of communication

functions for an
application

Determines the
6 Presentation Layer presentation and

meaning of exchanged
data

Controls the procedure
5 Session Layer for communication via

transport connections

Controls the connections
4 Transport Layer and data transport

between the users in
the end systems

Controls the connections
3 Network Layer along the transmission

path as a whole, i.e.
between the end systems

Transmission with error
2 Data-Link Layer recovery along the

individual sections of
the transmission path

Controls the physical
1 Physical Layer transmission medium

The OSI Reference Model

The layers and their functions are commonly divided into two groups: layers 1 through
4 containing the transport services, and layers 5 through 7 the application services.

10 U1786-J-Z135-5-7600

DCAM interface Introduction

DCAM(ISO) provides what is purely a transport service within the framework of
 architecture for communication on the basis of the ISO standard. This
means that DCAM(ISO) does not include some of the functions DCAM(NEA) provides.
It should be noted particularly that DCAM(ISO) does not support any protocols on a
higher level than the transport service, i.e. no message editing for communication with
terminals.

Note that the DCAM(ISO) transport service can be provided on the basis of different
communication protocols, e.g. by TCP/IP in conjunction with a convergence protocol.

U1786-J-Z135-5-7600 11

Introduction Traffic relations with DCAM

2.2 Traffic relations in the data communication system
with DCAM

DCAM enables one or more tasks (programs) in the host computer to communicate
with any application/program. DCAM(NEA) also permits communication with one or
more terminals, and DCAM(ISO) permits communication with CMX applications, if the
appropriate /BCMAP commands are implemented. DCAM therefore supports
connections to the following:

other DCAM applications in the same or another BS2000 processor
CMX applications in SINIX computers
CMX applications in BS2000 computers
applications in third-party-computers, if the appropriate transport service
is available
terminals

The links can be established via LANs (local area networks), WANs (wide area
networks) or locally.

12 U1786-J-Z135-5-7600

Traffic relations with DCAM Introduction

BS2000

DCAM(NEA) BCAM as
transport NEA Terminal
service transport
applic. service

applic.

PDN

DCAM(NEA)
transport
service
applic.

SINIX third-party system

NEA
CMX(NEA) trans-

applic. port
service
applic.

Interconnections with DCAM(NEA) transport service applications

U1786-J-Z135-5-7600 13

Introduction Traffic relations with DCAM

BS2000

DCAM(ISO) CMX(ISO) BCAM as
transport transport ISO
service service transport
applic- applic- service
ation ation applic.

DCAM(ISO)
transport
service
applic.

SINIX third-party-system

ISO
CMX(ISO) trans-

applic- port
ation service

applic.

Interconnections with DCAM(ISO) transport service applications

14 U1786-J-Z135-5-7600

Basic concepts Introduction

2.3 Basic concepts

2.3.1 Program, data, task

In BS2000 the program and data memory (data memory = data area in the program),
and the task controlled by the program, are generally administered as a single unit.
For simplicity’s sake, therefore, in the following description no distinction is made
between these three components. Hence whenever reference is made to ’task’ or
’program’, this unit is meant. For the transmission and reception of data the task-
specific data memory is important, since it is from or in this memory that the transfer is
performed. This is why in certain places the data memory is referred to specifically.
The specific structural and organizational characteristics of a DCAM program are dealt
with in a separate section on page 27ff. Programs controlling several tasks are
described on pages 115ff and 125ff, and program execution: DCAM task on page 129ff.

Program Program
or

Data

Data 1 Data n

Task Task 1 Task n

The task as an administrative unit in BS2000

U1786-J-Z135-5-7600 15

Introduction Basic concepts

2.3.2 Communication partners

Communication partners in the communication system are applications
and, in the case of DCAM(NEA) transport service applications, also terminals.

Applications can be the following:

DCAM applications
UTM applications
PDN applications
CMX applications
ISO transport services applications in any computers, e.g. CMX applications in
SINIX computers

SINIX BS2000

CMX DCAM(ISO) CMX(ISO)
application transport transport

service service
applic. applic.

DCAM(ISO) CMX(ISO)
CMX

...

Communication between a CMX and a DCAM(ISO) transport service application

16 U1786-J-Z135-5-7600

Basic concepts Introduction

A DCAM application can only exist in a host computer under the control of BS2000. It
is defined in at least one DCAM program and generated by the communication access
method. It is administered by the communication access method as an addressable
unit for incoming and outgoing messages or notifications, and canceled at the request
of the program. It is the address at which tasks (programs) or groups of tasks are
known to the data communication system. This makes it a communication partner.

The generation of DCAM application type communication partners is a function of the
DCAM interface.

A DCAM application can be opened by one task if defined as non-shareable or by a
number of tasks (shareable). The first opening task is the primary task. Secondary
tasks may follow if required. More than one DCAM application can be opened in a
program. As each one can be considered in isolation, however, this option is not
discussed any further in this manual. The name of the DCAM application is laid down
when the application is generated (see example in figure below).

This name can be specified by the user in YOPEN. If the name is not specified by the
user, it is generated by the system, or a predefined name known to the data
communication system can be used. The name of the DCAM application must be
unique in the host computer in which the DCAM application is generated.

applies only to DCAM(NEA) transport service applications:
The programmer has no influence over the existence of terminal-type
communication partners. Such communication partners are generated or
removed either at communication system generation time or by means of
administration instructions issued by the network administrator.

The terminal is characterized by its technical implementation on the one hand
and by the person operating it on the other. The interaction of these two
elements, i.e. the device and the user of the device, implements the terminal
communication partner at a given point in time. This communication partner can
only maintain connections to other partners and transmit and receive data via
these connections with the means provided by the data communication system.

Those users of the data communication system who can set up
connections to other partners are referred to as communication partners in a wider
sense. In the more restricted sense, this name is used to denote the two partners
linked by an existing connection.

U1786-J-Z135-5-7600 17

Introduction Basic concepts

Pro- Pro-
gram gram

U V

Task A1 Task B1 *

DCAM DCAM DCAM
application application application

APP #0 APP #1 APP #2

Non-shareable DCAM applications
(can only be opened by one task)

Pro- Pro- Pro- Pro- (shareable)
gram gram gram gram

W X Y Z

Z1 Z2

Task C1 Task D1* Task E1 Task F1 Task G1

DCAM DCAM DCAM
application application application
APP #3 APP #4 APP #5

Shareable DCAM applications
(can be opened by more than one task)

* Task has opened several applications

Examples of DCAM applications

18 U1786-J-Z135-5-7600

Basic concepts Introduction

2.3.3 Addressing

A partner is addressed via two names: the processor node location of the partner and
the name of the communication partner itself.

The name of the processor node and, in the case of DCAM(NEA) transport service
applications, the name of the terminal, are defined when the data communication
system is generated. The names of the DCAM applications are defined in the program
when the applications are opened.

All names used can have a maximum length of 8 characters. The first character must
be alphabetic or $, @, #. Characters 2 through 8 may also comprise the digits 0...9
(ASSEMBLER naming convention). A user application name may only begin with a
dollar sign ’$’ if the application runs under TSOS.

Note

The name of the communication partner in ISO transport service connections is not
validated for conformance to conventions.

In the case of DCAM(ISO) transport service applications and heterogeneous
networks it may be necessary to specify different codings or longer partner names.
These names are assigned an alias via the /BCMAP console command; this is
specified in the program and adheres to the conventions (see the manual "Network
Management in BS2000").

2.3.4 Connections

Before communication can take place between two communication partners, a
connection has to be set up between them. One partner begins by issuing a
connection request (ACQUIRE) , whereupon the other may respond with an
acceptance (ACCEPT) , thereby setting up a connection in the data communication
system.

Data can then be sent and received across the connection established. In DCAM(ISO)
transport service applications, more than one connection can exist between two
applications (parallel connections). Currently, parallel connections can only be
established serially.

U1786-J-Z135-5-7600 19

Introduction Characteristic features of DCAM

2.4 Characteristic features of DCAM

2.4.1 Distribution of incoming messages

Messages arriving for a DCAM application can either be distributed via originator-
oriented or common receiver queues. These methods are both suitable for shareable
and non-shareable DCAM applications.

In the case of DCAM(NEA) transport service applications, distribution can also be via
distribution code-oriented queues, but only for shareable DCAM applications.

2.4.1.1 Originator-oriented queue and common receiver queue

A queue for incoming messages is set up for each established connection enabling
originator-oriented access to the messages. Access in the order of arrival (regardless of
the message originator) is implemented by another queue, the common receiver queue.
A message is always entered in one of the two queues. The user specifies in the
program which queue is to be accessed. This is possible during connection setup and
can be re-specified for subsequent processing each time a message is transmitted or
received.

Hence, for a definable period of time messages can only be fetched via the originator-
oriented queue. In the case of shareable applications this creates the link between a
task and a connection. The link is lost once the common receiver queue is used again.

The figure below provides an overview.

Task 1 has specified at connection setup or during the last send or receive operation
that it wants to receive messages via connection A, and accesses the associated queue
with receive calls. The same applies to task 3 and connection C. Messages from
connections B and D are received by task 2 but can also be received by other tasks.

20 U1786-J-Z135-5-7600

Characteristic features of DCAM Introduction

Task 1 Task 2 Task 3

/\ /\ /\

- - - - - DCAM application A - - - - -

**

* * * *

A B C D
Data communication Connec-
system tions

* originator-oriented queue
** common receiver queue

Example of queue access

U1786-J-Z135-5-7600 21

Introduction Characteristic features of DCAM

2.4.1.2 Distribution code-oriented queue

This section applies to DCAM(NEA) transport service applications only.

It is presumed that the task group is controlled by programs with different capabilities,
i.e. that each program can only process certain messages. The message/program
(task) link is established by means of a code which is contained in the message itself.
The user can select the code and specifies specific codes when the connection is
established (for a detailed description of the various options refer to page 68ff). A
separate queue is created for each code group, and the allocation of the queues to the
programs is controlled by the primary task (special macros are provided for this
purpose, see page 88ff). A distribution name is defined when the application is
opened and this is assigned to the distribution codes in order to link them to a task.

The name can be the same for several tasks, as, for instance, when one program
controls more than one task. DCAM then passes on messages to the various tasks in
accordance with the FIFO principle (first in - first out: the first entry in the queue will be
the first one processed).

When the communication partner enters the code defined at connection setup time or
later, he will reach the task whose distribution name has been assigned to this code by
the primary task.

Thus the primary task controls

the assignment of distribution codes to a connection:
when setting up a connection, it determines which codes are to be used and it can
redefine these codes for an active connection at any time via a new macro call.

the assignment of the distribution codes to a task by means of the distribution
name.

Messages which cannot be delivered because their code is not allocated or is invalid
are delivered to the primary task.

The figure below shows an example of queues for distribution code groups containing
only one code each.

As messages with the same code arrive from different partners, originatororiented
access to these messages is also possible.
The distribution name DISTRIB1 is assigned both to task 1 (primary task) and to task 2.
At this point the FIFO rule (see above) comes into effect: messages with the codes CA
and CF will be passed on in the sequence of their arrival to the next task issuing a
receive call. Messages with the codes CD, CX and C$ are distributed to task 1 because
they are not assigned to any other task.

22 U1786-J-Z135-5-7600

Characteristic features of DCAM Introduction

Task 1 Task 2 Task 3 Task 4 Task 5

DISTRIB 1 DISTRIB 1 DISTRIB 2 DISTRIB 3 DISTRIB 4

/\ /\ /\ /\ /\
DCAM
application

- - - - - - "B" - - - - - -

CD** CX** CA CF C1 C$** CM CO

- *
- -

-
- - - -

Connections

* distribution code-oriented queues
** default option

Example of access to distribution code-oriented queues

U1786-J-Z135-5-7600 23

Introduction Characteristic features of DCAM

2.4.1.3 Implicit distribution code

This section applies to DCAM(NEA) transport service applications only.

If a sequence of messages contain the same distribution code it is sufficient to specify
this code in the first message. For this purpose the primary task defines a code
indicator character which indicates that a distribution code is included in a message
or message sequence. The distribution code immediately follows this character. In this
case it may be no more than 7 characters long.

If messages without a distribution code are received, they are allocated according to
the last distribution code received. For subsequent messages DCAM implicitly assumes
the distribution code last in force. This applies until the partner sends a message in
which a distribution code is explicitly specified.

If a code indicator character has not been defined by the primary task, then a
distribution code must be included in each message. Otherwise they will be delivered
to the primary task.

The same applies if, in a sequence of messages, at least one message does not
contain a distribution code.

2.4.2 Calls and notifications

The functions provided by DCAM consist of calls with which the BS2000 user can effect
the execution of certain actions, and of asynchronous notifications (see 111ff) with
which DCAM informs the user about certain events in the communication system.

The calls issued to DCAM all begin with the letter Y. They are available either as
macro calls (ASSEMBLER) or as COBOL calls . The calls are terminated after
execution or when a defined processing period has elapsed (synchronous execution).
It is also possible to have control returned immediately after the call was issued
(asynchronous execution). Call termination is indicated by an asynchronous
notification which can be queried in the program. A separate (contingency) routine can
also be initiated by the arrival of the notification (see 105ff). This asynchronous
processing serves especially to make use of the waiting periods.

2.4.3 Protection against unauthorized access

A DCAM application can be protected against unauthorized connection of a task
within the host computer. If the application is to be non-shareable, the connection of a
secondary task is not possible. In the case of a shareable application, unauthorized
connection of a secondary task can be prevented by means of a password.

24 U1786-J-Z135-5-7600

Characteristic features of DCAM Introduction

Predefined applications can already be protected against unauthorized opening (by a
user password) in the resource definition file at the system generation stage. This RDF
password must be provided by the primary and secondary task.

The unauthorized setup of a connection can be prevented within the data
communication system. Firstly, by DCAM applications not accepting connection
requests, either permanently or for a certain period of time, and secondly, by requiring
that a password be specified in a connection request. Finally the user can opt to
accept or reject a connection request on the basis of the connection message and/or
the address of the requesting partner.
These procedures ensure that inadvertent or deliberate illegal access can be
monitored. Passwords can also be dynamically altered for this purpose (see page
92ff).

U1786-J-Z135-5-7600 25

Introduction Characteristic features of DCAM

2.4.4 Express messages

This section applies to DCAM(NEA) transport service applications only.

Another aspect of data security, the solution of conflict cases, is also provided for.
Unhindered data transmission is ensured in the data communication
system by connection-oriented data flow control and capacity distribution. The existing
buffer areas are used by each connection only being allowed to occupy a certain sub-
area. Thus, the buffers cannot be completely occupied by the data of one connection.
However, to ensure that a connection remains operable in the case of blockage
affecting it, short, fixed-length express messages can be delivered to the destination as
high-priority messages which bypass the data flow control. Such messages "overtake"
the others, so to speak. If the destination so desires, the express message is
transferred to it immediately as an asynchronous notification (cf. page 111ff), otherwise
it is entered as far forward in the queue as possible. Express messages cannot be
transmitted if the connection is operating with a virtual terminal.

Restriction:

COBOL users cannot receive express messages asynchronous notifications.

2.4.5 Data flow control

The system can reduce the load on an overloaded connection by temporarily
interrupting the transmission of messages. This can affect both normal and, in the case
of DCAM(NEA) transport service applications, express messages. As soon as the
connection is ready for use once more, the user can be informed, by means of a GO
signal, that the jam has been cleared and that transmission of messages may be
recommenced.

26 U1786-J-Z135-5-7600

Program structure Introduction

2.5 Program structure

2.5.1 Functions of a DCAM program

DCAM programs serve to implement data communication in BS2000. BS2000. As
opposed to timesharing, its object and implementation are completed when the data
communication is started. Moreover, DCAM programs usually solve problems which
can be solved with specific BS2000 facilities (see table below).

Functions Supported in BS2000 by:

Dialogs in individual - Queues for access to specific
steps or in a sequence or any partners
of inquiries and - Accompanying information on the connection
responses for transfer with the message (containing,

for example, the address of a memory area);
cannot be used in COBOL.

Data transfer from programs - Synchronous or asynchronous processing of
in the same or in DCAM calls
other host computers - Event-controlled processing with
of the data EVENTING and CONTINGENCIES
communication system

Forwarding of data to - Use of local or common memory areas with
exclusive data processing COMMON MEMORY and serialization
programs in the same host - Coordination by means of
computer and coordination eventing, inter-task
of the cooperation communication or user

switches

Protection against - Password protection of the DCAM
unauthorized access to application
programs or program - Password protection of the
systems or to files connection

- Passwords for the protection of
files against unauthorized reading,
writing and processing

The following notes apply to DCAM(NEA) transport service applications only.

Dialog between a few - Synchronous processing of DCAM calls
individual terminals and - Management of primary tasks
a program (non-shareable DCAM applications)

U1786-J-Z135-5-7600 27

Introduction Program structure

Functions Supported in BS2000 by:

Processing of inquiries - Asynchronous processing of DCAM
from a large calls with EVENTING and
number of terminals CONTINGENCIES
by one program system - Management of primary and secondary tasks

(shareable DCAM application)
- Support of reentrant programming

Formatting of messages - Support by means of conversion
for line-by-line output from virtual terminals to
or forms display on CRT physical characteristics of
screens individual terminal types (VTSU)

Utilization of specific - Possibility of "physical"
terminal characteristics programming of terminals

Processing of inquiries - Task control in timesharing mode
in the shortest possible - Rapid file access with user PAM
time to provide the - Reentrant control of programs with
terminal user with shared code in conjunction with good
good response times memory usage and low paging rate

Processing of different - Message distribution via distribution
requests from a terminal code-oriented queues
in one program system

The programmer has at his or her disposal:

the services of the DCAM, TIAM and RBAM interfaces, of the Control System and of the
data management system DMS.

It is expedient to subdivide DCAM programs. In the case of shared-code programming,
a subdivision into operation code, constants area and dynamic work area is required.
This also facilitates documentation and subsequent maintenance.

28 U1786-J-Z135-5-7600

Program structure Introduction

2.5.2 Basic structure of a DCAM program

A DCAM program includes the following:

open DCAM application
establish a connection
transmit data
clear connection or close DCAM application

Open DCAM application

To allow a program to be addressed by other communication partners, it must open at
least one DCAM application. The name that is defined at that point forms, together with
the name of the processor (processor node), the address for this application which
must be unique throughout the network. Furthermore, characteristics of the DCAM
application are defined, and passwords are specified. The statement that executes this
stage is called YOPEN.

Establish a connection

Before data transmission can take place between two communication partners, one of
the partners must send a request to establish a connection to the other, who must
accept this request, i.e. a connection must be set up. Buffering and distribution of the
messages are carried out according to the specifications made at this point. Moreover,
it is necessary to specify what kind of message editing is desired or whether the user
will take care of message editing himself. In addition, the communication partners can
exchange connection messages. The statement for this stage is YOPNCON ACCEPT
(accept connection request) or YOPNCON ACQUIRE (output connection request).

Following the two preparatory stages, the message can be received with YRECEIVE
and transmitted with YSEND.

Once data transmission is completed, the connection is closed down either explicitly
by the program with YCLSCON or implicitly by closing the DCAM application by means
of the YCLOSE statement, or by the termination of the program. Abnormal termination
of a connection e.g. on the request of the communication partners, line failure or
failure of a processor, can be reported to the program.

In the case of DCAM(NEA) transport service applications, a connection can also be
cleared down indirectly via the terminal by inputting an agreed end criterion which
must initiate the execution of YCLSCON in the program.

U1786-J-Z135-5-7600 29

Introduction Program structure

- - - - - - - - - - - - - - - - - - - -
Optional: Definition of dynamically-
assignable names, passwords and the user
field with YAPPL/YCONN *

. Communication

. link

. table

DCAM application opened with YOPEN

At least one connection set up
with YOPNCON

.

.
Program loop - until an end criterion
is input

Reception of a message by /
YRECEIVE \

.

. Processing of a message

.

Transmission of a message with \
YSEND /

Connection cleared down with YCLSCON

DCAM application closed with YCLOSE

* in ASSEMBLER only; with COBOL the corresponding
command mode statements should be used

Schematic layout of a DCAM program

30 U1786-J-Z135-5-7600

Program structure Introduction

Dynamic name assignment can also influence the structure of the program. The
dynamically allocated names, passwords and the user field must be entered in the CLT
(communication link table) prior to the opening of the DCAM application or connection
setup. A separate program or a leader should therefore contain the YAPPL or YCONN
calls or the /SET-DCAM-APPLICATION-LINK and /SET-DCAM-CONNECTION-LINK
commands should be used accordingly.

Restriction:

The YAPPL and YCONN calls are not available for COBOL programs.

After each call issued to DCAM, a check must be made to see whether it was properly
executed. Feedback information (FDBK) is provided for this purpose. The result of the
check may be that a call is repeated or has to be executed in a different way, that
other measures have to be taken, or that the program run has to be terminated. The
error handling routine can immediately follow the call. As the same or similar measures
usually have to be taken, it is expedient to generate a central error recovery routine
which can be invoked again and again.

U1786-J-Z135-5-7600 31

Introduction Program structure

2.5.3 Control of primary and secondary tasks

A primary task , i.e. the first task to open a DCAM application, contains all the essential
DCAM functions. In a task group this task is automatically the controlling task which
contains the connection function, distribution code control, password definitions and, in
the case of DCAM(NEA) transport service applications, the distribution code control, in
short everything that concerns the task group as a whole. At YOPEN time, VERIFY can
be used to check that the primary task is chronologically the first to open the
application. The primary task can transmit and receive messages just like the
secondary tasks. When the DCAM application is closed in the primary task, it is also
closed for the secondary tasks. The structure of the program controlling the primary
task is dependent on various factors that are listed in the table below.

Questions concerning the structure of Measures taken if the answer to
a program controlling a primary task the question is positive

- Is the configuration to be The primary task should do all the
operated small? processing; secondary tasks are not

- Is the mean time between the required and not permitted
arrival of two messages (non-shareable DCAM application)
considerable (low workload)?

- Is the job so limited in scope
that subdivision into different
processing modules is not
necessary?

- Is the mean time between the The primary task and the secondary
arrival of two messages short? tasks should be controlled by a shared-

- Is the configuration large? code program. As the primary task must
- Is a short processing time carry out specific functions, this

required? should be provided for in the program.
Or alternatively, the program should be
structured on a modular basis and only
specific modules be utilized and
loaded by the tasks.

Applies to DCAM(NEA) transport service applications only:

- Do the inquiries arriving via The primary task should control
connections require different distribution code allocation to the
types of processing? secondary tasks and thus message

- Do the distribution codes in the distribution. It will define a
message change? password for the connection of

- Are passwords to be used to secondary tasks. It will check
control the connection of a task messages that cannot be delivered
to a DCAM application for security to a destination within the group.
reasons? The primary task will have further

- Is all data to be checked? means at its disposal for the control
- Are additional control functions of the task group within the framework

to be implemented? of common memory, eventing, etc.

32 U1786-J-Z135-5-7600

Program structure Introduction

A secondary task , i.e. a task which opens a DCAM application but is not the first to
do so, has no influence on the characteristics of the DCAM application, and may have
to specify a password in order to join the group. It can use VERIFY to check whether it
is opening the application later than the primary task. It can neither establish nor close
down connections. It has no control function within the group. Its function is to
transmit and receive messages and to process them. Therefore, the only aspect of
significance with regard to the structure of the program is the way in which YSEND,
YRECEIVE or YSENDREC calls are issued and processed. Attention must be paid to
any controlling actions by the primary task (connection control). If the DCAM
application is closed in the secondary task, this has no effect on the other tasks of the
group.

U1786-J-Z135-5-7600 33

Introduction Program structure

2.5.4 Messages and local data units - more-data function

The sum of all the data which a DCAM(ISO) transport service application wishes to
send as a logical unit via a connection to a connection partner, is termed message
(also TSDU = transport service data unit). This message can be of any length.

As a result of fixed requirements in the data communication network (laid down when
the data communication network is generated) and the way the transport system is
implemented locally (memory management, buffer sizes, etc.) only a limited amount of
data can be transferred by the application to the transport system at a time using a
local interface call (YSEND, YRECEIVE). This data buffer passed by an interface call is
known as a data unit (also TIDU = transport interface data unit).

DCAM offers you the option of passing large messages for DCAM(ISO) transport
service applications as logical units in a number of interface calls, i.e. in more than one
data unit. This facility is called the more-data function .

DCAM(ISO) transport service applications can specify when the connection is set up
whether or not the more-data function is to be used.

Note

The more-data function is only set in the DCAM of the user’s own computer. It is
neither passed to nor negotiated with the connection partner.

The more-data function determines what data units are passed at the local DCAM
interface. It has no bearing on how the "physical" data blocks are split up along the
transmission path to the remote transport system.

The use of the more-data function in one application, does not have any bearing on
the data units in which (logical) messages are sent or received by the connection
partner.

A few examples have been chosen to illustrate what effect the more-data function can
have.

We shall assume that partner A and partner B are both DCAM(ISO) transport service
applications. In each example only one (logical) message, sent by A to B, is
considered.

34 U1786-J-Z135-5-7600

Program structure Introduction

Example 1

Partner A without the more-data function
Partner B without the more-data function

Partner A Partner B

YSEND YRECEIVE

IDCAM(ISO) IDCAM(ISO)

Example 2

Partner A with the more-data function
Partner B without the more-data function

Partner A Partner B

YSEND

YSEND

YSEND YRECEIVE

IDCAM(ISO) IDCAM(ISO)

Example 3

Partner A without the more-data function
Partner B with the more-data function

Partner A Partner B

YSEND YRECEIVE
..........

YRECEIVE

IDCAM(ISO) IDCAM(ISO)

U1786-J-Z135-5-7600 35

Introduction Program structure

Example 4

Partner A with the more-data function
Partner B with the more-data function

Partner A Partner B

YSEND

YSEND YRECEIVE

YSEND YRECEIVE

IDCAM(ISO) IDCAM(ISO)

Example 5

Partner A with the more-data function
Partner B with the more-data function

Partner A Partner B

YSEND YRECEIVE

YSEND YRECEIVE

YRECEIVE

YRECEIVE

IDCAM(ISO) IDCAM(ISO)

Examples 4 and 5 clearly show that how the data units are divided up at the receive
end and the send end need not necessarily be identical.

Note

In the DCAM manuals an explicit distinction between "message" and "data unit" is
only made where an understanding of the subject matter requires it.

Wherever the distinction is not important or it is clear from the context what is
meant, the expression "message/data unit" is shortened to just "message".

36 U1786-J-Z135-5-7600

Program structure Introduction

2.5.5 Access to terminals

This section applies to DCAM(NEA) transport service applications only.

An important question in the planning of DCAM programs is how the terminals are to
be accessed.

The DCAM programmer has a choice of two methods:

physical programming
use of virtual terminals.

Physical programming requires the operation of a terminal with the control characters
it understands (see User Guides for individual terminals). The programmer wins
considerable flexibility, but has also the inconvenience of operating with control
characters. The virtual terminals relieve him of this inconvenience because all essential
functions can be implemented with these standardized terminals (but not with locally
connected terminals).

The virtual terminals are user service software modules in the data
communication system. At the logon stage, the communication partners agree on
which virtual terminal should be used. Certain aspects have to be clarified in order to
do this, such as whether a hardcopy unit is connected to a display terminal or a card
reader is to be used.

The programmer has a choice of two types of virtual terminal: the line terminal and the
form terminal. For details see ’Logical terminal support’ page 95ff and the ’VTSU User
Guide’.

U1786-J-Z135-5-7600 37

Introduction DCAM partner

2.6 Implementation of distributed processing

The Communication System allows communication between

applications and applications

and between terminals and applications (in the case of DCAM(NEA) transport
service applications)

Both the terminals and applications can be in a LAN or WAN.

Apart from the connection to terminals, this opens up the following possibilities as
partners for a DCAM application:

a DCAM application
a UTM application
a CMX application
a system application (e.g. $DIALOG, $CONSOLE)

2.6.1 A DCAM application as a partner

The communication partner DCAM application is described under ’DCAM functions’ as
from page 41. This section describes the existence function of a DCAM application
(see page 41ff), connection setup between DCAM applications (see page 50ff) and
data transmission between DCAM applications (see page 77ff).

38 U1786-J-Z135-5-7600

DCAM partner Introduction

2.6.2 UTM application as a partner

Communication between a DCAM application and a UTM application is possible if the
DCAM has been generated as a communication partner for the UTM application and if
a connection has been established between the two applications. This is true whether
the applications are in the same or in different host computers.

There are three different ways of establishing a connection between a DCAM and a
UTM application:

The UTM application has been generated so that when it is started a connection is
established. The connection is set up if the DCAM application exists at this moment
and explicitly accepts the connection request.

The UTM application has been generated so that connection requests from the
DCAM application are accepted. The connection is established if both applications
exist and if the DCAM application has issued an explicit connection request.

A UTM administration command can be used to cause a connection request to be
issued to a DCAM application.

When transmitting data care must be taken that the UTM application has been provided
with a structure. The UTM application is composed of subroutines, which can be
addressed via the transaction codes which they have been allocated. When a
transaction is started the data must be included at the beginning of the transaction
code.

U1786-J-Z135-5-7600 39

3 DCAM functions
The functions provided by DCAM can be subdivided into 4 groups:

Existence function

Connection function

Data transmission function

Name assignment function

These functions are described below; the layout corresponds to that of the section
"Using the DCAM functions" in the ASSEMBLER programmer’s manual (see "DCAM
Macros") and the COBOL programmer’s manual (see "DCAM COBOL Calls"), where the
corresponding calls are listed along with the operands required.

3.1 Existence function

The existence function of the DCAM interface performs the following operations:

Open or generate a DCAM application (YOPEN) .
This is the basic function of DCAM, and is executed in different ways depending on
the type of DCAM application involved.

Test the status (YINQUIRE) of a DCAM application .
This function serves to check the status of a DCAM application.

Close a DCAM application (YCLOSE) .
The DCAM application is closed automatically at the end of the program, but this
function can close it at any point in time during the program run.

Additional function for DCAM(NEA) transport service applications:
Change the status (YSETLOG) of a DCAM application .
This function can be used to dynamically change the state of the DCAM
application, i.e. its readiness to process connection requests.

U1786-J-Z135-5-7600 41

Open a DCAM application Existence function

3.1.1 Open a DCAM application

A DCAM application is generated when the first program opens it. At the same time the
application is defined as shareable or non-shareable. A non-shareable application can
only be opened by one program and is also closed by that program. A shareable
application can also be opened by other programs (secondary tasks). These, however,
only link up with the application and have no influence on the definitions made by the
first program to open/generate the application (primary task). In the case of
DCAM(NEA) transport service applications it is also necessary to specify whether the
distribution code-oriented queues are to be used for message distribution. This results
in different variants of the YOPEN call.

The ISO attribute must be set in the application control block for all DCAM(ISO)
transport service applications. This attribute is then valid for all connections maintained
by this application. Connections using NEA services are not possible for DCAM(ISO)
transport service applications.

42 U1786-J-Z135-5-7600

Existence function Open a DCAM application

3.1.1.1 Non-shareable DCAM application

A non-shareable DCAM application (NSHARE) can only be opened by one task. A
second attempt to open this application will be rejected. Within the bounds of this
restriction, it is expedient to lay down further definitions, which may vary depending on
a number of requirements which are summarized in the table below.

Requirement Definition

The name of the DCAM application is Name of the DCAM application; in the
not to be generated by the communica- case of COBOL the name of the DCAM
tion access method. application must always be specified

by the user

The application is protected by Password USEPW
a password in the RDF (APPPW=).

Asynchronous notifications are Reference to the identifier of a
to be accepted. contingency routine generated when

an ENACO call was invoked.
If the notification is issued,
this routine is activated (not
necessary for COBOL).

Specific functions available as from Specification of the DCAM version
DCAM Version 8.0 are to be used. number (DCAMVER).

The following applies to DCAM(NEA) transport service applications only:

Only the DCAM application is to Attribute NLOGON:
issue connection requests (NLOGON). Connection requests will not be
In this case the partners must either accepted.
be terminals or DCAM applications
accepting connection requests.

It is not known in the program Attribute LOGON:
whether and when a partner wishes to Connection requests will be
log on, or the partner is not known. accepted.

Unauthorized connection requests are Password (LOGPASS), which must be
to be rejected automatically. specified by the communication

partners.

U1786-J-Z135-5-7600 43

Open a DCAM application Existence function

3.1.1.2 Primary opening of a shareable DCAM application

A shareable DCAM application can be opened by more than one task. The first task to
open the DCAM application is the primary task. Message distribution is effected via the
originator-oriented or or common receiver queue(s). The name of the DCAM application
must be defined in the program. Further definitions are summarized in the table below.

Requirement Definition

The task is to be the first opening Check with VERIFY = PRIMARY.
task as it is to fulfill the functions
of a primary task. If it is not the
primary task, the YOPEN should be
rejected.

It can be assumed that the task No check,
is the first opening task, or all i.e. VERIFY = NO.
programs linking to the application
have the same program logic.

The possibility of unauthorized Password USEPASS, which must be
connection of secondary tasks cannot specified by the secondary tasks
be excluded and is therefore to be for subsequent opening.
prevented.

Note:
If the DCAM application is already
protected by a password (APPW=)
in the RDF, the USEPASS password
must be identical to that APPW=
password. The USEPW operand is then
also analyzed in the primary task;
it must contain the RDF password.

Asynchronous notifications are to Reference to the identifier of
be accepted. a contingency routine generated

when an ENACO call was issued.
When the notification arrives,
this routine is activated
(not required for COBOL).

44 U1786-J-Z135-5-7600

Existence function Open a DCAM application

Requirement Definition

The following applies to DCAM(NEA) transport service applications only:

You need to decide whether the DCAM Attribute NLOGON:
application is to issue connection Connection requests will not be
requests (NLOGON). In this case the accepted.
partners must either be terminals or
DCAM applications accepting connection
requests.

It is not known in the program Attribute LOGON:
whether and when a partner wishes to Connection requests will be
log on, or the partner is not known. accepted.

Unauthorized connection requests are Password (LOGPASS), which must be
to be rejected automatically. specified by the communication

partners.
Note

LOGPASS and USEPASS cannot be
changed in an existing DCAM
application.

Transport acknowledgments for this PRIMTASK attribute for the
application are as a rule processed in transfer of transport
the primary task. acknowledgments.

Transport acknowledgments are REQTASK attribute for the
processed by the task that sent the transfer of transport
message with the corresponding acknowledgments.
sequence number (SEQNO) and requested
an acknowledgment (OPTCD=TACK).

This application does not process NOTACK attribute: positive or
any transport acknowledgments negative transport
because user security procedures are acknowledgments are not
to be implemented. transferred.

New functions belonging to a DCAM Specification of the DCAM version
version from 8.0 onwards are to be number (DCAMVER).
used.

U1786-J-Z135-5-7600 45

Open a DCAM application Existence function

3.1.1.3 Primary opening - use of distribution codes

This section applies to DCAM(NEA) transport service applications only.

The primary task that opens a DCAM application can specify that a distribution code is
to be used (SHARE,DISCO) in place of the default option for message distribution. This
is especially useful if the programs involved perform different jobs but are accessed by
the same partners. All the tasks involved must then define distribution code names
permitting association of distribution code(s) and tasks (DISNAME). For further
definitions, see table above.

3.1.1.4 Secondary opening

A task which is not the first to open a DCAM application must comply with the
definitions laid down in the primary task. It must use the defined name of the DCAM
application and also set ATTR=SHARE (shareable DCAM application). The default
option provides for message distribution via the originator-oriented or common receiver
queues. Further definitions are listed in the table below.

Requirement Definition

The primary task has defined Password (USEPW) for linking up
a password to guard against with the DCAM application as
unauthorized access or the specified in the primary
application is protected by an RDF task or RDF.
password.

The task must always be a secondary Check with VERIFY=SECONDARY.
task as this is stipulated in the
program logic; if necessary, YOPEN
is to be rejected.

46 U1786-J-Z135-5-7600

Existence function Open a DCAM application

Requirement Definition

It can be taken for granted that the No check, thus VERIFY=NO.
task is not the first to open the
application, or, alternatively, the
program logic checks this
requirement.

Asynchronous notifications are to Reference to the identifier of
be accepted. a contingency routine generated
Restriction: when an ENACO call was issued.

There are no asynchronous When the notification arrives,
notifications intended for the this routine is activated.
secondary task at the COBOL
interface.

The following applies to DCAM(NEA) transport service applications only:

The primary task specified a Specification of the same DCAM
DCAM version number on opening version number as in the primary
the application. task (DCAMVER)

3.1.1.5 Secondary opening - use of distribution codes

This section applies to DCAM(NEA) transport service applications only.

During secondary opening of a DCAM application, the same message distribution
method must be used as during primary opening by the primary task, i.e. the
distribution method is uniform within a task group. Distribution codes are used in this
variant: the SHARE and DISCO attributes are specified in the primary task; the same
DCAM application name and the SHARE attribute must be specified in the secondary
task. Furthermore, a name must be defined (DISNAME) to be used for distribution code
allocation. All further definitions are listed in the table above.

U1786-J-Z135-5-7600 47

Altering the state of a DCAM application Existence function

3.1.2 Altering the state of a DCAM application

This section applies to DCAM(NEA) transport service applications only.

The DCAM Primary The DCAM STOP The DCAM
application application application
has not yet opening has been has been
been genera- generated Alteration generated
ted (opened with the of the DCAM with the
by the pri- LOGON attri- application LOGON attri-
mary task) bute in the state by bute in the
or START state means of STOP state.
has been and accepts YSETLOG For the
cancelled Closure by connection moment it
(closed by the primary requests START will not
the primary process
task) task connection

requests

The DCAM
Primary application

- - - - - - - has been
opening generated

with the
Closure by the NLOGON

- - - - - - - - - attribute;
primary task it will not

accept
connection
requests

DCAM application states

DCAM applications processing connection requests (LOGON attribute) can be in two
states: START or STOP. The START state causes the requests to be passed on to the
DCAM application or, if several request are made, to be entered in a queue. The STOP
state means that the primary task has used the YSETLOG call to indicate that it is no
longer processing connection requests. The reason may be that the maximum number
of connections permitted has been reached or that the primary task will issue requests
itself for a while. However, the primary task can restore the START state at any time,
i.e. the connection requests are not rejected.

DCAM applications that do not accept connection requests (NLOGON attribute) cannot
be altered.

48 U1786-J-Z135-5-7600

Existence function Altering the state of a DCAM application

3.1.3 Querying the status of a DCAM application

The YINQUIRE call in the ’APPSTAT’ function can be used to query the status of the
DCAM application that the user himself has opened, and also the state of a DCAM
application which was opened in the same host computer and whose name he knows.

3.1.4 Closing a DCAM application

The DCAM application can be closed in two ways:

implicitly by terminating the program in which the DCAM application was opened
(normal or abnormal termination) or task abortion

explicitly by means of the YCLOSE call or by means of the /SHUTDOWN, /BCEND
or /BCAPPL operator commands.

Explicit closing with YCLOSE will be necessary when, for example, a program is to
process several DCAM applications consecutively or if definitions are to be changed
during execution. The application can be opened again by the primary task with new
definitions (name, attributes etc.) after being closed.

The secondary task can close the application at any time without any consequences
for the other tasks in the group.

If the primary task closes the application,

the DCAM application is canceled;

secondary tasks are informed through initiation of the COMEND contingency routine
(see page 111ff) or by feedback information for an incomplete call or the next call;

all existing connections are cleared down.

This also means that data which has already arrived but has not yet been accepted is
no longer accessible. Pending connection requests are deleted.

U1786-J-Z135-5-7600 49

Connection setup Connection function

3.2 Connection function

The basic requirement for data transmission is the establishment of a connection
between the communication partners after a DCAM application has been opened.

The connection function performs the following:

set up connection (YOPNCON).
query entries on partners and connections (YINQUIRE).
request rejection of connection request (YREJLOG)
cancel request (YCLSCON)
close connection (YCLSCON)
change characteristics of a connection (YCHANGE)

3.2.1 Connection setup: YOPNCON

Two steps are required to establish a connection:

One partner must send a connection request to another.
The other partner must accept the request.

The coordination of these steps is performed by the system:

The requests are forwarded to the partner and, if others are pending, entered in a
queue.

Partner 1 Partner 2

Connection
(YOPNCON Queue of
ACQUIRE) incoming

requests

Connection request

50 U1786-J-Z135-5-7600

Connection function Connection setup

It is possible to have the arrival of a request indicated by an asynchronous
notification (LOGON notification see page 111ff).

After the notification has been issued, a contingency routine can establish which
partner made the request. Following this, the request can be accepted or rejected.

Partner 1 Partner 2

LOGON routine

Request LOGON Information
(YOPNCON about request-
ACQUIRE) notification ing partner

queried
(YINQUIRE
REQLOGON) and
request

Feedback accepted
informa- (YOPNCON
tion ACCEPT)
"connec-
tion es-
tablished"

LOGON notification; query and acceptance of request

U1786-J-Z135-5-7600 51

Connection setup Connection function

The partner can query this queue without having received a notification (see
page 66) to discover if entries are present and can, depending on the result, issue
accept calls for this request (YOPNCON ACCEPT SPEC).

He can also reject the request or, by not accepting it, cause the request to be
deleted after a period of time defined in the system (/BCTIMES command, see
"Network Management in BS2000").

Partner 1 Partner 2

Inquiry
about queue
(YINQUIRE
COUNTPTN/
TOPLOGON)
and accep-
tance of
request

Feedback (YOPNCON
information - - - - - - - - - - ACCEPT,
"connection SPEC)
established"

Partner information query and request acceptance

52 U1786-J-Z135-5-7600

Connection function Connection setup

He can also issue tentative accept calls without a query . If the request arrives
within the specified period of time, it is accepted. A number of this type of
acceptances are entered in a queue if the requests have not yet arrived. They may
be entered for a specific (SPEC) or an arbitrary (ANY) partner.

Partner 1 Partner 2

Acceptance
of a request

A request from a
issued here specific
is accepted partner or
immediately any partners
if there is with an
an accep- - - - - - - entry in the
tance in the - - - - - - queue for a
instruction certain
queue period of

time
(possibly
several
times;
YOPNCON
ACCEPT, ANY
or SPEC)

Acceptance of a request

U1786-J-Z135-5-7600 53

Connection setup Connection function

A further possibility is to assign partner names to a DCAM application when the
communication access method is generated and started (see XSTAT macro in the
manual "Generating a Data Communication System"). When the DCAM application is
opened, or a /BCIN command referring to the processor node of the proposed
partner is issued by the administrator, the named partners are proposed for
connection setup by means of the PROCON notification. As a result of the
notification, a request must be issued (YOPNCON ACQUIRE). The connection is
only established if the proposed partner accepts this request.

Restriction:

PROCON notifications are not issued to COBOL programs.

Connection
proposals
defined in
the system

Partner 2

PROCON routine

Request
Partner 2 proposed

partner to
set up
connection

Acceptance (YOPNCON
of request ACQUIRE)
(YOPNCON
ACCEPT) Feedback

information
- - - - - - - - - "connection

established"

PROCON notification, request to proposed partner and acceptance

54 U1786-J-Z135-5-7600

Connection function Connection setup

Parallel connections can only be set up "serially", i.e. a new parallel connection can
only be established once the previous connection setup has been completed
(DCAM(ISO) transport services only).

The rest of this section applies to DCAM(NEA) transport service applications
only.

When generating and starting the communication access method, connections
(XKON macro), as well as connection proposals, may be predefined.

These connections are already established whenever the communication access
method is started. However, data transmission is not possible until the primary task
issues a call which is usually used as a connection request (YOPNCON ACQUIRE).

If the partner is a terminal, it is sufficient for this to be activated and operational.

Every communication partner that issues a logon call has to define the desired
connection characteristics. When a connection request is made, the partner is informed
of that part of the connection characteristics which affects him. This part consists of:

Type of message editing used (EDIT)
Specification of the partner initiating data communication (PROC)

The figure below shows how this information is requested and defined:

Partner 1 sends partner 2 a connection request (YOPNCON ACQUIRE), and also
defines proposals for EDIT and PROC to partner 2. Partner 2 can react to the call from
partner 1 in two ways:

By requesting the proposals from partner 1 (YINQUIRE) and then checking and
either accepting or rejecting them, i.e. by sending other values for EDIT and PROC
back to partner 1 (YOPNCON ACCEPT).

By sending its own values for EDIT and PROC to partner 1 without considering the
proposals.

In each case the values sent by partner 2 are binding for partner 1. This means the
values suggested by partner 1 for EDIT and PROC need not necessarily correspond to
the current values, and therefore the user must inform himself of the appropriate values
after the connection is established.

Both in the case of a request for connection setup (YOPNCON ACQUIRE) and the
acceptance of the connection (YOPNCON ACCEPT) the partners can send each other
connection messages.

U1786-J-Z135-5-7600 55

Connection setup Connection function

Note

If a connection was predefined, its characteristics were defined during system
generation.

Partner 1 Partner 2

Request Proposals • Inquiry
(YOPNCON for EDIT (YINQUIRE
ACQUIRE) and PROC REQLOGON

or
TOPLOGON)

• Check
proposals

• Acceptance
Feedback (if nec-
information essary
"connection with other
established" Defini- defini-
with final tions for - - - - - - - tions:
definitions EDIT and YOPNCON

PROC ACCEPT)

Agreement on characteristics

56 U1786-J-Z135-5-7600

Connection function Connection setup

3.2.1.1 Definition of the connection to be established

The connection to be established has to be defined in the DCAM program. The
following information is required:

Name and processor name (= address) of the partner

This information is used to address a partner when a request is issued or a request
is accepted by a specific partner (SPEC). Processor name =’ ’ addresses the own
processor as partner.

If an accept call was issued for any partner (ANY), DCAM returns the partner and
processor names after completion of the call.

Accompanying information

Here, the user defines an optional character string which, for example, is added to
every message he receives via this connection. It may be the address of a data
area to be assigned to this connection or the address of a routine which is to be
activated specifically for this connection. This method is particularly useful for
access to the common receiver queue with YRECEIVE ANY. The content of the
accompanying information is optional; however, it may not exceed 4 bytes.

Restriction:

Accompanying information cannot be defined in COBOL.

Data flow control

In the case of YSEND, there is a possibility of the connection being overloaded, for
example because the partner - which may be in the same system fetches the
notifications too slowly. If this happens the YSEND is not executed: instead, it is
terminated with the RC "Wait for GO" (X’10040C00’). A subsequent YSEND on this
connection cannot be successful until DCAM receives the GO signal. YSENDs
issued before the GO signal is received are terminated with the RC "Shortage"
(X’10040800’).

If the connection was set up with PROC=SIGNAL, the user is notified when the GO
signal is received (see SOLSIG, BS2000 Executive Macros). In COBOL, this takes
the form of the arrival of the "GOSIGNAL" event after YWAIT. When the GO signal is
received, the connection is free and data can again be sent. Note that when a
connection is set up with PROC=SIGNAL, the YSEND must include the address of
a valid EID.
If the connection is not set up with PROC=SIGNAL, a successful YSEND is the only
way of ascertaining that the overload has ended.

The GO signal provides no guarantee that the next YSEND call will be successful.

U1786-J-Z135-5-7600 57

Connection setup Connection function

If a connection is so overloaded that no messages can be forwarded, the user can
issue a GO signal to find out when the connection will be free and data can be sent
again (SIGNAL).

More-data function

The MDATA=Y/N operand allows the application to specify whether it wishes to use
the more-data function for the transfer of data units, (see page 34ff).

Length of the messages/data units

In the MAXLN operand the application specifies the maximum message length
(when MDATA=N) or length of the data units (when MDATA=Y) that are to be sent
across this connection.

The actual length available (may be less than length requested by the application in
the MAXLN operand) is supplied by DCAM as feedback information on connection
setup (see pages 63 and 66).

This length is used to optimize the buffer made available by the system and is not
passed on to, or negotiated with, the communication partner.

Length of expected received messages (with MDATA=N only)

If the application is using the connection without the MDATA function (MDATA=N),
it can tell the communication system what length it expects received messages to
have via the RLTH operand. The size is required for memory space optimization and
improving the system’s performance. Its effect is strictly local and it is neither
passed to, nor negotiated with, the communication partner.

The use of RLTH therefore offers no guarantee that even longer messages won’t
arrive and have to processed by the application.

Note

In the case of MDATA=Y, DCAM supplies the maximum possible length of data
units to be received as feedback information for connection setup. The application
has no effect on the length that is fixed. fixed. The communication system ensures
that no longer data units are passed on.

58 U1786-J-Z135-5-7600

Connection function Connection setup

Handling of long messages

When MDATA=N (no more-data function), even specification of the RLTH operand
cannot prevent longer messages from arriving; DCAM offers two options here,
depending on the particular problem (see table below).

This entry can be changed later on during the execution of a receive call (see
page 83ff).

Requirement Definition

- Only messages of a maximum fixed The value TRUNC is specified for
length are expected on this connec- PROC.
tion. This length should be specified
in the RLTH operand.

- A message that is longer than Messages that are longer than
expected must be incorrect. The expected are only transferred up
part which is overlong is therefore to the length expected. The
discarded. overlong condition is indicated

but discarded.

- It is not possible to predict the The value KEEP is specified for
length of the messages arriving PROC. The overlong condition is
via this connection. The length flagged when the first part is
assumed to be most common is received. The overlong portion
therefore specified and an input is saved for another receive
area reserved for it. call.

- The possible excess length is not to
be discarded; it will be fetched
in a further receive call.

Note

As in the case of the more-data function (MDATA=Y) DCAM indicates the maximum
length of the data units that are to be received, you should always reserve a receive
area with this length. There will then be no danger of truncation and PROC=KEEP
is irrelevant.

If you nevertheless select an input area which is smaller than the announced length
for data units to be received, the table above applies analogously for each data unit
of the message to be received.

U1786-J-Z135-5-7600 59

Connection setup Connection function

Route selection

Up to 8 (COBOL) or 16 routes (ASSEMBLER) can be specified to specific partners.
DCAM tries to establish a connection via the routes specified in the order of their
occurrence. When several routes have been specified, the application program
cannot determine which one was used.

The rest of this section applies to DCAM(NEA) transport service applications
only.

Terminal status

In the case of terminals with status capability (e.g. 9763), the current terminal status
can be requested on connection setup when virtual terminals are used. This
completes the information collected by the VTSU on the terminals, e.g. on character
sets loaded (see the VTSU User Guide).

Message code

As different codes can be used on the transmission line sections in a data
communication system, it is left to the user to select a code according to the job
definition at hand; the table below provides an overview of the options.

Requirement Definition

- The user is working with virtual The value SYSCODE is specified for
terminals. PROC. If necessary, the messages

- He wishes to receive messages in are converted in the data
the code of his own host computer communication system.
(as a rule in EBCDIC).

- He always transmits messages in the
code of his own host computer.

- The user is not working with The value BINARY is used for PROC.
virtual terminals. The messages are transmitted in

- He wishes to receive messages in any code (transparent).
the code used by the communication
partner.

- He transmits messages in the code
which the partner can process.

60 U1786-J-Z135-5-7600

Connection function Connection setup

The logon password is specified when a connection request is to be made. It must
be specified in the same way as the partner (in this case a DCAM application)
defined it on opening.

Where messages are distributed by means of distribution codes , the reference to
the detailed description of this distribution code must be specified here. This is
described in detail on page 68.

The maximum length of data (MAXLN) which is to be transmitted via this
connection. This is a value ensuring optimum usage of the buffers provided by the
system; it is not passed on to the communication partner.

Message characteristics which are agreed with the partner As mentioned in the
preceding section, the two partners must agree on some characteristics. These are
also described here.

Initiation of data transmission is also defined. If the DCAM application is to initiate
transmission, APPSTART is set. Otherwise, there is no definition (ANYSTART).

The type of message editing used is defined. It is possible to define message
editing by means of the EDIT options (see figure below and page 95ff).

Note

For connections with EDIT=SYSTEM, where ATTR=DISCO the distribution code is
always edited in the line mode.

U1786-J-Z135-5-7600 61

Connection setup Connection function

The partner is a terminal and virtual terminals
are to be used (possibly later)

EDIT = SYSTEM

Input Output

EDITIN= EDITOUT=

LINE
(Use of line terminal)

FORM
(Use of format terminal)

PHYS 1)
(No virtual terminals)

Message editing
with without

2)
GETFC Function key code NGETFC

3)
LCASE Upper/lowercase NLCASE

4)
HCOPY Hardcopy NHCOPY

5)
HOM Unstruct. output NHOM

6)
EXTEND Output data pro- NEXTEND

tected by system

LOGC All log. control NLOG
characters inter-
preted and con-
verted into device
control chars.

5)
LACK Logical acknow- NLACK

ledgments from
printer terminal

Partner is an application, message editing not required

EDIT=USER

1) Any message headers are transferred in device code and the messages
themselves in EBCDIC; a message may be subdivided into submessages
(see page 78).

2) With EDITIN=LINE only 3) With EDITIN=LINE/FORM only
4) With EDITOUT=LINE/PHYS and 8151 or 8152 devices only
5) With EDITOUT=LINE only
6) With EDITOUT=LINE and 975x or 816x devices only

Message editing options

62 U1786-J-Z135-5-7600

Connection function Connection setup

3.2.1.2 Connection request

A connection request can be sent to any partner in the data communication system.

Applies to DCAM(NEA) transport service applications only:
If the partner is a terminal, the associated processor (e.g. a remote front-end
processor) will answer the request. Otherwise, a response will come from the
communication access method in BS2000 or from the partner (in this case a
DCAM application). At present, there are two possibilities for the processor node
to which the terminal is connected:

If the processor node receives a request for a terminal that is not ready
(switched off in the case of a dedicated circuit, busy in the case of a dial-up
line, etc.), this will be rejected.

If the terminal is ready, it is assumed that an operator is also present, and
the connection is established (the processor node accepts the request).

The communication access method in BS2000 applies different criteria. The overview
in the figure below shows that the DCAM user has several control options, including
some in the program itself, during request processing. A connection message can be
transferred along with the request for checking purposes or just for isolated
transmission. This message can have any content and a maximum length of 32 bytes
in the case of DCAM(ISO) or 80 bytes for DCAM(NEA). It is the only message that is
transmitted without a connection already established.

A partner wishing to issue a request has to specify the following:

Address of the partner (partner and processor name) to which the request is
directed.

A connection message (optional) to be transmitted along with the request.

Addition specifications for DCAM(NEA)transport service applications:
Description of the connection characteristics

Logon password, if required.

Type of message distribution (if distribution codes are not used), i.e. whether
the messages transmitted via this connection are to be distributed using the
common receiver queue or the originator-oriented queue.
This specification can be altered during data transmission.

U1786-J-Z135-5-7600 63

Connection setup Connection function

If the request was accepted, the partner receives the following feedback information:

The accompanying information defined by the partner.

The maximum length of the messages/data units to be sent via this connection
(MAXLN operand).

The maximum length of the data units expected if the more-data function is used.

Additional information in the case of DCAM(NEA) transport service
applications:

The final definition for PROC and EDIT.

Information on the partner (partner characteristics).

The possibility of having the statement contained in this call processed asynchronously
is dealt with in the description of the language features.

Restriction on DCAM(NEA) transport service applications

Connection messages are only delivered to DCAM applications. Terminals attached
to Communication Computers cannot receive connection
messages.

64 U1786-J-Z135-5-7600

Connection function Connection setup

Transmission by Communication Primary task of
the data communica- access method DCAM application
tion system

DCAM application
the request was • queries partner
addressed to information

including the
• was not opened connection

or message
• was opened (YINQUIRE)

• with NLOGON
\ attribute • checks the re-

Connection re- \ • with LOGON questing part-
quest with \ attribute ner’s specifica-
suggestions for \ tions and then
PROC, EDIT and, \ • in STOP status has the follow-
where applicable, / or ing choice:
a connection / • in START status
message / or • either it

/ • the requesting rejects the
/ partner has request

specified the (YREJLOG) *
required pass-
word (LOGPASS)
incorrectly or • or it accepts
not at all the request

(YOPNCON ACCEPT)
/ and thus estab-

/ Feedback: lishes the
/ "connection established" connection
\ with definitions for

\ PROC and EDIT
\

* not applicable to COBOL at present

Processing a request for DCAM(NEA) transport service applications

U1786-J-Z135-5-7600 65

Connection setup Connection function

3.2.1.3 Acceptance of a request

The basic description of acceptance is contained in the preceding sections. This
section contains a summary of the information which can be specified for acceptance.
The inter-relationship of the various specifications is shown in the figure below.

Acceptance of a request from

a specific partner (SPEC) any partner (ANY)

Address of partner
(name and processor name)

Definition of the connec-
tion characteristics

Connection message to be only if message distribution
passed is not via distribution codes

Message distribution via
common receiver (CA) or
originator-oriented (CS)
queue

synchronous processing asynchronous processing

- - - - - -

Entry in a queue (Q) with
maximum residence time
(TOVAL)

Acceptance of a request

66 U1786-J-Z135-5-7600

Connection function Connection setup

Once the call has been executed, the task receives the following information:

the maximum length of messages/data units which can be transmitted on this
connection (see MAXLN operand)

the maximum length of the data units that are expected if the more-data function is
used

Additional information applying to DCAM(NEA) transport service applications
only: information about the partner.

In addition, if the request accepted was that of any partner:

the name of the partner and
the partner’s processor name
accompanying information

U1786-J-Z135-5-7600 67

Connection setup Connection function

3.2.1.4 Connection setup - use of distribution codes

This section applies to DCAM(NEA) transport service applications only.

If messages are to be distributed by means of distribution codes (defined when the
application is opened), a number of definitions must be made when the connection is
set up. The description of a connection contains, in this case, a reference to that
section that describes the distribution codes. Distribution codes are described in 2
stages in order to provide maximum freedom in assigning connections to distribution
codes.

Stage 1

Description of the code position in the message and of the length of the code(s)
used. The code must be contained in the first 256 bytes of the message and can have
a maximum length of 8 bytes.

In addition: reference to the description of the second stage, which may be present 8
times (COBOL) or 16 times (ASSEMBLER).

Stage 2

Description of the codes used by this connection. Up to 8 codes can be described.

These descriptions can be shared, i.e. several connections can use the same stage 1
description and several stage 1 descriptions can use a stage 2 description.

The following must be observed:

The codes which are addressed by the same stage 1 description must be unique
and

must all be of the same length.

If several stage 1 descriptions address a stage 2 description, the length
specifications in the stage 1 descriptions must be identical.

68 U1786-J-Z135-5-7600

Connection function Connection setup

The possibilities that result from this method of describing distribution code during the
setting up of a connection are as follows:

Code length, code position in the message and the code sign are defined when the
connection is set up and cannot be altered.

A partner can specify up to 64 (COBOL) or 128 (ASSEMBLER) different distribution
codes in groups of 8. Thus, the partner can either reach one task via up to 8
different codes or he can read a varying number of tasks.

The number varies because the assignment of codes and task via the distribution
code name takes place during execution. This assignment is controlled by the
primary task by means of YPERMIT and YFORBID calls (see page 88ff).

U1786-J-Z135-5-7600 69

Connection setup Connection function

Description of Description of Description of
connection A connection B connection C

Address of dis- Address of dis- Address of dis-
tribution code tribution code tribution code
description X description X description Y

Description of
distr. codes

Code position a Code position b

Stage 1: Code length a Code length b
Formats

Address list of Address list of
code groups 1-5 code groups 4-8

1 2 3 4 5 6 7 8

Codes Codes Codes Codes Codes Codes Codes Codes

A E K M Q E K
Stage 2:
Values* B F L N B F L

C G O C G R

D H P D H S

I I T

J J

* The codes in groups 1-5 and 4-8 must be unique in either case

Description of formats and values of distribution codes

70 U1786-J-Z135-5-7600

Connection function Connection setup

3.2.1.5 Linking up to a predefined connection

This section applies to DCAM(NEA) transport service applications only.

A predefined connection is determined during the generation of the communication
access method . It is established when the communication access method is started.
However, the two partners must first connect themselves to the predefined connection
before data transmission can begin.

In the case of applications the primary tasks must make a connection request
(YOPNCON ACQUIRE). In the case of a terminal this need only be activated and
operational.

Because the characteristics of a predefined connection are determined during the
generation of the communication access method, and because the connection is
automatically established when this is started, certain special factors are involved:

If data is transmitted before the partner has linked up with the connection, negative
acknowledgments are given.

If a partner wished to withdraw from a connection, the LOSCON routine is not
initiated (the predefined connection remains established).

A YOPNCON ACCEPT SPEC to a predefined partner can never be successfully
terminated. If OPTCD=Q is specified, the call is entered in a queue and is
terminated by timeout.

The following specifications cannot be made by a YOPNCON ACQUIRE if the
connections are predefined:

a connection message

a LOGON password

message editing by the system or the user (EDIT=SYSTEM/USER)

start data transmission (PROC=APPSTART/ANYSTART).

U1786-J-Z135-5-7600 71

Connection setup Connection function

Predefined
connection

established when
communication
access method is
started, but data
communication

Partner 1 still not Partner 2
possible

Open applica- Open applica-
tion YOPEN tion YOPEN

. .

. .

. .

Link-up to Link-up to
predefined predefined
connection connection
YOPNCON ACQUIRE YOPNCON ACQUIRE

Data communication
. possible .
. .
. .

YSEND YRECEIVE

. .

. .

. .

YRECEIVE YSEND

. .

. .

. .

Linking up to a predefined connection

72 U1786-J-Z135-5-7600

Connection function Query entries

3.2.2 Querying entries on partners and connections

As already mentioned in the sections on connection requests and the acceptance of
requests, it is necessary to query the entries on partners and connections. The
YINQUIRE call, of which several variants are available, is used for this purpose. For
secondary tasks, only the CIDXLATE, NAMXLATE and, in the case of DCAM(NEA)
transport service applications, the request for status information are applicable.

Restriction:
In COBOL not all variants of the YINQUIRE call are available.

The table below shows the YINQUIRE variants and the programming languages in
which each can be used.

Inquiry YINQUIRE variant Programming
language

- Which partner is Inquiry after an ASSEMBLER
requesting connection? asynchronous LOGON

- What connection message notification
is to be transmitted and (REQLOGON)
what is its length?

for DCAM(NEA) transport service
applications only:

What are the proposed
characteristics of the
connection?

- Which partner is next in Inquiry prior to ASSEMBLER/COBOL
the queue of those acceptance of a
requesting connection? request (TOPLOGON)

- What connection message
is to be transmitted
and what is its length?

for DCAM(NEA) transport service
applications only:

What are the proposed
characteristics of the
connection?

U1786-J-Z135-5-7600 73

Query entries Connection function

Inquiry YINQUIRE variant Programming
language

for DCAM(NEA) transport service
applications only:

What characteristic Inquiry as to partner ASSEMBLER/COBOL
feature does the partner characteristics
have? (PTNCHAR, MONCHARS,

PEROTERM, BTERMINF)

- How many partners have Inquiry for number of ASSEMBLER/COBOL
sent a request? partners (COUNTPTN)

- With how many partners
has a connection been
established?

- What is the identifier of Inquiry for identifier ASSEMBLER
the connection of which CID (NAMXLATE)
the partner and the
processor names are known?

- What are the partner and Inquiry for the partner ASSEMBLER
processor names of and processor names
a connection whose (CIDXLATE)
identifier is known?

74 U1786-J-Z135-5-7600

Connection function Reject request,change characteristics

3.2.3 Rejecting a connection request

The YREJLOG call can be used to reject a logon request; it suffices to specify the
address of the requesting partner (partner and processor name) obtained by means of
the YINQUIRE call.

3.2.4 Changing the characteristics of a connection

This section applies to DCAM(NEA) transport service applications only.

The user can change some of the connection characteristics defined during connection
setup.

Only those characteristics can be changed which exclusively affect the partner making
the changes, i.e. not those which have been agreed with the communication partner.

In the YCHANGE call, all of the values listed in the following must be set regardless of
whether they are changed (new) values or the previously set (old) values.

The following can be changed:

Accompanying information

Handling of excess-length messages

Code of the messages

Values for VTSUCB (message editing) see the VTSU User Guide.

If required, address of the distribution code description for changing distribution
codes described in groups (the length and the position in the message and the
code sign cannot be changed).

For further information on these values see "Definition of the connection to be
established’ (see page 57).

3.2.5 Deleting a connection request

A connection request sent to a partner can be deleted with the YCLSCON call.

The connection request is revoked if the connection is not yet established. If already
established it is cleared down.

U1786-J-Z135-5-7600 75

Close connection Connection function

3.2.6 Closing a connection

Explicit closing of a connection is possible with the YCLSCON call.

There is no obligation to do this, as all connections are implicitly closed when the
DCAM application is closed. Uncollected messages are destroyed when the connection
is closed. Any messages sent immediately before YCLSCON, which had not yet been
transmitted to the receiver, may also be destroyed.

In the case of DCAM(NEA) transport service applications it is advisable to save
the final message with a transport acknowledgment.

Explicit closing may be required for:

putting a time limit on a connection

regulation of data throughput (connections can be closed down in order to give
other connections better throughput rates), etc.

76 U1786-J-Z135-5-7600

Data transmission function

3.3 Data communication function

The requirements for data transmission are fulfilled when a DCAM application has been
opened and a connection established.

The data transmission function performs the following operations:

Transmit a message/data unit (YSEND)

The message/data unit to be transmitted to a communication partner is transferred
to the data area of the communication access system.

Receive a message/data unit (YRECEIVE)

The message/data unit from a communication partner (any one, a specific one or,
in the case of DCAM(NEA) transport service applications, one with a specific
distribution code) is entered in the data area of the user program.

Transmit and receive combined (YSENDREC)

A message/data unit is entered in the data area of the communication access
method by means of this call, and a message/data unit from the same
communication partner is entered in the partner’s own data area.

Delete receive calls and change the CS/CA state of a connection (YRESET)

With this call a task can delete all its waiting YRECEIVE calls from a specified
application or a specified connection, and it can alter the CS/CA state.

The following additional options are available in the case of DCAM(NEA)
transport service applications for controlling message distribution by means of
distribution codes:

Assign distribution code names to distribution code groups (YPERMIT)

The primary task assigns specific distribution codes to the distribution code
name of one or more secondary tasks.

Cancel assignment (YFORBID)

An assignment is canceled by the primary task.

U1786-J-Z135-5-7600 77

Message/data unit transmission Data transfer function

3.3.1 Sending a message/data unit

Every task in a DCAM application can transmit a message/data unit (YSEND) and this
results in the following action:

The data to be sent to a partner in the form of a message/data unit is transferred to
the data area of the communication access method.

The access method is assigned the job of transmitting the data to the partner.

The call is terminated and the access method starts transmission.

The access method receives a number of user specifications along with the
message/data unit to be transmitted. They are supplemented by specifications defined
when the connection was set up (see page 57).

The following table lists any additional specifications required under certain
circumstances.

Requirement Definition

After logon, the system announced the The length of the message,data unit
maximum length of messages/data units to be transmitted is specified within
to be transmitted via this connection. the maximum length limits.

Messages/data units arriving on this The originator-oriented queue is
connection are to be received via the set (CS state of the connection).
originator-oriented queue.

Messages/data units arriving on this The common receiver is set
connection are to be received via the (CA state of the connection).
common receiver.

Upon opening of the connection PROC= For each YSEND call a valid event
SIGNAL was used to request the GO identifier (EID) should be
signal in the event of the connection specified, via which a GO signal
being overloaded. can be issued if necessary.

The more-data function is being The user must specify whether the
used across this connection data unit is (OPTCD=GROUP) the last
(MDATA=Y). one of a logical message or not

(OPTCD=ELEMENT).

78 U1786-J-Z135-5-7600

Data transfer function Message/data unit transmission

Requirement Definition

The following applies to DCAM(NEA) transport service applications only:

- Acknowledgment reception was A sequence number is specified so
enabled when the application was that the transport acknowledgment
opened (for the primary task = can be assigned to the correct
PRIMTASK for the requesting message (maximum value=2047) when
task = REQTASK). it arrives.

- Transport acknowledgments are to A positive acknowledgment is
be processed. requested (negative acknowledg-

- The YSEND call should be followed ments are generated automatically
immediately by a YCLSCON or YCLOSE if the message cannot be delivered).
call which means the connection
may be closed before the data
has been transmitted. The
transport acknowledgment should
always be awaited in this case.

Message editing was not provided for The message can be classified as
by the system on this connection. follows:
The following was set: - ELEMENT:
- EDIT=USER: The user edits the - SUBGROUP:

messages in such a fashion that - GROUP:
the communication partner can This identification of the message
process them. is transferred by the network to

- EDIT=SYSTEM and EDITOUT=PHYS: The the receiver, which receives it
system performs blocking for along with the message. If the
devices with a small input buffer. receiver is a terminal, an element
Everything else is provided by the is transmitted as a message segment,
user in such a way that the part- while a subgroup or a group is
ner can process it. transmitted as a message followed

by transmission termination.

Message editing is provided by the Special rules apply to the use of
system on this connection. virtual terminals (see the VTSU User

Guide).

A special situation has arisen The message is declared as an
(e.g. backlog on the connection), express message, which means that
which was notified by the feedback its length may not exceed 8 bytes.
information for a rejected YSEND.
The partner is to be requested to
issue receive calls immediately.

U1786-J-Z135-5-7600 79

Message/data unit transmission Data transfer function

The rest of this section applies to DCAM(NEA) transport service applications
only.

The message layout has to be varied in accordance with the message editing option
selected:

When a line terminal is used (see the VTSU User Guide), the user can subdivide the
messages into logical lines. Each of these lines is terminated with the "new line"
character, hex 15. The text following the NL character is automatically placed at the
beginning of the next line by the terminal. If the logical line length exceeds the line
length of the terminal, the logical line is subdivided automatically. The beginning of a
message is always placed at the beginning of a line. This is illustrated below by means
of an example.

Message to a line terminal

1st logical line

Only characteristics relating to the user making the changes

2nd logical line

can be altered as follows: NL NL - accompanying info NL

3rd logical line etc.

- Handling overlong messages NL

\ /
\ /

\/
Display on a 54-character screen, for example

Only characteristics relating to the user making the
changes can be altered as follows:

- accompanying info
- handling overlong messages

Message to line terminal

80 U1786-J-Z135-5-7600

Data transfer function Message/data unit transmission

When a format terminal is used, the user transfers the message in the way he or she
receives it from the formatting routine, but without the preceding record length field.
The record length must be transferred from the record length field to the corresponding
DCAM field.

If the values EDIT=SYSTEM and EDITOUT=PHYS have been set for the connection,
each message must be preceded by a header length byte. The binary number
contained in this byte specifies the length of the following message header (including
the length byte). The message header is transferred to the terminal without code
conversion in contrast to the message proper, so that the user can use the device
description during generation and analysis of the message header. For devices which
do not process message headers, the message must nonetheless be preceded by a
header length byte, and the length must be set to 1.

The diagram below illustrates how messages should be formatted.

HL MH Message text

\ /
\/

Length in HL

\ /
\/

Message length

HL = Header length byte; contains length of HL + MH in binary
MH = Message header; length varies depending on the device function; in

device code. Not required for devices controlled in other ways.

Message layout for EDITOUT=PHYS

U1786-J-Z135-5-7600 81

Message/data unit transmission Data transfer function

The message can also be subdivided into message segments in this case and also
when EDIT=USER has been set. Each message segment must be appropriately
marked.

Message group

Message subgroup 1 Message subgroup 2

Message 1 Message 2 Message 3 Message 4 Message 5 Message 6 Message 7

ELEMENT ELEMENT ELEMENT SUBGROUP ELEMENT ELEMENT GROUP

Example of message structuring

Depending on the device type and status, different device responses have to be
reckoned with.

Note

Shared physical lines (concentrator) are released once a message segment has
been transmitted.

82 U1786-J-Z135-5-7600

Data transfer function Receive message/data unit

3.3.2 Receiving a message/data unit

Reception of a message/data unit means that the message/data unit from the partner
is entered in the data area of the receiving partner’s program after having been
removed from the queue.

This procedure is completed when the YRECEIVE call is terminated provided that the
call was executed synchronously. If the call was executed asynchronously, its
completion merely means the communication access system has been assigned the
job of transferring the message/data unit when it arrives. An agreed event identifier
enables the user to receive a signal when the message/data unit been transferred. The
user can check for this signal and then process the message/data unit (see page 105).
This method allows any delays arising from waiting for a message/data unit to be used
for other processing operations.

Which messages/data unit a task can receive depends on the type of queue selected:

If the common receiver queue is set (CA state of the connection), the message/data
unit is passed to the first task to access the common receiver queue (ANY).

If the originator-oriented queue is set (CS state of the connection), the
message/data unit is passed to the task that set the originatororiented queue
(causing the CS state).

Which message a task can receive also depends in the case of DCAM(NEA)
transport service applications on whether it is a normal or an express message.
The table below illustrates message distribution according to the type of
message.

U1786-J-Z135-5-7600 83

Receive message/data unit Data transfer function

Type of message
Type of message Normal message Express message
distribution

By means of Distributed to the Distributed to the
distribution codes task authorized to primary task
(DISCO) receive it according

to distribution
code 1)

Via common Distributed to
receiver the first task to Distributed to the
queue access the common- primary task

Without (connection receiver queue
distri- state CA) (ANY)
bution
codes Via ori- Distributed to the task that set the
(NDISCO) ginator- originator-oriented queue (caused the

oriented CS state)
queue
(connection
state CS)

1) If the distribution code has not yet been provided for or has
not been assigned to any secondary task, the message is distributed
to the primary task.

When issuing the YRECEIVE call, the user specifies further information beyond the
connection description defined with YOPNCON (see page 57):

With respect to the message/data unit :

the user defines the address of the field in which the message/data unit is to be
entered, along with the length of this field;

he can change the handling of excess-length messages defined during connection
establishment to match this message; i.e. he can redefine whether the excess
portion of a message is to be kept so that it can be fetched later or whether it is to
be discarded.

84 U1786-J-Z135-5-7600

Data transfer function Receive message/data unit

With respect to call execution :

interrelated information must be specified here, as illustrated below:

1) Reception of a message 2)

from a specific partner from any partner
(SPEC) = access to the (ANY) 3) = access to
originator-oriented the common receiver
queue (only possible if queue (only possible if
it was previously set it was previously set
with YOPNCON, YSEND, with YOPNCON, YSEND,
YSENDREC or YRECEIVE = YSENDREC or YRECEIVE =
connection state CS) connection state CA)

Connection identifier

2) 2)

The common receiver queue (CA) or
the originator-oriented (CS) queue
is set for subsequent message
distribution

Synchronous processing Asynchronous processing
of the call of the call 4)

5)
- - - - - - -

Entry in a queue (Q) with maximum
residence time (TOVAL)

1) Setting of CS for this purpose not necessary in the case of message
distribution with distribution codes.

2) Only possible for message distribution without distribution codes
3) The call may be transmitted prior to connection setup. However

it is not executed until at least one connection has been established.
4) For further specifications, see page 105.
5) Optional: if not specified, the call is terminated immediately even

if it cannot be executed.

Specifications for receiving a message/data unit

U1786-J-Z135-5-7600 85

Receive message/data unit Data transfer function

After the message has been received in the specified area, further information is fed
back by DCAM:

Originator specification,
if the message was received from any partner (ANY).

Accompanying user information
as defined by the user when the connection was established (message received
from any partner: ANY).

Length of the message/data unit
or, if the message/data unit is longer than the storage area, provided, the length of
the excess portion not yet transferred (KEEP). If the excess-length part is to be
fetched with another receive call, the originator-oriented queue must have been
selected previously.

When the more-data function (MDATA=Y) is used, an indicator in the feedback field
is set showing whether the data unit is the last unit of a logical message.

The rest of this section applies to DCAM(NEA) transport service applications
only.

Sequence number of message
as specified by the partner or generated by the system (if a terminal was the
originator).

Structure of the message
(entries in the feedback field), i.e. whether an element, the last element of a
subgroup or a group was received.

Type of message
(entries in feedback field), i.e. whether a normal or express message was received.

86 U1786-J-Z135-5-7600

Data transfer function Receive message/data unit

Whether or not transport acknowledgments can be received depends on the
definitions made when the application was opened and on the information specified
when the message which is to be acknowledged is transmitted (see table below).

Definition for YSEND or YSENDREC

Definition at YOPEN A positive A positive acknow-
of the application acknowledgment is ledgment is not
in the primary task requested (TACK) requested (NTACK)

The requesting task Transfer of positive Transfer of negative
is to receive and negative acknowledgments only
acknowledgments acknowledgments to to the requesting task
(REQTASK) the requesting task

The primary task Transfer of positive Transfer of negative
is to receive all and negative acknow- acknowledgments only
the acknowledgments ledgments to the to the primary task
(PRIMTASK) primary task

No acknowledgments Neither positive nor negative
are to be passed acknowledgments are passed
(NOTACK)

Unless the use of asynchronous notifications was agreed (see page 111), transport
acknowledgments are received with the YRECEIVE call. All information on the type of
acknowledgment etc. is provided in the feedback field of the call. The field ’TACKNO’
also contains the sequence number of the message as defined during transmission. It
is thus possible to identify the message.

It should be noted that the reception of a transport acknowledgment with YRECEIVE
has no effect on the setting of the queue (CS/CA) even if this was specified in the call.

Restriction:

Where EDIT=SYSTEM, a second negative transport acknowledgment can be
received when YSEND is specified. This is passed to the primary task in the case of
SHARE applications irrespective of REQTASK.

U1786-J-Z135-5-7600 87

Transmit,receive,assign distribution code Data transfer function

3.3.3 Combined sending and receiving

The information given on the two separate calls also applies to the combined call. As
the combination only permits access to the originatororiented queue, the originator-
oriented queue must have been set for this connection (=connection state CS) with
YOPNCON or a previous YSEND or YRECEIVE.

Restriction:

The YSENDREC call is not available in COBOL.

3.3.4 Canceling receive macros and changing the connection state CS/CA

The YRESET call enables asynchronous YRECEIVE macros to be canceled.

A YRESET(ANY) call cancels all YRECEIVE macros from any partner.

A YRESET(SPEC) call cancels YRECEIVE calls from a specified partner.

A YRESET(SPEC) call also resets the connection state CS/CA. This does not apply to
DCAM(NEA) transport service applications using distribution codes specific to queues
(ATTR=SHARE,DISCO).

3.3.5 Control distribution code assignment

This section applies to DCAM(NEA) transport service applications only.

The primary task controls distribution code assignment by allocating a distribution code
name to a distribution code group or by deleting such an assignment. It defines the
distribution code group for one or more connections when establishing connections
(see page 68).

The distribution code name is entered by one or more tasks when opening the
application (see pages 42 and 47).

The primary task assigns the distribution code names of one or more tasks to the
distribution codes of one or more connections. If the primary task deletes such an
assignment, it inhibits data transfer from the connections concerned to the task
concerned.

88 U1786-J-Z135-5-7600

Data transfer function Distribution code assignment

DCAM application
Assignment
performed by:

YOPEN

PERMIT

YOPNCON
(YCHANGE)

YOPNCON

Prim.-task1

AB
CD
EF
JK

XY
UV

X124
X345
X901

A#1F1
A#3F1
A#4F1

X
Z
$
@

Distribution
code groups

Verteilungs-
namen

Virtual connections

Default (no assignment)

Sec.-task3 Sec. task4

Sec. task2 Sec. task5 Sec. task6 Sec. task7

DIST #0 DIST#1 DIST#2 DIST#3 DIST#4

Pos. = 10
Length = 2

Pos. = 5
Length = 2

Pos. = 1
Length = 4

Pos. = 20
Length = 5

Pos. = 5
Length = 1

Pos. =6
Length = 1

Summary of message distribution with distribution codes (example)

U1786-J-Z135-5-7600 89

Distribution code assignment Data transfer function

Assign distribution code name to a distribution code group

The YPERMIT call assigns a distribution code name to a distribution code group. This
means that tasks which have defined this name can receive messages with the codes
of the assigned group.

The following applies:

A group of distribution codes (stage 2 definition) can be assigned to only one
distribution code name .

Up to 8 tasks can use the same distribution code name . This becomes necessary
when a single program controls several tasks (SHARED CODE, see pages 115 and
125). Tasks with identical distribution code names are served in accordance with the
FIFO principle (FIFO=first in first out: the first entry in the queue will be the first one
processed).

Depending on the assignment made, a task can also access the messages in an
originator-oriented way (YRECEIVE SPEC). It is not necessary to select this queue
beforehand (there is no CS/CA state of the connection when distribution codes are
used).

**) **)

**) Max. 8 tasks per distribution code name

))*) *) *) *)

Communication
partner B
(shareable DCAM
application, message
distribution via
distribution code

Secondary
task 1
Distribution
code
name:
DISTRIBX

Secondary
task 7
Distribution
code
name:
DISTRIBY

Secondary
task 8
Distribution
code
name:
DISTRIBZ

Secondary
task 9
Distribution
code
name
DISTRIBZ

Primary
task
Distribution
code
name:
DISTRIBX

Secondary
task 22
Distribution
code
name:
DISTRIB#

Max. 16 (ASSEMBLER)
or 8 (COBOL) queues -
one per code group

Communication
partner A
(DCAM application
or terminal)

Messages with
the codes of
group X
A,B,C,D,E

Messages with
the codes of
group Y
I,J,K,L,M,N,O,P

Messages with
the codes of
group Z
Q,R,S,T,U,V

Messages with
the codes of
group #
$,#,*,%

Max. 8/16
code groups

The queues (code groups) are assigned to the
distribution code names via separate data
communication function calls

*)

Example of task group addressing with distribution codes

90 U1786-J-Z135-5-7600

Data transfer function Distribution code assignment

Messages with distribution codes that were not assigned to a distribution name or that
cannot be interpreted are directed to the primary task.

Old assignments can be replaced by new ones when a new YPERMIT call is issued.

Cancel assignment

If a new assignment is not to be made for a distribution code name but the existing
assignment is to be canceled, the YFORBID call can be used. Data which has already
been received is then transferred to the primary task.

U1786-J-Z135-5-7600 91

Name assignment function

3.4 Name assignment function

This function permits parameter values for the DCAM application or the connection to
be specified at run-time only. This is achieved by linking the current values with those
specified in the program in a task-oriented table (CLT=communication link table). (This
can be compared with the entries in the FCB (file control block) of a program which
are updated using the TFT (task file table) whose entries were generated by the FILE
macro or the /SET-FILE-LINK command.)

Command mode:
/SET-DCAM-APPLICATION-LINK,LINK=KETT4,APPLICATION-NAME=APPLIC4

.

.

. \/

.

. CLT entry

.

. CHAIN4

.
/START-PROGRAM.... APPLIC4

Program mode:
.
.

YOPEN ABC control block or
. A structure

The opening of the DCAM Name: ABC
application begins with
the transfer of the Link name: CHAIN4
current values from the CLT
and ACB control block or Password: PASS
the A structure

.

.

APPLIC4

PASS

.

.

Example of assignment of a DCAM application name

92 U1786-J-Z135-5-7600

Name assignment function

The table is set up:

in the program mode (ASSEMBLER only) by means of the YAPPL macro for entries
on the application, and the YCONN macro for entries on the connection

in the command mode (ASSEMBLER/COBOL) by means of the

/SET-DCAM-APPLICATION-LINK or /REMOVE-DCAM-APPLICATION-LINK for entries on the
application and

/SET-DCAM-CONNECTION-LINK or /REMOVE-DCAM-CONNECTION-LINK for entries on the
connection (see "User Commands (SDF Format)").

The linkage is established by specifying a link name both in the program and in the
CLT. The following values can be updated in this fashion:

• For a DCAM application:

the name of the DCAM application

the password for the connection of a secondary task to an application, as
specified in the primary task

the password for the connection of a secondary task to an application, as
specified in the secondary task.

Additional information for a DCAM(NEA) transport service application:
the distribution code name;
the password for establishing a connection, as defined in the primary task.

• For the connection:

the name of the partner;
the name of the processor node to which the partner is connected
the accompanying information.

Additional information for DCAM(NEA) transport service applications: the
password for connection establishment, as specified by the requesting task.

When YOPEN or YOPNCON is executed, the specifications are entered in DCAM
control blocks or data structures. They are updated with the values in the CLT
providing it contains entries. If it does not, the original values remain unchanged.
Following this, dynamic name assignment for this application or connection is possible
again only after it has been closed. If CLT entries are to be deleted, the YAPPL or
YCONN macro or the corresponding commands with just the link name should be
issued.

U1786-J-Z135-5-7600 93

4 Support for virtual terminals
This chapter applies to DCAM(NEA) transport service applications only.

A virtual terminal constitutes a model of a terminal with certain standard characteristics.
Unlike a physical terminal, the virtual terminal permits programming that does not
relate to the physical characteristics of the terminal. Actually connected. The physical
terminal on which he or she wants to output messages is therefore of no significance
to the user, who is aware only of the virtual terminal.

There are two types of virtual terminal:

form terminal and
virtual line terminal

Form terminal

The forms (screen forms or masks) are output on the form terminal. The user
completes only the predefined fields. The form terminal offers the program structured
forms with a field structure. Form terminals are supported by restricted forms mode,
which is selectable with VTSU, and by the software product FHS (Forms Handling
System).

Detailed information on FHS is available in the FHS User Guide.

U1786-J-Z135-5-7600 95

Support for virtual terminals

Virtual line terminal

The virtual line terminal is implemented by the software product VTSU (Virtual Terminal
Support) in the BS2000 operating system. In the case of a virtual line terminal an
output is divided into a number of lines. VTSU supports both Assembler macros and
COBOL data structures for line terminals. By using these macros and data structures
you can:

create receive fields or symbolic field names for status messages. You can then
query the corresponding status messages with the YINQUIRE macro.
Convert virtual control characters into device-specific control characters. The
mechanisms for this purpose are the VTCSET macro and the TIAMCTRC copy
element.
Set VTSU parameters. These VTSU parameters define the nature of the virtual
terminal and how messages are treated for send and receive. You can specify the
parameters in the VTSU control block (VTSUCB) in the YSEND, YRECEIVE and
YSENDREC macros.

VTSU is described in detail in the VTSU User Guide.

The status messages on the partner characteristics for COBOL applications are
described in the ’DCAM COBOL Calls’ manual.

Edit options

The edit options for connections with EDIT=SYSTEM are replaced by the specifications
in the VTSUCB. As in the VTSUCB, you can use edit options to define the type of
virtual terminal and message handling for transmitting and receiving. The functionality
of the VTSUCB is considerably wider, however, because new edit options will be
available only via the VTSUCB.

96 U1786-J-Z135-5-7600

5 DCAM programs
This chapter describes the language-specific characteristics of the DCAM interface.
DCAM programs can be generated in ASSEMBLER or COBOL. For detailed instructions
on the coding of DCAM programs consult the manuals "DCAM Macros" for
ASSEMBLER and "DCAM COBOL Calls" for COBOL.

5.1 ASSEMBLER programs

The ASSEMBLER program interface provides the full range of DCAM functions as
described in detail above.

The purpose of this section is to provide an overview of the specific interface
characteristics.

5.1.1 Macro calls and control blocks

All DCAM functions are activated by macro calls. The action macros always refer to
control blocks in which all the parameters are stored. A distinction is made between
two groups of calls depending on the type of control block they refer to:

macro calls that refer to an ACB (application control block) , and

macro calls that refer to an RPB (request parameter block) .

The following calls refer to an ACB , which contains all the information on the DCAM
application:

YOPEN (Open a DCAM application)
YCLOSE (Close a DCAM application)

If asynchronous DCAM notifications are to be processed, an ENB (event notification
block) is required in addition. The references to the identifiers for the contingency
routines are stored in this block (see page 111).

U1786-J-Z135-5-7600 97

Macro calls/control blocks ASSEMBLER programs

YOPEN ACB Application ENB Event notifi-
control block cation block

List of identi-
Description of fiers of contin-

YCLOSE the application gency routines
to be started
when an
asynchronous
notification
arrives

ACB-related macro calls

The following macros refer to an RPB which contains the current parameter values of
the action calls:

YINQUIRE Request entries on DCAM applications, partners and connections

YOPNCON Open connection

YCLSCON Close connection

YREJLOG Reject logon request

YCHANGE Change connection characteristics

YSEND Transmit message

YRECEIVE Receive message

YSENDREC Transmit message and receive new message

YRESET Delete receive messages and change CS/CA state

Additional macros for DCAM(NEA) transport service applications:

YSETLOG Change status of DCAM application

YPERMIT Permit receipt of message with distribution code

YFORBID Prohibit receipt of message with distribution code

98 U1786-J-Z135-5-7600

ASSEMBLER programs Macro calls/control blocks

The connection control block (CCB) is required in addition to the RPB for various
calls. The parameters for a connection are located in the CCB.

In the case of DCAM(NEA) transport service applications, the position and length
of the distribution code, the code sign and the references to assigned
distribution code groups are located in the distribution parameter block
(DIP), and the distribution codes themselves in the distribution code group
block (DCG).

Note

DCAM users connected to a packet switching network (e.g. Datex-P) via an an X.25
interface must note that certain restrictions apply to calls relating to connections or
data transmission. They are described in the manual "DCAM Macros", see section
entitled ’Effects of the CCITT X.25 Recommendations on the IDCAM user interface’.

U1786-J-Z135-5-7600 99

Macro calls/control blocks ASSEMBLER programs

YSETLOG* Request ACB Application
RPB parameter control bl.

block
Description of

YINQUIRE application

YOPNCON CCB Connection
control bl.

Description of
YCLSCON connection

Description of - - - - - - - - - - - - - - - -
YREJLOG the macro call, Description of distr. codes*

if necessary
specification
of areas for

YCHANGE data accepted/ Distribution
passed etc. DIP parameter

block

YSEND Code sign

Position and
length of dis-

YRECEIVE tribution codes
in message

YSENDREC

YRESET DCG 1 DCG 16

Group Group
of of

YPERMIT* distr. distr.
codes codes

YFORBID*
- - - - - - - - - - - - - - - -

* Applies to DCAM(NEA) transport service applications only

RPB-related macro calls

100 U1786-J-Z135-5-7600

ASSEMBLER programs Macro calls/control blocks

The programmer need not know the internal structure of the control blocks as macro
calls are available to him for the generation and handling of control blocks.

Macro calls for static control block generation :

YACB Generate ACB

YENB Generate ENB

YRPB Generate RPB

YCCB Generate CCB

Additional macros for DCAM(NEA) transport service applications:
YDIP Generate DIP

YDCG Generate DCG

In the case of these macro calls, the control blocks are generated during assembly.

The control blocks can also be generated and handled by the user directly via the
macro calls YDDACB, YDDCCB, YDDENB and YDDRPB,

and also with YDDDCG and YDDDIP in the case of DCAM(NEA) transport
service applications.

These macro calls describe the layout (DSECT and CSECT) of the control blocks.

U1786-J-Z135-5-7600 101

Macro calls/control blocks ASSEMBLER programs

Dynamic generation of a control block in user memory area (class 6 memory) or
optionally in an area outside the user program (class 5 memory) during the program
run is possible with the macro call YGENCB (generate control block).

The following macros are provided for control block handling:

YMODCB Modify the contents of control block fields

YSHOWCB Transfer the contents of identified control block fields to an area
reserved in the program

YTESTCB Compare the control block field contents with specified values.

The control blocks can be created and handled with the aid of these macros only
when the DCAM subsystem has been loaded successfully. Note, too, that the DCAM
subsystem status cannot be HOLD/DELETE when any of these macros is used. If a
task successfully issued a DCAM command or a DCAM call before entering
HOLD/DELETE, it can work with DCAM until the task is ended, despite a /HOLD
subsystem or /DELETE subsystem (also applicable to %).

The RPB can also be modified with any macro call that addresses it (implicit RPB
modification). It is up to the user either to create several RPB control blocks or always
to address the same one and update its contents.

The application characteristics described in the ACB are transferred to DCAM with the
YOPEN call. After YOPEN execution, DCAM returns an AID (application identifier)
in the ACB. From then on all calls referring to this application may use the address of
the ACB control block containing this identifier.

ACB

AID *

YSEND RPB

CCB

CID *

* entered by DCAM when the YOPEN or YOPNCON was executed

Example of control block addressing without identifiers

It is also possible to save the AID and to enter it in the RPB used for further calls.

102 U1786-J-Z135-5-7600

ASSEMBLER programs Synchronous execution of calls

* The identifier was saved
RPB after YOPEN or YOPNCON and

entered in the RPB with
YSEND AID * YMODCB

CID ** ** The identifier was entered
here after YOPNCON or
RECEIVE ANY if this RPB
was used

Example of addressing an RPB in which valid identifiers were entered

In this case the memory area for the ACB can be used for other purposes. The same
applies to the description of the connection in the CCB and, in the case of DCAM(NEA)
transport service applications, also in the DIP and the DCG. The CID (connection
identifier) returned in the CCB and RPB can be used after an YOPNCON, for example.
YSEND and YRECEIVE or YSENDREC then only require RPB control blocks containing
the relevant AID and CID identifiers. If the entry was not made by DCAM, it can be
entered with YMODCB provided the identifier was previously saved with YSHOWCB.

The use of the identifiers is advantageous because DCAM finds all the information
required for the call in the RPB. This speeds up processing.

5.1.2 Synchronous execution of DCAM calls

In the case of synchronous execution of DCAM calls, control is only returned to the
program by task management when this call has been processed by DCAM. If DCAM
can process the call immediately there are no delays. However, with some functions,
delays may occur due to DCAM having to wait for a response from the communication
partner. When a connection is being set up (YOPNCON), the communication partner
must contribute to this operation and when messages are to be received (YRECEIVE),
the partner must have sent them and they must be available in the data area of the
communication system and have been entered in a queue.

The programmer can decide whether and how long he is prepared to wait until the call
can be executed. He defines the maximum waiting time for each call. However, he can
also specify that a call should be terminated immediately even if the instruction cannot
be performed. The call must then be repeated later in the program if required.

U1786-J-Z135-5-7600 103

Synchronous execution of calls ASSEMBLER programs

User task System

Example 1

.

.
\

0 YRECEIVE with maximum waiting time \ DCAM/
of 80 seconds / BCAM

10 /

20

30
Waiting time

40
/ / /

50 / Terminate / Transfer / Message
.\ call \ \

60 . \ \ \
.

70 .
. Further processing

80

- - - - - -

Example 2

.

.
\

0 YRECEIVE with maximum waiting time \
of 30 seconds /

10 /

20 Waiting time
/

30 / Terminate call
\

40 .\ /
. / Message

50 . Further processing \
\

60 must be
fetched with
another

\ / YRECEIVE
\/ Time

Examples of synchronous execution of YRECEIVE

104 U1786-J-Z135-5-7600

ASSEMBLER programs Asynchronous execution of calls

5.1.3 Asynchronous execution of DCAM calls

In the case of asynchronous execution of calls, control is returned to the program
immediately when DCAM has accepted the call. This means that any delays can be
used for other processing until the call is executed. For the purpose of asynchronous
execution of calls, the user defines an event (ENAEI macro call) and specifies its
identifier EID in the YOPNCON, YRECEIVE or YSENDREC macro. An event may be, for
example, message transfer. The user can query this event (SOLSIG macro) at the
location in the program at which he or she wishes to process the message, for
example. The program can wait at this point if the message has not yet arrived.

U1786-J-Z135-5-7600 105

Asynchronous execution of calls ASSEMBLER programs

User task System
Example 1

Even- DCAM/
ENAEI:Define event ting BCAM

Transfer of event id.
EID

.

. Further processing
\

YRECEIVE *) EID=event \
identifier /

/
. The waiting time
. preceding the arrival / /
. of the message is used / Transfer / Message
. for further processing \ \
. \ \

\
SOLSIG *): Event \
notification expected /

/
.
. Processing of the
. message

- - - - - -
Example 2

ENAEI:Define event

Transfer of event
EID

identifier
.
. Further processing

\
YRECEIVE *) EID = event \
identifier /

/
. The waiting time
. preceding the arrival
. of the message is used
. for further processing
.

\
SOLSIG *): Event \
notification expected /

/ / /
/ Transfer / Message

Waiting time \ \
\ \

\ / . Processing of the
\/ Time . message

EID Identifier of the event (in this case, the arrival of the message),
is used as the reference point for message transfer and acceptance.

*) A maximum life is defined for YRECEIVE and SOLSIG in each case
(not indicated here).

Examples of asynchronous execution of YRECEIVE

106 U1786-J-Z135-5-7600

ASSEMBLER programs Asynchronous execution of calls

However the user can also link the event with a contingency routine; this routine must
be defined and its COID identifier must be available (ENACO macro call). In this case
the user should query the event as soon as the DCAM call has been issued. When this
event occurs the routine is started automatically.

User task System

Main routine

ENAEI:Define event
Transfer of event Even-
identifier ting

EID Con-
. tin-
. gen-

ENACO: Define con- cy
tingency routine

- - - - - - - DCAM/
Transfer of con- BCAM
tingency routine

COID
.
.

\
YRECEIVE *) EID=event \
identifier /

/
. **)

\
SOLSIG *) Event noti-\
fication expected /

/
- - . **)

.
/ / /

/ Start routine / Transfer / Mess-
Contingency \ \ \ age
routine \ \ \

Processing
of message
RETCO:return

\ / . Further
\/ Time . processing

EID Identifier of the event (in this case arrival of a message), is used
as the reference point for message transfer and acceptance.

COID Identifier of the contingency routine
*) A maximum life is defined for both YRECEIVE and SOLSIG (not

indicated here).
**) The waiting time before the arrival of the message is used for

other processing.

Example with a contingency routine

U1786-J-Z135-5-7600 107

Asynchronous execution of calls ASSEMBLER programs

It should be noted that a maximum lifetime has to be defined for the individual calls
and that the lifetimes are related. The lifetime of the SOLSIG should be longer than
that of the DCAM call, since the SOLSIG might otherwise have to be repeated.

Care should be taken to prevent actions in the program that assume completion of
asynchronous processing without this actually having taken place (closing of the
connection, for instance, while a YRECEIVE is being processed asynchronously).

Restriction:

Up to 8 instructions of the same type can be processed asynchronously at a given
time (see page 138).

In order to be able to access values which were valid when the call was issued or to
transfer the address of the control block used, the user can define event information.

This takes place when YOPNCON, YRECEIVE or YSENDREC is issued. It is entered
when the event has arrived, either in a defined field (no contingency routine defined) or
in a register (contingency routine defined).

108 U1786-J-Z135-5-7600

ASSEMBLER programs Feedback information

5.1.4 Feedback information

The user receives feedback information after the termination of a DCAM call. This
information consists of a 4-byte code which is entered in a field of the ACB or RPB
control block, the FDBK field, and in register 15.

FDBK/Register 15

Byte 1 Byte 2 Byte 3 Byte 4
(leftmost)

FDB1: FDB2: FDB3: FDB4:
Feedback Reason for rejec- Indicators Data indicators
summary tion (error code)

The feedback information is made up of several bytes. By evaluating byte 1 (FDB1) the
user will have sufficient information to estimate roughly what needs to be done. The
user can either evaluate byte 2 (FDB2) or make do with a listing that permits later
evaluation. The job on hand will ultimately be the decisive factor in this matter.

Bytes 3 and 4 (FDB 3-4) contain additional information, e.g. last data unit of a message
received.

The feedback information is always in the FDBK fields of the appropriate control
blocks.

In the case of a synchronous call , the feedback information includes information on
the processing or rejection of the call.

In the case of an asynchronous call , only information on instruction acceptance or
rejection is available in register 15 after completion of the call. Register 15 cannot
contain any values relating to the execution of the instruction at this point. This is only
available in the RPB block after the instruction has been executed. The FDBK field of
the RPB control block can contain values relating to execution immediately after the
asynchronous call is issued, e.g. if a message was already in the input queue when the
asynchronous YRECEIVE call was issued or it contains information on acceptance or
rejection like register 15.

U1786-J-Z135-5-7600 109

Feedback information ASSEMBLER programs

The user can locate the RPB in the case of an asynchronous call by entering the
address of the RPB in the EIDREF field. DCAM overwrites the first byte of EIDREF with
X’0C’. In 31-bit mode, therefore, EIDREF2 should be used for addresses. The RPOSTAD
field must then be 8 bytes long and "RPOSTL=2" must be specified for SOLSIG. After a
SOLSIG call the user receives the RPB address via the RPOSTAD field or register 3
(contingency). Then he can access the RPB and with YSHOWCB he has access to the
feedback information in the FDBK field. As the asynchronous call can be executed
immediately after the DCAM call, only register 15 should be evaluated to check on
acceptance or rejection.

The feedback information from the SOLSIG call (register 15) or the contingency routine
(register 2) informs the user whether the event which occurred was the expected one
or whether an error or a timeout occurred, but information on the execution of the call
by DCAM is not provided (see SOLSIG in the BS2000 manual "Executive Macros").

In the case of YOPNCON and YRECEIVE, further information apart from the feedback
information is provided, but only if the feedback does not indicate any errors i.e.
FDB1=X’00’ (see the relevant sections on the functions).

110 U1786-J-Z135-5-7600

ASSEMBLER programs Asynchronous DCAM messages

5.1.5 Asynchronous DCAM messages

Asynchronous notifications can be issued to the task by DCAM for a number of events
in the data communication system which may occur in asynchronous relationship to
program processing and which may have a decisive effect on processing (see table
below).

Message Transmitted by DCAM Related to

LOGON only to the connection function
primary task

PROCON

SECOND existence function

LOSCON connection function

COMEND to primary or existence function
secondary task

EXPR * data transmission function

TACK *

* for DCAM(NEA) transport service applications only

These events are:

LOGON

A connection request is received.

LOSCON

A connection was closed by the communication partner, the operator or due to an
error.

A connection is about to be closed; warning (see /BCON and /BCTIMES commands in
"Generating a Data Communication System").

Note

If the LOSCON event occurs without a warning, the connection is already cleared
down; if the user now enters the macro call YCLSCON, it will be rejected with a
return code 0.

PROCON:

Partners already defined at communication access method generation time (XSTAT
macro in "Generating a Data Communication System") were proposed for connection
setup in the YOPEN or in a /BCIN operator command.

U1786-J-Z135-5-7600 111

Asynchronous DCAM messages ASSEMBLER programs

SECOND

A secondary task was opened or closed.

Applies to DCAM(NEA) transport service applications only:
The distribution code of a message is assigned to a distribution code name
which is not opened by any secondary task. The primary task must first issue
YFORBID for the distribution code name before it can receive the message
proper.

COMEND

The communication access method was terminated.

Termination is pending (warning) (see /BCTIMES command in "Generating a Data
Communication System").

The DCAM application has been terminated; message to secondary task.

The DCAM application will be terminated shortly; warning to connected secondary task
(see /BCTIMES command in "Generating a Data Communication System").

EXPR An express message has arrived.

TACK A transport acknowledgment has arrived.

The DCAM application can be notified of the event concerning it if this is specified
when the application is generated/opened. As the event notification results in a
contingency routine being executed, a contingency routine must be defined for a
notification to be received. The ENACO macro can be used for this purpose (see
"DCAM Macros" manual). The returned identifier (COID) has to be transferred to DCAM
via the ENB event control block (see page 50). The notifications which are to be
accepted and the contingency routine which is to be initiated have to be defined at
YOPEN time for the duration of an application.

Primary tasks are notified of all events, secondary tasks only of LOSCON, COMEND
and, in the case of DCAM(NEA) transport service applications, EXPR and TACK. If a
contingency routine is initiated, registers 1 to 8 contain all the information required for
the processing of the event. The other registers have no defined contents. Input to the
base register contents is the user’s responsibility. Access to register contents of the
interrupted routine or of the main routine is possible with the CONTXT macro. The
priorities of the contingency routines are established when they are defined (ENACO)
and modified via the LEVCO macro.

112 U1786-J-Z135-5-7600

ASSEMBLER programs Asynchronous DCAM messages

DCAM expects a response to each LOGON notification. The response does not have to
occur within the contingency routine itself, just within a certain period of time defined
during the generation of the communication system (/BCTIMES command). If no
response is received within the time defined, this is interpreted as a rejection of the
notification.

User task System

Main routine

ENACO:
Define contin- Even-
gency routine ting

- - - - - - Transfer of Con-
contingency tin-
identifier gency DCAM/

BCAM
COID

\
YOPEN Open DCAM applica- \
tion, pass COID /

/
. Further
. process-
. ing

/ / /
/ Start routine / Transfer / Express

Contingency \ \ \ message
routine for \ \ \
EXPR

Processing
of message
RETCO:return

.

.

\ /
\/ Time

COID = Identifier of the contingency routine

Example of express messages being received via an asynchronous DCAM

notification (EXPR), for NEA only

U1786-J-Z135-5-7600 113

Asynchronous DCAM messages ASSEMBLER programs

The decision not to accept certain notifications while a DCAM application is being
generated or opened has the following consequences:

LOGON is not defined: Connection requests issued by the communication partners
can only be processed by means of a YOPNCON call issued during the program
run in case it is needed.

LOSCON is not defined: Notification of connection loss can be obtained at the
earliest from the feedback information from a call which refers to this connection.

SECOND is not defined: The primary task must use other means (e.g. eventing) to
discover that a secondary task has opened the application and which distribution
code name it has.

Applies to DCAM(NEA) transport service applications only:
The primary task is unaware of messages assigned a distribution code name
without a connected secondary task. These messages are not received by
any task and are deleted after expiry of a system monitoring period.

PROCON is not defined: Pre-defined proposals of connection setup are not
reported to the DCAM application.

COMEND is not defined: The fact that the DCAM application or the communication
access method no longer exists is indicated in the feedback information at the
earliest when the next call is issued to DCAM.

EXPR is not defined: Express messages must be fetched with YRECEIVE in the
order of the incoming messages.

TACK is not defined: Transport acknowledgments must be fetched with
YRECEIVE in the order of the incoming messages.

114 U1786-J-Z135-5-7600

ASSEMBLER programs Reentrant programs

5.1.6 Reentrant ASSEMBLER programs

In BS2000, a program can control several tasks, i.e. the program is loaded only once
for this number of tasks. The results are as follows:

Loading times are shortened as the program is loaded when it is called by the
first task. When other tasks call it, the program is not loaded again, but used by
them also i.e. it is shared.

Dialog response times are shortened because the DCAM application, acting as
the communication partner, has shared out the "burden" of incoming inquiries
among several tasks. Timesharing task control is implemented although only one
program is used (see page 27).

The system utilization is improved because the paging rate is lower and the
program is managed only once for several tasks in the main memory and the page
memory.

This processing is only possible if such program modules, which are managed as
’shared code ’ in the system, are invariable, i.e. reentrant. Since, however, task-specific
I/O areas etc. are usually also required, this means that a program must be divided
into a ’read-only’ section and a variable section. This procedure is supported by DCAM
as follows:

Control blocks can be generated during the program run in a taskoriented area
managed by DCAM or in a user area.

By means of the MF parameter the parameter list and the operation code (SVC) of
the macro can be separated for calls generating and handling control blocks.

Register notation is used to a large extent.

U1786-J-Z135-5-7600 115

Reentrant programs ASSEMBLER programs

The table below shows the possibilities available through reentrant programming and
the required subdivision of the program.

Program Invariable Variable
section (shared code) (task-specific)

Instructions - Invariable instruction code - Instruction code
using EX instruction, if including input to
necessary registers for branch

- Addressing of the variable to invariable module
section via registers (MF=E) (model A in figure

- If required, provision of below)
memory for the variable section
(model B in figure below)

Data and - Number constants - I/O areas
areas - Text constants - Computation fields

- Address definitions (DSECT) - Save areas
- Operand lists (MF=L) (registers)

- Operand lists (MF=L)

116 U1786-J-Z135-5-7600

ASSEMBLER programs Reentrant programs

Model A Model B

Task-specific section
(variable)

Task 1 Task n

Enter Enter I/O areas, I/O areas,
addresses of addresses of operand operand
I/O areas, I/O areas, lists, etc. lists, etc.
operand operand
lists, etc. lists, etc.
in registers in registers

Branch to Branch to
"MOD2" "MOD2"

MOD2 • Request memory area
Reentrant • Transfer I/O areas,

section operand lists, etc.
shared code (shared • Addressing via

code) DSECT or register

Task 1 Task n

Model for shared code programming

U1786-J-Z135-5-7600 117

COBOL calls, data structures COBOL programs

5.2 COBOL programs

A series of access modules to DCAM functions are provided in COBOL programs
permitting synchronous and asynchronous processing. COBOL programs can control
primary tasks but are also suited to controlling secondary tasks especially in the case
of more complicated problems (see also page 27).

5.2.1 COBOL calls and data structures

All calls to DCAM are formulated as branches to subroutines (CALL...); the associated
data structures with the parameters and data fields must be declared in the WORKING-
STORAGE SECTION.

The following data structures are provided for:

Application structure (A-Struktur) :

The application structure contains the description of the DCAM application. This
must be present at least once in the program.

Connection structure (V-Struktur) :

The connection structure contains the description of an instruction. This can exist
for each connection or just once for several instructions.

Instruction structure (B-Struktur) :

The instruction structure contains the description of an instruction. This can exist for
each instruction or just once for several instructions.

Wait structure (W-Struktur) :

The wait structure contains the description of the operands waiting for termination of
asynchronous CALLs.

• VTSU control block (VTSUCB-Struktur)

The VTSUCB structure contains the VTSU parameters for input and output
(see the VTSU User Guide).

• Distribution structure (VTLG-Struktur) :

The distribution structure contains the description of message distribution with
distribution codes. This is only required if message reception is to be
controlled in this way.

118 U1786-J-Z135-5-7600

COBOL programs COBOL calls, data structures

• Data structure (FHS-Struktur) :

This is only necessary if the data are to be formatted with the integrated FHS
interface. (This requires the software product FHS version 3.0 or higher). The
FHS modules must be available in the user TASKLIB.

The following COPY elements are available for all data structures named:

YDDCUAPL for the A structure
YDDCUCON for the V structure
YDDCUCOM for the B structure
YDDCUWAI for the W structure

The following are also available for DCAM(NEA) transport service applications:

VTSUCBC for the VTSUCB structure
YDDCUDIS for the VTLG structure
FHSMAINP for the FHS operands

U1786-J-Z135-5-7600 119

COBOL calls, data structures COBOL programs

The following table shows which data structures are used in the calls of the individual
subroutines. For some calls an additional area for data acceptance and transfer is
required.

Some calls require still further areas which are not shown here (refer to "DCAM COBOL
Calls").

Function Subroutine Data structures VTSUCB Area FHS
para-

A V B W VTLG 1) meter 1)

Existence YOPEN x
function YCLOSE x
Connec- YOPNCON 2) x x x [x]
tion YCLSCON 2) x x
function YCHANGE 2) x x [x]

YREJLOG x x
YSETLOG 1,2) x x

Data YSEND x x x [x] x [x]
communi- YRECEIVE x x x [x] x [x]
cation YRSET x x x
function YPERMIT 1,2) x [x] x

YFORBID 1,2) x x

Wait YWAIT x x x x
function

1) applies to DCAM(NEA) transport service applications only
2) only callable with primary task

120 U1786-J-Z135-5-7600

COBOL programs COBOL calls, data structures

The subroutines perform the following functions:

YOPEN open a DCAM application
YCLOSE close DCAM application
YOPNCON set up a connection
YCLSCON close a connection
YCHANGE change connection characteristics
YSEND send message
YRECEIVE receive message
YREJLOG reject connection setup request
YRESET reset pending YRECEIVE calls
YWAIT wait for DCAM event

The following are additional functions for DCAM(NEA) transport service
applications:

YSETLOG change status of a DCAM application
YPERMIT allow receipt of data via distribution code
YFORBID prohibit receipt of data via distribution code

A special convention applies to status check when this concerns the existence or
connection function. YINQUIRE is used to call for system interrogation. The following
inquiries can be made:

Which partner wishes to establish a connection next, possibly with connection
message receipt in LGMSG (TOP)?

How many partners wish to establish a connection or have done so already
(CNT)?

What is the status of a certain DCAM application? (APP)

The following inquiries are also made for DCAM(NEA) transport service
applications:

What are the partner characteristics (PTN)?
Basic information on terminal (BTI).
Description of terminal and character sets (MCS).
Description of peripherals (POT).

The A and B structures are used, and an area must be specified. The layout of this
area varies depending on the function of the call. The function is defined in a special
field.

U1786-J-Z135-5-7600 121

COBOL calls, data structures COBOL programs

Function Subroutine Function Data Areas 1) LGMSG
of YINQUIRE structures

A V

Status inquiry YINQUIRE TOP X X X [X]
for existence CNT X X X
and APP X X X
connection PTN 2) X X X
function BTI 2) X X X

MCS 2) X X X
POT 2) X X X

1) Area depends on function
2) Applies to DCAM(NEA) transport service applications only

Note

The subroutines may also be called using the first four letters in a name, e.g. YOPN
instead of YOPNCON.

To simplify programming, definition of the data structures once in a source code file
(PLAM) is recommended. PLAM libraries can be generated and administered by the
LMS utility routine. By means of the COPY statement, the stored data structures can be
transferred to the program and, if necessary, modified.

122 U1786-J-Z135-5-7600

COBOL programs Execute CALLs

5.2.2 Execute CALLs

5.2.2.1 Synchronous execution

In synchronous execution the next instruction after the branch to the subroutine is only
executed once the DCAM call has been processed. For calls in which delays are likely,
a maximum wait period can be defined. Delays may occur in the case of YOPNCON,
for example: the wait for a connection setup request or acceptance of the connection
request by the partner, or YRECEIVE: arrival of the message from the data
communication system. The call is terminated after the specified period. If there is to
be no wait, a "tentative" call is issued which must be repeated if necessary.

5.2.2.2 Asynchronous execution

Connection setup and the reception of messages may lead to delays. In order to
increase data throughput, particularly when a large number of partners need to be
served, the delays arising may be utilized for additional processing. The YWAIT enables
the user to wait for some event. Once this event has occurred, he can resume
processing.

Possible events:

OPENED the YOPNCON request has terminated

LETTER the YRECEIVE request has terminated

GOSIGNAL the memory bottleneck has cleared

LOSCON the connection was cleared by the partner or the system

NOEVENT no DCAM event occurred during the wait period

U1786-J-Z135-5-7600 123

Feedback information COBOL programs

5.2.3 Feedback information

After the return from a subroutine, i.e. after execution of a DCAM call, feedback
information is stored in the data structure used (application structure or instruction
structure).

The feedback information is subdivided into 3 fields:

return code
error code
indicator

The return code provides a summary of the information encoded in the error code and
the indicator. It will be needed, for instance, in order to branch to an error routine.

The indicator contains additional information after the execution of YRECEIVE.

Furthermore, the following entries are made in the instruction structure after
YRECEIVE:

the actual length of the message received even if the input area was smaller

The following additional entries apply in the case of DCAM(NEA) transport
service applications:

the sequence number of the message received

the sequence number of the acknowledged message if a transport
acknowledgment was received.

Additional information is passed in the event of extra calls (YOPEN, YOPNCON,
YWAIT) - provided the acknowledgment does not indicate any errors (see section on
’Using the functions of DCAM’ in the functional description).

124 U1786-J-Z135-5-7600

COBOL programs Reentrant programs

5.2.4 Reentrant COBOL programs

The essential condition for the reentrant quality of a code is that it is invariable, i.e. the
code is not modified in the course of execution (see page 115). Only then can it be
managed and used in the system as shared code.

In employing overlay techniques, the COBOL compiler creates a root segment that is
variable (non-reentrant) and various overlays that are, subject to a few restrictions,
reentrant. The root segment contains the V constants for linking both the overlays as
well as the COBOL runtime system (ITC...) and the CALL modules. This segment is
assigned the name given in the PROGRAM-ID.

Note
If the COBOL85 compiler is used, the COBOL runtime system is also reentrant.

The overlays are called by the root segment via PERFORM. Their names are made up
of the first three characters of the name given in the PROGRAM-ID, one special
character (#) and the overlay number (e.g. ABC#50).

In these overlays, no DCAM COBOL modules may be invoked with CALL as these are
variable (non-reentrant).

When the COBOL85 compiler is used, reentrant code is generated in the overlay
segments.

U1786-J-Z135-5-7600 125

Reentrant programs COBOL programs

ABCDEF e.g. YSEND

Root segment Non-reentrant
Root (non-shareable)

Linkage via segment program
V constants components

ABC#1

PERFORM
Overlay
segment

Reentrant
(shareable)

ABC#2 program
components

PERFORM
Overlay
segment

Segmentation of a COBOL program

In order to check overlay segments for reentrancy (read-only attribute), the TRAITS
statement must be employed when they are entered in a module library by utility
routine LMR. This is necessary because the COBOL compiler does not explicitly test
this property at the present time.

For identification purposes, the ANSICOB compiler creates a linkage editor control card
(OVERLAY...) at the beginning of a module. During the LMR run these cards are
removed with a corresponding notification. This is necessary, and therefore appropriate,
for further processing by the Dynamic Linking Loader (DLL). Only the Dynamic Linking
Loader (DLL) is capable of loading shared code and must in this case be used. It is
called with

/EXEC (modulename, libraryname) or
/LOAD (modulename, libraryname)

Note, however, that shared modules are only loaded into the system’s class 4 memory,
where they are available to all tasks, if the system administrator has entered them into
the appropriate system module tables during initiation of the BS2000 session
(cf. "System Controller’s Guide" SHARE command).

126 U1786-J-Z135-5-7600

COBOL programs Reentrant programs

Programmer:

IDENTIFICATION DIVISION. Module library
"BIBLIO"

PROGRAM-ID.ABCDEF.
.
. ABCDEF
. \ non-re-

PROCEDURE DIVISION / entrant
E

U100 SECTION. C A L
. O M M
. B - R
. 1 f

- - - - - - - - - - - - i
U200 SECTION 50. l

. e

. ABC#50

. \ re-
U210 SECTION 50. / entrant

. TRAITS

.
- - - - - - - - - - - -
U300 SECTION 51.

.

. ABC#51

. \ re-
U310 SECTION 51. / entrant

. TRAITS

.
- - - - - - - - - - - -
U900 SECTION 80.

ABC#80
\ re-
/ entrant

TRAITS

System administrator:

/SHARE (ABC#50,ABC#51,ABC#80),BIBLIO

Shareability table

ABC#50
ABC#51
ABC#80

User:

/LOAD-PROGRAM (ABCDEF,BIBLIO)
or DLL
/START-PROGRAM(ABCDEF,BIBLIO)

\/
Continued

U1786-J-Z135-5-7600 127

Reentrant programs COBOL programs

Continued

\/

Class 6 memory (task-specific) Class 4 memory (common to system)

ABCDEF ABC#50 ABC#51 ABC#80

Generation of shared code

5.2.5 Using other system interfaces

There are no limitations on a DCAM COBOL program within the framework of COBOL
use in BS2000.

Note the possibility of using the SHARED UPDATE mode for the USER, PAM and ISAM
access methods of the data management system. This mode provides the necessary
protection mechanisms for access of a task group to a file.

128 U1786-J-Z135-5-7600

Execute DCAM program

5.3 Execution of a DCAM program: DCAM task

At first a DCAM task is just any BS2000 task. As soon as a program opens a DCAM
application within this task, the task attribute is set to "TP" (transaction processing)
provided the JOIN allows this.

Task type Batch or in- Task with task Batch or in-
teractive task attribute "TP" teractive task

____________/____________ _____/_____ ______/______
/ \ / \ / \

Time

Command /SET-LOGON-PAR /START-PROG /LOGOFF
mode

Program first YOPEN last YCLOSE TERM
mode

Task types

5.3.1 Starting a DCAM task

Before a task can become a DCAM task, it is started as a batch or interactive task with
the /SET-LOGON-PARAMETERS command. This command can be issued

for batch tasks from other tasks by means of ENTER files which contain a
/SET-LOGON-PARAMETERS command at the beginning. Batch tasks are started by
the system if the resources are available and the limitation defined by the system
administrator allows it.

for interactive tasks from any interactive terminal , e.g. an 9750 Data Display
Terminal. In this case, the task is started immediately.

U1786-J-Z135-5-7600 129

Execute DCAM program

Note

The connection between a terminal and an application is set up as early as during
the predialog. In the case of interactive tasks, this is the connection between the
terminal and the "$DIALOG" application. After such a task has become a DCAM
task, the connection to the terminal remains in existence and it is thus not possible
to set up a connection from this terminal to the DCAM program controlling the task.
However, it is possible to check and modify the program from this terminal using
IDA.

BS2000

/SET-LOGON-PAR
Initiation of an

Terminal interactive task
/LOAD-PROGRAM

Loading of a
DCAM program

.

.
YOPEN

IDA Opening of a
commands DCAM appli-

cation Connection
YOPNCON

Connection and . and data Terminal
data communication . communica-
with the inter- .
active task in . tion with
timesharing mode . the DCAM
via the "$DIALOG" . application in
system application transaction mode

Timesharing and inquiry-and-transaction processing in a task

130 U1786-J-Z135-5-7600

Execute DCAM program

5.3.2 Terminating a DCAM task

A DCAM task is returned its original task attribute when the program controlling it
closes the last DCAM application or is terminated. It is then managed as a batch or
interactive task as before and is terminated with the /LOGOFF command. This
command can be issued

as the last command in an ENTER file

as input from an interactive terminal

in the program mode by means of the LOGOFF macro or indirectly by means of the
TERMJ macro if a branch is made to /LOGOFF.

Tasks can also be terminated by means of

the operator’s /CANCEL-JOB command or

the /CANCEL-JOB command in the interactive task for tasks with the same user ID,
but different TSNs

the operator’s /SHUTDOWN command

by abnormal task termination in the case of a system error.

U1786-J-Z135-5-7600 131

Notes on programming

5.3.3 Notes on programming

This section describes typical stumbling blocks in programming. You will find it of
assistance in working with DCAM applications.

Connection setup does not work:

EDIT=SYSTEM is not permitted for communication between applications (also
applies to APS applications)
EDIT=USER is not permitted for MSN terminal
If YOPNCON OPTCD=ACQUIRE, edit parameters are merely proposals. The next
YOPNCON with this YCCB evaluates the DEXP (data exchange protocol) of the last
connection instead of the generated value.

Data-flow problems:

a DCAM application is restricted to synchronous send. Synchronization with
transport acknowledgments is inadequate for connections to printers. Print
acknowledgments must be specified.

Message is lost:

connection is in the wrong CS/CA state. Note that CS/CA is not evaluated when
acknowledgments are received.

Negative acknowledgment (NACK) received, although no acknowledgment was
requested:

YSEND allows only for the reception or non-reception of positive acknowledgments.
Negative transport acknowledgments can be suppressed only by specifying
NOTACK in the YOPEN.
with EDIT=SYSTEM messages can be divided only by VTSU (e.g. RESET
messages). More than one acknowledgment can be issued per message.

Return code X’1808’ after YOPNCON:

the address pointing to the YCCB was destroyed by a previous YOPNCON. you
must send YOPNCON with CCB=CCBADR.

Return code X’20000000’:

DCAM does not guarantee downward compatibility. Phases compiled with DCAM
V8.0 are not executable in the DCM V7.01 environment, even when the YGENCB
macro is used.

132 U1786-J-Z135-5-7600

Notes on programming

Line feed before every YSEND:

in contrast to TIAM (WROUT) a user entry is possible at any time in DCAM. This is
why a new line is started before every SEND.

Last message is lost:

a DISCON can overtake normal messages. The acknowledgment for the last
message must be received before the connection is cleared down.

DCAM clears down a connection:

this may happen if an application fails to fetch a large number of transport
acknowledgments.

Notes on performance:

PRIM=TASK must not under any circumstances start a PASS or VPASS loop. Use
SOLSIG instead
A VPASS after YOPCON has been unnecessary since BS2000 V6.0
When transferring files via MSV2 connections (e.g. teleprinter connections), it is
always advisable to use ELEMENT.
Connections with EDIT=USER require significantly less input of system resources
than connections with EDIT=SYSTEM.

U1786-J-Z135-5-7600 133

6 Appendix

6.1 DCAM calls

Types of DCAM call:

Macro calls (ASSEMBLER = A)
COBOL calls (COBOL = C)

Type Call Function Description

A YACB 1) Generate application control block

A YAPPL Name Store data for DCAM application in
assignment CLT; delete this data

A YCCB 1) Generate a connection control block

A; C YCHANGE Connection Change characteristics of a connection
already established

A; C YCLOSE Existence Close down a DCAM application

A; C YCLSCON Connection Cancel a request or close down a
connection

A YCONN Name Store connection data in CLT;
assignment delete this data

A YDCG 2) 1) Generate a distribution code group block

A YDDACB 1) Generate a (dummy) section for
control block ACB

A YDDCCB 1) Generate a (dummy) section for
control block CCB

U1786-J-Z135-5-7600 135

DCAM calls Appendix

Type Call Function Description

A YDDDCG 2) 1) Generate a (dummy) section for
control block DCG

A YDDDIP 2) 1) Generate a (dummy) section for
control block DIP

A YDDENB 1) Generate a (dummy) section for
control block ENB

A YDDRPB 1) Generate (dummy) section for
control block RPB

A YDIP 2) 1) Generate a distribution parameter block

A YENB 1) Generate an event notification block
for relating asynchronous messages to
contingency routines

A; C YFORBID 2) Data Cancel the assignment of a distribution
communication name to a distibution code group

A YMODCB 1) Change items in existing control blocks

A; C YOPEN Existence Open a DCAM application

A; C YOPNCON Connection Set up a connection

A; C YPERMIT 2) Data Assign a distribution name to a
communication distribution code group

A; C YRECEIVE Data Receive a message
communication

A; C YREJLOG Connection Reject a connection request

A; C YRESET Data Delete receive calls;
communication change connection state CS/CA

136 U1786-J-Z135-5-7600

Appendix DCAM calls

Type Call Function Description

A YRPB 1) Generate a request parameter block

A; C YSEND Data Send message
communication

A YSENDREC Data Send and receive message combined
communication

A; C YSETLOG 2) Existence Change status of an application

A YSHOWCB 1) Transfer items from a control block
into the user area

A YTESTCB 1) Compare an item in a control block
with a given value

C YWAIT Wait for termination of asynchronous
CALLs

A YGENCB 1) Generate one or more control blocks
of any kind

A; C YINQUIRE Existence; Retrieve information on applications
connection and connections

1) Control block functions

2) For DCAM(NEA) transport service applications only

U1786-J-Z135-5-7600 137

Limit values Appendix

6.2 Limit values

Asynchronous processing

The following table shows how many asynchronous instructions may be processed
concurrently.

Maximum number Valid for call of type Function

8 per application YOPNCON ACCEPT ANY Accept request from any partner

8 per application YOPNCON ACCEPT SPEC Accept request from a
specific partner

128 per applic. YOPNCON ACQUIRE Issue request

8 per task of an YRECEIVE ANY Receive a message from any
application partner

8 per connection YRECEIVE SPEC Receive a message from a
specific partner

Use of distribution codes : for NEA transport service only

The following table shows the maximum values for the definition and assignment of
distribution codes.

Type Upper Applicable
limit to

Number of distribution code groups 8 COBOL
per virtual connection 16 ASSEMBLER

Distribution codes per code group 8 ASSEMBLER
COBOL

Tasks per distribution name 8 ASSEMBLER
COBOL

138 U1786-J-Z135-5-7600

Appendix Limit values

A task

can keep a specific number of DCAM applications open concurrently . The precise
quantity is to be found in the relevant release notice for the BS2000 operating system.

The number of "non-predefined applications" is also limited. This value can relate to a
task or to the system as a whole. These limiting values are defined at system start and
can be modified during operation.

An application can maintain only a certain number of connections simultaneously.
There is also a limit to the number of connections a "non-predefined application" can
employ (see above).

Maximum message length (MAXLN) , for NEA transport service only

Local parameter which influences the economy of the buffers provided by the system.
It contains the maximum length of the data being sent (Transport Service Data Unit,
TSDU).

When EDIT = USER:
1 message = 1 TSDU (YSEND)

When EDIT = SYSTEM, EDITOUT = PHYS or FORM:

DCAM transmits the system-edited message in segments, the size of which is
determined by MAXLN and the device capacity. It is up to the user to ensure the
device capacity is not exceeded.

Any records longer than MAXLN are truncated during editing.

Maximum length for a user message per YSEND: 32767 bytes

Note

An edited record is always longer than user data as control characters are
converted and protocol labels added.

U1786-J-Z135-5-7600 139

Limit values Appendix

The following table shows the maximum values of MAXLN:

Requested - 65530 Default value
MAXLN

DCAMVER 8.0 8.0 Default value

with DVR 4096 4096
MAXLN x = 65530(*) - - - - - - - - - - -

with DAST 4096 32767

(*) The results depend on the hardware/software configuration and generation.

Limit values for resources

The following static maximum values apply in DCAM V11.0:

GID/application (permitted) 32
GID/application (not permitted) 32
DID/application 32

The number of applications and the number of P1 events is restricted by the BS2000
name manager to around 500 per task in the case of BS2000 V9.5 and to around 2000
in the case of BS2000 V10 and higher.

In BS2000 the number of P1 contingencies generated for a task but not yet executed is
limited.

140 U1786-J-Z135-5-7600

Appendix Setting up a connection from a terminal

6.3 Setting up a connection from a terminal

This section applies to DCAM(NEA) transport service applications only.

Setting up a virtual connection from a terminal is an undertaking which varies in
accordance with the way the terminal itself was generated, with the options that have
been preset and with the constraints imposed by the relevant DCAM application as the
communication partner. The following diagrams will try to illustrate two fundamentally
different approaches to this:

• the DCAM application required as the prospective partner has already been opened;

• the terminal has been turned on and is operational;

• the physical connection at the level of the transmission line has been or is being
set up in one of the following three ways:

the person attending the terminal has set it up;

the physical connection is a dedicated line and requires no further setup;

the communication computer to which the terminal is connected sets up the line
connection in response to a YOPNCON ACQUIRE call from the DCAM program.

U1786-J-Z135-5-7600 141

Setting up a connection from a terminal Appendix

Generation Terminal Program

\
PREDIAL=NEIN, Request by key input: \
PARTNAM=partnername, ETX,DÜ or F3 \
PARTPRO=pp/rrr, /
CONPRP=NEIN /

/
or

LOGON noti-
PREDIAL=JA, Request via predialog: fication or
PARTPRO=pp/rrr PLEASE ENTER NET COMMAND entry in the

O[PNCON] request queue
partnername \
[,OPCH=name] \

or [,PW=password] \
[,MSG=message] /

C’string’ /
PREDIAL=JA Fn /

[,IND= Km]
NONE
STD

/
CONNECTED WITH partner- / YOPNCON ACCEPT
name \

\
or

/
REJECTED,reason / YREJLOG

\
\

or
/

REJECTED,reason / no
\ response

\

Initiative lies with the DCAM application (LOGON attribute)

142 U1786-J-Z135-5-7600

Appendix Setting up a connection from a terminal

Terminal Communi-
Generation 1) cation Program

computer 2)

PREDIAL=NEIN,
PARTNAM=partnername, After YOPEN:
PARTPRO=pp/rrr, PROCON notifi-
CONPRP=JA, cation
APLNAM=partnername

or

PREDIAL=NEIN,
CONPRP=NEIN

/ /
Start of / Request / YOPNCON ACQUIRE
dialog / accepted \
with \ \
DCAM \
application \

or
/

No data / no action taken
communica- \
tion \
possible

1) See XSTAT macro (manual "Generating a Data Communication System")
2) Computer for communication functions must have been activated with

/BCIN and /BCACT commands (manual "Network Management in BS2000")

Initiative lies with DCAM application (NLOGON attribute)

U1786-J-Z135-5-7600 143

Glossary
CMX application

A communication application running on a SINIX or BS2000 computer and
controlled by a CMX application program.

communication application
A facility for processing the messages exchanged by communication partners. It is
addressed by the data communication system via its access point.

communication partners
Entities that maintain connections and exchange data with each other.

[communication] protocol
A description of the conditions and formats for transfer of information between
equivalent functional layers in the data communication system.

communication computer
A computer designed specially for communication functions.

communication access method
The software that provides applications with an interface to the communication
facility.

connection
A relationship between two communication partners that permits them to exchange
data.

data unit
The quantity of data that can be passed to or received from DCAM with one call.

data communication system
A complex combination of hardware and software products that permits
communication partners to exchange data in accordance with certain rules.

[DCAM] application
A communication application that is controlled by at least one DCAM application
program.

[DCAM] application program
A program that uses the services of the DCAM access method; it controls one or
more DCAM applications.

U1786-J-Z135-5-7600 145

Glossary

[DCAM] data transmission function
A DCAM function that is related to the transmission and reception of messages and
acknowledgments.

[DCAM] event
A DCAM-specific event that can be used for coordination of certain operations in the
data communication system. There is no specific time relationship between its
arrival and the execution of the program (= asynchronous event).

[DCAM] existence function
A DCAM function that is related to the generation and cancellation of DCAM
applications.

[DCAM] name assignment function
A DCAM function that permits the user to generate application programs
independently of static parameter values, such as the DCAM application name, the
partner name, etc.

[DCAM] connection function
A DCAM function that is related to the establishment and clearing down of
connections.

express message
A message, with a restricted length, that is transmitted with a higher priority than
normal messages.

format terminal
An operating mode of a virtual terminal where the message consists of a format (=
entry form, screen mask).

ICMX
General C interface offering the OSI transport functionality

line terminal
An operating mode of a virtual terminal where the message is structured in the form
of lines.

logical terminal
-- virtual terminal

message
A logically related set of data that is to be transmitted to or received from a
communication partner.

146 U1786-J-Z135-5-7600

Glossary

process
A facility for executing a program within a task.

shareable DCAM application
A DCAM application that can be used simultaneously by more than one task.

task
The carrier for processes. In BS2000, tasks are used, amongst other things, for
execution of user jobs (e.g. batch job, interactive task) or for operation of (DCAM,
UTM, TTX) applications (execution of all procedures specified between the BS2000
commands LOGON and LOGOFF).

terminal user
A person who uses a terminal to exchange data with a communication partner.

transport service
A service for the exchange of data between communication partners. The transport
service initiates and monitors the transport of messages through the data
communication system and manages connections.

transport acknowlegment
An event that provides information about the successful or unsuccessful execution
of a data transfer.

virtual terminal (logical terminal)
A terminal model whose functions are mapped on the physical characteristics of
various terminal types.

XHCS
Extended Host Code Support

Software supporting 8-bit terminals.

U1786-J-Z135-5-7600 147

Related publications

Related publications
DCAM (BS2000/OSD)
Macros
User Guide

DCAM (BS2000/OSD)
COBOL Calls
User Guide

CMX (BS2000)
Communication Method in BS2000
User Guide

COBOL85 (BS2000)
COBOL Compiler
User Guide

COBOL85 (BS2000)
COBOL Compiler
Reference Manual

Assembler (BS2000)
Reference Manual

Assembler Instructions (BS2000/OSD)
Reference Manual

ASSEMBH
User Guide

TIAM (BS2000/OSD)
User Guide

FHS (BS2000/OSD)
User Guide

U1786-J-Z135-5-7600 149

Related publications

VTSU (BS2000/OSD)
User Guide

XHCS
Extended Host Code Support for BS2000/OSD
User Guide

BS2000/OSD
Executive Macros
User Guide

BS2000/OSD
Utility Routines
User Guide

BS2000/OSD
Commands
Volume 1-7
User Guide

150 U1786-J-Z135-5-7600

Related publications

BS2000/OSD
System Exits
User Guide

SOCKETS-DE (BS2000)
Communication Method in BS2000
User Guide

Ways to Open Communications
The ISO-Reference Model in the Context of Communications
Brochure

U1786-J-Z135-5-7600 151

Index

Index

A
A-Struktur 118
ACB 97
access protection 24
access to terminal 37
accompanying information 57
acknowledgment, negative 71
addressing 19
ANY 53
ANYSTART 61
application 17

alter state 48
close 49
non-shareable 42
open 29
query 49
shareable 42, 44

application control block 97
application structure 118
APPSTART 61
ASSEMBLER program 97
assign distribution code name 90
asynchronous execution of calls 105
asynchronous notification 111

B
B-Struktur 118
batch task 129

C
CA state 83

change 88
CALL

asynchronous execution 123
synchronous execution 123

U1786-J-Z135-5-7600 153

Index

CALLs 135
calls 24
cancel assignment 91
cancel receive macro 88
CCB 99
change characteristics 75
characteristics connection 55
CLT 92
COBOL calls 24
COBOL program 118
code length 69
COMEND 112
common receiver queue 20, 83
communication link table 31
communication partners 16
connection 19

close 76
close down explicitly 29
close down implicitly 29
definition of the 57
establish 29
predefined 71
setup 50
terminate 29

connection characteristics 55
connection control block 99
connection function 50
connection setup 63
connection structure 118
contingency routine 51, 107
control block 97
control block generation

dynamic 102
static 101

controlling task 32
COPY elements 119
COPY statement 122
CS state 83

change 88

154 U1786-J-Z135-5-7600

Index

D
data 15
data flow control 26, 57
data length, maximum 61
data structure 119
data transmission 77
data unit 34

receive 83
transmit 78

DCG 99
definition of the connection 57
DIP 99
DISCO 46
DISNAME 46, 47
distribution code 46, 47

implicit 24
distribution code assignment 88
distribution code group 88
distribution code group block 99
distribution code name 46
distribution code-oriented queue 22
distribution codes 22

use of 68
distribution parameter block 99
distribution structure 118
dynamic generation of control block 102
dynamic name assignment 31

E
EDIT 55
EDIT options 61, 96
ENACO 107, 112
ENB 97
entries, query 73
error code 124
error handling routine 31
event 105, 111, 123
event information 108
event notification block 97
execute program 129
execution of calls

asynchronous 105
synchronous 103

existence function 41

U1786-J-Z135-5-7600 155

Index

EXPR 112
express message 26, 83, 112

F
FCB 92
FDBK field 109
feedback information 31, 109, 124
FHS-Struktur 119
form terminal 95
format terminal 81

G
GO signal 26
GOSIGNAL 123

H
header length byte 81

I
implicit distribution code 24
indicator 124
instruction structure 118
interactive task 129
invariable 115
ISO attribute 42
ISO transport services 9

L
layer 9, 10
LETTER 123
limit values 138
line terminal 80, 96
logical line 80
LOGON 48, 111
logon password 61
LOSCON 111, 123
LOSCON routine 71

M
macro calls 24, 97, 135
maximum length of data 61
maximum message length 58, 63
maximum waiting time 103
MAXLN 61
message 34

receive 29, 83
transmit 29, 78

156 U1786-J-Z135-5-7600

Index

message code 60
message distribution with distribution codes 61
message editing 61, 80
message header 81
message length, maximum 58, 63
messages 24
MF parameter 115
more-data function 34, 58

N
name assignment, dynamic 31
name assignment function 92
NEA transport services 8
negative acknowledgment 71
NOEVENT 123
non-shareable application 42
notification, asynchronous 111
NSHARE 43

O
open application 42
open system 9
OPENED 123
opening

primary 44, 46
secondary 46

originator-oriented queue 20, 83
OSI 9
OSI Reference Model 9, 10
overlay 125

P
parallel connection 19, 55
parameter values 98
partner name 57
password 24

logon 61
physical programming 37
PLAM library 122
predefined connection 71
primary opening 44, 46
primary task 17, 32
PROC 55
processor name 29, 57
PROCON 111

U1786-J-Z135-5-7600 157

Index

PROCON notification 54
program 15
programs, reentrant 115, 125

Q
queue

common receiver 20, 83
distribution code-oriented 22
originator-oriented 20, 83

R
RDF password 25
reentrant 125
reentrant programs 115, 125
reference model 9
request

accepting a 66
delete 75
reject 75

request parameter block 97
return code 124
RLTH 58
root segment 125
route selection 60
RPB 97

S
SECOND 112
secondary opening 46
secondary task 17, 33
SHARE 46, 47
shareable application 42, 44
shared code 115
SOLSIG 105
source library 122
SPEC 53
START state 48
static control block generation 101
status check 121
synchronous execution of calls 103

158 U1786-J-Z135-5-7600

Index

T
table, task-oriented 92
TACK 112
task 15, 129

controlling 32
start 129
terminate 131

task-oriented table 92
terminal 17

access to 37
form 95
format 81
line 80, 96
virtual 37, 95

terminal status 60
TFT 92
TIAMCTRC 96
TIDU 34
TIMEOUT 71
transport acknowledgment 76, 87, 112
TSDU 34

U
use of distribution codes 68
UTM application 39

V
V-Struktur 118
variable 115
virtual terminal 37, 95
VTCSET 96
VTLG-Struktur 118
VTSU control block 96, 118
VTSUCB-Struktur 118

W
W-Struktur 118
wait structure 118
waiting time, maximum 103
WORKING-STORAGE SECTION 118

U1786-J-Z135-5-7600 159

Index

X
X.25 interface 99

Y
YAPPL 93
YCHANGE 75
YCLOSE 49
YCLSCON 75, 76
YFORBID 91
YGENCB 102
YINQUIRE 49, 73, 121
YOPEN 42
YOPNCON 50
YPERMIT 90
YRECEIVE 83
YREJLOG 75
YRESET 88
YSEND 78
YSENDREC 88
YWAIT 123

160 U1786-J-Z135-5-7600

Contents

Contents
1 Preface 1.......................
1.1 Summary of contents 4..................
1.2 Changes since the last version of the manual 5.........

2 Introduction to the DCAM interface 7............
2.1 The Data Communication Access Method DCAM 8........
2.2 Traffic relations in the data communication system with DCAM 12...
2.3 Basic concepts 15.....................
2.3.1 Program, data, task 15...................
2.3.2 Communication partners 16.................
2.3.3 Addressing 19......................
2.3.4 Connections 19......................
2.4 Characteristic features of DCAM 20..............
2.4.1 Distribution of incoming messages 20.............
2.4.1.1 Originator-oriented queue and common receiver queue 20......
2.4.1.2 Distribution code-oriented queue 22..............
2.4.1.3 Implicit distribution code 24.................
2.4.2 Calls and notifications 24..................
2.4.3 Protection against unauthorized access 24...........
2.4.4 Express messages 26...................
2.4.5 Data flow control 26....................
2.5 Program structure 27....................
2.5.1 Functions of a DCAM program 27...............
2.5.2 Basic structure of a DCAM program 29.............
2.5.3 Control of primary and secondary tasks 32...........
2.5.4 Messages and local data units - more-data function 34.......
2.5.5 Access to terminals 37...................
2.6 Implementation of distributed processing 38...........
2.6.1 A DCAM application as a partner 38..............
2.6.2 UTM application as a partner 39...............

U1786-J-Z135-5-7600

Contents

3 DCAM functions 41....................
3.1 Existence function 41....................
3.1.1 Open a DCAM application 42.................
3.1.1.1 Non-shareable DCAM application 43..............
3.1.1.2 Primary opening of a shareable DCAM application 44.......
3.1.1.3 Primary opening - use of distribution codes 46..........
3.1.1.4 Secondary opening 46...................
3.1.1.5 Secondary opening - use of distribution codes 47.........
3.1.2 Altering the state of a DCAM application 48...........
3.1.3 Querying the status of a DCAM application 49..........
3.1.4 Closing a DCAM application 49................
3.2 Connection function 50...................
3.2.1 Connection setup: YOPNCON 50...............
3.2.1.1 Definition of the connection to be established 57.........
3.2.1.2 Connection request 63...................
3.2.1.3 Acceptance of a request 66.................
3.2.1.4 Connection setup - use of distribution codes 68..........
3.2.1.5 Linking up to a predefined connection 71............
3.2.2 Querying entries on partners and connections 73.........
3.2.3 Rejecting a connection request 75...............
3.2.4 Changing the characteristics of a connection 75..........
3.2.5 Deleting a connection request 75...............
3.2.6 Closing a connection 76...................
3.3 Data communication function 77...............
3.3.1 Sending a message/data unit 78...............
3.3.2 Receiving a message/data unit 83...............
3.3.3 Combined sending and receiving 88..............
3.3.4 Canceling receive macros and changing the connection state CS/CA 88
3.3.5 Control distribution code assignment 88.............
3.4 Name assignment function 92................

4 Support for virtual terminals 95...............

5 DCAM programs 97....................
5.1 ASSEMBLER programs 97.................
5.1.1 Macro calls and control blocks 97...............
5.1.2 Synchronous execution of DCAM calls 103............
5.1.3 Asynchronous execution of DCAM calls 105...........
5.1.4 Feedback information 109..................
5.1.5 Asynchronous DCAM messages 111..............
5.1.6 Reentrant ASSEMBLER programs 115.............

U1786-J-Z135-5-7600

Contents

5.2 COBOL programs 118....................
5.2.1 COBOL calls and data structures 118..............
5.2.2 Execute CALLs 123.....................
5.2.2.1 Synchronous execution 123..................
5.2.2.2 Asynchronous execution 123.................
5.2.3 Feedback information 124..................
5.2.4 Reentrant COBOL programs 125................
5.2.5 Using other system interfaces 128...............
5.3 Execution of a DCAM program: DCAM task 129..........
5.3.1 Starting a DCAM task 129..................
5.3.2 Terminating a DCAM task 131.................
5.3.3 Notes on programming 132..................

6 Appendix 135.......................
6.1 DCAM calls 135......................
6.2 Limit values 138......................
6.3 Setting up a connection from a terminal 141...........

Glossary 145............................

Related publications 149.......................

Index 153.............................

U1786-J-Z135-5-7600

Edition April 1994 - new edition April 2010. Contains no technical changes.

©
 S

ie
m

en
s

N
ix

do
rf

In
fo

rm
at

io
ns

sy
st

em
e

A
G

 1
99

5
P

fa
d:

 F
:\A

ng
el

a\
P

ro
je

kt
e\

B
S2

00
0-

Te
st

_a
lte

_H
an

db
ue

ch
er

\D
C

AM
-H

an
db

ue
ch

er
\u

s\
dc

am
_p

s.
vo

r

User Guide - English

DCAM (BS2000)
Program Interfaces

Valid for
DCAM V11.0A

Comments… Suggestions… Corrections…
The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
manuals@ts.fujitsu.com

Certified documentation
according to DIN EN ISO 9001:2000
To ensure a consistently high quality standard and
user-friendliness, this documentation was created to
meet the regulations of a quality management system which
complies with the requirements of the standard
DIN EN ISO 9001:2000.

cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

This manual is printed
on paper treated with
chlorine-free bleach.

Copyright © Fujitsu Technology Solutions GmbH 2010.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

On April 1, 2009, Fujitsu became the sole owner of Fujitsu Siemens Computers. This new subsidiary of
Fujitsu has been renamed Fujitsu Technology Solutions.
This document is an new edition of an earlier manual for a product version which was released a conside-
rable time ago in which no changes have been made to the subject matter.
Please note that all company references and copyrights in this document have been legally transferred to
Fujitsu Technology Solutions.
Contact and support addresses will now be offered by Fujitsu Technology Solutions and have the format
…@ts.fujitsu.com.
The Internet pages of Fujitsu Technology Solutions are available at http://ts.fujitsu.com/...

i

	Title
	Contents
	Preface
	Summary of contents
	Changes since the last version of the manual

	Introduction to the DCAM interface
	The Data Communication Access Method DCAM
	Traffic relations in the data communication system with DCAM
	Basic concepts
	Program, data, task
	Communication partners
	Addressing
	Connections

	Characteristic features of DCAM
	Distribution of incoming messages
	Originator-oriented queue and common receiver queue
	Distribution code-oriented queue
	Implicit distribution code

	Calls and notifications
	Protection against unauthorized access
	Express messages
	Data flow control

	Program structure
	Functions of a DCAM program
	Basic structure of a DCAM program
	Control of primary and secondary tasks
	Messages and local data units - more-data function
	Access to terminals

	Implementation of distributed processing
	A DCAM application as a partner
	UTM application as a partner

	DCAM functions
	Existence function
	Open a DCAM application
	Non-shareable DCAM application
	Primary opening of a shareable DCAM application
	Primary opening - use of distribution codes
	Secondary opening
	Secondary opening - use of distribution codes

	Altering the state of a DCAM application
	Querying the status of a DCAM application
	Closing a DCAM application

	Connection function
	Connection setup: YOPNCON
	Definition of the connection to be established
	Connection request
	Acceptance of a request
	Connection setup - use of distribution codes
	Linking up to a predefined connection

	Querying entries on partners and connections
	Rejecting a connection request
	Changing the characteristics of a connection
	Deleting a connection request
	Closing a connection

	Data communication function
	Sending a message/data unit
	Receiving a message/data unit
	Combined sending and receiving
	Canceling receive macros and changing the connection state CS/CA
	Control distribution code assignment

	Name assignment function

	Support for virtual terminals
	DCAM programs
	ASSEMBLER programs
	Macro calls and control blocks
	Synchronous execution of DCAM calls
	Asynchronous execution of DCAM calls
	Feedback information
	Asynchronous DCAM messages
	Reentrant ASSEMBLER programs

	COBOL programs
	COBOL calls and data structures
	Execute CALLs
	Synchronous execution
	Asynchronous execution

	Feedback information
	Reentrant COBOL programs
	Using other system interfaces

	Execution of a DCAM program: DCAM task
	Starting a DCAM task
	Terminating a DCAM task
	Notes on programming

	Appendix
	DCAM calls
	Limit values
	Setting up a connection from a terminal

	Glossary
	Related publications
	Index
	A-C
	D-E
	F-M
	N-P
	Q-S
	T-W
	X-Y

