
Preface

 1 Preface
AID, the Advanced Interactive Debugger in BS2000, provides users with a powerful
debugging tool. AID V2.0A can be installed in BS2000 versions as of V9.5. Thanks to
AID, error diagnostics, debugging and short-term error recovery of all programs
generated in BS2000 are considerably more rapid and more straightforward than other
approaches, such as inserting debugging aid statements into a program, for example.
AID is permanently available and is extremely adaptable to the particular programming
language. Any program debugged using AID does not have to be recompiled but can
be used in a production run immediately. The range of functions of AID and its
debugging language (using AID commands) are primarily tailored to interactive
applications. AID can, however, also be used in batch mode. AID provides the user with
a wide range of options for monitoring and controlling execution, effecting output and
modification of memory contents; furthermore it provides help information on program
execution as well as information on the AID program itself.

With AID, the user can debug both on the symbolic level of the relevant programming
language as well as on machine code level. If LSD records are generated, data,
statement labels and control sections can be addressed for debugging purposes by
using names the user has assigned in the course of programming. Statements can be
addressed via the numbers or names created by the compiler. If no LSD records have
been generated for a program or module, the user can address data and statements by
using virtual addresses, CSECT names and keywords.
The BS2000 commands occurring in the AID documentation are described in the
EXPERT form of the SDF (System Dialog Facility) format. SDF is the dialog interface to
BS2000. The SDF command language supersedes the previous (ISP) command
language.

Target group

AID is targeted to all software developers working in BS2000 with the programming
languages COBOL, FORTRAN, C, PL/I or ASSEMBH or those who wish to debug or
correct programs on machine code level.

U6199-J-Z125-2-7600 1

Preface

Structure of the AID documentation

AID documentation is comprised of the AID Core Manual, the language-specific
manuals for symbolic debugging, and the manual for debugging on machine code
level. All the information the user requires for debugging can be found by referring to
the manual for the particular language required and the core manual. The manual for
debugging on machine code level can either be used as a substitute for or as a
supplement to any of the language-specific manuals.

AID Core Manual [1]
This basic reference manual contains an overview of AID and a description of the
contents and operands which are common to all the programming languages. As part
of the overview, the BS2000 environment is described; basic concepts are explained
and the AID repertoire of commands is presented. The other chapters describe
prerequisites for debugging; command input; the operands subcmd, compl-memref and
medium-a-quantity; AID literals and keywords. The manual also includes the AID
messages, BS2000 commands not permitted in command sequences, operands
supported for the last time, and a comparison of AID and IDA.

AID - Debugging on Machine Code Level [2]
AID - Debugging of COBOL Programs [3]
AID - Debugging of FORTRAN Programs [4]
AID - Debugging of ASSEMBH Programs
AID - Debugging of PL/I Programs [5]
AID - Debugging of C Programs [6]

The manuals for the specific languages and the manual for debugging on machine
code level list the commands in alphabetical order. All simple memory references are
contained there.

In the language-specific manuals, the description of the operands is tailored to fit the
programming language in question. A prerequisite for this is that the user knows the
particular language scope and operation of the relevant compiler or Assembler.

The manual for debugging on machine code level can be used for programs for which
no LSD records exist or for which the information from symbolic testing does not
suffice for error diagnosis. Debugging on machine code level means the user can issue
AID commands regardless of the language in which the program was written.

2 U6199-J-Z125-2-7600

Preface

Changes made since AID V1.0C

Data names and statement names can now be used to calculate a position in memory.
As a result, transition from the symbolic debugging level to machine code level and
vice versa is possible. The new operand compl-memref (complex memory reference) is
available for this transition.

Using selectors, the user can access the address (%@), length (%L) or type (%T) of
data names.

The type and length modification can be applied to all data and statement names and
all memory references. Thanks to the type and length selectors the new storage types
and separate application of the type or length modification, the user is provided with
extensive possibilities when it comes to modification.

The new storage types for character (%C), floating-point (%D) and packed (%P) format
provide new ways of redefining memory contents or reformatting output.

The storage types %S and %SX for address interpretation can be used to compute
addresses in conjunction with a subsequent pointer operator (->), as with Assembler
commands from the base register and displacement (%S) or index register, base
register and displacement (%SX).

The AID registers %nG and %nGD provide a program-independent set of registers
which can be freely used as desired.

Both symbolic and machine-oriented qualifications are not checked upon input but only
at runtime.

The %DISPLAY command with %HLLOC(memref) can be used to output symbolic
localization information, i.e. the symbolic names of the environment of a particular
address, for any memory reference.

In a subcommand, a name and/or a condition can be defined. The name can be used
to address the execution counter of the subcommand or delete the subcommand.
Execution of the subcommand can be made dependent on the condition.

The %CONTINUE command starts or continues the program. Unlike the %RESUME
command, it continues any interrupted %TRACE.

The %MOVE command can also be employed on the symbolic level. It modifies
memory contents without checking for the compatibility of storage types sender and
receiver and without converting numeric values.

The %FIND command can be used on the symbolic level within data names. AID stores
the hit address in AID register %0G, and the continuation address in %1G.

U6199-J-Z125-2-7600 3

Preface

The %AID command has been extended:
With the aid of the LOW operand, the user defines whether or not AID is to convert
user entries to uppercase letters.
With the DELIM operand, the user defines delimiters for alphanumeric output of data.
With the OV operand, the user defines whether or not AID is to take the overlay
structure of a program into account. As of Version 2.0A, AID no longer automatically
interprets the overlay structure of a program.
The LANG operand determines whether %HELP outputs information in English or in
German.

4 U6199-J-Z125-2-7600

Prerequisites for symbolic debugging

 2 Prerequisites for symbolic debugging
The user can control generation of the LSD records AID requires for symbolic
debugging by specifying the operands described below; these operands must be
specified for compiling, linking and loading operations. A more detailed description of
these operands is given in the "ASSEMBH User Guide" [9].

 2.1 Assembly

The ASSEMBH-XT Assembler can be controlled in two ways:
via SDF options or
via COMOPT statements.

Whether ASSEMBH-XT is to generate LSD records can thus be specified as described
below, depending on the control option selected.

SDF control
NO

/START-PROG $ASSXT,TEST-SUPPORT =
YES

NO No LSD records are generated. AID can only be used to debug the program on
machine code level.

YES ASSEMBH-XT generates LSD records. The program can be symbolically
debugged using AID.

COMOPT control

/START-PROGRAM $ASSXTC
*...

NOISD
*COMOPT =

ISD

NOISD No LSD records are generated.

ISD ASSEMBH-XT generates LSD records. The program can be symbolically
debugged using AID.

U6199-J-Z125-2-7600 5

Prerequisites for symbolic debugging

Example

/START-PROG $ASSXT
//COMPILE SOURCE = SOURCE.TEST,

TEST-SUPPORT = YES,
MODULE-LIBRARY = PROGRAMLIB

An object module is to be generated when compiling the source program
SOURCE-TEST. The object module is written directly in the PLAM-library
PROGRAMLIB.
If COMOPT control is used, the example reads as follows:

/DELETE-SYSTEM-FILE FILE-NAME = OMF
/START-PROGRAM $ASSXTC
**COMOPT SOURCE=SOURCE.TEST
**COMOPT ISD
**COMOPT MODULE=PROGRAMLIB
**END HALT

 2.2 Linking, loading and starting

During the debugging phase, loading of the program via the LOAD-PROGRAM
command is recommended so that the user can enter the AID commands required for
debugging. START-PROGRAM is used to link, load and start the program. Both SDF
commands are described in the AID Core Manual, chapter 3; they are same for all
programming languages.

The LSD information generated by Assembler ASSEMBH-XT must be forwarded to the
static linkage editor (TSOSLNK) or the dynamic linking loader DLL (up to BS2000 V9.5)
or dynamic binder loader DBL (as of V10.0) and to the static loader (ELDE) to permit
symbolic debugging.

You link, load and start ASSEMBH programs with the SDF commands and TSOSLNK
statements described in chapter 3 of the AID Core Manual which are valid for all
languages.

6 U6199-J-Z125-2-7600

ASSEMBH-specific addressing

 3 ASSEMBH-specific addressing
This chapter describes the memory references used for symbolic debugging of
ASSEMBH programs. For a general description of addressing methods please refer to
the AID Core Manual, chapter 6.

Qualifications

Qualifications must always be specified in the order described below. They are
delimited by periods. Likewise a period must be inserted between the final qualification
and the following operand.

E={VM|Dn}
The base qualification specifies whether the AID work area is to be located in a
loaded program (E=VM) or in a dump file (E=Dn). The base qualification is used in
the same way both for symbolic debugging and for machine-oriented debugging, as
described in the AID Core Manual, chapter 6, and under the %BASE command. A
base qualification can be immediately followed by a data name, statement name,
source reference, keyword or complex memory reference.

PROG=program-name
In ASSEMBH, the user can employ the PROG qualification as the area qualification,
where program-name designates a program unit from an ASSEMBH program.
program-name is the name specified in a START or CSECT statement in the source
program.
Operands specifying an address area (%CONTROL, %TRACE) or a name range
(%SDUMP) can end with the PROG qualification. The address range or name range
then encompasses the entire program unit.

PROG=program-name•program-name
If the name of a program unit is repeated directly after a PROG qualification, the
user is thus designating the address of the first program unit statement which can
be executed.
This specification can be used in %DISASSEMBLE and %INSERT.

U6199-J-Z125-2-7600 7

ASSEMBH-specific addressing

Memory references

Memory references may include all data names and statement labels from the program
which are contained in the LSD records, as well as the statement numbers generated
by the Assembler, and may be subjected to all the operations described in the AID
Core Manual, chapter 6.
In all operands in which compl-memref is possible, the user can arbitrarily switch
between the memory references as described in this manual and those for debugging
on machine code level (see [2]).

dataname
is the name of constants, data fields, predefined general registers, control sections,
dummy sections, external dummy sections, dummy registers and common control
sections defined in the source program.

Data defined in the source program via a dummy section, an external dummy
section or a dummy register (see DSECT, XDSEC and DXD statements in the
ASSEMBH Reference Manual [10]) can only be referenced by means of a pointer
operation when symbolic debugging takes place.

dataname is the name entry of a DC, DS, EQU, CSECT, DSECT, XDSEC, DXD or
COM Assembler statement (see ASSEMBH Reference Manual [10]).

dataname can be specified in all commands for displaying and modifying data, i.e.
%DISPLAY, %MOVE, %SDUMP and %SET, and in the %FIND command (find a
character string).

dataname -

name
_Rn

dsect-name
[dsect-name•]name

_Rn xdsec-d-name
-> [xdsec-d-name•]name

c-name xdsec-r-name
[xdsec-r-name•]name
dxd-name

com-name
[com-name•]name

- -

8 U6199-J-Z125-2-7600

ASSEMBH-specific addressing

name
is the name entry of a DC, DS, EQU or CSECT statement.

Names of DC or DS statements are used to reference the relevant memory
contents. AID specifies the memory contents in the data type and length as
defined in the source program.

Names of EQU statements are used to reference either the allocated value or
the memory contents at the relevant address. Output is effected in acordance
with the length attribute of the EQU name as efined by the length attribute.

Names of CSECT statements are used to reference the start address or
continuation address of a control section.

_Rn
Predefined name for a general register. If this name is specified, AID outputs the
contents of the related register. _Rn corresponds to the AID keyword %n.

n is a number in the range 0 n 15

Dummy section (DSECT statement)

_Rn dsect-name
->

c-name [dsect-name•]name

_Rn
specifies the base address register of the dummy section.
If the dummy section was referenced via a Q constant, _Rn defines the start
address of the dummy register vector (see the ASSEMBH Reference Manual
[10]).

c-name
is the name of an A, Y or V constant whose contents represent the base
address of the dummy section.
If the dummy section was referenced via a Q constant, c-name defines the
start address of the dummy register vector (see the ASSEMBH Reference
Manual [10]).

dsect-name
is the name of the dummy section.

This addresses all named fields of the dummy section in accordance with
their type and sorted by addresses in ascending order.

U6199-J-Z125-2-7600 9

ASSEMBH-specific addressing

[dsect-name.]name
dsect-name is the name of the dummy section.

name
is the name of an individual field within the dummy section.
Aid interprets the field according to the type and length attributes.

Definition of an external dummy section (XDSEC D)

_Rn xdsec-d-name
->

c-name [xdsec-d-name•]name

_Rn
specifies the base address register of the external dummy section.

c-name
is the name of an A, Y or V constant whose contents represent the base
address of the external dummy section (see the ASSEMBH Reference Manual
[10]).

xdsec-d-name
is the name of the external dummy section.

This addresses all named fields of the dummy section in accordance with
their type and sorted by addresses in ascending order.

[xdsec-d-name•]name
xdsec-d-name is the name of the external dummy section.

name
is the name of an individual field within the external dummy section.
AID interprets the field according to the type and length attributes.

Reference to an external dummy section (XDSEC R)

_Rn xdsec-r-name
->

c-name [xdsec-r-name•]name

_Rn
specifies the base address register of the external dummy section.

c-name
is the name of an A, Y or V constant whose contents represent the base
address of the external dummy section (see the ASSEMBH Reference Manual
[10]).

10 U6199-J-Z125-2-7600

ASSEMBH-specific addressing

xdsec-r-name
is the name of the external dummy section.

This addresses only those fields of the dummy section (in any order) that
were referenced in the program.

[xdsec-r-name•]name
xdsec-d-name is the name of the external dummy section.

name
is the name of an individual field within the external dummy section. Only
fields referenced in the program can be accessed. Output is effected
according to the type and length attribute.

Dummy register (DXD)

_Rn
-> dxd-name

c-name

_Rn
specifies the register which is loaded with the start address of the dummy
register vector.

c-name
is the name of an A, Y or V constant whose contents represent the start
address of the dummy register vector (see the ASSEMBH Reference Manual
[10]).

dxd-name
is the name of the dummy register.

com-name
is the name of a common control section (see COM statement in the ASSEMBH
Reference Manual [10]).

This addresses all named fields of the common control section.

You need only specify a base qualification (not a PROG qualification) ahead of
com-name if com-name is not located in the current AID work area.

[com-name•]name
com-name is the name of the common control section.

name
This addresses the name of an individual field within the common control
section.

U6199-J-Z125-2-7600 11

ASSEMBH-specific addressing

L’name’
is a statement name, designating the address of an executable Assembler
instruction or a call of a predefined macro (@ macro; see the ASSEMBH Reference
Manual [10]).

name is the name of an Assembler instruction (in the source program) which can
be up to 64 characters in length, or a call of a predefined macro (@ macro).
name is abbreviated to 32 characters by AID.

L’name’ may be specified in all operands either designating an address in the
executable part of the program (%DISASSEMBLE, %FIND, %INSERT) or serving for
the output and modification of memory locations (%DISPLAY, %MOVE, %SET).

S’stmt-no’
is a source reference via which a named Assembler instruction or the call of a
predefined macro (@ macro) can be referenced.
stmt-no is the statement number; it is assigned by the Assembler and can be found
in column STMNT of the assembly listing.

stmt-no is an integer between 1 and 231-1.

S’stmt-no’ may be specified in all operands either designating an area
(%CONTROLn, %TRACE) or address (%DISASSEMBLE, %FIND, %INSERT) in the
executable part of the program or serving for the output and modification of
memory locations (%DISPLAY, %MOVE, %SET).

12 U6199-J-Z125-2-7600

Metasyntax

 4 Metasyntax
The metasyntax shown below is the notational convention used to represent
commands. The symbols used and their meanings are as follows:

UPPERCASE LETTERS
Mandatory string which the user must employ to select a particular function.

lowercase letters
String identifying a variable, in the place of which the user can insert any of the
permissible operand values.

alternative
...

alternative

{ alternative ... alternative }

Alternatives; one of these alternatives must be picked. The two formats have the
same meaning.

[optional]

Specifications enclosed in square brackets indicate optional entries. In the case of
AID command names, only the entire part in square brackets can be omitted; any
other abbreviations cause a syntactical error.

[...]

Reproducibility of an optional syntactical unit. If a delimiter, e.g. a comma, must be
inserted before any repeated unit, it is shown before the periods.

{...}

Reproducibility of a syntactical unit which must be specified at least once. If a
delimiter, e.g. a comma, must be inserted, it is shown before the periods.

U6199-J-Z125-2-7600 13

Metasyntax

Underscoring
Underscoring designates the default value which AID inserts if the user does not
specify a value for the operand.

•
A bullet (period in bold print) delimits qualifications, stands for a prequalification
(see also the %QUALIFY statement), is the operator for a byte offset or part of the
execution counter or subcommand name. The bullet is entered from the keyboard
using the key for a normal period. It is actually a normal period, but here it is
shown in bold to make it stand out better.

All operands in the continuous text of the manual appear in italics.

14 U6199-J-Z125-2-7600

AID commands

 5 AID commands

U6199-J-Z125-2-7600 15

%AID

%AID

The %AID command can be used to declare global settings or to revoke the settings
valid up until then.

By means of the CHECK operand you define whether an update dialog is to be
initiated prior to execution of the %MOVE or %SET commands.

By means of the REP operand you define whether memory updates of a %MOVE
command are to be stored as REPs.

By means of the SYMCHARS operand you define whether AID is to interpret a "-" in
program, data and statement names as a hyphen or as a minus sign. If "-" should
always be interpreted as a minus sign (in accordance with Assembler conventions),
SYMCHARS=NOSTD must be specified.

By means of the OV operand you direct AID to take the overlay structure of a
program into account.

By means of the LOW operand you direct AID to convert lowercase letters of
character literals and names to uppercase, or to interpret them as lowercase. The
default value is OFF.

By means of the DELIM operand you define the delimiters for AID output of
alphanumeric data. The vertical bar is the default delimiter.

By means of the LANG operand you define whether AID is to output %HELP
information in English or German.

Command Operand

CHECK [= {ALL|NO }]

REP [= {YES|NO }]

%AID SYMCHARS [= {STD|NOSTD}]

OV [= {YES|NO }]

LOW [= {ON|OFF}]

C’X’|’X’C|’X’
DELIM [=]

’0 ’

LANG [={D | E}

Declarations made using %AID remain valid until superseded by a new %AID command
or until /LOGOFF.

16 U6199-J-Z125-2-7600

%AID

%AID can only be issued as an individual command, it must never be part of a
command sequence or a subcommand.

The %AID command does not alter the program state.

CHECK

ALL
Prior to execution of a %MOVE or %SET command, AID conducts the following
update dialog:

OLD CONTENT:
AAAAAAAA
NEW CONTENT:
BBBBBBBB
% IDA0129 CHANGE? (Y = YES; N = NO) ?

N

I342 NOTHING CHANGED

If Y is entered, the old contents of the array are overwritten and no further
message is issued.
In procedures in batch mode, AID is not able to conduct a dialog and always
assumes Y.

NO
%MOVE and %SET commands are executed without an update dialog.

If the CHECK operand is entered without specification of a value, AID assumes the
default value (NO).

REP

YES
In the event of a memory update caused by a %MOVE command, LMS UPDR
records (REPs) are created. If an object structure list is not available, AID does
not create any REPs and issues an error message to this effect.

AID stores the corrections with the requisite LMS UPDR statements in a file with
the link name F6, from which they can be fetched as a complete package. Care
should therefore be taken that no other outputs are written to the file with link
name F6. If no file with link name F6 is registered (cf. %OUTFILE), the REP
record is stored in the file created by AID (AID.OUTFILE.F6).

U6199-J-Z125-2-7600 17

%AID

User-specific REP files must be created with FCBTYPE=SAM. REP files created
by AID are likewise defined with FCBTYPE=SAM, RECFORM=V and
OPEN=EXTEND.
The file remains open until it is closed via %OUTFILE or until /LOGOFF.

NO
No REPs are generated.

If the REP operand is entered without a value specification, AID inserts the default
(NO). The REP operand of the %MOVE command can supersede the declaration made
with %AID, but only for this particular %MOVE command. For subsequent %MOVE
commands without a REP operand, the declaration made with the %AID command is
valid again.

SYMCHARS

STD
A hyphen "-" is interpreted as an alphanumeric character and can, as such, be
used in program, data and statement names. A hyphen is only interpreted as a
minus sign if a blank precedes it.

NOSTD
A hyphen "-" is always interpreted as a minus sign and cannot be used as a part
of names.

If the SYMCHARS operand is entered without a value specification, AID inserts the
default value (STD).
SYMCHARS=NOSTD must be set if the "-" character, in accordance with the Assembler
conventions, is always to be interpreted as a minus sign.

OV

YES
Mandatory specification if the user is debugging a program with an overlay
structure. AID checks each time whether the program unit which has been
addressed originates from a dynamically loaded segment.

NO
AID assumes that the program to be debugged has been linked without an
overlay structure. AID does not check whether the CSECT information or LSD
records belong to the program unit which has been addressed.

If the OV operand is entered without a value specification, AID assumes the default
(NO).

18 U6199-J-Z125-2-7600

%AID

LOW

ON
Lowercase letters in character literals and in program, data and statement names
are not converted to uppercase.

OFF
All lowercase letters from user entries are converted to uppercase.

If no LOW operand has been entered in a debugging session, OFF applies.
If the LOW operand is input without a value specification, AID assumes the default
(ON). In this case LOW=OFF must be entered if conversion to uppercase is to be
reactivated.

DELIM

C’x’|’x’C|’x’
With this operand the user defines a character as the left-hand and right-hand
delimiter for AID output of symbolic data of type ’character’ (%DISPLAY and
%SDUMP commands).

|
-

The standard delimiter is the vertical bar.

If the DELIM operand is entered without value specification, AID inserts the default
value (|).

LANG

D
AID outputs information requested with %HELP in German.

E
AID outputs information requested with %HELP in English.

If the LANG operand is entered without a value specification, AID inserts the default
(D).

U6199-J-Z125-2-7600 19

%BASE

%BASE

The %BASE command is used to specify the base qualification. All subsequently
entered memory references without their own base qualification assume the value
declared via %BASE. The %BASE command also defines the AID work area.

With the base operand the user designates either the virtual memory area of the
program which has been loaded or a dump in a dump file.

Command Operand

%BASE [base]

When debugging Assembler programs, the AID work area corresponds to the area
which the current program unit occupies in virtual memory or in a dump file. If the user
fails to enter a %BASE command during a debugging session or enters %BASE without
any operands, the base qualification E=VM applies by default and the AID work area
corresponds to that program unit in virtual memory which contains the current interrupt
point (AID standard work area).

A %BASE command is valid until the next %BASE command is given, until /LOGOFF
or until the dump file declared as the base qualification is closed (see %DUMPFILE).

Memory references within a subcommand are supplemented with current qualifications
during input, i.e. a %BASE command has no effect on subcommands specified
previously.

%BASE can only be entered as an individual command, it must never be part of a
command sequence or subcommand.

%BASE does not alter the program state.

base

defines the base qualification. All subsequently entered memory references without a
separate base qualification assume the value declared with the %BASE command.

base-OPERAND -

VM
E =

Dn

- -

20 U6199-J-Z125-2-7600

%BASE

E=VM
The virtual memory area of the program which has been loaded is declared as
the base qualification. VM is the default value.

E=Dn
A dump in a dump file with the link name Dn is declared as the base
qualification.
n is a number with a value 0 n 7.

Before declaring a dump file as the base qualification, the user must assign the
corresponding dump file a link name and open it, using the %DUMPFILE
command.

U6199-J-Z125-2-7600 21

%CONTINUE

%CONTINUE

The %CONTINUE command is used to start the program which has been loaded or to
continue it at the interrupt point.
As opposed to %RESUME, an interrupted but still active %TRACE command is not
terminated by %CONTINUE, rather it is continued depending on the declarations which
have been made.

Command Operand

%CONT[INUE]

In the following cases a %TRACE command is regarded as interrupted and is resumed
by any %CONTINUE command:

1. When a subcommand has been executed as the result of a monitoring condition
from a %CONTROLn, %INSERT or %ON command having been satisfied, and the
subcommand contained a %STOP.

2. When an %INSERT command terminates with a program interrupt because the
control operand is K or S.

3. When the K2 key has been pressed.

4. The program has been halted by the BKPT macro.

A subcommand containing only the %CONTINUE command merely increments the
execution counter.

If the %CONTINUE command is given in a command sequence or subcommand, any
subsequent commands are not executed.

%CONTINUE alters the program state.

22 U6199-J-Z125-2-7600

%CONTROLn

%CONTROLn

By means of the %CONTROLn command you may declare up to seven monitoring
functions one after the other, which then go into effect simultaneously. The seven
commands are %CONTROL1 through %CONTROL7.

%CONTROL can only be used for structured Assembler programs with calls of
predefined macros and no more than one control section (CSECT). Assembler
programs written without predefined macros and/or containing more than one control
section cannot be debugged with %CONTROL. For such programs, the %CONTROL
command must be entered on machine code level (see AID, Debugging on Machine
Code Level [2]).

By means of the criterion operand you may select different types of Assembler
instructions. If an instruction of the selected type is waiting to be executed, AID
interrupts the program and processes subcmd.

By means of the control-area operand you may define the program area in which
criterion is to be taken into consideration.

By means of the subcmd operand you declare a command or a command
sequence and possibly a condition (see AID Core Manual, "Subcommands").
subcmd is executed if criterion is satisfied and any specified condition has been
met.

Command Operand

%C[ONTROL]n [criterion][,...] [IN control-area] <subcmd>

Several %CONTROLn commands with different numbers do not affect one another.
Therefore you may activate several commands with the same criterion for different
areas, or with different criteria for the same area. If several %CONTROLn commands
occur in one statement, the associated subcommands are executed successively,
starting with %C1 and working through %C7.

The individual value of an operand for %CONTROLn is valid until overwritten by a new
specification in a later %CONTROLn command with the same number, until the
%CONTROLn command is deleted or until the end of the program.
A %REMOVE command can be used to delete either an individual or all active
%CONTROL declarations.

%CONTROLn can only be used in a loaded program, i.e. the base qualification E=VM
must have been set via %BASE or must be specified explicitly.

%CONTROLn does not alter the program state.

U6199-J-Z125-2-7600 23

%CONTROLn

criterion

is the keyword defining the type of the Assembler instructions prior to whose execution
AID is to process subcmd.
You can specify several keywords at the same time, which are then valid at the same
time. Any two keywords must be separated by a comma.
If no criterion is declared, AID works with the default value %STMT, unless a criterion
declared in an earlier %CONTROLn command is still valid.

criterion subcmd is executed prior to

%CALL the predefined macro @PASS (Assembler procedure call)

%COND the predefined macros for selection structure blocks
@IF, @THEN, @ELSE, @CASE, @BEGI, @CAS2, @OF, @OFRE

%GOTO the predefined macros @BREA and @EXIT

%PROC the predefined macro @ENTR (Assembler procedure start)

%STMT every predefined macro that is executed.

control-area

specifies the program area in which the monitoring function will be valid. If the user
exits from the specified program, the monitoring function becomes inactive until another
Assembler instruction within the program area to be monitored is executed. The default
value is the current program area.

A control-area definition is valid until the next %CONTROLn command with the same
number is issued with a new definition, until the corresponding %REMOVE command is
issued, or until the end of the program is reached. %CONTROLn without a control-area
operand of its own results in a valid area definition being taken over. To be valid, such
a control-area operand must be defined in a %CONTROLn command with the same
number, and the current interrupt point must be within this area. If no valid area
definition exists, the control-area comprises the current program unit by default.

control-area-OPERAND -

PROG=program-name
IN [•][E=VM•]

[PROG=program-name•](S’stmt-no’ : S’stmt-no’)

- -

24 U6199-J-Z125-2-7600

%CONTROLn

•
If the period is in the leading position it denotes a prequalification, which must
have been defined with a preceding %QUALIFY command. Consecutive
qualifications must be separated by a period. In addition, there must be a period
between the final qualification and the following operand part.

E=VM
As control-area can only be in the virtual memory of the loaded program, E=VM
need only be specified if a dump file has been declared as the current base
qualification (see %BASE command).

PROG=program-name
program-name is the name of a program unit.
This program unit must have been loaded at the time the %CONTROL command
or the subcommand containing %CONTROLn is entered.

A PROG qualification is required only if a load module was created from several
source modules and the %CONTROLn command does not refer to the current
program unit, or if a previously valid control-area declaration is to be overwritten.

If control-area ends with a PROG qualification, the area covers the entire program
unit specified.

(S’stmt-no’ : S’stmt-no’)
is a source reference via which every call of a predefined macro (@ macro) can
be referenced.
stmt-no is the statement number from the assembly listing; see STMNT column.

control-area is defined by specifying a start stmt-no and an end stmt-no and thus
comprises a particular segment of the source program.

The start stmt-no must be less than the end stmt-no.

If control-area is to comprise only one line, the start stmt-no and end stmt-no
must be identical.

U6199-J-Z125-2-7600 25

%CONTROLn

subcmd

subcmd is processed whenever an Assembler instruction that satisfies the criterion is
awaiting execution in the control-area. subcmd is processed before execution of the
criterion instruction.

Specification of subcmd is mandatory, since AID inserts no <%STOP> for
%CONTROLn.

For a complete description of subcmd see the AID Core Manual, chapter 5.

subcmd-OPERAND -

AID-command
<[subcmdname:] [(condition):] [{;...}]>

BS2000-command

- -

A subcommand may contain a name, a condition and a command part. Every
subcommand has its own execution counter. The command portion can consist of an
individual command or a command sequence; it may contain AID commands, BS2000
commands and comments.

If the subcommand consists of a name or a condition, but the command part is
missing, AID merely increments the execution counter when a statement of type
criterion has been reached.

In addition to the commands which are not permitted in any subcommand, the subcmd
of a %CONTROLn must not contain the AID commands %CONTROLn, %INSERT,
%JUMP or %ON.

The commands in subcmd are executed consecutively, after which the program is
continued. The commands for runtime control also immediately change the program
state when they are part of a subcommand. They abort subcmd and start the program
(%CONTINUE, %RESUME, %TRACE) or halt it (%STOP). In practice, they are only
useful as the last command in subcmd, since any subsequent commands of the
subcmd will not be executed. Likewise, deletion of the current subcommand via
%REMOVE is only expedient as the last command in subcmd.

26 U6199-J-Z125-2-7600

%CONTROLn

Examples

1. %CONTROL1 %CALL, %PROC IN(S’123’:S’250’) <%DISPLAY COUNTER;%STOP>
%C1 %CALL,%PROC IN(S’123’:S’250’) <%D COUNTER;%STOP>

The two AID commands differ only in their notation.
The first example is written in full and contains a varying number of blanks at the
permissible positions; the second example is abbreviated.

The %CONTROL1 command is valid for the criteria %CALL and %PROC and is to
be effective between lines 123 and 250 (inclusive).

If one of the Assembler instructions identified via the criteria %CALL and %PROC
occurs during program execution, the %DISPLAY command from subcmd is
executed for the variable COUNTER. Then the program run is interrupted by means
of %STOP, and AID or BS2000 commands may be entered.

2. %CONTROL1 %CALL <%DISPLAY ’CALL’ T=MAX; %STOP>

Prior to the execution of every procedure call (@ PASS), AID executes the
%DISPLAY command from subcmd and then interrupts the program by executing
the %STOP command.

3. %CONTROL2 %IO <%SDUMP %NEST P=MAX; %REMOVE C1>

Prior to the execution of an @BREA or @EXIT macro, AID outputs the current call
hierarchy to the system file SYSLST and then executes the %REMOVE command,
which deletes the declarations of %CONTROL1. Program execution continues.

4. %C3 %PROC <%STOP>

The %C3 command declares that AID is to execute a %STOP command before the
first instruction of an Assembler procedure (@ENTR) is executed.

U6199-J-Z125-2-7600 27

%DISASSEMBLE

%DISASSEMBLE

%DISASSEMBLE enables memory contents to be "retranslated" into symbolic Assembler
notation and displayed accordingly.

The number operand enables you to determine how many instructions are to be
disassembled and output.

The start operand enables you to determine the address where AID is to begin
disassembling.

Command Operand

%DISASSEMBLE
[number] [FROM start]

%DA

Disassembly of the memory contents starts with the first byte. For memory contents
which cannot be interpreted as an instruction, an output line is generated which
contains the hexadecimal representation of the memory contents and the message
INVALID OPCODE. The search for a valid operation code then proceeds in steps of 2
bytes each.

%DISASSEMBLE without a start operand permits the user to continue a previously
issued %DISASSEMBLE command until the test object is switched or a new operand
value is defined by means of a BS2000 or AID command (/LOAD-PROGRAM, /EXEC-
PROGRAM, %BASE). AID continues disassembly at the memory address following the
address last processed by the previous %DISASSEMBLE command. If number is not
specified either, AID generates the same number of output lines as declared before.

If the user has not entered a %DISASSEMBLE command during a test session or has
changed the test object and does not specify current values for one or both operands
in the %DISASSEMBLE command, AID works with the default value 10 for number and
V’0’ for start.

The %OUT command can be used to control how processed memory information is to
be represented and to which output medium it is to be transferred. The format of the
output lines is explained after the description of the start operand.

The %DISASSEMBLE command does not alter the program state.

28 U6199-J-Z125-2-7600

%DISASSEMBLE

number

specifies how many Assembler instructions are to be output.
If no value has been specified for number and no value from a previous
%DISASSEMBLE command applies, AID inserts the default value (10).

number
is an integer with the value:
1 number 231-1

start

defines the address at which disassembly of memory contents into Assembler
instructions is to begin. If the start value is not specified, AID assumes the default value
V’0’ for the first %DISASSEMBLE; on every further %DISASSEMBLE, AID continues after
the Assembler instruction last disassembled.

start-OPERAN D -

program-name
L’name’

FROM [•][qua•] S’stmt-no’

compl-memref

- -

•
If the period is in the leading position it denotes a prequalification, which must
have been defined by a previous %QUALIFY command. Consecutive qualifications
must be delimited by a period. In addition, there must be a period between the
final qualification and the following operand part.

qua
Specify one or more qualifications only if the start value is not within the current
AID work area.

E={VM | Dn}
Only required if the current base qualification is not to apply for start (see
%BASE command).

PROG=program-name
Only required if start is not located in the current program unit (see chapter
3).

U6199-J-Z125-2-7600 29

%DISASSEMBLE

program-name
This specification is only possible following an explicit PROG qualification:
PROG=program-name•program-name

By repeating the program-name entry, start is set to the initial address of the
designated program unit.

L’name’
is a statement name, designating the address of an executable Assembler
instruction or a call of a predefined macro.
name is the name entry of an Assembler instruction or a call of a predefined
macro (@ macro).

With this specification you set start to the machine code generated for an
Assembler instruction.

name can also be specified without L’...’ since it is not possible to confuse it with
a data name in this command.

S’stmt-no’
is a source reference via which you can reference every executable Assembler
instruction with a name and every call of a predefined macro.
stmt-no is the statement number from the assembly listing; see the STMNT
column.

With this specification you set start to the machine code generated for an
Assembler instruction.

compl-memref
designates an address which is to be computed. It should be the start address of
a machine instruction, otherwise the disassembly obtained will be meaningless.
compl-memref may contain the following operations (see AID Core Manual,
chapter 6):

byte offset (•)
indirect addressing (->)
type modification (%A)
length modification (%Ln)
address selection (%@(...))

A statement name L’name’ or a source reference S’stmt-no’ can be used within
compl-memref, but only in connection with the pointer operator, e.g. L’name’ ->.4
A type modification makes sense only if the contents of a data element can be
used as an address or if the address is taken from a register, e.g. %3G.2
%AL2 ->

30 U6199-J-Z125-2-7600

%DISASSEMBLE

Output of the %DISASSEMBLE log

By default, the %DISASSEMBLE log is output with additional information to SYSOUT
(T=MAX). With %OUT the user can select the output media and specify whether or not
additional information is to be output by AID.

The following is contained in a %DA output line if the default value T=MAX is set:
CSECT-relative memory address
memory contents retranslated into symbolic Assembler notation, displacements
being represented as hexadecimal numbers (as opposed to Assembler format)
for memory contents which do not begin with a valid operation code: Assembler
statement DC in hexadecimal format and with a length of 2 bytes, followed by the
note INVALID OPCODE
hexadecimal representation of the memory contents (machine code).

Example of line format with T=MAX

/LOAD-PROG FROM-FILE=*MOD(LIB=*OMF),TEST-OPT=AID
% BLS0001 DLL VER 823
% BLS0517 MODULE ’B1’ LOADED

/%DISASSEMBLE 10 FROM PROG=SORT.S’22’
SORT+90 L R15,1B0(R0,R13) 58 F0 D1B0
SORT+94 A R15,B0(R0,R12) 5A F0 C0B0
SORT+98 ST R15,1B0(R0,R13) 50 F0 D1B0
SORT+9C BC B’1111’,76(R0,R11) 47 F0 B076
SORT+A0 DC X’0000’ INVALID OPCODE 00 00
SORT+A2 BCR B’1100’,R8 07 C8
SORT+A4 DC X’0000’ INVALID OPCODE 00 00
SORT+A6 ISK R3,R8 09 38
SORT+A8 L R15,1B4(R0,R13) 58 F0 D1B4
SORT+AC MH R15,EE(R0,R12) 4C F0 C0EE

U6199-J-Z125-2-7600 31

%DISASSEMBLE

The %OUT operand value T=MIN causes AID to create shortened output lines in which
the CSECT-relative address is replaced by the virtual address and the hexadecimal
respresentation of the memory contents is omitted.

Example of line format with T=MIN

/ %OUT %DA T=MIN
/ %DISASSEMBLE 1O FROM PROG=SORT.S’22’

000005F8 L R15,1B0(R0,R13)
000005FC A R15,B0(R0,R12)
00000600 ST R15,1B0(R0,R13)
00000604 BC B’1111’,76(R0,R11)
00000608 DC X’0000’ INVALID OPCODE
0000060A BCR B’1100’,R8
0000060C DC X’0000’ INVALID OPCODE
0000060E ISK R3,R8
00000610 L R15,1B4(R0,R13)
00000614 MH R15,EE(R0,R12)

Examples

1. %DISASSEMBLE 20 FROM AID_DISPLAY

This command causes 20 instructions to be disassembled, starting at the address
of the first executable instruction after the name entry: AID_DISPLAY.

2. %DA 2 FROM E=D1.PROG=BEISPIEL.BEISPIEL

Two instructions are to be disassembled in the dump file with the link name D1
beginning at the start address of program unit BEISPIEL.

3. %DA FROM S’123’

As no value was specified for anzahl, AID assumes either the default value 10 (if
this is the first %DISASSEMBLE for this program) or accepts the value of the
preceding %DISASSEMBLE.
Disassembly begins at the first instruction generated for the instruction with the
statement number 123.

32 U6199-J-Z125-2-7600

%DISPLAY

%DISPLAY

The %DISPLAY command is used to output memory contents, addresses, lengths,
system information and AID literals and to control feed to SYSLST. AID edits the data in
accordance with the definition in the source program, unless you select another type of
output by means of type modification.
Output is via SYSOUT, SYSLST or to a cataloged file.

By means of the data operand you specify data fields, their addresses or lengths,
statements, registers, execution counters of subcommands, and system information.
Here you also define AID literals or you control feed to SYSLST.

By means of the medium-a-quantity operand you specify the output medium AID
uses and whether or not additional information is to be output. This operand
disables a declaration made via the %OUT command, but only for the current
%DISPLAY command.

Command Operand

%D[ISPLAY] data {,...} [medium-a-quantity][,...]

A %DISPLAY command which does not have a qualification for data addresses data of
the current program unit.
If you do specify a qualification, you can access data in a dump file or in any other
program unit which has been loaded, provided this program unit is part of the current
call hierarchy.
If the medium-a-quantity operand is not specified, AID outputs the data in accordance
with the declarations in the %OUT command or, by default, to SYSOUT, together with
additional information (cf. AID Core Manual, chapter 7).

Immediate entry of the command right after loading the program is not recommended,
as data and statements cannot be addressed without an explicit qualification until the
program encounters the first executable statement. The first executable statement is
reached by entering the command sequence:
%INSERT PROG=program-name.program-name
%RESUME

%DISPLAY %SORTEDMAP will produce a list of all program CSECTs, sorted by names
and addresses.
In addition to the operand values described here, you can also use the operand values
described for debugging on machine code level (see [2]).

This command can be used both in the loaded program and in a dump file.

%DISPLAY does not alter the program state.

U6199-J-Z125-2-7600 33

%DISPLAY

data

This operand defines the information AID is to output. You may output the contents,
address and length of constants and data fields, plus the address of Assembler
instructions or calls of predefined macros. The contents of registers and execution
counters and the system information relevant to your program can be addressed via
keywords. Registers can also be addressed via names predefined in the source
program. AID literals can be defined to improve the readability of debugging logs, and
feed to SYSLST can be controlled for the same purpose.

AID edits data in accordance with the definitions in the source program, provided that
you have not defined another type of output using a type modification (see also AID
Core Manual, section 6.8). If the contents do not match the defined storage type,
output is rejected and an error message is issued. Nevertheless the contents of the
data field can be viewed, for instance by employing the type modification %X to edit
the contents in hexadecimal form.
Modification of the output type via the operand AS {BIN/CHAR/DEC/DUMP/HEX} is
supported for the last time in this version (see AID Core Manual, appendix).

If you enter more than one data operand in a %DISPLAY command, you may switch
from one operand to another between the symbolic entries described here and the non-
symbolic entries described in the manual for debugging on machine code level (see
[2]). Symbolic and machine-oriented specifications can also be combined within a
complex memory reference.

For names which are not contained in the LSD records, AID issues an error message;
the other data of the same command will be processed in the normal way.

data-OPERAND -

dataname
L’name’

[•][qua•] S’stmt-no’
keyword
compl-memref

%@ dataname
([•][qua•])

%L compl-memref

%L=(expression)

AID-literal

feed-control

- -

34 U6199-J-Z125-2-7600

%DISPLAY

•
If the period is in the leading position it denotes a prequalification, which must
have been defined with a preceding %QUALIFY command. Consecutive
qualifications must be separated by a period. In addition, there must be a period
between the final qualification and the following operand part.

qua
One or more qualifications need only be specified for memory objects not located
within the current AID work area.

E={VM | Dn}
Specified only if the current base qualification (see %BASE) is not to apply for
a data/statement name, source reference or keyword.

PROG=program-name
Specified only if a data/statement name or source reference not contained in
the current program unit is to be addressed (see chapter 3).

dataname
specifies the name of constants, data fields, predefined general registers, control
sections, dummy sections, external dummy sections, dummy registers and and
common control sections as defined in the source program.

dataname is the name entry of a DC, DS, EQU, CSECT, DSECT, XDSEC, DXD or
COM statement (see chapter 3).

L’name’
is a statement name, designating the address of an executable Assembler
instruction or a call of a predefined macro.
name is the name entry of an Assembler instruction or a call of a predefined
macro (@ macro).

If L’name’ is entered without a pointer operator, the corresponding address is
output in hexadecimal representation. With a pointer operator, i.e. with %DISPLAY
L’name’->, AID outputs 4 bytes of the machine code contained at the relevant
address.

U6199-J-Z125-2-7600 35

%DISPLAY

S’stmt-no’
is a source reference via which every named executable Assembler instruction
and every call of a predefined macro can be referenced.
stmt-no is the statement number from the assembly listing; see the STMNT
column.

If S’stmt-no’ is entered without a pointer operator, the corresponding address is
output in hexadecimal representation. With a pointer operator, i.e. with %DISPLAY
S’stmt-no’->, AID outputs 4 bytes of the machine code contained at the relevant
address.

keyword
Here you may specify all the keywords for program registers, AID registers,
system tables and the one for the execution counter or the symbolic localization
information (see AID Core Manual, chapter 9).
keyword can only be preceded by a base qualification.

%n General register, 0 n 15
%nD|E Floating-point register , n = 0,2,4,6
%nQ Floating-point register , n = 0,4
%nG AID general register, 0 n 15
%nDG AID floating-point registe r n = 0,2,4,6
%MR All 16 general registers in tabular form
%FR All 4 floating-point registers with double precision

edited in tabular form

%PC Program counter
%CC Condition code
%PCB Process control block
%PCBLST List of all process control blocks
%SORTEDMAP List of all CSECTs of the user program

(sorted by name and address)
%IFR Interrupt flag register
%IMR Interrupt mask register
%ISR Interrupt status register
%PM Program mask
%AMODE Addressing mode of the test object
%AUD1 P1 audit table, plus the SAVE table (if any)

%•subcmdname Execution counter
%• Execution counter of the currently active subcommand

%HLLOC(memref) Localization information on the symbolic level for a
memory reference in the executable part of the
program (high-level location)

%LOC(memref) Localization information on machine code level for a
memory reference in the executable part of the
program (low-level location)

36 U6199-J-Z125-2-7600

%DISPLAY

compl-memref
The following operations may occur in a compl-memref (see AID Core Manual,
chapter 6):

byte offset (•)
indirect addressing (->)
type modification (%T(dataname), %X, %C, %P, %D, %F, %A)
length modification (%L(...), %L=(expression), %Ln)
address selection (%@(...))

Following byte offset or indirect addressing, AID outputs the memory contents at
the calculated address in dump format with a length of 4 (%XL4, default).
Using the type modification, data may be edited in any form, provided its
contents match the specified storage type. %X can always be used to output a
data element in hexadecimal format, regardless of its contents and definition in
the source program.
With the length modification you can define the output length yourself, e.g. if you
wish to output only parts of a data element or display a data element using the
length of another data element.

%@(...)
With the address selector you can output the address of a data element or of
compl-memref.
The address selector cannot be used for symbolic constants (including the
statement names L’name’ and the source references S’stmt-no’).

Example
%DISPLAY %@(AFIELD)

The address of AFIELD will be output.

%L(...)
With the length selector you can output the length of a data element.

Example
%DISPLAY %L(AFIELD)

The length of AFIELD will be output.

U6199-J-Z125-2-7600 37

%DISPLAY

%L=(expression)
With the length function you can have a value calculated.
expression is formed from memory references and arithmetic operators.

Example
%DISPLAY %L=(AFIELD)

If AFIELD is of type ’integer’, its contents will be output. Otherwise AID issues
an error message.

AID-literal
All AID literals described in the AID Core Manual, chapter 8, may be specified:

{C’x...x’ | ’x...x’C | ’x...x’} Character literal
{X’f...f’ | ’f...f’X} Hexadecimal literal
{B’b...b’ | ’b...b’B} Binary literal
[{±}]n Integer
#’f...f’ Hexadecimal number
[{±}]n.m Fixed-point number
[{±}]mantissaE[{±}]exponent Floating-point number

feed-control
For output to SYSLST, print editing can be controlled by the following two
keywords, where:
%NP results in a page feed
%NL[(n)] results in a line feed by n blank lines.

1 n 255. The default for n is 1.

medium-a-quantity

Defines the medium or media via which output is to take place, and whether additional
information is to be output by AID. If this operand is omitted and no declaration has
been made using the %OUT command, AID uses the presetting T = MAX.

38 U6199-J-Z125-2-7600

%DISPLAY

medium-a-quantity-OPERAN D -

T
H MAX

=
Fn MIN
P

- -

medium-a-quantity is described in full detail in the AID Core Manual, chapter 7.

T Terminal output
H Hardcopy output
Fn File output
P Output to SYSLST

MAX Output with additional information

MIN Output without additional information

Examples

1.

/ %DISPLAY M2,INPUT,PACK,_R5

SRC_REF: 212 SOURCE: SUM PROC: SUM ************************************
M2 = SUM:
INPUT = 00060000 F9F9
I375 SYMBOL PACK NOT FOUND
_R5 = 0000000B

The default value for medium-a-quantity is T=MAX.
Every output has an AID header identifying the source line at which the program
has stopped at the time of output. A typing error causes error message I375 to be
output, after which AID processes the last name _R5.

The definitions in the Assembler source are as follows:

M2 DC C’SUM:’
INPUT DC XL6’00’
PACK DC PL2’0’

2.

/ %DISPLAY E=D1.INPUT,’LAST VALUE’

** D1: DUMP.NAME.2069.00001 ***
INPUT = 00060000 F2F9
LAST VALUE

U6199-J-Z125-2-7600 39

%DISPLAY

3.

/ %DISPLAY _R10 -> DS

DS
DS1 = ABCDE
DS3 = 1234
DS4 = -.1300000 E+003

For this example, the following Assembler source was used:

CS START
USING *,15
LA 10,DAT1
TERM

DAT1 DC CL5’ABCDE’
DC CL6’XXXXXX’
DC FL4’1234’
DC EL4’-1.3E2’

DS DSECT
DS1 DS CL5

DS CL6
DS3 DS FL4
DS4 DS EL4

END

40 U6199-J-Z125-2-7600

%DUMPFILE

%DUMPFILE

With %DUMPFILE you assign a dump file to a link name and cause AID to open or
close this file.

With link you select the link name for the dump file to be opened or closed.

With file you designate the dump file to be opened.

Command Operand

%DUMPFILE
[link [=file]]

%DF

If you omit the file operand AID will close the file assigned to the specified link name.

With a %DUMPFILE command without operands, you cause AID to close all open
dump files. If the AID work area was, up until this point, contained in a dump file now
closed, the AID standard work area then reapplies (see also %BASE command).

%DUMPFILE may only be specified as an individual command, i.e. it may not be
 part of a command sequence and may not be included in a subcommand.

%DUMPFILE does not alter the program state.

link

Designates one of the AID link names for input files and has the format Dn, where n is
a number with a value 0 n 7.

file

Specifies the fully-qualified file name under which the dump file AID is to open is
cataloged.
If this operand is omitted, the dump file with the link name link is closed.
An open dump file must first be closed with a separate %DUMPFILE command before
another file can be assigned the same link name.

U6199-J-Z125-2-7600 41

%DUMPFILE

Examples

1. %DUMPFILE D3=DUMP.1234.00001

The file DUMP.1234.00001 with link name D3 is opened.

2. %DF D3

The file assigned to link name D3 is closed.

3. %DF

All open dump files are closed.

42 U6199-J-Z125-2-7600

%FIND

%FIND

With %FIND you can search for a literal in a data element or in the executable part of a
program, and output hits to the terminal (via SYSOUT). In addition, the address of the
hit and the continuation address are stored in AID registers %0G and %1G. %FIND can
be used to search both virtual memory and a dump file.

search-criterion is the character literal or hexadecimal literal to be searched.

With find-area you specify which data element or which section of the executable
part of the program AID is to search for search-criterion. AID can search the virtual
address space of the task as well as dump files. If the find-area value is omitted,
AID searches the entire memory area in accordance with the base qualification
currently set (see %BASE).

With alignment you specify whether the search for search-criterion is to be effected
at a doubleword, word, halfword or byte boundary. When a value for alignment is
not given, searching takes place at the byte boundary.

With ALL you specify that the search is not to be terminated after output of the first
hit, rather the entire find-area is to be searched and all hits are to be output. The
search can only be aborted by pressing the K2 key.

Command Operands

%F[IND] [[ALL] search-criterion [IN find-area] [alignment]]

If the ALL operand is omitted from a %FIND command, the user may continue after
the address of the last hit and up to the end of the find-area by specifying a new
%FIND command without any operand values.

A %FIND command with a separate search-criterion and without any further operands
takes declarations for find-area and alignment from a preceding %FIND command. If
there has not been any preceding %FIND command, AID inserts the default values.

Output of hits is always in dump format (hexadecimal and character representation)
with a length of 12 bytes to the terminal (SYSOUT). In addition to the hit itself, its
address and (insofar as possible) the name of the program unit in which the hit was
found, and the relative address of the hit with respect to the beginning of the program
unit, are output.

In the event of a hit, the hit address is stored in AID register %0G and the continuation
address (hit address + search string length) in AID register %1G. With the ALL
specification, the address of the last hit is stored in %OG and the continuation address
of the last hit is stored in %1G. If the search-criterion has not been found, AID sets
%0G to -1; %1G remains unchanged.

U6199-J-Z125-2-7600 43

%FIND

The two register contents permit you to use the %FIND command in procedures as
well as in subcommands and to further process the results.

The %FIND command does not alter the program state.

search-criterion

is a character literal or hexadecimal literal. search-criterion may contain wildcard
symbols. These symbols are always hits. They are represented by ’%’.

search-criterion-OPERAND -

C’x...x’ | ’x...x’C | ’x...x’
X’f...f’ | ’f...f’X

- -

{C’x...x’ | ’x...x’C | ’x...x’}

Character literal with a maximum length of 80 characters. Lowercase letters can
only be located as character literals after specifying %AID LOW[=ON].

x can be any representable character, in particular the wildcard symbol ’%’, which
always represents a hit. The character ’%’ itself cannot be located when it is in
this form, since C’%’ in a character literal must always result in a hit. For this
reason it must be represented as the hexadecimal literal X’6C’.

{X’f...f’ | ’f...f’X}

Hexadecimal literal with a maximum length of 80 hexadecimal digits or 40
characters. A literal with an odd number of digits is padded with X’0’ on the right.

f can assume any value between 0 and F, as well as the wildcard symbol X’%’.
The wildcard symbol represents a hit for every hexadecimal digit between 0 and
F.

find-area

defines the memory area to be searched for search-criterion. find-area can be a data
element or a section of the executable part of the loaded program or of a dump file.
find-area must not exceed 65535 bytes in length.

If no find-area has been specified, AID inserts the default value %CLASS6 (see AID
Core Manual, chapter 9), i.e. the class 6 memory for the currently set base qualification
is searched (see %BASE).

44 U6199-J-Z125-2-7600

%FIND

find-area-OPERAN D -

dataname
L’name’->

IN [•][qua•] S’stmt-no’->

compl-memref

- -

•
If the period is in the leading position it denotes a prequalification, which must
have been defined with a preceding %QUALIFY command. Consecutive
qualifications must be separated by a period. In addition, there must be a period
between the final qualification and the following operand part.

qua
One or more qualifications need be specified only if find-area is not within the
current AID work area.

E={VM | Dn}
Need only be specified if the current base qualification is not to apply for find-
area (see also %BASE command).

PROG=program-name
Need only be specified if find-area is not within the current program unit (see
chapter 3).

dataname
specifies the name of constants, data fields, predefined macros, predefined
general registers, control sections, dummy sections, external dummy sections,
dummy registers and common control sections as defined in the source program.

dataname is the name entry of a DC, DS, EQU, CSECT, DSECT, XDSEC, DXD or
COM statement (see chapter 3).

L’name’
designates the address of an executable Assembler instruction or a call of a
predefined macro.
name is the name entry of an Assembler instruction or a call of a predefined
macro (@ macro).

If no length modification value is specified, 4 bytes are searched, starting with the
address stored in the address constant L’name’.

U6199-J-Z125-2-7600 45

%FIND

S’stmt-no’
designates the memory location via which every named executable Assembler
instruction and every call of a predefined macro can be referenced.
stmt-no is the statement number from the assembly listing; see the STMNT
column.

If no length modification value is specified, 4 bytes are searched, starting with the
address stored in the address constant S’stmt-no’.

compl-memref
designates an area of 4 bytes, starting with the calculated address. If a different
number of bytes is to be searched, compl-memref must terminate with the
appropriate length modification. When modifying the length of data elements, you
must pay attention to area boundaries or switch to machine code level using
%@(dataname)->.
The following operations may occur in compl-memref (see also AID Core Manual,
chapter 6):

byte offset (•)
indirect addressing (->)
type modification (%A)
length modification (%L(...), %L=(expression), %Ln)
address selection (%@(...))

alignment

defines that the search for search-criterion is to be effected at certain aligned
addresses only.

alignment-OPERAN D -
1
2

ALIGN [=]
4
8

- -

search-criterion is searched for at:

1 byte boundary (default)

2 halfword boundary

4 word boundary

8 doubleword boundary

46 U6199-J-Z125-2-7600

%FIND

Examples

1. %FIND X’F0’ IN DATA

The hexadecimal literal X’F0’ is searched for in the variable DATA. Any hit is output
to SYSOUT.

2. %F X’D2’ IN S’12’->%L=(S’13’-S’12’) ALIGN=2

The hexadecimal literal X’D2’ is searched for at a halfword boundary in the
machine code generated for statement 12.

3. %F

The search is continued with the parameters of the last %FIND command behind
the last hit.

U6199-J-Z125-2-7600 47

%HELP

%HELP

By means of %HELP you can request information on the operation of AID. The
following information is output to the selected medium: either all the AID commands or
the selected command and its operands, or the selected error message with its
meaning and possible responses.

By means of the info-target operand you specify the command on which you need
further information or the AID message for which you want an explanation of its
meaning and actions to be taken.

By means of the medium-a-quantity operand you specify to which output media
AID is to output the required information. By means of this operand you temporarily
disable a declaration made via %OUT.

Command Operand

%H[ELP] [info-target] [medium-a-quantity][,...]

%HELP provides information on all the operands of the selected command, i.e. all
language-specific operands for symbolic debugging as well as all operands for
machine-oriented debugging. Refer to the relevant manual to see what is permitted for
the language in which your program is written.

Messages from AIDSYS have the message code format IDA0n and are queried using
/HELP.

%HELP can only be entered as an individual command, i.e. it must not be contained in
a command sequence or subcommand.

The %HELP command does not alter the program state.

info-target

designates a command or a message number about which information is to be output.
If the info-target operand is omitted, the command initiates output of an overview of the
AID commands with a brief description of each command, and of the AID message
number range.

AID responds to a %HELP command containing an invalid info-target operand by
issuing an error message. This is followed by the same overview as for a %HELP
command without info-target. This overview can also be requested via the %?, %H? or
%H %? entries.

48 U6199-J-Z125-2-7600

%HELP

info-target-OPERAN D -

%AID | %AINT | %BASE | %CONT[INUE] | %C[ONTROL]
%DISASSEMBLE | %DA | %D[ISPLAY] | %DUMPFILE | %DF
%F[IND] | %H[ELP] | %IN[SERT] | %JUMP | %M[OVE]
%ON | %OUT | %OUTFILE | %Q[UALIFY]
%REM[OVE] | %R[ESUME] | %SD[UMP]
%S[ET] | %STOP | %SYMLIB | %TITLE | %T[RACE]

In

- -

The AID command names may be abbreviated as shown above.

In
designates the message number for which the meaning and possible responses
are to be output.
n is a 3-digit message number.

medium-a-quantity

defines the media via which information on the info-target is to be output.

If this operand is omitted and no declaration has been made using the %OUT
command, AID works with the default value T=MAX.

medium-a-quantity-OPERAN D -

T
H MAX

=
Fn MIN
P

- -

medium-a-quantity is described in detail in the AID Core Manual, chapter 7.

T Terminal output
H Hardcopy output
Fn File output
P Output to SYSLST

U6199-J-Z125-2-7600 49

%INSERT

%INSERT

By means of %INSERT you can specify a test point and define a subcommand. Once
the program sequence reaches the test point, AID processes the associated
subcommand. In addition, the user can also specify whether AID is to delete the test
point once a specific number of executions has been counted and halt the program
afterwards.

By means of the test-point operand you may define the address of a command in
the program prior to whose execution AID interrupts the program run and to
process subcmd.

By means of the subcmd operand you may define a command or a command
sequence and perhaps a condition. Once test-point has been reached and the
condition has been satisfied, subcmd is executed.

By means of the control operand, you can declare whether test-point is to be
deleted after a specified number of passes and whether the program is then to be
halted.

Command Operand

%IN[SERT] test-point [<subcmd>] [control]

A test-point is deleted in the following cases:

1. When the end of the program is reached.
2. When the number of passes specified via control has been reached and deletion of

test-point has been specified.
3. If a %REMOVE command deleting the test-point has been issued.

If no subcmd operand is specified, AID inserts the subcmd <%STOP>.

The subcmd in an %INSERT command for a test-point which has already been set
does not overwrite the existing subcmd; instead, the new subcmd is prefixed to the
existing one. The chained subcommands are thus processed according to the LIFO
principle (last in, first out).

%REMOVE can be used to delete a subcommand, a test point or all test points
entered.

test-point can only be an address in the program which has been loaded, therefore the
base qualification E=VM must have been set (see %BASE) or must be specified
explicitly.

%INSERT does not alter the program state.

50 U6199-J-Z125-2-7600

%INSERT

test-point

must be the address of an executable machine instruction generated for an Assembler
instruction. test-point is immediately entered by targeted overwriting of the memory
position addressed and must therefore be loaded in virtual memory at the time the
%INSERT command is input. Since, by entering test-point, the program code is
modified, a test point which has been incorrectly set may lead to errors in program
execution (e.g. data/addressing errors).

When the program reaches the test-point, AID interrupts the program and starts the
subcmd.

test-point-OPERAND -

program-name
[•][qua•] L’name’

S’stmt-no’
compl-memref

- -

•
If the period is in the leading position it denotes a prequalification, which must
have been defined with a preceding %QUALIFY command. Consecutive
qualifications must be separated by a period. In addition, there must be a period
between the final qualification and the following operand part.

qua
One or more qualifications are only required if test-point is not located in the
current AID work area.

E=VM
Since test-point can only be entered in the virtual memory of the program
which has been loaded, specify E=VM only if a dump file has been declared
as the current base qualification (see %BASE command).

PROG=program-name
is specified only if test-point is not in the current program unit (see chapter 3).

program-name
This specification is only possible after an explicit PROG qualification:
PROG=program-name•program-name

By repeating program-name you set test-point to the first statement of the
designated program unit.

U6199-J-Z125-2-7600 51

%INSERT

L’name’
is a statement name, designating the address of an executable Assembler
instruction or a call of a predefined macro.
name is the name entry of an Assembler instruction or a call of a predefined
macro (@ macro).

With this specification you set test-point to the machine code generated for an
Assembler instruction.

name may not be located within a dummy section or dummy register (see
DSECT, XDSEC and DXD statements in the ASSEMBH Reference Manual [10]).

name can also be specified without L’...’ since it is not possible to confuse it with
a data name in this command.

S’stmt-no’
is a source reference via which every named executable Assembler instruction
and every call of a predefined macro can be referenced.
stmt-no is the statement number from the assembly listing; see the STMNT
column.

With this specification you set test-point to the machine code generated for an
Assembler instruction.

compl-memref
The result of compl-memref must be the start address of an executable machine
instruction.
compl-memref may contain the following operations (see AID Core Manual,
chapter 6):

byte offset (•)
indirect addressing (->)
type modification (%A)
length modification (%Ln)
address selection (%@(...))

A statement name L’name’ or a source reference S’stmt-no’ can be used within
compl-memref, but only in connection with the pointer operator (e.g. L’name’
->.4). Type modification makes sense only if the contents of a data element can
be used as an address or if you take the address from a register, e.g. %3G.2
%AL2 ->.

52 U6199-J-Z125-2-7600

%INSERT

subcmd

subcmd is processed whenever program execution reaches the address designated by
test-point.
If the subcmd operand is omitted, AID inserts a <%STOP>.

A complete description of subcmd can be found in the AID Core Manual, chapter 5.

subcmd-OPERAND -

AID-command
<[subcmdname:] [(condition):] [{;...}]>

BS2000-command

- -

A subcommand may contain a name, a condition and a command part. Every
subcommand has its own execution counter. The command portion can comprise a
single command or a command sequence and may contain AID and BS2000
commands as well as comments.

If the subcommand consists of a name or a condition but the command part is
missing, AID merely increments the execution counter when the test point is reached.

subcmd does not overwrite an existing subcommand for the same test-point, rather the
new subcommand is prefixed to the existing one. subcmd may contain the commands
%CONTROLn, %INSERT and %ON. Nesting over a maximum of 5 levels is possible.

The commands in a subcmd are executed one after the other; program execution is
then continued. The commands for runtime control immediately alter the program state,
even in a subcommand. They abort the subcmd and start the program (%CONTINUE,
%RESUME, %TRACE) or halt it (%STOP). They are thus only effective as the last
command in a subcmd, since any subsequent commands in the subcmd would fail to
be executed. Likewise, deletion of the current subcommand via %REMOVE makes
sense as the last command in subcmd only.

control

specifies whether test-point is to be deleted after the n-th pass and whether the
program is to be halted with the purpose of inserting new commands.
If no control operand has been specified, AID assumes the defaults 231-1 (for n) and K.

control-OPERAN D -

K
ONLY n [S]

C

- -

U6199-J-Z125-2-7600 53

%INSERT

n
is a number with the value 1 n 65535, specifying after how many test-point
passes the further declarations for this control operand are to go into effect.

K
test-point is not deleted (KEEP).
Program execution is interrupted, and AID expects input of commands.

S
test-point is deleted (STOP).
Program execution is interrupted, and AID expects input of commands.

C
test-point is deleted (CONTINUE).
No interruption of the program.

Examples

1. %IN S’118’

test-point is specified with an stmt-no. This designates the Assembler instruction
118 in the assembly listing.

2. %IN PROG=PRO2.PRO2 <%DISPLAY NO> ONLY 10 S

test-point is set to the start of module PRO2, i.e. deleted. Whenever the program
sequence arrives at the first instruction in module PRO2, the %DISPLAY command
from subcmd is executed.

When test-point is reached for the 10th time, AID sets the program to STOP and
deletes the test point, at which time you may enter new commands.

3. %IN ST2 <%DISPLAY TEXTDAT, ’ST2’>
%IN ST3 <%DISPLAY ’INSERT1’, TEXTDAT; %IN OUUTPUT <%D ’INSERT2’, -
I,J,K, NUMBER; %IN S’172’ <%D ’INSERT3’ ,I,J; %REMOVE OUTPUT>>>

With the first %INSERT command, the test-point set is the Assembler instruction
with the name ST2. If, after the end of command input, the program execution
reaches ST2, the subcommand is executed. It consists of a %DISPLAY command
(for field TEXTDAT) and the AID literal ST2. Afterwards the program is continued.

By means of the second %INSERT command, test-point ST3 is declared. This
%INSERT command contains two other nested %INSERT commands. Their test-
point values are still inactive for AID. They do not become active until the test-point
of the %INSERT command in whose subcmd they are defined is reached.

54 U6199-J-Z125-2-7600

%INSERT

When program execution reaches Assembler instruction ST3, the corresponding
subcmd is executed, i.e. the %DISPLAY command for the AID literal ’INSERT1’ and
the field TEXTDAT is executed and the test-point OUTPUT is set.
The subcmd for test-point OUTPUT is still inactive. Thus, in the program to be
tested, the following three test-points have been set at this stage in the program
run: ST2, ST3 and OUTPUT.

As the subcmd for test-point ST3 does not contain any %STOP command, the
program is continued after execution of subcmd. If program execution is not
interrupted for some other reason, e.g. an error or the occurrence of an event
declared by %ON, and finally reaches the symbolic address OUTPUT, then the %D
command ’INSERT2’, I, J, K, NUMBER is executed. Furthermore, subcmd contains a
further %INSERT command, whose test-point this time is specified via stmt-no
S’172’.

If the position marked S’172’ is reached during further program execution, AID
executes the %DISPLAY command for the literal ’INSERT3’ and the contents of
fields I and J.

By way of the second command in this subcmd, the %REMOVE OUTPUT
command, test-point OUTPUT is deleted. This is necessary, for instance, if a test-
point is located in a loop and this would lead to an undesirable chaining of nested
subcommands. Without the %REMOVE command, the following subcmd would be
created for test-point S’172’ during the second pass of OUTPUT:

<%D ’INSERT3’, I,J; %D ’INSERT3’,I,J>

4. %IN ST4 <%D TEXTDAT>
.
.
.

%IN ST4

These two commands show how chaining in conjunction with the default value
inserted by AID affects subcmd.

For the missing subcmd in the second %INSERT, AID inserts the following
subcmd:
<%STOP>
Since the second %INSERT denotes the same test-point, chaining is performed
and the subcmd
<%STOP; %DISPLAY TEXTDAT>
is produced. A subcmd is aborted by any %STOP, %RESUME or %TRACE.
The two consecutive %INSERT commands therefore yield the same results as if
you had deleted the first %INSERT by means of
%REMOVE ST4
and then written %INSERT ST4 or just entered %INSERT ST4.

U6199-J-Z125-2-7600 55

%MOVE

%MOVE

With the %MOVE command you transfer memory contents or AID literals to memory
positions within the program which has been loaded. Transfer is effected without
checking and without matching of sender and receiver storage types.

With the sender operand you designate a data field, a statement name, a source
reference, a length, an address, an execution counter, a register or an AID literal.
sender can be located in virtual memory of the loaded program or in a dump file.

With the receiver operand you designate a data field, an execution counter or or a
register which is to be overwritten. receiver can only be located in virtual memory of
the loaded program.

With the REP operand you specify whether AID is to generate a REP record in
conjunction with a modification which has taken place. This operand has a higher
priority than a default specified in the %AID command but affects only the current
%MOVE.

Command Operand

%M[OVE] sender INTO receiver [REP]

In contrast to the %SET command, AID does not check for compatibility between the
storage types sender and receiver when the %MOVE command is involved, and does
not match these two storage types.

AID passes the information left-justified, with the length of sender. If the length of sender
is greater than that of receiver, AID rejects the attempt to transfer and issues an error
message.

In addition to the operand values described here, the values described in the manual
for debugging on machine code level can also be employed.
Using %AID CHECK=ALL you can also activate an update dialog, which first provides you
with a display of the old and new contents of receiver and offers you the option of
aborting the %MOVE command.

The %MOVE command does not alter the program state.

56 U6199-J-Z125-2-7600

%MOVE

sender INTO receiver

For sender or receiver you can specify a data field or a complex memory reference, or
an execution counter or a register. Statement names, source references, addresses and
lengths of data fields as well as AID literals can only be employed as sender.

sender may be either in the virtual memory area of the program which has been loaded
or in a dump file; receiver, on the other hand, can only be within the virtual memory of
the loaded program.

No more than 3900 bytes can be transferred with a %MOVE command. If the area to
be transferred is larger, you must issue multiple %MOVE commands.

sender-OPERAN D - - - - - - - - - - - - - - receiver-OPERAN D - - - - - - - - -

dataname
L’name’

[•][qua•] S’stmt-no’
keyword
compl-memref dataname

L’n’
%@ dataname INTO [•][qua•] S’n’

([•][qua•]) keyword
%L compl-memref compl-memref

%L=(expression)

AID-literal

- -

•
If the period is in the leading position it denotes a prequalification, which must
have been defined with a preceding %QUALIFY command. Consecutive
qualifications must be separated by a period. In addition, there must be a period
between the final qualification and the following operand part.

qua
One or more qualifications are necessary only for memory objects not within the
current AID work area.

E={VM | Dn} for sender
E=VM for receiver

You specify a base qualification only if the current base qualification is not to
apply for a data/statement name, source reference or keyword (see %BASE).
sender may be either in virtual memory or in a dump file; receiver, on the
other hand, can only be in virtual memory.

U6199-J-Z125-2-7600 57

%MOVE

PROG=program-name
is to be specified only if you address a data/statement name or source
reference that is not in the current program unit (see chapter 3).

dataname
specifies the name of constants, data fields, predefined general registers, control
sections, dummy sections, external dummy sections, dummy registers and and
common control sections as defined in the source program.

dataname is the name entry of a DC, DS, EQU, CSECT, DSECT, XDSEC, DXD or
COM statement (see chapter 3).

L’name’
is a statement name, designating the address of an executable Assembler
instruction or a call of a predefined macro.
name is the name entry of an Assembler instruction or a call of a predefined
macro (@ macro).

S’stmt-no’
is a source reference via which every named executable Assembler instruction
and every call of a predefined macro can be referenced.
stmt-no is the statement number from the assembly listing; see the STMNT
column.

Statement names and source references are address constants and can therefore
only be specified for sender. The address designated using L’name’ or S’stmt-no’
is then transferred.

Example
%MOVE S’5’ INTO %0G

The address of the statement number 5 is written to AID register %0G.

With L’name’-> or S’stmt-no’-> you designate 4 bytes of the machine code at
the corresponding address (see AID Core Manual, section 6.4).
%DISASSEMBLE can be used to output the machine instructions in order to
perform any length modification.
In the case of receiver, you may use statement names and source references only
in connection with the pointer operator (->).

58 U6199-J-Z125-2-7600

%MOVE

Example
%MOVE S’12’->%L=(S’13’-S’12’) INTO S’24’->

By means of this %MOVE command you modify the code of your program.
The machine code for stmt-no 24 is overwritten by that of stmt-no 12. The
specification %L=(S’13’-S’12’) yields the length of the machine code generated
for stmt-no 12.

keyword
specifies an execution counter, the program counter, or a register. keyword may
only be preceded by a base qualification.

%•subcmdname Execution counter
%• Execution counter of the current subcommand
%PC Program counter
%n General register, 0 n 15
%nD|E Floating-point register , n = 0,2,4,6
%nQ Floating-point register , n = 0,4
%nG AID general register, 0 n 15
%nDG AID floating-point register , n = 0,2,4,6

compl-memref
may contain the following operations (see AID Core Manual, chapter 6):

byte offset (•)
indirect addressing (->)
length modification (%L(...), %L=(expression), %Ln)
address selection (%@(...))

A subsequent type modification for compl-memref is pointless, since transfer is
always in binary form, regardless of the storage type of sender and receiver.
However, a type modification may be necessary before a pointer operation (->).

Example
%0G.2%AL2->

The last two bytes of AID register %0G are to be used as the address.

After byte offset (•) or pointer operation (->), the implicit storage type and implicit
length of the original address are lost. At the calculated address, storage type %X
with length 4 applies, if no value for type and length has been explicitly specified
by the user.

U6199-J-Z125-2-7600 59

%MOVE

For each operand in a complex memory reference the assigned memory area
must not be exceeded as the result of byte offset or length modification,
otherwise AID does not execute the command and issues an error message. By
combining the address selection (%@) with the pointer operator (->) you can exit
from the symbolic level. You may then use the address of a data element without
having to take note of its area boundaries.

Example
The data fields CFIELD and CFIELD1 each occupy 5 bytes. The last 2 bytes of
CFIELD as well as the 3 following bytes are to be transferred to CFIELD1.
AID would reject the following command as a violation of the CFIELD area:
%MOVE CFIELD.3%L5 INTO CFIELD1

The correct command reads:
%MOVE %@(CFIELD)->.3%L5 INTO CFIELD1

%@(...)
With the address selector you can use the address of a data field or complex
memory reference as sender (see AID Core Manual, section 6.11). The address
selector produces an address constant as a result.

%L(...)
With the length selector you can use the length of a data field or complex
memory reference as sender (see AID Core Manual, section 6.11). The length
selector produces an integer as a result.

Example
%MOVE %L(FIELD1) INTO %0G

The length of FIELD1 will be transferred.

%L=(expression)
With the length function you can calculate the value of expression and have it
stored in receiver (see AID Core Manual, sections 6.9 and 6.10). In expression you
may combine the contents of memory references, constants of type ’integer’ and
integers with the arithmetic operators (+,-,*,/). The length function produces an
integer as a result.

Example
%MOVE %L=(FIELD1) INTO %0G

The contents of FIELD1 are transferred.

60 U6199-J-Z125-2-7600

%MOVE

AID literal
The following AID literals (see AID Core Manual, chapter 8) can be transferred
using %MOVE:

{C’x...x’ | ’x...x’C | ’x...x’} Character literal
{X’f...f’ | ’f...f’X} Hexadecimal literal
{B’b...b’ | ’b...b’B} Binary literal
[{±}]n Integer
#’f...f’ Hexadecimal number

REP

Specifies whether AID is to generate a REP record after a modification has been
performed. With REP you temporarily deactivate a declaration made with the %AID
command. If REP is not specified and there is no valid declaration in the %AID
command, no REP record is created.

REP-OPERAND -

REP = {Y[ES] NO}

- -

REP=Y[ES]
LMS UPDR records (REPs) are created for the update caused by the current
%MOVE. If the object structure list is not available, no REP records are generated
and AID will output an error message.
Also, if receiver is not located completely within one CSECT, AID will output an
error message and not write a REP record. To obtain REP records despite this,
the user may distribute transfer operations over several %MOVE commands in
which the CSECT limits are observed (see [2]).

AID stores the REPs with the requisite LMS UPDR statements in a file with the link
name F6, from which they can be fetched as a complete package. Therefore no
other output should be written to the file with link name F6.

If no file with link name F6 is registered (see %OUTFILE), the REP is stored in the
file AID.OUTFILE.F6 created by AID.

REP=NO
No REPs are created for the current %MOVE command.

U6199-J-Z125-2-7600 61

%MOVE

Examples

The following constants and fields are defined in a program:

IFIELD DC F’123,456’
DS 0F

JFIELD DS 10F
CVAR DC X’F0F0F0F0’

1. %MOVE IFIELD INTO JFIELD

AID transfers the contents of IFIELD to the symbolic address JFIELD in
hexadecimal format and left-justified.

2. %MOVE 20 INTO JFIELD(2)

AID writes a word containing an integer with the value 20 to the field JFIELD.

3. %MOVE X’58F0C160’ INTO CVAR REP=YES

The contents of the CVAR constant are overwritten with the hexadecimal literal
X’58F0C160’. A REP record is created for the correction and is stored in the file
AID.OUTFILE.F6 or the file assigned to link name F6.

62 U6199-J-Z125-2-7600

%ON

%ON

With the %ON command you define events and subcommands. When a selected event
occurs, AID processes the associated subcmd.

With event you define normal or abnormal program termination, a supervisor call
(SVC), a program error or any event for which AID is to interrupt the program in
order to process the subcmd.

With subcmd you define a command or a command sequence and perhaps a
condition. When event occurs and this condition is satisfied, subcmd is executed.

Command Operand

%ON event [<subcmd>]

If an event is not deleted, it remains valid until the program ends.

If the subcmd operand is omitted, AID inserts the subcmd <%STOP>.

The subcmd of an %ON command for an event which has already been defined does
not overwrite the existing subcmd, rather the new subcmd is prefixed to the existing
subcommand. This means that chained subcommands are processed in accordance
with the LIFO principle.

The base qualification E=VM must apply for %ON (see %BASE).

The %ON command does not alter the program state.

event

A keyword is used to specify an event (program error, abnormal termination of the
program, supervisor call, etc.) upon which AID is to process the subcmd specified.

If several %ON commands with different event declarations are simultaneously active
and satisfied, AID processes the associated subcommands in the order in which the
keywords are listed in the table below. If various %TERM events are applicable, the
associated subcommands are processed in the opposite order in which the %TERM
events have been declared (LIFO rule as for chaining of subcommands).
For selection of the SVC numbers see the "Executive Macros" manual [7].

U6199-J-Z125-2-7600 63

%ON

event subcmd is processed:

%ERRFLG (zzz) after the occurrence of an error with error weight
zzz and

before abortion of the program

%INSTCHK after the occurrence of an addressing error, an
impermissible supervisor call (SVC), an
operation code which cannot be decoded,
a paging error or a privileged operation and

before abortion of the program

%ARTHCHK after the occurrence of a data error, divide
error, exponent overflow or a zero mantissa
and

before abortion of the program

%ABNORM after the occurrence of one of the errors
covered by the previously described events

%ERRFLG after the occurrence of an error with any error
weight

%SVC(zzz) before execution of the supervisor call (SVC) with
the specified number

%LPOV(xxxxxxxx) after loading of the segment with the specified
name xxxxxxxx (up to 8 alphanumeric chars.)

%LPOV after loading of any arbitrary segment

%TERM(N[ORMAL]) before normal termination of a program

%TERM(A[BNORMAL]) before abnormal termination of a program, but
after output of a memory dump

%TERM before termination of a program by any of the %TERM
events described above

%ANY before termination of a program with %TERM

%SVC before execution of any supervisor call

zzz may be specified in one of two formats:
n unsigned decimal number of up to three digits
#’ff’ two-digit hexadecimal number
The following applies for the value zzz: 1 zzz 255

No check is made whether the specified number of the error weight or the SVC
number is meaningful or permissible.

64 U6199-J-Z125-2-7600

%ON

subcmd

is processed whenever the specified event occurs in the course of program execution.
If the subcmd operand is omitted, AID inserts a <%STOP>.

For a complete description of subcmd refer to the AID Core Manual, chapter 5.

subcmd-OPERAND -

AID-command
<[subcmdname:] [(condition):] [{;...}]>

BS2000-command

- -

A subcommand may comprise a name, a condition and a command part. Every
subcommand has its own execution counter. The command portion can consist of
either an individual command or a command sequence; it may contain AID and BS2000
commands as well as comments.
If the subcommand contains a name or condition but no command part, AID merely
increments the execution counter when the declared event occurs.

subcmd does not overwrite an existing subcommand for the same event. Instead, the
new subcommand is prefixed to the existing one. The %CONTROLn, %INSERT, %JUMP
and %ON commands are permitted in subcmd. The user can form up to 5 nesting
levels. An example can be found under the description of the %INSERT command.

The commands in a subcmd are executed one after the other; then the program is
continued. The commands for runtime control immediately alter the program state, even
in a subcommand. They abort subcmd and continue the program (%CONTINUE,
%RESUME, %TRACE) or halt it (%STOP). They should only be placed as the last
command in a subcmd, since any subsequent commands of the subcmd will not be
executed. Likewise, deletion of the current subcommand via %REMOVE makes sense
only as the last command in subcmd.

U6199-J-Z125-2-7600 65

%ON

Examples

1. %ON %LPOV (MON12) <%D ’%LPOV (MON12)’; %STOP>

After MON12 has been loaded, AID outputs the literal ’%LPOV (MON12)’ and
interrupts the program.

2. %ON %ERRFLG (108)

%ON %ERRFLG (#’6C’)

Both specifications designate the same program error (mantissa equals zero).

3. %ON %ERRFLG (107) <%D ’ERROR’>

This error weight does not exist, therefore the subcmd defined for this event will
never be started.

4. %ON %ARTHCHK < %SD AMOUNT,MATRIX; %STOP > If a data error, division error,
exponent overflow or "mantissa equals zero" occurs, the data fields AMOUNT and
MATRIX are output via %SDUMP. The %STOP command interrupts the program
and you can proceed to a detailed check of the error situation by means of further
commands.

5. %ON %LPOV (MON12) <%D INDEX, GRAND-TOTAL> ONLY 37 S After every loading of
segment MON12, AID outputs the data fields INDEX and GRAND-TOTAL as a result
of %D. After the 37th occurrence of the event %LPOV (MON12) and subsequent
output, the event is deleted and the program interrupted.

66 U6199-J-Z125-2-7600

%OUT

%OUT

With %OUT you define the media via which data is to be output and whether output is
to contain additional information, in conjunction with the output commands
%DISASSEMBLE, %DISPLAY, %HELP, %SDUMP and %TRACE.

With target-cmd you specify the output command for which you want to define
medium-a-quantity.

With medium-a-quantity you specify which output media are to be used and
whether or not additional information is to be output.

Command Operand

%OUT [target-cmd [medium-a-quantity][,...]]

In the case of %DISPLAY, %HELP and %SDUMP commands, you may specify a
medium-a-quantity operand which for these commands temporarily deactivates the
declarations of the %OUT command. %DISASSEMBLE and %TRACE include no
medium-a-quantity operand of their own; their output can only be controlled with the
aid of the %OUT command.

Before selecting a file as the output medium via %OUT, you must issue the %OUTFILE
command to assign the file to a link name and open it; otherwise AID creates a default
output file with the name AID.OUTFILE.Fn.

The declarations made with the %OUT command are valid until overwritten by a new
%OUT command, or until /LOGOFF.

An %OUT command without operands assumes the default value T=MAX for all target-
commands.

%OUT may only be specified as an individual command, i.e. it may not be part of a
command sequence or subcommand.

%OUT does not alter the program state.

target-cmd

designates the command for which the declarations are to apply. Any of the commands
listed below may be specified.

%D[IS]A[SSEMBLE]
%D[ISPLAY]
%H[ELP]
%SD[UMP]
%T[RACE]

U6199-J-Z125-2-7600 67

%OUT

medium-a-quantity

In conjunction with target-cmd this specifies the medium or media via which output is
to take place, as well as whether or not AID is to output additional information
pertaining to the AID work area, the current interrupt point and the data to be output.

If the medium-a-quantity operand has been omitted, the default value T=MAX applies
for target-cmd.

medium-a-quantity-OPERAN D -

T
H MAX

=
Fn MIN
P

- -

medium-a-quantity is described in detail in the AID Core Manual, chapter 7.

T Terminal output
H Hardcopy output
Fn File output
P Output to SYSLST

MAX Output with additional information

MIN Output without additional information

Examples

1. %OUT %SDUMP T=MIN,F1=MAX

Data output of the %SDUMP command should be output on the terminal in
abbreviated form, and in parallel to this also to the file with link name F1, along
with additional information.

2. %OUT %TRACE F1=MAX

The TRACE log with additional information is output only to the file with link name
F1.

3. %OUT %TRACE

For the %TRACE command, this specifies that previous declarations for output of
data are erased, and that the default value T=MAX applies.

68 U6199-J-Z125-2-7600

%OUTFILE

%OUTFILE

%OUTFILE assigns output files to AID link names F0 through F7 or closes output files.
You can write output of the commands %DISASSEMBLE, %DISPLAY, %HELP,
%SDUMP and %TRACE to these files by specifying the corresponding link name in the
medium-a-quantity operand of %OUT, %DISPLAY, %HELP or %SDUMP. If a file does
not yet exist, AID will make an entry for it in the catalog and then open it.

With link you select a link name for the file to be cataloged and opened or closed.

With file you assign a file name to the link name.

Command Operand

%OUTFILE [link [= file]]

If you do not specify the file operand, this causes AID to close the file designated
using link. In this way an intermediate status of the file can be printed during
debugging.

An %OUTFILE without operands closes all open AID output files. If you have not
explicitly closed an AID output file using the %OUTFILE command, the file will remain
open until the program terminates.

Without %OUTFILE, you have two options of creating and assigning AID output files:

1. Enter a /SET-FILE-LINK command for a link name Fn which has not yet been
reserved. Then AID opens this file when the first output command for this link
name is issued.

2. Leave the creation, assignment and opening of files to AID. AID then uses default
file names with the format AID.OUTFILE.Fn corresponding to link name Fn.

%OUTFILE does not alter the program state.

link

Designates one of the AID link names for output files and has the format Fn, where n is
a number with a value 0 n 7.

The REP records for the %MOVE command are written to the output file with link name
F6 (see also the %AID and %MOVE commands).

U6199-J-Z125-2-7600 69

%OUTFILE

file

specifies the fully-qualified file name with which AID catalogs and opens the output file.
Use of an %OUTFILE command without the file operand closes the file assigned to link
name Fn.

70 U6199-J-Z125-2-7600

%QUALIFY

%QUALIFY

With %QUALIFY you define qualifications. In the address operand of another command
you may refer to these qualifications by prefixing a period.
Use of this abbreviated format for a qualification is practical whenever you want to
repeatedly reference addresses which are not located in the current AID work area.

By means of the prequalification operand you define qualifications which you would
like to incorporate in other commands by referencing them via a prefixed period.

Command Operand

%Q[UALIFY] [prequalification]

A prequalification specified with the aid of the %QUALIFY command applies until it is
overwritten by a %QUALIFY with a new prequalification or revoked by a %QUALIFY
without operands, or until /LOGOFF.

On input of a %QUALIFY command, only a syntax check is made. Whether the
specified link name has been assigned a dump file or whether the specified program
unit has been loaded or included in the LSD records is not checked until subsequent
commands are executed and the information from prequalification is actually used in
addressing.

The declarations of the %QUALIFY command are only used by commands which are
input subsequently. %QUALIFY has no effect on any subcommands in %CONTROL,
%INSERT and %ON commands entered prior to this %QUALIFY command, even if they
are executed after it.

The same %AID LOW={ON|OFF} setting must apply for input of the %QUALIFY and
for replacement in an address operand.

%QUALIFY may only be specified as an individual command, i.e. it may not be part of
a command sequence or subcommand.

The %QUALIFY command does not alter the program state.

U6199-J-Z125-2-7600 71

%QUALIFY

prequalification

designates a base qualification or a PROG qualification or both qualifications, which
must then be separated by a period.

The reference to a prequalification defined in the %QUALIFY command is effected by
prefixing a period to the address operands of subsequent AID commands.

prequalification operand -

VM
[E=][•PROG=program-name]

Dn

- -

E={VM|Dn}
must be specified if you want to use a base qualification which is different from
the current one (see %BASE command).

PROG=program-name
designates a program unit.

Examples

1. %Q E=D1.PROG=INITIAL
%D .TAB1
Because of the prequalification, the %DISPLAY command has the same effect as
the following %DISPLAY command in full format: %D E=D1.PROG=INITIAL.TAB1

2. %Q PROG=LEADER
%SET .E_RECD INTO .A_RECD
Because of the prequalification, the %SET command has the same effect as the
following %SET command:
%SET PROG=LEADER.E_RECD INTO PROG=LEADER.A_RECD

72 U6199-J-Z125-2-7600

%REMOVE

%REMOVE

With the %REMOVE command you revoke the test declarations for the %CONTROLn,
%INSERT and %ON commands.

With target you specify whether AID is to revoke all effective declarations for a
particular command or whether only a specific test point or event or a subcommand
is to be deleted.

Command Operand

%REM[OVE] target

If a subcommand contains a %REMOVE which deletes this subcommand or the
associated monitoring condition (test-point, event or criterion), any subsequent subcmd
commands will not be executed. Such an entry is therefore only meaningful as the last
command in a subcommand.

The %REMOVE command does not alter the program state.

target

Designates a command for which all the valid declarations are to be deleted, or a test-
point to be deleted, or an event which is no longer to be monitored, or the
subcommand to be deleted. If target is within a nested subcommand and therefore has
not yet been entered, it cannot be deleted either.

target-OPERAND -

%C[ONTROL] | %C[ONTROL]n

%IN[SERT] | test-point

%ON | event

%•[subcmdname]

- -

%C[ONTROL]
The declarations for all %CONTROLn commands entered are deleted.

%C[ONTROL]n
The %CONTROLn command with the specified number (1 n 7) is deleted.

U6199-J-Z125-2-7600 73

%REMOVE

%IN[SERT]
All test points which have been entered are deleted.

test-point
The specified test-point is deleted. test-point is specified as under the %INSERT
command.
Within the current subcommand, test-point can also be deleted with the aid of
%REMOVE %PC->, as the program counter (%PC) contains, at this point in time,
the address of the test-point.

%ON
All events which have been entered are deleted.

event
The specified event is deleted. event is specified with a keyword, as under the
%ON command. The event table with the keywords and explanations of the
individual events can be found under the description of the %ON command.

The following applies for the events %ERRFLG(zzz), %SVC(zzz) and %LPOV(zzz):
%REMOVE event(zzz) deletes only the event with the specified number.
%REMOVE event without specification of a number deletes all events of the
corresponding group.

%•[subcmdname]
deletes the subcommand with the name subcmdname in a %CONTROLn or
%INSERT command.

%• is the abbreviated form of a subcommand name and can only be used within
the subcommand. %REMOVE %. deletes the current subcommand and is thus
only practical as the last command in a subcommand, since any commands
following it within a subcmd will not be executed.

As %CONTROLn cannot be chained, the associated %CONTROLn will be deleted
as well. Deleting the subcommand therefore has the same effect as deleting the
%CONTROLn by specifying the appropriate number.

On the other hand, several subcommands may be chained at a test-point of the
%INSERT command. With the aid of %REMOVE %.[subcmdname] you can delete
an individual subcommand from the chain, while further subcommands for the
same test-point will still continue to exist (see AID Core Manual, chapter 5). If
only the subcommand designated subcmdname was entered for the test-point,
the test-point will be deleted along with the subcommand.

%REMOVE %.[subcmdname] is not permitted for %ON.

74 U6199-J-Z125-2-7600

%REMOVE

Examples

1. %C1 %CALL <CTL1: %D %.>
%REM %C1
%REM %.CTL1

Both %REMOVE commands have the same effect: %C1 is deleted.

2. %IN S’58’ <SUB1: %D CHAR, NUMB>

%IN S’58’ <SUB2: %D RESULT; %REM %.>
%R
...
%REM S’58’

When the test point S’58’ is reached, RESULT is output. Then subcommand SUB2
is deleted, i.e. this subcommand is executed only once. Subsequently CHAR and
NUMB are output, and the program continues. Whenever test point S’58’ is
reached in the program sequence, subcommand SUB1 is executed. %REM S’58’

deletes the test point later on. %REM SUB1 would have the same effect, as this
subcommand is the only remaining entry for test point S’58’.

U6199-J-Z125-2-7600 75

%RESUME

%RESUME

With %RESUME you start the loaded program or continue it at the interrupt point. The
program executes without tracing.

If the program has been halted during execution of a %TRACE command, the %TRACE
command will be aborted. If an interrupted %TRACE is to be continued, the
%CONTINUE command must be issued instead of %RESUME.

Command Operand

%R[ESUME]

If a %RESUME command is contained within a command sequence or subcommand,
any commands which follow it will not be executed.
If the %RESUME command is the only command in a subcommand, the execution
counter is incremented and any active %TRACE deleted.

The %RESUME command alters the program state.

76 U6199-J-Z125-2-7600

%SDUMP

%SDUMP

With %SDUMP you can output a symbolic dump: individual data or data areas, all data
areas of the current call hierarchy, or the program names of the current call hierarchy.
The current call hierarchy extends from the subprogram level on which the the program
was interrupted, over the subprograms invoked through to the main program.

With dump-area you designate the data or data areas which AID is to output, or
you specify that AID is to output the program names of the current call hierarchy.

With medium-a-quantity you specify which output media AID is to use, and whether
or not additional information is to be output. This operand is used to deactivate a
declaration made by the %OUT command, as far as the current %SDUMP
command is concerned.

Command Operand

%SD[UMP] [[dump-area][,...] [medium-a-quantity][,...]]

The following applies for a structured Assembler program:

%SD %NEST produces a minimal output, i.e. AID lists only the current call
hierarchy.

%SD without operands results in the maximum output, i.e. the named data defined
in the current call hierarchy will be output together with all further Assembler
instructions which have a name in the name entry. Multiply defined data will also be
output multiply. A header line identifies the program unit in which data definition
took place.

If one or more names are explicitly specified in the command, all data with this
name defined in the current call hierarchy will be output. Data with the same name
defined in different modules will be multiply output.

If program units for which there are no LSD records, not even in a PLAM library, are
included in the hierarchy, the user can only issue the %SDUMP command individually
for program units for which LSD records have been loaded or can be loaded from a
PLAM library (see %SYMLIB command).

In unstructured Assembler programs, only the data of the current programming unit can
be referenced:

U6199-J-Z125-2-7600 77

%SDUMP

%SD without operands causes the entire data area and all further Assembler
instructions with a name to be output.

If one or more names are explicitly specified in the command, only the
corresponding data of the current program unit will be output.

dump-area can be repeated up to 7 times.

With this command the user can work either in the loaded program or in a dump file.

The %SDUMP command does not alter the program state.

dump-area

describes which information AID is to output.
AID can output the program names of the current call hierarchy, all data of the current
call hierarchy, all data of a program unit or individual data. AID edits the data in
accordance with the definition in the source program. If the contents do not match the
defined storage type, output is rejected and an error message is issued.

If dataname is defined in multiple program units of the current call hierarchy it is also
output repeatedly, unless dump-area has been restricted by a qualification.
If dataname is not contained in the LSD records, AID issues an error message;
subsequent dump-areas of the same command are output, however.

dump-area-OPERAN D -

VM [PROG=program-name[•]] [dataname]
[•][E= [•]]

Dn %NEST

- -

•
If the period is in the leading position it denotes a prequalification, which must
have been defined with a preceding %QUALIFY command. Consecutive
qualifications must be separated by a period. In addition, there must be a period
between the final qualification and the following operand part.

78 U6199-J-Z125-2-7600

%SDUMP

E ={VM | Dn}
An explicit base qualification is to be entered only if the current base qualification
is not to apply for the dump-area. If you specify only a base qualification, all data
of the corresponding call hierarchy will be output.

PROG=program-name
A PROG qualification is mandatory if dump-area is to apply only for the specified
program unit. If the definition of dump-area terminates with a PROG qualification,
AID will output all data elements of this program unit.

dataname
is the name of constants, data fields, predefined general registers, control
sections, dummy sections, external dummy sections, dummy registers and
common control sections as defined in the source program.
dataname is the name entry of a DC, DS, EQU, CSECT, DSECT, XDSEC, DXD or
COM statement (see chapter 3).

A dataname not identified in the LSD records causes AID to issue an error
message. Subsequent dump-areas of the same command are output normally.

%NEST
Is an AID keyword which effects output of the current call hierarchy.
For the lowest hierarchical level AID outputs the name of the program unit and
the number of the statement where the program was interrupted. For higher
hierarchical levels AID outputs the name of the calling program and the number of
the CALL statement.

U6199-J-Z125-2-7600 79

%SDUMP

medium-a-quantity

Defines the medium or media via which output is to take place and whether or not AID
is to output additional information. If this operand is omitted and no declaration has
been made in the %OUT command, AID assumes the default value T = MAX.

medium-a-quantity-OPERAN D -

T
H MAX

=
Fn MIN
P

- -

medium-a-quantity is described in detail in the AID Core Manual, chapter 7.

T Terminal output
H Hardcopy output
Fn File output
P Output to SYSLST

MAX Output with additional information

MIN Output without additional information

Example

The program SUM from PLAM library PLAMBIB is to be executed.

/ START-PROG (PLAMBIB,SUM),TEST-OPTION=AID

% BLS0001 *** DBL VERSION 070 RUNNING ***
% BLS0517 MODULE ’SUM’ LOADED

PLEASE ENTER UP TO 10 2-DIGIT NUMBERS. END: 00
* 29
* 37
* 00
*
/

The program branches to the entry although the end criterion ’00’ was specified. A
program error is present. The program is interrupted by pressing the K2 key and a
memory dump requested with %SDUMP. This command requests a symbolic dump
of the entire module. The value for medium-a-quantity is T=MAX. The source
program for this %SDUMP output can be found in chapter 6. The various %SDUMP
lines are followed by explanatory texts.

80 U6199-J-Z125-2-7600

%SDUMP

/ %SDUMP

** ITN: #’000B018F’ *** TSN: 4J60 ***
SRC_REF: 60 SOURCE: SUM PROC: SUM *******************************

SRC_REF line: this contains the statement number at which the program was
interrupted and the module name.

R0 = 0

R1 = 1

R2 = 2

R3 = 3

R4 = 4

R5 = 5

Names of the EQU statements that were assigned a constant value.

SUM = 00000000

START = 17680

LOOP = 5A502126

READ = 17680

COMP = D5052105 211E

ADD = F2112107 2105

FROM = 0A812115 2120

END = 169608960

ERROR = 17680

Assembler instructions with a name; AID outputs the memory contents at the
relevant address in accordance with the length attribute.

U6199-J-Z125-2-7600 81

%SDUMP

MESS1 = 0039

M1 = PLEASE ENTER UP TO 10 2-DIGIT NUMBERS! END: 00

INPUT = 00060000 F0F000

PACK = +0

MESS2 = 0012

M2 = SUM:

RESUL =

TEN = 10

NULL = 00

TOTAL = +66

ZONE = F0

MESS3 = 0034

M3 = NO MORE THAN 10 NUMBERS CAN BE PROCESSED

Data area of the module; output comprises the names of the DC and DS statements
with the respective memory contents.

_R0 = 00000000

_R1 = 9F00003C

_R2 = 00000002

_R3 = 00000000

_R4 = 00000000

_R5 = 00000005

_R6 = 00000000

_R7 = 00000000

_R8 = 00000000

_R9 = 00000000

_R10 = 00000000

_R11 = 00000000

_R12 = 00000000

_R13 = 00000000

_R14 = 00000000

_R15 = 00000000

General register; AID outputs the predefined name of the register together with its
contents.

82 U6199-J-Z125-2-7600

%SET

%SET

With the %SET command you transfer the memory contents or AID literals to memory
positions in the program which has been loaded. Before transfer, the storage types
sender and receiver are checked for compatibility. The contents of sender are matched
to the storage type of receiver.

With sender you designate a data field, a statement name, a source reference, a
length, an address, an execution counter, an AID register or an AID literal. sender
may be either within the virtual memory of the loaded program or in a dump file.

With receiver you designate a data field, an execution counter or a register to be
overwritten. receiver may only be located within the virtual memory of the program
which has been loaded.

Command Operand

%S[ET] sender INTO receiver

In contrast to the %MOVE command, AID checks for the %SET command (prior to
transfer) whether the storage type of receiver is compatible with that of sender and
whether the contents of sender match its storage type. In the event of incompatibility,
AID rejects the transfer and outputs an error message.

If sender is longer than receiver, it is truncated on the left or right, depending on its
storage type, and AID issues a warning message. sender and receiver may overlap. In
the case of numeric transfer, sender is converted to the storage type of receiver if
required, and the contents of sender are stored in receiver with the value being
retained. If the value does not fully fit into receiver, a warning is issued.

Which storage types are compatible and how transfer takes place is shown in the table
at the end of the description of the %SET command.

Entry of the command immediately after loading the program is not advisable, as the
user cannot address data and statements without an explicit qualification until the
program encounters the first executable statement.

In addition to the operand values described here, you can also use those described in
the manual for debugging on machine code level (see [2]).

With %AID CHECK=ALL you can activate an update dialog; this dialog shows you the old
and new contents of receiver prior to transfer and offers the option of aborting the
%SET command.

The %SET command does not alter the program state.

U6199-J-Z125-2-7600 83

%SET

sender INTO receiver

For sender or receiver you may specify data fields, a complex memory reference, an
execution counter or a register. Statement names, source references, addresses,
lengths of data areas and AID literals can only be used as sender.
sender may be located either in the virtual memory area of the loaded program or in a
dump file; receiver, on the other hand, may only be located in the virtual memory area
of the loaded program.

sender-OPERAN D - - - - - - - - - - - - - - receiver-OPERAN D - - - - - - - - -

dataname
L’name’

[•][qua•] S’stmt-no’
keyword
compl-memref dataname

%@ dataname INTO [•][qua•]
([•][qua•]) keyword

%L compl-memref compl-memref

%L=(expression)

AID-literal

- -

•
If the period is in the leading position it denotes a prequalification, which must
have been defined with a preceding %QUALIFY command. Consecutive
qualifications must be separated by a period. In addition, there must be a period
between the final qualification and the following operand part.

qua
One or more qualifications need only be specified if a memory object is not within
the current AID work area.

E={VM | Dn} for sender
E=VM for receiver

need only be specified if the current base qualification (see %BASE command)
is not to apply for a data/statement name, source reference or keyword.
sender can be located either in virtual memory or in a dump file, whereas
receiver must be located in virtual memory.

84 U6199-J-Z125-2-7600

%SET

PROG=program-name
Specified only when addressing a data/statement name or source reference
which is not located in the current program unit (see chapter 3).

dataname
specifies the name of constants, data fields, predefined general registers, control
sections, dummy sections, external dummy sections, dummy registers and
common control sections as defined in the source program.
dataname is the name entry of a DC, DS, EQU, CSECT, DSECT, XDSEC, DXD or
COM statement (see chapter 3).

L’name’
is a statement name, designating the address of an executable Assembler
instruction or a call of a predefined macro.
name is the name entry of an Assembler instruction or a call of a predefined
macro (@ macro).

S’stmt-no’
is a source reference via which every named executable Assembler instruction
and every call of a predefined macro can be referenced.
stmt-no is the statement number from the assembly listing; see the STMNT
column.

Statement names and source references are address constants and can thus only
be specified as sender. The address designated with L’name’ or S’stmt-no’ is
transferred.

Example
%SET S’5’ INTO %0G

The address of the statement with number 5 is written to AID register %0G.

By means of L’name’-> or S’stmt-no’-> you designate 4 bytes of machine code
at the corresponding address (see AID Core Manual, section 6.4).
Machine instructions can be output by issuing the %DISASSEMBLE command in
order to make any length modification that may be required.
With receiver, you may use statement names and source references only in
connection with the pointer operator (->).

U6199-J-Z125-2-7600 85

%SET

keyword
is a an execution counter, the program counter or a register. The AID Core
Manual, chapter 9, lists the implicit storage types of the keywords.

keyword may only be preceded by a base qualification.

%•subcmdname Execution counter
%• Execution counter of the current subcommand
%PC Program counter
%n General register, 0 n 15
%nD|E Floating-point register , n = 0,2,4,6
%nQ Floating-point register , n = 0,4
%nG AID general register, 0 n 15
%nDG AID floating-point register , n = 0,2,4,6

compl-memref
The following operations may occur in compl-memref (see AID Core Manual,
chapter 6):

byte offset (•)
indirect addressing (->)
type modification (%T(dataname), %X, %C, %D, %P, %F, %A)
length modification (%L(...), %L=(expression), %Ln)
address selection (%@(...))

With an explicit type or length modification you can match the storage type for
sender to that of receiver. Memory contents which are incompatible with the
storage type will nevertheless be rejected by AID even if a type modification is
performed (see also AID Core Manual, section 6.8).
Following a byte offset (•) or pointer operation (->), the implicit storage type and
original address length are lost. At the calculated address, storage type %X with a
length of 4 applies unless the user has made an explicit specification for type and
length.
For each operand in a complex memory reference, the assigned memory area
must not be exceeded by a byte offset or length modification, otherwise AID will
reject the command and issue an error message. By combining address selection
(%@) and pointer operator (->) you may exit from the symbolic level. You can
then use the address of a data field without regarding its area boundaries.

86 U6199-J-Z125-2-7600

%SET

Example
The data fields CFIELD and CFIELD1 are of type ’character’ and occupy 5
bytes each. The last 2 bytes of CFIELD as well as the next 3 bytes are to be
transferred to CFIELD1.
AID would reject the command shown below, since it represents a violation of
the CFIELD area:
%SET CFIELD.3%CL5 INTO CFIELD1

The correct command reads:
%SET %@(CFIELD)->.3%CL5 INTO CFIELD1

%@(...)
The address selector can be used to specify the address of a data field or
complex memory reference as sender (see also AID Core Manual, section 6.11).
The address selector produces an address constant as a result.

%L(...)
The length selector can be used to specify the length of a data field or complex
memory reference as sender (see also AID Core Manual, section 6.11). The length
selector produces an integer as a result.

Example
%SET %L(FIELD1) INTO %0G

The length of FIELD1 will be transferred.

%L=(expression)
With the aid of the length function, you can direct AID to calculate the value of
expression and store it in receiver (see also AID Core Manual, sections 6.9 and
6.10). In expression you can link memory references and integers via the
arithmetic operators (+,-,*,/). The length function produces an integer as a result.

Example
%SET %L=(FIELD1) INTO %0G

The contents of FIELD1 are transferred. FIELD1 must be of type ’integer’,
otherwise AID issues an error message.

U6199-J-Z125-2-7600 87

%SET

AID literal
All AID literals described in the AID Core Manual, chapter 8, may be specified.
Note well the conversion options for matching AID literals to the respective
receivers as described in that chapter:

{C’x...x’ | ’x...x’C | ’x...x’} Character literal
{X’f...f’ | ’f...f’X} Hexadecimal literal
{B’b...b’ | ’b...b’B} Binary literal
[{±}]n Integer
#’f...f’ Hexadecimal number
[{±}]n.m Decimal number
[{±}]mantissaE[{±}]exponent Floating-point number

88 U6199-J-Z125-2-7600

%SET

%SET table

Receive field
Data type:

Reg.
Send field A B C D E F H L P Q S V X Y Z Rn

Data type
A 2 - - - - - - - - - - 2 - 2 - 2

B - 1 - - - - - - - 1 1 - 1 - - -

C - - 2a - - - - - - - - - - - - -

D - - - 2 2 4a * 4a* 2 - - - - - - 4c * -

E - - - 2 2 4a * 4a* 2 - - - - - - 4c * -

F - - - 4b 4b 1 1 4b - - - - - - 4c -

H - - - 4b 4b 1 1 4b - - - - - - 4c -

L - - - 2 2 4a * 4a* 2 - - - - - - 4c * -

P - - - 4b 4b 4a 4a 4b - - - - - - - -

Q - 1 - - - - - - - 1 1 - 1 - - -

S - 1 - - - - - - - 1 1 - 1 - - -

V 2 - - - - - - - - - - 2 - 2 - 2

X - 1 - - - - - - - 1 1 - 1 - - -

Y 2 - - - - - - - - - - 2 - 2 - 2

Z - - - 4b 4b 4a 4a 4b - - - - - - 3 -

Register: Rn 2 - - - - - - - - - - 2 - 2 - 2

AID literals
alphanum. - - 2 a - - - - - - - - - - - - -

Alphanum.
hexadecimal 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Bit 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Numeric - - - 4a 1 1 4a 4 a - - - - - - 4c -

Numeric
hexadecimal 1 - - 2b 2b 1 1 2 b - - - 1 - 1 - 1

Float. pt . - - - 2 2 4a * 4a* 2 - - - - - - 4c -

U6199-J-Z125-2-7600 89

%SET

The table above provides an overview of permissible combinations of the sender and
receiver types in conjunction with the %SET command (see also the ASSEMBH
Reference Manual [10], "DC and DS statements, Types of constants").

Meaning of 1, 2, 2a, 2b, 3, 4a-c, *, -

1 The receive field is overwritten right-justified with the contents of the send field. If
the lengths differ, padding with X’00’ or truncation occurs on the left.

2 The receive field is overwritten left-justified with the contents of the send field. If the
lengths differ, padding with X’00’ or truncation occurs on the right.

2a
The receive field is overwritten left-justified with the contents of the send field. If the
lengths differ, padding with X’40’ or truncation occurs on the right.

2b
Refers to the mantissa only:
The receive field is overwritten left-justified with the contents of the send field. If the
lengths differ, padding with X’00’ or truncation occurs on the right.

3 The receive field is overwritten right-justified with the contents of the send field. If
the lengths differ, padding with X’F0’ or truncation occurs on the left.

4 The type of the sender is converted to the internal representation of the receiver
type. If the lengths of the sender and the converted receiver differ,

4a truncation or padding with X’00’ occurs on the left
4b truncation or padding with X’00’ occurs on the right
4c truncation or padding with X’F0’ occurs on the left.

* The types F, H, Z must not be used as receiver if the sender of type E, D or L is
not an integer.

Transfer not possible

90 U6199-J-Z125-2-7600

%SET

Examples

1. %SET PROG=PRO1.MESS1 INTO PROG=PRO1.MELD2

MESS1 and MELD2 are defined in program unit PRO1. The contents of MESS1 are
transferred to MELD2.

2. %QUALIFY PROG=PRO1

%SET .MESS1 INTO .MELD2

This %SET command initiates the same transfer as in example 1: The
prequalification defined in %QUALIFY is accepted before the leading period.

3. %SET ’ABCDEF’ INTO MESSUNG

Data field MESSUNG is 8 characters long. Following transfer, it contains: ABCDEF

4. %SET #’0’ INTO _R5

%SET _R5 INTO _R10

The first %SET transfers the hexadecimal number #’0’ to register 5, i.e. register 5
is cleared. The second %SET clears register 10.

U6199-J-Z125-2-7600 91

%STOP

%STOP

With the %STOP command you direct AID to halt the program, to switch to command
mode and to issue a STOP message. This message indicates the statement and the
program unit where the program was interrupted.

If the command is entered at the terminal or from a procedure file, the program state is
not altered, since the program is already in the STOP state. In this case you may
employ the command to obtain localization information on the program interrupt point
by referring to the STOP message.

Command Operand

%STOP

If the %STOP command is contained in a command sequence or subcommand, any
commands following it will not be executed.

If the program has been interrupted by pressing the K2 key, the program interrupt point
need not necessarily be within the user program, it may also be located in the runtime
system routines.

The %STOP command alters the program state.

Example

/ %INSERT S’214’ <%DISPLAY M2,TOTAL; %STOP>
/ %RESUME

M2 = SUM:
TOTAL = +.11000000000000000000000000000000 E+002
USTOPPED AT LABEL: ADD , SRC_REF: 214, SOURCE: SUM ,PROC: SUM

%INSERT sets a test point for statement 214. The subcommand comprises the
%DISPLAY and %STOP commands. After M2 and TOTAL have been output, AID
halts the program and writes a STOP message indicating the statement number and
program unit of the current interrupt point.

92 U6199-J-Z125-2-7600

%SYMLIB

%SYMLIB

With the %SYMLIB command you direct AID to open or close PLAM libraries. AID
accesses open PLAM libraries if symbolic memory references located in a program unit
for which no LSD records have been loaded are addressed in a command.

By means of qualification-a-lib you open or close one or more libraries in which
object modules and their associated LSD records are stored. In order to dynamically
load LSD records, any library can be assigned to the current program or to a dump
file by specifying the appropriate base qualification.

Command Operand

%SYMLIB [qualification-a-lib][,...]

When this command is executed AID checks only whether the specified library can be
opened; it does not check whether the contents of the library match the program being
processed. Thus it is possible to initially open all libraries which you might need later
during a test run. AID does not check whether the object module of the program which
has been addressed matches that of the PLAM library until the dynamically loaded LSD
records are accessed.
If several libraries have been opened for a base qualification, AID scans them in the
order in which they were specified in the %SYMLIB command.
If the AID search is not successful or if no library is open, you may assign the correct
library by way of a new %SYMLIB command after the corresponding message has
been issued. You then repeat the command for whose execution the LSD records were
lacking.

A library remains open until a new %SYMLIB command is issued for the same base
qualification or until it is closed by a %SYMLIB command without operand, or until
/LOGOFF. If a new command contains new file names, these libraries are assigned and
opened.

The %SYMLIB command does not alter the program state.

qualification-a-lib

is a base qualification and/or the file name of a PLAM library.

U6199-J-Z125-2-7600 93

%SYMLIB

If you enter a base qualification and a file name, AID assigns the specified library for
this base qualification and opens it. Previously assigned libraries for the same base
qualification are closed.
If you specify a file name only, AID assigns the library for the base qualification
which is currently applicable (see %BASE command) and opens it. All libraries
previously assigned for the current base qualification will be closed.
If you specify a base qualification only, all open libraries for this qualification will be
closed.

AID can handle up to 15 library assignments. A library which is concurrently assigned
for several base qualifications is counted as often as it is specified.

qualification-a-lib-OPERAN D -

VM
[•][E= •][filename]

Dn

- -

•
If the period is in the leading position it denotes a prequalification, which must
have been defined with a preceding %QUALIFY command and can only stand for
a base qualification.

E=VM
%SYMLIB applies for the loaded program (see also %BASE command).

E=Dn
%SYMLIB applies for a memory dump in a dump file with the link name Dn (see
%BASE command).

filename
is the BS2000 catalog name of a PLAM library which is assigned for the base
qualification specified with prequalification or entered explicitly. If the qualification
is omitted, the library is assigned for the base qualification which currently applies.

Example

%SYMLIB E=D5.PLAMLIB,ASSOUTPUT

If AID requires LSD records for processing a memory dump in the dump file with
the link name D5, AID attempts to load these records from the PLAMLIB library.
The FOR1OUTPUT library is assigned for the currently set base qualification. If no
%BASE command has been issued, AID uses this library to dynamically load LSD
records for the program being executed.

94 U6199-J-Z125-2-7600

%TITLE

%TITLE

With the %TITLE command you define the text of your own page header. AID uses this
text when the %DISASSEMBLE, %DISPLAY, %HELP, %SDUMP and %TRACE
commands write to the system file SYSLST.

By means of the page-header operand you specify the text of the header and direct
AID to set the page counter to 1 and to position SYSLST to the top of the page
before the next line to be printed.

Command Operand

%TITLE [page-header]

With a %TITLE command without a page-header operand you switch back to the AID
standard header. AID resets the page counter to 1 and positions SYSLST to the top of
the page before the next line to be printed.

A page header defined with %TITLE remains valid until a new %TITLE command is
issued or until the program ends.

The %TITLE command does not alter the program state.

page-header

Specifies the variable part of the page title. AID completes this specification by adding
the time, date and page counter.

page-header
is a character literal in the format {C’x...x’ | ’x...x’C | ’x...x’} and may have a
maximum length of 80 characters. A longer literal is rejected with an error message
outputting only the first 52 positions of the literal.

Up to 58 lines are printed on one page, not counting the title of the page.

U6199-J-Z125-2-7600 95

%TRACE

%TRACE

With the %TRACE command you switch on the AID tracing function and start the
program or continue it at the interrupt point.

%TRACE can only be used for structured Assembler programs with calls of predefined
macros. Also, these programs may only contain one control section (CSECT).
Assembler programs not created with predefined macros and/or comprising more than
one CSECT cannot be processed with %TRACE. Such programs can only be traced via
a %TRACE command on machine code level (see AID, Debugging on Machine Code
Level [2]).

By means of the number operand you can specify the maximum number of
Assembler instructions to be traced, i.e. executed and logged.

By means of the criterion operand you select different types of Assembler
instructions which AID is to log. Logging takes place prior to execution of the
statements selected.

By means of the trace-area operand you define the program area in which the
criterion is to be taken into consideration.

Command Operand

%T[RACE] [number] [criterion][,...] [IN trace-area]

A %TRACE command is terminated if any of the following five events occurs during the
test run:
1. The maximum number of instructions to be traced has been reached.
2. A subcommand has been executed because a monitoring condition from a

%CONTROLn, %INSERT or %ON command was satisfied, and this subcommand
contains a %RESUME, %STOP or %TRACE command.

3. An %INSERT command terminates with a program interrupt, as the control
operand is K or S.

4. The K2 key has been used. At the terminal, the SDF option
OVERFLOW-CONTROL = USER-ACKNOWLEDGE

(/MODIFY-TERMINAL-OPTIONS command) must have been set.
5. The program has been halted by calling the BKPT macro.

A %TRACE command which is still active after being interrupted by an event described
under points 2 through 5 above may be continued by issuing the %CONTINUE
command.

96 U6199-J-Z125-2-7600

%TRACE

The operand values of a %TRACE command apply until they are overwritten by the
entries in a subsequent %TRACE command, or until the program is terminated. In a
new %TRACE command, AID therefore assumes the value from the previous %TRACE
command if an operand has not been specified. In the case of the trace-area operand,
this only happens if the current interrupt point is within the trace-area to be assumed. If
there are no values to be taken over, AID assumes the default values 10 (for number)
and the program unit containing the current interrupt point (for trace-area).

With the aid of the %OUT command, you can control the information to be contained
in a line of the log and the output medium to which the log is to be written.

If the %TRACE is contained in a command sequence or subcommand, any commands
which follow will not be executed.

trace-area can only be located in the loaded program, therefore the base qualification
E=VM must have been set (see %BASE) or must be specified explicitly.

The %TRACE command alters the program state.

number

specifies the maximum number of Assembler instructions of type criterion which are to
be executed and logged.

number
is an integer 1 number 231-1. The default value is 10. If there is no value
from a previous %TRACE command, AID inserts the default value in a %TRACE
command without the number operand.

After the specified number of instructions has been traced, AID outputs a message via
SYSOUT, the program is halted and the user can enter AID or BS2000 commands. The
message tells you at which instruction and in which program unit the program was
halted.

criterion

is a keyword which defines the type of instructions to be traced during program
execution. Several keywords can be specified at a time; they take effect simultaneously.
A comma must be used to separate any two keywords.
If no criterion is declared, AID uses the default value %STMT unless a criterion
declaration from an earlier %TRACE command is still valid.

U6199-J-Z125-2-7600 97

%TRACE

criterion Tracing and logging takes place prior to execution of

%CALL the predefined macro @PASS (Assembler procedure)

%COND the predefined macros for selection structure blocks
@IF, @THEN, @ELSE, @CASE, @BEGI, @CAS2, @OF, @OFRE

%GOTO the predefined macros @BREA and @EXIT

%PROC the predefined macro @ENTR (Assembler procedure start)

%STMT each predefined macros that is executed.

trace-area

defines the program area in which tracing is to take place, i.e. only within this area can
monitoring and logging of the statements selected by means of the criterion operand
be effected. The %TRACE command is inactive outside of this area and is activated
again only on returning to this area.

A trace-area remains effective until a new %TRACE command with its own trace-area
operand is entered, until a %TRACE command is issued outside of this area or until the
program ends. If the trace-area operand has been omitted, the area definition from an
earlier %TRACE command is assumed if the current interrupt point is located in this
area. Otherwise AID uses the default value, i.e. the program unit containing the current
interrupt point.

The continuation address for program execution cannot be influenced by the %TRACE
command.

trace-area-OPERAND -

PROG=program-name
IN [•][E=VM•]

[PROG=program-name•](S’stmt-no’ : S’stmt-no’)

- -

98 U6199-J-Z125-2-7600

%TRACE

•
If the period is in the leading position it denotes a prequalification, which must
have been defined with a preceding %QUALIFY command. Consecutive
qualifications must be separated by a period. In addition, there must be a period
between the final qualification and the following operand part.

E=VM
As trace-area may only be located in the virtual memory of the program which
has been loaded, enter E=VM only if a dump file has been declared as the
current base qualification (see also %BASE command).

PROG=program-name
program-name is the name of a program unit.
This program unit must already be loaded at the time the %TRACE command is
input or at the time the subcommand containing the %TRACE command is
executed.

A PROG qualification is required only if a load module has been created from
several program units and the %TRACE command does not refer to the current
program unit or if a previously applicable trace-area declaration is to be
overwritten.

If trace-area ends with a PROG qualification, it covers the entire program unit
specified.

(S’stmt-no’:S’stmt-no’)
stmt-no is the statement number from the assembly listing; see the STMNT
column.

trace-area is defined by entering a start stmt-no and an end stmt-no, which
together identify a certain part of the source program.

The start stmt-no must be less than the end stmt-no.

If trace-area is to comprise only one line, the start stmt-no and end stmt-no must
be identical.

U6199-J-Z125-2-7600 99

%TRACE

Output of the %TRACE listing

The %TRACE listing is output in full format via SYSOUT as a standard procedure
(%OUT operand value T=MAX). With the %OUT command, you can define the output
media and the scope of information to be output (see AID Core Manual, chapter 7).

A %TRACE listing with additional information (T=MAX) contains the statement number
and type of Assembler instruction that was executed. If a name entry exists, it will be
output as well.

A %TRACE listing without additional information (T=MIN) does not show the instruction
type.

Examples

/ %OUT %TRACE T=MAX
/ %T 3

7 FRAME EXT.PRO
1037 TEST1 CALL
1281 TEST2 JUMP

STOPPED AT LABEL: TEST2 , SRC_REF: 1281, SOURCE: FRAME , PROC: FRAME

With the aid of the %OUT command, output is switched back to the terminal and
the maximum range of information is defined for output.
The %TRACE command is to trace three Assembler instructions. After the third
instruction, the termination message for this %TRACE command follows, to the
effect that program execution was interrupted at instruction TEST2 with statement
number 1281, that instruction TEST2 is in the program unit FRAME and that the
load module has the same name.

/ %OUT %T T=MIN
/ %T 3

7 FRAME
1037 TEST1
1281 TEST2

STOPPED AT SRC_REF: 1281, SOURCE: FRAME, PROC: FRAME

With the %OUT command the range of information for the %TRACE command is
reduced. A subsequently entered %TRACE command outputs the log without
additional information.

100 U6199-J-Z125-2-7600

Sample application

 6 Sample application
This chapter illustrates an AID debugging session for a short Assembler program. This
sample test is intended to help you understand the application and effect of various AID
commands; for the sake of clarity, a relatively uncomplicated approach has been taken.
The Assembler program is shown in section 6.1, the test run in section 6.2. In the
examples below, input is printed in bold for better legibility.

 6.1 Assembler program

Objective

The program SUM is to read in up to 10 two-digit numbers and output the resulting
total. Input of the number 00 serves as the end criterion .
If more than 10 numbers are entered, a message is issued together with the calculated
total.

U6199-J-Z125-2-7600 101

Sample application

Source program listing

COMPUTE THE SUM OF N NUMBERS (N <= 10) 11:09:30 91-11-05
LOCTN OBJECT CODE ADDR1 ADDR2 STMNT M SOURCE STATEMENT
000000 1 SUM START

2 TITLE ’COMPUTE THE SUM OF N NUMBERS (N <= 10)’
3 PRINT NOGEN

000000 00000000 4 R0 EQU 0
000000 00000001 5 R1 EQU 1
000000 00000002 6 R2 EQU 2
000000 00000003 7 R3 EQU 3
000000 00000004 8 R4 EQU 4
000000 00000005 9 R5 EQU 5

10 SUM AMODE ANY
11 SUM RMODE ANY
12 GPARMOD 31
14 2 *,VERSION 010

000000 0D 20 15 BASR R2,R0
000002 00000002 16 USING *,R2

17 START WROUT MESS1,END
24 2 *,FHDR VERSION 105 / 1988-06-13
48 2 *,@DCEO 952 900503 53531004
51 1 *,WROUT 005 910215 53121058

000026 58 50 2176 00000178 52 L R5,=F’1’
00002A 5A 50 2176 00000178 53 LOOP A R5,=F’1’
00002E 49 50 2138 0000013A 54 CH R5,ZEHN
000032 47 20 20BE 000000C0 55 BH ERROR

56 READ RDATA INPUT, END
63 2 *,FHDR VERSION 105 / 1988-06-13
92 2 *,@DCEI 920 881104 53531002
95 1 *,RDATA 006 910215 53121057

000062 D5 05 2121213A 00000123 0000013C 96 COMP CLC INPUT+4,NULL
000068 47 80 207A 0000007C 97 BE FROM
00006C F2 11 21232121 00000125 00000123 98 ADD PACK PACK,INPUT+4(2)
000072 FA 31 213C2123 0000013E 00000125 99 AP TOTAL,PACK
000078 47 F0 2028 0000002A 100 B LOOP
00007C F3 63 2131213C 00000133 0000013E 101 FROM UNPK RESUL,TOTAL
000082 D3 00 21372140 00000139 00000142 102 MVZ RESUL+6(1),ZONE

103 WROUT MESS2,END
109 2 *,FHDR VERSION 105 / 1988-06-13
133 2 *,@DCEO 952 900503 53531004
136 1 *,WROUT 005 910215 53121058
137 END TERM DUMP=Y
140 2 *,VERSION 010
152 ERROR WROUT MESS3,END
159 2 *,FHDR VERSION 105 / 1988-06-13
183 2 *,@DCEO 952 900503 53531004
186 1 *,WROUT 005 910215 53121058

0000E2 47 F0 207A 0000007C 187 B FROM
188 EJECT
189 *
190 * DEFINITIONEN
191 *

0000E6 0039 192 MESS1 DC Y(L’M1+5)
0000E8 404001 193 DC X’404001’
0000EB C2C9E3E3C540C2C9 194 M1 DC C’PLEASE ENTER UP TO 10 2-DIGIT NUMBERS. END: 00’
00011F 000000000000 195 INPUT DC XL6’00’
000125 000C 196 PACK DC PL2’0’

197 *
000128 0012 198 MESS2 DC Y(L’M2+L’RESUL+5)
00012A 404001 199 DC X’404001’
00012D E2E4D4D4C57A 200 M2 DC C’SUM:’
000133 40404040404040 201 RESUL DC CL7’ ’

202 *
00013A 000A 203 ZEHN DC H’10’
00013C F0F0 204 NULL DC C’00’
00013E 0000000C 205 TOTAL DC PL4’0’
000142 F0 206 ZONE DC X’F0’

207 *
000144 0034 208 MESS3 DC Y(L’M3+5)
000146 404001 209 DC X’404001’
000149 C5E240D2D6C5D5D5 210 M3 DC C’NO MORE THAN 10 NUMBERS CAN BE PROCESSED’

102 U6199-J-Z125-2-7600

Sample application

000000 211 END SUM
000178 00000001 212 =F’1’
00017C 9101221427002852 213 =X’9101221427002852’ CONSISTENCY CONSTANT FOR AID

FLAGS IN 00000 STATEMENTS, 000 PRIVILEGED FLAGS, 000 MNOTES
HIGHEST ERROR-WEIGHT : NO ERRORS
THIS PROGRAM WAS ASSEMBLED BY ASSEMBH V1.0B00 ON 1991-11-05 AT 11:07:54

U6199-J-Z125-2-7600 103

Sample application

 6.2 Test run

Step 1

The Assembler source program SUM in the file SOURCE.TEST is assembled using
ASSEMBH-XT. The input TEST-SUPPORT=YES causes ASSEMBH-XT to create LSD
information and pass it to the object module. The source program is assembled without
errors.

/ DEL-SYS-FILE OMF
/ START-PROG $ASSXT

% BLS0500 PROGRAM ’ASSEMBH-XT’, VERSION ’1.XXXX’ OF ’yy-mm-dd’ LOADED.
% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG. 1990. ALL

RIGHTS RESERVED
% ASS6010 V 1.XXXX OF BS2000 ASSEMBH-XT READY

// COMPILE SOURCE=SOURCE.TEST,
TEST-SUPPORT=YES

% ASS6011 ASSEMBLY TIME: 80 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS
% ASS6006 LISTING GENERATOR TIME: 102 MSEC

// END

% ASS6012 END OF ASSEMBH-XT

Step 2

Program SUM is to be executed.

/ START-PROG (*OMF)

% BLS0001 *** DBL VERSION 070 RUNNING ***
% BLS0517 MODULE ’SUM’ LOADED

PLEASE ENTER UP TO 10 2-DIGIT NUMBERS. END: 00
* 05
* 16
* 48
* 00
* 0
* 00
* EN
/

The program always branches back to input, therefore a program error must exist. The
program is interrupted by pressing the K2 key.

104 U6199-J-Z125-2-7600

Sample application

Step 3

The program is reloaded with TEST-OPTION=AID so that it can be symbolically tested.

/ LOAD-PROG (*OMF),TEST-OPTION=AID

% BLS0001 *** DBL VERSION 070 RUNNING ***
% BLS0517 MODULE ’SUM’ LOADED

/ %IN S’96’ <%D INPUT;%STOP>
/ %R

The %INSERT command is used to set a test point at the line with the statement
number 96, i.e. the CLC instruction. Every time the program reaches this address, the
contents of field INPUT are to be output.
Following output, the program is to be switched to the STOP status so that new
commands can be entered.

The loaded program is started with %RESUME.

PLEASE ENTER UP TO 10 2-DIGIT NUMBERS. END: 00
* 05

** ITN: #’004B012E’ *** TSN: 2069 ***
SRC_REF: 96 SOURCE: SUM PROC: SUM ********************************
INPUT = 00060000 F0F505
STOPPED AT LABEL: COMP , SRC_REF: 96, SOURCE: SUM ,PROC: SUM

/ %R
* 48
INPUT = 00060000 F4F848
STOPPED AT LABEL: COMP , SRC_REF: 96, SOURCE: SUM ,PROC: SUM

/ %R
* 16
INPUT = 00060000 F1F616
STOPPED AT LABEL: COMP , SRC_REF: 96, SOURCE: SUM ,PROC: SUM

/ %R
* 00
INPUT = 00060000 F0F000
STOPPED AT LABEL: COMP , SRC_REF: 96, SOURCE: SUM ,PROC: SUM

Field INPUT contains the correct value in each case. The program obviously does not
recognize the end criterion.

U6199-J-Z125-2-7600 105

Sample application

Step 4

The %DISASSEMBLE command specifies that 5 lines are to be output in "retranslated"
format starting at line 96, i.e. the CLC instruction.

/ %DA 5 FROM S’96’

SUM+62 CLC 121(6,R2),13A(R2) D5 05 2121 213A
SUM+68 BC B’1000’,7A(R0,R2) 47 80 207A
SUM+6C PACK 123(2,R2),121(2,R2) F2 11 2123 2121
SUM+72 AP 13C(4,R2),123(2,R2) FA 31 213C 2123
SUM+78 BC B’1111’,28(R0,R2) 47 F0 2028

This shows that the length field of the CLC instruction contains ’6’ instead
 of ’2’. This is why the end criterion is not recognized.

The correct Assembler instruction reads:

COMP CLC INPUT+4(2),NULL

Step 5

This error can be provisionally amended by means of the %SET command. The
program is reloaded for this purpose.

/ LOAD-PROG (*OMF),TEST-OPTION=AID

% BLS0001 *** DBL VERSION 070 RUNNING ***
% BLS0517 MODULE ’SUM’ LOADED

/ %SET X’D5012121213A’ INTO COMP
/ %DA 1 FROM COMP

SUM+62 CLC 121(2,R2),13A(R2) D5 01 2121 213A

/ %R

%SET changes the memory contents at address COMP. An AID literal with the same
length as the CLC instruction and containing the length entry ’01’ instead of ’05’ is
transferred. The CLC instruction is then checked using %DISASSEMBLE and the
program restarted with %RESUME.

106 U6199-J-Z125-2-7600

Sample application

PLEASE ENTER UP TO 10 2-DIGIT NUMBERS. END: 00
* 05
* 16
* 48
* 12
* 10
* 15
* 17
* 19
* 29
NO MORE THAN 10 NUMBERS CAN BE PROCESSED
SUM:0000171

% IDA0N51 PROGRAM INTERRUPT AT LOCATION ’000000BE (SUM), (CDUMP), EC=90’
% IDA0N45 DUMP DESIRED? REPLY (Y=USER-/AREADUMP;Y,SYSTEM=SYSTEMDUMP;N=NO)?Y
% IDA0N53 DUMP BEING PROCESSED. PLEASE HOLD ON
% IDA0N54 USERDUMP WRITTEN TO FILE ’userid.DUMP.name.2069.00001’
% IDA0N55 TITLE: ’TSN-2069 UID-userid AC#-xxxxxxxx USERDUMP

PC-0000BE EC=90 VERS-100 DUMP-TIME 11:26:51 91-11-05’

Another program error exists, since the user has entered only 9 numbers. A dump for
further diagnosis is therefore generated on program termination.

Step 6

The %DUMPFILE command opens the dump file and and assigns it the link name D1.
The %BASE command switches the AID work area to the opened dump file. From now
on, an address without its own base qualification will always cause the dump file data
to be accessed.

/ %DUMPFILE D1=DUMP.NAME.2069.00001
/ %BASE E=D1

/ %D INPUT
** D1: DUMP.NAME.2069.00001 ***
INPUT = 00060000 F2F929

/ %D _R5
_R5 = 0000000B

The last number entered in the INPUT field is to be output. The output and log are
identical.

As the number of inputs is counted in register 5, it is now queried.

Register 5 contains the value ’11’, although only 9 numbers were entered. A
comparison with the assembly listing shows that register 5 has the initial value ’1’ and
not ’0’.

The correct Assembler instruction reads: L R5,=F’0’

U6199-J-Z125-2-7600 107

Sample application

Step 7

This error can be provisionally amended by means of the %SET command. The
program is reloaded for this purpose.

/ LOAD-PROG (*OMF),TEST-OPTION=AID

% BLS0001 *** DBL VERSION 070 RUNNING ***
% BLS0517 MODULE ’SUM’ LOADED

/ %BASE
/ %SET X’D5012121213A’ INTO COMP
/ %IN LOOP <%SET #’0’ INTO _R5; %REM %.>

/ MOD-TEST-OPT DUMP=NO
/ %R

First, %BASE is issued to assign the loaded program as the AID work area.

Reloading the program causes the corrections that have been made to be deleted. To
ensure an errorfree program run, the %SET command from Step 5 is issued again here.

%INSERT sets a test point to the Assembler instruction with the name entry LOOOP.
This means AID is to execute the following subcmd prior to the add instruction.

The %SET command giving register 5 the initial value ’0’ is contained in the subcmd of
%INSERT. This subcmd is deleted with %REM after the first run (as no further
subcommand has has been entered for this test-point, the test-point is also deleted),
and the program is then resumed.

As the TERM macro is defined in the source program with the DUMP=Y operand, a
dump is offered every time the program terminates. This can be prevented before the
program is started (%RESUME) with the following command: /MODIFY-TEST-OPTIONS
DUMP=NO

108 U6199-J-Z125-2-7600

Sample application

PLEASE ENTER UP TO 10 2-DIGIT NUMBERS. END: 00
* 05
* 16
* 48
* 12
* 10
* 15
* 17
* 19
* 29
* 11
NO MORE THAN 10 NUMBERS CAN BE PROCESSED
SUM:0000182

% IDA0N51 PROGRAM INTERRUPT AT LOCATION ’000000BE (SUM), (CDUMP), EC=90’
% IDA0N47 DUMP PROHIBITED BY /OPTION COMMAND
/

After this correction the program executes without errors. The errors can now be
definitively eliminated in the source program.

U6199-J-Z125-2-7600 109

Glossary

Glossary
address operand

This is an operand used to address a memory location or memory area. The
operand may specify virtual addresses, data names, statement names, source
references, keywords, complex memory references or a PROG qualification. The
memory location or area is located either in the program which has been loaded or
in a memory dump in a dump file. To address a data element, statement name or
source reference which is not located in the current program unit, the user must
employ a qualification to reference the relevant position in memory.

AID constant
The AID constants comprise all constants defined in the program, the statement
names, the source references, the results of address selection, length selection and
length function, and the AID literals. They represent a value which cannot be
changed. They have no address attribute.
An address constant represents an address, i.e. statement names, source references
and the result of an address selection. In conjunction with an operator pointer (->),
they allow you to address the required memory location.

AID input files
AID input files are files which AID requires to execute AID functions, as distinguished
from input files which the program requires. AID processes disk files only. AID input
files include:
1. Dump files containing memory dumps (%DUMPFILE)
2. PLAM libraries containing object modules. If the library has been assigned with

the aid of the %SYMLIB command, AID is able to load the LSD records.

AID literals
AID provides the user with both alphanumeric and numeric literals (see AID Core
Manual, chapter 8):

{C’x...x’ | ’x...x’C | ’x...x’} Character literal
{X’f...f’ | ’f...f’X} Hexadecimal literal
{B’b...b’ | ’b...b’B} Binary literal
[{±}]n Integer
#’f...f’ Hexadecimal number
[{±}]n.m Decimal number
[{±}]mantissaE[{±}]exponent Floating-point number

U6199-J-Z125-2-7600 111

Glossary

AID output files
AID output files are files to which the user can direct output of the %DISASSEMBLE,
%DISPLAY, %HELP, %SDUMP and %TRACE commands. The files are addressed via
their link names (F0 through F7) in the output commands (see %OUT and
%OUTFILE). The REP records are written to the file assigned to link name F6 (see
%AID REP=YES and %MOVE).

There are three ways of creating an output file:
1. /%OUTFILE command with link name and file name
2. /FILE command with link name and file name
3. For a link name to which no file name has been assigned, AID issues a FILE

macro with the file name AID.OUTFILE.Fn.
An AID output file always has the format FCBTYPE=SAM, RECFORM=V and
OPEN=EXTEND.

AID standard work area
In conjunction with debugging on machine code level, the AID standard work area
is the non-privileged part of virtual memory (in the user task) which is occupied by
the program and all its connected subsystems.
In conjunction with symbolic debugging, the AID standard work area is the current
program unit of the program which has been loaded. If no presetting has been
made with the %BASE command and no base qualification is specified, the AID
standard work area applies by default.

AID work area
The AID work area is the address area in which the user may reference addresses
without having to specify a qualification.
In symbolic debugging, the AID work area is the current program unit. Only the
data/statement names and source references within the current program unit can be
addressed without a qualification. In the case of the loaded program, the current
program unit is the one currently executing. In the case of a memory dump, the
current program unit is the one which was executing when the memory dump took
place.
You may deviate from the AID work area in a command by specifying a qualification
in the address operand. Using the %BASE command, you can shift the AID work
area from the loaded program to a memory dump, or vice versa.

area check
In the case of byte offset, length modification and the receiver of a %MOVE, AID
checks whether the area limits of the referenced memory objects are exceeded and
issues a corresponding message if necessary.

112 U6199-J-Z125-2-7600

Glossary

area limits
Each memory object is assigned a particular area, which is defined by the address
and length attributes in the case of data names and keywords. For virtual
addresses, the area limits are between V’0’ and the last address in virtual memory
(V’7FFFFFFF’). In PROG qualifications, the area limits are determined by the start
and end addresses of the program unit (see AID Core Manual, chapter 6).

Assembler procedure
This is a program unit in structured programming with an entry and an exit. It can
be called using a name, with current parameters if required. An Assembler
procedure starts and ends with the predefined macros @ENTR (start of procedure)
and @END (static end of procedure).

attributes
Each memory object has up to six attributes:
address, name (opt), content, length, storage type, output type.
Selectors can be used to access the address, length and storage type. Via the
name, AID finds all the associated attributes in the LSD records so they can be
processed accordingly.

Address constants and constants from the source program have only up to five
attributes:
name (opt), value, length, storage type, output type.
They have no address. When a constant is referenced, AID does not access a
memory object but merely inserts the value stored for the constant.

base qualification
The base qualification is the qualification the user employs to place the AID work
area in the loaded program or in a memory dump in a dump file. The specification
is made using E={VM | Dn}.
The base qualification can be declared globally with %BASE or specified explicitly in
the address operand for a single memory reference.

command mode
In the AID documentation, the term "command mode" designates the EXPERT mode
of the SDF command language. Users working in a different mode
(GUIDANCE={MAXIMUM|MEDIUM|MINIMUM|NO}) and wishing to enter AID commands
should switch to EXPERT mode via MODIFY-SDF-OPTIONS GUIDANCE=EXPERT.
AID commands are not supported by SDF syntax:

Operands are not queried via menus.
If an error occurs, AID issues an error message but does not offer a correction
dialog.

In EXPERT mode, the system prompt for command input is "/".

U6199-J-Z125-2-7600 113

Glossary

command sequence
Several commands are linked to form a sequence via semicolons (;). The sequence
is processed from left to right. A command sequence may contain both AID and
BS2000 commands, like a subcommand. Commands not permitted in a command
sequence are the AID commands %AID, %BASE, %DUMPFILE, %HELP, %OUT and
%QUALIFY as well as the BS2000 commands listed in the appendix of the AID Core
Manual.
If a command sequence contains one of the commands for runtime control, the
command sequence is aborted at that point and the program is started
(%CONTINUE, %RESUME, %TRACE) or halted (%STOP). As a result, any
commands which follow as part of the command sequence are not executed.

constant
An address constant represents an address. Address constants include statement
names, source references and the result of an address selection. They can be used,
in conjunction with a pointer operator (->), to address the corresponding memory
location.

CSECT information
is contained in the object structure list.

current call hierarchy
The current call hierarchy represents the status of subprogram nesting at the
interrupt point. It ranges from the subprogram level on which the program was
interrupted, through the exited subprograms and on to the main program. When
symbolic debugging of Assembler programs is performed, the call hierarchy can
only be observed if the program is composed of Assembler procedures, i.e. if a
structured Assembler program is involved.
The hierarchy is output using the %SDUMP %NEST command.

current program
The current program is the one loaded in the task in which the user enters AID
commands.

current program unit
The program (assembly) unit in which the program was interrupted.
The following should be noted for structured Assembler programs:
If the current program interrupt is the the ASSEMBH-XT runtime module, the current
program unit is no longer the user’s assembly unit. In this case the appropriate
PROG qualification must be used in AID commands.
The AID STOP message outputs the name of the program unit.

114 U6199-J-Z125-2-7600

Glossary

dataname
This operand stands for all names assigned for data in the source program.
dataname can be used to address constants, data fields, predefined general
registers, control sections, dummy sections, external dummy sections, dummy
registers and common control sections when symbolic debugging is performed (see
chapter 3).

data type
In accordance with the data type declared in the source program, AID assigns an
AID storage type to each data field:

binary string (%X)
character (%C)
numeric (%F, %D)

This storage type determines how the data field is output by %DISPLAY, transferred
or overwritten by %SET, and compared in the condition of a subcommand.

dump file
A disk file containing a program dump.

ESD
The External Symbol Dictionary (ESD) lists the external references of a module. It is
generated by the Assembler and contains, among other items, information on
CSECTs, DSECTs and COMMONs. The linkage editor accesses the ESD when it
creates the object structure list.

global settings
AID offers commands facilitating addressing, saving input efforts and enabling the
behavior of AID to be adapted to individual requirements. The presettings specified
in these commands continue to apply throughout the debugging session (see %AID,
%AINT, %BASE and %QUALIFY).

input buffer
AID has an internal input buffer. If this buffer is not large enough to accommodate
a command input, the command is rejected with an error message identifying it as
too long. If fewer of the repeatable operands are specified, the command will be
accepted.

interrupt point
The interrupt point is the address at which a program has been interrupted. From
the AID STOP message the user can determine both the address at which and the
program unit in which the interrupt point is located. The program is continued at
this point. A different continuation address can be specified with the aid of the
%JUMP command (FOR1 and COBOL85 only).

U6199-J-Z125-2-7600 115

Glossary

LIFO
Stands for the "last in, first out" principle. If statements from different entries concur
at a test point (%INSERT) or upon occurrence of an event (%ON), the ones entered
last are processed first (see AID Core Manual, section 5.4).

localization information
%DISPLAY %HLLOC(memref) for the symbolic level and %DISPLAY %LOC(memref)
for the machine code level cause AID to output the static program nesting for a
given memory location.
Conversely, %SDUMP %NEST outputs the dynamic program nesting, i.e. the call
hierarchy for the current program interrupt point.

LSD
The List for Symbolic Debugging (LSD) is a list of the data/statement names defined
in the module. It also contains the Assembler-generated source references
(statement numbers). The LSD records are created by the Assembler. AID uses
them to fetch the information required for symbolic addressing.

memory object
A memory object is formed by a set of contiguous bytes in memory. At program
level, this comprises the program data (if it has been assigned a memory area) and
the instruction code. Other memory objects are all the registers, the program
counter, and all other areas that can only be addressed via keywords. Conversely,
any constants defined in the program, as well as statement names, source
references, the results of address selection, length selection and length function, and
the AID literals do not constitute memory objects because they represent a value
that cannot be changed.

memory reference
A memory reference addresses a memory object. Memory references can either be
simple or complex.
Simple memory references include virtual addresses, names whose address AID
fetches from the LSD information, and keywords. Statement names and source
references are allowed as memory references in the AID commands %CONTROLn,
%DISASSEMBLE, %INSERT, %JUMP and %REMOVE although they are merely
address constants.
Complex memory references instruct AID how to calculate a particular address and
which type and length are to apply. The following operations are possible here: byte
offset, indirect addressing, type modification, length modification, address selection.

116 U6199-J-Z125-2-7600

Glossary

monitoring
%CONTROLn, %INSERT and %ON are monitoring commands. When the program
reaches a statement of the selected group (%CONTROLn) or the defined program
address (%INSERT), or if the declared event occurs (%ON), program execution is
interrupted and AID processes the specified subcommand.

name range
This comprises all data names stored for a program unit in the LSD records.

object structure list
On the basis of the External Symbol Dictionary (ESD), the linkage editor generates
the object structure list, provided the default SYMTEST=MAP applies or the user
has entered SYMTEST=ALL.

output type
This is an attribute of a memory object and determines how AID outputs the
memory contents. Each storage type has its corresponding output type. The AID
Core Manual, chapter 9, lists the AID-specific storage types together with their
output types. This assignment also applies for the data types used in ASSEMBH. A
type modification in %DISPLAY and %SDUMP causes the output type to be
changed as well.

predefined macros
These are used in structured programming with ASSEMBH-XT. The first character of
a predefined macro is always "@".
ASSEMBH-XT provides the user with a set of predefined macros which can be used
for structured programming. ASSEMBH-XT must be notified of the relevant macro
library when assembly runs for Assembler programs containing these macros take
place. The ASSEMBH-XT runtime system must be available for running the
programs.

program state
AID makes a distinction between three program states which the program being
tested may assume:

1. The program has stopped.
%STOP, the K2 key, the BKPT macro or completion of a %TRACE interrupted the
program. The task is in command mode. The user may enter commands.

2. The program is running without tracing.
%RESUME started or continued the program. %CONTINUE does the same, with the
exception that any active %TRACE is continued.

3. The program is running with tracing.
%TRACE started or continued the program. The program sequence is logged in
accordance with the declarations made in the %TRACE command. %CONTINUE has
the same effect if a %TRACE is still active.

U6199-J-Z125-2-7600 117

Glossary

program unit
This is an assembly unit.
ASSEMBH-XT generates an object module for each assembly unit.
The name of an assembly unit is the name of the first control section named
(START or CSECT statement) or the name of the first Assembler procedure (@ENTR
macro).

qualification
A qualification is used to reference an address which is not in the current AID work
area. The base qualification specifies whether the address is in the loaded program
or in a memory dump. The PROG qualification specifies the program unit in which
the address is situated.

If a qualification is found to be superfluous or contradictory, it will be ignored. This
is the case, for example, if a PROG qualification is specified for a data field of the
current program unit.

source reference
designates a statement number allocated by the Assmebler in the STMNT column of
the assembly listing. Every named executable Assembler instruction and every
predefined macro (@ macro) can be referenced.
The source reference is specified with S’stmt-no’.
stmt-no is an integer between 1 and 231-1.

statement name
designates the address of an executable Assembler instruction or of a call of a
predefined macro (@ makro).
The statement name is specified with L’name’.
name is the name entry of an Assembler instruction or of a call of a predefined
macro (@ macro) and can be up to 64 characters in length.
name is shortened to 32 characters by AID.
name can also be entered without L’...’ if it cannot be confused with a data name in
a command.

statement number
In the Assembler source program, each instruction and each comment is regarded
as a statement and is given a statement number in the assembly listing. If an
Assembler instruction extends over more than one line in the listing, the entire
instruction still has only one statement number. The statement number of Assembler
instructions generated by macros can be seen in the assembly listing if PRINT GEN
was used for assembly.
During symbolic debugging, the statement number can be used to reference all
Assembler instructions with a name in the name entry and all predefined macros (@
macros).

118 U6199-J-Z125-2-7600

Glossary

storage type
This is either the data type defined in the source program or the one selected by
way of type modification. AID knows the storage types %X, %C, %P, %D, %F and
%A (see AID Core Manual, chapters 6 and 9).

structured Assembler programs
Structured Assembler programs comply with the rules for structured programming
with ASSEMBH-XT. They are programmed with the aid of predefined macros and
are composed of Assembler procedures.

subcommand
A subcommand is an operand of the monitoring commands %CONTROLn,
%INSERT or %ON. A subcommand can contain a name, a condition and a
command part. The latter may comprise a single command or a command
sequence. It may contain both AID and BS2000 commands. Each subcommand has
an execution counter. Refer to the AID Core Manual, chapter 5, for information on
how an execution condition is formulated, how the names and execution counters
are assigned and addressed, and which commands are not permitted within
subcommands.
The command part of the subcommand is executed if the monitoring condition
(criterion, test-point, event) of the corresponding command is satisfied and any
execution condition defined has been met.

tracing
%TRACE is a tracing command, i.e. it can be used to define the type and number
of statements to be logged. Program execution can be viewed on the screen as a
standard procedure.

update dialog
The update dialog is initiated by means of the %AID CHECK=ALL command. It
goes into effect when the %MOVE or %SET command is executed. During the
dialog, AID queries whether updating of the memory contents really is to take place.
If N is entered in response, no modification is carried out; if Y is entered, AID will
execute the transfer.

user area
This is the area in virtual memory which is occupied by the loaded program and all
its connected subsystems. It corresponds to the area represented by the keyword
%CLASS6 (or %CLASS6ABOVE and %CLASS6BELOW).

U6199-J-Z125-2-7600 119

References

References
[1] AID (BS2000)

Advanced Interactive Debugger
Core Manual
User Guide

Target group
Programmers in BS2000
Contents

Overview of the AID system
Description of facts and operands which are the same for all programming
languages
Messages
Comparison between AID and IDA

Applications
Testing of programs in interactive or batch mode

[2] AID (BS2000)
Advanced Interactive Debugger
Debugging on Machine Code Level
User Guide

Target group
Programmers in BS2000
Contents

Description of the AID commmands for debugging on machine code level
Sample application

Applications
Testing of programs in interactive or batch mode

U6199-J-Z125-2-7600 121

References

[3] AID (BS2000)
Advanced Interactive Debugger
Debugging of COBOL Programs
User Guide

Target group
COBOL programmers
Contents

Description of the AID commands for symbolic debugging of COBOL
programs
Sample application

Applications
Testing of COBOL programs in interactive or batch mode

[4] AID (BS2000)
Advanced Interactive Debugger
Debugging of FORTRAN Programs
User Guide

Target group
FORTRAN programmers
Contents

Description of the AID commands for symbolic debugging of FORTRAN
programs
Sample application

Applications
Testing of FORTRAN programs in interactive or batch mode

[5] AID (BS2000)
Advanced Interactive Debugger
Debugging of PL/I Programs
User Guide

Target group
PL/I programmers
Contents

Preparations for the symbolic debugging of PL/I programs
Description of all the AID commands available for symbolic debugging
Examples of AID sessions
Messages

Applications
Debugging of PL/I programs in interactive and batch modes

122 U6199-J-Z125-2-7600

References

[6] AID (BS2000)
Advanced Interactive Debugger
Debugging of C Programs
User Guide

Target group
C programmers
Contents

Description of the AID commands for symbolic debugging of C programs
Sample application

Applications
Testing of C programs in interactive or batch mode

[7] BS2000
Executive Macros
User Guide

Target group
BS2000 assembly language programmers (non-privileged)
System administrators

Contents
All Executive macros in alphabetical order with detailed explanations and
examples; selected macros for DMS and TIAM
Macro overview according to application areas
Comprehensice training section dealing with eventing, serialization, inter-
task communication, contingencies

Applications
BS2000 application programs

U6199-J-Z125-2-7600 123

References

[8] BS2000
Programmiersystem *
Technische Beschreibung
(Programming System, Technical Description)

Target group
• BS2000 users with an interest in the technical background of their

systems (software engineers, systems analysts, computer center
managers, system administrators)

• Computer scientists interested in studying a concrete example of a
general-purpose operating system

Contents
Functions and principles of implementation of
• the linkage editor
• the static loader
• the Dynamic Linking Loader
• the debugging aids
• the program library system
Order number
U3216-J-Z53-1

[9] ASSEMBH (BS2000)
User Guide

Target group
Assembly language users under BS2000
Contents

Calling and controlling ASSEMBH
Assembling, linking, loading, and starting programs
Input sources and output of ASSEMBH
Runtime system, structured programming
Language interfacing
Assembler Diagnostic Program ASSDIAG
Advanced Interactive Debugger AID
ASSEMBH messages
Machine instruction formats

124 U6199-J-Z125-2-7600

References

[10] ASSEMBH (BS2000)
Reference Manual

Target group
Assembly language users under BS2000
Contents

Language scope of the assembler ASSEMBH
Assembly language structure, assembler instructions
Structure, elements and instructions of the macro language
Structured programming with ASSEMBH-XT, predefined macros for
structured programming

* available in German only

Ordering manuals

The manuals listed above and the corresponding order numbers are to be found in the
List of Publications issued by Siemens Nixdorf Informationssysteme AG, which also
tells you how to order manuals. New publications are listed in the Druckschriften-
Neuerscheinungen (New Publications).

You can arrange to have both of these sent to you regularly by having your name
placed on the appropriate mailing list. Your local office will help you.

U6199-J-Z125-2-7600 125

Index

Index

%.subcmdname 59, 86
%.subcmdname, delete 74
%.subkdoname 73
%? 48
%•subcmdname 36
%0G 43
%1G 43
%AID 16, 56, 61, 83
%AID REP 16, 56
%AID command, update dialog 16
%AID update dialog 56, 83
%AMODE 36
%AUD1 36
%BASE 28, 43, 44
%CALL 24, 98
%CC 36
%CLASS6 44
%COND 24, 98
%CONTINUE 22, 76, 96
%CONTROLn 23, 73
%DISASSEMBLE 28, 67, 69, 95
%DISASSEMBLE log 31
%DISPLAY 33, 67, 69, 95
%DUMPFILE 20, 41
%ERRFLG 74
%FIND 43
%FR 36
%GOTO 24, 98
%H %? 48
%H? 48
%HELP 48, 67, 69, 95
%HELP information, English or German 16
%IFR 36
%IMR 36
%INSERT 50, 73

U6199-J-Z125-2-7600 127

Index

%ISR 36
%L=(expression) 87
%LPOV 74
%MOVE 56
%MOVE command

REPs 16
update dialog 16

%MR 36
%n 36, 59, 86
%nD 36, 59, 86
%nDG 36, 59, 86
%nE 36, 59, 86
%NEST 79
%nG 3, 36, 59
%nGD 3
%nQ 36, 59, 86
%ON 63, 73
%OUT 28, 33, 38, 49, 67, 80, 97
%OUTFILE 61, 69
%OUTFILE command 17
%PC 36, 59, 74
%PCB 36
%PCBLST 36
%PM 36
%PROC 24, 98
%QUALIFY 71
%REMOVE 23, 73
%RESUME 76
%SDUMP 67, 69, 77, 95
%SET 83
%SET command, update dialog 16
%SORTEDMAP 33, 36
%STMT 24, 98
%STOP 50, 63, 92
%STOP within a subcommand 92
%SVC 74
%SYMLIB 77, 93
%TITLE 95
%TRACE 67, 69, 95, 96
%TRACE listing 100

128 U6199-J-Z125-2-7600

Index

A
additional information 67, 68, 80
address operand 71
address selection 30, 37, 46, 52, 59, 86
address selector 37, 60, 87
addressing mode 36
AID commands, help texts 48
AID literal 33, 38, 57, 61, 84, 88
AID message number range 48
AID output 28, 33, 38, 49, 80, 100

delimiter 16
AID register 36, 43, 59, 86
AID standard work area 20
AID work area 41, 68, 71
AIDSYS messages 48
alignment 43, 46
ALL 43
alter program state 22
area qualification 7
Assembler instruction 12, 51, 118
Assembler procedure 113
assembly listing 12, 118
assign AID output file 69
assign PLAM library 93

B
base 20
base qualification 7, 20, 21, 25, 29, 35, 45, 51, 57, 59, 72, 79, 84, 86, 94, 99
BKPT macro 22, 96
brief description of %HELP command 48
BS2000 catalog name of a PLAM library 94
byte boundary, search at 46
byte offset 30, 37, 46, 52, 59, 86

C
call of a predefined macro 12
CALL statement 77
calling a predefined macro 118
cataloging the output file 69
chaining of subcommands 50
character literal 43, 44, 95
CHECK 16
checking the storage types 83
close AID output file 69
close PLAM library 93

U6199-J-Z125-2-7600 129

Index

closing a dump file 41
command mode 92
command sequence 26, 65
compl-memref 30, 37, 52
complex memory reference 7
condition code 36
constant 8
continuation address, %FIND 43
continue program 22
control of the output file 67, 95
control 22, 50
control-area 23
control-area 24
creating an AID output file 69
criterion 23
criterion 24, 96
CSECT 33, 61
CSECT list 36
current call hierarchy 33
current interrupt point 24, 68, 92, 97, 98
current program unit 24, 33

D
data field 8, 33, 57, 84
data name 7
data output 33, 67
dataname 8, 35, 45, 58, 79, 85
declare global settings 16
define page header for SYSLST 95
definition in the source program 34
delete, test-point 74
delete event 74
delete test-point 54
delete %CONTROLn 73
delete all events of a group 74
delete test declarations 73
DELIM 16
delimiter of AID output fields 16
display lengths 33
display memory contents 33
doubleword boundary, search at 46
dump area 77

130 U6199-J-Z125-2-7600

Index

dump file
close 41
open 41

dynamic loading of LSD records 93

E
error message 48
event table 64
event 63, 64
execution condition 53, 65
execution control 26, 65, 76, 92, 96
execution counter 26, 33, 36, 53, 57, 59, 65, 76, 84, 86

F
F6 69
feed to SYSLST 33
feed-control 38
file 41, 69, 70
filename 94
find-area 43, 44

G
global declaration, define 71

H
halfword boundary, search at 46
help texts 48

output 48
hexadecimal literal 43, 44
hit address 43
hold the program 92

I
In message number 49
indirect addressing 30, 37, 46, 52, 59, 86
individual command 41, 48, 71
info-target 48
information on error messages 48
information on the operation of AID 48
input file 41
instruction, disassembled 28
interpretation of the hyphen 16
interrupt flag register 36
interrupt mask register 36
interrupt status register 36
interrupting the program 54

U6199-J-Z125-2-7600 131

Index

interrupting the program run 92
INVALID OPCODE. 28

K
K2 key 92
keyword 7, 36, 63
keyword 59, 86

L
L’name’ 30, 35, 45, 51, 58, 85
LANG 16
length function 38, 60, 87
length modification 30, 37, 46, 52, 59, 86
length selector 37, 60, 87
LIFO principle 50, 63
line feed 38
link name, assign 41, 69
link name F6 61
link 69
link 41
list of CSECTs 36
literal, find 43
LMS UPDR record 61
localization information, symbolic 36
LOW 16
lowercase/uppercase 16
LSD records 8, 77, 93

dynamic loading 93

M
machine code level 33, 34, 56, 83
matching numeric values 83
medium-a-quantity 33, 48, 67, 77
memory area 44
memory contents

modify 83
modifying 56

memory references 7
message number, IDA0n 48
metasyntax 13
modifying memory contents 56, 83
monitor program addresses 50
monitoring function 23, 24
monitoring statements 23

132 U6199-J-Z125-2-7600

Index

N
name 9
number of lines per print page 95
number 28, 29, 96
numeric receiver 83
numeric transfer 83

O
object structure list 61
open AID output file 69
open PLAM library 93
output %DISASSEMBLE log 31
output %TRACE listing 100
output commands

%DISASSEMBLE 28, 67
%DISPLAY 33, 67
%HELP 67
%SDUMP 67
%TRACE 67, 96

output current call hierarchy 77
output data areas 77
output file

assign 69
catalog 70
close 69
open 69, 70

output literal 43
output medium 28, 33, 39, 48, 49, 67, 80, 97
output of hits 43

%FIND 43
output type 34, 37
OV 16
overlay 16

P
P1 audit table 36
page counter for SYSLST 95
page feed 38
page-header 95
period 25, 29, 35, 45, 51, 57, 71, 78, 84, 94, 99
permissible combinations for %SET 90
PLAM library 6, 77

assign 93
close 93
open 93

U6199-J-Z125-2-7600 133

Index

predefined macros 117
prequalification 25, 29, 35, 45, 51, 57, 71, 78, 84, 94, 99

define 71
process control block 36
PROG qualification 7, 25, 29, 35, 45, 51, 58, 72, 79, 85, 99
program

continue 22, 65, 76, 96
start 22, 76, 96

program area to be monitored 24, 98
program counter 36, 59, 86
program error 63
program mask 36
program name, output 79
program register 36
program state, alter 76
program status, alter 92
program termination 63

abnormal 63
normal 63

program unit, current 20
programs with overlay structure 16

Q
qualification-a-lib 93

R
receiver 56, 57, 83, 84
register 33, 57, 84, 86
REP file 61
REP record 61
REP 16, 56, 61
retranslate memory contents 28
runtime control 53
runtime system 92

S
S’stmt-no’ 25, 30, 36, 46, 52, 58, 85, 99
search string 43
search string length 43
search-criterion 43
sender 56, 57, 83, 84
source reference 7, 57, 84
start %TRACE 96
start program 22
start 29

134 U6199-J-Z125-2-7600

Index

statement 33
statement name 7, 12, 57, 84, 118
statement number 118
STOP message 92
storage type 34, 37, 78
storage types, checking 56
structured Assembler programs 119
subcmd 23
subcmd 50, 63, 65
subcommand 22, 26, 43, 53, 63, 65, 71, 76, 92, 96, 119
subcommand chaining 53, 65
subcommand condition 26
subcommand name 26, 65
subcommand nesting 53, 65
subprogram nesting 77
supervisor call (SVC) 63
SYMCHARS 16
SYSLST 38, 95
SYSOUT 43
system information 33
system table 36

T
target 73
target-cmd 67
terminate %TRACE 96
test-point 50
trace-area 96
tracing 76, 96

continue 22
transfer while retaining values 83
type modification 30, 33, 37, 46, 52, 59, 86

U
update dialog 16, 56
uppercase/lowercase 16

W
wildcard symbol 44
word boundary, search at 46

U6199-J-Z125-2-7600 135

Contents

Contents
1 Preface 1.........................

2 Prerequisites for symbolic debugging 5.............
2.1 Assembly 5.........................
2.2 Linking, loading and starting 6..................

3 ASSEMBH-specific addressing 7................

4 Metasyntax 13........................

5 AID commands 15......................
%AID Change global settings 16............
%BASE Define global base qualification 20.........
%CONTINUE Start or continue program, continue any active %TRACE 22
%CONTROLn Monitor selected statements 23..........
%DISASSEMBLE Retranslate memory contents into symbolic Assembler

notation 28.................
%DISPLAY Output the contents of data elements, their addresses

and lengths, system information and literals 33....
%DUMPFILE Open or close dump files and assign link names 41..
%FIND Search for a character string 43.........
%HELP Help function for AID commands and AID messages 48
%INSERT Set test points for monitoring program execution 50..
%MOVE Change the contents of data elements without type

checking and without converting numerical values 56.
%ON Monitor selected events 63...........
%OUT Specify output media and additional information for

output commands 67..............
%OUTFILE Open or close AID output files and assign link names 69
%QUALIFY Define a prequalification 71...........
%REMOVE Delete monitoring declarations 73.........
%RESUME Start or continue program, terminate any active

%TRACE 76.................
%SDUMP Symbolic dump; output data elements or the program

names of the current call hierarchy 77.......
%SET Change the contents of data elements with type

checking and with conversion of numerical values 83.
%STOP Halt program and switch to command mode 92....

U6199-J-Z125-2-7600

Contents

%SYMLIB Specify libraries for dynamic loading of LSD records 93.
%TITLE Define page headers and activate pagination for output

to SYSLST 95................
%TRACE Start or continue program with tracing 96......

6 Sample application 101....................
6.1 Assembler program 101.....................
6.2 Test run 104.........................

Glossary 111............................

References 121...........................

Index 127.............................

U6199-J-Z125-2-7600

AID V2.0A (BS2000)

Advanced Interactive Debugger
Debugging of ASSEMBH Programs
User Guide

Target group
Assembly language programmers
Contents

Description of the AID commands for symbolic debugging of ASSEMBH-XT
programs
Sample application

Applications
Testing of ASSEMBH-XT programs in interactive or batch mode

Edition: December 1991

File: AID_ASS.PDF

BS2000 is a registered trademark of Siemens Nixdorf Informationssysteme AG.

Copyright © Siemens Nixdorf Informationssysteme AG, 1994. All rights reserved.

The reproduction, transmission, translation or exploitation of this document or its contents
is not permitted without express written authority. Offenders will be liable for damages.

Delivery subject to availability; right of technical modifications reserved.

U6199-J-Z125-2-7600

Information on this document
On April 1, 2009, Fujitsu became the sole owner of Fujitsu Siemens Compu-
ters. This new subsidiary of Fujitsu has been renamed Fujitsu Technology So-
lutions.

This document from the document archive refers to a product version which
was released a considerable time ago or which is no longer marketed.

Please note that all company references and copyrights in this document have
been legally transferred to Fujitsu Technology Solutions.

Contact and support addresses will now be offered by Fujitsu Technology So-
lutions and have the format …@ts.fujitsu.com.

The Internet pages of Fujitsu Technology Solutions are available at
http://ts.fujitsu.com/...
and the user documentation at http://manuals.ts.fujitsu.com.

Copyright Fujitsu Technology Solutions, 2009

Hinweise zum vorliegenden Dokument
Zum 1. April 2009 ist Fujitsu Siemens Computers in den alleinigen Besitz von
Fujitsu übergegangen. Diese neue Tochtergesellschaft von Fujitsu trägt seit-
dem den Namen Fujitsu Technology Solutions.

Das vorliegende Dokument aus dem Dokumentenarchiv bezieht sich auf eine
bereits vor längerer Zeit freigegebene oder nicht mehr im Vertrieb befindliche
Produktversion.

Bitte beachten Sie, dass alle Firmenbezüge und Copyrights im vorliegenden
Dokument rechtlich auf Fujitsu Technology Solutions übergegangen sind.

Kontakt- und Supportadressen werden nun von Fujitsu Technology Solutions
angeboten und haben die Form …@ts.fujitsu.com.

Die Internetseiten von Fujitsu Technology Solutions finden Sie unter
http://de.ts.fujitsu.com/..., und unter http://manuals.ts.fujitsu.com finden Sie die
Benutzerdokumentation.

Copyright Fujitsu Technology Solutions, 2009

	Title
	Contents
	Preface
	Prerequisites for symbolic debugging
	Assembly
	Linking, loading and starting

	ASSEMBH-specific addressing
	Metasyntax
	AID commands
	%AID Change global settings
	%BASE Define global base qualification
	%CONTINUE Start or continue program, continue any active %TRACE
	%CONTROLn Monitor selected statements
	%DISASSEMBLE Retranslate memory contents into symbolic Assembler notation
	%DISPLAY Output the contents of data elements, their addresses and lengths, system information and literals
	%DUMPFILE Open or close dump files and assign link names
	%FIND Search for a character string
	%HELP Help function for AID commands and AID messages
	%INSERT Set test points for monitoring program execution
	%MOVE Change the contents of data elements without type checking and without converting numerical values
	%ON Monitor selected events
	%OUT Specify output media and additional information for output commands
	%OUTFILE Open or close AID output files and assign link names
	%QUALIFY Define a prequalification
	%REMOVE Delete monitoring declarations
	%RESUME Start or continue program, terminate any active %TRACE
	%SDUMP Symbolic dump; output data elements or the program names of the current call hierarchy
	%SET Change the contents of data elements with type checking and with conversion of numerical values
	%STOP Halt program and switch to command mode
	%SYMLIB Specify libraries for dynamic loading of LSD records
	%TITLE Define page headers and activate pagination for output to SYSLST
	%TRACE Start or continue program with tracing

	Sample application
	Assembler program
	Test run

	Glossary
	References
	Index
	Symbols
	A-C
	D
	E-I
	K-M
	N-P
	Q-S
	T-W

