
Edition May 1991

©
 S

ie
m

en
s

N
ix

do
rf

In
fo

rm
at

io
ns

sy
st

em
e

AG
 1

99
5

P
fa

d:
 D

:\h
an

db
uc

h\
en

gl
is

ch
\p

l1
_t

it_
us

.fm

PLI1 V4.1A
PL/I Compiler

pl1_tit_us.fm Seite 1 Dienstag, 8. September 2009 1:14 13

Comments… Suggestions… Corrections…
The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
manuals@ts.fujitsu.com

Certified documentation
according to DIN EN ISO 9001:2000
To ensure a consistently high quality standard and
user-friendliness, this documentation was created to
meet the regulations of a quality management system which
complies with the requirements of the standard
DIN EN ISO 9001:2000.

cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

This manual is printed
on paper treated with
chlorine-free bleach.

Copyright © Fujitsu Technology Solutions GmbH 2009.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

pl1_tit_us.fm Seite 2 Dienstag, 8. September 2009 1:14 13

Contents
1 Preface 1
1.1 Target group and summary of contents 1
1.2 Changes since the last version of the manual 3

2 Overview of the use of PLI1 5
2.1 General program execution 5
2.1.1 General program execution with ISP commands 6
2.1.2 General program execution with SDF commands 10
2.2 Examples 13
2.2.1 Batch processing: reading, printing 13
2.2.2 Interactive task: input/output to files via SYSFILE command 18
2.2.3 Batch processing: input/output via LINK 20
2.2.4 Use of libraries 28
2.2.5 Use of debugging aids 32
2.2.6 File organization CONSECUTIVE, INDEXED and REGIONAL (1) 37

3 Compiling a PL/I source program 41
3.1 Functions of the PLI1 compiler 41
3.2 Invoking the PLI1 compiler 43
3.2.1 Invoking the compiler by ISP command 43
3.2.2 Invoking the compiler by SDF command 43
3.2.3 Monitoring by monitoring job variable 44
3.2.4 Message text file 45
3.2.5 Examples 46
3.3 Controlling the PLI1 compiler 50
3.3.1 General rules for control statements 51
3.3.2 Error handling during control statement evaluation 53
3.3.3 Summary of the control statements for the PLI1 compiler 54
3.3.4 Controlling the compiler via the source program 63
3.3.5 Storage requirements of the compiler (STORAGE) 65
3.4 Controlling source input 66
3.4.1 SYSFILE command (SYSDTA reassigned) 68
3.4.2 Defining the source file (SOURCE) 70
3.4.3 Defining the INCLUDE library (COMLIB) 75
3.4.4 Source line format (MARGINS) 76

U253-J-Z125-9-7600

Contents

3.5 Controlling the listing output of the PLI1 compiler 78
3.5.1 List selection (LIST) 79
3.5.2 Selection of diagnostic information (DIAGNOST) 82
3.5.3 Additional listing output of messages (MESSAGE) 82
3.5.4 Output format (FORMAT) 83
3.6 Controlling object module generation 85
3.6.1 Switch for compiler phases (OBJECT) 85
3.6.2 Debugging aids in the object module (DEBUG) 86
3.6.3 Procedure status (OPTIONS) 87
3.6.4 Optimization (OPTIMIZE) 88
3.6.5 Debugging aid AID (SYMTEST) 90
3.6.6 Object module storing (MODULE) 91
3.7 Object module maintenance 93
3.7.1 Object module to *EAM file 95
3.7.2 Object module to LMS library 97
3.7.3 Table of contents of a library 98
3.8 Listings of the compiler (LIST =) 99
3.8.1 Options (OPTIONS) 100
3.8.2 Preprocessor (INSOURCE) 101
3.8.3 Source listing (SOURCE, EXPAND) 102
3.8.4 External names (ESD) 106
3.8.5 Include texts (IREF) 108
3.8.6 Cross-reference listing 109
3.8.7 Structure lengths (AGGREGATE) 112
3.8.8 Storage occupancy (MAP) 115
3.8.9 Offset listing (OFFSET) 119
3.8.10 Assembly code (ASSM) 119
3.8.11 Statistics (SUMMARY) 121
3.9 Diagnostic messages (DIAGNOST) 122
3.10 Format of the SAVLST file 125
3.11 Use of the preprocessor 126
3.12 Description of the operands of the SDF command

START-PLI1-COMPILER 131
3.12.1 Overview of the operands 131
3.12.2 Description of the individual operands 132

SOURCE operand 132
INCLUDE-LIBRARY operand 133
SOURCE-PROPERTIES operand 134
PREPROCESSING operand 135
COMPILER-ACTION operand 136
MODULE-LIBRARY operand 137
LISTING operand 138
TEST-SUPPORT operand 141

U253-J-Z125-9-7600

Contents

OPTIMIZATION operand 143
COMPILER-TERMINATION operand 144
MONJV operand 145
LANGUAGE operand 146

3.12.3 Mapping of SDF operands to COMOPT operands 147

4 Linking and loading a PL/I program 149
4.1 General 149
4.2 Controlling the linkage editor (TSOSLNK) 150
4.2.1 Calling the linkage editor 151
4.2.2 Statements for the linkage editor 152

PROGRAM statement 152
INCLUDE statement 153
RESOLVE statement 154
END statement 154

4.3 Example of the linkage editor 155
4.4 Loading 156
4.5 Runtime system 157
4.5.1 Elementary runtime system 159
4.5.2 Prelinked runtime system 159
4.5.3 Storage of the runtime system 160
4.6 Name conventions for PL/I object modules 161
4.7 Extended address space (XS) 163

5 Execution of the PL/I program 165
5.1 General 165
5.2 Program execution 167
5.2.1 Execution with ISP command 167
5.2.2 Execution with SDF command 167
5.2.3 Monitoring by monitoring job variable 168
5.2.4 Examples 169
5.3 Controlling the PL/I program 172
5.3.1 General rules for control statements 172
5.3.2 Error handling for control statement evaluation 172
5.3.3 Controlling the listing output 173
5.3.4 Overview of the control statements for PL/I programs 174
5.4 Individual descriptions of the control statements for

PL/1 programs 180
5.4.1 Parameter transfer (ARGUMENT) 180
5.4.2 Dump control (DUMP) 181
5.4.3 Output formats (FORMAT) 181
5.4.4 List selection (LIST) 182
5.4.5 Additional message output (MESSAGE) 182
5.4.6 Storage requirements (STORAGE) 183
5.4.7 System file assignment (SYSFILE) 184

U253-J-Z125-9-7600

Contents

5.4.8 Trace control (TRACE) 186
5.4.9 Setting tabs (TABULATOR) 186
5.4.10 Alignment control (CONTROL) 187
5.5 Check activation (ACTIVE) 187
5.6 Program interrupt 188
5.7 Description of the operands of the SDF command

START-PLI1-PROGRAM 192
5.7.1 Overview of the operands 192
5.7.2 Description of the individual operands 193

FROM-FILE operand 193
CPU-LIMIT operand 194
MONJV operand 194
START-PARAMETERS operand 194
LANGUAGE operand 194
ASSIGN-SYSLST operand 195
ASSIGN-SYSOUT operand 195
ASSIGN-SYSDTA operand 195
TEST-SUPPORT operand 196
LISTING operand 198
HEAP-ADMINISTRATION operand 199
STACK-ADMINISTRATION operand 200
TABULATOR-POSITION operand 201

5.7.3 Mapping of SDF operands to RUNOPT operands 202

6 File access by PL/I programs 203
6.1 General 203
6.2 BS2000 files 204
6.2.1 System files 204
6.2.2 User files 206
6.2.2.1 General 206
6.2.2.2 File name 207
6.2.2.3 File link name 208
6.2.2.4 File organization (access method) 209
6.2.2.5 Record structure 211
6.2.2.6 Volumes 217
6.2.2.7 Access authorization 218
6.2.2.8 File size 219
6.2.2.9 Other file specifications 221
6.2.3 Interfaces between the PL/I input/output system and BS2000 221
6.3 Program files and ENVIRONMENT attribute 222
6.3.1 Types of organization 224
6.3.2 Record structure 225
6.3.3 Key options 227

U253-J-Z125-9-7600

Contents

6.3.4 Carriage control 228
6.3.5 Controlling the VARYING variable 229
6.3.5.1 Reading a record using READ INTO 230
6.3.5.2 Writing a record using WRITE FROM 232
6.3.5.3 Reading a record using READ SET 232
6.3.5.4 Writing a record using LOCATE SET 234
6.3.6 Device control using TRANSIENT files 235
6.3.7 Other options 235
6.4 Assigning program files to BS2000 files 236
6.4.1 Rules governing the assignment of file names 236
6.4.2 Rules governing the assignment of organization methods 239
6.4.3 Relationship between FILE command and ENVIRONMENT specification 240
6.4.4 Determining the file characteristics 242
6.4.4.1 Characteristics for a new file 244
6.4.4.2 Extend old output file (EXTEND) 246
6.4.4.3 Characteristics for existing files 247
6.5 Stream-oriented input and output 248
6.5.1 Rules governing stream-oriented input and output 249
6.5.2 PRINT files 251
6.5.3 Stream-oriented input/output to interactive device 253
6.5.3.1 Input from interactive device (SYSDTA) 253
6.5.3.2 Output to interactive device (PRINT file to SYSOUT) 254
6.6 Record-oriented input and output 256
6.6.1 Rules governing CONSECUTIVE organization 258
6.6.1.1 Opening CONSECUTIVE files 259
6.6.1.2 Closing CONSECUTIVE files 259
6.6.1.3 Writing to a CONSECUTIVE file 259
6.6.1.4 Reading from a CONSECUTIVE file 260
6.6.1.5 Overwriting records in a CONSECUTIVE file 260
6.6.1.6 Deleting records in a CONSECUTIVE file 260
6.6.1.7 FILE command for CONSECUTIVE files 261
6.6.2 Rules governing INDEXED organization 263
6.6.2.1 Key specification 264
6.6.2.2 Opening an INDEXED file 265
6.6.2.3 Closing an INDEXED file 265
6.6.2.4 Writing to an INDEXED file 266
6.6.2.5 Reading from an INDEXED file 266
6.6.2.6 Overwriting records in an INDEXED file 267
6.6.2.7 Deleting records in an INDEXED file 267
6.6.2.8 FILE command for INDEXED files 267
6.6.3 Rules governing REGIONAL(1) organization 269
6.6.3.1 Key specification 271
6.6.3.2 Dummy records 271

U253-J-Z125-9-7600

Contents

6.6.3.3 Opening a REGIONAL(1) file 272
6.6.3.4 Closing a REGIONAL(1) file 273
6.6.3.5 Writing to a REGIONAL(1) file 273
6.6.3.6 Reading from a REGIONAL(1) file 273
6.6.3.7 Overwriting records in a REGIONAL(1) file 273
6.6.3.8 Deleted records in a REGIONAL(1) file 274
6.6.3.9 FILE command for REGIONAL(1) files 274
6.6.4 Rules governing REGIONAL(3) organization 275
6.6.4.1 Key specification 276
6.6.4.2 Dummy records 279
6.6.4.3 Opening a REGIONAL(3) file 279
6.6.4.4 Closing a REGIONAL(3) file 279
6.6.4.5 Writing to a REGIONAL(3) file 280
6.6.4.6 Reading from a REGIONAL(3) file 280
6.6.4.7 Overwriting a REGIONAL(3) file 280
6.6.4.8 Deleting a record in a REGIONAL(3) file 281
6.6.4.9 FILE command for REGIONAL(3) files 281
6.7 Magnetic tape 283
6.7.1 Access methods for tape files 283
6.7.2 File attributes 283
6.7.3 Accessing 284
6.7.4 Closing the file 285

7 Procedure interface 287
7.1 PL/I interfaces 288
7.1.1 Invocation interface 288
7.1.1.1 Invoking procedure 289
7.1.1.2 Prolog 289
7.1.2 Passing of parameters 292
7.1.2.1 Normal case (PL/I) 293
7.1.2.2 General assembler convention (VARIABLE) 296
7.1.2.3 Standard assembler convention (ASSEMBLER) 298
7.1.3 Problem processing 299
7.1.4 Return of the result 299
7.1.4.1 Return in register 1 300
7.1.4.2 Return in floating point registers 300
7.1.4.3 Return via parameters 300
7.1.4.4 Return when * is specified 301
7.1.5 Terminating a procedure 302
7.1.5.1 Return 303
7.1.5.2 Branch 304
7.1.6 Library procedure (LIBRARY) 305
7.1.7 (WXTRN) Linkage 306
7.2 Assembler procedures 307

U253-J-Z125-9-7600

Contents

7.2.1 Assembler procedure conforming to PLI1 conventions 308
7.2.2 Assembler procedures conforming to standard assembler conventions 309
7.2.3 Assembler procedures conforming to general assembler conventions

(VARIABLE) 309
7.2.4 Invocation of PL/I procedures from assembly-language programs 310
7.3 FORTRAN and COBOL procedures 311
7.3.1 General 311
7.3.2 Matching the data 312
7.3.3 Declaration, call 316
7.3.4 Interrupt handling 317
7.3.5 Program termination 318
7.3.6 Invocation of PL/I procedures from FORTRAN and COBOL programs 319
7.4 ILCS procedures 320
7.4.1 General 320
7.4.2 Start handling 321
7.4.3 Declaration, call 321
7.4.4 Mapping of files 322
7.4.5 Interrupt handling 322
7.4.6 Termination handling 322

8 Optimization facilities 323
8.1 Overview 324
8.1.1 Compiler 324
8.1.2 Runtime system 325
8.2 Manual optimization 326
8.2.1 Running a program - stage 1 326
8.2.2 Tuning a program - stage 2 327
8.2.3 Tuning a program for virtual storage 331
8.2.4 Modular programming 333
8.3 In-line operations 334
8.3.1 Data conversion 334
8.3.2 String handling 339
8.4 Global optimization features 340
8.4.1 Common expressions 340
8.4.1.1 Interrupt handling 341
8.4.2 Transfer of invariant expressions or statements out of DO loops 342
8.4.3 Reduction of linear expressions in DO loops 343
8.4.4 ORDER and REORDER options 343
8.4.4.1 ORDER options 344
8.4.4.2 REORDER option 344
8.4.5 Elimination of side effects / reducible functions 346
8.4.6 Optimization of Boolean expressions 346
8.4.7 Expression simplification 347

U253-J-Z125-9-7600

Contents

8.4.8 Initialization of aggregates 348
8.4.9 Special code for aggregate assignment 348
8.4.10 Utilization of registers in DO statements 349
8.4.11 Internal procedure calls 349
8.4.12 Utilization of global optimization 349
8.4.12.1 Common expression elimination 350
8.4.12.2 Transfer of invariant expressions 352
8.4.12.3 Reduction of linear expressions in loops 352
8.4.12.4 Register and address optimization 352
8.4.12.5 Use of registers in DO statements 352
8.5 Optimization control (OPTIMIZE) 353
8.5.1 Time optimization (TIME) 353
8.5.2 Change enabling of conditions (ENABLING) 353
8.5.3 Sequence of statements modifiable (REORDER) 353
8.5.4 Overlapping (OVERLAP) 354
8.6 Programming notes 355
8.6.1 Source program and general syntax 355
8.6.2 Program control 356
8.6.3 Declarations and attributes 357
8.6.4 Assignment and initialization 360
8.6.5 Arithmetic expressions, Boolean expressions and conversions 362
8.6.6 DO groups 366
8.6.7 Aggregates 369
8.6.8 Strings 370
8.6.9 Functions and pseudo variables 370
8.6.10 Conditions and ON units 371
8.6.11 Input/output 372
8.6.12 Procedure functions with several entries 375
8.6.13 Variable length entry 377
8.6.14 Passing of parameters 377
8.6.15 Absolute bit pointer for XS 377

9 Debugging aids 379
9.1 Compiler control 380
9.2 Program control 381
9.3 Trace output 383
9.4 Activation of check points 383
9.5 Program interrupt 384
9.6 Dump 384
9.7 SNAP 385
9.8 Interface to the AID debugger 386

U253-J-Z125-9-7600

Contents

10 Internal Representation 387
10.1 Arithmetic variables 389
10.1.1 Fixed binary variables (FIXED BINARY) 390
10.1.2 Fixed decimal variables (FIXED DECIMAL) 393
10.1.3 Floating point variables (FLOAT) 396
10.1.4 Picture character string variable (PICTURE) 399
10.1.5 Complex variables 399
10.2 String variables 400
10.2.1 Bit string variables (BIT) 400
10.2.2 Character string variables (CHARACTER) 403
10.2.3 Picture variable (PICTURE) 405
10.3 Program control variables 406
10.3.1 Pointer (POINTER, OFFSET) 406
10.3.1. Pointer if "*COMOPT OPTIONS = NOXS" 406
10.3.1. Pointer with "*COMOPT OPTIONS = XS" 407
10.3.2 Area (AREA) 408
10.3.3 Label (LABEL) 410
10.3.4 Format (FORMAT) 411
10.3.5 Entry (ENTRY) 412
10.3.6 File (FILE) 413
10.4 Array (DIMENSION) 414
10.5 Structure (STRUCTURE) 416
10.5.1 Storage requirements 416
10.5.2 Aliased variables 419
10.5.3 Matching at the beginning 421
10.5.4 Self-defining structures 424
10.5.5 Record 426
10.6 Description of the data type 428
10.6.1 Data description 428
10.6.2 Picture description 433
10.7 Storage management 436
10.7.1 Static variables (STATIC) 436
10.7.2 Activation records (stack, AUTOMATIC) 437
10.7.3 Standard area (CONTROLLED, BASED) 442
10.7.4 Named area (AREA) 446
10.7.5 Reference chain for CONTROLLED variable 449

11 Utilities 453
ADUMP Dump from the standard area 455
BS2SRT Sort/merge 457
CMD Execute BS2000 command 462
ERROUT Error text output 464
HEXDEC (a) Hexadecimal characters 465
NOTRACE Trace off 467

U253-J-Z125-9-7600

Contents

PLIRETC Set return code 468
RDUMP (a,b) Dump 469
RUNTIME Computing time used 470
SDUMP Stack dump 471
SNAP Call nesting 473
TRACE Trace on 475

12 Shareable programs 477
12.1 Prerequisites 477
12.2 PL/I programs 478
12.2.1 STATIC variables 478
12.2.2 Input/output statements 479
12.2.3 CONTROLLED variables 479
12.3 Entry into class 4 memory 480

13 PLI1 ASSEMBLER macro interface 481
13.1 General 481
13.1.1 Table of macros 481
13.1.2 User considerations 482
13.2 Macros 483

P$CALL 483
P$ENTRY 486
P$ENVIRM 488
P$ERROR 490
P$LINK 491
P$PRV 493
P$REGEQU 494
P$RETURN 495
P$STACK 497
P$STOP 498

14 Appendix 499
14.1 List of compiler warnings and error messages 499
14.2 List of error messages from object programs

(ONCODE values) 501
14.3 Constraints on implementation 521
14.4 Distinctions from PL/I-D 525
14.5 Examples of sorting 528
14.6 Additional information on information messages 535
14.7 Runtime modules 543
14.8 Messages of the PLI1 runtime system 552
14.9 Examples of PLI1 ASSEMBLER macros 556

15 References 561
Index 567

U253-J-Z125-9-7600

1 Preface

1.1 Target group and summary of contents

This user guide is intended for programmers who use the software product PLI1. While
the language reference manual for this PL/I compiler is largely free of peripheral condi-
tions relating to the operating system, this manual describes the integration and opera-
tion of the compiler in BS2000. A general knowledge of this operating system is assu-
med. Explanations of system characteristics are given only if such information will be of
use to the PL/I user.

The reader should be familiar with the PL/I programming language as described in the
manual

PLI1 (BS2000)
PL/I Compiler
Language Reference Manual

The present manual is geared to applications in both interactive and batch mode. It
does not cover operation of the PL/I (D level) compiler.

An initial overview is provided by the examples in chapter 2. The execution of some
simple applications is explained in detail using the computer listings.

Chapter 3 explains in detail all the control facilities for the PLI1 compiler.

These include:

selection of different listing formats
preparation of the source program
storage and characteristics of the generated object modules
notes on the management of object modules in libraries.

Chapter 4 describes the linkage procedure for standard applications. Users who wish to
segment (OVERLAY) their programs or perform other special operations during linkage
will find the necessary information in the "Utility Routines" manual [3], and in the "Lin-
kage Editor and Loaders" manual [12] if using BS2000 version 8.0 or higher.

U253-J-Z125-9-7600 1

Preface

Some effects of executable user programs can be controlled externally. This applies
especially to

activation of debugging and testing aids
passing of parameters
linking of system files
selection of standard listings

These facilities are presented in chapter 5.

The use of files is described in detail in chapter 6. An overview of the file interface provi-
ded by BS2000 is followed by a discussion of various aspects of the peripheral condi-
tions concerning PL/I programs.

In chapter 7 the interface for PL/I procedures is represented in machine-oriented for-
mat. This interface can also be used to set up interfaces for assembly-language pro-
grams that behave like PL/I procedures. Other interfaces are discussed that can be set
up by means of special control options. A description is also given of interfaces to pro-
cedures written in other programming languages (see also chapter 13).

Chapter 8 shows how PL/I programs can be optimized.

Chapter 9 describes debugging aids applied within the framework of the PLI1 system.

Chapter 10 deals with the internal representation of data and listings from the viewpoint
of their interest to users for debugging purposes.

Chapter 11 describes utilities that can be invoked in PL/I programs by a subroutine
reference (CALL) or a function call.

Chapter 12 explains what to do when a program is to be shared by several users.

chapter 14 describes a number of macros that facilitate the writing of assembly-lang-
uage procedures that are to behave exactly like PL/I procedures.

Where possible, important information is summarized in table form. The tables can also
be found in the PLI1 Ready Reference. In some instances formal syntax notation is
used; this conforms to the syntax rules defined in the language reference manual [1].

2 U253-J-Z125-9-7600

Preface

1.2 Changes since the last version of the manual

The most important changes compared with the previous edition of the manual are sum-
marized below:

The PLI1 compiler can also be invoked using the SDF command START-PLI1-
COMPILER (sections 2.1.2 and 3.2).

PLI1 programs can also be invoked using the SDF command START-PLI1-
PROGRAM (sections 2.1.2 and 5.2).

Descriptions of the operands of the SDF command START-PLI1-COMPILER and
table showing the mapping of the SDF operands to the COMOPT operands (section
3.12).

Descriptions of the operands of the SDF command START-PLI1-PROGRAM and
table showing the mapping of the SDF operands to the RUNOPT operands (section
5.7).

PLI1 language interfacing facilities also permit program-to-program communication
at runtime in accordance with the conventions of the Inter Language Communication
Services (ILCS). These conventions support the linkage of any combination of pro-
grams written in different programming languages (see section 7.4).

U253-J-Z125-9-7600 3

2 Overview of the use of PLI1
This section shows, in simple examples, how PL/I compilations and PL/I program runs
can be performed in BS2000. The examples are a guide for processing common appli-
cations.
Normally, the examples apply to any kind of job (task); i.e. to processing in both batch
and interactive mode. Any differences between batch and interactive mode are discus-
sed.

2.1 General program execution

To understand the command sequences in the examples, the general flow for compiling
and executing the program is briefly described below.

Using the PLI1 compiler, PL/I source programs are converted into object modules. In
this process, the programs are checked for correct syntax and semantics and various
listings are generated. The object modules are stored in the EAM file or in an LMS
library and can be linked by the linkage editor (TSOSLNK) into load modules and sto-
red in a file. Then the linked object program can be loaded and executed. The most
important task within the linkage process is to combine the runtime library with the
object modules generated by the user as a result of compilation. The runtime library
contains all the ready-made modules for input/output and for condition handling as well
as built-in functions and a program monitor which controls the correct execution of the
object program.

The user is able to control the PL/I compiler and object program. By means of control
statements to the PL/I compiler, the user can define the listings, checks, optimizations
etc. to be performed and the attributes that will be assigned to the generated object
module and the ultimate program. All control statements have default (preset) values
which become effective if the user does not specify any options. Examples of simple
program execution are described in the following chapters. The user can choose bet-
ween BS2000 commands in ISP format [2] or SDF commands (System Dialog Facility)
[19].

U253-J-Z125-9-7600 5

DO procedure

2.1.1 General program execution with ISP commands

The following example of a simple command procedure (using BS2000 commands in
ISP format) illustrates the commands required to compile, link and execute a source
program:

/ PROCEDURE C,(&NAME, &LIST=SOURCE, &COMOPT=’COMLIB=NO’), SUBDTA=& 1)
/ ERASE *
/ SYSFILE SYSDTA=(SYSCMD)
/ REMARK ... TRANSLATE
/ EXEC $PLI1 2)

*COMOPT FORMAT=PRINTER(64,72),
*COMOPT SOURCE=&NAME,
*COMOPT LIST=&LIST,
*COMOPT &COMOPT,
*END

/ REMARK .. LINK 3)
/ EXEC $TSOSLNK

PROGRAM &NAME, FILENAM=PROG.&NAME, MAP=NO
INCLUDE *
END

/ REMARK ... EXECUTE 4)
/ EXEC PROG.&NAME
/ REMARK ... END
/ STEP
/ SYSFILE SYSDTA=(PRIMARY) 5)
/ ENDP

The various commands have the following effect:

1) PROCEDURE

The procedure has three parameters:

&NAME for the name of the source to be compiled.

&LIST for controlling the listing output from the compiler.
Default: SOURCE listing.

&COMOPT for specifying any other control statements to the compiler.
COMLIB = NO serves to reserve space and corresponds to a common default.

ERASE

Erase the EAM file if it still contains object modules from previous compiler runs.

SYSFILE

Switch from SYSDTA to the command file so that the control statements for the
compiler and linkage editor can be read from there.

6 U253-J-Z125-9-7600

DO procedure

2) Invoke PLI1 with variable control statements.

3) Call the linkage editor. Listing feature deactivated.

4) Call the user program.

5) Reset SYSDTA.

For example, assume that a source program is contained in the EXAMP21 file.

Then the procedure might be called as follows:

/DO Proc.(EXAMP21,COMOPT=’LIST=NOF’)

Runtime listing on SYSOUT

/DO PLI1.PROZ,EXAMP21,COMOPT=’LIST=NOF’
/ PROCEDURE C,(&NAME, &LIST=SOURCE, &COMOPT=’COMLIB=NO’), SUBDTA=&
/ ERASE *
/ SYSFILE SYSDTA=(SYSCMD)
/ REMARK ... TRANSLATE
/ EXEC $PLI1
% BLS0500 PROGRAM ’PLI1’, VERSION ’4.0A’ OF ’88-10-03’ LOADED.

..... THERE WAS NO DIAGNOSTIC MESSAGE

..... OBJECTMODUL ’EXAMP21’ GENERATED AND WRITTEN TO: *EAM

..... OBJECTMODUL ’EXAMP217’ GENERATED AND WRITTEN TO: *EAM
END OF SIEMENS PLI1-COMPILER VERSION 4.0A , TIME USED: 1.43 SEC
/ REMARK .. LINK
/ EXEC $TSOSLNK
% BLS0500 PROGRAM ’TSOSLNK’, VERSION ’21.0C40’ OF ’87-09-28’ LOADED.
% LNK0500 PROG BOUND
% LNK0503 PROG FILE WRITTEN: PROG.EXAMP21
% LNK0504 NUMBER PAM PAGES USED: 7
/ REMARK ... EXECUTE
/ EXEC PROG.EXAMP21

% BLS0500 PROGRAM ’EXAMP21’, VERSION ’ ’OF 88-10-06’ LOADED.
END OF PROGRAM EXAMP21 , RTS 4.0A-AAA, TIME USED: 0.16 SEC
/ REMARK ... END
/ STEP
/ SYSFILE SYSDTA=(PRIMARY)
/ ENDP

U253-J-Z125-9-7600 7

DO procedure

Compiler control statement listing on SYSLST (*COMOPT LIST = OPTIONS)

COMPILER-OPTIONS USED

STORAGE = (STACK(16,4),AREA(16,16,975))
LIST = (NOESD,NOTERMINAL,NOSUMMARY,OPTIONS,SAVLST,NOMAP,

NEST,IREF,NOXREF,SOURCE,NOINSOURCE,NOAGGREGATE,
OFFSET,NOASSM,NOOUTTEXT,NOLINECNT)

FORMAT = (TERMINAL(0,80),PRINTER(64,72),ENGLISH)
MESSAGE = NOSYSLST
SOURCE = EXAMP21
MARGINS = (TEXT(2,72),PAD,NOLINID,NOASACNTRL,GAMKEY(0,0),CHAR60,

NOSAVMAC)
DIAGNOST= (NOTERMINAL,NOSAVLST,WARNING)
COMLIB = NO
OBJECT = (ERROR(32767),ABORT(500),OUT)
OPTIONS = (NOISO,NOMAIN,NOINTERRUPT,NOMACRO,NOXS,NOBITPTR)
OPTIMIZE= (NOTIME,NOOVERLAP,NOENABLING,NOREORDER)
DEBUG = (NOSTMT,NOPROCTRACE,NOLABTRACE,NOCALLTRACE,

NOGOTOTRACE,NORETURNTRACE,NOBREAKPOINT)
SYMTEST = MAP
MODULE = *

Source program listing on SYSLST (*COMOPT LIST = SOURCE)

1 EXAMP21: PROC OPTIONS(MAIN);
2 DCL SYSPRINT FILE;
3 PUT PAGE LIST(’VERY EASY TO HANDLE’);
4 END;

Linkage editor (TSOSLNK) listing on SYSLST

PROGRAM EXAMP21, FILENAM=PROG.EXAMP21, MAP=NO
INCLUDE *
END
PROG BOUND
PROGRAM FILE WRITTEN : PROG.EXAMP21
NUMBER PAM PAGES USED: 7

8 U253-J-Z125-9-7600

DO procedure

Object program output on SYSLST

VERY EASY TO HANDLE

A simple procedure like the above is not sufficient if:
programs become more complex,
control of the object program is desired,
several files are to be processed,
precompiled program sections are stored in a library,
compiler and compiler system files were not cataloged under $TSOS in the recom-
mended manner.

The control facilities for the compiler are explained in detail in chapter 3. The object
controls are discussed in chapter 5. The use of libraries by the linkage editor is descri-
bed in chapter 4.

The user must be aware that an executable program (load module) can only be created
if all the necessary object modules are available.

These are:

• Object modules resulting from the compilation of user-own procedures. If these com-
pilations do not run ahead within the current task, then the private object modules
must be supplied from one of the user libraries.

• Object modules which are part of the system and as such are linked on a standard
basis but depend on the specific language elements being used (runtime system).
For the following examples, the runtime system was available under
$TSOS.TASKLIB.

For example, if the runtime system is stored in the $TSOS.PLI1.MODLIB file, the fol-
lowing statement must be inserted every time the user wishes to link a module:

RESOLVE,$TSOS.PLI1.MODLIB

Then the object program generated by the user with the linkage editor (TSOSLNK) and
stored in a file can be executed as often as required. It can be modified by control sta-
tements issued to the object program.

Files to be accessed by an object program must be made available by the user before
the start of the program, making sure that the file characteristics and manipulations
described in the PL/I program are compatible with the file characteristics supported by
BS2000. For details of the relationship between PL/I programs and BS2000, refer to
chapter 6.

U253-J-Z125-9-7600 9

SDF commands

2.1.2 General program execution with SDF commands

Besides the functions of the BS2000 command language in ISP format, there are two
SDF commands available, one for compiling a PL/I source program and another for
running a PL/I object program.

The SDF command START-PLI1-COMPILER causes the PLI1 compiler to initiate a com-
pilation; almost all the control options are available as compiler options. The SDF com-
mand START-PLI1-PROGRAM starts a PL/I object program generated by the PLI1 com-
piler; again, almost all the control options are available as object program options.

The following SDF command sequence corresponds almost exactly to the ISP com-
mands given in the previous section:

/START-PLI1-COMPILER SOURCE = example.source 1)

/EXEC $TSOSLNK 2)
PROGRAM example,FILENAM=example.object,MAP=NO
INCLUDE *
END

/ START-PLI1-PROGRAM FROM-FILE = example.object 3)

The individual commands have the following effect:

1) Call to the PLI1 compiler with control statements for compiling a PL/I procedure
contained in the file with the name example.source. Prerequisites: the PLI1 proce-
dure and the PLI1 syntax file for SDF must be installed and the PLI1 compiler must
be stored in the $TSOS.PLI1 file.

2) Call to the linkage editor with the control statement for linking the object module
generated by the PLI1 compiler with the name example from the EAM library, then
storing the generated load module in the file with the name example.object. Prerequi-
sites: the object module generated by the PLI1 compiler must be available in the
EAM library. The PLI1 runtime system must be present in the $TSOS.TASKLIB libra-
ry, otherwise the tasklib would have to be redirected to the PLI1 runtime library
using the SYSFILE command.

3) Call to the linked PL/I object program from the file with the name example.object.
Prerequisites: the PLI1 procedure and PLI1 syntax file for SDF must be installed.

10 U253-J-Z125-9-7600

SDF commands

The following listings are generated:

Runtime listing to the SYSOUT system file:

/START-PLI1-COMPILER SOURCE=EXAMPLE.SOURCE
% BLS0500 PROGRAM ’PLI1’, VERSION ’4.1A’ OF ’91-04-23’ LOADED. COPYRIGHT...

THERE WAS NO DIAGNOSTIC MESSAGE
OBJECTMODUL ’EXAMPLE’ GENERATED AND WRITTEN TO: *EAM
OBJECTMODUL ’EXAMPLE7’GENERATED AND WRITTEN TO: *EAM

END OF SIEMENS PLI1-COMPILER VERSION 4.1A , TIME USED: 2.11 SEC
/EXEC $TSOSLNK
% BLS0500 PROGRAM ’TSOSLNK’, VERSION ’V21.0D12’ OF ’90-05-10’ LOADED.
% LNK0500 PROGRAM BOUND
% LNK0503 PROGRAM FILE WRITTEN: EXAMPLE.OBJECT
% LNK0504 NUMBER PAM PAGES USED: 11
/START PLI1-PROGRAM EXAMPLE.OBJECT
% BLS0500 PROGRAM ’EXAMPLE’, VERSION ’ ’ OF ’91-05-02’ LOADED.
END OF PROGRAM EXAMPLE , RTS 4.1A-DDD, TIME USED: 0.80 SEC

Compiler listing to the SYSLIST system file:

COMPILER-OPTIONS USED

STORAGE = (STACK(16,4), AREA(16,16,1775))
LIST = (NOESD, NOTERMINAL, NOSUMMARY, OPTIONS, NOSAVLST, NOMAP, NEST,

IREF, NOXREF, SOURCE, NOINSOURCE, NOAGGREGATE, OFFSET, NOASSM,
NOOUTTEXT, NOLINECNT)

FORMAT = (TERMINAL(0,80), PRINTER(64,132), ENGLISH)
MESSAGE = NOSYSLIST
SOURCE = EXAMPLE.SOURCE
MARGINS = (TEXT(2,72), PAD, NOLIND, NOASACNTRL, GAMEKEY(0,0), CHAR60,

NOSAVMAC)
DIAGNOST= (NOTERMINAL, NOSAVLST, WARNING)
COMLIB = NO
OBJECT = (ERROR(32767), ABORT(500), OUT)
OPTIONS = (NOISO, NOMAIN, NOINTERRUPT, NOMACRO, XS, NOBITPTR)
OPTIMIZE= (NOTIME, NOOVERLAP, NOENABLING, NOREORDER)
DEBUG = (NOSTMT, NOPROCTRACE, NOLABTRACE, NOCALLTRACE, NOGOTOTRACE,

NORETURNTRACE, NOBREAKPOINT)
SYMTEST = MAP
MODULE = *

1 EXAMPLE: PROC OPTIONS(MAIN);
2 DCL SYSPRINT FILE;
3 PUT PAGE LIST(’VERY EASY TO HANDLE’);
4 END;

U253-J-Z125-9-7600 11

SDF commands

Linkage editor listing

PROGRAM EXAMPLE,FILENAM=EXAMPLE.OBJECT,MAP=NO
INCLUDE *
END
PROG BOUND
PROGRAM FILE WRITTEN : EXAMPLE.OBJECT
NUMBER PAM PAGES USED: 11

Output of the PL/I program:

VERY EASY TO HANDLE

For more complicated program execution, more control options will be required. A
more detailed description of all the control options is given in chapter 3 for the PLI1
compiler, in chapter 4 for the linkage editor and in chapter 5 for the PLI1 object pro-
gram.

12 U253-J-Z125-9-7600

Example Batch: read, print

2.2 Examples

The following examples demonstrate common command sequences as required for fre-
quent operations involving PL/I programs. General prerequisites:

PLI1 compiler stored under $TSOS,
PLI1 runtime system available under $TSOS.TASKLIB, and
PLI1 message text files cataloged under $TSOS.PLI1.TEXT.D or E.

2.2.1 Batch processing: reading, printing

Task:

Every time a call is issued, the following program uses GET LIST to read values for 3
variables from the SYSIN file, each requiring 11 data elements. The internal procedure
PROCESS symbolizes the processing of the read-in data, which in this case consists
merely of formalized output to SYSPRINT.

Prerequisite:

The PL/I program is executed as a batch task. The data for the program is read in
from SYSIN and follows the source program cards. There are two ways of running this
task:

The card deck shown below is entered via card reader and processed by BS2000.

The commands, control statements, sources, and data corresponding to the card
deck shown below are contained in a file (e.g. entered by the DATA command). In
this case, the task is activated using the ENTER command, e.g.

E/ENTER filename, TIME=...

U253-J-Z125-9-7600 13

Batch: read, print Example

Structure of the card deck:

Data cards read in by object programs

15 , 23 , ’AB’ , ’CD’ ’EF’ , 15 30 , 16 32 , 25 50
16 24,’AC’ ’CE’ ’EG’,16 31,17 33,26 51
17 25 ’AD’ ’CF’ ’EH’ 17 32 18 34 27 52

14 U253-J-Z125-9-7600

Example Batch: read, print

Runtime listing on SYSOUT

/ REMARK ... TRANSLATE
/ EXEC $PLI1 1)
% BLS0500 PROGRAM ’PLI1’, VERSION ’4.0A’ OF ’88-10-03 LOADED.

*COMOPT LIST=(NO,SOURCE)
*END

Source program (for program text see source listing on SYSLST, next page)

..... THERE WAS NO DIAGNOSTIC MESSAGE

..... OBJECTMODUL ’EXAM221’ GENERATED AND WRITTEN TO: *EAM 2)

..... OBJECTMODUL ’EXAM2217’ GENERATED AND WRITTEN TO: *EAM
END OF SIEMENS PLI1-COMPILER VERSION 4.0A , TIME USED: 1.31 SEC
/ REMARK .. LINK
/ EXEC $TSOSLNK 3)
% BLS0500 PROGRAM ’TSOSLNK’, VERSION ’21.0C40’ OF ’87-09-28’ LOADED.

PROGRAM EXAM221, MAP=NO, FILENAM=EXAM221
INCLUDE *
END

% LNK0500 PROG BOUND
% LNK0503 PROG FILE WRITTEN: EXAM221
% LNK0504 NUMBER PAM PAGES USED: 9
/ REMARK ... EXECUTE
/ EXEC EXAM221 4)
% BLS0500 PROGRAM EXAM221, VERSION OF 88-10-06 LOADED.

Input data (see previous page)

END OF PROGRAM EXAM221 , RTS 3.2A-666, TIME USED: 0.17 SEC
/ REMARK .. END

1) Start the PLI1 compiler using the EXEC command. The LIST = (NO, SOURCE) con-
trol statement included in the deck ensures that only the listing of the source pro-
gram will be output to SYSLST.

2) The following object modules are generated and stored in the EAM area:

code module EXAM221,
data module EXAM2217.

The rule of formation for these names can be found in section 4.6.

3) Initiate the linkage editor.

4) Start the load module. The name of the program can be obtained from the
PROGRAM statement for the linkage editor.

U253-J-Z125-9-7600 15

Batch: read, print Example

Source listing on SYSLST

1 EXAM221: PROCEDURE OPTIONS(MAIN);
2
3 DCL SYSPRINT FILE INTERNAL;
4 DCL A FIXED BIN DIM(2) INIT(0,0);
5 DCL B CHAR(5) DIM(3) INIT((3)(1)’’);
6 DCL 1 C DIM(3),
7 2 NO FIXED DEC INIT ((3)0),
8 2 VALUE FIXED DEC INIT(0,0,0);
9 DCL SYSIN FILE STREAM INPUT;
10
11 OPEN FILE(SYSIN);
12 ON ENDFILE(SYSIN) GOTO END;
13 ON CONVERSION BEGIN;
14 1 ON CONVERSION SYSTEM;
15 1 PUT DATA;
16 1 END;
17
18 E: GET FILE(SYSIN) LIST(A,B,C);
19 CALL PROCESS;
20 GOTO E;
21 PROCESS: PROCEDURE;
22 1 PUT SKIP(1) EDIT (A) ((2)F(3))
23 1 (B) (X(2), (3)A(5))
24 1 (C) (F(3));
25 1 PUT SKIP(1);
26 1 END;
27
28 END: PUT SKIP(1) LIST(’ END EXAMPLE 1’);
29 END;

PROGRAM EXAM221,MAP=NO,FILENAM=EXAM221
INCLUDE * 5)

END
PROG BOUND
PROGRAM FILE WRITTEN : EXAM221
NUMBER PAM PAGES USED: 9

5) Listing of the control statements for the linkage editor. The PROGRAM statement
specifies that no linkage editor listing (MAP) is to be generated. The object pro-
gram is to be stored in file EXAM221. The INCLUDE * statement indicates that the
contents of the EAM area are to be linked. The EAM area contains the modules
generated by the preceding compiler run.

Caution
INCLUDE * causes all modules from the EAM area to be processed, including
those which may have originated from other compilations of the same task. The-
refore, the EAM area should be cleared by the /ERASE * command before
another compiler run begins.

16 U253-J-Z125-9-7600

Example Batch: read, print

Load module output to SYSLST

15 23 AB CD EF 15 30 16 32 25 50

16 24 AC CE EG 16 31 17 33 26 51

17 25 AD CF EH 17 32 18 34 27 52

... END EXAMPLE 1

Note

This operating mode is not suited to interactive tasks. Although source lines can be
supplied interactively to the PLI1 compiler, they cannot be retrieved again. For
another compilation of the same or possibly corrected program, all entries would
have to be repeated. The same applies to the data. An example of a typical interac-
tive task is shown in section 2.2.2.

U253-J-Z125-9-7600 17

Interactive: SYSFILE cmd Example

2.2.2 Interactive task: input/output to files via SYSFILE command

Task:

Same as example 2.2.1.

Prerequisite:

The source program is contained in the SOURCE222 file. The data for the PL/I file
SYSIN are in INPUT222. Result output via SYSPRINT is to be sent to the OUTPUT222
file. No compiler listing is requested.

Runtime listing on SYSOUT

/REMARK .. TRANSLATE
/EXEC $PLI1
% BLS0500 PROGRAM PLI1, VERSION 32A OF 84-07-26 LOADED.

*COMOPT SOURCE=SOURCE222, LIST=NO
*END

..... THERE WAS NO DIAGNOSTIC MESSAGE

..... OBJECTMODUL ’EXAM222’ GENERATED AND WRITTEN TO: *EAM

..... OBJECTMODUL ’EXAM2227’ GENERATED AND WRITTEN TO: *EAM
END OF SIEMENS PLI1-COMPILER VERSION 4.0A , TIME USED: 1.76 SEC
/REMARK ... LINK
/EXEC $TSOSLNK
% BLS0500 PROGRAM ’TSOSLNK’, VERSION ’21.0C40’ OF ’87-09-28’ LOADED.

PROGRAM EXAM222, MAP=NO, FILENAM=PROG.EXAM222
INCLUDE *
END

% LNK0500 PROG BOUND
% LNK0503 PROG FILE WRITTEN: PROG.EXAM222
% LNK0504 NUMBER PAM PAGES USED: 9
/REMARK .. FILES
/SYSFILE SYSLST=OUTPUT222 1)
/SYSFILE SYSDTA=INPUT222
/REMARK .. EXECUTE
/EXEC PROG.EXAM222
% BLS0500 PROGRAM ’EXAM222’, VERSION ’ ’ OF ’88-10-06’ LOADED.
END OF PROGRAM EXAM222 , RTS 4.0A-AAA, TIME USED: 0.17 SEC
/REMARK .. END

The result of the PRINT command is the same output as for example 2.2.1.

Explanation of the run:

1) The PL/I program outputs to SYSPRINT.
SYSPRINT is assigned to the system file SYSLST. However, as the result is to
appear on a file rather than on a runtime listing, the SYSLST system file is assig-
ned to the OUTPUT222 file via the SYSFILE command.

18 U253-J-Z125-9-7600

Example Interactive: SYSFILE cmd

The program is read via SYSIN. By default, SYSIN is identical with SYSDTA; there-
fore, SYSDTA is reassigned to INPUT222 via the SYSFILE command.

Note on the storage of source programs and data:

The storage of source programs and input data in files permits the use of the file
editing systems EDT and EDOR for any corrections to the program or data that
may be necessary.

U253-J-Z125-9-7600 19

Compiler listings, LINK name Example

2.2.3 Batch processing: input/output via LINK

Task:

Structured fixed-length records are to be read from a file called STOCK223. The data
are to be checked for the value of a quantity (MG). All records for which MG 1100
are to be restructured and written to the LIST223 file, which is then to be printed.

Prerequisite:

Batch task; the input file exists under the name of STOCK223 but must be chained
using the LINK name CARD. The output file must be created. The source program and
the control statements are contained in the input deck. All listings generated during the
compilation are to be printed.

Input data in the STOCK223 file

Index Data record

10000000 11111SOAP 10001033000
20000000 12134PERFUME 01120200637
30000000 14667DISH-CLOTH 00510100123
50000000 15678PAPERBAGS 12450500021
60000000 74567NATRON 03060500173
70000000 90000POWDER 01340501073
80000000 91000PAPER 12450100714

Result of the run in output file LIST223

11111 SOAP 1000 10 33000
12134 PERFUME 0112 02 00637
14667 DISH-CLOTH 0051 01 00123
74567 NATRON 0306 05 00173
90000 POWDER 0134 05 01073

SYSOUT listing

/REMARK .. TRANSLATE
/EXEC $PLI1
% BLS0500 PROGRAM PLI1, VERSION 32A OF 84-07-26 LOADED.

*COMOPT LIST=ALL, MARGINS=T(2,60),
*END

20 U253-J-Z125-9-7600

Example Compiler listings, LINK name

Source lines (omitted here; refer to compiler listing)

..... THERE WAS NO DIAGNOSTIC MESSAGE

..... OBJECTMODUL ’EXAM223’ GENERATED AND WRITTEN TO: *EAM

..... OBJECTMODUL ’EXAM2237’ GENERATED AND WRITTEN TO: *EAM
END OF SIEMENS PLI1-COMPILER VERSION 4.0A , TIME USED: 1.81 SEC
/REMARK .. LINK
/EXEC $TSOSLNK
% BLS0500 PROGRAM ’TSOSLNK’, VERSION ’21.0C40’ OF ’87-09-28’ LOADED.

PROGRAM EXAM223, MAP=NO, FILENAM=EXAM223
INCLUDE *
END

% LNK0500 PROG BOUND
% LNK0503 PROG FILE WRITTEN: EXAM223
% LNK0504 NUMBER PAM PAGES USED: 7
/REMARK .. FILES
/FSTAT STOCK223,ALL 1)
0000003 :B:$STSPL1.STOCK223

FCBTYPE = SAM VSNTYPE = PUB LASTPG = 0000001 2ND ALLO= 00006
SHARE = NO ACCESS = WRITE
ACCESS# = 001 CRDATE = 85-08-22 EXDATE = 85-08-22 LADATE = 85-08-22
RDPASS = NONE WRPASS = NONE EXPASS = NONE
VERSION = 001 BACKUP# = 000 LARGE = NO BACKUP = A
DESTROY = NO AUDIT = NONE
BLKTYPE = STD BLKSIZE = 002048 RECFORM = (V,N) RECSIZE = 00000
VSN/DEV/EXT = PUBB02/D3475/001
EXTCNT = 1

:B: PUBLIC: 1 FILE. RES= 3, FREE= 2, REL= 0 PAGES
/FILE STOCK223,LINK=CARD 2)
/FILE LIST223,LINK=LIST, FCBTYPE=SAM, RECFORM=F, RECSIZE=39, BLKSIZE=STD
/REMARK .. EXECUTE
/SETSW ON=(1) 3)
/EXEC EXAM223
% BLS0500 PROGRAM ’EXAM223’, VERSION ’ ’ OF ’88-10-06’ LOADED.

*RUNOPT LIST=(OPTIONS,SUMMARY), FORMAT=PRINTER(,120)
*END

END OF PROGRAM EXAM223 , RTS 4.0A-AAA, TIME USED: 0.29 SEC
/REMARK .. END

Explanation of the run in example 2.2.3.

1) The FSTAT command was issued to show that the file has the required parameters.

2) LINK name declaration for the STOCK223 file. Creating the LIST223 file with the
required characteristics.

3) The object program was supplied with control statements at initiation time. Therefo-
re, task switch 1 must be set before the call.

U253-J-Z125-9-7600 21

Compiler listings, LINK name Example

Control statements effective at compile time, on SYSLST (*COMOPT LIST = OPTIONS)

COMPILER-OPTIONS USED

STORAGE = (STACK(16,4), AREA(16,16,975))
LIST = (ESD, NOTERMINAL, SUMMARY, OPTIONS, NOSAVLST, MAP, NEST, IREF,

FULLXREF, EXPAND, NOINSOURCE, AGGREGATE, OFFSET, ASSM,
OUTTEXT, NOLINECNT)

FORMAT = (TERMINAL(0,80), PRINTER(64,132), ENGLISH)
MESSAGE = NOSYSLST
SOURCE = EXAM223
MARGINS = (TEXT(2,60), PAD, NOLINID, NOASACNTRL, GAMKEY(0,0), CHAR60,

NOSAVMAC)
DIAGNOST= (NOTERMINAL, NOSAVLST, WARNING)
COMLIB = NO
OBJECT = (ERROR(32767), ABORT(500), OUT)
OPTIONS = (NOISO, NOMAIN, NOINTERRUPT, NOMACRO, NOXS, NOBITPTR)
OPTIMIZE= (NOTIME, NOOVERLAP, NOENABLING, NOREORDER)
DEBUG = (NOSTMT, NOPROCTRACE, NOLABTRACE, NOCALLTRACE, NOGOTOTRACE,

NORETURNTRACE, NOBREAKPOINT)
SYMTEST = MAP
MODULE = *

Source listing on SYSLST (*COMOPT LIST = EXPAND)

1 EXAM223: PROCEDURE OPTIONS(MAIN);
2
3 DCL CARD FILE RECORD INPUT,
4 LIST FILE RECORD OUTPUT;
5 DCL 1 IN,
6 2 NO CHAR(5),
7 2 BZ CHAR(15),
8 2 MG CHAR(4),
9 2 ME CHAR(2),
10 2 PR CHAR(5);
11 DCL 1 OUT,
12 2 NO CHAR(5),
13 2 FILL1 CHAR(2) INIT (’ ’),
14 2 BZ CHAR(15),
15 2 FILL2 CHAR(2) INIT (’ ’),
16 2 AMG CHAR(4),
17 2 FILL3 CHAR(2) INIT (’ ’),
18 2 AME CHAR(2),
19 2 FILL4 CHAR(2) INIT (’ ’),
20 2 APR CHAR(5);
21
22 OPEN FILE(CARD), FILE(LIST);
23 ON ENDFILE(CARD) GOTO END;
24
25 A1: READ FILE(CARD) INTO(IN);
26 IF IN.MG <= ’1100’ THEN DO;
27 1 OUT.NO = IN.NO;
28 1 OUT.BZ = IN.BZ;
29 1 AMG = IN.MG;

22 U253-J-Z125-9-7600

Example Compiler listings, LINK name

30 1 OUT.AME = ME;
31 1 APR = IN.PR;
32 1 WRITE FILE(LIST) FROM(OUT);
33 1 END;
34 GOTO A1;
35
36 END: END;

Listing of external names in the code module on SYSLST (*COMOPT LIST = ESD)

LIST OF EXTERNAL NAMES IN THE CODE MODULE

NAME TYPE MA ADDR L/ESID

EXAM223 CSECT 04 000000 00041C
EXAM2237 EXTERN 00 000000 404040
P$3#20## EXTERN 00 000000 404040
P$RECIO# EXTERN 00 000000 404040
P$OPNEX# EXTERN 00 000000 404040
CARD COMMON 00 000000 000200
LIST COMMON 00 000000 000200
P$START# ENTRY 00 000078 000001

Object code listing on SYSLST (detail) (*COMOPT LIST = ASSM)

000260 05 EF BALR 14,15
26 000262 D2 03 D04C D050 MVC 76(4,13),80(13)

000268 D5 03 D25C B13C CLC 604(4,13),316(11) MG,
00026E 47 20 A2C2 BC 2,706(0,10) C.1

27 000272 D2 04 D267 D248 MVC 615(5,13),584(13) NO, NO
28 000278 D2 0E D26E D24D MVC 622(15,13),589(13) BZ, BZ
29 00027E D2 03 D27F D25C MVC 639(4,13),604(13) AMG, MG
30 000284 D2 01 D285 D260 MVC 645(2,13),608(13) AME, ME
31 00028A D2 04 D289 D262 MVC 649(5,13),610(13) APR, PR
32 000290 58 60 B038 L 6,56(0,11) LIST

000294 50 60 D0A0 ST 6,160(0,13)

Listing of external names in the STATIC module on SYSLST (*COMOPT LIST = ESD)

LIST OF EXTERNAL NAMES IN THE STATIC MODULE

NAME TYPE MA ADDR L/ESID

EXAM2237 CSECT 00 000000 000008
EXAM223 EXTERN 00 000000 404040
CARD COMMON 00 000000 000200
LIST COMMON 00 000000 000200

U253-J-Z125-9-7600 23

Compiler listings, LINK name Example

Storage map listing on SYSLST (*COMOPT LIST = MAP)

M A P - L I S T

SOURCE-REF. TYPE ADDR OFFSET NAME

0 ROOTBLOCK

1 ENTRY CONST 0 EXAM223

1 EXT PROCEDURE EXAM223

3 ESD # 3 CARD
4 ESD # 4 LIST
5 AUTO 248 IN

MEMBER 0 NO IN IN
MEMBER 5 BZ IN IN
MEMBER 14 MG IN IN
MEMBER 18 ME IN IN
MEMBER 1A PR IN IN

11 AUTO 267 OUT
MEMBER 0 NO IN OUT
MEMBER 5 FILL1 IN OUT
MEMBER 7 BZ IN OUT
MEMBER 16 FILL2 IN OUT
MEMBER 18 AMG IN OUT
MEMBER 1C FILL3 IN OUT
MEMBER 1E AME IN OUT
MEMBER 20 FILL4 IN OUT
MEMBER 22 APR IN OUT

25 LABEL CONST 236 A1
36 LABEL CONST 2C6 END

23 ON UNIT ENDFILE

* *

24 U253-J-Z125-9-7600

Example Compiler listings, LINK name

Listing of the structure length table on SYSLST (*COMOPT LIST = AGGREGATE)

S T R U C T U R E L E N G T H T A B L E
OFFSET ELEMENT LENGTH TOTAL LENGTH

SOURCE-REF LEVEL IDENTIFIER DIMENSION DEC HEXDEC DEC HEXDEC DEC HEXDEC

5 1 IN 0 0 31 1F
2 NO 0 0 5 5
2 BZ 5 5 15 F
2 MG 20 14 4 4
2 ME 24 18 2 2
2 PR 26 1A 5 5

11 1 OUT 0 0 39 27
2 NO 0 0 5 5
2 FILL1 5 5 2 2
2 BZ 7 7 15 F
2 FILL2 22 16 2 2
2 AMG 24 18 4 4
2 FILL3 28 1C 2 2
2 AME 30 1E 2 2
2 FILL4 32 20 2 2
2 APR 34 22 5 5

********** END OF STRUCTURE LENGTH TABLE ***

U253-J-Z125-9-7600 25

Compiler listings, LINK name Example

Listing of the cross-reference table on SYSLST (*COMOPT LIST = FULLXREF)

C R O S S - R E F E R E N C E - T A B L E - REFERENCED IDENTIFIERS -

IDENTIFIER DIMENSION DATATYPE STORAGE REFERENCES

AME CHAR (2) UNAL MEM-2 (OUT) DCL 18 30

AMG CHAR (4) UNAL MEM-2 (OUT) DCL 16 29

APR CHAR (5) UNAL MEM-2 (OUT) DCL 20 31

A1 LABEL CONSTANT DCL 25 34

BZ CHAR (15) UNAL MEM-2 (OUT) DCL 14 28

BZ CHAR (15) UNAL MEM-2 (IN) DCL 7 28

CARD FILE INPUT RECORD EXT CONSTANT DCL 3 22 23 25

END LABEL CONSTANT DCL 36 23

ENDFILE CONDITION +++ 23

EXAM223 ENTRY EXT CONSTANT DCL 1

FILL1 CHAR (2) UNAL MEM-2 (OUT) DCL INIT 13 11

FILL2 CHAR (2) UNAL MEM-2 (OUT) DCL INIT 15 11

FILL3 CHAR (2) UNAL MEM-2 (OUT) DCL INIT 17 11

FILL4 CHAR (2) UNAL MEM-2 (OUT) DCL INIT 19 11

IN STRUCTURE UNAL AUTOMATIC DCL 5 25

LIST FILE OUTPUT RECORD EXT CONSTANT DCL 4 22 32

ME CHAR (2) UNAL MEM-2 (IN) DCL 9 30

MG CHAR (4) UNAL MEM-2 (IN) DCL 8 26 29

NO CHAR (5) UNAL MEM-2 (IN) DCL 6 27

NO CHAR (5) UNAL MEM-2 (OUT) DCL 12 27

OUT STRUCTURE UNAL AUTOMATIC DCL 11 32

PR CHAR (5) UNAL MEM-2 (IN) DCL 10 31

.......... THERE ARE N O IDENTIFIERS N O T REFERENCED

********** END OF CROSS-REFERENCE-TABLE **

26 U253-J-Z125-9-7600

Example Compiler listings, object module library

Compiler program statistics on SYSLST (*COMOPT LIST = SUMMARY)

SUMMARY OF VIRTUAL MAIN STORAGE REQUIREMENTS
PROCEDURE STACK: 20 PAGES; SYSTEM CALLS: 2 REQM, 0 RELM
STANDARD AREA: 21 PAGES; SYSTEM CALLS: 2 REQM
ASSIGNED MEMORY: 237 PAGES CLASS 6 AND: 66 PAGES CLASS 5

Linkage editor map on SYSLST

PROGRAM EXAM223, MAP=NO, FILENAM=EXAM223
INCLUDE *
END
PROG BOUND
PROGRAM FILE WRITTEN : EXAM223
NUMBER PAM PAGES USED: 7

Control statement effective at object run time, on SYSLST
(*RUNOPT LIST = SUMMARY)

RUNTIME-OPTIONS USED

STORAGE = (STACK(16,4), AREA(16,16,1071))
LIST = (NOTERMINAL, SUMMARY, OPTIONS)
FORMAT = (TERMINAL(0,80), PRINTER(64,120), ENGLISH)
ARGUMENT= ’’
MESSAGE = NOSYSLST
SYSFILE = (SYSDTA(SYSIN), SYSLST(SYSPRINT), SYSOUT(SYSOUT),

LINESIZE(0,0,0), PAGESIZE(0,0), DISPLAY(SYSDTA))
DUMP = (COND, NOSNAP, NOAREA, NOSTACK, NORANGE)
TRACE = (TERMINAL, NOLABTRACE, NOPROCTRACE, NORETURNTRACE,

NOGOTOTRACE, NOCALLTRACE, NOIFTRACE)
TABULATOR = (1,11,21,31,41,51,61,71,81,91,101,111,121)
CONTROL = NOALIGN
ACTIVE = YES

Object run statistics on SYSLST (*RUNOPT LIST = SUMMARY)

SUMMARY OF VIRTUAL MAIN STORAGE REQUIREMENTS
PROCEDURE STACK: 20 PAGES; SYSTEM CALLS: 2 REQM, 0 RELM
STANDARD AREA: 1 PAGES; SYSTEM CALLS: 1 REQM
ASSIGNED MEMORY: 101 PAGES CLASS 6 AND: 57 PAGES CLASS 5

U253-J-Z125-9-7600 27

Object module library Example

2.2.4 Use of libraries

Task:

To demonstrate operation with a user library.
First, the procedures AVG (determination of average) and AVGDEV (mean deviation
from average) are compiled and entered in the PLIBIB library.
This is followed by the compilation of a main procedure which requires the above func-
tions. The functions are obtained from the library at link-edit time. The main procedure
reads in data and calculates their average and mean deviation from average.

Prerequisite:

The three procedures AVGDEV224, AVG224 and EXMPL4 are contained in files called
AVGDEV224, AVG224, and SOURCE224.

Each procedure is compiled with the following options:

*COMOPT SOURCE = file, LIST = (NO, SOURCE)

The input data are entered via SYSIN, immediately following the /EXEC EXAM224 com-
mand in the deck. Result output is to SYSLST.

Explanation of the run in example 2.2.4 (next page)

1) Erase the EAM area if it still contains object modules from previous compiler runs.

2) Copy the object modules of previous compiler runs from the EAM area into a libra-
ry, using the LMR utility (see section 3.6.4). For the control of the utility, see [11].

3) Erase the contents of the EAM area, thus simulating a condition as if the procedu-
res AVG and AVGDEV had been compiled and entered in the library in a previous
task.

28 U253-J-Z125-9-7600

Example Object module library

Listing on SYSOUT

/ERASE * 1)
/REMARK TRANSLATE FOR LIBRARY
/EXEC $PLI1
% BLS0500 PROGRAM ’PLI1’, VERSION ’4.0A’ OF ’88-10-03’ LOADED.

*COMOPT SOURCE=AVGDEV224,
*COMOPT LIST=(NO,SOURCE)
*END

..... THERE WAS NO DIAGNOSTIC MESSAGE

..... OBJECTMODUL ’AVGDEV’ GENERATED AND WRITTEN TO: *EAM
END OF SIEMENS PLI1-COMPILER VERSION 4.0A , TIME USED: 1.39 SEC
/EXEC $PLI1
% BLS0500 PROGRAM ’PLI1’, VERSION ’4.0A’ OF ’88-10-03’ LOADED.

*COMOPT SOURCE=AVG224,
*COMOPT LIST=(NO,SOURCE)
*END

..... THERE WAS NO DIAGNOSTIC MESSAGE

..... OBJECTMODUL ’AVG’ GENERATED AND WRITTEN TO: *EAM
END OF SIEMENS PLI1-COMPILER VERSION ’4.0A’ , TIME USED: 2.74 SEC
/REMARK .. INCLUDE IN LIBRARY
/EXEC LMR 2)
% BLS0500 PROGRAM LMR.266, VERSION 266 OF 83-03-11 LOADED.

MODLIB MODLIB224
COPYALL SOURCE=*
END

LMR (BS2000) VERSION V26.6506
LMR (BS2000) VERSION V26.6506 NORMAL END
/STEP
/ERASE * 3)
/REMARK ... TRANSLATE
/EXEC $PLI1
% BLS0500 PROGRAM ’PLI1’, VERSION ’4.0A’ OF ’88-10-03’ LOADED.

*COMOPT SOURCE=SOURCE224,
*COMOPT LIST=(NO,SOURCE)
*END

----- THERE WAS NO DIAGNOSTIC MESSAGE
----- OBJECTMODUL ’EXAM224’ GENERATED AND WRITTEN TO: *EAM
----- OBJECTMODUL ’EXAM2247’ GENERATED AND WRITTEN TO: *EAM
END OF SIEMENS PLI1-COMPILER VERSION 4.0A , TIME USED: 2.91 SEC
/REMARK ... LINK
/EXEC $TSOSLNK
% BLS0500 PROGRAM ’TSOSLNK’, VERSION ’21.0C40’ OF ’87-09-28’ LOADED.

PROGRAM EXEM224, MAP=NO, FILENAM=EXAM224
INCLUDE *
RESOLVE, MODLIB224
END

% LNK0500 PROG BOUND
% LNK0503 PROG FILE WRITTEN: EXAM224
% LNK0504 NUMBER PAM PAGES USED: 8
/REMARK .. EXECUTE
/EXEC EXAM224
% BLS0500 PROGRAM ’EXAM224’, VERSION ’ ’ OF ’88-10-06’ LOADED.
8 3 5 6 4 2 7 1 9
END OF PROGRAM EXAM224 , RTS 4.0A-AAA, TIME USED: 0.16 SEC
/REMARK ... END

U253-J-Z125-9-7600 29

Object module library Example

Source procedure AVGDEV (function) on SYSLST (*COMOPT LIST = SOURCE)

1 AVGDEV: PROCEDURE (N, AVERAGE, X) RETURNS (FLOAT BIN);
2
3 DCL X DIM(*);
4 DCL (AVERAGE,SUM) FLOAT BIN;
5 DCL (N,K) FIXED BIN;
6
7 SUM = 0;
8 DO K = 1 TO N;
9 1 SUM = SUM + ABS(AVERAGE - X(K));
10 1 END;
11 RETURN (SUM/N);
12 END;

Source procedure AVG (function) on SYSLST (*COMOPT LIST = SOURCE)

1 AVG: PROCEDURE (N, X) RETURNS (FLOAT BIN);
2
3 DCL X DIM(*);
4 DCL SUM FLOAT BIN;
5 DCL (N, K) FIXED BIN;
6
7 SUM = 0;
8 DO K = 1 TO N;
9 1 SUM = SUM + X(K);
10 1 END;
11 RETURN (SUM/N);
12 END;

Modules entered in library (LMR listing) on SYSLST

PROGRAM LMR/26:65 STARTED

MODLIB MODLIB224

COPYALL SOURCE = *

END

30 U253-J-Z125-9-7600

Example Object module library

Source procedure EXAM224 (main procedure) on SYSLST (*COMOPT LIST =
SOURCE)

1 EXAM224: PROCEDURE OPTIONS(MAIN);
2
3 DCL X DIM(1000);
4 DCL (N,K) FIXED BIN;
5 DCL (AVERAGE,AVDEV) FLOAT BIN;
6 DCL (AVG, AVGDEV) EXTERNAL ENTRY RETURNS(FLOAT BIN);
7 DCL (SYSIN,SYSPRINT) FILE INTERNAL;
8
9 ON ENDFILE(SYSIN) GOTO END;
10 S10: GET LIST(N);
11 PUT SKIP LIST(N);
12 DO K = 1 TO N;
13 1 GET LIST(X(K));
14 1 PUT SKIP LIST(K, X(K));
15 1 END;
16 AVERAGE = AVG(N,X);
17 AVDEV = AVGDEV(N,AVERAGE,X);
18 PUT PAGE LIST(’ AVERAGE’, ’AVERAGE DEVIATION’);
19 PUT SKIP LIST(AVERAGE, AVDEV);
20 GO TO S10;
21
22 END: PUT SKIP LIST(’ END EXAMPLE 224’);
23 END;

Linkage editor map on SYSLST

PROGRAM EXAM224,MAP=NO,FILENAM=EXAM224 Resolve the main
INCLUDE * procedure references
RESOLVE, MODLIB224 to AVG and AVGDEV by
END referring to the
PROG BOUND library.
PROGRAM FILE WRITTEN : EXAM224
NUMBER PAM PAGES USED: 8

Object run result on SYSLST

8
1 3.00000E+00
2 5.00000E+00
3 6.00000E+00
4 4.00000E+00
5 2.00000E+00
6 7.00000E+00
7 1.00000E+00
8 9.00000E+00

.
AVERAGE AVERAGE DEVIATION

4.625000E+00 2.125000E+00 new page
---END EXAMPLE 224

U253-J-Z125-9-7600 31

Debugging aids Example

2.2.5 Use of debugging aids

Task:

The use of the TRACE debugging aid is to be shown. This example uses two internal
procedures. UP1 lists all the elements of a two-dimensional array supplied as a parame-
ter. UP2 does the same for one-dimensional arrays. At the beginning of the program,
the elements of array A are assigned the values 1-9. The elements of array B are assig-
ned the values 10-19.
The effect of the procedures is to print the arrays or parts of them.

Prerequisite:

The program requires no input; its output is to SYSPRINT. The program source is read
in via SYSDTA. To follow the flow of the program, activate the procedure trace facility.

Runtime listing on SYSOUT

/ERASE *
/REMARK ... TRANSLATE
/EXEC $PLI1
% BLS0500 PROGRAM ’PLI1’, VERSION ’4.0A’ OF ’88-10-03’ LOADED.

*COMOPT DEBUG=(PROCTRACE,LABTRACE),
*COMOPT MARGINS=T(1,50)
*END

Source lines (omitted here; refer to compiler listing)

..... THERE WAS NO DIAGNOSTIC MESSAGE

..... OBJECTMODUL ’EXAM225’ GENERATED AND WRITTEN TO: *EAM

..... OBJECTMODUL ’EXAM2257’ GENERATED AND WRITTEN TO: *EAM
END OF SIEMENS PLI1-COMPILER VERSION 4.0A , TIME USED: 1.70 SEC
/REMARK .. LINK
/EXEC $TSOSLNK
% BLS0500 PROGRAM ’TSOSLNK’, VERSION ’21.0C40’ OF ’87-09-28’ LOADED.

PROGRAM EXAM225, FILENAM=EXAM225
INCLUDE *
END

% LNK0500 PROG BOUND
% LNK0503 PROG FILE WRITTEN: EXAM225
% LNK0504 NUMBER PAM PAGES USED: 7
/REMARK .. EXECUTE
/SETSW ON=(1)
/EXEC EXAM225
% BLS0500 PROGRAM ’EXAM225’, VERSION ’ ’ OF ’88-10-06’ LOADED.

*RUNOPT TRACE=PROCTRACE,
*END

END OF PROGRAM EXAM225 , RTS 4.0A-AAA, TIME USED: 0.16 SEC
/REMARK .. END

32 U253-J-Z125-9-7600

Example Debugging aids

Source listing (*COMOPT LIST = SOURCE)

1 EXAM225: PROC OPTIONS(MAIN);
2
3 DCL A DIM(3,3) BIN FIXED,
4 B DIM(3,3) BIN FIXED,
5 C DIM(3) BIN FIXED;
6 DCL SYSPRINT FILE INTERNAL;
7 DCL (K,I,J) FIXED BIN;
8
9 K = 0;
10 DO I = 1 TO 3;
11 1 DO J = 1 TO 3;
12 2 K = K+1;
13 2 A(I,J) = K;
14 2 B(I,J) = K+9;
15 2 END;
16 1 END;
17 CALL UP1(A);
18 C = B(1,*);
19 PUT SKIP(3) LIST(C);
20 CALL UP2(C);
21 CALL UP2(B(1,*));
22
23 UP1: PROC(A1);
24 1 DCL A1(*,*) BIN FIXED;
25 1 PUT SKIP(1) LIST(A1);
26 1 END;
27
28 UP2: PROC(B1);
29 1 DCL B1 DIM(*) BIN FIXED;
30 1 PUT SKIP(1) LIST(B1);
31 1 END;
32
33 END;

U253-J-Z125-9-7600 33

Debugging aids Example

Control statements effective at compile time (*COMOPT LIST = OPTIONS)

STORAGE = (STACK(16,4), AREA(16,16,975))
LIST = (NOESD, NOTERMINAL, NOSUMMARY, OPTIONS, NOSAVLST, NOMAP, NEST,

IREF, NOXREF, SOURCE, NOINSOURCE, NOAGGREGATE, OFFSET,
NOASSM, NOOUTTEXT, NOLINECNT)

FORMAT = (TERMINAL(0,80), PRINTER(64,132), ENGLISH)
MESSAGE = NOSYSLST
SOURCE = EXAM225
MARGINS = (TEXT(1,50), PAD, NOLINID, NOASACNTRL, GAMKEY(0,0), CHAR60,

NOSAVMAC)
DIAGNOST= (NOTERMINAL, NOSAVLST, WARNING)
COMLIB = NO
OBJECT = (ERROR(32767), ABORT(500), OUT)
OPTIONS = (NOISO, NOMAIN, NOINTERRUPT, NOMACRO)
OPTIMIZE= (NOTIME, NOOVERLAP, NOENABLING, NOREORDER)
DEBUG = (NOSTMT, PROCTRACE, LABTRACE, NOCALLTRACE, NOGOTOTRACE,

NOIFTRACE, NORETURNTRACE, NOASSIGNTRACE, NOBREAKPOINT)
SYMTEST = NOAID
MODULE = *

Offset listing (*COMOPT LIST = OFFSET)

LISTING OF THE OFFSETS OF THE CODE MODULE

SOURCE-REF. ADDR SOURCE-REF. ADDR SOURCE REF. ADDR SOURCE-REF.

1 000000 6 000098 9 0000EE 10
11 0000FC 12 000104 13 000110 14
15 00014E 16 000166 17 00017E 18
19 000194 20 000216 21 00022C 33
23 000240 25 0002A2 26 0003FE 28
30 000476 31 000554

END ADDRESS: 000650

Linkage editor map

PROGRAM EXAM225, FILENAM=EXAM225
INCLUDE *
END
PROG BOUND
PROGRAM FILE WRITTEN : EXAM225
NUMBER PAM PAGES USED: 7

34 U253-J-Z125-9-7600

Example Debugging aids

Linkage editor map

BS2000 LINK EDITOR ... PROGRAM MAP

** **
** **
** PROGRAM: EXAM225 SEGMENT: %ROOT **
** FILE: EXAM225 **
** **
** **

DEC HEX DEC

SEGMENT NUMBER: 1 LOAD ADDR.: 000000 0
NO. OF MODULES: 3 SEGMENT LENGTH: 0035B4 13.748
NO. OF ENTRY PTS.: 124

MODNAME / DATE LOAD MODULE NO.OF BIND / MODULE : CONTAINING OML
COMNAME / COMMON ADDRESS LENGTH TRAITS ENTRYS METHOD / COMMON : CONTAINING SEGMENT

HEX DEC HEX DEC

EXAM225 /------ 000000 0 000684 1.668 RO 2 EXPLICIT/EAM OBJMOD FILE
EXAM2257/------ 001000 4.096 000208 520 1 EXPLICIT/EAM OBJMOD FILE
ITP#AOD#/880816 002000 8.192 0015B4 5.556 RO 121 AUTOLINK/TASKLIB

Listing with trace and output data
(*COMOPT DEBUG = (PROCTRACE, LABTRACE)
*RUNOPT TRACE = PROCTRACE)

*P: EXAM225 LEVEL: 0 R1=0003C170 R2=FFFEFFF8 R3=00000001 R4=00000004 R14=00000082 R15=6E000000 1)

*P: UP1 LEVEL: 1 R1=0003F32C R2=FFFEF624 R3=00000001 R4=00000004 R14=6E000184 R15=0000026C 2)

*P: EXAM225 LEVEL: 0 R1=0003D170 R2=FFFEFFF8 R3=00000001 R4=00000004 R14=00000082 R15=6E000000

*P: UP2 LEVEL: 1 R1=0004032C R2=000005F0 R3=00000001 R4=00000004 R14=6E00018E R15=00000240

1 2 3 4 5 6 7 8 9 3)
10 11 12

*P: UP2 LEVEL: 0 R1=000401A4 R2=00000628 R3=000401A8 R4=0400800F R14=4E00022C R15=00000414 4)

10 11 12 5)

*P: UP2 LEVEL: 1 R1=0004033E R2=00000628 R3=000401A8 R4=00000004 R14=6E00023C R15=00000240 6)

10 11 12

U253-J-Z125-9-7600 35

Debugging aids Example

1) TRACE output on activation of the EXPL5 procedure by the system. Output for pro-
cedure trace:

Qualifier *P
Name of the called procedure
Depth of procedure nesting
Registers R1-R4 and R14-R15. The registers contain:
R1-R4: Information about the first 4 arguments. May be references to the argu-

ments or the actual values. For details, see chapter 7.
R14: Address of the branch point (return address).
R15: Address of the entry point to the procedure.

2) Invoke procedure UP1. Same output as for 1).

3) Result of the output in line 21 of the source program.

4) Same procedure trace as for 1), caused by calling UP2 from line 26 of the source
program.

5) Output of result from line 30 of procedure UP2.

6) Same procedure trace as for 1), caused by calling UP2 from line 33.

7) Output of result from line 30 of procedure UP2.

36 U253-J-Z125-9-7600

Example CONSECUTIVE, INDEXED, REGIONAL

2.2.6 File organization CONSECUTIVE, INDEXED and REGIONAL (1)

Task:

To show the use of various file organizations and access methods. The program uses
CONSECUTIVE, INDEXED, and REGIONAL (1) files whose LINK names are SEQ, KEY,
and DIR. First, 6 records in the format shown below are written into each of these files
in sequential order:

LINE: n where 1 n 6

Then the program modifies those records.

Prerequisite:

All files have a fixed record length of 27 characters. The SEQ file is mapped to the
SAM access method. The ISAM access method is used for KEY, and PAM is used for
DIR. The example shows which attributes are used for each of the OPEN statements.
The only meaningful way of examining the contents of the DIR file is by means of the
DPAGE utility.

Listing on SYSOUT

/ SYSFILE SYSDTA = (SYSCMD)
/ERASE *
/REMARK .. TRANSLATE
/EXEC $PLI1
% BLS0500 PROGRAM ’PLI1’, VERSION ’4.0A’ OF ’88-10-03’ LOADED.

*COMOPT LIST = (NO,SOURCE)
*END

U253-J-Z125-9-7600 37

CONSECUTIVE, INDEXED, REGIONAL Example

Source procedure (omitted here; see source listing further below)

..... THERE WAS NO DIAGNOSTIC MESSAGE

..... OBJECTMODUL ’EXAM226’ GENERATED AND WRITTEN TO: *EAM

..... OBJECTMODUL ’EXAM2267’ GENERATED AND WRITTEN TO: *EAM
END OF SIEMENS PLI1-COMPILER VERSION 4.0A , TIME USED: 2.01 SEC
/REMARK .. LINK
/EXEC $TSOSLNK
% BLS0500 PROGRAM ’TSOSLNK’, VERSION ’21.0C40’ OF ’87-09-28’ LOADED.

PROGRAM EXAM226, MAP=NO, FILENAM=EXAM226
INCLUDE *
END

% LNK0500 PROG BOUND
% LNK0503 PROG FILE WRITTEN: EXAM226
% LNK0504 NUMBER PAM PAGES USED: 8
/REMARK ... FILES
/FILE CONSE226,LINK=SEQ,FCBTYPE=SAM,RECFORM=F,RECSIZE=27,BLKSIZE=STD
/FILE INDEX226,LINK=KEY,FCBTYPE=ISAM,BLKSIZE=STD,SPACE=(3,3)
/FILE REG1226, LINK=DIR,FCBTYPE=PAM, BLKSIZE=STD
/REMARK .. EXECUTE
/EXEC EXAM226
% BLS0500 PROGRAM ’EXAM226’, VERSION ’ ’ OF ’88-10-06’ LOADED.
END OF PROGRAM EXAM226 , RTS 4.0A-AAA, TIME USED: 0.99 SEC
/REMARK ... END
/PRINT CONSE226, ERASE
% SCP0810 SPOOLOUT OF :B:$STSPL1.CONSE226 ACCEPTED: TSN: 5708, PNAME: PL1
/PRINT INDEX226, ERASE
% SCP0810 SPOOLOUT OF :B:$STSPL1.INDEX226 ACCEPTED: TSN: 5709, PNAME: PL1
DPAGE VER=V21.0A10 CR DATE=840531
ENTER DPAGE-COMMAND

OPEN REG1226
FILE ’REG1226’ OPENED.

PRINT 2,1-216
HALT

38 U253-J-Z125-9-7600

Example CONSECUTIVE, INDEXED, REGIONAL

Source listing on SYSLST (*COMOPT LIST = SOURCE)

1 EXAM226: PROCEDURE OPTIONS(MAIN);
2
3 DCL SEQ FILE;
4 DCL KEY FILE ENV(INDEXED, F(27), KEYLOC(1),
5 KEYLENGTH(6));
6 DCL DIR FILE ENV(REGIONAL(1), F(27));
7 DCL SYSPRINT FILE INTERNAL;
8
9 DCL KEY3 FIXED BIN(4) INIT(3);
10 DCL KEY5 FIXED BIN(4) INIT(5);
11 DCL I FIXED BIN(4);
12 DCL Z POINTER;
13 DCL SOURCE CHAR(27) INIT(’ ’);
14 DCL RECORD CHAR(27) BASED(Z);
15 DCL CHANGED CHAR(27) INIT(’ ’);
16
17 OPEN FILE(SEQ) RECORD OUTPUT SEQL;
18 OPEN FILE(KEY) RECORD OUTPUT SEQL KEYED;
19 OPEN FILE(DIR) RECORD OUTPUT DIRECT KEYED;
20 DO I=1 TO 6;
21 PUT STRING(SOURCE) EDIT (’LINE: ’,I) (X(7),A(6),F(2));
22 WRITE FILE(SEQ) FROM(SOURCE);
23 WRITE FILE(KEY) FROM(SOURCE) KEYFROM(I); fill
24 WRITE FILE(DIR) FROM(SOURCE) KEYFROM(I); files
25 END;
26 CLOSE FILE(KEY);
27 CLOSE FILE(DIR);
28 CLOSE FILE(SEQ);
29
30 OPEN FILE(SEQ) RECORD UPDATE SEQL;
31 READ FILE(SEQ) IGNORE(2);
32 READ FILE(SEQ) INTO(SOURCE); CONSECUTIVE
33 CHANGED = SUBSTR(SOURCE,1,16) || ’ - CHANGED’;file
34 REWRITE FILE(SEQ) FROM(CHANGED);
35 READ FILE(SEQ) SET(Z);
36 SUBSTR(Z->RECORD,17) = ’ - CHANGED’;
37 REWRITE FILE(SEQ);
38 CLOSE FILE(SEQ);
39
40 OPEN FILE(KEY) RECORD UPDATE SEQL;
41 READ FILE(KEY) IGNORE(2);
42 READ FILE(KEY) INTO(SOURCE);
43 CHANGED = SUBSTR(SOURCE,1,16) || ’ - CHANGED’;
44 REWRITE FILE(KEY) FROM(CHANGED); INDEXED
45 CLOSE FILE(KEY); file
46
47 OPEN FILE(KEY) RECORD UPDATE DIRECT KEYED;
48 CHANGED = (6)’ ’ || ’ - CHANGED’;
49 REWRITE FILE(KEY) FROM(CHANGED) KEY(KEY5);
50 CLOSE FILE(KEY);
51
52 OPEN FILE(DIR) RECORD UPDATE DIRECT KEYED;
53 CHANGED = ’ - CHANGED’; REGIONAL(1)
54 REWRITE FILE(DIR) FROM(CHANGED) KEY(KEY3); file
55 CLOSE FILE(DIR);
56

U253-J-Z125-9-7600 39

CONSECUTIVE, INDEXED, REGIONAL Example

57 OPEN FILE(DIR) RECORD SEQL UPDATE;
58 READ FILE(DIR) IGNORE(4);
59 READ FILE(DIR) SET(Z);
60 SUBSTR(Z->RECORD,17) = ’ - CHANGED’;
61 REWRITE FILE(DIR);
62 CLOSE FILE(DIR);
63 END;

Result of the run in the CONSE226 file

LINE: 1
LINE: 2
LINE: 3 - CHANGED
LINE: 4 - CHANGED
LINE: 5
LINE: 6

Result of the run in the INDEX226 file

1 LINE: 1
2 LINE: 2
3 LINE: 3 - CHANGED
4 LINE: 4
5 - CHANGED
6 LINE: 6

Result of the run in the REG1226 file, listed by $DPAGE (8 x 27 bytes)

LOGICAL PAGE = 1

KEY (0001) (000) BB5AEAB0 01000001 00000000 00000000 .!..............

(0001) (000) 001B0000 00000003 4040D9C5 C7F1F2F2 (010) F6404040 40404040 40404040 40404040 REG1226
(0033) (020) 00000000 00000000 00000000 00000000 (030) 00000000 00000000 00000000 00000000

NEXT 62 LINES ARE IDENTICAL TO ABOVE LINE.

LOGICAL PAGE = 2

KEY (0001) (000) BB5AEAB0 01000002 00000000 00000000 .!..............

(0001) (000) FF000000 00000000 00000000 00000000 (010) 00000000 00000000 00000040 40404040 -..........................
(0033) (020) 4040D3C9 D5C57A40 40F14040 40404040 (030) 40404040 40404040 40404040 40D3C9D5 LINE: 1 LIN
(0065) (040) C57A4040 F2404040 40404040 40404040 (050) 40406040 C3C8C1D5 C7C5C440 40404040 E: 2 - CHANGED
(0097) (060) 40404040 40404040 40404040 40404040 (070) 404040D3 C9D5C57A 4040F440 406040C3 LINE: 4 - C
(0129) (080) C8C1D5C7 C5C44040 40404040 4040D3C9 (090) D5C57A40 40F54040 40404040 40404040 HANGED LINE: 5
(0161) (0A0) 40404040 40404040 40D3C9D5 C57A4040 (0B0) F6404040 40404040 40404040 40FF0000 LINE: 6 -..
(0193) (0C0) 00000000 00000000 00000000 00000000 (0D0) 00000000 00000000 FF000000 00000000-.......

Dummy records 0 and 7 can be identified by ’FF’B4.

40 U253-J-Z125-9-7600

3 Compiling a PL/I source program

3.1 Functions of the PLI1 compiler

By means of the PLI1 compiler, PL/I source programs are checked for compliance with
syntactic and semantic rules and compiled into object modules. Control statements,
entered by the compiler before the source program is processed, are responsible for
controlling the compile operation, i.e. locating the source program, selecting the listings
to be output, etc.

The user must be aware that the PLI1 compiler does not evaluate the /PARAM com-
mand.

The PLI1 compiler is started with the EXECUTE command and begins by reading in the
control statements from SYSDTA. Then it enters the source program, either from
SYSDTA or from a file specified in the control statements. INCLUDE texts from files,
GAM files, or macro libraries can be inserted in the source program by the compiler. A
number of libraries or GAM files may be specified, with the ability to define a search
sequence for the texts to be inserted.

The source program can be listed on SYSLST - complete with inserted INCLUDE texts
if required. If the PL/I compiler finds errors in the source program, they are reported on
SYSLST. Depending on the error type, the messages distinguish between warnings,
minor errors, and severe errors. If a severe error occurs, compilation is terminated
before code generation. Compilation may be terminated on the occurrence of a minor
error, a warning, or in any of the three cases as desired.

In addition to the source program listing, the following listings can be generated:

Enabled control statements
Storage map
Reference listing
OFFSET listing
INCLUDE references
Object code listing in assembler format
Storage occupancy statistics

U253-J-Z125-9-7600 41

Functions Compiler

The listings and/or messages can also be sent to a special file (SAVLST option in the
LIST or DIAGNOST control statements).
The object code generated is entered into the EAM area of the object module file if
compilation was not terminated abnormally. The compiler ends its run by outputting an
end message to SYSOUT.
If the compiler run is terminated as the result of an error, all subsequent commands up
to STEP or LOGOFF are ignored.

The PLI1 compiler is not yet provided with the XS capability:
it cannot run in the address space above 16 MB.

42 U253-J-Z125-9-7600

Compiler Call

3.2 Invoking the PLI1 compiler

3.2.1 Invoking the compiler by ISP command

he PLI1 compiler is invoked, i.e. started, by the EXECUTE command, as follows:

EXECUTE
/ $PLI1[,MONJV=jvname]

EXEC

Further parameters may be specified after the word $PLI1, as explained in the manual
"Control System Command Language" [2]. Their use is not mandatory.

3.2.2 Invoking the compiler by SDF command

The PLI1 compiler can alternatively be started by the SDF command

/START-PLI1-COMPILER

Additional operands are available for this command. The operands and their meaning
are described in section 3.12 at the end of this chapter.

Input of SDF commands and their operands in guided and unguided dialog is descri-
bed in detail in the manual "Introductory Guide to the SDF Dialog Interface".

U253-J-Z125-9-7600 43

Call Compiler

3.2.3 Monitoring by monitoring job variable

For monitoring the compiler run, a monitoring job variable can be specified by entering
’MONJV=jname’ in the EXECUTE command. The status indicator (digits 1 through 3) of
the job variable is set by the system; it may have the following values:

’$R ’ = running
’$T ’ = normally terminated
’$A ’ = abnormally terminated.

The return code indicator (digits 4 through 7) is set at end of compiler run; it has the
following format:

Status indicator Return code indicator
................

................

Program information
Termination code

Program information is given the value of the highest error weight that occurred, in for-
mat PIC’999’, where the following values are allocated to the error weights:

0 No diagnostic message
1 Information messages were issued
2 Warnings were issued
3 Errors occurred
4 Severe errors occurred
5 A fatal error occurred
6 A fatal compiler error occurred

The termination code is set, depending on the type of termination and the highest error
weight that occurred. The type of termination can be influenced by the control specifica-
tion *COMOPT OBJECT.

Allocation is as follows:

Highest
error 0 1 2 3 4 5 6

Type of weight
termination

Normal ($T) 0 1 1 1 - - - Termination
code

Abnormal ($A) - - 21) 21) 2 2 3

1) Depending on the control statement *COMOPT OBJECT

This feature presupposes software product JV.

44 U253-J-Z125-9-7600

Compiler Call

3.2.4 Message text file

For outputting all the messages, the compiler requires either of the following files:

$TSOS.PLI1.TEXT.D for German
$TSOS.PLI1.TEXT.E for English

If these files exist under different names or user IDs, then one of them must be made
available by

/FILE file,LINK=TEXTLINK

in which case the language control feature (German or English) is ineffective.

U253-J-Z125-9-7600 45

Call Compiler

3.2.5 Examples

The following examples of compiler calls illustrate various forms of compiler control.
The control statements used depend on whether processing is in interactive or batch
mode and where the source program and the control statements are located.

The examples only concern the compiler call environment. BS2000 often uses procedu-
res to perform the compile/link-edit/execute sequence, an example of which can be
found in chapter 2.
The examples 1-3 illustrate the standard methods for compilation in batch mode. It is of
no importance whether the commands are entered via a card deck or from a file which
is activated by the /ENTER command.

Example 1

The control statement and source program are supplied in the form of a card deck.
Compilation is only to be performed up to and incl. the semantics run (no object mo-
dule will be generated) and only errors are to be reported (warnings will be suppres-
sed).

.

.

.
/EXEC $PLI1
* COMOPT DIAGNOST=E,OBJECT=SE
* END

source program lines
.
.
.

Example 2

The source program exists in the SOURCE file. No control statements are required.

.

.

.
/SYSFILE SYSDTA=SOURCE
/EXEC $PLI1
/SYSFILE SYSDTA=(SYSCMD)

.

.

.

Note

Since the first line in SYSDTA (SOURCE file) does not begin with either *COMOPT
or *END, the compiler knows that no control statements are specified.

46 U253-J-Z125-9-7600

Compiler Call

Example 3

The source program contains INCLUDE statements in the %INCLUDE MACRO1 format.
The INCLUDE texts are contained in libraries LIBA, LIBB, and LIBC and are to appear
in the source listing.

.

.

.
/EXEC $PLI1
* COMOPT COMLIB=(LIBA,LIBB,LIBC)
* COMOPT LIST=EX
* END

source program
.
.
.

Note

The name specified for %INCLUDE is interpreted as an element (member) name.
LIBA, CBB, and LIBC refer to GAM (see section 3.4 and [4]) or MLU (see section
3.4 and [3]) files which are searched in the specified order until the element is
found. Examples 4 through 7 apply mainly to interactive mode.

Example 4

The source program exists in a file A. Control statements are required.

.

.

.
/EXEC $PLI1
* COMOPT SOURCE=A,MARGINS=(T(1,72)) entry

as
* END prompted

.

.

.

U253-J-Z125-9-7600 47

Call Compiler

Example 5

The source program is in the SOURCE file, the control statements are in the CONTROL
file.

a) . CONTROL file:
.
. *COMOPT SOURCE = SOURCE

/SYSFILE SYSDTA=CONTROL
/EXEC $PLI1 *END
/SYSFILE SYSDTA=(SYSCMD)

.

.

.

b) .
. CONTROL file:
.

/SYSFILE SYSDTA=CONTROL *COMOPT OBJECT = E (5)
/EXEC $PLI1
-Breakpoint (prompt) *END/
/SYSFILE SYSDTA=SOURCE
/RESUME

.

.

.

Example 6

The source program and the control statements are entered via terminal.

.

.

.
/EXEC $PLI1
*COMOPT LIST=MAP,OPTIONS=MAIN
*END
EXAMPLE: PROC;

DCL SYSPRINT FILE; enter as
PUT SKIP (2) LIST (’ EXAMPLE 6 ’); prompted
END;

.

.

.

48 U253-J-Z125-9-7600

Compiler Call

Example 7

The source program exists in the SOURCE file, the control statements are entered via
terminal.

.

.

.
/EXEC $PLI1
*COMOPT LIST=FULLXREF

according to input request
*END/

-Breakpoint (prompt)

/SYSFILE SYSDTA=SOURCE
/RESUME alternative to

. COMOPT SOURCE =

. SOURCE

.

U253-J-Z125-9-7600 49

Rules Control statements

3.3 Controlling the PLI1 compiler

To select its functions, the PLI1 compiler requires options which must be supplied in
the form of control statements. To avoid unnecessary programming effort, defaults (pre-
set options) are provided, which become effective in the order shown below:

1. PLI1 Default
The defaults specified for each control statement are evaluated first.

2. Computing Center Default
If there is a file by the name of $TSOS.PLI1.OPTIONS, the control statements contai-
ned in that file are evaluated, overwriting the values determined so far.

3. User Default
If there is a file by the name of $user.PLI1.OPTIONS under the current user ID, the
control statements contained in that file are evaluated, overwriting the values determi-
ned so far.

4. Start Default
Further control statements may be specified at the time the compiler PL/I program
is started. Following the start, they are read in from system file SYSDTA and evalua-
ted, overwriting the values determined so far.

This control statement concept is valid for both the compiler (*COMOPT) and the PL/I
program (*RUNOPT). The following applies to the $TSOS.PLI1. OPTIONS and
PLI1.OPTIONS files:

• SAM or ISAM file with variable-length records

• Key length for ISAM: 8 characters

• Maximum number of characters evaluated per record: 72

• COMOPT and RUNOPT may appear in combination

• Initial * character may be omitted

• END option may be omitted

Otherwise, control statements are governed by the same rules as described below.

50 U253-J-Z125-9-7600

Control statements Rules

3.3.1 General rules for control statements

All control statements are read from SYSDTA after the compiler is started. They are in
the following format:

/EXEC $PLI1

specification
[[_...][*]COMOPT keyword= ,...],...

(specifications,...)

[_...][*]END[/]

The following rules apply here:

1. A number of lines with control statements may be supplied. Control statement *END
indicates the end of the control statements.

2. Control statement format:

Control statements may be indented, i.e. lines may begin with blanks.

The * may be omitted without affecting the meaning.

Two or more control statements are separated by commas.

Control statements may be continued on the next line but *COMOPT must also
precede the continuation line. The options on the lines following *COMOPT are
interpreted as one contiguous entry, which means:

The end of a line cannot replace a comma.

Control statements consist of a keyword followed by the equal symbol and one
or more specifications.

Example

*COMOPT SOURCE = FILE1, LIST = (SOURCE, XREF),
*COMOPT DBG = ALL
*END

3. If a given control statement allows a number of specifications, they must be enclo-
sed in parentheses as a list.

U253-J-Z125-9-7600 51

Rules Control statements

In addition, the following applies:

A control statement may be in any of the following formats:

keyword = {empty | ? | STD | specification | list}

Meaning

empty The current value is not modified.

? In interactive mode, inquiry to the user terminal. In batch mode, the
same effect as ’empty’.

STD The specification defined under ’default’ (preset options) are used.

Keywords and specifications of a keyword nature can be abbreviated. The cha-
racters used to form the abbreviation are underlined in the discussion of each
control statement.

Specifications may always appear as a list, in the form: (specification 1, specifica-
tion 2, ...)

If inconsistencies arise, the last option prevails.

If errors are found during the processing of a *COMOPT line, the options pre-
viously evaluated still apply.

Control statements are only valid for the particular compiler run for which they
were specified.

If a control statement is specified more than once, the last supplied value ap-
plies.

4. If the system defaults (preset values) are to be used, you do not need the
*COMOPT lines and the *END option should be supplied.

Note
Normally, the compiler can operate without error even if the *END option is omit-
ted, but there may be situations where characters read in via SYSDTA are misin-
terpreted.

5. *END/ means that a breakpoint is set after the control statements have been proces-
sed, i.e. the program (the compiler) is interrupted but remains loaded. At this point,
the user may e.g. issue a /SYSFILE command to reassign SYSDTA. A subsequent
RESUME command ends the interrupt. The use of *END/ in batch tasks is similar.
The program is interrupted and the next command is executed. A /RESUME com-
mand permits continuation from the point of interrupt unless another program has
been loaded in the meantime.

52 U253-J-Z125-9-7600

Control statements Rules

3.3.2 Error handling during control statement evaluation

Any errors detected during the syntactic or semantic checking of control statements are
registered. Only at the end of processing (*END) will the error be reported and dis-
played on SYSOUT with the invalid string.

A missing initial asterisk is not reported; the control line is evaluated. A missing *END
option is only reported if a valid COMOPT has been processed before.

After an error message is issued, the terminal displays, in interactive mode, the invalid
control statement and the prompt "ENTER CORRECT OPTION OR ’_’ OR ’@’:". The
following entries are allowed:

• Control statements
The invalid control statement may be corrected and returned. Additional control sta-
tements may be entered as well. Entry is made without *COMOPT.

Caution
Any error that may be made while entering a correction will be reported also;
however, any additional control statements following the invalid control statement
will be lost.

• @ (commercial at)
Processing of control statements is terminated. This ensures that the table of valid
control statements in the compiler is in a defined status.

• Blanks (_)
The invalid control statement is ignored. The next error is displayed.

After all the error messages have been displayed, the user is prompted in interactive
mode as follows:

***CONTINUE (Y/N).

If the response is ’Y’, compilation continues. In batch mode, compilation can be conti-
nued by setting task switch 0. If ’N’ is entered, or if switch 0 is not set, then compila-
tion is aborted.

The above rules apply accordingly to error handling in object programs.

U253-J-Z125-9-7600 53

Summary Control statements

3.3.3 Summary of the control statements for the PLI1 compiler

Fig. 3-1 provides a summary of all the control statements that may be

used in compilation.

The individual control statements, combined into groups, are described in section 3.4
and later.

Most control statements and specifications can be abbreviated. Some specifications
may be supplied in a negative form (e.g. TERMINAL and NOTERMINAL). The outline
description in the "Effect" column refers to the positive option.

54 U253-J-Z125-9-7600

Control statements Summary

Compiler Abbr. Meaning Specification Abbr. Effect Default
control
statement

COMLIB CML Library NO N No library NO
option

(libname,...) Library or
library
hierarchy

DEBUG DBG Debugging ALL ALL (ST,P,L,C,G,
aids R)
option NO NO (NST,NP,NL,

NC,NG,NR,
NBK) NO

STMT ST Insert source
NOSTMT NST line number NST

PROCTRACE P
NOPROCTRACE NP Instructions NP

are inserted
LABTRACE L for
NOLABTRACE NL PROCEDURE NL

entries
CALLTRACE C Labels
NOCALLTRACE NC CALLs NC

GOTOs
GOTOTRACE G RETURNs
NOGOTOTRACE NG NG

RETURNTRACE R
NORETURNTRACE NR NR

BREAKPOINT
({[i-]z[.a]},.) BK Insert a
NOBREAKPOINT NBK breakpoint for NBK

INCLUDE text
’i’, line ’z’,
statement ’a’

Fig. 3-1 Control statements for the PLI1 compiler (part 1)

U253-J-Z125-9-7600 55

Summary Control statements

Compiler Abbr. Meaning Specification Abbr. Effect Default
control
statement

DIAGNOST DIAG Diagnostic INFORMATION I Messages in
message WARNING W ascending
output ERROR E order from W

SEVERE S specified
severity to
SYSLST

TERMINAL T In interactive
NOTERMINAL NT mode, above

messages
additionally NT
displayed on
terminal

SAVLST SV Above messages
NOSAVLST NSV additionally NSV

output to file

FORMAT FM Controls PRINTER P Controls out- P(64,132)
the number ([m1][,m2]) put to SYSLST
of lines and, in batch
per page, mode, also to
line SYSOUT;
length, m1= number of
and lan- lines/page
guage for
messages m2= length of

line.

TERMINAL T Controls out- T (O,k)1)

(n1 ,n2) put to
terminal;

lines
n2 = number of

characters

ENGLISH E All compiler E
DEUTSCH D output is in

English or
German

1) ’k’ is the physical line length of the current output device.

Fig. 3-1 Control statements for the PLI1 compiler (part 2)

56 U253-J-Z125-9-7600

Control statements Summary

Compiler Abbr. Meaning Specification Abbr. Effect Default
control
statement

LIST LST List ALL ALL Corresponds to
control (EX,NOT,NLC,

N,M,FX,I,E,A,
NOF,OP,SM)

NO NO Corresponds to
(NSC,NOT,NLC,
NN,NM,NX,NI,
NE,NOF,NA,NOP,
NSM)

SOURCE SC Source listing
NOSOURCE NSC with %INCLUDE

statements
SC

EXPAND EX Source listing
with inserted
INCLUDE texts

OUTTEXT [(c)] OT Display source
text, header,
trailer, and
frame charac-
ter ’c’ if any

NOOUTTEXT[(c)] NOT NOT

NOLINECNT NLC Index without NLC
leading zeros
or line count

LINECNT (EDOR) LC(ER) Index accord-
ing to EDOR

LINECNT (EDT) LC(ET) Index accord-
ing to EDT

LINECNT LC(PR) Index accord-
(PRINT) ing to PRINT

INSOURCE ISC Log prepro-
NOINSOURCE NISC cessor input NISC

NEST N Identification N
NONEST NN of nestings

MAP M Output of
NOMAP NM storage maps NM

Fig. 3-1 Control statements for the PLI1 compiler (part 3)

U253-J-Z125-9-7600 57

Summary Control statements

Compiler Abbr. Meaning Specification Abbr. Effect Default
control
statement

LIST SHRTXREF SX References
(con- and attributes
tinued) of identifiers

(explicit
only)

FULLXREF FX References NX
and attributes
of identifiers
(all)

NOXREF NX

AGGREGATE AGG Output of the NAGG
aggregate

NOAGGREGATE NAGG listing

IREF I INCLUDE refer- I
NOIREF NI ence listing

ESD E External names NE
NOESD NE listing

OFFSET OF Table to OF
[({a,e},...)] assign source
NOOFFSET NOF statement to

hexadecimal
program
addresses in
area a, e

ASSM A Output of an NA
[({a,e},...)] object code
NOASSM NA listing in

area a, e

OPTIONS OP Output of OP
NOOPTIONS NOP the enabled

control
statements

SUMMARY SM Output of NSM
NOSUMMARY NSM program sta-

tistics

SAVLST SV Copy all list- NSV
NOSAVLST NSV ings into a

file

TERMINAL T Copy all list- NT
NOTERMINAL NT ings to the

terminal

Fig. 3-1 Control statements for the PLI1 compiler (part 4)

58 U253-J-Z125-9-7600

Control statements Summary

Compiler Abbr. Meaning Specification Abbr. Effect Default
control
statement

MARGINS MAR Formal CHAR 48 C48 48- or 60- C60
structure CHAR 60 C60 character set
of source is used
program
and TEXT (t1,t2) T Source program T (2,72)
INCLUDE text begins in
texts column t1 and

ends in col.t2
2

LINID(l1,l2) L Line identi- NL
fication

NOLINID NL begins in
column l1 and
ends in col.l2

PAD P Pad source P
NOPAD NP line with

blanks

ASACNTRL (a) A Carriage con- NA
NOASACNTRL NA trol character

for source
program list-
ing is in
column ’a’

GAMKEY(n,c) G Conversion of G (0,0)
an element
name to form
a group key
n = name

length
c = pad char.

SAVMAC SM Source program NSM
NOSAVMAC NSM is a SAVMAC

file

MESSAGE MSG Message SYSLST S Additionally, NS
control NOSYSLST NS messages to

SYSLST in in-
teract. mode

MODULE MOD Output * * Temporary *EAM *
destina- Library file in LMS
tion for (*[(version)]) library
object Library *: Module name
modules (element[(ver- becomes

sion)]) element name

Fig. 3-1 Control statements for the PLI1 compiler (part 5)

U253-J-Z125-9-7600 59

Summary Control statements

Compiler Abbr. Meaning Specification Abbr. Effect Default
control
statement

OBJECT OBJ Generating Compilation up
the object to and includ-
module ing:

SYNTAX SY Syntax run O
(SY)

SEMANTIC SE Semantics run
(SE)

CODE C Code genera-
tion (C) or

OUT O Output to
object module
file

WARNING (n) W Compilation
ERROR (n) E aborted if n E(32767)

errors of the
corresponding
severity have
occurred

ABORT(n) A Compilation A(500)
aborted after
n errors and
warnings

MACRO MAC Terminate
after prepro-
cessor run

OPTIMIZE OPT Optimiza- NO NO Corresponds to NO
tion (NE,NOL,NT,

NR)
ALL ALL Corresponds to

(E,OL,T,R)
ENABLING E Conditions

OFL,UFL,ZDIV
preset

NOENABLING NE Conditions NE
CONV,FOFL,OFL,
UFL,ZDIV
preset

OVERLAP OL Overlapping NOL
possible by

NOOVERLAP NOL assignment

TIME T Optimize NT
runtime

NOTIME NT

REORDER R Optimize NR
sequence of

NOREORDER NR statements

Fig. 3-1 Control statements for the PLI1 compiler (part 6)

60 U253-J-Z125-9-7600

Control statements Summary

Compiler Abbr. Meaning Specification Abbr. Effect Default
control
statement

OPTIONS OPN Program MAIN M Program is NM
classifi- NOMAIN NM main program
cation

ISO I Source program
conforms to
PL/I standard

NOISO N Source program N
conforms to
Industry
Standard

MACRO MAC Invoke pre- NMAC
NOMACRO NMAC processor

INTERRUPT INTR Include inter- NINTR
NOINTERRUPT NINTR rupt points

for ATTENTION
condition

XS X Generate XS NX
NOXS NX object modules

BITPTR B Generate NB
NOBITPTR NB absolute bit

pointer

SOURCE SRC Specifi- * * SYSDTA, fol-
cation of lowing the
input control state-
volume ments
for
source File name LINK or FILE
programs name of the

file contain- *
ing the source
program

Library Element from
(element) GAM, LMS, or

MLU file

Library Element from
(element LMS library
[(version)])

Fig. 3-1 Control statements for the PLI1 compiler (part 7)

U253-J-Z125-9-7600 61

Summary Control statements

Compiler Abbr. Meaning Specification Abbr. Effect Default
control
statement

STORAGE STR Capabil- AREA A A storage area A(16,16,
ity for ([q1][,[q2] of ’q1’ pages
control- [,[q3]]]) is initially
ling provided for
storage the standard
manage- area. Addi-
ment at tional capac-
compiler ity, if re-
run time quired, is
and added in in-
achieving crements of
optimiza- ’q2’ pages up
tions to a maximum

of ’q3’ pages,
when error
30 may be
reported.
(1 page = 4KB)

STACK S The stack is S(16,4)
([s1][,s2]) used in seg-

ments of ’s1’
pages. A re-
serve of ’s2’
is provided
for error and
end handling
in case of
insufficient
storage space.
(1 page = 4KB)

SYMTEST SMT Debugging ALL A Generate debug M
aid AID aid info.

NO N Do not gener-
ate debug aid
info.

MAP M Generate only
ESD info
"compilation
unit"

Fig. 3-1 Control statements for the PLI1 compiler (part 8)

62 U253-J-Z125-9-7600

OPTIONS option PROCEDURE

3.3.4 Controlling the compiler via the source program

The OPTIONS entries in the PROCEDURE statement allow the specification of a num-
ber of compiler controls in the source program. They are supplied in the following for-
mat:

Identifier: PROCEDURE OPTIONS (option,...)

The following options are supported:

Option Effect Description

MAIN This procedure is compiled as a Section 3.6.3
NOMAIN main procedure.

ISO Compilation according to Section 3.6.3
NOISO standard.

OVERLAP
NOOVERLAP

REORDER
NOREORDER Optimization Section 3.6.4

ENABLING
NOENABLING

REENTRANT None; all PL/I procedures are
reentrant

XS XS-capable objects are to be Section 3.6.3
NOXS generated.

BITPTR Bit pointers are to be generated Section 3.6.3
NOBITPTR (only relevant for OPTIONS (XS))

When used, these options take precedence over the same entries for
*COMOPT OPTIONS = or *COMOPT OPTIMIZE =.

U253-J-Z125-9-7600 63

ENTRY OPTIONS option

The OPTIONS attribute, when used in the declaration of external entries, defines the
way the compiler will generate calls for user program procedures.

Format:

DCL identifier ENTRY [(parameter-list)] OPTIONS (option[,]...);

The following entries are supported for the OPTIONS attribute:

Option Effect Description

ASSEMBLER The compiler generates the Section 7.1.2.3
invocation of the procedure thus

ASM declared in accordance with 1)
Industry Standard compatible
conventions.

[INTER] INTER has no additional signifi-
cance.

PLI1 This ensures error handling for Section 7.2.1
ASSEMBLER programs according to
PLI1 conventions.

COBOL [INTER] This entry refers to a COBOL Section 7.3
program.
INTER has no additional significance.

FORTRAN This entry refers to a FORTRAN Section 7.3
program.
Interrupts are handled by PL/I.

FORTRAN INTER This entry refers to a FORTRAN Section 7.3
program.
Interrupts not dealt with by
FORTRAN are handled by PL/I.

ILCS The compiler generates a call for Section 7.4
the agreed procedure in accordance
with ILCS conventions.

LIBRARY Special option for entry name. Section 7.1.6

VARIABLE For invoking the procedure thus Section 7.1.2.2
declared, the compiler generates
a detailed parameter list which 1)
contains all available informa-
tion on the arguments and their
number.

WXTRN The entry (weak external) is not [3] TSOSLNK
handled automatically by the [12] as of
linkage editor but only if BS2000 V8.0
linkage is requested explicitly
or if the entry is declared
somewhere else without WXTRN.
It is the user’s responsibility
to make sure control will not
be transferred to an unlinked
entry.

1) This option is required if the invoked procedure can be supplied with a variable
number of parameters (e.g. assembler procedures). For details of the interface, see
chapter 7.

64 U253-J-Z125-9-7600

Compiler STORAGE

3.3.5 Storage requirements of the compiler (STORAGE)

STORAGE is a statement for controlling the use of the virtual user address space by
the compiler. It can be used to specify the initial size and extensions of the virtual sto-
rage for the standard area and stack.

Operating system capacity:

A virtual user address space of 1 MB, although theoretically sufficient, would limit the
program size to approx. 200 - 1000 statements; therefore, an address space of 2 - 4
MB should be provided (a storage capacity of 2 MB gives you approx. 1000 - 3000 sta-
tements; 3 MB, approx. 2500 - 7000; and 4 MB, approx. 4000 - 10000 statements).

The storage statistics (LIST = SUMMARY) indicate the optimum sizes for standard area
and stack.

specification
STORAGE=

(specification,...)

Default:

STORAGE=(AREA (16,16,),STACK (16,4))

The following specifications are allowed:

AREA ([q1][,[q2][,[q3]]])
An initial storage area of ’q1’ virtual pages of 4 KB each is supplied for
building the workfile during compilation. Necessary extensions are added
in increments of ’q2’ pages up to a maximum of ’q3’ pages. If ’q3’ is not
specified, maximum storage size is allocated. If that size is exceeded, the
system reports error no. 30.

Depending on the size of the allowable user address space, a storage
requirement of up to 1500 (6 MB) pages is reasonable for the standard
area.

STACK ([s1][,s2])
The space for the stack requirements of the compiler is used in segments
of ’s1’ virtual pages of 4 KB each. A reserve of ’s2’ pages is provided for
error and end handling in cases of insufficient storage space.

The maximum depends on the size of the allowable user address space.
Generally, the default 16 should be sufficient.

U253-J-Z125-9-7600 65

General Source input

3.4 Controlling source input

The PLI1 compiler provides various facilities for entering the source program. The
source is read in either via system file SYSDTA or from a cataloged file. The source
program may be present in the form of a SAM or ISAM file or it may be an element in
a macro-organized library or stored in a group file. The read-in process is controlled by
the SYSFILE command and the SOURCE control statement. SOURCE defines whether
the source program will be taken from a file or library or whether it should be read in
from system file SYSDTA. If it is read in from SYSDTA, entry is usually via a card deck
(batch mode) or from a terminal (interactive mode). Moreover, the role of SYSDTA may
be assigned to a user file by means of the SYSFILE command. Input via SYSDTA is not
possible, however, if the source program is supplied as an element of a library or as a
group file.

Libraries can be created and maintained by the MLU or LMS utilities (see Utility Routi-
nes [3] and LMS [13]).

Note

The MLU utility, when processing source texts, scans columns 1 and 2 in order to
detect control statements. If it finds a blank there, followed by an alphabetic charac-
ter, that line will be regarded as control information. It is therefore recommended
that PL/I programs are either written from column 1 or from column 3 if they are to
be stored in MLU libraries.

The term ’group file’ refers to the set of records in an ISAM file whose keys begin with
a given string, i.e. the name (group index) of the file (see the "EDOR" reference manual
[4]).

Another means of controlling source input is the compiler statement %INCLUDE. It
should be specified in the source program and indicates a text which will be obtained
from a library or file and inserted in the source program in place of the %INCLUDE sta-
tement. The library is selected by means of the control statements COMLIB.

The facilities described above merely serve to define the source for the read-in process.
More precise control such as the selection of code, line numbering, and columns as
well as the definition of a group file element to be compiled is accomplished through
the MARGINS control statement.

66 U253-J-Z125-9-7600

Source input General

When the source program is entered via terminal, the request for further lines can be
terminated by

*END

This statement is only effective if the end of the source program has been encountered
before. It must be supplied as part of the MARGINS option.

Another way is to enter the following:

BREAK function
/EOF
/R

Again, source input terminates.

U253-J-Z125-9-7600 67

SYSFILE command Source input

3.4.1 SYSFILE command (SYSDTA reassigned)

The SYSFILE command allows the user to modify the assignment of system file
SYSDTA.

General Format:

(PRIMARY)
(SYSCMD)
filename

/SYSFILE SYSDTA =
library (element)
(CARD)
(device)

For example, the command

/SYSFILE SYSDTA = filename

assigns SYSDTA to a cataloged file, and

/SYSFILE SYSDTA = (CARD)

assigns it to a card reader. Further details can be found in the "Control System Com-
mand Language" reference manual [2] and in section 6.2.1.

The compiler initially expects its control statements in system file SYSDTA. Depending
on the SOURCE control statement, the source program may then be entered via
SYSDTA also.

If SYSDTA was reassigned before compilation, it is usually necessary to reset the
SYSDTA assignment after compilation. This can be done by the command

/SYSFILE SYSDTA = (SYSCMD) or
/SYSFILE SYSDTA = (PRIMARY)

The different effects of these two commands should be noted. SYSCMD always resets
SYSDTA to the data stream of the current spool-in file (batch processing), ENTER file
or DO procedure. PRIMARY has the same effect in batch mode but in interactive mode
it always assigns the current terminal. This applies even when the SYSFILE command is
part of a DO procedure.

68 U253-J-Z125-9-7600

Source input SYSFILE command

Example 1

Enter the control statements (and source program) from card reader:

/SYSFILE SYSDTA = (CARD)
/EXEC $PLI1
/SYSFILE SYSDTA = (SYSCMD)

Example 2

Enter the control statements (and source program) from the CARD file:

/SYSFILE SYSDTA = CARD
/EXEC $PLI1
/SYSFILE SYSDTA = (SYSCMD)

Note that the parenthesized CARD of example 1 refers to card reader whereas the unpa-
renthesized CARD of example 2 refers to a file whose name is CARD.

U253-J-Z125-9-7600 69

SOURCE Source input

3.4.2 Defining the source file (SOURCE)

The SOURCE control statement defines the file or library from which the source pro-
gram will be read.

*
SOURCE= filename

library (element[(version)])

Default: SOURCE = *

* After the control statements are processed, further input is expected
from system file SYSDTA.

filename If the source program is stored in a SAM or ISAM file, either the file
name or the file LINK name is specified here.

library (element[(version)])
If the source program is stored as a library element, the library
name, the source program name in parentheses and, optionally, a
version specification, also in parentheses, must be entered. The
library must have been created in accordance with LMS or MLU or
GAM (see EDOR) conventions.

Names of LMS library elements may be up to 64 characters in
length. If they are longer, they will be truncated to 64 characters.
Names of MLU library elements may be up to 8 characters in length.
If they are longer, they will be shortened to the first 5 and the last 3
characters.

Names of GAM file elements may be no longer than indicated in the
GAMKEY specification of the MARGINS statement. If they are longer,
they are shortened in accordance with the rule described under the
GAMKEY specification (see section 3.4.4).

The version specification is only evaluated for LMS libraries. It may
be up to 24 characters in length. If no version specification is ent-
ered, the element with the highest version number will be addressed
when the library is an LMS library.

’filename’ and ’library’ are first interpreted as link names. If that fails, they are regarded
as file names. The same applies to the identification of libraries referenced in
%INCLUDE statements.

70 U253-J-Z125-9-7600

Source input SOURCE

Note on application

Assume e.g. a control statement SOURCE = ORIGIN within a DO procedure, which
permanently assigns a source file name for several compiler runs. Any source pro-
grams may be compiled then if a /FILE command with the name of the current
source file is issued before each call of the DO procedure. In this case:

/FILE PROGR1,LINK=ORIGIN

Example 1

Entering a source program from a cataloged file A.

.

.
/SYSFILE SYSDTA=(SYSCMD)
/EXEC $PLI1
*COMOPT SOURCE=A
*END
/next command

.

.

.

Example 2

Entering a source program from a library LIB1. Assume the name of the source pro-
gram is PROGR5

.

.
/SYSFILE SYSDTA=(SYSCMD)
/EXEC $PLI1
*COMOPT SOURCE=LIB1(PROGR5)
*END
/next command

.

.

.

U253-J-Z125-9-7600 71

SOURCE Source input

Example 3

Entering a source program from a GAMLIB file. The record groups whose records
begin with the key 00003 are to be compiled. The KEY defined for the file by the FILE
command is assumed to be 8 characters in length, the first 5 of which will be interpre-
ted as the group key (in this case, 00003). This means e.g. that all records with keys
ranging from 00003000 to 00003999 will be compiled.

.

.
/SYSFILE SYSDTA=(SYSCMD)
/EXEC $PLI1
*COMOPT SOURCE=GAMBIB(00003),MARGINS=GAMKEY(5,0)
*END
/next command

.

.

.

Example 4

Entering a source program from a file GAMLIB. Assume that the LINK name is GROUP.
All records whose group name is ABCDEO are to be compiled.

.

.
/FILE GAMBIB,LINK=GROUP
/SYSFILE SYSDTA=(SYSCMD)
/EXEC $PLI1
*COMOPT SOURCE=GROUP(ABCDE),MARGINS=GAMKEY (6,0)
*END
/next command

.

.

72 U253-J-Z125-9-7600

Source input SOURCE, GAMKEY

Examples of the GAMLIB file

Group GAMLIB file Meaning of the KEY

KEY Source line Group name Consec. group
no.

n
m

n: first option from
GAMKEY specification

m: KEYLEN

KEYLEN: option in the FILE
command

AB

ABC

ABCD

ABCDE0

ABCDE ABCDE1

U253-J-Z125-9-7600 73

SOURCE, GAMKEY Source input

If the user, as in example 4, supplies the options SOURCE = GROUP(ABCDE) and
MARGINS = GAMKEY(6,0) then all records with the group name ABCDE0 are compiled
because the character "0" is added to the 5-digit element name to generate the 6-digit
group name.

For MARGINS = GAMKEY (2,0), the records whose group name is AB would be compi-
led, i.e. all the records of our sample file. For MARGINS = GAMKEY (4,0), the group
name ABCE would be formed from the element name. This group is not included in the
above sample file. The rules of formation for group names are explained in section
3.4.4.

Example 5

The control statements for compiling a source program are contained in a file OPT. The
source file is not to be defined until the control statements have been processed. The
source is in the PROG file.

Contents of the OPT file:

*COMOPT SOURCE = *
further control statements
*END/

Command sequence at the terminal:

.

.

.
/SYSFILE SYSDTA=OPT
/EXEC $PLI1

breakpoint is taken

/SYSFILE SYSDTA=PROG
/RESUME

.

.

.

74 U253-J-Z125-9-7600

Source input COMLIB

3.4.3 Defining the INCLUDE library (COMLIB)

The COMLIB control statement is required if %INCLUDE statements without library
options occur in a PL/I source program, i.e. if the format of the statement is
%INCLUDE name;.
The names of the libraries containing the names (elements) specified in the %INCLUDE
statements must be supplied in COMLIB. The libraries are searched in the order they
were specified in COMLIB.

NO
COMLIB =

(libname,...)

Default: COMLIB=NO

NO No library; the name supplied in %INCLUDE is the name of a SAM
or ISAM file.

libname The name specified in %INCLUDE is interpreted as an element
name. ’libname’ identifies GAM, LMS, or MLU files which are sear-
ched in the specified order until the element is found. In each case,
’libname’ is first interpreted as a LINK name. If this LINK name can-
not be found, the search continues for a file of the same name. A
maximum of 8 libnames may be supplied.

Note

From the list of INCLUDE references (LIST = IREF control statement), the user can
learn in which library the appropriate INCLUDE text was found.

U253-J-Z125-9-7600 75

MARGINS Source input

3.4.4 Source line format (MARGINS)

The MARGINS control statement describes the line format of source programs and
INCLUDE texts.

specification
MARGINS=

(specification,...)

Default: MARGINS = (C60,T(2,72),NL,NA,G(0,0),P)

Possible specifications:

CHAR60 Source program and INCLUDE texts use only the
CHAR48 60-character set or additionally the replacement symbols of the 48-

character set. Differences between the character sets are explained
in section 3.2 of the PL/I language reference manual [1].

TEXT(t1, t2)
The source program text begins in column t1 and ends in column t2,
where 1 t1 t2 255. The same applies to INCLUDE texts. If the
t1 - t2 range is outside the text ranges, the line is ignored.

LINID(l1,l2)
LINID refers to the line identifiers contained in the source file. The
line identification field begins in column l1 and ends in columns l2,
again with 1 l1 l2 255.
Out of the characters in the field, a maximum of 8 positions (from
right to left) are evaluated. These characters appear unmodified in
the source listing. For references etc., only the numeric part is inter-
nally evaluated (from right to left) and stored (in extreme cases, 0).
LINID only refers to the source indicated by SOURCE. It does not
apply to INCLUDE texts.

NOLINID There is no line identification in the source lines. The ISAM key or
consecutive numbering is used for the listing.

PAD Source lines are padded with blanks to give them the
NOPAD length (e - a + 1) specified in TEXT (a, e).

ASACNTRL (a)
Column ’a’ of the record contains an ASA carriage control character
to be taken into account when the source program is listed
(1 a 255).

76 U253-J-Z125-9-7600

Source input MARGINS

NOASACNTRL
There are no ASA carriage control characters in the records of the
source program.

GAMKEY(n,c)
This specification describes the editing of an element name from the
SOURCE control statement and the %INCLUDE statement in order
to form the group key for GAM files. In GAM files, the first ’n’ charac-
ters (n = 1 thru 15) of the record key (ISAM KEY) are interpreted as
the group key. If z is the length of the element name from the
SOURCE control statement or a %INCLUDE statement, then for

n = z: the element name is the group key;

n > z: the element name is padded with the character ’c’ to length
’n’;

n < z: the first ’k’ and the last ’n-k’ characters of the element
name form the group key, where

k = 1 + FLOOR (n/2).

For examples of GAMGEY, refer to section 3.4.2.

Default: GAMKEY (0,0)

This means that ’n’ is calculated from the option supplied for
COMLIB, SOURCE or %INCLUDE.

SAVMAC This specification is used to read and print a SAVMAC file generated
by a preprocessor run. This ensures that the compiler listings as well
as the runtime messages will refer to the original source line num-
bers or the original include numbers of the preprocessor input. This
option need only be supplied for separate preprocessor and compi-
ler runs; it will be set internally if preprocessing and compilation fol-
low each other immediately. This specification is equivalent to

MARGINS = (LINID(4,11), TEXT(17,124)).
LIST = NOOUTTEXT

with an overwriting effect.

NOSAVMAC
The source program is not in accordance with SAVMAC file conven-
tions. See section 3.11.

The areas provided within a record for the text (t1 - t2), line identifiers (l1 - l2), and ASA
control characters must not be overlapping.

U253-J-Z125-9-7600 77

General Listing

3.5 Controlling the listing output of the PLI1 compiler

During compilation, the PLI1 compiler generates a number of listings containing informa-
tion on the structure of the program being compiled and the flow of the compilation
process.

All output can be classified as follows:

• Compiler messages (M)

• Source listings (L)

• Diagnostic information on the source program (D)

Depending on the type, output generated during compilation is directed to either
SYSLST or SYSOUT. In addition, various control statements enable the user to direct
output to a second system file. The following table provides a summary.

Object of Output file
CLASS compiler

output Default Additional output
to file controlled by

L Source and SYSLST SYSOUT LIST = TERMINAL
INCLUDE texts only allowed in (no effect in
as well as interactive batch mode)
other output mode
according to
LIST control
statement

D Source- SYSLST SYSOUT DIAGNOST =
related error only allowed TERMINAL
messages and in interactive (no effect in
warnings mode batch mode)

M Compiler SYSOUT SYSLST MESSAGE = SYSLST
messages

The ability to direct SYSLST to a user file by means of the SYSFILE command provides
another control facility. Format of the SYSFILE command:

(PRIMARY)
file-name

/SYSFILE SYSLST=
(file-name, EXTEND)
*DUMMY

For details, refer to the "Control System Command Language" reference manual [2] and
section 6.2.1.

78 U253-J-Z125-9-7600

Listing LIST

3.5.1 List selection (LIST)

The LIST control statement is provided to select listings which arise as a result of the
compilation of a PL/I program and are output by the compiler to SYSLST. The same
control statement can also be used at runtime of the PL/I program, but then only the
options for OPTIONS, SUMMARY and TERMINAL are relevant.

specification
LIST=

(specification,...)

Default: LIST = (SC, NOT, NLC, N, NM, NX, I, NE, OF, NA, OP, NSM, NSV,
NT, NISC)

ALL equivalent to:
(EX, NOT, NLC, N, M, FX, I, E, NOF, A, OP, SM)

NO equivalent to:
(NSC, NOT, NLC, NN, NM, NX, NI, NE, NOF, NA, NOP, NSM)

NO and ALL can be combined with other values, and the contradiction rule (last appro-
priate option valid) becomes applicable.

The following specifications can be used:

EXPAND Source listing with inserted INCLUDE texts.

If OUTTEXT is specified as well, then both the %INCLUDE statement
and the INCUDE text are listed.

SOURCE
NOSOURCE

Output of the source listing with %INCLUDE statements (without
inserted INCLUDE texts).

OUTTEXT [(c)]
The whole line is listed, not only the source text selected for compila-
tion by MARGINS = TEXT (a, e). Moreover, all % statements will be
listed.

A single character may be supplied for ’c’, which is then inserted on
both sides of the source text in the listing, giving the source text a
lateral frame. For variablelength lines, it may happen that the right-
hand frame characters are not vertically aligned if MARGINS =
NOPAD is specified.

NOOUTTEXT [(c)]
Only the source text specified by MARGINS = TEXT (a, e) is listed,
including the frame as supplied by ’c’ if applicable.

U253-J-Z125-9-7600 79

LIST Listing

NOLINECNT
Specifies in which form the reference to a source

LINECNT line is to be output in a listing.

The source reference has the following format:

EDOR
(EDT)

PRINT

"[Include] line [:statement]" See also section 3.8. The line specifica-
tion can be controlled as follows:

NOLINECNT without leading zeros

EDOR without trailing zeros

EDT without trailing zeros and without leading zeros and
with a period between the 4th and 5th position.

PRINT unchanged, same as for PRINT command.

INSOURCE
Listing of input for the preprocessor.

NOINSOURCE

NEST Identifies nestings in the source listing (PROCEDURE, BEGIN,
NONEST DO, SELECT, END), comment continuation lines, string constants

occupying more than one line.

MAP Output of a memory map
NOMAP

SHRTXREF
Output of a reference listing which includes the identifiers (referen-
ced identifiers only)

FULLXREF
Reference listing and attributes (all identifiers)

NOXREF No reference and attribute listing

AGGREGATE Output of a structure length table (aggregate listing)
NOAGGREGATE

IREF INCLUDE reference listing indicating the relationship between
NOIREF the INCLUDE numbers used in the program listing and the associa-

ted INCLUDE names (file, library, element)

ESD Listing of all identifiers with the EXTERNAL attribute
NOESD

80 U253-J-Z125-9-7600

Listing LIST

OFFSET[({a,e},...)]
NOOFFSET

Listing which shows the relationship between the source statement
and hexadecimal offset (procedure-relative address) for the whole
compilation unit or the line areas specified by a, e.
If a = e, e can be omitted, but not the associated comma. The off-
set listing is used for locating errors in the source program, since
normally error messages are issued with reference to the hexadeci-
mal address. The offset listing can be dispensed with if DEBUG =
STMT is supplied (see section 3.6.2).

ASSM[({a,e},...)]
NOASSM Listing of the compiler-generated machine code in assembler-like

format for the entire compilation unit or the line areas indicated by
’a, e’. In the latter case, this listing is generated as part of the
OFFSET listing (see above).

OPTIONS Listing of the enabled control statements for this compilation.
NOOPTIONS

SUMMARY
NOSUMMARY

Statistics including the following:
Maximum stack request
Maximum allocation of the virtual address space (total)
Number of requests for additional storage and storage releases
by the PLI1 system.

These statistics are relevant to optimization (see chapter 8).

SAVLST
NOSAVLST

Copies all the above listings into a file whose name is assigned impli-
citily.
First, the system tries to access a file whose LINK name is SAVLNK;
if that is unsuccessful, the file name SAVLNK is retrieved in the user
catalog.
If there is no such file, a file by the name of SAVLST.PLI1.tsn is cre-
ated in the user catalog; it is renamed as SAVLST.PLI1.module-name
if the syntax run proceeds correctly. This file will be overwritten by a
subsequent compiler run. The same applies to the SAVLST entry in
the DIAGNOST control statement.

TERMINAL
NOTERMINAL

Additional output of the above-mentioned listings to SYSOUT (termi-
nal) in interactive mode. No effect in batch mode.

U253-J-Z125-9-7600 81

DIAGNOST, MESSAGE Listing

3.5.2 Selection of diagnostic information (DIAGNOST)

The control statement DIAGNOST effects the output of diagnostic information on the
source program. This includes error messages or warnings referring to the translated
program and the INCLUDE texts.

specification
DIAGNOST=

(specification,...)

Default: DIAGNOST = (W, NT, NSV)

The following specifications may be entered:

INFORMATION Diagnostic messages starting from the severity level specified
WARNING are output to SYSLST.

ERROR Information messages 500 - 504 are only displayed if some
SEVERE optimization is required by *COMOPT OPTIMIZE=.

TERMINAL The diagnostic messages are also output to the terminal
NOTERMINAL

in interactive mode. No effect in batch mode.

SAVLST
NOSAVLST

The above messages are also output to a file. See also the notes on
SAVLST in the LIST control statement.

3.5.3 Additional listing output of messages (MESSAGE)

The MESSAGE control statement defines whether messages from the PLI1 compiler
should also be output to SYSLST.

SYSLST
MESSAGE=

NOSYSLST

Default: MSG = NS

SYSLST All messages from the compiler are also output to SYSLST.

NOSYSLST
Messages from the compiler are only output to SYSOUT.

82 U253-J-Z125-9-7600

Listing FORMAT

3.5.4 Output format (FORMAT)

The FORMAT control statement controls the number of lines per page and the line
length of all compiler outputs to the printer, the terminal or the SAVLST file. It also per-
mits specification of the output language (English or German). This control statement
can be used in the same way for both PL/I compilations and PL/I user programs
(*RUNOPT FORMAT = ...).

specification
FORMAT=

(specification,...)

Default: FORMAT = (P(64,132), T(O,k),E)

k = physical line length of the device concerned according
to the TMODE macro.

Possible specifications:

PRINTER([m1][,m2])
This control affects all output which is sent to SYSLST and which, in
batch mode, may be additionally output to SYSOUT. After m1 lines
have been output, a new page is started. When a line length of m2
characters is reached, the line is split up, i.e. another line is started.

0 m1 255
1 m2 255

If m1 = 0 no page feed is performed, i.e. printing continues across
the paper fold.

TERMINAL([n1][,n2])
This control affects all output for the terminal. When n1 lines have
been reached, the following message is displayed at the terminal:

WEITER (J/N/NDT/NL) or
CONTINUE (Y/N/NDT/NL)

The user is then able to set the cursor to a suitable position on the
screen and make one of the following entries:

J or Y: Continue output
NL The TERMINAL option in the LIST control statement is

disabled immediately. This only affects listings which are
also output to the terminal.

U253-J-Z125-9-7600 83

FORMAT Listing

NDT The TERMINAL option in the TRACE or DIAGNOST con-
trol statements is disabled immediately. The output of
debugging messages and diagnostic messages to the
terminal is inhibited.

N As NL + NDT

When n2 characters per line are reached, a new line is started.
If n1 = 0 (default), the inquiry is not displayed on the terminal.

ENGLISH All compiler output is in either English or German.
DEUTSCH The files containing the error texts must be available to the compiler.

See also section 3.2.

84 U253-J-Z125-9-7600

Object module OBJECT, DEBUG

3.6 Controlling object module generation

This group of control statements determines whether an object module is to be genera-
ted, where it will be stored, which test aids will be incorporated, the form in which mes-
sages will be output at object time etc.

3.6.1 Switch for compiler phases (OBJECT)

The OBJECT control statement is used to determine whether an object module is to be
generated, and, if applicable, how many errors may be accepted by the compiler.

specification
OBJECT=

(specification,...)

Default: OBJECT = (O, E (), A(500))

Possible specifications:

MACRO Only preprocessing is performed.

SYNTAX
SEMANTIC

If the compilation was not previously aborted (see below), it should be
performed up to and including:

CODE syntax run (SY)
OUT semantics run (SE)

code generation (C)
code output to object module file (O)

WARNING[(n)]
ERROR[(n)]

The compilation is terminated prior to code output at the latest if the speci-
fied number (n) of errors of or greater than the weight indicated have
occurred. If the option n is omitted, then n = 1 is assumed.

ABORT (n)
The compilation is terminated immediately if n errors or warnings have
occurred. 1 n 32767

U253-J-Z125-9-7600 85

OBJECT, DEBUG Object module

3.6.2 Debugging aids in the object module (DEBUG)

The DEBUG control statement is required for instructing the compiler to insert code for
the debugging aids in the object module.

specification
DEBUG=

(specification,...)

Default: DEBUG = NO

The following specifications are permitted:

ALL equivalent to DEBUG = (ST, P, L, C, G, R)

NO equivalent to DEBUG = (NST, NP, NL, NC, NG, NR, NBK)

STMT Generation of a statement table in the object module. It permits
NOSTMT messages of the PL/I program to refer to the SOURCE listing.

Tracing instruments are incorporated for:

PROCTRACE PROCEDURE entries
NOPROCTRACE

LABTRACE Labels
NOLABTRACE

CALLTRACE CALL statements
NOCALLTRACE

GOTOTRACE GOTO statements
NOGOTOTRACE

RETURNTRACE RETURN statements
NORETURNTRACE

BREAKPOINT({[i-]z[.a]},...)
NOBREAKPOINT

Breakpoints are inserted at the specified positions.
i: consecutive number for INCLUDE texts
z: number of the source line
a: number of the statement (if omitted, defaulted to 1)

86 U253-J-Z125-9-7600

Object module OPTIONS

3.6.3 Procedure status (OPTIONS)

The OPTIONS control statement defines whether the compiled procedure is to be decla-
red a main procedure. This control statement also determines whether the source pro-
gram is to be compiled according to the rules of the industrial standard or according to
the rules of the PL/I standard.

specification
OPTIONS=

(specification,...)

Default: OPTIONS = (NOMAIN,NOISO,NOINTERRUPT,NOMACRO,
NOXS,NOBITPTR)

Possible specifications are:

MAIN The procedure being compiled is the main procedure.
NOMAIN Only one procedure of a program consisting of several procedures

must be the main procedure. If OPTIONS (MAIN) is supplied in the
PROCEDURE statement of the program, the procedure is compiled
as the main procedure regardless of the option used in this control
statement.

ISO The source program is compiled according to the rules of
NOISO the PL/I standard (ISO) or those of the industry standard.

INTERRUPT
NOINTERRUPT

Interrupt points for the ATTENTION condition are to be inserted in
the program. See also chapter 5.

MACRO A preprocessor run is carried out. See also section 3.11
NOMACRO or the PL/I Reference Manual [1], chapter 13.

XS XS objects are to be generated (see section 4.7).

NOXS Non-XS objects are to be generated (see section 4.7).

BITPTR Bit pointers are to be generated (only relevant for
NOBITPTR OPTIONS = XS).

REENTRANT: This option, although accepted by the compiler, is irrelevant since all
procedures for the PLI1 compiler have this characteristic.

Some of the above may also be supplied in the PROCEDURE statement under
OPTIONS (see section 3.3.4). If so, they take precedence over values specified by
these control statements.

U253-J-Z125-9-7600 87

OPTIMIZE Object module

3.6.4 Optimization (OPTIMIZE)

The OPTIMIZE control statement defines which optimizations are to be used on the
object module.

specification
OPTIMIZE=

(specification,...)

Default: OPTIMIZE = (NE,NOL,NT,NR)

The following specifications are permitted:

NO corresponds to OPTIMIZE = (NE,NOL,NT,NR)

ALL corresponds to OPTIMIZE = (E,OL,T,R)

ENABLING As a default for computational conditions, only OFL, UFL, and ZDIV
are enabled.

NOENABLING
The system default is assumed for computational conditions.

OVERLAP Optimization is carried out for overlapping: If there is a scalar string
variable on the right of an assignment, and the compiler is unable to
find out whether the source and target variables overlap, it will as-
sume that they do not and will generate optimized code. A warning
will be issued in all cases of this kind.

NOOVERLAP
No optimization is carried out for the overlap condition. In cases
where it cannot be ascertained whether the source and target varia-
bles overlap, it is assumed that they do and safe code is generated.

TIME Time optimization is carried out.

NOTIME No time optimization is carried out.

REORDER This option has the same effect as a REORDER option in the first
PROCEDURE statement of an external procedure. An explicit option
in the PROCEDURE statement overwrites the REORDER option.

88 U253-J-Z125-9-7600

Object module OPTIMIZE

NOREORDER
This option is equivalent to the ORDER option in the PROCEDURE
statement. Otherwise the above options apply accordingly. In PL/I,
ORDER is the system default.

Optimization in accordance with ENABLING can also be achieved by explicitly disabling
(NO...) the appropriate conditions in the source program.

Some of the above may also be supplied in the PROCEDURE statement under
OPTIONS (see section 3.3.4), in which case they take precedence over any values spe-
cified in these control statements.

U253-J-Z125-9-7600 89

SYMTEST Object module

3.6.5 Debugging aid AID (SYMTEST)

These control statements are used to indicate that the compiler is to add information
which allows the use of the debugging aid AID.

specification
SYMTEST=

(specification,...)

Default: SYMTEST = MAP

The following specifications are supported:

ALL Information is generated for the AID debugging system

NO No information is generated for the AID debugging system

MAP Same as NO, but also ESD information of type "compilation unit" is
generated.

For an extensive description on the use of AID see [18] "AID Debugging PL/1 Pro-
grams".

90 U253-J-Z125-9-7600

Object module MODULE

3.6.6 Object module storing (MODULE)

The control statement "*COMOPT MODULE=destination" is used to specify where the
generated object modules are to be stored. If this option is omitted, the object modules
will be stored in the temporary *EAM file. If two object modules are generated (code
module and static module), all specifications will apply to both object modules. For fur-
ther options see section 3.7. A precondition for the storing of object modules in a
library is that the PLAM access method is integrated in the operating system.

*

MODULE= *
library [([(version)])]

element

Default: MODULE = *

library The name of a file that contains a library created in accordance with
LMS [13] conventions. If this file does not exist, an appropriate
library will be created. Specification of a file generation group is not
possible. The library name may also be a link name. If the specified
name exists both as a link name and as a file name, the link name
will be used.

element The name that is given to the object module in the
* library. If * is specified, the first entry name of the compiled external

procedure is taken.

The element names may be up to 7 characters in length: longer
names are abbreviated to the first 4 and the last 3 characters. An
underscore () is replaced with the dollar sign ($). The following cha-
racters may be used as element names:

Characters A through Z

Digits 0 through 9, but not as the first character

Special characters $ dollar
number sign
@ commercial at

Punctuation marks - hyphen
_ underscore
. period

Punctuation marks must not appear in the first or last position.
The hyphen must not be on the right of a special character or
punctuation mark. Two identical punctuation marks must not
appear in juxtaposition.

U253-J-Z125-9-7600 91

MODULE Object module

If the entry name of the PL/I procedure is adopted, the rules for
PL/I names apply.

If two object modules are created during compilation, the version
name dealt with above is given to the code module. For the static
module the element name is derived from the code module name by
filling out the element name with @ characters to a length of 7 cha-
racters and appending a digit which indicates the original length of
the name (1 to 7).

version Version name which contains the element. If this option is not speci-
fied, the element is given the highest version that is possible in an
LMS library (X’FF’):
This will not be logged.

The version name may consists of up to 24 characters, which may
be

Letters A through Z
Digits 0 through 9
Punctuation marks - Hyphen

. Period

Punctuation marks must not appear in the first or last position.
Two identical punctuation marks must not appear in juxtaposition.
A period must not be followed by a hyphen.

If the specified library already contains an element with the same element name and
version name, this element will be overwritten. On each entry for an element its variant
(see LMS [13]) is incremented by 1. The element type (see LMS [13]) is always ’R’.

In the *EAM file the element is always entered under the first name of the compiled
external procedure. If two elements of the same name are entered, the result is undefi-
ned.

A log is sent to SYSOUT stating which module is output and where it is output.

92 U253-J-Z125-9-7600

Object module Maintenance

3.7 Object module maintenance

When an external procedure is compiled, normally two object modules will be created:
the code module and the static module. The code module is generated anyway; the
static module is generated under special conditions only. Chapter 12 explains under
which conditions a static module is created, when it is undesirable and how it can be
avoided.

Where the object modules are to be stored can be specified using the control state-
ment

*COMOPT MODULE = destination

See section 3.6.6. There are two options which are detailed in the following subsec-
tions.

Temporary *EAM file
This file exists only for the duration of a task (interactive or batch operation). When
a task terminates the object modules stored in it are lost. They must be processed
further before that point in time, if desired (e.g. linked with the linkage editor
$TSOSLNK), or be stored in a library (e.g. by the LMS or LMR programs).

Library (LMS)
This is always a library created according to LMS [13] conventions. A precondition
is that the access method PLAM is integrated in the operating system.

U253-J-Z125-9-7600 93

Maintenance Object module

Fig. 3-2 Data flow for object modules

Caution

If two object modules are generated, these always belong together and must be
linked jointly.

94 U253-J-Z125-9-7600

Object module EAM file

3.7.1 Object module to *EAM file

If no entry is specified for storing the object modules or if the entry

*COMOPT MODULE = *

is specified, the object modules are added to the temporary *EAM file from which they
may be further processed.

The names of the object modules are formed from the first entry name of the compiled
external procedure (first name of the PROCEDURE statement). Further details regarding
the formation of names are given in section 4.6.

The contents of the *EAM file are lost at end of task. Further processing should there-
fore be done beforehand. Generally this will be the following:

Linking the modules into a program

In the simplest case the object modules are linked into a program by the
$TSOSLNK linkage editor (see [3] or, as of BS2000 V8.0, [12]). The control state-
ment

INCLUDE * causes all object modules
INCLUDE a,* causes the object module a
INCLUDE (a,...),* causes the object modules a

of the *EAM file to be included in the linking process. See also chapter 4. The follo-
wing example will illustrate this point.

/ REMARK " .. COMPILATION"
/ EXEC $PLI1

*COMOPT SOURCE=EXAMPLE1,
COMOPT MODULE=,
END

/ REMARK " ... LINKAGE"
/ EXEC $TSOSLNK

PROGRAM EXAMPLE1,FILENAM=OBJECT,MAP=N
INCLUDE *
END

/ REMARK " .. START RUN"
EXEC OBJECT

The external procedure in file EXAMPLE1 is compiled and the generated object
modules are entered in the *EAM file. The linkage editor links all modules of the
*EAM file into load module EXAMPLE1 which is stored in the file OBJECT.

Adding the module to a library

If the module is to be retained for later processing, it must be included in a library
using program $LMR [3] or program $LMS [13]. This is illustrated in the following
example.

U253-J-Z125-9-7600 95

EAM file Object module

/ REMARK " .. COMPILATION"
/ EXEC $PLI1

*COMOPT SOURCE=EXAMPLE1,
COMOPT MODULE=
END

/ REMARK " .. INCLUSION"
/ EXEC $LMR

MODLIB LIBRARYONE
COPYALL SOURCE=*
END

/ REMARK " ... LINKAGE"
/ EXEC $TSOSLNK

PROGRAM EXAMPLE1,FILENAM=OBJECT,MAP=N
INCLUDE *,LIBRARYONE
END

/ REMARK " .. START RUN"
/ EXEC OBJECT

The external procedure in file EXAMPLE1 is compiled and the generated object
modules are added to the *EAM file. Subsequently all object modules of the *EAM
file are added to the LMR library LIBRARYONE. The linkage editor links all object
modules contained in the LIBRARYONE library into one load module.

96 U253-J-Z125-9-7600

Object module LMS library

3.7.2 Object module to LMS library

If object modules must be retained, it is advisable to have them added to an LMS
library by the compiler straightaway. This can be effected using the control statement

COMOPT MODULE = library ()
*COMOPT MODULE = library (element)

A precondition is that the access method PLAM is integrated in the operating system. A
complete description is given in section 3.6.6.

The names under which the object modules must be stored - the element names - are
derived either from the first entry name of the compiled external procedure, i.e. the first
name of the first PROCEDURE statements (if * is specified), or from the specified ele-
ment name. More details about the construction of element names are to be found in
section 3.6.6.

The following example will illustrate this point.

/ REMARK " COMPILATION"
/ EXEC $PLI1

*COMOPT SOURCE=LIBRARY(EXAMPLE1),
COMOPT MODULE=LIBRARY(),
*END

/ REMARK " ... LINKAGE"
/ EXEC $TSOSLNK

PROGRAM EXAMPLE1,FILENAM=OBJECT,MAP=N
INCLUDE (EXMPLE1,EXMPLE7),LIBRARY
RESOLVE ,LIBRARY
END

/ REMARK " .. START RUN"
/ EXEC OBJECT

The external procedure in element EXAMPLE1 (type S) of the LMS library LIBRARY is
compiled and the object module is stored in the same library (type R). The object
modules EXMPLE1 and EXMPLE7 from the library and, if required, other object modu-
les (RESOLVE) from the library are linked into one load module EXAMPLE1, which is
stored in the file OBJECT.

U253-J-Z125-9-7600 97

LMS library Object module

3.7.3 Table of contents of a library

Which elements (object modules) are contained in an LMS library can be ascertained
by way of the program $LMS [13]. This is illustrated in the following example.

/ EXEC $LMS
LIB BIBLIOTHEK
PRT (LST) see Note
TOCR *
END

Note

PRT (LST) to SYSLST preset in batch mode
PRT (CON) to SYSOUT only in inter-
PRT (BOTH) to SYSLST and SYSOUT active mode

98 U253-J-Z125-9-7600

Listings

3.8 Listings of the compiler (LIST =)

All listings of the compiler are output to SYSLST. Every page has a header line which
contains the following:

• Name of the compiler and its version number

• Name of the file containing the source procedure (for SOURCE = file) or "SYSDTA"
(for SOURCE = *)

• Date and time-of-day compiled.

• Consecutive number of the page.

Which of the listings is to be output is determined by the control statements

*COMOPT LIST = output

For details, refer to chapter 3.

Some of the listings explained below include a reference to a source line, which always
pertains to a line reference given in the source listing (see section 3.8.3). The line refe-
rences are represented in all listings; they have a common format:

[Include] Line [:Statement]

Line: The line number is always present; it is formed as follows:

Source in ISAM file: index from the file
Source in SAM file: consecutive number
COMOPT MARGINS=LINID(p,n): index with n characters as posi-
tion p (see section 3.4.4)

If indices are used that are not numeric, then only the numeric part
will be used. This may lead to ambiguous line numbers; a warning is
issued.

Include: Lines that are inserted as a result of a %INCLUDE statement, are
prefixed with a consecutive include number. The consecutive include
number is listed in the list of include numbers (see section 3.8.5).

Statement: "statement" specifies the consecutive number of the statement within
a line. The value ":1" is suppressed. The statement number is not
listed in some listings.

In some listings the line references are output one under the other, in tabular form; in
other listings they are packed, i.e. output without blanks.

U253-J-Z125-9-7600 99

OPTIONS Listings

3.8.1 Options (OPTIONS)

This listing shows all option values which have been set for the compiler run. The out-
put of this listing can be controlled as follows:

*COMOPT LIST=OPTIONS Listing of control statements
=NOOPTIONS No listing

COMPILER-OPTIONS USED

STORAGE = (STACK(16,4),AREA(16,16,975))
LIST = (NOESD,NOTERMINAL,NOSUMMARY,OPTIONS,SAVLST,NOMAP,

NEST,IREF,NOXREF,SOURCE,NOINSOURCE,NOAGGREGATE,OFFSET,NOASSM,
NOOUTTEXT,NOLINECNT)

FORMAT = (TERMINAL(0,80),PRINTER(64,72),ENGLISH)
MESSAGE = NOSYSLST
SOURCE = EXAMP21
MARGINS = (TEXT(2,72),PAD,NOLINID,NOASACNTRL,GAMKEY(0,0),CHAR60,

NOSAVMAC)
DIAGNOST= (NOTERMINAL,NOSAVLST,WARNING)
COMLIB = NO
OBJECT = (ERROR(32767),ABORT(500),OUT)
OPTIONS = (NOISO,NOMAIN,NOINTERRUPT,NOMACRO,NOXS,NOBITPTR)
OPTIMIZE= (NOTIME,NOOVERLAP,NOENABLING,NOREORDER)
DEBUG = (NOSTMT,NOPROCTRACE,NOLABTRACE,NOCALLTRACE,NOGOTOTRACE,

NORETURNTRACE,NOBREAKPOINT)
SYMTEST = MAP
MODULE = *

Fig. 3-3 Sample options listing of the compiler (detail)

100 U253-J-Z125-9-7600

Listings INSOURCE

3.8.2 Preprocessor (INSOURCE)

Those texts are listed which were used as input data by the preprocessor. These are:

one listing for the source text according to SOURCE =
and one listing for each Include text inserted.

Each of these listings begins on a new page. The output of the listings can be control-
led as follows:

*COMOPT LIST = INSOURCE listing output
= NOINSOURCE no listing

These listings have the same format as the source listing (see 3.8.3), without the com-
ment continuation and nesting level codes.

U253-J-Z125-9-7600 101

SOURCE Listings

3.8.3 Source listing (SOURCE, EXPAND)

The source listings contains the source text to be compiled, line numbering, and any
further information. The output of the source listing can be controlled as follows:

*COMOPT LIST = EXPAND source listing with Include texts
= SOURCE source listing without Include texts
= NOSOURCE no source listing

*COMOPT LIST = NEST nesting level is shown
= NONEST block nesting level is not shown

*COMOPT LIST = NOLINECNT line index without leading zeros
= LINECNT (EDOR) line index according to EDOR
= LINECNT (EDT) line index according to EDT
= LINECNT (PRINT) line index as for PRINT

*COMOPT MARGINS = TEXT (a, e) source text
MARGINS = LINID (a, e) index
MARGINS = PAD pad source texts with blanks

*COMOPT LIST = OUTTEXT (c) source text leader and trailer
+ framing if applicable

= NOOUTTEXT (c) framing if applicable

The source listing may consist of the following columns as a maximum:

line reference Include number
index (or consecutive no.)

qualifier * (comment continuation)
nesting level (or empty)

source line source text leader (optional)
frame character left (optional)
source text
frame character right (optional)
source text trailer (optional)

Descriptions of each column follow:

• Line reference
The way line numbers are shown depends on the LIST = LINECNT control state-
ment and the input medium or on the MARGINS = LINID (a, e) control statement. If
LINID is used, the following discussion is subject to the same rules as apply to
ISAM files.

NOLINECNT (default):
ISAM file Include number

index without leading zeros

102 U253-J-Z125-9-7600

Listings SOURCE

otherwise Include number
consecutive number

LINECNT:
ISAM file Include number

index (according to EDOR/EDT/PRINT)
otherwise Include number

consecutive number (according to EDOR/EDT/PRINT)

The line reference has the following format:
[Include] Line

Include
The Include number is shown only if the source line comes from an Include text;
otherwise it is empty. The Include number is a consecutive number which is
assigned to the Include texts being used (see also 3.8.5).

Line
This is the index from the ISAM file or a consecutive number for SAM files or
according to the MARGINS = LINID (a, b) control statement. However, a maxi-
mum of 8 digits are used. Characters other than digits are not accepted. The
way the index is shown depends on the LIST = LINECNT (a) control statement
as follows:

NOLINECNT without leading zeros

LINECNT (EDOR) without trailing zeros

LINECNT (EDT) period between the 4th and 5th digit, without leading and
trailing zeros

LINECNT (PRINT) with all zeros (same as for PRINT command)

• Qualifier
Between the line numbering and source lines, there are two qualifiers which refer to
source line structure:

* This line continues a comment from the previous line.

Nesting A number indicates the static nesting of blocks and DO
level groups. No number is shown for the top level (0). The number of the

first nesting level is 1, etc.

The line which follows the opening PROCEDURE, BEGIN, DO or
SELECT statement has a level number incremented by 1. The corre-
sponding END statement resets the level by 1 so that the line follo-
wing the END statement contains the decremented level number.

Both qualifiers can be suppressed by *COMOPT LIST=NONEST.

U253-J-Z125-9-7600 103

SOURCE Listings

PROCEDURE OPTIONS(MAIN);

DCL X DIM(10,10);
DCL (I,J);

B: PROCEDURE;
1 PUT SKIP(2);
1 DO I = 10 TO 10;
2 DO J = 1 TO 10 BY 1;
3 X(I,J) = I*10 + J;
3 END;
2 BEGIN;
3 DO I = 1 TO 10;
4 PUT SKIP;
4 DO J= 1 TO 10;
5 PUT EDIT (X(I,J)) (F(5));
5 END;
4 END;
3 SELECT (I);
4 WHEN (4) PUT SKIP LIST (’4’);
4 OTHER;
4 END;
3 /* A COMMENT EXTENDING
3 OVER 2 LINES */
3 END;
2 END;
1 END;

END;

Fig. 3-4 Example of a source procedure listing with nesting level indicators

• Source line
From the source line supplied by the input medium, source text from column ’a’
through column ’e’ can be extracted by the control statement MARGINS = TEXT (a,
e); only this text will be compiled. The OUTTEXT control statement can be used if
you wish to include the texts before column ’a’ (leader) and after column ’e’ (trailer)
in the printout. As well, the character (c) supplied in OUTTEXT (c) can be inserted
preceding and following the source text on every line. The source line can consist
of the following columns:

Leader, trailer
A leader is created based on the control statement MARGINS = TEXT (a,e) if ’a’
is greater than 1.

A trailer is created if there are any characters following column ’e’. Both appear
only if the control statement LIST = OUTTEXT has been specified.

104 U253-J-Z125-9-7600

Listings SOURCE

Leader and trailer are no longer available after a preprocessor run; in this case,
they do not appear in the source listing.

Frame character
Frame character ’c’ is set before and after the source text when specified in LIST
= OUTTEXT (c) or LIST = NOOUTTEXT (c). For example, OUTTEXT (") shows
how many blanks exist at the beginning and end of the source text.

If the source text is of variable length, the right-hand frame character may vary
its position. If you wish to have it always in the same position, you need an addi-
tional control statement: MARGINS = PAD. Thus, the effect of MARGINS = PAD,
LIST = OUTTEXT (|) would be to frame both sides of the source text by a verti-
cal bar.

Source text
This is the text which constitutes the PL/I procedure and will be compiled.
Blanks at the beginning and end of the text can be made visible by frame cha-
racters (see above).

U253-J-Z125-9-7600 105

ESD Listings

3.8.4 External names (ESD)

This listing contains all external names of the procedure which were either declared in
the source or generated by the compiler. It supplies information on the external (link-
able) names of the procedure, which are used to associate the procedure with other
procedures, runtime procedures, and foreign procedures. The ESD information listed
corresponds to the ESD records which are generated in the process of compilation.

CSECT/COMMON sections are built as follows:

Type/Level-1 item Number of ESID nos. assigned
EXTERNAL VARIABLE 1
EXTERNAL VARIABLE INIT 2
FILE EXTERNAL CONSTANT 2
ENTRY EXTERNAL CONSTANT 1

The output of this listing can be controlled as follows:

*COMOPT LIST = ESD listing output
= NOESD no listings

The system prints a listing for the code module and as far as generated, a listing for
the static module.

LIST OF EXTERNAL NAMES IN THE CODE MODULE

NAME TYP MA ADR LNG/ESID
BH$384 CSECT 04 000000 000238
BH$384@6 EXTERN 00 000000 404040
P$3#00## EXTERN 00 000000 404040
EXTINIT COMMON 00 000000 000004
EXTSTAT COMMON 00 000000 000004
EINGANG VKONST 00 000000 404040
P$START# ENTRY 00 000074 000001
EINGNG1 ENTRY 00 000004 000001
EINGNG2 ENTRY 00 000124 000001

LIST OF EXTERNAL NAMES IN THE STATIC MODULE

NAME TYP MA ADR LNG/ESID
BH$384@6 CSECT 00 000000 000008
BH$384 EXTERN 00 000000 404040
EXTINIT COMMON 00 000000 000008
EXTNIT CSECT 00 000008 000008
EXTSTAT COMMON 00 000000 000008

Fig. 3-5 Listing of external names in the code module and static module (example)

106 U253-J-Z125-9-7600

Listings ESD

The meaning of each column is as follows:

• NAME
External name declared in the procedure or generated by the compiler. Names
which are too long are reduced to the first 4 and last 3 characters or to the first 8
characters (see section 4.6).

• TYP
The type of external name:

CSECT control section
ENTRY link address
EXTERN external link address
COMMON common dummy section
VKONST external link address
CU compilation unit; only if *COMOPT SYMTEST NO

• MA
Characteristics: 00 no entry

04 write-protected CSECT

• ADR
Address relative to the module. Only for entries based on a statement ENTRY un-
equal to 0.

LNG/ESID
for CSECT, COMMON length in bytes
for ENTRY ESID number of the CSECT
for CU 1st byte: total number of modules

2nd byte: empty
3rd byte: consecutive no. of the module

rest blanks (X’404040’)

U253-J-Z125-9-7600 107

IREF Listings

3.8.5 Include texts (IREF)

This listing shows the Include texts called in the procedure and the file from which they
were obtained. The output of this listing can be controlled as follows:

*COMOPT LIST = IREF listing output
= NOIREF no listing

I N C L U D E - R E F E R E N C E S

SOURCE-REF. # LEVEL FILENAME MEMBERNAME VERSION

5 1 1 $PLI1.SRC.INCL ALLE$EXT A01
6 2 1 $PLI1.SRC.INCL BLOCK000 002
7 3 1 $PLI1.SRC.INCL LABEL000 015
8 4 1 $PLI1.SRC.INCL SYMBOL00 B01
9 5 1 $PLI1.SRC.INCL REFERNCE C00
10 6 1 $PLI1.SRC.INCL TOKEN000 C00
11 7 1 $PLI1.SRC.INCL ARRAY000 003
12 8 1 $PLI1.SRC.INCL CROSSNCE 003
13 9 1 $PLI1.SRC.INCL NODES000 001
14 10 1 $PLI1.SRC.INCL LIST0000 002
15 11 1 $PLI1.SRC.INCL DCL$TYPET A02

Fig. 3-6 Sample listing of Include texts (detail)

The meaning of each column is as follows:

• SOURCE REF.
This is the number of the source line and, where applicable, the number of the Inc-
lude text line that contains the INCLUDE statement.

• #
Consecutive numbering of the Include texts in the order they were inserted in the
procedure.

• LEVEL
The nesting level which was supplied in the INCLUDE statement. A ’1’ means that
the statement is in the source procedure; any value greater than ’1’ means that the
statement is in an Include text.

• FILENAME
Name of the file from which the Include text was obtained.

• MEMBERNAME
Name of the Include text by which it was called in the INCLUDE statement. Names
that are too long are reduced to the first 4 and last 3 characters. Names which are
too short are padded with zeros to a length of 7 characters.

• VERSION
Version designation of the library element (member) that contains the Include text.
The version designation may be up to 3 characters in length.

108 U253-J-Z125-9-7600

Listings XREF

3.8.6 Cross-reference listing

The cross-reference listing contains for each identifier (name) of the external procedure
the complete attribute set and a listing of all line numbers where the particular identifier
is explicitly or implicitly used. The listing consists of two parts. The first shows all identi-
fiers which are referenced in the procedure. The second contains all identifiers which
although declared are not referenced. Both parts are sorted in alphabetic order by iden-
tifiers. The output of this listing can be controlled as follows:

*COMOPT LIST = FULLXREF Referenced and non-referenced
identifiers

= SHRTXREF Referenced identifiers only
= NOXREF No cross-reference listing

As far as the items in this listing have corresponding items in PL/I, the notation of the
language has been used wherever possible. The following special notations are used in
addition:

@ This symbol represents an item (reference or expression) which the system was
unable to identify.

< > An item enclosed with < > (a reference) has been truncated to the right be-
cause it was too long.

U253-J-Z125-9-7600 109

XREF Listings

C R O S S - R E F E R E N C E - T A B L E - REFERENCED IDENTIFIERS -

IDENTIFIER DIMENSION DATATYPE STORAGE REFERENCES

$PRINT CPDCL BIT (1) ALIG MEM-2 <ALLE EXT ST> DCL 1-1400 33150000

$ROOT POINTER ALIG MEM-2 <ALLE EXT ST> DCL 1-8800 13150000

$SHRTXREF BIT (1) ALIG MEM-2 <ALLE EXT ST> DCL 1-1100 13220000

ADDR BUILTIN DCL 11250000 13040000

ALGOL BIT (1) UNAL MEM-8 (SYMBOL) DCL INIT 4-165000 75490000

ALIGNED BIT (1) UNAL MEM-4 (SYMBOL) DCL INIT 4-77000 641500000

ALLOCATED BIT (1) UNAL MEM-3 (SYMBOL) DCL INIT 4-4000 33240000 33330

ALT ZEILENNUMMER CHAR (13) VAR UNAL AUTOMATIC DCL INIT 51270000 67080000 811

ANFANG FIXED BIN (15) ALIG AUTOMATIC DCL INIT 51340000 53210000 624
76130000

ANFANG FIXED BIN (15) ALIG AUTOMATIC DCL 83070000 83100000 83160000

ANFANGSPOSITION FIXED BIN (15) ALIG PARAMETER DCL 83060000 83030000 83100000

ANFANGSZEIGER POINTER ALIG AUTOMATIC DCL INIT 51100000 53010000 530
53160000 53190000 53240000 533
53410000 53450000 68060000

AREA BIT (1) UNAL MEM-4 (SYMBOL) DCL INIT 4-61000 63360000

ARITHMETIK ERMITTELN ENTRY (INT CONSTANT DCL 71030000 63110000 63150000
POINTER ALIG)

ARRAY BIT (1) UNAL MEM-3 (LABEL) DCL INIT 3-500 62330000

ARRAY POINTER ALIG MEM-2 (SYMBOL) DCL INIT 4-21000 62090000 6212

ASSEMBLER BIT (1) UNAL MEM-6 (SYMBOL) DCL INIT 4-161000 75470000

Fig. 3-7 Sample cross-reference listing (detail)

Related attributes are shown in one column. The meaning of each column is as follows:

• IDENTIFIER
The identifiers start in this column. They must always be supplied at full length.

• DIMENSION
This column contains all dimensions which apply to the identifier, including those (if
any) inherited from a higher-order (containing) structure.

• DATATYPE
This column shows the attributes which determine the data type. The attribute VAR
and CPLX are right-justified.

110 U253-J-Z125-9-7600

Listings XREF

Together with ENTRY are shown the data attributes of the parameters as well as
RETURNS with the associated data attributes. An indent by 1 position indicates the
nesting. Dimensional information on the parameters and the RETURNS value can be
found in the DIMENSION column.

The PICTURE attribute, after PIC, shows the parenthesized length of the variables in
storage (without V, F, K). Furthermore, the attribute set (CHAR, FIXED, FLOAT) asso-
ciated with the mask and the precision, if applicable, are shown.

"(USER)", when added to the CONDITION attribute, shows that this is a user rather
than system condition.

• Alignment (no header)
This column provides - as far as relevant - ALIG (for ALIGNED) or UNAL (for
UNALIGNED).

• Scope (no header)
This column contains EXT or INT where applicable.

• STORAGE
This column provides - as far as relevant - the storage class. The reference is inclu-
ded for BASED and DEFINED.

For the members of the structure, this column shows "MEM-n (haupt)", where ’n’ is
the normalized level no. and ’haupt’ is the identifier of the main structure.

• REFERENCES
This column contains the numbers of the lines where the identifiers were used expli-
citly or implicitly. If an identifier is used more than once on a given line, the line
number is usually listed just once.

Depending on how an identifier was declared, this column begins with:

DCL if by DECLARE statement or if by statement prefix (mask, format, entry) or
if by parameter on an entry;

+++ if contextually (area, file, pointer, condition, builtin function);

--- if implicitly.

"INIT" follows in cases of initialization. The first line number is generally the number
of the line containing the declaration.

The line reference is listed in the same format as in the source listing. The Include
number precedes the line number and is separated from it by a hyphen in this
listing.

U253-J-Z125-9-7600 111

AGGREGATE Listings

3.8.7 Structure lengths (AGGREGATE)

The structure length table is a listing of all structures of the external procedure as well
as showing the decimal and hexadecimal length of the storage space required by the
structures and their contained substructures, arrays, and elementary members. The out-
put of this listing can be controlled as follows:

*COMOPT LIST = AGGREGATE Listing output
= NOAGGREGATE No listing

The OFFSET and length entries include the following information also:

• for elements with the VARYING attribute, the two bytes for the current length,

• for arrays and structures, the fillers required for alignment and internal representa-
tion.

8 P: PROCEDURE;
9 1
10 1 DCL 1 STRUKTUR1 ALIGNED,
11 1 2 BIT1 BIT(3),
12 1 2 BIT2 BIT(6),
13 1 2 UNTER DIM(3),
14 1 3 CHAR CHAR(3),
15 1 3 VARCHAR CHAR(5) VAR,
16 1 3 VARBIT BIT(5) VAR,
17 1 2 FIXED FIXED BIN;
18 1
19 1 DCL 1 STRUKTUR2 BASED,
20 1 2 DIM FIXED BIN,
21 1 2 LAENGE FIXED BIN,
22 1 2 UNTER1 ,
23 1 3 ZEICHEN CHAR(3) DIM(5 REFER (DIM)),
24 1 3 BIT BIT(5 REFER (LAENGE)),
25 1 2 UNTER2,
26 1 3 ZEICHEN CHAR(P1),
27 1 3 BIT BIT(P2),
28 1 2 ZEIGER POINTER;
29 1
30 1 DCL 1 STRUKTUR3,
31 1 2 FEST FIXED DEC,
32 1 2 UNTER1 DIM(3),
33 1 3 CHARVAR CHAR(5) VAR,
34 1 3 BITS BIT(3),
35 1 2 UNTER2 DIM(P1),
36 1 3 CHAR CHAR(5),
37 1 3 BIT BIT(3) DIM(3);
38 1
39 1 END;
40

Fig. 3-8 Sample program for Figure 3-9

112 U253-J-Z125-9-7600

Listings AGGREGATE

S T R U C T U R E L E N G T H T A B L E
OFFSET ELEMENT LENGTH TOTAL LENGTH

SOURCE-REF LEVEL IDENTIFIER DIMENSION DEC HEXDEC DEC HEXDEC DEC HEXDEC

10 1 STRUKTUR1 0 0 52 34
2 BIT1 0 0 0.3 0.3
2 BIT2 1 1 0.6 0.6
2 UNTER 3 2 2 15 F 48 30
3 CHAR 3 2 2 3 3 INTERLEAVED
3 VARCHAR 3 6 6 7 7 INTERLEAVED
3 VARBIT 3 14 E 2.5 2.5 INTERLEAVED

2 FIXED 50 32 2 2

19 1 STRUKTUR2 0 0 VARIABLE
2 DIM 0 0 2 2
2 LAENGE 2 2 2 2
2 UNTER1 4 4 VARIABLE
3 ZEICHEN @ 4 4 3 3 VARIABLE
3 BIT VARIABLE VARIABLE

2 UNTER2 VARIABLE VARIABLE
3 ZEICHEN VARIABLE VARIABLE
3 BIT VARIABLE VARIABLE

2 ZEIGER VARIABLE 4 4

30 1 STRUKTUR3 0 0 VARIABLE
2 FEST 0 0 3 3
2 UNTER1 3 3 3 7.3 7.3 24 18
3 CHARVAR 3 3 3 7 7 INTERLEAVED
3 BITS 3 10 A 0.3 0.3 INTERLEAVED

2 UNTER2 @ 27 1B 6.1 6.1 VARIABLE
3 CHAR @ 27 1B 5 5 INTERLEAVED
3 BIT @,3 32 20 0.3 0.3 INTERLEAVED

Fig. 3-9 Structure length table (for sample program in Fig. 3-8)

Some general information on the way items are shown on the listing follows:

• Bytes.bits
Values are shown in bytes of 8 bits each. If a value contains any bits beyond the
bytes, these bits follow the byte entry, separated by a period.

• VARIABLE
This word indicates that a value could not be determined at compile time.

• INTERLEAVED
This word means that the particular elements are interleaved with other elements so
that they are not connected in storage and consequently do not add up to a con-
nected total length.

• @
This symbol indicates that a value could not be determined at compile time.

U253-J-Z125-9-7600 113

AGGREGATE Listings

The meaning of each column in this listing is as follows:

• SOURCE-REF.
This is the number of the source line where the structure was declared. If it is an
Include text, it is preceded with the number of the Include text to the left (see sec-
tion 3.8).

• LEVEL IDENTIFIER
These are the normalized level no. and the identifier. They are indented 2 positions
for the second and each subsequent level. Identifiers which are too long are trunca-
ted to the right.

• DIMENSION
This is for each dimension, the number of elements, each separated by a comma.
Those inherited from a containing structure are listed also. If the number of ele-
ments of a given dimension cannot be determined at compile time, the @ symbol
appears.

• OFFSET
This column shows the byte and bit, relative from the beginning of the main structu-
re, where the substructure or structure element begins, counting from 0. If the value
of the bit is 0, no information is displayed.

This entry may also be interpreted as indicating how many bytes and bits precede
the particular element in the main structure.

• ELEMENT LENGTH
This column provides the following information:

If no dimension exists, this column remains empty for structures whereas it con-
tains the length for the elementary members of a structure.

If one dimension exists, this column contains the length of the array element
both for structures and elementary members of a structure. Dimensions in lower-
order (contained) structure members are included but the own dimension is not.
This length multiplied by the own dimension is the total storage requirement,
which (provided it is connected and not INTERLEAVED) is shown in the TOTAL
LENGTH column.

• TOTAL LENGTH
This column provides the total length for structures and arrays. For non-connected
storage space, the word "INTERLEAVED" appears here. Such variables are subject
to certain restrictions in PL/I. The storage requirement should be obtained from the
containing structure or it should be determined by means of the DIMENSION and
ELEMENT LENGTH columns or using the OFFSET column.

114 U253-J-Z125-9-7600

Listings MAP

3.8.8 Storage occupancy (MAP)

This listing contains a sublisting for each block of the external procedure. Each of these
sublistings consists of the following:

a header with block type information and
a listing of constants and variables of the block and storage arrangement informa-
tion.

The number of the source line on which the item is declared and the declared name
complete the listing.

The output of this listing can be controlled as follows:

*COMOPT LIST = MAP Listing output
= NOMAP No listing

U253-J-Z125-9-7600 115

MAP Listings

M A P - L I S T

SOURCE-REF. TYPE ADDR OFFSET NAME

0 ROOTBLOCK

2 ENTRY CONST 0 BH 388

2 EXT PROCEDURE BH 388
6 ESD # A O$P
9 AUTO 98 STRUKTUR

MEMBER 0 BIT1 IN STRUKTUR
MEMBER 0(3) BIT2 IN STRUKTUR
MEMBER 2 UNTER IN STRUKTUR
MEMBER 2 CHAR IN UNTER IN STRUKTUR
MEMBER 9 BIT IN UNTER IN STRUKTUR
MEMBER 20 FIXED IN STRUKTUR

18 ENTRY CONST 1AC P
27 AUTO 80 Z
26 ESD # 3 SYSPRINT

18 INT PROCEDURE P

20 STATIC(FILE) 18 DATEI
21 STATIC 8 STATISCH
24 AUTO 80 ZEIGER

1- 60 CONSTANT 10C TOKEN NODE
35 AUTO 90 KOPFZEILE
38 LABEL CONST 4B4 SCHLEIFE
41 ENTRY CONST 4D4 SCHREIBEN

28 ON UNIT O.ENDFILE*1

41 INT PROCEDURE 360 SCHREIBEN(QUICK) OWNER: P

44 BEGIN BLOCK 3A8 (QUICK) OWNER: P

Fig. 3-10 Storage map listing (sample)

116 U253-J-Z125-9-7600

Listings MAP

The meaning of each column of this listing is as follows:

• SOURCE-REF.
This column contains the number of the source line and if applicable the number of
the Include text where the block or the variable or constant was declared (see sec-
tion 3.8).

• TYPE
This column contains as its header the type of block or else the data type. For
block type, the following information is shown:

ROOTBLOCK (this is always the first block)
EXT PROCEDURE
INT PROCEDURE
BEGIN BLOCK
ON UNIT

For data type, the following information is listed:

LABEL CONST scalar label constants
ENTRY CONST entry constants
CONSTANT label arrays, internal STATIC constants, unnamed format con-

stants
STATIC internal STATIC variables
STATIC (CTL) anchor for CONTROLLED variables
STATIC (FILE) internal file constants
AUTO AUTOMATIC variables
ESD # ESD number for external variables and external entries
MEMBER member of a structure

• ADDR
The information shown in this column depends on the TYPE column. It may contain
the following values:

For INT PROCEDURE or BEGIN BLOCK, which according to the NAME column
are of the QUICK type:
starting address of the activation record relative to the beginning of the activation
record of the father.

For LABEL CONST, ENTRY CONST, CONSTANT:
starting address in the constant section of the code module.

For STATIC, STATIC (CTL), STATIC (FILE):
starting address in the static module.

U253-J-Z125-9-7600 117

MAP Listings

For AUTO:
starting address relative to the beginning of the activation record.

For ESD #:
ESD number of the external name.

This column is empty in all other cases.

• OFFSET
This column is only used for the MEMBER type and contains the byte address rela-
ted to the beginning of the main structure (in hexadecimal) as well as the bit ad-
dress unless the value of the latter is zero.

• NAME
This column contains the names declared in the particular case. It remains empty
for the BEGIN BLOCK and ON UNIT types since there are no entry names for those
types.

For blocks which as "QUICK" blocks share the activation record of the father block,
the NAME column contains an additional entry pointing to the father block. If the
father block is of the PROCEDURE type, the additional entry is as follows:

(QUICK) OWNER:procedure name

If the father block is of the BEGIN BLOCK type, the additional entry is this:

(QUICK) OWNER:BEGIN BLOCK IN ZEILE n

where ’n’ is the number of the source line where the block was declared (see LINE
column).

118 U253-J-Z125-9-7600

Listings OFFSET, ASSM

3.8.9 Offset listing (OFFSET)

This listing shows the relationship between line numbers and addresses relative to the
beginning of the procedure. For an address supplied in a runtime message, the user
can thus determine the line number of the statement which caused the message.

3.8.10 Assembly code (ASSM)

This listing presents the machine code generated and its retranslation in assembler for-
mat. Therefore, knowledge of the assembler language is needed to read this listing pro-
perly. The output of this listing can be controlled as follows:

*COMOPT LIST = ASSM Whole procedures
= ASSM ({beginning, end};...) Parts of procedure
= NOASSM No listing

For ’beginning’ and ’end’, a line must be specified in accordance with the source li-
sting.

The meaning of each column is as follows:

• QUELL-BEZUG (SOURCE REF.)
This column shows in decimal notation the line number as it appears in the source
listing, the number of the Include text if any, and the consecutive number of the sta-
tement within the line.

• ADR INTERNCODE
This is in hexadecimal notation the address of the machine instruction and the
instruction itself.

• EXTERNCODE
This column shows a retranslation of machine instructions in assembler code format.
The comments refer to the source program names. Additional comments are printed
for optimized loops.

• COMMENTS
These consist of references to source names. For statements processed by the loop
optimizer routine, the following information is displayed:

’advance invariant code’
’initialize induction variable’
’initialize increment’
’increment induction variable’

U253-J-Z125-9-7600 119

ASSM Listings

If only part of the assembler code listing is requested (*COMOPT LIST = ASSM (a,e)),
the listing is combined with the offset listing (see 3.8.9); that is, those parts of the pro-
gram whose assembler code is not supplied are output in the form of the offset listing,
in which case there will be no offset listing in its own right.

OBJECTCODEPROTOKOLL DES CODE-MODULES
QUELL-BEZUG ADR INTERNCODE EXTERNCODE

000000 BH$387 START O,READ
ENTRY P$START#
EXTRN BH$387@6
EXTRN P$3#00##
EXTRN P$PPREP#
EXTRN P$PTERM#
EXTRN P$PVL###

.

.

.
5 000260 05 EF BALR 14,15

000262 D2 03 D04C D050 MVC 76(4,13),80(13)
000268 D5 03 D25C B13C CLC 604(4,13),316(11) MG,
00026E 47 20 A2C2 BC 2,706(0,10) C.1
000272 D2 04 D267 D248 MVC 615(5,13),584(13) NO, NO
000278 D2 0E D26E D24D MVC 622(15,13),589(13) BZ, BZ
00027E D2 03 D27F D25C MVC 639(4,13),604(13) AMG, MG
000284 D2 01 D285 D260 MVC 645(2,13),608(13) AME, ME
00028A D2 04 D289 D262 MVC 649(5,13),610(13) APR, PR
000290 58 60 B038 L 6,56(0,11) LIST
000294 50 60 D0A0 ST 6,160(0,13)
000272 D2 04 D267 D248 MVC 615(5,13),584(13) NO, NO
000278 D2 0E D26E D24D MVC 622(15,13),589(13) BZ, BZ
00027E D2 03 D27F D25C MVC 639(4,13),604(13) AMG, MG
000284 D2 01 D285 D260 MVC 645(2,13),608(13) AME, ME
00028A D2 04 D289 D262 MVC 649(5,13),610(13) APR, PR
000290 58 60 B038 L 6,56(0,11) LIST
000294 50 60 D0A0 ST 6,160(0,13)
000278 D2 0E D26E D24D MVC 622(15,13),589(13) BZ, BZ
00027E D2 03 D27F D25C MVC 639(4,13),604(13) AMG, MG
000284 D2 01 D285 D260 MVC 645(2,13),608(13) AME, ME
00028A D2 04 D289 D262 MVC 649(5,13),610(13) APR, PR
000290 58 60 B038 L 6,56(0,11) LIST

Fig. 3-11 Sample assembly code listing (detail)

120 U253-J-Z125-9-7600

Listings SUMMARY

3.8.11 Statistics (SUMMARY)

This listing shows how much virtual storage was used by the compiler and how often
additional storage space was requested. See also the STORAGE control statement.

STATISTIK DER BELEGUNG DES VIRTUELLEN KERNSPEICHERS
PROZEDUR-STACK: 20 SEITEN; SYSTEM-AUFRUFE: 2 REQM, 0 RELM
STANDARD-AREA: 22 SEITEN; SYSTEM-AUFRUFE: 2 REQM
SPEICHERBEDARF: 219 SEITEN KLASSE 6 UND: 18 SEITEN KLASSE 5

Fig. 3-12 Compiler statistics (sample)

The meaning of each item in the summary is as follows:

Procedure stack: maximum number of memory pages (4K bytes) used in the proce-
dure stack.

Standard area: maximum number of memory pages (4K bytes) used in the stan-
dard area.

Storage requirement:
maximum number of memory pages (4K) requested by the whole
program (procedure stack, standard area, load module) in memory
classes 5 and 6.

REQM number of memory requests to the system.

RELM number of memory releases by the system.

U253-J-Z125-9-7600 121

DIAGNOST Diagnostic messages

3.9 Diagnostic messages (DIAGNOST)

Diagnostic messages are information about the flow of compilation. According to impor-
tance, there are the following groups:

1. Fatal errors (compiler aborts immediately)
2. Severe errors (no code is generated)
3. Errors (compiler tries to recover)
4. Warnings (references to suspected errors)
5. Information (notes on optimization)

Some information messages include a note for which chapter 14.6 provides further infor-
mation. There are:

Information message no. 500
The number of the out-line sequence is explained in chapter 14.6.

Information message no. 503 The name of the out-line sequence is explained in
chapter 14.6.

Information message no. 504 The type of the out-line sequence for conversion is
explained in chapter 14.6.

Information messages 500 through 504 appear only if some optimization is requested
by *COMOPT OPTIMIZE=.

Which type of diagnostic messages occurred during the compiler and preprocessor
runs is listed to SYSOUT. The diagnostic messages as such are listed to SYSLST.

The output of diagnostic messages can be controlled as follows:

*COMOPT DIAGNOST = SEVERE messages of group 2 and above
= ERROR messages of group 3 and above
= WARNING messages of group 4 and above
= INFORMATION messages of group 5

*COMOPT DIAGNOST = TERMINAL also to terminal
= NOTERMINAL only to SYSLST

*COMOPT DIAGNOST = SAVLST additionally to file
= NOSAVLST not to file

*COMOPT FORMAT = DEUTSCH messages in German
= ENGLISH messages in English

*COMOPT OPTIMIZE = Capability for controlling
information messages 500 through
504 (see above)

122 U253-J-Z125-9-7600

Diagnostic messages DIAGNOST

1 BH 39: /*EXAMPLE OF DIAGNOSTIC LISTING*/
2 PROCEDURE;
3
4 CALL LESEN;
5 CALL SCHREIBEN;
6
7 DCL ANTON CHAR(3) VARING;
8 DCL BERTA FIXED BINARI;
9
10 DCL DATEINAME FILE STREAM EXTERNAL;
11 PUT FILE(DATEINAME) SKIP(2);
12
13 BERTA = VERIFY(CHAR(BERTA),’+-0123456789’);
14 ANTON = SEARCH(CHAR(ANTON),’0’);
15
16 BERTA = VERIFY(CHAR(BERTA,’+-0123456789’);
17 ANTON = SEARCH(CHAR(’0’,ANTON);
18
19 GOTO WEITER;
20 BERTA = 3;
21 WEITER:
22
23 DCL 1 STRUKTUR ALIGNED,
24 2 BIT1 BIT(3),
25 2 UNTER DIM(3),
26 3 VARCHAR CHAR(5) VAR,
27 3 VARBIT BIT(5) VAR,
28 2 FIXED FIXED BIN INIT(1);
29
30 PUT LIST(STRUKTUR);
31
32
33 END;

Fig. 3-13 Procedure for the diagnostic messages for Fig. 3-14

U253-J-Z125-9-7600 123

DIAGNOST Diagnostic messages

C O M P I L E R D I A G N O S T I C M E S S A G E S

SEVERE ERROR DIAGNOSTIC MESSAGES

+++++SEVERE ERROR NO 49
THE RIGHT-HAND SIDE OF THIS APPARENT ASSIGNMENT STATEMENT IS NOT AN EXPRESSION

SOURCE REF. SOURCE REF. SOURCE REF. SOURCE REF. SOURCE REF. SOURCE REF.
16 17

ERROR DIAGNOSTIC MESSAGES

+++++ERROR NO 7
AN UNRECOGNIZABLE ATTRIBUTE HAS BEEN FOUND IN THE DECLARATION OF ’.....’

SOURCE REF. ’.....’ SOURCE REF. ’.....’
7 ’ANTON’ 8 ’BERTA’

+++++ERROR NO 64
THE UNDECLARED IDENTIFIER ’.....’ HAS BEEN USED AS AN ENTRY; IT HAS BEEN DECLARED AS AN EXTERNAL ENTRY
CONSTANT

SOURCE REF. ’.....’ SOURCE REF. ’.....’
4 ’LESEN’ 5 ’SCHREIBEN’

WARNING DIAGNOSTIC MESSAGES

+++++WARNING NO 56 IN LINE 20
THIS STATEMENT CAN NEVER BE REACHED DURING EXECUTION DUE TO AN UNCONDITIONAL GOTO STATEMENT OR RETURN
STATEMENT IMMEDIATELY PRECEDING IT

+++++WARNING NO 234 IN LINE 14
AN ARITHMETIC VALUE HAS BEEN CONVERTED TO A STRING VALUE

+++++WARNING NO 304
THE EXTERNAL NAME ’.....’ IS TRUNCATED TO A CONCATENATION OF THE FIRST 4 AND THE LAST 3 CHARACTERS

SOURCE REF. ’.....’ SOURCE REF. ’.....’
10 ’DATEINAME’ / ’SCHREIBEN’

Fig. 3-14 Diagnostic messages for the procedure in Fig. 3-13

The messages are shown in their order of importance (group 1 first), each group under
its own heading. Within a given group, identical messages are united and the message
text appears just once. The text is followed by the numbers of the source lines and the
consecutive number of the statement within the line which caused the message, and
finally the additional information for the message text.

The message texts are self-explanatory. Note that for executable statements, the mes-
sage refers to the line in which the statement begins.

Note also that messages may be the consequences of other messages.

124 U253-J-Z125-9-7600

SAVLST

3.10 Format of the SAVLST file

The compiler control statements

*COMOPT LIST = SAVLST
*COMOPT DIAGNOST = SAVLST

can be used if listings and messages of the compiler are to be additionally stored in a
file. See on this sections 3.5.1 and 3.5.2.

The file must be an ISAM file and must have a key length of 8 bytes, with record for-
mat V. If no file exists, a new file is created, according to the following options:

/FILE SAVLST.PLI1.tsn,LINK=SAVLINK,SPACE=(3,3),FCBTYPE=ISAM,KEYPOS=5, -
KEYLEN=8,RECFORM=V,BLKSIZE=STD

At the end of the run, the name of the file is changed to:

SAVLST.PLI1.module-name

The records of the file have the following structure:

length entry - 4 bytes
key - 8 bytes
information - up to 255 bytes

The header lines at top of page are included in the file. Carriage control characters do
not exist.

U253-J-Z125-9-7600 125

MACRO Preprocessor

3.11 Use of the preprocessor

The preprocessor is a separate program, integrated with the PLI1 compiler. At compiler
start time, you can issue a control statement if you wish to precede the compiler with a
preprocessor run.

The preprocessor expects source text to be written in the PL/I programming language.
Among the PL/I statements, there are statements for the preprocessor. These state-
ments, whose syntax and semantics are very similar to those of PL/I statements, are
processed by the preprocessor. The result of that processing is generally a replacement
of text, often causing substantial changes to the source procedure. When the preproces-
sor has finished processing, the source procedure is transferred to an intermediate file,
where most of the preprocessor statements are being removed from the source proce-
dure. Only statements which control the printout of the compiler listing are still contai-
ned in the source procedure.

The following control statements for the PLI1 compiler are relevant to the preprocessor:

OPTIONS = MACRO With preprocessor run
= NOMACRO Without preprocessor run

LIST = INSOURCE Preprocessor input listing
= NOINSOURCE No preprocessor input listing

OBJECT = MACRO Preprocessor run only; no compilation

COMLIB = (library,...) Libraries supplying the texts to be
inserted

LIST = IREF INCLUDE reference listing
= NOIREF

126 U253-J-Z125-9-7600

Preprocessor MACRO

Fig. 3-15 Data flow for the preprocessor run and the control statements

The preprocessor reads source text according to the SOURCE = source control state-
ment. If the LIST = INSOURCE control statement is specified, an input listing is printed,
followed by a listing of the Include files.

Some statements are first processed by the preprocessor and then passed on to the
compiler in the modified source procedure. These are the statements which have a con-
trolling effect on the compiler listing.

U253-J-Z125-9-7600 127

MACRO Preprocessor

The result of the preprocessor run is a source text file which is free of preprocessor
statements except those mentioned above. The only purpose of this file is to serve as
input to the actual compiler run without any user intervention. The file may be created
as follows:

a) The user, before calling the compiler, issues the following FILE command:

/FILE file-name,LINK=SAVMAC[,SPACE=...]

In this case, the preprocessor writes its output to the specified file.

b) The preprocessor creates an output file by the name of:

PLI1.SAVMAC.task-sequence-number,

using the tsn of the current task.

The preprocessor writes its output to a file which has the fixed file link name of
SAVMAC. If the user has not assigned a file to that name, the preprocessor creates its
own file according to the following command:

/FILE PLI1.SAVMAC.task-sequence-number
LINK=SAVMAC,
FCBTYPE=ISAM,BLKSIZE=STD,RECSIZE=136,
RECFORM=V,KEYPOS=5,KEYLEN=8

This file may be printed e.g. by one of the following commands:

/PRINT PLI1.SAVMAC.task-sequence-number

/PRINT PLI1.SAVMAC.task-sequence-number
STARTNO=17,ENDNO=124

In both cases, the preprocessor-generated file can be used again for subsequent compi-
lations, after making any corrections that may be necessary, as immediate input to the
compiler. Generally, OPTIONS = NOMACRO is required in these cases since all prepro-
cessor statements have been resolved. MARGINS = SAVMAC should be supplied.

Should errors be encountered as the preprocessor processes the preprocessor state-
ments, appropriate messages are issued which in every respect are similar to the mes-
sages of the compiler. Further compilation may be suppressed, e.g. if severe errors
occur and OBJECT = was specified accordingly by the user.

128 U253-J-Z125-9-7600

Preprocessor MACRO

/FILE DATEI,LINK=SAVMAC Intermediate file
/EXEC $PLI1 Compiler start

*COMOPT SOURCE=QUELLE, Source entry
*COMOPT COMLIB=(...), With preprocessor
*COMOPT OPTIONS=MACRO,
*COMOPT LIST=INSOURCE, Input listing
*COMOPT LIST=IREF, Preprocessor only
*COMOPT OBJECT=MACRO, Compiler listing
*COMOPT LIST=SOURCE,

Fig. 3-16 Commands and control statements concerning the preprocessor

All forms of input for the sources are identical with preprocessor or without; that is, the
preprocessor accepts the same forms of input as the PLI1 compiler.

For the %INCLUDE statement, the text to be inserted may have to be supplied as a file
or library. Also, the control statement

COMLIB = (library,...)

may be required to establish a relationship with particular libraries.

The records of the output file of the preprocessor have the following format:

Position Contents

1 - 3 Number of the Include text

4 - 11 Original source line number according to input file for
the preprocessor: index from an ISAM file or consecutive
no. for SAM file or in accordance with MARGINS = LINID
(a,b).

12 Carriage control character from the input file; otherwise
blank.

13 Blank

14 - 15 Level depth of replacement by the preprocessor or blanks
if no replacement took place.

16 Blank

17 - 24 Source line as extracted by MARGINS = TEXT (a,b) and/or
modified by the preprocessor. If the text area contains
more than 108 characters, additional records which have
the same original line number are created in the output
file. If the text area is less than 108 characters, the
output line is padded to 108 characters and blanks.

U253-J-Z125-9-7600 129

MACRO Preprocessor

4 8 3 8 1 1 2 1 108
Length Key Incl. no. Line no. D Source line

e
p
t
h

Source line

MARGINS=(LINID(4,11),TEXT(17,124)

Fig. 3-17 Data record and source line as stored by the preprocessor in an intermediate

file for the compiler

Note that the record is preceded with an 8-byte key and a 4-byte length field. The key
is incremented in steps of 1, starting with 00000001.

130 U253-J-Z125-9-7600

START-PLI1-COMPILER Operand description

3.12 Description of the operands of the SDF command
START-PLI1-COMPILER

3.12.1 Overview of the operands

Name of the operand Purpose

SOURCE Defines the input source for the source program

INCLUDE-LIBRARY Assigns the PLAM library in which the %INCLUDE
elements are stored

SOURCE-PROPERTIES Describes the input format of the source program

PREPROCESSING Calls the preprocessor

COMPILER-ACTION Performs a partial execution of the compilation
run and controls certain properties of the
generated objects

MODULE-LIBRARY Specifies the name and output destination of the
generated objects

LISTING Controls listing output

TEST-SUPPORT Controls the program testing tools

OPTIMIZATION Controls optimization

COMPILER-TERMINATION Defines a point at which the compilation run is
to be terminated

MONJV Monitors the compilation run using job variables

LANGUAGE Selects the language (English or German) for
output of compiler messages

U253-J-Z125-9-7600 131

Operand description START-PLI1-COMPILER

3.12.2 Description of the individual operands

SOURCE operand

This operand determines whether the source program is to be read from SYSDTA, from
a cataloged file, or from a PLAM library.

SOURCE = *SYSDTA /
<full-filename 1..54 without gen-vers> /
*LIBRARY-ELEMENT(...)

*LIBRARY-ELEMENT(...)

LIBRARY = <full-filename 1..54>

,ELEMENT = <full-filename 1..54 without gen-vers>(...)

VERSION = *HIGHEST-EXISTING / <alphanum-name 1..24>

SOURCE = *SYSDTA
Input is from the SYSDTA system file by default; in interactive mode SYSDTA is assig-
ned to the display terminal. Using the ASSIGN-SYSDTA command it is possible to
assign SYSDTA to a cataloged file or a PLAM library element before the compiler is
invoked.

SOURCE = <full-filename 1..54 without gen-vers>
The entry <full-filename> assigns a cataloged file as the input source.

SOURCE = *LIBRARY-ELEMENT(...)
This parameter is used to specify a PLAM library and an element stored in it.

LIBRARY = <full-filename 1..54>
The entry <full-filename> assigns a PLAM library as the input source.

ELEMENT = <full-filename 1..54 without gen-vers>(...)
<full-filename> is the fully-qualified name of an element from the specified PLAM
library. The element must be type S (=source).

VERSION = *HIGHEST-EXISTING
If the element entry does not include a version identifier, the compiler will use
the highest version.

VERSION = <alphanum-name 1..24>
The compiler uses the version specified by <alphanum-name>.

132 U253-J-Z125-9-7600

START-PLI1-COMPILER Operand description

INCLUDE-LIBRARY operand

This operand determines the library or libraries from which the %INCLUDE elements are
to be input.

INCLUDE-LIBRARY = *NONE / list-poss: <full-filename 1..54> /

INCLUDE-LIBRARY = *NONE
No %INCLUDE elements are to be read.

INCLUDE-LIBRARY = <full-filename 1..54>
<full-filename> is the file or link name of one or more PLAM libraries. The PLAM libra-
ries are searched for %INCLUDE elements in the order in which they are specified.
Finally, the system catalog ($TSOS) is also searched. <full-filename> is interpreted first
as a link name, then as a file name.

U253-J-Z125-9-7600 133

Operand description START-PLI1-COMPILER

SOURCE-PROPERTIES operand

This operand describes the input format of the source program.

SOURCE-PROPERTIES = STD / PARAMETERS(...)

PARAMETERS(...)

FROM-COLUMN = 2 / <integer 1..256>

TO-COLUMN = 72 / <integer 1..256>

,LANGUAGE-STANDARD = STD / ISO

,SPECIAL-KEYWORDS = NO / YES

SOURCE-PROPERTIES = STD
The default operand values of the subsequent PARAMETERS structure are used.

SOURCE-PROPERTIES = PARAMETERS(...)

FROM-COLUMN = 2 / <integer 1..256>
Specifies the first column of the source text. The default value is column 2.

TO-COLUMN = 72 / <integer 1..256>
Specifies the last column of the source text. The default value is column 72.

LANGUAGE-STANDARD = STD / ISO
The source text complies with the industry standard (STD) or the PL/I standard
(ISO).

SPECIAL-KEYWORDS = NO / YES
YES: Special keywords, such as B, CAT, LE for example, are treated as reserved
names.

134 U253-J-Z125-9-7600

START-PLI1-COMPILER Operand description

PREPROCESSING operand

This operand determines whether the preprocessor is to be called.

PREPROCESSING = NONE / PARAMETERS(...)

PARAMETERS(...)

OUTPUT = *NONE / *STD

PREPROCESSING = NONE
The preprocessor is not called.

PREPROCESSING = PARAMETERS(...)
The preprocessor is called.

OUTPUT = *NONE
The processing result of the preprocessor is not output.

OUTPUT = *STD
The preprocessor writes the result to the SAVMAC file.

U253-J-Z125-9-7600 135

Operand description START-PLI1-COMPILER

COMPILER-ACTION operand

This operand specifies whether an object is to be generated, and if so, how.

COMPILER-ACTION = SYNTAX-CHECK / MODULE-GENERATION(...)

MODULE-GENERATION(...)

MAIN-PROGRAM = NO / YES

,EXTENDED-SYSTEM = NONE / PARAMETERS(...)

PARAMETERS(...)
BIT-POINTER = NO / YES

COMPILER-ACTION = SYNTAX-CHECK
The compiler run is to terminate after the syntax check.

COMPILER-ACTION = MODULE-GENERATION(...)
A complete compiler run is performed. Certain properties of the objects to be genera-
ted can be determined via the parameters of the MODULE-GENERATION structure.

MAIN-PROGRAM = NO / YES
YES: The object is a main program.

EXTENDED-SYSTEM = NONE
The object has no XS capability.

EXTENDED-SYSTEM = PARAMETERS(BIT-POINTER = NO / YES)
The object has XS capability.
In the case of BIT-POINTERS=YES, all pointers are bit pointers.

136 U253-J-Z125-9-7600

START-PLI1-COMPILER Operand description

MODULE-LIBRARY operand

This operand determines the library in which the generated object is to be stored, and
the name under which it is stored.

MODULE-LIBRARY = *OMF / <full-filename 1..54 without gen-vers>(...)

<full-filename 1..54 without gen-vers>(...)

ELEMENT = *STD(...) / <full-filename 1..54 without gen-vers>(...)

*STD(...)

VERSION = *UPPER-LIMIT / <alphanum-name 1..24>

<full-filename 1..54 without gen-vers>(...)

VERSION = *UPPER-LIMIT / <alphanum-name 1..24>

MODULE-LIBRARY = *OMF
The object is to be written to the temporary EAM file.

MODULE-LIBRARY = <full-filename 1..54 without gen-vers>(...)
Name of the PLAM library into which the object is to be written.

ELEMENT = *STD(...)
The element name is formed from the first entry name of the external procedure.

VERSION = *UPPER-LIMIT / <alphanum-name 1..24>
Modules with the same name can be distinguished by version identifiers. If there
is no version option, the element with the highest version (*UPPER-LIMIT) can
be used for the linkage run.

ELEMENT = <full-filename 1..54 without gen-vers>(...)
An element name can be assigned using <full-filename>.

VERSION = *UPPER-LIMIT / <alphanum-name 1..24>
See above

If no element name is specified the object is given the first entry name of the external
procedure.

U253-J-Z125-9-7600 137

Operand description START-PLI1-COMPILER

LISTING operand

LISTING = STD / NONE / PARAMETERS(...)

PARAMETERS(...)

OPTIONS = NO / YES

,PREPROCESSING-OUTPUT = NO / YES

,SOURCE = NONE / PARAMETERS(...)

PARAMETERS(...)

INCLUDE-EXPANSION = NO / YES

,PAGE-FRAME = NONE / PARAMETERS(...)

PARAMETERS(...)

LINE-DELIMITER = ’ ’ / <c-string 1..1>

,LINE-NUMBER-LAYOUT = STD / EDT / EDOR

,DATA-ALLOCATION-MAP = NO / YES

,CROSS-REFERENCE = NONE / REFERENCED / FULL

,INCLUDE-REFERENCE = YES / NO

,STRUCTURE-LAYOUT = NO / YES

,EXTERNAL-DICTIONARY = NO / YES

,STATEMENT-ADDRESS = YES / NO

,ASSEMBLER-CODE = NO / YES

,SUMMARY = NO / YES

,ADDITIONAL-OUTPUT = *NONE / *TERMINAL

LISTING = STD
The default operand values of the PARAMETERS structure are to be used.

LISTING = NONE
No lists are to be generated.

138 U253-J-Z125-9-7600

START-PLI1-COMPILER Operand description

LISTING = PARAMETERS(...)
The following parameters determine which lists are to be generated. The value NO pre-
vents the respective list from being generated.

OPTIONS=NO / YES
YES: Output of the effective control statements.

PREPROCESSING-OUTPUT = NO / YES
YES: Output of the preprocessor listing.

SOURCE = NONE
No source listing will be output.

SOURCE = PARAMETERS(...)
A source listing will be output.

INCLUDE-EXPANSION = NO / YES
YES: The source listing will contain the inserted INCLUDE texts.

PAGE-FRAME = NONE / PARAMETERS(LINE-DELIMITER = ’ ’ /
<c-string 1..1>
PARAMETERS: Output of the source program with leader and trailer, and with
frame characters <c-string> if specified.

LINE-NUMBER-LAYOUT = STD / EDT / EDOR
Line format.
STD: unchanged, as in the PRINT command
EDT: without leading and trailing zeros, with a period between 4th and 5th posi-
tion
EDOR: without trailing zeros

DATA-ALLOCATION-MAP = NO / YES
YES: Output of the memory map.

CROSS-REFERENCE = NONE / REFERENCED / FULL
Output of cross-references and attributes of identifiers.

INCLUDE-REFERENCE = YES / NO
YES: Output of INCLUDE references.

STRUCTURE-LAYOUT = NO / YES
YES: Output of the aggregate listing.

EXTERNAL-DICTIONARY = NO / YES
YES: Output of the list of external names.

STATEMENT-ADDRESS = YES / NO
YES: Output of the allocation table: statement for the hexadecimal address of the
generated code.

U253-J-Z125-9-7600 139

Operand description START-PLI1-COMPILER

ASSEMBLER-CODE = NO / YES
YES: Output of the object code listing.

SUMMARY = NO / YES
YES: Output of program statistics.

ADDITIONAL-OUTPUT = *NONE / *TERMINAL
*TERMINAL: The listings are also to be output on the display terminal.

140 U253-J-Z125-9-7600

START-PLI1-COMPILER Operand description

TEST-SUPPORT operand

This operand selects options for support of program testing.

TEST-SUPPORT = NONE / PARAMETERS(...)

PARAMETERS(...)

STATEMENT-TABLE = NO / YES

,TOOL-SUPPORT = NONE / AID

,TRACE-SUPPORT(TRC) = NONE / ALL / PARAMETERS(...)

PARAMETERS(...)

PROCEDURE-ENTRY = YES / NO

,PROCEDURE-EXIT = YES / NO

,PROCEDURE-CALL = YES / NO

,LABELLED-STATEMENT = YES / NO

,GOTO-STATEMENT = YES / NO

TEST-SUPPORT = NONE
No test support.

TEST-SUPPORT = PARAMETERS(...)
The following parameters determine which test support options are to be generated.
The value NO prevents the respective test support from being generated.

STATEMENT-TABLE = NO / YES
YES: Preparation of source line numbers.

TOOL-SUPPORT = NONE / AID
AID: Generation of LSD information for the AID debugging aid.

TRACE-SUPPORT = NONE / ALL / PARAMETERS(...)
Generation of trace information.

PROCEDURE-ENTRY = YES / NO
YES: Procedure trace

PROCEDURE-ENTRY = YES / NO
YES: Trace when quitting a procedure

PROCEDURE-CALL = YES / NO
YES: Trace when invoking a procedure

U253-J-Z125-9-7600 141

Operand description START-PLI1-COMPILER

LABELLED-STATEMENT = YES / NO
YES: Trace for statement labels

GOTO-STATEMENT = YES / NO
YES: Trace for GOTOs

142 U253-J-Z125-9-7600

START-PLI1-COMPILER Operand description

OPTIMIZATION operand

This operand selects the type of optimization.

OPTIMIZATION = NONE / PARAMETERS(...)

PARAMETERS(...)

SUPPRESS-COND-CHECK = NO / YES

,REORDER-EXPRESSION = NO / YES

,IGNORE-STRINOVERLAP = NO / YES

OPTIMIZATION = NONE
Optimization is not activated.

OPTIMIZATION = PARAMETERS(...)

SUPPRESS-COND-CHECK = NO / YES
YES: Condition code generation is suppressed.

REORDER-EXPRESSION = NO / YES
YES: The sequence of the statements may be changed.

IGNORE-STRINGOVERLAP = NO / YES
YES: Assignments are not checked for overlapping.

U253-J-Z125-9-7600 143

Operand description START-PLI1-COMPILER

COMPILER-TERMINATION operand

This operand controls termination of the compilation run.

COMPILER-TERMINATION = STD / PARAMETERS(...)

PARAMETERS(...)

CPU-LIMIT = JOB-REST / <integer 1..32767>

,MAX-ERROR-NUMBER = 500 / <integer 1..32767>

COMPILER-TERMINATION = STD
The default operand values of the PARAMETERS structure are to be used.

COMPILER-TERMINATION = PARAMETERS(...)
Selection of the criteria for compiler termination

CPU-LIMIT = JOB-REST / <integer 1..32767>
Maximum compilation time in seconds

MAX-ERROR-NUMBER = 500 / <integer 1..32767>
Number of errors after which the compilation is to be terminated

144 U253-J-Z125-9-7600

START-PLI1-COMPILER Operand description

MONJV operand

This operand determines whether the compiler run is to be monitored by a job variable.

MONJV = *NONE / <full-filename 1..54 without gen>

MONJV = *NONE
The compiler run is not to be monitored by a job variable.

MONJV = <fill-filename 1..54 without gen>
Name of the job variable which is to monitor the compiler run.

U253-J-Z125-9-7600 145

Operand description START-PLI1-COMPILER

LANGUAGE operand

This operand determines the language in which the compiler messages are to be out-
put.

LANGUAGE = ENGLISH / DEUTSCH

LANGUAGE = ENGLISH / DEUTSCH
The compiler messages can be output in English (default) or in German.

146 U253-J-Z125-9-7600

START-PLI1-COMPILER Operand description

3.12.3 Mapping of SDF operands to COMOPT operands

SDF operand COMOPT operand

SOURCE SOURCE

INCLUDE-LIBRARY COMPLIB

SOURCE-PROPERTIES

FROM-COLUMN, TO-COLUMN MARGINS=TEXT

LANGUAGE-STANDARD=ISO OPTIONS=ISO

SPECIAL-KEYWORDS=YES MARGINS=CHAR48

PREPROCESSING=YES OPTIONS=MACRO

OUTPUT=*STD MARGINS=SAVMAC

COMPILER-ACTION= OBJECT=

SYNTAX-CHECK CODE

MODULE-GENERATION OUT

MAIN-PROGRAM=YES OPTIONS=MAIN

EXTENDED-SYSTEM=YES OPTIONS=XS

BIT-POINTER=YES OPTIONS=BITPTR

MODULE-LIBRARY MODULE

LISTING LIST=

OPTIONS=YES OPTIONS

PREPROCESSING-INPUT=YES INSOURCE

SOURCE=YES SOURCE

INCLUDE-EXPANSION=YES EXPAND

PAGE-FRAME=YES OUTTEXT

LINE-NUMBER-LAYOUT LINECNT

DATA-ALLOCATION=YES MAP

CROSS-REFERENCE=
REFERENCED SHRTXREF
FULL FULLXREF

STRUCTURE-LAYOUT=YES AGGREGATE

U253-J-Z125-9-7600 147

Operand description START-PLI1-COMPILER

SDF operand COMOPT operand

LISTING (continued)

EXTERNAL-DICTIONARY=YES ESD

STATEMENT-ADDRESS=YES OFFSET

ASSEMBLER-CODE=YES ASSM

SUMMARY=YES SUMMARY

ADDITIONAL-OUTPUT=*TERMINAL TERMINAL

TEST-SUPPORT DEBUG, SYMTEST

STATEMENT-TABLE=YES DEBUG=STMT

TOOL-SUPPORT=AID SYMTEST=ALL

TRACE-SUPPORT

PROCEDURE-ENTRY=YES DEBUG=PROCTRACE

PROCEDURE-EXIT=YES DEBUG=RETURNTRACE

PROCEDURE-CALL=YES DEBUG=CALLTRACE

LABELLED-STATEMENT=YES DEBUG=LABTRACE

GOTO-STATEMENT=YES DEBUG=GOTOTRACE

OPTIMIZATION OPTIMIZE=

SUPPRESS-COND-CHECK=NO ENABLING

REORDER-EXPRESSION=YES REORDER

IGNORE-STRINGOVERLAP=YES OVERLAP

COMPILER-TERMINATION

CPU-LIMIT= 1)

MAX-ERROR-NUMBER= OBJECT=ABORT()

MONJV= 1)

LANGUAGE=ENGLISH FORMAT=ENGLISH

1) Entered in the EXECUTE command

148 U253-J-Z125-9-7600

4 Linking and loading a PL/I program

4.1 General

A PL/I object module arising as a result of compilation must be linked into an executa-
ble load module by linking it to other modules. These other modules are taken from the
PL/I runtime library, or they result from separately compiled (PL/I) procedures. The run-
time library contains all prefabricated modules of an object program, such as program
monitor, input/ output system, built-in functions, condition and error handling, etc.
These modules are also referred to as the runtime system in this manual. Two runtime
systems are available (see section 4.5).
The linkage process links all the object modules named when the linkage editor was
called, and also those explicitly or implicitly referenced by the named modules. Expli-
citly referenced are those object modules to which declarations (DCL...ENTRY
EXTERNAL;) in the module in question apply, as long as the declaration does not also
contain the option OPTIONS (WXTRN). Modules from the runtime library which are
required for conversion, input/output, etc. are, however, implicitly referenced.
Generation of the address references between the EXTERNAL items of the modules and
the fixing of the relative addresses in the object modules are other important functions
also performed by the linkage editor. In BS2000 the load modules are entered in a cata-
loged file by the linkage editor (TSOSLNK). These load modules can be called from the
cataloged file as often as required.

During the development and debugging phase, the dynamic linking loader (DLL) can be
used instead of the TSOSLNK linkage editor for testing programs (short compilation
time, subroutines from a single library, programmed as "shareable"). Linking and lo-
ading is initiated with the /EXEC* or /LOAD* statement.

U253-J-Z125-9-7600 149

Control Linkage

4.2 Controlling the linkage editor (TSOSLNK)

The linkage editor links object modules into load modules. All the object modules
named in the INCLUDE statement are firstly linked. If they contain references to other
procedures or external names (external references), these procedures must also be lin-
ked. The search for procedures with definitions of external names is carried out in three
stages. Firstly an attempt is made to find the definitions in the object modules specified
in INCLUDE. An attempt is then made to satisfy the as yet unassigned external referen-
ces from object modules libraries which may be expressly specified for this purpose
(RESOLVE statement). For references still not resolved, appropriate definitions are
sought in the [$TSOS.]TASKLIB library. If no definition is found here, the reference
remains unresolved and an error message is issued. Procedures for which only so-cal-
led weak external references (OPTIONS(WXTRN)) exist are not linked, see section 3.3.4.

Further functions of the linkage editor include:

modifying external names
combining and reserving storage space for EXTERNAL items (COMMON)
generating overlay structures
defining the program start point

The linkage editor also generates printer listings, if required.

Control of the linkage editor (TSOSLNK) is peformed via its own control statements.
The most important control statements are briefly described here with their parameters.
More detailed information on the function of the linkage editor and its control state-
ments may be found in the Utility Routines Reference Manual [3].

150 U253-J-Z125-9-7600

Linkage Load module storage

4.2.1 Calling the linkage editor

The linkage editor is called via the command

EXECUTE
/ $TSOSLNK

EXEC

The linkage editor expects control statements and object modules as input which it
reads in via SYSDTA. A special statement (INCLUDE statement) causes the linkage edi-
tor to read object modules from the EAM file of the current task (indicated by the sym-
bol *) or from an object modules library, and to add them to the load module.

This means the user can select:

out of the EAM object modules file, the whole file or specific modules;

out of object modules libraries, only the specific modules.

The linkage editor writes the generated load module into a cataloged file. In a linkage
run this file is rewritten from the beginning if it already exists. If a /FILE command for
this file is not entered by the user before calling the linkage editor, cataloging and sto-
rage allocations are performed by the linkage editor.

If the PL/I program is linked statically, or if a prelinked module is created by dynamic
linkage, it is advantageous to define the storage space with a /FILE command before
linking takes place. This avoids unnecessary chopping up of the load module and redu-
ces the loading time. Any unrequired storage space reserved can subsequently be rele-
ased via a /FILE command with a negative SPACE option.

Error messages from the linkage editor are output to SYSOUT and SYSLST.

Example

.

.
/SYSFILE SYSDTA=PROG
/EXEC $PLI1
/SYSFILE SYSDTA=(SYSCMD)
/FILE PL1.PROGR.003,SPACE=(90,6)
/EXEC $TSOSLNK
PROGRAM P003,FILENAM=PL1.PROG.003
INCLUDE *
END
/FILE PL1.PROG.003,SPACE=-100
.
.

Note

SYSDTA was assigned to the source program file PROG for the compilation run and
must be reset before the linkage editor is called.

U253-J-Z125-9-7600 151

PROGRAM statement Linkage

4.2.2 Statements for the linkage editor

PROGRAM statement

The name of the load module is defined via the PROGRAM statement. This statement
must be specified, but need not be the first statement. If several PROGRAM statements
are specified, the last one is valid.

PROG[RAM] program-name[,FILENAM=file-name]

program-name Name of the linked program (max. 8 characters)

file-name Name of the cataloged file in which the linked program is to be sto-
red. If this parameter is not specified, the program name also ap-
plies as the file name (name of the load module).

Of the remaining parameters in the PROGRAM statement, the following can also be
used in special cases:

LET = Y[ES] The program is also linked even if open external references are still
present after the libraries have been searched. However in this case
it should be ensured that these references will not be required when
the program is executed, since otherwise the program will behave in
an undefined manner.

PL1 = Y[ES] This option prevents the linkage editor from issuing error messages
if variables with the EXTERNAL attribute in several object modules
are assigned an initial value.

Warning:

If this parameter is specified, no external names beginning with IQ
can be used (see Linkage Editor Reference Manual [3]).

START = P$START
This option is only necessary if a non-PL/I module is linked as the
first module.

The PROGRAM parameters not named have the usual effect or do not apply to PL/I
programs.

152 U253-J-Z125-9-7600

Linkage INCLUDE statement

INCLUDE statement

The INCLUDE statement retrieves one or more object modules from the specified li-
brary and joins them to the load module. This statement is mandatory.

module ,libname

INCLUDE (module,...) , *
*

module Name of the object module to be added to the load module.

libname Name of an object module library from which the modules are to be
taken.

* OMF of the current task.

Note

The effect of the INCLUDE * statement is to link together all object modules which
exist in the OMF file even if they originate from several successive compilations, pos-
sibly by different compilers.

U253-J-Z125-9-7600 153

RESOLVE, END statement Linkage

RESOLVE statement

The RESOLVE statement specifies an object module library in which the linkage editor
should attempt to resolve external references. The object modules from the specified
library which satisfy the external references are then also joined to the load module.
This statement should only be specified if required.

external reference
RESOLVE[],library name

(external reference,...)

external reference
Name of an external reference to be resolved. If no references are
specified the linkage editor tries to find definitions of all the currently
unsatisfied references in the library.

library name The name of the library in which the linkage editor should search for
the suitable definition.

Remark

If a number of RESOLVE statements are specified, these are processed from back
to front, which means that the open external references are sought first in the last
library specified, then in the next to the last, etc. If external references still remain
open after all the RESOLVE statements have been processed, the [$TSOS.]TASKLIB
file is finally searched.

Note

If all PLI1 runtime library modules are kept in $TSOS.TASKLIB, the user need not
supply any RESOLVE statements referring to them. On the other hand, if the system
administrator creates a separate library for PLI1, e.g. to keep the system library cata-
log small, the name of that library must be communicated to the linkage editor by a
RESOLVE statement without explicit module names. In these cases, the library name
will be supplied by the system administrator.

END statement

The END statement terminates the statements to the linkage editor and must be speci-
fied.

END

154 U253-J-Z125-9-7600

Linkage Example

4.3 Example of the linkage editor

Three PL/I procedures are compiled and then linked. They contain external references
to the procedures FUNCT1 and FUNCT2, which are located in the library FUNCLIB.
Examples illustrating how procedures are entered in libraries are given in sections 2.2.4
and 3.6.4.

/SYSFILE SYSDTA=(SYSCMD)
/EXEC $PLI1
*COMOPT SOURCE=PL1A,OPTIONS=MAIN
*END
/EXEC $PLI1
*COMOPT SOURCE=PL1B 1)
*END
/EXEC $PLI1
*COMOPT SOURCE=PL1C
*END

/EXEC $TSOSLNK
PROGRAM PRO05,FILENAM=PL1.PROGR.05 2)
INCLUDE * 3)
RESOLVE,FUNCLIB 4)
END
/EXEC PL1.PROGR.05 5)

.

.

.

1) The generated object modules - assume they are also called PL1A, PL1B, and
PL1C - are written to the EAM file. Additionally, for each procedure compiled, a
’static module’ may be created whose name is derived from the procedures name.
See section 4.6. The main procedure must be in the first position.

2) Specification of the load module name and the cataloged file into which the load
module is to be entered.

3) Statement for linking all the modules from the EAM file.

4) The external references FUNCT1 and FUNCT2 are to be resolved with definitions in
object modules from the FUNCLIB file.

5) Execution of the compiled and linked program. PL1.PROGR.05 is the cataloged file
in which the load module PRO05 was entered.

U253-J-Z125-9-7600 155

Loading

4.4 Loading

The loader loads the load module generated by the linkage editor.

More detailed information on the loader may be found in the Utility Routines Reference
Manual [3]. Details on the control of the loaded and started program via RUNOPT are
given in chapter 5.

The loader is called via the command

/LOAD filename[,TIME=number]

filename Name of the cataloged file containing the load module. The name to
be specified is that used for the linkage editor in the PROGRAM con-
trol statement.

number The maximum CPU time in seconds for which this program should
run. If this parameter is not specified, the time defined as the system
default is assumed.

If a PL/I program is to be controlled via IDA statements (e.g. AT command), then the
command sequence

/LOAD filename
/AT...
/RESUME

can be used for loading and executing the program. The IDA statements, however, can
only refer to virtual addresses which can be derived from the offset listing, or the object
code listing (LIST = ASSM during compilation), and the linkage editor listing, and which
were marked TRAITS READONLY = N as they were linked or entered in the library. For
details refer to section 9.8.

156 U253-J-Z125-9-7600

Runtime system

4.5 Runtime system

Two runtime systems are available for PL/I programs. They both produce identical
results when the program is executed, but behave differently for linking and loading and
have different storage and machine time requirements.

The main difference is that in one case the main part of the object modules is prelinked
into two large modules, which are linked dynamically when the program is executed.
This means that the linkage process requires substantially less time and the load mo-
dule is smaller. These relationships are outlined in the overview in Figure 4-1.

Each runtime system is complete in itself. Both use the same elementary object modu-
les.

Which of the two runtime systems is used depends on whether the linkage strategy
described above will first retrieve the ITP#AOS# or ITP#AOD# connection module.

U253-J-Z125-9-7600 157

Runtime system

Elementary runtime system Pre-linked runtime system

ITP#AOS# ITP#AOD#

ITP#RTS#

Shareable
large

etc. approx. 150 object modules modules

ITP#IOS#

special obj. special obj.
modules modules

Static Linkage Dynamic

User object modules User object modules
- -

ITP#AOS# ITP#AOD#

- - - - - - - - - - - -
Special object modules

Further object modules - - - - - - - - - - - -
of the runtime system

Special object modules Incomplete load module
- - - - - - - - - - - -

Object modules ITP#RTS# and
ITP#IOS# are loaded dynamically

Complete load module at program runtime

Fig. 4-1 Overview of the runtime systems and the resulting load modules

158 U253-J-Z125-9-7600

Runtime system Elementary - prelinked

4.5.1 Elementary runtime system

In an elementary runtime system all the elementary object modules are present indivi-
dually. The following object modules are present:

• Linkage module ITP#AOS#

• Approx. 150 further elementary object modules

• Special object modules (these are only listed separately here because they receive
special treatment in the prelinked runtime system).

In the linkage process the object modules required by the object program are linked as
a result of the linkage module ITP#AOS#. This produces a complete load module con-
taining all the facilities required by the source program. For loading and execution the
load module is always regarded as one unit.

A complete linkage and loading process is necessary for each source program. When
linking takes place, a complete linkage editor listing is generated.

4.5.2 Prelinked runtime system

In the prelinked runtime system most of the elementary object modules are prelinked
into two large modules, so that the runtime system consists of the following object
module:

• Linkage module ITP#AOD#

• Prelinked modules ITP#RTS# and ITP#IOS#
These modules can be entered in the "Share Table".

• Special object modules
These include object modules for calling the sort program, etc. These modules are
not prelinked, but remain elementary object modules.

All modules except ITP2SRT# and those used for language transfer are programmed to
be ’reentrant’.

The linkage editor links together the object modules resulting from the compilation of
the PL/I procedures and the ITP#AOD# module. As well, special object modules are
linked as required. All these object modules together form an incomplete load module.
As the two prelinked modules are not yet included, this load module is of limited size; it
requires less storage space than a complete load module. Only a small number of
object modules is involved in the linkage process, which is therefore executed very fast.

U253-J-Z125-9-7600 159

Elementary - prelinked Runtime system

The prelinked modules required for executing the program are loaded dynamicall when
the program has started. Since the modules have already been prelinked, the time requi-
red for this operation is minimal.

The prelinked modules are programmed to be "reentrant" and can therefore be entered
in the "Share Table" of the operating system by the system administrator. In this case
the time required for dynamic load is further reduced. If a number of PL/I programs
use the same prelinked modules, the storage requirements can also be improved.

Since only a few modules are to be linked in the linkage process, only a limited linkage
editor listing is produced. If a complete linkage editor listing is required for error detec-
tion, then the elementary runtime system should be used.

4.5.3 Storage of the runtime system

Which of the runtime systems is available on a particular installation is defined by the
system administrator and cannot be directly controlled by the user. In many cases it is
advantageous if both runtime systems are available at the same time.

For best results, the system administrator will store the preferred (or only) runtime
system in system file TASKLIB, which allows the user to control the linkage process
most easily.

The second runtime system can be stored in a library. The appropriate options
(RESOLVE) should be supplied to control the linkage process.

160 U253-J-Z125-9-7600

Object module Names

4.6 Name conventions for PL/I object modules

Module names can be specified in the control statements of the linkage editor. The
names of the modules and the names of other external program items are listed in the
linkage editor listing. These names result directly from the appropriate identifiers of the
linked PL/I procedures, where, however, due to certain restrictions in the linkage editor
and other programming languages, the following rules should be observed:

If entry constants are declared with OPTIONS (ASSEMBLER OR COBOL), the lin-
kage editor always uses the first 8 characters.

For all other identifiers with OPTIONS (PLI1 or FORTRAN or VARIABLE) and the
EXTERNAL attribute, a maximum of 7 characters is placed in the object code gene-
rated; if the identifier is too long, its first 4 and last 3 characters are used.

If a PL/I program identifier in addition to EXTERNAL, has the ENTRY attribute as
well as (procedure name, entry), then all occurrences of "_" are also replaced with
"$".

Compilation of a PL/I procedure usually creates two object modules, a code module
and a data module. The data module is always generated if the PL/I procedure con-
tains variables with the STATIC attribute. These modules are named in accordance with
the following conventions:

The code module contains the name of the first (primary) identifier having the
ENTRY attribute, if applicable reduced to 7 characters and modified with $ accor-
ding to the above rule. This is the first name of the outermost procedure block of a
separately compiled procedure.

The name of the data module is derived from the name of the code module, which
is always developed into 8 characters. If the name was shorter it is firstly padded to
7 characters with the character "@". The eighth character is always one of the digits
between "1" and "7" which indicates the length of the original name.

It should be noted that "_" is only replaced by "$" in the module names and entries,
and not in other identifiers with the EXTERNAL attribute. Only the rule of reduction is
used for the latter.

U253-J-Z125-9-7600 161

Names Object module

Example

The program reads:

P_@ : PROCEDURE;
P@ : ENTRY;
DCL P_STATIC EXTERNAL INIT (0);
END;

It supplies the following modules:

Code module name: P$@

P$@

P@

Data module name: P$@@@@@3

P_

The external name P$START# is generated for the main procedure (MAIN), and identi-
fies the position at which the PL/I program is to be started.

162 U253-J-Z125-9-7600

Object module Extended address space

4.7 Extended address space (XS)

Processors having an address space larger than 16 Mbytes (up to 2 gigabytes) are
referred to as XS systems. If this larger address space is to be utilized by a PL/I pro-
gram, the compiler will have to generate modules that do not only use 24-bit addresses
but also 31-bit addresses. Modules of this kind can be generated by the PLI1 compiler
Version 4.0A. As a result, the following module types can be distinguished:

old modules generated by PLI1 compilers prior to Version 4.0A

non-XS modules generated by PLI1 compilers as of Version 4.0A if
*COMOPT OPTIONS=NXS is specified (default)

XS modules generated by PLI1 compilers as of Version 4.0A if
*COMOPT OPTIONS=XS is specified.

Linking conventions:

Old modules and non-XS modules are compatible and are linked indiscriminately.
The result is either a non-XS load module or a non-XS prelinked module, which can
again be linked like a non-XS module.

XS modules are not compatible with non-XS modules and old modules: thus XS
modules can only be linked with XS modules. The result is either an XS load mo-
dule or an XS prelinked module that, in turn, can be linked further like an XS modu-
le.

These conventions apply to both static and dynamic linking.

The PLI1 runtime system modules are compatible with XS and non-XS modules.

At load time, the LOADPT parameter determines the program’s load address and thus
its position in the storage area. The following applies in this context:

Non-XS load modules can be loaded in the address space up to 16 Mbytes, an-
yway: either in a system with an extended address space or in a system without an
extended address space.

NX load modules can run in either system without any restrictions, i.e. in a system
with or without extended address space.

It is the user’s responsibility to ensure that these conventions are adhered to. Certain
tests may be required at load time. Refer to the

ARMODE-CHECK

operand and the section on "XS support" in publication [12] Linkage Editors and Lo-
aders as of Version 21.0B (BS2000 Version 9.0).

U253-J-Z125-9-7600 163

5 Execution of the PL/I program

5.1 General

Once the load module generated by the linkage editor for the object program has been
placed in a file it can be loaded and executed via the /EXECUTE command. As with
the PLI1 compiler, control statements can be transferred to the object program once it
has been started.

Before a PL/I program is executed the following assignments must be made:

• The files required in the program must be set up or in the case of existing files,
assigned to the program via FILE or CHANGE commands. All the necessary informa-
tion is explained in chapter 6 of this manual.

• The control statements (*RUNOPT) must be provided if these are to be used to con-
trol the object program. In this case, task switch 1 should also be set.

• As for compilation, the message files must be available (see section 3.2).

After the object program has been started the runtime system reads the control state-
ments from SYSDTA. If the control statement LIST = OPTIONS is specified then the
enabled control statements are output to SYSLST. In addition all the messages genera-
ted by the runtime system during the object run appear in the system file SYSOUT.

On termination of the program run the message
END OF PROGRAM name, RTS v.www-ari, TIME USED: xxxxx.xx SEC

is output to SYSOUT.SEC

The specifications have the following meaning:

Name Name of the load module from the PROGRAM statement of the linkage
editor. The name does not appear if the program was started by EXEC *
or EXEC (module).

x Time used, in seconds.

v.w Version number of the runtime system.

U253-J-Z125-9-7600 165

General Load module

a Update code of module ITP#AOS# of the elementary runtime system, or
ITP#AOD# of the prelinked runtime system.

r Update code of module ITP#RTS# of the prelinked runtime system, or 0
for the elementary runtime system.

i Update code of module ITP#IOS# of the prelinked runtime system, or 0
for the elementary runtime system.

Refer also to section 4.5. With the prelinked runtime systems, a check is made to ascer-
tain whether the version numbers of the modules are compatible. If they are not, an
error message is issued and the run terminated.

If an error terminates the run, subsequent commands are ignored until the STEP or
LOGOFF command is entered.

166 U253-J-Z125-9-7600

Load module Control

5.2 Program execution

5.2.1 Execution with ISP command

The PL/I program present in a file as a load module is started with the EXECUTE com-
mand. The program is referenced via the file name defined in the PROGRAM statement
of the linkage editor.

Call format:

EXECUTE
/ filename [,TIME=t][,MONJV=jvname]

EXEC

The operating system permits other parameters in the EXEC command, which at pre-
sent do not apply to PL/I programs or which could lead to errors. Specification of the
TIME parameter is expedient to minimize the time requirements of the program should
program errors occur.

5.2.2 Execution with SDF command

A PL/I program present as a load module in a file can alternatively be started with the
SDF command

/START-PLI1-PROGRAM

with additional operands. The operands and their meaning are described in section 5.7.

Entering SDF commands and their operands in guided and unguided dialog is descri-
bed in detail in the manual "Introductory Guide to the SDF Dialog Interface".

U253-J-Z125-9-7600 167

Control Load module

5.2.3 Monitoring by monitoring job variable

For monitoring the object run a monitoring job variable can be specified by entering
’MONJV=jvname’ in the EXECUTE command. The status indicator (digits 1 through 3)
of the job variable is set by the system (values ’$R_’, ’$T_’, ’$A_’). The return code indi-
cator (digits 4 through 7) is set at the end of the object run; it has the following format:

Status indicator Return code indicator
................

................

Program information
Termination code

The termination code is allocated as follows:

’0’ Normal program termination
’2’ Abnormal termination (e.g. error condition occurred)
’3’ Fatal error in the PLI1 runtime system

Program information is represented by ’000’. By invoking the library procedure PLIRETC
(see chapter 11 Utilities) program information can be set to other values (between ’000’
and ’999’).

This feature presupposes the software product JV.

168 U253-J-Z125-9-7600

Load module Control

5.2.4 Examples

Depending on whether control statements or files are required for the PL/I program,
various alternatives are available, some of which are shown in the following examples:

Example 1

The PL/I program contains no input or output files; output is to SYSLST. A date is to
be supplied to the main procedure (MAIN) as a parameter.

The following commands and control statements should be entered:

.

.

.
/SETSW ON=1
/EXEC PROG1
*RUNOPT ARGUMENT=’24.12.78’
*END

.

.

.

Example 2

The program requires an input file with the PL/I name (TITLE) PLIIN and an output file
with the PL/I name PLIOUT. No other control statements are provided. The commands
appear as follows:

.

.

.
/FILE INPUT,LINK=PLIIN
/FILE OUTPUT,LINK=PLIOUT,FCBTYPE=SAM,
/RECSIZE=160,BLKSIZE=STD,RECFORM=V
/EXEC PROG3

.

.

.

U253-J-Z125-9-7600 169

Control Load module

Example 3

The control statements for the object run are located in file OPT.

The commands are structured as follows:

.

.

. File OPT:
/SYSFILE SYSDTA=OPT
/SETSW ON=1 *RUNOPT LIST = OP,
/EXEC PROG2 *RUNOPT MESSAGE = S,
/SYSFILE SYSDTA=(PRIMARY) *RUNOPT DUMP = ST
/RESUME *END/

data
.
.
.

A breakpoint is set with the control statement *END/. The command

/SYSFILE SYSDTA=(PRIMARY)

is specified before the RESUME command so that data can then be entered from
SYSDTA.

Example 4

In this example output is effected via the PL/I file PLIOUT, while input data for the file
PLIIN are to be taken from the system file SYSDTA.

The commands are structured as follows:

.

.

.
/SETSW ON=(1)
/FILE OUTPUT,LINK=PLIOUT...
/EXEC PROG4
*RUNOPT SYSFILE=SYSDTA(PLIIN)
*END

data
.
.
.

170 U253-J-Z125-9-7600

Load module Control

Example 5

The program contains PLIIN and PLIOUT as input and output files. In addition, data for
the PL/I file with the title A is to be entered via the system file SYSDTA, and output
data from the PL/I file with the title B are to be output to the system file SYSLST. As a
result of this requirement the system files must be reassigned with the SYSFILE control
statement. All the control options used are to be listed at the start of the program.

The commands are structured as follows:

.

.

.
/SETSW ON=(1)
/FILE INPUT,LINK=PLIIN...
/FILE OUTPUT,LINK=PLIOUT...
/EXEC PROG5
*RUNOPT SYSFILE=(SYSDTA(A),SYSLST(B)),
*RUNOPT LIST=OPTIONS
*END

data
.
.
.

Note

The TITLE options SYSPRINT and SYSIN must not be used in the program.

U253-J-Z125-9-7600 171

Rules Load module

5.3 Controlling the PL/I program

As for the compiler, control facilities are also provided for the object program. These
are the control statements ARGUMENT, DUMP, FORMAT, LIST, MESSAGE, STORAGE,
SYSFILE, and TRACE.

5.3.1 General rules for control statements

The rules governing the provision and structure of user program control statements cor-
respond to those for the PLI1 compiler, which may be found in section 3.3.1. The main
differences are in the leading keyword - in this case *RUNOPT - and in a number of
control statements, only some of which are identical.

The format of the control statements for the user program appears as follows:

*RUNOPT control statement...

As with the compiler, input is terminated with *END or *END/. All further rules may be
found in the section mentioned above. Runtime control statements are likewise entered
via SYSDTA, in which case it is required that task switch 1 is first set with the SETSW
command.

5.3.2 Error handling for control statement evaluation

Error handling during the processing of control statements for the user program is iden-
tical with that in the compiler. The points discussed in section 3.3.2 therefore apply
here.

172 U253-J-Z125-9-7600

Load module Rules

5.3.3 Controlling the listing output

Depending on their type, messages generated during the object run are output to either
SYSLST or SYSOUT. The user can also use various control statements to forward the
output to a second system file. It is only possible to control output from the runtime
system in this way, and not output programmed by PUT, DISPLAY or WRITE state-
ments.

Output file

Type of runtime
output Additional output

Default to file controlled by

- List of active SYSLST SYSOUT LIST=TERMINAL
control statements (ineffective in

- Program statistics batch mode)

- Procedure and SYSLST SYSOUT TRACE = TERMINAL
audit TRACE (ineffective in

batch mode)

- Condition message SYSOUT SYSLST MESSAGE=SYSLST
- Backtrace

(SNAP)
- Program interrupt
- Runtime errors
- End message
- ERROUT procedure

Since SYSLST can be directed to a user file by the SYSFILE command, a further con-
trol facility exists. See also sections 3.3.4 and 6.2.1.

U253-J-Z125-9-7600 173

Rules Load module

5.3.4 Overview of the control statements for PL/I programs

The following sections give an overview of the object program control statements, most
of which can be abbreviated. In the individual descriptions the relevant letters are under-
lined. A negative form can be specified for some parameters (e.g. TERMINAL and
NOTERMINAL) but the brief description in the "Effect" column refers to the positive para-
meter option.

Control Abb. Meaning Specification Abb. Effect Default
statement
for object
program

ACTIVE ACT Activate YES YES Activation YES
check NO NO No activation
points

ARGUMENT ARG Transfer a ’The character Interpretation of ’’
character string can be the string is left (empty
string to up to 253 char- to the user or null
the param- acters long and char-
eter posi- is enclosed in acter
tion of apostrophes string)
the MAIN (single
procedure quotes)’
of the
program

CONTROL CTL Control STD STD corresponds to
NO NO NOALIGN

ALL ALL corresponds to ALIGN

ALIGN AL command simulation
for alignment errors

NOALIGN NAL for alignment NAL
errors; ERROR with
ONCODE=8098

174 U253-J-Z125-9-7600

Load module Rules

Control Abb. Meaning Specification Abb. Effect Default
statement
for object
program

DUMP DMP Output of ALL ALL corresponds to NO
dumps and (ST,A,SN,R
SNAP (X’0’,X’7FFFFF’))

NO NO corresponds to
(NST,NA,NR,NSN)

STACK ST Dump of the
NOSTACK NST entire stack

AREA A Dump of the entire
NOAREA NA standard area

RANGE(a,e) R Dump of an area
NORANGE NR from a to e.

(Address in hex.)

SNAP SN Output of procedure
NOSNAP NSN nesting at end of

program

COND C All above outputs at C
UNCOND UC program termination,

only in the event of
an error or uncondi-
tionally

FORMAT FM Control of PRINTER P Control of output to P(64,
the no. ([m1][,m2]) SYSLST and in batch 132)
lines per mode to SYSOUT.
page, the m1 = no. of lines/
line page,
length, m2 = line length.
language
for TERMINAL T Control of output T(O,k)
messages ([n1][,n2]) to terminal: 1)

n1 = no. of lines
n2 = no. of charac-

ters

ENGLISH E All output from the E
DEUTSCH D runtime system is in

English or German

1) k represents the physical line length of the current output device.

U253-J-Z125-9-7600 175

Rules Load module

Control Abb. Meaning Specification Abb. Effect Default
statement
for object
program

LIST LST Listing ALL ALL corresponds to
control (OP,SM)
(only NO NO corresponds to
those (NOP,NSM)
parameters
are de- OPTIONS OP Listing of the NOP
scribed NOOPTIONS NOP enabled control
here which statements
are rele-
vant at SUMMARY SM Output of program NSM
object NOSUMMARY NSM statistics
time)

TERMINAL T Copying of all run- NT
NOTERMINAL NT time system listings

to the terminal

MESSAGE MSG Control of SYSLST S Messages also out- NS
runtime put to SYSLST
system NOSYSLST NS Messages output to
messages SYSOUT only

STORAGE STR Facility AREA A A storage area of A(16,16
for con- ([q1][,[q2][, q1 pages is firstly 16,)
trolling [q3]]]) provided for
the stor- the standard area.
age admin- Any necessary ex-
istration tensions are added
of the in increments of
runtime q2 pages up to a
system and max. of
achieving q3 pages. The
optimiza- STORAGE condi-
tions tion is then set,

if applicable.
(page = 4 KB)

STACK S The stack is S(16,4)
([s1][,s2]) occupied in

segments up to
s1 pages. For
error and end
handling in the
case of insuffi-
cient storage a
reserve of s2 pages
is provided.
(page = 4 KB)

176 U253-J-Z125-9-7600

Load module Rules

Control Abb. Meaning Specification Abb. Effect Default
statement
for object
program

SYSFILE SFL Assignment SYSLST (title) SL The file with the SL
of the PL/I TITLE ’title’ (SYS-
PL/I TITLE is mapped to the PRINT)
to the SYSOUT (title) SO system file SO
BS2000 SYSDTA, SYSOUT or (SYSOUT)
system SYSLST.
files. SYSDTA (title) SD SD
Also modi- (SYSIN)
fication
to the
PAGESIZE LINESIZE LS l1,l2,l3 LS(0,0)
and (l1,l2,l3) if f 0,
LINESIZE overwrite the
defaults LINESIZE defaults

for SYSLST, SYSOUT
and SYSDTA.

PAGESIZE(p1,p2) PS p1 and p2 PS(0,0)
if 0,
overwrite the
PAGESIZE defaults
for SYSLST and
SYSOUT.

as well as DISPLAY(SYSOUT) DP(SO) In interactive DP(SO)
DISPLAY dia = SYSOUT mode, output for
statement the DISPLAY state-
control ment is sent to

the interactive
terminal; input
for DISPLAY REPLY
is expected from the
interactive
terminal.

DISPLAY(SYSCON) DP(SC) In interactive mode
dia = SYSCON output for the

DISPLAY statement
is sent to the
operator console;
input for DISPLAY
REPLY is expected
from the operator
console.

U253-J-Z125-9-7600 177

Rules Load module

Control Abb. Meaning Specification Abb. Effect Default
statement
for object
program

SYSFILE DISPLAY(SYSDTA) DP(SD) In interactive
(contin- dia = SYSDATA mode, output for
uation) the DISPLAY state-

ment is sent to
the interactive
terminal; input
for DISPLAY REPLY
is entered from
the system file
SYSDTA.

DISPLAY(SYSOUT) DP(SO) In batch mode,
bat = SYSOUT output for DISPLAY

is sent to the
system file
SYSOUT; input for
DISPLAY REPLY is
entered from the
system file
SYSDTA.

DISPLAY(SYSCON) DP(SC) In batch mode,
bat = SYSCON output for the

DISPLAY statement
is controlled on the
operator console,
input for DISPLAY
REPLY is expected
from the operator
console.

DISPLAY(SYSDTA) DP(SD) In batch mode
bat = SYSDTA output for DISPLAY

is entered into the
system file SYSOUT.
Input for DISPLAY
REPLY is entered
from the system file
SYSDTA.

178 U253-J-Z125-9-7600

Load module Rules

Control Abb. Meaning Specification Abb. Effect Default
statement
for object
program

TABULATOR TAB Set tabs (n,...) n become (1,11,
tab 21,31,
positions 41,etc.)

TRACE TRC Enable and ALL ALL (P,L,C,G,R) NO
disable NO NO (NP,NL,NC,NG,NR)
the TRACE
options PROCTRACE P NP

NOPROCTRACE NP Enable
or

LABTRACE L disable NL
NOLABTRACE NL the trace

for
CALLTRACE C PROCEDURE NC
NOCALLTRACE NC entries,

labels,
GOTOTRACE G CALL calls, NG
NOGOTOTRACE NG GOTO

branches,
RETURNTRACE R RETURN NR
NORETURNTRACE NR

TERMINAL T Additional output T
NOTERMINAL NT of traces to

terminal

U253-J-Z125-9-7600 179

Rules Load module

5.4 Individual descriptions of the control statements for
PL/1 programs

The control statements for user programs can be divided into two groups:

• The pure object time control statements ARGUMENT, CONTROL, DUMP, SYSFILE,
TABULATOR, TRACE and STORAGE. These control statements may only be used at
the runtime of the user program.

• The control statements FORMAT, LIST and MESSAGE which apply in the same way
for the compiler and the user program. They can be used for the same purpose in
each case, although some of the permissible specifications will differ. If a source
program is compiled and then executed in the same task, obviously the common
control statements must be specified separately for the compilation run and the
object run. The control statements valid for the user program are described below.

5.4.1 Parameter transfer (ARGUMENT)

The ARGUMENT control statement permits the specification of a character string up to
253 characters in length, which is transferred unchanged (including blanks) to the para-
meter position of the MAIN procedure in the program. The parameter should be decla-
red with

DCL name CHAR(n) VARYING;

in the MAIN procedure, where n 253.

Interpretation of the character string transferred is the responsibility of the user pro-
gram. The character string is to be enclosed in single quotes (apostrophes). Quotes
embedded in the character string must be represented by two quotes. Specification of
a number of separate character strings is not practical, since only the last is transfer-
red.

ARGUMENT = ’character string’

Default:

ARGUMENT = ’’ (empty or null character string)

180 U253-J-Z125-9-7600

Load module control Dump

5.4.2 Dump control (DUMP)

The DUMP control statement defines whether dumps and SNAP (the backtrace listing)
are to be output at the end of the program.

specification
DUMP =

(specification,...)

Default: DUMP = (NO,C)

The following specifications can be used:

NO corresponds to (NST,NA,NR,NSN)
ALL corresponds to (ST,A,R(X’0’,X’7FFFFF’),SN)

STACK Dump the entire stack
NOSTACK

AREA Dump the entire standard area
NOAREA

RANGE (a,e) Dump an area ranging from the start address a to the end address
NORANGE e. The addresses are to be specified in hexadecimal form (X’...’).

SNAP Output the current procedure
NOSNAP nesting at the end of the program

COND All information required as a result of the control
UNCOND statements ST, A, R and SN is output at the end of the program,

in the case of an error only (C)
always (UC)

5.4.3 Output formats (FORMAT)

The FORMAT control statement determines the number of lines per page and the
length of such lines for output to the printer and terminal. In addition it permits the spe-
cification of the language (German or English) in which the messages generated by the
runtime system are to be output.

The individual specifications for the FORMAT control statement are described in section
3.5.4.

None of the specifications of the FORMAT control statement apply to PL/I program out-
put resulting from the PUT, WRITE or DISPLAY statements.

U253-J-Z125-9-7600 181

LIST Load module control

5.4.4 List selection (LIST)

The LIST control statement defines which runtime system listings are to be output, and
where they are to be output. This control does not affect output caused by PUT, WRITE
or DISPLAY statements.

specification
LIST =

(specification,...)

Default: LIST = (NOP, NSM, NT)

Possible specifications are:

ALL Corresponds to (OP,SM)
NO Corresponds to (NOP,NSM)

OPTIONS Listing to SYSLST of all the enabled control statements for the
NOOPTIONS

object program.

SUMMARY Output to SYSLST of program statistics which contain:
NOSUMMARY

maximum occupancy of the stack by AUTOMATIC variables etc.
maximum occupancy of the standard area (general storage for
areas) as a result of ALLOCATE statements.

TERMINAL Additional output of the above listings to the terminal
NOTERMINAL

(SYSOUT) in interactive mode; does not apply to batch mode.

5.4.5 Additional message output (MESSAGE)

This control statement is used to determine whether runtime system messages are also
to be output to SYSLST. The MESSAGE statement does not affect output from the user
programs via the PUT, WRITE or DISPLAY statements, but it does apply to output from
the ERROUT procedure.

SYSLST
MESSAGE =

NOSYSLST

Default: MSG = NS

SYSLST In interactive mode messages from the runtime system are also out-
put to SYSLST.

NOSYSLST
Messages are output to SYSOUT only.

182 U253-J-Z125-9-7600

Load module control STORAGE

5.4.6 Storage requirements (STORAGE)

The STORAGE control statement is used to control the storage management of the
object program. The initial size and any increases in the size of the virtual memory for
the standard area and the stack can be defined.

CONTROLLED and BASED variables as well as input/output areas are arranged in the
standard area. The occupancy state is therefore determined by the program via the
ALLOCATE/FREE and OPEN/CLOSE statements. The stack contains AUTOMATIC varia-
bles, auxiliary variables, and saved registers, and its occupancy state is mainly determi-
ned by the number of active blocks and the variables declared in these blocks. The
storage statistics provide notes which enable the optimal sizes to be set for the stan-
dard area and the stack (LIST = SUMMARY).

specification
STORAGE =

(specification,...)

Default: STORAGE = (AREA(16,16,),STACK(16,4))

Possible specifications:

AREA([q1][,[q2][,[q3]]]):
A storage area of q1 virtual pages (4 KB) is initially provided for the
standard area. Any necessary extensions follow in increments of q2
pages up to a maximum size of q3 pages. The STORAGE condition
is then set, if applicable.

According to the size of the permissible user address space, a sto-
rage requirement of up to 1500 pages (6 MB) is feasible for the stan-
dard area.

STACK([s1][,s2]):
The stack storage is reserved in segments each of s1 virtual pages
(4 KB). For error and end handling in the case of insufficient storage
a reserve of s2 pages is provided. The maximum value depends on
the size of the allowable user address space.

U253-J-Z125-9-7600 183

SYSFILE Load module control

5.4.7 System file assignment (SYSFILE)

The SYSFILE control statement defines which PL/I-TITLEs are to be mapped on to the
BS2000 system files SYSDTA, SYSLST and SYSOUT. The default options for PAGESIZE
and LINESIZE for these files can also be modified. Furthermore, it is defined which
system files are to be assigned for the DISPLAY statement.

specification
SYSFILE =

(specification,...)

Default:

SYSFILE = (SYSDTA(SYSIN),SYSLST(SYSPRINT),SYSOUT(SYSOUT),
PAGESIZE(undef,undef),LINESIZE(undef,undef,undef),DISPLAY(SYSOUT))

Possible values are:

SYSDTA(title-1) The files with the PL/I-TITLE title-1, title-2
SYSLST(title-2) and title-3 are mapped onto system files SYSDTA,
SYSOUT(title-3) SYSLST and SYSOUT.

PAGESIZE(p1,p2)
If values are specified for p1 or p2, then the program default options
for PAGESIZE (e.g. setting via the OPEN statement) are overwritten
for SYSLST or SYSOUT. p1 is assigned to SYSLST, p2 to SYSOUT.
Specification of "0" for p1 or p2 has the same effect as "undef".

LINESIZE(l1,l2,l3)
If values are specified for l1, l2, or l3, then the program default op-
tions for LINESIZE (e.g. setting via the OPEN statement) are overwrit-
ten for SYSLST, SYSOUT or SYSDTA. Specification of "0" for l1, l2 or
l3 has the same effect as "undef".

dia = SYSOUT
In interactive mode, output for the DISPLAY statement is sent to the
interactive terminal; input for DISPLAY REPLY is expected from the
interactive terminal.

dia = SYSSON
In interactive mode, output for the DISPLAY statement is controlled
by the operator console; input for DISPLAY REPLY is expected from
the operator console.

dia = SYSDTA
In interactive mode, output for the DISPLAY statement is set to the
interactive terminal, input for DISPLAY REPLY is read from the
system file SYSDTA.

184 U253-J-Z125-9-7600

Load module control SYSFILE

bat = SYSOUT
In batch mode, output for DISPLAY is sent to the system file
SYSOUT; input for DISPLAY REPLY is accepted by the system file
SYSDTA.

bat = SYSCON
In batch mode, output for the DISPLAY statement is controlled by
the operator console; the input for DISPLAY REPLY is accepted from
the operator console.

bat = SYSDTA
In batch mode, output for DISPLAY is put in the system file
SYSOUT. Input for DISPLAY REPLY is accepted from the system file
SYSDTA.

If bat is not specified, dia is assumed instead.

U253-J-Z125-9-7600 185

TRACE Load module control

5.4.8 Trace control (TRACE)

This control statement enables or disables the TRACE outputs provided in the compiled
program (see also the DEBUG control statement in section 3.6.2).

specification
TRACE =

(specification,...)

Default: TRACE = (NO, T)

ALL Corresponds to (P,L,C,G,R)

NO Corresponds to (NP,NL,NC,NG,NR)

PROCTRACE
NOPROCTRACE

LABTRACE
NOLABTRACE Enables or disables the trace for:

CALLTRACE PROCEDURE entries
NOCALLTRACE Labels encountered

CALL
GOTOTRACE GOTO
NOGOTOTRACE RETURN

RETURNTRACE
NORETURNTRACE

TERMINAL
NOTERMINAL

Additional TRACE output to the terminal (SYSOUT) in interactive
mode. Does not apply to batch mode.

5.4.9 Setting tabs (TABULATOR)

Each data element output via the PUT LIST statement starts at the next tabulator posi-
tion. The TABULATOR control statement is used to change the tab positions.

TABULATOR = (n,...)

Values for n must be integers 1. Each subsequent number must be greater than the
last.

Default: TABULATOR = (1, 11, 21, 31, 41, etc.).

186 U253-J-Z125-9-7600

Load module control CONTROL

5.4.10 Alignment control (CONTROL)

This control statement defines the steps to be taken in the event of alignment errors.

specification
CONTROL =

(specification,...)

Default: CONTROL = NOALIGN

The following specifications are permitted:

STD Corresponds to NOALIGN

NO Corresponds to NOALIGN

ALL Corresponds to ALIGN

ALIGN If alignment errors occur in the object program, the necessary align-
ment is simulated and the program continued as normal.

Note

Simulation uses a lot of computer time and should therefore only be
used to make program tests easier.

NOALIGN If alignment errors occur in the object program, the ERROR condi-
tion is set. The associated ONCODE value is 8098.

5.5 Check activation (ACTIVE)

This control statement is used to activate and enable checkpoints for the program run
which are inserted via *COMOPT DEBUG = BREAKPOINT (x,...).

YES
ACTIVE =

NO

Default: ACT = YES

U253-J-Z125-9-7600 187

Program interrupt

5.6 Program interrupt

A PL/I program run started at the interactive terminal can be interrupted by the user,
by enabling the ESCAPE or BREAK functions at the interactive terminal (for Data Dis-
play Devices 8160 and 8161 via the K2 key, for example). The program remains loaded
and a slash is output at the terminal to indicate that commands can be entered. The
following commands are of special interest here:

• /RESUME
The program run is continued at the interrupt point.

• /INTR text
The "text" is transferred to the PL/I program. Specification of "/INTR * STOP" al-
ways causes an abnormal termination of the program run. If interrupt handling was
not explicitly inserted at compile time, other texts are ignored and the program run
continued at the interrupt point.

• /TCHNG
Logical terminal characteristics can be changed.

• /EOF
Terminate file input from the terminal.

Further details may be found in the Command Reference Manual [2].

If the program run was started in a DO procedure, the interrupt initiates an inquiry as to
whether the procedure is to be terminated. If it is terminated the program remains
loaded and processing can proceed as above. It should be observed, however, that the
remaining commands of the DO procedure will not be executed.

In addition to the interrupt mechanism described above, it is possible to interrupt the
PL/I program at given points in order to evaluate the text transferred via the command
"/INTR text" in the PL/I program. Within the PL/I program the ATTENTION condition
can be used to ascertain which measures should be taken as a result of the INTR (inter-
rupt) command and any texts it may have supplied.

In order to evaluate the INTR command, the external PL/I procedure must be compiled
with

*COMOPT OPTIONS = INTERRUPT

Then interrupt points are inserted in these external procedures to test for any pending
INTR command. They are, positioned as follows:

• After every label

• Before every END statement

• Before every RETURN statement

188 U253-J-Z125-9-7600

Program interrupt

If it is ascertained that an INTR command is pending at one of the interrupt points, the
ATTENTION condition is raised. The text specified for the INTR command is also pas-
sed to the ON variable ONINTR, and is available to the user via the built-in function
ONINTR. If no text is specified, invoking ONINTR results in a blank string. The text syn-
tax is described in the INTR command [2].

A complete description of the ATTENTION condition and the built-in function ONINTR
may be found in the PL/I language reference manual [1]. Control of the compiler via
*COMOPT OPTIONS=INTERRUPT is explained in section 3.6 of this manual.

An overview of the program run in the case of an interrupt is shown in
Fig. 5-1. An example of the ON unit may be found in the description of

the ATTENTION condition.

U253-J-Z125-9-7600 189

Program interrupt

Fig. 5-1 Program run interrupt by BREAK at the terminal and input of the INTR command

190 U253-J-Z125-9-7600

Program interrupt

If the program run is interrupted because of /INTR *STOP, the following are listed at
SYSOUT:

an interrupt message
register states
instruction environment dump

The FINISH condition (not ERROR or ATTENTION) is set.

A message for the ATTENTION condition can be output via CALL ERROUT; no messa-
ges are output via the system unit.

U253-J-Z125-9-7600 191

Operand description START-PLI1-PROGRAM

5.7 Description of the operands of the SDF command
START-PLI1-PROGRAM

5.7.1 Overview of the operands

Name of the operand Purpose

FROM-FILE Specifies the name and input source of the
object module or load module

CPU-LIMIT Maximum program runtime in CPU seconds

MONJV Monitoring of program runtime with job variables

START-PARAMETERS Parameter input for the MAIN program

LANGUAGE Output of program messages in English or
German

ASSIGN-SYSLST Assigns PL/I-TITLE
ASSIGN-SYSOUT
ASSIGN-SYSDTA

LISTING Controls list output by the runtime system

HEAP-ADMINISTRATION Controls standard area storage management

STACK-ADMINISTRATION Controls stack storage management

TABULATOR-POSITION Tabulator positions for output with PUT LIST

192 U253-J-Z125-9-7600

START-PLI1-PROGRAM Operand description

5.7.2 Description of the individual operands

FROM-FILE operand

This operand assigns the name and the input source of the object that is to be execu-
ted.

FROM-FILE = <full-filename 1..54 without gen> / *MODULE(...) /
*PHASE(...)

*MODULE(...)

LIBRARY = *OMF / <full-filename 1..54 without gen>

,ELEMENT = *ALL / <full-filename 1..54 without gen-vers>

*PHASE(..)

LIBRARY = <full-filename 1..54 without gen>

,ELEMENT = <full-filename 1..54 without gen-vers>(...)

VERSION = *HIGHEST-EXISTING / <alphanum-name 1..24>

FROM-FILE = <full-filename 1..54 without gen>
<full-filename> is the name of the cataloged file containing the load module generated
with TSOSLNK .

FROM-FILE = *MODULE(...)
The parameters of the *MODULE structure serve to assign an object module generated
by the compiler or a prelinked module produced by TSOSLNK. These modules are sto-
red as R-type elements in PLAM libraries.

FROM-FILE = *PHASE(...)
The parameters of the *PHASE structure are used to assign a load module generated
with TSOSLNK; this is stored as a C-type element in a PLAM library.

See also the START-PROGRAM command in the manuals "User Commands (SDF For-
mat)" and "Binder-Loader-Starter".

U253-J-Z125-9-7600 193

Operand description START-PLI1-PROGRAM

CPU-LIMIT operand

This operand specifies the maximum CPU time in seconds allowed for the execution of
the program.

CPU-LIMIT = JOB-REST / <integer 1..32767>

MONJV operand

This operand specifies the name of a job variable for monitoring the execution of the
program.

MONJV = *NONE / <full-filename 1..54 without gen>

START-PARAMETERS operand

This operand can be used to transfer a character string to the MAIN program as a para-
meter.

START-PARAMETERS = ’ ’ / <c-string 1..253>

LANGUAGE operand

This operand determines the language in which the messages of the module/program
are output.

LANGUAGE = ENGLISH / GERMAN

194 U253-J-Z125-9-7600

START-PLI1-PROGRAM Operand description

ASSIGN-SYSLST operand

This operand assigns PL/I-TITLE to the system file SYSLST.

ASSIGN-SYSLST = STD / PARAMETERS(...)

PARAMETERS(...)

TO-TITLE = SYSPRINT / <alphanum-name 1..8>

,MAX-LINE-SIZE = 132 / <integer 1..256>

,LINES-PER-PAGE = 60 / <integer 1..256>

ASSIGN-SYSOUT operand

This operand assigns PL/I-TITLE to the system file SYSOUT.

ASSIGN-SYSOUT = STD / PARAMETERS(...)

PARAMETERS(...)

TO-TITLE = SYSOUT / <alphanum-name 1..8>

,MAX-LINE-SIZE = 120 / <integer 1..256>

,LINES-PER-PAGE = 60 / <integer 1..256>

ASSIGN-SYSDTA operand

This operand assigns PL/I-TITLE to the system file SYSDTA.

ASSIGN-SYSDTA = STD / PARAMETERS(...)

PARAMETERS(...)

TO-TITLE = SYSIN / <alphanum-name 1..8>

,MAX-LINE-SIZE = 120 / <integer 1..256>

U253-J-Z125-9-7600 195

Operand description START-PLI1-PROGRAM

TEST-SUPPORT operand

This operand controls the debugging aids.

TEST-SUPPORT = NONE / PARAMETERS(...)

PARAMETERS(...)

TOOL-SUPPORT = NONE / AID

,TEST-POINT-INTERRUPT = NO / YES

,DUMP(DMP) = NONE / ON-ERROR(...) / ON-TERMINATION(...)

ON-ERROR(...)
PROCEDURE-NEST = YES / NO

,HEAP-STORAGE = NO / YES
,STACK-STORAGE = NO / YES

ON-TERMINATION(...)
PROCEDURE-NEST = YES / NO
,HEAP-STORAGE = NO / YES
,STACK-STORAGE = NO / YES

,TRACE(TRC) = NONE / PARAMETERS(...)

PARAMETERS(...)
PROCEDURE-ENTRY = YES / NO

,PROCEDURE-EXIT = YES / NO
,PROCEDURE-CALL = YES / NO
,LABELLED-STATEMENT = YES / NO
,GOTO-STATEMENT = YES / NO
,ADDITIONAL-OUTPUT = *NONE / TERMINAL

TEST-SUPPORT = NONE
No debugging aid support

TEST-SUPPORT = PARAMETERS

TOOL-SUPPORT = NONE / AID
The program is loaded without (NONE) or with (AID) LSD records.

TEST-POINT-INTERRUPT = NO / YES
Activation of test points

DUMP = NONE / ON-ERROR(...) / ON-TERMINATION(...)
Control of DUMP output

DUMP = NONE
No dump output

196 U253-J-Z125-9-7600

START-PLI1-PROGRAM Operand description

DUMP = ON-ERROR(...)
Dump output in the event of abnormal program termination only

PROCEDURE-NEST = YES / NO
Output of procedure nesting at end of program

HEAP-STORAGE = NO / YES
Dump of entire standard area

STACK-STORAGE = NO / YES
Dump of entire stack

DUMP = ON-TERMINATION(...)
Dump output on normal and abnormal termination of program.
For parameters of the ON-TERMINATION structure, see ON-ERROR structure.

U253-J-Z125-9-7600 197

Operand description START-PLI1-PROGRAM

LISTING operand

This operand controls list output by the runtime system.

LISTING(LST) = NONE / PARAMETERS(...)

PARAMETERS(...)

OPTIONS = NO / YES

,SUMMARY = NO / YES

,ADDITIONAL-OUTPUT = *NONE / *TERMINAL

LISTING = NONE
No list output

LISTING = PARAMETERS(...)

OPTIONS = NO / YES
YES: Output of the active control statements.

SUMMARY = NO / YES
YES: Output of program statistics

ADDITIONAL-OUTPUT = *NONE / *TERMINAL
*TERMINAL: Lists are additionally output on the terminal.

198 U253-J-Z125-9-7600

START-PLI1-PROGRAM Operand description

HEAP-ADMINISTRATION operand

This operand controls standard area storage management and allows optimization.

HEAP-ADMINISTRATION = STD / PARAMETERS(...)

PARAMETERS(...)

PRIMARY-ALLOCATION = 16 / <integer 1..524288>

,SECONDARY-ALLOCATION = 16 / <integer 1..524288>

,MAXIMAL-SIZE = 512 / <integer 1..524288>

HEAP-ADMINISTRATION = STD
The default values of the following PARAMETERS structure are to apply.

HEAP-ADMINISTRATION = PARAMETRS(...)

PRIMARY-ALLOCATION = 16 / <integer 1..524288>
Initial size

SECONDARY-ALLOCATION = 16 / <integer 1..524288>
Extension

MAXIMAL-SIZE = 512 / <integer 1..524288>
Maximum size

U253-J-Z125-9-7600 199

Operand description START-PLI1-PROGRAM

STACK-ADMINISTRATION operand

This operand controls stack storage management and allows optimization.

STACK-ADMINISTRATION = STD / PARAMETERS(...)

PARAMETERS(...)

PRIMARY-ALLOCATION = 16 / <integer 1..524288>

,SECONDARY-ALLOCATION = 4 / <integer 1..524288>

STACK-ADMINISTRATION = STD
The default values of the following PARAMETERS structure are to apply.

STACK-ADMINISTRATION = PARAMETERS(...)

PRIMARY-ALLOCATION = 16 / <integer 1..524288>
Initial size

SECONDARY-ALLOCATION = 4 / <integer 1..524288>
Extension

200 U253-J-Z125-9-7600

START-PLI1-PROGRAM Operand description

TABULATOR-POSITION operand

This operand sets the tabulator positions for output of data elements using the PUT
LIST statement. Tabulators are preset at increments of 10 (1, 10, 21, ...).

TABULATOR-POSITION = EVERY-TEN / list-poss: <integer 1..256>

U253-J-Z125-9-7600 201

Operand description START-PLI1-PROGRAM

5.7.3 Mapping of SDF operands to RUNOPT operands

SDF operand RUNOPT operand

FROM-FILE 1)

CPU-LIMIT 1)

MONJV 1)

START-PARAMETERS ARGUMENT

LANGUAGE FORMAT

ASSIGN-SYSLST=STD SYSFILE=SYSLST(SYSPRINT)

ASSIGN-SYSOUT=STD SYSFILE=SYSLST(SYSOUT)

ASSIGN-SYSDTA=STD SYSFILE=SYSLST(SYSIN)

TEST-SUPPORT

TOOL-SUPPORT 1)

TEST-POINT-INTERRUPT ACTIVE

DUMP DUMP=
PROCEDURE-NEST=YES SNAP
HEAP-STORAGE=YES AREA
STACK-STORAGE=YES STACK

TRACE TRACE=
PROCEDURE-ENTRY=YES PROCTRACE
PROCEDURE-EXIT=YES RETURNTRACE
PROCEDURE-CALL=YES CALLTRACE
LABELLED-STATEMENT=YES LABTRACE
GOTO-STATEMENT=YES GOTO-TRACE
ADDITIONAL-OUTPUT=*TERMINAL TERMINAL

LISTING LISTING=

SUMMARY=YES SUMMARY

OPTIONS=YES OPTIONS

ADDITIONAL-OUTPUT=*TERMINAL TERMINAL

HEAP-ADMINISTRATION STORAGE=AREA()

STACK-ADMINISTRATION STORAGE=STACK()

TABULATOR-POSITION=() TABULATOR=()

1) Entered in the EXECUTE command

202 U253-J-Z125-9-7600

6 File access by PL/I programs

6.1 General

This section discusses the BS2000 file characteristics and processing capabilities of sig-
nificance to PL/I programs and explains the relationships with the appropriate PL/I lang-
uage elements. A PL/I programmer should note that he can only use individual PL/I
language elements if the referenced BS2000 file possesses certain characteristics. In
particular, the set of data that constitutes the file must be structured/ organized in such
a way that it meets the requirements of the program.

In section 6.2 there is a brief description of the files available in BS2000 and their cha-
racteristics. Section 6.3 gives an overview of the logical files of PL/I programs and desc-
ribes the types of file organization and the environment. Section 6.4 deals with the pro-
blems involved in the assignment of PL/I files to BS2000 files.
Sections 6.5 and 6.6 examine important relationships involved in streamoriented and
record-oriented input and output in connection with BS2000 types of file organization,
and give information concerning the specifications in the /FILE command.

U253-J-Z125-9-7600 203

System files Files

6.2 BS2000 files

In this section there is a brief description of the BS2000 file types in so far as they are
of significance for PL/I programs. System files and user files will be dealt with here.

6.2.1 System files

System files are used by the system for specific functions. The following file types are
of importance for PL/I programs and, correspondingly, for the compiler:

• SYSCMD
This is the file from which the operating system takes all its commands. The batch
mode default is the spoolin (card input) or a file activated by the ENTER command.
The interactive mode default is the terminal. SYSCMD can be temporarily assigned
to any file by the DO command.

• SYSDTA
System file SYSDTA can only be used as input file to the compiler and the user pro-
grams. The batch mode default is for SYSDTA to supply the data records which
immediately follow the EXEC command, no matter whether the task was activated
by spoolin (card input) or by the ENTER command. The records are delimited by
the next command, with the BREAK and EOF commands (see [2]) acting as special
delimiters. In interactive mode, SYSDTA is defaulted to the user’s terminal, from
where records are usually fetched individually (one line at a time).

If the EXEC command is part of a procedure file, and the records which follow are
to be processed via SYSDTA, then SYSDTA and system file SYSCMD must be identi-
cal (see SYSFILE command in section 3.4.1 and [2]).

• SYSOUT
Operating system messages (acknowledgments, errors etc.) and PL/I runtime
system messages (also from the compiler) are output via the system file SYSOUT.
Furthermore, output from the object programs can be directed to SYSOUT. In inte-
ractive mode, the information that is to be written to the system file SYSOUT is out-
put on the appropriate terminal. In batch mode, the output is stored in a spool file
and spooled out on the high-speed printer once the task is terminated. The file is
then deleted.

204 U253-J-Z125-9-7600

Files System files

• SYSLST
Output from the object programs is generally directed to SYSLST if the file name
SYSPRINT is being used in the PL/I program. All the compiler listings are also, by
default, directed to this system file. The contents of this spool file are output on the
high-speed printer once the task is terminated, and subsequently deleted.

• SYSOPT and SYSIPT
The system files SYSOPT and SYSIPT are not supported by PLI1.

User files can be assigned to the system files SYSDTA and SYSLST by means of the
SYSFILE command (see sections 3.4.1 and 3.5). The relevant input information is then
taken from them or the relevant output information is written to them. Figure 6-1 illustra-
tes the possibilities outlined above.

Preset (PRIMARY) Controlled
System file

Batch Interactive by command:

SYSCMD DO;ENDP
Spoolin file Terminal

SYSDTA SYSFILE;(ENDP)

SYSLST Spoolout file SYSFILE
Spoolout file

SYSOUT Terminal -

Fig. 6-1 Assignment of system files

In addition, the relationship between the title or the file name in the program and the
name of the system file is established by the PLI1 control statement SYSFILE (see sec-
tion 5.4.7).

Within certain limits, the user can control which outputs are to be directed to SYSLST
and SYSOUT. The possibilities here are described in chapters 3 and 5 (control state-
ments MESSAGE and SYSFILE). In a batch task, SYSLST and SYSOUT are files for prin-
ter output. In an interactive task, the data destined for the printer is written to the
system file SYSLST, while the output for the terminal is placed in the system file
SYSOUT. It is a general rule that the system files SYSDTA, SYSOUT and SYSLST can
only be processed sequentially, and that SYSDTA can only be used as an input file and
SYSOUT and SYSLST as output files. System files can be used in connection with stre-
am-oriented or record-oriented input/output.

U253-J-Z125-9-7600 205

General User files

6.2.2 User files

6.2.2.1 General

While a system file is created and deleted automatically, allowing the user no influence
on the file characteristics (unless he uses the SYSFILE command), in the case of user
files he can determine the main features of the file himself. There are many attributes
and specifications possible for a file. The following groups of file characteristics and
processing specific variables may be distinguished in connection with PL/I programs:

file name
file link name
file organization
record format
volume
access authorization
file size
other characteristic data

All the characteristics of a file can be specified with the aid of the FILE or CATALOG
command. These commands are used for creating and cataloging a file or, in the case
of existing files, for altering or adding specifications. With the FILE command, moreo-
ver, it is possible to determine processing-specific variables such as file link name,
open mode etc.

Virtually none of the characteristics/specifications are transferred to the catalog until the
file is closed (CLOSE). The file remains in existence until it is deleted by an ERASE
command. In the case of already existing files, most of the characteristics have already
been determined. With these files, the modification options are limited.

Note

Instead of using the FILE command, it is possible to specify some file characteristics
in the PL/I program, using the ENVIRONMENT attribute.

206 U253-J-Z125-9-7600

User files Names

6.2.2.2 File name

The physical files (data sets) are identified within BS2000 by means of a file name that
can be up to 54 characters in length. When the user creates a file, BS2000 prefixes the
file name of the created file with a user identification (userid), up to 10 characters in
length.

The file name is the first parameter to be specified in the FILE command. The user can,
under certain circumstances, access the files of another user by employing the latter’s
user ID.

The general file name format is this:

generation
[$userid.]name1[[.name2]...[()]

version

$userid. is a user identification and need only be specified if the user wishes
to access a file belonging to a different user.

name1 is the actual file name if ".name2..." does not follow. It is the name of
a category of files if followed by further subnames. Some BS2000
commands permit the specification of file categories (/ERASE, for
example), these commands, when called, process more than one
file. File names for the PL/I compiler (source program) and file
names in FILE or SYSFILE commands are always names of indivi-
dual files, i.e. categories cannot be specified.

generation
()

version

This information allows differentiation of files having the same name.
"generation" is an absolute or relative numeric specification. "version"
is used for tape files and can be a name. A special point to note is
that the version specification is not included in the label recorded on
tape. See [7] for further details.

*DUMMY Symbol for a dummy file with the following characteristics:

Input:
ENDFILE is signaled during the first read operation.

Output:
The records to be written are only transferred to the buffer assig-
ned to the file, and not to external media. Since there is no cata-
log entry for dummy files, all the necessary specifications must
be made in the FILE command, as they are required when a file
is to be newly created.

U253-J-Z125-9-7600 207

Names User files

Examples of valid file names:

INPUT
RESULT.0001
$SMITH:RELEASE:TEXT

The last file name refers to the file RELEASE.TEXT, which must have been cataloged
under the userid SMITH with SHARE=YES if access is to be attempted by another
user, whereas the first two examples denote files in the user’s own catalog.

6.2.2.3 File link name

The file link name is a name which is independent of the data set and serves to tempo-
rarily establish the connection between the PL/I file and the BS2000 file indicated by
the FILE command. The file link name is specified in the LINK parameter of the FILE
command. A PL/I file is linked to a BS2000 file via the TITLE entry in the PL/I program.
The TITLE is indicated in the OPEN statement of the program. If the TITLE entry is mis-
sing, the TITLE is taken from the PL/I file name. A TITLE obtained in this way must
comply with the rules governing BS2000 LINK names. BS2000 files can only be referen-
ced by PL/I via the file link name. Further information can be found in section 6.4.

208 U253-J-Z125-9-7600

User files Organization

6.2.2.4 File organization (access method)

The file organization determines how the records are recorded on the volume and speci-
fies which method is used internally to access the individual records. The following
BS2000 access methods are supported by the PL/I input/output system:

SAM ISAM PAM (or UPAM)

The access methods are indicated in the FILE command by the specifications in the
FCBTYPE parameter, but the relationship with the PL/I organization form defined in the
ENVIRONMENT attribute must be taken into account (see section 6.4.2).

The Basic Tape Access Method (BTAM) is not used by PLI1 and will not therefore be
mentioned again. It is possible to access tapes from within PL/I programs by means of
the SAM access method. The Evanescent Access Method (EAM) is not supported by
PLI1 for user programs. It is used only by the compiler in connection with object mo-
dule generation.

• SAM (Sequential Access Method)
The SAM access method enables records to be processed sequentially. SAM files
are processed in PL/I using CONSECUTIVE organization.

• ISAM (Indexed Sequential Access Method)
An ISAM file can be processed either sequentially, or directly by way of keys. The
position of the first byte of the key must be specified via the KEYPOS parameter in
the FILE command or via KEYLOC in the ENVIRONMENT attribute. This position is
invariable in the records of one file. The key length is specified as a number of cha-
racters via the KEYLEN parameter in the FILE command or via KEYLENGTH in the
ENVIRONMENT attribute. The length is constant for all the records in one file. In
PL/I, ISAM files are usually processed using INDEXED organization.

CONSECUTIVE organization can be used for ISAM files to enable the processing of
files that are also destined to be processed by the utility routines EDT and EDOR or
by other languages (e.g. ALGOL). Fixed key lengths and a predetermined method of
key representation are applicable here. See section 6.6.1.3 for further details.

For ISAM files, the PAD parameter in the FILE command is of importance; this ensu-
res efficient distribution of storage space at initial creation of the file if the user wis-
hes to subsequently insert records in existing files. If there is no PAD specification in
the FILE command, PAD=0 takes effect for files processed by PLI1.

Note
Records in ISAM files are always prefixed with 4 additional characters by the
Data Management System if the files were created with RECFORM = F. This
must be taken into consideration when examining memory dumps since these
files appear to have a record length field like V-type files. For the user, this fact
is only of significance in calculating the file size.

U253-J-Z125-9-7600 209

Organization User files

• PAM (Primary Access Method)
Direct access on the physical block level is possible with the PAM access method.
The blocks have a fixed length (2048 bytes) and are also known as PAM blocks.
PAM files are used for the PL/I organization forms REGIONAL(1) and REGIONAL(3).
PAM files can also be processed using CONSECUTIVE organization.

210 U253-J-Z125-9-7600

User files Organization

6.2.2.5 Record structure

There are three different formats for records in files:

Fixed-length records: F format (for all access methods)

Variable-length records: V format (for SAM, ISAM)

Undefined records: U format (for SAM, PAM)

One file can only contain records having the same format. The record format is defined
by the RECFORM parameter in the FILE command, or in the ENVIRONMENT attribute.
The transfer of records between main memory and external storage (data set) is carried
out block-by-block. The relationship between record length and block size is explained
below.

• Record Length
The physical length of a record in the data set is specified in the RECSIZE parame-
ter of the FILE command, or in the RECSIZE entry in the ENVIRONMENT attribute.
The record length in the case of the input/output statements in the source program
generally relates to the length of the logical record, while with the entry in the FILE
command the additional administration information has to be taken into account.
INDEXED files are a special case if KEYLOC = 0 is supplied in the ENVIRONMENT
attribute (see section 6.3.3).

The administration information includes, for example, the length field of strings with the
VARYING attribute if SCALARVARYING is specified for ENVIRONMENT (see section
6.3.5), the record length specifications when RECFORM = V, and the carriage control
character for PRINT files.

If record format V is used, the information relating to the length of the individual record
is given in the record length field (RLF), an information field prefixed to the beginning of
the record. The two high-order bytes of the 4-byte record length field contain the length
of the record (including the record length field). The two remaining bytes are reserved
for file management purposes.

U253-J-Z125-9-7600 211

Organization User files

Example of a record with V format in an ISAM file:

/FILE DAT1,FCBTYPE=ISAM,RECSIZE=60,RECFORM=V,KEYPOS=5,KEYLEN=8

This record would have the following structure:

SLF Key

-4 bytes 8 bytes up to 48 bytes

Data section

• BLOCK
Data is not transferred between main memory (program) and external storage on a
record-by-record basis; instead, the records are grouped into blocks and transferred
block-by-block. The size of these blocks is indicated in the BLKSIZE parameter in
the FILE command. The ENVIRONMENT attribute cannot be used to influence the
size of the blocks. It is necessary to distinguish between the concepts of the physi-
cal and the logical block.

A physical block is the unit of data transfer to and from an input/output device. This
is 2048 bytes (one half-page) in length for all direct access volumes. We speak of a
standard block, or of a PAM block. Files on magnetic tape can also be processed
with nonstandard blocks, whose length is freely selectable, but must not exceed
32767 bytes.

ISAM always uses standard blocks. SAM is capable of processing both standard
and nonstandard blocks (with magnetic tape files). On direct access volumes, SAM
operates with standard blocks.

A logical block, however, may consist of several PAM blocks. The concept of the
logical block enables the use of records that extend beyond the limits of the physi-
cal block. For this, the logical block size must be specified in the BLKSIZE parame-
ter such that it is greater than or equal to the record length specification (RECSIZE).
In the case of SAM files in the V format, a 4-byte block length field must also be
taken into consideration. In addition, the Data Management System reserves a 12-
byte control field for every logical block on PAM-key-free disk files in SAM and ISAM
files.

For records in the U format, only one record is transferred per block. With magnetic
tape, only the current record length is transferred in this case. Where direct access
volumes are used, one or more standard blocks always constitute the unit of trans-
fer. The section of the main memory to which the operating system writes the data,
or from which the data is read, is designated a buffer. In the case of nonstandard
blocks, buffer and physical block are the same length. Otherwise, the buffer length
corresponds to that of the logical block and can be a multiple of the standard block
length (a maximum of 16 standard blocks).

212 U253-J-Z125-9-7600

User files Organization

In the case of record in the F and V format, one or more records are written to the
buffer by PLI1. If, before a record is written, the free space remaining in the buffer is
greater than or equal to the current record length, then the record is entered and
the buffer contents are not immediately transferred to the data set. If there is no lon-
ger sufficient space available in the buffer, the buffer contents are transferred and
the record is written to the "next" buffer. On account of the PAD specification in the
FILE command, with ISAM files it is possible for the transfer to the data set to take
place before the block is completely filled.

When the ISO code is used for tape files (CODE entry in the FILE command), the
specifications in the block and record length fields appear as fourdigit decimal num-
bers (PIC’9999’), i.e. ISO code blocks in the variable format can have a length of up
to 9999 bytes.

The following examples are designed to demonstrate the relationships between record,
block and buffer:

Example 1

The following are assumed:

SAM file
Record format F: Record with 100 bytes
Standard blocks
Buffer size = 2 blocks 4096

Associated FILE command:

/FILE filename,LINK=title,FCBTYPE=SAM,RECFORM=F,
/ RECSIZE=100,BLKSIZE=(STD,2)

Alternatively:

ENVIRONMENT (... F,RECSIZE(100)...) and additionally,
/FILE filename,LINK=title,FCBTYPE=SAM,BLKSIZE=(STD,2)

The buffer is filled with 40 logical records; the rightmost 96 bytes are not used, but two
complete blocks of 2048 bytes each are written. Note that record 21 of the buffer is
contained in two blocks, the first 48 bytes in block 1 and the remaining 52 bytes in
block 2.

U253-J-Z125-9-7600 213

Organization User files

Example 2

The following are assumed:

SAM file
Record format F: Record with 100 bytes
Nonstandard blocks (for tape only)
Buffer size = 2020

Associated FILE command:

/FILE filename,LINK=title,FCBTYPE=SAM,RECFORM=F,
/ RECSIZE=100,BLKSIZE=2020,DEVICE=TAPE,VOLUME=...

Alternatively:

ENVIRONMENT (...F(,100)...) together with
/FILE filename,LINK=title,FCBTYPE=SAM,BLKSIZE=2020,
/ DEVICE=TAPE,VOLUME=...

The buffer size is set at 2020 bytes. 20 records fit into the buffer, and a block with 2000
bytes is written.

Example 3

The following are assumed:

SAM file
Record format F: Record with 1500 bytes
Standard blocks
Buffer size = 1 block 2048 bytes

Associated FILE command:

/FILE filename,LINK=title,FCBTYPE=SAM,RECFORM=F,
/ RECSIZE=1500

Alternatively:

ENVIRONMENT (...F(,1500)...) together with
/FILE filename,LINK=title

This was an unsuitable choice because 548 bytes are wasted. A desirable buffer size
would be 6144 bytes (3 blocks), whereby the buffer could accept 4 records, and 6000
of the 6144 bytes would be utilized. In this case, three blocks of 2048 bytes each would
be written.

214 U253-J-Z125-9-7600

User files Organization

Example 4

The following are assumed:

SAM file
Record format V - with following record lengths (including RLF):
100, 500, 300, 600, 200, 400, 700, 50, 100
Nonstandard blocks (for tape only), BLKSIZE = 1000

Associated FILE command:

/FILE filename,LINK=title,FCBTYPE=SAM,RECFORM=V,
/ RECSIZE=700,BLKSIZE=1OO0,DEVICE=TAPE,VOLUME=...

Alternatively:

ENVIRONMENT (... V RECSIZE(700)...) and additionally,
/FILE filename,LINK=title,FCBTYPE=SAM,BLKSIZE=1000,
/ DEVICE=TAPE,VOLUME=...

The following blocks are created:

Block length 904 804

4 4 96 4 496 4 296 4 4 596 4 196

Block length 404 854

4 4 396 4 4 696 4 46 4 96

Note

Nonstandard blocks containing variable-length records have a 4-byte length specifi-
cation for each record and a 4-byte block length specification per block.

Example 5

The following are assumed:

SAM file
Record format F: Record with 8192 bytes
Standard blocks
Buffer size = 8 blocks = 16384 bytes

Associated FILE command:

/FILE filename,FCBTYPE=SAM,RECFORM=F,
/ RECSIZE=8192,BLKSIZE=(STD,8)

U253-J-Z125-9-7600 215

Organization User files

Alternatively:

ENVIRONMENT (...F(8192)...) together with
/FILE filename,LINK=title,FCBTYPE=SAM,BLKSIZE=(STD,8)

Each buffer contains two records, each record requires 4 standard blocks:

Buffer 16384

Logical record record 1 record 2

Blocks (PAM) 1 2 3 4 5 6 7 8

Example 6

The following are assumed:

SAM file
Record format V
Maximum record length of 132 bytes
Standard blocks

Associated FILE command:

/FILE filename,FCBTYPE=SAM,RECFORM=V,RECSIZE=132

Alternatively:

ENVIRONMENT (...V(, 132)...) together with
/FILE filename,LINK=title

A block has the same structure as illustrated in Example 4 and can accommodate at
least (2048-4)/ 132 = 15 records of maximum length. Note that the filling of a block is
terminated when the size of the current record exceeds the remaining free space. In the
case in hand then, 131 bytes could remain unoccupied at the end of the block if the
next record to be written were to require 132 characters. In this case, it would have to
be entered in the next block.

216 U253-J-Z125-9-7600

User files Organization

6.2.2.6 Volumes

The external medium for data sets is defined by the DEVICE and VOLUME parameters
in the FILE command.

The data media are divided into public and private volumes. Private volumes, which do
not need to be permanently online while the task is executing, include all magnetic
tapes and disk packs, as well as paper in the printer and card decks in the card reader
("paper devices"). A public volume is located on disk packs that are permanently con-
nected to the system; it is preformatted ready to accept user files and is always online.
The files stored on this medium can be available for use by more than one task at the
same time.

The public volume is always addressed through the system defaults. If private volumes
are to be used, then DEVICE and VOLUME must be specified. Paper devices can, if
necessary, also be addressed via the SYSFILE command.

There is a connection between the method of organization of a file and the type of volu-
me. Thus, for example, magnetic tape devices can only be processed with
CONSECUTIVE organization, while the INDEXED, REGIONAL(1) and REGIONAL(3)
types of organization, require a volume on a direct access device. In the PL/I program,
the type of volume is normally of no significance since the typical file characteristics
have already been established by other specifications. The only exceptions here are
statements causing existing files to be overwritten; this is only possible in the case of
direct access media, irrespective of the type of organization.

U253-J-Z125-9-7600 217

Access rights User files

6.2.2.7 Access authorization

• Password
By specifying a password, the user can protect his files against unauthorized use.
There are read passwords and write passwords. The password consists of a con-
stant of 1 to 4 characters in length which is stored in a special table in the system.
If the file has a read password and a write password, then it is only necessary to
specify the write password in order to be able to read the file also. The passwords
are assigned to the files in the CATALOG command by means of the RDPASS and
WRPASS parameters. If access to protected files is required, the PASSWORD com-
mand must be used in the relevant batch or interactive task.

• Access Protection
The ACCESS parameter in the CATALOG command serves to determine whether a
file may be used for reading only, or for both reading and writing. In this way it is
possible to achieve protection against unintentional alteration of a data set. The
SHARE parameter in the CATALOG command is used to specify whether only the
owner can access the file, or whether the file can also be accessed by a job with a
different user id.

• Temporary Write Protection
If write protection is to apply only temporarily, this period can be stipulated in the
RETPD parameter of the FILE or CATALOG command.

• Simultaneous Access (shared update)
Using the SHARUPD parameter in the FILE command, it is possible to specify whe-
ther a file opened for writing can also be opened by other tasks for reading or wri-
ting (SHARUPD = YES), or whether more than one task can open the file if all
require read access only (SHARUPD = NO).

If, on the basis of the above rules, more than one task has been able to open the
same file and a conflict situation occurs when two simultaneous attempts are made
to access one record, one access is placed in a queue and the attempt repeated
every 5 seconds. After 100 attempts, the TRANSMIT condition is set. Upon returning
from the ON unit for the TRANSMIT condition, processing continues from the unit
following the I/O statement.

SHARUPD is only supported in the case of ISAM files.

218 U253-J-Z125-9-7600

User files File size

6.2.2.8 File size

The size of a file, i.e. the amount of space it occupies, is specified by the parameter
SPACE = (p,s) in the FILE command. If there is a SPACE option in the FILE command,
then whenever the FILE command is executed

• the storage space is extended by p PAM pages (2048 bytes per page), with further
pages being added if necessary to make the total number of pages a multiple of 3.
If the file does not yet exist, this value is a primary allocation; if the file already
exists, the value is an extension, or a reduction in the case of a negative value.

• Where specified, the value s (secondary allocation) is included in the file specifica-
tion. It is evaluated whenever the PL/I program ascertains while writing records that
there is insufficient storage space available. The storage space is then extended by
s PAM pages, with further pages being added, if necessary, to make the total num-
ber of pages a multiple of 3. The value s has no significance in connection with
REGIONAL.

If a new file is created by the FILE command and no SPACE option is made, then nor-
mally SPACE=(3,3) will be assumed unless a different value is selected at system gene-
ration.

The extension of storage space for files is time-consuming, so it is advisable to select
the values such that extensions will be required as infrequently as possible.

Further details can be found in the description of the FILE command. The current sto-
rage occupancy level in PAM pages and the secondary allocation (value s from the
SPACE parameter) can be ascertained by using the FSTATUS command.

If a file is opened in the PL/I program, the storage space requirement for the file and
the value of the secondary allocation (i.e. the value s from the SPACE = (p,s) option)
are already contained in the file specification. Depending on the attribute with which the
file is opened, the following ensues:

INPUT The values are not changed.

UPDATE During the output of records, the storage space is extended by the
secondary allocation, if necessary.

OUTPUT During file opening, the current storage space and the secondary
allocation value are corrected, if necessary (see below). During the
output of records, the storage space is extended by the secondary
allocation, if necessary.

In order to prevent an error occurring as a result of an insufficient SPACE value, when
the file is opened with OUTPUT, the options in the file specification concerning the cur-
rent storage space occupancy level and the secondary allocation are corrected, if
necessary. The following applies in this connection:

U253-J-Z125-9-7600 219

File size User files

SAM CONSECUTIVE
The current storage space and the secondary allocation value are
increased, if necessary, such that they are exactly divisible by both 3
and the buffer size n specified by BLKSIZE=(STD,n) in the FILE com-
mand.

When extending a file (/FILE..., OPEN=EXTEND), the storage space
is only corrected in the manner described above if the unused part
is zero or does not satisfy the above conditions.

ISAM INDEXED
ISAM CONSECUTIVE

The current storage space is increased, if necessary, such that it is
at least n + 1 pages, where n is the buffer size as specified by
BLKSIZE=(STD,n) in the FILE command, and such that it is also divi-
sible by 3.

PAM CONSECUTIVE
The values are not corrected.

PAM REGIONAL The storage space is increased, if necessary, such that it is at least
r + 1 pages, where r is the size of a region, and such that it is also
divisible by 3. The size of a region r is calculated as follows:

with REGIONAL(1): from the record length d, as indicated in the
file specification /FILE RECSIZE = x or ENV(RECSIZE(x)).

with REGIONAL(3): from the buffer length b, as indicated in
BLKSIZE=b in the FILE command.

220 U253-J-Z125-9-7600

User files Other file specifications

6.2.2.9 Other file specifications

The PL/I user should also be aware of the following specifications of a user file:

• The OPEN mode for a file is defined in PL/I by the file attributes. On output, an
additional control facility is available where required through the OPEN specification
in the FILE command.

• For files opened with SEQUENTIAL in PL/I, it is possible to indicate that the new
records are included in the case of an existing file through OPEN=EXTEND or, for
PAM files, through OPEN=INOUT. Otherwise, the specifications of the old file are
deleted and the old records are no longer available; the specifications are defined
anew, as for a new file.

The effects of the FILE and CAT command parameters that are not dealt with in section
6.2.2 are described in [2]. They are, as a rule, of no special significance as far as PL/I
is concerned.

6.2.3 Interfaces between the PL/I input/output system and BS2000

For accessing files, the input and output routines of PLI1 use some of the macros provi-
ded by the Data Management System (DMS) and the Executive of the operating
system.

The following DMS macros are used:

OPEN for opening a file
CLOSE for closing a file
FCB for defining a File Control Block
IDFCB for providing an FCB with symbolic names
FSTAT for supplying information on the status of a file
RDTFT for reading the Task File Table
The transfer and access macros of the appropriate DMS access method.

The following Executive macros are used:

RDATA for SYSDTA
WRLST for SYSLST
WROUT for SYSOUT
WROUT for DISPLAY without REPLY
WRTRD for DISPLAY with REPLY in terminal mode
TYPIO for DISPLAY with REPLY in batch mode
WRTRD for TRANSIENT file
WROUT for TRANSIENT file

U253-J-Z125-9-7600 221

ENVIRONMENT PL/I files

6.3 Program files and ENVIRONMENT attribute

The PL/I language recognizes the data type FILE, which is used substitutionally for pro-
gram-external data sets. The PL/I file is declared by means of the FILE attribute. The
data sets are normally organized into records. However, PL/I implements two methods
of transferring data between program and data set:

• the stream-oriented or character-by-character transfer of data (file attribute
STREAM). In this case, the input/output system handles the data set as a conti-
nuous stream of characters and makes the data available to the program element-
by-element, or arranges the output supplied by the program into a stream. See sec-
tion 6.5 for details.

• the record-oriented transfer of data (file attribute RECORD). The input/ output
system makes the data available to the user record-by-record, corresponding to the
organization in the data set, or organizes the data set into records in such a way as
they are supplied by the program. See section 6.6 for details. The stream-oriented
and record-oriented transfer methods cannot both be used for the same file within a
single OPEN/CLOSE cycle.

In the PL/I program, the files are referenced via their file names. In accordance with
PL/I rules, the file name has a maximum length of 31 characters. This name need not
be the same as the name of the data set (BS2000 filename). The contact is established
by way of the TITLE specification on opening a file. See section 6.4.1.

When a file is declared in the program, information concerning the structure of the data
set associated with this file can be specified with the aid of the ENVIRONMENT attri-
bute. Some of this information corresponds to analogous options in the FILE command.
If both are given, the option of the ENVIRONMENT attribute applies.

Format of the ENVIRONMENT attribute:

x a _ x a
ENVIRONMENT (option x a option x a ...)

x a ,x a x a

The possible options are given below in Figure 6-2. Further details can be found in the
sections that follow:

222 U253-J-Z125-9-7600

PL/I files ENVIRONMENT

Option for Meaning

CONSECUTIVE
INDEXED
REGIONAL(1) DCL Type of organization
REGIONAL(3)

F
F (b)2) DCL Fixed record size
F ([b],r)2)

V
V (b)2) DCL Variable record size Corresponds to
V ([b],r)2) r: RECSIZE = r

c: KEYPOS = p (for c 0)
U k: KEYLEN = k
U (b)2) DCL Undefined record size b: BLKSIZE = b
U ([b]),r)1)2) F: RECFORM = F

V: RECFORM = V
RECSIZE (r) DCL Record size U: RECFORM = U

in the FILE command
KEYLOC (c) DCL Start of key

KEYLENGTH (k) DCL Key length

BLKSIZE (b)2) DCL Block size

CTLASA CTLASA: RECFORM = (x,A)
DCL Carriage control character

CTLMACH CTLMACH: RECFORM = (x,M)

SCALARVARYING DCL Input/output control with scalar VARYING variab.

LEAVE CLOSE Do not rewind magnetic tape

UNLOAD CLOSE Rewind and unload magnetic tape on close

LIMCT (n) DCL REGIONAL (3): n + 1 regions are examined

GENKEY DCL Group key in the case of INDEXED

TERMINAL (m,e) DCL Device modes for TRANSIENT In accordance with WRTRD
macro operand:

m: COMP|LINE MODE = COMP | LINE

l: ILCASE ILCASE = YES

1) Block length option ’b’ is ignored.

2) ’r’, if omitted, is defaulted as follows:
for F: r = b
for V: r = b - 4

Fig. 6-2 ENVIRONMENT options

U253-J-Z125-9-7600 223

File organization ENVIRONMENT

6.3.1 Types of organization

PL/I recognizes various ways of organizing records into a data set. There is a degree
of interdependence between the PL/I organization and BS2000 access methods (see
section 6.4.2). The type of organization cannot be specified in the FILE command.

Possible options for ENVIRONMENT:

CONSECUTIVE
INDEXED
REGIONAL(1)
REGIONAL(3)

• CONSECUTIVE
The records are stored sequentially in a file and can only be processed sequentially.
Data sets with CONSECUTIVE organization can be processed in stream- or record-
oriented fashion.

• INDEXED
The records are provided with a key (index). (The records are normally stored in
ascending order of their keys.) Data sets with INDEXED organization can be proces-
sed sequentially or in direct access, but only in record-oriented fashion.

• REGIONAL(1)
The file is made up of individual regions. One record is stored per region, the ac-
cess key corresponding to the relative record number within the data set.
Files with REGIONAL(1) organization can be processed sequentially or in direct
access, but only in record-oriented fashion.

• REGIONAL(3)
In the case of files having REGIONAL(3) organization, more than one record can be
stored per region.
For the purpose of addressing a record, a key which identifies both the region and
the record within that region should be specified. Files with REGIONAL(3) organiza-
tion can be processed sequentially or in direct access, but only in record-oriented
fashion.

224 U253-J-Z125-9-7600

ENVIRONMENT Record structure

6.3.2 Record structure

The structure of the records in the data set can be described in either the FILE com-
mand or the ENVIRONMENT attribute.

Possible options for ENVIRONMENT:

F[BLKSIZE(b)]
[RECSIZE(r)]

F(b)
F[([b]),r)]

V[BLKSIZE(b)]
[RECSIZE(r)]

V (b)
V[([b],r)]

U[BLKSIZE(b)]
[RECSIZE(r)]

U (b)
U[([b],r)]

If only ’b’ is supplied, this option is developed as follows:

F (b) is equivalent to F(b,r) with r = b
V (b) is equivalent to V(b,r) with r = b-4

The same applies accordingly for BLKSIZE if RECSIZE is omitted.

• F|V|U
This indicates whether the record length for all the records in the data set is fixed,
variable or undefined. It corresponds to the RECFORM parameter of the FILE comm-
mand. See section 6.2.2.5 for details.

• Option r
This must be a positive integer constant. It corresponds exactly to the RECSIZE
parameter of the FILE command. r is calculated from the length of the record to be
transferred, taking into account additional information such as the record size field
in V-type files and the keys in ISAM files.
For illustration, refer to Figure 6-3.
Details can be found in the following section and in 6.2.2.5.

• BLKSIZE and Option b
A block size, when supplied in the ENVIRONMENT attribute for ’U’, will be ignored
by PLI1.

U253-J-Z125-9-7600 225

Record structure ENVIRONMENT

Organization File type Rec. format Key position Record size

ENV KEYLOC(c) RECSIZE(r)

FILE FCBTYPE = RECFORM = KEYPOS = p RECSIZE = r

CONSECUTIVE SAM F Record
V 4 + record
U Record

ISAM F 11) Key + record

V 51) 4 + key + record

PAM F Record

V 4 + record

U Record

INDEXED ISAM 0 1 Key + record
F

1...r Record

0 5 4 + key + record
V

5...r 4 + record

REGIONAL(1) PAM F Record

REGIONAL(3) PAM F Record

V Record

Option not possible
Record: Length of PL I record in characters or unnecessary
Key: Length of key

1) Key length only 4: Key = FIXED BIN (31,0) (FORTRAN Key)
or 8: Key = PICTURE ’(8)9’

Fig. 6-3 Determining the record size

226 U253-J-Z125-9-7600

ENVIRONMENT Record key

6.3.3 Key options

For INDEXED and REGIONAL(3) definitions must be made concerning the record key.

Possible specifications for ENVIRONMENT:

{KEYLENGTH (k) KEYLOC (c) }

• KEYLENGTH (k)
This option indicates the key length as a number of characters. k must be a positive
integer greater than zero. This option corresponds to the KEYLEN parameter in the
FILE command.

• KEYLOC (c)
This option is only of significance for INDEXED files; it indicates the position of the
first character of the key. c must be a positive integer greater than or equal to zero.
For values greater than zero, the option corresponds exactly to the KEYPOS para-
meter in the FILE command.

When c = 0, PLI1 stores the key before the data record. The size of the record (use-
ful information) plus the length of the key must then be specified as the record size.
Moreover, in connection with KEYLOC(0), the record format (F or V) must be defi-
ned in the ENVIRONMENT attribute. If this is defined only in the FILE command, an
UNDEFINEDFILE condition occurs on opening the file.

Example

ENVIRONMENT (INDEXED, F (,88), KEYLOC(0), KEYLENGTH(8))

The records to be transferred must have a length of exactly 80 characters.

Where KEYLOC or KEYPOS 0, and when information is written to a file, the key is
always stored at the designated position in the record, i.e. any item of information in
the program standing at this position in the record is overwritten in the file by the
key.

U253-J-Z125-9-7600 227

Carriage control ENVIRONMENT

6.3.4 Carriage control

Files intended for printing must have a carriage control character as the first character
in each record. These control characters are generated automatically during stream-
oriented output for files with the attribute PRINT. The coding of the control characters
can be selected.

• CTLMACH

’00’B4 no line advance
’0n’B4 advance ’n’ lines after print
’4n’B4 advance ’n’ lines before print and one line after print if the output page is

not empty.
’81’B4 advance to first line of new page after print
’8n’B4 advance according to channel ’n’ after print
’C1’B4 advance to new page before print and if the output line is not empty,

advance 1 line after print

This option is not allowed for files with TITLE (’SYSPRINT’) or TITLE (’SYSOUT’) or
for files which are to be redirected to system files SYSLST and SYSOUT.

Options supported for ENVIRONMENT:

CTLASA

CTLMACH

Default: CTLMACH for PRINT files;
otherwise, none (/FILE...,RECFORM = (x, N).

These options have their equivalents in the RECFORM parameter of the FILE command.

• CTLASA

The following control characters are declared:

’4E’B4 (plus sign) no line advance
’40’B4 (space) advance 1 line before print
’F0’B4 (character 0) advance 2 lines before print
’60’B4 (minus sign) advance 3 lines before print
’F1’B4 (character 1) advance to 1st line of new page

’Cn’B4 advance according to channel ’n’ before print and 1 line after print if the
output line is not empty.

228 U253-J-Z125-9-7600

ENVIRONMENT SCALARVARYING

6.3.5 Controlling the VARYING variable

In the internal representation of string variables with the VARYING attribute, the storage
space containing the value is prefixed with a halfword which accommodates the current
length of the string. If the contents of a scalar variable with the VARYING attribute are
entered as a record into a file, it is necessary to decide whether the length specification
should also be output or not. If a record written in this way is read again, then it is
necessary to indicate whether the length specification is contained in this record or not.

Control of this process is effected when declaring the file by specifying
SCALARVARYING for the ENVIRONMENT ATTRIBUTE. The declaration has the following
form:

DCL a FILE RECORD etc. ENVIRONMENT (SCALARVARYING)

The SCALARVARYING option is only evaluated for files that are opened with the
RECORD attribute. The following relates to scalar variables with the VARYING attribute
that are used in conjunction with data records. The following cases are dealt with:

• A record is read using READ INTO (a)

• A record is written using WRITE FROM (a) or REWRITE FROM (a)

• A record is read using READ SET

• A record is written using LOCATE SET.

The following subsections deal with character string variables (CHARACTER). The same
applies analogously to bit string variables (BIT).

Furthermore, the length specification for record format V (RECFORM=V) is not covered
by the discussions here, nor is any key that may be present. These must also be taken
into consideration in accordance with the descriptions given in the appropriate sections.

U253-J-Z125-9-7600 229

SCALARVARYING ENVIRONMENT

6.3.5.1 Reading a record using READ INTO

If a record is read into the scalar target variable a using READ INTO (a) and this varia-
ble has the attribute VARYING, two cases are distinguished:

If SCALARVARYING is not specified in the ENVIRONMENT attribute of the file, it is assu-
med that the VARYING length specification is not contained in the record. The record is
assigned to the target variable, the length specification in the VARYING variable being
set to the correct value in the process, i.e. to the length of the record.

If SCALARVARYING is specified in the declaration of the file, it is assumed that the first
two bytes of the record contain the length specification. The first two bytes are then
transferred to the length specification for the variable, and the remaining characters of
the record are placed in the storage area used for the target variable. If "length specifi-
cation > record length - 2", this may lead to undefined results in a subsequent access
to the variable.

Record
DCL f FILE RECORD INPUT

Length Characters
ENVIRONMENT (SCALARVARYING)

Length+2

READ INTO (a)

Variable

DCL a CHAR (n) VARYING; Length • Characters

n + 2

WRITE
FROM (a)

REWRITE

Record
DCL f FILE RECORD OUTPUT

Length Characters
ENVIRONMENT (SCALARVARYING)

Length + 2

Fig. 6-4 Data transfer for a scalar character string variable of variable

length with SCALARVARYING in the case of INTO or FROM

230 U253-J-Z125-9-7600

ENVIRONMENT SCALARVARYING

DCL f FILE RECORD INPUT Characters

Length

Supply
length

READ INTO (a)

Variable

DCL a CHAR (n) VARYING Length • Characters

n + 2

WRITE Length
FORM (a) omitted

REWRITE

DCL f FILE RECORD OUTPUT Characters

Length

Fig. 6-5 Data transfer for a scalar character string variable of variable

length without SCALARVARYING in the case of INTO or FROM

U253-J-Z125-9-7600 231

SCALARVARYING ENVIRONMENT

6.3.5.2 Writing a record using WRITE FROM

If a record is written from the scalar source variable a to a file using WRITE FROM (a)
or REWWRITE FROM (a), and the variable has the attribute VARYING, two cases are
distinguished.

If SCALARVARYING is not specified during the declaration of a file, then only the value,
but not the length specification, of the source variable is output as a record. The length
of the record is thus obtained from the current length of the source variable.

If SCALARVARYING is specified during the declaration of the file, then the length specifi-
cation and the value of the source variable are output as a record. The length of the
record is thus calculated from the current length of the variable + 2.

6.3.5.3 Reading a record using READ SET

If a record is read using READ SET, then there is no target variable to which it can be
transferred; a pointer indicating the current record in the input buffer is simply provided.

When the READ statement is executed, the attributes of the variable which is to be
used in accessing the record are not known.

SCALARVARYING is of no significance in this case.

It is then only possible to access the record with a variable having the attribute
VARYING if the first two bytes contain a length specification. As with all access using
BASED variables, the user himself is responsible for ensuring that the correct length
specification is present in the record.

232 U253-J-Z125-9-7600

ENVIRONMENT SCALARVARYING

Record
DCL f FILE RECORD INPUT

Length Characters

n + 2

READ SET (z)

Representation of the variable
- - - - - - - - - - - - - - - - - -

DCL a CHAR (n) VARYING Length • Characters
- - - - - - - - - - - - - - - - - -

BASED (z)
n + 2

LOCATE SET (z)

Record

DCL f FILE RECORD OPUTPUT Length Characters

ENVIRONMENT (SCALARVARYING)
n + 2

Fig. 6-6 Record transfer for a scalar character string variable of

variable length in the case of LOCATE SET

U253-J-Z125-9-7600 233

SCALARVARYING ENVIRONMENT

6.3.5.4 Writing a record using LOCATE SET

If a record is written using LOCATE SET, the effect of this statement is simply to re-
serve storage space for a record in the output buffer. This storage space simulta-
neously constitutes the storage space for the variable. A pointer is set which points to
the beginning of this storage space.

This storage space can be filled with information by way of a BASED variable; its con-
tents will be placed in the file at some later time.

If SCALARVARYING is specified for the file, in addition to the storage space for the
value a further 2 bytes for the length specification are reserved for a BASED variable
with the attribute VARYING, by means of which a value may be assigned to the record.
The record always has the maximum length + 2 bytes, irrespective of the current
length of the values.

If SCALARVARYING is not specified for the file, during storage reservation for variables
with the attribute VARYING no storage space is allowed for the length specification. In
the case of assigning a value by way of a BASED variable with the attribute VARYING
this may lead to the destruction of other data without this fact being recognized. There-
fore, this mode of operation is not permitted. The responsibility lies, as with BASED
variables in general, with the user.

234 U253-J-Z125-9-7600

ENVIRONMENT SCALARVARYING

6.3.6 Device control using TRANSIENT files

TRANSIENT-organized files control the terminal by means of the WRTRD and WROUT
macros (see BS2000 Macro Calls [16]). The following device modes can be controlled
via the ENVIRONMENT option TERMINAL:

ENV (TERMINAL (m,e)) where m = COMP|LINE
and e = ILCASE.

The options correspond to the identical operands of the WROUT or WRTRD macro call
and have the same effect.

The ILCASE option causes lowercase letters to be transferred as well when input is ent-
ered from the interactive terminal (corresponds to ILCASE=YES of the WRTRD macro).

The option COMP means compatible operating mode for interactive terminal in-
put/output (corresponds to MODE = COMP of the WROUT or WRTRD macro).

The option LINE means LINE mode for interactive terminal input/output (corresponds to
MODE = LINE of the WROUT or WRTRD macro). The LINE mode permits input or out-
put to be composed of more than one line so that formatting is possible during input
and output. The following control characters may be contained in the information to be
transferred:

X’15’: New line
X’0C’: New (i.e. previously deleted) screen
X’1D’: Start of italics or flashing text
X’1E’: End of italics or flashing text
X’0E’: Start of second character set on interactive terminal
X’0F’: End of second characters set on interactive terminal

The appropriate ENVIRONMENT option in conjunction with RECSIZE, for example,
enables the complete screen contents to be read or written with one READ or WRITE
statement using the above device control characters. The ENVIRONMENT options
TERMINAL are only effective for the interactive terminals 816x and 9750.

6.3.7 Other options

Further options are described in the following sections:

LEAVE, UNLOAD 6.7.4
LINCNT 6.6.4.1
GENKEY 6.6.2.1

U253-J-Z125-9-7600 235

Names File assignment

6.4 Assigning program files to BS2000 files

The relationship between a PL/I file and a BS2000 file (assignment) is established via
the file link name. On the BS2000 side this concerns the LINK specification in the FILE
or CHANGE command; on the PL/I side, the TITLE specification in the OPEN state-
ment.

If there is no TITLE specification in the OPEN statement, the file name specified in the
definition is used to form the TITLE. Special rules apply to the system files; these are
contained in the following section. Assigning PL/I files to BS2000 files is only practical
when the type of organization and the access method are compatible.

6.4.1 Rules governing the assignment of file names

The connection between the PL/I program and a BS2000 file is effected either explicitly
by the OPEN statement or implicitly during the OPEN process. In the case of a missing
TITLE specification or the implicit opening of files, the file name provides the TITLE. The
TITLE is interpreted as the BS2000 link name when the PL/I file is assigned to the
BS2000 file. For this reason, the TITLE must comply with the rules governing link na-
mes. These rules permit a character string of up to 8 characters. If the PL/I TITLE or
the PL/I file name used as a TITLE is longer than 8 characters, only the first 8 charac-
ters are taken. Also in the TITLE all " " characters are always replaced by "$".

Note

If the PL/I file is defined with the attribute EXTERNAL, the file name is abbreviated
by PL/I in accordance with the conventions for external names to 7 characters
using the 4 : 3 rule (the first four and the last three characters of the name). This
should be borne in mind when examining the linkage editor listings.

The original name (i.e. not the one abbreviated to 7 characters) is available when the
TITLE has to be formed from the file name. Likewise, the full file name appears in the
’ONFILE specification’ with the dummy variables and in error messages.

The following assignments predetermined by the control statement SYSFILE (see sec-
tion 5.4.7) apply to the system files SYSDTA, SYSLST and SYSOUT:

• If ’SYSIN’ is determined as the TITLE in the PL/I program, this refers to the BS2000
system file SYSDTA.

• If ’SYSPRINT’ is determined as the TITLE in the PL/I program, this refers to the
BS2000 system file SYSLST.

• If ’SYSOUT’ is determined as the TITLE in the PL/I program, this refers to the
BS2000 system file SYSOUT.

236 U253-J-Z125-9-7600

File assignment Names

Note

With the GET statement, PL/I always replaces a missing FILE specification with
SYSIN, while SYSPRINT is used for the FILE specification when the corresponding
situation occurs with the PUT statement.

The assignments between TITLE and system file given above can be changed by the
control statement SYSFILE (see section 5.4.7). If some other assignment is stipulated at
the start of a PL/I program, any PL/I TITLEs desired may be connected with the
system files. Note also that by using the SYSFILE command the system files can be
temporarily reassigned to user files. It is also possible to direct other outputs (e.g. error
messages) to SYSPRINT or SYSOUT. Control can be exercised over these outputs by
means of the control statements MESSAGE, FORMAT and DIAGNOST (see chapters 3
and 5).

When using system files, note also that only sequential processing is possible; however,
record or stream-oriented operation may be employed. The record and stream-oriented
processing modes must not occur together in a single OPEN/CLOSE cycle for the
same system file.

Note further when using system files that exact chronological coordination between the
input/output system and other services that require the same system file cannot always
be guaranteed. Thus, for example, a trace output can be written to SYSLST with com-
plete disregard to the fact that the input/output system has previously prepared an out-
put for SYSLST but not yet executed the output operation.

Another special case concerns the use of the DISPLAY statement. Depending on the
RUNOPT option SYSFILE=DISPLAY (see section 5.4.7) the DISPLAY statement with
REPLY writes to or reads from the interactive terminal, the operator console, or to the
system file SYSOUT or from the system file SYSDTA.

U253-J-Z125-9-7600 237

Names File assignment

Summary

The following steps are involved in assigning PL/I files to the physical files in BS2000:

• Determining the TITLE of the file from the TITLE specification in the OPEN state-
ment, or alternatively from the PL/I file name in accordance with the above rules.
Note:

GET without FILE or STRING GET FILE (SYSIN)
PUT without FILE or STRING PUT FILE (SYSPRINT)

OPEN without TITLE OPEN TITLE(’filename’)

• Checking whether this TITLE is assigned to a system file by means of the control
statement SYSFILE. The following are preset:

Title System file

SYSIN SYSDTA
SYSPRINT SYSLST
SYSOUT SYSOUT

Note that the system files SYSDTA and SYSLST can be reassigned to a user file by
means of the command SYSFILE (see section 3.4.1 and [2]).

• If the TITLE is not assigned to a system file by means of the control statement
SYSFILE, there must be in existence a user file with the identical LINK name.

• If the TITLE cannot be identified during these search operations, an
UNDEFINEDFILE condition will be reported.

The effect of a PL/I program may differ depending on the result of the above chain of
decisions. For if the TITLE is found in the list for the control statement SYSFILE, the file
is processed using BS2000 Executive macros. Otherwise, DMS macros are used. DMS
macros take into consideration the characteristics of the user files such as record
length, block size etc. However, if PLI1 decides in favor of Executive macros, the op-
tions applicable to the system files take effect (see section 6.5.1, for example, in this
connection). In particular, there may be changes in characteristics such as RECSIZE
and BLKSIZE if a user file is processed like a system file by way of the SYSFILE com-
mand.

If the intention is to process PL/I files having the TITLE ’SYSIN’, ’SYSPRINT’ or
’SYSOUT’ not with Executive macros but with DMS macros the assignment defined by
the control statement *RUNOPT SYSFILE or the preset assignment, as the case may
be, must be canceled. For example, any names which do not occur in the program
may be used for this (e.g. *RUNOPT SYSFILE = SYSDTA (DUMMY)).

238 U253-J-Z125-9-7600

File assignment Organization

6.4.2 Rules governing the assignment of organization methods

Use of the BS2000 access methods employed in the input/output system of the PL/I
programs depends on the file organization specified in the program and on the physical
file. Determining factors here are the file attributes specified at file definition time such
as SEQUENTIAL, DIRECT etc., and the specification of the organization method in the
ENVIRONMENT attribute. The following table gives an overview of the permissible com-
binations.

PL/I file File organization BS2000
Access Access method

SEQUENTIAL CONSECUTIVE SAM1)

(without KEYED) PAM
ISAM1)

System files1)

INDEXED ISAM
REGIONAL(1) PAM
REGIONAL(3) PAM

SEQUENTIAL KEYED INDEXED ISAM
REGIONAL(1) PAM
REGIONAL(3) PAM

DIRECT KEYED INDEXED ISAM
REGIONAL(1) PAM
REGIONAL(3) PAM

1) Only these combinations can be used for stream-oriented processing

There are other rules that determine the permissibility of certain forms of input/output
operations for the above combinations. These are to be found under the particular file
organization method in section 6.6.

The following are preset:

• If no organization method is defined by the ENVIRONMENT attribute, the file is pro-
cessed as a CONSECUTIVE file.

• If the access method was not defined by the FILE command, PLI1 defines the follo-
wing:

SAM for CONSECUTIVE files
ISAM for INDEXED files
PAM for REGIONAL files

U253-J-Z125-9-7600 239

Organization File assignment

6.4.3 Relationship between FILE command and ENVIRONMENT specification

Section 6.3 discussed which file characteristics can be defined in the program with the
ENVIRONMENT attribute. Certain of these characteristics may only be defined in this
manner; with others the definition may be contained in the program or in the FILE com-
mand.
A third group of characteristics can be defined only in the FILE command. Figure 6-7
gives an overview. Furthermore, certain contextual defaults may become effective.

240 U253-J-Z125-9-7600

File assignment Organization

ENVIRONMENT specific. FILE command

CONSECUTIVE
INDEXED

Organization REGIONAL(1)
REGIONAL(3)

SAM
File type FCBTYPE = ISAM

PAM

F F
Format V RECFORM = V

Record U U

Length RECSIZE (r) RECSIZE = r

for c = 0 KEYPOS = 1|52)

Location KEYLOC (c) - - - - - - - - - - - - - - - - -
for c 0 KEYPOS = c

Key
Length KEYLENGTH (k) KEYLEN = k

Block size BLKSIZE (b)3) BLKSIZE = b

F (b) | F (b,r)3) RECFORM = F|V|U
Combinations V (b) | V (b,r)3) BLKSIZE = b

U (b) | U (b,r)1) RECSIZE = r

Storage space SPACE = s
requirement

Carriage control CTLMACH RECFORM (x,M)
characters

CTLASA RECFORM (x,A)

LOCATE and
SCALARVARYING

READ SET control

1) Block size b is ignored
2) 1: for format F

5: for format V
3) ’r’, if omitted, is defaulted as follows:

for F: r = b
for V: r = b - 4

Fig. 6-7 Relationship between ENVIRONMENT attribute and FILE command

U253-J-Z125-9-7600 241

File characteristics File assignment

6.4.4 Determining the file characteristics

Every file in BS2000 has associated with it certain characteristics which describe the
type and structure of the file. In the case of an existing file these characteristics have
already been defined, while for a new file they must first be compiled from the informa-
tion supplied by the user.

If a file is opened with OPEN INPUT or OPEN UPDATE in a PL/I program, then it is
assumed that an associated BS2000 file already exists and is entered in the file catalog.
This presupposes also that the characteristics of the BS2000 file are compatible with
the set of attributes of the PL/I file and with the ENVIRONMENT options. Appropriate
input/output statements can be used to add, modify or erase records in the file, but the
characteristics of the file cannot be changed (except, for example, SPACE).

If a file is opened with OPEN OUTPUT, then it is normally assumed that no correspon-
ding file exists and that a new file is being created. However, if a corresponding file
does already exist, it is assumed that this file is to be replaced by a new file, i.e. the
old file will be erased.

Under certain conditions when using the OPEN operand of the FILE command it is pos-
sible to ensure that the old file remains in existence. In this case the process is similar
to that for OPEN UPDATE, i.e. the old records are retained and the new records are
added.

When a new file is created, the file characteristics must be laid down. The user can spe-
cify the desired values

in the PL/I program through the ENVIRONMENT specification or
in the FILE command.

The possible specifications are explained in the preceding sections. Should the charac-
teristics be incomplete at this stage, then - insofar as is possible and practical - preset
values are inserted by the PL/I system which are referred to here as the system default
values for files. The file characteristics thus determined for the BS2000 file must be com-
patible with the set of attributes of the PL/I file.

When the file is closed, the characteristics are placed in the file catalog. The file is thus
cataloged and the characteristics are associated with it.

Figure 6-8 gives an overview of the processes described here. A detailed description is
contained in the following subsections.

242 U253-J-Z125-9-7600

File assignment File characteristics

FILE command ENVIRONMENT System default
option

Priority 2 Priority 1 Priority 3

For SPACE, see
elsewhere OPEN OUTPUT

OUTPUT
New file, /FILE etc.[OPEN=]
or replace File OUTIN
old file charac-

teristics

Transfer Check for
on closing compatibility

- File attributes - - -

Existing
file, or
extend
old file

Only with
INPUT a.

FILE command File catalog - - - - - ENVIRONMENT
UPDATE options

Priority 3 Priority 1 Priority 2

- -
only with CONS-PAM only with CONS-PAM

INPUT
File OPEN
charac- UPDATE
teristics or

OPEN OUTPUT SEQUENTIAL
EXTEND

/FILE etc.OPEN=
INOUT

Fig. 6-8 Determining the file characteristics (order of priority indicated)

U253-J-Z125-9-7600 243

File characteristics File assignment

6.4.4.1 Characteristics for a new file

When a file is opened in the PL/I program with the file attribute OUTPUT, the following
cases are distinguished::

• File does not yet exist.
If no file yet exists for the corresponding file name, a new file will be created.

• File already exists.
If a file already exists for the corresponding file name, then there are two possible
courses of action:

If the OPEN parameter in the FILE command stipulates that the file is to be
extended and if this operation is possible in accordance with the conditions desc-
ribed in the following section, the file is retained and processing proceeds in a
similar fashion to opening with OPEN UPDATE (see following sections).

Otherwise, if the above does not apply, processing takes place as if the file does
not exist, i.e. a new file is subsequently created.

Exception

If with OPEN OUTPUT to an existing file null parameters (e.g. RECSIZE) are speci-
fied, the corresponding FILE parameters from the catalog are entered.

If a new file is created, the characteristics for it are determined in the following order:

1. Firstly, the values from the FILE command are incorporated into the file characteri-
stics, with the exception of SPACE= which at this time has already been processed
and is already contained in the file characteristics.

2. If certain required information is still missing from the file characteristics, then if avai-
lable it will be subsequently taken from the ENVIRONMENT specification in the PL/I
program.

3. Finally, any values that are still missing are inserted as system defaults. These va-
lues are listed in Figure 6-9.

RECSIZE(0) or RECSIYE = 0 in Figure 6-9 means that the value is undefined and that
an appropriate buffer (currently 2048 bytes) will be set up by the Data Management
System. This will then be the maximum permitted length for a record. In the case of
SAM files, 4 bytes are required for management purposes with the result that the maxi-
mum possible length of the record is reduced by these 4 bytes. In addition, the Data
Management System reserves a 12-byte control field for every logical block on PAM-
key-free disk files in SAM and ISAM files.

244 U253-J-Z125-9-7600

File assignment File characteristics

System default
Condition

ENVIRONMENT option FILE command

CONSECUTIVE

CONSECUTIVE FCBTYPE = SAM
INDEXED FCBTYPE = ISAM
REGIONAL FCBTYPE = PAM

CONSECUTIVE
INDEXED V RECFORM = V
REGIONAL(3)
REGIONAL(1) RECFORM = F

V
RECSIZE(0) 3) RECSIZE = 0 3)

U
F RECSIZE(r) 1) RECSIZE = r 1)

V KEYLOC(5) KEYPOS = 5
F

KEYLOC(1) KEYPOS = 1
U

KEYLENGTH(8) KEYLEN = 8

DEVICE=tape BLKSIZE = b 1)

otherwise: BLKSIZE = (STD,n) 2)

===
OPEN...STREAM PRINT CTLMACH RECFORM (x,M)

1) no default; specification mandatory

2) n: chosen so that the record (according to RECSIZE) fits exactly

3) defaulted by Data Management System (currently 2048, or SAM 2044 or 2032
for SAM) (see text)

Fig. 6-9 System default for the file characteristics when creating new files,

taken from top to bottom

Once the file characteristics have been laid down in this way, a check is made as to
whether they are compatible with the file attributes specified in the program. If this is
not the case, an UNDEFINEDFILE condition is raised.

If a CLOSE statement is explicitly issued for a newly created file or if the file is closed
implicitly at the end of the program run (which is normally the case even when the pro-
gram run is errored), then the characteristics for the file are placed in the file catalog
and thus retained for the file. The file is then considered to exist.

U253-J-Z125-9-7600 245

File characteristics File assignment

Exception

With PAM files, RECFORM and RECSIZE are not included in the catalog and must
therefore be specified whenever the file is subsequently opened. This applies only to
CONSECUTIVE organization; with REGIONAL files this data is recorded in a manage-
ment header for the file.

6.4.4.2 Extend old output file (EXTEND)

When a file is opened by OPEN OUTPUT, a new file will normally be created. If a corre-
sponding file is already present, processing takes place as if this file did not exist: the
characteristics and records of the old file are then no longer available. The size of the
current storage space allocation and the secondary allocation as per "/FILE filename,
SPACE=" are retained.

However, it is possible by using the parameter OPEN in the FILE command to stipulate
that the old file be retained along with its characteristics and records, and that new
records be added to it. The file must have been opened with the file attribute RECORD.
So the following conditions must be satisfied in order to extend an existing output file:

• the file is opened with OPEN OUTPUT [SEQUENTIAL]

• the FILE command contains the specification:
OPEN = EXTEND for SAM or ISAM
OPEN = INOUT for PAM

With regard to the characteristic data, the same operations are performed as are descri-
bed in the following section for files which are opened with UPDATE but no check is
made on compatibility with the ENVIRONMENT options.

On opening CONSECUTIVE files, positioning is effected to the end of the file so that
new records can be added to the end of the file in accordance with the general rules
for output statements. With INDEXED and REGIONAL files, positioning is also perfor-
med to end of file; the new records must then be supplied with keys which are greater
then all existing keys.

246 U253-J-Z125-9-7600

File assignment File characteristics

6.4.4.3 Characteristics for existing files

If a file is opened with the file attribute INPUT or UPDATE, then the corresponding file
must already exist. The same applies if a file is to be extended as described in the pre-
vious section. The characteristics for this file are then already contained in the file cata-
log and are taken from there.

For files cataloged as /FILE STATE = FOREIGN, the characteristics are obtained from
the labels unless they are specified explicitly.

Exception

In the case of PAM files, RECFORM and RECSIZE are not recorded in the catalog
and must therefore be specified in the FILE command or under ENVIRONMENT,
where a specification in ENVIRONMENT has priority. This applies only to
CONSECUTIVE file organization.

If the PL/I program contains ENVIRONMENT options, a check is made as to whether
these are compatible with the characteristics of the file. A further check determines whe-
ther the characteristics are compatible with the file attributes specified at file opening. If
either of these checks proves negative, an UNDEFINEDFILE condition is set.

Exception

If a file is opened with OUTPUT and extended as described in the previous section,
no check is made on compatibility with the ENVIRONMENT options.

Opening (INPUT or UPDATE) a cataloged, empty file causes the condition ENDFILE to
be raised as soon as an attempt is made to read the file.

U253-J-Z125-9-7600 247

Rules Stream-oriented processing

6.5 Stream-oriented input and output

Stream-oriented input and output (STREAM) is the most convenient method for the user
of transferring data between PL/I program and external data media. STREAM is also
very largely independent of differing computing systems and the data sets can be trans-
ferred almost at will between different computers. On input, the external data is regar-
ded as a continuous stream and processed consecutively character by character. The
characters are edited in accordance with the user’s wishes by the input system and
converted to the internal form of value representation. On output, the internal form of
representation is converted into character form in accordance with the user’s specifica-
tions and output as a continuous stream of characters. In doing this the user can select
various levels of control, either simple LIST or DATA controlled editing where conver-
sion to the external form of representation is determined by PL/I, or EDIT controlled
editing where the user himself can determine the external representation, even at cha-
racter level.

Where output is to be printed, the data stream can be subdivided into lines and pages;
section 6.5.2 discusses this in more detail.

248 U253-J-Z125-9-7600

Stream-oriented processing Rules

6.5.1 Rules governing stream-oriented input and output

Files to be involved in stream-oriented input/output must be organized on a
CONSECUTIVE basis. Other forms or organization must not be used.

The BS2000 access methods SAM and ISAM and the system files can be used for stre-
am-oriented input/output. When using ISAM, the same special rules concerning key
location and key length apply as for record-oriented processing with CONSECUTIVE
(key location only 1 or 5, key length only 4 or 8). Permitted record formats are F, V
and U. With the U format precisely one block is transferred per record, where the maxi-
mum possible record length is given by BLKSIZE. Under certain circumstances use of
the U format can lead to high wastage.

As far as the FILE command is concerned, the same specifications apply as are given
in section 6.6.1.7; however, FCBTYPE = PAM is not permitted.

For file opening, writing, reading and closing operations the same rules apply as for
record-oriented processing. These rules are given under section 6.6.1.

The following table shows the file attributes which are permitted in PL/I for STREAM
files and the statements which may be used:

Attributes Statement Organization

INPUT 1) GET [SKIP]

OUTPUT LINESIZE PUT [SKIP]
STREAM CONSECUTIVE

PAGESIZE [PAGE,LINE]
OUTPUT PRINT PUT[]

LINESIZE [SKIP]

1) not applicable to empty file

The length of any particular record is determined primarily by the use of SKIP in the
GET or PUT statement, or in the format specification in the case of EDIT control. Howe-
ver, if SKIP is not used before the maximum record length is reached, the transition to
the new record takes place automatically in accordance with the stream definition. The
maximum record length is determined by:

1. LINESIZE attribute with OPEN (only for OUTPUT)
2. RECSIZE/BLKSIZE in the FILE command or ENVIRONMENT attribute
3. SYSFILE control statement (for system files)
4. Default (see Figure 6-10).

U253-J-Z125-9-7600 249

Rules Stream-oriented processing

For system files, the above options are examined in the order shown, until a value is
found.

All other files are subject to the following additional rules:

• Specifications of RECSIZE (BLKSIZE) and device characteristics always have priority
if these specifications are less than LINESIZE with OPEN in the SYSFILE control
statement.

• If RECSIZE > LINESIZE in the case of files in F format, then during writing the cha-
racter stream is filled with blanks up to the specified record length.

File Interactive task Batch task

SYSLST 120 120

SYSOUT Line length of device1) 132

SYSDTA 120 120

File with RECFORM=F or U RECSIZE2)or 120

File with RECFORM=V RECSIZE2)or 120

1) less 1 character for carriage return, where applicable
2) with PRINT files, a further character is deducted for carriage control

Fig. 6-10 Default values for LINESIZE with stream-oriented input/output

The limit values for system files also apply to SYSLST and SYSDTA if these files were
assigned to a user file by means of a SYSFILE command. With these files the user has
the option of changing the record length during the program run by closing the file
(CLOSE), reopening it and giving a new LINESIZE specification in the OPEN statement.

In the case of EDIT controlled transfer, automatic transition to the next record takes
place precisely at the relevant limit selected. On output, therefore, values are broken up
where necessary, while on input, successive lines are chained.

With DATA or LIST controlled output, the individual output values are not broken up at
the end of the record but are written to the next record if there is no longer sufficient
space for them to be contained in their entirety in the current record; i.e. if LINESIZE
were to be exceeded. Output values are only broken up if the element itself is greater
than LINESIZE.

250 U253-J-Z125-9-7600

Stream-oriented processing PRINT files

6.5.2 PRINT files

Files defined implicitly or explicitly with the attributes STREAM OUTPUT PRINT are
known as print (PRINT) files. They can be referenced only by the PUT statement. The
PUT statement causes a character string to be generated into which are inserted the
carriage control characters for page and line feed operations. These control characters
subdivide the character string into lines which are each assigned to one record in the
external file. This control character is automatically prefixed to every record in a PRINT
file. The coding of this character can be influenced by the ENVIRONMENT options
CTLMACH and CTLASA (see section 6.3.4).

On output to the system files SYSLST and SYSOUT, carriage control characters in
accordance with CTLMACH are always generated. Any specification other than this will
be ignored.

On output to a file created with /FILE...RECFORM=(x,N), carriage control characters
are generated as with RECFORM=(x,M).

If the PRINT file is not output on a printer, the control character has no effect and it is
treated as part of the record.

A new record is always created whenever a SKIP or PAGE specification is processed in
the output statement or the data stream reaches the record length defined explicitly or
implicitly by LINESIZE (see section 6.5.1). With DATA and LIST controlled output, the
new record is commenced as soon as the current output value in the current record
can no longer be taken up in its entirety.

For the default record lengths, refer to the values defined in section 6.5.1. Note, howe-
ver, that space for the control character must be taken into consideration in each case.

The page size for a PRINT file may be declared as follows:

1. PAGESIZE option in the OPEN statement.

2. *RUNOPT SYSFILE = PAGESIZE(x,y,z) control statement.

3. Defaults:
for SYSOUT in interactive mode (display terminal): PAGESIZE(1)
otherwise: PAGESIZE(60)

These options are examined in the order shown above until a value is found. When the
end of a page is reached, the ENDPAGE condition is set.

If a PRINT file was stored on an external volume, i.e. not printed automatically via
SYSLST, the file can be output to printer at any time using the PRINT (SPACE=E) com-
mand.

U253-J-Z125-9-7600 251

PRINT files Stream-oriented processing

Printer Interactive device

(batch mode) Line mode 1) Page mode

PAGESIZE(n) n=1 1) n>1

LINESIZE(n) n line length of
device for device
with carriage return
n line length of
device -1

SKIP option Output of line Output of line Line to page buffer

LINE(n) As SKIP(1)

PAGE As SKIP(1) Output page buffer

ENDPAGE is never set

LINENO increases without
limit

PAGENO always results
in value 1

1) Default: Line mode

Fig. 6-11 Special considerations for files with STREAM PRINT for the system file SYSOUT

252 U253-J-Z125-9-7600

Stream-oriented editing interactive mode

6.5.3 Stream-oriented input/output to interactive device

To facilitate the use of STREAM input/output for interactive devices (system file,
SYSOUT, SYSDTA), certain deviations from the PL/I rules are allowed in this case:

• If the last character output to the interactive terminal is a colon (:), then the output
is additionally followed with a SKIP (as if it were followed by a statement PUT
FILE(a) SKIP;).

This is true of all output directed to system file SYSOUT, irrespective of the way this
file is referenced in PL/I:

PUT FILE (SYSOUT)...

OPEN FILE(a) TITLE (’SYSOUT’)
PUT FILE(a)...

*RUNOPT SYSFILE = TITLE (’b’)
OPEN FILE(a) TITLE(’b’);
PUT FILE(a)...

• Strings (like PRINT files) are output without the enclosing quotes.

6.5.3.1 Input from interactive device (SYSDTA)

For STREAM input from SYSDTA, the following deviations apply, unlike input from files:

• For LIST and DATA input, the end-of-line acts as separator for the items involved. If
any of the separators blank, comma, or semicolon precedes the end-of-line, the
whole is treated as one separator. Thus, the following applies for the limit values:

empty input: ignored
line consisting of all blanks: ignored
blank..., blank..., end-of-line together are one separator
a line consisting of one separator only: empty element

• For EDIT input, the end-of-line is the end of the string being entered. The input
string, if too short, is padded with blanks to the required length.

• If the last character of the input string is a hyphen (-), then the separator function of
the end-of-line is canceled for the particular line: The input string is continued on
the next line. The hyphen is removed from the input string.

U253-J-Z125-9-7600 253

interactive mode Stream-oriented editing

6.5.3.2 Output to interactive device (PRINT file to SYSOUT)

When a file with the attributes STREAM PRINT is output to the system file SYSOUT,
certain special considerations apply to interactive operation which do not apply to
batch mode.

With regard to output on an interactive device, a distinction must be made between line
mode and page mode.

In line mode the text for output is output a line at a time to the interactive device. Line
mode is selected by default. It can be explicitly selected by setting the page size to the
value 1 (PAGESIZE(1)).

The following differences then apply:

• The LINE functions acts like SKIP(1).

• The PAGE function acts like SKIP(1).

• The ENDPAGE condition is never set.

• SKIP(n) where n > 3 is reduced to SKIP(3).

• The line number which can be maintained by the built-in function LINENO increases
without limit.

• The page number which can be maintained by the built-in function PAGENO always
has the value 1.

Page mode is selected by setting the page size to a value greater than 1. In this mode,
the lines of a page are temporarily stored in a page buffer. An implicit or explicit page
feed (PAGE) causes the contents of the page buffer to be output on the interactive devi-
ce. Where a VDU is in use, the entire screen is first cleared.

The following differences apply:

• The value for the line length (LINESIZE) must not be greater than the line length on
the output device; otherwise an UNDEFINEDFILE condition will be raised.

For output devices having a carriage return, the line length (LINESIZE) must be 1
less than the line length on the output device.

• When a new line is commenced, the old line is not output to the output device but
is stored in the page buffer.

• SKIP(n) where n > 3 is reduced to SKIP(3).

254 U253-J-Z125-9-7600

Stream-oriented editing interactive mode

• The PAGE function causes the contents of the page buffer to be output to the out-
put device.

• The value for the page size (PAGESIZE) for VDUs must not be greater than the num-
ber of lines less 1 permitted for the screen; otherwise an UNDEFINEDFILE condition
will be raised.

• If the selected page size is exceeded, the PAGE function will be implicitly executed.

U253-J-Z125-9-7600 255

Overview Record-oriented processing

6.6 Record-oriented input and output

Record-oriented input and output is used for those files which have the RECORD attri-
bute in the PL/I program. Either the programmer can assign this attribute directly to the
file or it is assumed implicitly on the basis of other file attributes (e.g. UPDATE, DIRECT
etc.). On this, see also chapter 8 of the PL/I language reference manual [1]. With
record-oriented input/output, data is transferred in the internal form of representation.
This therefore restricts the degree of interchangeability between different computer
systems of files created in this mode of operation.

In record-oriented transmission, the unit of transfer from the viewpoint of the PL/I pro-
gram is a record in the external file; i.e. precisely one record is transferred in each
READ, REWRITE, LOCATE or WRITE operation. All PL/I types of organization are per-
mitted for record-oriented input/ output.

This section is therefore subdivided according to the organization methods

CONSECUTIVE
INDEXED
REGIONAL(1) and
REGIONAL(3)

Figure 6-12 gives an overview of the permitted input/output statements for RECORD
files in relation to the file attributes and type of organization. Certain exceptions to
these combinations are discussed in the following sections.

256 U253-J-Z125-9-7600

Record-oriented processing Overview

Attributes Statement Organization

WRITE FROM
OUTPUT

LOCATE [SET]

INTO
INPUT READ SET

SEQUENTIAL IGNORE

INTO CONS IND REG
READ SET

UPDATE IGNORE
REWRITE [FROM]

DELETE

WRITE FROM KEYFROM
OUTPUT REG

LOCATE [SET] KEYFROM

INTO REG
RECORD READ [KEY]

SET (1)

INPUT INTO
READ [KEYTO]

SET REG
SEQUENTIAL READ IGNORE

IND
KEYED INTO REG

READ [KEY]
SET (1)

INTO
UPDATE READ [KEYTO]

SET REG
READ IGNORE

WRITE FROM KEYFROM

REWRITE [FROM] REG

DELETE [KEY] 1)

OUTPUT WRITE FROM KEYFROM

INPUT READ INTO KEY
DIRECT
KEYED READ INTO KEY REG

WRITE FROM KEYFROM IND
UPDATE REWRITE FROM KEY

DELETE KEY

FCBTYPE SAM* ISAM PAM
1) see text for exceptions not

possible RECFORM FVU FV FV

Fig. 6-12 Permitted I/O statements with various file attributes and types of

organization

U253-J-Z125-9-7600 257

CONSECUTIVE Record-oriented editing

A matter requiring special consideration in record-oriented data transfer is the
SCALARVARYING specification in the ENVIRONMENT attribute. Writing and reading sca-
lar strings with the attribute VARYING in the LOCATE mode (LOCATE, READ SET) are
only practical with SCALARVARYING. See section 6.3.5 for details.

With record-oriented output it is also possible to create data sets which are to be subse-
quently printed out using the PRINT command. If carriage control is desired (SPACE=E
in the PRINT command), the following points must be noted:

Organization must be CONSECUTIVE.

The carriage control character must be generated by the program and output as the
first character of the record.

The codings for carriage control characters are contained in section 6.3.4. The type
of carriage control (esp. ASA) should be indicated using the FILE command or the
ENVIRONMENT attribute.

6.6.1 Rules governing CONSECUTIVE organization

CONSECUTIVE files are organized sequentially in the order of access or of their keys.
A CONSECUTIVE file may only be processed with the file attribute SEQUENTIAL.
CONSECUTIVE can be applied to the access methods SAM, PAM, and ISAM; keys are
generated automatically for ISAM. Depending on the access method, CONSECUTIVE
files may contain records of fixed, variable or undefined length. The possible in-
put/output statements are summarized in Figure 6-13.

Organization Attributes Statement

WRITE FROM
OUTPUT

LOCATE
CONSECUTIVE
SAM INTO
(ISAM) INPUT READ SET
(PAM) RECORD SEQUENTIAL IGNORE
F
V INTO
U UPDATE READ SET

IGNORE
REWRITE [FROM]

Fig. 6-13 I/O statements for CONSECUTIVE organization

258 U253-J-Z125-9-7600

Record-oriented editing CONSECUTIVE

6.6.1.1 Opening CONSECUTIVE files

When PAM, SAM or ISAM files are opened with the file attribute OUTPUT, positioning is
effected to the beginning of the file. Records contained in the file are lost. However, if

/FILE...OPEN=INOUT or
/FILE...OPEN=EXTEND

is specified in the FILE command, then positioning is effected to the end of the file and
the new records are added to the file.

Opening with the file attribute UPDATE is only permitted for files on direct access volu-
mes. The use of OPEN UPDATE assumes that the file has already been created. After
OPEN the current record position is at the beginning of the file.

If the file is an ISAM file, the KEYLEN/KEYLENGTH must be 4 or 8, and
KEYPOS/KEYLOC must be 1 or 5. Otherwise an UNDEFINEDFILE condition will occur.

6.6.1.2 Closing CONSECUTIVE files

Closing a file is done either explicitly by specifying the CLOSE statement or implicitly at
program termination. Should an output buffer still be present, this will be output to the
file. The assignment of a PL/I file to the BS2000 file is canceled. The buffers allocated
to the file in the PL/I program are released.

6.6.1.3 Writing to a CONSECUTIVE file

The file must have been opened with the OPEN attribute OUTPUT. The WRITE state-
ment causes one record to be output. The LOCATE statement sets a pointer (locator)
to the next free location in the I/O buffer. If RECSIZE and the length of the variable
specified in the WRITE or LOCATE statement are incompatible, a RECORD condition is
raised.

If the file is an ISAM file, the key is generated automatically by the input/output system.
In this case only 4 or 8 may be specified for KEYLENGTH/ KEYLEN, and KEYPOS
must be 1 or 5. If KEYLEN=4, then binary keys (FIXED BIN(31,0) with an increment of
1 are generated (FORTRAN form); if KEYLEN=8 is specified, the key will be generated
as an 8-digit decimal number (PICTURE ’(8)9’) with an increment of 1 (compatible with
EDT and EDOR).

U253-J-Z125-9-7600 259

CONSECUTIVE Record-oriented editing

6.6.1.4 Reading from a CONSECUTIVE file

The OPEN attribute must be INPUT or UPDATE. The statement READ INTO causes a
record to be read from the input buffer. READ SET sets the pointer to the record in the
input buffer. The statement READ IGNORE(n) causes the number of records specified
by n to be read but not transferred. If there is incompatibility between the current re-
cord length for the file and the variable specified in the READ statement, a RECORD
condition is raised; a transfer error will result in a TRANSMIT condition; and an
ENDFILE condition is signaled upon reaching the end of the file. The key of an ISAM
file is not supplied to the program.

6.6.1.5 Overwriting records in a CONSECUTIVE file

The OPEN attribute must be UPDATE. The record successfully read immediately before
is overwritten; that is, no READ error message must have occurred nor a preceding
READ IGNORE (n). RECORD condition is reported if the record and variable length are
incompatible or for the SAM and PAM access methods with variable-length records, if
an attempt is made to rewrite shortened or extended records, which is allowed for
ISAM. Transfer errors lead to the TRANSMIT condition.

6.6.1.6 Deleting records in a CONSECUTIVE file

It is not possible to delete the records of a CONSECUTIVE file.

260 U253-J-Z125-9-7600

Record-oriented editing CONSECUTIVE

6.6.1.7 FILE command for CONSECUTIVE files

If neither the file is already cataloged nor appropriate information supplied in the
ENVIRONMENT attribute, the FILE command should provide the following parameters:

/FILE filename, (Name of the data set)
LINK = PL/I-title,

SAM
FCBTYPE= ISAM ,

PAM

RECSIZE= r, (Number of characters incl. management information)

F|V|U
RECFORM= ,

({F|V|U}[,{A|M}])

STD Buffer size = 1 PAM block
BLKSIZE= (STD,n) , Buffer size in n PAM blocks up to 16

m Buffer size in number of characters
(required for tape files)

1
KEYPOS = , for RECFORM = F

5 for RECFORM = V

4 (for ISAM only)
KEYLEN = ,

8

p p: primary allocation/extension/reduction
SPACE =

(p[,s]) s: increment

EXTEND
OPEN = ,

INOUT

Rules governing parameters:

• For RECSIZE, the physical record length must be entered in number of characters;
i.e. record length field, carriage control character, record key etc. must be included
in the record length as required.

• For RECFORM, specifying U is meaningful only in connection with tape files. Specifi-
cation of A or M is only required if the file is to be subsequently printed out using
the PRINT command. See here also section 6.5.2.

• For BLKSIZE, with the exception of SAM tape files the buffer length must be speci-
fied in PAM blocks (up to 16 PAM blocks). The maximum permissible size that may
be specified for tape files is 32762 characters.

U253-J-Z125-9-7600 261

CONSECUTIVE Record-oriented editing

• The values for the SPACE parameter in the FILE command must be specified as a
number of PAM blocks in accordance with the quantity of data to be entered; in
particular, they must be compatible with the value of BLKSIZE. In the case of SAM,
the primary and secondary allocation specifications should in addition be divisible
both by 3 and by the number of PAM blocks per logical block. In the case of ISAM,
space should additionally be provided for the index area. Thus, at least 1 PAM block
more should be specified than given for BLKSIZE. If an invalid entry is supplied, its
value is set to the next higher allowable value when the file is opened.

Example

/FILE RESULT,LINK=OUTPUT,FCBTYPE=SAM,RECFORM=V,RECSIZE=84, -
BLKSIZE=STD,SPACE=(3,3)

Taking the system defaults into account, this is equivalent to:

/FILE RESULT,LINK=OUTPUT,RECSIZE=84

Further examples of the FILE command are given in section 6.2.2.5.

262 U253-J-Z125-9-7600

Record-oriented editing INDEXED

6.6.2 Rules governing INDEXED organization

In the case of a file having INDEXED organization, the records are provided with a key.
In the data set this key is always part of the associated record. As far as the PL/I pro-
gram is concerned, the key may also precede the record. It is possible to access the
records directly or sequentially according to the sequence of the keys. The file must
reside on a direct access volume.

A file having INDEXED organization can be processed in the following modes:

SEQUENTIAL
or SEQUENTIAL KEYED
or DIRECT KEYED

INDEXED organization is compatible only with the ISAM access method. The files may
contain records of variable or fixed length.

The possible input/output statements are summarized in Figure 6-14.

Organization Attributes Statement

INTO
INPUT READ SET

IGNORE

INTO
SEQUENTIAL READ SET

UPDATE IGNORE
REWRITE [FROM]
DELETE

WRITE FROM KEYFROM
OUTPUT

LOCATE KEYFROM
INDEXED
ISAM INTO [KEY]
F RECORD INPUT READ []
V SET [KEYTO]

SEQUENTIAL READ IGNORE
KEYED

INTO [KEY]
READ []

SET [KEYTO]
UPDATE READ IGNORE

WRITE FROM KEYFROM
REWRITE [FROM]
DELETE [KEY]

INPUT READ INTO KEY

READ INTO KEY
DIRECT WRITE FROM KEYFROM
KEYED UPDATE REWRITE FROM KEY

DELETE KEY

Fig. 6-14 I/O statement for INDEXED organization

U253-J-Z125-9-7600 263

INDEXED Record-oriented editing

6.6.2.1 Key specification

The key specified in the program under KEY or KEYFROM is converted to the data
type CHARACTER where necessary. The character string forming the key may have a
maximum length of 255.

During a write operation to a file, the key supplied by the program is entered in the
area of the record as defined by KEYPOS and KEYLEN or KEYLOC and KEYLENGTH.
When this is done, the key overwrites the corresponding part of the information sup-
plied by the record variable. Note, however, the special effect of ENV (KEYLOC(0)) as
described in section 6.3.3.

If the key supplied by the program is shorter than the specification in KEYLEN or
KEYLENGTH, it is padded out on the right with blanks. If the supplied key is longer, it
is truncated on the right.

During a read operation, the key contained in the record is placed in the variable na-
med under KEYTO. If this variable has the attribute CHARACTER and the length of this
string is not consistent with KEYLEN or KEYLENGTH, it will be truncated or padded out
with blanks on the right. If the variable is not a CHARACTER string, any of the condi-
tions may occur that also occur when assignments are made.

For files opened with

INPUT
RECORD SEQUENTIAL KEYED

UPDATE
ENVIRONMENT (INDEXED GENKEY)

specifying GENKEY indicates that a key specified by READ KEY (key) may also be shor-
ter than is declared for the file. Then the first record whose key begins with the speci-
fied character string is read; if no such record is present, the condition KEY is set.

If there is more than one key beginning with the specified character string, it is possible
by using READ KEY (key) to read only the first record (the one with the lowest key
value); the others can be accessed by sequential reading (READ or READ KEYTO). If
the key is not contained within the record (KEY-LOC(0)), then the key of the first record
cannot be accessed since KEY and KEYTO are not permitted together in a single state-
ment.

264 U253-J-Z125-9-7600

Record-oriented editing INDEXED

6.6.2.2 Opening an INDEXED file

Files with INDEXED organization may be opened as SEQUENTIAL, SEQUENTIAL
KEYED or DIRECT (KEYED). The attributes DIRECT or SEQL (without KEYED) may only
be used with the OPEN attributes INPUT or UPDATE. DIRECT or SEQUENTIAL without
KEYED are not therefore permitted in conjunction with the attribute OUTPUT. The initial
creation of files which are to be processed with the attribute DIRECT must be perfor-
med with the attribute SEQUENTIAL KEYED.

When a file is opened with the file attribute INPUT or UPDATE, then in the case of
DIRECT KEYED the current record position is undefined after opening while with
SEQUENTIAL or SEQUENTIAL KEYED it is at the beginning of the file. The data set
concerned must contain at least one record.

The access to files declared "shared update" is supported for files that are opened with
the UPDATE attribute. The shareability of files is indicated by the option
SHARUPD=YES in the FILE command. See BS2000 DMS Reference Manual [7] for the
shareability of files.

6.6.2.3 Closing an INDEXED file

Closing a file is done either explicitly by specifying the CLOSE statement or implicitly at
program termination.

Any remaining buffers of files opened with OUTPUT or UPDATE are output. The buffers
associated with the file in the PL/I program are released and the assignment to the
BS2000 file is canceled.

U253-J-Z125-9-7600 265

INDEXED Record-oriented editing

6.6.2.4 Writing to an INDEXED file

For writing to a file which has INDEXED organization, OUTPUT or UPDATE can be spe-
cified as the OPEN attribute. WRITE causes the record to be written; the LOCATE state-
ment provides the pointer to the reserved location in the output buffer. WRITE requires
that the file was opened with OUTPUT SEQUENTIAL KEYED or UPDATE DIRECT
KEYED. The LOCATE statement requires an OPEN with OUTPUT SEQUENTIAL KEYED.

A KEY condition is raised when a record with the same key as the one supplied alre-
ady exists. The KEY condition is also reported if there is no further space in the file for
the transferred record. Similarly the KEY condition is reported in the case of OUTPUT if
the keys are not in ascending order. There are different ONCODE values for the indivi-
dual cases; these are given in chapter 14.

RECORD condition is raised if the record and variable lengths are incompatible. A
TRANSMIT condition is reported in the event of transmission errors.

If a file is opened with OPEN = EXTEND (see 6.4.4.1), the new records must be sup-
plied with keys greater than all existing ones.

6.6.2.5 Reading from an INDEXED file

For reading from a file which has INDEXED organization, INPUT or UPDATE can be
specified as the OPEN attribute.

Incompatibility between record length and variable length will result in a RECORD condi-
tion.

If no record having the specified key is found, this will result in a KEY condition.

A TRANSMIT condition is raised in the event of transmission errors.

When reading is performed from files declared shared update, the block of files opened
with UPDATE and containing the record to be read, is locked to other users. This lok-
kout condition remains unaffected until a READ, REWRITE or DELETE statement is
given.

266 U253-J-Z125-9-7600

Record-oriented editing INDEXED

6.6.2.6 Overwriting records in an INDEXED file

When using the REWRITE statement to overwrite records in an INDEXED file, the OPEN
attribute must be UPDATE. The record whose key is specified in the REWRITE state-
ment will be overwritten (in the case of DIRECT); or the record that has just been read
(in the case SEQUENTIAL). A KEY condition is raised if no record having the specified
key exists.

When records are rewritten in shared update files, the block in which the record is to
be rewritten is released after writing in order to restore shareability.

6.6.2.7 Deleting records in an INDEXED file

When using the DELETE statement to delete records in an INDEXED file, the OPEN attri-
bute must be UPDATE. The record whose key was given in the KEY specification will
be deleted, or the record that has just been read (in the case of SEQUENTIAL
UPDATE). If no record having this key exists in the file, a KEY condition will be raised.

When records are deleted in shared update files, the block containing the record to be
deleted is released after deletion to restore shareability.

6.6.2.8 FILE command for INDEXED files

If neither the file is already cataloged nor appropriate information supplied in the
ENVIRONMENT attribute, the FILE command should provide the following parameters:

/FILE filename, (Name of the data set)
LINK = PL/I-title,
FCBTYPE = ISAM,
RECSIZE = r (Number of characters)

F
RECFORM =

V

STD (Buffer size = 1 PAM block)
BLKSIZE = ,

(STD,n) (Buffer size in n PAM blocks up to 16)

KEYPOS = 1 c (r-k), (Position of start of key)

KEYLEN = k, (Number of characters)

p p: primary allocation
SPACE =

(p[,s]) s: secondary allocation/extension

OPEN = EXTEND

U253-J-Z125-9-7600 267

INDEXED Record-oriented editing

Rules governing parameters:

• For RECSIZE, the record length must be entered as a number of characters. With
format V files, the record length field (4 characters) must be taken into considera-
tion; in the case of ENV (KEYLOC(0)), the key length must be added to the record
length.

• For KEYPOS, the position of the leftmost character of the key is specified in the
record. The minimum possible value is 1 when RECFORM=F, or 5 when
RECFORM=V.

• The values for the SPACE parameter in the FILE command must be specified in
accordance with the data sets to be entered; in particular, they must be compatible
with the BLKSIZE value. To accommodate the index area, at least 1 PAM block
more must be specified than the value for BLKSIZE.

An UNDEFINEDFILE condition may be raised if specifications are omitted.

Example

/FILE SET,LINK=TYP,FCBTYPE=ISAM,RECSIZE=90, -
/ RECFORM=V,BLKSIZE=STD,KEYPOS=5, -
/ KEYLEN=6,SPACE=(18,6)

Further examples are contained in sections 2.2.6 and 6.2.2.5.

268 U253-J-Z125-9-7600

Record-oriented editing REGIONAL(1)

6.6.3 Rules governing REGIONAL(1) organization

A REGIONAL(1) file is divided into regions, each of which is assigned a numerical key.
REGIONAL(1) files are implemented using the PAM access method. A REGIONAL(1) file
can contain only fixed-length records. Each region of the file contains only one record.
Each region number therefore corresponds to a relative record position in the file. The
record key (KEY) is identical to the region number and is not recorded in the file. The
records can be accessed sequentially or directly.

The records are arranged in close succession, like a continuous stream; consequently
one PAM block can contain one or more records or it may contain part of one record
only. From the region number (KEY) and the record length, the input/output system
determines the block number and the relative position of a record within this block.

The I/O statements permitted for REGIONAL(1) are summarized in Figure 6-15.

U253-J-Z125-9-7600 269

REGIONAL(1) Record-oriented editing

Organization Attributes Statement

INTO
INPUT READ SET

IGNORE

SEQUENTIAL INTO
READ SET

UPDATE IGNORE
REWRITE [FROM]
DELETE

WRITE FROM KEYFROM
OUTPUT

LOCATE KEYFROM

INTO
REGIONAL READ [KEYTO]1)
PAM RECORD INPUT SET
F SEQUENTIAL READ IGNORE
V 2) KEYED

INTO
READ [KEYTO]1)

UPDATE SET
READ IGNORE
REWRITE [FROM]
DELETE

OUTPUT WRITE FROM KEYFROM

INPUT READ INTO KEY

DIRECT READ INTO KEY
KEYED WRITE FROM KEYFROM

UPDATE REWRITE FROM KEY
DELETE KEY

1) for REGIONAL(1) alternatively with KEY
2) for REGIONAL(3)

Fig. 6-15 I/O statements for REGIONAL(1) and REGIONAL(3) organization

270 U253-J-Z125-9-7600

Record-oriented editing REGIONAL(1)

6.6.3.1 Key specification

The key provided by the program through KEY/KEYFROM must be a character string
consisting solely of numerics (0 thru 9) and blanks in place of leading zeros. The length
should not exceed 8 characters. Leading blanks are interpreted as zeros. If more than 8
numerics are specified, only the rightmost 8 numerics are used; if less than 8 numerics
are specified, padding blanks are added to the left.
Interpretation of the key starts from the left within the 8 characters. Blanks embedded
between numerics delimit the key; i.e. a blank to the right of a numeric along with any
other characters to the right of the blank will be ignored. If only blanks are found, the
key will receive the value zero. A KEY condition will result if the above rules are not
observed.

The key thus obtained from the KEY or KEYFROM specification serves as the region
number and is not recorded in the file. The lowest key possible is 0.

6.6.3.2 Dummy records

A REGIONAL(1) file contains valid records and/or dummy records. When a
REGIONAL(1) file is created, all the regions are preset to contain dummy records if file
opening is effected with DIRECT OUTPUT. If opening is performed with SEQUENTIAL
OUTPUT; the entry of dummy records is carried out in conjunction with write opera-
tions.

A dummy record is identified by ’FF’B4 in the first character, the rest of the record is
undefined. The user can access dummy records at any time and must be able to recog-
nize these himself. The input/output system does not check for dummy records, i.e. no
KEY condition will result when dummy records are accessed.

U253-J-Z125-9-7600 271

REGIONAL(1) Record-oriented editing

6.6.3.3 Opening a REGIONAL(1) file

A REGIONAL(1) file can be opened in any of the following ways:

• Initial open (OUTPUT)

• Extend (OUTPUT, UPDATE)

• Edit (INPUT, UPDATE)

A REGIONAL(1) file can be opened initially with either DIRECT OUTPUT or
SEQUENTIAL OUTPUT.

For the initial open in connection with DIRECT OUTPUT, on OPEN the entire primary
storage space is preformatted with dummy records by the input/output system in accor-
dance with the SPACE specification in the FILE command. Secondary SPACE specifica-
tions are not taken into consideration.

If a file is initially opened for SEQUENTIAL OUTPUT, the records must be supplied in
ascending order of their region numbers. Any region that is skipped is assigned a
dummy record by the input/output system.

An existing file can only be extended if OPEN = EXTEND (or OPEN = INOUT) and
SPACE = primary are specified in the FILE command. Otherwise, an existing file is dele-
ted and a new file is "initially opened". Extending means to once add "primary" PAM
pages, where "primary" is rounded as necessary to a multiple of 3 and at a minimum,
to the value of BLKSIZE.

The following options are supported for Extend:

• SEQUENTIAL KEYED OUTPUT
The keys of the newly supplied records must be greater than all existing ones.

• SEQUENTIAL KEYED UPDATE

• SEQUENTIAL DIRECT OUTPUT or UPDATE

A REGIONAL(1) file, once created, can be opened with the attributes DIRECT INPUT or
DIRECT UPDATE, or SEQUENTIAL INPUT or SEQUENTIAL UPDATE.

272 U253-J-Z125-9-7600

Record-oriented editing REGIONAL(1)

6.6.3.4 Closing a REGIONAL(1) file

Closing a file is done either explicitly by specifying the CLOSE statement or implicitly at
program termination.

Apart from the usual actions normally performed during the CLOSE process, a
REGIONAL(1) file opened with OUTPUT SEQUENTIAL causes the input/output system
to pad out the storage area with dummy records from immediately following the current
position to the end of the file.

6.6.3.5 Writing to a REGIONAL(1) file

The WRITE statement causes the specified variable to be written to the output buffer as
a record; the LOCATE statement provides a pointer to the reserved location in the out-
put buffer. No check is made as to whether the record is already present, and it is not
possible for a KEY condition to occur as a result of a key already existing. If in
SEQUENTIAL processing the record does not immediately follow its predecessor, all the
skipped regions are supplied with dummy records.

A KEY condition is raised if the value of the key is greater than the number of the last
region permitted on the basis of the file characteristics or if the key is syntactically erro-
red.

6.6.3.6 Reading from a REGIONAL(1) file

For reading from a file which has REGIONAL(1) organization, INPUT or UPDATE must
be specified as the OPEN attribute.

The READ statement causes a record to be read into the variable specified in the state-
ment. READ SET sets the pointer to the beginning of the current record in the input
buffer. Note that the input/output system also delivers dummy records. The user must
detect these himself; no KEY condition is set if dummy records are encountered. KEY
condition is reported if the value of the key is greater than the number of the last re-
gion generated at file creation time or if the key is syntactically wrong.

6.6.3.7 Overwriting records in a REGIONAL(1) file

If a record is to be overwritten using the REWRITE statement, then as above there is
no prior check to ascertain whether or not the record is a dummy record. If the file was
opened with the attribute SEQUENTIAL, the REWRITE statement must have been prece-
ded by a successful READ. Thus, no KEY condition can result unless the key addres-
ses a region which is not contained within the file or is syntactically errored.

U253-J-Z125-9-7600 273

REGIONAL(1) Record-oriented editing

6.6.3.8 Deleted records in a REGIONAL(1) file

When a record in a REGIONAL(1) file is deleted using the DELETE statement, the
record concerned is designated a dummy record. The first character of a dummy re-
cord contains (8)’1’B. As during writing, no check is made as to whether the record
exists, and no KEY condition is raised unless the key addresses a region which is not
contained within the file or is syntactically errored. DELETE can only be used for a file
that was opened with UPDATE. If a file was opened with the attributes SEQUENTIAL
UPDATE, a READ statement must be given beforehand.

6.6.3.9 FILE command for REGIONAL(1) files

If the file is not already cataloged and/or if the ENVIRONMENT attribute does not con-
tain corresponding options, the FILE command must contain a minimum of the follo-
wing parameters:

/FILE filename, (Name of the data set)
LINK = PL/I-title

[FCBTYPE = PAM,] (Default)
RECSIZE = r, (Number of characters)
RECFORM = F,
BLKSIZE = (STD,n),
SPACE = p, (Primary allocation for OUTPUT/

secondary allocation for EXTEND or INOUT)

Rules for the FILE command:

• For RECSIZE, only the record length is entered, as a number of characters. The key
does not affect the length of a record and does not appear in the FILE command.

• SPACE must allow 1 PAM page for management information.

• RECSIZE simultaneously defines the buffer size. No BLKSIZE specification is requi-
red.

• SPACE defines the storage space requirement as a number of PAM blocks, and
must be consistent with RECSIZE. If a secondary allocation is specified, this will be
ignored.

Example

File for 2000 regions

/FILE TELEPHONE,LINK=NO,FCBTYPE=PAM,RECSIZE=200, -
/ RECFORM=F,SPACE=198

274 U253-J-Z125-9-7600

Record-oriented editing REGIONAL(3)

6.6.4 Rules governing REGIONAL(3) organization

A REGIONAL(3) file must reside on a direct access volume. It allows fixed or variable-
length records which are prefixed by a key. Processing is possible in either sequential
or direct modes. The PAM access method is used.

A REGIONAL(3) file is divided into regions of n PAM pages each where 1 n 16.
The region size is determined by the BLKSIZE parameter in the FILE command. Each
region has a region number, the number of the first region being 0, the second 1 etc.
The first PAM page of the file is used to store administration information, with the result
that the region with the region number r begins at PAM page r . n + 2.

Each region contains one or more records, depending on the current length of the
records. A key is recorded before each record and the length of this key is not taken
into consideration in RECSIZE. The key preceding each record is known as the region-
specific record key. The I/O statements permitted for REGIONAL(3) files are summari-
zed in Figure 6-15.

KEY Region-specific record key
KEYFROM Region number

CHAR(x) PL/I

WRITE etc.

- - - - - - - - - - - - - - - -
Region-specific record key Region number File

. - - - - - - - - - - - - - - - -

KEYLEN
. 8 characters

KEYLENGTH

. Only numerics and leading blanks

Numerics to the left of an embedded
. blank will be ignored

READ
If x < 8:

. Pad left with blanks

.
KEYTO PL/I

If < KEYLEN: .
Pad right with blanks

Fig. 6-16 Organization of the key on access and transfer on reading for

REGIONAL(3) files

U253-J-Z125-9-7600 275

REGIONAL(3) Record-oriented editing

6.6.4.1 Key specification

The key specified in the source program is referred to as the source key. It is regarded
as a combination of the region number, and a key valid within the region and recorded
there. The first 8 characters from the right in the source key are used for the region
number; these characters (up to 8) may comprise only numerics (0 thru 9) and leading
blanks. Leading blanks are interpreted as zeros. As with REGIONAL(1), the first embed-
ded blank terminates the region number. If there are no numeric characters or if there
are invalid characters in the source key, a KEY condition is raised. The number obtai-
ned is used for addressing the referenced region (fetching or writing back the n PAM
blocks concerned).

As many characters are taken for the region-specific record key from the left of the
source key as are specified in KEYLEN in the FILE command or in KEYLENGTH in the
ENVIRONMENT attribute. If the source key is shorter than the KEYLEN specification,
the region-specific record key will be padded with blanks on the right. In this case in
particular it will also contain all the numerics of the region number. The region-specific
record key is prefixed to the relevant record as a character string. See also Figure 6-16.

Example 1

PL/I specificat.: KEY = (’RECORD01 12345678’)
FILE command: KEYLEN = 6
Interpretations: Source key RECORD01 12345678

Region-specific record key RECORD01
Region number 12345678

KEY
output RECORD01 12345678

KEYFROM

RECORD01 12345678

Region-specific key Region number
Length:6 Length:8

276 U253-J-Z125-9-7600

Record-oriented editing REGIONAL(3)

Example 2

PL/I specificat.: KEY = (’RECORD01 12345678’)
FILE command: KEYLEN = 16
Interpretations: Source key RECORD01 12345678

Region-specific record key RECORD02 12345678
Region number 12345678

KEY
output RECORD01 12345678

KEYFROM

RECORD01 12345678 12345678

Region-specific key Region number
Length:16 Length:8

Example 3

PL/I specificat.: KEY = (’RECORD01’)
FILE command: KEYLEN = 10
Interpretations: Source key RECORD01

Region-specific record key RECORD01
Region number KEY condition

KEY
output RECORD01

KEYFROM

RECORD01 00RECORD01

Region-specific record key Region number
Length:10 Length:8

because non-numeric:
KEY condition

U253-J-Z125-9-7600 277

REGIONAL(3) Record-oriented editing

Example 4

PL/I specificat.: KEY = (’RECORD A REGION B’)
FILE command: KEYLEN = 6
Interpretations: Source key RECORD A REGION B

Region-specific record key RECORD A
Region number KEY condition

KEY
output RECORD A REGION B

KEYFROM

RECORD A 0000000B

Region-specific record key Region number
Length:6 Length:8

because non-numeric:
KEY condition

Note on duplicate keys:

Since for WRITE no check is made on the region-specific record key to ascertain
whether a record having this key already exists in the region specified, records with
duplicate keys may occur.
In DIRECT access these records will only be retrieved when all the preceding re-
cords having the same key in the region have been deleted.

Normally, whenever no space is found for a new record in the region specified or
whenever a record to be read does not exist in the region specified, a KEY condi-
tion will be raised.

By specifying

ENVIRONMENT (LIMCT(n))

it is possible to stipulate that not only the region specified in the key is to be examined
but also n others. A KEY condition will only be raised if, in n + 1 regions no space is
found for a record (output) or the record is not found (input). If the end of the file is
encountered during this process, wraparound to the beginning of the file occurs.

The default is LIMCT(0).

278 U253-J-Z125-9-7600

Record-oriented editing REGIONAL(3)

6.6.4.2 Dummy records

With OPEN OUTPUT DIRECT, the entire file is preformatted region by region with
dummy records. In these the first character of each key field is filled ’FF’B4. The user
himself is responsible for ensuring that his keys do not begin with the character ’FF’B4.
If the file is opened with OUTPUT SEQUENTIAL, the entry of dummy records takes
place in conjunction with the write operation.

6.6.4.3 Opening a REGIONAL(3) file

In the case of a file with REGIONAL(3) organization, the following takes place during
the OPEN process:

With OPEN OUTPUT DIRECT, the entire primary storage space allocated to the file in
the SPACE parameter of the FILE command is regarded as being divided into regions,
and each region is preformatted with dummy records. Any secondary allocation is igno-
red.

With OPEN OUTPUT SEQUENTIAL KEYED, no preformatting takes place. However,
OPEN OUTPUT SEQUENTIAL KEYED requires that with the subsequent WRITE state-
ments the records be supplied in ascending order of region numbers. The region-speci-
fic record keys are not checked to ensure that a sequence is maintained; this means
that the records within a region are not sorted according to the region-specific record
keys. Regions whose numbers are skipped are preformatted with dummy records, as
also is any space remaining free in a region. If a REGIONAL(3) file is extended, the
same applies by analogy for REGIONAL(1) files as described in section 6.6.3.3.

6.6.4.4 Closing a REGIONAL(3) file

Closing a file is done either explicitly by specifying the CLOSE statement or implicitly at
program termination.

Where an OPEN OUTPUT SEQUENTIAL has taken place, all the regions will be filled
with dummy records that are not yet preformatted or filled with significant records i.e. in
the event of subsequent INPUT or UPDATE processing there will be no undefined
regions in existence.

U253-J-Z125-9-7600 279

REGIONAL(3) Record-oriented editing

6.6.4.5 Writing to a REGIONAL(3) file

The region number is obtained from the source key as previously described, and the
first free dummy record is sought in this region. Into this dummy record is entered the
new record (and its region-specific record key) or, in the case of LOCATE, the pointer
pointing to the beginning of the record is supplied to the program and the region-spe-
cific record key is entered. If in SEQUENTIAL processing the record is not intended for
the same region as its predecessor, the skipped area is filled with dummy records. See
also section 6.6.4.3.
A KEY condition is raised if the region number is too large or if there is no free record
in the existing region. See, however, 6.6.4.1 (LIMCNT).

6.6.4.6 Reading from a REGIONAL(3) file

A distinction is made between DIRECT and SEQUENTIAL processing. With DIRECT, the
region number and the region-specific record key are obtained from the source key.
The region is read into the I/O buffer (or a KEY condition is raised in the event of key
out of bounds) and a sequential search is performed from the beginning to the end of
the region for the first record having the region-specific record key. If such a key is not
found, a KEY condition is reported; see, however, section 6.6.4.1, LIMCNT. Otherwise,
the record is supplied to the program or, in the case of READ SET, the pointer is set to
the beginning of the record. With SEQUENTIAL, the next record defined is sought and
supplied or, in the case of READ SET, the pointer will point to the record. With READ
IGNORE, as many defined records as specified in IGNORE will be skipped. An
ENDFILE condition may be reported, where applicable. Dummy records are regarded
as non-defined records and are not supplied. If KEYTO is specified, only the region-
specific record key will be assigned to the variable specified there. See also Figure 6-
16.

6.6.4.7 Overwriting a REGIONAL(3) file

For SEQUENTIAL UPDATE, the REWRITE must be preceded by a successful READ.

The record specified in the source key (with DIRECT) must be present, otherwise a
KEY condition will result. Searching takes place as in the case of reading from
REGIONAL(3) file. Once found, the record will be overwritten with the new contents.
The first record having the desired key is overwritten in the region specified.

280 U253-J-Z125-9-7600

Record-oriented editing REGIONAL(3)

6.6.4.8 Deleting a record in a REGIONAL(3) file

The record is addressed on the basis of the source key and converted into a dummy
record. No KEY condition is raised if the record is not found.

A KEY condition occurs if the region number is too large.

6.6.4.9 FILE command for REGIONAL(3) files

If the file is not already cataloged or if the ENVIRONMENT attribute contains correspon-
ding options, the FILE command must contain a minimum of the following parameters:

/FILE filename (name of the data set)
LINK = PLI-title

[FCBTYPE = PAM,] (default)
RECSIZE = r, (maximum length of the record)

F
RECFORM = ,

V

STD buffer size = 1 PAM block
BLKSIZE = ,

(STD,n) buffer size in ’n’ PAM blocks (max. 16)
KEYLEN = k, (key length of the recorded key as a number

of characters) (1 to 255)

SPACE = p (primary allocation for OUTPUT/
secondary allocation for EXTEND or INOUT)

Rules for the FILE command:

• In RECSIZE, key length ’k’ is not taken into account whereas it must be included in
calculating the number of records that can be entered into one region.

• The size of region is determined by BLKSIZE, and must be such that it can accom-
modate at least one record, incl. key.

• Each region can accommodate one or more records, depending on the relationship
between BLKSIZE and RECSIZE and on KEYLEN.

• For KEYLEN, the length of the region-specific record key is specified. 1 k 255.

• In the SPACE specification, 1 PAM page must be allowed for administration informa-
tion.

U253-J-Z125-9-7600 281

REGIONAL(3) Record-oriented editing

• The SPACE specification should be consistent with RECSIZE and KEYLEN. It is not
possible to automatically extend the storage space allocated at file creation. Any
increment specified will therefore be ignored.

Specify the following: p = a * n + 1 where
a = number of regions required
n = BLKSIZE specification (1 n 16)

Example

File for 1000 regions, up to 100 bytes per record, up to 17 records per region, key-
length 18 bytes

/FILE ARTICLE,LINK=NO,FCBTYPE=PAM,RECSIZE=100, -
RECFORM=F,BLKSIZE=STD,KEYLEN=18,SPACE=1002

282 U253-J-Z125-9-7600

Magnetic tape Attributes

6.7 Magnetic tape

The processing of magnetic tapes is discussed in detail in the manual "Data Manage-
ment System (DMS), Tape Processing" [7]. With the exception of the attribute
BACKWARDS there are no special language elements in the PL/I language for tape
files; uniform language facilities are provided for all files. Due to the physical characteri-
stics of the magnetic tape storage medium there are certain limitations and certain addi-
tional control options which are explained in the following.

6.7.1 Access methods for tape files

The only access method permitted for tape files is SAM:

/FILE...FCBTYPE=SAM (For exception see 6.7.4)

6.7.2 File attributes

The following sets of attributes can be used when declaring a tape file or when opening
a tape file:

INPUT
STREAM[PRINT]

OUTPUT

INPUT[BACKWARDS]
RECORD SEQUENTIAL

OUTPUT

The file must have CONSECUTIVE ORGANIZATION. It can be specified in the declara-
tion with

[ENVIRONMENT (CONSECUTIVE)]

This method of organization is the default and need not therefore be specified.

U253-J-Z125-9-7600 283

Accessing Magnetic tape

6.7.3 Accessing

A magnetic tape is a storage medium that can only be written to or read sequentially.
This corresponds to the CONSECUTIVE method of organization. Of the access me-
thods normally permitted for CONSECUTIVE organization, UPDATE is not possible for
magnetic tape. Figure 6-17 gives an overview of the permitted sets of attributes and the
permitted statements for reading and writing records.

Organization Attributes Statement

INPUT GET [SKIP]

PUT [SKIP]
STREAM PRINT

CONSECUTIVE OUTPUT [PAGE,LINE]
SAM PUT []

[SKIP]
F

WRITE FROM
V OUTPUT

LOCATE
U

INPUT INTO
[BACK- READ SET
WARDS] IGNORE

RECORD SEQUENTIAL
not possible with

UPDATE magnetic tape

Fig. 6-17 Attributes and accessing for magnetic tape

Details on accessing may be found in sections 6.5 and 6.6.1. In addition, it is possible
when reading to begin with the last record in the file and to end with the first. This can
only be done using the attribute set

RECORD SEQUENTIAL INPUT BACKWARDS

284 U253-J-Z125-9-7600

Magnetic tape Closing

6.7.4 Closing the file

When closing a magnetic tape file, it is also possible to determine where the tape will
be positioned to. The following may be specified:

UNLOAD
CLOSE FILE (tapefile) [ENVIRONMENT ()]

LEAVE

The ENVIRONMENT specifications have the following meaning:

none The tape is rewound to the beginning.

UNLOAD The tape is rewound and unloaded. The device remains assigned to
the task.

LEAVE If the tape is read forwards, it is positioned to the end of the file, or
to the end of the tape if the file is continued on another tape reel.

If the tape is read BACKWARDS, it is positioned to the beginning of
the file, or to the beginning of the tape if the file begins on an diffe-
rent reel.

Note

LEAVE will have the desired effect only if the tape is closed with
CLOSE LEAVE and subsequently opened for reading with OPEN
SINOUT and

/FILE...,FCBTYPE=BTAM

has been declared.

U253-J-Z125-9-7600 285

7 Procedure interface
The PL/I language permits individual sections of a whole program to be compiled sepa-
rately. These are the external procedures. An external procedure can be invoked from
another external procedure. The PL/I facilities available for this purpose are described
in detail in chapter 6 of the language reference manual [1].

Section 7.1 explains how procedures are called in machine-oriented form, and provides
all the information necessary to ensure that the user fully understands this. In addition,
the following control methods are dealt with in greater detail:

• Type of parameter passing (VARIABLE, ASSEMBLER)

• Calling of library modules (LIBRARY)

• Linkage editor control (WXTRN)

Knowledge of the way in which internal calls are executed is important if a memory
dump is to be interpreted or if the user intends to set up an assembler procedure that
has the same structure as a PL/I procedure.

Another section describes the conditions under which linkage between PL/I procedures
and procedures written in assembler language can be achieved.

U253-J-Z125-9-7600 287

PL/I Procedure interface

7.1 PL/I interfaces

The following subsections explain how an external PL/I procedure is invoked and,
where applicable, how arguments are passed and a result is returned, and how a return
is made to the invoking block. To understand this section, it is necessary to have know-
ledge of the internal representation of data elements and of the assembly language.

The information given here is relevant to Version 3.xx of the compiler. Subject to altera-
tions.

7.1.1 Invocation interface

If a procedure is called, then certain operations are initiated first of all on the invoking
side. This is dealt with in section 7.1.1.1.

Further operations are required on the invoked side. The initial processing necessary
here is dealt with in detail in section 7.1.1.2.

288 U253-J-Z125-9-7600

Procedure interface PL/I

7.1.1.1 Invoking procedure

When a block is invoked, the address at which the program to be invoked should be
started is entered in register 15. Using the instruction

BALR 14,15

the address immediately following the instruction is stored in register 14 as the return
address and then there is a branch to the target address specified in register 15.

The start address of the activation record of the calling block is in register 13.

Register 12 contains a reference to the dummy register vector. This register must not
be changed. See also Figure 7-1.

Register Contents

1-4 Specifications for the first four parameters if available

Further parameter specifications are in the activation
record

12 Internal information; must not be changed

13 Start address of the activation record

14 Return address

15 Destination address

Fig. 7-1 Register contents for the invocation of an external PL/I procedure or an

assembler module in accordance with PLI1 conventions

7.1.1.2 Prolog

In the prolog of the invoked procedure, certain operations are performed which consist,
basically, of saving the current values of the registers in the activation record of the
invoking procedure and setting up the own activation record.

U253-J-Z125-9-7600 289

PL/I Procedure interface

Specifically, the following functions are performed (see also the general example in
Figure 7-2).

Program CSECT Entry to assembly program
USING Programm, 15 For constants

- - - - - - - - - B Start Skip constants
DS OF
DC FL1’n’

Own name of length n
DC CL7’Program’

Length DC F’96’
For own activation record

Header DC X’00010000’
Start address DC A (Start) For USING

USING activation record,13 For foreign activ. record
- Start STM 14,12, Register Save registers 14 thru 12

L 10,Start address
For instructions

USING Start, 10
L 9,Header Intermediate storage
L 8,Tempend End of predecessor act.rec.
L 7,Length Activ.record length
ALR 7,8 End of own act. record

LH 6,Tempsegmentno Only if: *COMOPT OPTIONS=XS
ICM 6,1,Tempsegmentno adapt segment numbers
CLM 6,2,4072(12) current segment number
BNE Request storage identical

CL 7,444(,12) Check whether space in
BNH Further

Request space EQU *
L 15,432(,12) Request more space
BALR 14,15 for stack

Further EQU *
DROP 13
USING Activation record,8 For own activation record
STH 6,Tempsegmentno Only if: *COMOPT OPTIONS

= XS
LR 6,7
STM 6,7 Tempend
ST 9, Header word Record
ST 13, Predecessor
LA 13, Activation record Start address of own
DROP 8 activation record for
USING activation record, 13 own activation record

Fig. 7-2 Flow chart for a prolog

• The first instruction is a branch instruction, which skips the constants at the begin-
ning. It must begin at word boundary.

290 U253-J-Z125-9-7600

Procedure interface PL/I

• After the branch instruction mentioned above there are two fullwords containing the
name of the assembler procedure under which it is called.

It has the following format:

1 byte number of significant characters in the name
7 bytes name, rightmost bits filled with blanks if necessary

rel. address Activation record DSECT
+0 Header word DS 1F
+4 Predecessor DS 1F
+8 DS 1F
+12 Register DS 14F
+68 DS 2F
+76 Temporary end DS 1F
+80 Permanent end DS 1F
+84 DS 2F
+92 Tempsegmentno DS CL1
+93 Permsegmentno DS CL1
+94 DS CL2
+96

Fig. 7-3 Structure of the activation record for the program in Fig. 7-2

• The contents of registers 14, 15 and 0 thru 12 are saved in the activation record of
the invoking procedure.
The start address of the activation record is contained in register 13.

• In the invoked procedure an own activation record is created; this should be set up
immediately after the activation record of the invoking procedure. For this, there is a
check to ascertain whether there is still enough space available for the activation
record. If not, more space is requested. Register 12 is needed for this purpose. Regi-
sters 7 and 8 are used for the passing and return of the values. With the exception
of registers 7, 8, 14 and 15, none of the registers is altered.

• The following values are entered in the own activation record (see also the descrip-
tion of the activation record in chapter 10):

Block type (+1)

Label (+2)

Predecessor activation record (+4)
The value of register 13 is entered.

Permanent end (+80)
The first address after the own activation record is stored. This value is usually
calculated by adding the equivalent field of the predecessor activation record to
the length of the own activation record.
If, however, there is insufficient space available after the predecessor activation
record, this field is modified appropriately as more space is requested.

U253-J-Z125-9-7600 291

PL/I Procedure interface

Temporary end (+76)
The value that is stored for the temporary end is the same as that stored for the
permanent end (+80).

• The start address of the own activation record is loaded in register 13. This register
is not reset until just before the return to the calling procedure.

• The contents of register 12 must not be modified.

A detailed explanation of the internal structure of the activation record can be found in
chapter 10. Figure 7-3 illustrates the structure of the activation record as can be used
for the assembler program in Figure 7-2.

7.1.2 Passing of parameters

The values of any parameters specified where a procedure is invoked must be made
available to the invoked procedure. This is normally done by passing, for each parame-
ter, a pointer indicating the beginning of the location at which the value is stored.

Note the following when modules are compiled with "*COMOPT OPTIONS = XS". For
parameters of type BIT UNAL, the passed pointer points to an absolute bit pointer that
points to the parameter value.

In certain cases, the data description associated with the parameter is required in addi-
tion to the parameter value.

There are several ways of passing parameters. For external procedures, the user can
control them by specifying OPTIONS:

DCL procedure ENTRY etc. or OPTIONS (option)

The external procedure must be capable of processing the parameters appropriately.
Details are given in the subsections that follow.

Section 7.1.4 explains how, under certain conditions, the result of a function reference
is also handled as an additional parameter.

If an argument is passed not "by reference" but "by assignment" (see also section
6.2.4.2 in the language reference manual [1]), then the passed pointer indicates the sto-
rage location of the generated auxiliary variable and not the storage location of the
argument. Accordingly, the data description for the auxiliary variable is also passed, if
necessary.

292 U253-J-Z125-9-7600

Procedure interface PL/I

7.1.2.1 Normal case (PL/I)

The general rules set out below apply for procedures where, during the declaration of
external procedure via a DECLARE statement, OPTIONS is not specified for the control
of parameters. By adhering to these rules, the user will produce the optimum conditions
with regard to time and storage space economy.

For each parameter a pointer is passed; this indicates the start of the storage location
at which the parameter value is stored.

The data descriptions for the parameters are, where applicable, passed after the para-
meter values.

The following rules apply with regard to the transfer of the data descriptions for the
parameters:

• A pointer to the data description is passed,

if the parameter contains an * (AREA, BIT, CHARACTER),
and if the DIMENSION or STRUCTURE attribute is present.

• A length specification is passed

if there is an * in the parameter (AREA, BIT, CHARACTER),
and if the parameter is scalar.

• An undefined value is passed,

if the AREA, BIT, CHARACTER or DIMENSION attribute is present
but there is no * in the parameter.

• In all other cases the data descriptions are not passed.

If the data description of the parameter is not known by the invoking side, it is assu-
med that it contains an *.

U253-J-Z125-9-7600 293

PL/I Procedure interface

Parameter block Register 1 thru 4
first

Parameter 1 4 words

etc.

Parameter n

Activation record
Data description block

remaining
First data description words

+96

etc.

Last data description

Fig. 7-4 Passing of parameters (Normal Case)

If the pointers to the parameter values are listed in the order in which they are written
in the source program and if, subsequently, the values passed for the data description
are listed in the same order, they are passed to the called procedure in the following
way (see Figure 7-4).

the first four words in registers 1 thru 4 and
all the remaining words after relative address +96 in the activation block of the invo-
king procedure.

The start address of the activation record is transferred into register 13.

There is a detailed explanation of the data description in chapter 10.

In certain cases, if a procedure is invoked by means of a function reference, an additio-
nal parameter can be passed for the return of a result. This is described in section
7.1.4.

294 U253-J-Z125-9-7600

Procedure interface PL/I

Using the PARAMETER (INPUT) attribute (see PL/1 Beschreibung, section 4.2,
PARAMETER) it is possible to specify that this parameter only passes values to the cal-
led procedure, but not to the calling procedure (passing by statement; passing by
value; see PL/1 Beschreibung section 6.2.4.2). If the parameter satisfies the following
conditions, the value itself is passed instead of the pointer to the parameter value:

scalar parameter
no * specification
not greater than a fullword.

If the value occupies less than a fullword, entities with REAL BINARY attributes are sto-
red right-justified; all other ones, left-justified in the fullword.

As regards parameters of external procedures, the specification must be given both on
the calling and on the called side of the same parameter:

Example

Calling side

DCL Entry ENTRY (CHAR(1), PARAMETER (INPUT),
FIXED BINARY(15) PARAMETER (INPUT),
CHAR(30);

Called side

Entry: PROCEDURE (A,B,C);

DCL A CHAR(1) PARAMETER (INPUT),

B FIXED BINARY(15) PARAMETER (INPUT),

C CHAR(30) PARAMETER;

As regards parameters for internal procedures the entry as given for the called side will
do.

The PARAMETER (UPDATE) and PARAMETER (OUTPUT) specifications do not effect a
change in parameter passing.

U253-J-Z125-9-7600 295

PL/I Procedure interface

7.1.2.2 General assembler convention (VARIABLE)

In special cases, it may be necessary to pass the data descriptions for all the parame-
ters during parameter passing. This can be achieved by specifying OPTIONS
(VARIABLE) when declaring the entry. The following should be declared:

DCL entry ENTRY etc.
OPTIONS (VARIABLE);

This form of parameter passing is designed for use in the invocation of assembler pro-
cedures. It cannot be used for PL/I procedures.

If OPTIONS (VARIABLE) is specified, then the parameters are not passed directly, but
are combined with the data descriptions in an input block and a pointer to this input
block is transferred into register 1. The structure of the input block is as follows (see
also Figure 7-5):

• The first word is a header word, the rightmost 16 bits of which contain the number
of parameters passed. The leftmost 16 bits are undefined.

• There then follows a pointer for each argument, in the order in which they are writ-
ten in the source program; the pointer refers to the address at which the argument
value is stored.

• If the procedure in question has been referenced by means of a function reference,
the result is returned via an additional parameter, as described in section 7.1.4.

• For each parameter and, where applicable, for the result, a pointer then follows indi-
cating the data description belonging to the parameters and, if appropriate, to the
result.

• For data descriptions having the PICTURE attribute, data type X’00’ or X’01, and not
data type X’3A’ or X’3B’, is transferred; the former has an extended data description
since it also contains a picture description. The data description and the picture
description are dealt with in detail in section 10.6.

296 U253-J-Z125-9-7600

Procedure interface PL/I

Register 1

Pointer

Input block

16
Undefined Number of Parameters

Parameter 1

etc.

Parameter n

Data description 1

etc.

Data description n

1 fullword

Fig. 7-5 Passing of parameters in the input block when OPTIONS (VARIABLE) is specified

U253-J-Z125-9-7600 297

PL/I Procedure interface

7.1.2.3 Standard assembler convention (ASSEMBLER)

If OPTIONS (ASSEMBLER) is specified, then the parameters are passed in accordance
with Industry Standard compatible assembler conventions. The declaration is then as
follows:

ASSEMBLER
DCL entry ENTRY etc. OPTIONS ([INTER]);

ASM

All entries shown above following OPTIONS mean the same.

An input block is set up for the transfer and its address is passed in register 1. The
structure of the input block is as follows (see also Figure 7-6):

• A pointer is specified for each argument, in the order in which they are written in
the source program; the pointer refers to the address at which the argument value
is stored. The leftmost 8 bytes all have the value ’0’B.

• For the last parameter, the leftmost bit has the value ’1’B, and not ’0’B.

• If no parameters are passed, then all the bits in register 1 have the value ’0’B.

Data descriptions are not passed.

Register 1

Pointer

8 24
X’00’ Pointer to parameter 1

8 24
X’80’ Pointer to parameter n

1 fullword

VARYING: Pointer refers to length entry
BIT: Pointer refers to character with first bit

Fig. 7-6 Passing of parameters in the input block when OPTIONS

(ASSEMBLER[INTER]) is specified

298 U253-J-Z125-9-7600

Procedure interface PL/I

The following exceptional feature should be noted:

• If a parameter has the VARYING attribute, the pointer indicates the length specifica-
tion before the data, and not the beginning of data. See also the internal representa-
tion in chapter 10.

• Only a byte address can be passed as a pointer. This must be taken into considera-
tion if the parameter has the BIT attribute and the first bit does not begin at a byte
boundary.

7.1.3 Problem processing

After the prolog comes the actual solution of the problem. Here,

• register 13 always contains the start address of the own activation record and

• the contents of register 12 are never modified.

Register Contents

12 internal information; is never modified

13 start address of the own activation record (reset in call
phase or return phase)

Fig. 7-7 Registers that always have specific contents if PL/I blocks are used

7.1.4 Return of the result

If a procedure is invoked via a function reference then, on return, a result is returned to
the invoking procedure. The result is returned in the following manner:

• A real scalar floating point value is returned in floating point registers F0 thru F3.

• A value with a maximum length of 1 fullword is returned in register 1.

• All other values are returned via an additional parameter; one returned value is pro-
cessed with an * as a special case.

See also the following subsections.

U253-J-Z125-9-7600 299

PL/I Procedure interface

7.1.4.1 Return in register 1

The value of the result is returned in register 1 if the item is scalar and one of the follo-
wing data types is given:

• BIT(n) NONVARYING where n 32; the value is stored in register 1 and is right-
justified.

• REAL FIXED BINARY (always like PREC(31,x))

• POINTER

• OFFSET

7.1.4.2 Return in floating point registers

The value of the result is returned in floating point registers if the item is scalar and the
following data types are present:

• REAL FLOAT BINARY PRECISION (g)
• REAL FLOAT DECIMAL PRECISION (g)

The registers are used as follows:

• Register F0 left half for DECIMAL g = 1 thru 6
for BINARY g = 1 thru 21

• Register F0 for DECIMAL g = 7 thru 16
for BINARY g = 22 thru 53

• Register F0 and F2 for DECIMAL g = 17 thru 33
for BINARY g = 54 thru 109

7.1.4.3 Return via parameters

If none of the cases described in sections 7.1.4.1 and 7.1.4.2 apply, then the value is
returned via an additional parameter, the result parameter.

The result parameter is the last parameter in the parameter list. On invocation the poin-
ter is defined, but the value of the parameter is not. The called program stores the
result in the storage area indicated by the pointer of the result parameter. The structure
of the parameter and the allocation of the data description are the same as for other
parameters and can be found in section 7.1.2.

If no parameters have been declared for the procedure, then the result parameter is the
only parameter.

If the result is a value with an *, it is returned in accordance with the rules described in
section 7.1.4.4.

300 U253-J-Z125-9-7600

Procedure interface PL/I

7.1.4.4 Return when * is specified

If an * is specified in the RETURNS option in the PROCEDURE or ENTRY statement,
then, as explained above, another parameter, the result parameter, is added to the list
of parameters; this is used for the result.

There is always a data description for this result parameter.

During parameter transfer, this result parameter is treated as a normal parameter. Its
value is undefined when the procedure is called; it is defined later in the called procedu-
re.

The result parameter consists of a pointer (indirect pointer), which indicates a pointer in
the activation record of the calling procedure (direct pointer). The value of the direct
pointer is undefined when the procedure is called.

Parameter list
Activation record
...................

. .

Parameter n in- + 0
direct pointer

Calling
+ 76 Temporary end proce-

. . dure

Data
description n Direct pointer

Set
Data description pointer

+ 0
Called

+ 76 Temporary end proce-
dure

Replace * by Value of the
current value result

.

Store value in
activation
record Extend

activation
record

Fig. 7-8 Return of a value when * is specified

U253-J-Z125-9-7600 301

PL/I Procedure interface

The following functions are executed by the invoked procedure (see also Figure 7-8):

• In the data description, the * is replaced by the current value (Pos. 1 in Figure 7-8).

• The current activation record is temporarily extended by the amount of storage
space required for the result and the result is stored there Pos. 2).

• A pointer to the storage location occupied by the result is stored as a direct pointer
in the storage cell indicated by the indirect pointer passed as a parameter. The sto-
rage cell of the direct pointer is located in the activation record of the invoking pro-
cedure (Pos. 3).

In contrast to the general rule, in the case of variables having the VARYING attri-
bute, the pointer does not indicate the length specification, but the first byte after
the length specification.

• When there is a return from the invoked procedure, its (extended) activation record
is not freed (as in all other cases), but is added to the activation record of the invo-
king procedure. It is then freed by the invoking procedure after the result of the func-
tion reference has been processed (Pos. 4).

All these interrelationships are illustrated in Figure 7-8. The structure of the activation
record is described in chapter 10 and the passing of parameters is dealt with in section
7.1.2.

7.1.5 Terminating a procedure

There are two ways of leaving the invoked procedure.

• Return
There is a return to the place from which the procedure was invoked (RETURN,
END).

• Branch
There is a branch to any position of a dynamically preceding (calling) procedure, via
a GOTO statement.

302 U253-J-Z125-9-7600

Procedure interface PL/I

7.1.5.1 Return

If the procedure returns to the point of invocation, the following environment is establis-
hed:

• The start address of the predecessor activation record is loaded in register 13. It is
located in the own activation record (+4).

• Registers 2 thru 11 are reset to the values they had when the procedure was invo-
ked.

• If no result is returned in register 1, it is set to the value it had when the procedure
was invoked.

The return address was stored in register 14 on invocation and was saved in the activa-
tion record of the predecessor (+12) in the prolog. If register 14 is also reset to its for-
mer value, then a return can be made via the BR 14 instruction.

If the invocation is a function reference, a result is returned. This is dealt with in section
7.1.4.

Register Contents

0 any

1 functional value (result) or unchanged

2-11 unchanged

12 unchanged; cannot be temporarily altered either

13 unchanged (pointer to the activation record of the calling
procedure)

14-15 any (register 14 usually contains the return address)

Fig. 7-9 Register contents for the return to a PL/I procedure

Return EQU *
USING Activation record, 13 for own activation record
L 13,Predecessor address of predecessor activ.

record
LM 1,11,Register+121) restore register 1 thru 111)

LM 2,11,Register+161) restore register 2 thru 111)

L 14,Register+0 restore register 14
BR 14 branch

1) Do not restore register 1 during a function reference.

Fig. 7-10 Example of a return to the invoking point

U253-J-Z125-9-7600 303

PL/I Procedure interface

7.1.5.2 Branch

A procedure can be left via a GOTO statement. In this case the branch destination
must be in a dynamically preceding block.

The following functions are executed in the invoked procedure to permit the branch:

• The third full word of the label value contains the address of the activation record
that belongs to the branch destination. This address is entered in register 13 thus
establishing the environment of the target procedure.

• Registers 3 thru 11 are reset at their former values, which were saved in the activa-
tion record of the branch destination (relative 32).

• The base address for the branch destination is transferred to register 10. It is loca-
ted in the second fullword of the label value.

• A branch is made to the address of the branch destination, which is located in the
first fullword of the label value.

See also Figures 7-11 and 7-12.

LA 1,Parameter Pointer to label value to reg. 1
LM 1,3,0(1) Label value to reg. 1 thru 3
CR 3,13 if current activation record and that of

- - - - - - BC 8,Further the label value are the same: Branch
LR 13,3 Activation record of branch dest. to reg. 13
USING Activation record, 13 for target activation record
LM 3,11, Registers 3-11 Restore registers 3 thru 11

- Further LR 10,2 Instruction base to reg. 10
MVC Block(2),Statement Normalize conditions

- - - - - - BR 1 Branch to destination

Fig. 7-11 Flow diagram for a branch to a label passed as parameter

Activation record DSECT
+0 DS 8F
+32 Registers 3 - 11 DS 9F Registers 3 - 11
+68 DS 4F
+84 Block conditions DS CL2

Bits for enabled conditions
+86 Statement DS CL2

Fig. 7-12 Structure of the activation record for Figure 7-11

304 U253-J-Z125-9-7600

Procedure interface PL/I

7.1.6 Library procedure (LIBRARY)

Certain services are available to the user in the form of supplied and ready-compiled
external procedures. The scope of the services provided by these procedures is dealt
with, separately for each procedure, in chapter 11. The general interrelationships invol-
ved are to be found in the appropriate sections.

If one of these procedures is invoked, the entry must be declared in the invoking proce-
dure via the DECLARE statement, as specified in the description of the procedure.

For some of the procedure

OPTIONS (LIBRARY) or
OPTIONS (LIB)

must be specified when the entry is declared. This means that as many number charac-
ters (#) as are needed to make the name 8 characters long are added to the entry
name, which, in accordance with the general rules for external names, can consist of a
maximum of 7 characters. The procedure is contained under this name in the PLI1 run-
time system.

This means that the user can also use the same name for his own external procedures,
as long as he adheres to the PL/I rules governing the use of names. See also the
example in Figure 7-13.

The OPTIONS (LIBRARY) specification should not be used if the entry identifies an
external procedure that has been generated and compiled by the user.

DCL ERROUT ENTRY OPTIONS (LIBRARY);
CALL ERROUT; call entry ERROUT##
BEGIN; in the library

DCL ERROUT ENTRY;
CALL ERROUT; invokes own external

procedure ERROUT

Fig. 7-13 Example of the same entry name with and without OPTIONS LIBRARY

U253-J-Z125-9-7600 305

PL/I Procedure interface

7.1.7 (WXTRN) Linkage

If, in an external procedure, the entry of another external procedure is declared, then
the latter is automatically included at link-edit time; an explicit specification is not requi-
red here.

If automatic linkage is not desirable, it can be prohibited by specifying OPTIONS
(WXTRN) during entry declaration:

DCL entry ENTRY or OPTIONS (WXTRN);

Such an entry is only bound into the program if this is explicitly requested via the
INCLUDE specification at link-edit time or if it is automatically linked as a result of
another external procedure belonging to the program. See also section 3.3.4.

306 U253-J-Z125-9-7600

Procedure interface ASSEMBLER

7.2 Assembler procedures

In certain cases it may be desirable, or necessary, to use a procedure written in assem-
bler language rather than an external PL/I procedure. This can be for any of the follo-
wing reasons:

• The functions of an already existing assembler-language program are to be used in
a PL/I program.

• Functions that can only be implemented using assembler language are to be used
in a PL/I program.

• A PL/I procedure is to be replaced by an equivalent, but more efficient, assembler
procedure.

There are two ways of achieving this:

• An assembler program having the same characteristics as a PL/I procedure is cre-
ated.

• An assembler procedure that conforms to standard assembler conventions is written
(see section 7.1.2.3).

• If data descriptions of the parameters are required, the general assembler conven-
tion (see section 7.1.2.2) can be used.

In chapter 13 of this manual ASSEMBLER macros are described which simplify the con-
nection of ASSEMBLER programs to PL/I programs and vice versa.

This is further explained in the following subsections:

U253-J-Z125-9-7600 307

ASSEMBLER Procedure interface

7.2.1 Assembler procedure conforming to PLI1 conventions

This method of using assembler procedures in PL/I programs is particularly suitable if
the assembler procedures are newly written and specially designed for use in PL/I pro-
grams. Then they can be adapted most efficiently.

In section 7.1 there is a detailed explanation of how PL/I procedures are invoked on
the assembler level. An assembler procedure called by a PL/I program must behave
exactly like a PL/I procedure in terms of initial processing (prolog) following the call,
acceptance of parameters, result return, and control transfer.

If an assembler procedure called by a PL/I program is to invoke a PL/I procedure in
turn, then the invocation, parameter supply, and where applicable the acceptance of
results must also be carried out as with PL/I procedures.

When a PL/I program run is terminated, there are still certain concluding operations to
be performed, for example the contents of output buffers are output and open files are
closed etc. This is known as termination processing. It can be compared with the "ON
FINISH ON unit" facility available in the PL/I language.

If the assembler procedure is set up in accordance with PL/I conventions, then the
PL/I termination processing is also valid for it.

If an error occurs in the assembler procedure, then the appropriate PL/I error proces-
sing facility is activated and, if applicable, the appropriate ON unit is called.

To ensure that the error handling routine of the PL/I runtime system is also available
for any errors that may occur in the assembler procedure, it is good practice to declare
the entry point of the assembler program as follows in the calling PL/I procedure:

DCL entry or OPTIONS (PLI1)

Then register R13, which is important for error handling, is saved on every call and
reset on return.

308 U253-J-Z125-9-7600

Procedure interface ASSEMBLER

7.2.2 Assembler procedures conforming to standard assembler conventions

If assembler programs generated in accordance with Standard Assembler Conventions
are invoked by PL/I procedures, then, during the declaration of the assembler proce-
dure entry in the PL/I program,

ASSEMBLER
OPTIONS ([INTER])

ASM

must be specified. The parameters are then passed in the form described in section
7.1.2.3. The INTER option has no additional meaning.

As a prerequisite, however, the assembler subroutine must observe certain restrictions:

no own interrupt handling
no modification of register 12
no calling of PL/I procedures
no occurrence of conditions
Assembler subroutine cannot be called by function reference

7.2.3 Assembler procedures conforming to general assembler conventions (VARIABLE)

All details of 7.2.2 apply accordingly. Declaration is by:

OPTIONS (VARIABLE)

The passing of parameters is described in 7.1.2.2. Unlike OPTIONS (ASSEMBLER),
returns of function values are permitted, though they are then treated as additional para-
meters. A special benefit of this type of parameter supply is that a corresponding PL/I
descriptor is generated or evaluated for every parameter and that due to the separate
calculation of the number of parameters, the BIT UNALIGNED parameter type may be
used also.

U253-J-Z125-9-7600 309

ASSEMBLER Procedure interface

7.2.4 Invocation of PL/I procedures from assembly-language programs

If PL/I procedures are to be invoked from assembly-language programs, the entry to a
PL/I procedure must be declared as follows:

PROCEDURE
Entry: OPTIONS(ASSEMBLER)

ENTRY

Note the following when writing the declaration:

• The specifications ASSEMBLER and MAIN cannot be used together.

• The RETURNS specification is not permissible.

• The PL/I program interrupt handling feature must have been activated when the
PL/I procedure is running.

• When a PL/I procedure is invoked the following action is to be taken in the invoking
assembly-language program:
The address of the parameter list is expected in register 1. The parameter list is to
be created in accordance with standard assembler conventions (see section 7.1.2.3).
The address of the save area is to be entered in register 13. The save area must
start on word boundary and have a length of 18 words.
The address of the PL/I procedure that is to be called must be contained in register
15.
The invocation must be effected with the instruction BALR R14, R15. Return from the
PL/I procedure is made via register 14.

310 U253-J-Z125-9-7600

Procedure interface FORTRAN-COBOL

7.3 FORTRAN and COBOL procedures

7.3.1 General

The PLI1 interlanguage facilities permit communication, at execution time, with
FORTRAN and COBOL procedures. The foreign procedures should have already been
generated by:

the FORTRAN compiler FOR1 from V1.40 or
the COBOL compiler COB1 from V1.21.

Communication between PLI1 and the foreign procedure is handled as follows:

in the case of FORTRAN via parameters and EXTERNAL data
in the case of COBOL via parameters only.

A PLI1 procedure references a COBOL procedure by a CALL statement, a FORTRAN
procedure by a CALL statement or as a function procedure. Parameters are supplied
with the call; function values are returned through functions.

A COMMON block in FORTRAN and a PLI1 variable with the STATIC EXTERNAL attri-
bute are stored in the static memory. If both have the same name, then they are on top
of one another and they have the effect of two identical STATIC EXTERNAL variables in
PLI1: if one of the variables is assigned a value, then the other is simultaneously assig-
ned the same value.

There is no comparable capability in COBOL; only parameters can occupy the same
storage location in PLI1 and COBOL.

The whole language interface is implemented by the PLI1 compiler using OPTIONS ent-
ries. Existing FORTRAN and COBOL procedures need, in general, not be changed or
recompiled and new procedures can be generated without being considered for interlan-
guage communication.

In COBOL, a procedure is a subroutine, but in FORTRAN it is subroutine or a function.
The conventions of the language in question are not affected by the language interface.

The processing of a file must be terminated with a CLOSE statement before calling a
foreign procedure if the same file is to be processed in this foreign procedure.

REGIONAL files can be processed in PLI1 procedures only.

In case of CONSECUTIVE access to ISAM files PLI1 will only process 4-byte BINARY
keys or 8-byte CHARACTER keys.

U253-J-Z125-9-7600 311

FORTRAN-COBOL Procedure interface

7.3.2 Matching the data

A detailed knowledge of the COBOL and FORTRAN languages is not necessary for
interlanguage communication, but knowledge of the data representation is. The internal
representation of the argument in PL/I and that of the corresponding parameter in
FORTRAN or COBOL must be compatible. As is the case with the passing of parame-
ters between external PL/I procedures, so too here the compatibility cannot be chek-
ked by the compiler. This is the responsibility of the user.

If a PL/I data type of a parameter has no equivalent data type in FORTRAN or COBOL,
the compiler issues a warning. Results at runtime are then unpredictable and the pro-
gram may terminate abnormally. PL/I has more data types than FORTRAN or COBOL
and not all of them have equivalents in either of the two other languages.

Besides the data types, the alignment of the data in memory is also important. The follo-
wing combinations are valid here:

aligned unaligned

PL/I ALIGNED UNALIGNED
FORTRAN Normal case -
COBOL SYNCHRONIZED not SYNCHRONIZED

The alignment of an argument is deduced, like the data type, from the parameter desc-
ription or from the argument itself. Only ALIGNED arguments can be passed to
SYNCHRONIZED COBOL parameters, or to FORTRAN parameters. Both ALIGNED and
UNALIGNED parameters can be passed to COBOL parameters that have not been dec-
lared with SYNCHRONIZED. The user himself is responsible for the consistency of argu-
ments and parameters.

312 U253-J-Z125-9-7600

Procedure interface FORTRAN-COBOL

FORTRAN

The data types which are compatible between PL/I and FORTRAN are listed in Figure
7-14.

FORTRAN PL/I only ALIGNED data

INTEGER * 2 FIXED BINARY (p,q) where 0 < p 15, q=0

INTEGER * 4 FIXED BINARY (p,q) where 15 < p 31, q=0

REAL * 4 FLOAT BINARY (p) where p 21
FLOAT DECIMAL(p) where p 6

REAL * 8 FLOAT BINARY (p) where 21 < p 53
FLOAT DECIMAL(p) where 6 < p 16

REAL * 16 FLOAT BINARY (p) where 53 < p 109
FLOAT DECIMAL(p) where 16 < p 33

COMPLEX * 8 COMPLEX FLOAT BIN(p) where p 21
COMPLEX FLOAT DEC(p) where p 6

COMPLEX * 16 COMPLEX FLOAT BIN(p) where 21 < p 53
COMPLEX FLOAT DEC(p) where 6 < p 16

COMPLEX * 32 COMPLEX FLOAT BIN(p) where 53 < p 109
COMPLEX FLOAT DEC(p) where 16 < p 33

LOGICAL * 1 BIT(8)

LOGICAL * 4 BIT(32)

CHARACTER n CHARACTER (n) NONVARYING
fixed length

CHARACTER n CHARACTER (n) VARYING
variable length

Fig. 7-14 Compatible PL/I and FORTRAN data types

PL/I arrays (DIMENSION), providing they have connected memory, can be passed to
FORTRAN fields. If the elements are character strings, they must have the
NONVARYING attribute. Fields cannot be returned as a functional value.

In contrast with arrays in PL/I, which are stored page by page, multidimensional fields
in FORTRAN are stored column by column. By iSUB defining of an array it is possible
to access the same element in PL/I, e.g. using B (i,j,k), as is accessed in FORTRAN,
using A (i,j,k). (See section 4.2 under DEFINED attributes: iSUB defining in the PL/I refe-
rence manual.)

U253-J-Z125-9-7600 313

FORTRAN-COBOL Procedure interface

Example

1. PL/I routine calls FORTRAN subroutine, with parameter passing:

PLIROUT: PROC;

DCL FORUP ENTRY (DIM(4,5,6)...)OPTIONS(FORTRAN);
DCL A DIMENSION (4,5,6)...;
DCL B DIMENSION (6,5,4)DEF A (3SUB,2SUB,1SUB)...;

/* IN PLI B IS USED */
CALL FORUP (A);

END;

2. PL/I subroutine is invoked by a FORTRAN routine, with parameter passing:

PLIUP: PROC (A) OPTIONS (FORTRAN);
.

DCL A DIMENSION (4,5,6) PARAMETER...;
DCL B DIM (6,5,4) DEF A (3SUB,2SUB,1SUB)...;

/* IN PLI B IS USED */
.

END;

In both cases, in FORTRAN, the fields are declared with

DIMENSION A (6,5,4)

Note

DEFINED variables with iSUB option cannot be used with GET DATA and PUT
DATA.

Declarations with an * are also allowed in permissible places when parameters are
passed to FORTRAN. There is then a check to ensure that current values are used
in the data descriptions to be passed.

314 U253-J-Z125-9-7600

Procedure interface FORTRAN-COBOL

COBOL

The compatible PL/I and COBOL data types are listed in Figure 7-15.

Concerning alignment, the following options are compatible:

ALIGNED and SYNCHRONIZED
UNALIGNED and no SYNCHRONIZED option.

If arrays are passed, a warning is issued, since they are only compatible to a limited
extent with a COBOL table defined via the OCCURS clause.

COB1 PLI1

COMPUTATIONAL
1-4 digit positions FIXED BINARY (p,0), where 0 < p 15

5-9 digit positions FIXED BINARY (p,0), where 15 < p 31

COMPUTATIONAL-1 FLOAT DECIMAL (p), where p 6
FLOAT BINARY (p), where p 21

COMPUTATIONAL-2 FLOAT DECIMAL (p), where 6 < p 16
FLOAT BINARY (p), where 21 < p 53

COMPUTATIONAL-3 (n) FIXED DECIMAL (n)

DISPLAY CHARACTER (n)

SYNCHRONYZED ALIGNED

without this option UNALIGNED

Fig. 7-15 Compatible PL/I and COBOL data types

Structures can be passed (on the COBOL side they correspond to logical data records
organized by means of level numbers) if there is a guarantee that the internal data
structure in PL/I matches that in COBOL. This is generally the case up to level number
2. Chapter 10 contains details of the internal
representation for PL/I. In the case of ALIGNED structures with aligned data types
(BINARY, FLOAT etc.), a certain incompatibility may arise.

U253-J-Z125-9-7600 315

FORTRAN-COBOL Procedure interface

7.3.3 Declaration, call

The entry to a FORTRAN or COBOL procedure must be declared via

DCL entry ENTRY etc.

FORTRAN [INTER]
OPTIONS ()

COBOL

The options have the following meanings (see also 7.3.4):

FORTRAN A FORTRAN procedure is called.
Program interrupts occurring during the execution of the FORTRAN
procedure are handled by PL/I.

FORTRAN INTER A FORTRAN procedure is called.
Program interrupts occurring during the execution of the FORTRAN
procedure are handled by FORTRAN.

COBOL A COBOL procedure is called.

The following should be taken into account when declaring the entry:

• In COBOL there are no function procedures; consequently, the RETURNS attribute
cannot be specified.

• The OPTIONS option is also permitted in the case of entry variables.

• An entry, as defined above, can also be used in the case of GENERIC.

• The NOMAPIN, NOMAPOUT and ARGi options permitted with OPTIONS in programs
conforming to Industry Standard are ignored. The course of action is as for NOMAP.

316 U253-J-Z125-9-7600

Procedure interface FORTRAN-COBOL

7.3.4 Interrupt handling

Only a few of the interrupts that can occur at execution time are handled in FORTRAN.
The PL/I-FORTRAN language interface makes it possible for any interrupts that have
not been handled to be passed on to PL/I. For this, the user must specify OPTIONS
(FORTRAN INTER). By doing this, the interrupts that are not handled by the invoked
FORTRAN procedure are handled in PL/I by means of an ON unit, or by the PL/I
system’s ON unit. If INTER has not been specified, any hardware or system interrupt
that occurs is only handled by PL/I.

The following currently applies:

• The INTER option has been specified:
Before each FORTRAN procedure invocation, the interrupt handling facility of FOR1
is activated. The PLI1 error processing facility is deactivated. There is, however, a
guarantee that PLI1 termination processing will still be performed if an abnormal ter-
mination in a FORTRAN procedure occurs.

When the procedure returns from the FORTRAN procedure, the PLI1 interrupt hand-
ling facility is reactivated.

Due to the not insubstantial amount of computer time that is used up in switching
around the interrupt handling facility for every invocation (several thousand machine
instructions), this should only be implemented in the case of relatively large
FORTRAN procedures and, if necessary, in the test phase, for the purpose of impro-
ving error diagnosis.

• The INTER option has not been specified:
All interrupts are processed by the PL/I interrupt handler. There is no switching
around between different interrupt handling facilities, that is

all errors detected by the FOR1 system are handled by the FOR1 interrupt hand-
ler and then passed on to PLI1 termination processing.

the interrupts reported by the hardware of the operating system (STXIT handling)
are handled directly by the PLI1 error processor; this may require that the object
listing and the memory dump be analyzed for the purpose of assigning the inter-
rupt to the statement that caused it to occur.

Remedy: Repeat the program run with a recompiled program having the
OPTIONS (FORTRAN INTER) specification and/or use the IDA debugging aid in
the FORTRAN procedure.

In COBOL, INTER has no effect as there is no COBOL interrupt handling by STXIT. The
same applies as for OPTIONS (FORTRAN), i.e. without INTER.

Exception
After errors detected by the COBOL system have been handled, control does not
return to PL/I. For remedy, see section 7.3.5.

U253-J-Z125-9-7600 317

FORTRAN-COBOL Procedure interface

7.3.5 Program termination

• FORTRAN

Action required at the end of the PL/I program
A user writing a PL/I program with language transfer need not take any special
measures to end the FORTRAN calls at the end of the PL/I program.

Action required at the end of the FORTRAN procedure
PLI1 termination processing is guaranteed to be activated when the FORTRAN
procedure is terminated via STOP or abnormal termination. It may even be possi-
ble to continue the PL/I program run via the FINISH condition.

• COBOL

In the COB1 runtime system it is not possible to declare termination processing. If
the COBOL procedure terminates abnormally, as a result of a STOP RUN statement
or a program error detected by the COBOL system for example, the PL/I program
will not close properly. Data for certain files may be lost.

318 U253-J-Z125-9-7600

Procedure interface FORTRAN-COBOL

7.3.6 Invocation of PL/I procedures from FORTRAN and COBOL programs

If PL/I procedures are to be invoked from FORTRAN or COBOL programs, the entry to
a PL/I procedure must be declared as follows:

PROCEDURE FORTRAN
Entry: OPTIONS()

ENTRY COBOL

The options have the following meanings:

FORTRAN The PL/I procedure is invoked by a FORTRAN program.

COBOL The PL/I procedure is invoked by a COBOL program.

The following should be noted when writing a declaration:

• The COBOL and FORTRAN options are mutually exclusive. They cannot be used
together on one entry even if the MAIN option is specified.

• The RETURNS option cannot be used together with the COBOL option, since there
are no COBOL function procedures.

• For parameters with the attributes AREA, BIT, CHAR or DIMENSION, only integer
constants are allowed as length and dimension specifications.

• The NOMAP (p), NOMAPIN and NOMAPOUT options specified in accordance with
PLI1 conventions are provided with a warning and are ignored. For all parameters
the presetting NOMAP holds good.

• Ensure that the PL/I program interrupt handling is activated when the PL/I proce-
dure is running.

• In all other cases the provisions for interrupt handling stated under section 7.3.4
apply.

• At end of program the procedure described in section 7.3.5 is followed.

U253-J-Z125-9-7600 319

ILCS Procedure interface

7.4 ILCS procedures

7.4.1 General

The PLI1 language interfacing facilities also permit program communication at runtime
in accordance with the conventions of the Inter Language Communication Services
(ILCS). These conventions enable any combination of programs written in different pro-
gramming languages to be linked. Further details are given in the ILCS release notice.
The ILCS capability of the various language compilers is given in their documentation.

Communication between ILCS-capable routines is handled by means of arguments ’by
reference’, i.e. only references to arguments are passed. The routines can be invoked
as procedures or as functions (in so far as this is permitted in the respective language).

The ILCS interlanguage facilities are enabled on the PLI1 side by means of OPTIONS
entries. The ILCS statements in other programming languages can be found in their
documentation.

320 U253-J-Z125-9-7600

Procedure interface ILCS

7.4.2 Start handling

Each ILCS-capable main program first calls the ILCS start handling routine. This, in
turn, calls all participating language-specific start handling routines to ensure that all the
language environments concerned are set up and operative.

7.4.3 Declaration, call

An ILCS entry to a PLI1 procedure or a PLI1 function is identified by means of the
OPTIONS option as follows:

PROCEDURE FIXED
n : [(p)] OPTIONS (ILCS) [RETURNS ()]

ENTRY FLOAT

Invoking an ILCS procedure or ILCS function from a PLI1 procedure is declared in the
following manner using the OPTIONS option:

FIXED
DCL n ENTRY [(p)] OPTIONS (ILCS) [RETURNS ()]

FLOAT

Where: n is the name of the procedure or function to be invoked.
p is the list of arguments of the procedure or function to be invo-

ked.

An ILCS procedure or ILCS function is invoked from a PLI1 procedure in the same way
as a PLI1 procedure is invoked using the CALL statement.

U253-J-Z125-9-7600 321

ILCS Procedure interface

7.4.4 Mapping of files

ILCS conventions support only the following parameter types:

BINARY FIXED (31)
BINARY FLOAT (21)
BINARY FLOAT (53)
DECIMAL FLOAT (6)
DECIMAL FLOAT (16)
CHARACTER (i)

The arguments must have normal alignment (fullword or byte boundary, depending on
type), i.e. on the PLI1 side they must have the attribute ALIGNED. For the correspon-
ding declarations in other languages, refer to the relevant literature.

As the ILCS language interface does not recognize descriptors for arguments, it is not
possible to check the arguments in the calling and invoked routines. It is the user’s
responsibility to ensure that the arguments in the calling routine correspond to the para-
meters in the invoked routine as regards data type and mapping.

7.4.5 Interrupt handling

For interfacing ILCS programs with PLI1 programs, the ILCS interrupt handling is deacti-
vated on entering the PLI1 program and PLI1 interrupt handling is activated. If errors
should occur in the PLI1 program, PLI1 error handling is performed. On quitting the
PLI1 program, PLI1 interrupt handling is deactivated and ICLS interrupt handling is reac-
tivated.

7.4.6 Termination handling

If a PLI1 program invoked by an ILCS program runs to end-of-program, the ILCS termi-
nation handling routine is called. This performs termination processing for all the partici-
pating ILCS programs and consequently also invokes the PLI1 termination handling rou-
tine. Finally, it terminates the program itself.

322 U253-J-Z125-9-7600

8 Optimization facilities
Section 8.1 gives an overview of the various types of optimization provided by the com-
piler and its libraries.

Section 8.2 contains suggestions on enhancing efficiency by reorganizing the program.
These suggestions appear in the order of increasing programming effort required to
effect improvements. This section, which also contains information on programming vir-
tual memory, concludes with a discussion of the advantages of modular programming.

Section 8.3 explains in some details when to implement a particular operation by the
insertion of an inline code or through library calls. This information often helps to avoid
the additional effort of a library call.

Section 8.4 explains the various ways of optimization, carried out by the compiler when
the control statement "COMOPT OPTIMIZE =" is requested. In addition the user is
instructed how to proceed in order to get the full benefit from this optimization. This
should be of particular interest to scientific programmers.

Section 8.5 informs the user how to control the optimization performed by the compiler.

Finally section 8.6 contains some advice on programming which may help the beginner.

U253-J-Z125-9-7600 323

Overview Optimization facilities

8.1 Overview

8.1.1 Compiler

The main purpose of optimization is the generation of object programs whose runtimes
are kept to a minimum and whose storage space requirements are as low as possible.
This implies not only the generation of the most suitable code for PL/I statements, but
also that, wherever appropriate, the sequence of statements is altered in such a way as
to improve efficiency without affecting the result.

The following types of optimization are carried out by the compiler:

• Elimination of common expressions

• Transfer of invariant expressions out of DO loops

• Reduction of linear expressions in DO loops

• Elimination of common expressions and transfer of invariant expressions in connec-
tion with reducible functions

• Simplification of expressions

• In-line code for conversions

• In-line code for string processing

• In-line code for most of the built-in functions

• Special code for array and structure assignments

• Register and address optimization. This implies keeping values in registers for as
long as possible and generating an efficient address arithmetic on the basis of an
analysis of the program execution and the reference count.

• Elimination of common constants and common data descriptions to obtain efficient
utilization of storage capacity.

• Special code for invoking internal procedures and for returning from these procedu-
res.

Some of these types of optimization are performed even when they have not been
requested by the control statement "COMOPT OPTIMIZE =", but others will only be car-
ried out on request.

324 U253-J-Z125-9-7600

Optimization facilities Overview

8.1.2 Runtime system

The PLI1 runtime system consists of a large number of modules which have been desig-
ned according to logical considerations. They are combined into two ready linked
modules, which can be used jointly by all PL/I programs.

When establishing the linkage one has the option between using the ready linked modu-
les or individual modules.

In the former case dynamic loading of the ready linked modules does not occur until
runtime. The System Administrator may declare them shareable. In this way they will be
shared by all PL/I programs, thus saving memory space when several PL/I programs
are simultaneously executed. It saves time at the start of the program, too.

In the latter case the compiler determines which of the individual modules will be used
by selecting a minimum subset of modules to be linked with the generated object
module.

U253-J-Z125-9-7600 325

Manual Optimization

8.2 Manual optimization

Owing to the modularity of the PL/I libraries and the extensive optimization performed
by the compiler, the efficiency of many user programs will be satisfactory and no spe-
cial tuning of programs will be required.

Measures for improving the efficiency of programs, other than those referred to above,
are described in this section. The measures mentioned in section 8.2.1 require less eff-
ort than those given in section 8.2.2.

It is assumed that the problems regarding the system (e.g. the organization of the PL/I
libraries) have been solved and that the reader is familiar with the control statements for
compiling (COMOPT) and execution (RUNOPT).

8.2.1 Running a program - stage 1

Remove all debugging aids from the program. It is obvious that in some cases the use
of debugging aids causes additional overhead, because of their tendency to produce
large quantities of output. Although some debugging aids, such as the conditions
SUBSCRIPTRANGE and STRINGRANGE, produce output only when an error has ac-
tually occurred, they require considerably more time and memory for testing.

PUT DATA statements should also be removed from the program, particularly those for
which no data list is specified. These statements require information concerning varia-
bles and conversion modules of the library. This takes up additional memory space.

The debugging aid "COMOPT DEBUG = STMT" does not increase runtime but adds
approximately 8 bytes to the memory space required for each statement.

326 U253-J-Z125-9-7600

Optimization Manual

8.2.2 Tuning a program - stage 2

In PL/I there are often several ways of solving a problem. Generally one of them will be
superior to all others. Which one this is, depends on the method of the implementation
of the language. The difference may amount to one or several machine instructions, but
it could also be several hundred.

The second stage of tuning a program concerns those language elements which de-
mand a great deal of work from the compiler and for which alternative language ele-
ments exist. Attention to these facts may result in considerable savings when a pro-
gram has to be frequently executed.

It should however be realized that the use of a certain language element is not necessa-
rily wrong, just because it is less efficient than another one. Here it is also necessary to
consider what the program is currently asked to do and what might be expected from
it in the future.

Some examples of language elements which are very inefficient are given below:

1. The use of self-defining structures (REFER) permits very compact representation of
data. This can however lead to representations which fall short of optimization. In
the example

DCL 1 structures BASED (pointer),
2 length,
2 before,
2 table DIM (x REFER (length)),
2 after;

access to the variable "before" needs one instruction and about 4 instructions are
needed for access to the variable "after".

The best way of dealing with a self-defining structure is to arrange all members
whose lengths are known before those whose length is adjustable. Among the mem-
bers of adjustable length, those accessed most frequently should be furthest in
front. In the example considered here it is preferable to place the variable "after"
ahead of the variable "table".

2. Unnecessary structuring of programs should be avoided. Procedures, BEGIN blocks
and ON units all need additional time and additional memory space for calls, mana-
gement and return.

In cases where a DO group (DO;...;END;) is satisfactory, it is preferable to using a
BEGIN block (BEGIN;...;END;).

These recommendations should be considered together with suggestions on modu-
lar programming later on in this section.

U253-J-Z125-9-7600 327

Manual Optimization

3. The following measures apply to conversions, which should be reduced to a mini-
mum as a matter of principle.

a) Information concerning conversions to be performed in-line is given in section
8.3.

b) Conversions may be avoided by using additional variables. While in the example

DCL string CHAR(8);
string = string + 1;

two conversions, with one of them necessitating a library call, are needed, the
equivalent example

DCL string CHAR(8);
DCL counter DECIMAL FIXED;
counter = counter + 1;
string = counter;

requires only a single conversion without library call.

c) When data have to be transferred from one structure to another, these structu-
res should match in order to allow the data to be transferred in bulk.

d) In arithmetic expressions the use of differing data types should be avoided. Cha-
racter strings are particularly unsuitable here.

e) Picture strings (PICTURE) are preferable to character strings (CHAR). If, for
instance, an input item is to consist of three decimal characters and neither
ONSOURCE nor ONCHAR is used, the program section

DCL string CHAR(3),
number FIXED DECIMAL(5,0);

ON CONVERSION GOTO error;
number = string;

is less efficient than the equivalent program section

DCL string CHAR(3),
value PIC ’999’ DEFINED string,
number FIXED DECIMAL(5,0);

IF VERIFY (string, ’123456780’) = 0
THEN GOTO error;

number = value;

f) Internal switches, counters and variables, used for subscripting array elements,
should be declared with FIXED BINARY. Data destined for output should be
DECIMAL.

g) Declaration of the precision for variables used in expressions requires some
care. Different precisions may lead to additional instructions for the formation of
intermediate values.

328 U253-J-Z125-9-7600

Optimization Manual

4. The following measures apply to strings:

a) Information on in-line operations is given in section 8.3.

b) Bit strings should be declared ALIGNED, unless there are special reasons for
aiming at maximum storage density.

Where close packing of memory is necessary and an aggregate containing only
bit strings with the attribute UNALIGNED and having the attribute BASED or
PARAMETER, care is advisable. Wherever possible one should make sure that
such aggregates begin at a byte boundary by declaring at least one of their
members with the attribute ALIGNED. Otherwise the compiler assumes that the
aggregate may begin at an arbitrary bit boundary. This requires additional
instructions.

Thus, instead of the declaration

DCL 1 structure BASED,
2 type BIT(1),
2 filler BIT(7),
2 bit BIT(1);

it would be better to write

DCL 1 structure BASED,
2 type BIT(1) ALIGNED,
2 bit BIT(1);

c) Note that concatenations of bit strings are time consuming. It is better to use
the pseudo variable SUBSTR.

d) Strings having the attribute NONVARYING are disadvantageous if their length is
not known at compile time, e.g.

DCL string CHAR(length).

e) The built-in function DATE is time consuming. It should only be used once in a
program.

5. The following measures apply to input/output:

a) Large block sizes (BLKSIZE) are less time consuming than small ones.

b) The SPACE option in the FILE command should preferably be specified to be
as large as the anticipated size of the file in order to avoid subsequent requests
for additional space.

c) In stream input/output a long data list is preferable to several short ones.

U253-J-Z125-9-7600 329

Manual Optimization

d) Input and output of character strings can be simplified by the use of overlay. In
the example

DCL 1 input,
2 type CHAR(2),
2 record,

3 field 1 CHAR(5),
3 field 2 CHAR(7),
3 field 3 CHAR(66);

GET EDIT (input) (A(2), A(5), A(7), A(66));

4 fields are being processed for each input. It is better to read in the whole
structure as one field and to overlay the structure on this field:

DCL field CHAR(80) DEFINED (input);
GET EDIT(field) (A(80));

A READ statement would be even better.

330 U253-J-Z125-9-7600

Optimization Manual

8.2.3 Tuning a program for virtual storage

The output of the PLI1 compiler is well adapted to virtual storage requirements. Execu-
tive code and constants are write protected and separated from the data. Generally, it
is hardly advisable to tune a program simply to reduce the amount of paging. Where
this is essential, various courses of action are available. Their effect is, however, usually
marginal.

The purpose of tailoring a program to a virtual storage system is the reduction of pa-
ging, which means that the number of data transfers from the paging device into main
storage and vice versa is minimized. This can be realized by storing contiguously fields
that are addressed concurrently and by creating as few pages as possible that may be
changed.

This can be realized by writing the source program so as to enable the compiler to
generate from it the most suitable adaptation to a virtual storage system. The most
effective contribution is obtainable from the control options, available when linking the
compiled modules, by assigning definite modules to certain pages.

Further tailoring to a virtual storage system can be obtained in the design and program-
ming stages of modular programs.

For the compiler to produce optimum results, careful consideration in writing the source
program and in declaring the data is required.

In data declarations particular attention should be paid to aggregates taking up substan-
tially more than one page. Items within one aggregate that are accessed together
should be placed together. In this case the choice between an array whose elements
are structures and a structure whose elements are arrays, may also be of importance.

In the example

DCL 1 structure DIMENSION (3000),
2 name CHAR (20),
2 number FIXED BINARY;

name and number are contiguously stored for each array element and can therefore be
readily accessed together. In the equivalent declaration

DCL 1 structure,
2 name CHAR (20) DIMENSION (3000),
2 number FIXED BINARY DIMENSION (3000);

the names are stored contiguously, while the name and the number belonging to it are
a large distance apart.

The choice between storage classes STATIC INTERNAL and AUTOMATIC has little
effect on paging. This does not apply to storage classes CONTROLLED and BASED.

U253-J-Z125-9-7600 331

Manual Optimization

Complete control over the positioning of memory locations for variables can be achie-
ved by using BASED variables and placing them contiguously in one area (AREA). All
variables within the area will be held in contiguous storage.

Further improvement is possible by reducing the number of non-write protected modu-
les. For this purpose the following facts must be known:

Variables which the compiler recognizes as not requiring alterations are considered as
constants and are stored in a write protected module. These are

• Variables with attribute STATIC (CONSTANT) INTERNAL INITIAL (option)

• Variables with attribute STATIC INTERNAL INITIAL (option), satisfying the following
conditions:

not target variable in an assignment
not argument in a call
not target variable for input
not argument for the call of a built-in function

The compiler generates for each external procedure the following modules:

• A write protected module with CSECT, containing the executable statements, all con-
stants, and the variables which are considered as constants (see above).

• An optional non-write protected module for

STATIC variables, CONTROLLED variables, file constants, etc.

These modules are the units which are further processed by the linkage editor. Nor-
mally the modules are stored in the random sequence in which they occur, which may
lead to unnecessary wastage of and increased demand for memory space.

The linkage editor may however be directed by means of control statements to place
certain modules contiguously or to put a particular module at the beginning of the
page. For further details the reference manual of the linkage editor should be consulted.

When a program has been suitably split up into modules, it is then possible to analyze
the use of the modules and arrange them in such a way that efficient paging is obtai-
ned. It must however be pointed out that this is a difficult and time consuming job.

332 U253-J-Z125-9-7600

Optimization Manual

8.2.4 Modular programming

Although it is possible to write a program consisting of only one external procedure, it
is more sensible to divide a program into modules. In PL/I the basic units of modularity
are the procedure and the BEGIN block.

The benefits of modular programming and the point of view taken in structural program-
ming are well known, but there are also considerations relating to the efficiency of pro-
grams.

Some of the general advantages of modular programming are listed below:

• The time and space required for the compilation depends on the size of the pro-
gram. Generally, the compilation time will increase more than linearly with program
size. Moreover changes in small source procedures require less recompilation time
than changes in large ones.

• A procedure dedicated to a simple function needs only those data which are requi-
red for this function. Due to the properties of the AUTOMATIC variables, the risk that
this will destroy data for other functions is less high.

• If a procedure is meant to perform only a single function, it is much simpler to
replace this function by a different version. It may well be that such a function is
also suitable for other applications.

• Allocation of memory space for all AUTOMATIC variables of a procedure takes place
when the procedure is invoked at any of its entry points. Reducing the number of
functions performed by a procedure often enables the number of variables declared
in the procedure to be reduced. This in turn may reduce the total storage space
requirement for AUTOMATIC variables.

With regard to programming efficiency, even higher priority attaches to the following
considerations:

1. If the static CSECT and the activation block exceed 4096 bytes, the compiler has to
insert additional code in order to reference the remote memory.

2. When the code generated for a procedure exceeds 4096 bytes, the base register
has to be converted more frequently.

While it is true that extra invocation of procedures prolong execution time, modular pro-
gramming can compensate for this by having to execute considerably fewer instruc-
tions.

U253-J-Z125-9-7600 333

In-line operations Optimization facilities

8.3 In-line operations

Many operations are handled in-line. The user will therefore find it worthwhile to ascer-
tain which of the operations are performed in-line and which of them require a library
call, and to modify his program such that the least possible number of library calls is
used. Most in-line operations deal with conversions and string handling.

8.3.1 Data conversion

The data conversions which are performed in-line are listed in Figure 8-1. Any conver-
sion outside the specified area or not fulfilling the specified conditions will be performed
as a library call.

Arithmetic picture strings will be converted in-line if the picture specification does not
contain any characters other than the following:

V and 9
non-drifting characters + - S $
drifting characters +... -... S... $...
suppression characters * Z
insertion characters , . / B

As far as in-line conversion is concerned, pictures which do not contain any characters
other than those given above may be divided into three groups.

Type 1: Pictures containing 9 only with one optional V and one leading or trailing
sign.
Examples: ’99V99’, ’99’ ’S99V9’, ’99V+’, ’S999’

Type 2: Pictures with suppression characters, one sign character and one insertion
character or pictures of type 1 with insertion characters.
Examples: ’ZZZ’, ’**/**9’, ’ZZZ9V.99’, ’+ZZZ.ZZ’, ’S///99’, ’9.9’

Type 3: Pictures with drifting characters, insertion characters and sign characters.
Examples: ’$$$$’, ’-,--9’, ’S/SS/S9’, ’+++9V.9’, ’$$$9-’

Reasons why, in the cases stated above, conversion may not be performed in-line are
given below.

• Condition SIZE is enabled and could be raised.

• The digit positions of source and target are not overlapping. As an example
DECIMAL (6,8) or DECIMAL (5,-3) will not be converted in-line to PIC ’999V99’.

334 U253-J-Z125-9-7600

Optimization facilities In-line operations

• The picture contains a certain combination which is difficult to convert in-line; e.g.:

There is no V between drifting characters * or Z and the first 9, as for instance
in ’ZZ.99’.
Drifting characters or suppression characters appear to the right of a decimal
point, as for instance in ’ZZZV.ZZ’, ’++V++’.

The compiler issues an information message for every generated branch in the runtime
system if *COMOPT DIAGNOST = INFORMATION was specified.

U253-J-Z125-9-7600 335

In-line operations Optimization facilities

Conversion
Condition and comment

Source Target

FIXED BINARY

FIXED DECIMAL

FLOAT Target: fullword or doubleword

n 32,NONVARYING
BIT (n) n 2088,NONVARYING ALIGNED

STRINGSIZE disabled
FIXED BINARY

CHARACTER (n) n 256;
STRINGSIZE disabled;
via FIXED DECIMAL

PICTURE Length 256 via FIXED DECIMAL;
numeric Pict. type 1, 2 and 3; SIZE disabled

FIXED BINARY

FIXED DECIMAL

FLOAT p+q 75; Target: fullword or doublew.
FIXED DECIMAL
(g,k) BIT (n) Length 2088;NONVARYING ALIGNED;

STRINGSIZE disabled

CHARACTER (n) n 256;
if g = k then integer
STRINGSIZE disabled

PICTURE numeric Picture type 1, 2 and 3

FIXED BINARY

FLOAT FIXED DECIMAL k 80;SIZE disabled
Fullword or
doubleword FLOAT Target, source: fullword or doublew.

BIT (n) n 2088;NONVARYING ALIGNED
STRINGSIZE disabled

FIXED BINARY n 32 Source: NONVARYING

FIXED DECIMAL Source: NONVARYING
BIT (n) n 32 ALIGNED

FLOAT

CHARACTER n = 1

Fig. 8-1 Implicit conversions performed in-line (part 1)

336 U253-J-Z125-9-7600

Optimization facilities In-line operations

Conversion
Condition and comment

Source Target

BIT

FIXED DECIMAL
CHARACTER (n) n = 1; CONVERSION disabled

FLOAT

FIXED BINARY

CHARACTER (n) n 256; NONVARYING
PICTURE

PICTURE
alphanumeric Pictures must be identical

alphanumeric

FIXED BINARY via FIXED DECIMAL; SIZE disabled

FIXED DECIMAL Picture type 2
PICTURE numeric without * or insertion charact. /B
picture type SIZE disabled
1, 2 and 3
except $... FLOAT via FIXED DECIMAL; SIZE disabled

PICTURE Picture type 1, 2 or 3; SIZE disabled

LABEL LABEL

Locator Locator

Fig. 8-1 Implicit conversions performed in-line (part 2)

String operation Condition for operands

CHARACTER

Assignment BIT of constant length 32

BIT of constant length beginning at byte boundary

Boolean operations as in assignment

Comparison as in assignment

Concatenation CHARACTER

Fig. 8-2 String operations performed in-line under the specified conditions

U253-J-Z125-9-7600 337

In-line operations Optimization facilities

String function Conditions

AFTER never

BEFORE never

BIT always

BOOL (a, b, c) if c constant
then as in Boolean operations

CHAR always

COLLATE always

COPY (a, b) if a = string fixed length 4096 and b = constant 4095

DECAT never

HIGH (a) if a = constant 4095

INDEX CHARACTER

LENGTH always

LOW (a) if a = constant 4095

REPEAT (a, b) if a = fixed length 4096 and b = constant 4095

only in conjunction with INDEX (REVERSE (a), b)
if a = CHARACTER

REVERSE (a) and b = CHAR (1)
or b = string constant of length 256

SEARCH never

if fill characters are present due to VARYING or BIT
ALIGNED or noncontiguous storage

STRING then as in concatenation
otherwise as in assignment

SUBSTR if STRINGRANGE disabled

TRANSLATE if a string of constant maximum length 256
(a,b,c) and b and c fixed length 256

UNSPEC always

VALID never

VERIFY CHARACTER

Fig. 8-3 Built-in STRING functions performed in-line under specified conditions

338 U253-J-Z125-9-7600

Optimization facilities In-line operations

8.3.2 String handling

The functions and operations, which are performed in-line, are listed in Figs. 8-2 and
8-3. However, in certain contexts, some of these functions will be carried out as library
calls. If, for instance, the expressions in the BIT or CHAR built-in functions require an
implicit conversion which can not be executed in-line the appropriate library procedure
will be called.

U253-J-Z125-9-7600 339

Global Optimization facilities

8.4 Global optimization features

8.4.1 Common expressions

The term "common expressions" is used to describe expressions like "B * C", as for
instance in

A = B * C + D1
.
.
.

D = B * C + D2

where the variables B and C are not altered between the occurrences of the two expres-
sions. In this case the expression "B * C" need not be evaluated more than once.

The technique of avoiding repeated evaluation of such expressions is called "common
expression elimination".

An important application of common expression elimination is found in statements con-
taining subscripted variables in which the same subscript value is used for several varia-
bles.

Example

COST (ARTICLE) = QUANTITY (ARTICLE) * PRICE (ARTICLE)

The value of the subscript ARTICLE is computed once only. Should the computation of
the subscript yield a decimal value, conversion to a binary value is carried out automati-
cally.

340 U253-J-Z125-9-7600

Optimization facilities Global

8.4.1.1 Interrupt handling

The order of most operations in a PL/I statement depends on the priority of the opera-
tors involved. However, the order of evaluating the subexpressions, whose results deter-
mine the operands of the operator of lower priority, is only defined inasmuch as an ope-
rand is completely evaluated before its value is used in a further operation. Examples of
such subexpressions are subscript expressions, locator qualifier expressions, or function
references.

Owing to the reason given above, the sequence in which ON units, referenced in con-
junction with sub-expressions, are called, may be unpredictable. Consequently evalua-
tion of an expression may yield different values.

The result may depend on the sequence in which the ON units are called and on the
statements which are being executed there. If an ON unit for a computational interrupt
is called, the following applies:

1. All variables contain that value which has been assigned to them in the execution of
preceding statements. These values can be used in the ON unit. Thus the statement
PUT DATA can, for instance, be used to show the value a variable possesses at
entry into the ON unit.

2. If, in an ON unit which has been called by setting a computational condition, a
value is assigned to a variable, then this value will be the current value in each sub-
sequent part of the program.

Whenever variables might be changed due to a computational condition interrupt, either
in the corresponding ON unit or as the result of a branch from the ON unit, common
expression elimination is inhibited. A relevant example is given below:

ON ZERODIVIDE B,C = 1;
.
.
.

X = A * B + B/C;
Y = A * B + D;

Although the sub-expression A * B is common to both assignments, it is not being eli-
minated since, should the condition ZERODIVIDE occur, the same sub-expression may
have a value in the second assignment which is different to that in the first one.

The rules given above are only valid if the option ORDER is either explicitly or implicitly
specified. If the restrictions mentioned above are undesirable, the option REORDER can
be specified; which will provide unrestricted elimination of common expressions.

ORDER and REORDER are described in later sections.

U253-J-Z125-9-7600 341

Global Optimization facilities

8.4.2 Transfer of invariant expressions or statements out of DO loops

If an expression occurs in a loop and the compiler is able to recognize that each time
the loop is executed the result is the same, we are dealing with an invariant expression.
This applies also to statements.

An invariant expression or an invariant statement can be moved out of the loop and
placed before the loop, so that instead of being evaluated each time the loop is execu-
ted it is evaluated once only before the loop is entered. This is illustrated by the follo-
wing example:

DO I = 1 TO N:
.
.
.

J = 3;
.
.
.

END;

The assignment J = 3 may be invariant under certain conditions and can then be
moved out of the loop. In certain cases it may also be helpful to move it backward or
forward within the loop.

If the removal of invariant parts is desired, the option REORDER must be explicitly or
implicitly present in a block comprising the loop.

342 U253-J-Z125-9-7600

Optimization facilities Global

8.4.3 Reduction of linear expressions in DO loops

Multiplication of a control variable by a constant is the simplest form of a linear expres-
sion. Wherever this is feasible a multiplication is converted to an addition, which is exe-
cuted more efficiently.

Example

DO I = M TO N BY 2;
.
.
.
A(I) = I * 4;
.
.
.
END;

If in this example the variable I is not altered within the loop, a code is generated which
corresponds to the following program section:

I = M;
IF I > N THEN GOTO End;
TEMP = 4 * I;

Start: .
.
.
I = I + 2:
TEMP = TEMP + 8;
IF I < N THEN GOTO start;

End: .
.
.

What this example does not show is that the address computation for the subscripted
reference (A) is also optimized at the same time. This is in fact the reason why this
type of optimization is especially powerful.

If the type of optimization described in this section is desired, REORDER must be speci-
fied.

8.4.4 ORDER and REORDER options

The options ORDER and REORDER are used for optimization control. They can be spe-
cified in PROCEDURE and BEGIN statements and apply to the entire block. The op-
tions are inherited by all contained blocks, unless an explicit option is provided there.
The default is ORDER.

U253-J-Z125-9-7600 343

Global Optimization facilities

8.4.4.1 ORDER options

If, in ON units called because of computational condition interrupts, a variable must
always contain the last value assigned to it in the block, the option ORDER has to be
specified for the procedure block or the BEGIN block, as the case may be.

Common expressions may also be eliminated from a block with the option ORDER. In
this case computational interrupts may occur less frequently than if common expres-
sions had not been eliminated. However, if a computational condition interrupt occurs
in a block with the option ORDER, the value of the variables in statements preceding
the point where the condition was set, is always the last which has been assigned to
the variable, provided the ON unit contains a reference to that variable.

In a block with the option ORDER other types of optimization are also permitted, with
the exception of the movement of expressions which can cause an interrupt. Since this
can only be avoided by disabling all relevant computational conditions, the use of
ORDER means in practice that move-out of invariant parts from loops is not carried out.

8.4.4.2 REORDER option

If REORDER is specified, the compiler will perform all the optimizations, which do not
affect the logic of the program as written down in the source program, so long as no
errors appear during the execution of the program. Move-out of invariant parts of a
loop is carried out, so that they are performed once only before or after the loop.

The time taken for the execution of loops may be reduced, if the values of variables,
which are very frequently changed within the loop, are held in registers. During error
free program execution values may be kept in registers and the transfer of data to and
from the memory is dispensed with, resulting in a considerable saving of time. If the
last value of the variable is required after the loop has been executed, the value of the
variable is assigned to its location in memory when leaving the loop.

Allocations to registers may be performed more efficiently if REORDER is specified.
There is, however, no guarantee that variables which are altered in the block will have
their last value when a computational condition occurs, since the latest value may be
held in a register and not in memory. This is the reason why an ON unit, which has
been called as the result of a computational interrupt, should not contain a reference to
a variable which is changed in the REORDER block. The use of built-in functions
ONSOURCE and ONCHAR is, however, valid in this context.

A program is errored if a computational condition or an ERROR or ATTENTION condi-
tion occurs in a block with REORDER option at runtime, thereby using a variable whose
value is not ensured.

344 U253-J-Z125-9-7600

Optimization facilities Global

Since these restrictions preclude the correction of erroneous data, with the exception of
the correction through ONSOURCE and ONCHAR in an ON unit for the condition
CONVERSION, the user has to resort to the system unit for the condition, i.e. stopping
the execution of the program or using the ON unit for correcting the errors and restar-
ting the relevant section of the program with new data.

An example of this is given below:

ON OVERFLOW PUT DATA;
DO J = 1 TO M;

DO I = 1 TO N;
X(I,J) = Y(I) + Z(J) * L + SQRT(W);
P = I * J;
END;

END;

If the above sequence of instructions occurs in a block with the option REORDER, the
compiled program section corresponds to the following statements:

ON OVERFLOW PUT DATA;
Temp1 =SQRT(W);
DO J = 1 TO M;

Temp2 =J;
DO I = 1 TO N;

X(I,J) = Y(I) + Z(J) * L + Temp1;
P = Temp2;
Temp2 =Temp2 + J;
END;

END;

Temp1 and Temp2 are temporary variables taking the value of expressions which have
been moved forwards out of the loop. The multiplication I * J is reduced to the addition
(TEMP2 + J). The assignment P = I * J could be replaced by P = N * M outside the
loop.

Let us, for instance, assume that the condition OVERFLOW occurs. In this case it can
not be guaranteed that the variables will have their current value, since they may be
held in registers rather than in the memory location of the variables which can be refe-
renced in the ON unit.

Although the example given above does not show it, the subscript calculations for
X(I,J), Y(I) and Z(I) are also optimized (I,J,P).

U253-J-Z125-9-7600 345

Global Optimization facilities

8.4.5 Elimination of side effects / reducible functions

A function is reducible if its call causes no side effects and if the value it returns de-
pends on the values of the arguments alone.

Every change of a variable known outside the function in which it has been changed,
as well as every I/O process, constitutes a side effect. A function is regarded as reduci-
ble by the compiler if, and only if, it is declared with the attribute REDUCIBLE. When
handling calls to reducible functions common expressions are eliminated and invariant
expressions transferred as explained above. Quite independent of this it is useful to dec-
lare reducible functions REDUCIBLE since the compiler is capable of better optimization
if side effects are excluded.

8.4.6 Optimization of Boolean expressions

Complex Boolean expressions contained in a condition for a branch will be resolved
into a number of branches with simple Boolean expressions. Of these Boolean expres-
sions only as many as are necessary for uniquely determining the result will be evalua-
ted. The rest are ignored. Irreducible functions will however be called in every case.
Thus, the statement

IF A < B | C > D THEN GOTO L;

is handled as if the following statements had been written

IF A < B THEN GOTO L;
IF C > D THEN GOTO L;

The code for the statement

IF A < B & C > D THEN X = Y;

corresponds to the statements

IF A B THEN GOTO L;
IF C D THEN GOTO L;
X = Y;

L: ...

346 U253-J-Z125-9-7600

Optimization facilities Global

8.4.7 Expression simplification

To simplify expressions means to modify them without changing the expected effect in
order to generate a more effective mode. One major simplification concerns expres-
sions containing arithmetic constants.

Constant expressions of the form C1 + C2, C1 - C2, C1 * C2, where C1 and C2 are inte-
ger constants, will be replaced by equivalent constants. As an example the expression
2 + 5 is replaced by the constant 7.

The compiler attempts to extract the constant parts from expressions arising in addres-
sing of array elements and elementary members of structures.

Expressions of the form

C1 * (exp + C2), C1 * (exp - C2), C1 * (C2 + exp)

are transformed into equivalent expressions of the form

C3 * exp + C4

where C1, C2, C3, C4 are constant integers and exp is an integer expression.

In this way the following is achieved:

DCL A DIMENSION (20,20);
A (C1 * I + C2, C3 * K + C4)

will be addressed just as efficiently as A (I,K).

U253-J-Z125-9-7600 347

Global Optimization facilities

8.4.8 Initialization of aggregates

This type of optimization applies to aggregates which are declared AUTOMATIC,
BASED or CONTROLLED.

If all the elements of an array are initialized to have the same value, a code is genera-
ted which initializes the first element and performs the remaining initialization by a sin-
gle transfer instruction, or in the case of variable bounds, by means of a special subrou-
tine.

Example

DCL A DIMENSION (20,20) FIXED BINARY INIT ((400)0);

Array A is initialized as described. This type of optimization is not applied to arrays
whose elements are declared CHAR VARYING or BIT VARYING.

This type of optimization is also used when an element value is assigned to an array, if
the array has connected storage.

If the aggregate to be initialized, whether it be an array or a structure, consists of fixed
length elements with constant initial values, an initialization constant is put into memory
for the whole aggregate, which can then be initialized by a single transfer instruction.
This type of optimization is inapplicable when the storage space required for the initiali-
zation constant exceeds that for the general initialization code.

Example

DCL A DIMENSION (3) BINARY FIXED INIT (1,2,3);

Array A is initialized in this way.

8.4.9 Special code for aggregate assignment

Wherever feasible the compiler will implement assignments to arrays and structures by
means of a single transfer of data. This is the case when source aggregate and target
aggregate have data descriptions which, apart from storage classes, are identical and
have connected storage.

348 U253-J-Z125-9-7600

Optimization facilities Global

8.4.10 Utilization of registers in DO statements

As far as is practicable, the relevant values for the formation of a DO loop are held in
registers while the loop is being executed. For example in handling the statement.

DO control variable = initial value BY increment TO final value;

the compiler will attempt to hold the values for control variable, increment, and final
value in registers. The optimization thus achieved is extremely effective.

8.4.11 Internal procedure calls

The compiler tries to recognize those internal procedures which can only be called
from their encompassing block, cannot be used recursively, and have an automatic sto-
rage area of fixed size.

For such procedures code strings for call and return can be generated which are shor-
ter than in the general case.

The same applies to BEGIN blocks whose automatic storage area is of fixed size.

8.4.12 Utilization of global optimization

This section contains particulars regarding the dos and don’ts of coding practices
which should be borne in mind in order to get the full benefit of global optimization
which the control statement * COMOPT OPTIMIZE = TIME is capable of providing.

U253-J-Z125-9-7600 349

Global Optimization facilities

8.4.12.1 Common expression elimination

Common expression elimination is inhibited in the following cases:

1. In expressions containing variables whose values are modified either in an I/O condi-
tion or in a computational condition.

2. If a BASED variable is overlaid on a variable used in common expressions and a
new value is assigned to the BASED variable between the equivalent expressions,
optimization is inhibited.

Thus, in the following example of a program section, the equivalent expression X +
Z is not eliminated because the BASED variable A is overlaid on the variable X (P =
ADDR(X)) and a value is assigned to the variable A between the two equivalent
expressions.

DCL A BASED (P);
P = ADDR (X);

.

.

.
P = ADDR (Y);

.

.

.
B = X + Z;
P -> A = 2
C = X + Z;

3. When using aliased variables. An aliased variable is a variable whose value may be
changed by reference to an identifier other than its own identifier. Examples of such
variables are DEFINED variables and their associated base variable, arguments, para-
meters and BASED variables, and the variables overlaid by them.

Variables whose addresses are known to an external procedure via pointers, and
which are used either as external variables or as arguments, are also regarded as
aliased variables. An aliased variable, while not completely preventing the elimination
of common (equivalent) expressions, imposes restrictions on it.

If a common expression contains an aliased variable, the flow paths, in which com-
mon expressions may possibly occur, are searched for assignments in which either
this variable itself or one of its aliased variables is used as the target variable.

If a program contains an external pointer variable, it is assumed that this pointer can
be set to all variables whose addresses are known to external procedures. This
means that all variables which are addressed by external pointers, or by other poin-
ters to which the value of an external pointer has been allocated, may refer to exter-
nal variables.

350 U253-J-Z125-9-7600

Optimization facilities Global

4. When the form of an expression is modified. If the partial expression B + C is tre-
ated as a common expression, the compiler would be incapable of recognizing it as
a common expression in the following statement:

D = A + B + C;

Because the compiler processes this expression from left to right, it recognizes the
expressions A + B and (A + B) + C. If, however, the call is coded as D = A + (B
+ C), the user may take it for granted that B + C will be regarded as a common
expression, since the compiler is bound to tackle the expression of highest priority
first.

5. Dependence on the scope of common expressions. In order to recognize common
expressions, the program is analyzed and flow units are determined. A flow unit is a
section of program which can only be entered at the beginning and from which exit
is always made at the end. One flow unit may contain several PL/I statements and,
conversely, one PL/I statement may contain several flow units.

Common expressions will be recognized across several flow units. However, if pro-
cessing flow paths between the flow units becomes complex, recognition of com-
mon expressions beyond the bounds of flow units will be inhibited.

Common expression elimination will be facilitated by noting the following points:

1. Variables in expressions should neither be external nor be associated with external
pointers and should not be used as parameters of the built-in function ADDR.

2. External procedures, external label variables and label constants which are known in
external procedures should not be used in the source program.

3. Variables in expressions should neither be altered nor accessed in ON units.

4. Specify REORDER for the block.

5. Declare reducible functions with REDUCIBLE.

U253-J-Z125-9-7600 351

Global Optimization facilities

8.4.12.2 Transfer of invariant expressions

Transfer of invariant expressions out of loops is prevented by:

1. ORDER specification for the block. However, transfer is not prevented by the
ORDER option in every case, but only for operations which are capable of setting a
computational condition.

2. Use of variables whose value is set by or used in input/output statements.

3. Use of variables which can be set in ON units for I/O conditions or computational
conditions, or which are aliased variables.

4. Complex program flow involving external procedures, external variables, or label con-
stants.

Transfer of invariant expressions out of loops is facilitated by:

1. Specification of REORDER for the block.

2. Avoidance of points 2 to 4 given above.

3. Declaring reducible functions REDUCIBLE.

8.4.12.3 Reduction of linear expressions in loops

This type of optimization is only permitted if the control variable is not changed inside a
loop. The same conditions as those described above for the transfer of invariant expres-
sions apply.

8.4.12.4 Register and address optimization

The conditions for this type of optimization are the same as those described above for
common expressions elimination.

8.4.12.5 Use of registers in DO statements

Here the conditions for reducing linear expressions in loops dealt with earlier also
apply. In addition the following conditions must be fulfilled:

• Referencing of the control variable in an ON unit or in a procedure is not permitted
during execution of the loop.

• Exit from loops is forbidden.

352 U253-J-Z125-9-7600

Optimization facilities Control

8.5 Optimization control (OPTIMIZE)

The control statement

*COMOPT OPTIMIZE = specification

can be used to govern the way in which the compiler performs the optimization. The
specifications are explained in the following subsections. These specifications may also
be supplied for PROCEDURE OPTIONS (option).

8.5.1 Time optimization (TIME)

All the optimizations described in section 8.1.1 will be carried out.

8.5.2 Change enabling of conditions (ENABLING)

This specification causes presettings for all computational conditions, with the exception
of OVERFLOW, UNDERFLOW and ZERODIVIDE, to be "disabled". Thereafter only condi-
tions which do not require the compiler to generate special testing instructions will
remain preset to "enabled", since the testing will be performed by the machine instruc-
tions themselves.

8.5.3 Sequence of statements modifiable (REORDER)

This specification causes the system default to change over from ORDER to REORDER.

It is advisable to use OPTIMIZE = (TIME, ENABLING, REORDER) for all production
runs and, in the source procedure where it is necessary, to set the corresponding con-
dition prefix before the statement and to specify ORDER explicitly.

U253-J-Z125-9-7600 353

Control Optimization facilities

8.5.4 Overlapping (OVERLAP)

When this option is specified, the compiler assumes that target and source area of an
assignment neither overlap nor are identical unless it can definitely recognize an over-
lap, since movements between non-overlapping data are faster. In this case the compi-
ler issues a warning. In the absence of this specification, the compiler decides in doubt-
ful cases for "overlap" and generates a safe code. This causes an increase in runtime.

This specification has no bearing on the case in which there is an expression on the
right hand side, except when this is SUBSTR, UNSPEC or STRING with a variable refe-
rence.

354 U253-J-Z125-9-7600

Optimization facilities Programming notes

8.6 Programming notes

This section deals with some of the mistakes and pitfalls commonly encountered in wri-
ting a program. They are caused by misinterpretation or oversight of rules or by lack of
attention to conventions and constraints on implementation.

8.6.1 Source program and general syntax

1. When a source program has been written manually, entry of the source text by
another person may result in spelling mistakes if the following characters are not
clearly represented.

1 (numeral), I (letter), | (vertical line)
/ (slash), ’ (apostrophe)
7 (numeral), > (greater than)
L (letter), < (less than)
O (letter), 0 (numeral)
S (letter), 5 (numeral)
Z (letter), 2 (numeral)

(underline), - (minus sign)

2. Care should be taken to make sure that only the area specified by

COMOPT MARGINS = TEXT (a, b)

is used for writing source lines. Default is TEXT (2,72).

3. Omission of certain characters may lead to errors which are often hard to detect.
Some of these are:

The closing apostrophe of a literal is missing.

The closing parenthesis is missing or there are more opening parentheses than
closing ones.

The delimiters */ of a comment have been omitted or have been written wrongly
as /*.

Literals and comments extending over more than one line are highlighted in the
compiler listing by an asterisk after the line number.

4. Reserved keywords in the 48-character set (e.g. GT, CAT) must always be preceded
and followed by a blank or comment.

Caution
Inadvertant misuse of these keywords may result in error messages which are
hard to understand, e.g. "DCL NL" is interpreted as syntax error.

U253-J-Z125-9-7600 355

Programming notes Optimization facilities

5. Care should be taken to ensure that there are enough END statements for the termi-
nation of a group, a procedure and a BEGIN block. This is particularly important
when the form "END label;" is selected. The relevant rules are such that the compiler
is not always in a position to recognize if one END statement is not enough.

6. In some contexts it may not at all be obvious that a specification has to be enclo-
sed between parentheses. In particular, expressions after the keywords WHILE and
RETURN are cases in point.

8.6.2 Program control

The main procedure, i.e. the procedure at which the program is to be started, must inc-
lude the following entry:

PROCEDURE OPTIONS (MAIN)

If several external procedures have specification MAIN, the linkage editor will use the
procedure it reaches first.

356 U253-J-Z125-9-7600

Optimization facilities Programming notes

8.6.3 Declarations and attributes

1. The memory location for variables with attribute AUTOMATIC is allocated when
entry is made into the block. If this involves calculations in which variables are
used, their values must have already been determined before entry to the block.

Example

Name: PROCEDURE;
length = 4;
DCL string CHAR (length);

This example leads to an error because allocation of memory space precedes exe-
cution of the assignment.

2. Missing commas in DECLARE statements are a source of errors. For example, in a
structure declaration each member of the structure must be terminated by a com-
ma.

3. The length of external identifiers (EXTERNAL) should not exceed 7 characters.
Otherwise they will be truncated to the first four and the last three characters.

4. In a declaration with attribute PICTURE the picture character V separates the inte-
ger from the fraction. It does not occupy a character position, nor does it produce
output of the separator character period or comma. This can only be done by
means of the picture character period (.) or comma (,). However, these two picture
characters are pure insertion characters and do not give any indication as to which
digits belong to the integer and fractional part, respectively.

Example

DCL A PIC ’99,9’,
B PIC ’99V9’,
C PIC ’99,V9’;

A,B,C = 45.6;
PUT LIST (A,B,C);

On the basis of the example given above the following numbers are issued:

04,5 456 45,6

If these values are read in again by GET LIST (A,B,C), variables A, B and C will
become

Character string ’04,5’ ’560’ ’45,6’
Decimal value 45 56 45.6

U253-J-Z125-9-7600 357

Programming notes Optimization facilities

If the values of the variables are output once more through PUT LIST (A,B,C), one
obtains

04,5 560 45,6

5. Separate declarations for the same identifier with attribute EXTERNAL must yield
the same set of attributes, after supplementation by default, as otherwise errors
may arise. Any conflict cannot be detected by the compiler.

An INITIAL attribute need only be specified once. If there are several specifications
of it, then all of them must yield the same value.

6. Within its scope an identifier can be used for only one single purpose. The follo-
wing example is in error, since identifier X has more than one meaning.

PUT FILE (X) LIST (A) X is file
X = Y + Z; X is variable

X: M = N; X is label

7. When constants are being transferred to external procedures as parameters, atten-
tion must be paid to precision.

Example

DCL procedure ENTRY EXTERNAL;
CALL procedure (6); Precision (1,0)

Procedure: PROCEDURE (x);
DCL x FIXED DECIMAL; Precision (5,0)

Here argument and parameter do not have the same precision.

8. Depending on certain conditions, a parameter is either overlaid on the argument
(transfer by reference) or it is given its own auxiliary memory location, to which the
value of the argument is assigned (transfer by value). In the latter case a change in
the parameter will no longer change the argument. Return of a value is not possi-
ble in this case.

Example

DCL A FIXED BIN,
B FLOAT;

CALL P (A,B);
P: PROCEDURE (X,Y);

DCL (X,Y) FIXED BIN;
X = 3; /* A is changed */
Y = 4; /* B is not changed */

358 U253-J-Z125-9-7600

Optimization facilities Programming notes

9. If in the declaration for an identifier not all attributes have been specified, those
which have been omitted will be supplied by default. Particular attention should
here be paid to the following rules.

REAL FLOAT DECIMAL (6) is assumed for the arithmetic variable, provided the
identifier does not begin with an alphabetic character between I and N or is not
compiled according to PL/I standard (ISO). In these cases FIXED BINARY (15,0)
will be provided.

If one of the attributes determining the data type is specified, a missing attribute
will be taken from the list REAL/FLOAT/DECIMAL and, if compiling according to
PL/I standard, from the list REAL/FIXED/ BINARY.

This is illustrated by the following example (NOISO):

DCL I; completed: REAL FIXED BINARY (15,0)
DCL J REAL; completed: REAL FLOAT DECIMAL (6)
DCL K STATIC; completed: REAL FIXED BINARY (15,0)
DCL L FIXED; completed: REAL FIXED DECIMAL (5,0)

10. The precision of a complex expression is not readily apparent. It follows the rules
for expression evaluation. For example, for the expression

1 * 2I

the attributes are COMPLEX DECIMAL PRECISION (2,0).

11. In a procedure having several entry points with different parameters, it is necessary
to make sure that only those parameters are referenced which are associated with
the current entry point.

Example

A: PROCEDURE (P,Q);
P = Q + 8; RETURN;

B: ENTRY (R,S);
R = P + S;
END;

In the assignment R = P + S the reference to P is wrong, since the value of P is
not defined when entering B.

U253-J-Z125-9-7600 359

Programming notes Optimization facilities

8.6.4 Assignment and initialization

1. When a variable is accessed, it is assumed that its value is consistent with the attri-
butes of the variable. If this is not the case, either the program may go ahead with
the wrong value or else one of the conditions is set. Such an error in the value may
be caused by the fact that up to this point no value has been assigned to the varia-
ble, so that its value is undefined. Alternatively an error in the value of the variable
may have been assigned to it e.g. through one of the following operations:

a) by the built-in function UNSPEC

b) by input of a record (RECORD)

c) by overlaying a PICTURE on a CHARACTER string with an assignment to the
character string and then accessing the picture

d) transfer of parameter to another external procedure when the attributes of argu-
ment and parameter do not match

e) assignment of a value to a based variable and access to this value via a based
variable with different attributes.

If a variable does not have a value assigned to it, then its value is undefined and so
is the further execution of the program. It is wrong to assume that in this case the
variable has the value 0.

When the value of a subscript has not been defined the omission can be detected
by enabling the condition SUBSCRIPTRANGE, provided the subscript does not hap-
pen to be consistent with the declared range.

2. An attempt to output a variable whose value is undefined may lead to an interrupt.
In the example

DCL A DIM(10) FIXED DECIMAL;
A(1) = 13;
PUT LIST (A);

leads to an error, which can be avoided by presetting the array to value 0, for
instance, by writing

A = 0;

360 U253-J-Z125-9-7600

Optimization facilities Programming notes

3. Note the difference between the assignment symbol = and the comparison operator
=.

The statement

A = B = C;

signifies that variables B and C are tested for equality and that the result (’0’B or
’1’B) is assigned to variable A.

4. If, in the initialization or assignment of a string variable of fixed length, a string is
allocated which is shorter than the target, blanks will be added to the right in the
case of CHAR, and bits with the value ’0’B will be added to right in the case of BIT.
In the example

DCL A CHAR(6),
B CHAR(3) INIT (’CR’);

A = B;

the variables will contain the following values after assignment:

A = ’CR____’ and B = ’CR_’

5. If the condition SIZE is disabled and such a condition occurs, the result is unpredic-
table.

FIXED DECIMAL: Digits may be suppressed without causing an interrupt. If the tar-
get precision is even, a byte may be inserted in the most significant position.

U253-J-Z125-9-7600 361

Programming notes Optimization facilities

8.6.5 Arithmetic expressions, Boolean expressions and conversions

1. The rules for expression evaluation, particularly the sequence of operations, should
be strictly observed. Typical errors which may be encountered here are shown

X > Y | Z corresponds to (X > Y) | Z
does not correspond to X > Y | X > Z

X > Y > Z corresponds to (X > Y) > Z
does not correspond to X > Y & Y > Z

All operations of equal priority are performed from left to right with the exception of
**, prefix operator +, prefix operator - and, which are performed from right to left.

The example

A = B ** - C ** D;

is equivalent to

A=B**(-(C**D))

The purpose of parentheses is to modify the stipulated rules. Addition of redundant
parentheses may, however, give added reassurance and enhance legibility.

2. Conversion is covered by comprehensive rules, which should be carefully studied in
order to obviate unnecessary frustration. The following example illustrates this point:

a) DECIMAL FIXED to BINARY FIXED may lead to unexpected results when frac-
tions are involved:

DCL I FIXED BIN(31,5) INIT(1);
I = I + 0.1;

Accordingly, the value of I is now 1.0625, because 0.1 is converted to FIXED
BINARY (5,4), thus taking the binary value 0.0001B (without significance), which
gives the decimal value 0.0625. This rounding error can be reduced by speci-
fying higher precision (e.g. 0.1000) for the constant.

b) In arithmetic operations involving character strings, intermediate values are held
in dummy variables having the attributes FIXED DECIMAL (15,0) i.e. without frac-
tional positions. In the example

DCL A CHAR(6) INIT(’123.45’),
B FIXED(5,2);

B = A; /* value of B 123.45 */
B = A + A; /* value of B 246.00 */

this suppression of fractional positions thus occurs in the second statement.

362 U253-J-Z125-9-7600

Optimization facilities Programming notes

c) The rules for the conversion of an arithmetic value to BIT affect the assignment
to a bit variable from a decimal constant.

Example

DCL A BIT (1),
D BIT (5);

A = 1; /* value of A: ’0’B */
D = 1; /* value of D: ’00010’B */
D = ’1’B; /* value of D: ’10000’B */

d) The rules for conversion may sometimes lead to unexpected results when an
arithmetic value is assigned to a character string (CHAR).

Example 1

DCL A CHAR(4),
B CHAR(7);

A = ’0’; /* value of A: ’0___’ */
A = 0; /* value of A: ’___0’ */
B = 1234567; /* value of B: ’___1234’ */
A = -0.7; /* value of A: ’-0.7’ */

The three character positions in the second and third assignment will only be
filled with characters if there is a negative prefix operator, a decimal point and a
single zero before the decimal point (see fourth assignment).

Example 2

DCL Number CHAR(8) INIT(’0’);
DO I = 1 TO 100;

Number = Number + 1;
END;

The example given above shows how a conversion error arises as the following
operations are executed during assignment:

The initial value ’0_______’ is converted to FIXED DECIMAL (15,0) and yields
value 0.

The decimal constant 1 has the attributes FIXED DECIMAL (1,0).

During addition, a dummy variable with attribute FIXED DECIMAL (15,0)
having value 1 is formed.

This value is converted to CHAR(18); the resulting character string consists of
17 blanks and the digit 1.

U253-J-Z125-9-7600 363

Programming notes Optimization facilities

As the target value has the CHAR(8) attribute, only the first 8 characters are
assigned. These are 8 blanks, which when converted in the next pass (see
above) lead to a conversion error.

e) In divisions involving FIXED items, unexpected truncation of significant digits or
the condition FIXEDOVERFLOW may occur.

Example

25 + 1/3

This expression will be evaluated as follows:

Operand Precision Result

1 (1,0) 1
3 (1,0) 3
1/3 (15,14) 0.333...
25 (2,0) 25
25 + 1/3 (15,14) 2 5.333...

Because of the precision, computed according to the rules, the digit 2 is trunca-
ted, but if the condition FIXEDOVERFLOW is enabled, it will be retained.

Here it is necessary to enlarge the integer part of the result of the division. This
may, for instance, be achieved by

25 + 01/3
25 + PREC (1/3, 15,13)
25 + DIVIDE (1, 3, 15, 13)

or by assigning the result of the division to a separate variable which has been
declared with the desired precision.

f) The value of a picture string (PICTURE) is only checked for accuracy during
assignment.

Example

DCL A PIC ’999999’,
B CHAR(6) DEFINED A,
C CHAR(6);

B = ’ABCDEF’; /* value also in A */
C = A; /* no CONVERSION */
A = C; /* CONVERSION */

A = 123456; /* value of A: 123456 */
/* value of B: ’123456’ */

C = 123456; /* value of C: ’___ 123’ */
C = A; /* value of C: ’123456’ */

364 U253-J-Z125-9-7600

Optimization facilities Programming notes

g) An item with the attributes FIXED DECIMAL PRECISION (g,k) has an internal
representation with precision g + 1, if g is even. In order to be certain that the
precision g is not exceeded in this case, the condition SIZE can be enabled.

Example

DCL (A,B,C) FIXED DECIMAL PRECISION (6,0) INIT (500000);

(SIZE): A = B + C;

The SIZE condition occurs. The value of A is, however, correct (1 000 000),
since DECIMAL FIXED (6,0) has the same internal representation as DECIMAL
FIXED (7,0).

U253-J-Z125-9-7600 365

Programming notes Optimization facilities

8.6.6 DO groups

1. If a condition prefix is specified before a DO group, it applies to the DO statement
only and not to the whole of the group.

2. If the condition for leaving the DO group is already satisfied at the first entry to the
group, the group will not be executed.

Example

I = 6;
DO J = I TO 4;

X = X + J;
END;

In this example the loop will not be executed, because the control variable already
has the value 6 at the first entry into the group, thus exceeding the final value 4.

3. Expressions in a DO statement are put into a dummy variable. Its representation
follows from the rules for the evaluation of the expression. Comparison with control
variables will possibly necessitate further conversions.

Example

DCL A DECIMAL FIXED (5,0);
A = 10;
DO I = 1 TO A/2;

PUT LIST (I);
END;

In the above example there is an error in the loop, arising from the following opera-
tions.

Expression Attribute Value

A DEC (5,0) 10
A/2 DEC (15,10) 5
A/2 converted BIN (31,34) SIZE condition

For the comparison with the control variable I the value A/2 must be converted to
BINARY. This raises the condition SIZE. If this condition is disabled, the program
will continue with an undefined value.

The loop will be executed 5 times if it is modified as follows:

dummy = A/2
DO I = 1 TO dummy;

or
DO I = 1 TO PREC (A/2,5,0);

366 U253-J-Z125-9-7600

Optimization facilities Programming notes

4. A group cannot be used as ON unit. If more than one statement has to be specified
for an ON unit, a BEGIN block must be used. A DO group may be included in this
block.

5. In the DO statement

DO x = a BY b TO c

expressions a, b and c are only evaluated at entry into the group and the values
obtained are stored in a dummy variable. If variables occurring in these expressions
are changed within the group, the values of a, b and c will not be affected.

Example

increment = 1;
end = 5;
DO I = 1 BY increment TO end;

increment = 100;
End = 0;
END;

This loop will be executed exactly 5 times. In contrast, the loop in the following
example is executed only once.

DO I= 1 BY 1 TO 5;
I= 5;
END;

6. For a group with a control variable and a WHILE option to be executed repeatedly,
the control variable must explicitly say so. For instance, in the example

DO I = 1 WHILE (X > Y);
.
.
.
END;

the loop will only be executed once if the condition X > Y is fulfilled; otherwise it
will not be executed at all.

U253-J-Z125-9-7600 367

Programming notes Optimization facilities

7. In DO loops the identifier I is very often used without declaration as control variable.

Example

DO I = 1 TO 10;

Within the scope of variable I, the same name may be implicitly given to another
variable.

Example

DCL X BASED (I);

These two statements contradict each other and an error message will be genera-
ted. If I is a pointer, its application in a DO group is restricted to the following uses:

a) DCL (I, IA, IB, IC) POINTER;
.
.
.
DO I = IA, IB, IC;

b) DCL (I, IA) POINTER;
.
.
.
DO WHILE (I = IA);

8. When the control variable of a DO group is used as a subscript, care must be taken
that its value does not exceed the bounds of the array.

Example

DCL A DIM(10);
DO I = 1 TO N;

A(I) = X;
END;

If N is greater than 10, the value of other variables may be destroyed by the assign-
ment. Such an error is hard to find, especially when object code is destroyed. The
error can be traced by enabling the condition SUBSCRIPTRANGE.

368 U253-J-Z125-9-7600

Optimization facilities Programming notes

8.6.7 Aggregates

1. When array expressions are used in an assignment and an element of the target
item is used also on the right side of the assignment, it should be remembered that
according to PL/I standard all elements on the right side are evaluated first and the
value thus obtained is assigned to a dummy variable. It is only thereafter that the
value of the dummy variable is assigned to the target variable.

Example

DCL A DIM (10,20);
A = A + A (1,1);

The effect corresponds to the following statements.

DCL A DIM (10,20),
dummy DIM (10,20);

dummy = A + A (1,1);
A = dummy;

In this way all elements of array A are assigned the value of element A (1,1).

Note that the following section of program leads to a different result:

DCL A DIM(10,20);
DO I = 1 TO 10;

DO J = 1 TO 20;
A (I,J) = A (I,J) + A (1,1);
END;

END;

In the above the value of element A (1,1) is doubled and this doubled value is then
added to the value of the other elements (except A (1,1)).

If the compiler is capable of recognizing that there is no such overlap between the
two sides of the assignment, no dummy variable will be created and direct transfer
to the target variable is made.

2. When two arrays are multiplied the multiplication is confined to elements having the
same subscripts.

Example

DCL (A,B,C) Dimension(10,10);
A = B * C;

This corresponds to the following statements:

DO I = 1 TO 10;
DO J = 1 TO 10;

A(I,J) =B(I,J) * C(I,J);
END

END;

U253-J-Z125-9-7600 369

Programming notes Optimization facilities

8.6.8 Strings

1. The assignment of a value to a string variable with attribute VARYING by means of
the pseudo variable SUBSTR, has no affect on the length of the string accessed. If
the length of this variable is not defined or if parts of the variable outside its defined
length are being referenced, the result will be undefined. An error like this can be
traced if the condition STRINGRANGE is enabled.

2. It should be noted that even in intermediate results the length of a bit string or a
character string must not be allowed to exceed 32767 bits and characters respective-
ly. This cannot be tested by the object program.

8.6.9 Functions and pseudo variables

If the pseudo variable UNSPEC is used as the target variable in an assignment, it has
the attribute BIT and the expression standing on the right is converted to BIT. It is imp-
ortant to make sure that this conversion is possible.

370 U253-J-Z125-9-7600

Optimization facilities Programming notes

8.6.10 Conditions and ON units

1. Attention should be paid to the correct positioning of the ON unit. If an ON unit is
to be executed when a certain condition occurs, the ON unit must have been execu-
ted at a time prior to that of the occurrence of the condition. In the example

GET FILE (file) LIST (a,b,c);
ON ENDFILE (file) GOTO end of file;

the execution of the program would be terminated with an error if the file were emp-
ty; passing control to "end of file" would not be executed, since at initial access time
the ON statement has not yet been carried out. Moreover execution of the ON state-
ment is repeated after each execution of the GET statement, always with the same
result.

2. An ON unit is executed either when the associated condition occurs or when the
SIGNAL statement is used. Passing control to an ON unit is not permitted.

3. ON units for the condition CONVERSION are left either through a GOTO statement
or by correcting the erroneous characters by means of the pseudo variables
ONSOURCE or ONCHAR. This requirement does not apply if the ON unit has been
entered through SIGNAL.

4. At normal exit from the ON unit to the AREA condition, renewed allocation is tried,
which leads to an infinite loop, unless provision is made in the ON unit. The ON unit
may exploit the fact that in renewing the allocation the size of the memory space
requirement as well as the reference to the area are newly calculated and modify
the area, or it can provide for sufficient space in the original area.

5. ON units should not be employed to replace sections of programs. Their use should
rather be confined to those cases where one wishes to intercept an unexpected
exception condition, because the use of ON units is not very efficient. In all other
cases suitable tests should be programmed instead of using the error detection facili-
ties of the PL/I compiler for this purpose.

For instance, in a program in which keys are used for referencing a file, the problem
of omitting some of the keys, because they do not fit into the limits of the file, could
be solved by means of the KEY condition. It is however preferable to detect the
keys by suitable testing operations and to omit access to the file altogether in such
a case.

U253-J-Z125-9-7600 371

Programming notes Optimization facilities

8.6.11 Input/output

 1. The condition UNDEFINEDFILE is not only raised when the attributes provided by
PL/I are incompatible, but also in the following cases:

a) Block length smaller than record length.

b) KEYLENGTH zero or undefined for INDEXED and REGIONAL files.

c) When the sum of the values of KEYLENGTH and KEYLOC for INDEXED files
exceeds the record length.

d) When the logical record length for the record format VB is not at least 4 bytes
smaller than the block length.

 2. When a file is simultaneously used for input and output, it must not be declared
with the attribute INPUT or OUTPUT. This can be specified in the OPEN statement.

 3. Input/output lists must be enclosed by parentheses. This applies also to the itera-
tion list. Thus, in the following example two pairs of external parentheses have to
be used:

GET LIST ((A(I) DO I = 1 TO N));

 4. The last 8 bytes of the key for referencing a REGIONAL file must be a character
string representing a decimal integer. When this key is created, the rules for conver-
sion from arithmetic to CHAR should be observed. Accordingly, the following exam-
ple is an incorrect section of a program.

DCL key CHAR (8);
DO I = 1 TO 10;

key = I;
WRITE FILE (file) FROM (variable) KEYFROM (key);
END;

The default for I is FIXED BINARY (15,0). In the conversion this gives rise to a
string of 9 characters. Consequently the numeric on the right is cut off in the
assignment to "key".

 5. If an I/O statement contains one of the options KEY, KEYFROM or KEYTO, the
corresponding file must have the attribute KEYED.

 6. The names SYSIN and SYSPRINT are only implied in the statement GET and PUT
respectively. In all other cases, such as for instance in an ON statement and in
other I/O statements, these names have to be explicitly specified.

 7. PAGESIZE and LINESIZE are not file attributes, i.e. they cannot be used in file dec-
larations but only in OPEN statements.

372 U253-J-Z125-9-7600

Optimization facilities Programming notes

 8. If in GET EDIT or PUT EDIT processing all elements of a data list are processed,
no further elements from the format list will be processed, even when these do not
require a data element.

Example

GET EDIT (A,B) (F(5), F(5), X(70));
PUT EDIT (A,B) (A(3), F(5), SKIP);

Format X(70) will not be processed. For example, if you wish to skip the remaining
70 positions of a punch card, it is necessary to begin the next statement with X(70)
or SKIP. In the case of the PUT statement the SKIP format will not be carried out.
It has to be specified in the next PUT statement.

 9. If an array or a structure is specified in the data list, then each element of the array
and each elementary member of the structure constitutes an element of the data
list, thus also requesting an element of the format list.

Example

DCL 1 A,
2 B CHAR(5),
2 C FIXED(5,2);

PUT EDIT (A) (A(5), F(5,2));

Elementary members B and C have format A(5) and format F(5,2) respectively.

10. Array elements are processed in the sequence in which the right subscript changes
most rapidly:

A(1,1), A(1,2), A(1,3), A(2,1) etc.

11. Character strings read in by GET LIST or GET DATA must be enclosed in apostro-
phes.

12. The representation of the semicolon in the 48-character set (.,) is not recognized
as a separator semicolon when input is made through GET DATA.

13. If a PUT DATA statement is used without a data list, all the data names known at
this stage on the basis of the rules for the validity of names will be supplemented.
The corresponding scope is determined statically.

The same applies when PUT DATA is used in an ON unit, except that the ON unit
is used dynamically. If the point where the ON unit is invoked in a block is parallel
and subordinate to the ON unit, data that is valid only within that block will not be
output.

U253-J-Z125-9-7600 373

Programming notes Optimization facilities

It may thus be useful if during the testing stage the statement

ON ERROR PUT DATA;

is initially repeated in all internal blocks.

Note

If the ERROR condition returns in an ON unit for the ERROR condition, an infi-
nite loop results.

"PUT DATA;" outputs even those variables whose values are still undefined. As a
result, the CONVERSION condition may be set, in its turn resulting in the
ERROR condition.

An infinite loop can be avoided by using the following statements:

ON ERROR SNAP BEGIN;
ON ERROR SNAP SYSTEM;
PUT DATA;
END;

14. A pointer set by READ SET or LOCATE SET is only valid until the next statement
for the same file. In output files the statements WRITE and LOCATE may be used
in any combination.

374 U253-J-Z125-9-7600

Optimization facilities Programming notes

8.6.12 Procedure functions with several entries

On a procedure function reference, a procedure may be entered by all entries with
RETURNS specified and may be left again via all RETURNS statements for which a
value has been supplied. For ’n’ entries with RETURNS and ’m’ RETURN statements,
there are ’n x m’ theoretical ways of converting the value of the RETURN expression to
the attribute set according to the RETURNS option. Which of the conversions is requi-
red depends on the run of the program and cannot be identified by the compiler but
only at the time the RETURN statement is executed, i.e. dynamically. Therefore, when
using several RETURNS options with different attribute sets and several RETURN state-
ments with different attribute sets of the expressions, precaution is taken for any cases
that may arise. The resulting overhead is a marked increase in memory requirements
and computer time.

U253-J-Z125-9-7600 375

Programming notes Optimization facilities

Results
PUT SKIP LIST (CHARACTER ()); 3
PUT SKIP LIST (FIXED-POINT ()); 3.0
PUT SKIP LIST (BIT ()); ’0011’B

CHARACTER: PROCEDURE RETURNS (CHAR (*));
.
. 3 entries
.
RETURN (’7’);

FIXED- ENTRY RETURNS (FIXED(5,2)); 3 return
POINT: . points

.

.

.
RETURN (7); = 3 x 3 con-

BIT: ENTRY RETURNS (BIT(*)); versions
.
.
. Dynamic
RETURN (’111’B); decision on
END CHARACTER; the type of

conversion

Theoretically
Attribute set required Attribute set
RETURNS statement conversions RETURNS option

’7’ CHAR (1) NONVARYING CHAR (*) NONVARYING

7 REAL FIXED DEC (1,0) REAL FIXED BIN (5,2)

’111’B BIT (3) NONVARYING BIT (*) NONVARYING

Fig. 8-4 Procedure with several entries and RETURNS option and several

RETURNS statements with expression

376 U253-J-Z125-9-7600

Optimization facilities Programming notes

8.6.13 Variable length entry

If variable values or expressions rather than constant values are used to declare lengths
(AREA, BIT, CHAR) or DIMENSIONs, access to such items, esp. in connection with
structures and arrays, may involve a heavy overhead. They should be avoided whene-
ver possible. It may be a good idea to check whether the desired effect cannot also be
achieved via precompiler variables acting as constants.

8.6.14 Passing of parameters

If a parameter satisfies the following conditions:

Only value passing to the called procedure and not back to the calling procedure
Scalar
No * option
Memory requirement 1 fullword,

then PARAMETER (INPUT) specification will effect a favorable passing of the value. Not
the pointer to the value, but the value itself is then passed. See section 7.1.2.1.

8.6.15 Absolute bit pointer for XS

If the address space above 16 Mbytes (XS) is to be used, some rules must be obser-
ved regarding absolute pointers where bit precision is required. These absolute bit poin-
ters may be found in the following cases:

when ADDR refers to a bit string
when a bit string is passed as a parameter

In view of the general rules for alignment, absolute pointers only appear if all of the fol-
lowing conditions are met simultaneously:

Declaration of a bit string
Declaration within a structure
Within the structure, a declaration immediately precedes which also meets all of
these conditions and whose length is not a multiple of 8.
Declaration with UNALIGNED

How an absolute bit pointer is declared, is described in chapter 4.

It should be borne in mind that an absolute bit pointer requires a larger storage loca-
tion than an absolute pointer: if it is used within structures subsequent fields will shift.
Check whether conditions are imposed on the internal arrangement of fields of the
structure (see chapter 10) that do not permit this.

U253-J-Z125-9-7600 377

9 Debugging aids
The purpose of debugging aids is to facilitate or indeed to make possible the detection
of errors in a program by means of suitable methods of testing.

The semantics of a program should not be affected by the inclusion of debugging aids.

Control over all the available debugging facilities is exerted by control statements for
the compiler (*COMOPT) and for the program (*RUNOPT), as well as via test state-
ments in response to check points.

Experience has shown that the fullest use of debugging aids will only be made if they
can be conveniently handled.

The following control options are available:

• Control statements for the compiler

• Control statements for the program

• Setting of breakpoints

• Test statements when a breakpoint is reached.

The following types of debugging aids are available:

• Trace for

Entry points to procedures (PROCEDURE)
Procedure calls (CALL)
Branching (GOTO)
Labels
Return (RETURN)

• Snap (SNAP)

• Binary dump

• Debugging AID interface

U253-J-Z125-9-7600 379

Control Debugging aids

9.1 Compiler control

The control statement

*COMOPT DEBUG = specification

tells the PLI1 compiler to incorporate certain debugging aids into the program.

The following specifications are possible:

PROCTRACE Output of a log line: on entry to a procedure

CALLTRACE on execution of a CALL statement or of a function reference

GOTOTRACE on execution of a GOTO statement

LABTRACE on reaching a label

RETURNTRACE on returning from a procedure

BREAKPOINT(a,...)
BREAKPOINT Breakpoints are set before the lines a, ...

STMT Runtime errors are displayed with the number of the source line in
the error text.

The BREAKPOINT line entry ’a’ is supplied in the following format:

[i-] z [:s]

where

i: consecutive number of the INCLUDE statement
decimal integer 0...256
value 0: text not from INCLUDE file; default

z: consecutive line number of the source listing
decimal integer < 107

s: consecutive number of the statement on the source line
decimal integer < 32
default: 1

/EXEC $PLI1
*COMOPT DEBUG = CALLTRACE
*END

/EXEC $PLI1
*COMOPT DEBUG = BREAKPOINT (50.2)
*END

Breakpoint at line 50 before second statement.

Fig. 9-1 Examples of compiler control

380 U253-J-Z125-9-7600

Debugging aids Control

9.2 Program control

The following control statements are available for controlling debugging during execu-
tion time:

*RUNOPT DUMP = Specification
*RUNOPT TRACE = Specification

For dynamic control of debugging aids during execution time, control statements may
be specified on arrival at an inserted breakpoint.

For activation and deactivation of a checkpoint the following control statement is availa-
ble:

*RUNOPT ACTIVE = YES or NO

On the arrival at a breakpoint the possible options for control statements are the same
as the specifications for DUMP, TRACE and ACTIVE mentioned above.

When an active breakpoint is reached during execution time, the following message is
output:

* BKPT/procedure/[i-]z[:s]

where the items have the following meanings:

procedure: Name of internal or external procedure containing the statement

i: Number of the INCLUDE file; omitted for number 0

z: Number of source line in source listing

s: Number (consecutive) of statement in source line omitted for value 1

An input statement is then expected. This may be

• a null statement

• a control statement

It will be executed immediately. If it contains errors, the "ERROR" message together
with the part of the control statement not yet executed is output to SYSOUT and
SYSLST. This part must be reentered after correction.

U253-J-Z125-9-7600 381

Control Debugging aids

The following options may be supplied for *RUNOPT or as control statements:

• TRACE =

PROCTRACE, NOPROCTRACE
CALLTRACE, NOCALLTRACE
GOTOTRACE, NOGOTOTRACE
LABELTRACE, NOLABELTRACE
RETURNTRACE, NORETURNTRACE
TERMINAL, NOTERMINAL
ALL, NO

For further details see section 9.1 and chapter 5.

• ACTIVE = YES or NO
All breakpoints are activated or deactivated.

• SYSTEM
Command mode is entered (breakpoint); meaningful only as a control statement.

• DUMP =

STACK stack
AREA standard area
RANGE(a,e) area of hexadecimal addresses a to e
SNAP nesting of calls
COND only in case of error

Further details are given in chapter 5.

/EXEC Program
*RUNOPT TRACE = CALLTRACE
*END

*BKPT /Program/50.2 Output to SYSOUT
TRACE = CALLTRACE Input from SYSDTA

The breakpoint at the second statement in line 50 has signaled. Trace for procedure
calls will be activated.

Fig. 9-2 Example for control of debugging aids during execution time

382 U253-J-Z125-9-7600

Debugging aids Trace, check points

9.3 Trace output

Trace information is output to SYSLST (if TRACE = TERMINAL also to SYSOUT). The
lines for the individual specifications have the following structure:

PROCTRACE: *P: p LEVEL: n r
CALLTRACE: *C: p [i-] z [:s]
GOTOTRACE: *G: l [i-] z [:s]
LABTRACE: *L: l [i-] z [:s]
RETURNTRACE: *R: e [i-] z [:s]

where:

p: Procedure name or entry name or name of entry variable

n: Depth of call nesting

r: Contents of registers R1 to R4, R14, R15

i: Number of INCLUDE file or blank

z: Number of source line in source listing

s: Number of statement in source line

l: Name of label, including subscript where appropriate

e: Primary entry name

9.4 Activation of check points

The control statement *RUNOPT ACTIVE = YES or NO or the control statement
ACTIVE = YES or NO causes breakpoints to be set to active and passive respectively.

U253-J-Z125-9-7600 383

Program interrupt, dump Debugging aids

9.5 Program interrupt

Program execution can be interrupted by

the control statement SYSTEM at a breakpoint.

the break/escape key on the visual display unit. (Its design varies according to the
particular terminal).

the command /BREAK, if /SYSFILE SYSDTA = (SYSCMD) applies (in DO procedu-
res as well as in batch operations), provided the program reads data from SYSDTA.

The program can subsequently be restarted by /RESUME or by /INTR, where /INTR
sets the condition ATTENTION.

If the control statements for the program are terminated by

*END/

control passes to the command mode. SYSDTA, for example, can then be reassigned.
The command /RESUME causes resumption of the program.

9.6 Dump

A dump can be requested by the control statement *RUNOPT DUMP =, by calling one
of the procedures described in chapter 11 or by the control statement DUMP. In these
cases the output, obtained in the interactive mode, is

%IN 45 DUMP DESIRED? REPLY (Y = YES; N = NO)?

If the reply is Y, the dump will be output to SYSLST.

When DUMP = STACK and DUMP = AREA the above enquiry will first be issued for
the output of the pseudo-register vectors and then for the desired area of memory.

384 U253-J-Z125-9-7600

Debugging aids SNAP

9.7 SNAP

Output takes place to both SYSLST and SYSOUT. The output lines have the following
format:

name type address source-line

The source line option will only be displayed if the compilation was performed by
DEBUG = STMT. Specifically, ’name’ is defined as follows, depending on ’type’:

TYP meaning of the name

ENTRY entry name of a procedure

SYSTEM entry name of a library procedure

BEGIN number (consecutive) of a BEGIN block. This number appears in the
address table; cf. LIST = MAP (section 3.8.8)

ON name of condition

Names whose lengths exceeds 7 characters are shortened to the first 4 and the last 3
characters.

The source line entry is of the form

[i-] z [:s]

See also section 9.2

***************************** SNAP ****************************

START OF PRINTING OF NESTED SUBROUTINES

CALLED FROM TYPE ON ADDRESS INC-# LINE-# STMT

SNAP SYSTEM 0020D2
FEHLER ENTRY 000360 26 1
ZEROIDE ON 000374 14 1
ER$INTR SYSTEM 0107EA
ER$PUB SYSTEM 010EAC
SR$STXT SYSTEM 00FD04
##00004 BEGIN 00045A 20 1
X97 ENTRY 000254 12 1

Fig. 9-3 SNAP output (sample)

*COMOPT OPTIMIZE = TIME provides the capability for coding certain internal proce-
dures and blocks in a simplified form (see 8.4.11 and 8.5.1). These procedures and
blocks are identified by the entry "(QUICK)" in the storage map listing (*COMOPT LIST
= MAP). They do not appear on the SNAP listing.

U253-J-Z125-9-7600 385

AID Debugging aids

9.8 Interface to the AID debugger

For symbolic debugging with the debugger AID, additional information must be genera-
ted when the program is compiled. This can be effected by means of the compiler
option "SYMTEST=ALL".

The debugging information is then either transferred statically, during linking/loading, to
the loaded program if "SYMTEST=ALL" is specified, or it may be loaded dynamically by
AID if the object module is stored in a PLAM library.

For detailed information about debugging with AID, see the manual "AID - Debugging of
PL/I Programs" [18].

386 U253-J-Z125-9-7600

10 Internal Representation
Generally the user of the PL/I programming language does not need to concern him-
self with the internal representation of his data in the computer storage. It may, howe-
ver, be useful to consider the internal representation of the data in the following con-
texts:

• For error analysis in the object program the current values of variables can be exa-
mined, e.g. via

UNSPEC (a)
HEXDEC (UNSPEC (a))
CALL ADUMP or SDUMP or RDUMP

This makes is possible to determine their status in a bit-by-bit analysis.

• When records are output the record length may be ascertained from a data portion
and a management portion. The length of the data portion depends on the type of
the source variables and its current contents. How this is ascertained is described in
this section. For example, it can be attained using the built-in function SIZE. Whe-
ther an additional management portion is required depends on the target file, descri-
bed in chapter 6.

• When records are read from files generated by a foreign program, the user needs to
know whether the structure from which the records were once written and that of
the target variables are compatible. For the data portion this can be ascertained
using the methods described in these sections. For the management portion this is
explained in chapter 6.

There are certain requirements relating to the arrangement of data in storage for the
internal representation of scalar variables, array elements, and structure elements as
well as for the alignment of structures. This affects the amount of storage required and
also alignment on a certain addressing boundary.

This is explained in the following subsections. The following terms are used for the sto-
rage requirements:

• Bits
The specified number of bits is required. The variable can begin at any bit address.

U253-J-Z125-9-7600 387

Internal representation

• Bytes
The specified number of bytes (characters) is required. The variable can begin at
any byte address.

• Halfwords
The specified number of halfwords is required. Each halfword consists of 2 bytes.
The variable can begin at any even byte address.

• Fullwords
The specified number of fullwords is required. One word comprises 4 bytes. The
variable can begin at any byte address divisible by 4.

• Doublewords
The specified number of doublewords is required. Each doubleword comprises 8
bytes. The variable can begin at any byte address divisible by 8.

If, for example, 2 fullwords are required for a variable, the storage space begins at a
fullword address. If, however, 8 bytes are required, the storage space begins at a byte
address, which may also be a fullword address. The length of the storage area is the
same in both cases (8 bytes and 2 fullwords).

Storage space for scalar variables, complete arrays and main structures begins at least
on a byte boundary. This does not apply if the variable is a result of overlay defining
(e.g. via the DEFINED or BASED attributes) and the part to be overlayed is a subarray
or a substructure which is aligned on a bit boundary.
If storage space is allocated for a variable with the attribute CONTROLLED or BASED, it
is always in multiples of doublewords, in which case the storage space always begins
on a doubleword boundary.

388 U253-J-Z125-9-7600

Internal representation Arithmetic variables

10.1 Arithmetic variables

A brief summary of the

• Default and maximum value of precision (PRECISION)

• Storage requirements depending on precision g

• Addressing boundary depending on alignment (ALIGNED/UNALIGNED)

is provided for arithmetic variables in Figure 10-1.

Detailed specifications may be found in the following subsections.

Pictured arithmetic character strings are included in the character strings in section
10.2.

Data type PRECISION Storage requirements

Mode Scale Base Default Maximum for g ALIGNED UNALIGNED

DECIMAL (5,0) (15,k) g + 1
CEIL () Bytes

2
FIXED

1...15 1 halfword 2 bytes
BINARY (15,0) (31,k)

16...31 1 fullword 4 bytes

REAL 1...6 1 fullword 4 bytes
DECIMAL (6) (33)

7...16 1 double- 8 bytes
word

17...33 2 double- 16 bytes
words

FLOAT
1...21 1 fullword 4 bytes

22...53 1 double- 8 bytes
BINARY (21) (109) word

54...109 2 double- 16 bytes
words

COMPLEX Real and imaginary portions as in REAL; portion first

k:+127...-128

Fig. 10-1 Summary of storage requirements and addressing boundaries for arithmetic

variables

U253-J-Z125-9-7600 389

Arithmetic variables Internal representation

10.1.1 Fixed binary variables (FIXED BINARY)

Fixed binary variables have the attribute FIXED BINARY PRECISION (g,k), where g spe-
cifies the minimum precision in binary digits, and k the position of the binary point. For
internal representation

16 bits for g = 1 to 15 which is 2 bytes or 1 halfword
32 bits for g = 16 to 32 which is 4 bytes or 1 fullword

are used. All internal computations are performed to this precision, rounded up if neces-
sary. The storage area begins

on a half- or fullword boundary for ALIGNED
on a byte boundary for UNALIGNED.

If k = 0, the implied binary point required for ascertaining the value is located to the
right of the rightmost bit. If k is positive, it moves k binary places to the left; if negative,
|k| binary places to the right.

2 bytes UNALIGNED

1 halfword ALIGNED

g: 1...15 1 :
v :

+k • -k
Binary point

4 bytes UNALIGNED

1 fullword ALIGNED

g:16...31 1:
v :

+k • -k
v: sign ’0’B + Binary point

’1’B -
Negative value in B complement

Fig. 10-2 Internal representation of variables with the attribute

REAL FIXED BINARY PRECISION (g,k)

390 U253-J-Z125-9-7600

Internal representation Arithmetic variables

DCL A FIXED BINARY PRECISION(10,0) ALIGNED;
DCL B FIXED BINARY PRECISION(15,0) ALIGNED;
DCL C FIXED BINARY PRECISION(25,0) ALIGNED;
DCL D FIXED BINARY PRECISION(31,0) ALIGNED;

DCL M FIXED BINARY PRECISION(10,0) UNALIGNED;
DCL N FIXED BINARY PRECISION(15,0) UNALIGNED;
DCL O FIXED BINARY PRECISION(25,0) UNALIGNED;
DCL P FIXED BINARY PRECISION(31,0) UNALIGNED;

ALIGNED 1 fullword
1 halfword

Variable Value

A: 1023 0000001111111111
•

B: -32767 1000000000000001
•

C: 33554431 00000001111111111111111111111111
•

D: -2147483647 10000000000000000000000000000001
•

Sign

UNALIGNED 4 characters
2 char.

Variable Value

M: -1023 1111110000000001
•

N: 32767 0111111111111111
•

O: -33554431 11111110000000000000000000000001
•

P: 2147483647 01111111111111111111111111111111
•

Sign Binary point position
for k=0

Fig. 10-3 Internal representation of fixed point variables with varying alignement and

precision according to the maximum value

U253-J-Z125-9-7600 391

Arithmetic variables Internal representation

The leftmost bit indicates whether the value is positive (’0’B) or negative (’1’B). Negative
values are represented in binary complement. The following steps can be taken to
ascertain the amount of a negative value:

• All bits, including sign bits, are inverted.

• A bit ’1’B is added on the extreme right, and any overflow bit in the sign bit is igno-
red.

The resulting value represents the (positive) value. Figure 10-4 shows some examples.

Negative value 1 0101=-11 1 1111=-1 1 0000=-0
Inverted 0 1010 0 0000 0 1111
Inverted + 1 0 1011=11 0 0001=1 0 0000=0

1

Fig. 10-4 Examples of ascertaining the positive value for k = 0 with negativ values

392 U253-J-Z125-9-7600

Internal representation Arithmetic variables

10.1.2 Fixed decimal variables (FIXED DECIMAL)

Fixed decimal variables have the attribute FIXED DECIMAL PRECISION (g,k), where g
specifies the minimum precision in decimal places and k determines the position of the
decimal point. For internal representation a sign position is added on the right and, if
this results in an odd number of places, a digit position is added to the left. Digits and
signs are stored in 1/2-bytes. The storage requirement is therefore

g + 1
CEIL () bytes

2

All internal computations are performed to this precision, rounded as necessary. For
both ALIGNED and UNALIGNED, the storage area begins

• on a byte boundary

If k = 0, the implied decimal point required for ascertaining the value is located to the
right of the rightmost digit position. If k is positive it moves K decimal places to the left;
if negative, |k| decimal places to the right.

g + 2
bytes

2

1 byte

g:even 0 z z z z z v

+k • -k
Decimal point

g + 1
bytes

2

1 byte

g:odd z z z z z z v

+k • -k
v: sign Decimal point
z: digit (2 hexadecimal/bytes)

Fig. 10-5 Internal representation of variables with the attribute

REAL FIXED DECIMAL PRECISION (g,k)

U253-J-Z125-9-7600 393

Arithmetic variables Internal representation

DCL A FIXED DECIMAL PRECISION(02,0) ALIGNED;
DCL B FIXED DECIMAL PRECISION(05,0) ALIGNED;
DCL C FIXED DECIMAL PRECISION(10,0) ALIGNED;
DCL D FIXED DECIMAL PRECISION(15,0) ALIGNED;

DCL M FIXED DECIMAL PRECISION(02,0) UNALIGNED;
DCL N FIXED DECIMAL PRECISION(05,0) UNALIGNED;
DCL O FIXED DECIMAL PRECISION(10,0) UNALIGNED;
DCL P FIXED DECIMAL PRECISION(15,0) UNALIGNED;

Variable Value 2 hexadecimal/byte

A: 12 01 2C

B: -12345 12 34 5D

ALIGNED
C: 1234567890 01 23 45 67 89 0C

D:-123456789012345 12 34 56 78 90 12 34 5D

M: -12 01 2D

N: 12345 12 34 5C

UNALIGNED
O: -1234567890 01 23 45 67 89 0D

P: 123456789012345 12 34 56 78 90 12 34 5C

Decimal point position
for k=0

Fig. 10-6 Example of the internal representation of decimal fixed point variables

394 U253-J-Z125-9-7600

Internal representation Arithmetic variables

The internal representation of decimal digits and the sign is shown in Figure 10-7.

Sign Binary Hexadecimal Digit Binary Hexadecimal

1010 A 0 0000 0
1100 C 1 0001 1

+ 1110 E 2 0010 2
1111 F 3 0011 3

4 0100 4
1011 B 5 0101 5

- 1101 D 6 0110 6
7 0111 7
8 1000 8
9 1001 9

Fig. 10-7 Internal representation of signs and digits for decimal fixed

point-variables in 4 bits (binary and hexadecimal)

U253-J-Z125-9-7600 395

Arithmetic variables Internal representation

10.1.3 Floating point variables (FLOAT)

Floating point variables have the attribute FLOAT PRECISION (g), where g is the mini-
mum precision of the mantissa, in binary places for BINARY and in decimal places for
DECIMAL. Internally the representation

m . 16e

is used in both cases, with the mantissa m being a true binary fraction (binary point at
the extreme left). The exponent is a binary integer (binary point at the extreme right)
related to base 16.

1...21 1 fullword
where g: for ALIGNED

22...53 1 doubleword

1...21 4 characters
where g: for UNALIGNED

22...53 8 characters
...

v Exponent Mantissa
...

• Binary point
1 7 bits

1...21 24 bits
8 bits g:

22...56 56 bits

2 doublewords for ALIGNED
-where g: 54...109

16 characters for UNALIGNED

... ...
v Exponent Mantissa v Exponent Mantissa
1 1 1 2 2 2

... ...

1 7 bits 1 7 bits
• Binary
point

8 bits 56 8 bits 56 bits
bits

v: Sign mantissa ’0’B=+
’1’B=-

Fig. 10-8 Internal representation of variables with the attribute

REAL FLOAT BINARY PRECISION (g)

396 U253-J-Z125-9-7600

Internal representation Arithmetic variables

The leftmost bit is the mantissa sign, where ’0’B represents a positive value and ’1’B a
negative value. The following 7 bits represent the value of the exponent. To ascertain
the value of the exponent the value 64 must be subtracted from the binary value of the
bit pattern. Examples are shown in Figure 10-9.

Binary Decimal Exponent

0 000000 0 -64
0 000001 1 -63
0 000010 2 -62

0 111110 62 - 2
0 111111 63 - 1
1 000000 64 0
1 000001 65 + 1
1 000010 66 + 2

1 111101 125 +61
1 111110 126 +62
1 111111 127 +63

Exponent = Decimal -64

Fig. 10-9 Examples of the internal representation of the exponent

for floating point variables

The length of the mantissa depends on the precision as follows:

BINARY (g) DECIMAL (g) Mantissa Total

Short 1...21 1...6 24 bits 32 bits
Long 22...53 7...16 56 bits 64 bits
Extended 54...109 17...33 112 bits 128 bits

With the extended floating point number, the representation of the long floating point
number is used twice consecutively; the sign bit and exponent bits in the second part
have no relevance for the value.

The internal representation of the mantissa is the same as for a binary fixed point varia-
ble with the binary point to the left of the leftmost binary digit.

Floating point values are always normalized, i.e. after the appropriate correction of the
exponent, the mantissa is shifted in 4 bit positions until at least one of the 4 leftmost
bits differs from ’0’B.

Internal computations are performed with the precision required by the internal represen-
tation.

U253-J-Z125-9-7600 397

Arithmetic variables Internal representation

DCL A FLOAT BINARY PRECISION(10) ALIGNED;
DCL B FLOAT BINARY PRECISION(21) ALIGNED;
DCL C FLOAT BINARY PRECISION(53) ALIGNED;
DCL D FLOAT BINARY PRECISION(109) ALIGNED;

DCL M FLOAT BINARY PRECISION(10) UNALIGNED;
DCL N FLOAT BINARY PRECISION(21) UNALIGNED;
DCL O FLOAT BINARY PRECISION(53) UNALIGNED;
DCL P FLOAT BINARY PRECISION(109) UNALIGNED;

Internal representation Value
(hexadecimal)

A:42100000 1.600E+01
B:FFFFFFFF -7.237005E+75
C:7FFFFFFFFFFFFFFF 7.237005577332260E+75
D:FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -7.23700557733226221397318656304297E+75

M:40100000 6.250E-02
N:00FFFFFF 8.636168E-78
O:80FFFFFFFFFFFFFF -8.636168555094444E-78
P:00FFFFFFFFFFFFFFFFFFFFFFFFFFFFF 8.63616855509444462538635186280038E-78

Fig. 10-10 Example of the internal representation of binary floating point variables

DCL A FLOAT DECIMAL PRECISION(03) ALIGNED;
DCL B FLOAT DECIMAL PRECISION(06) ALIGNED;
DCL C FLOAT DECIMAL PRECISION(16) ALIGNED;
DCL D FLOAT DECIMAL PRECISION(33) ALIGNED;

DCL M FLOAT DECIMAL PRECISION(03) UNALIGNED;
DCL N FLOAT DECIMAL PRECISION(06) UNALIGNED;
DCL O FLOAT DECIMAL PRECISION(16) UNALIGNED;
DCL P FLOAT DECIMAL PRECISION(33) UNALIGNED;

Internal representation Value
(hexadecimal)

A:42100000 1.60E+01
B:FFFFFFFF -7.23700E+75
C:7FFFFFFFFFFFFFFF 7.237005577332260E+75
D:FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -7.23700557733226221397318656304297E+75

M:40100000 6.25E-02
N:00FFFFFF 8.63616E-78
O:80FFFFFFFFFFFFFF -8.636168555094444E-78
P:00FFFFFFFFFFFFFFFFFFFFFFFFFFFFF 8.63616855509444462538635186280038E-78

Fig. 10-11 Examples of the internal representation of decimal floating point variables

398 U253-J-Z125-9-7600

Internal representation Arithmetic variables

10.1.4 Picture character string variable (PICTURE)

Arithmetic character string variables with the PICTURE attribute are always represented
internally as character strings, as described in section 10.2.3.

10.1.5 Complex variables

Complex variables always consist of a real portion and an imaginary portion, both of
which are represented in the same way. The imaginary portion immediately follows the
real portion.

U253-J-Z125-9-7600 399

String variables Internal representation

10.2 String variables

Figure 10-12 provides a brief summary of

• default and maximum value of the length specification for character strings
(CHARACTER) and bit strings (BIT).

• storage requirements

• addressing boundaries

for string variables.

Further details may be found in the following subsections.

String UNALIGNED ALIGNED

NONVARYING n bytes
CHAR (n)

VARYING 2 + n bytes 1 halfword + n bytes

n
NONVARYING n bits CEIL (-) bytes

8
BIT (n)

n n
VARYING CEIL (2+-)bytes 1 halfword + CEIL (-) bytes

8 8

PIC’...’ As for CHAR (m) NONVARYING m=number of symbols without V,F,K

PIC’...’ Real and imaginary portions as for PIC’...’;
COMPLEX real portion first

n: default = 1 m: numeric max. 255
maximum = 32767 alphanumeric max. 511

Fig. 10-12 Summary of the storage requirements and addressing boundaries

of string variables

10.2.1 Bit string variables (BIT)

The following storage space (x = 0 to 7) is required for bit string variables with the attri-
bute BIT(n):

NONVARYING UNALIGNED n bits
NONVARYING ALIGNED n bits + x filler bits
VARYING UNALIGNED 2 bytes + n bits + x filler bits
VARYING ALIGNED 1 halfword + n bits + x filler bits

x thus comprises as many filler bits as are needed to make the total number of bits
(n + x) divisible by 8, so that they fill an exact number of bytes.

400 U253-J-Z125-9-7600

Internal representation String variables

The storage area begins on

a bit boundary for NONVARYING UNALIGNED
a byte boundary for NONVARYING ALIGNED
a byte boundary for VARYING UNALIGNED
a halfword boundary for VARYING ALIGNED

n bits

UNALIGNED

n
CEIL (-) bytes

8 NONVARYING

ALIGNED

n bits

n
CEIL (2+-) bytes

8

Length UNALIGNED
.

2 bytes n bits
VARYING

n
1 halfword + CEIL (-) bytes

8

Length ALIGNED
.

1 halfword n bits

Filler bits up to next character or halfword boundary

Filler bits up to maximum length

Fig. 10-13 Internal representation of variables with the attribute BIT(n)

U253-J-Z125-9-7600 401

String variables Internal representation

DCL A BIT(4) NONVARYING ALIGNED;
DCL B BIT(4) NONVARYING UNALIGNED;
DCL C BIT(8) NONVARYING ALIGNED;
DCL D BIT(8) NONVARYING UNALIGNED;

DCL M BIT(4) VARYING UNALIGNED;
DCL N BIT(4) VARYING ALIGNED;
DCL O BIT(8) VARYING UNALIGNED;
DCL P BIT(8) VARYING ALIGNED;

Value Internal representation (binary)

A: 1100 1100
B: 1111 1111
C: 11111100 11111100
D: 11111111 11111111

M: 11 000000000000001011

N: 1111 00000000000001001111

O: 11111 0000000000000110111111

P: 11111111 000000000000100011111111

Length specification

Filler bits to maximum length

Fig. 10-14 Examples of the internal representation of bit strings

For the record output of a scalar variable with the attribute VARYING, only as many
characters are output as required to ensure that the number of bits defined in the
length specification can be obtained in the record. The last character of the record can
therefore contain a further 0 to 7 filler bits. The length specification is only output if the
option ENVIRONMENT (SCALARVARYING) is specified for the file. The same applies to
record input. See section 6.3.5 for a detailed explanation.

Scalar variables, main structures and arrays begin at least on a byte boundary. This
point is of particular importance for the record output of variables with the attribute BIT
NONVARYING UNALIGNED. If such variables are located at the beginning or end of a
record, an unexpected record alignment may occur during output. When the record is
read in again adjacent records may be inadvertently modified. See also section 10.5.5.

402 U253-J-Z125-9-7600

Internal representation String variables

10.2.2 Character string variables (CHARACTER)

The following storage space is required for character strings with the attribute CHAR(n):

NONVARYING n bytes
VARYING UNALIGNED 2 bytes + n bytes
VARYING ALIGNED 1 halfword + n bytes

The storage area begins on

a halfword boundary for VARYING ALIGNED
a byte boundary for all other cases.

n bytes

UNALIGNED
NONVARYING

ALIGNED

2 + n bytes

Length UNALIGNED
•

2 bytes n characters

VARYING
1 halfword + n bytes

Length ALIGNED
•

1 halfword n characters

Filler characters to maximum length

Fig. 10-15 Internal representation of variables with the attribute CHARCTER(n)

U253-J-Z125-9-7600 403

String variables Internal representation

DCL A CHARACTER(05) NONVARYING ALIGNED;
DCL B CHARACTER(05) NONVARYING UNALIGNED;
DCL C CHARACTER(11) NONVARYING ALIGNED;
DCL D CHARACTER(11) NONVARYING UNALIGNED;

DCL M CHARACTER(05) VARYING ALIGNED;
DCL N CHARACTER(05) VARYING UNALIGNED;
DCL O CHARACTER(11) VARYING ALIGNED;
DCL P CHARACTER(11) VARYING UNALIGNED;

Value Internal representation (bytes)

A: 123 123__ <
B: 12345 12345 <

C: 123456789 123456789__ <
D: 12345678901 12345678901 <

M: 12345 5 12345 <

N: 123 3 123 <

O: 12345678901 11 12345678901 <

P: 123456789 9 123456789 <

Length specification

Filler characters to maximum length

Fig. 10-16 Examples of the internal representation of character strings

For the record output of a scalar variable with the VARYING attribute, only the number
of characters specified in the current length are output. The length specification is not
output unless the option ENVIRONMENT (SCALARVARYING) is specified for the file.
The same applies to record input. See section 6.3.5 for further details.

404 U253-J-Z125-9-7600

Internal representation String variables

10.2.3 Picture variable (PICTURE)

In a variable with the PICTURE attribute the values are always represented as strings as
for CHAR(n) NONVARYING. The length n of the character string results from the num-
ber of picture symbols after the factors have been evaluated, but does not include the
picture specifications V, K and F.

Specification of the COMPLEX attribute indicates that the variable consists of a real and
an imaginary portion, both of which have the same internal representation. The imagi-
nary portion immediately follows the real portion.

DCL A PIC’AX9XXXXX’;
DCL B PIC’*999.V9999’; Internal representation
DCL C PIC’S999ES99’;

A = ’A:5A-B’; A:5A-B

B = 123.456; *123.4560

C = 12E73; +120E+72

Fig. 10-17 Internal representation of picture character string variables

U253-J-Z125-9-7600 405

Program control variables Internal representation

10.3 Program control variables

10.3.1 Pointer (POINTER, OFFSET)

The contents of these variables is a pointer that points to a storage location.

10.3.1.1 Pointer if "*COMOPT OPTIONS = NOXS"

After compilation with "*COMOPT OPTIONS = NOXS", relative and absolute pointers
have the same internal representation. A pointer requires either one fullword or four
bytes of storage. The three rightmost bytes contain the absolute or the relative storage
address. The leftmost byte contains the bit address 0 through 7; the five leftmost bits
are always ’0’B.

A null pointer has the hexadecimal value ’FFFEFFF8’

1 fullword ALIGNED
4 bytes UNALIGNED

Bit address 0...7 Byte address

1 byte 3 bytes

Null pointer (hexadecimal):

FFFEFFF8

Fig. 10-18 Internal representation of pointers with "*COMOPT OPTIONS = NOXS"

DCL A POINTER ALIGNED;
DCL B POINTER UNALIGNED;
DCL C OFFSET(M) ALIGNED;
DCL D OFFSET(U) UNALIGNED;

internal representation (hex.)

A: 00|0461D8
B: 00|046200
C: 00|000020
D: 00|000020

Bit address Byte address

Fig. 10-19 Examples of the internal representation of pointer variables with

"*COMOPT OPTIONS = NOXS"

406 U253-J-Z125-9-7600

Internal representation Program control variables

10.3.1.2 Pointer with "*COMOPT OPTIONS = XS"

If compilation was performed with "*COMOPT OPTIONS = XS", then relative pointer
and null pointer have the same internal representation as described in section 10.3.1.1.
The absolute pointer has two new internal representation forms:
The absolute pointer which can only point to a storage location with byte precision. It
requires 1 fullword or 4 bytes storage space containing the absolute storage address. A
bit address is not present.

1 fullword ALIGNED
4 bytes UNALIGNED

Byte address

Fig. 10-19a Internal representation of the absolute bit pointer if

"*COMOPT OPTIONS = XS"

The absolute bit pointer which can point to a storage location with bit precision. It requi-
res 1 fullword plus 1 halfword, or 6 bytes. The four leftmost bytes contain the absolute
storage address. The two rightmost bytes contain the bit address 0 through 7.

1 fullword + 1 halfword ALIGNED
6 bytes UNALIGNED

Byte address Bit address 0...7

4 bytes 2 bytes

Fig. 10-19b Internal representation of the absolute bit pointer if

"*COMOPT OPTIONS = XS"

DCL A POINTER ALIGNED;
DCL B POINTER UNALIGNED;
DCL C POINTER(BITPTR) ALIGNED;
DCL D POINTER (BITPTR) UNALIGNED;

internal representation (hex.)

A: 100461D8
B: 00046200
C: 100461D8|0000
D: 00046200|0000

Byte address Bit address

Fig. 10-19c Examples of the internal representation of absolute pointer

and absolute bit pointer variables if *COMOPT OPTIONS = XS"

U253-J-Z125-9-7600 407

Program control variables Internal representation

10.3.2 Area (AREA)

The storage area required for an area variable with the AREA(n) attribute amounts to:

n
CEIL (3 + -) doublewords

8

The first three doublewords contain management information, the remainder are availa-
ble for the assignment of BASED variables. The storage area always begins on a dou-
bleword boundary.

If BASED variables are assigned, the area is always reserved in doubleword portions,
which means that filler information may result at the end of the BASED variables.

3 doublewords Management information

Length for data record
Reserved section x doublewords
(with gaps, if applicable)

n
CEIL (-)

8 Free section
doublewords

Doubleword

Filler bytes

Fig. 10-20 Internal representation of an area with the attribute AREA(n)

For record output, the three doublewords of management information and the double-
words of the reserved section are output. The record length is therefore always a num-
ber of doublewords (i.e. multiple of 8 bytes). The reserved section may contain gaps,
which are also transferred; output does not involve the elimination of the gaps. The
management information remains unchanged during both input and output.

A detailed description of the internal structure of the area and the management strategy
may be found in section 10.7.4.

408 U253-J-Z125-9-7600

Internal representation Program control variables

DCL BEREICH AREA(40);

DCL VARIABLE CHAR(6) BASED INIT(’ ’);

DO I=1 TO 5;
ALLOCATE VARIABLE IN(BEREICH) SET (Z(I));
END; Record length

FREE Z(2)->VARIABLE IN(BEREICH);
WRITE FILE(DATEI) FROM(BEREICH); 64 bytes
FREE Z(5)->VARIABLE IN(BEREICH);
WRITE FILE(DATEI) FROM(BEREICH); 56 bytes

Fig. 10-21 Example of the record length of an area

U253-J-Z125-9-7600 409

Program control variables Internal representation

10.3.3 Label (LABEL)

The storage requirement of a label variable amounts to 3 fullwords or 12 bytes.

The 4 rightmost bytes contain the block activation record address, which may be of
special importance for recursive calls. The middle 4 bytes contain the base address and
the 4 leftmost bytes the label, the target address. The storage address begins on a full-
word boundary for ALIGNED, on a byte boundary for UNALIGNED

3 fullwords ALIGNED

12 bytes UNALIGNED

Address Base address Block activa-
tion address

4 bytes 4 bytes 4 bytes

Fig. 10-22 Internal representation of variables with the LABEL attribute

DCL MARKE LABEL VARIABLE;

Internal representation (hexadecimal)

00000190 00000000 00046120
00000194 00000000 00046120
00000198 00000000 00046120
0000019C 00000000 00046120

Statement Block activation
address record address

Base address

Fig. 10-23 Examples of the internal representation of label variables

410 U253-J-Z125-9-7600

Internal representation Program control variables

10.3.4 Format (FORMAT)

The storage requirement for a format variable amounts to 2 fullwords or 8 bytes.

The four rightmost bytes contain the block activation address, which may be of special
importance for recursive calls. The 4 leftmost bytes contain the address of the format
list. The storage address begins on a fullword boundary for ALIGNED, on a byte boun-
dary for UNALIGNED.

With OPTIONS = NOISO a format value can be assigned to a label variable, in which
case the format value occupies the 8 leftmost bytes and the 4 rightmost bytes are unde-
fined.

2 fullwords ALIGNED

8 bytes UNALIGNED

Format list address Block activation address

4 bytes 4 bytes

Fig. 10-24 Internal representation of variables with the FORMAT attribute

DCL FORMAT FORMAT VARIABLE;

Internal representation (hexadecimal)

00000468 00046120
00000448 00046120
00000428 00046120

Format list Block activation
address address

Fig. 10-25 Examples of the internal representation of format variables

U253-J-Z125-9-7600 411

Program control variables Internal representation

10.3.5 Entry (ENTRY)

The storage requirement for an entry variable amounts to 2 fullwords or 8 bytes.

The 4 leftmost bytes contain the entry-point address, and the 4 rightmost bytes the
address of the activation record for a given activation of the static parent block. The
storage area begins on a fullword boundary for ALIGNED, on a byte boundary for
UNALIGNED

2 fullwords ALIGNED

8 bytes UNALIGNED

Entry point Block activation address
address of static parent block

4 bytes 4 bytes

Fig. 10-26 Internal representation of variables with the ENTRY attribute

DCL EINGANG ENTRY VARIABLE;

Internal representation (hexadecimal)

00000120 00028120
00000180 00028120
000001D4 00028120
00000234 00028120

Entry-point Block activation record
address address of static parent block

Fig. 10-27 Examples of the internal representation of entry variables

412 U253-J-Z125-9-7600

Internal representation Program control variables

10.3.6 File (FILE)

The storage requirement for a file variable amounts to 2 fullwords or 8 bytes.

The 4 leftmost bytes contain the address of the file-attribute block, and the 4 rightmost
bytes the address of the file-status block. The storage address begins at a fullword
address for ALIGNED, at a byte address for UNALIGNED

2 fullwords ALIGNED

8 bytes UNALIGNED

Address of Address of
file-attribute block file-status block

4 bytes 4 bytes

Fig. 10-28 Internal representation of variables with the FILE attribute

DCL VAR FILE VARIABLE;

Internal representation (hexadecimal)

000004F0 00033758
00000548 00033B00
000004B0 000333B0

Address of Address of
file-attribute block file-status block

Fig. 10-29 Example of the internal representation of file variables

U253-J-Z125-9-7600 413

Arrays Internal representation

10.4 Array (DIMENSION)

A variable with the attribute DIMENSION consists of a number of array elements loca-
ted one after the other in storage. The number of elements is determined via the option
in the DIMENSION attribute.

An array element can be either a scalar variable or a structure. All the elements within
an array have the same structure and are represented in the same way internally. The
internal representation, i.e. storage requirements and addressing boundaries for an
array element, is described in section 10.3 for a scalar element and in section 10.5 for
structures.

The arrangement in storage must comply with the storage space requirements and
addressing boundaries for each element. This may result in filler information between
the elements, necessitated by the arrangement of the elements within the array. In such
cases the filler information between the elements also appears after the last element of
the array. The storage space for this is included in the storage requirement of the array.
See Figure 10-30.

Storage boundary

Element Filler

e f

Storage requirement = n (e + f)

where e = storage required for an element
f = storage space up to next storage boundary
n = number of array elements

Fig. 10-30 Storage requirements of an array

The elements of an array with more than one dimension are arranged in such a way
that the rightmost index with respect to the beginning of the storage area is the one
that changes most quickly, e.g.

A(1,1) A(1,2) A(1,3) A(2,1) A(2,2) A(2,3)

Special notice should be taken if BIT UNALIGNED is used in conjunction with records.
See section 10.5.5.

The record output. The filler information at the end of an array becomes part of the
record. If, however, a single element (scalar element or structure) is output, the filler
information at the end of the element does not become part of the record. See exam-
ple below.

414 U253-J-Z125-9-7600

Internal representation Arrays

Implicit

DCL 1 ARRAY DIMENSION(1),
2 FEST FIXED BINARY, ALIGNED
2 ZEICHEN CHARACTER(1); UNALIGNED

Results
WRITE FILE(DATEI) FROM(ARRAY); Record length = 4 bytes
WRITE FILE(DATEI) FROM(ARRAY(1)); Record length = 3 bytes

halfword byte

Fixed Character

ARRAY (1) = 3 bytes

ARRAY = 4 bytes

Fig. 10-31 Example of filler information at the end of arrays

U253-J-Z125-9-7600 415

Structures Internal representation

10.5 Structure (STRUCTURE)

The storage requirements of structures and their alignment on storage boundaries is
described in section 10.5.1. The appropriate consequences in particular areas of applica-
tion are discussed in subsequent sections.

10.5.1 Storage requirements

The operation to ascertain the storage requirements of a structure begins with the
lowest structure levels and continues with the next higher structure level until the main
structure is reached. Thus, the following steps are performed for each substructure and
the main structure.

• The storage boundary on which a structure level begins is determined from the hig-
hest alignment required by its members.

• Beginning with the storage boundary ascertained in this way, the storage space
required is allocated for each member of the structure in accordance with the requi-
red alignment.

• The end of the storage space for the last member marks the end of the total sto-
rage space, i.e. a filler field at the end of a structure is not included in the length of
the structure.

• In this way the storage boundary and storage requirements for a substructure are
determined. If a higher structure level is present, this structure and its storage requi-
rements become part of the higher structure.

Filler fields are inserted whenever the end of the previous element falls on a storage
boundary that is different from that required for the next element. The contents of this
filler field are undefined.

When a structure is output as a record, this is always done in multiples of bytes. In con-
nection with an element which has the BIT NONVARYING, UNALIGNED attributes, this
may lead to errors. See section 10.5.5.

416 U253-J-Z125-9-7600

Internal representation Structures

DCL 1 ST, - - - - - - - - - - Halfword
2 A CHAR(3), 3 bytes boundary
2 B, - - - - - - - - - Halfw. boundary

3 C CHAR(1), 1 byte
3 D, - - - - - - - - Byte boundary
4 E BIT(1) DIM(3), 3 bits
4 F BIT(1), 1 bit
4 G BIT(1) ALIGNED, 1 byte - - - - -

3 H CHAR(3) VAR ALIGNED, 1 halfword + 3 bytes
2 I BIT(1); 1 bit

Fig. 10-32 Example of the internal representation of a structure

U253-J-Z125-9-7600 417

Structures Internal representation

Fig. 10-33 Internal representation of the structure in accordance with Fig. 10-32

418 U253-J-Z125-9-7600

Internal representation Structures

10.5.2 Aliased variables

The term "aliased variable" generally means that storage space can be referenced by
two or more variables, each of which has its own data description. Aliased variables
can occur in the following instances:

1. Using the DEFINED attribute
2. Via the built-in functions STRING and SUBSTR
3. Via variables with the BASED attribute
4. On parameter transfer
5. When records are input

via the READ statement
via the READ SET statement

6. With EXTERNAL variables of the same name.

For aliased variables it is essential that the variables referring to the same storage
space match. When records are entered, the variables must accord with the record
structure, and when ascertaining whether they match, it can be assumed that the re-
cord has the same data description as the variable from which it is derived (i.e. the
variable which was output).

For aliased variables according to points 1, 2 and 4 the match is checked by the compi-
ler, and a message output, if applicable. For point 4, this check is only valid within an
external procedure. In the case of overlay defining via BASED variables and record
input according to points 3 and 5, a check by the compiler is not possible and the user
must ensure that the variables match. As long as he complies with the rules that go-
vern overlay defining via DEFINED, the match is approved. In all other cases the user
must check the match on the basis of the internal representation.

The internal structure representation described in section 10.5.1 supports the overlay
defining of main and substructures permitted in PL/I if both have the same data descrip-
tion. An example of this is shown in Fig. 10-34. Main structure Y and substructure X.B
have the same data description and may be overlayed.

U253-J-Z125-9-7600 419

Structures Internal representation

Implicit Storage req.

DCL 1 X,
2 A CHAR(2), ALIGNED 2 bytes
2 B,

3 C BIT(1), UNALIGNED 1 bit
3 D CHAR(3), UNALIGNED 3 bytes
3 E FIXED BINARY (31,0); ALIGNED 1 fullword

DCL 1 Y,
2 C BIT(1), UNALIGNED 1 bit
2 D CHAR(3), UNALIGNED 3 bytes
2 E FIXED BINARY (31,0); ALIGNED 1 fullword

PUT SKIP(2) LIST (SIZE(X)); 12
PUT SKIP(1) LIST (SIZE(Y)); 8 Result

WRITE FILE(DATEI) FROM(X.B); Identical record lengths
WRITE FILE(DATEI) FROM(Y); = 2 fullwords

X

B
A

C D E

1fullw. 1 3 char. 1 fullword

Match
B,C,D,E

Fullword boundaries

Y

C D E

1 3 char. 1 fullword

Fig. 10-34 Example of the compatibility of main and substructures with the

same data description

420 U253-J-Z125-9-7600

Internal representation Structures

10.5.3 Matching at the beginning

The internal representation of structures described produces a match at the beginning
of the structure as long as the same data description is given for the structures on logi-
cal level 2 and their members. This match does not apply to any following structures of
level 2 or their members.

An example is illustrated in Fig. 10-35. In both main structures X and Y the members
X.F and Y.F have differing descriptions, which means that structures X.C and Y.C of
level 2 do not match. The only sections of the structure that match are those which
precede X.C or Y.C. The sections of the structure which follow X.C and Y.C (to the end
of the main structure) no longer match. This also applies to elements D and E, even
though they have the same data descriptions. This can be seen very clearly from the
graphic representation of the storage area in Fig. 10-35.

U253-J-Z125-9-7600 421

Structures Internal representation

Implicit Storage req.

DCL 1 X,
2 A CHAR(3), UNALIGNED 3 bytes
2 B CHAR(1), UNALIGNED 1 byte
2 C,

3 D BIT(1), UNALIGNED 1 bit
3 E CHAR(3), UNALIGNED 3 bytes
3 F FIXED BINARY (31,0); ALIGNED 1 fullword

DCL 1 Y BASED(Z),
2 A CHAR(3), UNALIGNED 3 bytes
2 B CHAR(1), UNALIGNED 1 byte
2 C,

3 D BIT(1), UNALIGNED 1 bit
3 E CHAR(3), UNALIGNED 3 bytes
3 F FLOAT BINARY (51); ALIGNED 1 doubleword

X Storage requirement: 12 bytes
Alignment of

C structures on
A B fullword boundary

D E F

3 bytes 1 3 bytes fullword
b.

Fullword boundary Storage requirement: 24 bytes
for main for substruc- Alignment of
structure; ture; match structures on
match at at C to D doubleword boundary
A to B

Y

C
A B Filler word

D E Filler bytes F

3 bytes 1 3 bytes 1 doubleword
b.

Doubleword boundary

Fig. 10-35 Example of the match at the beginning of a structure

422 U253-J-Z125-9-7600

Internal representation Structures

If we consider substructures X.C and Y.C in Fig. 10-35 separately from the main structu-
res, then elements D and E are located on logical level 2 and have the same data desc-
riptions. Structures X.C and Y.C therefore match in elements D and E.

If, for example, records were output and entered via

WRITE FROM (X)
READ INTO (Y)

then reference to Y.A and Y.B would be permitted, and

WRITE FROM (X.C)
READ INTO (Y.C)

would permit reference to Y.D and Y.E.

U253-J-Z125-9-7600 423

Structures Internal representation

10.5.4 Self-defining structures

Self-defining structures are those in which REFER declares for one or more elementary
members that the current length or current dimension is stored in another elementary
member.

In this case, instead of a number of variables accessing one storage location, one varia-
ble can access a number of storage locations of different length. Information from
which the length can be determined is stored in the structure itself so that the result will
always be correct even for accesses to storage locations of different length.

Implicit Storage req.

DCL 1 S BASED,
2 A CHAR(2), INIT(’ ’), UNALIGNED 2 bytes
2 B,

3 C FIXED BINARY (31,0), ALIGNED 1 fullword
3 D CHAR(N REFER (C)) INIT((8)’=’), UNALIGNED n bytes
3 E FLOAT BINARY (51) INIT(0.5); ALIGNED 1 doubleword

Result
N = 4; ALLOCATE S SET(Z4);

PUT SKIP(2) LIST (SIZE(S)); 24
N = 8; ALLOCATE S SET(Z8); Length in bytes

PUT SKIP(2) LIST (SIZE(S)); 32
N = 0;

Record lengths

WRITE FILE(DATEI) FROM(Z4->S); 24 bytes
WRITE FILE(DATEI) FROM(Z8->S); 32 bytes

CLOSE FILE(DATEI);
READ FILE(DATEI) SET(Z); Access via Z->S
READ FILE(DATEI) SET(Z);

424 U253-J-Z125-9-7600

Internal representation Structures

Z

B
A

C=4 D E

2 bytes 1 full- 4 1 doubleword
word char.

Doubleword boundaries

Match Resulting in a match
A,C since the length

follows from C

Z

B
A

C=8 D E

2 bytes 1 full- 8 characters 1 doubleword
word

Doubleword boundaries

Filler field

Fig. 10-36 Example of a self-defining structure

When records are output, a self-defining structure can give rise to records of varying
lengths. The length of each record is calculated from the current values when WRITE or
LOCATE is executed.

When records are entered using READ SET, every record can be referenced with the
same variable that was used to write the record, independently of its current length. For
input using READ INTO, the variable must be allocated with sufficient storage space to
accommodate the longest record. Then, the RECORD condition may occur for short
records, which can be ignored with "ON RECORD FILE(a);" allowing the variable to be
accessed in a correct manner.

U253-J-Z125-9-7600 425

Structures Internal representation

10.5.5 Record

When records are output via WRITE FROM, a copy of the contents of the storage loca-
tion is output as a record. The record length is always a multiple of a byte, and results
from the specifications made in sections 10.1 to 10.5. Filler information may only occur
at the end of structure if the last element is an array, a scalar bit string with the
UNALIGNED attribute or an area (AREA), and this element itself contains filler informa-
tion.

A record written in this way has no explicit description. It can, however, be assumed
that implicitly it has the same description as the variable from which it is derived.

In the case of record input with READ INTO, a copy of the record is stored in the sto-
rage location of the target variable, regardless of the data description of the target varia-
ble. This may result in the RECORD condition. In an access operation the data descrip-
tion of the variable is virtually overlaid on the record kept in the storage location. The
variable description and the description implicitly assigned to the record on generation
must match according to the conventions.

The same applies to record output via LOCATE and record input via READ SET, alt-
hough in this case the storage area of the variable is located in an I/O buffer of the
file. For this reason only variables with the BASED attribute can be used.

If files generated on another data processing system are processed, the internal repre-
sentation may differ from that described here, and it is then necessary to ascertain the
internal representation in the file and check that it matches that described here.

Warning

If substructures possessing elementary members with the attribute BIT UNALIGNED
are output as records, filler information up to the byte boundary is also output, if
applicable. When entered again into a similar substructure such a record is transfer-
red into the variable by bytes, not by bits. This means that the contents of adjacent
variables of the target structure can be destroyed or unintelligible information can
arise.

426 U253-J-Z125-9-7600

Internal representation Structures

DCL 1 ST,
2 A BIT(1),
2 B, Implicit
3 C BIT(1), UNALIGNED
3 D BIT(1),

2 E BIT(1);

Byte boundary Storage requirements Record

ST A B E 4 bits 1 byte

B C D 2 bits 1 byte

1 byte

Fig. 10-37 Example of a substructure record with BIT UNALIGNED

If, in the example in Fig. 10-37, a record was written with WRITE FROM (ST.B) and ent-
ered again with READ INTO (ST.B), then the variables ST.A and ST.E would be overwrit-
ten and the current contents destroyed.

If the record was entered into a main structure with the same structure as ST.B, the
access operation would produce invalid information. The same would apply if the target
variable was scalar and declared with BIT (2).

It should be observed that such substructures can also occur via overlay defining in
conjunction with DEFINED, BASED or PARAMETER. The case described above can
also occur with subscripted variables.

U253-J-Z125-9-7600 427

Data description Internal representation

10.6 Description of the data type

The data description is determined by the data attributes. In some cases the data desc-
ription is required at runtime for internal processing and it is therefore stored in an inter-
nal format. The structure of this data description is described in section 10.6.1.

An internal representation of the picture specification - the picture description - is some-
times required for the data type declared with the PICTURE attribute. Its structure is
described in section 10.6.2.

10.6.1 Data description

The internal representation of the data description can be of significance when parame-
ters are passed. It consists of:

• a header word, for scalar variables

• a header word followed by 3 further words per dimension, for arrays

• a data description for the main structure, for substructures and for the elements, in
the sequence in which they were entered in the source program, where structures
are concerned. It should be noted here that the DIMENSION option is passed on to
lower levels which then behave as arrays.

The format of a header word is illustrated in Fig. 10-38. The individual fields signify the
following:

• Type BIT (7)
The values should be taken from the table in Fig. 10-39. Further subdivision of the
header words depends on the type.

• u BIT (1)
This bit indicates whether ALIGNED (’0’B) or UNALIGNED (’1’B) is specified for the
data type.

• Dimension BIT (8)
This field indicates the number of dimensions declared. If DIMENSION is not speci-
fied, then the value of this field is (8)’0’B.

• Length specification
The format and contents are dependent on the type. Specifications for this are given
in Fig. 10-39. The values are the same as those specified in the source program, i.e.

precision g
scaling k; leftmost bit = sign bit (Binary complement)
length or maximum length
number of immediate members of a structure

428 U253-J-Z125-9-7600

Internal representation Data description

1 fullword

7 1 8 16
Type u Dimensions 1) Picture description address

8 8
’0’B: ALIGNED Scaling Precision g
’1’B: UNALIGNED Alter-

8 8 natives
Precision g

16
Length

16
Number of structure members

1) for scalar: dimensions = 0

Fig. 10-38 Data description

For type 58, another fullword follows, which contains the address of the picture descrip-
tion (see section 10.6.2).

Type with u (hex.) Length
Attribute PRECISION specifi-

ALIGNED UNAL cation

00 01 PICTURE expanded (see also Type = 3A or 3B)

04 05 2 bytes
FIXED k g

08 09 4 bytes

0A 0B REAL 4 bytes

0C 0D FLOAT 8 bytes g

0E 0F 16 bytes
BINARY

12 13 2 x 2 bytes
FIXED k g

16 17 2 x 4 bytes

18 19 COMPLEX 2 x 4 bytes

1A 1B FLOAT 2 x 8 bytes g

1C 1D 2 x 16 bytes

Fig. 10-39 Data types in the data description (Part 1)

U253-J-Z125-9-7600 429

Data description Internal representation

Type with u (hex.) Length
Attribute PRECISION specifi-

ALIGNED UNAL cation

1E 1F FIXED k g

26 27 4 bytes
REAL

28 29 FLOAT 8 bytes g

2A 2B 16 bytes
DECIMAL

2C 2D FIXED k g

34 35 2 x 4 bytes
COMPLEX

36 37 FLOAT 2 x 8 bytes g

38 39 2 x 16 bytes

3A 3B PICTURE (see also Type = 00 or 01) Characters

3C 3D NONVARYING Characters
CHARACTER

3E 3F VARYING max. char. 1)

40 41 NONVARYING Bits
BIT

42 43 VARYING max. bits 1)

44 45 POINTER

48 49 OFFSET

4C 4D LABEL
0

4E 4F FORMAT

50 51 ENTRY

54 55 FILE

56 57 AREA Characters

58 59 STRUCTURE Members

1) without header word (length specification) k with
sign

Fig. 10-39 Data types in the data description (Part 2)

430 U253-J-Z125-9-7600

Internal representation Data description

If a dimension is specified for an item, the number of dimensions is specified in the "Di-
mension" field. Three further words, which contain the specification below, follow each
dimension:

• lower bound according to specification in source program

• upper bound according to specification in source program

• address spacing between elements:

for BIT NONVAR UNAL: spacing in bits
otherwise: spacing in bytes.

The format is shown in Fig. 10-40. If an array contains a structure, this specification is
made for the structure and its members. See also the example in Fig. 10-41.

1 fullword

7 1 8 16
Type u Dimensions Length specification Header word

Lower subscript bound (as in source)
for single

Upper subscript bound (as in source) or right
dimensions

Address spacing between elements

etc. for a number of dimensions

Lower subscript bound (as in source)

Upper subscript bound (as in source) for left
dimensions

Address spacing between elements

Fig. 10-40 Data description for arrays

U253-J-Z125-9-7600 431

Data description Internal representation

DCL 1 Main,

2 Sub 1,
2 Sub 2 DIM (3,4),

3 Element,

2 Sub 3;

X’58’ 0 3 Main

X’2C’ 0 Sub 1
..............

X’58’ 2 1

1

4 1st dimension

Sub 2

1

3 2nd dimension

.............
X’58’ 2

1

4 1st dimension

Element
1

3 2nd dimension

X’2C’ 0 Sub 3

Fig. 10-41 Example showing how the data description of a structure is represented

432 U253-J-Z125-9-7600

Internal representation Data description

10.6.2 Picture description

Type 58 in the data description indicates that the address of a picture description fol-
lows in the next fullword if "*COMOPT OPTIONS = NOXS" and in the second fullword
if "*COMOPT OPTIONS = XS". The structure of a picture description is illustrated in
Fig. 10-42. The elements signify the following:

Data description if Data description if
"*COMOPT OPTIONS=NOXS" "*COMOPT OPTIONS = XS"

0 7 8 16 31 0 7 8 16 31

X’3A’ u Dimension Length X’3A’ u Dimension Length
32 32

0 0 Address 0 0 %
64 64

Any further data Address
96

Any further data

- -

Picture description

DCL 1 Picture description UNALIGNED,

2 Data type BIT (7),

2 Alignment BIT (1),

2 Picture type BIT (8),

2 Scaling BIT (8),

2 Picture length FIXED BIN (15,0),

2 Length BIT (16),

2 Storage length BIT (16),

2 Drifting character,

3 Mantissa BIT (8),

3 Exponent BIT (8),

2 Picture CHAR (x REFER Picture length);

Fig. 10-42 Data description for data type 0 and the associated picture description

U253-J-Z125-9-7600 433

Data description Internal representation

• Data Type
The attribute list associated with the picture is represented here:

15 REAL DECIMAL FIXED
19 REAL DECIMAL FLOAT where g: 1 to 6
20 REAL DECIMAL FLOAT where g: 7 to 16
21 REAL DECIMAL FLOAT where g: 17 to 33
22 COMPLEX DECIMAL FIXED
26 COMPLEX DECIMAL FLOAT where g: 1 to 6
27 COMPLEX DECIMAL FLOAT where g: 7 to 16
28 COMPLEX DECIMAL FLOAT where g: 17 to 33
30 CHARACTER NONVARYING

• Alignment

’0’B: ALIGNED
’1’B: UNALIGNED

• Picture type

X’01’: Picture characters 9 V S + - $
X’02’: Picture characters as X’01’ and Z * , . / B
X’03’: Picture characters as X’02’ and S... +... -... $...
X’04’: Picture character X only

• Scaling
Scaling resulting from the digit positions to the right of picture character V and
option F(n)

• Picture length
Length of the picture after resolution of the factors; however, DB and CR both count
as one character.

• Length
Length of precision given by the attribute list associated with the picture.

• Storage length
Length of the internal representation of the variable in number of characters.

• Drifting characters
When set (’1’B), the bits in the Mantissa and Exponent field have the following
meaning (bit 1 = leftmost bit):

Bit 1: not used
Bit 2: S... present
Bit 3: +... present
Bit 4: -... present
Bit 5: $... present
Bit 6: only Z or * present
Bit 7: * present
Bit 8: not used

434 U253-J-Z125-9-7600

Internal representation Data description

• Picture
This field contains the picture after the factors have been resolved. The length of
this field is given in the picture length field. The picture characters are represented
in coded form.

Numeric pictures:

(t) terminal: last character in drifting portion
(d) drifting: character in drifting portion
(s) static : non-drifting (static) character

X’00’ 9 X’54’ $(t) X’30’ S(t)
X’04’ Y X’58’ $(d) X’34’ S(d)
X’08’ Z X’5C’ $(s) X’38’ S(s)
X’0C’ * X’60’ /(t) X’3C’ +(t)
X’10’ E X’64’ /(d) X’40’ +(d)
X’14’ K X’68’ /(s) X’44’ +(s)
X’18’ T X’6C’ .(t) X’48’ -(t)
X’1C’ I X’70’ .(d) X’4C’ -(d)
X’20’ R X’74’ .(s) X’50’ -(s)
X’24’ CR X’78’ ,(t) X’84’ V
X’28’ DB X’7C’ ,(d)
X’2C’ B X’80’ ,(s)

Alphanumeric pictures:

X’00’ A X’04’ 9 X’08’ X

U253-J-Z125-9-7600 435

Storage management Internal representation

10.7 Storage management

The variables declared explicitly or implicitly in a source program require storage space.
The storage attribute determines when and in which storage area they are to be assig-
ned storage space.

The internal structure and the management of the various storage areas are described
in the following subsections.

Storage class Allocation Stack Release at Stack

EXTERNAL
STATIC Start of End of

INTERNAL program program

AUTOMATIC INTERNAL Block +1 Block -1
activation deactivation

EXTERNAL
CONTROLLED ALLOCATE +1 FREE -1

INTERNAL

ALLOCATE FREE

ALLOCATE IN FREE IN area
BASED(z) INTERNAL area

FREE area

LOCATE SET (x) LOCATE WRITE,
CLOSE

READ SET (x) READ,CLOSE,
REWRITE

PARAMETER INTERNAL Invocation Return

DEFINED(x) INTERNAL same as x

MEMBER INTERNAL same as main structure

Fig. 10-43 Summary of the allocation and release of storage space

10.7.1 Static variables (STATIC)

Variables with the STATIC attribute are assigned their storage area at compile time. Spe-
cial storage management is not necessary in this case.

436 U253-J-Z125-9-7600

Internal representation Storage management

10.7.2 Activation records (stack, AUTOMATIC)

The storage area for activation records (stack) takes on one activation record for each
block activation. This contains all the items which must be stored for managing a block
activation. The storage space is assigned automatically on activation of a new block,
without control by the user. If a return branch is made from the block, the storage
space is released. The structure of the storage area is shown in Fig. 10-44.

Start of stack

Imaginary outer block

Main procedure

3rd invocation level End
Reverse references
references

4th invocation level
(No forward
references)

Register etc.
13

Current activation record

Free

Fig. 10-44 Structure of the storage area for block activations

U253-J-Z125-9-7600 437

Storage management Internal representation

Register 13

Pointer to Reverse
activation record reference

DWB X’00’ B

+X’00’ + 0 X’00’ Block type Flags reserved
(13 bits)

+X’04’ + 4 Previous activation record •

+X’08’ + 8 Return address of prolog subroutine

+X’0C’ +12 Register saving for register 14
" 15
" 0
" 1

etc. to
register 12

+X’48’ +72 Static parent block

+X’4C’ +76 End of temporary section •

+X’50’ +80 End of permanent section •

+X’54’ +84 Block conditions Statement conditions

+X’58’ +88 ON chain

+X’5C’ +92 Segment numbers reserved

Arguments
8 thru 124 words

Parameters
0 thru 128 words

AUTOMATIC and auxiliary
variables of known lengths

DWB
AUTOMATIC variables

Compute length at block entry
DWB

Auxiliary variables
Compute length at creation

DWB: doubleword boundary

Fig. 10-45 Activation record of a block

438 U253-J-Z125-9-7600

Internal representation Storage management

An activation record for PL/I block is structured as shown in Fig. 10-45. It always beg-
ins on a doubleword boundary. The meaning of the fields is as follows:

• Block Type

X’01’: external procedure or PL/I-compatible assembler procedure
X’02’: internal procedure
X’03’: BEGIN block
X’04’: ON unit

• Flags
A set bit (’1’B) signifies the following (bit 1 = leftmost bit):

Bit 1: initialization activation of the PL/I runtime system monitor
Bit 2: library procedure (OPTIONS (LIBRARY))
Bit 3: activation due to a condition
Bit 4: the block contains ON units
Bit 5: the block contains a statement with a condition prefix
Bit 6: activations with special save area (e.g. error handling)
Bit 7: initial calling of conversion routines
Bit 8: a list of statement names is available
Bit 9: *COMOPT OPTION=ISO was used in compilation
Bit 10: *COMOPT OPTIMIZE=ENABLING was used in compilation
Bits 11-13 reserved

• Predecessor Activation Record
The address indicates the activation record of the dynamically preceding block.

• Return Address for Prolog Subroutine
For the initialization of AUTOMATIC variables if a number of entries are present.

• Register Saving
The values of registers 14 and 15 and 0 thru 12, existing when the successor was
called, are stored by the dynamically following block.

• Static Parent Block
The address refers to the activation of the block which is in the source program the
statically superordinate block (for accessing items declared there).

U253-J-Z125-9-7600 439

Storage management Internal representation

• End of Temporary Section
The address refers to the word following the activation record, which is the next free
word or the next activation record. Any temporary variables (auxiliary variables) pre-
sent are included.

If "*COMOPT OPTIONS = NOXS" was used in compilation the left byte will contain
the the segment number of the temporary section.

• End of Permanent Section
As for "temporary end", but the temporary variables are excluded. If no temporary
variables are present, then "temporary end" and "permanent end" contain identical
addresses.

If "*COMOPT OPTIONS = NOXS" was used in compilation the left byte will contain
the segment number of the permanent section.

• Block Conditions
This field is only relevant if the Flags field (+2) contains in bit 5 = ’1’B. A set bit
(’1’B) indicates that the condition specified for the block is enabled (bit 1 = leftmost
bit):

Bit 1 to 4: reserved
Bit 5: UNDERFLOW
Bit 6: OVERFLOW
Bit 7: ZERODIVIDE
Bit 8: FIXEDOVERFLOW
Bit 9: CONVERSION
Bit 10: SIZE
Bit 11: SUBSCRIPTRANGE
Bit 12: STRINGRANGE
Bit 13: STRINGSIZE
Bit 14 to 16: reserved

• Statement Conditions
This field contains the conditions enabled for the current statement. On entry of a
block it contains the same values as the "Block Conditions" field. If explicit options
specify deviations for the statement, this field is changed to the appropriate state for
the execution of the statement and restored to its original state afterwards.

• ON Chain
This field is only relevant if in the Flags field (+2) bit 4 = ’1’B. It contains a pointer
to the chain of management elements for ON units.

440 U253-J-Z125-9-7600

Internal representation Storage management

• Segment numbers
This field is only relevant if "*COMOPT OPTIONS = XS" was used in compilation.
Otherwise this field is reserved (bit 1 = leftmost bit):

Bits 1-8: Segment number of the temporary section
Bits 9-16: Segment number of the permanent section
Bits 17-24: reserved

• Arguments
Any parameter options for invoking procedures are entered in this field. The invoca-
tion is described under "Passing of Parameters", and the length is determined by the
invocation with the most extensive argument option. To cover implicit invocations,
this field has a minimum length of 8 words and a maximum length of 124 words.
(Registers 1 thru 4 are used for the first four arguments).

• Parameters
This field is only available if parameters are present for the block. The options in this
field correspond to those in the preceding "Argument" field, but the first four parame-
ters are also contained in this field.

• AUTOMATIC Variables and Auxiliary Variables of Known Length
The storage locations for the AUTOMATIC variables of the block and auxiliary varia-
bles required in the block are located here if their lengths are known at compile
time. Generally the AUTOMATIC variables are allocated first and then the auxiliary
variables, but for optimization purposes they may be allocated differently.

Furthermore, this field contains pointers to the AUTOMATIC and auxiliary variables
located in the two following areas.

• AUTOMATIC Variables
This field contains the storage locations for AUTOMATIC variables whose length can-
not be ascertained until the block is entered. Pointers to these variables are stored
with the AUTOMATIC variables of known length.

• Auxiliary Variables
This field contains the storage locations for auxiliary variables whose length cannot
be ascertained until creation. Pointers to these variables are stored with the auxiliary
variables of known length.

U253-J-Z125-9-7600 441

Storage management Internal representation

10.7.3 Standard area (CONTROLLED, BASED)

The standard area accepts the following items:

• Variables with the CONTROLLED attribute

• Variables with the BASED attribute if these are not assigned to a named area
(AREA)

• Auxiliary items which are allocated storage space during the object run, e.g. in-
put/output buffers.

The allocation of storage for variables with the CONTROLLED or BASED attributes is
controlled exclusively by the user via the ALLOCATE and FREE statements. Released
storage may be located between reserved space. If long enough, such portions of free
storage gaps may be reserved in a subsequent allocation.

The standard area consists of at least one initial portion defined at the beginning of the
program. The first doubleword is undefined. The next 4 doublewords accept manage-
ment information for the standard area, and the remaining portion is available for alloca-
tions.

If more storage is required, further portions are requested automatically. The first two
fullwords of each extension portion contain the absolute addresses of the beginning
and end of the predecessor portion. See Figure 10-46.

Initial portion Extension portion Last extension portion

Beginning End of Beginning End of
Begin- of pred. predec. of pred. predec. Beginning
ning

Management
information Reserved, with Extension

Reserved, with gaps if applicable with variable
gaps if applicable length

Initial Reserved,
length with gaps Free end

if appli- portion End portion
cable

End

Doubleword

Beginning of
gap chain

Pointer from management information

Fig. 10-46 Principle of the structure of the standard area

442 U253-J-Z125-9-7600

Internal representation Storage management

The storage of all portions, without the first doubleword of each portion and without the
management information, together form the storage available in the standard area for
allocations. Once allocated, portions remain so until the end of the object run.

+ 0 Beginning of last portion End of last portion

+ 8 End portion Gap chain

+16 In. length Extension Max. length Curr.length

+24 Request counter Number of elements
in gap chain

+32 Maximum use

Fig. 10-47 Structure of management information in the standard area

Management information in the standard area has the following meaning (see Figure
10-47):

• Beginning and End of the Last Portion
Absolute addresses of the last portion to be assigned. If only the first portion is pre-
sent, it is this.

• End portion
Absolute address of storage as yet unreserved at the end of the standard area. The
end portion does not form part of the gap chain and can begin in any portion.

• Gap Chain
Absolute address of the first gap in the gap chain. The gap chain is always arran-
ged by ascending addresses, consolidating adjacent gaps where applicable.

The length of a gap is always a multiple of a doubleword (8 bytes). It is structured
as follows:

first fullword: absolute address of the next gap or ’0’B
second fullword: length of the gap in bytes, including the above two fullwords of
management information for this gap
remainder: undefined

• Initial length, Extension, Max. length
These specifications are taken from the control statement "*RUNOPT STORAGE =
AREA (initial length, extension, max. length)" and have the following meaning:

U253-J-Z125-9-7600 443

Storage management Internal representation

initial length: number of pages desired for the initial portion
extension: number of pages desired for an extension
max. length: maximum length.

The value specified for "Extension" can be exceeded if more storage is currently
required and can be reduced if less storage is available and is currently sufficient.

• Request Counter
Each time a new portion is requested this counter is incremented by 1. If the control
statement "*RUNOPT LIST = SUMMARY" is specified, this value is output at the end
of the program.

• Number of Elements in the Gap Chain
The number of elements in the gap chain is retained here, and is used for error-
checking purposes.

• Maximum use
Maximum standard area length used in pages (4K bytes). If the "*RUNOPT LIST =
SUMMARY" control statement is specified, this value is displayed at the end of the
program, under "STANDARD-AREA:".

Beginning of
Pointer Length First gap

gap chain

Pointer Length

0 Length Last gap

1 doubleword

n doublewords

Fig. 10-48 Principle of the structure of the gap chain

Free storage located at the end of the standard area is designated the end portion and
forms the end gap. It is not part of the gap chain, and its start address is contained in
the management information.

If the ALLOCATE statement is to be used to allocate storage in the standard area, the
following steps are attempted, in the order shown:

1. If there is still storage in the end portion, the allocation can be made from this.

444 U253-J-Z125-9-7600

Internal representation Storage management

2. If less than 3/4 of the storage space has been allocated to the standard area out of
the maximum amount provided, a further portion containing the number of pages
specified in "Extension" is requested. If 3/4 of the standard area has been allocated,
the system checks for the presence of a gap chain.

3. If a gap chain is present, a check is made to see whether the storage request can
be satisfied from the gap chain, sorted by ascending addresses. If a sufficiently
large gap is found, storage is allocated. If the gap is exactly as requested, it is remo-
ved from the gap list; if it is larger, it is reduced accordingly.

4. If there is no gap chain, another portion containing the number of pages as speci-
fied by "Extension" is requested. If this is impossible, the number of pages required
for the allocation is requested. If any of these attempts succeeds, space is allocated
from the now larger end portion.

5. If all attempts are unsuccessful, the STORAGE condition is set.

If storage space in the standard area is to be freed via the FREE statement, processing
proceeds as follows:

1. Storage space and end portion, when adjacent, are combined into one.

2. The released storage space is inserted, in sorted form, as a gap into the gap chain
and united with adjacent gaps where applicable.

By means of the ADUMP function the contents of the standard area can be printed out
(see chapter 11).

The "*RUNOPT LIST = SUMMARY" control statement displays, at the end of the pro-
gram run, the maximum used length (x) of the standard area in pages and number of
portions (y):

STANDARD AREA: x PAGES; SYSTEM CALLS: y REQM

U253-J-Z125-9-7600 445

Storage management Internal representation

10.7.4 Named area (AREA)

A named area is an area variable declared by the user with the AREA attribute. At the
same time the storage attribute is used to declare the storage area in which this area is
to be located.

Via the ALLOCATE statement, variables with the BASED attribute can be assigned sto-
rage space in an area. The storage space can also be an area, which can result in area
nesting.

Beginning
End portion Cyclic chain 1

Gap chain 1 Gap chain 2

0 Release Total length
counter

T
o
t
a
l

Reserved with gaps if applicable
l
e
n
g
t
h

Free (end portion)

Relative addresses

Fig. 10-49 Structure of a named area

446 U253-J-Z125-9-7600

Internal representation Storage management

The length of an area may be ascertained from the length specification in the AREA(n)
attribute in bytes, plus 24 bytes for management information. Storage is always alloca-
ted in multiples of a doubleword. The fields of the area have the following meaning (see
Figure 10-49):

• End Portion
Relative start address of the end portion

• Cyclic Chain 1
Searching of gap chain 1 does not commence at the beginning, but at the last posi-
tion where storage was allocated. Thus the address of the predecessor to this gap
is retained and the chain searched cyclically. This represents an optimization of the
search process.

• Gap Chain 1
Relative start address of gap chain 1, which contains all gaps not included in gap
chain 2, and is sorted in ascending order of addresses.

• Gap Chain 2
Relative start address of gap chain 2 which contains the last gap to occur and other
gaps of the same length, if applicable. The first gap is the most recent gap.

• Release Counter
This counter is incremented by 1 each time storage is freed. If an AREA condition
occurs the count is retained, and after the return from the AREA condition a check
is performed to ascertain whether the counter has been incremented (i.e. whether
storage has been freed). If the count is unchanged the ERROR condition (prevention
of endless loops) is raised.

• Total Length
The total length is n + 24 bytes, where n is the specification from the AREA attri-
bute.

• Remaining Area
The remainder of the area is available for storage allocation to variables, and can be
made up of a reserved and a free section. The reserved section may contain gaps.
The free section (end portion) does not form part of a gap chain.

Storage is always allocated in multiples of 1 doubleword, which means gaps are also
doubleword multiples. Each gap is contained in either gap chain 1 or gap chain 2, and
all the gaps in a gap chain are linked via forward references. The address of the first
gap (the anchor) in a chain is located in the management information. The gaps have
the same structure as described in section 10.7.3 for the standard area.

The free storage space located at the end of the area is designated the end portion
and forms the end gap. It does not belong to a gap chain, and its start address is in
the management information.

U253-J-Z125-9-7600 447

Storage management Internal representation

All the addresses in the management information and in the gaps are relative to the
beginning of the area. In this way entire areas can be allocated to other areas and buf-
fered in files as records.

If a variable is to be allocated storage space in an area (only via the statement
ALLOCATE IN (area)), processing proceeds in the following sequence:

1. If gap chain 2 is not empty, a check is performed to ascertain whether the gap posi-
tion corresponds to the required length (all gaps in this chain are the same length).
If they are both the same length, then the storage space of the first gap is used and
this is removed from gap chain 2.

If the lengths are not equal, gap chain 2 is resolved and the gaps are inserted in
gap chain 1 in ascending order of addresses, combining adjacent gaps into one.

2. A gap equal to or greater than the length required is sought in gap chain 1. If one
is found, its storage space is allocated to the variable and the gap removed or shor-
tened.

For optimization reasons, gap chain 1 is searched cyclically, beginning at the posi-
tion at which storage space was last allocated from the gap chain. For this reasons
the address of the predecessor to this gap is retained in the field "cyclic chain 1",
and cyclic searching begins with the successor to this gap.

3. If the free end portion is sufficiently large, storage space is allocated there.

4. If all attempts are unsuccessful, the AREA condition is raised.

If the storage space occupied by a variable in an area is to be freed, processing pro-
ceeds as follows:

1. If the storage space borders on the end portion, it is incorporated in this. Gap chain
2 is resolved, as described in 4.

2. If gap chain 2 is empty, the storage space is inserted as a new gap.

3. If gap chain 2 is not empty and the length of the gaps is equal to that of the sto-
rage space to be freed, the new gap is inserted at the beginning of the gap chain.

4. If gap chain 2 is not empty and the length of the gaps does not equal that of the
storage space to be freed, gap chain 2 is resolved and its gaps are inserted in gap
1 in ascending order of addresses. Adjacent gaps are combined into one.

The new gap is then inserted in the now empty gap chain 1.

448 U253-J-Z125-9-7600

Internal representation Storage management

10.7.5 Reference chain for CONTROLLED variable

For a variable with the CONTROLLED attribute, storage is allocated via the ALLOCATE
statement. If the statement is entered a number of times for the same variable, new sto-
rage is allocated each time; storage already allocated remains so. The storage space is
stacked, and if accessed, the last allocation is always valid.

The FREE statement, however, frees the last storage space allocated. If available, the
previously allocated storage space becomes the current storage, which ensures that the
same amount of storage space is freed as was allocated.

At the start of the program, a STATIC variable or for CONTROLLED (PLI1GLOBAL(n)), a
pseudo-register entry at the length of 4 bytes is created for each CONTROLLED varia-
ble - the "anchor". If the CONTROLLED variable has been allocated storage space, the
anchor contains the absolute address of the last link in a reference chain, via which the
current allocation is reached. In all other cases the anchor contains a null pointer.

By means of the ALLOCATE statement a variable with the CONTROLLED attribute is
allocated storage in the standard area, the size of which may be ascertained from the
attributes. The size may vary for each allocation. If the attribute set of the
CONTROLLED variable includes an option which represents a variable item (i.e. an
expression), that expression will be calculated before storage is assigned. Additionally,
in this case, the standard area receives a copy of the data description in which the
variable items are replaced with the calculated values. They are required for every
access to the CONTROLLED variables. The internal representation of the data descrip-
tion is explained in section 10.6. In addition a chain link with 2 doublewords is set up in
the standard area, which becomes the last link of the reference chain for the controlled
variable. The anchor is reset to point to the last link in the chain. A link contains the
following management information:

• The first fullword contains an absolute pointer to the allocated storage space.

• The second fullword contains the total length of the allocated storage space, incl.
the length of the chain link and if a data description is maintained, its length.

• An absolute pointer indicating the previous link (reverse reference) is located in the
third fullword. In the first link this fullword contains a null pointer.

• The fourth fullword contains a null pointer or an absolute pointer to the data descrip-
tion.

Chain link, data description, and storage space of the variable are arranged in a con-
nected block.

U253-J-Z125-9-7600 449

Storage management Internal representation

Reference chain for CONTROLLED variable in the standard area (example)

Case 1: Without data description

Current Anchor (STATIC variable or PLI1GLOBAL)
allocation

1st storage allocation 2nd and last storage allocation
DWB

DWB

Storage Total Storage Total
address length address length

Predecessor Address of Address of
(null description Predecessor description
pointer) (null pointer) DWB (null pointer)

DWB

Storage space Storage space

Case 2: With data description

Current Anchor (STATIC variable or PLI1GLOBAL)
allocation

1st storage allocation 2nd and last storage allocation
DWB

DWB

Storage Total Storage Total
address length address length

Predecessor Address of Address of
(null description Predecessor description
pointer)

DWB DWB

Data description Data description

DWB DWB

Storage space Storage space

DWB: doubleword boundary

By means of a FREE statement the current storage space is deallocated together with
the storage for the copy of the data description, if available. The length of storage
space to be freed may be ascertained from the length specification retained in the link.

450 U253-J-Z125-9-7600

Internal representation Storage management

The anchor is set to the predecessor in the reference chain or contains a null pointer if
no further predecessors are present. Storage space for the link is also released.

In the case of a reference to a CONTROLLED variable, the storage space and, if appli-
cable, the data description are found via the anchor and the link of the reference chain.

U253-J-Z125-9-7600 451

11 Utilities
This section deals with facilities available to the user in the form of prefabricated proce-
dures already compiled. These utilities extend beyond the scope of PL/I and cannot be
expected to be equally implemented on a different system, when transferring programs.

In a PL/I program the procedures described here can be invoked by a subroutine refe-
rence (CALL) or by a function reference. The procedure is automatically incorporated
into the program during linkage.

The procedures are described independently of one another and arranged in alphabeti-
cal order of their entry names. The relations between them are dealt with in separate
sections.

All the attributes needed in the particular case are included in the data description. Attri-
butes enclosed in brackets are completed by the PL/I default system; they can be omit-
ted, so long as the default system is not overwritten by a DEFAULT statement. Possible
attributes for a complete data description may be chosen according to requirements.

Note that in declarations for some of the procedures the option

OPTIONS (LIBRARY)

must be specified. It is described in chapter 7.

U253-J-Z125-9-7600 453

Utilities

BS2SRTA (a, b, c) a: SORT/MERGE statement CHAR (*)
b: RECORD/ALLOC statement CHAR (*)

BS2SRTB (a, b, c, d) c: Acknowledgment FIXED BIN PREC (31,0)
c = 0: error-free run

BS2SRTC (a, b, c, e) c = 16: abnormal termination
d: Input procedure ENTRY ()

BS2SRTD (a, b, c, d, e) e: Output procedure ENTRY ()
h: Control statement for SORT as from V7.0

BS2SRT (h,..., c, d, e)

RUNTIME 1) 2) Runtime since start of program, in seconds

HEXDEC (a) 1) 2) Conversion of bit string a to hexadecimal

ERROUT 1) Error text of current ON unit to SYSOUT

Trace activate/deactivate:
TRACE (a) 1) a: letter sequence P PROCEDURE trace

C CALL trace
R RETURN trace
G GOTO trace

NOTRACE (a) 1) L LABEL trace
T also to terminal

empty string ’PCRGL’

SNAP 1) Call nesting to SYSOUT

RDUMP (a,b) 1) b characters relative to SYSLST
to pointer a

ADUMP 1) Standard area Dump in hexadecimal
and character

SDUMP 1) Stack representation

PLIRETC (a) 1) Set monitor job variable to value a

CMD (a, b, c) 1) Execute BS2000 command
a: BS2000 command CHAR (*)
b: SYSOUT listing CHAR (*)
c: acknowledgment FIXED BIN (31)

1) with OPTIONS (LIBRARY)
2) Function

Fig. 11-1 Overview of procedures

454 U253-J-Z125-9-7600

ADUMP

ADUMP Dump from the standard area

ADUMP

Contents of standard area (CONTROLLED and BASED variables) are output to SYSLST
in hexadecimal and character representation.

Input

DCL ADUMP ENTRY ()
OPTIONS (LIBRARY) [EXTERNAL][CONSTANT];

Parameters

None

Effect

The current contents of the standard area are printed out. A detailed description of the
structure of standard area appears in chapter 10.

Prior to the printout mentioned above, the pseudoregister vector (PRV) is output. Inter-
pretation of this printout must be left to specialists.

U253-J-Z125-9-7600 455

ADUMP

DCL ADUMP ENTRY () OPTIONS (LIBRARY);

DCL FEST FIXED BIN(31,0) CONTROLLED INIT(255);

DCL ZEICHEN CHAR(20) VARYING BASED INIT((8)’4’);
DCL P POINTER DIM(3);

DCL Z POINTER DIM(3);

DO I=1 TO 3;

ALLOCATE FEST; FEST=FEST * (16**I);
Z(1) = ADDR(FEST); PUT SKIP(2) LIST (UNSPEC(Z(I)));

ALLOCATE ZEICHEN SET (P(I));
PUT SKIP(2) LIST (UNSPEC(P(I))); PUT SKIP;

END;

CALL ADUMP;

FREE P(1)->ZEICHEN;
FREE FEST;
ALLOCATE FEST; FEST = FEST * (16**4);

CALL ADUMP;

Result:

****** DUMP OF THE STANDARD-AREA: ******

DUMP OF THE PRV:

REPL VS ADR MEMORY
025000 000800D2 F1F7F3F3 D7D3C9C1 D3D3C740
025020 C2C1C4E4 00000E00 00010001 00000000
025040 00000002 00017BD4 01017484 02017754
025060 070176B8 4F009FB2 01017484 00000002
025080 00025CEC 00000000 00000090 7F000098

.

.

.

.
DUMP OF ALL LOGICAL STANDARD-AREA SEGMENTS:

REPL VS ADR MEMORY
03E000 00000000 00000000 0003E000 0004E000
03E020 00000001 00000000 0003E1B8 00000000
03E040 0003E050 00000014 FFFEFFF8 FFFEFFF8
03E060 00000000 00000000 00000000 00024008
03E080 00000000 00000000 00000000 00000000

Fig. 11-2 Example of ADUMP call

456 U253-J-Z125-9-7600

BS2SRT

BS2SRT Sort/merge

BS2SRTA (a,b,c)
BS2SRTB (a,b,c,d)
BS2SRTC (a,b,c,e)
BS2SRTD (a,b,c,d,e)

BS2SRT (h1,..,hn,c,d,e)

Start of sort/merge program SORT (see SORT Manual [10]) without or with PL/I proce-
dures for processing records before and/or after the sort phase.

Entries

DCL BS2SRTA ENTRY (CHAR (*) [NONVARYING],
CHAR (*) [NONVARYING],
[REAL]FIXED BINARY PREC (31,0) [ALIGNED])

[EXTERNAL][CONSTANT];

DCL BS2SRTB ENTRY (CHAR (*) [NONVARYING],
CHAR (*) [NONVARYING],
[REAL]FIXED BINARY PREC (31,0) [ALIGNED],
ENTRY ())

[EXTERNAL][CONSTANT];

DCL BS2SRTC ENTRY (CHAR (*) [NONVARYING],
CHAR (*) [NONVARYING],
[REAL]FIXED BINARY PREC (31,0) [ALIGNED],
ENTRY ())

[EXTERNAL][CONSTANT];

DCL BS2SRTD ENTRY (CHAR (*) [NONVARYING],
CHAR (*) [NONVARYING],
[REAL]FIXED BINARY PREC (31,0) [ALIGNED],
ENTRY (),
ENTRY ())

[EXTERNAL][CONSTANT];

DCL BS2SRT ENTRY OPTIONS (VARIABLE);

Parameters

a: A character string representing a control statement SORT or MERGE for the
SORT program.

b: A character string representing a control statement RECORD or ALLOC for the
SORT program. If such a statement is unnecessary, a null string has to be speci-
fied.

U253-J-Z125-9-7600 457

BS2SRT

c: Only one variable having the attributes mentioned above is permitted. The value
passed on in the call is irrelevant. On return one of the following values will be
passed in the variables:

c = 0: Execution of SORT program free from errors.
c = 16: SORT program aborted due to error.

d: Name of a PL/I function for processing each record prior to the sort operation;
d = 0 if name is not present.

e: Name of a PL/I function for processing each record after the SORT operation;
e = 0 if name is not present.

h: A character string representing a control statement for the SORT program (e.g.
INCLUDE, SORT, SUM, RECORD etc.).

Files

For files to be processed by the SORT program the following link names must be decla-
red where required:

Sort input file: SORTIN or
SORTIN01, SORTIN02 etc. up to max. SORTIN99

Merge input files: MERGE01, MERGE02 etc. up to max. MERGE99
Output file: SORTOUT

When the LINK name SORTIN and/or SORTOUT is omitted, the records are passed to
SORT or returned from it only via the appropriate PL/I function.

Where a program requires auxiliary SORT files, they can be provided by the following
LINK names.

Workfile on disk: SORTWK
Workfiles on tape: SORTWK01 etc. up to max. SORTWK99
Checkpoint file: SORTCKPT

If auxiliary files are needed for which LINK names have not been specified, files under
the name SORTWK or SORTCKPT are automatically cataloged and created. These files
will be erased at normal termination of the SORT program.

Detailed information on sorting and merging is found in the manual of the SORT pro-
gram. Extracts of the most important elements in the control statements SORT, MERGE
and RECORD are shown in Figures 11-3 and 11-4.

For examples see chapter 13.5.

458 U253-J-Z125-9-7600

BS2SRT

SORT statement ::= SORT FIELDS=({(Start,Length,Sequence,[,Format])},...),

MERGE statement ::= MERGE FIELDS=({Start,Length,Sequence,[,Format]},...),

Start ::= Character position [.bit position]

Length ::= Number of characters "max. 256 characters"

Character ::= "Start of the sort field; 1 - 4096 characters"
position
Bit position ::= "Bit position within characters; 0 - 7 bits;

for BI format only"

Number of ::= "Length of the sort field; 1 - 256 characters"
characters
Number of bits ::= "0 - 7; for format = BI only" "Remainder length of the

sort field; 0 - 7 bits; for BI format only"

A "ascending"
Sequence ::= D "descending"

N "Remainder field"

BI "Binary"
CH "Character"
SP "Special character"
AA "ISO -> EBCDIC;sorting; -> ISO"
AE "ISO -> EBCDIC;sorting; -> EBCDIC"

Format ::= EE "EBCDIC -> ISO;sorting; -> EBCDIC"
EA "EBCDIC -> ISO;sorting; -> ISO"
FI "Fixed point"
FL "Floating-point"
PD "Packed decimal"
ZD "Zoned decimal"

Fig. 11-3 Extract from syntax for control statements SORT and MERGE of program SORT

U253-J-Z125-9-7600 459

BS2SRT

RECORD statement ::= RECORD LENGTH (length,...),TYPE=Type

Length ::= "Integer"

F "fixed record length"
Type ::=

V "variable record length"

Presetting

1st length: max. length of input record -

2nd length: max. length of sort/merge record 1st length

3rd length: max. length of output record 2nd length

4th length: min. length of sort/merge record length of control only
field for

TYPE
5th length: most frequently occurring length of (2nd length = V

sort/merge record + 4th length)/2

Fig. 11-4 Syntax for the RECORD control statement of the SORT program

(abbreviated version)

PL/I record processing functions

The following conditions apply to the functions for processing records:

Entry

Identifier: PROCEDURE (s,r)
RETURNS (CHAR (*) [NONVARYING]);
or appropriate internal function;

The sort program must be informed about the entry via parameters (’d’ and ’e’ of the
BS2SRT call); the entry will be called once for each record, before or after the
sort/merge process.

Parameters

DCL s CHAR (length) NONVARYING UNALIGNED PARAMETER;

The length must be a constant. Depending on parameter ’r’, parameter ’s’ contains a
record or an undefined value.

460 U253-J-Z125-9-7600

BS2SRT

DCL r REAL FIXED BINARY PREC (31,0) ALIGNED PARAMETER

On invocation one of the following values is passed via r.

r = 0: Record is passed to s. If no input file is specified, s is undefined. Interroga-
tion possible through:

IF ADDR(s) = NULL()
THEN no input file
ELSE input file

r = 4: Record is passed to s. Another record with the same sortfield is present (only
possible after the sort operation).

r = 8: End of file; value of parameter s undefined.

On return one of the following values can be passed in r:

r = 0: Record is passed.

r = 4: Further processing of the record by program SORT not desired; passed value
undefined. This value must be specified when the sorted records are output
by the PL/1 function itself.

r = 8: End of processing.

r = 12: Additional record to be inserted prior to the passed record. The passed
record, if any, will be supplied again by SORT. This value must be specified
when the PL/1 function itself inputs the records to be sorted.

Result

The result returned by the function to SORT contains a record or an undefined value
depending on the value returned via parameter r.

r = 0: Unmodified or modified record

r = 4: Value undefined

r = 8: Value undefined

r = 12: Additional record

U253-J-Z125-9-7600 461

CMD

CMD Execute BS2000 command

CMD (a, b, c)

Execution of a BS2000 command

Entry

DCL CMD ENTRY (CHAR(*) [NONVARYING] [UNALIGNED],
CHAR(*) [NONVARYING] [UNALIGNED],
[REAL] FIXED BINARY PREC (31,0) [ALIGNED)]

OPTIONS(LIBRARY) [EXTERNAL] [CONSTANT];

Parameters

a: A character string which contains the BS2000 command to be executed. The maxi-
mum length of the string is 32763 characters.

b: A character string into which the SYSOUT listing of the BS2000 command is ent-
ered. The first 4 bytes of each record in the listing contains its record length field
(bytes 0-1, bytes 2-3 are reserved). The records are entered sequentially into the
character string. The maximum length is 32763. If the length = 0, the listing is out-
put to SYSOUT.

c: A fixed-point number into which the acknowledgment of the execution of the com-
mand is entered. The field can have one of the following values:

c = 0: normal termination
c = 4: memory shortage; no request
c = 8: error in the operand list
c = 12: the list area is too small for the SYSOUT listing
c = 16: command error
c = 20: invalid command

Effect

The specified BS2000 command is executed by means of the system macro CMD. The
listing is either entered in the list area or output to SYSOUT.

Commands which cannot be executed or which terminate the program are listed in the
description of the system macro CMD in [16].

462 U253-J-Z125-9-7600

CMD

DCL CMD ENTRY(CHAR(*), CHAR(*), FIXED BIN(31))
OPTIONS(LIB);

LIST CHAR(1000),RET_CODE FIXED BIN(31);

/* THE LISTING IS ENTERED IN THE LIST AREA */
CALL CMD (’FSTATUS’,LIST,RET_CODE);

/* THE LISTING IS OUTPUT TO SYSOUT */
CALL CMD (’FSTATUS’,’’,RET_CODE);

Fig. 11-4a Example of using CMD

U253-J-Z125-9-7600 463

ERROUT

ERROUT Error text output

ERROUT

Output of current error text to SYSOUT

Entry

DCL ERROUT ENTRY () OPTIONS (LIBRARY) [EXTERNAL][CONSTANT];

Parameters

None

Action

If, as a consequence of raising a condition, an ON unit was executed, the correspon-
ding error text is output by CALL ERROUT.

The error text referred to is the same as that which would have been output by the
system unit, if no ON unit had been present.

DCL ERROUT ENTRY() OPTIONS(LIBRARY);

ON AREA BEGIN;
CALL ERROUT;
IF ONCODE() = 360 THEN GOTO ALLOC FEHLER;
IF ONCODE() = 361 THEN GOTO ASSIGN FEHLER;
IF ONCODE() = 362 THEN GOTO SIGNAL FEHLER;
END;

Output from ERROUT

*****AREA-CONDITION, ONCODE=0362 IN LINE 15 IN STATEMENT 1
INSUFFICIENT SPACE IN A NAMED AREA SIGNALED

Fig. 11-5 Example of using ERROUT

464 U253-J-Z125-9-7600

HEXDEC (a)

HEXDEC (a) Hexadecimal characters

HEXDEC (a)

The bit-string a is converted to a character string of hexadecimal characters.

Entry

DCL HEXDEC ENTRY (BIT (*) [NONVARYING] [ALIGNED])
RETURNS (CHAR (*) [NONVARYING] [UNALIGNED])
OPTIONS (LIBRARY) [EXTERNAL] [CONSTANT];

Parameters

Scalar bit-string

Result

Character string containing the hexadecimal 0...9 and A...F only.

Action

Starting from the left, one hexadecimal character is generated for every four bits. The
hexadecimal characters used are the numeric characters 0 to 9 and alphabetic charac-
ters A to F.

If the length of the bit-string is not a multiple of 4 bits, bits of value ’0’B will be filled in
on the right. If filling in on the left is required, a suitable concatenation must be speci-
fied for the parameter (see example).

U253-J-Z125-9-7600 465

HEXDEC (a)

DCL HEXDEC ENTRY (BIT(*))
RETURNS (CHAR(*)) OPTIONS (LIBRARY);

DCL BIT BIT(7) INIT (’1111000’B); Result

PUT SKIP(1) LIST (HEXDEC(BIT)); F0
PUT SKIP(2) LIST (HEXDEC(’0’B || BIT)); 78
PUT SKIP(2) LIST (HEXDEC(COPY(’0’B,4*CEIL(LENGTH(BIT)/4)

-LENGTH(BIT))||BIT)); 78

Bit string and ’0000’B 0
resulting ’0001’B 1
hexadecimal ’0010’B 2
character ’0011’B 3

’0100’B 4
’0101’B 5
’0110’B 6
’0111’B 7
’1000’B 8
’1001’B 9
’1010’B A
’1011’B B
’1100’B C
’1101’B D
’1110’B E
’1111’B F

Fig. 11-6 Example of HEXDEC call

466 U253-J-Z125-9-7600

NOTRACE

NOTRACE Trace off

NOTRACE (a)

Deactivation of trace

Entry

DCL NOTRACE ENTRY (CHAR(*)) OPTIONS (LIBRARY) [EXTERNAL] [CONSTANT];

Parameters

Character string that may contain the following letters with the meanings indicated:

P Trace for procedure call (PROCEDURE)
C Trace for CALL statements
R Trace for return from procedure call (RETURN)
G Trace for branches (GOTO)
L Trace for labels (LABEL)
T Additional output for trace to terminal

Other letters are ignored. The empty string (") corresponds to the ’PCRGL’ option.

Effect

An activated trace (see TRACE) can be deactivated by NOTRACE. (See also chapter 9.)

U253-J-Z125-9-7600 467

PLIRETC

PLIRETC Set return code

Only for users with software product JV.

PLIRETC (a)

The program information of the return code is set to a.

Entry

DCL PLIRETC ENTRY ([REAL] FIXED BINARY PREC(31,0) [ALIGNED])
OPTIONS (LIBRARY) [EXTERNAL][CONSTANT]

Parameters

a: Value between 0 and 999

Effect

The program information (digits 5 through 7) of the return code of a monitoring job
variable receives the value a in the format PIC’999’ at program termination, thus permit-
ting the program to pass an item of information to the command level.

DCL PLIRETC ENTRY(FIXED BINARY(31,0))
OPTIONS (LIBRARY);

CALL PLIRETC (17);

/DCLJV JV
/EXEC T.PLIRETC,MONJV=JV

.

.

.

.

.
END OF PROGRAM....
/GETJV (JV,5,3)
%017

Fig. 11-6a Example of PLIRETC

468 U253-J-Z125-9-7600

RDUMP (a,b)

RDUMP (a,b) Dump

RDUMP (a,b)

Output of b characters to SYSLST, starting at address a.

Input

DCL RDUMP ENTRY (POINTER [ALIGNED],
[REAL] FIXED BINARY PREC (15,0) [ALIGNED])

OPTIONS (LIBRARY) [EXTERNAL] [CONSTANT];

Parameters

a: pointer to start of dumped memory area b: number of bytes to be dumped.

Effect

Starting at address a, at least b characters in hexadecimal notation are output to
SYSLST.

DCL RDUMP ENTRY (POINTER ALIGNED,
FIXED BINARY (15,0) ALIGNED)
OPTIONS (LIBRARY);

DCL GLEIT FLOAT DECIMAL (33) INIT (12345E+16);

CALL RDUMP (ADDR(GLEIT),16);

Output

****** DUMP DES BEREICHS 0181A0 - 0181AF: ******

REPL VS ADR SPEICHERINHALT
0181A0 516B1368 0EF11F90 43000000 00000000

Fig. 11-8 Example of RDUMP

U253-J-Z125-9-7600 469

RUNTIME

RUNTIME Computing time used

RUNTIME

Function returning computing time (in seconds) used since program was started.

Entry

DCL RUNTIME ENTRY ()
RETURNS (CHAR (8))
OPTIONS (LIBRARY) [EXTERNAL] [CONSTANT];

Parameters

None

Result

Computing time in seconds in the form PIC ’ZZZZ9.V99’

Effect

When this procedure function is invoked the CPU time used since the start of the pro-
gram is determined, and returned in the form of a character string:

5 characters integer part 1 character decimal point 2 characters fractional part

The time is measured in seconds. The value is rounded.

DCL RUNTIME ENTRY () RETURNS (CHAR(8)) OPTIONS(LIBRARY);

PUT SKIP LIST (RUNTIME);

DCL ZEIT CHAR(8);

ZEIT = RUNTIME;

PUT SKIP LIST (ZEIT);

Result

0.28
0.29

Fig. 11-9 Example of RUNTIME call

470 U253-J-Z125-9-7600

SDUMP

SDUMP Stack dump

SDUMP

The contents of the stack (block activations containing AUTOMATIC variables) is output
to SYSLST in hexadecimal and character representation.

Entry

DCL SDUMP ENTRY ()
OPTIONS (LIBRARY) [EXTERNAL] [CONSTANT];

Parameters

None

Effect

Dumping of current contents of the stack segments. A detailed description of the stack
structure is given in chapter 10. Prior to the dump the starting address of the current
activation of the stack is output, i.e. the activation of the runtime system that outputs
the dump.

Prior to the printout, referred to above, the pseudoregister vector (PRV) is output. Inter-
pretation of this printout must be left to specialists.

DCL SDUMP ENTRY() OPTIONS(LIBRARY);

DCL ZEICHEN CHAR(8) AUTOMATIC INIT(’ABCDEFGH’);

CALL SDUMP;

U253-J-Z125-9-7600 471

SDUMP

Result:

****** DUMP OF THE STACK:******

DUMP OF THE PRV:

REPL VS ADR MEMORY
014000 000800D2 F1F7F3F5 D7D3C9C1 D3D3C740
014020 C2E3C4E4 00000E00 00010001 00000000
014040 00000002 00010044 0100F8F4 0200FBC4
014060 0700FB28 4F002422 0100F8F4 00000002

ACTUAL ACTIVATION (REGISTER 13 OF THE DUMPING PROCEDURE): 00019250

DUMP OF ALL LOGICAL STACK SEGMENTS:

REPL VS ADR MEMORY
019000 00000000 00000000 7F019000 7F029000 00000000
019020 00000010 00000002 00000000 00000014 00000014
019040 00000000 00000000 00000000 00000000 00000000

Fig. 11-10 Example for SDUMP call

472 U253-J-Z125-9-7600

AP

SNAP Call nesting

SNAP

Output of current call nesting to SYSOUT

Entry

DCL SNAP ENTRY () OPTIONS (LIBRARY) [EXTERNAL] [CONSTANT];

Parameters

None

Effect

CALL SNAP produces a listing of the currently active procedures and their calling
sequence. The oldest procedure in time (main procedure) is listed last. One line is
shown for each procedure which has been called and is still active.

The structure of this listing is explained in detail in section 9.7.

VERSCHA: /* EXAMPLE OF CALL NESTING */
PROCEDURE OPTIONS(MAIN);

DCL SNAP ENTRY() OPTIONS(LIBRARY);

PUT SKIP LIST (’ SNAP’);

ON ZERODIVIDE BEGIN;
PUT SKIP LIST (’ ZERO’);
CALL FEHLER;
GOTO ENDE;
END;

BEGIN;
PUT SKIP LIST (’ BEG’);
DCL (X,Y,Z) INIT(0),
X = Y / Z;
END;

FEHLER: PROC;
PUT SKIP LIST (’ ERROR’);

CALL SNAP;

END;

U253-J-Z125-9-7600 473

AP

SYSLST

... SNAP

... BEG

... ZERO

... FEHLER

SYSOUT

****************************** SNAP **************************

START OF PRINTING OF NESTED SUBROUTINES

CALLED FROM TYPE ON ADDRESS SOURCE REFERENCE

SNAP SYSTEM 0020D2
FEHLER ENTRY 000406 25 1
ZEROIDE ON 000300 13 1
ER$INTR SYSTEM 0107EA
ER$PUB SYSTEM 010EA0
SR$STXT SYSTEM 00FD04
##00004 BEGIN 0003FA 19 1
BSNAP ENTRY 000244 11 1

Fig. 11-11 Example of call nesting (SNAP)

474 U253-J-Z125-9-7600

TRACE

TRACE Trace on

TRACE (a)

Activation of trace

Entry

DCL TRACE ENTRY(CHAR(*)) OPTIONS (LIBRARY)
[EXTERNAL] [CONSTANT]

Parameters

Character string that may contain the following letters with the meanings indicated:

P Trace for procedure call (PROCEDURE)
C Trace for CALL statements
R Trace for return from procedure call (RETURN)
G Trace for branches (GOTO)
L Trace for labels (LABEL)
T Additional output for trace to terminal

Other letters are ignored. The empty string (") corresponds to the ’PCRGL’ option.

Effect

A precondition for trace is that, when the procedure is being compiled, the correct
trace has been incorporated by use of the compiler control command

*COMPOT DEBUG=option

The desired trace can be activated either by the object control command

*RUNOPT TRACE=option

(it then starts at the beginning of the procedure) or, dynamically, by the invocation

CALL TRACE (expression);

(it then starts immediately after the invocation). By use of the invocation NOTRACE the
desired trace can be deactivated dynamically.

The presetting of the PL/I system does not initiate incorporation nor activation of a
trace routine (see chapter 9).

U253-J-Z125-9-7600 475

12 Shareable programs

12.1 Prerequisites

For programs using shareable modules the following conditions apply:

• Shareable modules must be loaded dynamically.

• Shareable modules may be accessed in read mode only.

• Address referencing from shareable modules to nonshareable ones is not permitted.

• Variable data must be located in dynamically allocated memory areas. This condition
is necessary if all modules are to belong to storage class 4. This must always be
the case in the current implementation for shareable PLI1 programs.

These conditions will be fulfilled by PL/I programs if they do not contain STATIC varia-
bles, CONTROLLED variables, or input/output statements.

Modules ITP#$RTS# and ITP#IOS# of the "shareable" PL/I runtime system comply
with the conditions for shareable modules.

When using assembler modules, they, too, will be subject to the above conditions.

U253-J-Z125-9-7600 477

Shared Shareable programs

12.2 PL/I programs

This section gives a description of methods for obtaining shareable programs from PL/I
programs which do not comply with the conditions listed above. Extended language is
available in PLI1 for this purpose.

12.2.1 STATIC variables

By language extensions, STATIC variables can be removed from external procedures if
the user does not lose sight of any of his STATIC variables. STATIC variables are chan-
ged to BASED variables via the PLI1 system’s predefined (built-in) absolute pointer
array, PLI1GLOBAL (0:127).

Example

DCL name STATIC EXTERNAL INIT (value);

is replaced by

DCL name BASED (PLI1GLOBAL(n)) INIT (value);

where n is an integer between 0 and 127. A separate number is required for each
name.

The statement

ALLOCATE name;

must be inserted at the start of the program.

If several STATIC variables have to be removed, it is advisable to collect them in a
structure.
INTERNAL STATIC variables with attribute INITIAL which are only referenced by read
access operations, should not be handled as described above. Instead

STATIC (CONSTANT)

should be written in the declaration, if they are not recognized as constants by the com-
piler anyway (see chapter 8).

478 U253-J-Z125-9-7600

Shareable programs Shared

12.2.2 Input/output statements

In the declaration of a file the compiler creates a STATIC variable for the file constant.

Creation of this STATIC variable may be suppressed by an extension of PL/I language.
This is achieved by adding the specification

ENVIRONMENT (PLI1GLOBAL (n))

to the file constant. When this is done, care must be taken that in the presence of
more than one external procedure the same index n is only used for identical file con-
stants and nowhere else.

In statements for the input/output stream without file specification the file constants
SYSIN and SYSPRINT are implicitly declared for input and output respectively. These
file constants must also be explicitly declared with the environment specification mentio-
ned above. Analogous rules apply to the SYSOUT file.

The only input/output statement which can be used without special precautions is
DISPLAY with/without REPLY.

12.2.3 CONTROLLED variables

A STATIC variable is implicitly generated for each CONTROLLED variable by the compi-
ler. Creation of this variable can be suppressed by an extension of PL/I language. For
this purpose it is necessary to specify

CONTROLLED (PLI1GLOBAL (n))

in the declaration. Note that ’n’ must be uniquely assigned to the name of the CTL
variable.

U253-J-Z125-9-7600 479

Shared Shareable programs

12.3 Entry into class 4 memory

When all the modules of a program have been made shareable and compiled, the
module linkage editor is used to generate a prelinked module, linking ITP#AOD#, the
linkage module, to the dynamic runtime system of PLI1. The prelinked module is decla-
red "READ ONLY" by means of the LMR [3] and is then entered in the share table of
the system by the SHARE command (see BS2000 System Controller’s Guide).

The ITP#RTS# and ITP#IOS# modules of the runtime system should also have been
entered in the share table.

Then the dynamic linkage loader is used to start the program:

/EXEC (module-name [,lib-name]) [,further information]

Caution:

The SORT routine is not shareable with the BS2SRT program from chapter 11.

480 U253-J-Z125-9-7600

13 PLI1 ASSEMBLER macro interface

13.1 General

When ASSEMBLER programs are connected to PL/I programs, and vice versa, the PLI1
conventions must be observed in the ASSEMBLER program (see chapter 7). Since this
would involve a considerable programming effort, a set of definition and action macros
is provided which normally restricts this effort to the insertion of a few macros. Espe-
cially the conversion of existing ASSEMBLER subroutines to permit them to be invoked
by PL/I programs will only require the removal of a few ASSEMBLER instructions and
the insertion of two macro calls.

These macros can only be used in PL/1 modules if "*COMOPT OPTIONS=NOXS" was
used in compilation.

13.1.1 Table of macros

(A = action macro, D = definition macro)

P$CALL -A- Invokes a PL/I subroutine
P$ENTRY -A- Generates an entry to be invoked by PL/I
P$ENVIRM -A- Initializes the PLI1 environment
P$ERROR -A- Sets the ERROR condition
P$LINK -A- Loads a PL/I subroutine
P$PRV -D- PLI1 dummy register vector (DSECT or presetting)
P$REGEQU -D- EQU statements for register notation
P$RETURN -A- Return to the calling PL/I program
P$STACK -D- DSECT for register and AUTOMATIC storages
P$STOP -A- Terminates the entire program run

U253-J-Z125-9-7600 481

Macros ASSEMBLER

13.1.2 User considerations

All macros are reentrant, i.e. ASSEMBLER programs that are reentrant remain this
even after PLI1 macros have been inserted.

The macros have been designed in such a way that normally no control parameters
need be specified, i.e. the most frequent application is assumed.

For coordination purposes the macros use the global variables &ENVIRM#,
&STACK#, &MAXPAR#, &PRV#, ®#.

All ASSEMBLER programs that are run in conjunction with PL/I programs must
observe the PL/I register conventions, i.e. registers R12 and R13 must not be chan-
ged outside of the particular macros. If this condition cannot be ensured, the PL/I
specific contents of R12 and R13 must be restored each time before the action mac-
ros are invoked (exception: P$ENVIRM and P$ENTRY macros).

In the event of individual STXIT processing in the ASSEMBLER program care must
be taken that the PLI1 STXIT processing is reactivated when the PLI1 subroutine is
called as well as when control is returned to the calling PL/I program (option
STXIT=YES in the P$CALL and P$RETURN macros).

The P$ENTRY or P$ENVIRM macros enable the ASSEMBLER program to request
dynamic storage from the PLI1 storage management. Programs that request storage
individually (REQM macro) must be converted in order to avoid fragmentation of
virtual address space.

For examples see chapter 14.6.

482 U253-J-Z125-9-7600

Assembler macros P$CALL

13.2 Macros

P$CALL

Invokes a PL/I procedure from an ASSEMBLER program, with optional parameter list
transfer to the PL/I program

name P$CALL PL/I procedure,param | (param1, param2,...),
PARNUM=0|blank|number,STXIT=N[O] | Y[ES]

Rules:

The macro can only be called after the P$ENVIRM or P$ENTRY macro, a check
being performed via the global variable &ENVIRM#.

A base register is not required; R10 is used internally.

The registers R0, R1, R2, R3, R4, and R14 are changed and not restored; R10 and
R15 are used and restored.

R12 and R13 must contain the PLI1 specific values.

Description of parameters:

name Is not used

PL/I procedure Name of the PL/I program to be called
The V-type constant of the PL/I procedure to be invoked must be
passed through the R1 parameter register if it is not specified, i.e. R1
contains the address of the V-type constant. Special case: See next
parameter

Param | (param1, param2,...)

Name(s) of the parameter(s) to be passed to the PL/I program.

If not specified, either no parameter is passed or a parameter list of
ASSEMBLER type is passed.

U253-J-Z125-9-7600 483

P$CALL Assembler macros

An ASSEMBLER parameter list has the following structure:

R1 Parameter register
A (param1) Address of the first parameter
A (param2) Address of the second parameter

.

.

.
X’80’ A (param n) Address of the last parameter

identified
by X’80’ (’80’B4).

Special case:

If the parameter "PL/I procedure" is not specified, the address of the V-type constant of
the PL/I procedure to be invoked must be specified as the first entry of the assembler
parameter list.

PARNUM = 0 | blank | number

Default value 0 means that no parameter must be passed to the PL/I program.
Exception: When an explicit parameter list ("param") is specified, 0 is treated as a
blank entry.

The blank entry means that no check on the current parameter must be performed.

If "number" is specified, a check will always be performed to ensure that the speci-
fied number corresponds with the current parameter number, i.e. if "param" is speci-
fied, the number of entries in the sublist will be compared with "number" and if no
match is found the macro generation will be abnormally terminated with MNOTE. If
the transfer is effected through parameter register R1, a check can only be perfor-
med at runtime based on the option X’80’ (’80’B4) in the last parameter. If no match
is found the error condition ONCODE=5010 is set. The parameter "PL/I procedure",
if specified, is not taken into account.

STXIT = Y[ES] |N[O]

Default NO means no action

YES means that, prior to calling the PL/I program the PLI1 specific STXIT routines
are activated. This is advisable or necessary if a STXIT macro was used in the cal-
ling ASSEMBLER program.

484 U253-J-Z125-9-7600

Assembler macros P$CALL

Notes

The maximum number of parameters to be passed to the PL/I program can be defi-
ned in the P$ENTRY and P$ENVIRM macros. If errors are detected at compilation
time (number of parameters greater than global variable &MAXPAR) the macro gene-
ration is terminated with MNOTE. If errors are detected at runtime the error condi-
tion P$CALL with ONCODE=5010 is set.

The invoked PL/I procedure may be a function. If so, the PLI1 return conventions
for function value transfer, described in section 7.1.4, must be observed. For the
return of some data types, register R1 is used.

The parameters passed to the PL/I program should not need any descriptors. This
means that parameters with * options are not permitted. Alternatively, the use of
VARYING character sets or BASED variables with variable dimensioning may be con-
sidered.

Example

/* ALTERNATES FOR CHAR(*)PARM*/
DCL A CHAR(100) VARYING PARAMETER;
DCL A CHAR(N) BASED(P),

P POINTER PARAMETER,
N BIN FIXED PARAMETER;

U253-J-Z125-9-7600 485

P$ENTRY Assembler macros

P$ENTRY

Generates a procedure entry and generates the procedure heading which is expected
when an entry point is called by PL/I.

name P$ENTRY LENGTH = bytes , MAXPAR= number

Rules:

The entry generated with the aid of the P$ENTRY macro can only be called if the
PLI1 environment has been activated.

The macro may be inserted several times in one program, an external entry point
being generated each time.

Description of parameters:

name If the macro appears immediately after the START statement, the
option "name" must be omitted; if "name" is specified an ENTRY
statement is generated in addition to the procedure heading.

LENGTH = bytes Dynamic user storage is allocated to the ASSEMBLER subroutine
by the PLI1 storage management.

If "bytes" = 0 (default) no user storage is reserved. See also para-
meter MAXPAR.

MAXPAR = blank | number
The default ’_’ means that the presetting of the P$STACK macro is
used.
If "number" > 4 an area of (number-4) fullwords is reserved after
the register save area for the parameter list used by the P$CALL
macro. For details see P$STACK macro.
If "number" 4 the parameter transfer by macro P$CALL is effected
through registers R1,...,R4; additional storage for the parameter list
is not necessary.

486 U253-J-Z125-9-7600

Assembler macros P$ENTRY

Notes

The global variable &ENVIRM# is used.

The entry specified by the macro can be defined on the PL/I side by means of the
following OPTIONS options:

ASSEMBLER, VARIABLE, PLI1 (default). Do not use: LIBRARY, COBOL, FORTRAN.

The RETURNS attribute is not permitted if OPTIONS (ASSEMBLER) is not specified.
The return of the function value should be effected in accordance with PLI1 conven-
tions (see section 7.1.4). If the return is made through register R1, parameter
R1RETRN=YES must be specified in the P$RETURN macro.

U253-J-Z125-9-7600 487

P$ENVIRM Assembler macros

P$ENVIRM

Establishes the PLI1 environment, activates PLI1 STXIT processing and storage manage-
ment

name P$ENVIRM MAXPAR = number , LENGTH=bytes, BASEREG = RXX

Rules:

The macro can be called only once for any program; it must not be called after
P$ENTRY otherwise MNOTE.

For use of registers see parameter BASEREG=

Description of parameters:

name Not used

MAXPAR= blank | number
"blank" denotes that the presetting of macro P$STACK is used.
"number" indicates the maximum number of parameters to be speci-
fied in the P$CALL macro. This specification affects the size of the
dynamic storage area; see next parameter.

LENGTH = bytes Default value 0 denotes that no dynamic storage is requested from
the register save area and, if applicable, from the parameter area.
"bytes" specifies how much dynamic storage is to be allocated to
the ASSEMBLER program by the PLI1 storage management (man-
datory for shareable programming).

BASEREG = RXX | blank
"blank" denotes that no base register is specified when P$ENVIRM
is called. R10 is assumed and remains valid until after the end of
macro generation.
"RXX" (XX=1,2,...,(11),14,15) may be specified to inform the macro
that at the time the macro is called a specific base register is valid.
This register continues to be a base register with the previously
valid base address, after the macro call.
Within the macro, register R10 is always used as the base register.

488 U253-J-Z125-9-7600

Assembler macros P$ENVIRM

R12 and R13 are not allowed since these registers must retain the
PLI1-specific value after the macro has been executed. R11 is not
recommended since this register is the only one that is not chan-
ged by the P$ENVIRM macro. It may be used to store any other
register (necessary for shareable programming).

Notes

The macro uses all registers other than R11. Because of its reenter feature, they can-
not be restored. See also parameter BASEREG.

If the macro is called more than once inadvertently, no warning can be issued.
Depending on the setting of the runtime option STORAGE, each call causes a speci-
fic amount of virtual storage to be inhibited, or the STORAGE condition may arise.

U253-J-Z125-9-7600 489

P$ERROR Assembler macros

P$ERROR

Sets the PL/I ERROR condition analogous to SIGNAL ERROR, however with indication
of a specific ONCODE value and, if applicable, a message number

name P$ERROR ONCODE = code ,MSG=subcode

Rules:

The macro can only be called after the macros P$ENTRY or P$ENVIRM, a check
being performed through global variable &ENVIRM#.

A base register is not necessary. R10 is used internally. No registers are restored.

R12 and R13 must contain the PLI1-specific values.

Description of parameters:

name Not used

ONCODE = code,MSG=subcode
Preset ONCODE=5000, MSG=00
"code" indicates the PL/I ONCODE to be used by the PLI1 error
recovery in order to issue a special error text. The option
MSG=subcode is only mandatory if there are several error texts for
one specific ONCODE. The texts must be contained in the files
$TSOS.PLI1.TEXT.E or D or be transferred to them by the user.

MSG = subcode See parameter ONCODE
If special error messages and ONCODE values are to be defined,
the text files must be extended accordingly.
See parameters ONCODE= and MSG=. The ISAM key to be used in
the text files for the insertion of texts is eight positions long
015CCCMM, where 5CCC is the ONCODE with leading zeros and
MM, the additional message number.

490 U253-J-Z125-9-7600

Assembler macros P$LINK

P$LINK

Loads a PL/I subroutine (DLL)

name P$LINK PL/I name ,addr.const ,LIBNAM=lib-name

Rules:

The macro should only be used when the PLI1 environment (R12 and R13) has
been established because, in the event of an error, the PLI1 error recovery is invo-
ked through macro P$ERROR with ONCODE=5015.

A base register R1 is required.

Registers R0 and R1 are changed but not restored; R15 is used and restored.

Description of parameters:

name Not used

PL/I name Name of the PL/I subroutine that is to be loaded.
If not specified the address of a LINK parameter block is expected in
R1 as it is generated, for example, by the macro call LINK MF=L,... .
In this parameter block at least the name field must be filled.

Addr. const Name of an address constant to be assigned to the PL/I subroutine
to be loaded.
If not specified, the load address will be in R1.

LIBNAM= lib-name
Specification of a special load library.
Default NONE indicates that only the $TASKLIB library is used if a
library has not been specified in the parameter block addressed
through register R1.

U253-J-Z125-9-7600 491

P$LINK Assembler macros

Notes

The loaded program is not started (INHIBIT=YES); this must be done with the aid
of the P$CALL macro.

Any LMR or LMS library can be assigned to the TASKLIB ($TASKLIB) library with the
aid of the /SYSFILE TASKLIB=library command.

The macro should only be used in conjunction with the loadable (shareable) runtime
system. If the runtime system is not loadable (static runtime system, control module
P$ANFOS#) all required runtime system modules will be made addressable in the
dummy register vector when the program is started. If the loaded PL/I program
should require additional modules, the associated addresses are not provided in the
dummy register vector which may lead to addressing errors (ONCODE=8095).

Remedy: If the use of the static runtime system cannot be dispensed with, all asso-
ciated modules must be linked explicitly into the calling program.

492 U253-J-Z125-9-7600

Assembler macros P$PRV

P$PRV

Generates a DSECT or an initialization constant for the PLI1 dummy register vector
(Pseudo Register Vector, PRV).

&name P$PRV TYPE= D[SECT] |C [ONST]

Rules:

The macro is expanded only once for each program system. Control is effected
through global variable &PRV.

The macro-generated DSECT is used in all P$ action macros. The macro is there-
fore called by these macros.

The base register R12, which is associated with the PRV-DSECT, is only set in the
P$ENVIRM macro or in a PL/I main program.

Description of parameters:

name Name of the generated DSECT or 4 K constant
Default when TYPE=DSECT, if not specified.

TYPE = D[SECT]|C[ONST]
Default: DSECT
The option CONST is normally not meaningful for the user.

Notes

Normally, the dummy register vector is not referenced by the ASSEMBLER user pro-
gram outside of the PLI1 macro.

Exception: The PRV entry PLI1GLOBAL (128 pointers) can be used with shareable
programming in order to address the predefined pointer array PLI1GLOBAL(0:127)
of the PL/I programs involved, in order to replace the EXTERNAL or COMMON
variables which are not permitted in this case.

The listing of the macro expansion is suppressed. The previously issued PRINT state-
ment remains valid.

U253-J-Z125-9-7600 493

P$REGEQU Assembler macros

P$REGEQU

Generates EQU statements for PLI1 register notation (RXX)

P$REGEQU

Rules:

The macro is generated only once for each program. Control is effected through the
global variable ®#.

The macro is used by all PLI1 macros.

Description of parameters:

none

Notes

The generation of this macro in existing ASSEMBLER programs may lead to M
flags. If the removal of identical names gives rise to problems the generation of the
macro may be inhibited by setting $REG# SETA 1.

494 U253-J-Z125-9-7600

Assembler macros PNRETURN

P$RETURN

Return from an ASSEMBLER subroutine to the calling PL/I program.

name P$RETURN R1RETURN = N[O]|Y[ES] ,
STXIT = N[O]|Y[ES]

Rules:

This macro should only be used in conjunction with the P$ENTRY macro. This
means that return from an ASSEMBLER program can only be effected with
P$RETURN if P$ENTRY was called at its entry point.

No base register required.

Register R13 must have the same setting as it had in the P$ENTRY macro. If this
rule is violated the program to which a return is made will fall back on illegal genera-
tions of dynamic storage.

The register settings valid at the time of invocation are restored.
Exception: Register 1 when parameter R1RETURN = YES

Description of parameters:

R1RETURN = N[O]|Y[ES]
Default NO indicates that all registers are reset to the values they
contained at the time of invocation (macro P$ENTRY).
YES must be specified when the ASSEMBLER routine returns returns
a function value by way of register R1. This is possible only with
ASSEMBLER programs written in accordance with PLI1 standards -
see the relevant description in section 7.1.4.

STXIT = N[O]|Y[ES]
Default NO means no action.
YES must be specified when an STXIT macro is used in the
ASSEMBLER routine. The PLI1 STXIT will then be restored before
control is returned to the PL/I program.

U253-J-Z125-9-7600 495

PNRETURN Assembler macros

Notes

The PLI1 STXIT option affects all ERROR conditions with ONCODE = 8089 as well
as the applicability of the /INTR command (ATTENTION condition).

The use of register R12 should be avoided in the ASSEMBLER routine, if possible.
However, this macro restores the value anticipated from PLI1. A precondition is that
the value of R13 is correct.

The STXIT-SVC, which is performed if STXIT=YES, requires a few thousand instruc-
tions in the operating system (P2, P3 time). It should therefore not be used fre-
quently as it may affect the system throughput rate adversely. Hence the default
value STXIT=NO.

496 U253-J-Z125-9-7600

Assembler macros P$STACK

P$STACK

Defines a DSECT in order to address the individual fields of a dynamic storage area.

name P$STACK MAXPAR = number

Rules:

The macro can be generated only once for each program. Coordination is achieved
through the global variable &STACK#

The resulting DSECT is addressed using base register R13

The parameter MAXPAR is passed on to the macros P$ENTRY and P$ENVIRM
through the global variable &MAXPAR#

Description of parameters:

name Name of the generated DSECT
If not specified, P$STACK will be assumed.

MAXPAR = number
The maximum number of parameters to be passed on to a PL/I
subroutine that is to be invoked through P$CALL
Default value: 64. A higher value is not permitted.
A field of (number-4) fullwords is reserved in dynamic storage for the
PLI1 parameter list. The generated names are PLIPAR4, PLIPAR5, ...,
PLIPAR64.

Notes

Generally this macro is not called by the user but by the macros P$ENTRY and
P$ENVIRM.

The user should call it only if he wants to change the defaults of "name" and "num-
ber". In this case the macro must be called before P$ENTRY, P$ENVIRM or other
action macros. An entry "number" 4 is only effective if an appropriate check is per-
formed.

U253-J-Z125-9-7600 497

P$STOP Assembler macros

P$STOP

Terminates the program analogous to the PL/I statement STOP

name P$STOP

Rules:

The macro may only be called after P$ENTRY or P$ENVIRM. A check is performed
through global variable &ENVIRM#.

Description of parameters:

name Not used.

498 U253-J-Z125-9-7600

14 Appendix

14.1 List of compiler warnings and error messages

A complete list of the messages which are generated by the compiler as a result of syn-
tactic or semantic errors in statements or due to constraints on implementation, is
given in the text files

PLI1.TEXT.D (German)
PLI1.TEXT.E (English).

The texts are largely self-explanatory.

Since all diagnostic messages are completed by a unique reference to the source line,
debugging of the source program is generally simple.

For some errors an additional remark, indicated how the problem can be solved, is
given.

In the majority of cases, detection of an illegality and output of message is followed by
normal continuation of the compiling operation. Any assumptions made by the compiler
to enable it to continue will also be recorded in the message.

The device to which the message is output can be determined by the control state-
ments DIAGNOST and MESSAGE. For further details see section 3.5. The default value
for all messages is SYSLST.

The records in the text files have the following structure:

No. Weight Text

where:

No.: The first 8 positions give the number (consecutive) of the error.

Weight: The meaning of the following 3 positions is as follows:

C01 Warning
C02 Error
C03 Severe error; object module not generated.
C04 Unrecoverable error; immediate abortion of compiling operation.

U253-J-Z125-9-7600 499

Text: If the error text contains the character @, it will be replaced by the appro-
priate current value.

If the generation of object modules is to depend on the number of messages of a defi-
nite weight which have occurred, the control statement OBJECT can be used. For fur-
ther information see section 3.6.1.

Output of messages below a certain weight can be suppressed by using the control
statement DIAGNOST (see section 3.5.2).

500 U253-J-Z125-9-7600

ONCODE

14.2 List of error messages from object programs
(ONCODE values)

If errors are encountered during the execution of a PL/I program, and there is no ON
unit associated with the error class, one of the following error texts is issued by default.

Each error text has an ONCODE value (error number) assigned to it, which can be
recalled in an ON unit with the builtin function ONCODE. Further details can be found
in chapter 11 of the language reference manual [1].

For errors detected in the Data Management System (DMS), the appropriate error key
is output as part of an explanatory text. The meaning of these error keys is found in
publication [6].

The following applies to the subsequent list of ONCODE-Values and associated messa-
ges:

• The list is arranged according to ascending ONCODE values.

• A heading specifies the condition under which the subsequent ONCODES may
occur. A condition may appear as heading more than once.

• If the same ONCODE value appears more than once with different messages, then
each message represents an alternative. The respective alternative can be shown by
CALL ERROUT.

• As the listing is printed, the character ’@’ in the text is replaced with the appropriate
current value.

• The error texts which follow are stored in ISAM file PLI1.TEXT.E with the key
’01ccccmm’, where ’c’ is the ONCODE with leading zeros and ’m’ is an additional
number for an otherwise identical ONCODE.

U253-J-Z125-9-7600 501

ONCODE

ERROR condition (see also ONCODE = 9 and 1000)

3 NO WHEN CLAUSE SATISFIED AND NO OTHERWISE CLAUSE SPECIFIED

3 DATA TYPE OF THE RETURN-EXPRESSION CONFLICTS WITH THE
RETURNS ATTRIBUTE

3 RETURN FROM FUNCTION WITHOUT RETURN VALUE

FINISH condition

4 END OF PROGRAM REACHED

4 END OF PROGRAM SIGNALED

ERROR condition

9 ERROR CONDITION SIGNALED

NAME condition

10 GET FILE DATA; SYNTAX ERROR IN IDENTIFIER
(ONFILE=’@’,ONFIELD=’@’)

10 GET FILE DATA: MORE THAN 256 CHARACTERS IN THE NAME
(ONFILE=’@’,ONFIELD=’@’)

10 GET FILE DATA: AN IDENTIFIER HAS NO COUNTERPART IN THE DATA
LIST (ONFILE=’@’,ONFIELD=’@’)

10 GET FILE DATA: AN ARRAY SUBSCRIPT IS MISSING OR INDICATES
TOO MANY DIMENSIONS (ONFILE=’@’,ONFIELD=’@’)

10 GET FILE DATA: A SUBSCRIPT IS BEYOND THE DECLARED RANGE
(ONFILE=’@’,ONFIELD=’@’)

10 GET FILE DATA: ILLEGAL DATA TYPE (ONFILE=’@’,ONFIELD=’@’)

10 GET FILE DATA: MORE THAN 64 QUALIFIERS IN THE NAME
(ONFILE=’@’,ONFIELD=’@’)

10 GET FILE DATA: IDENTIFIER NOT KNOWN IN THE BLOCK
(ONFILE=’@’,ONFIELD=’@’)

10 GET FILE DATA; PARTIALLY QUALIFIED NAME IS AMBIGUOUS IN THE
BLOCK (ONFILE=’@,ONFIELD=’@’)

10 UNRECOGNIZABLE IDENTIFIER IN GET DATA ON FILE @ SIGNALED

502 U253-J-Z125-9-7600

ONCODE

RECORD condition (see also ONCODE = 3 and 1000)

20 RECORD LENGTH ERROR ON FILE @ SIGNALED

21 LENGTH OF RECORD VARIABLE LESS THAN RECORD LENGTH.
(ONFILE=’@’)

21 RECORD LENGTH GREATER THAN ACTUAL LINESIZE FOR SYSDTA
(ONFILE=’@’)

22 LENGTH OF RECORD VARIABLE GREATER THAN RECORD LENGTH
(ONFILE=’@’)

23 RECORD VARIABLE TOO SHORT TO CONTAIN EMBEDDED KEY
(ONFILE=’@’)

23 RECORD VARIABLE HAS ZERO LENGTH (ONFILE=’@’)

TRANSMIT condition

40 I/O TRANSMISSION ERROR ON FILE @ SIGNALED

41 UNCORRECTABLE TRANSMISSION ERROR ON OUTPUT (ONFILE=’@’)

41 UNCORRECTABLE ERROR IN OUTPUT (ONFILE=’@’,DMS-ERROR:@)

41 RECSIZE GREATER THAN (BLKSIZE - PAD) OR WRONG SEQUENCE OF
ACCESS TO SHARED UPDATE FILES (ONFILE=’@’,DMS-ERROR:@)

41 NOT ENOUGH SPACE AVAILABLE FOR SECONDARY ALLOCATION
(ONFILE=’@’,DMS-ERROR:@)

42 UNCORRECTABLE TRANSMISSION ERROR ON INPUT (ONFILE=’@’)

42 UNCORRECTABLE ERROR IN INPUT (ONFILE=’@’,DMS-ERROR:@)

U253-J-Z125-9-7600 503

ONCODE

KEY condition

50 ERROR IN RECORD KEY ON FILE @ SIGNALED

51 KEY SPECIFIED CANNOT BE FOUND
(ONFILE=’@’,ONKEY=’@’,DMS-ERROR:@)

52 KEY SPECIFIED ALREADY IN USE ON DATA SET
(ONFILE=’@’,ONKEY=’@’,DMS-ERROR:@)

53 KEY VALUE IS NOT GREATER THAN VALUE OF PREVIOUS KEY,
(ONFILE=’@’,ONKEY=’@’)

53 KEY VALUE IS LESS THAN VALUE OF PREVIOUS KEY,
(ONFILE=’@’,ONKEY=’@’)

53 KEY VALUE IS NOT GREATER THAN VALUE OF PREVIOUS KEY,
(ONFILE=’@’,ONKEY=’@’,DMS-ERROR:@)

54 KEY SPECIFIED CANNOT BE CONVERTED TO VALID DATA
(ONFILE=’@’,ONKEY=’@’)

55 KEY SPECIFIED IS INVALID (ONFILE=’@’,ONKEY=’@’)

56 KEY SPECIFIES POSITION OUTSIDE REGIONAL DATA SET
(ONFILE=’@’,ONKEY=’@’)

57 NO SPACE AVAILABLE TO ADD KEYED RECORD
(ONFILE=’@’,ONKEY=’@’,DMS-ERROR:@)

57 NO SPACE AVAILABLE TO ADD KEYED RECORD
(ONFILE=’@’,ONKEY=’@’)

ENDFILE condition

70 ENDFILE CONDITION RAISED. (ONFILE=’@’)

70 END OF FILE PREVIOUSLY ENCOUNTERED ON STREAM INPUT
(ONFILE=’@’)

70 ENDFILE CONDITION RAISED. (ONFILE=’@’,DMS-ERROR:@)

70 END OF FILE @ SIGNALED

71 ENDFILE CONDITION FOR TAPE RAISED : DOUBLE TAPEMARK DETECTED
(ONFILE=’@’)

504 U253-J-Z125-9-7600

ONCODE

UNDEFINEDFILE condition

80 ERROR IN ATTRIBUTES OF FILE @ SIGNALED

81 CONFLICTING DECLARE AND OPEN ATTRIBUTES (ONFILE=’@’)

81 CONFLICTING DECLARE AND OPEN ATTRIBUTES: INPUT AND OUTPUT
(ONFILE=’@’)

81 CONFLICTING DECLARE AND OPEN ATTRIBUTES: INPUT AND UPDATE
(ONFILE=’@’)

81 CONFLICTING DECLARE AND OPEN ATTRIBUTES: OUTPUT AND UPDATE
(ONFILE=’@’)

81 CONFLICTING DECLARE AND OPEN ATTRIBUTES: RECORD AND STREAM
(ONFILE=’@’)

81 CONFLICTING DECLARE AND OPEN ATTRIBUTES: SEQUENTIAL AND
DIRECT (ONFILE=’@’)

81 CONFLICTING DECLARE AND OPEN ATTRIBUTES: BACKWARDS AND
STREAM (ONFILE=’@’)

81 INCORRECT ATTRIBUTE IN DECLARE OR OPEN FOR TRANSIENT-FILE.
(ONFILE=’@’)

82 CONFLICTING ATTRIBUTES AND FILE ORGANIZATION: DIRECT, KEYED
AND CONSECUTIVE (ONFILE=’@’)

82 INDEXED OR REGIONAL CONFLICTS WITH PRINT, STREAM, TRANSIENT
OR BACKWARDS. (ONFILE=’@’)

82 CONFLICTING ATTRIBUTES AND FILE ORGANIZATION: OUTPUT WITHOUT
KEYED AND INDEXED OR REGIONAL (ONFILE=’@’)

82 CONFLICTING ATTRIBUTES AND FILE ORGANIZATION: DIRECT OUTPUT
AND INDEXED (ONFILE=’@’)

82 INCORRECT ENVIRONMENT-OPTION FOR SYSTEM-FILE. (ONFILE=’@’)

82 REGIONAL(1/3) ORGANIZED FILES MUST NOT HAVE THE FILENAME
*DUMMY (ONFILE=’@’)

82 CONFLICT BETWEEN FILE ATTRIBUTES AND PHYSICAL ORGANIZATION :
AN UPDATE FILE MUST RESIDE ON RANDOM ACCESS DEVICE
(ONFILE=’@’)

82 OUTPUT FOR BTAM NOT ALLOWED. (ONFILE=’@’)

82 CONFLICT BETWEEN FILE ATTRIBUTES AND PHYSICAL ORGANIZATION :
INDEXED FILES MUST RESIDE ON RANDOM ACCESS DEVICE
(ONFILE=’@’)

82 CONFLICT BETWEEN FILE ATTRIBUTES AND DATA SET ORGANIZATION :
DEVICE TYPE OR VSN IN ERROR OR IN CONFLICT WITH FILE
ORGANIZATION (ONFILE=’@’,DMS-ERROR: @)

U253-J-Z125-9-7600 505

ONCODE

83 DATA SET SPECIFICATION INCOMPLETE : RECFORM NOT GIVEN (ONFILE=’@’)

83 DATA SET SPECIFICATION INCOMPLETE : NO RECSIZE FOR
REGIONAL(1) FILE GIVEN (ONFILE=’@’)

83 DATA SET SPECIFICATION INCOMPLETE : NO RECSIZE FOR
REGIONAL(3) FILE GIVEN (ONFILE=’@’)

83 DATA SET SPECIFICATION INCOMPLETE : NO KEYLEN FOR
REGIONAL(3) FILE GIVEN (ONFILE=’@’)

83 DATA SET SPECIFICATION INCOMPLETE : NO RECSIZE OR BLKSIZE
FOR TAPE-FILE GIVEN (ONFILE=’@’)

83 DATA SET SPECIFICATION INCOMPLETE : NO RECSIZE FOR FILE WITH
RECFORM=F GIVEN (ONFILE=’@’)

84 NO CORRECT FILE COMMAND MACRO EXECUTED
(ONFILE=’@’,DMS-ERROR: @)

85 REGIONAL DATA SET CANNOT BE FORMATTED (ONFILE=’@’)

86 CONFLICT BETWEEN ENVIRONMENT OPTION AND DATA SET
SPECIFICATION: VALUE OF LINESIZE CONTRADICTS VALUE OF
BLKSIZE RECSIZE KEYLEN AND RECFORM (ONFILE=’@’)

86 LINESIZE 0. (ONFILE=’@’)

86 BLOCKMODE: CONFLICT BETWEEN LINESIZE/PAGESIZE AND DEVICE
SPECIFICATIONS (ONFILE=’@’)

86 THIS TERMINAL DOES NOT ALLOW TO USE BLOCKMODE

87 CONFLICT BETWEEN DATA SET SPECIFICATIONS
(ONFILE=’@’,DMS-ERROR: @)

87 REGIONAL(1) FILES MUST BE ASSOCIATED WITH PAM-ACCESSED DATA
SETS (ONFILE=’@’)

87 FILE IS NOT REGIONAL(1) ORGANIZED (ONFILE=’@’)

87 CONFLICT BETWEEN FILE ATTRIBUTES AND DATA SET SPECIFICATION
: REGIONSIZE > SPACE FOR REGIONAL(1) FILE (ONFILE=’@’)

87 REGIONAL(3) FILES MUST BE ASSOCIATED WITH PAM ACCESSED DATA
SETS (ONFILE=’@’)

87 FILE IS NOT REGIONAL(3) ORGANIZED (ONFILE=’@’)

87 CONFLICT BETWEEN FILE ATTRIBUTES AND DATA SET SPECIFICATION
: REGIONSIZE > SPACE FOR REGIONAL(3) FILE (ONFILE=’@’)

87 CONFLICT BETWEEN FILE ATTRIBUTES AND DATA SET SPECIFICATION
: RECSIZE > REGIONSIZE FOR REGIONAL(3) FILE (ONFILE=’@’)

506 U253-J-Z125-9-7600

ONCODE

87 INCORRECT NOTATION OF THE REGIONSIZE (=BLKSIZE PARAMETER)
FOR A REGIONAL(3) FILE : REGIONSIZE MUST BE OF THE FORM
STD (STD,N) WITH 1<=N<=16 (ONFILE=’@’)

87 CONFLICT WITHIN DATA SET SPECIFICATIONS : THE VALUES OF THE
RECSIZE OR THE RECFORM OR THE BLKSIZE PARAMETER ARE
INCORRECT, CONFLICTING OR NOT YET GIVEN
(ONFILE=’@’,DMS-ERROR: @)

87 CONFLICT WITHIN DATA SET SPECIFICATION : KEY SPECIFICATION
IN ERROR OR CONTRADICTING TO REFORM RECSIZE VALUE
(ONFILE=’@’,DMS-ERROR: @)

87 CONFLICT BETWEEN FILE ATTRIBUTES AND DATA SET SPECIFICATION:
OUTPUT FILES MUST HAVE BEEN EXPIRED MUST NOT BE SPECIFIED
BY STATE=FOREIGN (ONFILE=’@’,DMS-ERROR: @)

87 FAILURE: RECSIZE 0 FOR F-RECFORM. (ONFILE=’@’)

87 VALUE OF RECSIZE GREATER THAN ALLOWED FOR THIS VALUE OF
BLKSIZE (ONFILE=’@’)

87 CONFLICT WITHIN DATA SET SPECIFICATION : DATA SETS RESIDING
ON RANDOM ACCESS DEVICES MUST HAVE A BLKSIZE PARAMETER OF
THE FORM : BLKSIZE=STD (STD,N) WITH 1<=N<=16 (ONFILE=’@’)

87 SCALARVARYING AND (INCOMPATIBLE KEYPOS OR PRINT-FILE OR
PRINTER-CONTROL SPECIFIED IN FILE COMMAND). (ONFILE=’@’)

87 CONFLICT BETWEEN ENVIRONMENT OPTION AND DATA SET
SPECIFICATION : INDEXED ORGANIZED FILES MUST BE ASSOCIATED
WITH ISAM DATA SETS (ONFILE=’@’)

87 CONFLICT WITHIN DATA SET SPECIFICATION : ISAM DATA SETS MUST
HAVE RECFORM=F V (ONFILE=’@’)

87 CONFLICT BETWEEN ENVIRONMENT-OPTION AND DATA SET
SPECIFICATION: WRONG KEY-SPECIFICATION FOR
CONSECUTIVE-ORGANIZED FILES (ONFILE=@)

87 CONFLICT BETWEEN KEYLEN OR KEYPOS IN FILE
COMMAND/ENVIRONMENT OPTIONS AND IN THE CATALOG ENTRY
(ONFILE=’@’)

87 CONFLICT BETWEEN ENVIRONMENT OPTIONS : FOR INDEXED FILES
RECFORM=U IS NOT ALLOWED (ONFILE=’@’)

87 CONFLICT BETWEEN ENVIRONMENT OPTIONS : IF KEYLOC(0) IS
SPECIFIED, RECFORM MUST BE ALSO GIVEN AS AN ENVIRONMENT
OPTION (ONFILE=’@’)

87 CONFLICT BETWEEN FILE ATTRIBUTES AND DATA SET SPECIFICATION:
STREAM FILES MUST NOT BE ASSOCIATED WITH PAM DATA SETS
(ONFILE=’@’)

U253-J-Z125-9-7600 507

ONCODE

87 CONFLICT BETWEEN FILE ATTRIBUTES AND DATA SET SPECIFICATION:
PRINT FILES MUST NOT BE ASSOCIATED WITH PAM ISAM DATA SETS
(ONFILE=’@’)

87 CONFLICT WITHIN DATA SET SPECIFICATION : FOR PRINT-FILES THE
VALUES OF THE RECFORM AND RECSIZE BLKSIZE PARAMETERS MUST
ALLOW AT LEAST ONE DATA-ITEM IN EACH RECORD (ONFILE=’@’)

87 CONFLICT BETWEEN FILE ATTRIBUTES AND DATA SET SPECIFICATION
: BACKWARDS NEEDS FCBTYPE=SAM (ONFILE=’@’)

88 CONFLICT BETWEEN FILE ORGANIZATION AND DATA SET
SPECIFICATION : REGIONAL(1) FILES MUST HAVE RECFORM=F IN THE
FILE COMMAND (ONFILE=’@’)

88 CONFLICT BETWEEN FILE ORGANIZATION AND DATA SET
SPECIFICATION: REGIONAL(3) FILES MUST SPECIFY RECFORM=F V IF
ASSOCIATED WITH A PAM DATA SET (ONFILE=’@’)

88 CONFLICT BETWEEN CATALOGUE AND ENVIRONMENT: PRINTER-CONTROL.
(ONFILE=’@’)

88 CONFLICT BETWEEN CATALOGUE AND ENVIRONMENT: RECSIZE.
(ONFILE=’@’)

88 CONFLICT BETWEEN CATALOGUE AND ENVIRONMENT: RECFORM.
(ONFILE=’@’)

88 CONFLICT BETWEEN CATALOGUE AND ENVIRONMENT: KEYLEN.
(ONFILE=’@’)

88 CONFLICT BETWEEN CATALOGUE AND ENVIRONMENT: KEYLOC.
(ONFILE=’@’)

89 PASSWORD INVALID OR NOT SPECIFIED (ONFILE=’@’)

ENDPAGE condition

90 ATTEMPT TO START NEW LINE, WHEN LINE NUMBER IS EQUAL TO
CURRENT PAGESIZE (ONFILE=’@’)

90 PAGESIZE OVERFLOW ON FILE @ SIGNALED

508 U253-J-Z125-9-7600

ONCODE

UNDEFINEDFILE condition

93 WHILE OPENING A DATA SET DMS SIGNALED AN ERROR UNSPECIFIC
FOR I/O-SYSTEM (E.G. LOOK AT YOUR BLKSIZE PARAMETER)
(ONFILE=’@’,DMS-ERROR: @)

93 UNIDENTIFIED I/O-ERROR DETECTED (BLKSIZE MAY BE INCORRECT)
(ONFILE=’@’,DMS-ERROR: @)

93 NOT ENOUGH CLASS-5-STORAGE AVAILABLE
(ONFILE=’@’,DMS-ERROR:@)

93 FCBTYPE IN FILE-COMMAND IS INCONSISTENT WITH CATALOG-ENTRY
(ONFILE=’@’)

94 INPUT FILES MUST EXIST AND MUST NOT BE EMPTY
(ONFILE=’@’,DMS-ERROR: @)

94 INPUT ATTEMPTED BUT FILE NOT YET CATALOGUED. (ONFILE=’@’)

95 ATTEMPT DURING OPEN TO ASSOCIATE TO A FILE , CLOSED WITH
’CLOSE LEAVE’ , ANOTHER DATA SET (ONFILE=’@’)

96 BACKWARDS/OUTPUT AFTER CLOSE LEAVE FOR NSTD-LABELED TAPES
NOT ALLOWED (ONFILE=’@’)

98 ONLY ONE TRANSIENT-FILE PER JOB POSSIBLE. (ONFILE=’@’)

99 ATTEMPT TO OPEN LOCKED OR NON SHAREABLE FILE
(ONFILE=’@’,DMS-ERROR: @)

110 NO SPACE FOR REGIONAL-FILE. (ONFILE=’@’)

110 VALUE OF SPACE PARAMETER SPECIFIED IN FILE COMMAND TOO SMALL
OR IN CONFLICT WITH THE VALUE OF BLKSIZE (ONFILE=’@’)

110 NO SPACE FOR ISAM-FILE. (ONFILE=’@’)

STRINGSIZE condition

150 STRING TRUNCATED BY ASSIGNMENT

150 @: CHARACTERS HAVE BEEN LOST BY ASSIGNING @ CHARACTERS TO A
@ BYTE TARGET.

150 @: BITS HAVE BEEN LOST BY ASSIGNING @ BITS TO A @ BIT
TARGET.

150 STRING TRUNCATED BY DISPLAY-STATEMENT

150 STRING TRUNCATION SIGNALED

U253-J-Z125-9-7600 509

ONCODE

OVERFLOW condition

300 FLOATING-POINT OVERFLOW RAISED

300 @ SHORT FLOATING POINT:OVERFLOW

300 @ SHORT FLOATING POINT EXPONENTIATION: OVERFLOW

300 @ SHORT FLOATING POINT: SINGULARITY AT (2 * N + 1)*PI/2

300 @ LONG FLOATING POINT: OVERFLOW

300 @ LONG FLOATING POINT EXPONENTIATION: OVERFLOW

300 @ LONG FLOATING POINT: SINGULARITY AT (2 * N + 1)*PI/2

300 @ EXTENDED FLOATING POINT: OVERFLOW

300 @ EXTENDED FLOATING POINT EXPONENTIATION: OVERFLOW

300 @ EXTENDED FLOATING POINT: SINGULARITY AT (2 * N + 1)*PI/2

300 @ COMPLEX SHORT FLOATING POINT: ABS(REAL(X)) > 174.673

300 @ COMPLEX SHORT FLOATING POINT: ABS(IMAG(X)) > 174.673

300 @ COMPLEX SHORT FLOATING POINT: ABS(2 * IMAG(X)) > 174.673

300 @ COMPLEX SHORT FLOATING POINT: ABS(2 * REAL(X)) > 174.673

300 @ COMPLEX SHORT FLOATING POINT EXPONENTIATION: IMMEDIATE
OVERFLOW ABS(REAL(D2 * LOG(C2))) > 174.673

300 @ COMPLEX SHORT FLOATING POINT: SINGULARITY AT (2 * N + 1)
*PI/2 +0I

300 @ COMPLEX SHORT FLOATING POINT: SINGULARITY AT 0
+((2*N+1)*PI/2)I

300 @ COMPLEX LONG FLOATING POINT: ABS(REAL(X)) > 174.673

300 @ COMPLEX LONG FLOATING POINT: ABS(IMAG(X)) > 174.673

300 @ COMPLEX LONG FLOATING POINT: ABS(2*IMAG(X)) > 174.673

300 @ COMPLEX LONG FLOATING POINT: ABS(2*REAL(X)) > 174.673

300 @ COMPLEX LONG FLOATING POINT EXPONENTIATION: IMMEDIATE
OVERFLOW ABS(REAL(D4 * LOG(C4))) > 174.673

300 @ COMPLEX LONG FLOATING POINT: SINGULARITY AT (2*N+1)*PI/2 + 0I

300 @ COMPLEX LONG FLOATING POINT: SINGULARITY AT 0 +
((2*N+1)*PI/2)I

510 U253-J-Z125-9-7600

ONCODE

300 @ COMPLEX EXTENDED FLOATING POINT: ABS(REAL(X)) > 174.673

300 @ COMPLEX EXTENDED FLOATING POINT: ABS(IMAG(X)) > 174.673

300 @ COMPLEX EXTENDED FLOATING POINT: ABS(2 * IMAG(X)) >
174.673

300 @ COMPLEX EXTENDED FLOATING POINT: ABS(2 * REAL(X)) >
174.673

300 @ COMPLEX EXTENDED FLOATING POINT EXPONENTIATION: IMMEDIATE
OVERFLOW ABS(REAL(D8 * LOG(C8))) > 174.673

300 @ COMPLEX EXTENDED FLOATING POINT: SINGULARITY AT
(2*N+1)*PI/2 + 0I

300 @ COMPLEX EXTENDED FLOATING POINT: SINGULARITY AT 0
+((2*N+1)*PI/2)I

300 @ COMPLEX EXTENDED FLOATING POINT BASE AND INTEGER EXPONENT:
OVERFLOW

300 @ COMPLEX EXTENDED FLOATING POINT: CHARACTERISTIC OVERFLOW

300 ROUND(X,K): CHARACTERISTIC OVERFLOW

300 FLOATING-POINT OVERFLOW SIGNALED

FIXEDOVERFLOW condition

310 FIXED-POINT OVERFLOW RAISED BY BINARY OR DECIMAL ARITHMETIC

310 @ COMPLEX DECIMAL OVERFLOW

310 @ COMPLEX BIN FIXED: LENGTH OF RESULT EXCEEDS 15 BIT

310 FIXED-POINT OVERFLOW SIGNALED

ZERODIVIDE condition

320 ATTEMPT TO DIVIDE BY ZERO

320 @ EXTENDED FLOATING POINT: ZERODIVIDE

320 @ COMPLEX BIN FIXED: ZERODIVIDE

320 @ EXTENDED FLOATING POINT: SECOND ARGUMENT IS ZERO

320 @ COMPLEX EXTENDED FLOATING POINT: ZERODIVIDE

320 @ COMPLEX SHORT FLOATING POINT: ZERODIVIDE

320 @ COMPLEX LONG FLOATING POINT: ZERODIVIDE

320 DIVISION BY ZERO SIGNALED

U253-J-Z125-9-7600 511

ONCODE

UNDERFLOW condition

330 FLOATING-POINT UNDERFLOW RAISED

330 @ COMPLEX EXTENDED FLOATING POINT INTEGER EXPONENTIATION:
CHARACTERISTIC UNDERFLOW

330 @ COMPLEX EXTENDED FLOATING POINT: CHARACTERISTIC UNDERFLOW

330 FLOATING-POINT UNDERFLOW SIGNALED

SIZE condition

340 LOSS OF HIGH-ORDER SIGNIFICANT DIGITS IN ASSIGNMENT

340 LOSS OF HIGH-ORDER SIGNIFICANT DIGITS IN CONVERSION

340 @ COMPLEX DEC FIXED: HIGH ORDER NON ZERO DIGITS HAVE BEEN
LOST. TARGET PRECISION IS TOO SMALL.

340 @ COMPLEX BIN FIXED: TARGET PRECISION IS TOO SMALL, BUT NO
DIGITS HAVE BEEN LOST.

340 LOSS OF HIGH-ORDER SIGNIFICANT DIGITS SIGNALED

341 LOSS OF HIGH-ORDER SIGNIFICANT DIGITS IN CONVERSION FOR AN
I/O OPERATION

STRINGRANGE condition

350 SUBSTRING EXCEEDS STRING BOUNDARY

350 SUBSTRING ERROR SIGNALED

AREA condition

360 INSUFFICIENT SPACE IN A NAMED AREA FOR ALLOCATE

361 TARGET AREA TO SMALL FOR ’ASSIGN’ STATEMENT

362 INSUFFICIENT SPACE IN A NAMED AREA SIGNALED

ATTENTION condition

400 INTERUPT BY ’/INTR @’ COMMAND FROM TERMINAL

400 INTERRUPT BY ’SIGNAL ATTENTION’ STATEMENT

512 U253-J-Z125-9-7600

ONCODE

CONDITION condition

500 @-CONDITION WAS SIGNALED

SUBSCRIPTRANGE condition

520 SUBSCRIPT EXCEEDS ITS SPECIFIED BOUNDS

520 SUBSCRIPT ERROR SIGNALED

521 ISUB-SUBSCRIPT EXCEEDS BOUNDS OF BASE ARRAY

STORAGE condition

530 SPECIFIED MAXIMUM SIZE OF STANDARD AREA EXCEEDED

531 INSUFFICIENT MAIN STORAGE FOR STANDARD AREA

540 INSUFFICIENT MAIN STORAGE SIGNALED

550 MAXIMUM NUMBER OF STORAGE SEGMENTS REACHED IN PROCEDURE
STACK

551 INSUFFICIENT MAIN STORAGE FOR PROCEDURE STACK

553 ATTEMPT TO ALLOCATE TOO MUCH STORAGE IN STACK

CONVERSION condition

600 ERROR DURING CONVERSION TO CHARACTER ON INPUT FOR A GET
STRING STATEMENT (ONSOURCE=’@’,ONCHARPOS=@)

600 CONVERSION ERROR SIGNALED

601 ERROR DURING CONVERSION TO CHARACTER ON INPUT FOR A GET FILE
STATEMENT (ONFILE=’@’,ONSOURCE=’@’,ONCHARPOS=@)

601 ERROR DURING CONVERSION TO CHARACTER ON INPUT FOR A GET
STRING STATEMENT (ONSOURCE=’@’,ONCHARPOS=@)

602 ERROR DURING CONVERSION TO CHARACTER ON INPUT FOR A GET FILE
STATEMENT AFTER ’TRANSMIT’ DETECTED
(ONFILE=’@’,ONSOURCE=’@’,ONCHARPOS=@)

603 ERROR DURING CONVERSION FROM F-FORMAT ON INPUT FOR GET
STRING STATEMENT (ONSOURCE=’@’,ONCHARPOS=@)

604 ERROR DURING CONVERSION FROM F-FORMAT ON INPUT FOR GET FILE
STATEMENT (ONFILE=’@’,ONSOURCE=’@’,ONCHARPOS=@)

605 ERROR DURING CONVERSION FROM F-FORMAT ON INPUT FOR GET FILE
STATEMENT AFTER ’TRANSMIT’ DETECTED
(ONFILE=’@’,ONSOURCE=’@’,ONCHARPOS=@)

U253-J-Z125-9-7600 513

ONCODE

606 ERROR DURING CONVERSION FROM E-FORMAT ON INPUT FOR GET
STRING STATEMENT (ONSOURCE=’@’,ONCHARPOS=@)

607 ERROR DURING CONVERSION FROM E-FORMAT ON INPUT FOR GET FILE
STATEMENT (ONFILE=’@’,ONSOURCE=’@’,ONCHARPOS=@)

608 ERROR DURING CONVERSION FROM E-FORMAT ON INPUT FOR GET FILE
STATEMENT AFTER ’TRANSMIT’ DETECTED
(ONFILE=’@’,ONSOURCE=’@’,ONCHARPOS=@)

609 ERROR DURING CONVERSION FROM B-FORMAT ON INPUT FOR GET
STRING STATEMENT (ONSOURCE=’@’,ONCHARPOS=@)

610 ERROR DURING CONVERSION FROM B-FORMAT ON INPUT FOR GET FILE
STATEMENT (ONFILE=’@’,ONSOURCE=’@’,ONCHARPOS=@)

611 ERROR DURING CONVERSION FROM B-FORMAT ON INPUT FOR GET FILE
STATEMENT AFTER ’TRANSMIT’ DETECTED
(ONFILE=’@’,ONSOURCE=’@’,ONCHARPOS=@)

612 ERROR DURING CHARACTER STRING TO ARITHMETIC CONVERSION
(ONSOURCE=’@’,ONCHARPOS=@)

612 ERROR DURING CONVERSION FROM CHARACTER TO ARITHMETIC ON
INPUT OR OUTPUT FOR GET OR PUT STRING STATEMENT
(ONSOURCE=’@’,ONCHARPOS=@)

613 ERROR DURING CONVERSION FROM CHARACTER TO ARITHMETIC ON
INPUT OR OUTPUT FOR GET OR PUT FILE STATEMENT
(ONFILE=’@’,ONSOURCE=’@’,ONCHARPOS=@)

614 ERROR DURING CONVERSION FROM CHARACTER TO ARITHMETIC ON
INPUT FOR GET FILE STATEMENT AFTER ’TRANSMIT’ DETECTED
(ONFILE=’@’,ONSOURCE=’@’,ONCHARPOS=@)

615 ERROR DURING CONVERSION FROM CHARACTER STRING TO BIT STRING
(ONSOURCE=’@’,ONCHARPOS=’@’)

615 ERROR DURING CONVERSION FROM CHARACTER TO BIT ON INPUT OR
OUTPUT FOR GET OR PUT STRING STATEMENT
(ONSOURCE=’@’,ONCHARPOS=@)

616 ERROR DURING CONVERSION FROM CHARACTER TO BIT ON INPUT OR
OUTPUT FOR GET OR PUT FILE STATEMENT
(ONFILE=’@’,ONSOURCE=’@’,ONCHARPOS=@)

617 ERROR DURING CONVERSION FROM CHARACTER TO BIT ON INPUT FOR
GET FILE STATEMENT AFTER ’TRANSMIT’ DETECTED
(ONFILE=’@’,ONSOURCE=’@’,ONCHARPOS=@)

618 ERROR DURING CHARACTER STRING TO PICTURE CONVERSION
(ONSOURCE=’@’,ONCHARPOS=@)

514 U253-J-Z125-9-7600

ONCODE

618 ERROR DURING CONVERSION FROM CHARACTER TO PICTURE CHARACTER
STRING ON INPUT OR OUTPUT FOR GET OR PUT STRING STATEMENT
(ONSOURCE=’@’,ONCHARPOS=@)

619 ERROR DURING CONVERSION FROM CHARACTER TO PICTURE CHARACTER
STRING ON INPUT OR OUTPUT FOR GET OR PUT FILE STATEMENT
(ONFILE=’@’,ONSOURCE=’@’,ONCHARPOS=@)

620 ERROR DURING CONVERSION FROM CHARACTER TO PICTURE CHARACTER
STRING ON INPUT FOR GET FILE STATEMENT AFTER ’TRANSMIT’
DETECTED (ONFILE=’@’,ONSOURCE=’@’,ONCHARPOS=@)

621 ERROR DURING CONVERSION FROM P-FORMAT (ARITH.) ON INPUT FOR
GET STRING STATEMENT (ONSOURCE=’@’,ONCHARPOS=@)

622 ERROR DURING CONVERSION FROM P-FORMAT (ARITH.) ON INPUT FOR
GET FILE STATEMENT (ONFILE=’@’,ONSOURCE=’@’,ONCHARPOS=@)

623 ERROR DURING CONVERSION FROM P-FORMAT (ARITH.) ON INPUT FOR
GET FILE STATEMENT AFTER ’TRANSMIT’ DETECTED
(ONFILE=’@’,ONSOURCE=’@’,ONCHARPOS=@)

624 ERROR DURING CONVERSION FROM P-FORMAT (CHAR.) ON INPUT FOR
GET STRING STATEMENT (ONSOURCE=’@’,ONCHARPOS=@)

625 ERROR DURING CONVERSION FROM P-FORMAT (CHAR.) ON INPUT FOR
GET FILE STATEMENT (ONFILE=’@’,ONSOURCE=’@’,ONCHARPOS=@)

626 ERROR DURING CONVERSION FROM P-FORMAT (CHAR.) ON INPUT FOR
GET FILE STATEMENT AFTER ’TRANSMIT’ DETECTED
(ONFILE=’@’,ONSOURCE=’@’,ONCHARPOS=@)

ERROR condition (see also ONCODE = 3 and 9)

1002 GET/PUT STRING EXCEEDS STRINGSIZE

1003 CLOSE ERROR AFTER KEY TRANSMIT-CONDITION WAS RAISED
(ONFILE=’@’)

1004 ATTEMPT TO USE PAGE/LINE FOR A NON PRINT FILE (ONFILE=’@’)

1004 ATTEMPT TO USE PAGE/LINE IN A PUT STRING STATEMENT

1004 ATTEMPT TO USE SKIP/COLUMN IN A GET STRING STATEMENT

1007 NO PRECEDING READ SET OR READ INTO FOR REWRITE OR DELETE
(ONFILE=’@’)

1008 INVALID ELEMENT VARIABLE IN STRING FOR GET STRING DATA

1009 INVALID FILE OPERATION (ONFILE=’@’)

1011 I/O - ERROR

1016 IMPLICIT OPEN UNSUCCESSFUL (ONFILE=’@’)

U253-J-Z125-9-7600 515

ONCODE

1017 END OF FILE FOR A NSTD-LABELED TAPE PREVIOUSLY ENCOUNTERED
(ONFILE=’@’)

1018 UNEXPECTED END OF FILE DETECTED IN STREAM INPUT (ONFILE=’@’)

1101 ERROR IN I/O-SYSTEM (ONFILE=’@’)

1102 ERROR DURING PROCESSING OF REGIONAL DATA SET (ONFILE=’@’)

1400 ATTEMPT TO FREE NON-ALLOCATED STORAGE IN STANDARD AREA

1401 ATTEMPT TO FREE STORAGE IN STANDARD AREA NOT ON DOUBLE-WORD
BOUNDARY

1410 NORMAL RETURN FROM AN AREA-ONUNIT WITHOUT ’FREE’ STATEMENT

1411 ATTEMPT TO FREE NON-ALLOCATED STORAGE IN A NAMED AREA

1412 ATTEMPT TO FREE PART OF AN ELEMENT IN THE FREE-CHAIN OF A
NAMED AREA

1413 CONTROL DATA OF A NAMED AREA DESTROYED

1414 ATTEMPT TO FREE STORAGE IN A NAMED AREA NOT ON DOUBLE-WORD
BOUNDARY

1500 @ SHORT FLOATING POINT: ARGUMENT NEGATIVE

1501 @ LONG FLOATING POINT: ARGUMENT NEGATIVE

1502 @ EXTENDED FLOATING POINT: ARGUMENT NEGATIVE

1503 @ EXTENDED FLOATING POINT: ARGUMENT NOT POSITIVE

1503 @ EXTENDED FLOATING POINT EXPONENTIATION: BASE NEGATIVE

1504 @ SHORT FLOATING POINT: ARGUMENT NOT POSITIVE

1504 @ SHORT FLOATING POINT EXPONENTIATION: BASE NEGATIVE

1505 @ LONG FLOATING POINT: ARGUMENT NOT POSITIVE

1505 @ LONG FLOATING POINT EXPONENTIATION: BASE NEGATIVE

1506 @ SHORT FLOATING POINT: ABSOLUTE VALUE OF ARGUMENT EXCEEDS
(2**18) * PI

1506 @ SHORT FLOATING POINT: ABSOLUTE VALUE OF ARGUMENT EXCEEDS
(2**18) * 180

1506 @ COMPLEX SHORT FLOATING POINT: ABS(IMAG(X)) > 2**18 * PI

1506 @ COMPLEX SHORT FLOATING POINT: ABS(REAL(X)) > 2**18 * PI

1506 @ COMPLEX SHORT FLOATING POINT: ABS(2 * REAL(X)) > 2**18 * PI

1506 @ COMPLEX SHORT FLOATING POINT: ABS(2 * IMAG(X)) > 2**18 * PI

516 U253-J-Z125-9-7600

ONCODE

1506 @ COMPLEX SHORT FLOATING POINT EXPONENTIATION: IMMEDIATE
OVERFLOW ABS(IMAG(D2 * LOG(C2))) > 2**18 * PI

1507 @ LONG FLOATING POINT: ABSOLUTE VALUE OF ARGUMENT EXCEEDS
(2**50)*PI

1507 @ LONG FLOATING POINT: ABSOLUTE VALUE OF ARGUMENT EXCEEDS
(2**50)*180

1507 @ COMPLEX LONG FLOATING POINT: ABS(IMAG(X)) > 2**50 * PI

1507 @ COMPLEX LONG FLOATING POINT: ABS(REAL(X)) > 2**50 * PI

1507 @ COMPLEX LONG FLOATING POINT: ABS(2 * REAL(X)) > 2**50 * PI

1507 @ COMPLEX LONG FLOATING POINT: ABS(2 * IMAG(X)) > 2**50 * PI

1507 @ COMPLEX LONG FLOATING POINT EXPONENTIATION: IMMEDIATE
OVERFLOW ABS(IMAG(D4 * LOG(C4))) > 2**50 * PI

1508 @ SHORT FLOATING POINT: ABSOLUTE VALUE OF ARGUMENT EXCEEDS
(2**18) * PI

1508 @ SHORT FLOATING POINT: ABSOLUTE VALUE OF ARGUMENT EXCEEDS
(2**18) * 180

1509 @ LONG FLOATING POINT: ABSOLUTE VALUE OF ARGUMENT EXCEEDS
(2**50)*PI

1509 @ LONG FLOATING POINT: ABSOLUTE VALUE OF ARGUMENT EXCEEDS
(2**50) * 180

1510 @ SHORT FLOATING POINT: ARGUMENTS BOTH ZERO

1510 @ COMPLEX SHORT FLOATING POINT: ARGUMENT = 0 + 0I

1511 @ LONG FLOATING POINT: ARGUMENTS BOTH ZERO

1511 @ COMPLEX LONG FLOATING POINT: ARGUMENT = 0 + 0I

1514 @ SHORT FLOATING POINT: ABSOLUTE VALUE OF ARGUMENT > = 1

1515 @ LONG FLOATING POINT: ABSOLUTE VALUE OF ARGUMENT > = 1

1516 @ EXTENDED FLOATING POINT: ABSOLUTE VALUE OF ARGUMENT > = 1

1517 @ EXTENDED FLOATING POINT: ABSOLUTE VALUE OF ARGUMENT
EXCEEDS (2**106) * PI

1517 @ EXTENDED FLOATING POINT: ABSOLUTE VALUE OF ARGUMENT
EXCEEDS (2**106) * 180

1517 @ COMPLEX EXTENDED FLOATING POINT: ABS(IMAG(X)) > 2**100

1517 @ COMPLEX EXTENDED FLOATING POINT: ABS(REAL(X)) > 2**100

1517 @ COMPLEX EXTENDED FLOATING POINT: ABS(2 * REAL(X)) > 2**100

U253-J-Z125-9-7600 517

ONCODE

1517 @ COMPLEX EXTENDED FLOATING POINT: ABS(2 * IMAG(X)) > 2**100

1517 @ COMPLEX EXTENDED FLOATING EXPONENTIATION: IMMEDIATE
OVERFLOW ABS(IMAG(D8 * LOG(C8))) > 2**100

1518 @ SHORT FLOATING POINT: ABSOLUTE VALUE OF ARGUMENT EXCEEDS 1

1519 @ LONG FLOATING POINT: ABSOLUTE VALUE OF ARGUMENT EXCEEDS 1

1520 @ EXTENDED FLOATING POINT: ABSOLUTE VALUE OF ARGUMENT
EXCEEDS 1

1521 @ EXTENDED FLOATING POINT: ARGUMENTS BOTH ZERO

1521 @ COMPLEX EXTENDED FLOATING POINT: ARGUMENT = 0 + 0I

1522 @ EXTENDED FLOATING POINT: ABSOLUTE VALUE OF ARGUMENT
EXCEEDS (2**106) * PI

1522 @ EXTENDED FLOATING POINT: ABSOLUTE VALUE OF ARGUMENT
EXCEEDS (2**106) * 180

1549 @ INTEGER EXPONENTIATION: BASE ZERO, EXPONENT NOT POSITIVE

1550 @ SHORT FLOATING POINT: BASE ZERO, INTEGER EXPONENT NOT
POSITIVE

1551 @ LONG FLOATING POINT: BASE ZERO, INTEGER EXPONENT NOT
POSITIVE

1552 @ SHORT FLOATING POINT: BASE ZERO, EXPONENT NOT POSITIVE

1553 @ LONG FLOATING POINT: BASE ZERO, EXPONENT NOT POSITIVE

1554 @ COMPLEX SHORT FLOATING POINT: BASE IS 0 + 0I, INTEGER
EXPONENT NOT POSITIVE

1555 @ COMPLEX LONG FLOATING POINT: BASE IS 0 + 0I, INTEGER
EXPONENT NOT POSITIVE

1556 @ COMPLEX SHORT FLOATING POINT: BASE IS 0 + 0I, EXPONENT NOT
POSITIVE REAL

1557 @ COMPLEX LONG FLOATING POINT: BASE IS 0 + 0I, EXPONENT NOT
POSITIVE REAL

1558 @ COMPLEX SHORT FLOATING POINT: ARGUMENT = 1I OR -1I

1558 @ COMPLEX SHORT FLOATING POINT: ARGUMENT = 1 OR -1

1559 @ COMPLEX LONG FLOATING POINT: ARGUMENT = 1I OR -1I

1559 @ COMPLEX LONG FLOATING POINT: ARGUMENT = 1 OR -1

1560 @ EXTENDED FLOATING POINT: BASE ZERO, INTEGER EXPONENT NOT
POSITIVE

518 U253-J-Z125-9-7600

ONCODE

1561 @ EXTENDED FLOATING POINT: BASE ZERO, EXPONENT NOT POSITIVE

1562 @ COMPLEX EXTENDED FLOATING POINT: BASE IS 0 + 0I, INTEGER
EXPONENT NOT POSITIVE

1563 @ COMPLEX EXTENDED FLOATING POINT: BASE IS 0 + 0I, EXPONENT
NOT POSITIVE REAL

1564 @ COMPLEX EXTENDED FLOATING POINT: ARGUMENT = 1I OR -1I

1564 @ COMPLEX EXTENDED FLOATING POINT: ARGUMENT = 1 OR -1

1570 ROUND(X,K): K IS NOT POSITIVE

1599 @: ERROR IN MATHEMATICAL LIBRARY ROUTINE

1600 DSCEXT: ERROR-STOP WITH AN UDS-FUNCTION. PARAMETER
’USERINFORMATION’ MISSING OR DESTROYED.

1610 FORPL: ERROR IN PLI1 RUN-TIME-SYSTEM - REGISTRATION OF PLI1
TERMINATION ROUTINE IN FOR1 IMPOSSIBLE

1611 PLFOR: ERROR IN PLI1 RUN-TIME-SYSTEM - REGISTRATION OF FOR1
TERMINATION ROUTINE IN PLI1 IMPOSSIBLE

1612 FUNCTION CALL FOR1/ASS FROM PLI1: ILLEGAL TYPE OF ’RETURNS’
ATTRIBUTE IN DECLARATION

1613 THE PLI1 RUNTIME SYSTEM DOES NOT ALLOW THE REGISTRATION OF A
TERMINATION ROUTINE

1614 THE FOR1 RUNTIME SYSTEM DOES NOT ALLOW THE REGISTRATION OF A
TERMINATION ROUTINE

3000 FORMAT SPECIFICATION E(W,D,S) CAUSES LOSS OF DIGITS

3000 VALUE OF W - FIELD TOO SMALL IN F-FORMAT SPECIFICATION

3001 MORE THAN 10 FORMAT LISTS NESTED

3002 TOO MANY OR TOO FEW PARAMETERS IN C-FORMAT ITEM

3006 INVALID ASSIGNMENT TO PICTURED CHARACTER STRING

3010 ILLEGAL FORMAT ITEM ON INPUT OR OUTPUT

3011 TARGET TYPE ILLEGAL ON INPUT

3012 SOURCE TYPE ILLEGAL ON OUTPUT

3013 BITSTRING IS SPECIFIED WITH INVALID RADIXFACTOR

3790 NORMAL RETURN FROM A SUBSCRIPTRANGE-ONUNIT

3791 NORMAL RETURN FROM A STORAGE-ONUNIT

U253-J-Z125-9-7600 519

ONCODE

3792 NORMAL RETURN FROM A STRINGRANGE-ONUNIT

3799 NORMAL RETURN FROM A CONVERSION-ONUNIT WITHOUT HAVING
CORRECTED THE INVALID STRING

3802 @(A,N): ARRAY BOUND OUT OF RANGE, N NOT POSITIVE

3802 @(A,N): ARRAY BOUND OUT OF RANGE, N GREATER THAN DIMENSION
OF A

3804 NAME HAS LENGTH GREATER THAN PERMITTED MAXIMUM (NAME=’@’)

4001 ATTEMPT TO ASSIGN TO UNALLOCATED CONTROLLED VARIABLE IN GET
FILE DATA (ONFILE=’@’)

4001 ATTEMPT TO ASSIGN TO UNALLOCATED CONTROLLED VARIABLE IN GET
STRING DATA

5000 P$ERROR CALLED WITHOUT ONCODE

5010 P$CALL: X’80’ IN LAST PARAMETER MISSING OR TOO MANY
PARAMETERS

5015 P$LINK: MODULE NOT LINKED, SEE DLL-MESSAGE

7000 UNABLE TO CLOSE THE FILE @ PROPERLY.

8081 CPU TIMER HAS ELAPSED (SEE MACRO SETIC)

8082 REAL-TIME TIMER HAS ELAPSED (SEE MACRO SETIC)

8091 NON-EXISTENT OPERATION CODE

8092 PRIVILEGED OPERATION EXCEPTION

8094 STORAGE PROTECTION EXCEPTION

8095 ADDRESSING EXCEPTION

8097 INVALID FIXED DECIMAL DATA

8098 ALIGNMENT ERROR

8099 TIME RUNOUT

520 U253-J-Z125-9-7600

Limit values

14.3 Constraints on implementation

The constraints imposed by PLI1 on the use of arithmetic values, strings and picture
specifications, length of names, input/output operations and on listings are tabulated
below. When these bounds are being exceeded, the compiler and in some cases the
runtime system will issue an appropriate error message.

1. Bounds of Arithmetic Values

Language elements Limitation

Max. number of digits (incl. the leading 56 for BINARY
zeros of a fixed-point constant) 16 for DECIMAL

(although more digits may be
specified, these digits will
only affect the scale factor)

Max. number of digits in exponent of a 3 for BINARY
floating-point constant 2 for DECIMAL

Max. number of digits in mantissa of a 112 for BINARY
floating-point constant 33 for DECIMAL

Range of values of a fixed-point constant x -231 + 1 x 231-1 for
BINARY
- (1015 - 1) x 1015 - 1
for DECIMAL

Range of values of a floating-point 2-260 < |x|< 2252 approx.
constant x and x = 0 for BINARY

10-78 < |x| < 1075 and x = 0
for DECIMAL

Precision range p of an arithmetic 1 p 31 for BINARY
fixed-point item 1 p 15 for DECIMAL

Precision range p of an arithmetic 1 p 109 for BINARY
floating-point item 1 p 33 for DECIMAL

Range of scale k for an arithmetic -128 k 127
fixed-point item

U253-J-Z125-9-7600 521

Limit values

2. Bounds of strings and picture specifications

Language elements Limitation

Max. fixed length of a bit string or 32767 bits or characters.
character string 509 bits or 510 characters,

if conversion is necessary.
(Both limitations apply after
application of replicators.)

Limits of length l of declared character 1 l 32767 characters
string

Limits of length l of declared bit string 1 l 32767 bits

Range of value of replicator r for strings 0 r 32767

Limits of length l of alphanumeric picture 1 l 511 characters

Limits of length l of numeric picture 1 l 255 characters

Max. numbers of numeric picture character p 15 fixed-point
in numeric picture specifications p 16 floating-point,

2 for exponent

Range of scale k in picture specifications - 128 k 127

3. Bounds of names

Language elements Limitation

Max. number of characters for identifier 255 (although more characters
may be specified, the excess
characters will be ignored)

Max. number of characters for identifier 7 (longer names are condensed
with attribute EXTERNAL into the first 4 and last 3

characters.
Character is replaced by $).

Max. number of characters for identifier 31 for builtin function
with attribute FILE CONSTANT ONFILE, rest is truncated.

8 for LINK-name, rest is
truncated.
Character is replaced by $.

Max. number of characters for identifier 255 incl. up to max. 64
in a data stream (with PUT/GET DATA) qualifiers

Max. number of characters for names of 8 (longer names are condensed
%INCLUDE texts or libraries into the first 5 and last 3

characters)

522 U253-J-Z125-9-7600

Limit values

4. Bounds of arrays and areas (AREA)

Language elements Limitation

Max. number of dimensions of an array 255

Max. length of an area (AREA) 16 777 191 characters

5. Bounds of lists and nestings

Language elements Limitation

Max. number of %INCLUDE texts 255

Depth of nesting of %INCLUDE texts 5

Max. depth of logical nesting for all types only limited by stack,
of parentheses (blocks, DO statements, see control statement
expressions, factorization in DECLARE, etc.) STORAGE in chapter 8

Max. number of bases in the qualifier chain 128
of a BASED variable

Max. number of items in an INITIAL list 1024 for AUTOMATIC

Max. number of references to the left of 128
an assignment symbol

Max. number of parameters 64

U253-J-Z125-9-7600 523

Limit values

6. Bounds of input/output operations

Language elements Limitation

Max. number of data elements in I/O lists 128

Depth of nesting in format lists 10

Max. value of n for SKIP(n), LINE(n), 231

COLUMN(n)

Max. length of expression for GET STRING 32767 characters

Max. number of characters of value for GET 32767 (incl. subsequent
blanks with GET LIST)

Max. number of characters of value for PUT 65536 (after conversion to
external representation)

Length of names for PUT DATA 256 (without equal symbol)

Length of names for GET DATA 256 (with equal symbol)

Length of character string for DISPLAY 2044 characters

Range of record length r for record- 1 r 32767 (min. of 12 for
formatted transfer in characters tape files, max. of 2048 for

CONSECUTIVE on PAM and 32763
for ISAM)
To disk files without PAM key
(BLKCTRL=DATA) applies a max.
of 32752 on SAM for CONSECUTIVE,
a max. of 32492 on ISAM for
CONSECUTIVE or INDEXED

Range of key length k in characters 1 k 255

Range of key location c 1 c r - k and 0 in
connection with KEYLOC

Additional rules for record length r for:
RECFORM = F (except ISAM) r BLKSIZE
RECFORM = F (for ISAM) r BLKSIZE - 4
RECFORM = V (except REGIONAL(i)) r BLKSIZE - 4
RECFORM = V (for REGIONAL(3)) r BLKSIZE - 8
RECFORM = F/V, FCBTYPE=SAM/ISAM,BLKCTRL=DATA r BLKSIZE - 16

ENVIRONMENT (INDEXED) r c + k (c,k: see above)

524 U253-J-Z125-9-7600

PL/I-D

14.4 Distinctions from PL/I-D

The space of the PLI1 compiler language is largely upward compatible with PL/I-D.

There are however some restrictions to be observed when converting programs.

1. Differences in Scope of Language

• GET STRING and COPY cannot be specified at the same time in PLI1.

• If an internal procedure is additionally declared by DECLARE, PLI1 will ignore the
DCL statement, while PL/I-D will perform parameter adjustments under certain condi-
tions.

• There are differences in the rules for the aggregate assignment. For instance, in the
case of DCL A(10,20); A = A/A (1,1); PLI1 saves the value of A(1,1) in a dummy
variable, prior to the evaluation of the expression.

• In PLI1 the number of picture characters for alphanumeric pictures (PICTURE) must
not exceed 511.

• The keyword RETURNS in the PROCEDURE statement or ENTRY statement is man-
datory (PL/I-D admits, for instance, the form A: PROC PTR;).

• Function procedures without arguments (also and in particular the BUILTIN functions
DATE, TIME, etc.) must be called with empty parentheses unless they were declared
explicitly; e.g.

A = DATE(); or DCL DATE BUILTIN;
A = DATE;

• The %INCLUDE statement allows only the "%INCLUDE library (member);" format;
"%INCLUDE library, member;" is not supported.

U253-J-Z125-9-7600 525

PL/I-D

2. Differences in operational features

• Control of compiler and object program are different.

• The constraints on implementation are not the same.

• The tab settings for PUT LIST differ.

• The DISPLAY statement optionally works on the interactive terminal, on the operator
console or on the system files SYSOUT or SYSDTA.

• A BUFFERS specification in ENVIRONMENT has no effect.

• The default record format for STREAM input/output is ’F’ for PL/I(D) and ’U’ for
PLI1. Users converting from fixed to variable record length for better file handling in
BS2000 should be aware of the special features of STREAM input/output with varia-
ble record length, esp. for edit-directed input.

• Variables are not preset by PLI1.

526 U253-J-Z125-9-7600

PL/I-D

3. Differences at the procedure interface

• Procedures compiled by PL/I-D cannot be linked together with programs compiled
by PLI1.

• Internal procedures cannot be declared explicitly; that is, DCL statements to that
effect are ignored. Differences may arise if conversions (based on the declaration of
parameters in the internal subroutine) are generated or not by PLI1.

• Assembler procedures written for PL/I-D can be executed in simple cases. Differen-
ces which may lead to errors exist in the following points:

The supply of parameters is different for more than 4 parameters, so is the
return of function values for special data types.

The backtrace information (SNAP) that can be obtained via R13 and R15 has a
different structure; condition handling etc. cannot be initiated.

The pseudo-register vector (PRV) has a different structure.

The rule of formation for abbreviated identifier with EXTERNAL attribute is diffe-
rent.

The management information for areas (AREA) has a different structure and is
longer for PLI1.

The representation of the null pointer is different.

It is generally advisable to convert larger assembler subroutines to the standard
assembler conventions (OPTIONS (ASSEMBLER)). See chapter 7.

U253-J-Z125-9-7600 527

SORT

14.5 Examples of sorting

Example 1

Processing an F file using separate user exits for input and output record processing

/* EXAMPLE OF A PL1 SORT APPLICATION */
/* TASK: */
/* RECORDS OF AN F FILE ARE TO BE UPDATED */
/* ACCORDING TO THE FOLLOWING CRITERIA AND TO */
/* BE SORTED ALPHABETICALLY: */
/* 1.THE CONTENTS OF A FIELD IS TO BE CHANGED */
/* ACCORDING TO INSTRUCTIONS */
/* 2.OF RECORDS THAT ARE PRESENT TWICE ONLY */
/* ONE RECORD IS ENTERED IN THE SORT FILE */
/* 3.A SPECIFIC RECORD IS TO BE DELETED */
/* 4.A RECORD IS TO BE ENTERED AND INSERTED */
/* AT THE PROPER PLACE */
PL1SRTA:PROC OPTIONS(MAIN);
DCL RETCODE FIXED BIN(31) INIT(0);
DCL M FIXED BIN(15) EXTERNAL;
DCL N FIXED BIN(15) EXTERNAL;
DCL BS2SRTD ENTRY (CHAR(*),CHAR(*),FIXED BIN(31),ENTRY,ENTRY);
DCL PL1E21 ENTRY EXTERNAL;
DCL PL1E23 ENTRY EXTERNAL;
DCL SYSPRINT FILE CONSTANT;
/*

M = 0;
N = 0;

/*
D: CALL BS2SRTD(
’ SORT FIELDS=(1,15,A,CH,23,4,N,CH),FORMAT=CH,OPT=REC,SIZE=15’,
’ RECORD LENGTH=(80,80,80),TYPE=F’,
RETCODE,PL1E21,PL1E23);
/*
EXIT: PUT SKIP(2) LIST(’RETCODEHP = ’,RETCODE);
/*
END;

PL1E21: PROC (SATZEIN,RETCODE) RETURNS(CHAR(*));
DCL RETCODE FIXED BIN(31) PARM;
DCL SATZEIN CHAR(80) PARM;
DCL M FIXED BIN(15) EXTERNAL;
DCL N FIXED BIN(15) EXTERNAL;
DCL EINFUEGESATZ CHAR(80) INIT(’INSERT RECORD FOR CHECK ON PL1E21’);
DCL SYSPRINT FILE CONSTANT;

/* */
IF RETCODE = 8 THEN GOTO EXIT;

/* */
M = M + 1;
PUT SKIP LIST(’RECORD NO. = ’,M);

/* */
IF SUBSTR(SATZEIN,17,2) = ’99’

THEN DO;
SUBSTR(SATZEIN,17,2) = ’77’;
RETURN(SATZEIN);

END;

528 U253-J-Z125-9-7600

SORT

/* */
IF SUBSTR(SATZEIN,18,12) = ’SORTIERDATEI’

THEN DO;
RETCODE = 4;
RETURN(SATZEIN);

END;
/* */
RETURN(SATZEIN);

/* */
EXIT: IF N = 0

THEN DO;
RETCODE = 12; N = 1;
RETURN(EINFUEGESATZ);

END;
PUT SKIP(3) LIST(’******************** DATEIENDE ************’);
N=0;M=0;
RETURN(’ ’);
END;

PL1E23: PROC (SATZEIN,RETCODE) RETURNS(CHAR(*));
DCL RETCODE FIXED BIN(31) PARM;
DCL SATZEIN CHAR(80) PARM;
DCL N FIXED BIN(15) EXTERNAL;
DCL SYSPRINT FILE CONSTANT;

/* */
IF RETCODE = 8 THEN GOTO EXIT;

/* */
N = N + 1;
PUT SKIP LIST(’RECORD NO. = ’,N);

/* */
IF RETCODE = 4

THEN DO;
PUT SKIP LIST(’DELETED INPUT RECORD = ’,SATZEIN);
RETURN(SATZEIN);
END;

/* */
RETURN(SATZEIN);
/* */
EXIT: PUT SKIP(3) LIST(’************** DATEIENDE ************’);

RETURN(’ ’);
END;

U253-J-Z125-9-7600 529

SORT

Example 2

Processing a V-type file using separate user exits for input and output record

/* EXAMPLE IF A PL1 SORT APPLICATION */
/* TASK: */
/* RECORDS OF A V FILE ARE TO BE UPDATED */
/* ACCORDING TO THE FOLLOWING CRITERIA AND TO */
/* BE SORTED ALPHABETICALLY: */
/* 1.IF A SPECIFIC FIELD HAS A SPECIFIED */
/* CONTENTS, IT IS TO BE CHANGED ACCORDING */
/* TO INSTRUCTIONS. */
/* 2.OF RECORDS THAT ARE PRESENT TWICE ONLY */
/* ONE IS ENTERED IN THE SORT FILE. */
/* 3.AN IDENTIFIER RECORD IS TO BE ENTERED AS */
/* THE LAST RECORD OF THE SORT FILE. */
PL1SORT:PROC OPTIONS(MAIN);
DCL RETCODE FIXED BIN(31) INIT(0);
DCL M FIXED BIN(15) EXTERNAL;
DCL N FIXED BIN(15) EXTERNAL;
DCL BS2SRTD ENTRY (CHAR(*),CHAR(*),FIXED BIN(31),ENTRY,ENTRY);
DCL PL1E21V ENTRY EXTERNAL;
DCL PL1E23V ENTRY EXTERNAL;
DCL SYSPRINT FILE CONSTANT;
/*

M = 0;
N = 0;

/*
D: CALL BS2SRTD(
’ SORT FIELDS=(13,15,A,CH,23,4,N,CH),FORMAT=CH,OPT=REC,SIZE=15’,
’ RECORD LENGTH=(80,80,80),TYPE=F’,
RETCODE,PL1E21V,PL1E23V);
/*
EXIT: PUT SKIP(2) LIST(’RETCODEHP = ’,RETCODE);
/*
END;

PL1E21V: PROC (SATZEIN,RETCODE) RETURNS(CHAR(*));
DCL RETCODE FIXED BIN(31) PARM;
DCL SATZEIN CHAR(76) PARM;

IF RETCODE = 8 THEN GOTO EXIT;
BEGIN;

DCL 1 VSATZ BASED(P),
2 SATZLNG1 FIXED BIN(15),
2 FILLER1 CHAR(2),
2 STRINGEIN CHAR(1 REFER(SATZLNG1));

DCL P PTR;
DCL 1 ARBEITSSATZ,

2 SATZLNG2 FIXED BIN(15),
2 FILLER2 CHAR(2),
2 ARBEITSSTRING CHAR(SATZLNG1 - 4);

DCL UEBERGABESATZ CHAR(SATZLNG2) BASED(ADDR(ARBEITSSATZ));
DCL N FIXED BIN(15) EXTERNAL;
DCL SYSPRINT FILE CONSTANT;

/* */
P = ADDR(SATZEIN);
IF P = NULL() THEN GOTO EXIT;

530 U253-J-Z125-9-7600

SORT

/* */
SATZLNG2 = SATZLNG1;FILLER2 = ’ ’;ARBEITSSTRING = STRINGEIN;N = N+1;
PUT SKIP LIST(’RECORDNO-E21 = ’,N);
/* */

IF SUBSTR(ARBEITSSTRING,27,12) = ’MAINT.-PROG.’
THEN DO;

SUBSTR(ARBEITSSTRING,27,12) = ’DIENSTPROG.’;
RETURN(UEBERGABESATZ);
END;

END;
/* */
RETURN(UEBERGABESATZ);
/* */
EXIT: PUT SKIP(4) LIST(’************ DATEIENDE ***************’);

N = 0;
RETURN(’ ’);

/* */
END;

PL1E23V: PROC (SATZEIN,RETCODE) RETURNS(CHAR(*));
DCL RETCODE FIXED BIN(15) PARM;
DCL SATZEIN CHAR(76) PARM;

IF RETCODE = 8 THEN GOTO EXIT;
BEGIN;

DCL 1 VSATZ BASED(ADDR(SATZEIN)),
2 SATZLNG1 FIXED BIN(15),
2 FILLER1 CHAR(2),
2 STRINGEIN CHAR(1 REFER(SATZLNG1));

DCL 1 VSATZH BASED(ADDR(SATZEIN)),
2 SATZLNGH FIXED BIN(15),
2 FILLERH CHAR(2),
2 AUSSTRING CHAR(SATZLNG1-4);

DCL 1 ARBEITSSATZ,
2 SATZLNG2 FIXED BIN(15),
2 FILLER2 CHAR(2),
2 ARBEITSTRING CHAR(SATZLNG1-4);

DCL UEBERGABESATZ CHAR(SATZLNG2) BASED(ADDR(ARBEITSSATZ));
DCL M FIXED BIN(15) EXTERNAL;
DCL N FIXED BIN(15) EXTERNAL;
DCL SYSPRINT FILE CONSTANT;

/* */
SATZLNG2 = SATZLNG1;FILLER2 = ’ ’;ARBEITSSTRING = STRINGEIN;N = N+1;
PUT SKIP LIST(’RECORDNO-E23 = ’,N);
/* */
IF RETCODE = 4

THEN DO;
PUT SKIP LIST(’DOUBLE INPUT RECORD = ’,VSATZH);
RETURN(UEBERGABESATZ);

END;
/* */

RETURN(UEBERGABESATZ);
/* */

IF M = 0
THEN DO;

M = 1;
RETCODE = 12;
SATZLNG2 = 76;

ARBEITSSTRING = ’99999999’ ’9999-DATEIENDE’

U253-J-Z125-9-7600 531

SORT

’***’;
PUT SKIP LIST(EINGABESATZ = ’,
’99999999’ ’9999-DATEIENDE’

’**’);
RETURN(UEBERGABESATZ);

END;
END;

PUT SKIP(4) LIST(’*************** DATEIENDE ********’);
RETURN(’ ’);

END;

532 U253-J-Z125-9-7600

SORT

Example 3

Processing an F file using separate user exits for input and output record processing.
PL1SRTA:PROC OPTIONS(MAIN);
DCL RETCODE FIXED BIN(31) INIT(0);
DCL M FIXED BIN(15) EXTERNAL;
DCL N FIXED BIN(15) EXTERNAL;
DCL BS2SRT ENTRY OPTIONS(VARIABLE);
DCL PL1E21V ENTRY EXTERNAL;
DCL PL1E23V ENTRY EXTERNAL;
DCL SYSPRINT FILE CONSTANT;

DCL SPRUNG BIN FIXED(31);
/* */

M = 0;
N = 0;

/* */
/* *** */
/* SORT CALL WITH TYPE=V */
/* INPUT FILE IS ISAM FILE */
/* LENGHT IN THE FIRST 4 BYTES, ISAM KEY 8 BYTES */
/* SORT STARTING WITH 13TH BYTE */
/* *** */
/* USER ENTRY PL1E21V: */
/* ’MAINT. PROG.’ IS CHANGED INTO ’UTILITY’ */
/* USER ENTRY PL1E23V: */
/* ONE RECORD IS INSERTED */
/* */
/* */
/* SORT 13 THROUGH 22 BY CHARACTER IN ASCENDING ORDER */
/* WITH PL1E21V AND PL1E23V */
/* OUTPUT FILE IS ISAM FILE */
/* *** */
DV: CALL BS2SRT(
’ SORT FIELDS=(13,10,A,B)’,
’ RECORD LENGTH=(92,92,92),TYPE=V’
RETCODE,PL1E21V,PL1E23V);
/* */
/* *** */

PUT SKIP(2) LIST(’RETCODEHP = ’,RETCODE);
/* */
END;

U253-J-Z125-9-7600 533

SORT

Example 4

Preparing a statistics deletions file arranged according to customer numbers.

/* EXAMPLE OF A PL1 SORT */
/* TASK: */
/* 1. SORT OUTPUT RECORDS ACCORDING TO */
/* CUSTOMER NUMBERS. */
/* 2. SELECT OUTGOING RECORDS FROM */
/* TRANSACTION FILE. */
/* 3. CREATE A SUMMARY FILE IN WHICH EVERY */
/* CUSTOMER IS LISTED TO WHOM ANY ATICLE */
/* HAS BEEN SOLD. */

SORTP:PROC OPTIONS(MAIN);
DCL BS2SRT ENTRY OPTIONS(VARIABLE);
DCL RET BIN FIXED(31) INIT(0);
CALL BS2SRT(’ SORT FIELDS=(13,7,A,CH)’,
’ INCLUDE COND=(1,1,CH,EQ,C’’I’’)’,
’ SUM FIELDS=((40,3,ZD),(43,8,ZD,2))’,
RET,0,0);
END;

534 U253-J-Z125-9-7600

Information message

14.6 Additional information on information messages

For the information messages described in section 3.9, the texts which are listed below
provide further information on:

1. Information message 500
2. Information message 503
3. Information message 504

1. On information message 500

Information message 500 indicates that an out-line sequence with number ’n’ was gene-
rated. The leftmost column of the following listing shows the number ’n’ in ascending
order, followed by an explanatory text describing the purpose of the outline sequence
generated, and then the name of the runtime module in which the particular out-line
sequence is implemented. The name of the module can be found e.g. in the linkage
editor printout (see chapter 4).

No. Function Module

19 Normal program end, STOP ITPRAHM#
102 ALLOCATE in standard area ITPSTVW#
103 FREE in standard area ITPSTVW#
104 ALLOCATE in named area ITPSTVW#
105 FREE in named area ITPSTVW#
108 Stack extension in block prolog ITPSTVW#
110 Stack ext. for variable length AUTO and temporary variable ITPSTVW#
114 Stack extension for RETURNS with * option ITPSTVW#
200 Trace of a RETURN statement ITPTHTR#
201 Trace of a GOTO statement ITPTHTR#
202 Trace: GOTO with indexed label size ITPTHTR#
203 Trace of a CALL statement ITPTHTR#
204 Trace: program label trace ITPTHTR#
205 Debugging aid checkpoint/halt point ITPTHBK#
226 Test/Message on various conditions ITPCDHD#
228 Test/Message on the CONVERSION condition ITPCDHD#
229 SIGNAL statement ITPCDHD#
248 ON statement ITPCDHD#
249 REVERT statement ITPCDHD#
256 Assignment of BIT strings, target NONVARYING ITPBIT##
257 Assignment of BIT strings, target VARYING ITPBIT##
258 NOT operation on BIT string, target NONVARYING ITPBIT##
259 NOT operation on BIT string, target VARYING ITPBIT##
260 Assignment of BIT/CHAR strings, with (possible) overlap ITPBIT##
261 AND operation with BIT strings, target NONVARYING ITPBIT##
262 AND operation with BIT strings, target VARYING ITPBIT##
263 OR operation with BIT strings, target NONVARYING ITPBIT##
264 OR operation with BIT strings, target VARYING ITPBIT##
265 XOR operation with BIT strings, target NONVARYING ITPBIT##

U253-J-Z125-9-7600 535

Information message

No. Function Module

266 XOR operation with BIT strings, target VARYING ITPBIT##
267 Comparision of BIT strings ITPBIT##
268 First call for chaining of BIT strings, target NONVARYING ITPBIT##
269 First call for chaining of BIT strings, target VARYING ITPBIT##
270 Follow-up call for chaining of BIT strings ITPBIT##
271 Final call for chaining of BIT strings, special case ITPBIT##
272 Final call for chaining of BIT strings, normal case ITPBIT##
273 Check if all bits in BIT string equal ’0’B, ’1’B, otherwise ITPBIT##
275 data conversion ITPKONV#
276 Builtin function BOOL, target NONVARYING ITPSBOB#
277 Builtin function BOOL, target VARYING ITPSBOB#
278 Builtin function INDEX for BIT strings ITPSIXB#
279 Builtin function INDEX for CHAR strings ITPSIXC#
280 Builtin function SEARCH ITPSSVC#
283 Builtin function VERIFY ITPSSVC#
285 Trace of an ENTRY/PROC statement ITPTHPT#
286 Builtin function SQRT, argument FLOAT single ITPRRE##
287 Builtin function SQRT, argument FLOAT double ITPRRD##
288 Builtin function SQRT, argument FLOAT extended ITPRRW##
289 Builtin function SQRT, argument CPLX FLOAT single ITPRCE##
290 Builtin function SQRT, argument CPLX FLOAT double ITPRCD##
291 Builtin function SQRT, argument CPLX FLOAT extended ITPRCW##
292 Builtin function SIN, argument FLOAT single ITPRRE##
293 Builtin function SIN, argument FLOAT double ITPRRD##
294 Builtin function SIN, argument FLOAT extended ITPRRW##
295 Builtin function SIN, argument CPLX FLOAT single ITPRCE##
296 Builtin function SIN, argument CPLX FLOAT double ITPRCD##
297 Builtin function SIN, argument CPLX FLOAT extended ITPRCW##
298 Builtin function SIND, argument FLAT single ITPRRE##
299 Builtin function SIND, argument FLOAT double ITPRRD##
300 Builtin function SIND, argument FLOAT extended ITPRRW##
304 Builtin function COS, argument FLOAT single ITPRRE##
305 Builtin function COS, argument FLOAT double ITPRRD##
306 Builtin function COS, argument FLOAT extended ITPRRW##
307 Builtin function COS, argument CPLX FLOAT single ITPRCE##
308 Builtin function COS, argument CPLX FLOAT double ITPRCD##
309 Builtin function COS, argument CPLX FLOAT extended ITPRCW##
310 Builtin function COSD, argument FLOAT single ITPRRE##
311 Builtin function COSD, argument FLOAT double ITPRRD##
312 Builtin function COSD, argument FLOAT extended ITPRRW##
316 Builtin function TAN, argument FLOAT single ITPRRE##
317 Builtin function TAN, argument FLOAT double ITPRRD##
318 Builtin function TAN, argument FLOAT extended ITPRRW##
319 Builtin function TAN, argument CPLX FLOAT single ITPRCE##
320 Builtin function TAN, argument CPLX FLOAT double ITPRCD##
321 Builtin function TAN, argument CPLX FLOAT extended ITPRCW##
322 Builtin function TAND, argument FLOAT single ITPRRE##
323 Builtin function TAND, argument FLOAT double ITPRRD##
324 Builtin function TAND, argument FLOAT extended ITPRRW##
328 Builtin function ASIN, argument FLOAT single ITPRRE##
329 Builtin function ASIN, argument FLOAT double ITPRRD##
330 Builtin function ASIN, argument FLOAT extended ITPRRW##
334 Builtin function ASIND, argument FLAOT single ITPRRE##

536 U253-J-Z125-9-7600

Information message

No. Function Module

335 Builtin function ASIND, argument FLOAT double ITPRRD##
336 Builtin function ASIND, argument FLOAT extended ITPRRW##
340 Builtin function ACOS, argument FLOAT single ITPRRE##
341 Builtin function ACOS, argument FLOAT double ITPRRD##
342 Builtin function ACOS, argument FLOAT extended ITPRRW##
346 Builtin function ACOSD, argument FLOAT single ITPRRE##
347 Builtin function ACOSD, argument FLOAT double ITPRRD##
348 Builtin function ACOSD, argument FLOAT extended ITPRRW##
352 Builtin function ATAN, argument FLOAT single ITPRRE##
353 Builtin function ATAN, argument FLOAT double ITPRRD##
354 Builtin function ATAN, argument FLOAT extended ITPRRW##
355 Builtin function ATAN, argument CPLX FLOAT single ITPRCE##
356 Builtin function ATAN, argument CPLX FLOAT double ITPRCD##
357 Builtin function ATAN, argument CPLX FLOAT extended ITPRCW##
358 Builtin function ATAND, argument FLOAT single ITPRRE##
359 Builtin function ATAND, argument FLOAT double ITPRRD##
360 Builtin function ATAND, argument FLOAT extended ITPRRW##
364 Builtin function LOG2, argument FLOAT single ITPRRE##
365 Builtin function LOG2, argument FLOAT double ITPRRD##
366 Builtin function LOG2, argument FLOAT extended ITPRRW##
370 Builtin function LOG, argument FLOAT single ITPRRE##
371 Builtin function LOG, argument FLOAT double ITPRRD##
372 Builtin function LOG, argument FLOAT extended ITPRRW##
373 Builtin function LOG, argument CPLX FLOAT single ITPRCE##
374 Builtin function LOG, argument CPLX FLOAT double ITPRCD##
375 Builtin function LOG, argument CPLC FLOAT extended ITPRCW##
376 Builtin function LOG10, argument FLOAT single ITPRRE##
377 Builtin function LOG10, argument FLOAT double ITPRRD##
378 Builtin function LOG10, argument FLOAT extended ITPRRW##
382 Builtin function EXP, argument FLOAT single ITPRRE##
383 Builtin function EXP, argument FLOAT double ITPRRD##
384 Builtin function EXP, argument FLOAT extended ITPRRW##
385 Builtin function EXP, argument CPLX FLOAT single ITPRCE##
386 Builtin function EXP, argument CPLX FLOAT double ITPRCD##
387 Builtin function EXP, argument CPLX FLOAT extended ITPRCW##
388 Builtin function ATANH, argument FLOAT single ITPRRE##
389 Builtin function ATANH, argument FLOAT double ITPRRD##
390 Builtin function ATANH, argument FLOAT extended ITPRRW##
391 Builtin function ATANH, argument CPLX FLOAT single ITPRCE##
392 Builtin function ATANH, argument CPLX FLOAT double ITPRCD##
393 Builtin function ATANH, argument CPLX FLOAT extended ITPRCW##
394 Builtin function COSH, argument FLOAT single ITPRRE##
395 Builtin function COSH, argument FLOAT double ITPRRD##
396 Builtin function COSH, argument FLOAT extended ITPRRW##
397 Builtin function COSH, argument CPLX FLOAT single ITPRCE##
398 Builtin function COSH, argument CPLX FLOAT double ITPRCD##
399 Builtin function COSH, argument CPLX FLOAT extended ITPRCW##
400 Builtin function ERF, argument FLOAT single ITPRRE##
401 Builtin function ERF, argument FLOAT double ITPRRD##
402 Builtin function ERF, argument FLOAT extended ITPRRW##
406 Builtin function ERFC, argument FLOAT single ITPRRE##
407 Builtin function ERFC, argument FLOAT double ITPRRD##
408 Builtin function ERFC, argument FLOAT extended ITPRRW##
412 Builtin function SINH, argument FLOAT single ITPRRE##

U253-J-Z125-9-7600 537

Information message

No. Function Module

413 Builtin function SINH, argument FLOAT double ITPRRD##
414 Builtin function SINH, argument FLOAT extended ITPRRW##
415 Builtin function SINH, argument CPLX FLOAT single ITPRCE##
416 Builtin function SINH, argument CPLX FLOAT double ITPRCD##
417 Builtin function SINH, argument CPLX FLOAT extended ITPRCW##
418 Builtin function TANH, argument FLOAT single ITPRRE##
419 Builtin function TANH, argument FLOAT double ITPRRD##
420 Builtin function TANH, argument FLOAT extended ITPRRW##
421 Builtin function TANH, argument CPLX FLOAT single ITPRCE##
423 Builtin function TANH, argument CPLX FLOAT extended ITPRCW##
424 Builtin function ATAN2, argument FLOAT single ITPRRE##
425 Builtin function ATAN2, argument FLOAT double ITPRRD##
426 Builtin function ATAN2, argument FLOAT extended ITPRRW##
430 Builtin function ATAND2, argument FLOAT single ITPPRE##
431 Builtin function ATAND2, argument FLOAST double ITPRRD##
432 Builtin function ATAND2, argument FLOAT extended ITPRRW##
436 Exponentiation integer short ** integer short ITPRND##
437 Exponentiation integer short ** integer long ITPRND##
438 Exponentiation integer long ** integer short ITPRND##
439 Exponentiation integer long ** integer long ITPRND##
440 Exponentiation FLOAT single ** integer short ITPRRE##
441 Exponentiation FLOAT double ** integer short ITPRRD##
442 Exponentiation FLOAT extended ** integer short ITPRRW##
443 Exponentiation CPLX FLOAT single ** integer short ITPRCE##
444 Exponentiation CPLX FLOAT double ** integer short ITPRCD##
445 Exponentiation CPLX FLOAT extended ** integer short ITPRCW##
446 Exponentiation FLOAT single ** integer long ITPRRE##
447 Exponentiation FLOAT double ** integer long ITPRRD##
448 Exponentiation FLOAT extended ** integer long ITPRRW##
449 Exponentiation CPLX FLOAT single ** integer long ITPRCE##
450 Exponentiation CPLX FLOAT double ** integer long ITPRCD##
451 Exponentiation CPLX FLOAT extended ** integer long ITPRCW##
452 Exponentiation FLOAT single ** FLOAT single ITPRRE##
453 Exponentiation FLOAT double ** FLOAT double ITPRRD##
454 Exponentiation FLOAT extended ** FLOAT extended ITPRRW##
455 Exponentiation CPLX FLOAT single ** CPLX FLOAT single ITPRCE##
456 Exponentiation CPLX FLOAT double ** CPLX FLOAT double ITPRCD##
457 Exponentiation CPLX FLOAT extended ** CPLX FLOAT extended ITPRCW##
458 Division of type FLOAT operands extended ITPRRW##
459 Builtin function MOD, argument FLOAT extended ITPRRW##
460 Builtin function COPY for BIT strings, target NONVARYING ITPSCRB#
461 Builtin function COPY for BIT strings, target VARYING ITPSCRB#
462 Builtin function REVERSE for BIT strings, target NONVARYING ITPSCRB#
463 Builtin function REVERSE for BIT strings, target VARYING ITPSCRB#
464 Builtin function COPY for CHAR strings, target NONVARYING ITBSCRC#
465 Builtin function COPY for CHAR strings, target VARYING ITBSCRC#
466 Builtin function REVERSE for CHAR strings, target NONVARYING ITBSCRC#
467 Builtin function REVERSE for CHAR strings, target VARYING ITBSCRC#
468 Builtin function TRANSLATE, 3 arguments, target NONVARYING ITPSTRC#
469 Builtin function TRANSLATE, 3 arguments, target VARYING ITPSTRC#
470 Builtin function TRANSLATE, 2 arguments, target NONVARYING ITPSTRC#
471 Builtin function TRANSLATE, 2 arguments, target VARYING ITPSCRC#
485 Test/message on the SUBSCRIPTRANGE condition ITPCOND#
486 Test/Message on the STRINGRANGE condition ITPCOND#

538 U253-J-Z125-9-7600

Information message

No. Function Module

487 Builtin function ROUND (ISO case), argument DEC FLOAT ITPRND##
488 Builtin function ROUND (ISO case), argument BIN FLOAT ITPRND##
489 Builtin function ROUND (ISO case), argument CPLX BIN FLOAT ITPRND##
490 Builtin function ROUND (ISO case), argument CPLX DEC FLOAT ITPRND##
491 Builtin function ROUND (NOISO case), argument CPLX BIN FLOAT ITPRND##
492 Builtin function ROUND (NOISO case), argument CPLX DEC FLOAT ITPRND##
493 Builtin function ABS, argument CPLX BIN FLOAT single ITPRCE##
494 Builtin function ABS, argument CPLX BIN FLOAT double ITPRCD##
485 Builtin function ABS, argument CPLX BIN FLOAT extended ITPRCW##
496 Builtin function ABS, argument CPLX BIN FIXED short ITPACB##
497 Builtin function ABS, argument CPLX BIN FIXED long ITPACB##
498 Comparison of operands of type CPLX BIN FIXED ITPACB##
499 Addition of operands of type CPLX BIN FIXED ITPACB##
500 Subtraction of operands of type CPLX BIN FIXED ITPACB##
501 Multiplication of operands of type CPLX BIN FIXED ITPACB##
502 Division of operands of type CPLX BIN FIXED ITPACB##
503 Builtin function ROUND, argument CPLX BIN FIXED ITPACB##
504 Builtin function ABS, argument CPLX DEC FIXED ITPACD##
505 Comparison of operands of type CPLX DEC FIXED ITPACD##
506 Addition of operands of type CPLX DEC FIXED ITPACD##
507 Subtraction of operands of type CPLX DEC FIXED ITPACD##
508 Multiplication of operands of type CPLX DEC FIXED ITPACD##
509 Division of operands of type CPLX DEC FIXED ITPACD##
510 Builtin function ROUND, argument CPLX DEC FIXED ITPACD##
511 Comparison of operands of type CPLX FLOAT ITPACF##
512 Addition of operands of type CPLX FLOAT ITPACF##
513 Subtraction of operands of type CPLX FLOAT ITPACF##
514 Multiplication of operands of type CPLX FLOAT ITPACF##
515 Division of operands of type CPLX FLOAT ITPACF##
516 Builtin function REPEAT for BIT strings, target NONVARYING ITPSCRB#
517 Builtin function REPEAT for BIT strings, target VARYING ITPSCRB#
518 Builtin function REPEAT for CHAR strings, target NONVARYING ITPSCRC#
519 Builtin function for CHAR, target VARYING ITPSCRC#
520 Calling an entry of type OPTIONS(FORTRAN) ITPLXFV#
521 Calling an entry of type OPTIONS(FORTRAN INTER) ITPLXFV#
522 Calling an entry of type OPTIONS(COBOL) ITPLXFV#
770 End call for GET statement ITPGET##
771 End call for PUT statement ITPPUT##
772 PUT DATA statement with list, follow-up call for 1 data elem. ITPPVD##
773 GET LIST statement, follow-up call for 1 data element ITPGVL##
774 GET EDIT statement, follow-up call for 1 data element ITPGVE##
775 PUT LIST statement, follow-up call for 1 data element ITPPVL##
776 PUT EDIT statement, follow-up call for 1 data element ITPPVE##
777 Record oriented I/O; transport statement ITPIORC#
778 OPEN statement ITPOPEN#
779 CLOSE statement ITPOPEN#
780 GET DATA statement or initial call for GET statement ITPGET##
781 PUT DATA without list or initial call for PUT statement ITPPUT##
831 Trace for ENTRY/PROC in optimized procedure ITPTHPT#

U253-J-Z125-9-7600 539

Information message

2. On information message 503

Information message 503 indicates that an out-line sequence was generated whose
name is ’e’. The leftmost column of the following listing shows the names ’n’ in ascen-
ding order, followed by an explanatory text describing the purpose of the out-line se-
quence generated, and then the name of the runtime module in which the particular
out-line sequence is implemented. The name of the module can be found e.g. in the
linkage editor printout (see chapter 4).

Entry Function Module

AFTERB## Builtin function AFTER, argument BIT string ITPSAFB#
AFTERC## Builtin function AFTER, argument CHAR string ITPSAFC#
ALL##### Builtin function ALL ITPBALL#
ANY##### Builtin function ANY ITPBANY#
BEFOREB# Builtin function BEFORE, argument BIT string ITPSAFB#
BEFOREC# Builtin function BEFORE, argument CHAR string ITPSAFC#
BOUND### Builtin function DIM, HBOUND, LBOUND ITPBBND#
COUNT### Builtin function COUNT ITPOPEN#
DATAFLD# Builtin function DATAFIELD ITPCDHD#
DATE#### Builtin function DATE ITPBDAT#
DECATB## Builtin function DECAT, argument BIT string ITPSAFB#
DECATC## Builtin function DECAT, argument CHAR string ITPSAFC#
DISPPLY# DISPLAY statement without REPLY ITPIODI#
DISPRLY# DISPLAY statement with REPLY ITPIODI#
EVERY### Builtin function EVERY ITPBEVR#
GETLENO# Builtin function LINENO ITPOPEN#
GETPANO# Builtin function PAGENO ITPOPEN#
ON$CHAR# Builtin function ONCHAR ITPCDHD#
ON$CNT## Builtin function ONCOUNT ITPCDHD#
ON$CODE# Builtin function ONCODE ITPCDHD#
ON$FILE# Builtin function ONFILE ITPCDHD#
ON$FLD## Builtin function ONFIELD ITPCDHD#
ON$INTR# Builtin function ONINTR ITPCDHD#
ON$KEY## Builtin function ONKEY ITPCDHD#
ON$LOC## Builtin function ONLOC ITPCDHD#
ON$SRCE# Builtin function ONSOURCE ITPCDHD#
POLY#### Builtin function POLY ITPBPLY#
PV$CHAR# Pseudo variable ONCHAR ITPCDHD#
PV$SRCE# Pseudo variable ONSOURCE ITPCDHD#
SAMEKEY# Builtin function SAMEKEY ITPBSKY#
SETPENO# Pseudo variable PAGENO ITPOPEN#
SOME#### Builtin function SOME ITPBSOM#
ST$NMAS# Assignment of named AREAs ITPSTVW#
TIME#### Builtin function TIME ITPBDAT#
VALID### Builtin function VALID ITPKONV#

540 U253-J-Z125-9-7600

Information message

3. On information message 504

Information message 504 indicates that an out-line sequence for a type ’t’ conversion
was generated. The leftmost column of the following listing shows the types ’t’ in ascen-
ding order, followed by an explanatory text describing the purpose of the out-line se-
quence generated.

This listing uses the following abbreviations:

- Direction of conversion

BIT BIT strings ALIGNED or UNALIGNED

CHARACTER CHARACTER strings ALIGNED or UNALIGNED

FLOAT Unless otherwise specified: DEC FLOAT or BIN FLOAT, single or
double precision

PIC(...) PICTURE of alphanumeric or numeric type or with numeric type spe-
cified

numeric Arithmetic data types DECIMAL or BINARY, FLOAT, or FIXED

Conversion from/to COMPLEX, unless otherwise stated, is generally carried out separa-
tely for real and imaginary parts; 2 calls are therefore issued.

Conversions from/to FLOAT/PIC (float) with extended precision (4-fold) on the one
hand and with single and double precision on the other hand is carried out via separate
keys.

U253-J-Z125-9-7600 541

Information message

Type Conversion function

1 BIT -> BIT
2 BIT -> CHARACTER
3 BIT -> BINARY FIXED
4 BIT -> DECIMAL FIXED
5 BIT -> FLOAT
6 BIT -> PICTURE(decimal fixed)
7 BIT -> PICTURE(decimal float)
8 BIT -> PICTURE(alphanumeric)
9 CHARACTER or PICTURE(alphanumeric) -> CHARACTER or PICTURE

(alphanumeric)
10 CHARACTER or PICTURE(alphanumeric) -> BIT
11 CHARACTER or PICTURE(alphanumeric) -> numeric or

PICTURE(numeric), real or complex
12 CHARACTER or PICTURE(alphanumeric) -> PICTURE(alphanumeric)
13 numeric or PICTURE(numeric), real or complex -> CHARACTER or

PICTURE(alphanumeric)
17 BINARY FIXED -> DECIMAL FIXED
18 BINARY FIXED -> FLOAT
19 BINARY FIXED - > BIT
20 BINARY FIXED -> PICTURE(decimal fixed)
21 BINARY FIXED -> PICTURE(decimal float)
24 FLOAT -> BINARY FIXED
25 FLOAT -> DECIMAL FIXED
26 FLOAT -> PICTURE(decimal fixed)
27 FLOAT -> PICTURE(decimal float)
28 FLOAT -> BIT
29 FLOAT -> CHARACTER according to E format
31 DECIMAL FIXED -> DECIMAL FIXED
32 DECIMAL FIXED -> BINARY FIXED
33 DECIMAL FIXED -> FLOAT
34 DECIMAL FIXED -> BIT
35 DECIMAL FIXED -> PICTURE(decimal fixed)
36 DECIMAL FIXED -> PICTURE (decimal float)
48 PICTURE(numeric) -> PICTURE(decimal fixed)
49 PICTURE(numeric) -> BINARY FIXED
50 PICTURE(numeric) -> DECIMAL FIXED
51 PICTURE(numeric) -> FLOAT
52 PICTURE(numeric) -> PICTURE(decimal float)
53 PICTURE(numeric) -> BIT
67 numeric, BIT, CHARACTER or PICTURE -> FLOAT extended precision
69 FLOAT extended precision -> CHARACTER according to E format
70 FLOAT extended precision -> numeric, BIT, CHARACTER or PICTURE
73 FLOAT -> FLOAT
74 BINARY FIXED -> BINARY FIXED
75 BINARY FIXED -> BIT
76 FLOAT -> BIT
77 FLOAT -> CHARACTER according to E format

542 U253-J-Z125-9-7600

Runtime modules

14.7 Runtime modules

The following is a listing of the names of the modules of the static runtime system, follo-
wed by an explanation of the features provided by each module. The modules are incor-
porated whenever their particular services are required in the user program.

On those lines which begin with "***", you find those modules of the runtime system
which refer to the preceding module so that their incorporation into a program makes it
mandatory to incorporate that module also.

Module Function / invoked by module (***)

ITP#AOS# Initial handling for PLI1 objects when static runtime system
is used

ITPACB## Out-line strings for addition, subtraction, multiplication,
division, comparison, absolute value and rounding of CPLX BIN
FIXED operands.

ITPACD## Out-line strings for addition, subtraction, mulitplication,
division, comparison, absolute value and rounding of CPLX DEC
FIXED operands.

ITPACF## Out-line strings for addition, subtraction, multiplication,
division and comparison of CPLX FLOAT

ITPBALL# Builtin function ALL
ITPBANY# Builtin function ANY
ITPBBND# Builtin functions DIM, RBOUND,LBOUND
ITPBDAT# Builtin functions DATE, TIME
ITPBEVR# Builtin function EVERY
ITPBIT## Various operations with BIT strings (AND, OR, XOR, NOT, assign,

chain, compare, test all bits for ’0’B or ’1’B); assign CHAR
strings with possible overlapping

*** ITPBALL#, ITPBANY#, ITPBEVR#, ITPBSOM#, ITP#AOS#
ITPBITN# Pad storage area with binary zeros

*** ITPSBOB#, ITPSCRB#
ITPBPLY# Builtin function POLY
ITPBSKY# Builtin function SAMEKEY
ITPBSOM# Builtin function SOME
ITPCDHD# Condition handling, message from various conditions,

ON, REVERT and SIGNAL statement, builtin functions/
pseudo-variables DATAFIELD, ONCHAR, ONCODE, ONCOUNT,
ONFIELD, ONFILE, ONINTR, ONKEY, ONLOC, ONSOURCE,
ERROUT utility

*** ITP#AOS#, ITPGVD##, ITPGVE##, ITPOPEN##, ITPPVD##, ITPPVE##
ITPCOND# Message from STRINGRANGE and SUBSCRIPTRANGE condition

*** ITP#AOS#tility
ITPDASI# Nucleus for builtin function ASIN/ACOS, double precision

*** ITPRRD##
ITPDATH# Nucleus for builtin function ATANH, double precision

*** ITPYATA#, ITPRRD##
ITPDAT2# Nucleus for builtin function ATAN/ATAN2, double precision

*** ITPYATA#, ITPYLOG#, ITPRRD##
ITPDERF# Nucleus for builtin function ERF/ERFC, double precision

*** ITPRRD##

U253-J-Z125-9-7600 543

Runtime modules

Module Function / invoked by module (***)

ITPDEXP# Nucleus for builtin function EXP, double precision
*** ITPDERF#, ITPDPWR#, ITPDSIH#, ITPDTAH#, ITPYEXP#,
*** ITPYSIN#, ITPRRD##

ITPDLOG# Nucleus for builtin function LOG/LOG10/LOG2, double
precision

*** ITPDATH#, ITPDPWR#, ITPYLOG#, ITPYPWC#, ITPRRD##
ITPDPWI# Nucleus for exponentiation FLOAT double precision **

integer
*** ITPRRD##

ITPDPWR# Nucleus for exponentiation FLOAT double ** FLOAT double
precision

*** ITPRRD##
ITPDSIH# Nucleus for builtin function SINH/COSH, double precision

*** ITPYTAN#, ITPRRD##
ITPDSIN# Nucleus for builtin function SIN/COS, double precision

*** ITPYEXP#, ITPYSIN#, ITPYTAN#, ITPRRD#
ITPDSQR# Nucleus for builtin function SQRT, double precision

*** ITPDASI#, ITPYABS, ITPYSQR#, ITPRRD##
ITPDTAH# Nucleus for builtin function TANH, double precision

*** ITPRRD##
ITPDTAN# Nucleus for builtin function TAN/COTAN, double precision

*** ITPRRD##
ITPEASI# Nucleus for builtin function ASIN/ACOS, single precision

*** ITPRRE##
ITPEATH# Nucleus for builtin function ATANH, single precision

*** ITPXATA#, ITPRRE#
ITPEAT2# Nucleus for builtin function ATAN/ATAN2, single precision

*** ITPXATA#, ITPXLOG#, ITPRRE##
ITPEERF# Nucleus for builtin function ERF/ERFC, single precision

*** ITPRRE##
ITPEEXP# Nucleus for builtin function EXP, single precision

*** ITPEERF#, ITPEPWR#, ITPESIH#, ITPETAH#, ITPXEXP#, ITPXSIN#,
*** ITPRRE##

ITPELOG# Nucleus for builtin function LOG/LOG10/LOG2, single
precision

*** ITPEATH#, ITPEPWR#, ITPXLOG#, ITPXPWC#, ITPRRE##
ITPEPWI# Nucleus for exponentiation FLOAT single precision **

integer
*** ITPRRE##

ITPEPWR# Nucleus for exponentiation FLOAT single ** FLOAT single
precision

*** ITPRRE##
ITPESIH# Nucleus for builtin function SINH/COSH, single precision

*** ITPXTAN#, ITPRRE##
ITPESIN# Nucleus for builtin function SINH/COSH, single precision

*** ITPXEXP#, ITPXSIN#, ITPXTAN#, ITPRRE#
ITPESQR# Nucleus for builtin function SQRT, single precision

*** ITPEASI#, ITPXABS#, ITPXSQR#, ITPRRE##
ITPETAH# Nucleus for builtin function TANH, single precision

*** ITPRRE##
ITPETAN# Nucleus for builtin function TAN/COTAN, single precision

*** ITPRRE##

544 U253-J-Z125-9-7600

Runtime modules

Module Function / invoked by module (***)

ITPFL### Supply format description for a variable during I/O in
EDIT mode

*** ITPGVE##, ITPPVE##
ITPGDT## Supply associated variable address and descriptor for the

GET DATA statement for a variable
*** ITPGVD##

ITPGDTX# Supply associated variable address and descriptor for the
GET DATA statement for a variable in the XS case

*** ITPGVDX##
ITPGET## Initial and final conditions for all GET statements, (follow-up)

calls for reading an element (entry date/name) for all GET
statements, control read operations (set line or column,
skip character),
Perform GET DATA statement with/without listing

*** ITPFL###, ITPGVD##, ITPGVE##, ITPGVL##, ITPOPCL#
ITPGVD## Nucleus routine for performing GET DATA statement with/without

listing
*** ITPGET##

ITPGVDX# Nucleus routine for performing GET DATA statement with/without
listing (in XS case)

*** ITPGET##
ITPGVE## Input data element from GET DATA statement (follow-up call)
ITPGVL## Input data element from GET LIST statement (follow-up call); also

with an element when GET DATA is used.
*** ITPGVD##

ITPHXDC# HEXDEC utility
*** ITPTHRD#

ITPIODI# DISPLAY statement with/without REPLY
ITPIORC# Transport statement for record-oriented I/O; also perform

transport and positioning jobs for stream-oriented I/O;
format REGIONAL files

*** ITPGET##, ITPIOSY#, ITPOPCL#, ITPOPEN#, ITPPUT##
ITPIORX# Transport statement for record-oriented I/O etc.

according to ITPIORC# in XS case
*** ITPGET##, ITPIOSY#, ITPOPCX#, ITPOPEN#, ITPPUT##

ITPIOSY# Perform I/O transfer jobs from/to BS2000 system files
(SYSDTA, SYSCMD, SYSOUT, SYSLST, terminal, operator console);
analyze SYSFILE runtime option and set tabulator stops

*** ITPIODI#, ITPGET#, ITPOPEN#, ITPPUT#, ITPIORC#
ITPIPWI# Nucleus for exponentiation of integer operands

*** ITPRND##
ITPKONV# Conversion package for all on-line conversions for object

routines, I/O and mathematical library; builtin function
VALID

*** ITPGVE##, ITPGVL##, ITPPVE##, ITPPVL##, ITPRND##
ITPLXFC# Common area for transition routine ITPLXFN
ITPLXFN# Transition routine for converting the program environment when

calling PLI1 programs from COBOL or FORTRAN main program
*** ITPLXFC#

U253-J-Z125-9-7600 545

Runtime modules

Module Function / invoked by module (***)

ITPLXFV# Transition routine for converting the program environment when
calling COBOL and FORTRAN entry points with/without INTER option

ITPOPCL# Nucleus routine for opening and closing files
*** ITPOPEN#

ITPOPCX# Nucleus routine for opening and closing files in XS case
*** ITPOPEN#

ITPOPEN# OPEN and CLOSE statement; implicit opening and closing
of files;
builtin functions/pseudo-variables COUNT, LINENO, PAGENO

*** ITPGET##, ITPPUT##, ITPIORC#
ITPOPRD# Routine for reading and analyzing object control options

(RUNOPT)
*** ITP#AOS#

ITPOPWR# Routine for logging object control options (RUNOPT)
*** ITP#AOS#

ITPPDBA# Control output for PUT DATA without listing
*** ITPPUT##

ITPPDBX# Control output for PUT DATA without listing in XS case
*** ITPPUT##

ITPPDSD# Subroutine for I/O in DATA mode
*** ITPGDT##, ITPPVD##

ITPPDSX# Subroutine for I/O in DATA mode (XS case)
*** ITPGDTX#, ITPPVDX#

ITPPDVA# Nucleus routine for output using PUT DATA without listing
*** ITPPDBA#

ITPPDVX# Nucleus routine for output using PUT DATA without listing
(XS case)
ITPPDBX#

ITPPUT## Initial and final conditions for all PUT statements, (follow-up)
calls for outputting an element (output date/name) for all PUT
statements, control output operations (set line, page or column),
perform COPY option in GET statement, perform PUT DATA without
listing

*** ITPFL###, ITPGET##, ITPIOSY#, ITPOPCL#, ITPOPEN#, ITPPVD##,
ITPPVE##, ITPPVL##

ITPPVD## Follow-up call for PUT DATA with listing; nucleus routine for
outputting a variable in DATA mode

*** ITPPDVA#
ITPPVDX# Follow-up call for PUT DATA with listing; nucleus routine for

outputting a variable in DATA mode (XS case)
*** ITPPDVX

ITPPVE## Output data element from PUT EDIT statement (follow-up call)
ITPPVL## Output data element from GET LIST statement (follow-up call);

also for an element when PUT DATA used
*** ITPPVD##

ITPRAHM# Standard framework for PLI1 objects; start, end and interrupt
handling ; error handling for utilities; program termination/
STOP statement;
RUNTIME utility

*** ITP#AOS#, ITPTHBK#, ITPOPEN#, ITPTHRD#, ITPTHTR#

546 U253-J-Z125-9-7600

Runtime modules

Module Function / invoked by module (***)

ITPRCD## Builtin functions ABS, ATAN, ATANH, COS, COSH, EXP, LOG,
SIN, SINH, SQRT, TAN, TANH for CPLX FLOAT-type arguments,
double precision, exponentiation with CPLX FLOAT base,
double precision

ITPRCE## Builtin functions ABS, ATAN, ATANH, COS, COSH, EXP, LOG,
SIN, SINH, SQRT, TAN, TANH for CPLX FLOAT-type arguments,
single precision; exponentiation with CPLX FLOAT base,
single precision

ITPRCW## Builtin functions ABS, ATAN, ATANH, COS, COSH, EXP, LOG,
SIN, SINH, SQRT, TAN, TANH for CPLX FLOAT-type arguments,
extended precision; exponentiation with CPLX FLOAT base,
extended precision

ITPRND## Exponentiation integer ** integer, builtin function ROUND or
rounding for real and complex FLOAT operands

ITPRRD## Builtin functions ACOS, ACOSD, ASIN, ASIND, ATAN, ATAN2, ATAND,
ATAND2, ATANH, COS, COSD, COSH, ERF, ERFC, EXP, LOG,
LOG10, LOG2, SIN, SIND, SINH, SQRT, TAN, TAND, TANH for
FLOAT-type arguments, double precision;
exponentiation with FLOAT base, double precision

*** ITPBPLY#
ITPRRE## Builtin functions ACOS, ACOSD, ASIN, ASIND, ATAN, ATAN2,

ATAND, ATAND2, ATANH, COS, COSD, COSH, ERF, ERFC, EXP, LOG,
LOG10, LOG2, SIN, SIND, SINH, SQRT, TAN, TAND, TANH for
FLOAT-type arguments, single precision;
exponentiation with FLOAT basis, single precision

*** ITPBPLY#
ITPRRW## Builtin functions ACOS, ACOSD, ASIN, ASIND, ATAN, ATAN2,

ATAND, ATAND2, ATANH, COS, COSD, COSH, ERF, ERFC, EXP, LOG,
LOG10, LOG2, MOD, SIN, SIND, SINH, SQRT, TAN, TAND, TANH for
FLOAT-type arguments, extended precision;
exponentiation with FLOAT base, extended precision;
division of FLOAT-type operands, extended precision

*** ITPKONV#, ITPBPLY#
ITPRTAD# Subroutine for I/O in DATA mode

*** ITPGDT##, ITPPDVA#, ITPRTOF#, ITPRTPT#
ITPRTAX# Subroutine for I/O in DATA mode (XS case)

*** ITPGDTX#, ITPPDVX#, ITPRTOX#, ITPRTPX#
ITPRTOF# Subroutine for I/O in DATA mode

*** ITPRTPT#
ITPRTOX# Subroutine for I/O in DATA mode (XS case)

*** ITPRTPX#
ITPRTPT# Subroutine for I/O in DATA mode

*** ITPRTAD#
ITPRTPX# Subroutine for I/O in DATA mode (XS case)

*** ITPRTAX#
ITPRTSX# Subroutine for I/O in DATA mode (XS case)

*** ITPGDTX#
ITPRTSY# Subroutine for I/O in DATA mode

*** ITPGDT##
ITPRTVA# Subroutine for I/O in DATA mode

*** ITPGDT##, ITPPDVA#, ITPRTAD#, ITPPDSD#
ITPRTVX# Subroutine for I/O in DATA mode (XS case)

*** ITPGDTX#, ITPPDVX#, ITPRTAX#, ITPRTSX

U253-J-Z125-9-7600 547

Runtime modules

Module Function / invoked by module (***)

ITPSAFB# Builtin functions AFTER, BEFORE, DECAT for BIT strings
ITPSAFC# Builtin functions AFTER, BEFORE, DECAT for CHAR strings
ITPSBOB# Builtin function BOOL
ITPSCRB# Builtin functions COPY, REPEAT, REVERSE for BIT strings
ITPSCRC# Builtin functions COPY, REPEAT, REVERSE for CHAR strings
ITPSIXB# Builtin function INDEX for BIT strings

*** ITPSAFB#
ITPSIXC# Builtin functions INDEX for CHAR strings
ITPSSVC# Builtin functions SEARCH, VERIFY
ITPSTRC# Builtin function TRANSLATE
ITPSTVW# Storage management for stack (for AUTOMATIC and temporary

variables), standard area (system storage; for BASED variables
not stored in a named AREA, CONTROLLED variables, buffers
for I/O, etc.) and named AREAs (for BASED variables);
ALLOCATE and FREE statements, assignment of named AREAs;

*** ITP#AOS#
ITPTHAI# Administration for the debugging aid AID

*** ITP#AOS#
ITPTHBK# Handle the checkpoint/breakpoint debugging aid; analyze control

options entered during breakpoint
ITPTHBO# Read in control options entered at checkpoint/breakpoint

*** ITPTHBK#
ITPTHLF# ADUMP, RDUMP, SDUMP utilities (debugging aids)

*** ITPTHBK#
ITPTHPT# Trace for ENTRY/PROC statements (PROCTRACE); PTON, PTOFF

utilities
ITPTHRD# Debugging aids: SNAP, binary dumps; determining a source

reference (numbers of INCLUDE file, line and statement);
SNAP utility (debugging aid)

*** ITP#AOS#, ITPTHBK#, ITPTHLF#
ITPTHTR# Trace for CALL, GOTO and RETURN statements (CALLTRACE,

GOTOTRACE, RETURNTRACE) and program label trace
(LABELTRACE)

ITPTLIN# Editing of line references
*** ITPTHRD#, ITPTHTR#, ITPTXST#

ITPTXBS# Basic text output; text output to SYSOUT and/or SYSLST,
basic services for diagnostics listings

*** ITP#AOS#, ITPTHBK#, ITPTHRD#, ITPTHTR#
ITPTXST# Standard text output; text output from message files to

SYSOUT and/or SYSLST; if necessary, enlarge texts or supply
with header; analyze options regarding language and output
device from the RUNOPT controller

*** ITP#AOS#, ITPOPEN#, ITPTHRD#
ITPWASI# Nucleus for builtin function ASIN/ACOS, extended precision

*** ITPRRW##
ITPWATH# Nucleus for builtin function ATANH, extended precision

*** ITPZATA#, ITPRRW##
ITPWAT2# Nucleus for builtin function ATAN/ATAN2, extended precision

*** ITPZATA#, ITPZLOG#, ITPRRW#

548 U253-J-Z125-9-7600

Runtime modules

Module Function / invoked by module (***)

ITPWDIV# Nucleus for division of FLOAT-type operands, extended precision
*** ITPWASI#, ITPWATH#, ITPWAT2#, ITPWERF#, ITPWEXP#, ITPWMOD#,
*** ITPWPWI#, ITPWSIH#, ITPWTAN#, ITPZATA#, KZLMT###, ITPZSQRW#,
*** ITPZTAN#, ITPRRW##

ITPWERF# Nucleus for builtin function ERF/ERFC, extended precision
ITPRRW##

ITPWEXP# Nucleus for builtin function EXP/LOG/LOG10/LOG2 and
exponentiation FLOAT extended precision ** FLOAT extended
precision

*** ITPWATH#, ITPWERF#, ITPWSIH#, ITPWTAH#, ITPZEXP#, ITPZLOG#,
*** ITPZPWC#, ITPZSIN#, ITPRRW##

ITPWMOD# Nucleus for builtin function MOD, extended precision
*** ITPRRW##

ITPWPWI# Nucleus for exponentiation FLOAT extended precision **
integer

*** ITPRRW##
ITPWSIH# Nucleus for builtin function SINH/COSH, extended precision

*** ITPZTAN#, ITPRRW##
ITPWSIN# Nucleus for builtin function SIN/COS, extended precision

*** ITPZEXP#, ITPZSIN#, ITPZTAN#, ITPRRW##
ITPWSQR# Nucleus for builtin function SQRT, extended precision

*** ITPWASI#, ITPZABS#, ITPZSQR#, ITPRRW##
ITPWTAH# Nucleus for builtin function TANH, extended precision

*** ITPRRW##
ITPWTAN# Nucleus for builtin function TAN/COTAN, extended precision

*** ITPRRW##
ITPXABS# Nucleus for builtin function ABS, cplx single precision

*** ITPRCE##
ITPXATA# Nucleus for builtin function ATAN/ATANH, cplx single precision

*** ITPRCE##
ITPXDIV# Nucleus for devision of FLOAT-type operands, single precision

*** ITPACF##
ITPXEXP# Nucleus for builtin function EXP, cplx single precision

*** ITPXPWC#, ITPRCE##
ITPXLOG# Nucleus for builtin function LOG, cplx single precision

*** ITPXPWC#, ITPRCE##
ITPXMLT# Nucleus for multiplication of CPLX FLOAT-type operands,

single precision
*** ITPXPWI#, ITPACF##

ITPXPWC# Nucleus for exponentiation CPLX FLOAT single precision **
CPLX FLOAT single precision

*** ITPRCE##
ITPXPWI# Nucleus for exponentiation CPLX FLOAT single precision **

integer
*** ITPRCE##

ITPXSIN# Nucleus for builtin function SIN/COS/SINH/COSH, cplx
single precision

*** ITPRCE##
ITPXSQR# Nucleus for builtin function SQRT, cplx single precision

*** ITPRCE##
ITPXTAN# Nucleus for builtin function TAN/TANH, cplx single precision

*** ITPRCE##

U253-J-Z125-9-7600 549

Runtime modules

Module Function / invoked by module (***)

ITPYABS# Nucleus for builtin function ABS, cplx double precision
*** ITPRCD##

ITPYATA# Nucleus for builtin function ATAN/ATANH, cplx double
precision

*** ITPRCD##
ITPYDIV# Nucleus for division of CPLX FLOAT-type operands, double

precision
*** ITPACF##

ITPYEXP# Nucleus for builtin function EXP, cplx double precision
*** ITPYPWC#, ITPRCD##

ITPYLOG# Nucleus for builtin function LOG, cplx double precision
*** ITPYPWC#, ITPRCD##

ITPYMLT# Nucleus for multiplication of CPLX FLOAT-type operands,
double precision

*** ITPYPWI#, ITPACF##
ITPYPWC# Nucleus for exponentiation CPLX FLOAT double precision **

CPLX FLOAT double precision
*** ITPRCD##

ITPYPWI# Nucleus for exponentiation CPLX FLOAT double precision **
integer

*** ITPRCD##
ITPYSIN# Nucleus for builtin function SIN/COS/SINH/COSH, cplx

double precision
*** ITPRCD##

ITPYSQR# Nucleus for builtin function SQRT, cplx double precision
*** ITPRCD##

ITPYTAN# Nucleus for built function TAN/TANH, cplx double precision
*** ITPRCD##

ITPZABS# Nucleus for builtin function ABS, cplx extended precision
*** ITPRCW##

ITPZATA# Nucleus for builtin function ATAN/ATANH, cplx extended
precision

*** ITPRCW##
ITPZEXP# Nucleus for builtin function EXP, cplx extended precision

*** ITPZPWC#, ITPRCW##
ITPZLOG# Nucleus for builtin function LOG, cplx extended precision

*** ITPZPWC#, ITPRCW##
ITPZMLT# Nucleus for multiplication and division of CPLX FLOAT-type

operands, extended precision
*** ITPZPWC#, ITPZPWI#, ITPACF##

ITPZPWC# Nucleus for exponentiation CPLX FLOAT extended precision **
CPLX FLOAT extended precision

*** ITPRCW##
ITPZPWI# Nucleus for exponentiation CPLX FLOAT extended precision **

integer
*** ITPRCW##

ITPZSIN# Nucleus for builtin function SIN/COS/SINH/COSH, cplx
extended precision

*** ITPRCW##

550 U253-J-Z125-9-7600

Runtime modules

Module Function / invoked by module (***)

ITPZSQR# Nucleus for builtin function SQRT, cplx extended precision
*** ITPRCW##

ITPZTAN# Nucleus for builtin function TAN/TANH, cplx extended
precision

*** ITPRCW##
ITP2SRT# Intermediate routine for calling BS2000 SORT from PLI1 programs

and (optionally) interfacing user routines for record I/O during
sort run;
utilities BS2SRTA, BS2SRTB, BS2SRTC, BS2SRTD

U253-J-Z125-9-7600 551

PLI1 Runtime system

14.8 Messages of the PLI1 runtime system

These messages appear for inability to call the PL/I error handling routine, e.g. because
the necessary initializations have not been carried out (e.g. during the prolog of the pro-
gram) or because the routines needed for condition handling are affected by error con-
ditions themselves (e.g. text output routines, program interrupt handling). Depending on
the type of error, the program is terminated or an interactive prompt appears to that
effect (***CONTINUE (Y/N)).

Format:
***Ennn ERROR IN mmmmmmm:message

where:

’nnn’ is the number of the message,
’mmmmmmm’ is the name of the module which caused the message;
’message’ is the text of the message.

The following table provides a listing of message numbers and texts together with addi-
tional information.

Number Message Description/Cause Reaction

001 INTERRUPT OR WROUT Error in PLI1 frame Inform System
ERROR IN RUNTIME SYSTEM routine Service

002 PROGRAM CANNOT BE Unable to sign on Remove storage
003 INITIATED program interrupt bottleneck;

handling; e.g. load reduce object
module too large module

004 STACK POINTER (R13) Error handling impos.; If necessary,
DESTROYED-NO COND’ R13 destroyed; correct the
HANDLING possibly user error program

007 IRREGULAR INTERRUPT Undefined interrupt Inform System
or error in tracer Service

011 STORAGE SHORTAGE Storage shortage for Increase entry
012 stack initialization or for *RUNOPT
013 after STORAGE condition STORAGE = SPACE

014 ILLEGAL VALUE IN Invalid STORAGE option Correct the
015 STORAGE OPTION IGNORED parameter STORAGE option
016
017

552 U253-J-Z125-9-7600

PLI1 Runtime system

Number Message Description/Cause Reaction

021 MULTIPLE INITIALISATION Attempted multiple
initialization of the
PLI1 environment

022 ILLEGAL PARAMETER Inconsistent STORAGE Correct the
parameter STORAGE option

023 STORAGE SHORTAGE Storage shortage for Increase entry
stack initialization or for *RUNOPT
after STORAGE condition STORAGE = STACK

024 ILLEGAL VALUE IN Invalid STORAGE option Correct the
025 STORAGE OPTION IGNORED parameter STORAGE option
026
027

029 FREE CHAIN Free chain of the Program may have
DESTROYED IN STANDARD standard area de- to be corrected
AREA stroyed; possibly user

error

030 LINESIZE TOO LARGE, Line size too large Correct the
ADJUSTED TO BUFFERSIZE for interactive device LINESIZE parameter

031 CONTROL DATA DESTROYED Control information Inform System
destroyed or parameter Service
illegal

032 IRREGULAR INTERRUPT Undefined interrupt Inform System
or error in the Service
backtracer

033 CONTROL DATA DESTROYED Control information Inform System
destroyed or parameter Service
illegal

034 ERROR ON SYSOUT/SYSLST Error in text output Inform System
Service

035 STORAGE SHORTAGE Storage shortage for Increase option
text output routines for *RUNOPT

STORAGE = AREA

036 PLI1 TEXTFILE NOT Text file improperly Make text file
AVAILABLE (MISSING, assigned available, e.g.
LOCKED, ETC.) by /FILE...,

LINK = TEXTLINK

037 ERROR ON SYSOUT/SYSLST Error in text output Inform System
Service

U253-J-Z125-9-7600 553

PLI1 Runtime system

Number Message Description/Cause Reaction

038 FILE NOT USABLE FOR Incompatible SAVLST Use default
SAVLST file parameters SAVLST file

parameters

039 I/O ERROR on SAVLST I/O error for SAVLST Inform System
file Service

050 INTERNAL ST$STVW# ERROR PLI1 storage management Inform System
051 error Service
052
053

055 REQM ERROR REQM macro error Inform System
(MEMORY SATURATION) Service

056 RELM ERROR RELM macro error Inform System
Service

070 UNRECOVERABLE SYNTAX Error in OPTIONS entry Correct the
ERROR IN OPTIONS *RUNOPT entry

071 INPUT TOO LARGE FOR OPTIONS entry too long Reduce the line
OPTION routine with *RUNOPT

080 ILLEGAL OPERATION FOR Module BIT#OP## of the Inform System
OVERLAPPING BIT PLI1 runtime system Service
STRINGS has been called while

using an invalid entry

101 I/O UNABLE TO Termination procedure Inform System
INITIALIZE TERMINATION cannot be signed on for Service

OPEN

102 I/O-System ERROR DMS error for Inform System
103 OPEN/CLOSE Service
104
105
106
107
108
109

554 U253-J-Z125-9-7600

PLI1 Runtime system

Number Message Description/Cause Reaction

110 ATTEMPT TO START A A program containing Link in the
FOR1-PROGRAM OUTSIDE FOR1 procedures is correct sequence
THE MAIN-PROCEDURE started in the PLI1 or with a START

runtime system specification

111 INCONSISTENT RUNTIME/ Prelinked sections of Obtain suitable
I/O-SYSTEM the PLI1 runtime system runtime system;

(P$RTS###/P$IOS###) relink if
do not agree with the necessary
connection module
(P$ANFOD#)

112 ATTEMPT TO START A A program invoked by Link in the
PLI1-PROGRAM OUTSIDE foreign procedures correct
THE MAIN-PROCEDURE is started in the PLI1 sequence

runtime system

U253-J-Z125-9-7600 555

ASSEMBLER macros

14.9 Examples of PLI1 ASSEMBLER macros

1. PL/I Main Program

PLIMAC :PROC OPTIONS(MAIN);

PUT SKIP LIST
(’TEST OF PLI1.MACLIB’);

PUT SKIP LIST
(’CALL OF ASSEMBLER-SUBROUTINES, THAT ARE CALLING’);

PUT SKIP LIST
(’PL/I-SUBROUTINES ETC.’);

PUT SKIP;

DCL (UP1,UP2,UP3,UP4,UP5)
ENTRY OPTIONS(ASM);

DCL (UP6,UP7) RETURNS (PTR);
DCL (UP8,UP9) OPTIONS(PLI1);
DCL A CHAR(40) VAR INIT

(’1234567890 3 CHAR.S ARE NOT PRINTED’),
B CHAR(40) BASED (P),
C CHAR(40) VAR INIT(’CCCCCCCCCCCC’),
D BIT (256) INIT (’C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF’B4

’808182838485868788898A8B8C8D8E8F’B4),
P PTR INIT(ADDR(X)),
PT6 PTR,
PT7 PTR,
X CHAR(100) INIT((100)’X’),
ERROUT OPTIONS(LIB);

ON ERROR BEGIN;
CALL ERROUT;
GOTO ERR;

END;

CALL UP1 (A,B,C,D);
CALL UP2 (A);
CALL UP3;
CALL UP4;

ERR: CALL UP5 (PLIUP3,P1,P2,P3,P4,P5,P6);
PT6 = UP6 ();
PT7 = UP7 ();
PUT SKIP EDIT

(’R12=’,UNSPEC(PT6)) (A,B4);
PUT SKIP EDIT

(’====’,UNSPEC(ADDR(PLI1GLOBAL(1))) ’FFFFF000’B4)
(A,B4);

PUT SKIP EDIT
(’R13=’,UNSPEC(PT7)) (A,B4);

CALL UP8;
FIN:

CALL UP9;
PUT SKIP LIST(’NORMAL END’);

STOP;

556 U253-J-Z125-9-7600

ASSEMBLER macros

PLIUP1:ENTRY(A1,A2,A3,A4);
DCL (A1,

A2,
A3) CHAR(40) VAR,
A4 CHAR(32);

PUT SKIP DATA (A1);
PUT SKIP DATA (A2);
PUT SKIP DATA (A3,A4);
PUT SKIP;
RETURN;

PLIUP2:ENTRY(B1,B2,B3,B4,B5,B6);
DCL (B1,B3,B5(P1,P3,P5)STATIC) CHAR(15) VAR,

(B2,P2 STATIC) BIN FIXED(31),
(B4,P4 STATIC) DEC FIXED(5),
(B6,P6 STATIC) PTR,
B7 CHAR(15) VAR BASED (B6);

P1=B1;P2=B2;P3=B3;P4=B4;P5=B5;P6=B6;

PUT SKIP DATA (B1,B2);
PUT SKIP DATA (B3,B4);
PUT SKIP DATA (B5,B7);

RETURN;

PLIUP3:ENTRY(C1,C2,C3,C4,C5,C6);
DCL (C1,C3,C5) CHAR(15) VAR,

C2 BIN FIXED(31),
C4 DEC FIXED(5),
C6 PTR,
C7 CHAR(15) VAR BASED (C6);

PUT SKIP DATA (C1,C2);
PUT SKIP DATA (C3,C4);
PUT SKIP DATA (C5,C7);
PUT SKIP;

RETURN;

PLIUP4:ENTRY;

PUT SKIP LIST (’PLIUP4 ENTERED’);
PUT SKIP;

RETURN;

PLIUP5:ENTRY;

PUT SKIP LIST (’PLIUP5 ENTERED’);
PUT SKIP;

RETURN;

END PLIMAC;

UP1 START
PRINT NOGEN

U253-J-Z125-9-7600 557

ASSEMBLER macros

SSS P$STACK
PRV P$PRV

P$ENTRY LENGTH=200
* PARAMS FOR THE FOLLOWING CALL VIA R1 FROM PL/1

P$CALL PLIUP1,PARNUM=4
P$RETURN

UP2 P$ENTRY
LA R1,0(,R1)
WRLST (1)
P$RETURN

UP3 P$ENTRY LENGTH=0
P$CALL PLIUP2,(P1,P2,P3,P4,P5,P6)
P$RETURN

P1 DC H’15’,CL40’FIRST PARAMETER’
P2 DC F’99999’
P3 DC H’12’,CL15’2ND PARAMETER’
P4 DC P’99999’
P5 DC H’00’,CL15’3RD PARAMETER’
P6 DC A(P11)
P11 DC H’17’,CL15’WRONG LENGTH STRING’
P12 DC C’!!!!!’
UP4 P$ENTRY

P$ERROR ONCODE =0003,MSG=01
P$RETURN

UP5 P$ENTRY
P$CALL PARNUM=7
P$RETURN STXIT=YES

UP6 P$ENTRY
LR R1,R12
P$RETURN R1RETN=YES,STXIT=YES

UP7 P$ENTRY
LR R1,R13
P$RETURN R1RETN=YES,STXIT=NO

UP8 P$ENTRY
P$CALL PLIUP4
P$RETURN STXIT=YES

UP9 P$ENTRY
BALR 10,0
USING *,R10
LA R1,=V(PLIUP5)
P$CALL
P$RETURN
END

558 U253-J-Z125-9-7600

ASSEMBLER macros

The PL/I program PLIMAC calls the entries of the ASSEMBLER program UP1, which
call the entries of the main program via the P$CALL macro. As a result the following is
output:

TEST OF PLI1.MACLIB
CALL OF ASSEMBLER-SUBROUTINES, THAT ARE CALLING
PL/1-SUBROUTINES ETC.

A1=’1234567890 3 CHAR.S ARE NOT PRINTED’;
A2=’XX’;
A3=’CCCCCCCCCCCC’ A4=’ ABCDEFGHI abcdefghi ÄÖÜ’;
4567890 3 CHAR.S ARE NOT PRINT

B1=’FIRST PARAMETER’ B2= 99999;
B3=’2ND PARAMETER’ B4= 99999;
B5=’’ B7=’WRONG LENGTH ST’;
*****ERROR-CONDITION, ONCODE=0003 AT OFFSET ’027312’ IN PROCEDURE WITH ENTRY
UP4
NO WHEN CLAUSE SATISFIED AND NO OTHERWISE CLAUSE SPECIFIED

C1=’FIRST PARAMETER’ C2= 99999;
C3=’2ND PARAMETER’ C4= 99999;
C5=’’ C7=’WRONG LENGTH ST’;

R12=00028000
====FFFFFDEC
R13=7F02E580
PLIUP4 ENTERED

PLIUP5 ENTERED

NORMAL END

END OF PROGRAM PLIMAC , RTS 3.2A-600, TIME USED: 0.09 SEC

U253-J-Z125-9-7600 559

ASSEMBLER macros

2. ASSEMBLER Main Program

HP2 START
PRINT GEN
BALR R11,0
USING *,R11
P$ENVIRM BASEREG=R11
P$LINK PLIUP4,LIBNAM=BIS.OBJ
ST R1,PAREND
LA R1,PAREND
P$CALL
P$LINK PLIUP2,LIBNAM=BIS.OBJ
ST R1,PAREND
LA R1,PAREND
P$CALL ,(P1,P2,P3,P4,P5,P6)
P$STOP

P1 DC H’15’,CL40’FIRST PARAMETER’
P2 DC F’99999’
P3 DC H’12’,CL15’2ND PARAMETER’
P4 DC P’99999’
P5 DC H’00’,CL15’3RD PARAMETER’
P6 DC A(P11)
P11 DC H’17’,CL15’WRONG LENGTH STRING’
P12 DC C’!!!!!’

END

PLIUP2 : PROC (B1,B2,B3,B4,B5,B6) ;
DCL (B1,B3,B5) CHAR(15) VAR,

B2 BIN FIXED(31),
B4 DEC FIXED(5),
B6 PTR,
B7 CHAR(15) VAR BASED (B6);

PUT SKIP DATA (B1,B2,B3);
PUT SKIP DATA (B4,B5,B7);
PUT SKIP;

END;

PLIUP4 : PROC ;
PUT SKIP LIST

(’PLIUP4 ENTERED’);
PUT SKIP;

RETURN;
END;

The ASSEMBLER main program HP2 invokes PL/I programs PLIUP2 and PLIUP4 which
are dynamically linked by means of the P$LINK macro. As a result the following is out-
put:

PLIUP4 ENTERED

B1=’FIRST PARAMETER’ B2= 99999 B3=’2ND PARAMETE’;
B4= 99999 B5=’’ B7=’WRONG LENGTH ST’;

560 U253-J-Z125-9-7600

15 References
[1] PLI1 (BS2000)

PL/I Compiler
Language Reference Manual

Target group
PL/I users in BS2000.
Contents
Language elements and program modules, data types and attributes, storage
allocation, statements, program structure, I/O, expressions, data conversion,
formats and picture characters, built-in functions, pseudo-variables, preproces-
sor and uncommon program results.
The reference manual is also suitable as a textbook for PL/I novices.

[2] BS2000
Control System Command Language
Reference Manual

Target group
BS2000 users (non-privileged).
Contents
All BS2000 system commands in alphabetical order with detailed explanations
and examples.
The following products are dealt with:
BS2000-GA, MSCF, JV, FT, TIAM.
Applications
BS2000 interactive/batch mode, procedures.

[3] BS2000
Utility Routines
Reference Manual

Target group
BS2000 users (non-privileged).
Contents
Utility routines for non-privileged BS2000 users.
Applications
BS2000 timesharing mode.

U253-J-Z125-9-7600 561

References

[4] EDOR (BS2000)
Reference Manual

Target group
Data entry operators, programmers.
Contents
Description of the statements to the EDOR File Editing System.
Applications
BS2000 interactive mode.

[5] EDT (BS2000)
Reference Manual

Target group
Data entry operators, programmers.
Contents
Description of the statements for the EDT file editor; EDT procedures; EDT
subroutine interface.
Applications
BS2000 interactive/batch mode.

[6] BS2000
System Messages
Reference Manual

Target group
BS2000 users.
Contents
Standard format messages of the BS2000 control system, including SPOOL,
RSO, SDF; standard format messages of the software products DCAM, TIAM,
RBAM.

[7] BS2000
DMS Disk Processing
Reference Manual

Target group
BS2000 users, assembly language programmers (both non-privileged).
Contents
Functions of the Data Management System in BS2000; DMS commands and
macros, service and action macros; access methods UPAM, SAM, ISAM and
EAM for disk files.
Applications
BS2000 interactive/batch mode, programming.

562 U253-J-Z125-9-7600

References

[8] COB1(BS2000)
COBOL Compiler
User Guide

Target group
COBOL users in BS2000.
Contents
Operation of the COB1 compiler and the software required for the develop-
ment, linking, execution and debugging of COBOL programs; structure of the
COB1 system and the generated object modules; programming notes; compi-
ler messages and the COB1 interface with UDS.

[10] SORT (BS2000)
Reference Manual

Target group
BS2000 users.
Contents
Functions and statements for sorting and merging files.

[11] PLI1 (BS2000)
PL/I Compiler
Reference Guide

Target group
PL/I users in BS2000.
Contents
Tables of language elements, debugging aids and compiler and object con-
trol functions.

[12] BS2000
Linkage Editor and Loaders
Reference Manual

Target group
BS2000 users.
Contents
Description of the statements for linking and loading programs with
TSOSLNK, ELDE and DLL.
Applications
BS2000 interactive/batch mode.

U253-J-Z125-9-7600 563

References

[13] LMS (BS2000)
Reference Manual

Target group
BS2000 users.
Contents
Description of the statements for creating and managing PLAM libraries with
LMS and storing library members using the delta method.
Applications
BS2000 interactive/batch mode.

[14] BS2000
Interactive Debugging Aid (IDA)
Reference Manual

Target group
Programmers.
Contents
Description of the commands and macros for the Interactive Debugging Aid
(IDA).
Applications
BS2000 interactive mode.

[15] BS2000
Job Variables
Reference Manual

Target group
BS2000 users.
Contents
Applications for job variables in controlling and monitoring jobs and program
runs; conditional job control; all the necessary commands and macros; appli-
cation examples.
Applications
BS2000 timesharing mode.

564 U253-J-Z125-9-7600

References

[16] BS2000
Executive Macros
Reference Manual

Target group
BS2000 assembly language programmers (non-privileged); system administra-
tors.
Contents
All Executive macros in alphabetical order with detailed explanations and
examples; selected macros for DMS and TIAM; macro overview according to
application areas; comprehensive training section dealing with eventing, seriali-
zation, inter-task communication, contingencies.
Applications
BS2000 application programs.

[17] BS2000
DMS Tape Processing
Reference Manual

Target group
BS2000 users, assembly language programmers (both non-privileged).
Contents
Functions of the Data Management System in BS2000; DMS commands and
macros, service and action macros; access methods UPAM, SAM and BTAM
for tape files.
Applications
BS2000 interactive/batch mode, programming.

[18] AID (BS2000)
Advanced Interactive Debugger
Debugging of PL/1 Programs
User’s Guide

Target group
PL/1 programmers.
Contents
Preparations for the symbolic debugging of PL/1 programs; description of all
the AID commands available for symbolic debugging; examples of AID ses-
sions; messages.
Applications
Debugging of PL/1 programs in interactive and batch modes.

U253-J-Z125-9-7600 565

References

[19] BS2000
User Commands (SDF Format)
Reference Manual

Target group BS2000 users Contents All BS2000 user commands in SDF format
in alphabetical order with detailed explanations and examples. Applications
BS2000 interactive mode, procedures, batch mode

Ordering manuals

The manuals listed above and the corresponding order numbers are to be you how to
order manuals. New publications are listed in the Druckschriften-Neuerscheinungen
Datentechnik (New Publications).

You can arrange to have both of these sent to you regularly by having your name pla-
ced on the appropriate mailing list. Your local office will help you.

566 U253-J-Z125-9-7600

Index
$TSOS 150
$TSOSLNK 95
%INCLUDE 47, 66, 70, 75, 129
*COMOPT 51
*COMOPT DIAGNOST 122
*COMOPT LIST 99
*COMOPT MODULE = destination 93
*COMOPT MODULE=target control statement 91
*DUMMY 78, 207
*EAM file 93

object module 95
*END 51, 67
*RUNOPT 172

A
abbreviation for control statement 52
ABORT 85
absolute pointer 406
access authorization 218
access method 209
access method EAM 209
access method ISAM 209
access method PAM 209
access method SAM 209
access protection 218
acess method BTAM 209
activation of check points 383
activation record 437
ACTIVE control statement 187
administration information 211
ADUMP 455
AGGREGATE 80, 112
aggregates 369

U253-J-Z125-9-7600 567

Index

AID 90
debugger 386

aliased variable 419
ALIGN 187
ALIGNED 389
alignment 434
alphanumeric picture 435
AREA 65, 181, 183
area 408
AREA attribute 408, 446
argument 441
ARGUMENT control statement 180
arithmetic expressions 362
arithmetic variable 389
array element 414
ASACNTRL 76
ascertainment of storage requirements 416
ASM 298
assembler convention 309
assembler procedure 307
assembly listing 119
ASSIGN-SYSDTA, SDF operand 195
ASSIGN-SYSLST, SDF operand 195
ASSIGN-SYSOUT, SDF operand 195
assigning, file 236
assignment 360

file name 236
assignment of organization methods 239
ASSM 81, 119
attribute 357
attribute listing 80
AUTOMATIC 437
auxiliary variable 441

B
BACKWARDS 283
BASED attribute 426, 442
BASED variable 478
batch mode 46, 52, 204, 254
batch processing 13
BIT 428
bit string 370
BITPTR 87
BLKSIZE for ENVIRONMENT 225

568 U253-J-Z125-9-7600

Index

BLKSIZE parameter 212
BLOCK 212
block condition 440
block example 213
block length field 212
block size 212
block type 439
Boolean expressions 362
branch 304
BREAK command 204
BREAK function 188
BREAKPOINT 86
breakpoint 48, 380
BS2SRT 457
BTAM, access method 209
buffer 212
buffer length 212

C
call nesting 473
calling the linkage editor 151
CALLTRACE 86, 186, 380
carriage control 76, 228
carriage control character 211
CATALOG command 218
CHARACTER 403
character string 370, 400
character string variable 403
class 4 memory 480
COBOL 314
COBOL procedure 311, 316
CODE 85
code generation 85
code module 92, 93, 161
code output 85
COMLIB 129
COMLIB control statement 66, 75
command procedure 5
common expression 340
common expression elimination 350
COMOPT 119
COMP 235
compilation 5
compiler, controlling 50

U253-J-Z125-9-7600 569

Index

compiler control 380
example 46

compiler listing 20
COMPILER-ACTION, SDF operand 136
COMPILER-TERMINATION, SDF operand 144
computing time used 470
COND 181
condition 371
condition ENDPAGE 251
condition UNDEFINEDFILE 227
CONSECUTIVE 224

organization 258
CONSECUTIVE file organization 37
constraints on implementation 521
control character 251
CONTROL control statement 187
control optimization 353
control statement

abbreviation 52
object program 165
rule 51, 172
specification 51
validity 52

control statement preprocessor 129
control statements for compiler 41
CONTROLLED attribute 442, 449
controlled editing DATA 248
controlled editing LIST 248
controlled output DATA 250
controlled output LIST 250
CONTROLLED variable 479
controlling, listing output 173
controlling object module generation 85
controlling source input 66
controlling the compiler 50ff
controlling the linkage editor 150
controlling the listing output 78
conversion 362
CPU-LIMIT, SDF operand 194
cross-reference listing 109
CTLASA 228, 251
CTLMACH 228, 251

570 U253-J-Z125-9-7600

Index

D
DATA controlled editing 248
DATA controlled output 250
data conversion 334
DATA input 253
data management system 221
data module 161
data set 207, 211, 222
DEBUG control statement 86
debugger 32

AID 386
debugging aid 86, 90, 379
declaration 357
default 50
description of the data type 428
DEUTSCH 122
DEVICE 217
DEVICE parameter 217
DIAGNOST control statement 82
diagnostic message 122
DIMENSION attribute 414
dimension BIT 428
direct access media 217
DIRECT KEYED 239
DISPLAY 184
DISPLAY statement 237
distinction from PL/I-D 525
DMS macro 221, 238
DO command 204
DO groups 366
drifting character 434
dummy record 271, 273
DUMP 384
dump 384, 469
DUMP control statement 181
duplicate key for REGIONAL(3) 278

E
EAM 42

access method 209
EAM file, erase 6
EAM object modules file 151
EDIT input 253
EDOR 80, 102

U253-J-Z125-9-7600 571

Index

EDT 80, 102
element 70, 91
elementary runtime system 158, 159
enable control statement 41
enabled control statement 81
ENABLING 88
END statement 154
ENDFILE condition 260, 280
ENDPAGE condition 251
ENGLISCH 122
ENGLISH 84
ENTER command 46, 204
ENTRY 149, 412
ENTRY attribute 161
entry variable 412
ENVIRONMENT 224
ENVIRONMENT attribute 222, 240
EOF 188
EOF command 204
ERASE 6
ERASE command 206
ERROR 82, 122
error 41, 122
error handling during control statement evaluation 53
error monitoring job variable 44, 168
error text 45, 464
error weight 44
ERROUT 464
ERROUT procedure 173
ESCAPE function 188
ESD 80, 106
example for REGIONAL(3) 276
example of compiler control 46
example of PLI1 ASSEMBLER macro 556
example of the linkage editor 155
examples of sorting 528
EXEC command 204
EXECUTE $TSOSLNK 151
EXECUTE command 43, 167
executive 221, 238
EXPAND 79, 102
expression simplification 347
EXTEND 78, 246, 259
extend file 246

572 U253-J-Z125-9-7600

Index

EXTERNAL 161
EXTERNAL attribute 236
EXTERNAL items 149
external name 106
external reference 150, 154
EXTERNAL variable 419

F
F format 211
FCBTYPE parameter 209
FILE 413
file, characteristics 242
file access 203
FILE attribute 222
file attribute 206
file attribute RECORD 222
file attribute STREAM 222
FILE command 151, 207, 240
FILE command for CONSECUTIVE file 261
FILE command for INDEXED file 267
FILE command for REGIONAL(3) files 281
file link name 70, 208
file name 207
file organization 37, 209
file organization CONSECUTIVE 37
file organization INDEXED 37
file organization REGIONAL (1) 37
file SAVLST 125
file size 219
file type 241
file variable 413
FIXED BINARY 390
FIXED BINARY PRECISION 390
fixed binary variable 390
FIXED DECIMAL PRECISION 393
fixed decimal variable 393
flag 439
FLOAT PRECISION 396
floating point variable 396
FORMAT 411
FORMAT control statement 83, 181
format variable 411
FORTRAN 312
FORTRAN procedure 311, 316

U253-J-Z125-9-7600 573

Index

frame character 105
FROM-FILE, SDF operand 193
FULLXREF 80, 109
function, PLI1 41

G
GAM 70
GAM file 41, 47
GAMKEY 70, 72, 77
gap chain 444
generation 207
GENKEY 264
GERMAN 84
GET statement 249
global optimization 340
GOTOTRACE 86, 380
group file 66
group key 72
group name 72

H
HEAP-ADMINISTRATION, SDF operand 199
hexadecimal character 465
HEXDEC 465

I
I/O buffer for CONSECUTIVE file 259
I/O statement for INDEXED organization 263
I/O statements for REGIONAL(1) and REGIONAL(3) organization 270
IDA statement 156
ILCASE 235
ILCS

interrupt handling 322
mapping of files 322
OPTION 64
parameter types 322
termination processing 322

ILCS procedures 320
in-line operation 334
include 103
INCLUDE reference 41, 75
INCLUDE reference listing 80, 126
INCLUDE statement 150, 153
INCLUDE text 41, 79
include text 108

574 U253-J-Z125-9-7600

Index

INCLUDE-LIBRARY, SDF operand 133
INDEXED 224
INDEXED file organization 37
INDEXED organization 263
Industry Standard 316
INFORMATION 82, 122
information 122
information message 535
INITIAL attribute 478
initialization 360
initialization of aggregate 348
INOUT 246, 259
input buffer 260
input DATA 253
input EDIT 253
input file 204
input LIST 253
input/output 372
input/output statement 479
INSOURCE 80, 101
INTER 298
interactive mode 46, 52, 204
interactive task 18
interlanguage facility 311
internal procedure calls 349
internal representation 387
INTERRUPT 87
interrupt handling 317, 341
INTR command 188
invocation from COBOL program 319
invocation from FORTRAN program 319
invocation interface 288
IREF 80, 108
ISAM, access method 209
ISO 87
ISO code 213

J
job variable, monitoring 168

U253-J-Z125-9-7600 575

Index

K
key 241
KEY condition 266, 273, 274, 276, 280
key for CONSECUTIVE file 259
key options 227
key specification 264
key specification for REGIONAL(1) and REGIONAL(3) organization 271
key specification for REGIONAL(3) 276
KEYLEN parameter 227
KEYLENGTH 227
KEYLOC 227
KEYPOS parameter 227
keyword 51

L
LABEL 410
label variable 410
LABTRACE 86, 186, 380
LANGUAGE, SDF operand 146, 194
leader 104
LEAVE 285
length specification 428
LIBRARY 305
library procedure 305
LIMCT 278
limit value 521
limits for arithmetic values 524
limits for input/output procedures 524
limits for matrices and areas 524
limits for names 524
limits for strings and pictures 524
LINE 235
line length 83
line mode 254
line reference 102
LINECNT 80, 102
LINESIZE 184, 254
LINESIZE attribute 249
LINID 76, 102, 130
LINK 20
LINK name 75
LINK parameter 208
LINK=SAVLINK 125
LINK=TEXTLINK 45

576 U253-J-Z125-9-7600

Index

linkage editor call 151
linkage editor example 155
linking 5, 95, 149
LIST control statement 79, 182
LIST controlled editing 248
LIST controlled output 250
LIST input 253
LIST=INSOURCE 126
LIST=IREF 126
LIST=MAP 385
LIST=SUMMARY 444
LISTING, SDF operand 138, 198
listing 20, 81

compiler 20
listing output, controlling 78, 173
listing preprocessor 101
LMS 70
LMS element 91
LMS library 70, 91, 92

object module 97
load module 149, 156
loading 5, 149, 156
LOCATE 426
LOCATE SET 234
LOCATE statement 256
logical block 212

M
machine code 81
MACRO 85, 87
macro 481
macro library 41
macro-organized library 66
magnetic tape 283
MAIN 87
main and substructure 420
MAIN OPTIONS 63
main procedure 87
manual optimization 326
MAP 80, 115
mapping of SDF to RUNOPT operands 202
mapping SDF, COMOPT operands 147
MARGINS 70, 102
MARGINS control statement 76

U253-J-Z125-9-7600 577

Index

MARGINS option 67
MARGINS=SAVMAC 128
member 70
MERGE 457
MERGE control statement 458
MESSAGE control statement 82, 182, 458
messages of the PLI1 runtime system 552
MLU 70
MLU file 47
modular programming 333
MODULE 91
module library 28
MODULE-LIBRARY, SDF operand 137
monitoring job variable 44
MONJV 44

SDF operand 145, 194

N
name convention, object module 161
named area 446
NEST 80, 102
nesting level 101
nestings 80
NOLINID 76
nonstandard block 212
NOTRACE 467
number of errors 85
number of lines 83, 181
numeric picture 435

O
OBJECT 85
object code listing 41, 156
object listing 81
object module 5, 41, 149

LMS library 97
name convention 161

object module *EAM file 95
object module generation controlling 85
object module library 153
object module maintenance 93
object modules 150
object modules file EAM 151
object program, control statement 165
OBJECT=MACRO 126

578 U253-J-Z125-9-7600

Index

OFFSET 80, 119, 406
OFFSET list 41
OFFSET listing 81
offset listing 119
ON chain 440
ON unit 371
ONCODE=value 501
ONINTR 189
opening a REGIONAL(3) file 279
OPTIMIZATION, SDF operand 143
optimization 88, 323
optimization control 353
optimization global 340
optimization manual 326
optimization of Boolean expressions 346
optimization register 352
optimization time 353
OPTIMIZE control statement 88
OPTIMIZE=TIME 385
option PAGESIZE 251
option RUNOPT 237
option SPACE 219
OPTIONS 81, 87, 182, 296, 453
OPTIONS attribute 63
OPTIONS control statement 87
OPTIONS entry ASSEMBLER 64
OPTIONS entry COBOL 64
OPTIONS entry FORTRAN 64
OPTIONS entry ILCS 64
OPTIONS entry INTER 64
OPTIONS entry LIBRARY 64
OPTIONS entry VARIABLE 64
OPTIONS entry WXTRN 64
OPTIONS option BITPTR 63
OPTIONS option ENABLING 63
OPTIONS option ISO 63
OPTIONS option MAIN 63
OPTIONS option OVERLAP 63
OPTIONS option REENTRANT 63
OPTIONS option REORDER 63
OPTIONS option XS 63
OPTIONS=MACRO 126
ORDER option 343
organizing, various ways of 224

U253-J-Z125-9-7600 579

Index

OUT 85
OUTTEXT 79, 102
OVERLAP 88, 354
overlapping 354

P
P$CALL 483
P$ENTRY 486
P$ENVIRM 488
P$ERROR 490
P$LINK 491
P$PRV 493
P$REGEQU 494
P$RETURN 495
P$STACK 497
P$STOP 498
PAD 76, 102
PAD parameter 209
PAD specification 213
page mode 254
PAGESIZE 184, 255
PAGESIZE option 251
PAM 210
PAM block 212
PARAM command 41
parameter 441
passing of parameters 292
password 218
PASSWORD command 218
physical block 212
picture 434
PICTURE attribute 405, 428
picture description 433
picture length 434
picture type 434
picture variable 405
PL/I interface 288
PL/I standard 87
PL/I-D 525
PLI1 ASSEMBLER macro interface 481
PLI1 function 41
PLI1.SAVMAC 128
PLI1GLOBAL(n) 478
PLIRETC 468

580 U253-J-Z125-9-7600

Index

POINTER 406
pointer 406
pointer for CONSECUTIVE file 259
pointer for regional(1) 273
PRECISION 389
precision 428
prelinked runtime system 158, 159
PREPROCESSING, SDF operand 135
preprocessor 126
preprocessor listing 101
preprocessor output 128
preprocessor statement 128
presetting for access methods 239
presetting for organization methods 239
PRIMARY 68, 78
PRINT 80, 102
PRINT command 258
PRINT file 251
PRINTER 83
private volume 217
PROCEDURE 6
procedure 46

COBOL 311
FORTRAN 311

procedure ERROUT 173
procedure file 204
procedure nesting 181
PROCEDURE OPTIONS 356
PROCEDURE-TRACE 186
PROCEDURETRACE 86
PROCTRACE 86, 380
PROcTRACE 186
program

execution 167
started 165

program control 356, 381
program control variable 406
program execution 5
program interrupt 188, 384
PROGRAM statement 152
pseudo variable 370
public volume 217
PUT statement 249

U253-J-Z125-9-7600 581

Index

Q
QUICK 385

R
RANGE 181
RDPASS parameter 218
RDUMP 469
READ INTO 230, 426
READ ONLY 480
READ SET 232, 426
READ statement 256
record 426
RECORD condition 259, 266
RECORD control statement 458
RECORD file attribute 222
record format 211
record key 227
record length 211
record length field 211
record structure 211, 225
record-oriented input and output 256
record-oriented transfer 222
record-oriented transmission 256
RECSIZE parameter 211
RECSIZE(r) for ENVIRONMENT 225
reducible function 346
reduction of linear expressions 352
reduction of linear expressions in DO loops 343
REENTRANT 87
REFER 424
reference chain 449
reference listing 41, 109
region-specific record key 276
REGIONAL (1) file organization 37
REGIONAL (1) organization 269
REGIONAL(1) 224
REGIONAL(3) 224
register and address optimization 352
register in DO statement 349
register in DO statements 352
register saving 439
relative pointer 406
REORDER 88, 353
REORDER option 343

582 U253-J-Z125-9-7600

Index

RESOLVE statement 150, 154
result of the preprocessor 128
RESUME 156, 170, 188
RESUME command 52
RETPD parameter 218
return 303
return address 439
return of the result 299
return when * is specified 301
RETURNS option 301
RETURNTRACE 86, 186, 380
REWRITE statement 256
rule of reduction 161
rules for control statement 51
rules governing REGIONAL(3) organization 275
rules of the industrial standard 87
RUNOPT 381
RUNOPT option 237
RUNTIME 470
runtime library 149
runtime module 543
runtime system 149, 157, 165, 325

elementary 158, 159
prelinked 158, 159
storage 160

S
SAM, access method 209
SAVLST 81, 82, 122
SAVMAC 77
SCALARVARYING 211, 229
SCALARVARYING specification 258
scaling 428, 434
SDF mapping, RUNOPT operands 202
SDUMP 471
self-defining structure 424
SEMANTIC 85
semantics run 85
SEQUENTIAL KEYED 239
set return code 468
SETSW command 169
SEVERE 82, 122
SHARE command 480
shareability 265

U253-J-Z125-9-7600 583

Index

shareable programs 477
shared update 265
SHARUPD 218
SHRTXREF 80, 109
simultaneous access 218
SNAP 181, 385, 473
SORT 528
SORT control statement 458
sort/merge program SORT 457
SORTCKPT 458
SORTIN 458
SORTOUT 458
SORTWK 458
SOURCE 79, 102

SDF operand 132
SOURCE control statement 70
source key 276
source line 104
source listing 79
source program 41
source protocol 102
source text 127
SOURCE-PROPERTIES, SDF operand 134
SPACE 251
SPACE option 219
specification for control statement 51
specifying OPTIONS 292
spool file 204
spool-in file 68
spoolin file 204
STACK 65, 181, 183
stack 81, 183
stack dump 471
stack request 81
STACK-ADMINISTRATION, SDF operand 200
standard area 183, 442
Standard assembler convention 298
standard block 212
START PLI1 COMPILER 43
START-PARAMETERS, SDF operand 194
START-PLI1-COMPILER, operand overview 131
START-PLI1-PROGRAM 167

operand overview 192
started, program 165

584 U253-J-Z125-9-7600

Index

statement condition 440
STATIC 478
STATIC attribute 436
static module 92, 93
static parent block 439
STATIC variable 478
static variable 436
statistics 81
statistics listing 121
STMT 86, 380
storage 151

runtime system 160
STORAGE control statement 65, 183
storage management 436
storage map 41
storage occupancy 115
storage occupancy statistics 41
storage statistics 183
STORAGE=AREA 443
STREAM file attribute 222
STREAM input/output for interactive devices 253
stream-oriented input and output (STREAM) 248
stream-oriented transfer 222
string variables 400
STRUCTURE 416
structure 416
structure length 112
structure length table 80
SUMMARY 81, 121, 182
summary of control statements 54
SYMTEST 90
SYNTAX 85
syntax check 136
syntax run 85
SYSCMD 68, 204
SYSDATA 41, 66
SYSDTA 68, 184, 204

system file 236
SYSFILE 6, 170
SYSFILE command 18, 52, 66, 68, 78, 238
SYSFILE control statement 184
SYSIN 13
SYSIPT 205
SYSLST 78, 82, 184, 204

U253-J-Z125-9-7600 585

Index

system file 236
SYSLYST 41
SYSOPT 205
SYSOUT 42, 78, 184, 204

system file 236
SYSPRINT 13
system defaults for file characteristics 244
system file 204
system file SYSDTA 236
system file SYSLST 236
system file SYSOUT 236

T
TABULATOR control statement 186
TABULATOR-POSITION, SDF operand 201
task switch 0 53
TASKLIB 150
TCHNG 188
temporary write protection 218
TERMINAL 81, 82, 83, 122, 182, 186, 235
terminating a procedure 302
termination code 44
TEST-SUPPORT, SDF operand 141, 196
TEXT 76, 102, 130
TIME 88
TITLE 222, 236
TITLE entry 208
TRACE 32, 383, 475
TRACE control statement 186
trace off 467
trace on 475
trace output 383
trailer 104
transfer of invariant expressions 352
TRANSIENT file 235
TRANSMIT condition 218, 260, 266
TSOSLNK 149
tuning a program for virtual storage 331
type BIT 428

586 U253-J-Z125-9-7600

Index

U
U format 211
undefined records 211
UNDEFINEDFILE condition 227, 238, 259, 268
UNLOAD 285
user identification 207
user library 28
utilities 453

V
V format 211
valid key 276
validity, control statement 52
VARIABLE 296, 309
variable 478
variable length entry 377
variable-length records 211
VARYING attribute 229
version 70, 91, 207
VOLUME 217
volumes 217

W
WARNING 82, 85, 122
warning 41, 122
warnings and error messages 499
WRITE FROM 232, 426
WRITE statement 256
WRPASS parameter 218
WXTRN 150, 306

U253-J-Z125-9-7600 587

Information on this document
On April 1, 2009, Fujitsu became the sole owner of Fujitsu Siemens Compu-
ters. This new subsidiary of Fujitsu has been renamed Fujitsu Technology So-
lutions.

This document from the document archive refers to a product version which
was released a considerable time ago or which is no longer marketed.

Please note that all company references and copyrights in this document have
been legally transferred to Fujitsu Technology Solutions.

Contact and support addresses will now be offered by Fujitsu Technology So-
lutions and have the format …@ts.fujitsu.com.

The Internet pages of Fujitsu Technology Solutions are available at
http://ts.fujitsu.com/...
and the user documentation at http://manuals.ts.fujitsu.com.

Copyright Fujitsu Technology Solutions, 2009

Hinweise zum vorliegenden Dokument
Zum 1. April 2009 ist Fujitsu Siemens Computers in den alleinigen Besitz von
Fujitsu übergegangen. Diese neue Tochtergesellschaft von Fujitsu trägt seit-
dem den Namen Fujitsu Technology Solutions.

Das vorliegende Dokument aus dem Dokumentenarchiv bezieht sich auf eine
bereits vor längerer Zeit freigegebene oder nicht mehr im Vertrieb befindliche
Produktversion.

Bitte beachten Sie, dass alle Firmenbezüge und Copyrights im vorliegenden
Dokument rechtlich auf Fujitsu Technology Solutions übergegangen sind.

Kontakt- und Supportadressen werden nun von Fujitsu Technology Solutions
angeboten und haben die Form …@ts.fujitsu.com.

Die Internetseiten von Fujitsu Technology Solutions finden Sie unter
http://de.ts.fujitsu.com/..., und unter http://manuals.ts.fujitsu.com finden Sie die
Benutzerdokumentation.

Copyright Fujitsu Technology Solutions, 2009

	Title
	Contents
	Preface
	Overview of the use of PLI1
	Compiling a PL/I source program
	Linking and loading a PL/I program
	Execution of the PL/I program
	File access by PL/I programs
	Procedure interface
	Optimization facilities
	Debugging aids
	Internal Representation
	Utilities
	Shareable programs
	PLI1 ASSEMBLER macro interface
	Appendix
	References
	Index

