
UNIX

CMX V6.0 
Programming Applications
Dr. Walther
Fujitsu Siemens Computers GmbH München
81730 Munich
e-mail: email: manuals@fujitsu-siemens.com
Tel.: 122
Fax: (++49) 700 / 372 00000
U41136-J-Z145-3-76
Sprachen:  En          

Edition June 2003



This manual is printed on 
paper treated with 
chlorine-free bleach.

Comments… Suggestions… Corrections…
The User Documentation Department would like to
know your opinion of this manual. Your feedback helps
us optimize our documentation to suit your individual 
needs.

Fax forms for sending us your comments are included in
the back of the manual.

There you will also find the addresses of the relevant
User Documentation Department.

Certified documentation 
according DIN EN ISO 9001:2000
To ensure a consistently high quality standard and
user-friendliness, this documentation was created to
meet the regulations of a quality management system 
which complies with the requirements of the standard
DIN EN ISO 9001:2000. 

cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks
Copyright © 2003 Fujitsu Siemens Computers GmbH.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

http://www.cognitas.de


Preface
The CMX transport access system
TS applications
Event processing and error handling
Attaching to/detaching from CMX
Managing connections between TS applications
Transmitting data
The ICMX(L) program interface
The ICMX(NEA) program interface
Appendix
Continued





Indexes





U41136-J-Z145-3-76  

Contents
1 Preface  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1
1.1 Brief product description   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1
1.2 Target group .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1
1.3 Summary of contents  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1
1.4 Sample programs  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3
1.5 Readme files .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3

2 The CMX transport access system .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5
2.1 Communication between TS applications  .  .  .  .  .  .  .  .  .  .  .  .  . 5
2.2 The CMX program interfaces - an overview .  .  .  .  .  .  .  .  .  .  .  . 7
2.2.1 CMX functions for communication (ICMX(L)) .  .  .  .  .  .  .  .  .  .  . 8
2.2.2 CMX functions for migration (ICMX(NEA))  .  .  .  .  .  .  .  .  .  .  .  11
2.2.3 System and user options   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  12

3 TS applications   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  15
3.1 Names and addresses of TS applications .  .  .  .  .  .  .  .  .  .  .  .  16
3.1.1 The GLOBAL NAME of a TS application   .  .  .  .  .  .  .  .  .  .  .  .  17
3.1.2 Properties of a TS application .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  17
3.1.3 The properties LOCAL NAME and TRANSPORT ADDRESS   .  19
3.2 Structure of a TS application  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  22
3.3 Compiling and linking TS application programs .  .  .  .  .  .  .  .  .  25
3.4 TS applications, processes, connections   .  .  .  .  .  .  .  .  .  .  .  .  26
3.4.1 TS applications and processes   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  26
3.4.2 Connections and processes .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  27
3.5 Threads and Multithreading  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  29

4 Event processing and error handling   .  .  .  .  .  .  .  .  .  .  .  .  37
4.1 Receiving events  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  37
4.2 Error handling  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  40
4.2.1 Error checking functions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  40
4.2.2 Format of CMX error messages   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  41
4.2.3 Decoding error messages .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  42

5 Attaching to/detaching from CMX   .  .  .  .  .  .  .  .  .  .  .  .  .  .  43
5.1 Attaching to CMX  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  43
5.2 Detaching from CMX   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  45
5.3 Examples of attaching and detaching a process   .  .  .  .  .  .  .  .  46
5.3.1 Example of attaching and detaching a process at ICMX(L)  .  .  .  46
5.3.2 Example of attaching and detaching a process at ICMX(NEA)  .  47



  U41136-J-Z145-3-76

Contents

6 Managing connections between TS applications  .  .  .  .  .  .  . 49
6.1 Establishing a connection .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 49
6.2 Closing down a connection  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 55
6.3 Example of setting up and closing down a connection 

with ICMX(L)   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 56
6.3.1 Examples of establishing a connection with ICMX(L) .  .  .  .  .  .  . 56
6.3.2 Examples of establishing a connection with ICMX(NEA)   .  .  .  . 60
6.4 Redirecting connections   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 65
6.4.1 Example of redirecting a connection  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 66
6.4.1.1 Example of redirecting a connection at ICMX (L) .  .  .  .  .  .  .  .  . 66
6.4.1.2 Example of redirecting a connection at ICMX(NEA)   .  .  .  .  .  .  . 67

7 Transmitting data  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 69
7.1 Sending and receiving normal data .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 70
7.2 Examples of transmitting normal data   .  .  .  .  .  .  .  .  .  .  .  .  .  . 73
7.2.1 Example of transmitting normal data via ICMX(L)   .  .  .  .  .  .  .  . 73
7.2.2 Example of transmitting normal data via ICMX(NEA) .  .  .  .  .  .  . 74
7.3 Sending and receiving expedited data  .  .  .  .  .  .  .  .  .  .  .  .  .  . 76
7.4 Flow control of normal and expedited data  .  .  .  .  .  .  .  .  .  .  .  . 78

8 The ICMX(L) program interface .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 81
8.1 Overview of the program interface  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 81
8.2 States of TS applications and permissible state transitions  .  .  . 96
8.2.1 Explanations of the possible state transitions   .  .  .  .  .  .  .  .  . 100
8.3 Transport system specific features .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 103
8.4 System options and message length  .  .  .  .  .  .  .  .  .  .  .  .  .  . 105
8.4.1 Programming notes   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 105
8.4.2 Additional functionality "Operation without TNS/Creation 

of templates"   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 107
8.4.2.1 Application scenario / Program skeleton .  .  .  .  .  .  .  .  .  .  .  . 107
8.5 Conventions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 108
8.6 ICMX(L) - function calls .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 109
8.6.1 t_attach - Attach a process to CMX (attach process)   .  .  .  .  . 110
8.6.2 t_callback - Register a callback routine   .  .  .  .  .  .  .  .  .  .  .  . 116
8.6.3 t_concf - Establish connection (connect confirmation) .  .  .  .  . 121
8.6.4 t_conin - Receive connection request (connect indication) .  .  . 124
8.6.5 t_conrq - Request connection (connection request)  .  .  .  .  .  . 128
8.6.6 t_conrs - Respond to connection request 

(connection response)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 132
8.6.7 t_datago - Release the flow of data (data go)  .  .  .  .  .  .  .  .  . 136
8.6.8 t_datain - Receive data (data indication) .  .  .  .  .  .  .  .  .  .  .  . 138
8.6.9 t_datarq - Send data (data request)  .  .  .  .  .  .  .  .  .  .  .  .  .  . 141
8.6.10 t_datastop - Stop the flow of data (data stop)   .  .  .  .  .  .  .  .  . 144



U41136-J-Z145-3-76  

Contents

8.6.11 t_detach - Detach a process from a TS application 
(detach process)   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 146

8.6.12 t_disin - Accept disconnection (disconnection indication) .  .  .  . 148
8.6.13 t_disrq - Close down connection (disconnection request)   .  .  . 151
8.6.14 t_error - Error diagnosis (error)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 153
8.6.15 t_event - Await or query event (event)   .  .  .  .  .  .  .  .  .  .  .  .  . 154
8.6.16 t_getaddr - Query TRANSPORT ADDRESS for the 

GLOBAL NAME (get address)   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 161
8.6.17 t_getaddrpart, t_setaddrpart - Read or change 

address information in TRANSPORT ADDRESS  .  .  .  .  .  .  .  . 166
8.6.18 t_getloc - Query LOCAL NAME  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 171
8.6.19 t_getlocpart, t_setlocpart - Read or change address 

information in LOCAL NAME   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 174
8.6.20 t_getname - Query GLOBAL NAME (get name)   .  .  .  .  .  .  .  . 178
8.6.21 t_info - Query information on CMX (information)  .  .  .  .  .  .  .  . 181
8.6.22 t_perror - Output CMX error message in decoded form   .  .  .  . 183
8.6.23 t_preason - Decode and output reasons for disconnection  .  .  . 184
8.6.24 t_redin - Accept redirected connection (redirection indication)  . 185
8.6.25 t_redrq - Redirect connection (redirection request) .  .  .  .  .  .  . 189
8.6.26 t_setaddrpart - Add information to TRANSPORT ADDRESS  .  . 194
8.6.27 t_setlocpart   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 194
8.6.28 t_setopt - Set options in CMX (set options) .  .  .  .  .  .  .  .  .  .  . 194
8.6.29 t_strerror - Decode CMX error message  .  .  .  .  .  .  .  .  .  .  .  . 196
8.6.30 t_strreason - Decode reasons for disconnection  .  .  .  .  .  .  .  . 197
8.6.31 t_vdatain - Receive data (data indication)   .  .  .  .  .  .  .  .  .  .  . 198
8.6.32 t_vdatarq - Send data (data request)  .  .  .  .  .  .  .  .  .  .  .  .  .  . 201
8.6.33 t_xdatgo - Release the flow of expedited data 

(expedited data go)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 204
8.6.34 t_xdatin - Receive expedited data (expedited data indication)  . 206
8.6.35 t_xdatrq - Send expedited data (expedited data request) .  .  .  . 208
8.6.36 t_xdatstop - Block the flow of expedited data 

(expedited data stop)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 211

9 The ICMX(NEA) program interface  .  .  .  .  .  .  .  .  .  .  .  .  .  . 213
9.1 Overview of the program interface   .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 213
9.2 Finite-state automata  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 226
9.3 NEABV protocol .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 232
9.3.1 The NEABV protocol for communication via ICMX(NEA) .  .  .  . 232
9.3.2 The NEABX service functions (NEABV service)   .  .  .  .  .  .  .  . 234
9.4 Transport system specific features   .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 236
9.5 Programming notes .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 237
9.6 Conventions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 239



  U41136-J-Z145-3-76

Contents

9.7 ICMX(NEA) - function calls .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 240
9.7.1 x_attach - Attach a process to NEABX (attach process) .  .  .  . 240
9.7.2 x_concf - Establish connection (connection confirmation)  .  .  . 244
9.7.3 x_conin - Receive connection request (connection indication)  . 249
9.7.4 x_conrq - Request connection (connection request) .  .  .  .  .  . 254
9.7.5 x_conrs - Respond to connection request 

(connection response)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 260
9.7.6 x_datago - Release the flow of data (datago)   .  .  .  .  .  .  .  .  . 265
9.7.7 x_datain - Receive data (data indication)   .  .  .  .  .  .  .  .  .  .  . 267
9.7.8 x_datarq - Send data (data request)  .  .  .  .  .  .  .  .  .  .  .  .  .  . 273
9.7.9 x_datastop - Stop the flow of data (data stop)  .  .  .  .  .  .  .  .  . 279
9.7.10 x_detach - Detach from NEABX (detach process) .  .  .  .  .  .  . 281
9.7.11 x_disin - Accept disconnection (disconnection indication)  .  .  . 282
9.7.12 x_disrq - Close down connection (disconnection request)  .  .  . 285
9.7.13 x_error - Query error codes (error) .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 287
9.7.14 x_event - Await or query event (event) .  .  .  .  .  .  .  .  .  .  .  .  . 288
9.7.15 x_info - Information on NEABX constant (information) .  .  .  .  . 293
9.7.16 x_neavi - Analysis of the NEABV protocol  .  .  .  .  .  .  .  .  .  .  . 295
9.7.17 x_neavo - Generate the NEABV protocol   .  .  .  .  .  .  .  .  .  .  . 299
9.7.18 x_perror - Output NEABX error message in decoded form   .  . 302
9.7.19 x_redin - Accept redirected connection (redirection indication)  304
9.7.20 x_redrq - Redirect connection (redirection request)  .  .  .  .  .  . 307
9.7.21 x_setopt - Set options in CMX_NEA (set options)  .  .  .  .  .  .  . 310
9.7.22 x_strerror - Decode NEABX error message  .  .  .  .  .  .  .  .  .  . 312
9.7.23 x_xdatgo - Release the flow of expedited data 

(expedited data go) .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 313
9.7.24 x_xdatin - Receive expedited data (expedited data indication)  315
9.7.25 x_xdatrq - Send expedited data (expedited data request)  .  .  . 320
9.7.26 x_xdatstop - Stop the flow of expedited data 

(expedited data stop) .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 325

10 Appendix   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 327
10.1 Complete list of CMX error messages  .  .  .  .  .  .  .  .  .  .  .  .  . 327
10.2 List of reasons for disconnection .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 332

Glossary   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 337

Abbreviations   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 345

Related publications  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 349

Index   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 353



U41136-J-Z145-3-76  1

1 Preface 

1.1 Brief product description 

The transport access system CMX (Communication Manager UNIX) is the 
basic product for communication software. CMX enables communication 
between applications in different computer systems. It is responsible jointly with 
the CCPs (Communication Control Programs) for communication tasks. The 
CMX program interface can be used to generate application programs that can 
communicate with other applications irrespective of the transport system.

1.2 Target group 

This manual is intended for programmers who develop TS applications for 
communication (TS application = Transport Service application). These applica-
tions consist of application programs implemented in C.

In order to work with CMX, you must be familiar with the operating system and 
be proficient in using the C programming language and the C development 
system. Knowledge of the principles and methods of data communications will 
also prove helpful, especially with regard to the OSI Reference Model as 
standardized in ISO 7498.

1.3 Summary of contents 

Two User Guides provide a comprehensive description of the CMX product:

– CMX “Operation and Administration” for system administrators and users

– CMX “Programming Applications” for programmers of TS applications 

This manual describes the CMX program interfaces, i.e. all the tools you will 
need in order to develop TS applications of your own.

Diagnostic aids, which include trace mechanisms for libraries and a program to 
decode CMX messages, are included in the “Operation and Administration” 
manual.



2   U41136-J-Z145-3-76

Summary of contents Preface

Structure of the manual 

The manual is divided into two parts:

Part 1 is intended to help you get acquainted with CMX and focuses on helping 
the first-time user to create TS applications.

This part describes the mapping of a TS application onto the process concept 
of your system and the allocation of transport connections to processes of the 
TS application. The structure of a TS application is explained, showing how it 
can be divided into three communication phases and how the functions of the 
program interfaces are used within these phases. In addition, you will learn how 
you can use the Transport Name Service (TNSX) to request names and 
addresses from the address directory and pass them on to CMX, and how to 
obtain diagnostic information from CMX in the case of errors. To explain the 
individual programming steps, program fragments have been provided as 
examples.

Part 2 consists of chapters 8 and 9. Each of these chapters describes one of the 
CMX program interfaces. Every function call of the respective program interface 
is explained in detail along with its parameters. The description is arranged in 
alphabetical order. Each chapter begins with a summary of all the information 
you will need to use the functions.

The description takes into account all the various ways of connecting a 
computer to a network (LAN and WAN). The ways in which your own computer 
can be incorporated into a network will depend on the CCs (Communication 
Controller) and CCPs (Communication Control Program) that have been 
installed on your system.

The program interfaces are described independent of which operating system 
is used. Details specific to the operating system version are given in the 
Release Notice for CMX.

References to other publications 

The text contains references to other publications in the form "see [n]", where n 
is a number. The Reference Section contains a list of the corresponding publi-
cations by number, together with a brief overview of the contents.



U41136-J-Z145-3-76  3

Preface Sample programs

1.4 Sample programs

CMX comes with a number of sample programs for TS applications on ICMX(L) 
and ICMX(NEA). The C source code for these programs is stored in the 
directory opt/lib/cmx/demo (for Reliant UNIX) or 
/opt/SMAW/SMAWcmx/lib/cmx/demo (for Solaris). Here you will also find a sample 
script for making entries in the TS directory, as well as sample scripts for calling 
the programs.

You will find descriptive information concerning the purpose, compilation, and 
invocation of these programs in comments at the start of the C source code 
programs.

1.5 Readme files

Functional changes and supplements of the current product version to this 
manual are also included in the product-specific README files. These 
README files are located in the relevant product directories under opt/readme 
(Reliant UNIX) or /opt/SMAW/documents (Solaris), provided your system admin-
istrator has installed them. The README files are displayed using an editor, 
and are printed on a standard printer.





U41136-J-Z145-3-76  5

2 The CMX transport access 
system 

2.1 Communication between TS applications

Any application that wishes to exchange data with another application in some 
other end system requires the services of a transport system. The transport 
system performs all the necessary tasks to set up the connection and to 
transport data over the physical media (lines, computers). Applications that use 
the services of a transport system are called TS applications.

A TS application should be capable of setting up connections and exchanging 
data using different transport systems. As far as possible, the TS application 
should be independent of the underlying transport system used. Transport 
systems may differ in various respects, e.g. the size of the data unit that each 
transport system can handle, the format of the partner application’s transport 
address to be passed, and the format of the TS application’s address in the local 
system. For this reason, CMX provides TS applications with a uniform interface 
to the various transport services. This interface is the program interface 
ICMX(L). It provides TS applications with access to the services of transport 
systems that conform to the standards laid down in the OSI Reference Model 
for open systems. CMX is thus a transport access system.



6   U41136-J-Z145-3-76

Communication between TS applications Transport access system

Figure 1: The CMX transport access system 

A TS application that uses CMX functions can thus communicate in a uniform 
way with:

– other TS applications in the same computer (local communication),

– TS applications in other computers which use the functions of the transport 
access system CMX,

– TS applications in host computers running BS2000/OSD and using the 
functions of the transport access system DCAM or UTM,

– TS applications in communication computers running PDN and using the 
functions of the transport access system CAM,

– TS applications in systems of other vendors, assuming they conform to the 
standards prescribed in the OSI model or are connected via TCP/IP by 
means of the convergence protocol RFC1006.

For the programmer, the uniform program interface ICMX(L) means that he or 
she can develop TS applications independent of specific data transmission 
characteristics, i.e. only the ICMX(L) functions need to be programmed for 
communication. These functions can be used to:

Transmission medium

ICMX

Solaris system

TS application

CMX

Transport system

Partner system

Partner
TS Anwendung

Transport system

Layers of the OSI Reference Model

7 Application layer
6 Presentation layer
5 Session layer

Transport access system

4 Transport layer
3 Network layer
2 Data link layer
1 Physical layer

Transport access
system in the 
partner system



U41136-J-Z145-3-76  7

Transport access system Program interfaces

– attach the TS application to CMX,

– set up transport connections to partner applications,

– send and receive data,

– control the data flow,

– disconnect transport connections,

– detach TS applications from CMX.

If a TS application is to communicate with a partner application in end systems 
(running BS2000/OSD or PDN) which have not yet been adapted to conform to 
OSI conventions and which therefore need the expanded functionality of the 
NEA transport services, the migration service NEABX must be used. NEABX 
builds on the ICMX(L) functions and is implemented via the ICMX(NEA) 
program interface of CMX.

TS applications that use the functions of CMX interfaces are also called CMX 
applications in the description below. This term is always used whenever it is 
necessary to make a distinction between TS applications running under ICMX 
and other TS applications.

2.2 The CMX program interfaces - an overview

CMX provides the programmer of TS applications with the following two function 
complexes:

● The functions for connection-oriented communication.

These functions cover local services, connection handling and data 
exchange.They are available via the ICMX(L) program interface.

● The NEABX migration service.

The functions of NEABX permit CMX applications to communicate with TS 
applications in communication computers and host computers of the 
TRANSDATA family that do not conform to OSI conventions.

The NEABX migration service is available via the ICMX(NEA) program 
interface.



8   U41136-J-Z145-3-76

Program interfaces Transport access system

Figure 2: CMX program interfaces 

The program interfaces of CMX are library interfaces, i.e. the functions of CMX 
are provided in the form of modules in a library. These modules are linked into 
the programs of the TS application.

All modules are stored in the library /usr/lib/libcmx.so (a shared object).

2.2.1 CMX functions for communication (ICMX(L)) 

The program interface ICMX(L) includes all functions which are used by a TS 
application for communication.

The following function groups are provided at the ICMX(L) interface:

– Functions for attaching to and detaching from CMX

– Functions to establish a connection

– Functions to close down a connection

– Functions to redirect a connection

– Functions for the exchange of data

– Functions for flow control

– Functions to request information

TS applications

ICMX(L) ICMX(NEA)

Communication
functions

NEABX
migration service

CMX



U41136-J-Z145-3-76  9

Transport access system Program interfaces

Functions for attaching to and detaching from CMX

When a TS application attaches itself to CMX, it passes its LOCAL NAME, i.e. 
its own address within the local system, to CMX. Only then is the TS application 
addressable. After communication, the TS application must detach itself from 
CMX.

Functions to establish a connection 

This includes functions for 

– active connection setup:

The two functions in this group are used to request a connection with a 
remote TS application (connection request) and to set up the connection 
after receipt of a positive response from the remote TS application 
(connection confirmation). 

– passive connection: The two functions in this group serve to accept a 
connection setup request from a remote TS application (connection 
indication) and to respond to this request (connection response). 

Functions to close down a connection

The two functions in this group are used to actively close down a connection 
(disconnection request) or to accept a disconnection request (disconnection 
indication).

Functions to redirect a connection

Within a TS application a connection may be passed on (redirected) to another 
process of the same TS application. The two functions in this group can be used 
to redirect a connection and to accept a connection from another process 
(redirect indication).



10   U41136-J-Z145-3-76

Program interfaces Transport access system

Functions for the exchange of data

This group of functions allows you to:

– send (data request) and receive (data indication) normal data.

– send (expedited data request) and receive (expedited data indication) 
expedited data.

Expedited data refers to small amounts of data that can be transmitted to a 
communication partner with priority over the main data stream. These 
functions are optional. 

Functions for flow control

If you currently cannot or do not wish to receive any data, you can have the data 
flow stopped by informing CMX. CMX will then stop signaling incoming data. 
The communication partner is (usually) notified and will not be permitted to send 
you any further data until you release the data flow. The data flow can be 
controlled separately for normal and expedited data (datastop, datago, 
xdatstop, xdatgo).

Functions to request information

This group includes functions that can be used to:

– await or fetch an event (event).

A typical example of an event is a disconnection request from the communi-
cation partner.

– request information on errors (error).

– request information on CMX parameters (information).

– query LOCAL and GLOBAL NAMES, and TRANSPORT ADDRESSES (get 
local name, get name, get address).

Chapters 4 to 7 explain the use of the functions in programs of a TS application.



U41136-J-Z145-3-76  11

Transport access system Program interfaces

2.2.2 CMX functions for migration (ICMX(NEA)) 

The CMX functions for migration are grouped together in the NEABX migration 
service. The functions of NEABX are available at the ICMX(NEA) interface.

The NEABX migration service supports communication between CMX applica-
tions and TS applications in communication computers running PDN and host 
computers running BS2000 when such partners use functions which used to be 
available in the NEA transport protocols but are no longer provided in ISO 
transport systems conforming to ISO standard 8072. Such functions are:

– password at connection setup

– user data at connection setup exceeding 32 bytes

– message structuring with ETX/ETB

– indication of the message code used

– requesting transport acknowledgments

– sequence numbers in message exchange

This expanded functionality is provided through the NEABX protocol. The 
formation and interpretation of this protocol takes place through the NEABX 
functions. The function calls are issued in a way analogous to that for the CMX 
functions for communication, described in section 2.2.1.

The NEABX migration service enables an existing TS application that does not 
conform to OSI conventions to communicate with a CMX application. Such a TS 
application can therefore communicate with a CMX application without modifi-
cation of its communication interface. Conversely, the NEABX migration service 
enables a CMX application to support the expanded functionality of such a TS 
application.

The migration service NEABX will be needed until the communication interfaces 
of these TS applications in the network are adapted to the functionality of the 
ISO transport system.

Criteria for deciding on use

The decision to use the NEABX migration service must be made in the CMX 
application before it is attached to CMX. NEABX must always be used when the 
desired communication partner requires functions that are provided in the 
NEABX protocol but are not available in a transport service conforming to ISO 
standard 8072.



12   U41136-J-Z145-3-76

Program interfaces Transport access system

Use of the NEABX migration service is particularly required when you wish to 
communicate with current BS2000 applications via DCAM, TIAM or UTM.

CMX functions with NEABX migration service

The CMX calls for migration and the process of communication are essentially 
the same as for the CMX functions for communication at the ICMX(L) interface. 
The ICMX(NEA) functions call the ICMX(L) functions internally. They can thus 
be classified in a similar manner to the function groups described in section 
2.2.1. Chapters 4 to 7 explain how the functions are used in the programs of a 
TS application.

2.2.3 System and user options

The functions of CMX consist of mandatory and optional functions with 
mandatory and optional parameters.

For communication with partners via CMX, the mandatory functions with the 
mandatory parameters are always available for all transport systems.

Depending on the type of connection to the network, i.e. depending essentially 
on the transport system, optional functions are also available, as well as 
optional parameters for the mandatory functions.

Option Optional 
function

Optional 
parameter

System 
option

User option

User data at 
connection setup

no yes yes yes

User data at 
disconnection

no yes yes yes

Expedited data yes yes yes yes

Monitoring of 
inactive time

no yes yes yes

User data at 
connection setup

no yes yes yes

User data at 
disconnection

no yes yes yes

Expedited data yes yes yes yes

Table 1:  CMX options



U41136-J-Z145-3-76  13

Transport access system Program interfaces

The system options are oriented to the functionality of the transport system. If 
options are used that the transport system or the communication interface of the 
partner application does not provide, the connection will not be established, or 
a disconnect indication will be issued by CMX. Given an appropriate transport 
system, CMX guarantees error-free execution of your CMX application.

If communication is to be error-free, the user options must also be correct, i.e. 
the partners must have a common understanding of how they are used.

This means that CMX does not compensate for the difference between the 
functionality expected in the TS application and that actually provided by the 
transport system. This applies particularly to the system options shown above.

Refer to the manuals for the individual CCP products for a description of which 
system options are offered by a particular transport system.

Monitoring of 
inactive time

no yes yes yes

Connection limit
active/passive 
mode

no yes no yes

User reference of 
attachment

no yes no yes

User reference of 
connection

no yes no yes

Option Optional 
function

Optional 
parameter

System 
option

User option

Table 1:  CMX options





U41136-J-Z145-3-76  15

3 TS applications 
This chapter outlines the characteristics of TS applications that use the 
functions of the CMX program interfaces.

The following points are covered in the sections of this chapter:

– Name and properties of a TS application

Every TS application has a GLOBAL NAME, with which it can be uniquely 
identified within the network. To communicate with other TS applications in 
the network, a TS application must be addressable. For this reason, a TS 
application is assigned the properties TRANSPORT ADDRESS and LOCAL 
NAME in addition to other properties.

– Structure of a TS application

A TS application is a C program or a system of C programs that calls CMX 
functions.

This section describes what is required when writing TS application 
programs, how such C programs are compiled, and which libraries must be 
linked into the source code.

– Association between a TS application, processes, and connection

This section deals with the question of how a TS application can be mapped 
onto a system’s process concept, and illustrates the association between a 
process and a connection.

– Threads and Multithreading

This section gives an overview of threads and multithreading and the related 
connections and processes. It also lists the necessary CMX library functions 
and describes compiling and linking.



16   U41136-J-Z145-3-76

Names and addresses of TS applications TS applications

3.1 Names and addresses of TS applications

Every TS application has a GLOBAL NAME. This name identifies the TS appli-
cation uniquely in the network, i.e. different TS applications have different 
GLOBAL NAMES. The GLOBAL NAME specifies which TS application is 
involved.

The GLOBAL NAMES of all TS applications in the local system and those of all 
TS applications in remote systems with which the local TS applications wish to 
communicate are recorded in a name and address directory. This directory is 
known as the TS directory. The properties of a TS application are stored in the 
TS directory along with its GLOBAL NAME. A property refers to any information 
on the communication partners that may be required by the respective transport 
system in order to set up a connection. The transport address of a TS appli-
cation is a typical example of one of its properties.

Within a TS application, only the GLOBAL NAMES of the two communication 
partners are used. This makes TS applications independent of the specific 
addressing requirements of the transport system and of changes within the 
network. All that is needed is the addition or modification of the relevant 
properties in the TS directory. The TS application reads the properties from the 
TS directory with the aid of certain ICMX(L) function calls and passes them on 
to CMX directly (i.e unseen).

Properties must be managed and GLOBAL NAMES must be assigned by the 
TNSX administration. It must ensure that among the GLOBAL NAMES of all TS 
applications no two are the same, i.e. different TS applications must have 
unique GLOBAL NAMES.

For an overview of the TNSX, please refer to the relevant “CMX, Operation and 
Administration” manual [1] or [2].



U41136-J-Z145-3-76  17

TS applications Names and addresses of TS applications

3.1.1 The GLOBAL NAME of a TS application

The GLOBAL NAME of a TS application is a hierarchically structured name 
consisting of up to 5 name parts: name part[1] through name part[5]. Of these, 
name part[1] is the highest in the hierarchy, name part[5] the lowest. All levels 
of the hierarchy need not be present in a GLOBAL NAME; it is possible to omit 
name parts. A GLOBAL NAME can also consist of a single name part at any 
hierarchy level. Apart from the hierarchical order, the TNSX makes no further 
specifications regarding the meanings of the name parts within the GLOBAL 
NAME.

An application program that is being executed in more than one computer must 
run under a different GLOBAL NAME in each computer. The program name and 
the GLOBAL NAME of the TS application must not be confused. A TS appli-
cation has a GLOBAL NAME that is unique within the network. This name is 
assigned by the network administrator, as required. Nevertheless, the TS appli-
cation may functionally consist of the same programs in the various end 
systems.

3.1.2 Properties of a TS application 

The properties of a TS application constitute all the information on a TS appli-
cation that is required by the transport system in order to set up the connection 
and manage the actual transmission of data. Properties are assigned to the 
GLOBAL NAME in the TS directory. The following tables illustrate which 
properties can be assigned to a TS application in the local system or to the 
communication partners (i.e. the remote TS applications).

Some of these properties must be queried from the TNSX and passed to CMX 
when attaching the local TS application to CMX or setting up the connection.



18   U41136-J-Z145-3-76

Names and addresses of TS applications TS applications

Properties of a local TS application

Property Meaning of the property

LOCAL NAME This property is needed to attach the 
TS application to CMX in the local end 
system. The LOCAL NAME consists 
of the addresses of the TS application 
in the local system for the various 
transport systems. It is made up of a 
hexadecimal string with non-printing 
characters.

USER1

USER2

USER3

User-specific properties.

Up to three user-specific properties 
may be assigned to each TS appli-
cation in a freely-selectable format. 
These properties can be used to store 
information that is relevant for your 
application. They are not used by 
CMX or the TNSX.

Table 2:  Properties of a local TS application



U41136-J-Z145-3-76  19

TS applications Names and addresses of TS applications

Properties of a remote TS application 

The properties TRANSPORT ADDRESS and LOCAL NAME, and their 
meanings, are described in more detail in the following section.

3.1.3 The properties LOCAL NAME and TRANSPORT 
ADDRESS 

Every TS application is assigned a unique Transport Service Access Point 
(TSAP) when it is attached to CMX. The TSAP is identified by means of the 
LOCAL NAME that is specified by the TS application when it attaches itself to 
CMX.

The TS application can access the services of the transport system via the 
TSAP. Which transport systems, i.e. network connections, can be accessed by 
the TS application will depend on the T-selectors contained in the LOCAL 

Property  Meaning of the property

TRANSPORT ADDRESS The value of this property is the 
communication partner’s transport 
address that is expected by CMX at 
connection setup. It is made up of a 
hexadecimal string with non-printing 
characters.

TRANSPORT SYSTEM The value of this property is the type of 
transport system used for communi-
cating with a remote communication 
partner. When writing a TS application 
you need not concern yourself with 
this property. CMX uses it internally.

USER1

USER2

USER3

Up to three user-specific properties 
may be assigned to each TS appli-
cation in a freely-selectable format. 
These properties can be used to store 
information that is relevant for your 
application. They are not used by 
CMX or the TNSX.

Table 3:  Properties of a remote application



20   U41136-J-Z145-3-76

Names and addresses of TS applications TS applications

NAME of the TS application. The LOCAL NAME contains one or more
T-selectors. A single T-selector can be valid for multiple network connections, 
provided these are of the same type.

The TS application can be addressed from the network via the T-selector, since 
the T-selector is a component of its TRANSPORT ADDRESS for the respective 
network. The TRANSPORT ADDRESS provides a means of uniquely 
addressing the TS application in the entire network. The TRANSPORT 
ADDRESS of a TS application consists of the network address of the end 
system in which the TS application is located and the T-selector of the TS appli-
cation for this network connection. The TRANSPORT ADDRESS is thus struc-
tured as follows:

TRANSPORT ADDRESS =
end system network address + (locally unique) T-selector

The following diagram illustrates the relationship between the LOCAL NAME, 
TSAP, and TRANSPORT ADDRESS.

Figure 3: TRANSPORT ADDRESS and LOCAL NAME 

TS application TS application

Transport
Service Access
Point (TSAP)

Transport
Service Access
Point (TSAP)

GLOBAL NAME GLOBAL NAME

Link via
LOCAL NAME
(T-selectors)

Link via
LOCAL NAME
(T-selectors)

TRANSPORT ADDRESS
(Network address + T-selector)

TRANSPORT ADDRESS
(Network address + T-selector)

Network



U41136-J-Z145-3-76  21

TS applications Names and addresses of TS applications

The t_getloc(), t_getaddr(), and t_getname() calls provided at the ICMX(L) 
interface can be used to determine the LOCAL NAME or TRANSPORT 
ADDRESS for a given GLOBAL NAME, and the GLOBAL NAME corresponding 
to a given TRANSPORT ADDRESS. In other words, all information required in 
ICMX(L) for a TS application can be queried from the TS directory with the help 
of these calls.



22   U41136-J-Z145-3-76

Structure of a TS application TS applications

3.2 Structure of a TS application 

A TS application is a C program or a system of C programs that call CMX 
functions. This chapter describes what should be observed when creating such 
a program. 

The following example illustrates the structure of a program of this type. The 
specified function calls are part of the ICMX(L) interface. A program that uses 
the functions of ICMX(NEA) is structured analogously, except that it uses the 
corresponding x_...() calls instead of the t_...() calls. The calls t_getloc(), 
t_getaddr(), and t_getname() are exceptions; they can be used in both programs. 

#include <cmx.h>
#include <tnsx.h>
 .
 .
main(argc, argv)
int argc;
char *argv[];
{
    .
    .
    /* 1st communication phase */
    t_getloc();            /* Ascertain LOCAL NAME */
    t_attach();            /* Attach to CMX */
    /* 2nd communication phase */
    t_getaddr();           /* Ascertain TRANSPORT ADDRESS */
                           /* of partner */
    t_conrq();             /* Set up connection */
    .
    .
    t_concf();             /* Accept connection */
                           /* confirmation */
    /* 3rd communication phase */
    t_datarq();            /* Send data to partner */
    .
    .
    t_datain();            /* Receive data from partner */
    .
    .
    t_disrq();             /* Close down connection */
    t_detach();            /* Detach from CMX */
    .
    .
    exit();
}



U41136-J-Z145-3-76  23

TS applications Structure of a TS application

Header files 

Every TS application program must contain an include statement for the file 
<cmx.h>. <cmx.h> contains the definitions of the parameters for the functions of 
the ICMX(L) interface.

If the TS application is to communicate via the migration interface ICMX(NEA), 
it must also contain an include statement for the file <neabx.h>. <neabx.h> 
defines all additional parameters required by the migration service.

All these files are located in the directory /usr/include.

Permissible order for CMX function calls

TS application programs must call CMX communication functions in a certain 
order. The process of communication can be divided into three phases. A TS 
application must pass through each phase successfully before it can enter the 
next phase.

– 1st communication phase: 
The TS application must attach itself to CMX. Only when the TS application 
is known to CMX can it make use of the services of CMX. The processes 
carried out in this communication phase are described in chapter 5.

– 2nd communication phase:
In this phase the TS application sets up the connection to its communication 
partner. During connection setup the two partners must reach an agreement 
as to how the subsequent exchange of data is to take place and what form 
the data is to have. Both partners determine, for example, whether they wish 
to exchange expedited data. The processes carried out in this communi-
cation phase are described in chapter 6.

– 3rd communication phase:
In the third phase the data is exchanged between the partners. Both commu-
nication partners can send and receive data. The processes carried out in 
this communication phase are described in chapter 7.

This is the order in which a TS application program may call CMX functions. In 
addition, note that some calls may be issued only after certain responses from 
the other communication partner have arrived and been received by the TS 
application (see section “Receiving events” on page 37).

One might say that a TS application assumes various states during the course 
of communication. Several states are possible within each communication 
phase. Only certain transitions are possible between the states within a given 
phase and between states of different phases.



24   U41136-J-Z145-3-76

Structure of a TS application TS applications

A TS application can shift from one state to the next only by calling certain CMX 
functions or when certain events arrive for it from the network.

Sections “States of TS applications and permissible state transitions” on 
page 96 and “Finite-state automata” on page 226 contain flow charts illustrating 
the possible states and state transitions. These flow charts are designed to 
simplify the development of your own TS application programs. 

Communication of a TS application via ICMX(L) and ICMX(NEA)

ICMX(L) and ICMX(NEA) calls may not be mixed within the same communi-
cation phase of a TS application program. The ICMX(L) functions t_getaddr(), 
t_getloc(), and t_getname() to query names and addresses from the TS directory 
are exceptions; they can also be used by TS applications that make use of the 
migration service. Please note that a TS application can only communicate via 
one of the interfaces, ICMX(L) or ICMX(NEA), at a given time. If a process of a 
TS application wishes to communicate simultaneously in both modes, it must 
attach itself to CMX as two different TS applications, i.e. with two different 
LOCAL NAMES.

Reaching an agreement as to the form of transferred data 

Two TS applications wishing to communicate with each other must also reach 
an agreement as to the form of the data to be transferred. Of importance here 
is the character set in use in each system. In Solaris systems, this is the ISO 7-
bit code; in BS2000/OSD and PDN systems it is the EBCDIC code. Any 
necessary conversion of the data must be performed by the TS applications 
themselves, since the transfer through the transport systems and CMX is code-
transparent.

Parameter passing and storage allocation 

In TS applications parameters are passed to CMX functions as values or 
pointers; for options, unions are defined. All structures are declared in the 
header files.

In your program you must always provide all storage areas used to pass values 
to CMX or in which CMX is to return anything. You allocate such storage areas 
either at compile time (statically) or at runtime (dynamically), e.g. with malloc() 
(see the reference manual for the C Development System). In the CMX 
parameter structures, length fields are defined for areas of variable length. 
Before calling CMX, enter in these fields the lengths of the areas provided. 
Then, upon return, you can usually read from these fields the lengths of the data 
returned by CMX.



U41136-J-Z145-3-76  25

TS applications Compiling and linking TS application programs

3.3 Compiling and linking TS application 
programs 

After a C program prog.c for a TS application has been edited, it must be 
compiled, and the CMX functions from the CMX library libcmx.so must be linked. 
The C Development System is required for this purpose.

The C compiler, with included link phase, is called as follows:

cc -o prog prog.c ... -lcmx -lsocket -lnsl

Please refer to the Release Notice for possible deviations from this syntax.



26   U41136-J-Z145-3-76

TS applications, processes, connections TS applications

3.4 TS applications, processes, connections

The two following sections describe the relationships between TS applications 
and processes and between processes and connections.

3.4.1 TS applications and processes

In the simplest case a TS application is a single process. However, there are 
additional possibilities for structuring a TS application.

A TS application can work with multiple processes, which need not be related 
to one another. Each individual process of a TS application must attach to CMX 
separately. Processes belong to the same TS application when they have 
attached themselves to CMX using the same LOCAL NAME. The first process 
to attach itself creates the TS application.

Figure 4: One TS application - multiple processes

On the other hand, one process may control multiple TS applications. To 
achieve this, you attach the process to CMX using different LOCAL NAMES.

CMX

Process 3Process 1 Process 2

TS application: GLOBAL NAME

Attach with LOCAL NAME



U41136-J-Z145-3-76  27

TS applications TS applications, processes, connections

Figure 5: One process - multiple TS applications

The process distinguishes the various TS applications it controls by means of 
the different LOCAL NAMES or by means of a freely chosen user reference.

3.4.2 Connections and processes

The processes of a TS application can set up connections to other TS applica-
tions independently of one another, and individual processes of the TS appli-
cation may maintain multiple connections simultaneously. If the process is 
attached to more than one TS application, the connections may also belong to 
different TS applications. When the connection is set up, a Transport 
Connection Endpoint (TCEP) is created for each connection. In other words, a 
single process can serve a number of TCEPs, but the same TCEP may not be 
simultaneously assigned to multiple processes. Each TCEP is assigned to 
exactly one process at a given time. It cannot be "inherited" via fork().

CMX assigns each connection an identifier. This is the transport reference. This 
alone enables the process to address a specific connection.

Process CMX

TS application: GLOBAL NAME 2

TS application: GLOBAL NAME 1

Attach with LOCAL NAME 1

Attach with LOCAL NAME 1



28   U41136-J-Z145-3-76

TS applications, processes, connections TS applications

Figure 6: Connections and processes

A process may, however, redirect a connection to another process that has 
attached itself in the same TS application. The connection will then no longer 
be recognized in the process that redirects it. In this way it is possible to handle 
connections to various partners in various processes. A central distribution 
process may, for example, receive all connections and then redirect them to 
appropriate subordinate processes. In the above figure, for example, process 2 
could redirect connection 2 or connection 3 to process 1.

TS application A: GLOBAL NAME A TS application B: GLOBAL NAME B

Process 1

attached with
LOCAL NAME A

Process 2

attached with
LOCAL NAME A

attached with
LOCAL NAME B

TCEP1 TCEP4TCEP3TCEP2

Connection 3Connection 1 Connection 2 Connection 4



U41136-J-Z145-3-76  29

TS applications TS applications, processes, connections

3.5 Threads and Multithreading

A thread is part of a program which is executed sequentially. A purely sequential 
program is described as being single-threaded. If a program consists of two or 
more independent parts which are executed concurrently then these parts are 
described as being multithreaded.

A multithreading (MT) operating system makes it possible to execute the 
various parts (threads) of single processes in parallel. On single processor 
machines, execution of these threads is pseudo-parallel whereas on multi-
processor machines the threads really are executed in parallel.

CMX V6.0 provides a library for multithreaded applications which complies with 
POSIX 1003.1c and ISO/IEC 9945-11 standards. To enable the use of this 
library, the function calls of the ICMX(L) program interface have been made 
multithread capable.

The ICMX(NEA) program interface is not available in a multithread version.

Connections and processes

Each thread handles its own connections but cannot access connections 
owned by other threads. Connections to other processes (i.e. threads in other 
processes) and connections to other threads in the same process can be 
redirected with the aid of the t_redrq and t_redin functions.

I This manual describes primary CMX applications based on the conven-
tional UNIX process model. In this manual, the statements made by 
processes to threads are intended for multithread applications. For more 
information on the creation of multithreaded CMX applications you 
should refer in particular to the function calls t_redin and t_redrq (see 
section “t_redin - Accept redirected connection (redirection indication)” 
on page 185 and section “t_redrq - Redirect connection (redirection 
request)” on page 189).



30   U41136-J-Z145-3-76

TS applications, processes, connections TS applications

Example 1: TS application with one process and multiple threads

Figure 7: Structure of a multithreaded TS application with a single process

The process contains four threads. Threads 1, 2 and 3 are currently attached to 
CMX. Thread 4 is not attached to CMX.

Figure 8: Connection redirection inside a multithreaded process

Process

Thread 1 Thread 2 Thread 3 Thread 4

CMX

TS application

Process

Thread 2 Thread 3 Thread 4

CMX

TS application

Thread 1



U41136-J-Z145-3-76  31

TS applications TS applications, processes, connections

In this example, thread 1 acts as the distributor thread. It is attached to the CMX 
and directs incoming requests to establish a connection to other threads inside 
the process. These threads independently execute the data transfer phase. 
Thread 1 can also establish additional connections.

Example 2: TS application with several processes each with multiple threads

Figure 9: Structure of a multithreaded TS application with several processes

The application works with two processes each of which contains multiple 
threads. All the threads, with the exception of thread 2 in process 2 are attached 
to the CMX.

Process 1

Thread 1 Thread 2 Thread 3

CMX

TS application

Process 2

Thread 1 Thread 2 Thread 3



32   U41136-J-Z145-3-76

TS applications, processes, connections TS applications

Figure 10: Connection redirection between multiple processes with multiple threads

In this example, the threads 1 in processes 1 and 2 act as the distributor 
threads. They are attached to the CMX and direct incoming requests to 
establish a connection to other threads inside their own processes and to a 
thread in any other process. They can also process requests to establish a 
connection.

Include files

POSIX threads require the include files <pthread.h>, <errno.h>, <limits.h>, 
<signal.h>, <types.h> and <unist.h>. The include files are in the directory 
/usr/include.

Process 1

Thread 2 Thread 3

CMX

TS application

Process 2

Thread 2 Thread 3

Thread 1 Thread 1



U41136-J-Z145-3-76  33

TS applications TS applications, processes, connections

CMX library functions

t_attach()
Each thread to be used with CMX must be attached to CMX with the 
t_attach() function. All other connection-specific CMX calls such as 
t_datarq() can only be executed from threads which have been attached 
with t_attach() and which have established (or contain) a connection 
made with t_conrq(), t_conin() or t_redin(). 

The CMX connections of the individual threads are strictly separated 
from each other. A thread cannot access the CMX connections of other 
threads.

t_redin(), t_redrq()
These two functions use the process ID to identify the process to which 
a connection is to be redirected or to identify the process from which a 
connection is to be obtained. If the connection is to be redirected to a 
specified thread in the receiver process then the thread ID must also be 
stated.

These are the possible types of connection redirection:

– to any other thread in the same process
– to a specified other thread in the same process
– to any other thread in another process
– to a specified other thread in another process

In the case of redirection to any thread, CMX will select the thread. The 
thread must have the following characteristics:

– It must be able to receive redirected connections (T_REDIN set with 
t_attach()).

– It must be attached to the same TS application (LOCAL NAME set 
with t_attach())

– Its connection limit has not yet been exceeded (parameter t_conlim 
set with t_attach()).

t_setopt()
The t_setopt() function can only be used to change thread-specific data. 
The thread trace can be switched on and off. When the trace is switched 
on, the trace range is set with the options -s, -S and -D. Parameters 
which refer to the entire process cannot be changed.



34   U41136-J-Z145-3-76

TS applications, processes, connections TS applications

Compiling and linking

Ê In order to ensure full compatibility with POSIX 1003.1c when compiling with 
MT programs, you should use the switch _POSIX_C_SOURCE=199506L.

Ê To compile multithreaded code, set the _REENTRANT switch.

Ê Use the compile option -mt to switch on all the options to be used with multi-
threading.

For linking you can continue to use the Solaris standard linker.

Ê Link multithreaded applications to the libpthreadcmx.so library (option -
lpthreadcmx) instead of the libcmx.so library (option -lcmx).

Ê Link programs with -lpthread. This means you must access the definitions in 
<pthread.h> where you should enter the compile instruction -lpthread as the 
last switch.

Ê For explicit links, place link libpthread.so before libc.so (libc has predefined 
libpthread stubs, i.e. dummy functions). 

Ê Place the -lpthread switch in the link statement (Id) before the -lc switch.

Example:

cc -mt [flags] file ... -lpthreadcmx -lpthread -lc
cc -mt [flags] file ... -lpthreadcmx -D_POSIX_C_SOURCE=199506L \ 

-D_EXTENSIONS_ -lpthread -lc

For more details on compiling and linking multithreaded applications, see the 
“Multithreaded Programming Guide” published by Sun Microsystems.

I The -mt switch corresponds to the -D_REENTRANT plus -lthread. 
Non-threaded and single-threaded applications are compiled without the 
_REENTRANT, _POSIX_C_SOURCE and __EXTENSIONS__ (or mt) 
flags.

Signals

Single-threaded CMX supports any signal (e.g. SIGIO) used to inform the appli-
cation of the presence of an event. This means, for example, that an application 
reading stdin can be blocked and interrupted as soon as a CMX event is 
present.



U41136-J-Z145-3-76  35

TS applications TS applications, processes, connections

Other information

Thread ID

The thread ID is a pthread_t data type and not an integer type.

 errno variable

Make the errno variable thread-specific by using the <errno.h> include file.

Thread generation and termination

CMX functions cannot generate or terminate threads.

Detach status

Use the pthread_attr_setdetachstate() or pthread_attr_getdetachstate() functions to 
define if the thread resources are to be used again.

Threads attached to CMX can only be detached using the t_detach() function. If 
you try to detach a thread using thread library functions (e.g. pthread_detach(), 
pthread_exit() or pthread_cancel() ), this can cause the loss of thread-specific 
CMX library resources.

Stack handling

The standard size is 1 Mbyte. 
You can use the thread functions pthread_attr_setstacksize() and 
pthread_attr_setstackaddr() to define the stack size. The minimum recommended 
stack size for CMX is 32 kByte.

Library trace

The library trace output also gives the thread ID. This enables thread-specific 
post processing with cmxl prepared ASCII trace data. The prolog of the ASCII 
trace file indicates if the file was generated by a single-threaded or a multi-
threaded application. See also the manual “CMX, Operation and Adminis-
tration“ [1].





U41136-J-Z145-3-76  37

4 Event processing and error 
handling 

4.1 Receiving events 

The operations involved during communications between TS applications are 
asynchronous, i.e. a wide variety of events can occur independently of the 
behavior of a TS application. Events are requests and responses received by 
CMX from other TS applications in the network or messages from the transport 
systems involved.

Examples of such events are:

– The connection request of a communication partner
(the "calling application")

– The arrival of data via an existing connection

– Flow control events (set and released send locks)

– Disconnection by the communication partner or CMX

CMX forwards these events to the TS application when the t_event() function is 
called by the TS application. Exactly one event is passed by CMX for each 
t_event() call, possibly with the identification of the connection involved 
(transport reference). The TS application must then directly process the 
received event as required, e.g. by calling the corresponding "fetch" function.

A routine to be called instead of the internal "waiting for/checking events" 
routine can be passed to CMX using the t_callback() call. The program waits in 
this routine for CMX and program-specific events.

The CMX functions are designed in a manner that allows, but does not compel, 
the TS application to wait for a possible answer from the network after issuing 
a call. There are three ways in which a TS application can process events:

– Synchronous processing 

– Asynchronous processing 

– Event processing in the program 



38   U41136-J-Z145-3-76

Receiving events Event processing and error handling

Synchronous processing 

The TS application calls t_event() with the parameter cmode = T_WAIT. As long 
as no event is waiting, the process sleeps and consumes no CPU time. When 
there is an event (T_CONIN in Fig. 11), CMX awakens the process, and t_event() 
returns the code of the event and, when appropriate, the transport reference of 
the connection involved.

Figure 11: Synchronous processing 

Even when the process is sleeping in t_event(), it can be awakened using 
signals. CMX will then resume it with T_NOEVENT, if a handler is defined for 
the signal.

When t_event() is called it is also possible to limit the waiting time. Simply specify 
how long the process is to wait for an event. If no event arrives within this time, 
CMX will resume the process with T_NOEVENT.

Asynchronous processing 

Call t_event() with the parameter cmode = T_CHECK. If no event is waiting, the 
call will immediately return with T_NOEVENT. You may continue with any 
processing and subsequently call t_event() again to check for a possible event. 

However, it is not wise to just have t_event() run in a continuous loop; it is better 
to use synchronous event processing (cmode = T_WAIT), and wake up the 
process periodically by using alarm() if required.

t_event() with T_WAIT

t_conin()

Process sleeps

T_CONIN



U41136-J-Z145-3-76  39

Event processing and error handling Receiving events

Figure 12: Asynchronous processing 

CMX expects a particular reaction, depending on which event was reported. 
Since program execution is determined by what events occur, the program logic 
can be largely encapsulated in a switch construction whose cases are the 
various events (as in the sample programs). If a TS application is to commu-
nicate via the migration interface ICMX(NEA) it must fetch events using the call 
x_event().

Event processing in the program 

The callback() call can be used to insert your own callback routine. This routine 
is called instead of the internal "event waiting point" routine during t_event(). In 
the callback routine the program must wait for/check CMX events and can also 
wait for/check its own events.

t_event() with T_CHECK

t_conin()

. 

.Processing

. 

T_CONIN

t_event() with T_CHECK

T_NOEVENT



40   U41136-J-Z145-3-76

Error handling Event processing and error handling

Figure 13: Inserting and activating a callback routine 

4.2 Error handling

4.2.1 Error checking functions

A function call resulting in an error always returns with a global error indicator. 
A more precise value is obtained by calling the error checking function. The 
following table shows which function calls and error indicators are applicable to 
the individual CMX program interfaces:

The values returned by t_error() or x_error() are in hexadecimal form.

Interface Function calls Global error 
indicator

Error checking 
function

ICMX(L)

ICMX(NEA)

t_....

x_....

T_ERROR

X_ERROR

t_error()

x_error()

Table 4:  Error checking functions

t_callback (..cb-routine..)

cb-routine {
.
.
.

}
main()
{

.

.

t_event()

Wait for/check 
in the inserted
callback routine



U41136-J-Z145-3-76  41

Event processing and error handling Error handling

4.2.2 Format of CMX error messages 

Every error message at ICMX(L) and ICMX(NEA) is passed in the form 0x%x, 
where %x is an error code with a length of 16 bits. The error code is structured 
as follows:

Figure 14: Format of CMX error messages

0 CMX error
2 Temporary

TNSX error
3 TNSX call error
4 Permanent TNSX error
5 TNSX warning
8 System error in

NEABX call
9 NEABX error

Error  type
T_CMXTYPE
T_DSTEMPERR

T_DSCALL_ERR
T_DSPERM_ERR
T_DSWARNING
X_BX2

X_BX3

Error class
T_CMXCLASS
T_DSNOT_SPEC
T_DSPAR_ERR
T_DSILL_VERS
T_DDSSYS_ERR
T_DSINT_ERR
T_DSMESSAGE
X_NEAERR

0 CMX class
2 TNSX class, unspecified
3 TNSX parameter error
4 Invalid TNSX version
5 TNSX system error
6 Internal TNSX error
7 TNSX message
9-B NEABX class

Error value
The possible values and their
meanings are listed in the
appendix and can be found in
<errno.h>

15 12 8 7 4 3

00

0

0



42   U41136-J-Z145-3-76

Error handling Event processing and error handling

Error messages are interpreted beginning on the left (bit 15).

The error values for the individual functions of ICMX(L) and ICMX(NEA) are 
listed in the appendix in as far as the errors are generated in CMX. Other error 
values can be obtained from <errno.h>.

4.2.3 Decoding error messages 

In addition to the diagnostic functions t_error() and x_error(), special function 
calls are provided at the ICMX(L) and ICMX(NEA) interfaces in order to convert 
error codes into plain English.

The program cmxdec can be used at the command level to decode ICMX error 
messages and the reasons for disconnection.

Reasons for disconnection are the values that are returned in the reason 
parameter when t_disin(), or x_disin() is called. They specify why a connection 
was closed down or rejected.

The error code or the value of reason is decoded by cmxdec. The symbolic value 
defined in the appropriate header file is written to stderr. If a corresponding 
message catalog exists, an explanatory text is also output.

The program cmxdec is described in the relevant “CMX, Operation and Admin-
istration” manual [1] or [2].



U41136-J-Z145-3-76  43

5 Attaching to/detaching from CMX 
A TS application comes into existence as soon as a process attaches itself to 
CMX using the application’s LOCAL NAME. Each further process wishing to 
operate within this TS application must also attach itself to CMX for this TS 
application, i.e. by using the same LOCAL NAME.

Before a process terminates it must detach itself from CMX. When the last 
process of a TS application has detached itself from CMX, the TS application 
no longer exists for CMX.

5.1 Attaching to CMX 

A process attaches itself to CMX via the ICMX(L) interface by calling t_attach().

When doing this the process must pass the LOCAL NAME of the TS application 
for which it wishes to attach itself to CMX.

The process must read the LOCAL NAME from the TS directory prior to 
attachment, i.e. before the t_attach() call. To do this, it calls the ICMX(L) function 
t_getloc() and passes to t_getloc() a parameter with the GLOBAL NAME of the 
TS application for which it wishes to attach itself. t_getloc() returns a pointer to 
a structure in which the LOCAL NAME is stored. This pointer is passed as a 
parameter in t_attach().

Thus, the t_getloc() call must precede the t_attach() call.

When the first process of a TS application attaches itself, a Transport Service 
Access Point (TSAP) is created for the TS application. The TSAP is the point at 
which the transport service is accessible. It is assigned the LOCAL NAME of the 
TS application.

When attaching itself, each process of a TS application specifies:

– whether it wishes to actively set up connections for the TS application.
The TS application can then assume the role of the "calling TS application" 
in the subsequent connection setup phase.

– whether it wishes to wait passively on behalf of the TS application for 
connection requests from other TS applications in the network. The TS 
application can then assume the role of the "called TS application" during 
the course of communication.



44   U41136-J-Z145-3-76

Attaching to CMX Attaching to/detaching from CMX

– whether it will accept connections that another process of the same TS 
application wishes to pass to it (i.e. whether it will accept connection 
redirection). A process of the same TS application means a process that has 
attached itself to CMX using the same LOCAL NAME.

A process may attach itself to CMX for all three of these possibilities, or for only 
one or two of them.

The same process can also be attached to several different TS applications. To 
do this, it must call t_attach() and t_getloc() for each of these TS application.

CMX accepts connection requests from remote TS applications on behalf of a 
TS application as soon as a process of the TS application has attached itself to 
CMX for passive connection setup. Incoming connection requests are initially 
forwarded by CMX to the process that was the first in the TS application to 
attach itself for passive connection setup.

Only after successful attachment can a process call other CMX functions, i.e. 
issue other t_...() calls.

Notes on attaching via ICMX(NEA)

The procedure for attaching a TS application at the ICMX(NEA) program 
interface is analogous to the one above; the only difference is that the call 
x_attach() must be used instead of t_attach(). The LOCAL NAME can be likewise 
read from the TS directory with the help of t_getloc().



U41136-J-Z145-3-76  45

Attaching to/detaching from CMX Detaching from CMX

5.2 Detaching from CMX

Before a process terminates, it calls t_detach(). t_detach() detaches the process 
from CMX for that TS application. First, however, all TS connections maintained 
by the process must be closed down (siehe chapter “Managing connections 
between TS applications” on page 49). If the process does not do this, CMX 
implicitly closes down all TS connections itself. This is, however, provided only 
for exceptional situations, for example when a process is terminated prema-
turely.

When the last process of a TS application has detached itself, the TS appli-
cation no longer exists for CMX. Connection requests from remote TS applica-
tions will no longer be accepted for that TS application.

Notes on detaching via ICMX(NEA) 

The procedure for detaching a TS application at the ICMX(NEA) program 
interface is analogous to the one above; the only difference is that the function 
x_detach() must be used instead of t_detach().



46   U41136-J-Z145-3-76

Examples Attaching to/detaching from CMX

5.3 Examples of attaching and detaching a 
process

5.3.1 Example of attaching and detaching a process at 
ICMX(L)

The following program fragment shows the program execution sequence when 
a process is attached and detached at the ICMX(L) interface.

A process attaches itself to CMX for the TS application "Test_application_ACT" 
and then detaches itself. In the option structure t_opta1 it specifies that it only 
wishes to actively set up connections in this TS application (T_ACTIVE), and 
that no more than one connection is to be simultaneously maintained.

#include        <stdio.h>
#include        <cmx.h>
#include        <tnsx.h>
.
.
#define ERROR   1
 .
 .
struct  t_opta1 t_opta1 = { T_OPTA1, T_ACTIVE, 1 };   
                                             /* t_attach () */
 .
 .
 /* Structures for addressing */
#define MYNAME  "Test_application_ACT"
char myname[TS_LPN+1] = { MYNAME } ;
struct t_myname t_myname, *p_myname;
   .
   .
/* Attach active application to CMX */
if ((p_myname = t_getloc(myname, NULL)) != NULL)
        t_myname = *p_myname;
else {
       fprintf(stderr, ">>> ERROR 0x%x in t_getloc\n", 
t_error());
       exit(ERROR);
}
if (t_attach(&t_myname, &t_opta1) == T_ERROR) {
       fprintf(stderr, ">>> ERROR 0x%x in t_attach\n",
               t_error());
       exit(ERROR);
}



U41136-J-Z145-3-76  47

Attaching to/detaching from CMX Examples

fprintf(stderr, "Application ’%s’ attached.\n", myname);
  .
  .
/* Detach TS application from CMX */
if (t_detach(&t_myname) == T_ERROR)
        fprintf(stderr, ">>> ERROR 0x%x in t_detach\n",
                             t_error());
fprintf(stderr, "Application ’%s’ detached.\n", myname);
   .
   .

5.3.2 Example of attaching and detaching a process at 
ICMX(NEA)

The following program fragment shows the program execution sequence when 
a process is attached and detached at the ICMX(NEA) interface.

A process attaches itself to CMX for the TS application "NEA_application_ACT" 
and then detaches itself. In the option structure t_opta1 it specifies that it only 
wishes to actively set up connections in this TS application (X_ACTIVE), and 
that no more than one connection is to be simultaneously maintained.

#include        <stdio.h>
#include        <cmx.h>
#include        <tnsx.h>
#include        <neabx.h>
.
.
#define ERROR   1
 .
 .
struct  x_opta1 x_opta1 = { X_OPTA1, X_ACTIVE, 1 }; 
                                          /* x_attach () */
 .
 .
 /* Structures for addressing */
#define MYNAME  "NEA_application_ACT"
char myname[TS_LPN+1] = { MYNAME } ;
struct x_myname x_myname, *p_myname;
   .
   .
/* Attach active application to ICMX(NEA) */
if ((p_myname = t_getloc(myname, NULL)) != NULL)
        x_myname = *p_myname;
else {
       fprintf(stderr, ">>> ERROR 0x%x in t_getloc\n",



48   U41136-J-Z145-3-76

Examples Attaching to/detaching from CMX

                            t_error());
       exit(ERROR);
}
if (x_attach(&x_myname, &x_opta1) == X_ERROR) {
       fprintf(stderr, ">>> ERROR 0x%x in x_attach\n",
                        x_error());
       exit(ERROR);
}
fprintf(stderr, "Application ’%s’ attached.\n", myname);
  .
  .
/* Detach TS application from ICMX(NEA) */
if (x_detach(&x_myname) == X_ERROR)
        fprintf(stderr, ">>> ERROR 0x%x in x_detach\n",
                             x_error());
fprintf(stderr, "Application ’%s’ detached.\n", myname);
   .
   .



U41136-J-Z145-3-76  49

6 Managing connections between 
TS applications

Connection setup and disconnection involve two TS applications. One is the 
calling TS application; it initiates connection setup. The other is the called TS 
application, with whom the calling TS application wishes to establish a 
connection. The following sections elucidate the relationships and sequences. 

The fact that CMX is displayed only once in the diagrams is just a simplification 
of the presentation. Actually, each partner uses "his" CMX in his processor, and 
in between stand the network and the transport systems.

6.1 Establishing a connection

The processing sequence in the course of setting up a connection at ICMX(L) 
is explained first. The following figure illustrates the chronological sequence of 
ICMX(L) calls in the programs of the calling and called TS application.

Figure 15: Establishing a connection (ICMX(L)) 

Calling TS application Called TS application

CMX

t_getaddr
t_conrq
t_event

T_CONCF

t_conin
t_getname *)

t_conrs

T_CONIN

t_event

t_concf

t_getloc
t_attach
.
.

.

.

.

t_attach

t_getloc
.

.

.

.

*) Calling t_getname() is not mandatory.



50   U41136-J-Z145-3-76

Establishing a connection Connections between TS applications

Course of connection setup in the calling TS application

The process of the calling TS application must inform CMX when attaching itself 
to it that it intends to actively set up a connection. The calling TS application first 
obtains its LOCAL NAME and then attaches itself to CMX. Thereafter it ascer-
tains the TRANSPORT ADDRESS of the called TS application and requests a 
connection using t_conrq().

It then waits with t_event() for confirmation of the called TS application, i.e. for 
the TS event T_CONCF. When t_event() has reported the TS event, the calling 
TS application establishes the connection with the call t_concf().

Course of connection setup in the called TS application

Each process of the called TS application must inform CMX when attaching 
itself to it that it intends to passively set up a connection. After being attached, 
the called TS application initially waits for a TS event with t_event(). The TS 
event T_CONIN indicates the connection request of the calling TS application. 
The called TS application accepts this connection indication with the call 
t_conin(). It can then ascertain from the TRANSPORT ADDRESS of the calling 
TS application its GLOBAL NAME, and answers the connection request with 
t_conrs().

Exchanging user data during connection setup

The reason the calls t_conin() (connect indication) and t_concf() (connect confir-
mation) are required is that both TS applications can already exchange user 
data while the connection is being set up, if the transport system supports this 
option (see section “System and user options” on page 12).

With t_conrq() the calling TS application may pass user data, i.e. a small quantity 
of data that the called TS application receives with t_conin(). If the called TS 
application then answers the connection request with t_conrs(), it in turn may 
also pass information. This is received by the calling TS application with 
t_concf().



U41136-J-Z145-3-76  51

Connections between TS applications Establishing a connection

Figure 16: Exchange of user data during connection setup

Rejecting a connection request

The called TS application may also reject the connection request. The 
sequence is the same. The event T_CONIN must first be accepted with 
t_conin(), but instead of the call t_conrs() the call t_disrq() is issued (see also 
section “Closing down a connection” on page 55).

Figure 17: Rejecting a connection request

  Calling TS application     Called TS application

t_conrq

t_concf

t_conin

t_conrs

Calling TS application Called TS application

CMX

t_getaddr
t_conrq
t_event

T_DISIN

t_conin
t_getname

t_disrq

T_CONIN

t_event

t_disin
..

..

..



52   U41136-J-Z145-3-76

Establishing a connection Connections between TS applications

Notes on connection setup at ICMX(NEA)

Functions of the ICMX(NEA) program interface call ICMX(L) functions internally. 
The operations described above are thus also applicable here, provided the 
user data to be exchanged can be directly transmitted by CMX. TS applications 
using ICMX(NEA) are, however, required to pass the NEABV protocol in the 
user data. The length of this user data may exceed the user data length 
permitted by the transport system. As a result, user data passed with x_conrq() 
cannot be transmitted by CMX by using a t_conrq() call.

The chronological sequence of the resulting operations is illustrated in the figure 
below:

Figure 18: Connection setup with ICMX(NEA) 

Calling Called

CMX
t_getloc

t_conrq

t_getname *)

t_getloc
NEABX NEABX

t_attach

t_conrq

t_event

T_CONCF

t_concf

t_datarq
t_event

T_DATAIN
t_datain

x_attach t_attach x_attach

TS application TS application

t_event

T_CONIN
t_conin

t_conrs
t_event

T_DATAIN
t_datain

t_datarq

t_getaddr x_event

X_CONIN
X_REPEAT

x_event
x_conin

X_REPEAT
x_event

X_REPCIN

X_REPCRQ

x_conrq
x_event x_conin

x_conrsX_CONCF
x_concf

*) Calling t_getname is not mandatory.

..

..

..

..

..

..

..
..

..

..

..

..

..

..



U41136-J-Z145-3-76  53

Connections between TS applications Establishing a connection

On calling x_conrq(), the calling TS application receives the return value 
X_REPEAT. It must now call x_event() and wait until NEABX reports the event 
X_REPCRQ. Following this, it must repeat x_conrq() with the same parameters. 
It is only when the value T_OK is returned to the TS application on calling 
x_conrq() and when the following x_event() call reports the event X_CONCF that 
the connection to the called TS application can be set up with x_concf().

After attaching itself to CMX, the called TS application calls x_event(). If the 
connect indication X_CONIN arrives, the called TS application calls x_conin(). 
The value X_REPEAT is returned as the result. The TS application must now 
call x_event() again and wait for the event X_REPCIN. After this event arrives, 
the TS application accepts the user data by repeating the x_conin() call and then 
confirms the connection request with x_conrs().

In this connection setup type, CMX establishes an internal connection with the 
partner CMX and transmits the user data with the help of the ICMX(L) calls for 
data transmission (t_datarq(), t_datain()).

If the called TS application wishes to reject the connection, it must call x_disrq() 
instead of x_conrs().

Agreeing on expedited data 

If the transport system provides the expedited data option, the TS applications 
may agree on its use during connection setup. This takes place as follows:

With the connection request with t_conrq() the calling TS application makes a 
proposal, which the called TS application can only "negotiate down". This 
means: If the calling TS application proposes not using any expedited data, then 
this is settled for the connection. If on the other hand it proposes that expedited 
data be exchanged, the called TS application may accept or reject this in its 
connection response with t_conrs(). In both cases the answer is binding.

If one of the two TS applications does not agree with the result of the expedited 
data negotiation, it may close down the connection.



54   U41136-J-Z145-3-76

Establishing a connection Connections between TS applications

Figure 19: Negotiation regarding expedited data during connection setup

If the TS applications are to communicate via the migration interface 
ICMX(NEA), the prefix x_ must be used instead of t_ for the calls given above, 
and the prefix X_ must replace T_ for the events.

 Calling TS application     Called TS application

t_conrq

t_concf

YES

   NO

   NO

YES

   NO

t_conrq

t_concf

t_concf

t_conin

t_conrs

YES

   NO

   NO

YES

   NO

t_conin

t_conrs

t_conrs

then either

or



U41136-J-Z145-3-76  55

Connections between TS applications Closing down a connection

6.2 Closing down a connection

Either of the two communicating TS applications may call t_disrq() in order to 
close down the connection. The partner TS application then receives the event 
T_DISIN.

By calling t_disin() it accepts the disconnection. With this call it obtains the 
reason for the disconnection.

Figure 20: Closing down a connection

If the transport system provides for it, the TS application that closes down the 
connection may include user data with t_disrq(). The partner TS application 
receives this with t_disin().

The connection may also be closed down by CMX. In this case, both TS appli-
cations receive the event T_DISIN, which they must fetch with t_disin(). Based 
on the reason given for the disconnection each TS application can ascertain 
whether the connection was closed down by the other TS application or by 
CMX.

If the CMX application is to communicate via the migration interface 
ICMX(NEA), the calls x_disrq() and x_disin() must be used instead of t_disrq() 
and t_disin().

Calling TS application Called TS application

CMX

T_DISIN

t_disin

T_DISIN t_disin

T_DISIN

t_event

t_disrq

t_disin

   or ..

..



56   U41136-J-Z145-3-76

Examples Connections between TS applications

6.3 Example of setting up and closing down a 
connection with ICMX(L)

6.3.1 Examples of establishing a connection with 
ICMX(L)

The two following program fragments show how a connection is set up.

Example 1 shows the program structure for the calling TS application.

Example 2 shows the program structure for the called TS application.

Example 1:

The TS application actively sets up a connection to the TS application 
“Test_application_PAS” and then closes it down.

#include        <stdio.h>
#include        <cmx.h>
#include        <tnsx.h>
   .
   .
#define ERROR   1
   .
   .
int     tref;                   /* Transport reference */
int     reason;                 /* Reason for disconnection */
 /* Structures for addressing */
#define PNAME   "Test_applicaton_PAS"
char pname[TS_LPN+1] = { PNAME } ;
struct t_partaddr t_partaddr, p_partaddr;
   .
   .
/* set up the connection of the passive partner */
if ((p_partaddr = t_getaddr(pname, NULL)) != NULL)
         t_partaddr = *p_partaddr;
else {
  fprintf(stderr, ">>> ERROR 0x%x at t_getaddr\n", t_error());
  exit(ERROR);
}
if (t_conrq(&tref, (union x_address *)&t_partaddr,
          (union x_address *)&t_myname, NULL) == T_ERROR) {
  fprintf(stderr, ">>> ERROR 0x%x at t_conrq, tref 0x%x\n",
          t_error(), tref);
  exit(ERROR);



U41136-J-Z145-3-76  57

Connections between TS applications Examples

}
/* event-driven processing */
* t_event() waits synchronously (T_WAIT) */
/*
for (;;) {
        switch (event = t_event(&tref, T_WAIT, NULL)) {
        case T_CONCF:
           /*
            * Connection setup successfull?
            */
           if (t_concf(&tref, NULL) == T_ERROR) {
                  fprintf(stderr, ">>> ERROR 0x%x at t_concf
                          tref 0x%x\n",
                          t_error(), tref);
                  exit(ERROR);
           }
           fprintf(stderr, "Connection established
                             to’%s’ .\n", pname);
           .
           .
        case T_DISIN:
            /* Disconnection by partner or system */
             if (t_disin(&tref, &reason, NULL) == T_ERROR) {
                fprintf(stderr, ">>> ERROR 0x%x at t_disin
                tref 0x%x\n",
                        t_error(), tref);
                exit(ERROR);
             }
             fprintf(stderr, "Received disconnect indication,
                     tref          0x%x,     
                     reason %d\n", tref, reason);
            .
            .
        }
}
 /* Disconnection */
 if (t_disrq(&tref, NULL) == T_ERROR){
      fprintf(stderr, ">>> ERROR 0x%x at t_disrq tref 0x%x\n",
                    t_error(), tref);
      exit(ERROR);
 }
fprintf(stderr, "Connection tref 0x%x actively closed down.\n",
                 tref);
    .
    .



58   U41136-J-Z145-3-76

Examples Connections between TS applications

Example 2

The TS application waits passively for an incoming connection request, accepts 
the connection, and then closes it down.

#include        <stdio.h>
#include        <cmx.h>
#include        <tnsx.h>
   .
   .
#define ERROR   1
   .
   .
int     tref;                   /* Transport reference */
int     reason;                 /* Reason for disconnection */
/*
 * Structures for addressing
 */
struct t_myname t_myname, *p_myname;
struct t_partaddr t_partaddr;
   .
   .
   .
/* Event-driven processing:
 * t_event() waits synchronously (T_WAIT) 
 */
for (;;) {
        switch (event = t_event(&tref, T_WAIT, NULL)) {
        case T_CONIN:
          /* Accept connection request */
          if (t_conin(&tref, (union x_address *)&t_myname,
                   (union x_address *)&t_partaddr, NULL) ==
                    T_ERROR) {
            fprintf(stderr, ">>> ERROR 0x%x at t_conin
                    tref 0x%x\n",
                    t_error(), tref);
            exit(ERROR);
          }
          if (t_conrs(&tref, NULL) == T_ERROR) {
             fprintf(stderr, ">>> ERROR 0x%x at t_conrs tref
                     0x%x\n",
                     t_error(), tref);
             exit(ERROR);
             }
             .
             .
        case T_DISIN:
            /*



U41136-J-Z145-3-76  59

Connections between TS applications Examples

             * Disconnection by partner or system
             */
            if (t_disin(&tref, &reason, NULL) == T_ERROR) {
             fprintf(stderr, ">>> ERROR 0x%x at t_disin tref
             0x%x\n",
                      t_error(), tref);
             exit(ERROR);
           }
           fprintf(stderr, "Received disconnect indication, tref
           0x%x,
                   reason %d\n", tref, reason);
                .
                .
        }
}
/*
 * Disconnection
 */
if (t_disrq(&tref, NULL) == T_ERROR){
    fprintf(stderr, ">>> ERROR 0x%x at t_disrq tref 0x%x\n",
            t_error(), tref);
    exit (ERROR);
}
fprintf(stderr, "Connection tref 0x%x actively closed down
            .\n", tref);
    .
    .



60   U41136-J-Z145-3-76

Examples Connections between TS applications

6.3.2 Examples of establishing a connection with 
ICMX(NEA) 

Example 1 shows the program structure for the calling TS application.

Example 2 shows the program structure for the called TS application.

Example 1: 

The TS application actively sets up a connection to the TS application 
“NEA_application_PAS and then closes it down.

#include        <stdio.h>
#include        <cmx.h>
#include        <tnsx.h>
#include        <neabx.h>
   .
   .
#define ERROR   1
   .
   .
int     tref;                   /* Transport reference */
int     reason;                 /* Reason for disconnection */
 /* structures for addressing */
#define PNAME   "NEA_application_PAS"
char pname[TS_LPN+1] = { PNAME } ;
struct x_partaddr x_partaddr, *p_partaddr;
struct x_optc1 x_optc1 ;
char   *udatap = "User connection message, exceeding 32
                  characters" ;
int     retval ;
char    answer[X_MSG_SIZE] ; 
                     /* User message received with x_conf  */
   .
   .
/* Set up connection to the passive partner */
if ((p_partaddr = t_getaddr(pname, NULL)) != NULL)
         x_partaddr = *p_partaddr;
else {
      fprintf(stderr, ">>> ERROR 0x%x at t_getaddr\n",
      t_error());
      exit(ERROR);
}
x_optc1.x_optnr = X_OPTC3 ;
x_optc1.x_xdata = X_YES ;
x_optc1.x_timeout = T_NOLIMIT ;
x_optc1.x_prot = X_NEABX ;



U41136-J-Z145-3-76  61

Connections between TS applications Examples

x_optc1.x_udatap = udatap ;
x_optc1.x_udatal = strlen(udatap) ;
if ((retval=x_conrq(&tref, (union x_address *)&x_partaddr,
          (union x_address *)&x_myname, &x_optc1)) == X_ERROR) {
     fprintf(stderr, ">>> ERROR 0x%x at x_conrq, tref 0x%x\n",
           x_error(), tref);
     exit(ERROR);
}
/* Event-driven processing :
 * x_event() waits synchronously (X_WAIT) 
 */
for (;;) {
        switch (event = x_event(&tref, X_WAIT, NULL)) {
        case X_REPCRQ :
        if (x_conrq(&tref, (union x_address *)&x_partaddr,
              (union x_address *)&x_myname, &x_optc1) ==
               X_ERROR) {
      fprintf(stderr, ">>> ERROR 0x%x on repeating
      x_conrq, tref 0x%x\n",
              x_error(), tref);
          exit(ERROR);
           }
        break ;
        case X_CONCF:
           /*
            * Connection setup sucessfull?
            */
           x_optc1.x_udatap = answer ;
           x_optc1.x_udatal = sizeof(answer) ;
           if ((retval=x_concf(&tref, &x_optc1)) == X_ERROR) {
                  fprintf(stderr, ">>> ERROR 0x%x at x_concf
                  tref 0x%x\n",
                          x_error(), tref);
                  exit(ERROR);
           }
           if ( retval == X_REPEAT )
              break ;
           else
               fprintf(stderr, "Connection established to ’%s
               .\n", pname);
           .
           .
        case X_REPCCF :
              /*
               * fetch confirmation again
               */
           if (x_concf(&tref, &x_optc1) == X_ERROR) {
      fprintf(stderr, ">>> ERROR 0x%x on repeating x_concf



62   U41136-J-Z145-3-76

Examples Connections between TS applications

      tref 0x%x\n",
          x_error(), tref);
                  exit(ERROR);
           }
           fprintf(stderr, "Connection established to %s’ .\n",
           pname);
           .
           .
        case X_DISIN:
            /* Disconnection by partner or system */
            if (x_disin(&tref, &reason, NULL) == X_ERROR) {
                fprintf(stderr, ">>> ERROR 0x%x at x_disin
                tref 0x%x\n",
                        x_error(), tref);
                exit(ERROR);
            }
            fprintf(stderr, "Received disconnect indication,
                              tref
            0x%x,
                   reason %d\n", tref, reason);
            :
        }
}
 /* Disconnection */
 if (x_disrq(&tref, NULL) == X_ERROR){
            fprintf(stderr, ">>> ERROR 0x%x at x_disrq tref
            0x%x\n",
                    x_error(), tref);
            exit(ERROR);
 }
 fprintf(stderr, "Connection tref 0x%x actively closed down.\n",
 tref);
    .
    .



U41136-J-Z145-3-76  63

Connections between TS applications Examples

Example 2: 

The TS application waits passively for an incoming connection request, accepts 
the connection, and then closes it down.

#include        <stdio.h>
#include        <cmx.h>
#include        <tnsx.h>
#include        <neabx.h>
   .
   .
#define ERROR   1
   .
   .
int     tref;                   /* Transport reference */
int     reason;                 /* Reason for disconnection */
/*
 * structures for addressing
 */
struct x_myname x_myname, *p_myname;
struct x_partaddr x_partaddr;
struct x_optc1 x_optc1 ;
char   *answer = "User connection message, exceeding 32
                   characters" ;
int     retval ;
char    udatap[X_MSG_SIZE] ;
                 /* User message received with x_conin */
   .
   .
   .
/* Event-driven processing:
 * x_event() waits synchronously (X_WAIT) 
 */
for (;;) {
        switch (event = x_event(&tref, X_WAIT, NULL)) {
        case X_CONIN:
        case X_REPCIN :
            /* Accept connection request */
            x_optc1.x_optnr = X_OPTC3 ;
            x_optc1.x_udatap = udatap ;
            x_optc1.x_udatal = sizeof(udatap) ;
            if ((retval=x_conin(&tref, (union x_address
            *)&x_myname,
                (union x_address *)&x_partaddr, &x_optc1))
            == X_ERROR) {
                fprintf(stderr, ">>> ERROR 0x%x at x_conin
                tref 0x%x\n",
                        x_error(), tref);



64   U41136-J-Z145-3-76

Examples Connections between TS applications

                exit(ERROR);
            }
            if ( retval == X_REPEAT )
              break;
              /* Wait for X_REPCIN */
            x_optc1.x_udatap = answer ;
            x_optc1.x_udatal = strlen(answer) ;
            if (x_conrs(&tref, &x_optc1) == X_ERROR) {
                fprintf(stderr, ">>> ERROR 0x%x at x_conrs
                tref 0x%x\n",
                        x_error(), tref);
                exit(ERROR);
                }
                .
                .
        case X_DISIN:
            /*
             * Disconnection by partner or system
             */
            if (x_disin(&tref, &reason, NULL) == X_ERROR) {
                fprintf(stderr, ">>> ERROR 0x%x at x_disin
                tref 0x%x\n",
                        x_error(), tref);
                exit(ERROR);
             }
             fprintf(stderr, "Received disconnect indication,
                               tref
             0x%x,
                    reason %d\n", tref, reason);
                .
                .
        }
}
/*
 * Disconnection
 */
if (x_disrq(&tref, NULL) == X_ERROR){
    fprintf(stderr, ">>> ERROR 0x%x at x_disrq tref 0x%x\n",
            x_error(), tref);
    exit (ERROR);
}
fprintf(stderr,"Connection tref 0x%x rejected or actively
 closed down.\n", tref);
    .
    .



U41136-J-Z145-3-76  65

Connections between TS applications Redirecting connections

6.4 Redirecting connections

Incoming connections for a local TS application are initially received by the 
process that first attached itself for that TS application. Now in order e.g. to be 
able to associate particular connections with particular processes, a connection 
may be redirected to another process. Of course, actively set up connections 
may also be redirected.

Both processes must belong to the same TS application, i.e. they must have 
attached themselves with the same LOCAL NAME. However, they do not have 
to be related. The receiving process must indicate its readiness to accept a 
connection redirection when attaching itself to CMX.

Sequence in redirecting a connection

Process A specifies the process ID of process B when calling t_redrq(). Process 
B receives the event T_REDIN and must initially accept the connection, with the 
call t_redin(). With this call process B is informed of the process ID of process 
A. If process B does not wish to have the connection, it may close it down or 
redirect it further, e.g. back to process A.

Figure 21: Redirecting a connection

With t_redrq() it is also possible to include user data, which process B receives 
when it calls t_redin().

Notes on redirecting a connection with ICMX(NEA)

If the TS application is to communicate via the migration interface ICMX(NEA), 
the calls x_redrq(), x_redin() and x_event() must be used instead of t_redrq(), 
t_redin() and t_event(). Process B receives the event X_REDIN. It is essential to 
specify a storage area for the transmission of user data, since the migration 
service must create a message to pass an internal NEABX protocol.

Process A Process B

CMX

t_redrq

t_redin
T_REDIN

t_event
:

:



66   U41136-J-Z145-3-76

Examples Connections between TS applications

6.4.1 Example of redirecting a connection

The following program fragments show how a connection can be redirected and 
how a redirected connection is accepted.

6.4.1.1 Example of redirecting a connection at ICMX (L)

#include        <stdio.h>
#include        <cmx.h>
#include        <tnsx.h>
  .
#define ERROR   1
  .
int     tref;     /* Transport reference */
int     cpid;     /* ID of process to receive connection */
int     rpid;     /* ID of process wanting to relinquish
                     connection */
  .
  .
/* Actively redirect connection */
if (t_redrq(&tref, &cpid, NULL) == T_ERROR) {
    fprintf(stderr, ">>> ERROR 0x%x at t_redrq tref 0x%x\n",
            t_error(), tref);
    exit(ERROR);
}
fprintf(stderr, "Connection redirected to #%d \n", cpid);
 .
 .
/* Accept connection redirection */
for (;;) {
        switch (event = t_event(&tref, T_CHECK, NULL)) {
        case T_REDIN:
             if (t_redin(&tref, &rpid, NULL) == T_ERROR) {
                 fprintf(stderr, ">>> ERROR 0x%x at t_redin
                 tref 0x%x\n",
                         t_error(), tref);
                 exit(ERROR);
             }
             fprintf(stderr, "Connection received from #%d .\n",
                               rpid);
             .
             .
         }
}



U41136-J-Z145-3-76  67

Connections between TS applications Examples

6.4.1.2 Example of redirecting a connection at ICMX(NEA)

#include        <stdio.h>
#include        <cmx.h>
#include        <tnsx.h>
#include        <neabx.h>
  .
#define ERROR   1
  .
int     tref;   /* Transport reference */
int     cpid;   /* ID of process to receive connection */
int     rpid;   /* ID of process wanting to relinquish 
                    connection */
struct x_optc2 x_optc2 ;
char message[X_RED_SIZE] ;
  .
/* actively redirect connection */
strcpy(message,"private");
x_optc2.x_optnr = X_OPTC2 ;
x_optc2.x_udatap = message ;
x_optc2.x_udatal = strlen(message) + X_RED_PL ;
if (x_redrq(&tref, &cpid, &x_optc2) == X_ERROR) {
    fprintf(stderr, ">>> ERROR 0x%x at x_redrq tref 0x%x\n",
            x_error(), tref);
    exit(ERROR);
}
fprintf(stderr, "Connection redirected to #%d \n", cpid);
 .
/* Accept connection redirection */
for (;;) {
        switch (event = x_event(&tref, X_WAIT, NULL)) {
        case X_REDIN:
            x_optc2.x_optnr = X_OPTC2 ;
            x_optc2.x_udatap = message ;
            x_optc2.x_udatal = sizeof(message) ;
             if (x_redin(&tref, &rpid, &x_optc2) == X_ERROR) {
                 fprintf(stderr, ">>> ERROR 0x%x at x_redin
                 tref 0x%x\n",
                         x_error(), tref);
                 exit(ERROR);
             }
             fprintf(stderr, "Connection received from #%d .\n",
             rpid);
             .
             .
         }
}





U41136-J-Z145-3-76  69

7 Transmitting data 
Once a connection has been set up, the two TS applications can exchange 
data. Either TS application may initiate the data exchange regardless of 
whether it is the calling or the called TS application.

The amount of data forming a logical unit from the point of view of the TS appli-
cations is referred to as a message, or TSDU (Transport Service Data Unit). 
A TSDU may be any length (but see also section “Transport system specific 
features” on page 103).

However, CMX can accept only a limited amount of data at any one time. This 
is referred to as a data unit or TIDU (Transport Interface Data Unit). The 
maximum length of a TIDU depends on the transport system. This length must 
be queried for every connection using the call t_info(), or x_info() in the case of 
ICMX(NEA).

Figure 22: TIDU and TSDU 

The logical linkage of TIDUs to form a TSDU is controlled by means of a 
parameter, which specifies for each TIDU in a message whether it is followed 
by a further TIDU or is the last one in the TSDU.

If the transport system provides the option, and both TS applications agree to it 
when the connection is set up, they may also exchange expedited data. 
Expedited data is a small quantity of data that is given priority over normal data, 
i.e. expedited data never arrives later than normal data sent subsequently to the 
expedited data.

Expedited data must always be transmitted all at once. A unit of expedited data 
is called an ETSDU (Expedited Transport Service Data Unit).

data unit
(TIDU)

data unit
(TIDU) ...

Message (TSDU)



70   U41136-J-Z145-3-76

Sending and receiving normal data Transmitting data

7.1 Sending and receiving normal data

Normal data is sent with one of the calls t_datarq() or t_vdatarq().

Each such call sends at most one TIDU. t_datarq() is called when the TIDU to 
be sent is contained in one contiguous storage area. t_vdatarq() is called when 
the TIDU to be sent is located in several different storage areas.

In the simplest case data transfer proceeds as follows:

– The sending TS application passes one TIDU to CMX with each call.

– The receiving TS application receives the event T_DATAIN. This indicates 
that data has arrived.

– The receiving TS application must accept the data with the call t_datain() or 
the call t_vdatain().

t_datain() and t_vdatain() differ in that with t_datain() the data is placed into one 
contiguous storage area while with t_vdatain() the data is placed into several 
different storage areas.

Figure 23: Transmitting normal data 

sending
TS application

receiving
TS application

t_datarq T_DATAIN

t_datain

t_event

.

.

.

.

CMX



U41136-J-Z145-3-76  71

Transmitting data Sending and receiving normal data

If the TSDU is longer than one TIDU ...

it must be broken down into multiple TIDUs. This is done as follows:

– The sending TS application determines, as sender, when the TSDU is 
ended. Each time a TIDU is sent with t_datarq() or t_vdatarq(), this TS appli-
cation indicates in the chain parameter whether a further TIDU of the current 
TSDU is to follow (chain = T_MORE) or the TIDU being sent is the last one 
(chain = T_END).

– In the same way, the receiving TS application is informed with each 
t_datain() or t_vdatain() call by chain as to whether there is another TIDU to 
come in the current TSDU.

Each TIDU is announced by CMX with a T_DATAIN event. However, the length 
of a TIDU may be different for each of the two TS applications. Therefore it may 
happen that the receiving TS application will need to call t_datain() or t_vdatain() 
less often than the sending TS application calls t_datarq() or t_vdatarq() (or vice-
versa), because the receiving TS application reads TIDUs in "its" length. The 
situation then looks like this:

Figure 24: TSDU in multiple TIDUs 

sending
TS application

receiving
TS application

T_DATAIN

t_event

.

.

.

.

CMX

(T_MORE)

(T_MORE)

(T_END)

T_DATAIN

(T_END)

(T_MORE)

t_event

.

.

.

.

.

.

.

.

.

t_datain

t_datain

t_datarq

t_datarq

t_datarq



72   U41136-J-Z145-3-76

Sending and receiving normal data Transmitting data

The value returned by t_datain() and t_vdatain()

With t_datain() and t_vdatain() you must specify a length for the incoming data 
to be read. If the length specified is less than the size of the TIDU for the sender, 
the value returned by t_datain() or t_vdatain() will indicate the excess length of 
the data in the waiting TIDU.

If a TIDU has not yet been completely read, t_datain() or t_vdatain() must be 
called repeatedly until the TIDU has been completely read. During this time, 
t_event() may not be called, the connection may not be redirected nor may the 
data flow be controlled.

Note that CMX does not guarantee that at the receiving TS application all TIDUs 
of a message will be completely filled, even when the size of a TIDU is the same 
for both the sending and the receiving TS application and the sending TS appli-
cation sends only completely filled TIDUs.

Notes on transmitting data via ICMX(NEA)

If the TS application is to communicate via the migration interface ICMX(NEA), 
the calls x_datarq(), x_datain(), and x_event() must be used instead of the calls 
t_datarq(), t_datain(), and t_event(). Calls corresponding to t_vdatarq() and 
t_vdatain() are not provided in ICMX(NEA). The event indicated is X_DATAIN; 
the parameter values for message length are X_MORE and X_END. Note that 
with ICMX(NEA) there are limitations regarding data length; in particular, 
reading data units in piecemeal fashion is not possible.

Furthermore, when setting up the connection, the TS applications can agree on 
transmitting the NEABX protocol in the form of user data. An option structure is 
used for controlling and interpreting the NEABX protocol.



U41136-J-Z145-3-76  73

Transmitting data Examples of transmitting normal data

7.2 Examples of transmitting normal data

The following program fragments illustrate the program execution sequence 
when transmitting normal data via ICMX(L) and ICMX(NEA).

7.2.1 Example of transmitting normal data via ICMX(L)

The TS application receives and sends data. The length of the data is limited 
here to one TIDU.

#include        <stdio.h>
#include        <cmx.h>
#include        <tnsx.h>
.
.
#define ERROR   1
.
.
/* Send and receive buffers */
char    e_bufpt[8000];          /* Receive buffer */
int     e_bufl;                 /* Transfer length */
char    s_bufpt[8000];          /* Send buffer */
int     s_bufl;                 /* Transfer length */
int     chain;                  /* TSDU indicator for */
                                /* t_datarq(), t_datain() */
int     tref;                   /* Transport reference */
 .
 .
/* Event-driven processing: */
 * t_event() waits synchronously (T_WAIT) */
for (;;) {
        switch (event = t_event(&tref, T_WAIT, NULL)) {
        .
        .
        /* Receive data; e_bufl is the TIDU length (t_info()) */
        case T_DATAIN:
            if ((rc = t_datain(&tref,e_bufpt,&e_bufl,&chain)) ==
               T_ERROR) {
                fprintf(stderr, ">>> ERROR 0x%x in t_datain
                 tref 0x%x\n",t_error(), tref);
                exit (ERROR);
             }
             :
        }
}



74   U41136-J-Z145-3-76

Examples of transmitting normal data Transmitting data

/* Send data; s_bufl is maximum TIDU length */
if ((rc = t_datarq(&tref, s_bufpt, &s_bufl, &chain)) ==
           T_ERROR) {
        fprintf(stderr, ">>> ERROR 0x%x in t_datarq tref
                 0x%x\n",t_error(), tref);
        exit(ERROR);
}

7.2.2 Example of transmitting normal data via 
ICMX(NEA)

The following program fragments illustrate the program execution sequence 
when transmitting normal data via ICMX(NEA). It is assumed that, when calling 
x_conrq() or x_conrs(), the TS application has agreed the use of the NEABX 
protocol in the data phase. 

#include        <stdio.h>
#include        <cmx.h>
#include        <tnsx.h>
#include        <neabx.h>
.
.
#define ERROR   1
.
.
/* Send and receive buffers */
struct  x_optd1 e_optd1 ;       /* Receive structure */
char    e_bufpt[8000];          /* Receive buffer */
int     e_bufl;                 /* Transfer length */
struct  x_optd1 s_optd1 ;       /* Send structure */
char    s_bufpt[8000];          /* Send buffer */
int     s_bufl;                 /* Transfer length */
int     chain;                  /* TSDU indicator for */
                                /* x_datarq(), x_datain() */
int     tref;                   /* Transport reference */
 .
 .
/* Event-driven processing:
 * x_event() waits synchronously (X_WAIT) */
for (;;) {
        switch (event = x_event(&tref, X_WAIT, NULL)) {
        .
        .
        /* Receive data; e_bufl is the TIDU length (x_info()) */
        case X_DATAIN:
            e_optd1.x_optnr = X_OPTD2 ;



U41136-J-Z145-3-76  75

Transmitting data Examples of transmitting normal data

            e_bufl = sizeof (e_bufpt);
            if ((rc = x_datain(&tref,e_bufpt,&e_bufl,&chain,
            (x_optd *)&e_optd1))== T_ERROR) {
                fprintf(stderr, ">>> ERROR 0x%x in x_datain
                tref 0x%x\n",x_error(), tref);
                exit (ERROR);
             }
             .
             .
        }
}
/* Send data; s_bufl is maximum TIDU length */
s_optd1.x_optnr = X_OPTD2 ; /* Output length in s_bufl is net */
s_optd1.x_code = X_ASCII;
s_optd1.x_strukt = X_ETXEOT;
if ((rc = x_datarq(&tref, s_bufpt, &s_bufl, &chain, (x_optd
*)&s_optd1))== X_ERROR) {
        fprintf(stderr, ">>> ERROR 0x%x in x_datarq tref
                 0x%x\n",x_error(), tref);
        exit(ERROR);
}



76   U41136-J-Z145-3-76

Sending and receiving expedited data Transmitting data

7.3 Sending and receiving expedited data

If the exchange of expedited data was agreed at connection setup (see section 
section “Establishing a connection” on page 49), the TS applications may do so 
as follows:

Expedited data is sent with the call t_xdatrq(). In the simplest case the sequence 
is as follows:

– The sending TS application sends expedited data with a call.

– The receiving TS application receives the event T_XDATIN. This indicates 
that expedited data has arrived.

– The receiving TS application must accept the data with the call t_xdatin().

Figure 25: Transmitting expedited data 

The value returned by t_xdatin()

With t_xdatin() a length must be specified for the incoming expedited data to be 
read. If the length specified is less than the amount of expedited data that has 
arrived, the value returned by t_xdatin() will then give the excess length of the 
waiting expedited data.

If the expedited data has not yet been completely read, t_xdatin() must be called 
repeatedly until the data has been completely read. During this time t_event() 
may not be called, the connection may not be redirected nor may the data flow 
be controlled.

sending
TS application

receiving
TS application

t_xdatrq T_XDATIN

t_xdatin

t_event

.

.

.

.

CMX



U41136-J-Z145-3-76  77

Transmitting data Sending and receiving expedited data

Figure 26: Reading expedited data in piecemeal fashion

Note on transmitting expedited data via ICMX(NEA)

If the TS application is to communicate via the migration interface ICMX(NEA), 
the calls x_xdatrq(), x_xdatin(), and x_event() must be used instead of the calls 
t_xdatrq(), t_xdatin(), and t_event(). The event indicated is X_XDATIN. Note that 
with ICMX(NEA) there are limitations regarding data length. In particular, 
reading expedited data in piecemeal fashion is not possible.

Furthermore, when setting up the connection, the TS applications can agree on 
transmitting the NEABX protocol in the form of user data. An option structure is 
used for controlling and interpreting the NEABX protocol. The relevant stipula-
tions are described in the section “NEABV protocol” on page 232.

sending
TS application

receiving
TS application

t_xdatrq T_XDATIN

t_xdatin

t_event

.

.
CMX

t_xdatin
t_xdatin
t_event



78   U41136-J-Z145-3-76

Flow control of normal and expedited data Transmitting data

7.4 Flow control of normal and expedited data

If a TS application is not ready to receive data over a connection, it informs CMX 
of this with the call t_datastop(). CMX immediately stops delivering the event 
T_DATAIN for that connection. For t_datarq() the communication partner will 
receive the return value T_DATASTOP from CMX and may not send any more 
data.

As soon as the TS application is again ready to receive data over the connection 
it calls t_datago(). The communication partner will receive the event T_DATAGO 
and the TS application may again receive data from it. It again receives the 
event T_DATAIN.

Flow control for expedited data takes place in the same way. Here the calls 
t_xdatstop() and t_xdatgo() are used. The corresponding events are T_XDATIN 
and T_XDATGO.

Note however:

When the flow of expedited data is stopped (with t_xdatstop()), CMX also 
implicitly stops the flow of normal data. When the flow of expedited data is then 
released again (with t_xdatgo()), the flow of normal data remains blocked. It 
must be expressly released (with t_datago()).

When the flow of normal data is released CMX implicitly also releases the flow 
of expedited data again. Thus, after calling t_xdatstop(), calling t_datago() 
releases both the flow of normal data and the flow of expedited data.

What do you gain by preventing T_DATAIN or T_XDATIN from being received?

During this time the TS application can issue other CMX calls, e.g. to set up a 
further connection. This would not be possible if a T_DATAIN event were 
waiting. If this were the case, and the TS application did not fetch the data, every 
t_event() call would again return the event T_DATAIN and the TS application 
would not be able to receive the event T_CONCF, required to set up a 
connection.



U41136-J-Z145-3-76  79

Transmitting data Flow control of normal and expedited data

Figure 27: Data flow control at the sending end 

The sending TS application receives T_DATASTOP in response to the call 
t_datarq() or t_vdatarq(), because the receiving TS application has stopped the 
data flow or because there is a temporary resource bottleneck in CMX. The data 
was sent, but no longer indicated to the receiving TS application. The sending 
TS application must now wait with t_event() for the event T_DATAGO, in order 
to be able to send data again.

Notes on data flow control at ICMX(NEA)

If the TS application is to communicate via the migration interface ICMX(NEA), 
the calls with the prefix x_ must be used instead of the calls with the prefix t_. 
The same applies for the events, where the prefix T_ is replaced by X_. Note 
that with ICMX(NEA) the value X_DATASTOP may also be returned for the calls 
x_datain() and x_xdatin(). In this case, before the receiving TS application can 
send data it must wait for the event X_DATAGO.

sending
TS application

receiving
TS application

t_datarq

t_datago

t_datastop

.

.
CMX

t_event

t_datain
t_event

T_DATASTOP

T_DATAIN

T_DATAIN
t_datain

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

T_DATAGO

t_event

t_datrq

returns T_OK





U41136-J-Z145-3-76  81

8 The ICMX(L) program interface
This chapter describes the ICMX(L) program interface to the communication 
manager CMX. It contains:

– A summary of the functions of the ICMX(L) interface, with details on the 
communication phases,

– Notes on the correct use of the functions (finite-state automata),
– A description of the features specific to transport systems,
– Notes on the availability of the system options for the transport systems,
– Precise descriptions of the ICMX(L) function calls, with all parameters, in 

alphabetical order.

8.1 Overview of the program interface

Transport Service ISO 8072

With ICMX(L), the present version of CMX provides a program interface to the 
connection-oriented transport service (TS) as defined in ISO 8072 within the 
framework of the OSI Reference Model for open systems. Therefore in ICMX(L) 
the services T-CONNECT (connection setup), T-DISCONNECT (discon-
nection), T-DATA (data exchange), and T-EXPEDITED-DATA (exchange of 
expedited data) are defined with the primitives:

T-CONNECT.request 

T-DISCONNECT.request

T-CONNECT.indication 

T-DISCONNECT.indication

T-CONNECT.response

T-CONNECT.confirmation

T-DATA.request 

T-DATA.indication 

T-EXPEDITED-DATA.request

T-EXPEDITED-DATA.indication

Table 5:  Service primitives in ICMX (L)



82   U41136-J-Z145-3-76

Overview The ICMX(L) program interface

In addition, ICMX(L) provides local services that simplify the implementation of 
TS applications. These are: 

T-ATTACH
Attach a TS application to CMX

T-DETACH
Detach a TS application from CMX

T-ERROR
Query errors

T-REDIRECT
Redirect a connection to another process

T-FLOWCONTROL
Flow control for normal data

T-EXPEDITED-FLOWCONTROL
Flow control for expedited data

T-EVENT
TS event check

T-INFO
Information

T-GETADDR
Query TRANSPORT ADDRESS

T-GETLOC
Query LOCAL NAME

T-GETNAME
Query GLOBAL NAME

T-CALLBACK
Register callback routine

T-SETOPT
Set options

The TS permits two TS applications to exchange messages over a transport 
connection (TC). This connection-oriented communication provides for the 
exchange of messages without loss or duplication while maintaining the 
message sequence. Furthermore, by means of connection identification the 
connection-oriented TS makes it possible to dispense with transferring and 
processing addresses in the data phase. An established TC is uniquely 
identified (in both end systems) by a transport reference (tref) between CMX 



U41136-J-Z145-3-76  83

The ICMX(L) program interface Overview

and the TS application. Certain parameters that influence message transport on 
a TC can be negotiated between the TS applications at connection setup. For 
the correct functioning of communication certain rules must be observed, which 
are described in the following.

ICMX(L) is implemented as a set of C functions, which make communication 
between TS applications independent of the specific characteristics of the 
transport systems used (layers 1 - 4 in the OSI Reference Model) with regard to 
profile, protocol classes, etc.

Depending on which TS is used, each TC is assigned one or more special files, 
which are visible to the TS application only in that they consume the corre-
sponding number of the available file descriptors. These special files simplify 
the cleanup measures taken in CMX following premature termination of the TS 
application.

Names and addresses

Every TS application has a GLOBAL NAME. This name uniquely identifies the 
TS application in the network. GLOBAL NAMES are assigned by the TNSX 
administration. It must ensure that the names of all TS applications are different 
from one another.

A TS application works exclusively with GLOBAL NAMES. It obtains information 
from its GLOBAL NAME using CMX calls, e.g. the LOCAL NAME it must specify 
when attaching to CMX. It can use the GLOBAL NAME of a remote TS appli-
cation to ascertain the TRANSPORT ADDRESS it must pass to CMX at 
connection setup.

The LOCAL NAME links the local TS application to a Transport Service Access 
Point (TSAP). The TRANSPORT ADDRESS of the remote TS application is 
required to address the Transport Service Access Point (i.e. the TS application 
linked to it) in the partner system. The LOCAL NAME and TRANSPORT 
ADDRESS are read from the TS directory.



84   U41136-J-Z145-3-76

Overview The ICMX(L) program interface

ICMX(L) functions for querying information from the TS directory are:

t_getaddr()
Given the GLOBAL NAME of a TS application, returns its TRANSPORT 
ADDRESS. The TRANSPORT ADDRESS must be passed through as a 
parameter to the relevant ICMX(L) call. 

t_getname()
Given a TRANSPORT ADDRESS, returns the GLOBAL NAME of the TS 
application.

t_getloc()
Given the GLOBAL NAME of a TS application, returns its LOCAL NAME 
in the current end system. The LOCAL NAME must be forwarded as a 
parameter to the relevant ICMX(L) call.

t_getaddrpart() and t_setaddrpart()
Analyzes or modifies a TRANSPORT ADDRESS.

t_getlocpart() and t_setlocpart()
Analyzes or modifies a LOCAL NAME.

<cmx.h> defines the structures t_myname and t_partaddr. t_myname is used by a 
TS application to receive (pass) its LOCAL NAME from (to) the TNSX; 
t_partaddr is used for the TRANSPORT ADDRESS. 

The contents of these structures are as follows: 

struct t_myname {
char t_mnmode; /* = T_MNMODE */
char t_mnres; /* = 0 */
short t_mnlng; /* Length of the filled-in part of

the t_myname structure */
char t_mn[T_MNSIZE]; /* Field for the T-selectors of the

LOCAL NAME */
}
struct t_partaddr {

char t_pamode; /* = T_PAMODE */
char t_pares; /* = 0 */
short t_palng; /* Length of the filled-in part of

the */
/* t_partaddr structure */

char t_pa[T_PASIZE]; /* Field for the partner address */
}



U41136-J-Z145-3-76  85

The ICMX(L) program interface Overview

The meanings of members in the structure t_myname are shown below:

t_mnmode = T_MNMODE
specifies that the field t_mn contains a LOCAL NAME.

t_mnres, t_mn[T_MNSIZE]
are of no relevance to you. The contents of these members are simply 
taken from the TNSX and passed on to CMX.

t_mnlng
specifies the length of all data passed in the structure t_myname.

The meanings of members in the structure t_partaddr are as follows:

t_pamode = T_PAMODE
specifies that the field t_pa contains a TRANSPORT ADDRESS.

t_pares, t_pa[T_PASIZE]
are of no relevance to you. The contents of these members are simply 
taken from the TNSX and passed on to CMX.

t_palng
specifies the length of all data passed in the structure t_partaddr.

The LOCAL NAME and TRANSPORT ADDRESS are passed to CMX or 
received from CMX in the union t_address.

union t_address {
   struct t_myname tmyname;
   struct t_partaddr tpartaddr;
}

Error handling and diagnosis

All function calls return a return code. This is either T_OK, to indicate successful 
completion, or T_ERROR to generally indicate that an error occurred. The error 
check function t_error(), called immediately following an error, returns more 
detailed diagnostic information. All errors detected by CMX as violations of the 
communications rules by the TS application have specific error codes and are 
defined in <cmx.h>. Other errors result from failures in calling functions in the 
operating system environment in CMX; they can be identified from <errno.h>. 
The transport systems used generate no error messages; any errors result in 
disconnection with a corresponding reason. The reason for disconnection is 
obtained by the TS application when t_disin() is called.

The following functions return the text version of an error code returned by 
t_error():



86   U41136-J-Z145-3-76

Overview The ICMX(L) program interface

t_strerror()
Returns a pointer to the text string for an error code received from 
ICMX(L).

t_perror()
Calls t_strerror() to ascertain the text string for an error code received 
from ICMX(L) and writes the string to stderr.

The following functions return the text for a disconnection reason returned by 
t_disin():

t_strreason()
Returns a pointer to the text string for a disconnection reason that has 
been received. The reason for disconnection is passed to the TS appli-
cation when t_disin() is called.

t_preason()
Calls t_strreason() to ascertain the text string for a disconnection reason 
that has been received with disin() and writes the string to stderr.

The error decoding program cmxdec (see the “Operation and Administration” 
manual [1] or [2]) provides mechanisms for obtaining these texts at the 
command line.

For diagnostic purposes ICMX(L) provides a trace facility. It can be flexibly 
controlled via the environment variable CMXTRACE. The trace mechanism logs 
the calls with their arguments in compressed form in temporary files. The editing 
program cmxl then converts the log to readable form in a separate step (see the 
“Operation and Administration” manual [1] or [2]).

TS applications, transport connections and processes

A TS application is a system of programs that uses the TS, i.e. the services of 
CMX. The mapping of a TS application to the process concept of the system is 
left up to the implementor. A TS application may organize itself into one or more 
(not necessarily related) processes. The processes may, essentially indepen-
dently from one another, maintain TCs to remote TS applications. The 
processes of a TS application may exchange their TCs among one another. 
However, at any point in time the transport reference of a TC is assigned to 
exactly one process. It therefore cannot be inherited by child processes. In CMX 
there is a separate local service, REDIRECT, for redirecting a TC to another 
process.



U41136-J-Z145-3-76  87

The ICMX(L) program interface Overview

One process may also simultaneously control multiple TS applications. In this 
case, the implementation must provide for suitable coordination of the execution 
of the various TS applications. CMX supports this through its asynchronous 
processing mode.

Synchronicity and asynchronicity; TS events

Communications operations are by nature asynchronous: A wide variety of TS 
events can occur independently of the activity of a TS application. For example, 
a TS application may be sending data over one TC when, asynchronously, a 
disconnection indication for another TC arrives, of which the TS application 
must be informed immediately.

In principle, the functions of CMX are asynchronous: This means, after issuing 
a call a TS application need not wait for a possible answer from the network. Any 
answer will be accepted by CMX when it arrives and sent to the TS application 
as a TS event at the next opportunity when requested.

For this, CMX provides the TS application with a query mechanism in two forms: 
Synchronous (waiting) and asynchronous (checking). This query mechanism 
must be appropriately used by the TS application if it wishes to react quickly and 
properly to TS events.

With synchronous execution, the calling process is suspended until a TS event 
arrives. This wakes up the process, so that it can immediately process the TS 
event. Waiting can be limited by specifying a waiting period or it can be cut short 
via signals such as SIGALRM. The synchronous mechanism is useful for TS 
applications that maintain several TCs at a time, so that they need not poll them.

With asynchronous execution, at convenient times, such as at the end of a 
processing step, the process can check whether a TS event has arrived, and 
handle it before continuing with the next processing step. This is useful for 
processes that expect longer delays between TS events, during which times 
they can or must attend to other operations.

The corresponding function in CMX is

t_event()
If the parameter value T_WAIT is passed, t_event() suspends the process 
until a TS event arrives, the time limit expires, or a signal arrives. If a TS 
event is already waiting, or there is an error, the function returns immedi-
ately with the code for the event, or T_ERROR. The suspended process 
is awakened when a signal arrives, and t_event() returns with 
T_NOEVENT or T_ERROR. When the time limit expires the process 



88   U41136-J-Z145-3-76

Overview The ICMX(L) program interface

resumes with the TS event T_NOEVENT. With the parameter value 
T_CHECK, t_event() always returns immediately and returns either the 
code of the TS event encountered or T_NOEVENT or T_ERROR. 

The following asynchronous TS events are defined in CMX:

T_NOEVENT
In the asynchronous case: No TS event present

In the synchronous case: Abort by signal or waiting time elapsed

T_CONIN
Arrival of a connection indication from a calling TS application

T_CONCF
Arrival of a connection confirmation from a called TS application

T_DISIN
Arrival of a disconnect indication from a remote TS application or from 
CMX 

T_REDIN
Arrival of a redirection indication from another process of the same TS 
application (this TS event is local; it is an extension to the TS to make 
implementation of TS applications more flexible)

T_DATAIN
Arrival of normal data from a remote TS application

T_XDATIN
Arrival of expedited data from a remote TS application

T_DATAGO
Removal of a block on the sending of normal data and expedited data set 
through flow control

T_XDATGO
Removal of a block on the sending of expedited data set through flow 
control

T_ERROR
Fatal error; more detailed information is provided by the query function 
t_error().

With each TS event, except for T_NOEVENT and T_ERROR, the TS application 
is also given the transport reference, so that it can react for that TC specifically 
to the TS event.



U41136-J-Z145-3-76  89

The ICMX(L) program interface Overview

Some TS events must be accepted by the TS application by calling corre-
sponding functions. Exceptions are: T_ERROR, T_DATAGO, T_XDATGO. Such 
function calls return additional information on the TS events. The following table 
lists the TS events and the corresponding functions.

As a rule, TS events are delivered in the order in which they occur. Of course, 
the TS event T_XDATIN may overtake the TS event T_DATAIN, and T_DISIN 
may overtake T_DATAIN and T_XDATIN. In the latter case the overtaken TS 
events on that TC are dropped.

Signaling for asynchronous event processing

For asynchronous event processing, CMX provides an optional signaling 
mechanism to prevent unnecessary t_event() calls which return T_NOEVENT. If 
the signaling mechanism has been activated, every event that occurs is 
indicated to the process by a signal. This takes place asynchronously to the 
execution of the process. Following the arrival of a signal, one of your own signal 
routines or a CMX-internal signal routine is executed. The CMX-internal routine 
causes the signals to be logged in the CMX tracer. After the signal routine has 
been run, the process should call t_event() to check for the existence of a waiting 
event and then process it as required. 

The signaling mechanism is disabled by default. It can be activated and 
controlled via the environment variable CMXINIT as shown below: 

CMXINIT="-s" activates signaling with signal 22 (SIGIO). 

CMXINIT="-S n" activates signaling with signal n (where n = a decimal number).

TS event Function for fetching

T_CONCF t_concf()

T_CONIN t_conin()

T_DATAGO t_event()

T_DATAIN t_datain() or t_vdatain()

T_DISIN t_disin()

T_REDIN t_redin()

T_XDATGO t_event()

T_XDATIN t_xdatin()

Table 6:  TS events and the corresponding functions



90   U41136-J-Z145-3-76

Overview The ICMX(L) program interface

The value for n should be selected appropriately. Not all signals can be inter-
cepted with signal routines.

CMXINIT can be set in C programs as follows: 

putenv("CMXINIT=’-s’"); or putenv("CMXINIT=’-S n’";) 

Within a process, CMXINIT is evaluated once before the first call to ICMX(L). 

Signalling is not available for multithreaded applications. The related options in 
CMXINIT will be ignored.

Attaching/detaching

Communication by a process via CMX is activated when the process attaches 
itself to CMX. A special file is opened for the process the first time this is done. 
This special file is used for exchanging jobs between the CMX library functions 
and the operating system. A TS application is generated when the first process 
attaches itself for that TS application. When this is done, a Transport Service 
Access Point (TSAP) is created, at which the TS is accessible. When the first 
process is attached the TS application is linked to this TSAP. The TSAP is 
assigned the LOCAL NAME of the TS application. It thereby becomes addres-
sable from the network. When the TS application is detached, any TCs still in 
existence are closed down, along with the TSAP; the process environment is 
dissolved and assigned resources are released for future use.

One and the same process may attach itself for several TS applications at once 
(i.e. manage multiple TSAPs) and in each of these TS applications maintain 
multiple Transport Connection Endpoints (TCEP). Also, several processes may 
attach themselves for the same TS application (use the same TSAP) and 
actively set up TCs or passively wait for connection indications without inter-
fering with one another. Of course, each TCEP is assigned to exactly one 
process.

The following functions are used for attaching and detaching. They perform 
primarily local tasks. If no implicit disconnection must be performed, no infor-
mation is passed to the network.

t_attach()
Attaches (the current process of) a TS application to CMX. When 
attached, the process may specify its future behavior in the TS appli-
cation. The first time a process is attached CMX begins accepting 
connection indications for the TS application.



U41136-J-Z145-3-76  91

The ICMX(L) program interface Overview

t_detach()
Detaches (the current process of) a TS application from CMX. Any 
existing TCs of the process in the TS application are closed down by 
CMX. If no more processes of the TS application are attached, the TS 
application is thereafter no longer known to CMX.

Connection setup, disconnection and redirection

Before two TS applications can exchange data, a TC must be set up between 
them. One of the two TS applications is viewed as the calling TS application; it 
initiates connection setup. The other is the called TS application; it waits for 
requests from calling TS applications.

The calling TS application issues a connection request and receives an answer 
from the called TS application. The called TS application waits for a connection 
indication (indication of a connection request) and accepts it or rejects it. During 
connection setup, the TS applications negotiate certain attributes of the TC for 
the data transmission and may exchange user data.

The TC may be closed down at any time by either of the TS applications or by 
CMX. This is not negotiated between the TS applications, but instead is immedi-
ately carried out by CMX. The other TS application (or both, if CMX closes down 
the TC) receives a disconnect indication, which may be neither answered nor 
averted. CMX indicates all errors in the transport systems by closing down the 
TCs involved. CMX does not guarantee that data still in transit at the time of the 
disconnection request will be delivered.

Connection redirection is a local service in CMX that simplifies organizing a TS 
application into processes. A process holding a completely established TC may 
redirect it (depending, of course, on the state; see figure “States of TS applica-
tions and permissible state transitions” on page 97) to another process of the 
same TS application. The TSAP and the TCEP remain unchanged. The 
redirecting process loses the transport reference for the TC, whereupon the TC 
is no longer available to the process.

The relevant functions are:

t_conrq()
Requests connection setup to the called TS application with the specified 
TRANSPORT ADDRESS. Reference to the TSAP is established via the 
LOCAL NAME used when the calling TS application was attached. The 
function returns immediately after issuing the request; the calling TS 



92   U41136-J-Z145-3-76

Overview The ICMX(L) program interface

application receives a transport reference. It must then wait synchro-
nously or asynchronously for the answer of the called TS application (see 
above).

t_concf()
Accepts from CMX the answer of the called TS application, indicated with 
T_CONCF; connection setup is now complete.

t_conin()
Receives from CMX a connection request, indicated with T_CONIN, from 
the calling TS application, along with that TS application’s TRANSPORT 
ADDRESS. Reference to the TSAP is established for the called TS appli-
cation through provision of the LOCAL NAME specified when it was 
attached.

t_conrs()
Answers (accepts) a connection request after it has been indicated with 
T_CONIN and received by the TS application.

t_disrq()
Requests that a connection be closed down; this function may be called 
at any time by either of the TS applications; it is also used to reject a 
connection request (instead of accepting it) after the request has been 
indicated by CMX and received by the TS application.

t_disin()
Accepts from CMX the disconnect indication indicated with T_DISIN. 
The reason for disconnection is also passed to the TS application with 
this function call.

t_redrq()
Redirects a TC to a process of the same TS application; the TC is then 
no longer available for the redirecting process.

t_redin()
Accepts from CMX a connection redirection indicated with T_REDIN; the 
receiving process must accept it, but may immediately pass it on (return 
it) or close the TC down.



U41136-J-Z145-3-76  93

The ICMX(L) program interface Overview

Data exchange and flow control

Once a connection has been set up, the initiative rests with the TS application 
(not with CMX). It may:

– send normal data and (if agreed) expedited data, or

– indicate, with t_event(), that it is ready to receive normal data or (if agreed) 
expedited data.

Data transfer is message-oriented: The TS applications exchange Transport 
Service Data Units (TSDU) - messages of any length - or Expedited Transport 
Service Data Units (ETSDU) - expedited data of limited length. Expedited data 
is limited to a few bytes; when transferred it is given priority over the stream of 
normal data and placed into separate queues. CMX guarantees only that 
expedited data will never arrive at the receiving TS application later than normal 
data sent subsequently. At most one complete ETSDU may be passed to CMX 
per call.

A TSDU (which in principle may be any length) is passed to CMX in portions the 
length of one Transport Interface Data Unit (TIDU). The length of a TIDU is TC-
specific and must therefore be queried by CMX for each TC (t_info()). Thus, a 
TSDU may have to be transferred using multiple send calls. A parameter in each 
send call indicates whether a further TIDU for that TSDU follows (T_MORE) or 
not (T_END). It cannot be determined from this how a TIDU is packed for 
transfer or delivery to the receiving TS application. CMX guarantees only that 
sequential joining of the TIDUs on the receiving side will reproduce the TSDU 
from the sending side. The TIDU length may be different for the two TS applica-
tions and depends on the TC. CMX does not guarantee that at the receiving TS 
application any except the last TIDU of a TSDU will be delivered completely 
filled.

The arrival of a TIDU of a TSDU (or the arrival of an ETSDU) is indicated to the 
receiving TS application by means of the TS event T_DATAIN (T_XDATIN). The 
TS application then fetches the TIDU (ETSDU) with a corresponding function 
call, either completely or in piecemeal fashion. If necessary it may or must issue 
several similar calls in order to take in one TIDU (ETSDU) from CMX.

The transfer of TIDUs (ETSDUs) is subject to flow control mechanisms, which 
can be controlled by CMX and the TS applications. The return code 
T_DATASTOP (T_XDATSTOP) returned when data is sent indicates to the 
sending TS application that the TIDU (ETSDU) was processed, but the flow of 
TIDUs (ETSDUs) has been blocked. No further TIDUs (ETSDUs) may be sent 
until the flow is released again. Release is indicated by means of the TS event 
T_DATAGO (T_XDATGO).



94   U41136-J-Z145-3-76

Overview The ICMX(L) program interface

The receiving TS application stops and starts the flow of TIDUs (ETSDUs) by 
means of function calls to CMX, which affect the sending TS application as 
described above.

The following functions implement data exchange and (active) flow control:

t_datarq()
Requests transfer of a TIDU (possibly partially filled) from a contiguous 
storage area. The return code T_DATASTOP signifies that the flow is 
blocked; further send requests are rejected with an error until the flow is 
released again.

t_vdatarq()
Functions like t_datarq, but the TIDU can be located in multiple, non-
contiguous storage areas.

t_datain()
Accepts the data of a TIDU from CMX, placing it into a contiguous 
storage area, after the TIDU has been indicated with T_DATAIN. The 
return code specifies how much data is still contained in the current 
TIDU, so that a TIDU can be read in piecemeal fashion.

t_vdatain()
Functions like t_datain, but the TIDU can be located in multiple, non-
contiguous storage areas.

t_xdatrq()
Requests transfer of an ETSDU (possibly partially filled); the return code 
T_XDATSTOP signifies that the flow is blocked; further send requests are 
then rejected with an error, until the flow is released again.

t_xdatin()
Accepts the data of an ETSDU from CMX, after it has been indicated with 
T_XDATIN. The return code specifies how much data is still contained in 
the current ETSDU, so that an ETSDU can be read in piecemeal fashion.

t_datastop()
Blocks, from the receiving side, the flow of normal data over a 
connection; the TS event T_DATAIN will no longer be indicated for this 
connection by CMX.

t_datago()
Releases, on the receiving side, the (blocked) flow of normal data and 
expedited data over a connection; the TS events T_DATAIN and 
T_XDATIN can again be indicated for the connection by CMX.



U41136-J-Z145-3-76  95

The ICMX(L) program interface Overview

t_xdatstop()
Blocks, on the receiving side, the flow of expedited data and normal data 
over a connection; CMX will no longer indicate the TS events T_XDATIN 
and T_DATAIN for this connection.

t_xdatgo()
Releases, on the receiving side, the (blocked) flow of expedited data over 
a connection; the event T_XDATIN can again be indicated by CMX for the 
connection.

Information service

The information service is a local service with which the TS application can 
query configuration-dependent parameter values from CMX. The information 
service is implemented with the following function:

t_info()
Returns the length of a TIDU for an established TC. The TIDU is normally 
only established when connection setup is completed.

Central waiting point 

TS applications often expect application-specific events in addition to CMX 
events. In the callback routine, it is possible to wait for CMX events and appli-
cation events simultaneously. A central waiting point be defined for this purpose. 

t_callback()
passes a pointer to CMX indicating a routine in the application, which is 
called during the execution of the t_event() call. 

Management options 

Options can currently only be set in the CMX library. 

t_setopt()
sets or cancels the trace options of the appropriate application. 



96   U41136-J-Z145-3-76

States of TS applications The ICMX(L) program interface

8.2 States of TS applications and permissible 
state transitions 

The sequences of operations at the ICMX(L) program interface are represented 
in the following diagram by means of finite-state automata. The diagram shows 
the defined states that a TS application may assume during the course of 
communication and the permissible transitions between these states. With the 
aid of the diagram it is possible to identify permissible sequences of CMX calls. 
The diagram shows when and how the processes of a TS application must react 
to certain events.

In the diagram each state is represented by a rectangle with a double border. 
The rectangle contains the name of the state.

The surrounding (outer) rectangles represent the three communication phases:

– 1st communication phase: Attach process
The process exists, but is not yet or no longer attached to CMX.

– 2nd communication phase: Connection setup
The process is attached to CMX, but no connection exists. A connection can 
now be set up.

– 3rd communication phase: Data transfer
The connection has been set up. The process can now send and receive 
data.

The 3rd communication phase is subdivided by dotted lines into four subareas. 
These subareas are:

– Send normal data

– Receive normal data

– Send expedited data

– Receive expedited data

When it reaches this phase, at any given time the process is in exactly one state 
in each subarea. Only certain combinations of states in these subareas are 
permitted, i.e. a state transition within one subarea may cause a state transition 
in another subarea. The connections between the individual states in the 
various subareas can be seen by examining the conditions for state transitions 
(see below). If the exchange of expedited data has not been agreed for the 
connection, the process can only assume states of the upper two subareas.



U41136-J-Z145-3-76  97

The ICMX(L) program interface States of TS applications

Figure 28: States of TS applications and permissible state transitions 

The arrows between the rectangles indicate the possible state transitions. C 
indicates the condition for making the transition from an initial state to the subse-
quent state (initial state → subsequent state). Transitions are possible only in 
the directions indicated by the arrows.

Nex

S2x

R2n

R2x

PasIdl

S2n

R1n

R3x

Akt

S1n

R3n

Det

S1x R1x

Create/
terminate
process

exit execfork

Receive 
expedited data

Send
normal data

Receive
normal data

1st. phase:
attach
process

2nd phase:
Establish
connection

3rd phase:
Data transfer

D
det TIM

drq  DIN

att

D
drq  DIN

crq CIN

crsdrq  DIN
rrq

RIN
HCCF

D D
DTO

DTI

dst
dgo/xgo

DST
DGO/XGO

D D XDO

XDI

xgo
xst [in R1n|R3n] / dst 

XST/DSTXGO

Send
expedited data



98   U41136-J-Z145-3-76

States of TS applications The ICMX(L) program interface

Abbreviations for the states:

Nex  The process does not exist (no longer exists).

Det  The TS application is not yet attached to CMX, or

the TS application has been detached from CMX.

Idl  Initial state for connection setup and for accepting a connection 
redirection, or

a previously existing connection was closed down. 

Act  Waiting for the event T_CONCF following a t_conrq() call (active 
connection setup). 

Pas  A T_CONIN event has arrived (passive connection setup) 

S1n  Initial state for t_datarq() or t_vdatarq() 

S2n  Normal data flow blocked 

R1n  Initial state for t_datain() 

R2n  T_DATAIN indicated 

R3n  T_DATAIN blocked 

S1x  Initial state for t_xdatrq() 

S2x  Flow of expedited data blocked 

R1x  Initial state for t_xdatin() 

R2x  T_XDATIN indicated 

R3x  T_XDATIN blocked 

Abbreviations for the state transition conditions 

fork  Process created 

exec  Process shift 

exit  Process termination 



U41136-J-Z145-3-76  99

The ICMX(L) program interface States of TS applications

The state transitions below occur when a CMX function is called:

att  t_attach()

det  t_detach()

crq  t_conrq()

crs  t_conrs()

drq  t_disrq()

rrq  t_redrq()

dst  t_datastop()

dgo  t_datago()

xst  t_xdatstop()

xgo  t_xdatgo()

The state transitions below occur when an event is accepted:

NET  T_NOEVENT

CIN  T_CONIN

CCF  T_CONCF

DIN  T_DISIN

RIN  T_REDIN

DTI  T_DATAIN

XDI  T_XDATIN

DGO  T_DATAGO

XGO  T_XDATGO



100   U41136-J-Z145-3-76

States of TS applications The ICMX(L) program interface

The following state transitions occur when certain return values are 
returned by CMX functions: 

DST  T_DATASTOP returned by t_datarq() or T_vdatarq() 

XST  T_XDATSTOP returned by t_xdatrq() 

DTO  0 returned by t_datain() or t_vdatain()

(current TIDU completely read) 

XDO  0 returned by t_xdatin() (ETSDU completely read) 

TIM  t_timeout (inactivity time limit for the connection reached) 

8.2.1 Explanations of the possible state transitions 

Arrows that terminate at a surrounding rectangle indicate that normally the 
process first switches to the states indicated by D→.

For example, in the transition to the 3rd communication phase (data transfer) 
the process initially switches to the states S1n, S1x, R1n, R1x.

An exception to this is the transition RIN H→. It means: When connection 
redirection occurs, the receiving process assumes the states in the 3rd phase 
(data transfer) that the redirecting process assumed in this phase prior to the 
redirection. 

Arrows that begin at a surrounding rectangle indicate that a transition is possible 
from any given state within the rectangle. 

State transitions of this kind are: 

– fork
If fork() is called in any state of the process, the child process assumes the 
state Det (process not yet attached to CMX). The state of the parent process 
remains unaffected.

– exec
If exec() is called in any state of the process, the process switches to the 
state Det (process detached). It loses all attachments and connections.

– exit
If exit() is called, the process is terminated. All connections are closed down 
by CMX.



U41136-J-Z145-3-76  101

The ICMX(L) program interface States of TS applications

– det
If the process calls t_detach() in any state, it switches to the state Det. CMX 
closes down its connections.

– drq|DIN (drq or DIN)
If the process calls t_disrq() in any state during data transfer (3rd phase) or 
during connection setup (2nd phase), the process switches to the state Idl. 
The same thing happens when CMX indicates the event T_DISIN to the 
process. The existing connection is closed down or the connection request 
of another TS application is rejected.

– TIM
If during data transfer the inactivity time limit for the connection, specified by 
the parameter t_timeout, is exceeded, the process switches to the state Idl in 
the 2nd phase.

State transitions within the 3rd phase (data transfer) 

The following describes the connections between state transitions in the 
subareas of the 3rd phase. The state assumed by a process in the subarea 
"Send normal data" depends on its state in the subarea "Send expedited data", 
and vice-versa. The state assumed by a process in the subarea "Receive 
normal data" depends on its state in the subarea "Receive expedited data", and 
vice-versa. 

The following connections exist between the states of the four subareas: 

DGO/XGO (DGO initiates XGO) 
The event T_DATAGO initiates T_XDATGO. Along with normal data flow 
flow of expedited data is released, assuming it was blocked. Thus, the 
state transition S2n → S1n initiates the state transition S2x → S1x. 

XST/DST (XST initiates DST) 
The event T_XDATSTOP initiates the event T_DATASTOP. The state 
transition S1x → S2x brings about the state transition S1n → S2n. 
Blocking the expedited data flow causes blocking of normal data flow. 

dgo/xgo (dgo initiates xgo) 
If the process calls t_datago() in the state R3n (T_DATAIN blocked), 
t_xdatgo() is implicitly called. The state transition R3n → R1n initiates the 
state transition

R3x → R1x, if the process had previously assumed the state R3x. 



102   U41136-J-Z145-3-76

States of TS applications The ICMX(L) program interface

xst[in R1n|R3n]/dst 
If the process is in the state R1x, it may call t_xdatstop() only if it is in the 
state R1n or R3n in the subarea "Receive normal data". It thereby 
initiates t_datastop(). This means the flow of expedited data can be 
blocked by the process only so long as no T_DATAIN is indicated. Along 
with the flow of expedited data the flow of normal data is implicitly blocked 
(R1x → R3x initiates R1n → R3n). 



U41136-J-Z145-3-76  103

ICMX(L) Transport system specific features

8.3 Transport system specific features 

This section describes the features of CMX-API which are specific to the 
transport system used.

Adjustable socket options for TCP/IP connections based on RFC1006 

The CMXSOCKET environment variable allows you to activate the KEEPALIVE 
mechanism in TCP for all TCP connections to be set up in the corresponding 
process environment: 

CMXSOCKET=-K1; export CMXSOCKET

If the KEEPALIVE mechanism is activated for a particular TCP connection but 
no data is transferred on this connection during the KEEPALIVE period, TCP 
uses test packets to ascertain whether or not the partner is still responding. If 
not, TCP automatically closes the connection locally and the CMX application 
receives a disconnect indication with the reason T_RLCONNLOST (loss of 
network connection).

The KEEPALIVE period is determined by the operating system. In Solaris it is 
defined in a system variable set to 2 hours.

In Solaris, you can change the value of the TCP variable tcp_keepalive_interval 
(specified in milliseconds) using the command 
ndd -set /dev/tcp tcp_keepalive_interval <new value>.

Time monitoring of the answer to a connection setup request

All transport systems (with the exception of those working in local communica-
tions) have answer time monitoring whereby the time it takes the system to 
answer the protocol element making the connection request (e.g. the "call 
request packet" in X.25 and "CR TPDU" in IS 8073) is monitored.

The answer time is set in the protocol or on TSP-specific timers (default setting: 
2 to 3 minutes). If the calling application does not receive an answer before the 
timer setting has elapsed, it will receive a CMX event T_DISIN with the 
connection disconnection indication T_RLNORESP. The protocol element 
requesting the disconnection will be sent to the partner system.

On some transport systems, the response time to a connection setup indication 
(CMX event T_CONIN) is also monitored. If the application does not reply with 
t_conrs() or t_disrq() within a preset time period, it will receive a T_DISIN with the 



104   U41136-J-Z145-3-76

Transport system specific features ICMX(L)

disconnection indication T_RUNKNOWN or T_USER; this is irrespective of the 
transport system used and does not take into account whether or not a shorter 
timer was set on the local system or on the partner system.

Features influenced by the NEA protocol

In the case of NEA-TSP, if expedited data is sent three times but is not collected 
by the partner, the connection will be closed down.



U41136-J-Z145-3-76  105

ICMX(L) System options and message length

8.4 System options and message length

It is important to note when creating TS applications that the system options to 
"exchange user data when setting up and closing down a connection" and to 
"exchange expedited data" are not supported by every transport system (CCP 
profile). Moreover, in transport systems that do support these system options, 
the permitted length of the user data or the expedited data unit are different.

The Release Notes provide information on which CCP profiles support these 
system options and details on the supported length for user data, expedited 
data and messages.

8.4.1 Programming notes 

The primary purpose of ICMX(L) is to make TS applications independent of the 
transport systems used. This allows TS applications to execute in a variety of 
network environments. ICMX(L) supports this independence for TS applications 
that adhere to the following rules:

1. The application should make no explicit assumptions regarding the length of 
a TIDU or regarding the way TIDUs are packed for communication.

2. The limits defined in <cmx.h> for the options must never be exceeded. It is to 
be noted that some transport systems do not provide certain options.

3. The TS application should handle addressing exclusively with the aid of the 
TNSX; it should not construct any physical transport addresses in the 
programs.

4. CMX functions should not be called in signal handling routines; signal 
handling is not suitable for performing asynchronous processing outside the 
current context.

5. Function prototyping is supported by CMX. Thus, the program is notified 
whether or not the transferred parameter structure is correct during compi-
lation.

ICMX is designed such that program runs can be event-driven. It is specially 
designed to allow an event loop to be programmed where special consideration 
is given to the individual events.



106   U41136-J-Z145-3-76

System options and message length ICMX(L)

Example

An event-driven design for two TS applications is shown in the following 
program example.

Figure 29: Event-driven design of two TS applications

Calling TS application  Called TS application

t_attach(); t_attach();
: for (;;) {
: switch (t_event()) {

t_conrq(); case T_CONIN:
for (;;) { t_conin();

switch(t_event()){ :
case T_CONCF: t_conrs();

t_concf(); :
t_datarq(); case T_DATAIN
: t_datain();
t_disrq(); :
: :

case T_DATAIN: t_datarq();
t_datain(); :
: :

case T_DISIN: t_disrq();
t_disin(): case T_DISIN:
: t_disin();
: :

case T_NOEVENT: case T_NOEVENT:
continue; continue;

case T_ERROR: case T_ERROR:
t_detach(); t_detach();
exit(); exit();

default: default:
: :
} }
t_detach(); t_detach();



U41136-J-Z145-3-76  107

ICMX(L) System options and message length

8.4.2 Additional functionality "Operation without 
TNS/Creation of templates"

Using the functions t_getloc() and t_getaddr() you may generate so-called 
templates, i.e. LOCAL NAMES and TRANSPORT ADDRESSES with an empty 
content, by specifying the value NULL in the parameter globname and the value 
OPTG7 in the parameter t_optnr within the structure t_optg7. Using the functions 
t_getlocpart() or t_getaddrpart() the application itself then assures the represen-
tation of this LOCAL NAME or this TRANSPORT ADDRESS in a data structure 
(struct t_addrpart) of the application. 

Using the functions t_setlocpart() and t_setaddrpart() the contents of this address 
which was modified by the application can be changed temporarily within the 
memory of the application and can then be passed to the function t_attach() in 
the parameter name or to the function t_conrq() in the parameters fromaddr and 
toaddr.

8.4.2.1 Application scenario / Program skeleton 

struct t_myname MN, newMN;
struct t_partaddr PA newPA;

MN=t_getloc(NULL,..); /* Get a template of a LOCAL NAME */
:

t_getlocpart(MN,..);                         /* Split the template into
a structure t_addrpart */

/* Set program-specific information in the structure t_addrpart */

t_setlocpart(MN,newMN..); /* Generate the LOCAL NAME newMN
filled with contents */

t_attach(newMN,..)

PA=t_getaddr(NULL,..); /* Get template of a
TRANSPORT ADDRESS */

:
t_getaddrpart(PA,..) ; /* Split the template into a

structure t_addrpart */
/* Set program-specific information in the structure t_addrpart */

t_setaddrpart(PA,newPA..) ; /* Generate the TRANSPORT ADDRESS newPA
filled with contents */

t_conrq(newMN,newPA);



108   U41136-J-Z145-3-76

Conventions ICMX(L)

8.5 Conventions

When using ICMX(L) the following conventions must be observed:

1. All identifiers starting with "_" (underscore) are reserved for the system 
software. 

2. All identifiers starting with "t_" or "ts" or "Ts" are reserved for CMX.

3. All preprocessor definitions starting with "T_" or "TS_" are reserved for CMX.

4. At the request of the user, signals (usually SIGIO and/or SIGTERM) are sent 
(by CMX components in the kernel) and intercepted in the CMX library. User-
defined signal routines should therefore be programmed with caution. 



U41136-J-Z145-3-76  109

ICMX(L) Function calls

8.6 ICMX(L) - function calls

The following pages describe the CMX calls in detail. Italic type in running text 
represents ordinary, replaceable formal parameters or the names of functions 
and files. Names in uppercase letters (e.g. T_MSGSIZE) represent constants 
that have been defined in a header file (with #define).

The following conventions are used in the parameter descriptions:

−>  Indicates a parameter in which CMX expects a value provided by the 
caller.

<−  Indicates a parameter in which CMX returns a value after the call.

<>  Indicates a parameter in which the caller must provide a value, which is 
then modified by CMX.

Modification generally only takes place if processing was successful. If it was 
unsuccessful the value remains unchanged.

Of course, if a parameter involves a pointer, this marking does not refer to the 
pointer itself (which is always provided by the caller), but instead to the contents 
of the field to which the pointer points.

In all cases, for values to be returned by CMX appropriate storage space must 
be provided by the caller and a pointer must be passed to CMX.



110   U41136-J-Z145-3-76

t_attach ICMX(L)

8.6.1 t_attach - Attach a process to CMX (attach 
process) 

t_attach() attaches the current process to CMX. The parameters passed in the 
t_attach() call specify: 

– the TS application for which the process is being attached,

– the types of connection setup (passive, active, acceptance of a redirected 
connection) that are possible for the process in this TS application,

– the number of connections the process may have simultaneously in this TS 
application. 

The TS application for which the process is being attached has a GLOBAL 
NAME and one or more T-selectors that are unique in the local system. The T-
selectors combine to form the LOCAL NAME. The LOCAL NAME must be 
passed to CMX as a parameter of the t_attach() call. With the help of the call 
t_getloc() and the GLOBAL NAME of the TS application the LOCAL NAME can 
be queried from the TNSX and placed in a data area. A pointer to this data area 
is then passed in the t_attach() call. 

Using repeated t_attach() calls, the current process may attach itself to CMX for 
several different TS applications.

Likewise, several different processes may attach themselves to CMX for the 
same TS application, i.e. using the same LOCAL NAME. The first process to 
attach itself for a TS application generates the TS application.

CMX accepts connection requests for a TS application from the network as 
soon as a process of the TS application has attached itself to CMX for the 
acceptance of connection indications, i.e. when T_PASSIVE is specified in 
t_apmode. 

If more than one process has attached itself for a TS application with 
T_PASSIVE, CMX initially delivers all connection indications for the TS appli-
cation to the process that first attached itself for the TS application with 
T_PASSIVE. Only when the maximum number of connections that this process 
may have for the TS application is attained are arriving connection indications 
delivered to one of the other processes. The order in which this is done is not 
defined. 



U41136-J-Z145-3-76  111

ICMX(L) t_attach

Notes

At the first t_attach(), a file descriptor is assigned in the running process. This 
file descriptor remains assigned for the life of the process.

T_OK with several T-selectors means that the attachment was successful for at 
least one T-selector. 

#include <cmx.h>
int t_attach (const struct t_myname *name,

t_opta *opt);

-> name 
For name, specify a pointer to a structure t_myname with the LOCAL 
NAME of the TS application. The LOCAL NAME is returned by the TNSX 
as a property of the GLOBAL NAME of the TS application. 

<> opt 
For the parameter opt, specify the value NULL or a pointer to a union with 
user options.

If opt = NULL is specified, CMX uses the given default values. 

The following structures are defined in <cmx.h>: 
struct t_opta1 {

-> int t_optnr; /* Option number */
-> int t_apmode; /* Process mode */
-> int t_conlim; /* Number of connections */

}

struct t_opta2 {
-> int t_optnr; /* Option number */
-> int t_apmode; /* Process mode */
-> int t_conlim; /* Number of connections */
-> int t_uattid; /* User attachment reference */
<-       int t_attid; /* CMX attachment reference */
<-       int t_ccbits; /* Bit list of CCs affected */
<-       int t_sptypes; /* Address formats affected */

}



112   U41136-J-Z145-3-76

t_attach ICMX(L)

struct t_opta5 {
-> int t_optnr; /* Option number */
-> int t_apmode; /* Process mode */
-> int t_conlim; /* Number of connections */
-> int t_uattid; /* User attachment reference */
<- int t_attid; /* CMX attachment reference */
<- int t_ccbits; /* Bit list of CCs affected */
<- int t_sptypes; /* Address formats affected */
<- int t_evref; /* Reference point */

}

struct t_opta6 {
-> int t_optnr; /* Option number */
-> int t_apmode; /* Process mode */
-> int t_conlim; /* Number of connections */
-> int t_uattid; /* User attachment reference */
<- int t_attid; /* CMX attachment reference */
<- struct t_cclst *t_cclist; /* Address of the CC list */
<- int t_sptypes; /* Address formats affected */

}

struct t_opta7 {
-> int t_optnr; /* Option number */
-> int t_apmode; /* Process mode */
-> int t_conlim; /* Number of connections */
-> int t_uattid; /* User attachment reference */
<- int t_attid; /* CMX attachment reference */
<- struct t_cclst *t_cclist; /* Address of the CC list */
<- int t_sptypes; /* Address formats affected */
<- int t_evref; /* Reference point */
-> char *t_hostname; /* Host name that corresponds to 

the IP address of a local 
IP interface */

}

t_optnr
Option number. Specify: 

T_OPTA1 in t_opta1

T_OPTA2 in t_opta2

T_OPTA5 in t_opta5

T_OPTA6 in t_opta6 

T_OPTA7 in t_opta7



U41136-J-Z145-3-76  113

ICMX(L) t_attach

t_apmode
t_apmode specifies the types of connection setup possible for the 
process in this TS application.

Permissible values are: 

T_ACTIVE
The process is to actively set up connections. 

T_PASSIVE
The process is to wait passively for requests to set up 
connections. 

T_REDIRECT
The process should accept redirected connections. 

These values may be combined using bitwise OR ( | ), e.g. 
T_ACTIVE | T_PASSIVE. 

Default value specifying opt = NULL: 
T_ACTIVE | T_PASSIVE | T_REDIRECT 

t_conlim
For t_conlim, specify the maximum number of simultaneous 
connections that the process can maintain in this TS application.

If t_conlim = T_NOLIMIT is specified, the process can maintain the 
installation-specific maximum number of simultaneous connec-
tions. 

Default value specifying opt = NULL: 1 

t_uattid
In the field t_uattid you can pass CMX any user reference desired 
for this application. This user reference will be subsequently 
returned by CMX as an option in t_event, i.e. when the current 
process queries CMX regarding the arrival of an event.

This user reference enables a process that controls multiple TS 
applications to more easily associate an arriving event with the 
appropriate attachment. 

Default value specifying opt = NULL: 0



114   U41136-J-Z145-3-76

t_attach ICMX(L)

t_attid
This field serves trace and diagnostic purposes. It is used exclu-
sively for logging.

In the t_attid field CMX returns the CMX-internal reference to the 
attachment. 

t_ccbits
This field serves trace and diagnostic purposes. It is used exclu-
sively for logging.

The meaning of the list may be obtained from <cmx.h>. 

t_sptypes
This field serves trace and diagnostic purposes. It is used exclu-
sively for logging.

In t_sptypes CMX returns a bit-encoded list of the address formats 
for which this attachment was successful. 

The meaning of the list may be obtained from <cmx.h>. 

t_evref
Event reference point. This is permitted only for compatibility with 
CMX on BS2000/OSD and is not supported in CMX on UNIX 
(Solaris and Reliant UNIX). 

t_cclist
This pointer to a CC list is used for tracing and diagnostic 
purposes. It is used exclusively for logging.

In t_cclist, CMX provides a pointer to a CC list of the address 
formats for which this attachment was successful. 

The values are explained in <cmx.h>. 

t_hostname
This field is required for TS applications which run in a cluster 
configuration. The IP address of the corresponding IP interface is 
used for the „fromaddr“ parameter during active connection setup 
with t_conrq(). In the case of passive connection setup, only 
connection requests which arrive via this IP interface wil be 
displayed.

This parameter is effective only if the address format RFC1006 or 
LANINET is specified in the LOCAL NAME of the TS application. 
When a process attaches to a TS application for the first time and 
when it attaches to the same TS application a subsequent time 



U41136-J-Z145-3-76  115

ICMX(L) t_attach

using the same host name, there are no restrictions with respect 
to address formats other than RFC1006 and LANINET. However, 
if a process wishes to use a different host name, it can only attach 
to TS applications that use the RFC1006 and LANINET address 
formats exclusively. In this case, the return value is T_OK and not 
T_NOTFIRST. 

Return values

T_OK
The call was successful. The process was the first to attach itself with this 
name. 

T_NOTFIRST
The call was successful. However, the process was not the first to attach 
itself for this TS application. 

T_ERROR
Error. Error code can be queried using t_error(). 

Errors

If an error occurs the following error values are possible. They can be queried 
by calling t_error().

For error type T_CMXTYPE and error class T_CMXCLASS, the following may 
occur: 

T_ENOENT
All allocated resources are already occupied. 

T_EFAULT
At least one of the pointers name or opt (!= NULL) does not point to the 
process address space. 

T_WPARAMETER
The LOCAL NAME passed with name or one of the options specified in 
opt has an invalid format or contains illegal values. 

T_WAPPLICATION
The process is already attached for the TS application specified in name, 
or the LOCAL NAME that was specified in name is already being used by 
an XTI process. 



116   U41136-J-Z145-3-76

t_callback ICMX(L)

T_WAPP_LIMIT
The process has already attached itself for all applications available to it, 
or the maximum number of TS applications has been reached. 

T_WPROC_LIMIT
The maximum number of processes that CMX can use has been 
reached. 

T_NOCCP
No suitable CCP is available (at present) for the LOCAL NAME specified 
in name. 

T_WLIBVERSION
The version of the CMX library linked into the process is incompatible 
with the operating system version. 

See also 

t_detach(), t_event(), t_error(), t_getloc() 

8.6.2 t_callback - Register a callback routine 

Using t_callback, an application can attach its own function for event handling in 
ICMX(L), which are then called when t_event is executed. This function is 
referred to as a callback function, because it is called by an ICMX(L) function 
(t_event()) that belongs to the application. 

The callback routine enables the application to use t_event() to simultaneously 
wait not only for TS events, but also for other events that are important for the 
application (e.g. terminal I/O). A prerequisite here is that the event sources can 
be described by means of file descriptors so that the callback routine can use 
the system functions select() or poll() (see Solaris Programmer’s Reference 
Guide) for checking events. 

The callback routine is used as follows: when routine is called, the function 
t_event() passes bit lists containing file descriptors, which are used internally by 
ICMX(L) and for which events are outstanding. The transfer is the same as for 
the select() call. The function routine can now add application-specific file 
descriptors and can call the function select() with the completed bit lists. This 
makes it possible to simultaneously wait for TS events and other application-
specific events. If an event occurs, routine must check whether or not the event 
was application-specific. If so, routine ends with T_USEREVENT; otherwise, it 



U41136-J-Z145-3-76  117

ICMX(L) t_callback

ends with T_TSEVENT. Before routine terminates, the routine can continue 
processing an application-specific event. However, routine may never enter a 
wait state that cannot be interrupted by signals. 

The behavior of t_event depends on the return value of routine. If a TS event has 
not occurred, t_event() returns to the application with T_NOEVENT. Otherwise, 
the TS event is displayed. 

A callback routine enables the application to optimize event handling according 
to your own criteria. If it is not implemented correctly, the handling of TS events 
by t_event() may not be reliable. You should therefore follow the implementation 
guidelines listed below. 

The functional sample of routine is similar to the function select() and looks like 
this: 

#include <sys/select.h>
#include <cmx.h>
int (*t_cbtype) routine (int fdsetsize,

fd_set *rfds,
fd_set *wfds,
fd_set *xfds,
struct timeval *time,
const void *usr);

-> fdsetsize 
Number of file descriptors that are used by ICMX(L) internally. 

<> rfds 
Pointer to a bit list of file descriptors for which ICMX(L) expects read 
events internally. The return list must contain at least the file descriptors 
of ICMX(L) for which a read event has occurred. File descriptors that are 
not affected are ignored in the list. 

<> wfds 
Pointer to a bit list of file descriptors for which ICMX(L) expects write 
permission internally. The return list must contain at least the file 
descriptors of ICMX(L) for which this type of event has occurred. File 
descriptors that are not affected are ignored in the list. 

<> xfds 
Pointer to a bit list of file descriptors for which ICMX(L) expects excep-
tional conditions to occur. The return list must contain at least the file 
descriptors of ICMX(L) for which this type of event has occurred. File 
descriptors that are not affected are ignored in the list. 



118   U41136-J-Z145-3-76

t_callback ICMX(L)

-> time 
Specifies the maximum time spent waiting for an event to occur. The 
value 0 indicates that routine can check whether an event exists, but 
cannot enter a wait state. The value -1 means that routine should wait for 
the event for an unlimited period of time. The time value is derived from 
the t_timeout value when t_event() is called.

Please note that routine must support the value 0 at all times, even if the 
application never calls t_event() in T_CHECK mode. 

-> usr 
Pointer that was passed to t_callback by the application when routine was 
attached (see below). The contents are not checked by ICMX(L). The 
application can pass application-specific information to routine via usr. 

Return value 

T_NOEVENT
Neither a user event nor a TS event has occurred within time. The 
function was interrupted by a signal or an internal error occurred.

In this case, t_event() also terminates with T_NOEVENT. 

T_TSEVENT
A TS event has occurred. t_event() then checks which TS event occurred 
and terminates with this event.

If t_event() cannot find a TS event, it terminates with T_NOEVENT. 

T_USEREVENT
An application-specific event has occurred. t_event() terminates either 
with T_NOEVENT if t_event() does not detect a TS event, or it reports the 
TS event that t_event() detected outside routine. 

Errors

If routine has to terminate prematurely because of an internal error, it must 
terminate with T_NOEVENT. You should take note of the error status internally, 
so that the application can take appropriate action when t_event() has termi-
nated. 



U41136-J-Z145-3-76  119

ICMX(L) t_callback

Implementation guidelines 

– The ICMX(L)-specific file descriptors may not be distorted by routine. TS 
events can only be identified if these file descriptors are passed to select() or 
poll(). If the file descriptors are distorted while routine is running, t_event() is 
no longer reliable. 

– The callback routine may only enter wait states that can be interrupted by all 
signals. 

– The callback routine may not call t_event(). t_event() rejects the recursive call 
with T_CBRECURSIVE. 

– The callback routine is Solaris-specific, as it explicitly uses file descriptors. 
The concept is therefore not provided in ICMX(L) implementations in 
BS2000/OSD and MS-DOS. 

Information on the callback routine is reported to ICMX(L) with t_callback: 

#include <cmx.h>
t_cbtype t_callback (t_cbtype routine,

const void *usr,
const void *opt);

-> routine 
Pointer to the callback routine that is to be called by t_event(). A callback 
routine that was attached to ICMX(L) is detached again with NULL. 

-> usr 
Pointer to an application-specific data area that is not checked by 
ICMX(L). The pointer is passed to the callback routine by t_event() when 
this is called. 

-> opt 
Reserved for future extensions. The value must be NULL. 

Return value 

T_OK
The pointer to the old callback routine is returned. The return value 
"NULL" means that a callback routine was not included. 

T_ERROR
Error. Error code can be queried with t_error(). 



120   U41136-J-Z145-3-76

t_callback ICMX(L)

Errors

In the event of an error the following error values are possible. They can be 
queried by calling t_error(). 

The following can occur for error type T_CMXTYPE and error class 
T_CMXCLASS: 

T_WPARAMETER
opt is not NULL. 

T_WSEQUENCE
The process has not been attached in any TS application. 

See also 

t_event()



U41136-J-Z145-3-76  121

ICMX(L) t_concf

8.6.3 t_concf - Establish connection (connect 
confirmation) 

t_concf() accepts a T_CONCF event from CMX previously reported with 
t_event(). T_CONCF indicates that the called TS application has positively 
answered a connection request (t_conrq() call) of the current process.

t_concf() returns: 

– The user data that the called TS application included, if the transport system 
used provides this option. 

– The answer of the called TS application if the current process proposed the 
exchange of expedited data when issuing the connection request t_conrq(). 

If the t_concf() call is successful the connection is established for the current 
process. As soon as a connection is established, the TS application (not CMX) 
has the initiative. It may: 

– send normal data and (if agreed) expedited data, or 

– indicate, through t_event(), that it is ready to receive normal data or (if 
agreed) expedited data, or redirect or close down the connection. 

#include <cmx.h>
int t_concf (const int *tref,

t_opt1 *opt);

-> tref 
Pointer to a field with the transport reference of the connection, passed 
to the current process via t_event(). 

<> opt 
For opt, specify the value NULL or a pointer to a union containing a 
structure with system options. 

This union is used to receive the user data that the called TS application 
included with its answer to the connection request.

If opt = NULL is specified, CMX discards the user data and options.

If the called TS application specified no user data and no options, CMX 
uses the given default values. 



122   U41136-J-Z145-3-76

t_concf ICMX(L)

The following structure is defined in <cmx.h>: 
   struct t_optc1 {
->    int  t_optnr;     /* Option no. */
<-    char *t_udatap;   /* Data buffer */
<>    int  t_udatal;    /* Length of the data buffer */
<-    int  t_xdata;     /* Choice for expedited data */
<-    int  t_timeout;   /* Inactive time */
   };

t_optnr
Option number. Specify T_OPTC1. 

t_udatap
Pointer to a data area in which CMX enters the user data received from 
the called TS application. 

Default value specifying opt = NULL: Undefined 

t_udatal
Prior to the call 0 or the length of the data area t_udatap must appear 
here. The area must be large enough to hold the received data 
completely. The maximum length required depends on the transport 
system used. 

T_MSG_SIZE is the maximum size suitable for all transport systems. 
T_MSG_SIZE is defined in <cmx.h>. After the call, CMX returns in this 
field the number of bytes placed in t_udatap. 

Default value specifying opt = NULL: 0 

t_xdata
CMX returns here the answer of the called TS application if the exchange 
of expedited data was proposed at connection setup. The answer is 
binding. Possible answers: 

T_YES
The called TS application accepts the proposal. 

T_NO
The called TS application rejects the proposal. 

Default value specifying opt = NULL: T_NO 

t_timeout
This field always contains T_NO. 



U41136-J-Z145-3-76  123

ICMX(L) t_concf

Return values 

T_OK
The call was successful. 

T_ERROR
Error. Error code can be queried using t_error(). 

Errors

If an error occurs the following error values are possible. They can be queried 
by calling t_error(). 

For error type T_CMXTYPE and error class T_CMXCLASS, the following may 
occur: 

T_EFAULT
At least one of the pointers opt (!= NULL) or t_udatap (!= NULL and 
t_ndatal != 0) does not point to the process address space. 

T_WSEQUENCE
The process is not attached for any TS application, or no T_CONCF was 
indicated on the connection specified by tref. 

T_WPARAMETER
The options specified in opt have an invalid format or contain illegal 
values, or the buffer for the data to be received is too small. 

T_CCP_END
The CCP is no longer operational. 

In addition, the errors listed under ioctl(2) may occur.

See also 

t_conrq(), t_error(), t_event() 



124   U41136-J-Z145-3-76

t_conin ICMX(L)

8.6.4 t_conin - Receive connection request (connect 
indication)

t_conin() accepts a T_CONIN event previously reported with t_event(). T_CONIN 
indicates that a calling TS application wishes to set up a connection to the 
current process. 

The call returns: 

– the TRANSPORT ADDRESS of the calling TS application,

– the LOCAL NAME of the local TS application, and

– the user data that the calling TS application included.

Subsequently the connection request may be answered (confirmed) with 
t_conrs() or rejected with t_disrq().

#include <cmx.h>
int t_conin (const int *tref,

union t_address *toaddr,
union t_address *fromaddr,
t_opt1 *opt);

-> tref 
Pointer to a field with the transport reference of the connection, passed 
to the current process via t_event().

<- toaddr 
Pointer to a union t_address in which CMX returns the LOCAL NAME of 
the called TS application that is to receive the connection. If the current 
process is attached for multiple TS applications, with the aid of this infor-
mation the connection request can be associated with the correct TS 
application.

<- fromaddr 
Pointer to a union t_address in which CMX returns the TRANSPORT 
ADDRESS of the calling TS application. The TRANSPORT ADDRESS 
can be converted to the GLOBAL NAME of the calling TS application with 
the aid of the call t_getname().

Notes 

If an RFC1006 type TRANSPORT ADDRESS is received during communi-
cation via RFC1006 over TCP/IP, the address may not be passed in binary form 
to t_conrq() in a subsequent active connection setup, because the internal 



U41136-J-Z145-3-76  125

ICMX(L) t_conin

address components that are evaluated by t_conrq() are missing. The appli-
cation must query the GLOBAL NAME using t_getname(), and then query the 
address again using t_getaddr().

<> opt
For opt, specify the value NULL or a pointer to a union containing a 
structure with system options.

This union is used to fetch the user data that the calling TS application 
specified at connection setup.

If opt = NULL is specified, CMX discards the user data and options.

If the calling TS application specified no user data and no options in 
t_conrq(), CMX returns the specified default values. 

The following structure is defined in <cmx.h>: 
   

struct t_optc1 {
-> int  t_optnr;     /* Option no. */
<- char *t_udatap;   /* Data buffer */
<> int  t_udatal;    /* Length of the data buffer */
<- int  t_xdata;     /* Choice for expedited data */
<- int  t_timeout;   /* Inactive time */

};

t_optnr
Option number. Specify T_OPTC1. 

t_udatap
Pointer to a data area in which CMX enters the user data received 
from the calling TS application. 

Default value specifying opt = NULL: Undefined 

t_udatal
Prior to the call 0 or the length of the data area t_udatap must 
appear here.

The area must be large enough that the received data completely 
fits. The maximum length required depends on the transport 
system used. T_MSG_SIZE is the maximum size suitable for all 
transport systems. T_MSG_SIZE is defined in <cmx.h>.

After the call, CMX returns in this field the number of bytes placed 
in t_udatap. 

Default value specifying opt = NULL: 0 



126   U41136-J-Z145-3-76

t_conin ICMX(L)

t_xdata
In this field CMX returns the proposal of the calling TS application 
regarding expedited data. 

Possible answers: 

T_YES
The calling TS application proposes exchanging expedited 
data.

T_NO
The exchange of expedited data is ruled out by the calling 
TS application. 

If the calling TS application proposes exchanging expedited data 
(T_YES), the answer of the current process in the subsequent 
t_conrs() is final.

If the calling TS application desires no expedited data (T_NO), 
none can be requested by the current process in the subsequent 
t_conrs(). It may then be necessary for the current process to 
reject the connection request with t_disrq(). 

Default value specifying opt = NULL: T_NO 

t_timeout
This field always contains T_NO. 

Return values 

T_OK
The call was successful. 

T_ERROR
Error. The error code can be queried using t_error(). 

Errors

If an error occurs the following error values are possible. They can be queried 
by calling t_error(). 

For error type T_CMXTYPE and error class T_CMXCLASS, the following may 
occur: 

T_EFAULT
At least one of the pointers toaddr, fromaddr, opt (!= NULL) or t_udatap (!= 
NULL and t_ndatal != 0) does not point to the process address space. 



U41136-J-Z145-3-76  127

ICMX(L) t_conin

T_WSEQUENCE
The process is not attached for any TS application, or no T_CONIN was 
indicated on the connection specified by tref. 

T_WPARAMETER
The options specified in opt have an invalid format or contain illegal 
values, or the buffer for the data to be received is too small. 

T_CCP_END
The CCP is no longer operational. 

In addition, the errors listed under ioctl(2) may occur. 

See also 

t_attach(), t_conrs(), t_conrq(), t_disrq(), t_error(), t_event(), t_getname()



128   U41136-J-Z145-3-76

t_conrq ICMX(L)

8.6.5 t_conrq - Request connection (connection 
request) 

t_conrq() requests the establishment of a transport connection from the local TS 
application to a called TS application (active connection setup). 

More specifically, the effects of t_conrq() are: 

– The called TS application receives the event T_CONIN as a connection 
indication, to which it must respond.

The answer of the called TS application is later indicated to the current 
process by CMX in a t_event() call as event T_CONCF or T_DISIN. 

– The called TS application may be sent user data along with the connection 
request, if the transport system used provides this option. 

#include <cmx.h>
int t_conrq (int *tref,

const union t_address *toaddr,
const union t_address *fromaddr,
const t_opt13 *opt);

<- tref 
Pointer to a field in which CMX returns the connection-specific transport 
reference. This uniquely identifies the connection in the subsequent 
communication phases. It must therefore be specified with all calls that 
involve this connection. 

-> toaddr 
Pointer to a union t_address with the TRANSPORT ADDRESS of the 
called TS application. The TRANSPORT ADDRESS is returned by the 
TNSX as a property of the GLOBAL NAME of the called TS application. 
It can be obtained from the TNSX using a t_getaddr() call. 

-> fromaddr
Pointer to a union t_address with the LOCAL NAME of the calling TS appli-
cation. The same LOCAL NAME must be specified here as was specified 
in t_attach() for this TS application. 

-> opt 
For opt, specify the value NULL or a pointer to a union with system 
options. This is used to specify the user data and options that the called 
TS application is to receive with the connection indication.

If opt = NULL is specified, CMX uses the given default values. 



U41136-J-Z145-3-76  129

ICMX(L) t_conrq

The following structures are defined in <cmx.h>: 
struct t_optc1 {
->    int  t_optnr;     /* Option no. */
->    char *t_udatap;   /* Data buffer */
->    int  t_udatal;    /* Length of the data buffer */
->    int  t_xdata;     /* Choice for expedited data */
->    int  t_timeout;   /* Inactive time */
   };
   struct t_optc3 {
->    int  t_optnr;     /* Option no. */
->    char *t_udatap;   /* Data buffer */
->    int  t_udatal;    /* Length of the data buffer */
->    int  t_xdata;     /* Choice for expedited data */
->    int  t_timeout;   /* Inactive time */
->    int  t_ucepid;    /* User connection reference */
   };

t_optnr
Option number. Specify: 

T_OPTC1 in t_optc1

T_OPTC3 in t_optc3 

t_udatap
Pointer to a storage area containing user data that the called TS 
application is to receive with the connection indication. 
Default value specifying opt = NULL: Undefined 

t_udatal
Length of the user data, in bytes, to be transferred from the area 
t_udatap. If 0 is specified for t_udatal, t_udatap is ignored. The 
maximum value for t_udatal depends on the transport system (see 
the Release Notes). 

Default value specifying opt = NULL: : 0 

t_xdata
In the t_xdata parameter the current process informs the called TS 
application as to whether it is ready to exchange expedited data. 
Permissible values are: 

T_YES
Exchange of expedited data proposed. 

T_NO
Exchange of expedited data ruled out. 

Default value specifying opt = NULL: T_NO 



130   U41136-J-Z145-3-76

t_conrq ICMX(L)

t_timeout
For t_timeout, specify the inactive time for the connection. The 
inactive time specifies how long the connection may be inactive 
before it will be closed down by CMX. 
It begins only when all data has been retrieved. 

Possible specifications: 

T_NO
The inactive time of the connection will not be monitored.

n > 0 
The connection may be inactive for n seconds. Thereafter 
CMX will close it down. 

Default value specifying opt = NULL: : T_NO. 

t_ucepid
This field can be used to pass a freely-selectable user reference 
for this connection to CMX. This user reference can be returned 
to the current process by CMX as an option in a t_event() call. If the 
current process is maintaining multiple connections this 
mechanism enables it to associate a TS event with the appro-
priate connection via a user-defined attribute. The user reference 
constitutes an alternative to the transport reference tref, defined 
by CMX. 

Default value specifying opt = NULL: 0 

Return values 

T_OK
The call was successful. 

T_ERROR
Error. Query error code using t_error(). 

Errors

If an error occurs the following error values are possible. They can be queried 
by calling t_error(). 

For error type T_CMXTYPE and error class T_CMXCLASS, the following may 
occur: 



U41136-J-Z145-3-76  131

ICMX(L) t_conrq

T_EFAULT
At least one of the pointers toaddr, fromaddr, opt (!= NULL) or t_udatap (!= 
NULL and t_ndatal != 0) does not point to the process address space. 

T_WSEQUENCE
The process is not attached for any TS application, or the process has 
not set T_ACTIVE in t_apmode for the local TS application, specified in 
fromaddr.

T_WPARAMETER
The TRANSPORT ADDRESS passed with toaddr or the LOCAL NAME 
passed with fromaddr or one of the options specified in opt has an invalid 
format or contains illegal values. 

T_WAPPLICATION
The process is not attached for the TS application that has the LOCAL 
NAME passed with fromaddr. 

T_WCONN_LIMIT
The process has already used the number of connections specified for 
this TS application in t_attach() (t_conlim parameter) or the system limit 
for connections has been exceeded. 

T_NOCCP
The TRANSPORT ADDRESS specified in toaddr is not supported by any 
(currently) operational CCP or the LOCAL NAME specified in fromaddr 
contains no information for this CCP. 

T_ETIMEOUT
The CCP does not respond in the time limit. 

T_CCP_END
The CCP is no longer operational. 

In addition, the errors listed under ioctl(2) may occur. 

See also 

t_attach(), t_error(), t_event(), t_getaddr() 



132   U41136-J-Z145-3-76

t_conrs ICMX(L)

8.6.6 t_conrs - Respond to connection request 
(connection response) 

t_conrs() is used by the called TS application to accept (confirm) the connection 
request of a calling TS application, the connection request having been previ-
ously indicated to the current process in t_event(), with the event T_CONIN. The 
current process must accept the T_CONIN event with t_conin() (passive 
connection setup) before calling t_conrs(). The calling TS application receives 
this response as connection confirmation with the event T_CONCF. 

With t_conrs() 

– information can be sent to the calling TS application, if the transport system 
used provides this option; 

– the connection is completely set up for the current process. 

As soon as a connection has been established, the TS application (not CMX) 
has the initiative. It may: 

– send both normal data and (if agreed) expedited data, or 

– indicate, via t_event(), that it is prepared to receive normal data or (if agreed) 
expedited data, or 

– close down or redirect the connection. 

#include <cmx.h>
int t_conrs (const int *tref,

const t_opt13 *opt);

-> tref 
Pointer to a field with the transport reference for the connection used in 
the corresponding t_conin(). 

-> opt 
For opt, specify the value NULL or a pointer to a union with system 
options.

This is used by the current process to pass the user data that the calling 
TS application is to receive with the response to the connection request. 
If opt = NULL is specified, CMX uses the given default values. 



U41136-J-Z145-3-76  133

ICMX(L) t_conrs

The following structures are defined in <cmx.h>: 
struct t_optc1 {
->    int  t_optnr;    /* Option no. */
->    char *t_udatap;  /* Data buffer */
->    int  t_udatal;   /* Length of the data buffer */
->    int  t_xdata;    /* Choice for expedited data */
->    int  t_timeout;  /* Inactive time */
   };
   struct t_optc3 {
->    int  t_optnr;    /* Option no. */
->    char *t_udatap;  /* Data buffer */
->    int  t_udatal;   /* Length of the data buffer */
->    int  t_xdata;    /* Choice for expedited data */
->    int  t_timeout;  /* Inactive time */
->    int  t_ucepid;   /* User connection reference */
   };

t_optnr
Option number. Specify: 

T_OPTC1 in t_optc1

T_OPTC3 in t_optc3 

t_udatap
Pointer to a storage area containing user data that the calling TS 
application is to receive. 

Default value specifying opt = NULL: Undefined 

t_udatal
Length of the user data, in bytes, to be transferred from the area 
t_udatap. If 0 is specified for t_udatal, t_udatap is ignored. The 
maximum value for t_udatal depends on the transport system (see 
the Release Notes). 

Default value specifying opt = NULL: 0 

t_xdata
In t_xdata the current process responds to the proposal of the 
calling TS application regarding the exchange of expedited data. 
The proposal was passed to the process via the t_conin() call. 

Permissible values are: 

T_YES
The proposal of the calling TS application regarding 
expedited data is accepted. 



134   U41136-J-Z145-3-76

t_conrs ICMX(L)

T_NO
Expedited data is refused.

The response is binding. 

If the calling TS application had ruled out the use of expedited 
data, the response here must be T_NO. 

Default value specifying opt = NULL: T_NO 

t_timeout
For t_timeout, specify the inactive time for the connection. The 
inactive time specifies how long the connection may be inactive 
before it will be closed down by CMX. 

T_NO
Inactive time will not be monitored. 

n > 0 
The connection may be inactive for n seconds. Thereafter 
CMX will close it down. 

Default value specifying opt = NULL: T_NO. 

t_ucepid
This field can be used to pass a freely-selectable user reference 
for this connection to CMX.

This user reference can be returned to the current process by 
CMX as an option in a t_event() call.

If the current process is maintaining multiple connections this 
mechanism enables it to associate a TS event with the appro-
priate connection via a user-defined attribute. The user reference 
constitutes an alternative to the transport reference tref, defined 
by CMX. 

Default value specifying opt = NULL: 0 

Return values 

T_OK
The call was successful. 

T_ERROR
Error. Query error code using t_error(). 



U41136-J-Z145-3-76  135

ICMX(L) t_conrs

Errors

If an error occurs the following error values are possible. They can be queried 
by calling t_error(). 

For error type T_CMXTYPE and error class T_CMXCLASS, the following may 
occur: 

T_EFAULT
At least one of the pointers opt (!= NULL) or t_udatap (!= NULL and 
t_ndatal != 0) does not point to the process address space. 

T_WSEQUENCE
The process is not attached for any TS application, or the call was not 
preceded by a successful t_conin() call. 

T_WPARAMETER
The options specified in opt have an invalid format or contain illegal 
values. 

T_COLLISION
The event T_DISIN (disconnect indication) has arrived for the 
connection, but has not yet been fetched with t_event().

Response: Call t_event(). 

T_CCP_END
The CCP is no longer operational. 

In addition, the errors listed under ioctl(2) may occur. 

See also 

t_conin(), t_error(), t_event() 



136   U41136-J-Z145-3-76

t_datago ICMX(L)

8.6.7 t_datago - Release the flow of data (data go) 

t_datago() releases the blocked flow of data on the specified connection. By 
means of this call the current process informs CMX that it is again ready to 
receive data. This call also releases the flow of expedited data (if it is being 
used) if it (also) had been blocked. In particular, the effects of the call are: 

– The current process can again receive the events T_DATAIN and T_XDATIN 
for the specified connection, if they are waiting. 

– The sending TS application receives the event T_DATAGO. It may again 
send data. 

Once a connection has been set up, the initiative rests with the TS application 
(not with CMX). It may send normal data and (if agreed) expedited data, or 
indicate, with t_event(), that it is ready to receive normal data or (if agreed) 
expedited data. 

#include <cmx.h>
int t_datago (const int *tref);

-> tref   Pointer to a field with the transport reference of the connection on which 
the flow of data is to be released. 

Return values 

T_OK
The call was successful. 

T_ERROR
Error. Query error code using t_error(). 

Errors

If an error occurs the following error values are possible. They can be queried 
by calling t_error(). 

For error type T_CMXTYPE and error class T_CMXCLASS, the following may 
occur: 

T_WSEQUENCE
The process is not attached for any TS application, or the process is not 
in the data phase for the connection specified in tref, or the flow of data 
has not been blocked. 



U41136-J-Z145-3-76  137

ICMX(L) t_datago

T_CCP_END
The CCP is no longer operational. 

In addition, the errors listed under ioctl(2) may occur. 

See also 

t_datastop(), t_xdatstop(), t_error(), t_event(), t_redin() 



138   U41136-J-Z145-3-76

t_datain ICMX(L)

8.6.8 t_datain - Receive data (data indication) 

t_datain() accepts a T_DATAIN event previously reported via t_event(). The 
t_datain() call must be made before the next t_event(). 

By means of this call the current process receives data of a Transport Interface 
Data Unit (TIDU) belonging to the current Transport Service Data Unit (TSDU) 
from the sending TS application on the specified connection. 

The maximum length of a TIDU depends on the transport system used. It can 
be queried for a connection that has already been set up by means of t_info().

A TIDU need not be completely full. The breakdown of a TSDU into TIDUs is 
purely local and does not indicate anything regarding the breakdown of the 
TSDU into TIDUs at the sending TS application.

Between two TIDUs of a TSDU any other CMX events can occur for the same 
or a different connection. 

When t_datain() is called a contiguous data area datap is provided in which CMX 
enters the data of the TIDU received. 

t_datain() indicates: 

– (in the chain parameter)

whether a further TIDU belonging to the current TSDU exists (chain=
T_MORE) or does not exist (chain = T_END).

The individual TIDUs of a TSDU are each indicated via t_event() with the 
event T_DATAIN. 

– (with the return value)

whether the current TIDU has been completely read or not.

If the value T_OK is returned, the TIDU has fit into the storage area provided. 
The current process has completely received the current TIDU.

If a value n > 0 is returned, only a part of the TIDU has been read. n is the 
number of bytes of the TIDU that have not yet been read (remaining length). 
In this case t_datain() or t_vdatain() must be called repeatedly until the entire 
TIDU has been read. Only then can other CMX calls be issued again, e.g. 
t_event(). 



U41136-J-Z145-3-76  139

ICMX(L) t_datain

#include <cmx.h>
int t_datain (const int *tref, 

char *datap,
int *datal,
int *chain);

-> tref 
Pointer to a field containing the transport reference of the connection, 
obtained via t_event(). 

<- datap 
Pointer to a storage area in which CMX enters the data of the TIDU 
received. 

<> datal 
Prior to the call, for datal a pointer must be specified to a field in which 
the length of datap must be entered (at least 1). Following the call, CMX 
returns in this field the number of bytes entered in the storage area datap. 
This need not be the maximum length of the TIDU. 

<- chain 
chain is a pointer to a field in which CMX returns an indicator. This 
indicator shows whether or not an additional TIDU belonging to the 
TSDU exists. 

Possible values: 

T_MORE
Another TIDU belonging to the TSDU follows. It will be indicated 
with a separate T_DATAIN event. 

T_END
The present TIDU is the last of the TSDU. 

Return values 

T_OK
The call was successful. The TIDU was completely read. 

n > 0 
n bytes remain from the TIDU. 

T_ERROR
Error. Query error code using t_error(). 



140   U41136-J-Z145-3-76

t_datain ICMX(L)

Errors

If an error occurs the following error values are possible. They can be queried 
by calling t_error(). 

For error type T_CMXTYPE and error class T_CMXCLASS, the following may 
occur: 

T_EFAULT
The pointer datap does not point to the process address space. 

T_WSEQUENCE
The process is not attached for any TS application, or no T_DATAIN was 
indicated for the connection specified in tref. 

T_WPARAMETER
The length specified in datal is invalid. 

T_COLLISION
The event T_DISIN (disconnect indication) has arrived for the 
connection, but has not yet been fetched with t_event().

Response: Call t_event(). 

T_CCP_END
The CCP is no longer operational. 

In addition, the errors listed under ioctl(2) may occur. 

See also 

t_error(), t_event(), t_info(), t_vdatain() 



U41136-J-Z145-3-76  141

ICMX(L) t_datarq

8.6.9 t_datarq - Send data (data request) 

t_datarq() sends the next (or only) Transport Interface Data Unit (TIDU) of a 
Transport Service Data Unit (TSDU) to the receiving TS application on the 
specified connection. 

The TIDU to be sent by t_datarq() must be provided by the current process in a 
contiguous data area. 

If the TSDU is longer than one TIDU, it must be transferred using several 
t_datarq() (or t_vdatarq()) calls in succession. Therefore in each t_datarq() call 
the sending process must specify in the chain parameter whether additional 
TIDUs belonging to the same TSDU follow. 

The maximum length of a TIDU depends on the transport system used. It can 
be queried for an established connection by means of t_info(). 

If t_datarq() returns the value T_DATASTOP, the TIDU has been accepted by 
CMX but the flow of TIDUs on this connection has been blocked. 

The flow of TIDUs can be blocked by: 

– the receiving TS application, which can block the flow of TIDUs by calling 
t_datastop() or t_xdatstop(), or 

– CMX, if the local buffer is full. 

If the flow of TIDUs is blocked, before further TIDUs can be sent you must wait, 
by means of t_event(), for the event T_DATAGO for the connection. 

Successful termination of t_datarq() (T_OK) does not mean that the receiving 
TS application has already accepted the data.

Unsuccessful termination of t_datarq() (T_ERROR) always means that an error 
has been detected locally. 

#include <cmx.h>
int t_datarq (const int *tref,

const char *datap,
const int *datal,
const int *chain);

> tref 
Pointer to a field with the transport reference of the connection. 

-> datap 
Pointer to a data area containing the TIDU to be sent. 



142   U41136-J-Z145-3-76

t_datarq ICMX(L)

-> datal 
Pointer to a field containing the number of bytes to be sent from the 
storage area datap. At least 1 and at most the length of a TIDU must be 
specified. 

-> chain 
Pointer to an indicator used by the process to indicate whether there is 
an additional TIDU belonging to the TSDU. 

Possible values: 

T_MORE
Another TIDU belonging to the TSDU follows. 

T_END
The present TIDU is the last of the TSDU. 

Return values 

T_OK
The call was successful; further TIDUs may be sent immediately. 

T_DATASTOP
The call was successful, but further TIDUs may not be sent until the event 
T_DATAGO has arrived for this connection. 

T_ERROR
Error. Query error code using t_error(). 

Errors

If an error occurs the following error values are possible. They can be queried 
by calling t_error(). 

For error type T_CMXTYPE and error class T_CMXCLASS, the following may 
occur: 

T_EFAULT
The pointer datap does not point to the process address space. 

T_WSEQUENCE
The process is not attached for any TS application, or the process is not 
in the data phase for the connection specified in tref, or the flow of data 
is blocked. 

T_WPARAMETER
The length specified in datal or the value specified in chain is invalid. 



U41136-J-Z145-3-76  143

ICMX(L) t_datarq

T_COLLISION
The event T_DISIN (disconnect indication) has arrived for the 
connection, but has not yet been fetched with t_event().

Response: Call t_event(). 

T_CCP_END
The CCP is no longer operational. 

In addition, the errors listed under ioctl(2) may occur. 

See also 

t_datastop(), t_error(), t_event(), t_info(), t_vdatarq(), t_xdatstop() 



144   U41136-J-Z145-3-76

t_datastop ICMX(L)

8.6.10 t_datastop - Stop the flow of data (data stop) 

t_datastop() blocks the flow of data on the specified connection. 

In particular, the effects of t_datastop() are: 

– The current process tells CMX that, until further notice, it is not ready to 
receive data for this connection. However, a T_DATAIN event that has 
already been indicated must be responded to first. 

– The current process no longer receives the event T_DATAIN for the specified 
connection. However, while the data flow is blocked it may call other CMX 
functions, e.g. to set up, close down or redirect an additional connection. 

– The sending TS application receives the return value T_DATASTOP when it 
calls t_datarq(). It may not send any more data. (See section “Transport 
system specific features” on page 103.) 

The flow of data is released with t_datago().

Expedited data is not affected by t_datastop(). 

#include <cmx.h>
int t_datastop (const int *tref);

-> tref 
Pointer to a field with the transport reference of the connection. 

Return values 

T_OK
The call was successful. 

T_ERROR
Error. Query error code using t_error(). 

Errors

If an error occurs the following error values are possible. They can be queried 
by calling t_error(). 



U41136-J-Z145-3-76  145

ICMX(L) t_datastop

For error type T_CMXTYPE and error class T_CMXCLASS, the following may 
occur: 

T_WSEQUENCE
The process is not attached for any TS application, or the process is not 
in the data phase for the connection specified in tref, or a TIDU or an 
ETSDU has not yet been completely read. 

T_CCP_END
The CCP is no longer operational. 

In addition, the errors listed under ioctl(2) may occur. 

See also 

t_datarq(), t_datago(), t_event(), t_xdatstop() 



146   U41136-J-Z145-3-76

t_detach ICMX(L)

8.6.11 t_detach - Detach a process from a TS application 
(detach process) 

t_detach() detaches the current process for the TS application specified in the 
parameter name. If connections still exist for this process, they are implicitly 
closed down. Normally though, all connections for this process should be closed 
down with t_disrq() before calling t_detach(). 

When the last process of a TS application detaches itself, the TS application 
ceases to exist. Connection requests for that TS application will then no longer 
be accepted. 

#include <cmx.h>
int t_detach (const struct t_myname *name);

-> name 
Pointer to a structure t_myname with the LOCAL NAME of the TS appli-
cation. The same LOCAL NAME is to be specified as was specified with 
t_attach(). 

Return values 

T_OK
The call was successful. 

T_ERROR
Error. Query error code using t_error(). 

Errors

If an error occurs the following error values are possible. They can be queried 
by calling t_error(). 

For error type T_CMXTYPE and error class T_CMXCLASS, the following may 
occur: 

T_EFAULT
The pointer name does not point to the process address space. 

T_WSEQUENCE
The process is not attached for any TS application. 

T_WPARAMETER
The LOCAL name passed with name has an invalid format or contains 
illegal values. 



U41136-J-Z145-3-76  147

ICMX(L) t_detach

T_WAPPLICATION
The process is not attached for the TS application that has the LOCAL 
NAME passed via name. 

In addition, the errors listed under ioctl(2) may occur. 

See also 

t_attach(), t_error() 



148   U41136-J-Z145-3-76

t_disin ICMX(L)

8.6.12 t_disin - Accept disconnection (disconnection 
indication) 

t_disin() accepts a T_DISIN event previously reported with t_event(). T_DISIN 
indicates that the connection has been closed down. 

t_disin() specifies whether the remote TS application or CMX initiated the 
T_DISIN event. 

In addition, t_disin() returns: 

– the user data sent by the remote TS application, if the T_DISIN event was 
initiated by the remote TS application and if the transport system used 
provides this option; 

– the reason for closing the transport connection, if the T_DISIN event was 
initiated by CMX or by the transport system. The readable text form of the 
code can be obtained with the aid of t_preason() or t_strreason(). 

#include <cmx.h>
int t_disin (const int *tref,

int *reason,
t_opt2 *opt);

-> tref 
Pointer to a field containing the transport reference of the connection. 

<- reason 
Pointer to a field in which CMX enters the reason for the disconnection. 

Possible values: 

T_USER
The connection was closed down by the remote TS application. 

other
The connection was closed down by CMX or the transport system.

The possible values for this parameter and their meanings can be found 
in the appendix to this manual. The code returned by CMX for the discon-
nection can be decoded with the aid of the cmxdec command (see the 
“CMX, Operation and Administration” manual [1]). 

<> opt 
For opt, specify the value NULL or a pointer to a union containing a 
structure with system options.



U41136-J-Z145-3-76  149

ICMX(L) t_disin

This union can be used to check the user data that the remote TS appli-
cation specified when closing down the connection.

If opt = NULL is specified, CMX discards the user data and options.

If the remote TS application specified no user data and no options, CMX 
returns the default values specified. 

The following structure is defined in <cmx.h>: 
   struct t_optc2 {
->    int  t_optnr;    /* Option no. */
<-    char *t_udatap;  /* Data buffer */
<>    int  t_udatal;   /* Length of the data buffer */
   };

t_optnr
Option number. Specify T_OPTC2. 

t_udatap
Pointer to a data area in which CMX enters the user data received 
from the remote TS application. 

Default value specifying opt = NULL: Undefined 

t_udatal
Prior to the call 0 or the length of the data area t_udatap must 
appear here.

The area must be large enough that the received data completely 
fits. The maximum permissible length for the user data depends 
on the transport system used. T_MSG_SIZE is the maximum size 
suitable for all transport systems. After the call, CMX returns in 
this field the number of bytes placed in t_udatap. 

Default value specifying opt = NULL: 0 

Return values 

T_OK
The call was successful. 

T_ERROR
Error. Query error code using t_error(). 



150   U41136-J-Z145-3-76

t_disin ICMX(L)

Errors

If an error occurs the following error values are possible. They can be queried 
by calling t_error(). 

For error type T_CMXTYPE and error class T_CMXCLASS, the following may 
occur: 

T_EFAULT
The pointer opt (!= NULL) does not point to the process address space. 

T_WSEQUENCE
The process is not attached for any TS application, or no T_DISIN was 
indicated for the connection specified in tref. 

T_WPARAMETER
The options specified in opt have an invalid format or contain illegal 
values, or the buffer for the data to be received is too small. 

T_CCP_END
The CCP is no longer operational. 

In addition, the errors listed under ioctl(2) may occur. 

See also 

t_detach(), t_disrq(), t_event(), t_preason(), t_strreason() 



U41136-J-Z145-3-76  151

ICMX(L) t_disrq

8.6.13 t_disrq - Close down connection (disconnection 
request) 

t_disrq() closes down the specified connection, or rejects the connection 
indication of a calling TS application. In both cases the remote TS application 
receives a disconnect indication with the reason T_USER. 

Either partner may close down the connection, regardless of which one actively 
set it up. 

Along with the disconnection the remote TS application may be sent user data, 
if the transport system provides this option. 

The t_disrq() call may overtake data that is still in transit. This data is then lost. 

#include <cmx.h>
int t_disrq (const int *tref,

const t_opt2 *opt);

-> tref 
Pointer to a field containing the transport reference of the connection to 
be closed down. 

-> opt 
For opt, specify the value NULL or a pointer to a union containing a 
structure with system options. This union is used to specify the user data 
that the remote TS application is to receive along with the disconnection 
indication.

If opt = NULL is specified, CMX uses the default values specified. 

The following structure is defined in <cmx.h>: 
   struct t_optc2 {
->    int  t_optnr;    /* Option no. */
->    char *t_udatap;  /* Data buffer */
->    int  t_udatal;   /* Length of the data buffer */
   };

t_optnr
Option number. Specify T_OPTC2. 

t_udatap
Pointer to a storage area containing user data to be received by 
the remote TS application. 

Default value specifying opt = NULL: Undefined 



152   U41136-J-Z145-3-76

t_disrq ICMX(L)

t_udatal
Length of the user data to be passed in the storage area t_udatap.
If t_udatal = 0 is specified, t_udatap is ignored. The maximum value 
for t_udatal depends on the transport system (see the Release 
Notice). 

Default value specifying opt = NULL: 0 

Return values 

T_OK
The call was successful. 

T_ERROR
Error. Query error code using t_error(). 

Errors

If an error occurs the following error values are possible. They can be queried 
by calling t_error(). 

For error type T_CMXTYPE and error class T_CMXCLASS, the following may 
occur: 

T_EFAULT
At least one of the pointers opt (!= NULL) or t_udatap (!= NULL and 
t_ndatal != 0) does not point to the process address space. 

T_WSEQUENCE
The process is not attached for any TS application, or the connection 
specified in tref is neither set up nor being set up, nor is it being 
redirected. 

T_WPARAMETER
The options specified in opt have an invalid format or contain illegal 
values. 

T_CCP_END
The CCP is no longer operational. 

In addition, the errors listed under ioctl(2) may occur. 

See also 

t_detach(), t_disin(), t_event(), t_error() 



U41136-J-Z145-3-76  153

ICMX(L) t_error

8.6.14 t_error - Error diagnosis (error) 

t_error() returns diagnostic information when another CMX call returns 
T_ERROR. 

The possible error messages for calls to the ICMX(L) program interface are 
generated either in the CMX library functions in the user process or in the 
operating system kernel. At this point you should establish if the error messages 
were generated in the CMX itself or if the messages are the result of operating 
system calls in CMX. In the first case, t_error() outputs an internal CMX error 
code; in the second case it contains the external variable errno.

In both cases the error codes can be converted to readable text form with the 
aid of the calls t_strerror() and t_perror(). t_strerror() returns a pointer to a static 
area that contains the readable text form of an error message. 

t_perror() writes the readable text form of an error message to stderr. The error 
code can be decoded using the cmxdec command (see the “CMX, Operation and 
Administration” manual [1]). The format of CMX error messages is described in 
the section “Error handling” on page 40.

#include <cmx.h>
int t_error (void);

Return values 

The value returned by t_error() is the hexadecimal code for the error value 
generated by CMX. The error values are defined in <cmx.h>. A list of all possible 
error values of error type T_CMXTYPE (0) and error class T_CMXCLASS (0), 
i.e. all possible return values for t_error(), is provided in the appendix.

In the descriptions of the individual ICMX(L) function calls, the error values that 
t_error() returns if a particular function terminates in error are listed under the 
heading "Errors". 

Files

<cmx.h> – Global CMX definition file
<tnsx.h> – TNSX definition file
<errno.h> – Messages for system calls 

See also 

t_perror(), t_strerror 



154   U41136-J-Z145-3-76

t_event ICMX(L)

8.6.15 t_event - Await or query event (event) 

t_event() determines whether a CMX event has arrived for the current process. 

The parameter cmode specifies the processing mode of t_event(). t_event() can: 

– synchronously wait for a CMX event for the current process to arrive. While 
waiting, the process is suspended. Waiting can be interrupted using signals. 
A time limit for synchronous waiting may be specified in the opt options. If no 
event arrives within this waiting period, waiting is terminated. 

– asynchronously check whether a CMX event for the current process has 
arrived. The function always returns immediately to the current process. 

Along with the appropriate event, t_event() returns: 

– the transport reference of the connection involved, to permit the event to be 
associated with the appropriate connection (tref parameter), 

– event-specific additional information, if this has been specified in the opt 
options. 

In addition, t_event() permits CMX to signal the arrival of more data for a 
connection, if data indications for the connection have not been explicitly 
blocked via t_datastop() or t_xdatstop(). 

If a T_DATAIN or T_XDATIN event is indicated for a process, the connection 
involved may not be redirected (see section “States of TS applications and 
permissible state transitions” on page 96). More importantly, t_event() may not 
be called again until the current process has accepted the indicated data with 
t_datain(), t_vdatain() or t_xdatin(). 

If several events are present for a connection, they are indicated one after 
another in the order in which they arrived. 

Exceptions:

– A T_XDATIN event (expedited data received) may overtake T_DATAIN 
events (normal data received) without destroying them. 

– A T_DISIN event (disconnection indication) may overtake T_DATAIN and 
T_XDATIN events for the connection involved and thus destroy them.

The data that T_DATAIN/T_XDATIN was to have indicated is lost. 



U41136-J-Z145-3-76  155

ICMX(L) t_event

#include <cmx.h>
int t_event (int *tref,

int cmode,
t_opte *opt);

<- tref 
Pointer to a field in which CMX returns the connection-specific transport 
reference. The transport reference specifies the connection to which the 
event belongs. For the events T_NOEVENT and T_ERROR the contents 
of tref are undefined. 

-> cmode 
cmode is used to specify whether t_event() is to synchronously wait for an 
event or is to asynchronously check whether an event has arrived. 

Possible values: 

T_WAIT (synchronous processing) 
The current process is suspended until a TS event arrives, the 
specified waiting time elapses (t_timeout parameter in opt) or a 
signal occurs (e.g. alarm(CES)). In the last two cases the event 
T_NOEVENT is returned. 

T_CHECK (asynchronous processing) 
The current process checks whether a TS event is waiting.

If a TS event is waiting for the current process, the event is 
returned to the process.

If no event is waiting, the event T_NOEVENT is returned to the 
process. 

-> opt 
For opt, you may specify NULL or a pointer to a union containing struc-
tures with system options.

If NULL is specified, CMX uses the defined default values.



156   U41136-J-Z145-3-76

t_event ICMX(L)

The following structure is defined in <cmx.h>: 
   

struct t_opte1 {
->    int  t_optnr;     /* Option no. */
<-    int  t_attid;     /* CMX attachment reference */
<-    int  t_uattid;    /* User attachment reference */
<-    int  t_ucepid;    /* User connection reference */
->    int  t_timeout;   /* Time limit for T_WAIT */
<-    int  t_evdat;     /* Event-specific information */
   };
   struct t_opte2 {
->    int  t_optnr;     /* Option no. */
<-    int  t_attid;     /* CMX attachment reference */
<-    int  t_uattid;    /* User attachment reference */
<-    int  t_ucepid;    /* User connection reference */
->    int  t_timeout;   /* Time limit for T_WAIT */
<-    int  t_evdat;     /* Event-specific information */
<-    int t_evinf[10];  /* BS2000 event information */
   };

t_optnr
Option number. Specify

T_OPTE1 in t_opte1
T_OPTE2 in t_opte2 

t_attid
In t_attid t_event() returns the CMX-internal reference for the 
attachment involved.

The CMX reference is also returned by CMX as an option in 
t_attach(). It serves only trace and diagnostic purposes and is 
used exclusively for logging. 

t_uattid
In t_uattid t_event() returns the user reference for the attachment 
involved.

The user reference is passed to CMX as an option in t_attach. This 
enables a process that controls multiple TS applications to 
associate a TS event with the appropriate attachment of a TS 
application. 



U41136-J-Z145-3-76  157

ICMX(L) t_event

t_ucepid
In t_ucepid t_event() returns the user reference for the connection 
involved for the TS events T_CONCF, T_DATAIN, T_XDATIN, 
T_DATAGO, T_XDATGO and T_DISIN.

The user reference is passed to CMX in t_conrq(), t_conrs() or 
t_redin(). This enables a process that maintains multiple connec-
tions to associate a TS event with the appropriate connection. 
This feature, selected by the user, constitutes an alternative to the 
transport reference tref, defined by CMX. 

t_timeout
With cmode = T_WAIT:

For t_timeout a waiting period may be specified during which 
t_event() is to synchronously wait for an event.

With cmode = T_CHECK:

Any value specified for t_timeout is ignored. 

Possible specifications for t_timeout: 

T_NOLIMIT
No waiting period is defined. The process waits (without 
time limit) until an event arrives or t_event() is terminated by 
a signal. 

T_NO
The process does not wait. It resumes immediately with 
any TS event present or with T_NOEVENT (corresponds to 
cmode = T_CHECK). 

n > 0 
The process waits n seconds for the arrival of a TS event. 
If no TS event for the waiting process arrives within this 
time period, the process resumes with the event 
T_NOEVENT. Waiting may be terminated by means of 
signals. 

Default value specifying opt = NULL: T_NOLIMIT 



158   U41136-J-Z145-3-76

t_event ICMX(L)

t_evdat
Here, CMX returns event-specific additional information.

Possible information:

With the events T_DATAIN and T_XDATIN the length of the 
indicated data is specified here.

With the other TS events, including T_NOEVENT, the additional 
information is undefined. 

t_evinf[10]
This field is used by BS2000 applications and is not supported by 
CMX in Solaris. 

Return values 

T_CONIN
This event indicates that a calling TS application wishes to set up a 
connection to the current process. This connection indication must first 
be fetched with t_conin(), then confirmed with t_conrs() or rejected with 
t_disrq(). 

T_CONCF
This event indicates that the called TS application has responded 
positively to a connection request of the current process.

This connection setup confirmation must be fetched with t_concf(). 

T_DATAIN
This event indicates that data has been received via the connection 
specified in tref. The data must be fetched with t_datain() or t_vdatain().
CMX does not indicate this event for a connection so long as data flow 
on it is blocked, i.e. when the receiving process has issued t_datastop() 
for it. 

T_DATAGO
The local TS application may resume sending data on the connection 
specified in tref.

Possible reaction: t_datarq() or t_vdatarq().

The event T_DATAGO also permits the local TS application to resume 
sending expedited data on this connection, assuming the sending and 
receiving of expedited data was agreed at connection setup. 



U41136-J-Z145-3-76  159

ICMX(L) t_event

T_DISIN
This event indicates disconnection of the connection specified in tref.

This disconnect indication must be fetched with t_disin(). 

T_ERROR
Error. Query error code using t_error(). 

T_NOEVENT
This event means: 

If cmode = T_CHECK 
No event waiting. 

If cmode = T_WAIT 
Wait status of the process terminated, either by signal or because 
the specified waiting period elapsed. No TS event arrived. 

The contents of tref are undefined. 

T_REDIN
This event indicates that another process of the same TS application has 
redirected a connection to the current process.

The connection redirection must be fetched with t_redin(). 

T_XDATIN
This event indicates that expedited data has been received on the 
connection specified in tref. The data must be fetched with t_xdatin(). 

This event is indicated only: 

– if the exchange of expedited data was agreed at connection setup, 
and 

– while the flow of expedited data on the connection is not blocked. The 
flow of expedited data is blocked when the receiving process has 
issued t_xdatstop() for the connection. 

T_XDATGO
With this event CMX indicates that the process may resume sending 
expedited data on the connection specified in tref.

Possible reaction: t_xdatrq().

CMX indicates this event only if the exchange of expedited data was 
agreed at connection setup. 



160   U41136-J-Z145-3-76

t_event ICMX(L)

Errors

If an error occurs the following error values are possible. They can be queried 
by calling t_error(). 

For error type T_CMXTYPE and error class T_CMXCLASS, the following may 
occur: 

T_EFAULT
The pointer opt (!= NULL) does not point to the process address space. 

T_WSEQUENCE
The process is not attached for any TS application, or a TIDU or ETSDU 
has not yet been completely read. 

T_WPARAMETER
The value specified in cmode is invalid, or the options specified in opt have 
an invalid format or contain illegal values.

T_CBRECURSIVE
Recursive t_event call in a callback routine is not permitted.

In addition, the errors listed under ioctl(2) may occur.

See also 

t_attach(), t_callback(), t_concf(), t_conin(), t_datain(), t_datago(), t_datastop(), 
t_disin(), t_error(), t_redin(), t_vdatain(), t_xdatin(), t_xdatgo(), t_xdatstop()



U41136-J-Z145-3-76  161

ICMX(L) t_getaddr

8.6.16 t_getaddr - Query TRANSPORT ADDRESS for the 
GLOBAL NAME (get address) 

t_getaddr returns either the TRANSPORT ADDRESS of the object globname 
from TS directory 1 (globname != NULL ) or a template (globname = NULL) whose 
address format(s) depend(s) on the value being conveyed via opt. Parameter 
globname is the GLOBAL NAME of the TS application. t_getaddr() returns a 
pointer to a static area with the TRANSPORT ADDRESS of this TS application.

const struct t_partaddr *t_getaddr (const char *glob,
const t_optg *opt);

globname
is the GLOBAL NAME of the TS application.

t_getaddr()
returns a pointer to a static area with the TRANSPORT ADDRESS of this 
TS application.

"->globname != NULL"
specifies the GLOBAL NAME of the object in the TS directory and is 
expected in the form NP5.NP4.NP3.NP2.NP1 as a string (NULL-termi-
nated). The items NPi represent the name parts of the GLOBAL NAME 
in ascending hierarchical order from left to right. If an NPi has no value, 
the separator ’.’ must be specified if this empty name part is followed by 
at least one more name part that is higher in the hierarchy (a series of ’.’ 
at the end may be omitted). At least one of the name parts NPi must have 
a value. ’.’ must be specified as ’\.’ in the NPi.

„->globname == NULL"
makes t_getaddr return a pointer to a template. Its structure depends on 
the value conveyed via the parameter opt.

„->opt, if globname != NULL"
Pointer to a union with system options or NULL. If globname != NULL 
CMX in UNIX ignores this parameter.

The following structure is specified in <cmx.h> only for compatibility with 
CMX in BS2000/OSD:

struct t_optg1 {
-> int t_optnr; /* Option no. */
-> int t_evref; /* System event reference point */
-> char *t_buf[200]; /* Work area */

}



162   U41136-J-Z145-3-76

t_getaddr ICMX(L)

t_optnr
Option number. Specify: T_OPTG1 in t_optg1

t_evref
This field is used by BS2000/OSD and is not supported by CMX in UNIX.

t_buf[200]
This field is used by BS2000/OSD and is not supported by CMX in UNIX.

"->opt if globname == NULL" 
points to a union contained in the following <cmx.h> defined structure:

struct t_optg7 {
-> int t_optnr; /* Option no. = T_OPTG7 */
-> int t_addrtype; /* Selected address format */

}

In this case t_getaddr returns a pointer to an address template. The 
structure of the address template depends on the value of t_addrtype in 
t_optg7:

Address format CX_RFC1006 selected via addrtype = T_INETA

pa_header | rest ...........
02000027 0040010 001d300d 03490000 00070001 f0f0f0f0 fe810200  668008

| | | | |port|
cx_type ka_type/ka_size IPv4-Addr. nr.|

61 61616161 616161 
| - tselector - |

Address format CX_LANINET selected via addrtype = T_INETA | T_LANINET

pa_header | rest ...........
0200001f 01000010 0016300d 03490000 00070001 f0f0f0f0 fe800431 313131

| | | | | tsel
cx_type ka_type/ka_size IPv4-Address

Adress format CX_RFC1006, selected via addrtype = T_INETA6

pa_header | rest ...........
02000033 00040010 00293019 03490000 00130001 fe800000 00000000 

| | | |
cx_type ka_type/ka_size IPv6-Address

028017ff fe287b08 fe810200 66800861 61616161 616161
| |

Portnumber T-Selector



U41136-J-Z145-3-76  163

ICMX(L) t_getaddr

Adress format CX_LANINET, selected via addrtype = T_INETA6 / 
T_LANINET

pa_header | rest ...........
0200002b 01000010 00213019 03490000 00130001 fe800000 00000000 

| | | |
cx_type ka_type/ka_size IPv6-Address

028017ff fe287b08 fe800431 313131
|
T-Selector

Address format CX_OSITYPE selected via addrtype = T_OSI

pa_header | rest ...........
02000020 20000010 0016400a 49006cf0 f0f0f0f0 f0008008 61616161 61616161 

| | | |-MAC address| | - tselector - |
cx_type ka_type/ka_size

/* AU90 + AU91 (Routing/CC info) not manageable at present */

Address format CX_WANNEA selected via addrtype = T_NEA 

pa_header | rest ...........
02000018    00010010 000e4102 ffaa8008 61616161 61616161

| | | |reg- | - tselector - |
cx_type ka_type/ka_size pro-nr

/* AU90 + AU91 (Routing/CC info) not manageable at present */

Address format CX_WANSBKA with ISDN no. selected via 
addrtype = T_E164 

pa_header | rest ...........
0200001e    00100010 00147008 03063131 31313131 80086161 61616161 6161

| | | |ISDN number| |  - tselector - |
cx_type ka_type/ka_size

/* AU90 + AU91 (Routing/CC info) + AUD0 + AUD1 (transport protocol
identifier/ protocol class defaults) not manageable for now */

Address format CX_WANSBKA with tel. no. selected via 
addrtype = T_E163 

pa_header | rest ...........
0200001e    00100010 00147008 08063131 31313131 80086161 61616161 6161

| | | |tel.-number| | - tselector - |
cx_type ka_type/ka_size
/* AU90 + AU91 (Routing/CC info) + AUD0 + AUD1 (transport protocol
identifier/protocol class defaults) not manageable at present */



164   U41136-J-Z145-3-76

t_getaddr ICMX(L)

Address format CX_WANSBKA with DTE addr. selected via 
addrtype = T_X121 

pa_header | rest ...........
0200001c    00100010 00107008 01041111 111f8008 61616161 61616161

| | | |DTE-adr| | - tselector - |
cx_type ka_type/ka_size

/* AU90 + AU91 (Routing/CC info) + AUD0 + AUD1 (transport protocol
identifier/protocol class defaults) not manageable at present */

Address format CX_WAN3SBKA with DTE addr. sel. via 
addrtype=T_X121|T_NULLTP

pa_header | rest ...........
0200001c    00080010 00123007 06370611 11118008 61616161 61616161

| | | |DTE-adr| | - tselector - |
cx_type ka_type/ka_size

/* AU90 + AU91 (Routing/CC info) not manageable at present */

Address format CX_WANSBKA with X.21 dial no. sel. via 
addrtype = T_X21 

pa_header | rest ...........
0200001e    00100010 00147008 08063131 31313131 80086161 61616161 6161

| | | |tel.number| | - tselector - |
cx_type   ka_type/ka_size

/* AU90 + AU91 (Routing/CC info) + AUD0 + AUD1 (transport protocol
identifier/protocol class defaults) not manageable at present */

Address format CX_WANSBKA with PVC nr. selected via 
addrtype = T_PVC 

pa_header | rest ...........
0200001a    00100010 00107004 050200ff 80086161 61616161 6161

| | | |PVC |  - tselector - |
cx_type ka_type/ka_size nr.

/* AU90 + AU91 (Routing/ CC Info) + AUD0 + AUD1 (transport protocol
identifier/protocol class defaults) not manageable at present */

To alter the template’s values use t_setaddrpart.

Return value

t_getaddr()
 returns a pointer to a static area containing the TRANSPORT 
ADDRESS or the NULL pointer in the case of an error.



U41136-J-Z145-3-76  165

ICMX(L) t_getaddr

Errors

If an error occurs, the error code can be ascertained by means of t_error().

The following error codes of error types from the set T_DSTEMP_ERR, 
T_DSCALL_ERR, T_DSPERM_ERR, T_DSWARNING may occur.

For error class T_DSPAR_ERR, the following error values may occur:

T_DIRERR
TS directory DIR1 is not found.

T_NAMERR
The GLOBAL NAME specified in globname does not exist.

T_ILLNAM
The GLOBAL NAME specified in globname is syntactically invalid (too 
many name parts, invalid lengths of name parts, invalid characters within 
the name).

T_PROPER
There is no TRANSPORT ADDRESS assigned to the GLOBAL NAME 
specified in globname.

Possible error values with error class T_DSSYS_ERR are the system error 
messages defined in <errno.h>.

For error class T_DSILL_VERS, the following error values may occur:

T_NOTSPEC
The CMX library version linked into the process is incompatible with the 
CMX runtime environment.

For error class T_DSINT_ERR, the following error values are possible:

T_TIMOUT
tnsxd(CMX_1) did not respond within the time limit (20 sec).

T_PROT
Errors occurred in the protocol with tnsxd(CMX_1).

T_LFILE
TS directory DIR1 has an incorrect format.

Application usage

The static area mentioned above is overwritten with every call. The caller must 
copy the area if it is to be saved. The amount of data to be copied can be deter-
mined from the size field t_palng defined in struct t_partaddr.



166   U41136-J-Z145-3-76

t_getaddrpart, t_setaddrpart ICMX(L)

8.6.17 t_getaddrpart, t_setaddrpart - Read or change 
address information in TRANSPORT ADDRESS

t_getaddrpart - Read address information from TRANSPORT ADDRESS
t_setaddrpart - Change address information in TRANSPORT ADDRESS

t_getaddrpart() returns the individual items of service-specific address infor-
mation about the TRANSPORT ADDRESS in addr.

 t_setaddrpart() returns a changed TRANSPORT ADDRESS in newaddr where 
the calling program gives the original TRANSPORT ADDRESS in addr and the 
modification to the individual item of service-specific address information in opt.

#include <cmx.h>
int t_getaddrpart (const union t_address *addr,

t_optg *opt);
int t_setaddrpart (const union t_address *addr,

union t_address *newaddr,
const t_optg *opt);

-> addr
Pointer to a union t_address which contains a TRANSPORT ADDRESS. 
The application program can obtain this TRANSPORT ADDRESS as a 
return value from t_getaddr() or as a fromaddr parameter from t_conin().

<- newaddr
Pointer to a union t_address. In this union, t_setaddrpart() returns the new 
TRANSPORT ADDRESS with the value given in opt. This TRANSPORT 
ADDRESS can be transfered as a toaddr parameter to t_conrq() or as a 
addr parameter to t_getname().

-> opt
Pointer to a union that contains the following <cmx.h> structure:
struct t_optg5 {

int t_optnr; /* Option no. */
#define T_OPTG5 5

struct t_addrpart  t_nsap; /* NSAP address*/
struct t_addrpart  t_tsel; /* T selector*/
struct t_addrpart  t_ssel; /* S selector*/
struct t_addrpart  t_psel; /* P selector*/
/* Parameters for TCP TRANSPORT ADDRESS */
int portnumber; /* TCP port number            */
/* Parameters for BAM/HDLC TRANSPORT ADDRESS */
unsigned char escaddr; /* BAM/HDLC escape address */
unsigned char devtype; /* Device type */
unsigned char proname[9]; /* BAM/HDLC processor name */

}



U41136-J-Z145-3-76  167

ICMX(L) t_getaddrpart, t_setaddrpart

-> t_optnr
Option number. Specify: T_OPTG5 in t_optg5.
The following data structure is defined in <cmx.h>. It describes the 
individual components of a TRANSPORT ADDRESS in the coding given 
in the corresponding protocols and standards. In other words it describes 
these components outside CMX and therefore without the CMX internal 
packing.

struct t_addrpart {
int t_maxlen; /* Maximum length of t_bufp */
int t_type; /* Type of NSAP/TSEL/SSEL/PSEL */
int t_len; /* Returned length of

Information in t_bufp */
char *t_bufp; /* NSAP/TSAP/SSAP/PSAP */

}

-> t_maxlen
Length of the buffer t_bufp provided by the user program. If the infor-
mation to be stored in t_bufp is longer than t_maxlen, an error will occur 
and no information will be written to t_bufp.

<- t_type (t_getaddrpart())
-> t_type (t_setaddrpart())

This parameter is described in the table below. The structures t_tsel, 
t_ssel and t_psel are valid for both the value T_VOID (does not exist) and 
the value T_EXIST (exists). The combination
t_type = T_EXIST and t_len = 0 is therefore possible. For the remaining 
values the table gives the the coding of the network service specific 
address information and the corresponding CMX address format. For 
t_setaddrpart(), the value t_type = T_VOID means that the corresponding 
component of the TRANSPORT ADDRESS remains unchanged. For 
t_getaddrpart(), the value t_type = T_VOID means that the corresponding 
component of the TRANSPORT ADDRESS is missing.



168   U41136-J-Z145-3-76

t_getaddrpart, t_setaddrpart ICMX(L)

<- t_len (t_getaddrpart())
-> t_len (t_setaddrpart())

Length of the service-specific component of the TRANSPORT 
ADDRESS stored in t_bufp. This is returned by t_getaddrpart() and trans-
ferred to t_setaddrpart().

t_type Currently used 
in address 
format

Format Meaning

T_INETA LANINET
RFC1006

Binary coded (MSB)
4 or 16 octets

Pv4 or IPv6 
address

T_OSI OSITYPE OSI-Address as 
specified in ISO 
8348/Add.2

OSI address 
format

T_NEA STANEA Binary coded
Byte[0] Processor#
Byte[1] Region#

NEA address 
format

T_E164 WANSBKA Max. 15 Bytes
ASCII coded

ISDN number

T_E163 WANSBKA
WAN3SBKA

Max. 14 Bytes
ASCII coded

Tel. number

T_X121 WANSBKA
WAN3SBKA

Max. 15 digits
padded with 0xf

X.25 address

T_X21 WANSBKA Max. 20 Bytes
ASCII coded

X.21 address

T_PVC WANSBKA Binary coded (MSB)
2 octets

T_VOID Address part does 
not exist or 
remains 
unchanged

T_EXIST Address part 
exists (t_len = 0 is 
possible)

Table 7: t_type



U41136-J-Z145-3-76  169

ICMX(L) t_getaddrpart, t_setaddrpart

<- t_bufp (t_getaddrpart())
-> t_bufp (t_setaddrpart())

Pointer to a storage area provided by the user program. t_getaddrpart() 
places the corresponding service-specific component of the 
TRANSPORT ADDRESS here. The new value of the for the corres-
ponding service-specific component of the TRANSPORT ADDRESS is 
transferred from here to t_setaddrpart(). For t_nsap, this is the network 
service; for t_tsel, this is the transport service, for t_ssel, this is the session 
service and for t_psel, this is the presentation service.

t_nsap
This structure describes the network service specific component of the 
TRANSPORT ADDRESS.

t_tsel
This structure describes the transport service specific component of the 
TRANSPORT ADDRESS. If the CMX address format LANINET is used, 
this structure will be ignored (t_type = T_VOID).

t_ssel
This structure describes the session specific component of the 
TRANSPORT ADDRESS.

t_psel
This structure describes the presentation specific component of the 
TRANSPORT ADDRESS.

<- portnumber (t_getaddrpart())
-> portnumber (t_setaddrpart())

TCP port number. This is only used if the structure element t_type in the 
structure t_nsap is set as t_type= T_INET. 

escaddr
BAM escape address. Not used.

devtype
 BAM device type. Not used.

proname
BAM processor name. Not used.

I The value t_type = T_INETA in t_nsap is valid for both IPv4 and IPv6 
addresses. However, for t_getaddr() where t_addrtype = T_INETA in the 
structure t_optg7, a TRANSPORT ADDRESS template with an IPv4 
address is required. Where t_addrtype = T_INETA6, a template with an 
IPv6 address is required.



170   U41136-J-Z145-3-76

t_getaddrpart, t_setaddrpart ICMX(L)

Return values

T_OK
Successful completion. Information about the TRANSPORT ADDRESS 
has been written into the structure.

T_ERROR
Error. Query error code using t_error().

ERRORS

If an error occurs, the error code can be ascertained by means of t_error().

For error type T_CMXTYPE and error class T_CMXCLASS, the following error 
values may occur:

T_WPARAMETER
The value specified in addr or opt is a NULL pointer or addr does not point 
to a partner address.

Application usage

Applications can modify the result of t_getaddr() and t_conin() for their own 
usage.



U41136-J-Z145-3-76  171

ICMX(L) t_getloc

8.6.18 t_getloc - Query LOCAL NAME

t_getloc returns either the LOCAL NAME of the object globname from TS 
directory 1 (globname != NULL) or a template (globname = NULL).

#include <cmx.h>
const struct t_myname *t_getloc (const char *glob,

const t_optg *opt);

-> globname!=NULL 
specifies the GLOBAL NAME of the object in the TS directory and is 
expected in the form NP5.NP4.NP3.NP2.NP1 as a string (NULL-termi-
nated). The items NPi represent the name parts of the GLOBAL NAME 
in ascending hierarchical order from left to right. If an NPi has no value, 
the separator ’.’ must be specified if this name part is followed by at least 
one more name part that is higher in the hierarchy (a series of ’.’ at the 
end may be omitted). At least one of the name parts NPi must have a 
value. ’.’ must be represented as ’\.’ in the NPi. ’.’ as a component of a 
name part must be devaluated with ’\.’.

> globname=NULL 
makes t_getloc return a pointer to a template with the following structure:

mn_header | rest ...........
01000032    000e0000 00000100 00043131 31310000 
00000000 /*LANINET Tsel*/

0040 000a6161 61616161 61613300 /*EMSNA 
Tsel  */

241f 00086161 61616161 61610000 
|
CX_WANNEA + CX_LANSBKA + CX_RFC1006 

+ OSITYPE Tsel

To alter the template’s values use t_setlocpart.

-> opt
Pointer to a union with system options or NULL. 

struct t_optg1 { 
-> int t_optnr;      /* Option no. */
-> int t_evref;      /* System event reference point */
-> char *t_buf[200]; /* Work area */

}

t_optnr
Option number. Specify: T_OPTG1 in t_optg1

t_evref
This field is used by BS2000/OSD and is not supported by CMX in UNIX.



172   U41136-J-Z145-3-76

t_getloc ICMX(L)

t_buf[200]
This field is used by BS2000/OSD and is not supported by CMX in UNIX.

Return Values

t_getloc() returns a pointer to a static area containing the LOCAL NAME or the 
NULL pointer in the case of an error.

Errors

If an error occurs, the error code can be ascertained with t_error().

For error types T_DSTEMP_ERR, T_DSCALL_ERR, T_DSPERM_ERR, and 
T_DSWARNING, the following error codes may occur.

The following error values may occur with error class T_DSPAR_ERR:

T_DIRERR
TS directory DIR1 not found.

T_NAMERR
The GLOBAL NAME specified in globname does not exist.

T_ILLNAM
The GLOBAL NAME specified in globname is syntactically invalid (too 
many name parts, invalid lengths of name parts, invalid characters within 
the name).

T_PROPER
There is no LOCAL NAME assigned to the GLOBAL NAME specified in 
globname.

Possible error values with error class T_DSSYS_ERR are the system error 
messages defined in <errno.h>.

For error class T_DSILL_VERS, the following error value may occur:

T_NOTSPEC
The CMX library version linked into the process is incompatible with the 
CMX runtime environment.

For error class T_DSINT_ERR, the following error values are possible:

T_TIMOUT
tnsxd(CMX_1)did not respond within the time limit (20 sec).

T_PROT
Errors occurred in the tnsxd(CMX_1) protocol.



U41136-J-Z145-3-76  173

ICMX(L) t_getloc

T_LFILE
TS directory DIR1 has an incorrect format.

Application usage

The static area mentioned above is overwritten in every call. The caller must 
copy the area if it is to be saved. The amount of data to be copied can be deter-
mined from the size of the field t_mnlng defined in struct t_myname.



174   U41136-J-Z145-3-76

t_getlocpart, t_setlocpart ICMX(L)

8.6.19 t_getlocpart, t_setlocpart - Read or change 
address information in LOCAL NAME

t_getlocpart - Read address information from LOCAL NAME
t_setlocpart - Change address information in LOCAL NAME

t_getlocpart() returns the individual items of service specific address information 
in opt for the LOCAL NAME given in addr.

t_setlocpart() returns a changed LOKAL NAME in newaddr, where the calling 
program gives the original LOCAL NAME in addr and the modification to the 
individual item of service specific address information in opt. 
For transport service specific address information you should note the following 
special features:
The CMX address format LANINET uses portnumber and the CMX address 
format EMSNA uses lu_size, luname and lunumber instead of t_tsel. In cases 
where a LOCAL NAME in any of the remaining CMX address formats has 
several concurrently valid names, then these must have the same value for the 
T selectors and must have the same coding.

#include <cmx.h>
int t_getlocpart (const union t_address *addr,

t_optg *opt);
int t_setlocpart (const union t_address *addr,

union t_address *newaddr,
const t_optg *opt);

-> addr
Pointer to a union t_address that contains the LOCAL NAME of a TS appli-
cation. The CMX program can, for example, obtain the LOCAL NAME by 
using the t_getloc() call.

<- newaddr
Pointer to a union t_address. In this case, t_setlocpart() returns the 
modified LOCAL NAME. This can be used as the parameter t_myname 
with t_attach() or as the parameter fromaddr with t_conrq().

-> opt
Pointer to a union that contains one of the following <cmx.h> structures:

struct t_optg5 {
int t_optnr; /* Option no. */

#define T_OPTG5 5
struct t_addrpart  t_nsap;   /* Information about the NSAP */
struct t_addrpart  t_tsel;   /* Information about the TSEL */
struct t_addrpart  t_ssel;   /* Information about the SSEL */



U41136-J-Z145-3-76  175

ICMX(L) t_getlocpart, t_setlocpart

struct t_addrpart  t_psel;   /* Information about the PSEL */

/* Parameters for TCP TRANSPORT ADDRESS */
int portnumber; /* TCP port number */

/* Parameters for BAM/HDLC TRANSPORT ADDRESS */
unsigned char escaddr; /* BAM/HDLC escape address */
unsigned char devtype; /* Device type */
unsigned char proname[9]; /* BAM/HDLC processor name */

}

struct t_optg6 {
int t_optnr; /* Option no.                 */

#define T_OPTG6 6
struct t_addrpart  t_nsap; /* Information about the NSAP */
struct t_addrpart  t_tsel; /* Information about the TSEL */
struct t_addrpart  t_ssel; /* Information about the SSEL */
struct t_addrpart  t_psel; /* Information about the PSEL */

/* Parameters for TCP TRANSPORT ADDRESS */
int portnumber; /* TCP port number */

/* Parameter for SNA LUNAME */
int lu_size; /* Length of LUNAME */

/* Parameters for BAM/HDLC TRANSPORT ADDRESS */
unsigned char escaddr; /* BAM/HDLC escape address */
unsigned char devtype; /* Device type */
unsigned char proname[9]; /* BAM/HDLC processor name */

/* Parameter for SNA LUNAME */
unsigned char luname[8]; /* LU name (max. 8) + */
unsigned char lunumber; /* LU number */

}

t_optnr
Option number. Specify: T_OPTG5 when using t_optg5, or 
T_OPTG6 with t_optg6. t_optg6; these should only be used with 
the address format CX_EMSNA where the LUNAME is part of the 
LOCAL NAME.

The following data structure is defined in <cmx.h>. It describes the 
individual components of a LOCAL NAME using the coding given 
in the corresponding protocols and standards. In other words, it 
describes these components outside CMX and therefore without 
the CMX internal packing.

struct t_addrpart {
int t_maxlen; /* Buffer length */
int t_type; /* T_EXIST or T_VOID */
int t_len; /* Information length */
char *t_bufp; /* Buffer */

}



176   U41136-J-Z145-3-76

t_getlocpart, t_setlocpart ICMX(L)

-> t_maxlen
Length of the buffer t_bufp provided by the user program. With 
t_getlocpart, if the information to be stored in t_bufp is longer than 
t_maxlen, an error will occur and no information will be written to t_bufp.

<- t_type (t_getlocpart())
-> t_type (t_setlocpart())

If t_getlocpart() returns the value T_VOID, this means that the corre-
sponding address information is not present. If t_setlocpart() returns the 
value T_VOID, this means that the corresponding address information 
can remain unchanged. 
If t_getlocpart() returns the value T_EXIST, this means that the corre-
sponding address information is present. If t_setlocpart() returns the 
value T_EXIST, this means that the corresponding address information 
will be replaced by the new value entered.

<- t_len (t_getlocpart())
-> t_len (t_setlocpart())

Length of the service specific address information stored in the buffer 
t_bufp.

<- t_bufp (t_getlocpart())
-> t_bufp (t_setlocpart())

Pointer to a storage area provided by the user program.
t_getlocpart() places the corresponding service specific address infor-
mation of the LOCAL NAME here.
The new value for the corresponding service specific address infor-
mation of the LOCAL NAME is transferred from here to t_setlocpart().

t_tsel
This structure describes the transport service specific address infor-
mation of the LOCAL NAME (T selector).

t_ssel
This structure describes the session service specific address information 
of the LOCAL NAME (S selector).

t_psel
This structure describes the presentation service specific address infor-
mation of the LOCAL NAME (P selector).

<- portnumber (t_getlocpart())
-> portnumber (t_setlocpart())

TCP portnumber (transport service specific address information for the 
CMX address format LANINET).



U41136-J-Z145-3-76  177

ICMX(L) t_getlocpart, t_setlocpart

<- lu_size (t_getlocpart())
-> lu_size (t_setlocpart())

Length of the LU name given in luname (transport service specific 
address information for the CMX address format EMSNA).

escaddr
BAM escape address. This parameter is not used.

devtype
BAM device type. This parameter is not used.

proname
BAM processor name. This parameter is not used.

<- luname (t_getlocpart())
-> luname (t_setlocpart())

SNA LU name (transport service specific address information for the 
CMX address format EMSNA).

<- lunumber (t_getlocpart())
-> lunumber (t_setlocpart())

SNA LU number (transport service specific address information for the 
CMX address format EMSNA).

Return values

T_OK
Successful completion.

T_ERROR
Error. Query error code using t_error()

Errors

If an error occurs, the error code can be ascertained by means of t_error ().

For error type T_CMXTYPE and error class T_CMXCLASS, the following error 
value may occur:

T_WPARAMETER
The value specified in name or opt is a NULL pointer or name does not 
point to a union t_address.



178   U41136-J-Z145-3-76

t_getname ICMX(L)

8.6.20 t_getname - Query GLOBAL NAME (get name) 

Given the TRANSPORT ADDRESS of a remote TS application, t_getname() 
ascertains its GLOBAL NAME from TS directory 1. 

The TRANSPORT ADDRESS of the TS application must be specified by the 
caller in the parameter addr. 

t_getname() returns a pointer to a static area containing the GLOBAL NAME of 
the TS application. 

This static area is overwritten at each call. If the contents of the area must be 
saved, the caller must copy the area. 

The GLOBAL NAME is returned by CMX as a NULL-terminated string in the 
form NP5.NP4.NP3.NP2.NP1

The items NPi (i=1,2,3,4,5) represent the name parts of the GLOBAL NAME. 
NP5 is name part[5], i.e. the name part at the lowest hierarchical level. NP1 is 
name part[1], i.e. the highest name part in the hierarchy. The remaining name 
parts are specified in increasing hierarchical order from left to right. 

If one of the name parts for a particular GLOBAL NAME has no value (e.g. 
NP4), and this name part is followed by another name part that is higher in the 
hierarchy (e.g. NP3), the separator (.) from the name part with no value is never-
theless returned.

A series of separators appearing at the end of the value of globname is omitted.

The GLOBAL NAME is then specified by CMX as follows: "NP5..NP3" 

If the separator character (.) is a component of a name part, it is represented as 
\. (backslash period). 

#include <cmx.h>
const char *t_getname (const struct t_partaddr *addr,

const t_optg *opt);

-> addr 
Pointer to a storage area with the TRANSPORT ADDRESS 

-> opt 
Pointer to a unit with system options or NULL.

CMX in Solaris ignores this parameter. The following structure is only 
defined in <cmx.h> to maintain compatibility with CMX in BS2000/OSD. 
   



U41136-J-Z145-3-76  179

ICMX(L) t_getname

struct t_optg1 {
->    int  t_optnr;   /* Option no. */
->    int  t_evref;   /* System event reference point */
->    char *t_buf[200]; /* Work area */
   };

t_optnr
Option number. Specify:

T_OPTG1 in t_optg1 

t_evref
This field is used by BS2000/OSD and is not supported by CMX in 
Solaris. 

t_buf[200]
This field is used by BS2000/OSD and is not supported by CMX in 
Solaris. 

Return values 

If the call was successful, t_getname() returns a pointer to a storage area 
containing the GLOBAL NAME.

In case of error, t_getname() returns a NULL pointer. The error code can be 
queried using t_error(). 

Errors

If an error occurs the following error values are possible. They can be queried 
by calling t_error().

Error values of error types T_DSTEMP_ERR, T_DSCALL_ERR, 
T_DSPERM_ERR and T_DSWARNING may occur.

For error class T_DSPAR_ERR, the following error values may occur: 

T_DIRERR
TS directory DIR1 is not present. 

T_LENERR
The length field t_palng, contained in the TRANSPORT ADDRESS 
specified in addr, has an invalid value. 

Possible error values with error class T_DSSYS_ERR are the system error 
messages defined in <errno.h>. 



180   U41136-J-Z145-3-76

t_getname ICMX(L)

For error class T_DSILL_VERS, the following error value may occur: 

T_NOTSPEC
The CMX version linked into the process and the CMX runtime 
environment are incompatible. 

For error class T_DSINT_ERR, the following error values are possible: 

T_TIMOUT
The TNSX daemon tnsxd does not respond within 20 seconds. 

T_PROT
Errors occurred in the protocol with tnsxd. 

T_LFILE
TS directory 1 (DIR1) has an incorrect format. 

For error class T_DSMESSAGE, the following error value is possible: 

T_LEAFNO
In TS directory 1 there are either none or more than one GLOBAL NAME 
to which the TRANSPORT ADDRESS specified in addr is assigned. 

See also 

t_error(), TNSX in the manual „CMX, Operation and Administration“ [1] or [2]



U41136-J-Z145-3-76  181

ICMX(L) t_info

8.6.21 t_info - Query information on CMX (information) 

t_info() provides information about the maximum TIDU length. Generally, this 
information only becomes available after the transport connection has been set 
up completely. 

#include <cmx.h>
int t_info (const int *tref,

t_opti *opt);

-> tref 
Pointer to a field with the transport reference of the connection. 

<> opt 
For opt, you may specify NULL or a pointer to a union containing struc-
tures with system options.

The following structure is defined in <cmx.h>: 
   
struct t_opti1 {
->    int t_optnr;         /* Option no. */
<-    int t_maxl;          /* TIDU length */
   };
   struct t_opti2 {
->    int t_optnr;         /* Option no. */
<-    int t_evref;         /* System reference point */
<-    int t_buffer[180];   /* Buffer for Name Service
                              output /*
   };

t_optnr
Option number. Specify: 
T_OPTI1 in t_opti1
T_OPTI2 in t_opti2 

t_maxl
CMX enters the maximum length of the TIDU in this field.

This value specifies the maximum number of bytes that can be 
sent to CMX or received from CMX per call when transferring data 
over this connection. 

t_evref
This field is used by BS2000 applications and is not supported by 
CMX in Solaris. 



182   U41136-J-Z145-3-76

t_info ICMX(L)

t_buffer[180]
This field is used by BS2000 applications and is not supported by 
CMX in Solaris. 

Return values 

T_OK
The call was successful. 

T_ERROR
Error. Query error code using t_error(). 

Errors

If an error occurs the following error values are possible. They can be queried 
by calling t_error(). 

For error type T_CMXTYPE and error class T_CMXCLASS, the following may 
occur: 

T_EFAULT
The pointer opt (!= NULL) does not point to the process address space. 

T_WSEQUENCE
The process is not attached for any TS application, or

the desired information is not available. t_info() can only be executed 
when the connection has been set up, because only then can information 
be output about the connection. 

T_WPARAMETER
The options passed via opt have an invalid format or contain illegal 
values. 

T_CCP_END
The CCP is no longer operational. 

In addition, the errors listed under ioctl(2) may occur. 



U41136-J-Z145-3-76  183

ICMX(L) t_perror

8.6.22 t_perror - Output CMX error message in decoded 
form 

t_perror() decodes CMX error messages passed to the process in hexadecimal 
form by CMX when t_error() is called. 

t_perror() writes the plain English form of the CMX error message specified in 
code to the standard error output stderr. 

In the s parameter an additional explanatory text may be specified, e.g an 
indication of the CMX call and TS application to which the error refers. 

Format of output from t_perror(): 

t_perror() first writes the text specified with s (if s != NULL), then : (colon) and \n 
(newline). This is followed by the plain English form of the CMX error message 
passed. This text consists of the error symbols, as defined in <cmx.h>, and an 
accompanying text. Each error symbol is preceded by \t. Each accompanying 
text ends with \n. 

The accompanying text is taken from the message file cmxlib.cat. It will not be 
output if cmxlib.cat is not available on your system. The format of cmxlib.cat is 
dependent on the operating system and the set language variable. See the 
appropriate system manual for more details. 

#include <cmx.h>
void t_perror (const char *s,

int code);

-> s 
Pointer to a storage area containing text that is to precede the readable 
text form of the error message, or the value NULL. 

-> code 
For code, specify the representation of the error message that was 
passed to the process by CMX when t_error() was called. 

Files

cmxlib.cat - Message file 

See also 

t_error(), t_strerror() 



184   U41136-J-Z145-3-76

t_preason ICMX(L)

8.6.23 t_preason - Decode and output reasons for 
disconnection

t_preason() decodes reasons for disconnection passed to the process in 
hexadecimal form when t_disin() is called.

t_preason() writes the plain English form of the reason for disconnection 
specified in reason to the standard error output stderr.

In the s parameter an additional explanatory text may be specified, e.g an 
indication of the connection or TS application to which the output refers.

Format of output from t_preason():

t_preason() first writes the text specified with s (if s != NULL), then : (colon) and 
\n (newline). This is followed by the plain English form of the disconnection 
reason passed. This text consists of the symbol for the disconnection reason, 
as defined in <cmx.h>, and an accompanying text. The symbol for the discon-
nection reason is preceded by \t. The accompanying text ends with \n. 

The accompanying text is taken from the message file cmxlib.cat. It will not be 
output if cmxlib.cat is not available on your system. The format of cmxlib.cat is 
dependent on the operating system and the set language variable. See the 
appropriate system manual for more details.

#include <cmx.h>
void t_preason (const char *s,

int reason);

-> s 
Pointer to a storage area containing text that is to precede the plain 
English form of the disconnection reason, or the value NULL. 

-> reason 
For reason, specify the representation of the disconnection reason that 
was passed to the process by CMX when t_disin() was called. 

Files

cmxlib.cat - Message file 

See also 

t_disin(), t_strreason() 



U41136-J-Z145-3-76  185

ICMX(L) t_redin

8.6.24 t_redin - Accept redirected connection (redirection 
indication) 

t_redin() accepts a T_REDIN event previously reported with t_event(). T_REDIN 
indicates that another process of the same TS application has redirected a 
connection to the current process.

The event T_REDIN must be accepted with t_redin(). If the connection is 
unwanted, it can be given back to the original process using t_redrq() or closed 
down using t_disrq().

The t_redin() call returns

– the process ID of the calling process, and

– the user data that the calling process included with the redirection.

If the current process is attached for multiple TS applications, it must itself 
determine via suitable means the TS application to which the redirected 
connection belongs. Suitable means are, for example, the user data and the 
optional user reference to attachment of the TS application returned with 
t_event().

#include <cmx.h>
int t_redin (const int *tref,

int *pid,
t_opt23 *opt);

t_opt23 *opt;
Pointer to a field with the transport reference of the connection.

<- pid 
Pointer to a field in which CMX returns the process ID of the redirecting 
process. 

<> opt 
For opt, specify a NULL pointer or a pointer to a union with system 
options.

This union is used to fetch user data that the calling process included 
with the redirection request (t_redrq()).

If opt = NULL is specified, CMX discards the user data.

If the calling process specified no user data, CMX returns the default 
values given.



186   U41136-J-Z145-3-76

t_redin ICMX(L)

The following structures are defined in <cmx.h>: 
   
struct t_optc2 {
->    int  t_optnr;     /* Option no. */
<-    char *t_udatap;   /* Data buffer */
<>    int  t_udatal;    /* Length of the data buffer */
   };
   struct t_optc3 {
->    int  t_optnr;     /* Option no. */
<-    char *t_udatap;   /* Data buffer */
<>    int  t_udatal;    /* Length of the data buffer */
<-    int  t_xdata;     /* Choice for expedited data */
<-    int  t_timeout;   /* Inactive time */
->    int  t_ucepid;    /* User connection reference */
   };
-> int t_optnr; /* Option no.. */
<- char *t_udatap; /* Data buffer */
< > int t_udatal; /* Length of the data buffer */
<- int t_xdata; /* Choice for expedited data */
<- int t_timeout; /* Inactive time */
-> int t_ucepid; /* User connection

reference */
<-> int t_tid_valid; /* T_YES / T_NO */
<- void *t_tid; /* Pointer to thread ID */
};

t_optnr
Option number. Specify: 
T_OPTC2 in t_optc2
T_OPTC3 in t_optc3
T_OPTC4 in t_optc4 for multithreading

t_udatap
Pointer to a data area in which CMX enters the user data received.

Default value specifying opt = NULL: Undefined 

t_udatal
Prior to the call 0 or the length of the data area t_udatap must appear 
here. The area must be large enough that the received data completely 
fits. T_MSG_SIZE, defined in <cmx.h>, is a suitable maximum size. CMX 
returns in this field the number of bytes received. 

Default value specifying opt = NULL: 0 

t_xdata
In t_xdata the value T_NO is always returned. 



U41136-J-Z145-3-76  187

ICMX(L) t_redin

t_timeout
In t_timeout the value T_NO is always returned. 

t_ucepid
This field can be used to pass a freely-selectable user reference for this 
connection to CMX.

During subsequent processing this user reference can be returned to the 
current process by CMX as an option in a t_event() call.

If the current process is maintaining multiple connections this 
mechanism enables it to associate a TS event with the appropriate 
connection via a user-defined attribute. The user reference constitutes 
an alternative to the transport reference tref, defined by CMX.

Default value specifying opt = NULL: 0 

t_tid_valid
Marker showing that the field t_tid is valid; the value T_YES or T_NO 
must be entered here before the call. In the case of T_YES, the appli-
cation expects CMX to supply the thread ID of the thread redirecting the 
connection in *t_tid. In this case, the application has to provide an area 
of the size pthread_t in *t_tid.

Following the call, CMX returns the ID of the thread in *t_tid that has 
redirected the connection and indicates this in the field t_tid_valid with 
T_YES; if the ID is not available, T_NO is set.

t_tid
Pointer to the field of type pthread_t where CMX returns the thread ID of 
the thread redirecting the connection; t_tid is only valid if t_tid_valid 
contains the value T_YES. The field is ignored if T_NO is transferred in 
t_tid_valid before the call.

See also the information about t_redrq() and connection redirection with 
multithreading on page 192.

Return values 

T_OK
The call was successful. 

T_ERROR
Error. Query error code using t_error(). 



188   U41136-J-Z145-3-76

t_redin ICMX(L)

Errors

If an error occurs the following error values are possible. They can be queried 
by calling t_error(). 

For error type T_CMXTYPE and error class T_CMXCLASS, the following may 
occur: 

T_EFAULT
At least one of the pointers opt (!= NULL) or t_udatap (!= NULL and 
t_ndatal != 0) does not point to the process address space. 

T_WSEQUENCE
The process is not attached for any TS application, or

no T_REDIN was indicated for the connection specified by tref. 

T_WPARAMETER
The options specified in opt have an invalid format or contain illegal 
values. 

In addition, the errors listed under ioctl(2) may occur. 

See also 

t_error(), t_event(), t_disrq(), t_redrq() 



U41136-J-Z145-3-76  189

ICMX(L) t_redrq

8.6.25 t_redrq - Redirect connection (redirection request) 

t_redrq() redirects the specified connection to another process. The receiving 
process is specified with the parameter pid. It must be attached for the TS appli-
cation to which the connection to be redirected belongs. 

With t_redrq(), the current process may specify, in the options opt: 

– a waiting period, during which time processing waits for the receiving 
process to be attached for the TS application, and 

– user data to be passed to the receiving process when it accepts the 
connection. The user data can be used e.g. to inform the receiving process 
of the TS application to which the connection belongs.

Following the t_redrq() call the connection is no longer known to the calling 
process and the transport reference for it is invalid in the calling process. The 
called process receives the event T_REDIN. 

The connection may not be redirected 

– if T_DATASTOP or T_XDATSTOP is waiting for it, or 

– while a TIDU on this connection is being fetched in piecemeal fashion with 
t_datain() (return value: n > 0).

#include <cmx.h>
int t_redrq (const int *tref,

const int *pid,
const t_opt12 *opt);

-> tref 
Pointer to a field with the transport reference of the connection to be 
redirected. 

-> pid 
Pointer to a field in which the process ID of the called process is to be 
specified. 

-> opt 
For the parameter opt, specify the value NULL or a pointer to a union with 
user options.

This union can be used to send information to the called process with the 
connection redirection. The called process receives this along with the 
connection redirection. If opt = NULL is specified, CMX delivers the given 
default values to the called process. 



190   U41136-J-Z145-3-76

t_redrq ICMX(L)

The following structures are defined in <cmx.h>: 
   

struct t_optc1 {
-> int  t_optnr;     /* Option no. */
-> char *t_udatap;   /* Data buffer */
-> int  t_udatal;    /* Length of the data buffer */

int  t_xdata;     /* Choice for expedited data */
-> int  t_timeout;   /* Waiting period for
                           attachment */

};
struct t_optc2 {

-> int  t_optnr;     /* Option no. */
-> char *t_udatap;   /* Data buffer */
-> int  t_udatal;    /* Length of the data buffer */

};
struct t_optc4 {

-> int t_optnr; /* Option no. */
<- char *t_udatap; /* Data buffer */
< > int t_udatal; /* Length of the data buffer */
<- int t_xdata; /* Choice for expedited data */
<- int t_timeout; /* Waiting period for 

attachment*/
-> int t_ucepid; /* User connection

  reference */
-> int t_tid_valid; /* T_YES / T_NO */
-> pthread_t t_tid; /* Thread ID */
};

t_optnr
Option number. Specify: 
T_OPTC1 in t_optc1
T_OPTC2 in t_optc2 
T_OPTC4 in t_optc4 for multithreading

t_udatap
Pointer to a storage area with user data to be delivered to the receiving 
process. 

Default value specifying opt = NULL: Undefined 

t_udatal
Number of bytes to be transferred from the data area t_udatap. The 
maximum possible number is defined in <cmx.h> as   T_RED_SIZE.

If t_udatal = 0 is specified, t_udatap is ignored. The maximum value for 
t_udatal depends on the transport system (see the Release Notice). 



U41136-J-Z145-3-76  191

ICMX(L) t_redrq

Default value specifying opt = NULL: 0 

t_xdata
This field has not yet been defined in this version. Specifications made 
for t_xdata will be ignored. 

t_timeout
For this parameter a waiting period may be specified, in seconds. During 
this time the current process waits synchronously for the receiving 
process to be attached for the same TS application. Waiting is ended by 
the expected attachment or terminated by a signal. 

If the waiting period elapses without the receiving process having 
attached itself for the proper TS application, or if waiting is terminated by 
a signal, the call ends with an error message. 

Possible values for t_timeout: 

T_NOLIMIT
No specific waiting period is defined. The process waits indefi-
nitely for the receiving process to be attached. 

T_NO
The process does not wait. It resumes immediately. If the 
receiving process is not attached as expected, the call ends with 
an error message. 

n > 0 
The current process waits n seconds for the attachment. During 
this time it is suspended. If the attachment does not take place 
within this time period, the call ends with an error message. 

Default value specifying opt = NULL: T_NO 

t_tid_valid
t_tid_valid indicates if a thread ID has been transferred to *t_tid. 
With T_YES, *t_tid contains the thread ID of the thread to which 
the connection is to be redirected. With T_NO, the field t_tid is not 
evaluated.

t_tid
Pointer to a field of type pthread_t containing the thread ID to which 
the connection is to be redirected. This thread must be in the *pid 
process.

t_tid is only valid if t_tid_valid contains the value T_YES. The field 
is ignored if T_NO is transferred in t_tid_valid before the call.



192   U41136-J-Z145-3-76

t_redrq ICMX(L)

Note about connection redirection in multithreading

The two functions t_redrq() and t_redin() use the process ID to identify the 
process to which the connection is to be redirected or to identify the process 
from which the connection will be received.

Connection redirection is possible to a thread of the same process or to the 
thread of another process.

The table below shows how the redirection is processed:

Explanation:

(*) The caller must transmit the thread ID to the receiving process using, for 
example, interprocess communication.

"Available" here means that the reception criteria must be fulfilled (t_conlim is 
not yet fully used up, T_REDIRECT is set for t_apmode and is attached with the 
same LOCAL NAME).

Return values 

T_OK
The call was successful. 

T_ERROR
Error. Query error code using t_error(). 

Caller
PID

Receiver
PID

Thread
ID

Redirection

p1 p2 – to the first available thread in the process p2

p1 p2 k to thread k in process p2 (*)

p1 p1 – to the first available thread in the same pro-
cess

p1 p1 k to thread k in the same process provided that 
k does not have the same thread ID

Table 8:  Connection redirection in multithreading



U41136-J-Z145-3-76  193

ICMX(L) t_redrq

Errors

If an error occurs the following error values are possible. They can be queried 
by calling t_error(). 

For error type T_CMXTYPE and error class T_CMXCLASS, the following may 
occur: 

T_EFAULT
At least one of the pointers opt (!= NULL) or t_udatap (!= NULL and 
t_ndatal != 0) does not point to the process address space. 

T_ETIMEOUT
The waiting period of the current process, during which it waits for the 
receiving process to be attached for the same TS application, has 
elapsed. 

T_WSEQUENCE
The process is not attached for any TS application, or

the connection specified in tref does not exist, or

the flow of data on the connection tref has been blocked by the sending 
side, or

a TIDU or an ETSDU has not yet been completely read. 

T_WPARAMETER
The process specified with the parameter pid is the current process, 
or the process specified in pid is not attached for this TS application, 
or the process specified in pid did not specify T_REDIRECT in t_apmode 
when attaching itself with t_attach(), 
or the options specified in opt have an invalid format or contain illegal 
values. 

T_WCONN_LIMIT
The process specified in pid has already used all the connections 
available to it. 

T_WRED_LIMIT
The limit for simultaneously permissible connection redirections has 
been exceeded. 

In addition, the errors listed under ioctl(2) may occur. 

See also 

t_datain(), t_error(), t_event(), t_xdatin() 



194   U41136-J-Z145-3-76

t_setaddrpart ICMX(L)

8.6.26 t_setaddrpart - Add information to TRANSPORT 
ADDRESS

See section “t_getaddrpart, t_setaddrpart - Read or change address infor-
mation in TRANSPORT ADDRESS” on page 166.

8.6.27 t_setlocpart

See section “t_getlocpart, t_setlocpart - Read or change address information in 
LOCAL NAME” on page 174.

8.6.28 t_setopt - Set options in CMX (set options) 

t_setopt can be used to switch options on and off in CMX.

In this version the option T_DEBUG only is provided for activating/deactivating 
library traces. 

#include <cmx.h>
int t_setopt (int component,

const t_opts *opt);

-> component 
Specifies in which CMX component the option should be set. 

Possible values: 

T_LIB
The set option is a library option. 

-> opt 
Pointer to a union that contains an options structure. 

The following structure is defined in <cmx.h>: 
   
struct t_opts1 {
->    int t_optnr;        /* Option no.  */
->    int t_optname;      /* Option name */
->    char *t_optvalue;   /* Pointer to options string */
   };

t_optnr
Option number. Specify T_OPTS1. 



U41136-J-Z145-3-76  195

ICMX(L) t_setopt

t_optname
Specifies the option that is to be switched on or off. 

Possible values: 

T_DEBUG
Activate/deactivate trace mechanism. 

t_optvalue
Pointer to a (NULL-terminated) string that contains the option 
value. If the string is empty, the option specified in t_optname is 
switched off. The contents of the string depends on the value of 
t_optname. 

t_optname = T_DEBUG: The format of the trace options is the 
same as for the environment variable CMXTRACE (see the 
manual „CMX, Operation and Administration“ [1] or [2]). 

Return value 

T_OK
The call was successful. 

T_ERROR
Error. Query error code with t_error(). 

Errors

If an error occurs the following error values are possible. They can be queried 
by calling t_error(). 

For error type T_CMXTYPE and error class T_CMXCLASS, the following may 
occur: 

T_WPARAMETER
The value specified in component is invalid or the option specified in opt 
has an incorrect format or contains incorrect values. 



196   U41136-J-Z145-3-76

t_strerror ICMX(L)

8.6.29 t_strerror - Decode CMX error message 

t_strerror() decodes CMX error messages passed to the process in hexadecimal 
form by CMX when t_error() is called. 

t_strerror() returns a pointer to a static area that contains the plain English form 
of the CMX error message specified in code. 

This text consists of error symbols, as defined in <cmx.h>, and accompanying 
text. Each error symbol is preceded by \t. Each accompanying text ends with \n. 

The accompanying text is taken from the message file cmxlib.cat. It will not be 
output if cmxlib.cat is not available on your system. The format of cmxlib.cat is 
dependent on the operating system and the set language variable. See the 
appropriate system manual for more details. 

#include <cmx.h>
const char *t_strerror(int code);

-> code 
For code, specify the representation of the error message that was 
passed to the process by CMX when t_error() was called. 

Return values 

If the call was successful, t_strerror() returns a pointer to a storage area with the 
plain English form of the CMX error message as a C string. 

If an undefined value is specified in code, t_strerror() returns a pointer to the text: 

"\t<code> Cannot decode\n" 

In case of error, t_strerror() returns a NULL pointer. 

Files

cmxlib.cat - Message file 

See also 

t_error(), t_perror() 



U41136-J-Z145-3-76  197

ICMX(L) t_strreason

8.6.30 t_strreason - Decode reasons for disconnection 

t_strreason() decodes reasons for disconnection passed to the process in 
hexadecimal form when t_disin() is called. 

t_strreason() returns a pointer to a static area that contains the plain English form 
of the reason for disconnection specified in reason. 

This text consists of the symbol for the disconnection reason, as defined in 
<cmx.h>, and an accompanying text. The symbol for the disconnection reason 
is preceded by \t. The accompanying text ends with \n. 

The accompanying text is taken from the message file cmxlib.cat. It will not be 
output if cmxlib.cat is not available on your system. The format of cmxlib.cat is 
dependent on the operating system and the set language variable. See the 
appropriate system manual for more details. 

#include <cmx.h>
const char *t_strreason (int reason);

-> reason 
For reason, specify the representation of the disconnection reason that 
was passed to the process by CMX when t_disin() was called. 

Return values 

If the call was successful, t_strreason() returns a pointer to a storage area with 
the plain English form of the disconnection reason as a C string. 

If a value is specified in reason that is not defined, t_strreason() returns a pointer 
to the text: 

"\t<reason> Cannot decode\n"

In case of error, t_strreason() returns a NULL pointer. 

Files

cmxlib.cat - Message file 

See also 

t_disin(), t_preason() 



198   U41136-J-Z145-3-76

t_vdatain ICMX(L)

8.6.31 t_vdatain - Receive data (data indication) 

t_vdatain() accepts a T_DATAIN event previously reported via t_event(). The 
t_vdatain() call must be made before the next t_event(). 

By means of this call the current process receives a Transport Interface Data 
Unit (TIDU) of the current Transport Service Data Unit (TSDU) from the sending 
TS application on the specified connection. 

t_vdatain() places the data of a received TIDU into a series of non-contiguous 
storage areas. These storage areas are described by means of the array vdata.
The number of storage areas, i.e. the number of elements in vdata, is specified 
in the parameter vcnt.

Thus, vcnt t_data structures are entered in vdata. Each t_data entry describes 
one of the storage areas vdata[0], vdata[1],..., vdata[vcnt-1].

The data received is stored in these storage areas sequentially; each storage 
area is completely filled before the next one is used.

Between two TIDUs of a TSDU any other CMX events can occur for the same 
or a different connection. 

The maximum length of a TIDU depends on the transport system used. It can 
be queried for an established connection by means of t_info(). 

A TIDU need not be completely full. The breakdown of a TSDU into TIDUs is 
purely local and does not indicate anything regarding the breakdown of the 
TSDU into TIDUs at the sending TS application. 

t_vdatain() indicates: 

– (in the chain parameter)

whether a further TIDU belonging to the current TSDU exists (chain = 
T_MORE) or does not exist (chain = T_END).

The individual TIDUs of a TSDU are each indicated via t_event() with the 
event T_DATAIN. 

– (with the return value)

whether the current TIDU has been completely read or not.

If the value T_OK is returned, the TIDU has fit into the storage area provided. 
The current process has completely received the current TIDU.



U41136-J-Z145-3-76  199

ICMX(L) t_vdatain

If a value n > 0 is returned, only a part of the TIDU has been read. n is the 
number of bytes of the TIDU that have not yet been read (remaining length).
In this case t_vdatain() or t_datain() must be called repeatedly until the entire 
TIDU has been read. Only then can other CMX calls be issued again, e.g. 
t_event(). 

#include <cmx.h>
int t_vdatain (const int *tref,

struct t_data *vdata,
int *vcnt,
int *chain);

-> tref 
Pointer to a field containing the transport reference of the connection. 

<> vdata 
Pointer to an array of t_data structures for data buffers in which CMX 
enters the data of the received TIDU. The following structure is defined 
in <cmx.h>: 
   struct t_data {
<-    char *t_datap;   /* Data area */
<>    int t_datal;     /* Length of the data area */
   };

t_datap
Pointer to a data area in which CMX enters data of the TIDU 
received. 

t_datal
Prior to the call the length of the data area t_datap must be entered 
in t_datal (at least 1). Following the call, CMX returns in this field 
the number of bytes entered. 

-> vcnt 
Number of elements in vdata. At least 1 and at most T_VCNT must 
be specified. 

<- chain 
Pointer to an indicator used by CMX to show whether there is an 
additional TIDU belonging to the TSDU. Possible values: 

T_MORE
Another TIDU belonging to the TSDU follows. It will be 
indicated with a separate T_DATAIN event. 

T_END
The present TIDU is the last of the TSDU. 



200   U41136-J-Z145-3-76

t_vdatain ICMX(L)

Return values 

T_OK
The call was successful. The TIDU was completely read. 

n > 0 
n bytes remain from the TIDU. 

T_ERROR
Error. Query error code using t_error(). 

Errors

If an error occurs the following error values are possible. They can be queried 
by calling t_error(). 

For error type T_CMXTYPE and error class T_CMXCLASS, the following may 
occur: 

T_EFAULT
At least one of the addresses specified in vdata does not point to the 
process address space. 

T_WSEQUENCE
The process is not attached for any TS application, or
no T_DATAIN was indicated for the connection specified in tref. 

T_WPARAMETER
The value specified in vcnt is invalid, or
at least one of the lengths specified in vdata is invalid. 

T_COLLISION
The event T_DISIN (disconnect indication) has arrived for the 
connection, but has not yet been fetched with t_event().

Response: Call t_event(). 

T_CCP_END
The CCP is no longer operational. 

In addition, the errors listed under ioctl(2) may occur. 

See also 

t_datain(), t_error(), t_event(), t_info() 



U41136-J-Z145-3-76  201

ICMX(L) t_vdatarq

8.6.32 t_vdatarq - Send data (data request) 

t_vdatarq() sends the next (or only) Transport Interface Data Unit (TIDU) of a 
Transport Service Data Unit (TSDU) to the receiving TS application on the 
specified connection. 

The TIDU is provided in a series of non-contiguous storage areas.

These storage areas are defined by means of the array vdata. The number of 
storage areas, i.e. the number of elements in vdata, is specified in the parameter 
vcnt.

Thus, vcnt t_data structures are entered in vdata. Each t_data entry describes 
one of the storage areas vdata[0], vdata[1],..., vdata[vcnt-1].

CMX takes the data sequentially from these storage areas. Each storage area 
is completely read before the next one is used. 

If the TSDU is longer than one TIDU, it must be transferred using several 
t_vdatarq() (or t_datarq() calls in succession. Therefore in each t_vdatarq() call 
the sending process must specify in the chain parameter whether an additional 
TIDU belonging to the same TSDU follows. 

The maximum length of a TIDU depends on the transport system used. It can 
be queried for an established connection by means of t_info(). 

If t_vdatarq() returns T_DATASTOP, the TIDU has been accepted but the flow of 
TIDUs on this connection has been blocked. 

The flow of TIDUs can be blocked by: 

– the receiving TS application,

which can block the flow of TIDUs by calling t_datastop() or t_xdatstop(), or 

– CMX,

if the local buffer is full. 

If the flow of TIDUs is blocked, before further TIDUs can be sent you must wait, 
by means of t_event(), for the event T_DATAGO for the connection. 

Successful execution of t_vdatarq() (T_OK) does not mean that the receiving TS 
application has already accepted the data. If t_vdatarq() fails (T_ERROR), this 
always indicates that a local error has been found. 



202   U41136-J-Z145-3-76

t_vdatarq ICMX(L)

#include <cmx.h>
int t_vdatarq (const int *tref,

const struct t_data *vdata,
const int *vcnt,
const int *chain);

-> tref 
Pointer to a field containing the transport reference of the connection. 

-> vdata 
Pointer to an array of t_data structures for data buffers from which CMX 
takes the data of the TIDU to be sent. The following structure is defined 
in <cmx.h>: 

   struct t_data {
->    char *t_datap;   /* Data area */
->    int t_datal;     /* Length of the data area */
   };

t_datap
Pointer to a data area from which CMX takes data of the TIDU to 
be sent. 

t_datal
For this parameter, specify the length of the data area t_datap. At 
least 1 and at most the length of a TIDU must be specified. 

-> vcnt 
Number of elements in vdata. At least 1 and at most T_VCNT must 
be specified. The sum of the t_datal values of all vcnt t_data 
elements may not exceed the length of a TIDU. 

-> chain 
Pointer to an indicator used to show whether there is an additional 
TIDU belonging to the TSDU. Possible values: 

T_MORE
Another TIDU belonging to the TSDU follows. 

T_END
The present TIDU is the last of the TSDU. 



U41136-J-Z145-3-76  203

ICMX(L) t_vdatarq

Return values 

T_OK
The call was successful; further TIDUs may be sent immediately. 

T_DATASTOP
The call was successful, but further TIDUs may not be sent until the event 
T_DATAGO has arrived for the specified connection. 

T_ERROR
Error. Query error code using t_error(). 

Errors

If an error occurs the following error values are possible. They can be queried 
by calling t_error(). 

For error type T_CMXTYPE and error class T_CMXCLASS, the following may 
occur: 

T_EFAULT
At least one of the addresses specified in vdata does not point to the 
process address space. 

T_WSEQUENCE
The process is not attached for any TS application, or

the process is not in the data phase for the connection specified in tref, or
the flow of data is blocked. 

T_WPARAMETER
The value specified in vcnt or chain is invalid, or

at least one of the lengths specified in vdata is invalid, or the sum of the 
lengths specified in vdata is invalid. 

T_COLLISION
The event T_DISIN (disconnect indication) has arrived for the 
connection, but has not yet been fetched with t_event().
Response: Call t_event(). 

T_CCP_END
The CCP is no longer operational. 

In addition, the errors listed under ioctl(2) may occur. 



204   U41136-J-Z145-3-76

t_xdatgo ICMX(L)

See also 

t_datarq(), t_datastop(), t_error(), t_event(), t_info(), t_xdatstop() 

8.6.33 t_xdatgo - Release the flow of expedited data 
(expedited data go) 

t_xdatgo() releases the blocked flow of expedited data on the specified 
connection. By means of this call the current process informs CMX that it is 
again ready to receive expedited data. 

More specifically, the call has the following effects: 

– The current process can again receive the event T_XDATIN for the specified 
connection, if one is waiting. 

– The sending TS application receives the event T_XDATGO. It may again 
send data.

Normal data is not affected by t_xdatgo(). 

t_xdatgo() may be called only if the exchange of expedited data was agreed 
when the connection was set up. 

#include <cmx.h>
int t_xdatgo (const int *tref);

-> tref 
Pointer to a field with the transport reference of the connection on which 
the flow of expedited data is to be released again. 

Return values 

T_OK
The call was successful. 

T_ERROR
Error. Query error code using t_error(). 



U41136-J-Z145-3-76  205

ICMX(L) t_xdatgo

Errors

If an error occurs the following error values are possible. They can be queried 
by calling t_error(). 

For error type T_CMXTYPE and error class T_CMXCLASS, the following may 
occur: 

T_WSEQUENCE
The process is not attached for any TS application, or

the process is not in the data phase for the connection specified in tref, or
the exchange of expedited data was not agreed for this connection. 

T_CCP_END
The CCP is no longer operational. 

In addition, the errors listed under ioctl(2) may occur. 

See also 

t_event(), t_error(), t_xdatstop() 



206   U41136-J-Z145-3-76

t_xdatin ICMX(L)

8.6.34 t_xdatin - Receive expedited data (expedited data 
indication) 

t_xdatin() accepts a T_XDATIN event previously reported via t_event(). The 
t_xdatin() call must be made before the next t_event(). 

By means of this call the current process receives an Expedited Transport 
Service Data Unit (ETSDU) from the sending TS application on the specified 
connection. The maximum length of an ETSDU depends on the transport 
system used. However, it is never greater than T_EXP_SIZE bytes. 

If the expedited data fits into the storage area datap provided, the value T_OK 
is returned. Otherwise, a value n > 0 is returned, where n is the number of bytes 
of the ETSDU that have not yet been read (remaining length). In this case, 
t_xdatin() must be called repeatedly until the entire ETSDU has been read. Only 
then can other CMX calls be issued again, e.g. t_event().

#include <cmx.h>
int t_xdatin (const int *tref,

char *datap,
int *datal);

-> tref 
Pointer to a field containing the transport reference of the connection, 
obtained via t_event(). 

<- datap 
Pointer to a storage area in which CMX enters the data of the ETSDU 
received. 

<> datal 
Pointer to a field in which prior to the call the length of the data area datap 
must be entered. A value of at least 1 must be specified.

Following the call, CMX returns in this field the number of bytes entered. 



U41136-J-Z145-3-76  207

ICMX(L) t_xdatin

Return values 

T_OK
The call was successful. The expedited data was completely read. 

n > 0 
n bytes remain from the ETSDU. 

T_ERROR
Error. Query error code using t_error(). 

Errors

If an error occurs the following error values are possible. They can be queried 
by calling t_error(). 

For error type T_CMXTYPE and error class T_CMXCLASS, the following may 
occur: 

T_EFAULT
The pointer datap does not point to the process address space. 

T_WSEQUENCE
The process is not attached for any TS application, or

the exchange of expedited data was not agreed for the connection 
specified in tref, or no T_XDATIN was indicated for the connection 
specified in tref. 

T_WPARAMETER
The length specified in datal is invalid. 

T_COLLISION
The event T_DISIN (disconnect indication) occurred for the connection, 
but has not yet been queried with t_event().

Action: call t_event(). 

T_CCP_END
The CCP is no longer operational. 

In addition, the errors listed under ioctl(2) may occur. 

See also 

t_error(), t_event() 



208   U41136-J-Z145-3-76

t_xdatrq ICMX(L)

8.6.35 t_xdatrq - Send expedited data (expedited data 
request) 

t_xdatrq() sends an Expedited Transport Service Data Unit (ETSDU) with 
expedited data to the receiving TS application via the connection specified. The 
maximum length of a ETSDU depends on the transport system used. However, 
it is never greater than T_EXP_SIZE bytes (does not apply to WAN-X25). 

The t_xdatrq() call is permitted only when the exchange of expedited data was 
agreed when the relevant connection was set up. 

ETSDUs may overtake Transport Interface Data Units (TIDUs) with normal data 
that had been sent earlier. It is guaranteed that ETSDUs will never arrive at the 
receiving TS application later than TIDUs sent after them. 

If T_XDATSTOP is returned, the ETSDU has been accepted but the send flow 
of ETSDUs and TIDUs on this connection has been blocked. 

The flow of expedited data can be blocked by: 

– the receiving TS application,

which can block the flow of ETSDUs by calling t_xdatstop(), or

– CMX,

if the local buffer is full. 

If the flow of ETSDUs is blocked, before further ETSDUs can be sent you must 
wait, by means of t_event(), for the event T_XDATGO or T_DATAGO for the 
connection. 

Successful execution of t_xdatrq() (T_OK) does not mean that the receiving TS 
application has already accepted the data.

If t_xdatrq() fails (T_ERROR), this always indicates that a local error has been 
found. 

#include <cmx.h>
int t_xdatrq (const int *tref,

const char *datap,
const int *datal);

-> tref 
Pointer to a field with the transport reference of the connection on which 
the expedited data is to be sent. 



U41136-J-Z145-3-76  209

ICMX(L) t_xdatrq

-> datap 
Pointer to a storage area containing the ETSDU to be sent. 

-> datal 
Pointer to a field containing the number of bytes to be sent from the 
storage area datap.

Minimum value: 1

Maximum value: T_EXP_SIZE

(T_EXP_SIZE is defined in <cmx.h>.) 

Return values 

T_OK
The call was successful; further expedited data may be sent immediately. 

T_XDATSTOP
The call was successful, but further ETSDUs may not be sent until the 
event T_XDATGO or T_DATAGO has arrived for this connection. 

T_ERROR
Error. Query error code using t_error(). 

Errors

If an error occurs the following error values are possible. They can be queried 
by calling t_error().

For error type T_CMXTYPE and error class T_CMXCLASS, the following may 
occur: 

T_EFAULT
The pointer datap does not point to the process address space. 

T_WSEQUENCE
The process is not attached for any TS application, or

the process is not in the data phase for the connection specified in tref, 
or the exchange of expedited data was not agreed for the connection 
specified in tref, or the flow of expedited data is blocked for the 
connection specified in tref. 

T_WPARAMETER
The length specified in datal is not permitted. 



210   U41136-J-Z145-3-76

t_xdatrq ICMX(L)

T_COLLISION
The event T_DISIN (disconnect indication) has arrived for the 
connection, but has not yet been fetched with t_event().

Response: Call t_event(). 

T_CCP_END
The CCP is no longer operational. 

In addition, the errors listed under ioctl(2) may occur. 

See also 

t_error(), t_event(), t_xdatstop() 



U41136-J-Z145-3-76  211

ICMX(L) t_xdatstop

8.6.36 t_xdatstop - Block the flow of expedited data 
(expedited data stop) 

t_xdatstop() blocks the flow of both expedited and normal data on the specified 
connection. 

More specifically, the effects of t_xdatstop() are: 

– The current process tells CMX that, until further notice, it is not ready to 
receive normal or expedited data for this connection. However, a T_DATAIN 
event or a T_XDATIN event that has already been indicated must be 
responded to first. 

– The current process no longer receives the events T_DATAIN and 
T_XDATIN for the specified connection. However, while the data flow is 
blocked it may call other CMX functions, e.g. to set up, close down or redirect 
an additional connection. 

– The sending TS application receives the return value T_XDATSTOP when it 
calls t_xdatrq() and the return value T_DATASTOP when it calls t_datarq(). It 
may not send any more normal or expedited data. 

The flow of expedited data is released with t_xdatgo() or with t_datago(). 

t_xdatstop() may be called only if the exchange of expedited data was agreed 
when the connection was set up. 

#include <cmx.h>
int t_xdatstop (const int *tref);

-> tref 
Pointer to a field with the transport reference of the connection. 

Return values 

T_OK
The call was successful. 

T_ERROR
Error. Query error code using t_error(). 



212   U41136-J-Z145-3-76

t_xdatstop ICMX(L)

Errors

If an error occurs the following error values are possible. They can be queried 
by calling t_error(). 

For error type T_CMXTYPE and error class T_CMXCLASS, the following may 
occur: 

T_WSEQUENCE
The process is not attached for any TS application, or the process is not 
in the data phase for the connection specified in tref, or a TIDU or an 
ETSDU has not yet been completely read on the specified connection, or 
the exchange of expedited data was not agreed for this connection. 

T_CCP_END
The CCP is no longer operational. 

In addition, the errors listed under ioctl(2) may occur. 

See also 

t_datago(), t_error(), t_event(), t_xdatgo(), t_xdatrq() 



U41136-J-Z145-3-76  213

9 The ICMX(NEA) program interface 
This chapter describes the ICMX(NEA) program interface to the NEABX 
migration service. It contains:

– A summary of the functions of the ICMX(NEA) interface, with details on the 
communication phases,

– Notes on the correct use of the functions (finite-state automata),

– Precise descriptions of the ICMX(NEA) function calls, with all parameters, in 
alphabetical order.

Notes on the availability of the system options for the transport systems are 
contained in the Release Notice.

9.1 Overview of the program interface 

The program interface ICMX(NEA) implements the migration service NEABX. 
There are TS applications (e.g. UTM applications) in host computers and 
communication computers of the TRANSDATA family that require the NEA-
specific services of the transport system. This means that such TS applications 
require services which go beyond the functionality of an ISO transport system 
as defined in the ISO standard 8072. The migration service NEABX enables 
communication between a TS application on your system (i.e. CMX applica-
tions) and TS applications in a host or communication computer without the 
need to modify the communication interface of the TS application at the remote 
system. In other words, ICMX(NEA) offers the functions that are needed to 
bridge the gap between the services required and the services provided by an 
ISO transport system.

The primary purpose served by ICMX(NEA) functions is to set up, exchange, 
and interpret the NEABV protocol in the connection setup phase and the 
NEABX protocol in the data phase.

ICMX(NEA) is implemented as a set of C functions. Each ICMX(NEA) function 
is internally converted by the NEABX into one or more ICMX(L) functions.



214   U41136-J-Z145-3-76

Overview The ICMX(NEA) program interface

ICMX(NEA) - Interface to the connection-oriented transport service

ICMX(NEA) is offered by the migration service NEABX as a program interface 
to the connection-oriented transport service (TS). This TS permits two applica-
tions (TS applications) to exchange messages over a transport connection 
(TC). When communication takes place via a connection-oriented TS, 
messages are exchanged without loss or duplication, and the sequence of 
messages is maintained. Once a TC is established, it is assigned a transport 
reference (tref) in each of the two end systems. These transport references 
identify the TC uniquely and thus make it possible to dispense with the transfer 
and processing of addresses in the data phase. Parameters that influence the 
transport of messages on the TC can be negotiated between the TS applica-
tions at connection setup. There are also some rules that must be observed to 
ensure that communication proceeds smoothly. These rules are described 
below.

ICMX(NEA) makes communication between TS applications largely 
independent of the specific characteristics of the transport systems used (layers 
1 - 4 in the OSI Reference Model) with regard to profile, protocol classes, etc.

Internally each TC is assigned an exclusively-opened special file, which, 
however, is invisible to the TS application. The exclusive opening simplifies the 
measures taken in NEABX to tidy up following premature termination of the TS 
application.

Names and addresses

Every TS application has a GLOBAL NAME. This name uniquely identifies the 
TS application in the network. GLOBAL NAMES are assigned by the adminis-
tration. It must ensure that the names of all TS applications are different from 
one another.

A TS application works exclusively with GLOBAL NAMES. When attaching itself 
it specifies its own GLOBAL NAME, and at connection setup it specifies the 
GLOBAL NAME of the communication partner.

The TNSX, a component of CMX, converts the GLOBAL NAMES into the 
LOCAL NAME of the local TS application and the TRANSPORT ADDRESS of 
the remote TS application, and vice-versa.

For querying the LOCAL NAME of a TS application and the TRANSPORT 
ADDRESS of a communication partner the ICMX(L) interface provides the 
functions t_getloc() and t_getaddr()

<neabx.h> defines the structures x_myname and x_partaddr.



U41136-J-Z145-3-76  215

The ICMX(NEA) program interface Overview

x_myname is used by a TS application to receive (pass) its LOCAL NAME from 
(to) the TNSX; x_partaddr is used similarly for the TRANSPORT ADDRESS. 

The contents of these structures are as follows:

struct x_myname {
   char  x_mnmode;        /* = X_MNMODE */
   char  x_mnres;         /* = 0 */
   short x_mnlng;         /* Length of the filled-in part
                             of x_myname */
   char  x_mn[X_MNSIZE];  /* Field for the T-selectors of
                             the LOCAL NAME */
}
struct x_partaddr {
   char  x_pamode;        /* = X_PAMODE */
   char  x_pares;         /* = 0 */
   short x_palng;         /* Length of the filled-in part
                             of x_partaddr */
   char  x_pa[X_PASIZE];  /* Field for the partner address */
}

The meanings of members in the structure x_myname are shown below:

x_mnmode = X_MNMODE
specifies that the field x_mn contains a LOCAL NAME.

x_mnres, x_mn[X_MNSIZE]
are of no relevance to you. The contents of these fields are simply taken 
from the TNSX and passed on to NEABX.

x_mnlng
specifies the length of all data passed in the x_myname structure. 

The meanings of members in the structure x_partaddr are as follows: 

x_pamode = X_PAMODE
specifies that the field x_pa contains a TRANSPORT ADDRESS.

x_pares, x_pa[X_PASIZE]
are of no relevance to you. The contents of these fields are simply 
taken from the TNSX and passed on to NEABX.

x_palng
specifies the length of all data passed in the x_partaddr structure. The 
LOCAL NAME and TRANSPORT ADDRESS are passed to NEABX or 
received from NEABX in the union  x_address 
union x_address {
struct x_myname xmyname;
struct x_partaddr xpartaddr;
}



216   U41136-J-Z145-3-76

Overview The ICMX(NEA) program interface

Error handling and diagnosis 

All function calls terminate with a return code. One example of such a code is 
T_OK, which indicates successful completion. When an error occurs, the 
function returns the value X_ERROR as a general indication of the error. You 
can then obtain more detailed diagnostic information by using the function 
x_error(). This function must be called immediately after the error occurs.

All errors detected by NEABX as violations of the communications rules by the 
TS application have specific error codes and are defined in <neabx.h>, <cmx.h> 
or <tnsx.h>. The structure of these error codes is described in the chapter “Event 
processing and error handling” on page 37.

Other errors result from failures when calling functions in the operating system 
environment in CMX; they are described in <errno.h>.

The transport systems used generate no error messages. If an error occurs 
here, the connection is closed down, and a reason for disconnection is passed 
to CMX. This reason for disconnection is delivered to the TS application when 
it calls x_disin().

The following functions return the text string in plain English for an error code 
returned by x_error():

x_strerror()
Returns a pointer to the text string for an error code received from 
ICMX(NEA). 

x_perror()
Calls x_strerror() to ascertain the text string for an error code received 
from ICMX(NEA) and writes the string to stderr.

The codes returned by x_disin() for a disconnection reason can be 
converted into plain English by using the ICMX(L) functions t_strreason() 
and t_preason(). 

The error code and reason for disconnection can be edited at the command 
level in plain English by using the program cmxdec.

For diagnostic purposes ICMX(NEA) provides a trace facility, which can be 
flexibly controlled via the environment variable NEATRACE. The trace 
mechanism logs the calls with their arguments in compressed form in temporary 
files. The editing program neal then converts the log to plain English in a 
separate step (see the “CMX, Operation and Administration” manual [1] or [2]).



U41136-J-Z145-3-76  217

The ICMX(NEA) program interface Overview

TS applications, transport connections, and processes

A TS application is a system of programs that uses the TS, i.e. the services of 
NEABX. The mapping of a TS application to the process concept of the system 
is left up to the implementer. A TS application may organize itself into one or 
more (not necessarily related) processes. The processes may, essentially 
independently from one another, maintain TCs to remote TS applications. The 
processes of a TS application may exchange their TCs among one another. 
However, at any point in time the transport reference of a TC is assigned to 
exactly one process. It therefore cannot be inherited by child processes. In 
NEABX there is a separate local service, REDIRECT, for redirecting a TC to 
another process.

One process may also simultaneously control multiple TS applications. In this 
case, the implementation must provide for suitable coordination of the 
execution of the various TS applications. NEABX supports this through its 
asynchronous processing mode.

Synchronicity and asynchronicity; TS events

Communications operations are by nature asynchronous, i.e. different TS 
events can occur independently of the activity of a TS application. For example, 
a TS application may be sending data over a TC when, asynchronously, a 
disconnection indication arrives, of which the TS application must be informed 
immediately.

In principle, the functions of NEABX are asynchronous. This means that after 
issuing a call a TS application need not wait for a possible answer (TS event) 
from the network. Any answer will be accepted by NEABX when it arrives and 
sent to the TS application at the next opportunity when requested.

To do this, NEABX provides the TS application with a query mechanism in two 
forms: synchronous (waiting) and asynchronous (checking). This query 
mechanism must be appropriately used by the TS application if it wishes to 
react quickly and properly to TS events.

With synchronous execution, the calling process is suspended until a TS event 
arrives. This wakes up the process, so that it can immediately process the TS 
event. Waiting can be limited by specifying a waiting period or it can be cut short 
by a signal such as SIGALARM. In both cases NEABX continues the process 
with the TS event X_NOEVENT. The synchronous mechanism is useful for TS 
applications that cannot do anything between TS events.



218   U41136-J-Z145-3-76

Overview The ICMX(NEA) program interface

With asynchronous execution, at convenient times, such as at the end of a 
processing step, the process can check whether a TS event has arrived, and 
handle it before continuing with the next processing step. This is useful for 
processes that expect longer delays between TS events, during which times 
they can or must attend to other operations.

The relevant function in NEABX is

x_event
If the parameter value X_WAIT is passed, the process is suspended until 
a TS event arrives, the time limit expires or a signal arrives. The 
suspended process is awakened when a signal arrives, and x_event() 
returns with X_NOEVENT or X_ERROR. If the time limit expires, the 
process resumes with the TS event X_NOEVENT. If a TS event arrives, 
or there is an error, the function immediately returns the code of the TS 
event, or X_ERROR.

When the parameter value X_CHECK is passed, x_event() always 
returns immediately and returns X_NOEVENT or the code of the TS 
event encountered or X_ERROR. 

The following thirteen asynchronous TS events are defined in NEABX: 

X_NOEVENT
In the asynchronous case: No TS event present; In the synchronous 
case: Function aborted by a signal, or time limit expired. 

X_REPCRQ
NEABX requests repetition of the connection request. 

X_CONIN
Indication of a connection request arriving from a calling TS application. 

X_REPCIN
NEABX indicates the continuation of a connection request that has not 
yet been completely passed. 

X_CONCF
Indication of a connection confirmation arriving from a called TS appli-
cation. 

X_REPCCF
NEABX indicates the continuation of a connection confirmation that has 
not yet been completely passed. 



U41136-J-Z145-3-76  219

The ICMX(NEA) program interface Overview

X_DISIN
Disconnection indication arriving from a remote TS application or caused 
by NEABX. 

X_REDIN
Indication of a connection redirection arriving from a process of the same 
TS application. (This TS event is local; it is an extension of the TSs to 
make the implementation of TS applications more flexible.) 

X_DATAIN
Normal data sent by a TS application has arrived. 

X_XDATIN
Expedited data sent by a TS application has arrived. 

X_DATAGO
A block on the sending of normal data set through flow control is 
canceled. 

X_XDATGO
A block on the sending of expedited data set through flow control is 
canceled. 

X_ERROR
Fatal error; more detailed information will be returned by the query 
function x_error(). 

With each TS event (except for X_NOEVENT and X_ERROR) the TS appli-
cation is also given the transport reference, so that it can react to the TS event 
in a way specific to that TC. 



220   U41136-J-Z145-3-76

Overview The ICMX(NEA) program interface

Some TS events must be accepted by the TS application by calling corre-
sponding functions. Exceptions are: X_DATAGO, X_XDATGO. Such function 
calls return additional information on the TS events. The following table lists the 
TS events and the corresponding functions. 

As a rule, TS events are delivered in the order in which they occur. Of course, 
the TS event X_XDATIN may overtake the TS event X_DATAIN, and X_DISIN 
may overtake X_DATAIN and X_XDATIN. In the latter case the overtaken TS 
events on that TC are dropped. 

Attaching to/detaching from NEABX 

Communication by a TS application via NEABX is activated when the first 
process attaches itself to NEABX for that application. When this is done, a 
special file is opened exclusively for that process. This special file is used for 
exchanging jobs between the NEABX library functions and the operating 
system. A TS application is generated when the first process attaches itself for 
that TS application. When this is done, a Transport Service Access Point 
(TSAP) is created, at which the TS is accessible. When the first process is 
attached the TS application is linked to this TSAP. The TSAP is assigned the 
LOCAL NAME of the TS application, under which the TS application can be 
reached in that end system. It thereby becomes addressable from the network. 

TS event Function for fetching

X_CONCF

X_CONIN

X_DATAIN

X_DISIN

X_ERROR

X_REDIN

X_REPCRQ

X_REPCCF

X_REPCIN

X_XDATIN

x_concf()

x_conin()

x_datain()

x_disin()

x_error()

x_redin()

x_conrq()

x_concf()

x_conin()

x_xdatin()



U41136-J-Z145-3-76  221

The ICMX(NEA) program interface Overview

When the TS application is detached, any TCs still in existence are closed 
down, along with the TSAP; the process environment is dissolved and assigned 
resources are released for future use. 

One and the same process may attach itself for several TS applications at once 
(i.e. manage multiple TSAPs) and in each of these TS applications maintain 
multiple Transport Connection Endpoints (TCEP). Also, several processes may 
attach themselves for the same TS application (use the same TSAP) and 
actively set up TCs or passively wait for connection indications without inter-
fering with one another. However, each TCEP is assigned to exactly one 
process. 

The following functions are used for attaching and detaching. They perform 
primarily local tasks. If no implicit disconnection must be performed, no infor-
mation is passed to the network. 

x_attach()
Attaches (the current process of) a TS application to NEABX. When 
attached, the process may specify its future behavior in the TS appli-
cation. The first time a process is attached NEABX begins accepting 
connection indications for the TS application. 

x_detach()
Detaches (the current process of) a TS application from NEABX. Any 
existing TCs of the process in the TS application are closed down by 
CMX. If no more processes of the TS application are attached, the TS 
application is thereafter no longer known to NEABX. 

Connection setup, disconnection, and redirection 

In this phase, two TS applications set up a TC between them or close one down. 
One of the two TS applications is viewed as the calling TS application; it initiates 
connection setup. The other is the called TS application; it waits for requests 
from calling TS applications.

The calling TS application issues a connection request and receives an answer 
from the called TS application. The called TS application waits for a connection 
indication (indication of a connection request) and accepts it or rejects it. During 
connection setup, the TS applications negotiate certain attributes of the TC for 
the data transfer and may exchange user data.

The TC may be closed down at any time by either of the TS applications or by 
NEABX. This is not negotiated between the TS applications, but instead is 
immediately carried out by NEABX. The other TS application (or both if NEABX 
closes down the TC) receives a disconnect indication, which may be neither 



222   U41136-J-Z145-3-76

Overview The ICMX(NEA) program interface

answered nor averted. NEABX may also close down the TC at any time; all 
errors in the transport systems are indicated in this way. NEABX does not 
guarantee that data in transit at the time of the disconnection request will still be 
delivered.

Connection redirection is a local service in NEABX that simplifies organizing a 
TS application into processes. A process holding a completely established TC 
may redirect it (depending, of course, on the state; see section “Finite-state 
automata” on page 226) to another process of the same TS application. The 
TSAP and the TCEP remain unchanged. The redirecting process loses the 
transport reference for the TC, whereupon the TC is no longer available to the 
process. 

The relevant functions are: 

x_conrq()
Requests connection setup to the called TS application with the specified 
TRANSPORT ADDRESS. Reference to the TSAP is established via the 
LOCAL NAME used when the calling TS application was attached. The 
function returns immediately after issuing the request; the calling TS 
application receives a transport reference. It must then wait synchro-
nously or asynchronously for the answer of the called TS application (see 
above). 

The NEABV protocol must be passed in the form of user data when 
x_conrq() is called. This user data is passed to NEABX in an option 
structure.

If x_conrq() returns the value X_REPEAT, it must be called again with the 
same parameters after the event X_REPCRQ has arrived as the user 
data has not yet been completely transmitted. 

x_conin()
Accepts from NEABX the connection request of the calling TS appli-
cation, indicated with X_CONIN, with its TRANSPORT ADDRESS. 
Reference to the TSAP is established for the called TS application 
through provision of the LOCAL NAME specified when it was attached.

The NEABV protocol is passed in the form of user data when the 
connection is set up. The called TS application must accept the user data 
from NEABX in an option structure.

If x_conin() returns the value X_REPEAT, it must be called again with the 
same parameters after the event X_REPCIN has arrived as the user data 
has not yet been completely received. 



U41136-J-Z145-3-76  223

The ICMX(NEA) program interface Overview

x_conrs()
Answers (accepts) the connection request, after it has been indicated 
with X_CONIN and received from NEABX. The NEABV protocol must be 
passed in the form of user data when x_conrs() is called. This user data 
is passed to NEABX in an option structure. 

x_concf()
Accepts from NEABX the answer of the called TS application, indicated 
with X_CONCF; this completes connection setup. The NEABV protocol 
is passed in the form of user data when the connection is set up. The TS 
application must accept the user data from NEABX in an option structure.

If x_concf() returns the value X_REPEAT, it must be called again with the 
same parameters after the event X_REPCCF has arrived as the user 
data has not yet been completely received. 

x_disrq()
Requests disconnection. This function may be called at any time by 
either of the TS applications. A connection request that has been 
indicated by NEABX and received may, if it is not accepted, be rejected 
with this function. 

x_disin()
Accepts from NEABX the disconnect indication indicated with X_DISIN. 
With this function call the TS application also obtains the reason for 
disconnection. 

x_redrq()
Redirects the TC to another process of the same TS application. The TC 
is then no longer available to the redirecting process.

An option structure must be specified when x_redrq() is called. The 
migration service of the redirecting process passes information to the 
migration service of the receiving process in this structure.

If x_redrq() returns the value X_IMPOSSIBLE, the redirection request 
cannot be executed. 

x_redin()
Receives from NEABX the connection redirection indicated with 
X_REDIN. The receiving process must accept the redirection, but may 
immediately pass it on (or return it) or close down the connection. An 
option structure must be specified when x_redin() is called. The migration 
service of the receiving process receives information from the migration 
service of the redirecting process in this structure. 



224   U41136-J-Z145-3-76

Overview The ICMX(NEA) program interface

Data exchange and flow control 

Once a TC has been set up, normal data and (optionally) expedited data may 
be transferred over it. Data transfer is message-oriented: The TS applications 
exchange Transport Service Data Units (TSDU) - messages of any length - or 
Expedited Transport Service Data Units (ETSDU) - expedited data of limited 
length. Expedited data is limited to a few bytes; when transferred it is given 
priority over the stream of normal data and placed into separate queues. 
NEABX guarantees only that expedited data will never arrive at the receiving TS 
application later than normal data sent subsequently. At most one complete 
ETSDU may be passed to NEABX per call. 

A message is passed to NEABX in portions the length of one Transport 
Interface Data Unit (TIDU). The length of the TIDU is TC-specific and must 
therefore be queried (x_info()) by NEABX for each TC. If a message is longer 
than one TIDU, it must be transferred using multiple send calls. A parameter in 
each send call indicates whether a further TIDU for that message follows 
(X_MORE) or not (X_END). It cannot be determined from this how a TIDU is 
packed for transfer or delivery to the receiving TS application. NEABX 
guarantees only that sequential joining of the TIDUs on the receiving side will 
reproduce the message from the sending side. The TIDU length may be 
different for the two TS applications and depends on the TC. NEABX does not 
guarantee that at the receiving TS application any except the last TIDU of a 
message will be delivered completely filled. 

The arrival of a TIDU or an ETSDU is indicated to the receiving TS application 
by means of the TS event X_DATAIN or X_XDATIN. The TS application then 
completely fetches the TIDU or ETSDU with a corresponding function call. The 
function x_event() returns the length of the data as additional information in the 
option structure. 

The transfer of TIDUs and ETSDUs is subject to flow control mechanisms, 
which can be controlled by NEABX and the TS applications. The return code 
X_DATASTOP or X_XDATSTOP returned when data is sent indicates to the 
sending TS application that the TIDU or ETSDU was successfully processed, 
but the flow of TIDUs (ETSDUs) has been blocked. No further TIDU (ETSDU) 
may be sent until the flow is released again. Release is indicated by means of 
the TS event X_DATAGO (X_XDATGO). 

The receiving TS application stops and starts the flow of TIDUs and ETSDUs 
by means of function calls to NEABX, which affect the sending TS application 
as described above. 



U41136-J-Z145-3-76  225

The ICMX(NEA) program interface Overview

The following functions implement data exchange and (active) flow control: 

x_datarq()
Requests transfer of a TIDU (possibly partially filled). The return code 
X_DATASTOP signifies that the data flow is blocked; further send 
requests are rejected with an error until the flow is released again.

If the exchange of the NEABX protocol in the data phase was agreed 
when setting up the connection, an option structure for exchanging the 
NEABX protocol must be specified with the first TIDU of a TSDU. The 
specification of an option structure is not permitted for any further TIDU 
of the TSDU. If the exchange of the NEABX protocol was not negotiated, 
no option structure may be specified. 

x_datain()
Accepts the data of a TIDU from NEABX after the TIDU has been 
indicated with X_DATAIN. If the exchange of the NEABX protocol in the 
data phase was agreed when setting up the connection, an option 
structure for exchanging the NEABX protocol must be specified when the 
first TIDU of a TSDU is received. The specification of an option structure 
is not permitted for any further TIDU of the TSDU. If the exchange of the 
NEABX protocol was not negotiated, no option structure may be 
specified. 

x_xdatrq()
Requests transfer of an ETSDU with expedited data. The return code 
X_XDATSTOP indicates that the flow of ETSDUs is blocked; further send 
requests are rejected with an error until the flow is released again.

If the exchange of the NEABX protocol in the data phase was agreed 
when setting up the connection, an option structure for exchanging the 
NEABX protocol must be specified. If the exchange of the NEABX 
protocol was not negotiated, no option structure may be specified. 

x_xdatin()
Accepts the expedited data from NEABX after it has been indicated with 
X_XDATIN.

If the exchange of the NEABX protocol in the data phase was agreed 
when setting up the connection, an option structure for exchanging the 
NEABX protocol must be specified when receiving the ETSDU. If the 
exchange of the NEABX protocol was not negotiated, no option structure 
may be specified. 



226   U41136-J-Z145-3-76

Finite-state automata The ICMX(NEA) program interface

Information service 

The information service is a local service with which the TS application can 
query configuration-dependent parameter values from NEABX. The information 
service is implemented with the following function: 

x_info()
Returns the length of a TIDU for an established TC. The TIDU can 
generally only be established when the connection setup has been 
completed. 

9.2 Finite-state automata 

The sequences for using the ICMX(NEA) interface can be represented by 
means of finite-state automata. These are diagrams that contain the defined 
states of a TS application and the legal state transitions. 

The sequences may be divided into four phases. These form a hierarchical 
structure:

Phase A corresponds to the highest hierarchical level and phase D corresponds 
to the lowest. 

Each phase is represented by one or more automata. The double rectangles of 
an automaton represent the state in which the automata of the next phase (or 
lower hierarchical level) are activated. The transition from a state represented 
by a double rectangle (see figure “Setup, disconnection, and redirection of TCs” 
on page 228) to another state causes the associated automata of the lower 
hierarchical level to be deactivated. 

In phase A, a process must be present that can support the ICMX(NEA) 
interface. In this phase the process is created and destroyed. 

Phase A: activation/deactivation

Phase B: attach/detach

Phase C: connection setup/closing down

Phase D: data exchange



U41136-J-Z145-3-76  227

The ICMX(NEA) program interface Finite-state automata

Figure 30: Activation/deactivation 

In phase B TS applications are attached and detached. The number of 
automata in this phase is equal to the number of TS applications executed by 
the process. In B2 the process has created an (additional) service access point 
(TSAP). 

Figure 31: Attaching/detaching TS applications 

In phase C TCs are set up, closed down and redirected. The number of 
automata is equal to the number of TCs supported by the process. In C2 the TS 
application has actively requested a TC and is waiting for the answer from the 
called TS application. In C3 the TS application has passively received a TC 
request. In C4 the connection is established. In the states marked with "+" (after 
X_REPEAT) the TS application is waiting for the repetition request. In the states 
marked with "*" the repetition may take place. 

A 2

A 1

destroy create

B 2

B 1

x_detach

x_attach with return code
X_ERROR

x-attach with return code
T_OK, X_NOTFIRST



228   U41136-J-Z145-3-76

Finite-state automata The ICMX(NEA) program interface

Figure 32: Setup, disconnection, and redirection of TCs 

1. x_redrq() is permitted only when the corresponding data sending automaton 
is in D1 and the data receiving automata are in D1 and D4. 

2. x_redin() causes the data automata to switch to the states corresponding to 
the states of the data automata of the process that initiated the x_redrq(). 

3. With x_conrq() and x_conrs() the return value X_DATASTOP functions in the 
connection phase like T_OK; the corresponding data sending automaton 
switches at the same time to the state D2. 

C 1

C 4

+ +

* *

C 2 C 3

+

*

x_disin
x_disrq

x_disin
x_disrq

x_event
X_REPCRQ

x_conrq

x_conrq with
return code
X_REPEAT

x_conrq
with return
code

X_DATASTOP,
    T_OK 3)

x_redin 2)

x_concf
with ret.
code

X_REPEAT

x_disin
x_disrq

x_concf
with ret.
code
T_OK

x_event
X_REPCCF

x_concf

x_redrq 1)

x_disrq
x_disin

x_conrs with
return code
X_DATASTOP,
T_OK 3)

x_conin with
return code
T_OK x_conin

x_event
X_REPCIN

x_disin
x_disrq

x_disin
x_disrq

x_conin with
return code
X_REPEAT



U41136-J-Z145-3-76  229

The ICMX(NEA) program interface Finite-state automata

Phase D is the data phase. It is represented by 2 parallel automata (data 
sending automaton, data receiving automaton). There are thus n automata, 
where n = 2 * number of TCs. In D2 the data flow for normal data is stopped, in 
D3 the flow of expedited data is also stopped. 

Figure 33: Data sending automaton for normal and expedited data 

1. With return code X_DATASTOP following x_conrq() or x_conrs() the corre-
sponding data sending automaton switches to the state D2. 

For the sake of clarity, the data receiving automaton is represented in two 
separate automata (for normal data and for expedited data). It is to be noted 
that x_event(), x_xdatstop() and x_datago() work on both automata. In D2 

x_event
X_NOEVENT

x_event
X_NOEVENT

x_xdatrq with
return code
X_XDATSTOP

x_event
X_DATAGO

x_datarq,
x_datrq with
return code T_OK

x_datarq,
x_datain,
x_xdatin with
return code
X_DATASTOP 1)

D 1 D 3

D 2

x_event
X_XDATGO

x_xdatrq with
return code T_OK

x_event
X_NOEVENT

x_xdatrq with return
code X_XDATSTOP



230   U41136-J-Z145-3-76

Finite-state automata The ICMX(NEA) program interface

normal data or expedited data ready to be received can be accepted, subse-
quently in D1 the (expedited) data flow may be actively stopped and in D4 
released again. In D3 no flow control is possible. 

Figure 34: Data receiving automaton for normal data 

1. With return code X_DATASTOP the corresponding data sending automaton 
switches to the state D2. 

2. x_xdatstop() is permitted only when the data receiving automaton for 
expedited data is in D1. 

x_event
X_DATAIN

x_datain with 
return code
X_DATASTOP,
T_OK 1)

x_event
X_NOEVENT

D 1 D 2

D 4

D 3

x_datastop
x_datstop 2)

x_event
X_NOEVENT

x_event
X_DATAIN

x_event
X_NOEVENT

x_datago



U41136-J-Z145-3-76  231

The ICMX(NEA) program interface Finite-state automata

Figure 35: Data receiving automaton for expedited data 

1. With return code X_DATASTOP the corresponding data sending automaton 
switches to the state D2. 

2. x_datago() is permitted only when the data receiving automaton for normal 
data is in D4. 

3. x_xdatstop() is permitted only when the data receiving automaton for normal 
data is in D1. 

x_event
X_DATAIN

x_datain with 
return code
X_DATASTOP,
T_OK 1)

x_event
X_NOEVENT

D 1 D 2

D 4

D 3

x_datstop 3)

x_event
X_NOEVENT

x_event
X_DATAIN

x_event
X_NOEVENT

x_datago
x_xdatgo

x_datago 2)



232   U41136-J-Z145-3-76

NEABV protocol The ICMX(NEA) program interface

9.3 NEABV protocol 

9.3.1 The NEABV protocol for communication via 
ICMX(NEA) 

If your TS application is to communicate with a TS application that requires 
TRANSDATA-specific functions of the transport protocol, you must adhere to 
the user services connection protocol (NEABV, SIEMENS standard SN 77303) 
when setting up a connection via the migration interface ICMX(NEA). 

Communication partners for whom you must adhere to the NEABV protocol 
may be 

– UTM applications (from the point of view of UTM: PTYPE=APPLI) 

– DCAM applications (from the point of view of DCAM: EDIT=USER) 

– PDN applications (from the point of view of PDN: Partner characteristic with 
YOPNCON=application) 

The following practical notes are intended to make it possible to program 
connection setup via ICMX(NEA) in a way that is consistent with the protocol 
even without detailed knowledge of the standard. 

At connection setup the NEABV protocol is transferred in the form of structured 
user data.

With the calls x_conrq() and x_conrs() the TS application must enter the NEABV 
protocol into the data buffer (x_udatap) before the actual user connection 
message. You can also generate the NEABV protocol with the aid of the NEABX 
service function x_neavo(). 

With the calls x_conin() and x_concf() the NEABV protocol appears in the data 
buffer (x_udatap) as user data.

You can analyze the NEABV protocol with the aid of the NEABX service function 
x_neavi(). 

The following is a description of the format of the NEABV protocol for computer 
interconnection via LAN and WAN.



U41136-J-Z145-3-76  233

The ICMX(NEA) program interface NEABV protocol

Format of the user data in the data buffer x_udatap in the case of 
computer interconnection 

The meanings and values of the individual NEABV protocol elements are given 
below: 

xx  Stipulation regarding the exchange of the NEABX protocol in the data 
phase. 

x_conrq(), x_conrs(), x_concf(): xx = X’01’ 
i.e. no NEABX protocol in the data phase. 

x_conin(): xx = X’00’ or X’01’ 
i.e. the partner application conforms to what specified by the 
NEABX application (xx = X’00’) or proposes that there be no user 
services protocol in the data phase (xx = X’01’). 

yy  Stipulation regarding the initiative in data transfer 

yy = X’01’ 
The sender will start data transfer. 

yy = X’00’ 
No specification, or acceptance of the proposal of the communi-
cation partner. 

Length in bytes

XX 00 01 00 00 reserved for NEABX protocol

1 1 1 1 1 8

xx yy 01 00 L1 NEABV user connection message

1 1 1 1 1 L1

..

reserved for NEABX protocol

8

..

UTM:

DCAM / PDN:



234   U41136-J-Z145-3-76

NEABV protocol The ICMX(NEA) program interface

L1  Length of the following user connection message.

In general: X’00’ <= L1 <= X’50’ i.e. the following user connection 
message may be between 0 and 80 characters in length.

With computer interconnection via WAN the user connection message 
must not be longer than 79 characters. 

9.3.2 The NEABX service functions (NEABV service) 

The user is provided with a service that creates the NEABV protocol. The 
purpose of this service is to prevent any mistakes during the creation of the 
protocol.

The NEABV protocol must be included in the following: 

– the connection request with x_conrq() 

– the connection response with x_conrs() 

and is supplied for: 

– the connection indication with x_conin() 

– the connection confirmation with x_concf() 

The two calls below serve to create and analyze the NEABV protocol. 

x_neavo()
Generates the NEABV protocol for output. x_neavo() can be called prior 
to x_conrq() and x_conrs(). 

x_neavi()
Analyzes an incoming NEABV protocol. x_neavi() can be called following 
x_conin() and x_concf() in order to analyze the NEABV protocol arriving 
from the partner TS application. 

Use of the x_init parameter in x_neavi() and x_neavo() calls 

The x_init parameter is used by the communication partners to work out who is 
to begin the data transfer in the data phase. The remarks below indicate what 
must be observed when specifying values for this parameter. 

Possible values for x_init are: 

X_MYINIT (X’01’):
Proposal to start data transfer. 



U41136-J-Z145-3-76  235

The ICMX(NEA) program interface NEABV protocol

X_INITRQ (X’00’):
Waiting for partner’s proposal (occasionally referred to as NOINIT).*) 

X_INITOK (X’00’):
Acceptance of partner’s proposal.*) 

( *) The values are coded in the same way.) 

● x_init specifications for computer interconnection:

The possible x_init specifications of the calling TS application and the 
expected responses of the called TS application are described here. The 
calling TS application passes its proposal via x_conrq() to the called TS appli-
cation, which receives this with the x_conin() call. The answer x_init is issued 
by the called TS application in x_conrs() and received by the calling TS appli-
cation in x_concf(). 

– x_init = X_MYINIT

Proposal from the calling TS application that it should start data transfer. 

Response of the called TS application:

x_init = X_INITOK (acceptance of partner’s proposal) or x_disrq(), in the 
case of non-acceptance. 

– x_init = X_INITRQ

The calling TS application is awaiting the proposal of the called TS appli-
cation. 

Expected response of the called TS application:

x_init = X_MYINIT (the called TS application starts data transfer) or 
x_disrq(). 

If another response is passed to the calling TS application, that appli-
cation should break the connection with x_disrq(), because no agreement 
has been reached. 

Remark 

If x_init = X_INITOK is given as the response, this can cause simulta-
neous communication or endless waiting. To prevent this risk, use the 
response x_disrq(). 



236   U41136-J-Z145-3-76

Transport system specific features ICMX(NEA)

9.4 Transport system specific features

The section “Transport system specific features” on page 103 describes the 
transport system specific features which also apply to the TS applications in 
ICMX(NEA). The features described refer to the corresponding function calls 
with the prefix x_ and the CMX events with the prefix X_.



U41136-J-Z145-3-76  237

ICMX(NEA) Programming notes

9.5 Programming notes 

The primary purpose of ICMX(NEA) is to make TS applications independent of 
the transport systems used. This allows TS applications to execute in a variety 
of network environments. ICMX(NEA) supports this independence for TS appli-
cations that adhere to the following rules: 

1. The application should make no explicit assumptions regarding the length of 
a data unit or regarding the way data units are packed for communication. 

2. The limits defined in <neabx.h> for the options must never be exceeded. 
Note that some transport systems do not provide certain options. 

3. The TS application should handle addressing exclusively with the aid of the 
TNSX; it should not construct any physical transport addresses in the 
programs. 

4. NEABX functions should not be called in signal handling routines; signal 
handling is not suitable for performing asynchronous processing outside the 
current context. 

5. The program logic should be arranged in a switch/case construction, which 
is ideally suited for these purposes. 



238   U41136-J-Z145-3-76

Programming notes ICMX(NEA)

Example

Calling TS application Called TS application

x_attach();                   x_attach();
x_conrq();
for (;;) {                    for (;;) {
    switch(x_event()) {           switch (x_event()) {
    case X_CONCF:                 case X_CONIN:
        x_concf();                    x_conin();
          :                           x_conrs();
          :                             :
        x_datarq();               case X_DATAIN:
          :                           x_datain();
          :                             :
    case X_DATAIN:                    x_datarq();
        x_datain();                     :
          :                             :
    case X_DISIN:                 case X_DISIN:
        x_disin();                    x_disin();
        x_detach();                   x_detach();
          :                             :
    case X_NOEVENT:               case X_NOEVENT:
        continue;                     continue;
    case X_ERROR:                 case X_ERROR:
        x_detach();                   x_detach();
        exit();                       exit();
    default:                      default:
       :                             :
}                                 }



U41136-J-Z145-3-76  239

ICMX(NEA) Conventions

9.6 Conventions 

When using ICMX(NEA) the following conventions must be observed: 

1. All identifiers starting with "_" are reserved for the system software. 

2. All identifiers starting with "t_", "x_", "ts", "Ts", "cmx" or "neabx" are reserved 
for NEABX. 

3. All preprocessor definitions starting with "T_", "X_" or "TS" are reserved for 
NEABX. 

4. At the request of the user, signals (usually SIGIO and/or SIGTERM) are sent 
by the CMX components in the operating system kernel and intercepted in 
the NEABX library. User-defined signal routines should therefore be 
programmed with caution. 



240   U41136-J-Z145-3-76

Function calls ICMX(NEA)

9.7 ICMX(NEA) - function calls 

The following pages describe the NEABX calls in detail. Italic type in running 
text represents ordinary, replaceable formal parameters or the names of 
functions and files. Names in uppercase letters (e.g. X_MSG_SIZE) represent 
constants that have been defined in a header file (with #define). 

The following conventions are used in the parameter descriptions: 

->  Indicates a parameter in which NEABX expects a value provided by the 
caller. 

<-  Indicates a parameter in which NEABX returns a value after the call. 

<>  Indicates a parameter in which the caller must provide a value, which is 
then modified by NEABX. 

Of course, if a parameter involves a pointer, this marking does not refer to the 
pointer itself (which is always provided by the caller), but instead to the contents 
of the field to which the pointer points. 

In all cases, for values to be returned by NEABX appropriate storage space 
must be provided by the caller and a pointer must be passed to NEABX. 

9.7.1 x_attach - Attach a process to NEABX (attach 
process) 

x_attach() attaches the current process to NEABX. The parameters passed in 
the x_attach() call specify: 

– the TS application for which the process is being attached,

– the types of connection setup (passive, active, etc.) possible for the process 
in this TS application,

– the number of connections the process may have simultaneously in this TS 
application. 

The TS application for which the process is being attached has a GLOBAL 
NAME that is unique in the network and one or more T-selectors that are each 
unique in the local system. The T-selectors combine to form the LOCAL NAME. 
The LOCAL NAME must be passed to NEABX as a parameter. With the help of 
the ICMX(L) call t_getloc() and the GLOBAL NAME of the TS application, the 
LOCAL NAME can be queried from the TNSX and placed in a data area. 



U41136-J-Z145-3-76  241

ICMX(NEA) x_attach

Using repeated x_attach() calls, the current process may attach itself to NEABX 
for several different TS applications.

Likewise, several different processes may attach themselves to NEABX for the 
same TS application, i.e. using the same LOCAL NAME. The first process to 
attach itself for a TS application generates the TS application. If you wish to 
attach the same process for the program interfaces ICMX(L) and ICMX(NEA), 
you must call t_attach() and x_attach() with different LOCAL NAMES. 

NEABX accepts connection requests for a TS application from the network as 
soon as a process of the TS application has attached itself to NEABX for the 
acceptance of connection indications, i.e. when X_PASSIVE is specified in 
x_apmode. 

If more than one process has attached itself for a TS application with 
X_PASSIVE, NEABX initially delivers all connection indications for the TS appli-
cation to the process that first attached itself for the TS application with 
X_PASSIVE. Only when the maximum number of connections that this process 
may have for the TS application is attained are arriving connection indications 
delivered to one of the other processes. The order in which this is done is not 
defined. 

#include <cmx.h>
#include <neabx.h>
int x_attach (struct x_myname *name,

struct x_opta1 *x_opt);

-> name 
Pointer to a structure x_myname in which the LOCAL NAME of the TS 
application is to be passed. The LOCAL NAME is returned by the TNSX 
as a property of the GLOBAL NAME. 

-> x_opt 
For x_opt, you may specify a pointer to the structure x_opta1 or NULL. If 
you specify NULL, NEABX uses the defined default values. 

The structure x_opta1 is defined in the file <neabx.h>. 
   struct x_opta1 {
->    int  x_optnr;    /* Option no. */
->    int  x_apmode;   /* Process mode */
->    int  x_conlim;   /* Number of connections */
   };

x_optnr
Option number. Specify X_OPTA1.



242   U41136-J-Z145-3-76

x_attach ICMX(NEA)

x_apmode
x_apmode specifies the types of connection setup possible for the 
process in this TS application. 

Permissible values are: 

X_ACTIVE
The process is to actively set up connections. 

X_PASSIVE
The process is to wait passively for connection requests. 

X_REDIRECT
The process is to accept redirected connections. 

These values may be combined using OR ( | ), e.g. 
X_ACTIVE | X_PASSIVE. 

Default value if NULL specified:

X_ACTIVE | X_PASSIVE | X_REDIRECT 

x_conlim
Maximum number of simultaneous connections that this process 
may have per application.

If x_conlim = T_NOLIMIT is specified, the process may simulta-
neously maintain the maximum number of connections defined 
when installing CMX.

Default value if NULL is specified: T_NOLIMIT 

Return values 

T_OK
The call was successful. The process was the first to attach itself with this 
LOCAL NAME. 

X_NOTFIRST
The call was successful. The process has attached itself as an additional 
process with this LOCAL NAME. 

X_ERROR
Error. Query error code using x_error(). The process is not attached. 



U41136-J-Z145-3-76  243

ICMX(NEA) x_attach

Errors

If an error occurs, the following error values are possible. They can be queried 
by calling x_error(). 

The following error values may occur for error type X_BX3 and error class 
X_NEAERR: 

X_WPARAMETER
The specifications in x_opt have an invalid format or contain illegal 
values. 

The possible error values for error type T_CMXTYPE and error class 
T_CMXCLASS are the same as those listed in the section “t_attach - Attach a 
process to CMX (attach process)” on page 110. 

See also 

x_detach(), t_getloc() 



244   U41136-J-Z145-3-76

x_concf ICMX(NEA)

9.7.2 x_concf - Establish connection (connection 
confirmation) 

x_concf() accepts from NEABX an X_CONCF event that was previously 
reported with x_event(). X_CONCF indicates that the called TS application has 
positively answered a connection request (x_conrq() call) of the current process. 

x_concf() returns: 

– the user data that was sent along by the called TS application. The user data 
must be accepted by the current process, as it contains the NEABV protocol. 
The value NULL is therefore illegal for the option structure. The received 
protocol can be analyzed by calling x_neavi(). 

– the response of the called TS application if the current process proposed the 
exchange of expedited data when issuing the connection request x_conrq(). 

If x_concf() returns the value T_OK, the connection is set up for the current 
process. As soon as a connection is established, the TS application (not CMX) 
has the initiative. It may: 

– send normal data and (if agreed) expedited data, or 

– indicate, through t_event(), that it is ready to receive normal data or (if 
agreed) expedited data, or 

– redirect or close down the connection. 

If NEABX returns the value X_REPEAT, the call was successful, but all user 
data has not yet been passed. You must call x_concf() once more with the same 
parameters as soon as x_event() indicates the event X_REPCCF. Only then will 
the connection be completely established. 

#include <cmx.h>
#include <neabx.h>
int x_concf (int *tref,

struct x_optc1 *x_opt);

-> tref 
Pointer to the transport reference. Here you enter the transport reference 
that you receive when x_event() reports the event X_CONCF. 

<> x_opt 
Pointer to the x_optc1 structure in which NEABX stores the user data. 
x_opt must always be specified, as the NEABV protocol is a part of the 
user data and must always be received. 



U41136-J-Z145-3-76  245

ICMX(NEA) x_concf

The structure x_optc1 is defined in the file <neabx.h>. 
   struct x_optc1 {
->    int   x_optnr;            /* Option no. */
<-    char  *x_udatap;          /* Data buffer */
<>    int   x_udatal;           /* Length of data
                                   buffer */
<-    int   x_xdata;            /* Choice for expedited
                                   data */
<-    int   x_timeout;          /* Inactive time */
<-    char  x_passwd[X_NXPWL];  /* Connection 
                                   password */
<-    int   x_prot;             /* Protocol data
                                   phase */
   };

x_optnr
Option number. Specify: 

X_OPTC1
if space reserved for the NEABX protocol is allowed for in 
x_udatal. 

X_OPTC3
if space reserved for the NEABX protocol is not allowed for 
in x_udatal. 

x_udatap
Pointer to a data area. In this area NEABX enters the user connection 
message of the called TS application. The user connection message 
consists of the NEABV protocol (see section “NEABV protocol” on 
page 232).

The user message contained in the NEABV protocol is supplied in the 
code of the partner. The current transport system on the BS2000 side 
does not supply a connection message delivered using x_concf(). 

x_udatal
Prior to the call the length of the data area provided must be specified 
here.

You must select an area large enough for the user connection message. 
The connection message is at most X_MSG_SIZE bytes long. If the data 
area is smaller than the length of the connection message received, the 
return code will be X_ERROR, and the connection will not be estab-
lished.

In the call, NEABX enters the length of the user connection message 
received. 



246   U41136-J-Z145-3-76

x_concf ICMX(NEA)

x_xdata
Returns the response of the called TS application as to whether 
expedited data may be used. The response is binding. 

Possible values for x_xdata: 

X_YES
The called TS application accepts the proposal for the exchange 
of expedited data. 

X_NO
The use of expedited data is rejected by the partner. 

x_timeout
This field is set to NULL. 

x_passwd
Connection password. In conformity with the ISO standard, no 
connection password is normally delivered for incoming actions. 
x_passwd is set to NULL.

If the value X_SPECIAL was specified for the x_prot parameter in the 
x_conrq() call for this connection, the connection password, if one exists, 
is passed on by NEABX. 

x_prot
Determines whether NEABX protocols are to be used in the data phase. 
For NEA transport systems, this is a local agreement; x_prot contains the 
value that was set in x_conrq(). In the case of ISO transport systems, 
x_prot contains the response (confirmation or rejection) of the partner TS 
application to this proposal. 

Possible values for x_prot are: 

X_NEABX
In the data phase an NEABX protocol will always be sent and 
expected. 

X_NOBX
A NEABX protocol will not be used in the data phase. 

Return values 

T_OK
The call was successful. The connection is fully established. The data 
phase has been reached. 



U41136-J-Z145-3-76  247

ICMX(NEA) x_concf

X_REPEAT
The call was successful. If x_event() indicates the event X_REPCCF, 
x_concf() must be called again. 

X_ERROR
Error. Query error code using x_error(). 

Errors

If an error occurs the following error values are possible. They can be queried 
by calling x_error().

The following error values may occur for error type X_BX3 and error class 
X_NEAERR:

X_BADLEN
Invalid data buffer length in x_udatal. 

X_BADTABLE
The specified transport reference tref is unknown to the migration 
service. It is not present in the relevant table. 

X_BADPRPI
Unknown protocol ID byte received. The protocol element is neither a 
CONNECT ATTENTION nor a CONNECT protocol element. The 
connection can be operated as a pure ISO transport connection; 
however, it is no longer recognized by ICMX(NEA). 

X_BADPVBYTE
Invalid protocol version byte contained in the received NEABX protocol. 

X_NOTCNPE
A CONNECT protocol element was expected, but some other element 
was received. 

X_MAXDAT
More than X_MSG_SIZE bytes of user data were received at connection 
setup. 

X_NOINFO
TIDU length cannot be determined. The connection will be closed down 
again. 

X_NOOPT
No x_opt pointer was specified. 



248   U41136-J-Z145-3-76

x_concf ICMX(NEA)

For error type T_CMXTYPE and error class T_CMXCLASS, the error values 
listed in the section “t_concf - Establish connection (connect confirmation)” on 
page 121 and the following error may occur:

T_WSEQUENCE
No x_concf() may be called for the connection specified in tref.

In addition, the errors listed under ioctl(2) may occur.

See also

x_conrq(), x_error(), x_event(), x_neavi().



U41136-J-Z145-3-76  249

ICMX(NEA) x_conin

9.7.3 x_conin - Receive connection request (connection 
indication)

x_conin() accepts an X_CONIN event previously reported with x_event(). 
X_CONIN indicates that a calling TS application wishes to set up a connection 
to the current process. 

The call returns: 

– the TRANSPORT ADDRESS of the calling TS application, 

– the LOCAL NAME of the local TS application, and 

– the user data that the calling TS application included in the x_conrq() call. 
The user data contains the NEABV protocol. The NEABV protocol can be 
analyzed by calling x_neavi(). 

Subsequently the connection request may be answered (confirmed) with 
x_conrs() or rejected with x_disrq(). 

If NEABX returns the value X_REPEAT following the x_conin() call, the call was 
successful, but NEABX has not yet received all the user data. x_conin must then 
be called once more with the same parameters as soon as x_event() indicates 
the event X_REPCIN. 

#include <cmx.h>
#include <neabx.h>
int x_conin (int *tref,

union x_address *toaddr,
union x_address *fromaddr,
struct x_optc1 *x_opt);

-> tref 
Pointer to the transport reference. Here you enter the transport reference 
that you receive when x_event() reports the event X_CONIN. 

<- toaddr 
Pointer to a union x_address in which NEABX enters the LOCAL NAME 
of the local TS application. This information is important when a process 
controls multiple TS applications. It indicates to which TS application the 
connection request is to be attributed. 



250   U41136-J-Z145-3-76

x_conin ICMX(NEA)

<- fromaddr 
Pointer to a union x_address in which NEABX enters the TRANSPORT 
ADDRESS of the calling TS application.

With the help of the call t_getname() (see section “t_getname - Query 
GLOBAL NAME (get name)” on page 178), the GLOBAL NAME of the 
calling TS application can be determined from the TRANSPORT 
ADDRESS. 

<> x_opt 
Pointer to the structure x_optc1.

With this structure you can query the information that the calling TS appli-
cation included with the connection request.

x_opt must always be specified, as the NEABV protocol is a part of the 
user data and must always be received. The structure x_optc1 is defined 
in the file <neabx.h>. 

struct x_optc1 {
-> int   x_optnr; /* Option no. */
<- char  *x_udatap; /* Data buffer */
<> int   x_udatal; /* Length of data buffer */
<- int   x_xdata; /* Choice for
                              expedited data */
-> int   x_timeout; /* Inactive time */
<- char  x_passwd[4]; /* Connection password */
<> int   x_prot; /* Protocol data phase */

};

x_optnr
Option number. Specify: 

X_OPTC1
if space reserved for the NEABX protocol is allowed for in 
x_udatal.

X_OPTC3
if space reserved for the NEABX protocol is not allowed for 
in x_udatal. 

x_udatap
Pointer to a data area. In this area NEABX enters the user 
connection message of the calling TS application.

The user connection message consists of the NEABV protocol 
(see section “NEABV protocol” on page 232).



U41136-J-Z145-3-76  251

ICMX(NEA) x_conin

The NEABV protocol can be analyzed using the NEABX call 
x_neavi(). 

x_udatal
Prior to the call specify x_udatap as the length of the data area 
provided. You must select an area large enough for the user 
connection message. The connection message is at most 
X_MSG_SIZE bytes long.

If the data area is smaller than the length of the connection 
message received, the return code will be X_ERROR. 

In the call, NEABX enters the length of the user connection 
message received. 

x_xdata
In this field NEABX indicates whether the calling TS application is 
proposing the use of expedited data on this connection. 

Possible values for x_xdata: 

X_YES
It is proposed that expedited data be exchanged. 

X_NO
It is proposed that expedited data not be exchanged. 

x_timeout
This field always contains X_NO. 

x_passwd
Connection password. In conformity with the ISO standard, no 
connection password is normally delivered for incoming actions. 
x_passwd is set to NULL.

If the value X_SPECIAL was specified for the x_prot parameter 
before the x_conin() call, the connection password, if one exists, is 
passed on by NEABX. 

x_prot
Before calling x_conin(), you can specify the value X_SPECIAL for 
this parameter. X_SPECIAL causes NEABX to pass on any 
connection password that has been sent by the calling TS appli-
cation. 

Following the call, x_prot contains the proposal of the partner as 
to whether the NEABX protocol is to be exchanged in the data 
phase. For an NEA transport system, this represents a local 



252   U41136-J-Z145-3-76

x_conin ICMX(NEA)

agreement between the TS application and the CCP. For ISO 
transport systems, the agreement is between the two TS applica-
tions.

Possible values: 

X_NEABX
The NEABX protocol is to be processed in the data phase. 
(Always set locally for NEA transport systems.) 

X_NOBX
No NEABX protocol is to be used in the data phase. 

Return values

T_OK
The call was successful, i.e. the connection request was transferred 
completely.

X_REPEAT
The call was successful. If x_event() indicates the event X_REPCIN, 
x_conin() must be called again. 

X_ERROR
Error. Query error code using x_error().

Errors

If an error occurs the following error values are possible. They can be queried 
by calling x_error(). 

The following error values may occur for error type X_BX3 and error class 
X_NEAERR: 

X_BADLEN
Invalid data buffer length in x_udatal. 

X_BADPRPI
Unknown protocol ID byte received. The protocol element is neither a 
CONNECT ATTENTION nor a CONNECT protocol element. The 
connection can be operated as a pure ISO transport connection; 
however, it is no longer recognized by ICMX(NEA). 

X_BADPVBYTE
Invalid protocol version byte contained in the received NEABX protocol. 



U41136-J-Z145-3-76  253

ICMX(NEA) x_conin

X_BADTABLE
The specified transport reference tref is unknown to the migration 
service. It is not present in the relevant table. 

X_BADTRANS
The transport system on which the connection is to be established is 
unknown. 

X_MAXDAT
More than X_MSG_SIZE bytes of user data were received at connection 
setup. 

X_NOINFO
TIDU length cannot be determined. The connection will be closed down 
again. 

X_NOOPT
No x_opt pointer was specified.

X_NOTCNPE
A CONNECT protocol element was expected, but some other element 
was received. 

X_WPARAMETER
The options specified in x_opt have an invalid format or contain illegal 
values. 

For error type T_CMXTYPE and error class T_CMXCLASS, the error values 
listed in the section “t_concf - Establish connection (connect confirmation)” on 
page 121 and the following error may occur.

T_WSEQUENCE
No x_conin() may be called for the connection specified in tref. 

In addition, the errors listed under ioctl(2) may occur.

See also

x_conrq(), x_error(), x_event() 



254   U41136-J-Z145-3-76

x_conrq ICMX(NEA)

9.7.4 x_conrq - Request connection (connection 
request) 

x_conrq() requests the establishment of a transport connection from the local TS 
application to a called TS application (active connection setup). When x_conrq() 
is called, the current process must pass the TRANSPORT ADDRESS of the 
called TS application and the LOCAL NAME of the calling TS application. The 
TRANSPORT ADDRESS and the LOCAL NAME are returned by the TNSX as 
properties of each GLOBAL NAME. They can be ascertained before the 
x_conrq() call by using the ICMX(L) calls t_getaddr() or t_getloc(). 

More specifically, x_conrq() has the following effects: 

– NEABX creates a Transport Connection Endpoint (TCEP) for the requested 
connection. 

– The called TS application receives the event X_CONIN as a connection 
indication, to which it must respond.

The answer of the called TS application is later indicated to the current 
process by NEABX in an x_event() call as event X_CONCF or X_DISIN. 

– User data is sent to the called TS application along with the connection 
indication in the form of the NEABV protocol. The NEABV protocol can be 
generated with the aid of the ICMX(NEA) call x_neavo(). 

If NEABX returns the value X_REPEAT following the x_conrq() call, NEABX has 
not passed all user data to the transport system. x_conrq() must then be called 
once more with the same parameters as soon as x_event() indicates the event 
X_REPCRQ. 

#include <cmx.h>
#include <neabx.h>
int x_conrq (int *tref,

union x_address *toaddr,
union x_address *fromaddr,
struct x_optc1 *x_opt);

<- tref 
Pointer to the transport reference. The transport reference is entered by 
NEABX at the first x_conrq() call and uniquely identifies the connection 
for NEABX. It must be specified with all calls referring to this connection. 
In particular, the content of tref must be specified in a repeated x_conrq() 
call. 



U41136-J-Z145-3-76  255

ICMX(NEA) x_conrq

-> toaddr 
Pointer to a union in which the TRANSPORT ADDRESS of the called TS 
application is to be specified. x_address is defined in <neabx.h>. 

-> fromaddr 
Pointer to a union in which the LOCAL NAME of the calling TS appli-
cation is to be specified. Apart from cases involving repetition, the same 
LOCAL NAME must be specified here as was specified in the x_attach() 
call for this TS application. x_address is defined in <neabx.h>. 

-> x_opt 
Pointer to the structure x_optc1. This structure can be used to send infor-
mation to the called TS application, which receives the data when it 
receives the connection request.

x_opt must be specified, as the NEABV protocol must always be sent.

The structure x_optc1 is defined in the file <neabx.h>. 

   struct x_optc1 {
->    int   x_optnr;            /* Option no. */
->    char  *x_udatap;          /* Data buffer */
->    int   x_udatal;           /* Length of data
                                   buffer */
->    int   x_xdata;            /* Choice for
                                   expedited data */
->    int   x_timeout;          /* Inactive time */
->    char  x_passwd[X_NXPWL];  /* Connection
                                   password */
->    int   x_prot;             /* Protocol data
                                   phase */
   };

x_optnr
Option number. Specify: 

X_OPTC1
if space reserved for the NEABX protocol is allowed for in 
the length specification in x_udatal. X_OPTC1 must be 
specified if the option number X_OPTRK was specified 
when the x_neavo() routine was called to generate the 
NEABV protocol. 



256   U41136-J-Z145-3-76

x_conrq ICMX(NEA)

X_OPTC3
if the space reserved for the NEABX protocol is not allowed 
for in the length specification in x_udata1. X_OPTC3 must 
be specified if the option number X_OPTRK1 was specified 
when the x_neavo() routine was called to generate the 
NEABV protocol. 

x_udatap
Pointer to a storage area containing data that NEABX passes to 
the called TS application.

The data area contains only the user connection message (not the 
NEABX protocol). The user connection message consists of the 
NEABV protocol (see section “NEABV protocol” on page 232).

The NEABV protocol can also be created and directly passed on 
here by using the NEABX call x_neavo().

x_udatal
Length of the data area x_udatap to be passed by NEABX. When 
option number X_OPTC1 is specified this includes the user 
message plus the space reserved for the NEABX protocol (8 
bytes). When option number X_OPTC3 is specified it includes 
only the user connection message (NEABV protocol). The 
NEABV protocol can be generated using x_neavo() and the length 
returned by x_neavo() can be specified here directly. 

Maximum length:
for X_OPTC1: X_MSG_SIZE
for X_OPTC3: X_MSG_SIZENEU 

Minimum length:
for X_OPTC1: X_RKMSGMIN + 8 bytes

for X_OPTC3: X_RKMSGMIN

x_xdata
In x_xdata the current process proposes to the called TS appli-
cation that the use of expedited data be permitted or ruled out. 

Possible values: 

X_YES
It is proposed that sending and receiving of expedited data 
be permitted. In the case of computer interconnection, 
X_YES must always be specified for communication with 
TIAM, DCAM, UTM and other BS2000 applications. 



U41136-J-Z145-3-76  257

ICMX(NEA) x_conrq

X_NO
The use of expedited data is not permitted.

x_timeout

X_NO
No time monitoring.

n
The connection may be inactive for n seconds. Thereafter 
NEABX will close down the connection. n must be specified 
as a decimal number.

x_passwd
Connection password. For partner applications that require a 
password specify four bytes of binary information. If you do not 
wish to include a connection password, specify NULL for 
x_passwd. To comply with the ISO standard, NULL should be 
specified for this field. 

x_prot
In x_prot the current process proposes whether or not the NEABX 
protocol is to be used in the data phase. For NEA transport 
systems, this is a local agreement, i.e. the proposal is always 
confirmed in the x_concf() call. In the case of ISO transport 
systems, the proposal is delivered to the partner TS application, 
which may either confirm or reject it. The response is delivered to 
the current process with x_concf(). 

Possible values: 

X_NEABX or NULL 
The NEABX protocol is to be processed in the data phase. 

X_NOBX
The NEABX protocol is not to be used in the data phase. 

The following value may be specified in addition to 
X_NEABX or X_NOBX by combining it with a OR ( | ) 
operator. 

X_SPECIAL
ICMX(NEA) handles the following points in a special way:

– The connection password of the partner TS application, 
if one arrives, is passed on to the current process in the 
x_concf() call of this connection. 



258   U41136-J-Z145-3-76

x_conrq ICMX(NEA)

– Transport acknowledgment requests are not handled 
by NEABX in the data phase of this connection, but are 
passed on to the current process, which must then 
send, and can also request, transport acknowledg-
ments itself. 

Return values 

T_OK
The call was successful. The connection request was completely trans-
ferred to the transport system. 

X_REPEAT
The call was successful. If x_event() indicates the event X_REPCRQ, 
x_conrq() must be called again with the same parameters. 

X_DATASTOP
The call was successful. All user data has been sent. In a subsequent 
data phase, processing must first wait for the event X_DATAGO. 

X_ERROR
Error. Query error code using x_error(). 

Errors

If an error occurs the following error values are possible. They can be queried 
by calling x_error(). 

The following error values may occur for error type X_BX3 and error class 
X_NEAERR:

X_BADLEN
Invalid data buffer length in x_udatal 

X_BADPROT
x_prot does not contain one of the values X_NEABX, X_NOBX or NULL. 

X_BADTABLE
The tref specified in the repeated x_conrq() is unknown to NEABX. It was 
not found in the corresponding table. 

X_BADTRANS
The transport system on which the connection is to be established is 
unknown. 

X_NOOPT
No x_opt pointer was specified. 



U41136-J-Z145-3-76  259

ICMX(NEA) x_conrq

For error type T_CMXTYPE and error class T_CMXCLASS, the error values 
listed in the section “t_concf - Establish connection (connect confirmation)” on 
page 121 may occur.

In addition, the errors listed under ioctl(2) may occur. 

See also

x_attach(), x_error(), x_concf(), x_event(), t_getaddr(), t_getloc 



260   U41136-J-Z145-3-76

x_conrs ICMX(NEA)

9.7.5 x_conrs - Respond to connection request 
(connection response) 

x_conrs() is used by the called TS application to accept (confirm) the connection 
request of a calling TS application, the connection request having been previ-
ously indicated to the current process in x_event(), with the event X_CONIN. The 
current process must accept the X_CONIN event with x_conin() (passive 
connection setup) before calling x_conrs(). This connection response (i.e. confir-
mation) is delivered to the calling TS application with the event X_CONCF. 

With the response x_conrs() 

– user data must be passed to NEABX. The user data is passed in the form of 
the NEABV protocol. The NEABV protocol can be generated with the help 
of the ICMX(NEA) call x_neavo(). 

– the connection is completely set up for the current process. 

The successful completion of a x_conrs() call indicates that the connection has 
been set up. The initiative is now with the TS application. It can: 

– send normal data as well as expedited data (if agreed), or 

– indicate with x_event() that it is ready to receive normal data or expedited 
data (if agreed). 

– close down or redirect the connection. 

#include <cmx.h>
#include <neabx.h>
int x_conrs (int *tref,

struct x_optc1 *x_opt);

-> tref 
Pointer to the transport reference. Here you enter the transport reference 
that you receive when the x_event() call reports the event X_CONIN. 

-> x_opt 
Pointer to the structure x_optc1. x_opt must always be specified, as the 
NEABV protocol must be passed. 



U41136-J-Z145-3-76  261

ICMX(NEA) x_conrs

The structure x_optc1 is defined in the file <neabx.h>. 

   struct x_optc1 {
->    int   x_optnr;            /* Option no. */
->    char  *x_udatap;          /* Data buffer */
->    int   x_udatal;           /* Length of data
                                   buffer */
->    int   x_xdata;            /* Choice for expedited
                                   data */
->    int   x_timeout;          /* Inactive time */
->    char  x_passwd[X_NXPWL];  /* Connection password */
->    int   x_prot;             /* Protocol data phase */
   };

x_optnr
Option number. Specify: 

X_OPTC1
if space reserved for the NEABX protocol is allowed for in 
x_udatal. X_OPTC1 must be specified if the option number 
X_OPTRK was specified when the x_neavo() routine was 
called to generate the NEABV protocol. 

X_OPTC3
the space reserved for the NEABX protocol is not allowed 
for in the length specification in x_udata1.

 X_OPTC3 must be specified if the option number 
X_OPTRK1 was specified when the x_neavo() routine was 
called to generate the NEABV protocol. 

x_udatap
Pointer to a storage area containing data that NEABX passes to 
the calling TS application. The data area contains only the user 
connection message (not the NEABX protocol). The user 
connection message consists of the NEABV protocol (see section 
“NEABV protocol” on page 232). The NEABV protocol can also be 
created and passed on directly by using the NEABX call x_neavo().

x_udatal
Length of the data area x_udatap to be passed by NEABX. When 
option number X_OPTC1 is specified this includes the user 
connection message plus the space reserved for the NEABX 
protocol (8 bytes). When option number X_OPTC3 is specified it 



262   U41136-J-Z145-3-76

x_conrs ICMX(NEA)

includes only the user connection message (NEABV protocol). If 
the NEABV protocol is generated using x_neavo(), the length 
returned by x_neavo() can be specified here directly. 

Maximum length:
for X_OPTC1: X_MSG_SIZE
for X_OPTC3: X_MSG_SIZENEU 

Minimum length:
for X_OPTC1: X_RKMSGMIN + 8 bytes

for X_OPTC3: X_RKMSGMIN

x_xdata
In x_xdata the current process responds to the proposal of the 
calling TS application regarding the use of expedited data. The 
response is binding. If the proposal of calling TS application was 
X_NO, the response must be X_NO. 

Possible values: 

X_YES
Proposal to send and receive expedited data is accepted.

X_YES must generally be specified for communication with 
TIAM, DCAM, and UTM applications in BS2000/OSD. 

X_NO
Use of expedited data is rejected.

x_timeout
The contents of this field are irrelevant. 

x_passwd
Connection password. You may specify four bytes of binary infor-
mation. If you do not wish to include a connection password, 
specify NULL for x_passwd. 

x_prot
Response to the proposal as to whether or not the NEABX 
protocol is to be used in the data phase. In the case of NEA 
transport systems, this is always a local agreement; for ISO 
transport systems, the exchange of the NEABX protocol is 
negotiated with the partner TS application. 



U41136-J-Z145-3-76  263

ICMX(NEA) x_conrs

Possible values: 

X_NEABX or NULL 
The proposal to process the NEABX protocol in the data 
phase is accepted. X_NEABX must always be specified for 
connections to DCAM, TIAM, and UTM applications. 

X_NOBX
NEABX protocols will not be used in the data phase. 

The following value may be specified in addition to 
X_NEABX or X_NOBX by combining it with an OR ( | ) 
operator. 

X_SPECIAL
Transport acknowledgment requests are not handled by 
NEABX in the data phase of this connection, but are 
passed on to the current process, which must then send, 
and can also request, transport acknowledgments itself. 

Return values 

T_OK
The call was successful. The connection is fully established. 

X_DATASTOP
The call was successful. All user data was sent. In a subsequent data 
phase, processing must first wait for the event X_DATAGO. 

X_ERROR
Error. Query error code using x_error(). 

Errors

If an error occurs the following error values are possible. They can be queried 
by calling x_error()

The following error values may occur for error type X_BX3 and error class 
X_NEAERR:

X_BADLEN
Invalid data buffer length in x_udatal. 

X_BADPROT
x_prot does not contain one of the values X_NEABX, X_NOBX or NULL. 



264   U41136-J-Z145-3-76

x_conrs ICMX(NEA)

X_BADTABLE
The specified tref is unknown to the migration service. It was not found in 
the relevant table. 

X_NOINFO
TIDU length cannot be determined. The connection was closed down 
again. 

X_NOOPT
No x_opt pointer was specified. 

For error type T_CMXTYPE and error class T_CMXCLASS, the error values 
listed in the section “t_concf - Establish connection (connect confirmation)” on 
page 121 and the following error may occur: 

T_WSEQUENCE
No x_conrs() may be called for the connection specified in tref. 

In addition, the errors listed under ioctl(2) may occur. 

See also

x_conin(), x_error(), x_event() 



U41136-J-Z145-3-76  265

ICMX(NEA) x_datago

9.7.6 x_datago - Release the flow of data (datago) 

x_datago() releases the blocked flow of data on the specified connection. The 
current process informs NEABX that it is again ready to receive data. This call 
also releases the flow of expedited data (if it is being used) if it (also) had been 
blocked. 

More specifically, the call has the following effects: 

– The current process can again receive the events X_DATAIN and 
X_XDATIN for the specified connection, if they are waiting. 

– The sending TS application receives the event X_DATAGO. It may again 
send data. 

#include <cmx.h>
#include <neabx.h>
int x_datago (int *tref);

-> tref 
Pointer to the transport reference. Here you enter the transport reference 
of the connection for which you wish to release the flow of data. 

Return values 

T_OK
The call was successful. The blocked data flow has been released. 

X_ERROR
Error. Query error code using x_error(). 

Errors

If an error occurs the following error values are possible. They can be queried 
by calling x_error(). 

The following error values may occur for error type X_BX3 and error class 
X_NEAERR: 

X_BADTABLE
The specified tref is not contained in the table of connections known to 
NEABX. It is either not assigned to a connection, or the associated 
connection was not set up via ICMX(NEA). 



266   U41136-J-Z145-3-76

x_datago ICMX(NEA)

For error type T_CMXTYPE and error class T_CMXCLASS, the error values 
listed in the section “t_concf - Establish connection (connect confirmation)” on 
page 121 and the following error may occur: 

T_WSEQUENCE
The connection specified in tref is not yet fully established. 

In addition, the errors listed under ioctl(2) may occur. 

See also 

x_datastop(), x_xdatstop(), x_error(), x_event() 



U41136-J-Z145-3-76  267

ICMX(NEA) x_datain

9.7.7 x_datain - Receive data (data indication) 

x_datain() is called by the current process to fetch a X_DATAIN event previously 
reported with x_event(). By means of this call the current process receives on the 
specified connection a data unit (TIDU) belonging to the message that is 
currently being transmitted (TSDU) by the sending TS application. 

x_chain indicates whether or not an additional TIDU belonging to the TSDU 
exists. Each additional TIDU is indicated by NEABX with a new X_DATAIN 
event. 

The length of a TIDU depends on the transport system used. The TIDU length 
for a connection that has already been set up can be queried by calling x_info().
A TIDU need not be completely full. The breakdown of a TSDU into TIDUs is 
purely local and does not indicate anything regarding the breakdown of the 
TSDU into TIDUs at the sending TS application. 

A TIDU received using x_datain() may be longer or shorter than the TIDU sent 
with x_datarq(). If it is shorter, X_MORE appears in the x_chain indicator, and 
x_event() indicates with the event X_DATAIN that further data is ready to be 
received. 

If you are not ready to receive data, you can stop the flow of data with 
x_datastop(). You thereby prevent NEABX from delivering the event X_DATAIN 
to the local TS application. A data unit that has already been indicated with 
X_DATAIN, however, must always be completely fetched. 

If the handling of transport acknowledgments in the TS application was 
negotiated at connection setup, the return value X_ERROR with the error code 
X_QUITPE (queried with the x_error() call) indicates that a transport acknowl-
edgment has arrived for the current process. The option members x_quit and 
x_seqno are then supplied accordingly. 

#include <cmx.h>
#include <neabx.h>
int x_datain (int *tref,

char *x_datap,
int *x_datal,
int *x_chain,
x_optd *x_opt);

-> tref 
Pointer to the transport reference. Here you enter the transport reference 
that you receive when x_event() reports the event X_DATAIN. 



268   U41136-J-Z145-3-76

x_datain ICMX(NEA)

<- x_datap 
Pointer to a storage area in which NEABX enters the data received.

If x_opt is equal to NULL, NEABX passes all received data to the local TS 
application.

If x_opt is not equal to NULL, prior to passing the data to the local TS 
application NEABX deals with the NEABX protocol in accordance with 
the specified option number: 

X_OPTD1:
The storage area must contain space reserved for the NEABX 
protocol (mode compatible with CMX V2.1). 

X_OPTD2:
The NEABX protocol is invisible to the TS application. 

X_OPTD3:
The NEABX protocol is placed at the beginning of the data area 
and the length of the protocol is recorded in the x_offset member 
of the x_optd3 structure, thus informing the TS application as to 
where the net message begins. 

<> x_datal 
Prior to the call specify the length of the data area x_datap. This must be 
at least the length of one data unit, whose size you must ascertain for 
each transport connection by means of x_info(). In the call NEABX enters 
the number of bytes entered that are passed to the local TS application. 
The length returned always refers to just the net data length, even when 
using option X_OPTD3. 

<- x_chain 
Pointer to an indicator used by NEABX to show whether there are 
additional TIDUs belonging to the TSDU. 

The following values are possible: 

X_MORE
At least one TIDU belonging to the TSDU follows. For each 
additional TIDU, NEABX reports a separate X_DATAIN event. 

X_END
No further TIDU exists. The TSDU has been completely trans-
ferred. 



U41136-J-Z145-3-76  269

ICMX(NEA) x_datain

<> x_opt 
Pointer to a union x_optd containing one of the structures x_optd1, x_optd3 
or the specification NULL. The x_opt specification is mandatory if the use 
of the NEABX protocol in the data phase was agreed for the connection 
and the first TIDU of a TSDU is being received. NULL must be specified 
if an additional TIDU of a TSDU is to be received, i.e. the preceding TIDU 
on this connection was received with *x_chain = X_MORE, at connection 
setup it was agreed that NEABX protocols would not be used in the data 
phase. 

The structures x_optd1 and x_optd3 and the union x_optd are defined in 
the file <neabx.h>.

   struct x_optd1 {
->    int   x_optnr;    /* Option number,
                           X_OPTD1, X_OPTD2 */
<-    int   x_code;     /* Message code */
<-    int   x_strukt;   /* Message structure */
<-    int   x_quit;     /* Transport acknowledgments */
<-    short x_seqno;    /* Message sequence numbers */
   };
   struct x_optd3 {
->    int   x_optnr;    /* Option number, X_OPTD3 */
<-    int   x_code;     /* Message code */
<-    int   x_strukt;   /* Message structure */
<-    int   x_quit;     /* Transport acknowledgments */
<-    short x_seqno;    /* Message sequence numbers */
<-    int   x_offset;   /* Offset to the start of data */
   };

x_optnr
Option number. Possible values: 

X_OPTD1 or X_OPTD2 for x_optd1 
X_OPTD3 for x_optd3

The meanings of the values are described under x_datap. 

x_code
Designates the message code. The meanings are given below: 

X_ASCII
The arriving data is coded in ASCII. 

X_EBCDIC
The arriving data is coded in EBCDIC. 



270   U41136-J-Z145-3-76

x_datain ICMX(NEA)

X_TRANS (= X_EBCDIC) 
The arriving data is transparent. 

X_UNDEF
NEABX has no information about the code. The data is 
encoded as sent by the partner. 

With ISO-CCP and NEA-CCP connections a user services 
protocol is present in the code in which it was sent by the 
partner. User services protocols are thus transparent. 

x_strukt
Message structure. The following values are possible: 

X_ETB
A further group element of the subgroup follows. 

X_ETX
Last or only group element of a subgroup; further subgroup 
follows. 

X_ETBEOT
Last group element of a group. 

X_ETXEOT
Last or only subgroup of a group. 

x_quit
Is only relevant if the handling of transport acknowledgments in 
the TS application was specified at connection setup. 

If a DATA protocol element was received, the following values are 
possible for x_quit: 

0  No acknowledgment requested. 

1  A transport acknowledgment is requested. 

If an acknowledgment protocol element was received (return 
value X_ERROR with error code X_QUITPE), the possible values 
for x_quit are: 

1  Positive acknowledgment received. 

2  Negative acknowledgment received. 

x_seqno
Contains the message sequence number, provided x_quit is not 
NULL. 



U41136-J-Z145-3-76  271

ICMX(NEA) x_datain

x_offset
In this field NEABX returns the length of the NEABX protocol. The 
TS application is thus informed as to where the net message 
begins. x_offset specifies the offset from x_datap at which the net 
data begins. 

Return values 

T_OK
The data unit has been completely read. 

X_DATASTOP
The data has been fully accepted by the transport system, but a block on 
the sending of data was indicated when attempting to send a transport 
acknowledgment needed in the NEABX protocol. It is necessary to wait 
for the event X_DATAGO. 

X_ERROR
Error. Query error code using x_error(). 

Errors

If an error occurs the following error values are possible. They can be queried 
by calling x_error()

The following error values may occur for error type X_BX3 and error class 
X_NEAERR:

X_BADLEN
Invalid data buffer length in x_udatal 

X_BADTABLE
The specified transport reference tref is unknown to the migration 
service. It is not present in the relevant table. 

X_NOTDTPE
DATA protocol element expected but not received. 

X_QUITPE
x_datain() received an acknowledgment protocol element. The option 
members x_quit and x_seqno are supplied accordingly. 

X_BADDTPELI
The length of the DATA protocol element specified in the received 
NEABX protocol is invalid. 



272   U41136-J-Z145-3-76

x_datain ICMX(NEA)

X_WPARAMETER
Invalid parameter; an invalid value was specified in x_optnr. 

X_WXOPT
Invalid x_opt specification:

x_opt != NULL, although no NEABX protocol;

x_opt != NULL, although second and subsequent TIDU being received

x_opt = NULL, although NEABX protocol agreed, and first 

TIDU of the TSDU being received. 

For error type T_CMXTYPE and error class T_CMXCLASS, the error values 
listed in the section “t_datain - Receive data (data indication)” on page 138 and 
in the section “t_vdatain - Receive data (data indication)” on page 198 and the 
following error value may occur:

T_WSEQUENCE
The connection specified in tref has not yet been fully established. 

In addition, the errors listed under ioctl(2) may occur.

See also

x_error(), x_event(), x_info() 



U41136-J-Z145-3-76  273

ICMX(NEA) x_datarq

9.7.8 x_datarq - Send data (data request) 

x_datarq() is used to send the next Transport Interface Data Unit (TIDU) of a 
Transport Service Data Unit (TSDU) to the receiving TS application. With tref 
you specify the connection on which you wish to send the data. x_info() returns 
the maximum length of a data unit that may be sent on this connection. The 
maximum length depends on the transport system used. 

If the message that you wish to send is longer than one data unit, you will have 
to call x_datarq() several times in succession. By means of the indicator x_chain 
you inform NEABX whether or not additional data units belonging to the 
message follow. 

If x_datarq() returns X_DATASTOP, the data unit has been accepted but the flow 
of data for the connection is blocked. This may occur on the initiative of the 
receiving TS application, by means of x_datastop(), or it may be brought about 
by NEABX, if the local buffer is in danger of overflowing. In such cases you must 
wait, with x_event(), for the event X_DATAGO before sending more data on the 
connection. 

#include <cmx.h>
#include <neabx.h>
int x_datarq (int *tref,

char *x_datap,
int *x_datal,
int *x_chain,
x_optd *x_opt);

-> tref 
Pointer to the transport reference. Here you specify the transport 
reference of the connection on which you wish to send data. 

-> x_datap 
Pointer to a storage area containing the data that you wish to send. If 
x_opt is not equal to NULL, the quantity of data sent corresponds to that 
specified below for the option number used. In any case, the values 
specified by the TS application need only refer to the net data. The TS 
application knows nothing about any prefixed protocols. 



274   U41136-J-Z145-3-76

x_datarq ICMX(NEA)

-> x_datal 
Pointer to the length specification *x_data1. The following should be 
noted for the length specification *x_datal: 

– If at connection setup it was agreed that no NEABX protocols would 
be exchanged during the data phase (x_opt = NULL), *x_datal corre-
sponds exactly to the length of the data to be sent in x_datap. The 
following applies: 

Maximum value in *x_datal = x_maxl - X_DRQPHL

Minimum value in *x_datal = 1 byte (send 1 byte of data) 

x_maxl is the TIDU length (maximum length of a data unit). It can be 
obtained via x_info(). 

– If at connection setup it was agreed that the exchange of NEABX 
protocols during the data phase was to take place, the data length to 
be specified depends on the option number x_optnr specified in x_opt. 
The following applies if 

x_optnr = X_OPTD1 
*x_datal must be specified to be X_DRQPHL bytes larger than 
the size needed for the net data to be sent. However, the 
storage space of the application is not utilized in forming the 
protocol (mode compatible with CMX V2.1).

Maximum value for *x_datal = x_maxl.

Minimum value for *x_datal = X_DRQPHL. 

x_optnr = X_OPTD2 
*x_datal contains only the net data length. The storage space 
of the TS application need not include any space reserved for 
the NEABX protocol.

Maximum value for *x_datal = x_maxl - X_DRQPHL.

Minimum value for *x_datal = 0 bytes. 

x_optnr = X_OPTD3 
*x_datal contains only the net data length. In the x_offset 
member of the option structure the TS application records the 
offset from x_datap at which the net data begins. This offset 
must be equal to X_DRQPHL.

Maximum value for *x_datal = x_maxl - X_DRQPHL.

Minimum value for *x_datal = 0 bytes. 



U41136-J-Z145-3-76  275

ICMX(NEA) x_datarq

x_opt = NULL 
*x_datal contains only the net data length. The storage space 
of the TS application need not include any space reserved for 
the NEABX protocol.

Maximum value for *x_datal = x_maxl - X_DRQPHL.

Minimum value for *x_datal = 1 byte 

x_maxl is the TIDU length (maximum length of a data unit). It 
can be obtained via x_info(). 

-> x_chain 
Pointer to an indicator used to indicate to NEABX whether or not there 
are additional data units belonging to the message. 

The following values are possible: 

X_MORE
Additional data units of the message follow. x_datarq() must be 
called again for each data unit. 

X_END
There are no further data units present. The message has been 
completely transferred. 

-> x_opt 
Pointer to a union x_optd containing one of the structures x_optd1 or 
x_optd3, or the specification NULL.

The x_opt specification is mandatory if the use of the NEABX protocol in 
the data phase was agreed for the connection and the first TIDU of a 
TSDU is being sent. NULL must be specified and is only permitted if 

a) an additional data unit of a message is to be sent, i.e. the previous 
data unit was sent with *x_chain = X_MORE; 

b) at connection setup it was agreed that NEABX protocols would not be 
used in the data phase. 



276   U41136-J-Z145-3-76

x_datarq ICMX(NEA)

The structures x_optd1 and x_optd3 and the union x_optd are defined in 
the file <neabx.h>. 

   struct x_optd1 {
->    int   x_optnr;    /* Option number,
                           X_OPTD1, X_OPTD2 */
->    int   x_code;     /* Message code */
->    int   x_strukt;   /* Message structure */
->    int   x_quit;     /* Transport acknowledgments */
->    short x_seqno;    /* Message sequence numbers */
   };
   struct x_optd3 {
->    int   x_optnr;    /* Option number, X_OPTD3 */
->    int   x_code;     /* Message code */
->    int   x_strukt;   /* Message structure */
->    int   x_quit;     /* Transport acknowledgments */
->    short x_seqno;    /* Message sequence numbers */
->    int   x_offset;   /* Offset to the start of
                           data */
   };

x_optnr
Option number. Possible values: 

X_OPTD1 or X_OPTD2 for x_optd1
X_OPTD3 for x_optd3 

The meanings of the values are described under x_datal. 

x_code
Designates the message code for the data in x_datap: 

X_ASCII
The data to be sent is coded in ASCII. 

X_EBCDIC
The data to be sent is coded in EBCDIC. 

X_TRANS
The data to be sent is transparent. 

The data must be in the code expected by the partner. 

With ISO and NEA connections any user services protocol 
included must be in the code that the partner expects. User 
services protocols are thus transparent. 



U41136-J-Z145-3-76  277

ICMX(NEA) x_datarq

x_strukt
Message structure.

Specify X_ETXEOT.

x_quit
Is only relevant if the handling of transport acknowledgments in 
the TS application was specified at connection setup. 

If data is to be sent (x_datal != 0), the acknowledgment request bit 
QVBIT is set in the NEABX protocol. 

If no user data is to be sent (x_datal = 0 or less), the following 
values are possible for x_quit: 

0  Error 

1  Positive transport acknowledgment sent. 

2  Negative transport acknowledgment sent. 

x_seqno
Contains the message sequence number, provided x_quit is not 
NULL. 

x_offset
In the x_offset member the TS application records the offset from 
x_datap at which the net data begins. This offset must be equal to 
X_DRQPHL. 

Return values 

T_OK
The call was successful. 

X_DATASTOP
The call was successful, but you may not send further data until the event 
X_DATAGO arrives. 

X_ERROR
Error. Query error code using x_error(). 

Errors

If an error occurs the following error values are possible. They can be queried 
by calling x_error().



278   U41136-J-Z145-3-76

x_datarq ICMX(NEA)

The following error values may occur for error type X_BX3 and error class 
X_NEAERR: 

X_BADLEN
Invalid data buffer length in x_udatal. 

X_BADTABLE
The specified transport reference tref is unknown to the migration 
service. It is not present in the relevant table. 

X_BADXCODE
The value in x_code is invalid. 

X_WPARAMETER
Invalid parameter; an incorrect value was specified for x_optnr. 

X_WXOPT
Invalid x_opt specification:

x_opt != NULL, although no NEABX protocol;

x_opt != NULL, although second and subsequent TIDU being sent

x_opt = NULL, although NEABX protocol agreed, and first 

TIDU of the TSDU being sent. 

X_BADSTRUKT
No legal value was specified in x_strukt.

For error type T_CMXTYPE and error class T_CMXCLASS, the error values 
listed in the section “t_datarq - Send data (data request)” on page 141 and in 
the section “t_vdatarq - Send data (data request)” on page 201 and the following 
error may occur: 

T_WSEQUENCE
The connection specified in tref has not yet been fully established. 

In addition, the errors listed under ioctl(2) may occur.

See also

x_datastop(), x_error(), x_event(), x_info(), x_xdatstop() 



U41136-J-Z145-3-76  279

ICMX(NEA) x_datastop

9.7.9 x_datastop - Stop the flow of data (data stop) 

x_datastop() blocks the flow of data on the specified connection. 

In particular, the effects of x_datastop() are: 

– The current process tells CMX that, until further notice, it is not ready to 
receive data for this connection. However, a X_DATAIN event that has 
already been indicated must first be accepted with x_datain(). 

– The current process no longer receives the event X_DATAIN for the 
specified connection. However, while the data flow is blocked it may call 
other CMX functions, e.g. to set up, close down or redirect another 
connection. It may also send data on the specified connection itself, 
provided no block on sending data was set for it (X_DATASTOP). 

– The sending TS application receives (during this period) the return value 
T_DATASTOP when it calls x_datarq(). It may not send any more data (see 
also section “Transport system specific features” on page 103.) 

The flow of data is released with x_datago().

Expedited data is not affected by x_datastop(). 

#include <cmx.h>
#include <neabx.h>
int x_datastop (int *tref);

-> tref 
Pointer to the transport reference. Here you enter the transport reference 
of the connection for which you wish to stop the flow of data. 

Return values 

T_OK
The call was successful. 

X_ERROR
Error. Query error code using x_error(). 



280   U41136-J-Z145-3-76

x_datastop ICMX(NEA)

Errors

If an error occurs the following error values are possible. They can be queried 
by calling x_error(). 

The following error values may occur for error type X_BX3 and error class 
X_NEAERR: 

X_BADTABLE
The specified transport reference tref is unknown to the migration 
service. It is not present in the relevant table. 

For error type T_CMXTYPE and error class T_CMXCLASS, the error values 
listed in the section “t_datastop - Stop the flow of data (data stop)” on page 144 
and the following error may occur: 

T_WSEQUENCE
The connection specified in tref has not yet been fully established. 

In addition, the errors listed under ioctl(2) may occur. 



U41136-J-Z145-3-76  281

ICMX(NEA) x_detach

9.7.10 x_detach - Detach from NEABX (detach process) 

x_detach() detaches the current process for the specified TS application from 
NEABX. If connections still exist for this process, they are closed down implicitly 
by NEABX. Normally though, all connections should be closed down with 
x_disrq() before calling x_detach(). When the last process of a TS application has 
been detached, the TS application is unknown to NEABX. Connection requests 
for that TS application will then no longer be accepted. 

#include <cmx.h>
#include <neabx.h>
int x_detach (struct x_myname *name,

struct x_opta1 *x_opt);

-> name 
Pointer to the structure t_myname in which the LOCAL NAME of the TS 
application is to be specified. The specified LOCAL NAME must be the 
same as the one given when x_attach() was called. 

-> opt 
Must be set to NULL. 

Return values 

T_OK
The call was successful. 

X_ERROR
Error. Query error code using x_error(). 

Errors

If an error occurs the following error values are possible. They can be queried 
by calling x_error().

For error type T_CMXTYPE and error class T_CMXCLASS, the error values 
listed in the section “t_detach - Detach a process from a TS application (detach 
process)” on page 146 may occur. 

In addition, the errors listed under ioctl(2) may occur. 

See also 

x_attach(), x_error() 



282   U41136-J-Z145-3-76

x_disin ICMX(NEA)

9.7.11 x_disin - Accept disconnection (disconnection 
indication) 

You call x_disin() when you have received the event X_DISIN. If you do not call 
x_disin(), NEABX still closes down the connection. With x_disin() you learn 
whether the connection was closed down by NEABX or by the remote TS appli-
cation. 

In addition, x_disin() returns: 

– the user data sent by the remote TS application, if the disconnection was 
initiated by the remote TS application and if the transport system used 
provides this option; 

– the reason for closing the transport connection, if the X_DISIN event was 
initiated by NEABX or by the transport system.

The reason for the disconnection is returned by x_disin() in hexadecimal 
form. The plain English form of the code can be obtained with the aid of the 
ICMX(L) function t_preason() or t_strreason(). 

#include <cmx.h>
#include <neabx.h>
int x_disin (int *tref,

int *reason,
struct x_optc2 *x_opt);

-> tref 
Pointer to the transport reference. Here you enter the transport reference 
that you obtain if x_event() reports the event X_DISIN. 

<- reason 
Pointer to a field containing the reason for the disconnection. The value 
returned is either T_USER (the communication partner closed down the 
connection) or the disconnection reason of CMX or the CCPs, if CMX 
closed down the connection. The values returned by CMX or the CCPs 
are described in the appendix. 

<> x_opt 
Pointer to the structure x_optc2. With this structure you can check the 
information that the remote TS application sent when it closed down the 
connection. If instead of a pointer you specify NULL, NEABX discards 
the information sent.



U41136-J-Z145-3-76  283

ICMX(NEA) x_disin

At present, no information can be sent by any of the possible partner TS 
applications, since the partner transport systems are not yet provided 
with an interface to transmit user data. 

The structure x_optc2 is defined in the file <neabx.h>. 

   struct x_optc2 {
->    int   x_optnr;     /* Option no. */
<-    char  *x_udatap;   /* Data buffer */
<>    int   x_udatal;    /* Length of the data buffer */
   };

x_optnr
Option number. Specify X_OPTC2. 

x_udatap
Pointer to a data area. In this area NEABX enters the user data 
that the remote TS application sent when it closed down the 
connection. 

x_udatal
Prior to the call, specify the length of the allocated data area 
x_udatap. The area must be large enough to accommodate the 
received user data. The maximum permissible user data length 
depends on the transport system used. X_MSG_SIZE is a 
suitable maximum size for all transport systems. After the call, the 
length of the received user data will be contained in x_udatal. 

Return values 

T_OK
The call was successful. 

X_ERROR
Error. Query error code using x_error(). 

Errors

For error type T_CMXTYPE and error class T_CMXCLASS, the error values 
listed in section “t_disin - Accept disconnection (disconnection indication)” on 
page 148 may occur. They can be queried by calling x_error(). 

In addition, the errors listed under ioctl(2) may occur.



284   U41136-J-Z145-3-76

x_disin ICMX(NEA)

See also

x_detach(), x_disrq(), x_event() 



U41136-J-Z145-3-76  285

ICMX(NEA) x_disrq

9.7.12 x_disrq - Close down connection (disconnection 
request)

With x_disrq() you can: 

– close down an existing connection, or 

– reject the connection request of a remote TS application. 

In both cases a disconnect indication (X_DISIN) and the reason for discon-
nection T_USER are delivered to the remote TS application. Either TS appli-
cation may close down the connection, regardless of which one actively set it 
up. If the x_disrq() call is successful, the connection is closed down. NEABX can 
also close down connections, if NEABX-internal reasons demand this. 

The x_disrq() call may overtake data units that were sent earlier but are still in 
transit. These data units are then lost. To prevent this, you may e.g. stipulate 
logical acknowledgments and call x_disrq() only when you have received a 
positive acknowledgment for the last sent TIDU. 

No user data can be passed to the remote TS application when closing down 
the connection, since DCAM does not offer an interface at which user data can 
be passed to the application. 

#include <cmx.h>
#include <neabx.h>
int x_disrq (int *tref,

struct x_optc2 *x_opt);

-> tref 
Pointer to the transport reference. Here you enter the transport reference 
of the connection that you wish to close down. In case you wish to reject 
a connection request indicated by x_event() with the event X_CONIN, 
x_event() also returns the transport reference of the connection 
concerned. 

-> x_opt 
For x_opt, specify the NULL pointer.

User data cannot be passed for TS applications in BS2000/OSD via 
BCAM. 



286   U41136-J-Z145-3-76

x_disrq ICMX(NEA)

Return values 

T_OK
The call was successful. 

X_ERROR
Error. Query error code using x_error(). 

Errors

If an error occurs the following error values are possible. They can be queried 
by calling x_error(). 

The following error values may occur for error type X_BX3 and error class 
X_NEAERR: 

X_WXOPT
Invalid specification for x_opt: NULL must be specified for x_opt. 

For error type T_CMXTYPE and error class T_CMXCLASS, the error values 
listed in the section “t_disrq - Close down connection (disconnection request)” 
on page 151 may occur. 

In addition, the errors listed under ioctl(2) may occur. 

See also 

x_conin(), x_disin(), x_event(), x_error() 



U41136-J-Z145-3-76  287

ICMX(NEA) x_error

9.7.13 x_error - Query error codes (error) 

x_error() returns diagnostic information when a NEABX call returns X_ERROR. 

The possible messages for the calls to ICMX(NEA) are generated either in the 
NEABX library in the user process or in the operating system kernel. The 
messages from the operating system kernel can be further differentiated 
according to whether they are generated in NEABX or CMX itself or result from 
operating system calls. 

The error messages generated by NEABX are returned by x_error() in 
hexadecimal form. Error codes of error type X_BX3 and error class X_NEAERR 
can be converted to plain English with the aid of the calls x_strerror() and 
x_perror(). x_strerror() returns a pointer to a static area that contains the plain 
English form of the error message.

x_perror() writes the plain English form of an error message to stderr. 

The hexadecimal error code can also be decoded by using the cmxdec 
command (see the “CMX, Operation and Administration” manual [1] or [2]). 

The format of error messages is described in the section “Error handling” on 
page 40. 

#include <cmx.h>
#include <neabx.h>
int x_error (void);

Return values 

The value returned by x_error() is the hexadecimal code for the error message 
generated by NEABX (error type, error class, error value). The error messages 
are defined in <neabx.h>. A list of all possible error values of error type X_BX3 
(9) and error class X_NEAERR (B), i.e. all possible return values for x_error(), 
can be found in the appendix.

In the descriptions of the individual ICMX(NEA) function calls, the error values 
that x_error() returns if a particular function terminates in error are listed under 
the heading "Errors". 

See also 

x_perror(), x_strerror() 



288   U41136-J-Z145-3-76

x_event ICMX(NEA)

9.7.14 x_event - Await or query event (event) 

x_event() determines whether an NEABX event has arrived for the current 
process. 

The parameter x_cmode specifies the processing mode of x_event().

x_event() can: 

– synchronously wait for an NEABX event for the current process to arrive. 
While waiting, the process is suspended.

Waiting can be interrupted using signals.

A time limit for synchronous waiting may be specified in the x_opt options. If 
no event arrives within this waiting period, waiting is terminated. 

– asynchronously check whether an NEABX event for the current process 
has arrived. The function always returns immediately to the current process. 

Along with the appropriate event, x_event() returns: 

– the transport reference of the connection involved, to permit the event to be 
associated with the appropriate connection (tref parameter), 

– event-specific additional information, if this has been specified in the x_opt 
options. 

If several events are present for a connection, they are indicated one after 
another in the order in which they arrived. 

Exceptions:

– An X_XDATIN event (expedited data received) may overtake X_DATAIN 
events (normal data received) without destroying them. 

– An X_DISIN event (disconnection indication) may overtake X_DATAIN and 
X_XDATIN events for the connection involved and thus destroy them.
The data that X_DATAIN/X_XDATIN was to have indicated is lost. 

I x_event() permits a TS application to maintain NEA-compliant as well as 
ISO-compliant connections within a process, i.e. the process uses both 
ICMX(NEA) and ICMX(L). A process of this type must independently 
decide whether a transport reference belongs to an NEA connection or 
to an ISO connection. x_event() also reports events for transport refer-
ences that are not known to NEABX. 



U41136-J-Z145-3-76  289

ICMX(NEA) x_event

#include <cmx.h>
#include <neabx.h>
int x_event (int *tref,

int x_cmode,
struct x_opte1 *x_opt);

<- tref 
Pointer to the transport reference. Here NEABX returns the transport 
reference of the connection to which the reported event belongs. For the 
events X_NOEVENT and X_ERROR the contents of tref are undefined. 

-> x_cmode 
Specifies whether x_event() is to wait for an event synchronously or 
whether it is to asynchronously check if an event has occurred. 

Possible values: 

X_WAIT (synchronous processing) 
The current process is suspended until a TS event arrives, the 
defined time limit expires (x_timeout parameter in x_opt) or until it 
is awakened by a signal.

The event X_NOEVENT is indicated in the latter two cases.

All signals except SIGTERM may be used to wake (alarm()) the 
process. 

X_CHECK (asynchronous processing) 
x_event() checks whether an event is waiting. If there is no such 
event, x_event() returns with X_NOEVENT. 

<> x_opt 
For opt, specify the value NULL or a pointer to the structure x_opte1 with 
user options. The structure x_opte1 is defined in the file <neabx.h>. 

   struct x_opte1 {
->    int x_optnr;     /* Option number */
->    int x_timeout;   /* Time limit for X_WAIT */
<-    int x_evdat;     /* Event-specific additional
                          information */
   };

x_optnr
Specify X_OPTE1. 



290   U41136-J-Z145-3-76

x_event ICMX(NEA)

x_timeout
For x_timeout a waiting period may be specified (in seconds). With 
x_cmode = X_WAIT, x_event() halts the synchronous waiting when 
the waiting period elapses.

The specification of a value less than zero (-1) means that no 
timer is activated. With x_cmode = X_CHECK, the value specified 
for x_timeout is ignored. 

x_evdat
With the events X_DATAIN and X_XDATIN the length of the 
indicated data is returned in x_evdat. This length can then be 
specified for the functions x_datain() and x_xdatin(). 

Return values 

X_NOEVENT
If x_cmode = X_CHECK: No event waiting.

If x_cmode = X_WAIT: Abort, e.g. by a signal or T_DATAGO was inter-
nally indicated by CMX, but T_DATASTOP was initiated again when 
sending a still pending transport acknowledgment. Consequently, 
T_DATAGO is undone, and no actual event is to be reported. 

The contents of tref are undefined. 

X_DATAIN
Data has been received on the connection specified in tref.

Response expected by NEABX: x_datain() call. 

NEABX does not indicate this event so long as the data flow is blocked, 
i.e. when the receiving process has issued x_datastop() for the 
connection. 

X_DATAGO
The local TS application can again send data via the connection 
specified in tref.

Possible reaction: x_datarq(). 

The event X_DATGO also permits the local TS application to again send 
expedited data via this connection, provided the use of expedited data 
was agreed at connection setup. 



U41136-J-Z145-3-76  291

ICMX(NEA) x_event

X_XDATIN
Expedited data has been received on the connection specified in tref.

Response expected by NEABX: x_xdatin(). 

NEABX indicates this event only if the use of expedited data was agreed 
at connection setup.

As long as the flow of expedited data is stopped, i.e. the receiving 
process has issued x_datastop() for the connection, this event is not 
indicated. 

X_XDATGO
The local TS application may again send expedited data via the 
connection specified in tref.

Possible reaction: x_datarq(). 

NEABX indicates this event only if the use of expedited data was agreed 
at connection setup. Normal data may still not be sent. 

X_CONIN
A partner application wishes to set up a connection to the local TS appli-
cation (incoming call). This connection request must be received with 
x_conin() and then confirmed with x_conrs() or rejected with x_disrq().

Reaction expected by NEABX: x_conin(), then x_conrs() or x_disrq(). 

X_CONCF
The remote TS application has accepted the connection request with 
x_conrs(). You must accept this answer with x_concf(). The connection is 
then established.

Reaction expected by NEABX: x_concf(). 

X_DISIN
Either the called TS application has rejected a connection request or the 
remote TS application or NEABX has closed down an existing 
connection. You must accept this indication with x_disin().

Reaction expected by NEABX: x_disin(). 

X_REDIN
Another process of the TS application would like to redirect an already 
established connection to this process. You must accept the connection 
with x_redin().

Reaction expected by NEABX: x_redin(). 



292   U41136-J-Z145-3-76

x_event ICMX(NEA)

X_REPCCF
NEABX has not yet been able to completely set up the connection. The 
user data passed by the called TS application with x_conrs must still be 
accepted. Reaction expected by NEABX: repetition of the x_concf() call. 

X_REPCIN
The user data passed by the calling TS application with the connection 
request must be accepted. Reaction expected by NEABX: repetition of 
the x_conin() call. 

X_REPCRQ
NEABX has requested the connection, but the request has not been 
completely received by the remote TS application. Therefore the 
x_conrq() call must be repeated.

Reaction expected by NEABX: repetition of the x_conrq() call. 

X_ERROR
Error. Query error code using x_error().

The contents of tref may have changed as compared to its contents at 
the time of the call; however, it will always be undefined. 

Errors

For error type T_CMXTYPE and error class T_CMXCLASS, the error values 
listed in the section “t_event - Await or query event (event)” on page 154 may 
occur. They can be queried by calling x_error().

In addition, the errors listed under ioctl(2) may occur.

See also

x_attach(), x_concf(), x_conin(), x_datain(), x_datago(), x_datastop(), x_disin(), 
x_error(), x_redin(), x_xdatin(), x_xdatgo(), x_xdatstop()



U41136-J-Z145-3-76  293

ICMX(NEA) x_info

9.7.15 x_info - Information on NEABX constant 
(information) 

x_info() returns the maximum possible length of a TIDU for the specified 
connection. The TIDU length depends on the transport system used. You need 
it for calls for data transfer. 

#include <cmx.h>
#include <neabx.h>
int x_info (int *tref,

struct x_opti1 *x_opt);

-> tref 
Pointer to the transport reference. Here you specify the transport 
reference of the connection for which you wish to know the maximum 
possible length of a TIDU. 

<> x_opt 
Pointer to a union in which NEABX enters an x_opti1 structure. The 
structure x_opti1 is defined in the file <neabx.h>. 

   struct x_opti1 {
->    int  x_optnr;   /* Option number */
<-    int  x_maxl;    /* Length of a TIDU */
   };

x_optnr
Option number. X_OPTI1 is to be specified. 

x_maxl
In this field NEABX enters the length of the TIDU. This value 
specifies how many bytes can be passed to or received by 
NEABX per call when data is transmitted via the specified 
connection.

x_maxl is exactly the same value as is returned by the function 
t_info(). NEABX protocol lengths, if any, are NOT taken into 
account. The rules defined in connection with using the options 
X_OPTD1, X_OPTD2 and X_OPTD3 with x_datarq(), x_datain(), 
x_xdatrq() and x_xdatin() apply. 



294   U41136-J-Z145-3-76

x_info ICMX(NEA)

Return values 

T_OK
The call was successful. 

X_ERROR
Error. Query error code using x_error(). 

Errors

For error type T_CMXTYPE and error class T_CMXCLASS, the error values 
listed in the section “t_info - Query information on CMX (information)” on 
page 181 may occur. They can be queried by calling x_error(). 

In addition, the errors listed under ioctl(2) may occur.



U41136-J-Z145-3-76  295

ICMX(NEA) x_neavi

9.7.16 x_neavi - Analysis of the NEABV protocol 

x_neavi() analyzes the NEABV protocol in a data area that has been supplied 
with values from the network via an x_conin() or x_concf() call.

The pointer to the user connection message, x_udatap, which is returned by 
x_conin() or x_concf(), can be passed to x_neavi() directly.

x_neavi() interprets the data of the user connection message and writes the 
information contained in it into the members of the supplied option structure.

The addresses returned in the option structure are subaddresses of the data 
area x_udatap passed by NEABX. 

int x_neavi (char *x_udatap,
int *x_udatal,
x_optneav *x_opt);

-> x_udatap 
Pointer to an area containing the NEABV protocol data received by 
x_conin() or x_concf() that is to be analyzed by x_neavi() and transferred 
to the structure specified in x_opt.

It is best to pass on the data area x_udatap returned by x_concf() or 
x_conin(). 

*x_udatal
Pointer to an area specifying the length of the data area x_udatap. 

It is best to pass on the value x_udatal returned by x_concf() or x_conin(). 

<> x_opt 
Pointer to a union x_optneav in which NEABX enters the structure x_optrk. 
The structure contains the results of the analysis of the NEABV protocol 
data passed in x_udatap.

Members that are not included in the NEABV protocol are supplied with 
NULL.

x_opt must be specified, as NEABX will otherwise be unable to pass the 
results of the analysis to the TS application. 

The structures x_optrk and the union x_optneav are defined in the file 
<neabx.h>. 



296   U41136-J-Z145-3-76

x_neavi ICMX(NEA)

   struct x_optrk {    /* STRUCTURE x_opt FOR
                          COMPUTER INTERCONNECT. */
->  int   x_optnr;     /* Option no. = X_OPTRK,
                          X_OPTRK1 */
<-  int   x_init;      /* Initiative in data transfer */
<-  int   x_opchl;     /* Length of the OPCH in x_opchp */
<-  char  *x_opchp;    /* Pointer to OPCH */
<-  int   x_bvmsgl;    /* Length of the user
                          connection message */
<-  char  *x_bvmsgp;   /* Pointer to the user
    };                    connection message */
   struct x_optsk {    /* STRUCTURE x_opt FOR STATION
                          INTERCONNECT. */
->  int   x_optnr;     /* Option no. = X_OPTSK,
                          X_OPTSK1 */
<-  int   x_opchl;     /* Length of the OPCH in
                          x_opchp */
<-  char  *x_opchp;    /* Pointer to OPCH */
<-  int   x_bvmsgl;    /* Length of the user
                          connection message */
<-  char  *x_bvmsgp;   /* Pointer to the user
                          connection message */
<-  int   x_npwl;      /* Length of the network
                          password */
->  char  *x_npwp;     /* Pointer to the network

password */
}

x_optnr
Option number: Specify: 

X_OPTRK or X_OPTRK1

x_init
Initiative for data transfer in the case of computer interconnection.

Possible values: X_MYINIT or X_INITRQ.

The meanings of these values are described in the section “The 
NEABX service functions (NEABV service)” on page 234. 

x_opchl
Length of the operation character OPCH pointed to by x_opchp.

NEABX then enters the length contained in the NEABV protocol. 



U41136-J-Z145-3-76  297

ICMX(NEA) x_neavi

x_opchp
Pointer to the area containing the operation characters (OPCH), 
or a NULL pointer.

The current length is specified in x_opchl. 

x_bvmsgl
Length of the area x_bvmsgp.

NEABX enters the length contained in the NEABV protocol. 

x_bvmsgp
Pointer to an area containing the NEABV user connection 
message, or a NULL pointer.

The current length is specified in x_bvmsgl.

The message is not recoded or handled by x_neavi().

Return values 

T_OK
The call was successful. The option structure contains the results of the 
analysis of the NEABV protocol. 

X_ERROR
Error. Query the error code with x_error(). 

Errors

If an error occurs the following error values are possible. They can be queried 
by calling x_error().

The following error values may occur for error type X_BX3 and error class 
X_NEAERR: 

X_NVERR2
The value specified in x_optnr is invalid. 

X_NVERR3
The length specification for one of the protocol elements in the NEABV 
protocol is too large. 

X_NOOPT
No x_opt pointer was specified. 



298   U41136-J-Z145-3-76

x_neavi ICMX(NEA)

See also

x_conin(), x_concf(), x_neavo() 



U41136-J-Z145-3-76  299

ICMX(NEA) x_neavo

9.7.17 x_neavo - Generate the NEABV protocol 

x_neavo() generates the NEABV protocol and places it in a storage area, which 
can subsequently be made available to an x_conrq() or x_conrs() call.

The parameters required to create the NEABV protocol must be supplied with 
values in the structure x_opt. 

int x_neavo (char *x_udatap,
int *x_udatal,
x_optneav *x_opt);

<- x_udatap 
Pointer to an area in which x_neavo() enters the generated NEABV 
protocol data.

The size of the area is specified in x_udatal. 

<> x_udatal 
Length of the area x_udatap. 

Before the call, the length of the x_udatap area provided is to be entered 
here.

The maximum required length is 109 bytes.

After the call, the length of the data entered in x_udatap is returned here 
by NEABX. This length consists of the length of the NEABV protocol plus 
any reserve that may have been allocated for the NEABX protocol. The 
option number specified in x_optnr determines whether or not the reserve 
for the NEABX protocol is taken into account. The result in x_udatap and 
x_udatal can be directly used in the x_conrq() or x_conrs() call, provided 
the assignments defined in the table under x_optnr are observed. 

-> x_opt 
Pointer to the union x_optneav, containing the structure x_optrk defined in 
the file <neabx.h>.

 The specification of x_opt is mandatory. 



300   U41136-J-Z145-3-76

x_neavo ICMX(NEA)

struct x_optrk {  
/* STRUCTURE x_opt FOR

                            COMPUTER INTERCONNECT. */
->    int   x_optnr;     /* Option no. = X_OPTRK,
                            X_OPTRK1 */
->    int   x_init;      /* Initiative in data transfer */
      int   x_opchl;     /* Not relevant for output */
      char  *x_opchp;    /* Not relevant for output */
->    int   x_bvmsgl;    /* Length of the user
                            connection message */
->    char  *x_bvmsgp;   /* Pointer to the user
 connection message */

}

x_optnr
Option number: Specify: 

X_OPTRK or X_OPTRK1

If option X_OPTRK1 is used, the reserve need no longer be 
allowed for in the length specification in x_udatal. 

Conventions for using options: 

x_init
Initiative for data transfer in the case of computer interconnection.

Possible values: X_MYINIT or X_INITRQ.

If any other value is specified, an error is reported (see also 
section “The NEABX service functions (NEABV service)” on 
page 234).

x_bvmsgp
Pointer to an area containing the NEABV user connection 
message.

The filled length is specified in x_bvmsgl. 

Option number with 
x_neavo()

Option number with 
x_con[rq I rs]

Reserve for NEABX 
protocol allowed for 
x_udatal

X_OPTRK X_OPTC1 YES 

X_OPTRK1 X_OPTC3 NO



U41136-J-Z145-3-76  301

ICMX(NEA) x_neavo

x_bvmsgl
Length of the area x_bvmsgp.

The maximum permissible length is X_BVMMXL. 

Return values

T_OK
The call was successful. The NEABV protocol was stored in x_udatap. Its 
length is contained in x_udatal. 

X_ERROR
Error. Query the error code with x_error(). 

Errors

If an error occurs the following error values are possible. They can be queried 
by calling x_error().

The following error values may occur for error type X_BX3 and error class 
X_NEAERR: 

X_NVERR1
The allocated storage area x_udatap cannot accommodate the NEABV 
protocol corresponding to x_opt. The length x_udatal is too small. 

X_NVERR2
An invalid value was specified for x_optnr. 

X_NVERR4
For computer interconnection: An invalid value was specified for x_init. 

X_NVERR5
Invalid value specified for x_opchp, x_opchl, x_bvmsgp, x_bvmsgl, x_npwp or 
x_npwl. 

See also

x_conrq(), x_conrs(), x_neavi() 



302   U41136-J-Z145-3-76

x_perror ICMX(NEA)

9.7.18 x_perror - Output NEABX error message in 
decoded form 

x_perror() decodes NEABX error messages passed to the process in 
hexadecimal form by NEABX when x_error() is called. 

x_perror() writes the plain English form of the NEABX error message specified 
in errcod to the standard error output stderr. 

The function can only output the plain English form of an error of error type 
X_BX3 and error class X_NEAERR. 

The returned text consists of the error symbol, as defined in <neabx.h>, and an 
explanatory text. The explanatory texts are obtained from a message catalog of 
the Native Language Support (NLS) facility, if present. 

In the s parameter an additional explanatory text may be specified, e.g. an 
indication of the NEABX call and TS application to which the error refers. The 
text must be passed as a string ("s"). 

Format of output from x_perror(): 

x_perror() first writes the text specified with s (if s != NULL), then : (colon) and \n 
(newline). 

This is followed by the plain English form of the error message, in three lines: 

\t<ERROR TYPE symbol> <text from msgcat>\n
\t<ERROR CLASS symbol> <text from msgcat>\n
\t<ERROR VALUE symbol> <text from msgcat>\n

(msgcat = message catalog)

For error values that cannot be decoded, a "?" is output. 

#include <cmx.h>
#include <neabx.h>
void x_perror (char *s,

int errcod);

-> s 
Pointer to a storage area containing text that is to precede the plain 
English form of the error message. 

-> errcod 
For errcod, specify the representation of the error message that was 
passed to the process by NEABX when x_error() was called. 



U41136-J-Z145-3-76  303

ICMX(NEA) x_perror

Example

1. x_conin() returns X_ERROR.

x_error() returns the hexadecimal value 0x9b0e. 

The call 

x_perror ( "x_conin" , 0x9b0e) 

decodes this error as follows: 

x_conin:
X_BX3 ICMX(NEA) error
X_NEAERR Error message of the migration service NEABX
X_BADPRPI x_conin,x_concf: Protocol ID (=PI) byte incorrect

2. x_datarq() returns X_ERROR.

x_error() returns the hexadecimal value 0x9b3b. 

The call 

x_perror ( "x_datarq" , 0x9b3b) 

decodes this error as follows: 

x_datarq:
X_BX3 ICMX(NEA) error
X_NEAERR Error message of the migration service NEABX
X_WXOPT x_opt specification incorrect with respect to
X_MORE/X_END,
          with/without NEABX



304   U41136-J-Z145-3-76

x_redin ICMX(NEA)

9.7.19 x_redin - Accept redirected connection 
(redirection indication) 

With x_redin() a process accepts a connection that another process of the same 
TS application has redirected to it. This call is required if x_event() indicates the 
event X_REDIN. 

When the event X_REDIN is indicated you must accept the redirected 
connection. If you wish to reject the connection, you may only call x_redrq() to 
pass it on or return it to the original process, or call x_disrq() to close it down. 

The x_redin() call returns: 

– the process ID of the calling process, 

– the user data that was included with the redirection by the calling process. 

If the current process is attached to multiple TS applications, it must use the 
appropriate means to determine for itself to which TS application the redirected 
connection belongs. A suitable resource for this purpose is the user data. 

#include <cmx.h>
#include <neabx.h>
int x_redin (int *tref,

int *pid,
struct x_optc2 *x_opt);

-> tref 
Pointer to the transport reference. Here you enter the transport reference 
that you received with the x_event() call that returned X_REDIN. 

<- pid 
Pointer to the process ID. NEABX enters here the ID of the process that 
is redirecting the connection. 

<- x_opt 
Pointer to the structure x_optc2. With this structure you can check the 
information that the redirecting process sent with its x_redrq() call.

The specification for x_opt is mandatory, since the migration service must 
always be in a position to receive a message (the internal x_red 
protocol). 



U41136-J-Z145-3-76  305

ICMX(NEA) x_redin

The structure x_optc2 is defined in the file <neabx.h>. 

   struct x_optc2 {
->    int x_optnr;      /* Option no. */
<-    char *x_udatap;   /* Data buffer */
<>    int x_udatal;     /* Length of the data buffer */
   };

x_optnr
Option number. Specify X_OPTC2. 

x_udatap
Pointer to a storage area in which NEABX enters the user data. 

x_udatal
Prior to the call you specify the length of the allocated data area 
x_udatap. This area must be large enough to accommodate the 
user data and must include an additional reserve of X_RED_PL 
bytes for the x_red protocol.

The length to be specified is X_RED_SIZE.

Following the call, x_udatal will contain the net length of the user 
data. 

Return values 

T_OK
The call was successful. 

X_ERROR
Error. Query error code using x_error(). 

Errors

If an error occurs the following error values are possible. They can be queried 
by calling x_error().

The following error values may occur for error type X_BX3 and error class 
X_NEAERR: 

X_BADTABLE
The specified transport reference tref is unknown to the migration 
service. It is not present in the relevant table. 

X_BADREDIR
Insufficient length specified in x_udatal. 



306   U41136-J-Z145-3-76

x_redin ICMX(NEA)

X_NOINFO
TIDU length cannot be determined. The connection was closed down 
again. 

X_NOOPT
No x_opt pointer was specified. 

For error type T_CMXTYPE and error class T_CMXCLASS, the error values 
listed in the section “t_redin - Accept redirected connection (redirection 
indication)” on page 185 may occur.

In addition, the errors listed under ioctl(2) may occur.

See also

x_error(), x_event(), x_disrq(), x_redrq()



U41136-J-Z145-3-76  307

ICMX(NEA) x_redrq

9.7.20 x_redrq - Redirect connection (redirection request) 

x_redrq() redirects an existing connection to another process of the same TS 
application. The connection is thereafter no longer known to the redirecting 
process. NEABX issues the event X_REDIN to the called process.

You may not redirect a connection 

– if X_DATASTOP or X_XDATSTOP is present, or 

– if the previous x_event() call returned X_NOEVENT. 

User data may be sent to the receiving process along with the connection 
redirection. In this user data the current process can indicate to the receiving 
process to which TS application the connection belongs. 

#include <cmx.h>
#include <neabx.h>
int x_redrq (int *tref,

int *pid,
struct t_optc2 *x_opt);

-> tref 
Pointer to the transport reference. Here you enter the transport reference 
of the connection that you wish to redirect. 

-> pid 
 Pointer to the process ID of the called process. Here you specify the ID 
of the process to which you wish to redirect the connection. 

-> x_opt 
Pointer to the structure x_optc2. With this structure you can, when 
redirecting the connection, send user data to the called process. The 
called process receives the data when it calls x_redin().

The specification for x_opt is mandatory, since the migration service must 
always be in a position to receive a message (the internal x_red 
protocol). 

The structure x_optc2 is defined in the file <neabx.h>. 

   struct x_optc2 {
->    int x_optnr;      /* Option no. */
->    char *x_udatap;   /* Data buffer */
->    int x_udatal;     /* Length of the data buffer */
   };



308   U41136-J-Z145-3-76

x_redrq ICMX(NEA)

x_optnr
Option number. Specify X_OPTC2. 

x_udatap
Pointer to a storage area containing user data that NEABX is to 
pass to the receiving process, plus space reserved for the internal 
x_red protocol.

The protocol has a length of X_RED_PL (currently 5) bytes and 
must appear left-justified in this area. 

x_udatal
Length of the message in x_udatap, plus X_RED_PL.

Maximum value: X_RED_SIZE.

Maximum transported user data per x_redrq() call:

X_RED_SIZE minus X_RED_PL.

Minimum specification: X_RED_PL. 

Return values 

T_OK
The call was successful. 

X_IMPOSSIBLE
The connection cannot be redirected at present, either because it is not 
yet completely set up or because transport acknowledgments must still 
be sent to the partner TS application. 

X_ERROR
Error. Query error code using x_error(). 

Errors

If an error occurs the following error values are possible. They can be queried 
by calling x_error().

The following error values may occur for error type X_BX3 and error class 
X_NEAERR: 

X_BADLEN
Invalid data buffer length in x_udatal. 



U41136-J-Z145-3-76  309

ICMX(NEA) x_redrq

X_BADTABLE
The specified transport reference tref is unknown to the migration 
service. It is not present in the relevant table. 

X_NOOPT
No x_opt pointer was specified. For error type T_CMXTYPE and error 
class T_CMXCLASS, the error values listed in the section “t_redrq - 
Redirect connection (redirection request)” on page 189 may occur.

In addition, the errors listed under ioctl(2) may occur.

See also

x_datain(), x_error(), x_event(), x_xdatin()



310   U41136-J-Z145-3-76

x_setopt ICMX(NEA)

9.7.21 x_setopt - Set options in CMX_NEA (set options) 

x_setopt can be used to switch options on and off.

The function can be used to activate and deactivate the ICMX(NEA) library 
trace. 

#include <cmx.h>
#include <neabx.h>
int x_setopt (int level,

x_opts *opt);

-> level 
Specifies in which ICMX(NEA) component the option should be set. 

Possible values: 

X_LIB
The set option is an ICMX(NEA) library option. 

-> opt
Pointer to a union that contains an option structure. 

The following structure is defined in <neabx.h>: 

   typedef union x_optset {
   struct x_opts1 opts1 ; /* Control structure */
   } x_opts ;
   struct x_opts1 {
->    int x_optnr;        /* Option no.  */
->    int x_optname;      /* Option name */
->    char *x_optvalue;   /* Pointer to options string */
   };

t_optnr
Option number. Specify X_OPTS1. 

t_optname
Specifies the option that is to be switched on or off. 

Possible values: 

X_DEBUG
The library trace mechanism should be switched according 
to the value in the element x_optvalue. 



U41136-J-Z145-3-76  311

ICMX(NEA) x_setopt

x_optvalue
Pointer to a (null-terminated) string that contains infor-
mation on the type and scope of the interface trace to be 
activated. The format is identical to that of the environment 
variable NEATRACE in the command neal (see the 
“Operation and Administration” manual [1] or [2]). 

Return value 

X_OK
The call was successful. 

X_ERROR
The option was not set. 

Errors

The function x_error can be used to ascertain an error value. If the value ranges 
of the individual parameters are not observed, this error value is of type X_B3, 
class X_NEAERR and has the value X_WPARAMETER. Other error values are 
system call errors and correspond to the values of errno that are defined in 
<errno.h>.



312   U41136-J-Z145-3-76

x_strerror ICMX(NEA)

9.7.22 x_strerror - Decode NEABX error message 

x_strerror() can be used to decode the NEABX error messages that are passed 
to the process in hexadecimal form by NEABX when x_error() is called. 
x_strerror() decodes error messages of error type X_XB3 and error class 
X_NEAERR. 

x_strerror() returns a pointer to a static area which contains the plain English 
form of the NEABX error message specified in errcod. Note that the plain 
English text is passed by x_strerror() via the same storage area in each call. 

This text consists of error symbols, as defined in <neabx.h>, and accompanying 
text. Each error symbol is preceded by \t. Each accompanying text ends with \n. 

The explanatory texts are obtained from the Native Language Support (NLS) 
facility, if present. 

#include <cmx.h>
#include <neabx.h>
char *x_strerror (int errcod);

-> errcod 
For errcod, specify the representation of the error message that was 
passed to the process by NEABX when x_error() was called. 

Return values 

If the call was successful, x_strerror() returns a pointer to a storage area with the 
plain English form of the NEABX error message as a string in C notation. 

If an undefined value is specified in errcod, x_strerror() returns a pointer to the 
text: 

"\t<errcod> Cannot decode\n" 

In case of error, x_strerror() returns a NULL pointer. 

See also 

x_error(), x_perror() 



U41136-J-Z145-3-76  313

ICMX(NEA) x_xdatgo

9.7.23 x_xdatgo - Release the flow of expedited data 
(expedited data go) 

x_xdatgo() releases the blocked flow of expedited data on the specified 
connection. The current process informs NEABX that it is again ready to receive 
expedited data.

The call has the following effects: 

– The local TS application can again receive the event X_XDATIN, if it is 
waiting. 

– The remote TS application receives the event X_XDATGO. It may again 
send expedited data. 

x_xdatgo() may only be called if the exchange of expedited data was agreed at 
connection setup. 

#include <cmx.h>
#include <neabx.h>
int x_xdatgo (int *tref);

-> tref 
Pointer to the transport reference. Here you enter the transport reference 
of the connection for which you wish to release the flow of expedited 
data. 

Return values

T_OK
The call was successful. 

X_ERROR
Error. Query error code using x_error(). 

Errors

If an error occurs the following error values are possible. They can be queried 
by calling x_error(). 

The following error values may occur for error type X_BX3 and error class 
X_NEAERR: 

X_BADTABLE
The specified transport reference tref is unknown to the migration 
service. It is not present in the relevant table. 



314   U41136-J-Z145-3-76

x_xdatgo ICMX(NEA)

For error type T_CMXTYPE and error class T_CMXCLASS, the error values 
listed in the section “t_xdatgo - Release the flow of expedited data (expedited 
data go)” on page 204 and the following error may occur: 

T_WSEQUENCE
The connection specified in tref is not yet fully established. 

In addition, the errors listed under ioctl(2) may occur. 

See also 

x_event(), x_error(), x_xdatstop() 



U41136-J-Z145-3-76  315

ICMX(NEA) x_xdatin

9.7.24 x_xdatin - Receive expedited data (expedited data 
indication) 

x_xdatin() is called by the current process to receive expedited data sent by the 
remote TS application. NEABX must have previously reported the event 
X_XDATIN with x_event(), passing in tref the transport reference of the 
connection on which the expedited data arrived. The maximum length for the 
expedited data depends on the transport system used, but may never exceed 
X_EXP_SIZE bytes. 

If you are not ready to receive expedited data, you can stop the flow of 
expedited data with x_xdatstop(). You thereby prevent NEABX from delivering 
the event X_XDATIN to the current process. Expedited data that has already 
been indicated with X_XDATIN, however, must always be completely fetched. 

#include <cmx.h>
#include <neabx.h>
int x_xdatin (int *tref,

char *x_datap,
int *x_datal,
x_optd *x_opt);

-> tref 
Pointer to the transport reference. Here you enter the transport reference 
that you receive when x_event() reports the event >X_XDATIN. 

<- x_datap 
Pointer to a storage area in which NEABX enters the expedited data 
received.

If x_opt is equal to NULL, NEABX passes the received expedited data to 
the local TS application. If x_opt is not equal to NULL, prior to passing the 
data to the local TS application NEABX deals with the NEABX protocol 
in accordance with the specified option number: 

X_OPTD1:
The storage area must contain space reserved for the NEABX 
protocol (mode compatible with CMX V2.1). 

X_OPTD2:
The NEABX protocol is invisible to the TS application. 



316   U41136-J-Z145-3-76

x_xdatin ICMX(NEA)

X_OPTD3:
The NEABX protocol is placed at the beginning of the data area 
and the length of the protocol is recorded in the x_offset member 
of the x_optd3 structure, thus informing the TS application as to 
where the net message begins. 

<- x_datal 
Prior to the call specify the length of the expedited data area x_datap. 
This must be at least X_EXP_SIZE. In the call NEABX enters the number 
of bytes entered that are passed to the local TS application. 

<> x_opt 
Pointer to a union x_optd containing one of the structures x_optd1 or 
x_optd3, or the specification NULL. x_opt must be specified if it was 
agreed at connection setup that the NEABX protocol will be used in the 
data phase. NULL must be specified if the agreement at connection 
setup was not to use the NEABX protocol in the data phase. 

The structures x_optd1 and x_optd3 and the union x_optd are defined in 
the file <neabx.h>. 

   struct x_optd1 {
->    int   x_optnr;    /* Option number,
                           X_OPTD1, X_OPTD2 */
<-    int   x_code;     /* Message code */
<-    int   x_strukt;   /* Message structure */
<-    int   x_quit;     /* Transport acknowledgments */
<-    short x_seqno;    /* Message sequence number */
   };
   struct x_optd3 {
->    int   x_optnr;    /* Option number, X_OPTD3 */
<-    int   x_code;     /* Message code */
<-    int   x_strukt;   /* Message structure */
<-    int   x_quit;     /* Transport acknowledgments */
<-    short x_seqno;    /* Message sequence number */
<-    int   x_offset;   /* Offset to the start of data */
   };



U41136-J-Z145-3-76  317

ICMX(NEA) x_xdatin

x_optnr
Option number. Possible values: 

X_OPTD1 or X_OPTD2
for x_optd1 

X_OPTD3
for x_optd3 

The meanings of the values are described under x_datap. 

x_code
Designates the message code. Specify X_TRANS; the received 
expedited data is transparent. 

x_strukt
Message structure. Specify X_ETX. Expedited data can only be 
received unblocked. 

x_quit
Is only relevant if handling of transport acknowledgments in the 
TS application was specified at connection setup. 

If a DATA protocol element was received, the following values are 
possible for x_quit: 

0  No acknowledgment required. 

1  A transport acknowledgment is required. 

x_seqno
Contains the message sequence number, provided x_quit is not 
NULL. 

x_offset
In this field NEABX returns the length of the NEABX protocol. The 
TS application is thus informed as to where the net message 
begins.

Return values 

T_OK
The expedited data has been completely read. 

X_DATASTOP
The expedited data has been completely read. If you wish to send data, 
you must wait for the event X_DATAGO. 



318   U41136-J-Z145-3-76

x_xdatin ICMX(NEA)

X_ERROR
Error. Query error code using x_error(). 

Errors

If an error occurs the following error values are possible. They can be queried 
by calling x_error().

The following error values may occur for error type X_BX3 and error class 
X_NEAERR: 

X_BADLEN
Invalid data buffer length in x_udatal. 

X_BADTABLE
The specified transport reference tref is unknown to the migration 
service. It is not present in the relevant table. 

X_NOTDTPE
DATA protocol element expected but not received. 

X_QUITPE
x_xdatin() received an acknowledgment protocol element, but transport 
acknowledgments are not expected as expedited data. 

X_BADDTPELI
The length of the DATA protocol element specified in the received 
NEABX protocol is invalid. 

X_BADXREAD
The value returned by x_xdatin() is greater than 0.

The specified data area was not large enough to accommodate the 
complete message; more data is available for this message. 

X_NOTDTPE
DATA protocol element expected, but not received. 

X_WPARAMETER
Invalid parameter; an incorrect value was specified for x_optnr. 

X_WXOPT
Invalid x_opt specification:

x_opt != NULL, although no NEABX protocol;

x_opt = NULL, although NEABX protocol agreed. 



U41136-J-Z145-3-76  319

ICMX(NEA) x_xdatin

For error type T_CMXTYPE and error class T_CMXCLASS, the error values 
listed in the section “t_xdatin - Receive expedited data (expedited data 
indication)” on page 206 may occur. 

In addition, the errors listed under ioctl(2) may occur.

See also

x_error(), x_event() 



320   U41136-J-Z145-3-76

x_xdatrq ICMX(NEA)

9.7.25 x_xdatrq - Send expedited data (expedited data 
request) 

x_xdatrq() is used to send expedited data to the receiving TS application, 
assuming the use of expedited data was agreed at connection setup. With tref 
you specify the connection on which you wish to send the expedited data. The 
maximum length of the expedited data depends on the transport system used, 
but may never exceed X_EXP_SIZE bytes. 

Expedited data is subject to its own flow control; it may overtake normal data 
units. Conversely, the transport system guarantees that expedited data will 
never be overtaken by normal data units. 

If x_xdatrq() returns X_XDATSTOP, the expedited data has been accepted but 
the flow of expedited data for the connection is blocked. This may occur on the 
initiative of the receiving partner application, by means of x_xdatstop(), or it may 
be brought about by NEABX, if the local buffer threatens to overflow. In such 
cases you must wait, with x_event(), for the event X_XDATGO or X_DATAGO 
before sending more expedited data on the connection. 

#include <cmx.h>
#include <neabx.h>
int x_xdatrq (int *tref,

char *x_datap,
int *x_datal,
x_optd *x_opt);

-> tref 
Pointer to the transport reference. Here you specify the transport 
reference of the connection on which you wish to send expedited data. 

-> x_datap 
Pointer to a storage area containing the data that you wish to send. If 
x_opt is not equal to NULL, this area must be X_DRQPHL bytes (datarq 
protocol header length) larger than the size needed for the net data to be 
sent, in order to accommodate protocol headers added later. However, it 
may never be larger than X_EXP_SIZE.

The user connection message must appear left-justified in this area. 

-> x_datal 
Pointer to a length specification *x_datal. *x_datal may never exceed 
X_EXP_SIZE and has the following meaning: 



U41136-J-Z145-3-76  321

ICMX(NEA) x_xdatrq

Case x_opt = NULL (see x_opt): 

*x_datal corresponds exactly to the length of the data to be sent in 
x_datap.

Maximum value in *x_datal = X_EXP_SIZE.

Maximum user data per x_xdatrq(): X_EXP_SIZE.

Minimum for *x_datal (send 1 byte of data): *x_datal = 1. 

Case x_opt != NULL (see x_opt) with option number: 

X_OPTD1:
*x_datal must be specified to be X_DRQPHL bytes larger than the 
size needed for the net data to be sent. However, the storage 
space of the TS application is not utilized in forming the protocol.

Maximum value in *x_datal = X_EXP_SIZE.

Maximum user data per x_xdatrq(): X_EXP_SIZE - X_DRQPHL

Minimum value in *x_datal (1 byte of send data):

*x_datal = 1 + X_DRQPHL. 

X_OPTD2:
*x_datal contains only the net data length. The storage space of 
the TS application need not include any space reserved for the 
NEABX protocol.

Maximum value in *x_datal = X_EXP_SIZE - X_DRQPHL.

X_OPTD3:
*x_datal contains only the net data length. In the x_offset member 
of the option structure the TS application records the offset from 
x_datap at which the net data begins. This offset must be equal to 
X_DRQPHL.

Maximum value in *x_datal = X_EXP_SIZE - X_DRQPHL.

Minimum value in *x_datal (send 1 byte of data):

*x_datal = 1 + X_DRQPHL. 

-> x_opt 
Pointer to a union that contains the structure x_optd1, x_optd3 or the 
specification NULL. NULL is mandatory if at connection setup it was 
agreed that NEABX protocols would not be used in the data phase. 
NULL may not otherwise be specified. 



322   U41136-J-Z145-3-76

x_xdatrq ICMX(NEA)

The structures x_optd1, x_optd3 and the union x_optd are defined in the 
file <neabx.h>. 

   struct x_optd1 {
->    int   x_optnr;    /* Option number,
                           X_OPTD1, X_OPTD2 */
->    int   x_code;     /* Message code */
->    int   x_strukt;   /* Message structure */
->    int   x_quit;     /* Transport acknowledgments */
->    short x_seqno;    /* Message sequence numbers */
   };
   struct x_optd3 {
->    int   x_optnr;    /* Option number, X_OPTD3 */
->    int   x_code;     /* Message code */
->    int   x_strukt;   /* Message structure */
->    int   x_quit;     /* Transport acknowledgments */
->    short x_seqno;    /* Message sequence numbers */
->    int   x_offset;   /* Offset to the start of data */
   };

x_optnr
Option number. Possible values: 

X_OPTD1 or X_OPTD2
for x_optd1 

X_OPTD3
for x_optd3 

The meanings of the values are described under x_datal

x_code
Designates the message code. Specify X_TRANS; the expedited 
data to be sent is transparent. 

x_strukt
Message structure. Specify X_ETX. Expedited data can only be 
sent unblocked. 

x_quit
Is only relevant if handling of transport acknowledgments in the 
TS application was specified at connection setup. 

The acknowledgment request bit QVBIT is set in the NEABX 
protocol. 



U41136-J-Z145-3-76  323

ICMX(NEA) x_xdatrq

x_seqno
Contains the message sequence number, provided x_quit is not 
null. 

x_offset
In the x_offset member the TS application records the offset from 
x_datap at which the net data begins. This offset must be equal to 
X_DRQPHL. 

Return values 

T_OK
Call successful; you may continue sending. 

X_DATASTOP
Call successful, but you may not send further expedited data until the 
event X_XDATGO or X_DATAGO arrives. 

X_ERROR
Error. Query error code using x_error(). 

Errors

If an error occurs the following error values are possible. They can be queried 
by calling x_error().

The following error values may occur for error type X_BX3 and error class 
X_NEAERR:

X_BADLEN
Invalid data buffer length in x_udatal. 

X_BADTABLE
The specified transport reference tref is unknown to the migration 
service. It is not present in the relevant table. 

X_BADXCODE
The value in x_code is invalid. 

X_WPARAMETER
Invalid parameter; an invalid value was specified for x_optnr. 

X_WXOPT
Invalid x_opt specification:

x_opt != NULL, although no NEABX protocol;

x_opt = NULL, although NEABX protocol agreed. 



324   U41136-J-Z145-3-76

x_xdatrq ICMX(NEA)

For error type T_CMXTYPE and error class T_CMXCLASS, the error values 
listed in the section “t_xdatrq - Send expedited data (expedited data request)” 
on page 208 and the following error may occur: 

T_WSEQUENCE
The connection specified in tref is not yet fully established. 

In addition, the errors listed under ioctl(2) may occur.

See also

x_error(), x_event(), x_xdatstop()



U41136-J-Z145-3-76  325

ICMX(NEA) x_xdatstop

9.7.26 x_xdatstop - Stop the flow of expedited data 
(expedited data stop) 

x_xdatstop() blocks the flow of expedited data on the specified connection. It tells 
NEABX that you are not ready to receive expedited data for this connection. An 
X_XDATIN event that has already been indicated must still be accepted first. 

More specifically, the effects of the call are: 

– The local TS application no longer receives the events X_XDATIN and 
X_DATAIN. However, you may call other NEABX functions in the meantime, 
e.g. to set up an additional connection over which you want to forward the 
incoming expedited data. You may also send data over the specified 
connection. x_xdatastop() blocks the data flow only for data to be received. 

– The sending TS application receives the return value X_XDATSTOP when 
it calls x_xdatrq() for this connection, and X_DATASTOP for x_datarq(). It then 
may send neither expedited data nor normal data units. 

If you have already received the event X_XDATIN or X_DATAIN in x_event(), you 
must first read in the waiting data completely. x_xdatstop() merely prevents 
further X_XDATIN and X_DATAIN events from being delivered. 

You can release the flow of expedited data again with x_xdatgo(). 

#include <cmx.h>
#include <neabx.h>
int x_xdatstop (int *tref);

-> tref 
Pointer to the transport reference. Here you enter the transport reference 
of the connection for which you wish to stop the flow of expedited data. 

Return values 

T_OK
The call was successful. 

X_ERROR
Error. Query error code using x_error(). 

Errors

If an error occurs the following error values are possible. They can be queried 
by calling x_error(). 



326   U41136-J-Z145-3-76

x_xdatstop ICMX(NEA)

The following error values may occur for error type X_BX3 and error class 
X_NEAERR: 

X_BADTABLE
The specified transport reference tref is unknown to the migration 
service. It is not present in the relevant table. 

For error type T_CMXTYPE and error class T_CMXCLASS, the error values 
listed in the section “t_xdatstop - Block the flow of expedited data (expedited 
data stop)” on page 211 and the following error may occur. 

T_WSEQUENCE
The connection specified in tref is not yet fully established. 

In addition, the errors listed under ioctl(2) may occur. 

See also 

x_datago(), x_error(), x_event(), x_xdatgo(), x_xdatrq() 



U41136-J-Z145-3-76  327

10 Appendix 

10.1 Complete list of CMX error messages 

The following tables contain all possible CMX error messages, i.e. all error 
messages generated at the ICMX(L) and ICMX(NEA) program interfaces. The 
error messages are sorted by error type and error class. 

Error messages with error class = T_DSSYSERR (5) or X_BX2 (8) are not 
defined in the header files of the CMX program interfaces. They can only be 
decoded using <errno.h>. 

Error messages generated at ICMX(L) 

Errors with error type (0) = T_CMXTYPE and error class = T_CMXCLASS (0): 

Num. 
value

Symbolic value Meaning

  0 T_NOERROR No error

  4 T_ENOENT All internally allocated resources are 
occupied.

  5 T_EIO The CCP is no longer operational.

 12 T_ENOMEM Not enough working memory.

 14 T_EFAULT Illegal address. One of the specified pointers 
does not point to the process address space.

 22 T_EINVAL Invalid argument.

100 T_UNSPECIFIED Error not more precisely specified.

101 T_WSEQUENCE Function call not permitted in this state.

102 T_WREQUEST Illegal function call.

For SNA interconnection: only the dummy 
module is linked in the process.

103 T_WPARAMETER Invalid parameter.

104 T_WAPPLICATION Unknown application or application already 
known under this name.

Table 9:  At ICMX generated error messages 



328   U41136-J-Z145-3-76

Complete list of CMX error messages Appendix

105 T_WAPP_LIMIT No more processes in applications may be 
attached.

106 T_WCONN_LIMIT Limit for connections reached.

107 T_WTREF Invalid transport reference.

109 T_COLLISION Collision in connection setup, disconnection, 
redirection or in sending data.

110 T_WPROC_LIMIT Too many processes have attached applica-
tions.

111 T_NOCCP No CCP present for desired application or 
connection.

112 T_ETIMEOUT Waiting period elapsed.

113 T_WROUTINFO Illegal CC list.

115 T_WRED_LIMIT Too many simultaneously redirected connec-
tions.

116 T_WLIBVERSION Version of CMX library used is incompatible.

117 T_CBRECURSIVE Recursive call from t_event not permitted.

118 T_W_NDS_ACCESS An NDS error has occured.

119 T_EMUTEX An error occured during Mutex handling

120 T_NOTSD Error during addressing of a thread-specific 
memory

Num. 
value

Symbolic value Meaning

Table 9:  At ICMX generated error messages 



U41136-J-Z145-3-76  329

Appendix Error values

In addition, in ICMX(L) the following errors, not belonging to error type = 
T_CMXTYPE and error class = T_CMXCLASS, may also occur: 

Error messages generated at ICMX(NEA) 

Errors with error type = X_BX3 (9) and error class = X_NEAERR (0xb): 

Num. 
value

Symbolic value Meaning

  0 T_NOTSPEC Error not more precisely specified.

  1 T_DIRERR The specified TS directory is unknown.

  2 T_NAMERR The specified name is not present or the 
specified name is already present.

  3 T_ILLNAM The name is syntactically invalid.

  5 T_PROPER The requested property is not present or the 
specified property is already present or 
syntactically invalid.

  7 T_TIMOUT The TNSX daemon tnsxd does not respond 
within the time limit.

 10 T_LEAFNO More or fewer names were found than 
expected.

 16 T_LENERR One of the properties has an incorrect length.

 20 T_PROT Error in the protocol for tnsxd.

100 T_LFILE The TS directory has an invalid format.

Table 10:  Additional error values at ICMX(L)

num. 
value

Symbolic value Meaning

  0 X_NOERROR No error

  1 X_DIDSSSTK Partner has specified neither ETB nor ETX 
with DDTconnection.

  3 X_MAXDAT More than X_MSG_SIZE bytes of user data 
received atconnection setup.

  4 X_BADLEN Invalid data buffer length.

Table 11:  Error messages generated at ICMX(NEA)



330   U41136-J-Z145-3-76

Error values Appendix

  5 X_BADTRANS Invalid transport system.

  7 X_BADTABLE No table entry present.

  8 X_BADPROT Invalid protocol ID byte received.

  9 X_DIDSSCDE Data not in EBCDIC with DDT connection.

 10 X_SENDQUIT Error in sending an ACKNOWLEDGEMENT 
protocol element.

 11 X_XSNDQUIT Error in sending an ACKNOWLEDGEMENT 
protocol element for expedited data.

 12 X_NOOPTDSS No x_opt specified with station intercon-
nection.

 13 X_BADXCODE Invalid transmission code specified or 
received.

 14 X_BADPRPI Unknown protocol identification byte received.

 15 X_NOTCNPE CONNECT protocol element expected but not 
received.

 16 X_NOTCNATT CONNECT-ATTENTION protocol element 
expected but notreceived.

 17 X_NOTDTPE DATA protocol element expected but not 
received.

 18 X_QUITPE x_datain has received an ACKNOWL-
EDGEMENT protocol element.

 20 X_BADPVBYTE Invalid protocol version byte received.

 21 X_NONEBYTE With DDT connection no NEABX in the data 
phase agreed.

 22 X_BADDTPELI Incorrect length received in the length 
indicator byte.

 23 X_BADSTRUKT Incorrect structure specification in x_optd1.

 25 X_BADREDIR Invalid connection redirection.

 42 X_BADMSGLEN Invalid user message length.

 43 X_NOXDRDSS DDT may not call x_xdatrq().

num. 
value

Symbolic value Meaning

Table 11:  Error messages generated at ICMX(NEA)



U41136-J-Z145-3-76  331

Appendix Error values

 44 X_NOXDIDSS DDT may not call x_xdatin().

 46 X_NOINFO Cannot determine TIDU length.

 47 X_BADXREAD t_xdatin returned value greater than zero.

 48 X_QOVERFLOW Transport acknowledgment can no longer be 
stored.

 49 X_NOOPT No x_opt pointer specified.

 50 X_WPARAMETER Invalid parameter, e.g. incorrect x_optnr 
specified.

 51 X_NVERR1 Insufficient length specified for x_udatal in 
x_neavo(). The NEABV protocol cannot be 
stored.

 52 X_NVERR2 Illegal option number in x_neavi(), x_neavo().

 53 X_NVERR2 Illegal length specified in the NEABV protocol 
in x_neavi().

 54 X_NVERR4 Illegal specification for x_init in x_neavo().

 55 X_NVERR5 Illegal specification for x_opch, x_bvmsg, x_npw 
in x_neavo()

 59 X_WXOPT Incorrect x_opt specification, e.g. x_opt != 
NULL; x_opt != NULL, although no NEABX 
protocol;x_opt != NULL, although second and 
following data units with x_datarq() and 
x_datain().

num. 
value

Symbolic value Meaning

Table 11:  Error messages generated at ICMX(NEA)



332   U41136-J-Z145-3-76

Reasons for disconnection Appendix

10.2 List of reasons for disconnection 

The reasons for disconnection passed by CMX in reason following the calls 
t_disin() and x_disin() are described below. The symbolic values specified here 
are numerically defined in <cmx.h>. The abbreviation CCP stands for "Commu-
nication Control Program", meaning the transport system. "Local CCP" stands 
for the CCP in the system of the current process, while "partner CCP" stands 
for the CCP in the system of the connection partner of the current process. 

Reasons given by CMX 

Reasons given by the partner CCP 

num. 
value

Symbolic value Meaning

  0 T_USER Disconnection by the communication partner; 
possibly also due to a user error on the part of 
the communication partner

  1 T_RTIMEOUT Local disconnection by CMX due to inactivity 
on the connection as specified by the 
parameter t_timeout.

  2 T_RADMIN Local disconnection by CMX due to deacti-
vation of the CCP by the administration.

  3 T_RCCPEND Local disconnection by CMX due to CCP 
breakdown

Table 12:  Reasons for disconnection - given by CMX

num. 
value

Symbolic value Meaning

256 T_RUNKNOWN Disconnection by the partner or the CCP; no 
reason specified.

257 T_RSAPCONGES
T

Disconnection by the partner CCP due to a 
TSAP-specific bottleneck.

258 T_RSAPNOTATT Disconnection by the partner CCP because 
the TSAP addressed is not attached there.

Table 13:  Reasons for disconnection - given by the partner CCP



U41136-J-Z145-3-76  333

Appendix Reasons for disconnection

259 T_RUNSAP Disconnection by the partner CCP because 
the TSAP addressed is not known there.

261 T_RPERMLOST Disconnection by network administration or by 
adminof partner CCP.

262 T_RSYSERR Error in network.

385 T_RCONGEST Disconnection by the partner CCP due to 
resource bottleneck.

386 T_RCONNFAIL Disconnection by the partner CCP due to 
failure in connection setup. Connection setup 
may fail e.g. because user data is too long or 
expedited data is not permitted.

387 T_RDUPREF Disconnection by the partner CCP because a 
second connection reference was assigned for 
an NSAP pair (system error).

388 T_RMISREF Disconnection by the partner CCP due to a 
connection reference that could not be 
assigned (system error).

389 T_RPROTERR Disconnection by the partner CCP due to a 
protocol error (system error).

391 T_RREFOFLOW Disconnection by the partner CCP due to 
connection reference overflow.

392 T_RNOCONN Establishment of the network connection 
rejected by the partner CCP.

394 T_RINLNG Disconnection by the partner CCP due to 
incorrect header or parameter length (system 
error).

num. 
value

Symbolic value Meaning

Table 13:  Reasons for disconnection - given by the partner CCP



334   U41136-J-Z145-3-76

Reasons for disconnection Appendix

Reasons given by the local CCP 

num. 
value

Symbolic value Meaning

448 T_RLCONGEST Disconnection by the local CCP due to 
resource bottleneck.

449 T_RLNOQOS Disconnection by the local CCP because 
quality of service can no longer be provided.

451 T_RILLPWD Invalid (connection) password.

452 T_RNETACC Network access refused

464 T_RLPROTERR Disconnection by the local CCP due to a 
transport protocol error (system error).

465 T_RLINTIDU Disconnection by the local CCP because it 
received an overly long interface data unit 
(TIDU) (system error).

466 T_RLNORMFLOW Disconnection by the local CCP due to 
violation of the flow control rules for normal 
data (system error).

467 T_RLEXFLOW Disconnection by the local CCP due to 
violation of the flow control rules for expedited 
data (system error).

468 T_RLINSAPID Disconnection by the local CCP because it 
received an invalid TSAP ID (system error).

469 T_RLINCEPID Disconnection by the local CCP because it 
received an invalid TCEP ID (system error).

470 T_RLINPAR Disconnection by the local CCP due to an 
illegal parameter value, e.g. user data too long 
or expedited data not permitted.

480 T_RLNOPERM Connection setup blocked by the adminis-
tration of the local CCP.

481 T_RLPERMLOST Disconnection by the administration of the 
local CCP.

482 T_RLNOCONN Connection could not be set up by the local 
CCP because no network connection 
available.

Table 14:  Reasons for disconnection - given by the local CCP



U41136-J-Z145-3-76  335

Appendix Reasons for disconnection

483 T_RLCONNLOST Disconnection by the local CCP due to loss of 
the network connection. Most common cause: 
generation error on CCP and PDN side, e.g. 
inconsistent link addresses. Error can also 
occur if partner is not available, modem is 
faulty or incorrectly set, communication link 
not plugged in, or data communications board 
faulty.

484 T_RLNORESP Connection could not be set up by the local 
CCP because the partner does not respond to 
CONRQ. Most common cause: The SINIX 
computer was not entered in the partner for 
the processor link via a WAN Solution: enter 
the processor and region number of the 
system that has been added in the KOGS of its 
partner systems in the network.

485 T_RLIDLETRAF Disconnection by the local CCP due to loss of 
the connection (Idle Traffic Timeout).

486 T_RLRESYNC Disconnection by the local CCP because 
resynchronization was unsuccessful (more 
than 10 repetitions).

487 T_RLEXLOST Disconnection by the local CCP because the 
expedited data channel is defective (more 
than 3 repetitions).

num. 
value

Symbolic value Meaning

Table 14:  Reasons for disconnection - given by the local CCP





U41136-J-Z145-3-76  337

Glossary
active partner 

The communication partner that sets up a connection to another TS appli-
cation. 

address
See TRANSDATA address and TRANSPORT ADDRESS. .

agent
Recipient of network management requests.

API (Application Programming Interface)
APIs are program interfaces that provide the functions of a program 
system. As the programmer, you use the APIs when programming appli-
cations. APIs offer functions for connection management, data 
exchange, and mapping names to addresses. APIs in the CMX 
environment are sockets, ICMX, XTI, and TLI. 

ASCII
International character set for DP systems (ISO 7-bit code).

CC (Communications Controller)   
A CC is a component for connecting a Solaris system to a network. You 
need a CC to physically attach your system to a subnetwork, unless the 
interface is integrated on a different module, e.g. the motherboard 
(onboard interface).

To obtain a logical connection to the network, CCs loaded with the corre-
sponding subnetwork profile. The subnetwork profile is a component of 
the CCPs. Examples of loadable CCs for connecting to X.25, telephone 
networks and ISDN are PWXV, PWS0 and PWS2.

CCP (Communication Control Program) 
A CCP is a program system which, together with one or more CCs, 
provides the logical access of a Solaris system to a network. A CCP 
implements the four lower layers (transport system) of the OSI reference 
model for data communication. A CCP comprises a subnetwork profile and 
transport service providers.



338   U41136-J-Z145-3-76

Glossary

CMX (Communications Manager UNIX) 
CMX provides communication services for using CMX applications and 
communication services in the network, and enables the programming of 
CMX applications. CMX standardizes the services of different networks 
and thereby permits utilization of the same CMX application regardless 
of the underlying network. As the runtime system, CMX switches 
between the current network environment and CMX applications, and 
offers the network administrator uniform functions for OA&M (Operation, 
Administration, Maintenance) of CCPs and CCs. As a development 
system, CMX provides interfaces (APIs) and procedures for 
programming network-independent CMX applications. 

CMX applications
CMX applications are applications that use the services of CMX. CMX 
applications have a network address known as the TRANSPORT 
ADDRESS. They are identified uniquely by means of a symbolic name, 
the GLOBAL NAME of an application.

CMX constant 
Item predefined for specific computers for CMX, e.g. the length of a data 
unit. Can be queried with the t_info() call. 

communication method 
An access method for the transport services defined in the OSI Reference 
Model. 

communication partner 
A TS application that maintains a logical connection to another TS appli-
cation and exchanges data with it. 

connection, virtual 
An association between two communication partners which allows them to 
exchange data with each other. 

data unit 
The set of characters that can be sent in one go with the t_datarq() call 
or received in one go with t_datain(). 

DCAM application 
A TS application in BS2000 which uses the DCAM access method. 



U41136-J-Z145-3-76  339

Glossary

EBCDIC
EBCDIC is an extended 8-bit version of BCD code which is used on 
BS2000 mainframes, TRANSDATA communication computers and IBM-
compatible systems. 

ETSDU
Expedited data unit. 

GLOBAL NAME of an application
Each CMX application identifies itself and its communication partners in 
the network by symbolic, hierarchical GLOBAL NAMES. A GLOBAL 
NAME consists of up to five name parts (NP[1- 5]), which you can use to 
define the application (NP5), the processor (NP4), and (up to three) 
administrative domains (NP[3-1]). 

Example: The GLOBAL NAME “YourApplication.D018S065.mch-
p.sni.de” means: “YourApplication” resides on the host “D018S065” in 
the domain “mch-p.sni.de”.

When you, as administrator, are choosing a GLOBAL NAME, you must 
adhere to the regulations and recommendations of the specific appli-
cation.

As an administrator you can assign properties to the GLOBAL NAME of 
an application. You can, for example, assign a TRANSPORT ADDRESS or 
a LOCAL NAME. As a programmer, you can obtain the TRANSPORT 
ADDRESS or the LOCAL NAME from the GLOBAL NAME with the aid 
of the function calls t_getaddr() and t_getloc().

ICMX
Standard transport system interface for applications. 

KOGS (configuration-oriented generator language)
KOGS is the configuration-oriented generator language with which the 
physical and logical properties of the subnetwork interfaces of a 
processor are described in a text file. Language elements of KOGS are 
macros, operands, and operand values. Normally, the system adminis-
trator or network administrator defines the specific properties of a 
subnetwork interface using the CMXGUI. KOGS is only used in excep-
tional cases.



340   U41136-J-Z145-3-76

Glossary

LOCAL NAME of an application
A CMX application uses the LOCAL NAME to attach to CMX in its local 
system for communication. The LOCAL NAME comprises one or more 
T-selectors, which identify the transport system via which the CMX appli-
cation is to communicate. As the administrator, you can enable or disable 
the communication of a CMX application via particular transport systems 
and fulfill any requirements of the CMX application for specific T-selector 
values, e.g. in file transfer. 

As an administrator, you can assign the LOCAL NAME of an application 
to the GLOBAL NAME of the application. As a programmer, you can 
obtain the LOCAL NAME from the GLOBAL NAME using the function call 
t_getloc().

message
A logically related set of data which is to be sent to a communication 
partner. 

migration service 
Service in CMX for adapting a CMX application to meet the requirements 
of TS applications in PDN and BS2000 that use NEA transport protocol 
functions not available in ISO transport protocols. 

NEABX
Migration protocol for converting from an NEA transport system to an 
ISO transport system. 

OSI Reference Model
Open Systems Interconnection is the communication architecture 
defined by the International Organization for Standardization (ISO) in 
ISO standard 7498. This architecture defines reliable data interchange 
between applications running on different hardware platforms. To 
perform this complex task, the OSI Reference Model distinguishes 
between seven interoperating subtasks, each of which is implemented 
on a particular layer. The lower four layers represent the transport system, 
while the top three layers represent the view of the application, e.g. the 
data formats.

partner
see communication partner. 



U41136-J-Z145-3-76  341

Glossary

passive partner 
The communication partner that does not set up a connection itself but is 
addressed by another communication partner. 

PDN application 
A TS application that runs in a communication computer. 

process
A process is a program during execution. It consists of the executable 
program, the program data, and process-specific administration data 
required to control the program. 

processor
Network-wide addressable entity in a host or communication computer 
which provides the functionality of the transport service. 

processor name 
Part of the TRANSDATA address. The processor name is specified in the 
form: processor number/region number. 

property
Attribute of a TS application in the TS directory, where the application is 
registered together with the GLOBAL NAME. 

station
Terminal in the data communication system; addressable network-wide 
for transport service purposes. 

station interconnection 
Way of connecting a SINIX system to a network. The applications in the 
SINIX system are generated as stations in the adjacent computer. 

station name 
Part of the TRANSDATA address. The station name corresponds to the 
LOCAL NAME of the TS application. 

TEP
XTI transport endpoints and in CMX attached processes or threads from 
TS applications. 



342   U41136-J-Z145-3-76

Glossary

TNS (Transport Name Service)
The TNS is a component of CMX which supports the correct mapping of 
the GLOBAL NAMES of CMX applications in the network to TRANSPORT 
ADDRESSES and LOCAL NAMES. As the administrator, you configure 
your chosen assignment of GLOBAL NAME to TRANSPORT ADDRESS 
for remote applications, as well as the assignment of GLOBAL NAME to 
LOCAL NAME for local applications. As the applications programmer, 
you can use these maps via an API and thereby work solely with the 
GLOBAL NAMES of applications without assessing the maps.

The TNS provides network-wide identification of applications by means 
of logical GLOBAL NAMES and their mapping to corresponding network 
addresses. This means that you can identify applications without having to 
know their network addresses. Together with the FSS, the TNS provides 
a complete mapping of the logical name to a concrete subnetwork address 
and a route through the various subnetworks of the network.

TRANSPORT ADDRESS of an application
A calling CMX application transfers the TRANSPORT ADDRESS of a 
called communication partner to CMX when communication is being 
established. CMX uses the TRANSPORT ADDRESS to locate the 
communication partner in the network and determine a route through the 
network. The TRANSPORT ADDRESS generally depends on the logical 
and physical structure of the network (and its subnetworks). The 
TRANSPORT ADDRESS contains the specifications of your network 
operator(s) which are specific to your network. As the administrator, you 
can influence the TRANSPORT ADDRESS and hence the communi-
cation paths independently of the application. 

The components of a TRANSPORT ADDRESS are: a network address 
for uniquely identifying the remote system on which the application 
resides, the type of transport system via which the remote application can 
be reached, and the T-selector that identifies the remote application in the 
remote system.

Examples of network addresses are: the Internet address in dot notation 
“192.11.44.1”, the NEA network address in the notation processor/region 
number “47/11”, and the X.25 address (DTE address) as a string of digits 
“45890010123”. 

As an administrator, you can assign a TRANSPORT ADDRESS of the 
application to the GLOBAL NAME of the application. As a programmer, 
you can obtain the TRANSPORT ADDRESS from the GLOBAL NAME 
using the function call t_getaddr().



U41136-J-Z145-3-76  343

Glossary

TRANSDATA address 
A character string which uniquely identifies an addressable entity in the 
TRANSDATA network. It is made up of the processor name and the station 
name. 

Transport Layer 
Fourth layer in the OSI Reference Model; described in ISO standard 8072. 

transport reference 
A number which uniquely identifies a connection within a TS application. 

transport system 
The transport system is represented by the four lower layers of the OSI 
Reference Model. A CCP implements the four layers of the transport 
system. The transport system guarantees the secure exchange of data 
between systems whose applications communicate with each other, 
regardless of the underlying network structures. The transport system 
uses protocols for this purpose.

TSAP
Used by a TS application to access the transport system. 

TS application 
Transport service application:

A TS application is an application that uses the services of the transport 
system. It consists of programs that can set up a virtual connection to 
another TS application in order to exchange data with it. 

TS directory 
Database containing information about TS applications. The TS directory 
is managed using the Transport Name Service in SINIX. 

T-selector 
The T-selector identifies a communication application within the system 
on which the application is running. Together with the network address of 
the system, the T-selector forms the TRANSPORT ADDRESS of an appli-
cation which uniquely identifies this application within the network.



344   U41136-J-Z145-3-76

Glossary

TSP (Transport Service Provider) 
A TSP is a component of a CCP or of CMX which, with the exception of 
the NTP (null transport), provides the OSI transport service in the 
network using a transport protocol. As the administrator, you can 
determine the usage of a particular TSP for the communication of appli-
cations. RFC1006 is the TSP in CMX which, together with TCP/IP, 
provides the OSI transport service in the Internet. NTP (null transport) 
offers CMX applications direct access to the network services of the X.25 
subnetwork. TP0/2, TP4, and NEA are the TSPs for an OSI environment 
and the TRANSDATA network. 

Together with a subnetwork profile, a TSP forms a transport system. It offers 
a set of configurable runtime and tuning parameters, assesses the 
TRANSPORT ADDRESS, and finds a suitable route through the network. 
To do this, the TSP uses your specifications in the FSS, if necessary.

TSDU
Message.

UTM application 
A transaction processing application in BS2000 which can also commu-
nicate with other applications. 

XTI
The standard program interface to transport services defined by X/Open. 



U41136-J-Z145-3-76  345

Abbreviations 
ASCII

American Standard Code for Information Interchange 

CC
Communications Controller 

CF
Configuration file

CCITT
Comite Consultatif International Telegraphique et Telephonique 

CCP
Communication Control Program 

CMX
Communications Manager in Solaris

DCAM
Data Communication Access Method 

DMA
Direct Memory Access

EBCDIC
Extended Binary Coded Decimal Interchange Code 

EBNF
Extended Backus Naur Form 

EMDS
Emulation Datensichtstation 

EOF
End of File 

EOS
End of String 



346   U41136-J-Z145-3-76

Abbreviations

ETHN
ETHERNET 

ETSDU
Expedited Transport Service Data Unit 

FT
File Transfer

FSB
Forwarding Support Base 

ICMX
Program interface of CMX

IS
Intermediate System

ISDN
Integrated Services Digital Network 

ISO
International Organization for Standardization 

ITU
International Telecommunication Union 

ITU-T
Telecommunication Standardization Sector

KOGS
Configuration-oriented generator language 

LAN
Local Area Network 

MES
German abbreviation for “menu development system” 

MSV1
Communication protocol: Medium Speed Variant 1



U41136-J-Z145-3-76  347

Abbreviations

NEA
Network architecture for TRANSDATA systems

NSAP
Network Service Access Point 

OSI
Open Systems Interconnection 

PDN
Program system for telecommunication and network control 

PID
Process Identifier 

PVC
Permanent Virtual Circuit 

REMOS
Remote Operation System for linking LANs

SNA
Systems Network Architecture 

SNID
Subnet identification 

SNPA
Subnet Point of Access 

TCEP
Transport Connection Endpoint 

TCP/IP
Transmission Control Protocol/Internet Protocol 

TEP
Transport Endpoint 

TIDU
Transport Interface Data Unit 



348   U41136-J-Z145-3-76

Abbreviations

TLI
Transport Level Interface 

TNS
Transport Name Service in Solaris

TSAP
Transport Service Access Point 

TSDU
Transport Service Data Unit 

TSTAT
TEP Status

VAR
German abbreviation for “host computer” 

WAN
Wide Area Network 

XTI
X/Open Transport Interface 



U41136-J-Z145-3-76  349

Related publications
The manuals are available as online manuals, see http://manuals.fujitsu-
siemens.com, or in printed form which must be payed and ordered separately at 
http://FSC-manualshop.com.

[1] CMX V6.0 (Solaris)
Operation and Administration
User Guide

Target group
System administrators

Contents
The manual describes the function of CMX as mediator between appli-
cations and the transport system. It contains basic information on config-
uration and administration of systems in network environments. 

[2] CMX V5.1 (Reliant UNIX)
Communications Manager in UNIX
Operation and Administration
User Guide

Target group
System administrators

Contents
The manual describes the function of CMX as mediator between appli-
cations and the transport system. It contains basic information on config-
uration and administration of Reliant UNIX systems in network environ-
ments. 

[3] XTI V6.0 
 X/Open Transport Interface 
User Guide 

Target group
Programmers of TS applications 

Contents
The manual contains implementation-specific supplements to the 
function calls of XTI. 

http://manuals.fujitsu-siemens.com
http://manuals.fujitsu-siemens.com
http://FSC-manualshop.com


350   U41136-J-Z145-3-76

Related publications

[4] CMX/CCP V6.0  (Solaris)
WAN Communication
User Guide

Target group
Network administrators and system administrators

Contents
The manual describes the computer-to-computer connection via WAN 
(Wide Area Network) allowing communication in the remote area (Wide 
Area Network, WAN).

[5] CCP-WAN V5.1 (Reliant UNIX)
Communication Control Program
User Guide

Target group
System administrators

Contents

– Computer-to-computer connection via WAN (Wide Area Network)

– WAN connections of CCP-WAN

– Protocol profiles of CCP-WAN

– Operation and administration of CCP-WAN

– Configuration of the protocol profiles

[6] CMX/CCP V6.0  (Solaris)
ISDN Communication
User Guide

Target group
Network administrators

Contents
The manual describes the computer-to-computer connection via ISDN 
(Integrated Services Digital Network).



U41136-J-Z145-3-76  351

Related publications

[7] CCP-ISDN V5.1  (Reliant UNIX)
Communication Control Programm
User Guide

Target group
Network administrators

Contents
The manual describes the computer-to-computer connection via ISDN 
(Integrated Services Digital Network) allowing communication in the 
remote area (Wide Area Network, WAN).

[8] CMX V6.0  (Solaris)
TCP/IP via WAN/ISDN
User Guide

Target group
Network and system administrators

Contents
The manual describes how CMX enables the connectionless IP traffic via 
the connection-oriented WAN.

[9] CS-ROUTE V2.0 (Reliant UNIX)
User Guide

Target group
Network and system administrators

Contents
Description of CS-ROUTE which enables the TCP/IP- OSI TP4/CLNP 
network access to X.25 and ISDN networks and the parallel LAN-WAN 
routing of IP- and CLNP packages via X.25 and ISDN.



352   U41136-J-Z145-3-76

Related publications

[10] CMX V6.0 
CS-GATE
User Guide

Target group
This manual is intended for network and system administrators. 

Contents
This manual describes how you use CS-GATE to establish LAN-WAN-, 
LAN-LAN- and LAN-WAN-LAN gateways. It describes addressing, 
address conversion functions, configuration, control and diagnosis for 
CS-GATE. 

[11] Reliant UNIX 5.45 
Network Administration
System Administrator’s Guide

Target group
System administrators 

Contents
This manual describes the network administration activities, that have to 
be performed when using the TCP/IP software on Reliant UNIX 5.45 as 
well es the basic network function (BNU). 



U41136-J-Z145-3-76  353

Index
A
active connection setup   43
address directory   16
addresses, list of   16
addresses, TS application   83
addressing   20
adress information

change (in TRANSPORT 
ADDRESS)   166

read (from TRANSPORT 
ADDRESS)   166

application program, compiling   25
application program, link   25
application program, structure of   23
applications

multithreaded   29
asynchronous event processing   38, 

87
asynchronous event processing, 

ICMX(NEA)   218
attach process, ICMX(L)   110
attach to CMX   110
attaching to CMX   43, 90
attaching to NEABX   240
attaching via ICMX(NEA)   44
attaching, ICMX(NEA)   220
attaching/detaching at ICMX(L), 

example   46
attaching/detaching at ICMX(NEA), 

example   47

C
called process   307
called TS application   43, 50, 91, 221
calling TS application   43, 50, 91, 221
central waiting point   95
changing address information 

(LOCAL NAME)   174
characters, number received   315
characters, received number of   268
checking errors   40

CMX   43
CMX calls, order of   23
CMX error messages, complete list of   

327
CMX error messages, decoding, 

ICMX(L)   183, 196
CMX error messages, format of   41
CMX error messages, in plain English   

183, 196
CMX functions for migration   11
CMX messages, decoding   42
CMX program interfaces   7
cmx.h   23
communication phase   23, 96
communication, connection-oriented   

82
compile, application program   25
connection   86
connection indication   91
connection indication, accepting   50
connection indication, receiving, 

ICMX(L)   124
connection password   251, 257, 262
connection redirection, accepting, 

ICMX(L)   185
connection redirection, accepting, 

ICMX(NEA)   304
connection request   50, 291
connection request, confirming, 

ICMX(L)   132
connection request, confirming, 

ICMX(NEA)   260
connection request, ICMX(L)   91
connection request, receiving, 

ICMX(NEA)   249
connection request, rejecting   51
connection request, rejecting, 

ICMX(L)   151
connection request, rejecting, 

ICMX(NEA)   285
connection setup, active   43, 242



354   U41136-J-Z145-3-76

Index

connection setup, ICMX(NEA)   52
connection setup, passive   43, 242
connection setup, specifying the type, 

ICMX(L)   113
connection, closing down   9, 55
connection, closing down, ICMX(L)   

91, 151
connection, closing down, 

ICMX(NEA)   221, 285
connection, disconnecting   9
connection, establishing   9, 49
connection, establishing, ICMX(L)   

91, 121
connection, establishing, ICMX(NEA)   

221, 244
connection, establishing/closing 

down, ICMX(L) example   56
connection, establishing/closing 

down, ICMX(NEA) example   60
connection, inactive time, ICMX(L)   

130
connection, inactive time, ICMX(NEA)   

257
connection, process   27
connection, redirecting   9, 28, 44, 65, 

91, 222
connection, redirecting, ICMX(L)   189
connection, redirecting, ICMX(L) 

example   66
connection, redirecting, ICMX(NEA)   

65, 307
connection, requesting, ICMX(L)   128
connection, requesting, ICMX(NEA)   

254
connection-oriented communication   

82
connections, maximum number of, 

ICMX(L)   113
connections, maximum number of, 

ICMX(NEA)   242
conventions ICMX(L)   108
conventions, ICMX(NEA)   239
criteria for use, NEABX   11

D
data flow, releasing   78
data flow, releasing, ICMX(L)   136
data flow, releasing, ICMX(NEA)   265
data flow, stopping   78
data flow, stopping, ICMX(L)   144
data flow, stopping, ICMX(NEA)   279
data indication, blocking   78
data indication, blocking, ICMX(L)   

144
data indication, blocking, ICMX(NEA)   

279
data indication, ICMX(L)   93
data phase, without NEABX protocol   

246, 252, 257, 263
data structure, LOCAL NAME 

ICMX(L)   84
data structure, LOCAL NAME, 

ICMX(NEA)   215
data structure, TRANSPORT 

ADDRESS ICMX(L)   84
data structure, TRANSPORT 

ADDRESS, ICMX(NEA)   215
data transmission   10
data transmission via ICMX(NEA)   72
data unit   69, 268, 273
data unit, querying, ICMX(NEA)   293
data, excess length in TIDU   72
data, exchanging   69
data, exchanging, ICMX(L)   93
data, exchanging, ICMX(NEA)   224
data, receiving   70
data, receiving, ICMX(L)   138, 198
data, receiving, ICMX(NEA)   267
data, sending   70
data, sending, ICMX(L)   141, 201
data, sending, ICMX(NEA)   273
decoding, of CMX messages   42
detach from NEABX   281
detaching from CMX   45, 90, 146
detaching via ICMX(NEA)   45
detaching, ICMX(NEA)   220
diagnostic information   40



U41136-J-Z145-3-76  355

Index

disconnect indication, accepting, 
ICMX(L)   148

disconnect indication, accepting, 
ICMX(NEA)   282

disconnection reason, decoding   184, 
197

disconnection reason, in plain English   
184

disconnection, by NEABX   285
disconnection, ICMX(L)   91
disconnection, ICMX(NEA)   221
disconnection, list of reasons   332
disconnection, reason for   148, 282

E
error diagnosis   86
error diagnosis, ICMX(NEA)   216
error handling ICMX(L)   85
error handling, ICMX(NEA)   216
error information   40
error message, decoding   42
error messages, complete list of   327
error messages, decoding, ICMX(L)   

183, 196
error messages, decoding, 

ICMX(NEA)   302, 312
error messages, format of   41
error messages, in plain English, 

ICMX(L)   86
error messages, list of, (ICMX(L)   327
error messages, list of, ICMX(NEA)   

329
errors, check ICMX(L)   85
errors, checking, ICMX(L)   153
errors, checking, ICMX(NEA)   216, 

287
ETSDU   69, 93, 224
event   37, 87
event processing in the program   39
event processing, asynchronous   38, 

87
event processing, ICMX(NEA)   217
event processing, synchronous   38

event processing, synchronous, 
ICMX(L)   87

event processing, synchronous, 
ICMX(NEA)   289

event, fetching function, ICMX(L)   89
event, fetching, ICMX(NEA)   220
event, querying, ICMX(L)   154
event, querying, ICMX(NEA)   288
event, waiting for, ICMX(L)   154
event, waiting for, ICMX(NEA)   288
expedited data   69, 93, 224
expedited data flow, releasing   78
expedited data flow, releasing, 

ICMX(L)   136, 204
expedited data flow, releasing, 

ICMX(NEA)   313
expedited data flow, stopping   78
expedited data flow, stopping, 

ICMX(L)   211
expedited data indication, blocking   

78
expedited data indication, blocking, 

ICMX(L)   211
expedited data unit   69, 93
expedited data, agreeing on   53
expedited data, agreeing on, ICMX(L)   

122, 126, 129, 133
expedited data, agreeing on, 

ICMX(NEA)   246, 251, 256, 262
expedited data, exchanging   76
expedited data, length   224
expedited data, reading piecemeal   

76
expedited data, receiving, ICMX(L)   

206
expedited data, receiving, ICMX(NEA)   

315
expedited data, remaining   76
expedited data, sending and receiving   

10
expedited data, sending, ICMX(L)   

208
expedited data, sending, ICMX(NEA)   

320



356   U41136-J-Z145-3-76

Index

expedited data, transmitting via 
ICMX(NEA)   77

Expedited Transport Service Data Unit 
(ETSDU)   69

F
file descriptor   111
finite-state automata ICMX(L)   96
finite-state automata, ICMX(NEA)   

226
flow control   10, 78, 93, 224
format, of error messages   41
function calls, ICMX(L)   109
function calls, ICMX(NEA)   240
function calls, order of   23
function library   8
function, optional   12
functions for communication   8

G
GLOBAL NAME   16, 17, 250
GLOBAL NAME, ascertain ICMX(L)   

84
GLOBAL NAME, ascertaining, 

ICMX(L)   178

H
header file   23

I
ICMX(L)   81
ICMX(L), function calls   109
ICMX(L), overview   8
ICMX(NEA)   29, 213
ICMX(NEA), function calls   240
ICMX(NEA), overview   11
inactive time for connection, ICMX(L)   

130
information service, ICMX(L)   95
initiative on data transfer, ICMX(NEA)   

234
initiative, in data transfer ICMX(NEA)   

233
interrupting a call, x_event   289

ISO 8072   81

K
KEEPALIVE   103

L
length of a TIDU, querying, 

ICMX(NEA)   293
length, of a connection message   245, 

251
length, of a data unit   69
length, of a message   69, 93
length, of data remaining in TIDU   72
length, of received data   305
libcmx.so   8
link, application program   25
list of addresses   16
LOCAL NAME   18, 43, 250, 255

changing address information   
174

reading address information   174
LOCAL NAME, ascertain ICMX(L)   84
LOCAL NAME, data structure   84, 

215
LOCAL NAME, structure of   20
logical acknowledgment   285

M
make connection request

answer time monitoring   103
management options   95
message   69, 93, 224, 267, 273
message length   224
message, decoding   42
message, read piecemeal   93
migration functions   11
migration service NEABX   11
multithreading   29

compiling   34
linking   34

N
name part, GLOBAL NAME   17
name, of TS application   16



U41136-J-Z145-3-76  357

Index

names, structure of   17
names, TS application   83
NEA protocol

special features   104
NEABV protocol   52, 232
NEABV protocol, analysis   295
NEABV protocol, analyzing   234
NEABV protocol, generate   299
NEABV protocol, generating   234
NEABV service   234
NEABX constants, query   293
NEABX error messages, decoding   

302
NEABX error messages, decoding, 

ICMX(NEA)   312
NEABX error messages, in plain 

English   302, 312
NEABX functions   213
NEABX migration service   11
NEABX protocol, in the data phase   

246, 252, 257, 263
NEABX service functions   234
NEABX, criteria for use   11
neabx.h   23
network address   20
normal data   93
normal data flow, releasing   78
normal data flow, releasing, ICMX(L)   

136
normal data flow, releasing, 

ICMX(NEA)   265
normal data flow, stopping   78
normal data flow, stopping, ICMX(L)   

144
normal data flow, stopping, 

ICMX(NEA)   279
normal data indication, blocking   78
normal data indication, blocking, 

ICMX(L)   144
normal data indication, blocking, 

ICMX(NEA)   279
normal data transmission via 

ICMX(NEA)   72
normal data, receiving   70

normal data, receiving, ICMX(L)   138, 
198

normal data, receiving, ICMX(NEA)   
267

normal data, sending   70
normal data, sending, ICMX(L)   141, 

201
normal data, sending, ICMX(NEA)   

273
number of characters received   268
number of expedited data items 

received   315

O
optional function   12
optional parameters   12

P
parameter passing   24
parameters, optional   12
passive connection setup   43
phase of communication   96
plain English form, NEABX error 

messages   302
plain English form, of CMX error 

messages   183
plain English form, of disconnection 

reason   184
plain English, CMX error messages   

196
plain English, disconnection reason   

197
plain English, error messages 

ICMX(L)   86
plain English, NEABX error messages   

312
process   86
process ID, of called process   307
process ID, redirected process   304
process, attaching, ICMX(NEA)   240
process, connection   27
process, detaching, ICMX(NEA)   281
process, of TS application   26
program interface ICMX(L)   81



358   U41136-J-Z145-3-76

Index

program interface, ICMX(NEA)   213
program interfaces, CMX   7
programming notes, ICMX(L)   105
programming notes, ICMX(NEA)   237
property, of TS application   16
property, user-specific   18

R
reading address information (LOCAL 

NAME)   174
received expedited data   315
registering a callback routine   116
remaining expedited data   76
request, information from CMX   10

S
sample program, attaching/detaching   

46
sample program, redirecting a 

connection   66
sample program, transmitting data   73
sample program, transmitting data via 

ICMX(L)   73
sample program, transmitting data via 

ICMX(NEA)   74
sample programs, establishing/

closing down a connection   56
set options in CMX   194
set options in CMX_NEA   310
shared objects   8
SINIX process -> process   26
SINIX special file -> special file   90
socket option

KEEPALIVE   103
TCP/IP - RFC1006 connection   

103
special files   90
specific features

transport system   103
state of a TS application   23
state transitions   23
state transitions, ICMX(L)   97
state transitions, ICMX(NEA)   226
state, of TS application, ICMX(L)   96

storage, allocating   24
structure, of a TS application   22
synchronous event processing   38
synchronous event processing 

ICMX(L)   87
synchronous event processing, 

ICMX(NEA)   217, 289
system option   12
system options, support   105

T
t_address   85
t_attach   33, 110
t_callback   116
T_CONCF   88
t_concf   121
T_CONCF, accepting   121
T_CONIN   88
T_CONIN, receiving   124
t_conrq   128
t_conrs   132
T_DATAGO   88
t_datago   136
T_DATAIN   88
t_datain   138
T_DATAIN, accepting   198
t_DATAIN, receiving   138
t_datarq   141
t_datastop   144
T_DATGO   88
T_DATIN   88
t_detach   146
T_DISIN   88
t_disin   148
T_DISIN, accepting   148
t_disrq   151
T_ERROR   88
t_error   153
t_event   154
t_getaddr   161
t_getaddrpart   84, 166
t_getaddrpart, t_setaddrpart   84
t_getloc   171
t_getlocpart   84, 174



U41136-J-Z145-3-76  359

Index

t_getname   178
t_info   181
t_myname   84
T_NOEVENT   88
t_partaddr   84
t_perror   183
t_preason   184
T_REDIN   88
t_redin   29, 33, 185
t_REDIN, accepting   185
t_redrq   29, 33, 189
t_setaddrpart   84, 166, 194
t_setlocpart   84, 174, 194
t_setopt   33, 194
t_strerror   196
t_strreason   197
t_vdatain   198
t_vdatarq   201
t_xdatgo   204
t_xdatin   206
T_XDATIN, accepting   206
t_xdatrq   208
t_xdatstop   211
TCEP   90, 221
thread   29

CMX library functions   33
compiling   34
connections   29
detach   35
errno   35
include files (POSIX)   32
library trace   35
linking   34
processes   29
signals   34
stack handling   35

thread ID   35
TIDU   69, 71, 93
TIDU length, querying, ICMX(NEA)   

293
TIDU, receiving, ICMX(NEA)   224
time monitoring

make connection request   103
TRANSPORT ADDRESS   50, 255

change address information   166
read address information   166

TRANSPORT ADDRESS, ascertain, 
ICMX(L)   84

TRANSPORT ADDRESS, data 
structure   84, 215

TRANSPORT ADDRESS, structure of   
20

Transport Connection Endpoint 
(TCEP)   90, 221

Transport Interface Data Unit (TIDU)   
69, 93

transport reference   27
transport reference, ICMX(L)   82
transport reference, ICMX(NEA)   214, 

254
transport service   90, 220
Transport Service - ISO 8072   81
Transport Service Access Point   19, 

83, 90, 220
Transport Service Data Unit (TSDU)   

69
transport system

specific features   103
TS application   5, 86
TS application, attach, ICMX(L)   110
TS application, attaching   43
TS application, attaching, ICMX(NEA)   

240
TS application, called   43, 50, 91, 221
TS application, calling   43, 50, 91, 221
TS application, characteristics   15
TS application, detaching   45
TS application, detaching, ICMX(L)   

146
TS application, detaching, 

ICMX(NEA)   281
TS application, name of   16
TS application, process of   26
TS application, properties of   16
TS application, state of   23
TS application, structure of   22



360   U41136-J-Z145-3-76

Index

TS directory   16
TS event -> events   37
TSAP   19, 83, 90, 220
TSDU   69
TSDU, break down   71
T-selector   20

U
user data   232

connection redirection ICMX(L)   
189

user data at connection close-down, 
ICMX(L)   149, 151

user data at connection redirection, 
ICMX(L)   185, 189

user data at connection setup, 
ICMX(L)   121, 125, 128, 132

user data at disconnection, 
ICMX(NEA)   282

user data, at connection close-down   
55

user data, at connection redirection, 
ICMX(NEA)   304

user data, at connection setup   50
user data, at connection setup, 

ICMX(NEA)   52
user data, closing down a connection, 

ICMX(NEA)   282
user data, disconnection, ICMX(NEA)   

282
user data, when redirecting connec-

tions, ICMX(NEA)   307
user option   12
USER property   18
user reference for attaching, ICMX(L)   

113
user reference, for connection   187
user reference, of connection   130, 

134

X
x_address   215
x_attach   240
x_chain   269, 275

X_CHECK   289
X_CONCF   291
x_concf   244
X_CONCF, accepting   244
X_CONIN   254, 291
x_conin   249
X_CONIN, accepting   249
x_conrq   254
x_conrs   260
X_DATAGO   265, 290
X_DATAIN   265, 290
x_datain   267
X_DATAIN, accepting   267
x_datarq   273
X_DATASTOP   273, 279, 325
x_datastop   279
X_DATIN   265
x_detach   281
X_DISIN   285, 291
x_disin   282
X_DISIN, accept   282
X_ERROR   292
x_error   287
x_event   288
x_fdatago   265
x_info   293
x_init, use of   234
x_myname   215
x_neavi   295
x_neavo   299
X_NOEVENT   290
x_partaddr   215
x_perror   302
X_REDIN   291, 307
x_redin   304
X_REDIN, accepting   304
x_redrq   307
X_REPCCF   244, 292
X_REPCIN   249, 292
X_REPCRQ   292
x_setopt   310
x_strerror   312
X_XDATGO   291, 313
x_xdatgo   313



U41136-J-Z145-3-76  361

Index

X_XDATIN   291
x_xdatin   315
X_XDATIN, accepting   315
X_XDATIN, do not deliver   325
x_xdatrq   320
x_xdatstop()   325





Comments on CMX V6.0
Programming Applications

U41136-J-Z145-3-76

Comments
Suggestions
Corrections

✁

Submitted by

Fujitsu Siemens Computers GmbH
User Documentation
81730 Munich
Germany

Fax: (++49) 700 / 372 00000

email: manuals@fujitsu-siemens.com
http://manuals.fujitsu-siemens.com

http://manuals.fujitsu-siemens.com




Comments on CMX V6.0
Programming Applications

U41136-J-Z145-3-76

Comments
Suggestions
Corrections

✁

Submitted by

Fujitsu Siemens Computers GmbH
User Documentation
81730 Munich
Germany

Fax: (++49) 700 / 372 00000

email: manuals@fujitsu-siemens.com
http://manuals.fujitsu-siemens.com

http://manuals.fujitsu-siemens.com




Information on this document 
On April 1, 2009, Fujitsu became the sole owner of Fujitsu Siemens Compu-
ters. This new subsidiary of Fujitsu has been renamed Fujitsu Technology So-
lutions. 

This document from the document archive refers to a product version which 
was released a considerable time ago or which is no longer marketed. 

Please note that all company references and copyrights in this document have 
been legally transferred to Fujitsu Technology Solutions.  

Contact and support addresses will now be offered by Fujitsu Technology So-
lutions and have the format …@ts.fujitsu.com. 

The Internet pages of Fujitsu Technology Solutions are available at 
http://ts.fujitsu.com/... 
and  the user documentation at http://manuals.ts.fujitsu.com.

Copyright Fujitsu Technology Solutions, 2009

Hinweise zum vorliegenden Dokument 
Zum 1. April 2009 ist Fujitsu Siemens Computers in den alleinigen Besitz von 
Fujitsu übergegangen. Diese neue Tochtergesellschaft von Fujitsu trägt seit-
dem den Namen Fujitsu Technology Solutions. 

Das vorliegende Dokument aus dem Dokumentenarchiv bezieht sich auf eine 
bereits vor längerer Zeit freigegebene oder nicht mehr im Vertrieb befindliche 
Produktversion. 

Bitte beachten Sie, dass alle Firmenbezüge und Copyrights im vorliegenden 
Dokument rechtlich auf  Fujitsu Technology Solutions übergegangen sind.  

Kontakt- und Supportadressen werden nun von Fujitsu Technology Solutions 
angeboten und haben die Form …@ts.fujitsu.com. 

Die Internetseiten von Fujitsu Technology Solutions finden Sie unter 
http://de.ts.fujitsu.com/..., und  unter http://manuals.ts.fujitsu.com finden Sie die 
Benutzerdokumentation.

Copyright Fujitsu Technology Solutions, 2009


	Title
	Preface 
	Brief product description 
	Target group 
	Summary of contents 
	Sample programs 
	Readme files 

	The CMX transport access system 
	Communication between TS applications 
	The CMX program interfaces - an overview 
	CMX functions for communication (ICMX(L)) 
	CMX functions for migration (ICMX(NEA)) 
	System and user options 


	TS applications 
	Names and addresses of TS applications 
	The GLOBAL NAME of a TS application 
	Properties of a TS application 
	The properties LOCAL NAME and TRANSPORT ADDRESS 

	Structure of a TS application 
	Compiling and linking TS application programs 
	TS applications, processes, connections 
	TS applications and processes 
	Connections and processes 

	Threads and Multithreading 

	Event processing and error handling 
	Receiving events 
	Error handling 
	Error checking functions 
	Format of CMX error messages 
	Decoding error messages 


	Attaching to/detaching from CMX 
	Attaching to CMX 
	Detaching from CMX 
	Examples of attaching and detaching a process 
	Example of attaching and detaching a process at ICMX(L) 
	Example of attaching and detaching a process at ICMX(NEA) 


	Managing connections between TS applications 
	Establishing a connection 
	Closing down a connection 
	Example of setting up and closing down a connection with ICMX(L) 
	Examples of establishing a connection with ICMX(L) 
	Examples of establishing a connection with ICMX(NEA) 

	Redirecting connections 
	Example of redirecting a connection 
	Example of redirecting a connection at ICMX (L) 
	Example of redirecting a connection at ICMX(NEA) 



	Transmitting data 
	Sending and receiving normal data 
	Examples of transmitting normal data 
	Example of transmitting normal data via ICMX(L) 
	Example of transmitting normal data via ICMX(NEA) 

	Sending and receiving expedited data 
	Flow control of normal and expedited data 

	The ICMX(L) program interface 
	Overview of the program interface 
	States of TS applications and permissible state transitions 
	Explanations of the possible state transitions 

	Transport system specific features 
	System options and message length 
	Programming notes 
	Additional functionality "Operation without TNS/Creation of templates" 
	Application scenario / Program skeleton 


	Conventions 
	ICMX(L) - function calls 
	t_attach - Attach a process to CMX (attach process) 
	t_callback - Register a callback routine 
	t_concf - Establish connection (connect confirmation) 
	t_conin - Receive connection request (connect indication) 
	t_conrq - Request connection (connection request) 
	t_conrs - Respond to connection request (connection response) 
	t_datago - Release the flow of data (data go) 
	t_datain - Receive data (data indication) 
	t_datarq - Send data (data request) 
	t_datastop - Stop the flow of data (data stop) 
	t_detach - Detach a process from a TS application (detach process) 
	t_disin - Accept disconnection (disconnection indication) 
	t_disrq - Close down connection (disconnection request) 
	t_error - Error diagnosis (error) 
	t_event - Await or query event (event) 
	t_getaddr - Query TRANSPORT ADDRESS for the GLOBAL NAME (get address) 
	t_getaddrpart, t_setaddrpart - Read or change address information in TRANSPORT ADDRESS 
	t_getloc - Query LOCAL NAME 
	t_getlocpart, t_setlocpart - Read or change address information in LOCAL NAME 
	t_getname - Query GLOBAL NAME (get name) 
	t_info - Query information on CMX (information) 
	t_perror - Output CMX error message in decoded form 
	t_preason - Decode and output reasons for disconnection 
	t_redin - Accept redirected connection (redirection indication) 
	t_redrq - Redirect connection (redirection request) 
	t_setaddrpart - Add information to TRANSPORT ADDRESS 
	t_setlocpart 
	t_setopt - Set options in CMX (set options) 
	t_strerror - Decode CMX error message 
	t_strreason - Decode reasons for disconnection 
	t_vdatain - Receive data (data indication) 
	t_vdatarq - Send data (data request) 
	t_xdatgo - Release the flow of expedited data (expedited data go) 
	t_xdatin - Receive expedited data (expedited data indication) 
	t_xdatrq - Send expedited data (expedited data request) 
	t_xdatstop - Block the flow of expedited data (expedited data stop) 


	The ICMX(NEA) program interface 
	Overview of the program interface 
	Finite-state automata 
	NEABV protocol 
	The NEABV protocol for communication via ICMX(NEA) 
	The NEABX service functions (NEABV service) 

	Transport system specific features 
	Programming notes 
	Conventions 
	ICMX(NEA) - function calls 
	x_attach - Attach a process to NEABX (attach process) 
	x_concf - Establish connection (connection confirmation) 
	x_conin - Receive connection request (connection indication) 
	x_conrq - Request connection (connection request) 
	x_conrs - Respond to connection request (connection response) 
	x_datago - Release the flow of data (datago) 
	x_datain - Receive data (data indication) 
	x_datarq - Send data (data request) 
	x_datastop - Stop the flow of data (data stop) 
	x_detach - Detach from NEABX (detach process) 
	x_disin - Accept disconnection (disconnection indication) 
	x_disrq - Close down connection (disconnection request) 
	x_error - Query error codes (error) 
	x_event - Await or query event (event) 
	x_info - Information on NEABX constant (information) 
	x_neavi - Analysis of the NEABV protocol 
	x_neavo - Generate the NEABV protocol 
	x_perror - Output NEABX error message in decoded form 
	x_redin - Accept redirected connection (redirection indication) 
	x_redrq - Redirect connection (redirection request) 
	x_setopt - Set options in CMX_NEA (set options) 
	x_strerror - Decode NEABX error message 
	x_xdatgo - Release the flow of expedited data (expedited data go) 
	x_xdatin - Receive expedited data (expedited data indication) 
	x_xdatrq - Send expedited data (expedited data request) 
	x_xdatstop - Stop the flow of expedited data (expedited data stop) 


	Appendix 
	Complete list of CMX error messages 
	List of reasons for disconnection 

	Glossary 
	Abbreviations 
	Related publications 
	Index 

