
Introduction

Introduction
NAME

OSS Open Systems Interconnection Services

SYNOPSIS

#include <oss.h>

All calls, structs and variables in this interface are prefixed with s_ and all values
with S_. They are defined in the above include file.

DESCRIPTION

This document specifies a general session-oriented communication interface for
programs written in the C language. The interface is based on the internationally
standardized Session Service of the ISO Reference Model for Open Systems
Interconnection (ISO 8326). A knowledge of the ISO standard is essential for an
understanding of this specification. Some terms and characteristics are explained
below.

Session applications:

The users of this interface are called ’session applications’ and the interface
provider the ’session service’. A session application may consist of one or more
processes, and a process may participate in one or more session applications.
Session connections are established between two session applications. One is
known as the ’local application’ and the other, the partner, as the ’remote
application’, even if the local and remote applications reside in the same system.
The addressable unit is the session application, which is mapped 1:1 onto a
transport application. The address of a session application is thus also the
address of the corresponding transport application.

U5231-J-Z145-2-7600 1

Introduction

Session connections:

A session connection may be established between a local and a remote session
application. A session application may maintain more than one session connection
at a given time and more than one connection may exist between the same pair
of session applications. A session connection is always tied to one process of the
application and at a given time only known in this process. A session connection
initiated by a local application is implicitly bound to the process issuing the
connect request call. A session connection initiated by a remote application is
implicitly bound to the first (or oldest) process of the addressed application. A
local function was introduced to explicitly change the association of a connection
from one process of the application to another.

Session call techniques:

This interface closely follows the ISO standard and the service primitives of the
standard appear here as function calls. Since the standard is an abstract definition
covering only the interaction with the remote partner, some local functions have
been added to provide a complete programming interface to the session service
as a subsystem in an operating system environment.

The service primitives of the standard are of two kinds, requests and responses
directed from the user to the provider, and indications and confirmations directed
from the provider to the user. Since indications and confirmations may occur at
any time unpredictably, a local function s_event was introduced to wait or
periodically check for any type of indication or confirmation. The s_event function
only announces the occurrence of session events that need to be received
immediately with the appropriate event-specific function call. The call receiving the
announced indication or confirmation then syntactically resembles the requests
and responses.

Parameters to be supplied by the user are marked with ’()’ and parameters with
values to be returned by OSS are marked with ’()’.

2 U5231-J-Z145-2-7600

User interface

User Interface of OSS V3.0

Differences between the OSS V2.0 and OSS V3.0 Interfaces

In OSS V3.0, the user interface has remained unchanged in comparison with OSS V2.0.
However, the following changes have been made in the implementation:

• Maximum data length

In OSS V3.0, the maximum data length of the SIDU (session interface data unit)
is independent of the maximum length of the TIDU (transport interface data unit).
The maximum SIDU length is approx. 64 Kb; this value is returned when s_info()
is called.

With the exception of s_datarg() and s_typerq(), the following is valid for all
service calls: If the version 2 session protocol is used, the maximum user data
length increases from 8 Kbytes to 10 Kbytes.

In the case of s_datarg() and s_typerq(), the following is valid: the maximum
length of the user data is unlimited if the data is linked with S_MORE. However,
only one data block per request can be transferred; the maximum permissible
length for this data block is the maximum SIDU length (see above).

• The dynamic memory requirement has changed, see page 135.

• For modified installation path names, see page 135.

• The function s_wake() is implemented differently, see page 136.

• The ’Local Functions’ have been extended to include the functions ’s_stop’ and
’s_go’.

• The compiler call has changed, see page 136.

• The OSS V3.0 library is supplied as a shared library. Therefore the inclusion of
subsets for code saving purposes is no longer possible or practical. The former
"Subsets of OSS" section has also been omitted.

U5231-J-Z145-2-7600 3

User interface

• With the s_attach(), s_conrq(), s_conin(), and s_redin() calls, the user traces
transferred are no longer tested for uniqueness.

• s_conin always returns the session address.

• The session trace evaluation program STEP has been extended by some options.
The session references are output with all trace records.

Changes Required to enable an Existing OSS V2.0
Application to Use OSS V3.0

All applications can be taken over on a one-to-one basis.

4 U5231-J-Z145-2-7600

Local functions

Local Functions

Overview

The function calls contained in this chapter are:

s_attach session application attach
s_detach session application detach

s_event announce session service event

s_info request session information
s_timer generate time interrupt event
s_wake wake up another session user process
s_error return error diagnostic code

s_redrq redirect session connection
s_redin receive redirected session connection
s_stop stop indication of connection related events
s_go resume indication of connection related events

The local function calls do not form part of the ISO standard, but are necessary to
enable a complete programming interface to be provided.

U5231-J-Z145-2-7600 5

S_ATTACH(SS)

s_attach

NAME

s_attach session application attach

SYNOPSIS

int s_attach(aref,auref,addr,NULL)
int *aref; ()
int *auref; ()
char *addr; ()

DESCRIPTION

’S_attach’ attaches the calling process to the session service. ’Aref’ points to a
location in which the session service places the local application reference. It
must be included in some session service calls to specify the local session
application.

’Auref’ points to the application user reference, which is returned by the session
service in the s_event call for the announcements S_CONIN and S_REDIN. It may
be used by the session application program to distinguish between a number of
session applications attached to the session service.
If no application user reference is being used, ’auref’ points to S_NOUREF or may
be NULL. In this case the value S_NOUREF is returned for ’uref’ in the S_CONIN
and S_REDIN events.

’Addr’ points to the address of the session application. A session application
address consists of a session selector and a transport application address.

The first process issuing an s_attach call with this ’addr’ implicitly creates the
session application. Each process using the session service must attach itself
before it can use further session service calls.

The last parameter is reserved for future extensions.

6 U5231-J-Z145-2-7600

S_ATTACH(SS)

RETURN VALUE

S_OK successful, and application implicitly created
S_NOTFIRST successful, and application already created by another

process
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call
S_RETRY unsuccessful due to internal resource shortage; it is advisable

to retry the call later; a diagnostic code is available via the
s_error call

APPLICATION USAGE

An attached application is not only known to the local session service but can
also be addressed by partner applications throughout the network.

RESTRICTIONS

This OSS version does not support different session applications attached to the
same transport application. This means that if two different processes are
attached to the same transport application, they must use the same session
selector.
OSS, however, is not able to detect the incorrect use of session selectors in the
s_attach call, which may have a strange effect on S_CONIN and S_REDIN events.

NOTE

The structure of the session application address is system-dependent (see
appendix D).

RELATIONSHIP TO ISO 8326

Local function needed to make the application processes known to the session
service and addressable.

U5231-J-Z145-2-7600 7

S_DETACH(SS)

s_detach

NAME

s_detach session application detach

SYNOPSIS

int s_detach(aref)
int *aref; ()

DESCRIPTION

’S_detach’ detaches the session application referenced by ’aref’ from the calling
process. The last process to issue an s_detach call for a ’addr’ given in s_attach
implicitly destroys the session application, after which it is no longer addressable.
Session connections known in the calling process implicitly undergo disorderly
release from the session service.

RETURN VALUE

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.

APPLICATION USAGE

An attached process terminating either normally or abnormally without an
s_detach call being issued is implicitly detached from the session service.

RELATIONSHIP TO ISO 8326

Local function needed as a counterpart to s_attach.

8 U5231-J-Z145-2-7600

S_EVENT(SS)

s_event

NAME

s_event announce session service event

SYNOPSIS

int s_event(sref,uref,cmode,udatal)
int *sref; ()
int *uref; ()
int cmode; ()
unsigned *udatal; ()

DESCRIPTION

All asynchronous session service events (indications, confirmations and local
events) for all session connections known to the calling process are announced
by ’s_event’ call. The return value of the call indicates the announced event type.
’Sref’ points to a location in which the session service places the local session
reference for session-specific events. ’Uref’ is NULL or points to a location in
which the session service places the local session user reference for session-
specific events or the application user reference for the events S_CONIN and
S_REDIN. If ’uref’ is NULL, no user reference is returned. ’Cmode’ specifies the
call mode as either

S_WAIT wait for the next event to occur, or
S_CHECK check if a session event is present.

’Udatal’ points to a location where the length of the user data belonging to the
event is written.

RETURN VALUES

S_NOEVENT If ’cmode’=S_CHECK, no session event is present. If
’cmode’=S_WAIT, the blocking s_event was interrupted by a
signal or an internal action not leading to a session event. If
the user does not wish to terminate, the s_event call should
be repeated. No ’sref’ and ’uref’ specified.

S_GO The stop condition due to a flow control shortage has been
cleared for this session connection and the stopped call
successfully completed. It is now possible to continue with
further request or response calls for this session connection.

S_CONIN session connect indication to be received with an s_conin
call; the value returned for ’uref’ is the session application
user reference ’auref’ for the session application ’addr’
attached in a previous s_attach call.

U5231-J-Z145-2-7600 9

S_EVENT(SS)

S_CONCF session connect confirmation to be received with an s_concf
call

S_RELIN session release indication to be received with an s_relin call
S_RELCF session release confirmation to be released with an s_relcf

call
S_UABOIN user-initiated session abort indication to be received with an

s_uaboin call
S_PABOIN provider-initiated session abort indication to be received with

an s_paboin call
S_DATAIN normal data indication to be received with one or a sequence

of s_datain calls; all the number of bytes announced in
’udatal’ must, however, be received before another session
call can be issued.

S_TKGIN token give indication to be received with an s_tkgin call
S_TKPIN token please indication to be received with an s_tkpin call
S_TYPEIN typed data indication to be received with one or a sequence

of s_typein calls; all the number of bytes announced in
’udatal’ must, however, be received before another session
call can be issued.

S_CAPIN capability data indication to be received with an s_capin call
S_CAPCF capability data confirmation to be received with an s_capcf

call
S_MININ sync minor indication to be received with an s_minin call
S_MINCF sync minor confirmation to be received with an s_mincf call
S_MAJIN sync major indication to be received with an s_majin call
S_MAJCF sync major confirmation to be received with an s_majcf call
S_SYNIN resynchronize indication to be received with an s_synin call
S_SYNCF resynchronize confirmation to be received with an s_syncf call
S_STAIN activity start indication to be received with an s_stain call
S_RESIN activity resume indication to be received with an s_resin call
S_INTIN activity interrupt indication to be received with an s_intin call
S_INTCF activity interrupt confirmation to be received with an s_intcf

call
S_DISIN activity discard indication to be received with an s_disin call
S_DISCF activity discard confirmation to be received with an s_discf

call
S_ENDIN activity end indication to be received with an s_endin call
S_ENDCF activity end confirmation to be received with an s_endcf call
S_CTGIN control give indication to be received with an s_ctgin call
S_UEXCIN user-initiated exception report indication to be received with

an s_uexcin call
S_PEXCIN provider-initiated exception report indication to be received

with an s_pexcin call

10 U5231-J-Z145-2-7600

S_EVENT(SS)

S_REDIN session redirect indication to be received with an s_redin call;
the value returned for ’uref’ is the session application user
reference ’auref’ for the session application ’addr’ attached in
a previous s_attach call

S_TIMEINT time interrupt generated by a local s_timer call; no ’sref’, ’uref’
specified

S_ERROR call unsuccessful; a diagnostic code is available via the
s_error call; no ’sref’, ’uref’ specified.

APPLICATION USAGE

After receiving a session indication or confirmation via s_event the user must call
either the corresponding s_...in/s_...cf function to receive the announced event or
the s_uaborq function to cancel the session connection.

The s_event call with ’cmode’=S_WAIT is the only blocking call in the session
interface and hence the central call, at the top of a dispatcher (switch), in an
event-driven session application.

Note that the S_NOEVENT return value may, depending on the implementation,
be generated as a result of session layer internal actions of no significance for the
session user, such as the reception of transport connect indication or
confirmation.

RELATIONSHIP TO ISO 8326

A local function needed to announce the occurrence of asynchronous session
events in addition to the abstract ISO specification.

U5231-J-Z145-2-7600 11

S_INFO(SS)

s_info

NAME

s_info request session information

SYNOPSIS

int s_info(sref,maxl,NULL)
int *sref; ()
unsigned *maxl; ()

DESCRIPTION

’S_info’ requests information about the session connection with the local reference
’sref’. ’Maxl’ points to a location to which the maximum length of one session
interface data unit (SIDU) is written.

The third parameter is reserved for future extensions.

The requester of a session must not call s_info until the session has been fully
established (s_concf).

RETURN VALUE

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.

RELATIONSHIP TO ISO 8326

Local function needed to obtain information about implementation-dependent or
dynamically changing session characteristics.

12 U5231-J-Z145-2-7600

S_TIMER(SS)

s_timer

NAME

s_timer generate time interrupt event

SYNOPSIS

int s_timer(sec)
unsigned sec; ()

DESCRIPTION

’S_timer’ generates a time interrupt event that is announced via the s_event call
after ’sec’ seconds. A second s_timer call issued before the first one has expired
implicitly cancels the first interrupt. A ’sec’ value equal to 0 does not generate an
interrupt; it merely cancels an interrupt that has not yet expired.

APPLICATION USAGE

This call may be used either to wake up a blocking s_event call so that it does
not wait for events for ever that may never occur, or to time-supervise events.

RETURN VALUE

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.

RELATIONSHIP TO ISO 8326

Local function needed for the time supervision of events and blocking session
calls, or as a substitute for the alarm function required internally by the session
service.

U5231-J-Z145-2-7600 13

S_WAKE(SS)

s_wake

NAME

s_wake wake up a session user process

SYNOPSIS

int s_wake(pid)
int *pid; ()

DESCRIPTION

’S_wake’ is used to wake up (release) a session user process blocked by an
s_event call. If it is waiting in an s_event call, it will immediately return
S_NOEVENT. Otherwise an s_wake call has no effect.

APPLICATION USAGE

This call may be used by one session user process to clear a blocking s_event
call in another. The process calling s_wake does not have to be attached to the
session service. The process being woken, however, must be attached in order to
call s_event.

RETURN VALUE

S_OK successful
S_RETRY unsuccessful; process to be woken is not attached to the

session service, or system error. s_error cannot be called as
no error code is set.

RELATIONSHIP TO ISO 8326

Local function needed to ensure the cooperation of session user processes.

14 U5231-J-Z145-2-7600

S_ERROR(SS)

s_error

NAME

s_error return error diagnostic code

SYNOPSIS

int s_error(addinfo)
int *addinfo; ()

DESCRIPTION

’S_error’ supplies an additional diagnostic code after a session call has returned
an S_ERROR or S_RETRY value. The returned codes are intended to support the
diagnosis of error conditions and should not be interpreted by the calling
software. Moreover, the list of possible codes differs from one implementation to
another. ’Addinfo’ points to a location in which the session service places an
additional value for the error codes S_SYSERR and S_TSERR.

A list of possible diagnostic codes for the error code S_TSERR is contained in the
include file cmx.h. Diagnostic codes for the error code S_SYSERR are listed in
the appendix.

APPLICATION USAGE

A session application should always save or display the diagnostic code after the
return value S_ERROR and after S_RETRY if the failed call is not retried.

RELATIONSHIP TO ISO 8326

Local function needed for the diagnosis of error conditions.

U5231-J-Z145-2-7600 15

S_REDRQ(SS)

s_redrq

NAME

s_redrq session redirect request

SYNOPSIS

int s_redrq(sref,pid,userdata)
int *sref; ()
int *pid; ()
struct s_udatas *userdata; ()

DESCRIPTION

’S_redrq’ asks for the session connection with the local reference ’sref’ to be
redirected from the calling process to the process of the same session application
with the ID pointed to by ’pid’. ’Userdata’ is NULL if no user data is required, or
points to an ’s_udatas’ struct with the following layout:

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; /* length of user data */

};

’Ptr’ points to an area with ’len’ bytes of user data to be transferred to the
process. If ’len’ is 0, no user data is transferred. The length of the user data must
not exceed 12 Kbytes.

After this call, the session connection is no longer known to the calling process.

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.

APPLICATION USAGE

This call may only be used to distribute incoming session connections to server
processes when new processes are created to serve incoming connections.

s_redrq() may only be called after s_conin(). The process receiving the session
connection must already be attached to the same session application as the
redirecting process.

The s_conrs() call must be made by the process receiving the session connection
with an s_redin() call.

RELATIONSHIP TO ISO 8326

Local function that adds necessary flexibility to more complex multi-process
session applications.

16 U5231-J-Z145-2-7600

S_REDIN(SS)

s_redin

NAME

s_redin receive session redirect indication

SYNOPSIS

int s_redin(sref,suref,aref,pid,userdata)
int *sref; ()
int *suref; ()
int *aref; ()
int *pid; ()
struct s_udatas *userdata ()

DESCRIPTION

’S_redin’ receives an indication announced via s_event to redirect the session
connection with the local reference ’sref’ to the calling process. ’Suref’ points to a
location containing a session connection user reference. It may be specified by
the session user to distinguish a number of session connections. It is returned in
’uref’ by all s_event calls concerning a particular session connection. If no session
connection user reference is being used, ’suref’ points to S_NOUREF or may be
NULL. In this case the value S_NOUREF is returned by the s_event call.

’Aref’ points to a location in which the application reference of the local
application for which the session connection redirection was announced is
returned. ’Pid’ points to a location to which the ID of the process that requested
the redirection is written. ’Userdata’ is NULL or points to an ’s_udatas’ struct
specifying the user data area and having the following layout:

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; /* length of user data area */

};

’Ptr’ points to an area of ’len’ bytes to which the user data specified by the
partner is written. If ’userdata’ is NULL or ’len’ is 0 or less than the length
announced by the s_event call, all or the last part of the user data is ignored.

U5231-J-Z145-2-7600 17

S_REDIN(SS)

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.

APPLICATION USAGE

This call assigns the session connection to the calling process. If the session
connection is not wanted, it either has to be released or returned to the
requesting process.

RELATIONSHIP TO ISO 8326

Local function needed, together with the session redirect request function call, for
multi-process applications.

18 U5231-J-Z145-2-7600

S_STOP(SS)

s_stop

NAME

s_stop stop indication of connection related events

SYNOPSIS

int s_stop(sref)
int *sref; ()

DESCRIPTION

’s_stop’ can be used to stop the indication of events related to the connection
specified by ’sref’. ’Sref’ points to the reference of the session connection.

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.

APPLICATION USAGE

This call may be used to stop the indication of connection related events on a
session connection with the exception of the event S_PABOIN.

RELATIONSHIP TO ISO 8326

Local function needed for flow control.

U5231-J-Z145-2-7600 19

S_GO(SS)

s_go

NAME

s_go resume indication of connection related events

SYNOPSIS

int s_go(sref)
int *sref; ()

DESCRIPTION

’S_go’ can be used to resume the indication of events related to the connection
specified by ’sref’. ’Sref’ points to the reference of the session connection.

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.

APPLICATION USAGE

This call is used to cancel the effect of an s_stop call.

RELATIONSHIP TO ISO 8326

Local function needed for flow control.

20 U5231-J-Z145-2-7600

The Kernel Functional Unit

Overview

 The kernel functional unit supports the basic session services required to establish a
 session connection, transfer normal data and release the session connection.

 The kernel functional unit comprises the following calls

s_conrq session connect request
s_conin receive session connect indication
s_conrs session connect response
s_concf receive session connect confirm

s_relrq session release request
s_relin receive session release indication
s_relrs session release response
s_relcf receive session release confirm

s_uaborq user-initiated abort request
s_uaboin receive user-initiated abort indication
s_paboin receive provider-initiated abort indication

s_datarq normal data request
s_datain receive normal data indication

U5231-J-Z145-2-7600 21

S_CONRQ(SS)

s_conrq

NAME

s_conrq session connect request

SYNOPSIS

int s_conrq(sref,suref,aref,toaddr,ucid,funits,qos,syncp,token,
userdata)

int *sref; ()
int *suref; ()
int *aref; ()
char *toaddr; ()
struct s_cid *ucid; ()
int *funits; ()
char *qos; ()
long *syncp; ()
char *token; ()
struct s_udatas *userdata; ()

DESCRIPTION

’S_conrq’ asks for a session connection to be established to the session
application (remote or local) named in ’toaddr’. ’Sref’ points to a location in which
the session service returns the local session reference identifying this connection.
’Suref’ points to a location containing a session connection user reference. It may
be specified by the session user to distinguish a number of session connections.
It is returned in ’uref’ by all s_event calls concerning a particular session
connection. If no session connection user reference is being used, ’suref’ points
to S_NOUREF or may be NULL. In this case the value S_NOUREF is returned by
the s_event call.

’Aref’ points to the application reference of the calling application as returned in a
previous s_attach call. ’Toaddr’ points to a structure containing the session
service address of the called application. ’Ucid’ is NULL if no user connection
identification is required or points to an ’s_cid’ struct containing the user
connection identification as follows:

struct s_cid { /* layout of connection ID */
int s_luref; /* length of SS-user reference */
char s_uref[64]; /* calling SS-user reference */
int s_lcomref; /* length of common reference */
char s_comref[64]; /* common reference */
int s_laddref; /* length of additional ref */
char s_addref[4]; /* additional reference info */

};

22 U5231-J-Z145-2-7600

S_CONRQ(SS)

’Funits’ specifies the functional units proposed for the session as described in the
standard. ’Funits’ values are constructed by ORing values from the following list:

S_HDX half duplex and data token available
S_FDX full duplex
S_MINOR minor synchronization and minor sync token avail.
S_MAJOR major synchronization and major/activity token av.
S_RESYNC resynchronize
S_ACTIVITY activity management and major/activity token avail.
S_NEGRELEASE negotiated release and release token available
S_CAPABILITY capability data (implying S_ACTIVITY)
S_EXCEPTIONS exceptions (implying S_HDX)
S_TYPED typed data
S_PVERS1 session protocol version 1 is to be used

’Qos’ is NULL (reserved for quality of service specification in future versions).
’Syncp’ is NULL if no sync point is required, or points to the initial sync point
number. The value of the latter is an integer in the range 0-999999, or
S_NOVALUE if the parameter is not specified. ’Token’ points to the initial token
assignment and the value is constructed by ORing values from the following list:

S_T_DATA data token on accepter side
S_T_MINOR minor synchronize token on accepter side
S_T_ACTIVITY major/activity token on accepter side
S_T_RELEASE release token on accepter side
S_TC_DATA data token on side chosen by accepter
S_TC_MINOR minor sync. token on side chosen by accepter
S_TC_ACTIVITY major/activity token on side chosen by accepter
S_TC_RELEASE release token on side chosen by accepter

If a particular token has no value assigned to it, the token remains on the
requester side or is not used in the current session. If all tokens in the session
have no value, ’token’ may be NULL. ’Userdata’ is NULL if no user data is
required, or points to an ’s_udatas’ struct with the following layout:

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; /* length of user data */

};

’Ptr’ points to an area with ’len’ bytes of user data to be transferred to the
partner. If ’len’ is 0, no user data is transferred.

U5231-J-Z145-2-7600 23

S_CONRQ(SS)

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.
S_RETRY unsuccessful due to internal resource shortage; in this case it

is advisable to retry the call later; a diagnostic code is
available via the s_error call.

APPLICATION USAGE

The session connection is established when a positive session connect
confirmation (s_concf) is received from the responding application. This event is
announced by an s_event call. The sref is not passed on to a child process after
a fork call in a UNIX environment.

NOTE

The structure of ’toaddr’ is system-dependent (see appendix D).

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-CONNECT request.

24 U5231-J-Z145-2-7600

S_CONIN(SS)

s_conin

NAME

s_conin receive session connect indication

SYNOPSIS

int s_conin(sref,suref,aref,fraddr,ucid,funits,qos,syncp,token,
userdata)

int *sref; ()
int *suref; ()
int *aref; ()
char *fraddr; ()
struct s_cid *ucid; ()
int *funits; ()
char *qos; ()
long *syncp; ()
char *token; ()
struct s_udatas *userdata; ()

DESCRIPTION

’S_conin’ receives an indication for session connection establishment announced
via s_event for the session connection with the local reference ’sref’. ’Suref’ points
to a location containing a session connection user reference. It may be specified
by the session user to distinguish a number of session connections. It is returned
in ’uref’ by all s_event calls concerning a particular session connection. If no
session connection user reference is being used, ’suref’ points to S_NOUREF or
may be NULL. In this case the value S_NOUREF is returned by the s_event call.

’Aref’ points to a location to which the application reference of the called
application as returned in a previous s_attach call is written. ’Fraddr’ points to an
area to which the session service address of the calling application is written.
’Ucid’ points to an ’s_cid’ struct to which the user connection identifier specified
by the partner is written as follows:

struct s_cid { /* layout of connection ID */
int s_luref; /* length of SS-user reference */
char s_uref[64]; /* calling SS-user reference */
int s_lcomref; /* length of common reference */
char s_comref[64]; /* common reference */
int s_laddref; /* length of additional ref */
char s_addref[4]; /* additional reference info */

};

U5231-J-Z145-2-7600 25

S_CONIN(SS)

’Funits’ points to a location to which the functional units proposed by the partner
are written. ’Funits’ values are constructed by ORing values from the following list:

S_HDX half duplex and data token available
S_FDX full duplex
S_MINOR minor synchronization and minor sync token avail.
S_MAJOR major synchronization and major/activity token av.
S_RESYNC resynchronize
S_ACTIVITY activity management and major/activity token avail.
S_NEGRELEASE negotiated release and release token available
S_CAPABILITY capability data (implying S_ACTIVITY)
S_EXCEPTIONS exceptions (implying S_HDX)
S_TYPED typed data
S_PVERS1 session protocol version 1 is to be used

’Qos’ is NULL (reserved for quality of service specification in future versions).

’Syncp’ points to a location to which the initial sync point number is written. The
sync point is an integer in the range 0-999999. If the partner has not specified an
initial sync point number, the parameter is set to S_NOVALUE. ’Token’ points to a
location to which the initial token assignment is written. The value is constructed
by ORing values from the following list:

S_T_DATA data token on accepter side
S_T_MINOR minor synchronize token on accepter side
S_T_ACTIVITY major/activity token on accepter side
S_T_RELEASE release token on accepter side
S_TC_DATA data token on side chosen by accepter
S_TC_MINOR minor sync token on side chosen by accepter
S_TC_ACTIVITY major/activity token on side chosen by accepter
S_TC_RELEASE release token on side chosen by accepter

If a particular token has no value assigned to it, the token remains on the
requester side or is not used in the current session. ’Userdata’ is NULL or points
to an ’s_udatas’ struct specifying the user data area and has the following layout:

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; /* length of user data area */

};

’Ptr’ points to an area of ’len’ bytes to which the user data specified by the
partner is written. If ’userdata’ is NULL or ’len’ is 0 or less than the length
announced in the s_event call, all or the last part of the user data is ignored.

26 U5231-J-Z145-2-7600

S_CONIN(SS)

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.

APPLICATION USAGE

The session connect indication must be answered to with a session connect
response call (s_conrs) either accepting or rejecting the connection.

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-CONNECT indication.

U5231-J-Z145-2-7600 27

S_CONRS(SS)

s_conrs

NAME

s_conrs session connect response

SYNOPSIS

int s_conrs(sref,aref,ucid,result,funits,qos,syncp,token,userdata)
int *sref; ()
int *aref; ()
struct s_cid *ucid; ()
char *result; ()
int *funits; ()
char *qos; ()
long *syncp; ()
char *token; ()
struct s_udatas *userdata; ()

DESCRIPTION

’S_conrs’ responds to the session connect indication received via s_conin for the
session connection with the local reference ’sref’. ’Aref’ points to the application
reference of the responding application as returned in a previous s_attach call.
The ’result’ of the response is one of the following:

S_ACCEPT session connect indication accepted
S_REJECT session connect indication rejected
S_CONGEST session connect indication rejected due to temporary

congestion (no user data is permitted).

’Ucid’ is NULL if no user connection identification is required or points to an
’s_cid’ struct containing the user connection identification as follows:

struct s_cid { /* layout of connection ID */
int s_luref; /* length of SS-user reference */
char s_uref[64]; /* called SS-user reference */
int s_lcomref; /* length of common reference */
char s_comref[64]; /* common reference */
int s_laddref; /* length of additional ref */
char s_addref[4]; /* additional reference info */

};

28 U5231-J-Z145-2-7600

S_CONRS(SS)

’Funits’ specifies the functional units proposed by the responder. ’Funits’ values
are constructed by ORing values from the following list:

S_HDX half duplex and data token available
S_FDX full duplex (not together with S_HDX)
S_MINOR minor synchronization and minor sync token avail.
S_MAJOR major synchronization and major/activity token av.
S_RESYNC resynchronize
S_ACTIVITY activity management and major/activity token avail.
S_NEGRELEASE negotiated release and release token available
S_CAPABILITY capability data (implying S_ACTIVITY)
S_EXCEPTIONS exceptions (implying S_HDX)
S_TYPED typed data
S_PVERS1 session protocol version 1 has to be used

’Qos’ is NULL (reserved for quality of service specification in future versions).

’Syncp’ is NULL if no sync point is required, or points to the initial sync point
number. The value of the latter is an integer in the range 0-999999 or
S_NOVALUE if the parameter is not specified. ’Token’ specifies the tokens chosen
or requested by the responder and the value is constructed by ORing values from
the following list:

S_T_DATA data token on accepter side
S_T_MINOR minor synchronize token on accepter side
S_T_ACTIVITY major/activity token on accepter side
S_T_RELEASE release token on accepter side

If a particular token has no value assigned to it, the token remains on the
requester side or is not used in the current session. If tokens assigned to the
requester are specified, an S-TOKEN-PLEASE indication is implicitly generated on
the requester side after the S-CONNECT confirm. If all tokens in the session have
no value, ’token’ may be NULL. ’Userdata’ is NULL if result is S_CONGEST or no
user data is required or it points to an ’s_udatas’ struct with the following layout:

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; /* length of user data */

};

’Ptr’ points to an area with ’len’ bytes of user data to be
transferred to the partner. If ’len’ is 0, no user data is transferred.

U5231-J-Z145-2-7600 29

S_CONRS(SS)

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call
S_STOP call temporarily stopped due to flow control shortage; an

S_GO event is announced via s_event once the call has been
successfully completed and it is possible to continue with
request and response calls for this session. This value is only
possible if the result is S_ACCEPT.

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-CONNECT response.

30 U5231-J-Z145-2-7600

S_CONCF(SS)

s_concf

NAME

s_concf receive session connect confirmation

SYNOPSIS

int s_concf(sref,toaddr,ucid,result,funits,qos,syncp,token,userdata)
int *sref; ()
char *toaddr; ()
struct s_cid *ucid; ()
char *result; ()
int *funits; ()
char *qos; ()
long *syncp; ()
char *token; ()
struct s_udatas *userdata; ()

DESCRIPTION

’S_concf’ receives the session connect confirmation announced via s_event for
the session connection with the local reference ’sref’, in response to a previously
issued session connect request call. ’Toaddr’ points to a structure to which the
session service address of the responding application is written. ’Result’ points to
a location in which the response to the request is placed. Possible responses are:

S_ACCEPT connection accepted
S_REJECT connection rejected by partner
S_CONGEST connection rejected by partner due to temporary congestion
S_PREJECT connection rejected by session service
S_PCONGEST connection rejected by session service due to temporary

congestion
S_PUNKNOWN connection rejected by session service since the called

session application is unknown
S_PNATTACH connection rejected by session service since the called

session application is not attached
S_PPVERS connection rejected by session service since the proposed

protocol version is not supported

U5231-J-Z145-2-7600 31

S_CONCF(SS)

’Ucid’ points to an ’s_cid’ struct to which the user connection identifier specified
by the partner is written as follows:

struct s_cid { /* layout of connection ID */
int s_luref; /* length of SS-user reference */
char s_uref[64]; /* called SS-user reference */
int s_lcomref; /* length of common reference */
char s_comref[64]; /* common reference */

int s_laddref; /* length of additional ref */
char s_addref[4]; /* additional reference info */

};

’Funits’ points to a location to which the functional units proposed by the partner
are written. ’Funits’ values are constructed by ORing values from the following list:

S_HDX half duplex and data token available
S_FDX full duplex (not together with S_HDX)
S_MINOR minor synchronization and minor sync token avail.
S_MAJOR major synchronization and major/activity token av.
S_RESYNC resynchronize
S_ACTIVITY activity management and major/activity token avail.
S_NEGRELEASE negotiated release and release token available
S_CAPABILITY capability data (implying S_ACTIVITY)
S_EXCEPTIONS exceptions (implying S_HDX)
S_TYPED typed data
S_PVERS1 session protocol version 1 is to be used

’Qos’ is NULL (reserved for quality of service specification in future versions).

’Syncp’ points to a location to which the initial sync point number is written. If the
partner has not specified a sync point, the parameter is set to S_NOVALUE.
’Token’ points to a location in which the tokens chosen by the responder are
placed. The token value is constructed by ORing values from the following list:

S_T_DATA data token on accepter side
S_T_MINOR minor synchronize token on accepter side
S_T_ACTIVITY major/activity token on accepter side
S_T_RELEASE release token on accepter side

32 U5231-J-Z145-2-7600

S_CONCF(SS)

If a particular token has no value, either the token assignment has already been
specified by the requester or, if the accepter was given the choice, the token
assignment is on the requester side.

’Userdata’ is NULL or points to an ’s_udatas’ struct specifying the user data area
with the following layout:

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; /* length of user data area */

};

’Ptr’ points to an area of ’len’ bytes to which the user data specified by the
partner are written. If ’userdata’ is NULL or ’len’ is 0 or less than the length
announced in the s_event call, all or the last part of the user data is ignored.

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-CONNECT confirm.

U5231-J-Z145-2-7600 33

S_RELRQ(SS)

s_relrq

NAME

s_relrq session release request

SYNOPSIS

int s_relrq(sref,userdata)
int *sref; ()
struct s_udatas *userdata; ()

DESCRIPTION

’S_relrq’ asks for an orderly release of the established session connection with the
local reference ’sref’. ’Userdata’ is NULL if no user data is required, or points to
an ’s_udatas’ struct with the following layout:

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; /* length of user data */

};

’Ptr’ points to an area with ’len’ bytes of user data to be transferred to the
partner. If ’len’ is 0, no user data is transferred.

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call
S_STOP call temporarily stopped due to flow control shortage; an

S_GO event is announced via s_event once the call has been
successfully completed and it is possible to continue with
request and response calls for this session.

APPLICATION USAGE

The session connection is released when a positive session release confirmation
(s_relcf) is received from the partner application. This event is announced by an
s_event call. The s_relrq call is subject to the token restrictions in appendix A.

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-RELEASE request.

34 U5231-J-Z145-2-7600

S_RELIN(SS)

s_relin

NAME

s_relin receive session release indication

SYNOPSIS

int s_relin(sref,userdata)
int *sref; ()
struct s_udatas *userdata ()

DESCRIPTION

’S_relin’ receives an indication announced via s_event to release the session
connection with the local reference ’sref’. ’Userdata’ is NULL or points to an
’s_udatas’ struct specifying the user data area and having the following layout:

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; /* length of user data area */

};

’Ptr’ points to an area of ’len’ bytes to which the user data specified by the
partner is written. If ’userdata’ is NULL or ’len’ is 0 or less than the length
announced in the s_event call, all or the last part of the user data is ignored.

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.

APPLICATION USAGE

The session release indication must be answered with a positive or negative
session release response call (s_relrs).

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-RELEASE indication.

U5231-J-Z145-2-7600 35

S_RELRS(SS)

s_relrs

NAME

s_relrs session release response

SYNOPSIS

int s_relrs(sref,result,userdata)
int *sref; ()
char *result; ()
struct s_udatas *userdata; ()

DESCRIPTION

’S_relrs’ responds to the session release indication received via s_relin for the
session connection with the local reference ’sref’. The ’result’ of the response may
be either

S_AFFIRMATIVE response positive and connection released, or
S_NEGATIVE response negative and connection not released. (Only with

the negotiated release functional unit.)

’Userdata’ is NULL if no user data is required, or points to an ’s_udatas’ struct
with the following layout:

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; /* length of user data */

};

’Ptr’ points to an area with ’len’ bytes of user data to be transferred to the
partner. If ’len’ is 0, no user data is transferred.

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call
S_STOP call temporarily stopped due to flow control shortage; an

S_GO event is announced via s_event once the call has been
successfully completed and it is possible to continue with
request and response calls for this session. This value is only
possible if result is S_NEGATIVE.

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-RELEASE response.

36 U5231-J-Z145-2-7600

S_RELCF(SS)

s_relcf

NAME

s_relcf receive session release confirm

SYNOPSIS

int s_relcf(sref,result,userdata)
int *sref; ()
char *result; ()
struct s_udatas *userdata ()

DESCRIPTION

’S_relcf’ receives a session release confirmation announced via s_event for the
session connection with the local reference ’sref’, in response to a previously
issued session release request call. The ’result’ may be either

S_AFFIRMATIVE response positive and connection released, or
S_NEGATIVE response negative and connection not released.

’Userdata’ is NULL or points to an ’s_udatas’ struct specifying the user data area
and having the following layout:

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; /* length of user data area */

};

’Ptr’ points to an area of ’len’ bytes to which the user data specified by the
partner is written. If ’userdata’ is NULL or ’len’ is 0 or less than the length
announced in the s_event call, all or the last part of the user data is ignored.

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-RELEASE confirm.

U5231-J-Z145-2-7600 37

S_UABORQ(SS)

s_uaborq

NAME

s_uaborq user-initiated session abort request

SYNOPSIS

int s_uaborq(sref,userdata)
int *sref; ()
struct s_udatas *userdata; ()

DESCRIPTION

’S_uaborq’ requests a disorderly release of the established session connection
with the local reference ’sref’. ’Userdata’ is NULL if no user data is required, or
points to an ’s_udatas’ struct with the following layout:

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; /* length of user data */

};

’Ptr’ points to an area with ’len’ bytes of user data to be transferred to the
partner. If ’len’ is 0, no user data is transferred. ’Len’ is limited to 9 if session
protocol version 1 was negotiated.

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.

APPLICATION USAGE

This call is the only request or response permitted in a stop condition due to flow
control shortage (S_STOP), or in the event of an outstanding s_datarq/s_typerq
with ’chain’=S_END or an outstanding indication or confirmation call.

This call releases the session connection immediately and any data in transit is
lost.

NOTE

The user data specified in this call may be lost, depending on the state of the
underlying transport connection.

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-U-ABORT request.

38 U5231-J-Z145-2-7600

S_UABOIN(SS)

s_uaboin

NAME

s_uaboin receive user-initiated session abort indication

SYNOPSIS

int s_uaboin(sref,userdata)
int *sref; ()
struct s_udatas *userdata ()

DESCRIPTION

’S_uaboin’ receives an indication announced via s_event to release the session
connection with the local reference ’sref’ abnormally. ’Userdata’ is NULL or points
to an ’s_udatas’ struct specifying the user data area and having the following
layout:

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; /* length of user data area */

};

’Ptr’ points to an area of ’len’ bytes to which the user data specified by the
partner is written. If ’userdata’ is NULL or ’len’ is 0 or less than the length
announced in the s_event call, all or the last part of the user data is ignored.

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.

APPLICATION USAGE

This call releases the session immediately. Any data in transit is lost.

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-U-ABORT indication.

U5231-J-Z145-2-7600 39

S_PABOIN(SS)

s_paboin

NAME

s_paboin receive provider-initiated session abort indication

SYNOPSIS

int s_paboin(sref,reason)
int *sref; ()
int *reason; ()

DESCRIPTION

’S_paboin’ receives an abnormal release announced via s_event and initiated by
the provider for the session connection with the local reference ’sref’. ’Reason’
indicates the abort reason, which may be any of the following:

S_NOREASON no reason specified
S_TCDISCON transport connection cleared
S_PROTERROR session protocol error

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.

APPLICATION USAGE

This call releases the session immediately. Any data in transit is lost.

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-P-ABORT indication.

40 U5231-J-Z145-2-7600

S_DATARQ(SS)

s_datarq

NAME

s_datarq normal data request

SYNOPSIS

int s_datarq(sref,ptr,len,chain)
int *sref; ()
char *ptr; ()
unsigned *len; ()
char *chain; ()

DESCRIPTION

’S_datarq’ requests ’len’ bytes of normal user data from the area pointed to by
’ptr’ to be sent over the session connection with the local reference ’sref’. ’Chain’
specifies if this session interface data unit (SIDU) concludes a session service
data unit (SSDU) or not, and if concatenation is to be used, with one of the
following values:

S_MORE This SIDU is not the end of an SSDU.
S_END This SIDU concludes an SSDU.
S_CONCAT This SIDU concludes an SSDU and is immediately followed by

a session call to be concatenated with this call. (Rules for
concatenation in appendix C.)

The SSDU is the unit of data exchanged between two session applications. The
SIDU is the data unit exchanged at the local interface. The maximum length of an
SIDU is implementation-dependent and can be queried using the s_info call.

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.
S_STOP call temporarily stopped due to flow control shortage; an

S_GO event is announced via s_event once the call has been
successfully completed and it is possible to continue with
request and response calls for this session.

APPLICATION USAGE

The ’chain’ parameter is useful on the one hand for segmenting an SSDU too big
to fit into one SIDU and on the other for combining smaller portions of data (e.g.
protocol headers) to form an SSDU.

U5231-J-Z145-2-7600 41

S_DATARQ(SS)

NOTE

If an application has sent an SIDU with the chain parameter set to S_MORE, it is
not allowed to issue any session request or response call except s_uaborq until
the SSDU is completed.

RELATIONSHIP TO ISO 8326
Corresponds to the service primitive S-DATA request.

42 U5231-J-Z145-2-7600

S_DATAIN(SS)

s_datain

NAME

s_datain receive normal data indication

SYNOPSIS

int s_datain(sref,ptr,len,chain)
int *sref; ()
char *ptr; ()
unsigned *len; ()
char *chain; ()

DESCRIPTION

’S_datain’ receives a session interface data unit (SIDU) announced via s_event of
normal user data for the session connection with the local reference ’sref’. ’Ptr’
points to an area of ’len’ bytes to which the user data is written. If ’len’ is less
than the length announced via s_event, the rest of the data must be received in
one or a sequence of s_datain calls until all the announced data has been
received, before any further session calls can be issued. ’Chain’ points to a
location in which the session service indicates if the received SIDU concludes a
session service data unit (SSDU) or not, with either

S_MORE This SIDU is not the end of an SSDU, or
S_END This SIDU concludes an SSDU.

The SSDU is the unit of data exchanged between two session applications. The
s_event always announces one SIDU, a data unit that is only meaningful at the
local interface and has an implementation-dependent maximum size. If ’ptr’ is
NULL, ’len’ bytes are discarded by the session service and not delivered to the
application.

RETURN VALUES

>0 number of bytes still to be received in the announced SIDU
S_OK one complete SIDU successfully received
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.

APPLICATION USAGE

Using the ’len’ parameter, an announced SIDU may be received in smaller
segments with a sequence of s_datain calls. If the chain indicator has been set to
S_MORE and a session indication not equal to S_DATAIN is announced to the
application, the end of the SSDU has been discarded and can no longer be given
to the application.

U5231-J-Z145-2-7600 43

S_DATAIN(SS)

NOTE

Even if the chain indicator is set to S_MORE, there is no minimum size of SIDU
the user can be sure of receiving.

RELATIONSHIP TO ISO 8326
Corresponds to the service primitive S-DATA indication.

44 U5231-J-Z145-2-7600

The Half-Duplex Functional Unit

Overview

The half-duplex functional unit supports the half-duplex service. The data token is
available when this functional unit is selected.

The half-duplex functional unit comprises the following function calls:

s_tkgrq token give request
s_tkgin receive token give indication

s_tkprq token please request
s_tkpin receive token please indication

U5231-J-Z145-2-7600 45

S_TKGRQ(SS)

s_tkgrq

NAME

s_tkgrq token give request

SYNOPSIS

int s_tkgrq(sref,token,userdata)
int *sref; ()
char *token; ()
struct s_udatas *userdata; ()

DESCRIPTION

’S_tkgrq’ asks for tokens specified in ’token’ for the session connection with the
local reference ’sref’ to be passed to the partner session application. ’Token’
points to a value constructed by ORing token values from the following list:

S_T_DATA data token on partner side
S_T_MINOR minor synchronize token on partner side
S_T_ACTIVITY major/activity token on partner side
S_T_RELEASE release token on partner side

’Userdata’ is NULL if no user data is required, or points to an ’s_udatas’ struct
with the following layout:

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; /* length of user data area */

};

’Ptr’ points to an area with ’len’ bytes of user data to be transferred to the
partner. If ’len’ is 0, no user data is transferred. If session protocol version 1 was
negotiated, no user data is permitted.

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call
S_STOP call temporarily stopped due to flow control shortage; an

S_GO event is announced via s_event once the call has been
successfully completed and it is possible to continue with
request and response calls for this session.

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-TOKEN-GIVE request.

46 U5231-J-Z145-2-7600

S_TKGIN(SS)

s_tkgin

NAME

s_tkgin receive token give indication

SYNOPSIS

int s_tkgin(sref,token,userdata)
int *sref; ()
char *token; ()
struct s_udatas *userdata; ()

DESCRIPTION

’S_tkgin’ receives a token give indication announced via s_event for the session
connection with the local reference ’sref’. ’Token’ points to a location to which a
value is written specifying the tokens that have been passed to this session
application. The value is constructed by ORing values from the following list:

S_T_DATA data token on this side of the session
S_T_MINOR minor synchronize token on this side
S_T_ACTIVITY major/activity token on this side
S_T_RELEASE release token on this side

Tokens not involved in the session should be ignored.

’Userdata’ is NULL or points to an ’s_udatas’ struct specifying the user data area
and having the following layout:

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; /* length of user data area */

};

’Ptr’ points to an area of ’len’ bytes to which the user data specified by the
partner is written. If ’userdata’ is NULL or ’len’ is 0 or less than the length
announced in the s_event call, all or the last part of the user data is ignored. If
session protocol version 1 was negotiated, no user data is announced. In this
case ’userdata’ may be NULL.

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-TOKEN-GIVE indication.

U5231-J-Z145-2-7600 47

S_TKPRQ(SS)

s_tkprq

NAME

s_tkprq token please request

SYNOPSIS

int s_tkprq(sref,token,userdata)
int *sref; ()
char *token; ()
struct s_udatas *userdata; ()

DESCRIPTION

’S_tkprq’ asks for the tokens specified in ’token’ for the session connection with
the local reference ’sref’ to be given to the calling session application. ’Token’
points to a value constructed by ORing token values from the following list:

S_T_DATA data token requested
S_T_MINOR minor synchronize token requested
S_T_ACTIVITY major/activity token requested
S_T_RELEASE release token requested

’Userdata’ is NULL if no user data is required, or points to an ’s_udatas’ struct
with the following layout:

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; /* length of user data */

};

’Ptr’ points to an area with ’len’ bytes of user data to be transferred to the
partner. If ’len’ is 0, no user data is transferred.

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.
S_STOP call temporarily stopped due to flow control shortage; an

S_GO event is announced via s_event once the call has been
successfully completed and it is possible to continue with
request and response calls for this session.

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-TOKEN-PLEASE request.

48 U5231-J-Z145-2-7600

S_TKPIN(SS)

s_tkpin

NAME

s_tkpin receive token please indication

SYNOPSIS

int s_tkpin(sref,token,userdata)
int *sref; ()
char *token; ()
struct s_udatas *userdata; ()

DESCRIPTION

’S_tkpin’ receives a token please indication announced via s_event for the session
connection with the local reference ’sref’. ’Token’ points to a location to which a
value is written specifying the tokens that are wanted from the partner application.
The value is constructed by ORing values from the following list:

S_T_DATA data token requested
S_T_MINOR minor synchronize token requested
S_T_ACTIVITY major/activity token requested
S_T_RELEASE release token requested

Tokens not involved in the session should be ignored. ’Userdata’ is NULL or
points to an ’s_udatas’ struct specifying the user data area and having the
following layout:

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; /* length of user data area */

};

’Ptr’ points to an area of ’len’ bytes to which the user data specified by the
partner is written. If ’userdata’ is NULL or ’len’ is 0 or less than the length
announced in the s_event call, all or the last part of the user data is ignored.

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-TOKEN-PLEASE indication.

U5231-J-Z145-2-7600 49

The Minor Synchronize Functional Unit

Overview

The minor synchronize functional unit supports the minor synchronization point service.
The synchronize minor token is available when this functional unit is selected.

The minor synchronize functional unit comprises the following calls:

s_minrq sync minor request
s_minin sync minor indication
s_minrs sync minor response
s_mincf sync minor confirm

U5231-J-Z145-2-7600 51

S_MINRQ(SS)

s_minrq

NAME

s_minrq sync minor request

SYNOPSIS

int s_minrq(sref,mtype,syncp,userdata,chain)
int *sref; ()
char *mtype; ()
long *syncp; ()
struct s_udatas *userdata; ()
char chain; ()

DESCRIPTION

’S_minrq’ asks for a minor synchronization point to be defined for the session
with the local reference ’sref’. ’Mtype’ specifies whether a confirmation is required
or not, with either

S_EXPLICIT A confirmation from the partner is required, or
S_OPTIONAL No confirmation is required.

’Syncp’ points to a location to which the session service writes the identification
number of the sync point. ’Userdata’ is NULL if no user data is required, or points
to an ’s_udatas’ struct with the following layout:

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; }; /* length of user data */

’Ptr’ points to an area with ’len’ bytes of user data to be transferred to the
partner. If ’len’ is 0, no user data is transferred. ’Chain’ specifies if this function
call is to be concatenated with further session calls, with either

S_END No further calls shall be concatenated, or
S_CONCAT This call is immediately followed by a session call for the

same session, which is to be concatenated with this call.
(Rules for concatenation in appendix C.)

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.
S_STOP call temporarily stopped due to flow control shortage; an

S_GO event is announced via s_event once the call has been
successfully completed and it is possible to continue with
request and response calls for this session.

52 U5231-J-Z145-2-7600

S_MINRQ(SS)

APPLICATION USAGE

Data request calls, and even further sync minor request calls, may be issued
before a requested confirmation is received. If the activity management functional
unit was negotiated, the call can only be issued within an activity. The s_minrq
call is subject to the token restrictions in appendix A.

NOTE

It is up to the session user to ensure that the sync point number does not exceed
999998.

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-SYNCH-MINOR request.

U5231-J-Z145-2-7600 53

S_MININ(SS)

s_minin

NAME

s_minin receive sync minor indication

SYNOPSIS

int s_minin(sref,mtype,syncp,userdata)
int *sref; ()
char *mtype; ()
long *syncp; ()
struct s_udatas *userdata; ()

DESCRIPTION

’S_minin’ receives an indication announced via s_event to define a minor
synchronization point for the session connection with the local reference ’sref’.
’Mtype’ points to a location to which the sync point type is written, as either

S_EXPLICIT A response to the sync point is required, or
S_OPTIONAL No response is required.

’Syncp’ points to a location to which the identification number of the sync point is
written. ’Userdata’ is NULL or points to an ’s_udatas’ struct specifying the user
data area and having the following layout:

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; /* length of user data area */

};

’Ptr’ points to an area of ’len’ bytes to which the user data specified by the
partner is written. If ’userdata’ is NULL or ’len’ is 0 or less than the length
announced in the s_event call, all or the last part of the user data is ignored.

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-SYNCH-MINOR indication.

54 U5231-J-Z145-2-7600

S_MINRS(SS)

s_minrs

NAME

s_minrs sync minor response

SYNOPSIS

int s_minrs(sref,syncp,userdata,chain)
int *sref; ()
long *syncp; ()
struct s_udatas *userdata; ()
char chain; ()

DESCRIPTION

’S_minrs’ responds to a sync minor indication received via s_minin for the session
with the local reference ’sref’. ’Syncp’ points to the identification number of the
sync point. ’Userdata’ is NULL if no user data is required, or points to an
’s_udatas’ struct with the following layout:

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; /* length of user data */

};

’Ptr’ points to an area with ’len’ bytes of user data to be transferred to the
partner. If ’len’ is 0, no user data is transferred. ’Chain’ specifies if this function
call is to be concatenated with further session calls, with either

S_END No further calls shall be concatenated, or
S_CONCAT This call is immediately followed by a session call for the

same session, which is to be concatenated with this call.
(Rules for concatenation in appendix C.)

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.
S_STOP call temporarily stopped due to flow control shortage; an

S_GO event is announced via s_event once the call has been
successfully completed and it is possible to continue with
request and response calls for this session.

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-SYNCH-MINOR response.

U5231-J-Z145-2-7600 55

S_MINCF(SS)

s_mincf

NAME

s_mincf receive sync minor confirm

SYNOPSIS

int s_mincf(sref,syncp,userdata)
int *sref; ()
long *syncp; ()
struct s_udatas *userdata; ()

DESCRIPTION

’S_mincf’ receives a sync minor confirm announced via s_event for the session
connection with the local reference ’sref’, in response to a previously given sync
minor request. ’Syncp’ points to a location to which the identification number of
the sync point is written. ’Userdata’ is NULL or points to an ’s_udatas’ struct
specifying the user data area and having the following layout:

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; /* length of user data area */

};

’Ptr’ points to an area of ’len’ bytes to which the user data specified by the
partner is written. If ’userdata’ is NULL or ’len’ is 0 or less than the length
announced in the s_event call, all or the last part of the user data is ignored.

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-SYNCH-MINOR confirm.

56 U5231-J-Z145-2-7600

The Activity Management Functional Unit

Overview

The activity management functional unit supports the activity management services and
the give control service. The major/activity token is available when this functional unit is
selected.

The activity management functional unit comprises the following calls:

s_starq activity start request
s_stain activity start indication
s_resrq activity resume request
s_resin activity resume indication
s_intrq activity interrupt request
s_intin activity interrupt indication
s_intrs activity interrupt response
s_intcf activity interrupt confirm
s_disrq activity discard request
s_disin activity discard indication
s_disrs activity discard response
s_discf activity discard confirm
s_endrq activity end request
s_endin activity end indication
s_endrs activity end response
s_endcf activity end confirm

s_ctgrq control give request
s_ctgin control give indication

U5231-J-Z145-2-7600 57

S_STARQ(SS)

s_starq

NAME

s_starq activity start request

SYNOPSIS

int s_starq(sref,uactid,userdata,chain);
int *sref; ()
struct s_aid *uactid; ()
struct s_udatas *userdata; ()
char chain; ()

DESCRIPTION

’S_starq’ asks for a new activity to be initiated for the session connection with the
local reference ’sref’. ’Uactid’ points to an ’s_aid’ struct containing the user activity
identifier as follows:

struct s_aid { /* layout of activity ID */
int s_lactid; /* length of ID (min 1, max 6) */
char s_actid[6]; /* activity identifier, trans- */

}; /* parent to session service */

’Userdata’ is NULL if no user data is required, or points to an ’s_udatas’ struct
with the following layout:

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; /* length of user data */

};

’Ptr’ points to an area with ’len’ bytes of user data to be transferred to the
partner. If ’len’ is 0, no user data is transferred. ’Chain’ specifies if this call is to
be concatenated with further session calls, with either

S_END No further calls shall be concatenated, or
S_CONCAT This call is immediately followed by a session call for the

same session, which is to be concatenated with this call.
(Rules for concatenation in appendix C.)

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.
S_STOP call temporarily stopped due to flow control shortage; an

S_GO event is announced via s_event once the call has been
successfully completed and it is possible to continue with
request and response calls for this session.

58 U5231-J-Z145-2-7600

S_STARQ(SS)

APPLICATION USAGE

The call can only be initiated if no activity is in progress and is subject to the
token restrictions in appendix A.

RELATIONSHIP TO ISO 8326
Corresponds to the service primitive S-ACTIVITY-START request.

U5231-J-Z145-2-7600 59

S_STAIN(SS)

s_stain

NAME

s_stain receive activity start indication

SYNOPSIS

int s_stain(sref,uactid,userdata)
int *sref; ()
struct s_aid *uactid; ()
struct s_udatas *userdata; ()

DESCRIPTION

’S_stain’ receives an indication announced via s_event for a new activity to be
initiated for the session connection with the local reference ’sref’. ’Uactid’ points
to an ’s_aid’ struct to which the user activity identifier is written as follows:

struct s_aid { /* layout of activity ID */
int s_lactid; /* length of ID (min 1, max 6) */
char s_actid[6]; /* activity identifier, trans- */

}; /* parent to session service */

’Userdata’ is NULL or points to an ’s_udatas’ struct specifying the user data area
and having the following layout:

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; /* length of user data area */

};

’Ptr’ points to an area of ’len’ bytes to which the user data specified by the
partner is written. If ’userdata’ is NULL or ’len’ is 0 or less than the length
announced in the s_event call, all or the last part of the user data is ignored.

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-ACTIVITY-START indication.

60 U5231-J-Z145-2-7600

S_RESRQ(SS)

s_resrq

NAME

s_resrq activity resume request

SYNOPSIS

int s_resrq(sref,uactid,oldactid,syncp,oldcid,userdata,chain)
int *sref; ()
struct s_aid *uactid; ()
struct s_aid *oldactid; ()
long *syncp; ()
struct s_ocid *oldcid; ()
struct s_udatas *userdata; ()
char chain; ()

DESCRIPTION

’S_resrq’ asks for a previously interrupted activity to be resumed on the session
connection with the local reference ’sref’. ’Uactid’ points to an ’s_aid’ struct
containing the user activity identifier as follows:

struct s_aid { /* layout of activity ID */
int s_lactid; /* length of ID (min 1, max 6) */
char s_actid[6]; /* activity identifier, trans- */

}; /* parent to session service */

’Oldact’ points to an ’s_aid’ struct containing the original identifier of the activity
being resumed. ’Syncp’ points to the sync point number at which the activity is to
be resumed. ’Oldcid’ is NULL or points to an ’s_ocid’ struct containing the
identifier for the session connection on which the activity was started, as follows:

struct s_ocid { /* layout of connection ID */
int s_lcguref; /* length of SS-user reference */
char s_cguref[64]; /* calling SS-user reference */
int s_lcomref; /* length of common reference */
char s_comref[64]; /* common reference */
int s_laddref; /* length of additional ref */
char s_addref[4]; /* additional reference info */
int s_lcduref; /* length of SS-user reference */
char s_cduref[64]; /* called SS-user reference */

};

U5231-J-Z145-2-7600 61

S_RESRQ(SS)

’Userdata’ is NULL if no user data is required, or points to an ’s_udatas’ struct
with the following layout:

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; /* length of user data */

};

’Ptr’ points to an area with ’len’ bytes of user data to be transferred to the
partner. If ’len’ is 0, no user data is transferred. ’Chain’ specifies if this session
service call is to be concatenated with further session calls, with either

S_END No further calls shall be concatenated, or
S_CONCAT This call is immediately followed by a session call for the

same session, which is to be concatenated with this call.
(Rules for concatenation in appendix C.)

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.
S_STOP call temporarily stopped due to flow control shortage; an

S_GO event is announced via s_event once the call has been
successfully completed and it is possible to continue with
request and response calls for this session.

APPLICATION USAGE

This call can only be initiated if no activity is in progress and is subject to the
token restrictions in appendix A.

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-ACTIVITY-RESUME request.

62 U5231-J-Z145-2-7600

S_RESIN(SS)

s_resin

NAME

s_resin activity resume indication

SYNOPSIS

int s_resin(sref,uactid,oldactid,syncp,oldcid,userdata)
int *sref; ()
struct s_aid *uactid; ()
struct s_aid *oldactid; ()
long *syncp; ()
struct s_ocid *oldcid; ()
struct s_udatas *userdata; ()

DESCRIPTION

’S_resin’ receives an indication announced via s_event for a previously interrupted
activity to be resumed on the session connection with the local reference ’sref’.
’Uactid’ points to an ’s_aid’ struct to which the user activity identifier is written as
follows:

struct s_aid { /* layout of activity ID */
int s_lactid; /* length of ID (min 1, max 6) */
char s_actid[6]; /* activity identifier, trans- */

}; /* parent to session service */

’Oldact’ points to an ’s_aid’ struct to which the original identifier of the activity
being resumed is written. ’Syncp’ points to a location to which the sync point
number is written, at which the interrupted activity is to be resumed. ’Oldcid’
points to an ’s_ocid’ struct to which the identifier of the session connection on
which the activity was started, is written as follows:

struct s_ocid { /* layout of connection ID */
int s_lcguref; /* length of SS-user reference */
char s_cguref[64]; /* calling SS-user reference */
int s_lcomref; /* length of common reference */
char s_comref[64]; /* common reference */
int s_laddref; /* length of additional ref */
char s_addref[4]; /* additional reference info */
int s_lcduref; /* length of SS-user reference */
char s_cduref[64]; /* called SS-user reference */

};

U5231-J-Z145-2-7600 63

S_RESIN(SS)

If the partner has not specified an old session identifier, all length parameters are
set to 0 by the session service. If no old session identifier is expected, ’oldcid’
may be NULL. ’Userdata’ is NULL or points to an ’s_udatas’ struct specifying the
user data area and having the following layout:

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; /* length of user data area */

};

’Ptr’ points to an area of ’len’ bytes to which the user data specified by the
partner is written. If ’userdata’ is NULL or ’len’ is 0 or less than the length
announced in the s_event call, all or the last part of the user data is ignored.

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-ACTIVITY-RESUME indication.

64 U5231-J-Z145-2-7600

S_INTRQ(SS)

s_intrq

NAME

s_intrq activity interrupt request

SYNOPSIS

int s_intrq(sref,reason,userdata)
int *sref; ()
int *reason; ()
struct s_udatas *userdata; ()

DESCRIPTION

’S_intrq’ requests the interruption of the current activity on the session connection
with the local reference ’sref’. An interrupted activity can be resumed later with the
s_resrq call. ’Reason’ is NULL or points to the interrupt reason, which may be any
of the following:

S_NOREASON no specific reason
S_OVERLOAD user receiving ability jeopardized
S_SEQERR user sequence error
S_LOCALERR local application error
S_PROCERR unrecoverable procedural error
S_DATATOKEN demand data token

’Userdata’ is NULL if no user data is required, or points to an ’s_udatas’ struct
with the following layout:

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; /* length of user data area */

};

’Ptr’ points to an area with ’len’ bytes of user data to be transferred to the
partner. If ’len’ is 0, no user data is transferred. If session protocol version 1 was
negotiated, no user data is permitted.

This call may result in the loss of undelivered data.

U5231-J-Z145-2-7600 65

S_INTRQ(SS)

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.
S_STOP call temporarily stopped due to flow control shortage; an

S_GO event is announced via s_event once the call has been
successfully completed and it is possible to continue with
request and response calls for this session.

APPLICATION USAGE

The activity is interrupted when an activity interrupt confirm is received from the
responding application. This event is announced via the s_event call. The s_intrq
call is subject to the token restrictions in appendix A.

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-ACTIVITY-INTERRUPT request.

66 U5231-J-Z145-2-7600

S_INTIN(SS)

s_intin

NAME

s_intin activity interrupt indication

SYNOPSIS

int s_intin(sref,reason,userdata)
int *sref; ()
int *reason; ()
struct s_udatas *userdata; ()

DESCRIPTION

’S_intin’ receives the activity interrupt indication announced via s_event for the
session connection with the local reference ’sref’. ’Reason’ points to a location to
which the reason for the interruption is written, which may be any of the following

S_NOREASON no specific reason
S_OVERLOAD user receiving ability jeopardized
S_SEQERR user sequence error
S_LOCALERR local application error
S_PROCERR unrecoverable procedural error
S_DATATOKEN demand data token

’Userdata’ is NULL or points to an ’s_udatas’ struct specifying the user data area
and having the following layout:

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; /* length of user data area */

};

’Ptr’ points to an area of ’len’ bytes to which the user data specified by the
partner is written. If ’userdata’ is NULL or ’len’ is 0 or less than the length
announced in the s_event call, all or the last part of the user data is ignored. If
session protocol version 1 was negotiated, no user data is announced. In this
case ’userdata’ may be NULL.

U5231-J-Z145-2-7600 67

S_INTIN(SS)

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.

APPLICATION USAGE

The activity interrupt indication must be answered with an activity interrupt
response call (s_intrs).

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-ACTIVITY-INTERRUPT indication.

68 U5231-J-Z145-2-7600

S_INTRS(SS)

s_intrs

NAME

s_intrs activity interrupt response

SYNOPSIS

int s_intrs(sref,userdata,chain)
int *sref; ()
struct s_udatas *userdata; ()
char chain; ()

DESCRIPTION

’S_intrs’ supplies a response to the activity interrupt indication received via s_intin
for the session connection with the local reference ’sref’. ’Userdata’ is NULL if no
user data is required, or points to an ’s_udatas’ struct with the following layout:

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; /* length of user data area */

};

’Ptr’ points to an area with ’len’ bytes of user data to be transferred to the
partner. If ’len’ is 0, no user data is transferred. If session protocol version 1 was
negotiated, no user data is permitted. ’Chain’ specifies if this session service call
is to be concatenated with further session calls, with either

S_END No further calls shall be concatenated, or
S_CONCAT This call is immediately followed by a session call for the

same session, which is to be concatenated with this call.
(Rules for concatenation in appendix C.)

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.
S_STOP call temporarily stopped due to flow control shortage; an

S_GO event is announced via s_event once the call has been
successfully completed and it is possible to continue with
request and response calls for this session.

APPLICATION USAGE

Once this response has been issued, no tokens are assigned to the local
application.

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-ACTIVITY-INTERRUPT response.

U5231-J-Z145-2-7600 69

S_INTCF(SS)

s_intcf

NAME

s_intcf activity interrupt confirm

SYNOPSIS

int s_intcf(sref,userdata)
int *sref; ()
struct s_udatas *userdata; ()

DESCRIPTION

’S_intcf’ receives an activity interrupt confirm announced via s_event for the
session connection with the local reference ’sref’, in response to a previously
issued activity interrupt request.

’Userdata’ is NULL or points to an ’s_udatas’ struct specifying the user data area
and having the following layout:

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; /* length of user data area */

};

’Ptr’ points to an area of ’len’ bytes to which the user data specified by the
partner is written. If ’userdata’ is NULL or ’len’ is 0 or less than the length
announced in the s_event call, all or the last part of the user data is ignored. If
session protocol version 1 was negotiated, no user data is announced. In this
case ’userdata’ may be NULL.

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.

APPLICATION USAGE

Upon receipt of this confirmation, all available tokens are assigned to this
application.

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-ACTIVITY-INTERRUPT confirm.

70 U5231-J-Z145-2-7600

S_DISRQ(SS)

s_disrq

NAME

s_disrq activity discard request

SYNOPSIS

int s_disrq(sref,reason,userdata)
int *sref; ()
int *reason; ()
struct s_udatas *userdata; ()

DESCRIPTION

’S_disrq’ requests abnormal termination of the current activity for the session
connection with the local reference ’sref’. ’Reason’ is NULL or points to the
discard reason, which may be one of the following:

S_NOREASON no specific reason
S_OVERLOAD user receiving ability jeopardized
S_SEQERR user sequence error
S_LOCALERR local application error
S_PROCERR unrecoverable procedural error
S_DATATOKEN demand data token

’Userdata’ is NULL if no user data is required, or points to an ’s_udatas’ struct
with the following layout:

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; /* length of user data area */

};

’Ptr’ points to an area with ’len’ bytes of user data to be transferred to the
partner. If ’len’ is 0, no user data is transferred. If session protocol version 1 was
negotiated, no user data is permitted.

This call may result in the loss of undelivered data.

U5231-J-Z145-2-7600 71

S_DISRQ(SS)

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.
S_STOP call temporarily stopped due to flow control shortage; an

S_GO event is announced via s_event once the call has been
successfully completed and it is possible to continue with
request and response calls for this session.

APPLICATION USAGE

The activity is discarded when an activity discard confirm (s_discf) is received
from the partner application. This event is announced via the s_event call. The
s_disrq call is subject to the token restrictions in appendix A.

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-ACTIVITY-DISCARD request.

72 U5231-J-Z145-2-7600

S_DISIN(SS)

s_disin

NAME

s_disin activity discard indication

SYNOPSIS

int s_disin(sref,reason,userdata)
int *sref; ()
int *reason; ()
struct s_udatas *userdata; ()

DESCRIPTION

’S_disin’ receives an activity discard indication announced via s_event for the
session connection with the local reference ’sref’. ’Reason’ points to a location to
which the reason for the discard is written, which may be any of the following:

S_NOREASON no specific reason
S_OVERLOAD user receiving ability jeopardized
S_SEQERR user sequence error
S_LOCALERR local application error
S_PROCERR unrecoverable procedural error
S_DATATOKEN demand data token

’Userdata’ is NULL or points to an ’s_udatas’ struct specifying the user data area
and having the following layout:

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; /* length of user data area */

};

’Ptr’ points to an area of ’len’ bytes to which the user data specified by the
partner is written. If ’userdata’ is NULL or ’len’ is 0 or less than the length
announced in the s_event call, all or the last part of the user data is ignored. If
session protocol version 1 was negotiated, no user data is announced. In this
case ’userdata’ may be NULL.

U5231-J-Z145-2-7600 73

S_DISIN(SS)

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.

APPLICATION USAGE

The activity discard indication must be answered with an activity discard response
call (s_disrs).

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-ACTIVITY-DISCARD indication.

74 U5231-J-Z145-2-7600

S_DISRS(SS)

s_disrs

NAME

s_disrs activity discard response

SYNOPSIS

int s_disrs(sref,userdata,chain)
int *sref; ()
struct s_udatas *userdata; ()
char chain; ()

DESCRIPTION

’S_disrs’ responds to the activity discard indication received via s_disin for the
session connection with the local reference ’sref’. ’Userdata’ is NULL if no user
data is required, or points to an ’s_udatas’ struct with the following layout:

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; /* length of user data area */

};

’Ptr’ points to an area with ’len’ bytes of user data to be transferred to the
partner. If ’len’ is 0, no user data is transferred. If session protocol version 1 was
negotiated, no user data is permitted. ’Chain’ specifies if this call is to be
concatenated with further session calls, with either

S_END No further calls shall be concatenated, or
S_CONCAT This call is immediately followed by a session call for the

same session, which is to be concatenated with this call.
(Rules for concatenation in appendix C.)

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.
S_STOP call temporarily stopped due to flow control shortage; an

S_GO event is announced via s_event once the call has been
successfully completed and it is possible to continue with
request and response calls for this session.

APPLICATION USAGE

Once this response has been issued, the local application no longer has any
tokens assigned to it.

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-ACTIVITY-DISCARD response.

U5231-J-Z145-2-7600 75

S_DISCF(SS)

s_discf

NAME

s_discf activity discard confirm

SYNOPSIS

int s_discf(sref,userdata)
int *sref; ()
struct s_udatas *userdata; ()

DESCRIPTION

’S_discf’ receives an activity discard confirm announced via s_event for the
session connection with the local reference ’sref’, in response to a previously
issued activity discard request call. ’Userdata’ is NULL or points to an ’s_udatas’
struct specifying the user data area and having the following layout:

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; /* length of user data area */

};

’Ptr’ points to an area of ’len’ bytes to which the user data specified by the
partner is written. If ’userdata’ is NULL or ’len’ is 0 or less than the length
announced in the s_event call, all or the last part of the user data is ignored. If
session protocol version 1 was negotiated, no user data is announced. In this
case ’userdata’ may be NULL.

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.

APPLICATION USAGE

Upon receipt of this confirmation, all available tokens are assigned to this
application.

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-ACTIVITY-DISCARD confirmation.

76 U5231-J-Z145-2-7600

S_ENDRQ(SS)

s_endrq

NAME

s_endrq activity end request

SYNOPSIS

int s_endrq(sref,syncp,userdata,chain)
int *sref; ()
long *syncp; ()
struct s_udatas *userdata; ()
char chain; ()

DESCRIPTION

’S_endrq’ requests normal termination of the current activity on the session
connection with the local reference ’sref’. ’Syncp’ points to a location to which the
sync point number ending the activity is written. ’Userdata’ is NULL if no user
data is required, or points to an ’s_udatas’ struct with the following layout:

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; /* length of user data */

};

’Ptr’ points to an area with ’len’ bytes of user data to be transferred to the
partner. If ’len’ is 0, no user data is transferred. ’Chain’ specifies if this call is to
be concatenated with further session calls, with either

S_END No further calls shall be concatenated, or
S_CONCAT This call is immediately followed by a session call for the

same session, which is to be concatenated with this call.
(Rules for concatenation in appendix C.)

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.
S_STOP call temporarily stopped due to flow control shortage; an

S_GO event is announced via s_event once the call has been
successfully completed and it is possible to continue with
request and response calls for this session.

U5231-J-Z145-2-7600 77

S_ENDRQ(SS)

APPLICATION USAGE

The activity is terminated when an activity end confirm (s_endcf) is received from
the responding application. This event is announced via the s_event call. The
s_endrq call is subject to the token restrictions in appendix A.

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-ACTIVITY-END request.

78 U5231-J-Z145-2-7600

S_ENDIN(SS)

s_endin

NAME

s_endin activity end indication

SYNOPSIS

int s_endin(sref,syncp,userdata)
int *sref; ()
long *syncp; ()
struct s_udatas *userdata; ()

DESCRIPTION

’S_endin’ receives an activity end indication announced via s_event for the
session connection with the local reference ’sref’. ’Syncp’ points to a location to
which the ending sync point number is written. ’Userdata’ is NULL or points to an
’s_udatas’ struct specifying the user data area and having the following layout:

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; /* length of user data area */

};

’Ptr’ points to an area of ’len’ bytes to which the user data specified by the
partner is written. If ’userdata’ is NULL or ’len’ is 0 or less than the length
announced in the s_event call, all or the last part of the user data is ignored.

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.

APPLICATION USAGE

The activity end indication must be answered to with an activity end response call
(s_endrs).

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-ACTIVITY-END indication.

U5231-J-Z145-2-7600 79

S_ENDRS(SS)

s_endrs

NAME

s_endrs activity end response

SYNOPSIS

int s_endrs(sref,userdata,chain)
int *sref; ()
struct s_udatas *userdata; ()
char chain; ()

DESCRIPTION

’S_endrs’ responds to the activity end indication received via s_endin for the
session connection with the local reference ’sref’. ’Userdata’ is NULL if no user
data is required, or points to an ’s_udatas’ struct with the following layout:

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; /* length of user data */

};

’Ptr’ points to an area with ’len’ bytes of user data to be transferred to the
partner. If ’len’ is 0, no user data is transferred. ’Chain’ specifies if this call is to
be concatenated with further session calls, with either

S_END No further calls shall be concatenated, or
S_CONCAT This call is immediately followed by a session call for the

same session, which is to be concatenated with this call.
(Rules for concatenation in appendix C.)

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.
S_STOP call temporarily stopped due to flow control shortage; an

S_GO event is announced via s_event once the call has been
successfully completed and it is possible to continue with
request and response calls for this session.

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-ACTIVITY-END response.

80 U5231-J-Z145-2-7600

S_ENDCF(SS)

s_endcf

NAME

s_endcf activity end confirm

SYNOPSIS

int s_endcf(sref,userdata)
int *sref; ()
struct s_udatas *userdata; ()

DESCRIPTION

’S_endcf’ receives an activity end confirm announced via s_event for the session
connection with the local reference ’sref’, in response to a previously issued
activity end request. ’Userdata’ is NULL or points to an ’s_udatas’ struct
specifying the user data area and having the following layout:

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; /* length of user data area */

};

’Ptr’ points to an area of ’len’ bytes to which the user data specified by the
partner is written. If ’userdata’ is NULL or ’len’ is 0 or less than the length
announced in the s_event call, all or the last part of the user data is ignored.

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-ACTIVITY-END confirm.

U5231-J-Z145-2-7600 81

S_CTGRQ(SS)

s_ctgrq

NAME

s_ctgrq control give request

SYNOPSIS

int s_ctgrq(sref,userdata)
int *sref; ()
struct s_udatas *userdata; ()

DESCRIPTION

’S_ctgrq’ asks for the entire set of available tokens to be surrendered for the
session connection with the local reference ’sref’. ’Userdata’ is NULL if no user
data is required, or points to an ’s_udatas’ struct with the following layout:

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; /* length of user data area */

};

’Ptr’ points to an area with ’len’ bytes of user data to be transferred to the
partner. If ’len’ is 0, no user data is transferred. If session protocol version 1 was
negotiated, no user data is permitted.

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.
S_STOP call temporarily stopped due to flow control shortage; an

S_GO event is announced via s_event once the call has been
successfully completed and it is possible to continue with
request and response calls for this session.

APPLICATION USAGE

This service can only be requested if the activity functional unit was selected but
no activity is in progress. The s_ctgrq call is subject to the token restrictions in
appendix A.

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-CONTROL-GIVE request.

82 U5231-J-Z145-2-7600

S_CTGIN(SS)

s_ctgin

NAME

s_ctgin control give indication

SYNOPSIS

int s_ctgin(sref,userdata)
int *sref; ()
struct s_udatas *userdata; ()

DESCRIPTION

’S_ctgin’ receives a control give indication announced via s_event for the session
connection with the local reference ’sref’. ’Userdata’ is NULL or points to an
’s_udatas’ struct specifying the user data area and having the following layout:

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; /* length of user data area */

};

’Ptr’ points to an area of ’len’ bytes to which the user data specified by the
partner is written. If ’userdata’ is NULL or ’len’ is 0 or less than the length
announced in the s_event call, all or the last part of the user data is ignored. If
session protocol version 1 was negotiated, no user data is announced. In this
case ’userdata’ may be NULL.

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-CONTROL-GIVE indication.

U5231-J-Z145-2-7600 83

The Exceptions Functional Unit

Overview

The exceptions functional unit supports the user and provider exception reporting
services.

The exceptions functional unit comprises the function calls:

s_uexcrq user-initiated exception report request
s_uexcin user-initiated exception report indication
s_pexcin provider-initiated exception report indication

U5231-J-Z145-2-7600 85

S_UEXCRQ(SS)

s_uexcrq

NAME

s_uexcrq user-initiated exception report request

SYNOPSIS

int s_uexcrq(sref,reason,userdata,chain)
int *sref; ()
int *reason; ()
struct s_udatas *userdata; ()
char chain; ()

DESCRIPTION

’S_uexcrq’ asks to report an exceptional condition for the session connection with
the local reference ’sref’. ’Reason’ is NULL or points to the exception report
reason, which may be any of the following:

S_NOREASON no specific reason
S_OVERLOAD user receiving ability jeopardized
S_SEQERR user sequence error
S_LOCALERR local application error
S_PROCERR unrecoverable procedural error
S_DATATOKEN demand data token

’Userdata’ is NULL if no user data is required, or points to an ’s_udatas’ struct
with the layout:

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; /* length of user data */

};

’Ptr’ points to an area with ’len’ bytes of user data to be transferred to the
partner. If ’len’ is 0, no user data is transferred. ’Chain’ specifies if this call is to
be concatenated with further session calls, with either

S_END No further calls shall be concatenated, or
S_CONCAT This call is immediately followed by a session call for the

same session, which is to be concatenated with this call.
(Rules for concatenation in appendix C.)

86 U5231-J-Z145-2-7600

S_UEXCRQ(SS)

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.
S_STOP call temporarily stopped due to flow control shortage; an

S_GO event is announced via s_event once the call has been
successfully completed and it is possible to continue with
request and response calls for this session.

APPLICATION USAGE

The user exception report can only be used with the half-duplex functional unit. If
used with the activity management functional unit, it is only permitted within an
activity. The s_uexcrq call is subject the token restrictions in appendix A. After this
call, the only call the application is permitted to issue is s_uaborq; all data is
discarded until the error situation is cleared.

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-U-EXCEPTION-REPORT request.

U5231-J-Z145-2-7600 87

S_UEXCIN(SS)

s_uexcin

NAME

s_uexcin user-initiated exception report indication

SYNOPSIS

int s_uexcin(sref,reason,userdata)
int *sref; ()
int *reason; ()
struct s_udatas *userdata; ()

DESCRIPTION

’S_uexcin’ receives a report on an exceptional condition announced via s_event
for ’the session connection with the local reference ’sref’. ’Reason’ points to a
location to which the reason for the exception report is written, which may be any
of the following:

S_NOREASON no specific reason
S_OVERLOAD user receiving ability jeopardized
S_SEQERR user sequence error
S_LOCALERR local application error
S_PROCERR unrecoverable procedural error
S_DATATOKEN demand data token

’Userdata’ is NULL or points to an ’s_udatas’ struct specifying the user data area
and having the following layout:

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; /* length of user data area */

};

’Ptr’ points to an area of ’len’ bytes to which the user data specified by the
partner is written. If ’userdata’ is NULL or ’len’ is 0 or less than the length
announced in the s_event call, all or the last part of the user data is ignored.

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.

88 U5231-J-Z145-2-7600

S_UEXCIN(SS)

APPLICATION USAGE

Upon receipt of this indication the application may only issue the following calls:
s_synrq, s_uaborq, s_intrq, s_disrq or s_tkgrq (data token) to clear the error
condition. If the application was currently to clear the error condition. If the
application was currently sending data with the chain indicator set to S_MORE,
the SSDU must be concluded before any further reaction is possible. All data is
discarded and no sync point indications are given to the application until the error
condition has been cleared.

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-U-EXCEPTION-REPORT indication.

U5231-J-Z145-2-7600 89

S_PEXCIN(SS)

s_pexcin

NAME

s_pexcin provider-initiated exception report indication

SYNOPSIS

int s_pexcin(sref,reason)
int *sref; ()
int *reason; ()

DESCRIPTION

’S_pexcin’ receives a report announced via s_event on an exceptional condition
initiated by the session service, for the session connection with the local reference
’sref’. ’Reason’ points to a location to which the reason for the exception is
written, which may be either

S_NOREASON no specific reason stated, or
S_PROTERR protocol error

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.

APPLICATION USAGE

Upon receipt of this indication, the application may only issue the following calls:
s_synrq, s_uaborq, s_intrq, s_disrq or s_tkgrq (data token) to clear the error
condition. All data is discarded and no sync point indications are given to the
application until the error condition has been cleared.

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-P-EXCEPTION-REPORT indication.

90 U5231-J-Z145-2-7600

The Typed Data Functional Unit

Overview

The typed data functional unit supports the typed data transfer service.

The typed data functional unit comprises the following calls

s_typerq typed data request
s_typein receive typed data indication

U5231-J-Z145-2-7600 91

S_TYPERQ(SS)

s_typerq

NAME

s_typerq typed data request

SYNOPSIS

int s_typerq(sref,ptr,len,chain)
int *sref; ()
char *ptr; ()
unsigned *len; ()
char *chain; ()

DESCRIPTION

’S_typerq’ asks for ’len’ bytes of typed user data from the area pointed to by ’ptr’
to be sent over the session connection with the local reference ’sref’. ’Chain’
specifies if this session interface data unit (SIDU) concludes a session service
data unit (SSDU) or not, with either

S_MORE This SIDU is not the end of an SSDU, or
S_END This SIDU concludes an SSDU.

The SSDU is the unit of data exchanged between two session applications. The
SIDU is the data unit exchanged at the local interface. The maximum length of an
SIDU is implementation-dependent and can be queried using the s_info call.

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.
S_STOP call temporarily stopped due to flow control shortage; an

S_GO event is announced via s_event once the call has been
successfully completed and it is possible to continue with
request and response calls for this session.

APPLICATION USAGE

The ’chain’ parameter is useful for segmenting an SSDU that is too big to fit into
one SIDU. Typed data is not subject to any token restrictions.

NOTE

If an application has sent an SIDU with the chain parameter set to S_MORE, no
session request or response calls may be issued by the application, except
s_uaborq, until the SSDU has been completed.

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-TYPED-DATA request.

92 U5231-J-Z145-2-7600

S_TYPEIN(SS)

s_typein

NAME

s_typein receive typed data indication

SYNOPSIS

int s_typein(sref,ptr,len,chain)
int *sref; ()
char *ptr; ()
unsigned *len; ()
char *chain; ()

DESCRIPTION

’S_typein’ receives typed user data announced via s_event for the session
connection with the local reference ’sref’. ’Ptr’ points to an area of ’len’ bytes to
which the typed data is written. If ’len’ is less than the length announced via
s_event, the rest of the data must be received in one or a sequence of s_typein
calls until all the announced data has been received, before further session calls
can be issued. ’Chain’ points to a location in which the session service indicates if
the received session interface data unit (SIDU) concludes a session service data
unit (SSDU) or not, with either

S_MORE This SIDU is not the end of an SSDU, or
S_END This SIDU concludes an SSDU.

The SSDU is the unit of data exchanged between two session applications. The
s_event always announces one SIDU, a data unit that is only meaningful at the
local interface and has an implementation-dependent maximum size. If ’ptr’ is
NULL, ’len’ bytes are discarded by the session service and not delivered to the
application.

RETURN VALUES

>0 number of bytes still to be received in the announced SIDU
S_OK one complete SIDU successfully received
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.

U5231-J-Z145-2-7600 93

S_TYPEIN(SS)

APPLICATION USAGE

Using the ’len’ parameter, an announced SIDU may be received in smaller
segments with a sequence of s_typein calls.

NOTE

Even if the chain indicator is set to S_MORE, there is no minimum size of SIDU
the user can be sure of receiving.

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-TYPED-DATA indication.

94 U5231-J-Z145-2-7600

The Capability Data Functional Unit

Overview

The capability data functional unit supports the capability data transfer service.

The capability data functional unit comprises the following calls

s_caprq capability data request
s_capin receive capability data indication
s_caprs capability data response
s_capcf receive capability data confirmation

U5231-J-Z145-2-7600 95

S_CAPRQ(SS)

s_caprq

NAME

s_caprq capability data request

SYNOPSIS

int s_caprq(sref,userdata)
int *sref; ()
struct s_udatas *userdata; ()

DESCRIPTION

’S_caprq’ requests capability data to be sent over the connection with the local
reference ’sref’. ’Userdata’ is NULL if no user
data is required, or points to an ’s_udatas’ struct with the following layout:

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; /* length of user data */

};

’Ptr’ points to an area with ’len’ bytes of user data to be transferred to the
partner. If ’len’ is 0, no user data is transferred.

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.
S_STOP call temporarily stopped due to flow control shortage; an

S_GO event is announced via s_event once the call has been
successfully completed and it is possible to continue with
request and response calls for this session.

APPLICATION USAGE

The capability data request is answered by the partner application and the
response arrives as a capability data confirmation announced by an s_event call.
The s_caprq call is subject to the token restrictions in appendix A. The call can
only be issued if the activity management functional unit was negotiated and no
activity is in progress.

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-CAPABILITY-DATA request.

96 U5231-J-Z145-2-7600

S_CAPIN(SS)

s_capin

NAME

s_capin receive capability data indication

SYNOPSIS

int s_capin(sref,userdata)
int *sref; ()
struct s_udatas *userdata; ()

DESCRIPTION

’S_capin’ receives a capability data indication announced via s_event for the
session connection with the local reference ’sref’. ’Userdata’ is NULL or points to
an ’s_udatas’ struct specifying the user data area and having the following layout:

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; /* length of user data area */

};

’Ptr’ points to an area of ’len’ bytes to which the user data specified by the
partner is written. If ’userdata’ is NULL or ’len’ is 0 or less than the length
announced in the s_event call, all or the last part of the user data is ignored.

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.

APPLICATION USAGE

The capability data indication must be answered with a capability data response
call (s_caprs).

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-CAPABILITY-DATA indication.

U5231-J-Z145-2-7600 97

S_CAPRS(SS)

s_caprs

NAME

s_caprs capability data response

SYNOPSIS

int s_caprs(sref,userdata,chain)
int *sref; ()
struct s_udatas *userdata; ()
char chain; ()

DESCRIPTION

’S_caprs’ answers the capability data indication received via s_capin for the
session with the local reference ’sref’. ’Userdata’ is NULL if no user data is
required, or points to an ’s_udatas’ struct with the following layout:

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; /* length of user data */

};

’Ptr’ points to an area with ’len’ bytes of user data to be transferred to the
partner. If ’len’ is 0, no user data is transferred. ’Chain’ specifies if this function
call is to be concatenated with further session calls, with either

S_END No further calls shall be concatenated, or
S_CONCAT This call is immediately followed by a session call for the

same session, which is to be concatenated with this call.
(Rules for concatenation in appendix C.)

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.
S_STOP call temporarily stopped due to flow control shortage; an

S_GO event is announced via s_event once the call has been
successfully completed and it is possible to continue with
request and response calls for this session.

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-CAPABILITY-DATA response.

98 U5231-J-Z145-2-7600

S_CAPCF(SS)

s_capcf

NAME

s_capcf receive capability data confirmation

SYNOPSIS

int s_capcf(sref,userdata)
int *sref; ()
struct s_udatas *userdata; ()

DESCRIPTION

’S_capcf’ receives a capability data confirmation announced via s_event for the
session with the local reference ’sref’, in response to a previously issued capability
data request call. ’Userdata’ is NULL or points to an ’s_udatas’ struct specifying
the user data area and having the following layout:

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; /* length of user data area */

};

’Ptr’ points to an area of ’len’ bytes to which the user data specified by the
partner is written. If ’userdata’ is NULL or ’len’ is 0 or less than the length
announced in the s_event call, all or the last part of the user data is ignored.

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-CAPABILITY-DATA confirm.

U5231-J-Z145-2-7600 99

The Major Synchronize Functional Unit

Overview

The major synchronize functional unit supports the major synchronization point service.

The major synchronize functional unit comprises the following calls

s_majrq sync major request
s_majin sync major indication
s_majrs sync major response
s_majcf sync major confirmation

U5231-J-Z145-2-7600 101

S_MAJRQ(SS)

s_majrq

NAME

s_majrq sync major request

SYNOPSIS

int s_majrq(sref,syncp,userdata,chain)
int *sref; ()
long *syncp; ()
struct s_udatas *userdata; ()
char chain; ()

DESCRIPTION

’S_majrq’ asks for a major synchronization point to be defined for the session
with the local reference ’sref’. ’Syncp’ points to a location to which the session
service writes the identification number of the sync point. ’Userdata’ is NULL if no
user data is required, or points to an ’s_udatas’ struct with the following layout:

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; /* length of user data */

};

’Ptr’ points to an area with ’len’ bytes of user data to be transferred to the
partner. If ’len’ is 0, no user data is transferred. ’Chain’ specifies if this function
call is to be concatenated with further session calls, with either

S_END No further calls shall be concatenated, or
S_CONCAT This call is immediately followed by a session call for the

same session, which is to be concatenated with this call.
(Rules for concatenation in appendix C.)

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.
S_STOP call temporarily stopped due to flow control shortage; an

S_GO event is announced via s_event once the call has been
successfully completed and it is possible to continue with
request and response calls for this session.

102 U5231-J-Z145-2-7600

S_MAJRQ(SS)

APPLICATION USAGE

If the activity management functional unit has been selected, this call may only be
issued within an activity. The major sync point is defined when the sync major
confirm (s_majcf) is received from the responding application. This event is
announced by an s_event call. No further data may be requested until the s_majcf
has been received. The s_majrq call is subject to the token restrictions in
appendix A.

NOTE

It is up to the session user to ensure that the sync point number does not exceed
999998.

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-SYNCH-MAJOR request.

U5231-J-Z145-2-7600 103

S_MAJIN(SS)

s_majin

NAME

s_majin receive sync major indication

SYNOPSIS

int s_majin(sref,syncp,userdata)
int *sref; ()
long *syncp; ()
struct s_udatas *userdata; ()

DESCRIPTION

’S_majin’ receives a request to define a major synchronization point announced
via s_event for the session connection with the local reference ’sref’. ’Syncp’
points to a location to which the identification number of the sync point is written.
’Userdata’ is NULL or points to an ’s_udatas’ struct specifying the user data area
and having the following layout:

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; /* length of user data area */

};

’Ptr’ points to an area of ’len’ bytes to which the user data specified by the
partner is written. If ’userdata’ is NULL or ’len’ is 0 or less than the length
announced in the s_event call, all or the last part of the user data is ignored.

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.

APPLICATION USAGE

The sync major indication must be answered with a sync major response call
(s_majrs).

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-SYNCH-MAJOR indication.

104 U5231-J-Z145-2-7600

S_MAJRS(SS)

s_majrs

NAME

s_majrs sync major response

SYNOPSIS

int s_majrs(sref,userdata,chain)
int *sref; ()
struct s_udatas *userdata; ()
char chain; ()

DESCRIPTION

’S_majrs’ answers a sync major indication received via s_majin for the session
with the local reference ’sref’. ’Userdata’ is NULL if no user data is required, or
points to an ’s_udatas’ struct with the following layout:

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; /* length of user data */

};

’Ptr’ points to an area with ’len’ bytes of user data to be transferred to the
partner. If ’len’ is 0, no user data is transferred. ’Chain’ specifies if this function
call is to be concatenated with further session calls, with either

S_END No further calls shall be concatenated, or
S_CONCAT This call is immediately followed by a session call for the

same session, which is to be concatenated with this call.
(Rules for concatenation in appendix C.)

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.
S_STOP call temporarily stopped due to flow control shortage; an

S_GO event is announced via s_event once the call has been
successfully completed and it is possible to continue with
request and response calls for this session.

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-SYNCH-MAJOR response.

U5231-J-Z145-2-7600 105

S_MAJCF(SS)

s_majcf

NAME

s_majcf receive sync major confirm

SYNOPSIS

int s_majcf(sref,userdata)
int *sref; ()
struct s_udatas *userdata; ()

DESCRIPTION

’S_majcf’ receives a sync major confirmation announced via s_event for the
session connection with the local reference ’sref’, in response to a previously
given sync major request. ’Userdata is NULL or points to an ’s_udatas’ struct
specifying the user data area and having the following layout:

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; /* length of user data area */

};

’Ptr’ points to an area of ’len’ bytes to which the user data specified by the
partner is written. If ’userdata’ is NULL or ’len’ is 0 or less than the length
announced in the s_event call, all or the last part of the user data is ignored.

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-SYNCH-MAJOR confirm.

106 U5231-J-Z145-2-7600

The Resynchronize Functional Unit

Overview

The resynchronize functional unit supports the resynchronization service.

The resynchronize functional unit comprises the following calls

s_synrq resync request
s_synin resync indication
s_synrs resync response
s_syncf resync confirmation

U5231-J-Z145-2-7600 107

S_SYNRQ(SS)

s_synrq

NAME

s_synrq resynchronize request

SYNOPSIS

int s_synrq(sref,rtype,syncp,token,userdata)
int *sref; ()
char *rtype; ()
long *syncp; ()
char *token; ()
struct s_udatas *userdata; ()

DESCRIPTION

’S_synrq’ requests an orderly reestablishment of communication for the session
connection with the local reference ’sref’, e.g. after an error or if no response was
sent by the partner application. ’Rtype’ specifies the type of resynchronization,
with one of the following values:

S_ABANDON synchronize to a defined state
S_RESTART return to an agreed point; the sync point to be negotiated

cannot be earlier than the last confirmed major sync point.
S_SET synchronize to any specified valid sync point number

’Syncp’ is NULL (rtype = S_ABANDON) or points to a sync point number in the
range 0-999999 (rtype = S_RESTART/rtype = S_SET). ’Token’ points to the token
assignment and its value is constructed by ORing values from the following list:

S_T_DATA data token on responder side
S_T_MINOR minor synchronize token on responder side
S_T_ACTIVITY major/activity token on responder side
S_T_RELEASE release token on responder side
S_TC_DATA data token on side chosen by responder
S_TC_MINOR minor sync token on side chosen by responder
S_TC_ACTIVITY major/activity token on side chosen by responder
S_TC_RELEASE release token on side chosen by responder

If a particular token has no value assigned to it, the token remains on the
requester side or is not used in the current session. If all tokens in the session
have no value, ’token’ may be NULL. ’Userdata’ is NULL if no user data is
required, or points to an ’s_udatas’ struct with the following layout:

108 U5231-J-Z145-2-7600

S_SYNRQ(SS)

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; /* length of user data */

};

’Ptr’ points to an area with ’len’ bytes of user data to be transferred to the
partner. If ’len’ is 0, no user data is transferred.

This call may result in the loss of undelivered data.

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.
S_STOP call temporarily stopped due to flow control shortage; an

S_GO event is announced via s_event once the call has been
successfully completed and it is possible to continue with
request and response calls for this session.

APPLICATION USAGE

The session is resynchronized when a resynchronize confirm (s_syncf) is received
from the responding application. This event is announced by an s_event call.
s_uaborq is the only call permissible before the s_syncf is received.

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-RESYNCHRONIZE request.

U5231-J-Z145-2-7600 109

S_SYNIN(SS)

s_synin

NAME

s_synin receive resynchronize indication

SYNOPSIS

int s_synin(sref,rtype,syncp,token,userdata)
int *sref; ()
char *rtype; ()
long *syncp; ()
char *token; ()
struct s_udatas *userdata; ()

DESCRIPTION

’S_synin’ receives a request announced via s_event to resynchronize the session
connection with the local reference ’sref’. ’Rtype’ points to a location to which the
resynchronization type is written, as one of the following values:

S_ABANDON synchronize to a defined state; the sync point number is
greater than any previous value used in this session.

S_RESTART return to an agreed point; the sync point to be negotiated
cannot be earlier than the last confirmed major sync point.

S_SET synchronize to any specified sync point number

’Syncp’ points to a location to which the identification number of the sync point is
written. ’Token’ points to a location to which the token assignment is written. The
value is constructed by ORing values from the following list:

S_T_DATA data token on responder side
S_T_MINOR minor synchronize token on responder side
S_T_ACTIVITY major/activity token on responder side
S_T_RELEASE release token on responder side
S_TC_DATA data token on side chosen by responder
S_TC_MINOR minor sync token on side chosen by responder
S_TC_ACTIVITY major/activity token on side chosen by responder
S_TC_RELEASE release token on side chosen by responder

If a particular token has no value assigned to it, the token remains on the
requester side or is not used in the current session. ’Userdata’ is NULL or points
to an ’s_udatas’ struct specifying the user data area and having the following
layout:

110 U5231-J-Z145-2-7600

S_SYNIN(SS)

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; /* length of user data area */

};

’Ptr’ points to an area of ’len’ bytes to which the user data specified by the
partner is written. If ’userdata’ is NULL or ’len’ is 0 or less than the length
announced in the s_event call, all or the last part of the user data is ignored.

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.

APPLICATION USAGE

The resynchronize indication must be answered with a resynchronize response
call (s_synrs).

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-RESYNCHRONIZE indication.

U5231-J-Z145-2-7600 111

S_SYNRS(SS)

s_synrs

NAME

s_synrs resynchronize response

SYNOPSIS

int s_synrs(sref,syncp,token,userdata,chain)
int *sref; ()
long *syncp; ()
char *token; ()
struct s_udatas *userdata; ()
char chain; ()

DESCRIPTION

’S_synrs’ responds to a resynchronize request received via s_synrq for the
session with the local reference ’sref’. ’Syncp’ points to the identification number
of the sync point. ’Token’ points to the token assignment and its value is
constructed by ORing values from the following list:

S_T_DATA data token on responder side
S_T_MINOR minor synchronize token on responder side
S_T_ACTIVITY major/activity token on responder side
S_T_RELEASE release token on responder side

If a particular token has no value assigned to it, the token remains on the
requester side or is not used in the current session. Only tokens where the
requester has given the responder a choice may be specified. If all tokens in the
session have no value, ’token’ may be NULL. ’Userdata’ is NULL if no user data is
required, or points to an ’s_udatas’ struct with the following layout:

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; /* length of user data */

};

’Ptr’ points to an area with ’len’ bytes of user data to be transferred to the
partner. If ’len’ is 0, no user data is transferred. ’Chain’ specifies if this function
call is to be concatenated with further session calls, with either

S_END No further calls shall be concatenated, or
S_CONCAT This call is immediately followed by a session call for the

same session, which is to be concatenated with this call.
(Rules for concatenation in appendix C.)

112 U5231-J-Z145-2-7600

S_SYNRS(SS)

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.
S_STOP call temporarily stopped due to flow control shortage; an

S_GO event is announced via s_event once the call has been
successfully completed and it is possible to continue with
request and response calls for this session.

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-RESYNCHRONIZE response.

U5231-J-Z145-2-7600 113

S_SYNCF(SS)

s_syncf

NAME

s_syncf receive resynchronize confirm

SYNOPSIS

int s_syncf(sref,syncp,token,userdata)
int *sref; ()
long *syncp; ()
char *token; ()
struct s_udatas *userdata; ()

DESCRIPTION

’S_syncf’ receives a resynchronize confirmation announced via s_event for the
session connection with the local reference ’sref’, in response to a previously
issued resynchronize request. ’Synchp’ points to a location to which the
identification number of the sync point is written. ’Token’ points to a location to
which the token assignment is written. The token value is constructed by ORing
values from the following list:

S_T_DATA data token on responder side
S_T_MINOR minor synchronize token on responder side
S_T_ACTIVITY major/activity token on responder side
S_T_RELEASE release token on responder side

If a particular token has no value assigned to it, the token assignment was
already specified by the requester or, if the responder was given the choice, the
token assignment is on the requester side. ’Userdata’ is NULL or points to an
’s_udatas’ struct specifying the user data area and having the following layout:

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; /* length of user data area */

};

’Ptr’ points to an area of ’len’ bytes to which the user data specified by the
partner is written. If ’userdata’ is NULL or ’len’ is 0 or less than the length
announced in the s_event call, all or the last part of the user data is ignored.

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.

RELATIONSHIP TO ISO 8326

Corresponds to the service primitive S-RESYNCHRONIZE confirm.

114 U5231-J-Z145-2-7600

The Session Service Trace

Overview

The Session Service trace provides a means of recording all the proceedings at the
interface and transport service level, including incoming and outgoing SPDUs. The trace
may be switched on and off by an OSS application and is written to a trace file. It may
then be read with the help of the trace evaluation program ’step’.

U5231-J-Z145-2-7600 115

S_TRON(SS)

s_tron

NAME

s_tron switch session trace on

SYNOPSIS

int s_tron(name,tropt)
char *name; ()
struct s_tropt1 *tropt; ()

DESCRIPTION

’S_tron’ switches on the internal session trace function. ’Name’ points to the trace
file name selected by the user. An existing file with the same name is overwritten
or extended, depending on the open mode. The information that can be traced
includes session service calls, records defined by the session user, incoming and
outgoing session protocol elements, some transport system calls and local
internal calls. ’Tropt’ is NULL or points to a structure ’s_tropt1’ with the following
layout:

struct s_tropt1 {
char s_trver; /* version of s_tropt layout */
char s_trmode; /* open mode for trace file */
char s_trsel; /* select traces to be switched on */
char s_traopt; /* trace amount options */
long s_mludata; /* max len for traced user data */
long s_mldt; /* max len for traced data (DT SPDU)*/
long s_mltd; /* max len for traced data (TD SPDU)*/

};

The version number ’s_trver’ is S_TROPT1.

The open mode ’s_trmode’ may be either

S_TR_NEW create a new trace file, or
S_TR_EXT extend old or create new file

The trace selection parameters ’s_trsel’, which can be combined, are as follows:

S_TR_USER select the service user trace
S_TR_SERV select the service trace
S_TR_PROT select the protocol trace

In the trace amount options ’s_traopt’ the following may be specified:

S_TR_NOEV trace s_event with NOEVENT result

’s_mludata’, ’s_mldt’ and ’s_mltd’ are the maximum lengths of user data, normal
data or typed data to be traced, or S_TR_UNLIM if not limited.

116 U5231-J-Z145-2-7600

S_TRON(SS)

If tropt is NULL, the default values are S_TR_NEW for ’s_trmode’,
S_TR_USER+S_TR_PROT for ’s_trsel’, 0 for ’s_traopt’, S_TR_UNLIM for
’s_mludata’, and 0 for ’s_mldt’ and ’s_mltd’.

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.

APPLICATION USAGE

The call will be unsuccessful if the trace function is already running. It is up to the
user to ensure the uniqueness of the trace file names within the entire local
system, e.g. by qualifying them with the process ID.

U5231-J-Z145-2-7600 117

S_TROFF(SS)

s_troff

NAME

s_troff switch session trace off

SYNOPSIS

int s_troff(NULL)

DESCRIPTION

’S_troff’ switches off the internal session trace function. If the trace function was
not running, it is not regarded as an error. Following this call the trace file is
closed and can be evaluated with the session trace evaluation program ’step’.

The parameter is reserved for future extensions.

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.

APPLICATION USAGE

If the trace function has not been switched off with this call when the user
process terminates, the trace file will be closed but some trace records may be
lost.

118 U5231-J-Z145-2-7600

S_WUTR(SS)

s_wutr

NAME

s_wutr write user trace record

SYNOPSIS

int s_wutr(sref,type,hdr,hdrlen,udata,udatalen)
int *sref; ()
int type; ()
char *hdr; ()
int hdrlen; ()
char *udata; ()
int udatalen; ()

DESCRIPTION

’S_wutr’ writes a user-defined trace record to the trace file opened by s_tron with
trace selection parameter S_TR_USER. ’Sref’ points to a location containing the
local reference of the session connection. If no session connection reference is to
be used, ’sref’ points to S_NOSREF or may be NULL. ’Type’ specifies a trace
record type in the range S_MINUTYPE to S_MAXUTYPE. The trace record to be
written may consist of one or two parts, a header part and/or a user data part.
’Hdr’ points to the header part with the length ’hdrlen’. ’Udata’ points to the user
data part with the length ’udatalen’. Lengths may not exceed S_MAXUTRECL (12
Kbytes).

RETURN VALUES

S_OK successful
S_ERROR unsuccessful; a diagnostic code is available via the s_error

call.

APPLICATION USAGE

The call will be unsuccessful if the trace function is not switched on. If the
selection parameter S_TR_USER is not set, the call is ignored.

U5231-J-Z145-2-7600 119

STEP(SS)

The session trace evaluation program STEP

NAME

step session trace evaluation program

SYNOPSIS

The syntax for calling the session trace evaluation program is system-dependent
(appendix D). ’Step’ accepts the following parameters:

[-h] [-d] [-l=nnn[k]] [-s=n/l/m/h] [-cref=n] [-ps=t/s/p/a/F]
[-f=hh[:mm[:ss]]] [-t=hh[:mm[:ss]]] [-m] tracefile1 [tracefile2 ...]

meaning:

-h outputs the command syntax to stdout.

-d Data records are dumped; no analysis of session user
data is performed.

-l=nnn Dumps are limited to nnn bytes (rounded up to a
multiple of 16); the length of the data is indicated in the
message "output limit reached".

-l=nnnk limitation of dumps to nnn Kbytes

-s= security level for the analysis of session user data;
default value is ’m’.

n: no security level switched on
l: Passwords are not listed.
m: User identifications, account numbers and

passwords are not listed.
h: like ’m’, but file names are not listed either

-cref=n Connection (session) reference, for which trace records
should be evaluated; n = connection reference number

-ps= Protocol layer, whose events (or PDUs) should be
output; possible entries:

t: transport events (without mass data transfer)
s: session events i.e with transport events and mass

data transfer
p: presentation events
a: ACSE events
F: FTAM events

120 U5231-J-Z145-2-7600

STEP(SS)

If the ps= option is not specified, all events are then
output.

It is recommended that trace records containing
information on abnormal protocol operations, such as
’diagnostics’ with FTAM, are always output. The
evaluation routines of level 7 determine whether or not
the records are output.

-f=hh:mm:ss The time when the trace analysis begins:

hh: hours
mm: minutes
ss: seconds

If the option f is not set, the current time is taken; if
either ss and m are not set, the the values ss=00 or
mm=00 are taken.

Default value: 00:00:00

-t=hh:mm:ss The time where the trace analysis is ended; entries as
for -f option.

Default value: 23:59:59

-m Chronological output of trace records from several
simultaneously opened trace files, generated during
multi-task operation.

If the -m option is not set, the trace files specified are
evaluated sequentially.

tracefile1 tracefile2 ...
trace file(s)

DESCRIPTION

The ’step’ program evaluates a trace file containing a session service trace. The
result of the evaluation is in printable form. ’Step’ tries to evaluate the protocols
(see -ps=) in the session user data unless the ’-d’-option is set.

With all trace records the session references are available. The trace entries
TCONRQ, TCONIN, TREDIN, TDISRQ and TDISIN were extended to include the
transport reference. If several session connections are available for one transport
connection, the first session reference (TCONRQ) and the last session reference
(TDISRQ) differentiate themselves.

U5231-J-Z145-2-7600 121

OSSD(SS)

Diagnostic routine OSSD

NAME

ossd OSS diagnostic routine

SYNOPSIS

’ossd’ accepts the following parameters:

[-n] filename [[trmode] [trsel] [traopt] [[mludata]/[mldt]/[mltd]]]
[-f]
[-i]

Meaning of the options:

-n generate trace options file
-f delete trace option file
-i display trace option file contents

Meaning of the parameters when using the -n option:

filename Name of the first trace file to be created. This name is
ignored, if the OSS application is called before ’ossd’ s_tron.
In this case, the name given with s_tron remains valid.

trmode Opening mode of the trace file; possible entries:

new: create a new file or overwrite.
ext: expand the existing file or create a new file.

Default value: new

trsel Selects the traces which must be activated; possible entries:

user: User trace
serv: Service trace
prot: Protocol trace

Several values can be connected with ’+’ in the order given
above.

Default value: user+prot

traopt Trace option; possible entries:

noev: s_event is also logged inclusive of S_NOEVENT

Default value: noev not set

122 U5231-J-Z145-2-7600

OSSD(SS)

mludata Maximum amount of user data written to the trace file;
possible entries:

nnn: a maximum of nnn bytes are written
unlim: no restriction

mldt Maximum amount of S-DATA data written to the trace file,
possible values:

nnn: a maximum of nnn bytes are written to the trace file
unlim: no restriction

mltd Maximum amount of S-TYPED-DATA data written to the trace
file; possible values:

nnn: a maximum of nnn bytes are written
unlim: no restriction

DESCRIPTION

With ’ossd’, the OSS trace can be switched on independently of the OSS
application. When ’ossd -n ...’ is called, ossd generates the trace option file
SYOSS.TROPT in the current directory. The specified parameters are stored in
this file. If this file is found in the current directory of the OSS application
process when the first ’s_attach’ call is issued, OSS activates the trace with the
parameters stored in the trace option file The trace file generated is called
’filename.pid’ (pid = process number), if the OSS application had not already
assigned a different name in an s_tron call.

APPLICATION USAGE

If all of the user data cannot be written in the trace file, the output is ended; at
this point the message "trace limit reached" and the actual length of the user
data are output.

U5231-J-Z145-2-7600 123

Token Restrictions on Service Primitives

Appendix A:
Token Restrictions on Service Primitives

Data Sync Major/ Release
Service primitives token minor activity token

token token

S-RELEASE request 2 2 2 2
S-RELEASE response (negative) nr nr nr 0

S-DATA request (half duplex) 1 nr nr nr
S-DATA request (duplex) 3 nr nr nr

S-CAPABILITY-DATA request 2 2 1 nr

S-TOKEN-GIVE request (data token) 1 nr nr nr
S-TOKEN-GIVE request (sync minor token) nr 1 nr nr
S-TOKEN-GIVE request (major/act. token) nr nr 1 nr
S-TOKEN-GIVE request (release token) nr nr nr 1

S-TOKEN-PLEASE request (data token) 0 nr nr nr
S-TOKEN-PLEASE request (sync minor token) nr 0 nr nr
S-TOKEN-PLEASE request (major/act. token) nr nr 0 nr
S-TOKEN-PLEASE request (release token) nr nr nr 0

S-CONTROL-GIVE request 2 2 1 2

S-SYNC-MINOR request 2 1 nr nr
S-SYNC-MAJOR request 2 2 1 nr

S-U-EXCEPTION-REPORT request 0 nr nr nr

S-ACTIVITY-START request 2 2 1 nr
S-ACTIVITY-RESUME request 2 2 1 nr
S-ACTIVITY-INTERRUPT request nr nr 1 nr
S-ACTIVITY-DISCARD request nr nr 1 nr
S-ACTIVITY-END request 2 2 1 nr

Key: 0 : Token available and not assigned to the SS-user who initiated the service
primitive

1 : Token available and assigned to the SS-user who initiated the service
primitive

2 : Token not available or token assigned to the SS-user who initiated the
service primitive

3 : Token not available
nr: No restriction

U5231-J-Z145-2-7600 125

Listing of the oss.h Include File

Appendix B: Listing of the oss.h Include File
/* oss.h OSS interface definitions */
/**/
/**/
/**/
/**/
/**/
/* */
/* O S S */
/* */
/**/
/* */
/* O S S I N T E R F A C E D E F I N I T I O N S */
/* */
/**/
/* */
/* I N C L U D E O S S . H */
/* */
/**/
/**/
/**/
/**/
/**/
/*
@(#) oss.h 3.07 92/07/22
*/

#define S_OK 0 /* function call successful */
#define S_ERROR -1 /* function call unsuccessful, */

/* due to permanent error */
#define S_RETRY -2 /* function call unsuccessful, */

/* due to temporary error */
/* retry call later */

#define S_STOP -3 /* function call stopped due to */
/* data flow control shortage */
/* continue after event S_DATAGO */

/* attach call value */
#define S_NOTFIRST 2 /* not first process of s-appl. */

#define S_NOVALUE -1L /* no value for sync points */
#define S_NOUREF -1 /* no value for user references */
#define S_NOSREF -1 /* no value for session reference */

/* event call mode values */
#define S_WAIT 0 /* wait for next event to occur */
#define S_CHECK 1 /* check events */

/* connect result values */

U5231-J-Z145-2-7600 127

Listing of the oss.h Include File

#define S_ACCEPT 0 /* connect request accepted */
#define S_REJECT 1 /* connect request rejected */
#define S_CONGEST 2 /* connect request rejected due */

/* to temporary congestion */
#define S_PREJECT 3 /* connect request rejected */

/* from session service */
#define S_PCONGEST 4 /* connect request rejected due */

/* to temporary congestion */
#define S_PUNKNOWN 5 /* connect request rejected due */

/* to unknown application */
#define S_PNATTACH 6 /* connect request rejected due */

/* to not attached application */
#define S_PPVERS 7 /* connect request rejected, since */

/* protocol version not supported */
#define S_PPICSREST 8 /* connect request rejected due */

/* to implementation restriction */
/* stated in the PICS */

/* release result values */
#define S_AFFIRMATIVE 0 /* request affirmed */
#define S_NEGATIVE 1 /* negative release */

/* interface data unit values */
#define S_END 0 /* end of service data unit */
#define S_MORE 1 /* more data in this data unit */
#define S_CONCAT 2 /* calls are to be concatenated */

/* sync point type values */
#define S_EXPLICIT 0 /* explicit confirm */
#define S_OPTIONAL 1 /* optional confirm */

/* resync type values */
#define S_RESTART 0 /* restart return to last point */
#define S_ABANDON 1 /* abandon set new state */
#define S_SET 2 /* set to valid minor point */

/* functional unit values */
#define S_HDX 0x0001 /* half duplex */
#define S_FDX 0x0002 /* full duplex */
#define S_MINOR 0x0008 /* minor synchronize */
#define S_MAJOR 0x0010 /* major synchronize */
#define S_RESYNC 0x0020 /* resynchronize */
#define S_ACTIVITY 0x0040 /* activity management */
#define S_NEGRELEASE 0x0080 /* negotiated release */
#define S_CAPABILITY 0x0100 /* capability data */
#define S_EXCEPTIONS 0x0200 /* exceptions */
#define S_TYPED 0x0400 /* typed data as per */
#define S_T62 0x1000 /* fun. unit CCITT T.62 */
#define S_PVERS1 0x8000 /* use session protocol version 1 */

/* token values */
#define S_T_DATA 1 /* data token */
#define S_T_MINOR 4 /* minor synchronize token */
#define S_T_ACTIVITY 16 /* major/activity token */
#define S_T_RELEASE 64 /* release token */
#define S_T_ALL (S_T_DATA S_T_MINOR S_T_ACTIVITY \

S_T_RELEASE)
/* */

#define S_TC_DATA 2 /* data token choice */

128 U5231-J-Z145-2-7600

Listing of the oss.h Include File

#define S_TC_MINOR 8 /* minor synchronize choice */
#define S_TC_ACTIVITY 32 /* major/activity token choice */
#define S_TC_RELEASE 128 /* release token choice */
#define S_TC_ALL (S_TC_DATA S_TC_MINOR S_TC_ACTIVITY \

S_TC_RELEASE)

/* reason values */
#define S_TCDISCON 1 /* transport disconnect */
#define S_PROTERROR 4 /* protocol error */
#define S_UNDEFINED 8 /* undefined */
#define S_PICSREST 16 /* restriction stated in the PICS */
#define S_NOREASON 0 /* non-specific error */
#define S_OVERLOAD 1 /* receiver ability jeopardized */
#define S_SEQERR 3 /* sequence error */
#define S_LOCALERR 5 /* local SS-user error */
#define S_PROCERR 6 /* unrecoverable procedural error */
#define S_DATATOKEN 128 /* demand data token */

/* list of possible events: */
#define S_NOEVENT 0 /* no session event occured */
#define S_CONIN 13 /* S-CONNECT indication */
#define S_CONCF 14 /* S-CONNECT confirm */
#define S_RELIN 9 /* S-RELEASE indication */
#define S_RELCF 10 /* S-RELEASE confirm */
#define S_UABOIN 129 /* S-U-ABORT indication */
#define S_PABOIN 130 /* S-P-ABORT indication */
#define S_DATAIN 1 /* S-DATA indication, announces */

/* one interface data unit */
#define S_TKGIN 131 /* S-TOKEN-GIVE indication */
#define S_TKPIN 2 /* S-TOKEN-PLEASE indication */
#define S_TYPEIN 33 /* S-TYPED-DATA indication, an- */

/* nounces one interface data unit */
#define S_CAPIN 60 /* S-CAPABILITY-DATA indication */
#define S_CAPCF 61 /* S-CAPABILITY-DATA confirm */
#define S_MININ 49 /* S-SYNCH-MINOR indication */
#define S_MINCF 50 /* S-SYNCH-MINOR confirm */
#define S_MAJIN 41 /* S-SYNCH-MAJOR indication */
#define S_MAJCF 42 /* S-SYNCH-MAJOR confirm */
#define S_SYNIN 53 /* S-RESYNCHRONIZE indication */
#define S_SYNCF 34 /* S-RESYNCHRONIZE confirm */
#define S_STAIN 45 /* S-ACTIVITY-START indication */
#define S_RESIN 29 /* S-ACTIVITY-RESUME indication */
#define S_INTIN 25 /* S-ACTIVITY-INTERRUPT indication */
#define S_INTCF 26 /* S-ACTIVITY-INTERRUPT confirm */
#define S_DISIN 57 /* S-ACTIVITY-DISCARD indication */
#define S_DISCF 58 /* S-ACTIVITY-DISCARD confirm */
#define S_ENDIN 132 /* S-ACTIVITY-END indication */
#define S_ENDCF 133 /* S-ACTIVITY-END confirm */
#define S_CTGIN 21 /* S-CONTROL-GIVE indication */
#define S_UEXCIN 48 /* S-U-EXCEPTION-REPORT indication */
#define S_PEXCIN 134 /* S-P-EXCEPTION-REPORT indication */
#define S_GO 192 /* S_DATA_GO indication */
#define S_REDIN 193 /* S-REDIRECT indication */
#define S_TIMEINT 194 /* time interrupt */

struct s_udatas {
char *ptr; /* pointer to user data area */
unsigned len; /* length of user data */

U5231-J-Z145-2-7600 129

Listing of the oss.h Include File

};
struct s_cid { /* layout of connection ID */

int s_luref; /* length of SS-user reference */
char s_uref[64]; /* SS-user reference calling or */

/* called */
int s_lcomref; /* length of common reference */
char s_comref[64]; /* common reference */
int s_laddref; /* length of additional ref */
char s_addref[4]; /* additional reference info */

};

struct s_ocid { /* layout of connection ID */
int s_lcguref; /* length of SS-user reference */
char s_cguref[64]; /* calling SS-user reference */
int s_lcomref; /* length of common reference */
char s_comref[64]; /* common reference */
int s_laddref; /* length of additional ref */
char s_addref[4]; /* additional reference info */
int s_lcduref; /* length of SS-user reference */
char s_cduref[64]; /* called SS-user reference */

};

struct s_aid { /* layout of activity ID */
int s_lactid; /* length of identifier (max 6) */
char s_actid[6]; /* activity identifier, trans- */

}; /* parent to session service */

/**/
/* */
/* diagnostic codes */
/* */
/**/

/* non permanent errors: */
#define S_NOMEM 1 /* no memory available */

/* invalid user call or protocol parameter: */
#define S_INVNAME 100 /* invalid name length */
#define S_INVEVMODE 101 /* invalid event mode */
#define S_INVSREF 102 /* invalid session reference */
#define S_INVCHAIN 103 /* invalid chain parameter */
#define S_INVCAT 104 /* invalid concatenation */
#define S_INVCID 105 /* invalid connection ID */
#define S_INVFUS 106 /* invalid func. units parameter */
#define S_INVTOKNI 107 /* invalid token item */
#define S_INVRSLT 108 /* invalid result parameter */
#define S_INVRSN 109 /* invalid reason value */
#define S_INVSYP 110 /* invalid sync point parameter */
#define S_INVSPT 111 /* invalid sync point type */
#define S_INVAID 112 /* invalid activity identifier */
#define S_INVMGLEN 113 /* invalid message length */
#define S_INVUDTA 114 /* invalid user data parameter */
#define S_ILLUDATA 115 /* user data not permitted */
#define S_INVQOS 116 /* invalid quality of service param */
#define S_SYPOVFLW 117 /* sync point overflow >= 999999 */
#define S_INVFRADDR 118 /* invalid fromaddr */
#define S_INVTOADDR 119 /* invalid toaddr */

130 U5231-J-Z145-2-7600

Listing of the oss.h Include File

#define S_PARNSUPP 120 /* parameter not supported */
#define S_INVPID 121 /* redirect. to own or unknown proc.*/
#define S_INVAREF 122 /* invalid application reference */
#define S_INVAUREF 123 /* invalid appl. user reference */
#define S_INVSUREF 124 /* invalid session user reference */
#define S_INVPVERS 125 /* invalid session protocol version */
#define S_INVSSEL 126 /* invalid session selector */
#define S_INVTROPT 127 /* invalid trace option parameter */
#define S_INVUTYPE 128 /* invalid user trace record type */
#define S_INVUTRLEN 129 /* invalid user trace record length */
/* invalid trace option in s_tron option structure */
#define S_INVTRVER 170 /* invalid s_trver */
#define S_INVTRMODE 171 /* invalid s_trmode */
#define S_INVTRSEL 172 /* invalid s_trsel */
#define S_INVTRAOPT 173 /* invalid s_traopt */
#define S_INVMLUDATA 174 /* invalid s_trmludata */
#define S_INVMLDT 175 /* invalid s_trmldt */
#define S_INVMLTD 176 /* invalid s_trmltd */

/* call sequence errors: */
#define S_NOTSUPP 200 /* function not supported */
#define S_NOTATTACHED 201 /* application not attached */
#define S_OINCF 202 /* outstanding or unexpected */

/* ’in’ or ’cf’ call */
#define S_STOPPED 203 /* session in stopped state */
#define S_MORESTATE 204 /* session waits for more data */
#define S_SPROTERR 205 /* session protocol error */
#define S_INVSTATE 206 /* invalid state for this call */
#define S_TRACEON 207 /* trace already switched on */
#define S_IVVER 208 /* invalid OSS version number */
#define S_TRNOTON 209 /* trace not switched on */

/* error in local environment: */
#define S_SYSERR 300 /* error on system call */

/* error code returned in addinfo */
#define S_TSERR 301 /* error on transport system (TS) */

/* call (addinfo contains more */
/* information) */

#define S_CMXERR S_TSERR /* supported for limited time period*/
#define S_TSVER 302 /* illegal TS version */
#define S_CMXVER S_TSVER /* supported for limited time period*/
#define S_INVTIDULEN 303 /* max TIDU length too short */
#define S_ILLTS_USE 304 /* user must not use TS and OSS */
#define S_ILLCMXUSE S_ILLTS_USE /* supp. for limited time period */
#define S_NOLICENSE 305 /* OSS license information missing */
#define S_SHUTDOWN 306 /* OSS shutdown indication */

/* internal inconsistencies: */
#define S_RLMERR 400 /* release memory error */
#define S_CCBQERR 402 /* inconsistent ccb queue */
#define S_INVPTIMEL 403 /* prot.timer elapsed in inv. state */

/* error codes to be sent to remote session provider only: */
#define S_ISPDULEN 500 /* invalid SPDU length */
#define S_INVSPDU 501 /* invalid SPDU contents */
#define S_MANDMISS 502 /* mandatory parameter missing */
#define S_INVTCDISC 503 /* invalid transport disconnect */
#define S_INVPOPT 504 /* invalid protocol options */

U5231-J-Z145-2-7600 131

Listing of the oss.h Include File

#define S_INVTSDU 505 /* invalid maximum TSDU size */
#define S_INVPV 506 /* invalid protocol version */
#define S_INVTKSI 507 /* invalid token setting item */
#define S_ILLRFLPR 508 /* reflect parameter not permitted */

/**/
/* */
/* trace option definitions */
/* */
/**/
/* value of s_trver parameter */
#define S_TROPT1 1 /* version of s_tropt1 layout */
/* values of s_trmode parameter */
#define S_TR_NEW 0 /* create a new trace file */
#define S_TR_EXT 1 /* extend old or create new file */
/* bit values of s_trsel parameter (can be combined) */
#define S_TR_USER 1 /* switch on the service user trace */
#define S_TR_SERV 2 /* switch on the service trace */
#define S_TR_PROT 4 /* switch on the protocol trace */
/* bit values of s_traopt parameter (can be combined) */
#define S_TR_NOEV 1 /* trace s_event with NOEVENT result*/
/* value of s_trmludata, s_trmldt and s_trmltd to indicate no limit */
#define S_TR_UNLIM -1 /* trace all data */
struct s_tropt1 {

char s_trver; /* version of s_tropt layout */
char s_trmode; /* open mode for trace file */
char s_trsel; /* select traces to be switched on */
char s_traopt; /* trace amount options */
long s_mludata; /* max len for traced userdata */
long s_mldt; /* max len for traced data (DT SPDU)*/
long s_mltd; /* max len for traced data (TD SPDU)*/

};
/**/
/* */
/* definitions for writing user trace record function (s_wutr) */
/* */
/**/
#define S_MINUTYPE 100 /* minimum user trace record type */
#define S_MAXUTYPE 2047 /* maximum user trace record type */
#define S_PRES_UTYPE 1000 /* presentation user trace rec. type*/
#define S_ACSE_UTYPE 1001 /* ACSE user trace record type */
#define S_FTAM_UTYPE 1002 /* FTAM user trace record type */
#define S_MAXURECL (12*1024) /* maximum length of user trace rec.*/

132 U5231-J-Z145-2-7600

Rules for Concatenating Session Service Calls

Appendix C:
Rules for Concatenating Session Service Calls

Only the following call sequences may be concatenated:

s_starq + s_datarq + s_minrq + s_tkgrq
s_resrq + s_datarq + s_minrq + s_tkgrq
s_starq + s_datarq + s_endrq
s_resrq + s_datarq + s_endrq
s_starq + s_datarq + s_majrq
s_resrq + s_datarq + s_majrq
s_starq + s_datarq + s_tkgrq
s_resrq + s_datarq + s_tkgrq
s_starq + s_minrq + s_tkgrq
s_resrq + s_minrq + s_tkgrq
s_datarq + s_endrq + s_tkgrq
s_datarq + s_endrs + s_tkgrq
s_datarq + s_minrq + s_tkgrq
s_datarq + s_minrs + s_tkgrq
s_datarq + s_majrq + s_tkgrq
s_datarq + s_majrs + s_tkgrq
s_starq + s_endrq
s_resrq + s_endrq
s_starq + s_majrq
s_resrq + s_majrq
s_minrq + s_tkgrq
s_minrs + s_tkgrq
s_majrq + s_tkgrq
s_majrs + s_tkgrq
s_starq + s_tkgrq
s_resrq + s_tkgrq
s_endrq + s_tkgrq
s_endrs + s_tkgrq
s_datarq + s_tkgrq
s_minrs + s_tkprq
s_majrs + s_tkprq
s_intrs + s_tkprq
s_disrs + s_tkprq
s_synrs + s_tkprq
s_caprs + s_tkprq
s_uexcrq + s_tkprq
s_endrs + s_tkprq

A concatenation (to potentially increase performance at the protocol level) is always
possible at the interface. Whether a concatenation actually takes place at protocol level
or not is transparent to the interface user and depends on the concatenating ability of
the two session services involved.

U5231-J-Z145-2-7600 133

Rules for Concatenating Session Service Calls

134 U5231-J-Z145-2-7600

SINIX-specific features

Appendix D: SINIX-specific features

Limit values

OSS itself imposes no limit on the number of applications and connections a user can
maintain. The respective system environment dictates the limit values:

OSS cannot support more applications and connections than the underlying
transport system. OSS maps its applications and connections to transport system
applications and connections on a 1:1 basis.

OSS requires the following dynamic memory:

approx. 70 KB per process
approx. 320 bytes per application
approx. 200 bytes per connection.

Furthermore OSS administers a message buffer pool, from which buffer storage is
made available at short notice for the individual connections. This storage requirement
depends on the number of simultaneously operated connections and on the number of
messages coming in on these connections. For this reason it is not possible to make
any general statements.

Installation

OSS is installed in one step by installation of the product.

When installing OSS V3.0 on a SINIX system the OSS library liboss.so is created in the
directory /usr/lib. In addition, the directory /opt/lib/oss is created, and within it the
files step and ossd. In the directory /usr/include the file oss.h is created.

U5231-J-Z145-2-7600 135

SINIX-specific features

Notes on working with OSS

The alarm function may not be used. The OSS function ’s_timer’ is available to the
user as an alternative.

It is not permissible to call OSS functions from within signal routines.

CMX and OSS applications may not be run in the same process.

A new s_attach must be issued after every fork call. Applications and connections
are not inherited by child processes.

The s_wake call with process number (pid) 0 is not permissible. It will be rejected
with the S_RETRY return code.

The s_wake()-call is implemented as kill (pid, SIGUSR2). At the first s-attach call,
OSS reports a signal handling routine for the signal SIGUSR2. This signal cannot be
used by the application.

With this implementation, it cannot be guaranteed that every s_wake() call will lead
to an S_NOEVENT event at the receiver end, i.e. if several s_wake() calls are issued
in succession, they may be reported to the receiver process as a single
S_NOEVENT event.

OSS Library

The library /usr/lib/liboss.so contains the object code for the full functionality of OSS.
This must be linked into the user’s program by the user. The CMX library of the SINIX
system must also be linked in.

The compiler call required here is:

cc -dy [options] <modules..> -loss -lcmx -lnsl -lsocket -o <exec. file>

136 U5231-J-Z145-2-7600

SINIX-specific features

Address Structures in SINIX

The structure of application names and address parameters must be determined by the
user via Transport Name Service calls. They should be defined there as session
addresses.

Compatibility with OSS V2.0

With s_attach() and s_conrq(), OSS V3.0 accepts the transport address at the session
interface (as in OSS V2.0), but always returns the session address in the case of
s_conin().

U5231-J-Z145-2-7600 137

SINIX-specific features

Session Trace Evaluation in SINIX

The following command is used to evaluate a trace file in SINIX:

/opt/lib/oss/step option file

option Evaluation parameters (see page 120)
file Name of the the file to be evaluated

The evaluated trace file is output to STDOUT.

Remark :

The trace files created by OSS are generated in a format that corresponds to the ’user-
defined’ format used in FT-SINIX. They can thus be transferred with FT-SINIX using
option -u.

138 U5231-J-Z145-2-7600

Sample Program for a Simple Session Run

Appendix E:
Sample Program for a Simple Session Run

The following program shows how a session application can control its connections
and how the requisite parameters are passed to OSS functions or obtained from OSS.
The program has the following structure:

Header:

An application attaches itself to the session service. The session service issues a fixed
number (SCONN) of connection requests to one or more different partners in a ’for’
loop. A timer is activated to prevent the application process waiting for ever for session
events. The timer is also responsible for monitoring when all the connections have been
cleared down again.

Session run:

The connections are controlled by incoming events in a ’while’ loop. After the s_event
call, the connection control block associated with the supplied sref is identified - where
possible. The control blocks contain static memory for the session parameters and, in
addition, some information concerning the current status of the session. This
information comprises the ’state’ as per ISO Service Definition 8326, the next action to
be taken and the sending ability of the connection.

The program initiates the next action in the relevant session in accordance with the
event announced.

During the run, the application initiates an activity on each connection, alternately sends
data and minor sync requests 100 times and then terminates the activity. Incoming
minor sync point confirmations are accepted, but not necessary. Finally the application
clears down all connections.

Trailer:

As soon as no session events occur between two time monitoring intervals, the
program leaves the while loop and the application is detached from the session service.
This implicitly destroys any connections that may still exist due to incorrect execution.

U5231-J-Z145-2-7600 139

Sample Program for a Simple Session Run

For the program to execute successfully, there must be a ’passive’ application on the
partner’s side to receive all requests and data, and answer events ’requiring
confirmation’ with an appropriate response.

/* necessary include files : */

#include <stdio.h>
#include <cmx.h>
#include <oss.h>

/* definitions : */

#define NULL 0
#define FALSE 0
#define TRUE

#define SCONN 10 /* number of connections */

/* states in accordance with */
/* ISO Service Def. 8326 */

#define STA01 1 /* idle; no connection */
#define STA02A 2 /* wait for S_CONCF */
#define STA03 3 /* wait for S_RELCF */
#define STA04B 4 /* wait for S_ENDCF */
#define STA713 5 /* data transfer state */

/* actions to be executed */
#define SENDDATA 1 /* send data */
#define SETSYP 2 /* set a minor sync point */
#define ENDACT 3 /* request end of activity */

union t_address sapplic; /* prog.’s own application */
int aref; /* application reference */
int sref; /* announced session ref. */
int uref; /* announced user reference */
unsigned udatal; /* announced data length */
unsigned sec = 600; /* limit for timeout */
int errcode; /* error code */
int addinfo; /* additional error code */
char timeout = FALSE; /* a time interrupt occurred */
char no_event = FALSE; /* no event occurred in the */

/* last time interval */
struct sctr { /* session control struct */

union t_address toaddr; /* session parameters */
int sref;
struct s_cid ucid;
int funits;
long syncp;
char token;
struct s_udatas userdata;
char result;
char chain;
char mtype;
struct s_aid uactid;

/* session environment */
int state;

140 U5231-J-Z145-2-7600

Sample Program for a Simple Session Run

char next_action; /* next action to be executed */
char stopped; } sc[SCONN];

struct sctr* scp;

int i; /* index variable */
int rc; /* return code */
int ewa; /* event watcher */
char usdata[512]; /* field for user data */

char comref[]="Example of a common reference";
char regend[]="This is a regular end of session";

/* processing part : */

main()

{
/* storing an application name in the field ’sapplic’ in accordance */
/* with the rules of the underlying transport system ... */

rc = s_attach(&aref, NULL, &sapplic, NULL);
if (rc == S_ERROR) ... /* error handling */

for (i = 0; i < SCONN; ++i) /* connection requests */
{
scp = &sc[i];

/* storing the partner address in the field ’scp->toaddr’ in accor- */
/* dance with the rules of the underlying transport system ... */

scp->ucid.s_luref = /* s_addref,s_uref-field */
scp->ucid.s_laddref = 0; /* not used */

strcpy(scp->ucid.s_comref,comref);
scp->ucid.s_lcomref = strlen(comref);
scp->funits = S_HDX+S_MINOR+S_ACTIVITY+S_EXCEPTIONS;
scp->token = 0;
scp->userdata.len = 0;

/* connection request */
rc = s_conrq(&scp->sref, &i, &aref, &scp->toaddr, &scp->ucid,

&scp->funits, NULL, NULL, &scp->token, &scp->userdata);
if (rc == S_OK) scp->state = STA02A;
else scp->state = STA01;
scp->stopped = FALSE;
scp->next_action = SENDDATA;
}

rc = s_timer(sec); /* set timer so system does */
/* not wait for ever */

while (no_event == FALSE) /* an event occurred during */
{ /* the last 2 time intervals */
uref = S_NOUREF;
ewa = s_event(&sref, &uref, S_WAIT, &udatal);
if (ewa != S_TIMEINT)

timeout = FALSE;
if (uref != S_NOUREF)
{

U5231-J-Z145-2-7600 141

Sample Program for a Simple Session Run

scp = &sc[uref];
scp->sref = sref;
scp->userdata.ptr = usdata; /* prepare user data struct */
scp->userdata.len = udatal;

}
else scp = NULL;

switch(ewa)
{
case S_NOEVENT:

break;
case S_CONCF: rc = s_concf(&scp->sref, &scp->toaddr, &scp->ucid,

&scp->result,&scp->funits,NULL,
&scp->syncp,&scp->token,&scp->userdata);

if (rc == S_ERROR) ... /* error handling */
scp->state = STA713;
strcpy(scp->uactid.s_actid,"ACT 1");
scp->uactid.s_lactid = 5;
rc = s_starq(&scp->sref, &scp->uactid, NULL, S_END);
if (rc == S_ERROR) ... /* error handling */
if (rc == S_OK)

send();
else scp->stopped = TRUE;
break;

case S_MINCF: rc = s_mincf(&scp->sref,&scp->syncp,&scp->userdata);
if (rc == S_ERROR) ... /* error handling */
if (scp->stopped == FALSE)

send();
break;

case S_ENDCF: rc = s_endcf(&scp->sref,&scp->userdata);
if (rc == S_ERROR) ... /* error handling */
scp->userdata.ptr = regend;
scp->userdata.len = strlen(regend);
rc = s_relrq(&scp->sref,&scp->userdata);
if (rc == S_ERROR) ... /* error handling */
scp->state = STA03;
if (rc == S_STOP)

scp->stopped = TRUE;
break;

case S_RELCF: rc = s_relcf(&scp->sref,&scp->result,&scp->userdata);
if (rc == S_ERROR) ... /* error handling */
scp->state = STA01;
break;

case S_GO: scp->stopped = FALSE;
if (scp->state == STA713)

send();
break;

case S_TIMEINT:
if (timeout == TRUE) /* 2nd time interrupt */

no_event = TRUE;
else /* 1st time interrupt */

{
timeout = TRUE;
s_timer(sec);
}

break;
case S_ERROR: errcode = s_error(&addinfo));

printf("error code %d for s_event-call\n", errcode);

142 U5231-J-Z145-2-7600

Sample Program for a Simple Session Run

if (errcode == S_TSERR)
printf("TS error %d occurred\n",addinfo);

exit(-1);
break;

default: /* error handling ... */
rc = s_uaborq(&sref,NULL);
if (scp != NULL)

scp->state = STA01;
} /* end switch */

} /* end while */
s_detach(&aref);
} /* end main */

send()
{
switch(scp->next_action)

{
case SENDDATA: strcpy(usdata,"USER DATA...");

scp->userdata.len = strlen("USER DATA...");
scp->chain = S_END;
rc = s_datarq(&scp->sref,usdata,

&scp->userdata.len,&scp->chain);
if (rc == S_ERROR) ... /* error handling */
scp->next_action = SETSYP;
if (rc == S_OK)

send();
else scp->stopped = TRUE;

break;
case SETSYP : scp->mtype = S_OPTIONAL;

rc = s_minrq(&scp->sref, &scp->mtype,
&scp->syncp, NULL, S_END);

if (rc == S_ERROR) ... /* error handling */
scp->next_action = (scp->syncp <= 100 ?

SENDDATA : ENDACT);
if (rc == S_OK)

send();
else scp->stopped = TRUE;

break;
case ENDACT : rc = s_endrq(&scp->sref, &scp->syncp, NULL, S_END);

if (rc == S_ERROR) ... /* error handling */
scp->state = STA04B;
if (rc == S_STOP)

scp->stopped = TRUE;
}

}

U5231-J-Z145-2-7600 143

Contents

Contents

Introduction 1..........................

User Interface of OSS V3.0 3....................
Differences between the OSS V2.0 and OSS V3.0 Interfaces 3........
Changes Required to enable an Existing OSS V2.0
Application to Use OSS V3.0 4....................

Local Functions 5.........................
Overview 5............................
s_attach 6............................
s_detach 8............................
s_event 9............................
s_info 12.............................
s_timer 13.............................
s_wake 14............................
s_error 15.............................
s_redrq 16............................
s_redin 17.............................
s_stop 19.............................
s_go 20..............................

The Kernel Functional Unit 21....................
Overview 21............................
s_conrq 22............................
s_conin 25............................
s_conrs 28............................
s_concf 31............................
s_relrq 34.............................
s_relin 35.............................
s_relrs 36.............................
s_relcf 37.............................
s_uaborq 38............................
s_uaboin 39............................
s_paboin 40............................
s_datarq 41............................
s_datain 43............................

U5231-J-Z145-2-7600

Contents

The Half-Duplex Functional Unit 45..................
Overview 45............................
s_tkgrq 46.............................
s_tkgin 47.............................
s_tkprq 48.............................
s_tkpin 49.............................

The Minor Synchronize Functional Unit 51...............
Overview 51............................
s_minrq 52............................
s_minin 54............................
s_minrs 55............................
s_mincf 56............................

The Activity Management Functional Unit 57..............
Overview 57............................
s_starq 58.............................
s_stain 60.............................
s_resrq 61.............................
s_resin 63.............................
s_intrq 65.............................
s_intin 67.............................
s_intrs 69.............................
s_intcf 70.............................
s_disrq 71.............................
s_disin 73.............................
s_disrs 75.............................
s_discf 76.............................
s_endrq 77............................
s_endin 79............................
s_endrs 80............................
s_endcf 81............................
s_ctgrq 82.............................
s_ctgin 83.............................

The Exceptions Functional Unit 85...................
Overview 85............................
s_uexcrq 86............................
s_uexcin 88............................
s_pexcin 90............................

The Typed Data Functional Unit 91..................
Overview 91............................
s_typerq 92............................
s_typein 93............................

U5231-J-Z145-2-7600

Contents

The Capability Data Functional Unit 95.................
Overview 95............................
s_caprq 96............................
s_capin 97............................
s_caprs 98............................
s_capcf 99............................

The Major Synchronize Functional Unit 101...............
Overview 101............................
s_majrq 102............................
s_majin 104............................
s_majrs 105............................
s_majcf 106............................

The Resynchronize Functional Unit 107.................
Overview 107............................
s_synrq 108............................
s_synin 110............................
s_synrs 112............................
s_syncf 114............................

The Session Service Trace 115....................
Overview 115............................
s_tron 116.............................
s_troff 118.............................
s_wutr 119.............................
The session trace evaluation program STEP 120..............
Diagnostic routine OSSD 122......................

Appendix A: Token Restrictions on Service Primitives 125.........

Appendix B: Listing of the oss.h Include File 127.............

Appendix C: Rules for Concatenating Session Service Calls 133.......

Appendix D: SINIX-specific features 135.................
Limit values 135...........................
Installation 135...........................
Notes on working with OSS 136.....................
OSS Library 136...........................
Address Structures in SINIX 137.....................

Compatibility with OSS V2.0 137...................
Session Trace Evaluation in SINIX 138..................

Appendix E: Sample Program for a Simple Session Run 139.........

U5231-J-Z145-2-7600

U5231-J-Z145-2-7600 1

OSS V3.0 (SINIX)

OSI Session Service
User Guide

Target group
OSI TP users

Edition: October 1992

File: ossx.pdf

BS2000 and SINIX are registered trademarks of Siemens Nixdorf Informationssyteme AG.

Copyright © Siemens Nixdorf Informationssysteme AG, 1997.

All rights, including rights of translation, reproduction by printing, copying or similar
methods, even of parts, are reserved.

Offenders will be liable for damages. All rights, including rights created by patent grant or
registration of a utility model or design, are reserved.

Delivery subject to availability; right of technical modifications reserved.

Information on this document
On April 1, 2009, Fujitsu became the sole owner of Fujitsu Siemens Compu-
ters. This new subsidiary of Fujitsu has been renamed Fujitsu Technology So-
lutions.

This document from the document archive refers to a product version which
was released a considerable time ago or which is no longer marketed.

Please note that all company references and copyrights in this document have
been legally transferred to Fujitsu Technology Solutions.

Contact and support addresses will now be offered by Fujitsu Technology So-
lutions and have the format …@ts.fujitsu.com.

The Internet pages of Fujitsu Technology Solutions are available at
http://ts.fujitsu.com/...
and the user documentation at http://manuals.ts.fujitsu.com.

Copyright Fujitsu Technology Solutions, 2009

Hinweise zum vorliegenden Dokument
Zum 1. April 2009 ist Fujitsu Siemens Computers in den alleinigen Besitz von
Fujitsu übergegangen. Diese neue Tochtergesellschaft von Fujitsu trägt seit-
dem den Namen Fujitsu Technology Solutions.

Das vorliegende Dokument aus dem Dokumentenarchiv bezieht sich auf eine
bereits vor längerer Zeit freigegebene oder nicht mehr im Vertrieb befindliche
Produktversion.

Bitte beachten Sie, dass alle Firmenbezüge und Copyrights im vorliegenden
Dokument rechtlich auf Fujitsu Technology Solutions übergegangen sind.

Kontakt- und Supportadressen werden nun von Fujitsu Technology Solutions
angeboten und haben die Form …@ts.fujitsu.com.

Die Internetseiten von Fujitsu Technology Solutions finden Sie unter
http://de.ts.fujitsu.com/..., und unter http://manuals.ts.fujitsu.com finden Sie die
Benutzerdokumentation.

Copyright Fujitsu Technology Solutions, 2009

	Title
	Contents
	Introduction
	User Interface of OSS V3.0
	Differences between the OSS V2.0 and OSS V3.0 Interfaces
	Changes Required to enable an Existing OSS V2.0 Application to Use OSS V3.0

	Local Functions
	Overview
	s_attach
	s_detach
	s_event
	s_info
	s_timer
	s_wake
	s_error
	s_redrq
	s_redin
	s_stop
	s_go

	The Kernel Functional Unit
	Overview
	s_conrq
	s_conin
	s_conrs
	s_concf
	s_relrq
	s_relin
	s_relrs
	s_relcf
	s_uaborq
	s_uaboin
	s_paboin
	s_datarq
	s_datain

	The Half-Duplex Functional Unit
	Overview
	s_tkgrq
	s_tkgin
	s_tkprq
	s_tkpin

	The Minor Synchronize Functional Unit
	Overview
	s_minrq
	s_minin
	s_minrs
	s_mincf

	The Activity Management Functional Unit
	Overview
	s_starq
	s_stain
	s_resrq
	s_resin
	s_intrq
	s_intin
	s_intrs
	s_intcf
	s_disrq
	s_disin
	s_disrs
	s_discf
	s_endrq
	s_endin
	s_endrs
	s_endcf
	s_ctgrq
	s_ctgin

	The Exceptions Functional Unit
	Overview
	s_uexcrq
	s_uexcin
	s_pexcin

	The Typed Data Functional Unit
	Overview
	s_typerq
	s_typein

	The Capability Data Functional Unit
	Overview
	s_caprq
	s_capin
	s_caprs
	s_capcf

	The Major Synchronize Functional Unit
	Overview
	s_majrq
	s_majin
	s_majrs
	s_majcf

	The Resynchronize Functional Unit
	Overview
	s_synrq
	s_synin
	s_synrs
	s_syncf

	The Session Service Trace
	Overview
	s_tron
	s_troff
	s_wutr
	The session trace evaluation program STEP
	Diagnostic routine OSSD

	Appendix A: Token Restrictions on Service Primitives
	Appendix B: Listing of the oss.h Include File
	Appendix C: Rules for Concatenating Session Service Calls
	Appendix D: SINIX-specific features
	Limit values
	Installation
	Notes on working with OSS
	OSS Library
	Address Structures in SINIX
	Compatibility with OSS V2.0

	Session Trace Evaluation in SINIX

	Appendix E: Sample Program for a Simple Session Run

