
Edition July 2008

©
 S

ie
m

e
ns

 N
ix

d
or

f I
nf

or
m

at
io

ns
sy

st
em

e
A

G
 1

99
5

P

fa
d:

 F
:\u

tm
\B

ea
nC

on
n

ec
t\L

U
6

2_
V

5
1\

M
an

u
al

\e
n

\H
et

er
o_

e.
vo

r

openUTM V5.3, openUTM-LU62 V5.1
Distributed Transaction Processing between openUTM and CICS, IMS and LU6.2
Applications

Comments… Suggestions… Corrections…
The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
manuals@ts.fujtsu.com

Certified documentation
according to DIN EN ISO 9001:2000
To ensure a consistently high quality standard and
user-friendliness, this documentation was created to
meet the regulations of a quality management system which
complies with the requirements of the standard
DIN EN ISO 9001:2000.

cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

This manual is printed
on paper treated with
chlorine-free bleach.

Copyright © Fujitsu Technology Solutions GmbH 2009.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

mailto:manuals@ts.fujitsu.com
http://www.cognitas.de

U5461-J-Z135-6-76

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

3
1.

 J
u

ly
 2

0
08

 S
ta

nd
 1

0:
41

.1
0

P
fa

d:
 F

:\u
tm

\B
ea

nC
on

n
ec

t\L
U

62
_V

5
1\

M
an

u
al

\e
n\

H
et

er
o_

e.
iv

z

Contents

1 Preface . 11

1.1 Summary of contents and target group . 13

1.2 Summary of contents of the openUTM manuals 14
1.2.1 openUTM documentation . 14
1.2.2 Documentation for the openSEAS product environment 18
1.2.3 README files . 19

1.3 Changes to the previous manual . 20

1.4 Notational conventions . 21

2 Interconnection to IBM systems . 23

2.1 Direct LU6.2 interconnection via TRANSIT on Solaris 25

2.2 Direct LU6.2 interconnection via SNAP-IX on Solaris 26

2.3 Direct LU6.2 interconnection via IBM Communications Server
on Linux or AIX systems . 27

2.4 Direct LU6.2 interconnection via IBM Communications Server
on Windows systems . 28

2.5 LU6.2 interconnection via gateway computer with TRANSIT on Solaris 29

2.6 LU6.2 interconnection via gateway computer with SNAP-IX on Solaris 30

2.7 LU6.2 interconnection via gateway computer with
IBM Communications Server on Linux or AIX systems 31

2.8 LU6.2 interconnection via gateway computer
with IBM Communications Server on Windows 32

2.9 Direct LU6.1 interconnection with openUTM via TRANSIT on Solaris 33

2.10 LU6.1 interconnection via gateway computer with TRANSIT on Solaris 34

Contents

 U5461-J-Z135-6-76

3 LU6.2 interconnections with openUTM-LU62 . 35

3.1 openUTM-LU62 concepts and functions . 35
3.1.1 Substitute concept . 35
3.1.2 The openUTM-LU62 architecture . 37
3.1.3 openUTM-LU62 components . 39
3.1.4 Recovery functions . 40
3.1.5 Limitations of the protocol mapping . 41

3.2 Generating openUTM-LU62 . 42
3.2.1 Generation file format . 42
3.2.2 INSTANCE statement . 43
3.2.3 Starting the generation program . 52
3.2.4 Restoring generation files . 53
3.2.5 Displaying the name of the generation file used . 53

3.3 Administering openUTM-LU62 . 54
3.3.1 Administration under UNIX systems and Windows systems 54
3.3.2 Starting openUTM-LU62 . 55
3.3.3 Terminating openUTM-LU62 . 58
3.3.4 Displaying status information . 59
3.3.5 Establishing connections . 62
3.3.6 Clearing connections . 63
3.3.7 Activating and deactivating traces . 64
3.3.8 Analyzing traces . 66
3.3.9 Creating a dump . 67
3.3.10 Protocol trace . 67

4 openUTM-CICS interconnection via LU6.2 . 77

4.1 Generating an openUTM-CICS interconnection 77
4.1.1 Definitions in CICS . 77

DEFINE CONNECTION . 78
DEFINE SESSIONS . 80

4.1.2 VTAM generation . 82
4.1.3 TRANSIT generation for openUTM-CICS sessions 82
4.1.4 SNAP-IX generation for openUTM-CICS sessions 82
4.1.5 Generating the IBM Communications Server for openUTM-CICS sessions 82
4.1.6 openUTM-LU62 generation . 83
4.1.7 TNSX generation . 83
4.1.8 openUTM generation . 83
4.1.9 Defining CICS transactions . 84

Contents

U5461-J-Z135-6-76

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

3
1.

 J
u

ly
 2

0
08

 S
ta

nd
 1

0:
41

.1
0

P
fa

d:
 F

:\u
tm

\B
ea

nC
on

n
ec

t\L
U

62
_V

5
1\

M
an

u
al

\e
n\

H
et

er
o_

e.
iv

z

4.1.10 Using user IDs . 85
4.1.11 A complete sample generation . 86

4.2 Programming an openUTM-CICS interconnection 110
4.2.1 CICS commands for CICS job-submitter services 111

ALLOCATE . 111
CONNECT PROCESS . 112
SEND . 113
RECEIVE . 114
CONVERSE . 114
ISSUE ABEND . 115
ISSUE CONFIRMATION . 115
ISSUE ERROR . 115
SYNCPOINT . 116
SYNCPOINT ROLLBACK . 116
ISSUE PREPARE . 116
FREE . 117
WAIT CONVID . 117
ISSUE SIGNAL . 117

4.2.2 CICS commands for CICS job-receiving services 118
EXTRACT PROCESS . 118
RECEIVE . 118
SEND . 118
CONVERSE . 119
ISSUE ABEND . 119
ISSUE CONFIRMATION . 119
ISSUE ERROR . 119
SYNCPOINT . 120
SYNCPOINT ROLLBACK . 120
FREE . 120
WAIT CONVID . 120
ISSUE SIGNAL . 120
ISSUE PREPARE . 120
RETURN . 121

4.2.3 CICS programming hints . 122
4.2.4 Comparison with KDCS calls . 123
4.2.5 Examples of openUTM-CICS communication . 125

Starting an openUTM dialog service from within a CICS application program 125
Starting an openUTM asynchronous service from a CICS application program 133
Starting a CICS dialog service from a UTM application program 135
Starting a CICS asynchronous service from a UTM application program 146

4.2.6 Distributed Program Link . 148
4.2.7 openUTM programming hints . 152

Contents

 U5461-J-Z135-6-76

4.3 Using the CPI-C program interface . 153
4.3.1 Comparison to KDCS calls . 153
4.3.2 Examples of openUTM-CPIC communication . 156

Starting an openUTM dialog service from a CPIC application program 156
Starting an openUTM asynchronous service from a CPIC application program . . . 163
Starting a CPIC dialog service from a UTM application program 164
Starting a CPIC asynchronous service from a UTM application program 178

5 openUTM-IMS interconnection via LU6.2 . 181

5.1 Generating an openUTM-IMS interconnection 181
5.1.1 IMS startup parameters . 181
5.1.2 Defining the LU name of IMS . 182
5.1.3 Defining IMS transactions . 183
5.1.4 Defining partner LUs and openUTM transactions 184
5.1.5 VTAM generation . 186
5.1.6 LU6.2 security . 187
5.1.7 Full generation example . 188

5.2 Programming an openUTM-IMS interconnection 198
5.2.1 DL/I program interface . 198
5.2.2 CPI-C program interface . 201
5.2.3 LU6.2 Edit Exit routine . 201
5.2.4 Use of format names . 201
5.2.5 Examples of execution sequences with DL/I programs 202
5.2.6 Examples of execution sequences with CPI-C programs 208
5.2.7 Examples of execution sequences with standard IMS transactions 209
5.2.8 Examples of execution sequences with IMS as the job submitter 211

5.3 IMS administration . 213

6 openUTM-CICS interconnection via LU6.1 . 215

6.1 CICS definitions for openUTM-CICS sessions 215
DEFINE CONNECTION . 216
DEFINE SESSIONS . 217
Example of dependencies in CICS and openUTM generation 219

6.2 TRANSIT generation for openUTM-CICS sessions 220

6.3 Defining CICS transactions . 222
6.3.1 Local transactions . 222
6.3.2 Remote transactions . 223

Contents

U5461-J-Z135-6-76

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

3
1.

 J
u

ly
 2

0
08

 S
ta

nd
 1

0:
41

.1
0

P
fa

d:
 F

:\u
tm

\B
ea

nC
on

n
ec

t\L
U

62
_V

5
1\

M
an

u
al

\e
n\

H
et

er
o_

e.
iv

z

6.4 CICS programming during interconnection with openUTM 224
6.4.1 Rules and restrictions for CICS programming . 224

6.5 CICS commands for CICS job-submitting conversations 226
ALLOCATE . 226
BUILD ATTACH . 227
SEND . 228
RECEIVE . 229
CONVERSE . 230
EXTRACT ATTACH . 231
SYNCPOINT command . 232
RETURN command . 232

6.6 CICS commands for CICS job-receiving conversations 233
RECEIVE . 233
EXTRACT ATTACH . 233
BUILD ATTACH . 234
SEND . 234
CONVERSE . 235
SYNCPOINT . 235
RETURN . 235

6.7 Comparison with KDCS calls . 236

6.8 Programming examples of CICS-openUTM communication 237

6.9 CICS commands for queued jobs . 238
START command . 238
RETRIEVE . 239
Examples of the exchange of queued jobs . 239

6.10 Notes regarding openUTM-CICS programming 240

7 openUTM-IMS interconnection via LU6.1 . 243

7.1 IMS generation for openUTM-IMS sessions . 243
COMM macro . 244
TYPE macro . 244
TERMINAL macro . 245
VTAMPOOL macro . 246
SUBPOOL macro . 246
NAME macro . 247

7.1.1 Examples of dependencies in openUTM/IMS generation 248

7.2 TRANSIT generation for openUTM-IMS sessions 249

Contents

 U5461-J-Z135-6-76

7.3 Generating IMS transactions . 249
TRANSACT macro . 249

7.4 IMS programming for links to openUTM . 250
7.4.1 IMS interconnection options . 250
7.4.2 IMS calls . 251
7.4.3 Comparison to KDCS calls . 251
7.4.4 Examples of openUTM-IMS communication . 252
7.4.5 Examples of the exchange of queued jobs . 253
7.4.6 Notes on openUTM-IMS programming . 254

8 LU6.1 dummy dialogs between asynchronous services 255

8.1 Program interfaces for openUTM . 257
INFO GN . 258
APRO IN . 259

8.2 Passing FMH6 parameters in openUTM, IMS and CICS 261
8.2.1 Transaction code handling in openUTM . 261
8.2.2 Transaction code handling in IMS . 262
8.2.3 Transaction code handling in CICS . 262

9 Error diagnosis . 263

9.1 Diagnostic aids . 263

9.2 LU6.1 sense data . 265

10 openUTM-LU62 messages . 269

10.1 Messages from the u62_tp program . 270

10.2 Messages from the XAP-TP provider . 319
10.2.1 General inserts for the XAP-TP messages . 337

10.3 Messages from the utilities . 346
10.3.1 Messages from u62_start . 346
10.3.2 Messages from u62_sta . 352
10.3.3 Messages from u62_adm . 354
10.3.4 Messages from u62_gen . 358

Contents

U5461-J-Z135-6-76

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

3
1.

 J
u

ly
 2

0
08

 S
ta

nd
 1

0:
41

.1
0

P
fa

d:
 F

:\u
tm

\B
ea

nC
on

n
ec

t\L
U

62
_V

5
1\

M
an

u
al

\e
n\

H
et

er
o_

e.
iv

z

Glossary . 361

Abbreviations . 373

Related publications . 377

Index . 395

Contents

 U5461-J-Z135-6-76

U5461-J-Z135-6-76 11

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
7

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
1

1 Preface
Modern enterprise-wide IT environments are subjected to many challenges of an increas-
ingly explosive nature. This is the result of:

● heterogeneous system landscapes

● different hardware platforms

● different networks and different types of network access (TCP/IP, SNA, HTTP)

● the applications used by companies

Consequently, problems arise – whether as a result of mergers, joint ventures or labor-
saving measures. Companies are demanding flexible, scalable applications, as well as
transaction processing capability for processes and data, while business processes are
becoming more and more complex. The growth of globalization means, of course, that
applications are expected to run 24 hours a day, seven days a week, and must offer high
availability in order to enable Internet access to existing applications across time zones.

openUTM, which is a classical application server, offers a runtime environment that meets
all these requirements of modern, business-critical applications, because openUTM
combines all the standards and advantages of transaction monitor middleware and
message queuing systems:

● consistency of data and processing

● high availability of the applications (not just the hardware)

● high throughput even when there are large numbers of users (i.e. highly scalable)

● flexibility as regards changes to and adaptation of the IT system

Preface

12 U5461-J-Z135-6-76

openUTM is part of the comprehensive openSEAS (Open Suite for Enterprise Application
Servers) offering. The mature technology of openUTM is used by innovative openSEAS
products:

● BeanConnect is a family of adapters that conforms to the Java Connector Architecture
(JCA) of Sun and supports standardized connection of openUTM applications to J2EE
application servers, in particular to Oracle AS 10g. Oracle AS 10g is the application
server that, as a part of openSEAS, is available as a development and runtime platform
to all business applications, portals and Web pages in grid computing scale.

● In conjunction with, for example, openUTM, WebTransactions supports the development
of modern e-business applications. Existing openUTM applications can be transferred
unchanged to the World Wide Web using WebTransactions and can be integrated into
portals. With the business object builder BizTransactions, WebTransactions contains the
openSEAS tool for generating re-usable business objects. The business objects are
generated from existing applications (e.g. BS2000/OSD and OS/390 applications,
transaction applications with openUTM and SAP R/3) and, depending on requirements,
can be made available as JavaBeans, .Net components or Web services.

Preface Summary of contents and target group

U5461-J-Z135-6-76 13

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
7

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
1

1.1 Summary of contents and target group

This manual, “Distributed Transaction Processing between openUTM and CICS, IMS and
LU6.2 Applications“, describes how to link UTM applications in BS2000/OSD, UNIX
systems and Windows systems to CICS, IMS and other LU6.2 applications in IBM systems
when using distributed transaction processing. The manual is intended for system admin-
istrators, network administrators and application programmers.

Chapter 2 contains general information on interconnection between openUTM and IBM
systems.

Chapters 3 to 5 describe LU6.2 interconnection between openUTM and IBM systems.
Chapter 3 describes the openUTM-LU62 gateway, including the administration of
openUTM-LU62. Chapters 4 and 5 examine the link to CICS and IMS.

Chapters 6 through 8 describe LU6.1 interconnection between openUTM and CICS or IMS.
Chapter 6 describes the link to CICS, and chapter 7 describes LU6.1 interconnection to
IMS. Special enhancements to the openUTM program interface used for openUTM - IMS
interconnection are described in chapter 8.

Chapter 9 contains information for diagnosing errors, and chapter 10 contains a list of all
openUTM-LU62 messages.

The detailed appendices at the end of the manual, i.e. the sections “Glossary”, “Abbrevia-
tions”, “Related publications” and “Index”, should make working with this manual easier.

Summary of contents of the openUTM manuals Preface

14 U5461-J-Z135-6-76

1.2 Summary of contents of the openUTM manuals

This section provides an overview of the manuals in the openUTM suite and of the various
related products.

1.2.1 openUTM documentation

The openUTM documentation consists of manuals, an online help system for openUTM
WinAdmin, which is the graphical administration workstation, and a release note for each
platform on which openUTM is released.

Some manuals are valid for all platforms, and others apply specifically to BS2000/OSD,
UNIX systems or Windows systems.

All the manuals are available as PDF files on the internet at
http://manuals.ts.fujitsu.com

Most of them can also be ordered in book form. In addition, the PDF files are included on
the openUTM product DVD.

The following sections provide a task-oriented overview of the openUTM V5.3 documen-
tation. You will find a complete list of documentation for openUTM in the chapter on related
publications at the back of the manual on page 377.

Introduction and overview

The Concepts and Functions manual gives a coherent overview of the essential
functions, features and areas of application of openUTM. It contains all the information
required to plan a UTM operation and to design an openUTM application. The manual
explains what openUTM is, how it is used, and how it is integrated in the BS2000/OSD,
UNIX based and Windows based platforms.

Preface Summary of contents of the openUTM manuals

U5461-J-Z135-6-76 15

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
7

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
1

Programming

● You will require the Programming Applications with KDCS for COBOL, C and C++
manual to create server applications via the KDCS interface. This manual describes the
KDCS interface as used for COBOL, C and C++. This interface provides the basic
functions of the universal transaction monitor, as well as the calls for distributed
processing. The manual also describes interaction with databases.

● You will require the Creating Applications with X/Open Interfaces manual if you want
to use the X/Open interfaces. This manual contains descriptions of the UTM-specific
extensions to the X/Open program interfaces TX, CPI-C and XATMI as well as notes on
configuring and operating UTM applications which use X/Open interfaces. In addition,
you will require the X/Open-CAE specification for the corresponding X/Open interface.

● If you want to interchange data on the basis of XML, you will need the document entitled
Data Marshalling with XML for openUTM. This describes the C and COBOL calls
required to work with XML documents. This description is only available as a PDF
document (online and on CD-ROM).

● For BS2000/OSD there is supplementary documentation on the programming
languages Assembler, Fortran, Pascal-XT and PL/1. This is only available in the form of
PDF files (online and on the WinAdmin CD-ROM).

Configuration

The Generating Applications manual is available to you for defining configurations. This
describes how to use the UTM tool KDCDEF to define the configuration and create the
KDCFILE for a UTM application. In addition, it also shows you how to transfer important
administration and user data to a new KDCFILE using the KDCUPD tool. You do this, for
example, when moving to a new openUTM version or after changes have been made to the
configuration.

Linking, starting and using UTM applications

In order to be able to use UTM applications, you will need the Using openUTM Applica-
tions manual for the relevant operating system (BS2000/OSD or UNIX systems/Windows
systems). This describes how to link and start a UTM application program, how to sign on
and off to and from a UTM application and how to replace application programs dynamically
and in a structured manner. It also contains the UTM commands that are available to the
terminal user.

Summary of contents of the openUTM manuals Preface

16 U5461-J-Z135-6-76

Administering applications and changing configurations dynamically

● The Administering Applications manual describes the program interface for adminis-
tration and the UTM administration commands. It provides information on how to create
your own administration programs and on the facilities for administering several different
applications centrally. It also describes how to administer message queues and printers
using the KDCS calls DADM and PADM.

● If you are using openUTM WinAdmin, the graphical administration workstation, the
following documentation is available to you:

– A description of WinAdmin, which provides a comprehensive overview of the
functional scope and handling of WinAdmin. This document is shipped with the
software and is also available online as a PDF file.

– The online help system, which provides context-sensitive help information on all
dialog boxes and associated parameters offered by the graphical user interface. In
addition, it also tells you how to configure WinAdmin in order to administer and
generate openUTM applications.

Testing and diagnosing errors

You will also require the Messages, Debugging and Diagnostics manuals (there are
separate manuals for UNIX systems / Windows systems and for BS2000/OSD) to carry out
the tasks mentioned above. These manuals describe how to debug a UTM application, the
contents and evaluation of a UTM dump, the behavior in the event of an error, and the
openUTM message system, and also lists all messages and return codes output by
openUTM.

Creating openUTM clients

The following manuals are available to you if you want to create client applications for
communication with UTM applications:

● The openUTM-Client for the UPIC Carrier System describes the creation and
operation of client applications based on UPIC. In addition to the description of the
CPI-C and XATMI interfaces, you will find information on how you can use the C++
classes or ActiveX to create programs quickly and easily.

● The openUTM-Client for the OpenCPIC Carrier System manual describes how to
install and configure OpenCPIC and configure an OpenCPIC application. It describes
how to install OpenCPIC and how to configure an OpenCPIC application. It indicates
what needs to be taken into account when programming a CPI-C application and what
restrictions apply compared with the X/Open CPI-C interface.

Preface Summary of contents of the openUTM manuals

U5461-J-Z135-6-76 17

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
7

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
1

● The documentation for the JUpic-Java classes shipped with BeanConnect is supplied
with the software. This documentation consists of Word and PDF files that describe its
introduction and installation and of Java documentation with a description of the Java
classes.

● If you want to provide UTM services on the Web quickly and easily then you need the
manual Web-Services for openUTM. The manual describes how to use the software
product WS4UTM (WebServices for openUTM) to make the services of UTM applica-
tions available as Web services. This description is only available as a PDF document
(online and on the openUTM product DVD). The use of the graphical user interface is
described in the corresponding online help system.

Communicating with the IBM world

The present manual Distributed Transaction Processing between openUTM and CICS,
IMS and LU6.2 Applications describes how to communicate with IBM transaction systems
from your UTM application. This describes the CICS commands, IMS macros and UTM
calls that are required to link UTM applications to CICS and IMS applications. The link
capabilities are described using detailed configuration and generation examples. The
manual also describes communication via openUTM-LU62 as well as its installation, gener-
ation and administration.

Summary of contents of the openUTM manuals Preface

18 U5461-J-Z135-6-76

1.2.2 Documentation for the openSEAS product environment

The connection between openUTM and the openSEAS product environment is outlined in
the openUTM manual Concepts and Functions. The following sections show which
openSEAS documentation is relevant to openUTM.

Integrating J2EE application servers and UTM applications

The BeanConnect adapter family forms part of the openSEAS product suite (open Suite for
Enterprise Application Servers). The BeanConnect adapters implement the connection
between conventional transaction monitors and modern application servers and thus permit
the efficient integration of legacy applications in modern Java applications.

● The manual BeanConnect for openUTM describes the product BeanConnect for
openUTM. BeanConnect for openUTM provides a JCA 1.5-compliant adapter which
connects UTM applications with applications based on J2EE, e.g. the Oracle appli-
cation server Oracle AS 10g.
The manuals for Oracle AS 10g can be obtained from Oracle.

● The manual BeanConnect for CICS describes the product BeanConnect for
CICS. BeanConnect for CICS provides a JCA 1.5-compliant adapter which connects
CICS applications with applications based on J2EE, e.g. the Oracle application server
Oracle.

Connecting to the web and application integration

You will require the following new and existing manuals to connect UTM applications to the
web using the WebTransactions product:

● The introductory manual WebTransactions - Concepts and Functions provides an
overview of the capabilities and possible applications of WebTransactions, describing its
features and how it works. The manual explains the object concept and the dynamic
operation of a WebTransactions session.

● All language resources in the WTML template language are explained in the manual
WebTransactions - Template Language. This manual contains numerous examples
that illustrate the language resources and make it easier for you to use these resources.

● The manuals WebTransactions - Web Access to openUTM Applications via UPIC
and WebTransactions - Web Access to OSD Applications describe what you have to
do to connect UTM dialog applications to the web via the UPIC or terminal interface.
The steps you have to take are illustrated by means of a concrete example.

Preface Summary of contents of the openUTM manuals

U5461-J-Z135-6-76 19

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
7

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
1

● If you want to integrate openUTM applications and services in Microsoft applications,
you can use the BizTransactions component shipped with WebTransactions together with
the associated manual, BizTransactions - Application Integration with Business
Objects. In addition to installation and configuration, this also describes the concepts
and components of BizTransactions. Administration and the development of integrated
client applications is also explained.

BizTransactions also includes an online help system.

The manuals listed above will also be supplemented by JavaDocs.

1.2.3 README files

Information on any functional changes and additions to the current product version
described in this manual can be found in the product-specific README files.

● BS2000/OSD:

On a BS2000 computer, you will find information in the Release Note (file name
SYSFGM.UTM.053.language and possibly in a README file as well (file name
SYSRME.UTM.053.language). Please ask your systems support for the user ID on
which the README file is located. You can view the README file with the /SHOW-FILE
command or in an editor or you can print it to a standard printer with the following
command:

/PRINT-DOCUMENT filename,LINE-SPACING=*BY-EBCDIC-CONTROL

● UNIX systems:

The README file and any other files, such as a manual supplement file, can be found
in the utmpath under /docs/language.

● Windows systems:

The README file and any other files, such as a manual supplement file, can be found
in the utmpath under \Docs\language.

Changes to the previous manual Preface

20 U5461-J-Z135-6-76

1.3 Changes to the previous manual

The most important changes compared to the previous manual are:

● Extension of the openUTM-LU62 generation parameters: the parameters, which up to
now were only available in TNSX, have been included. Thus, it is no longer necessary
to use TNSX.

● New starting option, which provides a middle course between cold start and warm start:
u62_start -k

● New option in displaying status information. With this option you can display the status
of the Enterprise Extender connections: u62_sta -c

Preface Notational conventions

U5461-J-Z135-6-76 21

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
7

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
1

1.4 Notational conventions

This manual uses the following notational conventions:

UPPERCASE LETTERS
The names of files, calls, statements, commands and operands appear in uppercase.

lowercase letters
Placeholders for operand values appear in lowercase.

[]
Square brackets are used to enclose optional specifications that may be omitted.

{ }
Braces are used to enclose alternative specifications, from which you must select a
value.

underscore
The underscore is used to identify the default value.

typewriter font
Typewriter font is used to indicate input which must be entered precisely in this form or
output which will appear precisely in this form.

italic
italic font is used to indicate variables.

22 U5461-J-Z135-6-76

U5461-J-Z135-6-76 23

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
2

2 Interconnection to IBM systems
Distributed transaction processing is usually implemented in IBM systems using the LU6.2
SNA protocol.

The following IBM transaction monitors and communication products support this protocol:

– CICS (or CICS Transaction Server)

– IMS (as of version 6)

– TXSeries on System p5 (formerly RS/6000)

– CPI-C application programs on IBM System i5 (formerly AS/400).

Older IBM transaction monitors, such as IMS up to version 5, can only be reached via LU6.1
on a transaction-oriented basis.

openUTM can use the LU6.1, OSI-TP and LU6.2 protocols for distributed transaction
processing.

Only LU6.2 should be used when new interconnections are created to the IBM world, pro-
vided the partner application supports it.

For an interconnection between openUTM and an LU6.2 partner, the product openUTM-
LU62 and suitable basic SNA software for the operating system are required. openUTM-
LU62 is available on Solaris, Windows, Linux and AIX operating systems. The following
software configurations are available:

– openUTM-LU62 on Solaris with the products TRANSIT-SERVER and
TRANSIT-CPIC

– openUTM-LU62 on Solaris with SNAP-IX

– openUTM-LU62 on Windows with IBM Communications Server for Windows

– openUTM-LU62 on Linux with IBM Communications Server for Linux

– openUTM-LU62 on AIX with IBM Communications Server for AIX

In this manual the names of IBM products such as IBM COmmunications Server for Linux
are abbreviated to IBM Communications Server.

Interconnection to IBM systems

24 U5461-J-Z135-6-76

Typical configurations for interconnection between openUTM and an IBM product are listed
in the following. The products of different vendors are mentioned.

– IBM Communications Server is an IBM product that provides the functions of the basic
SNA software.

– SNAP-IX is a Data Connection Limited product that provides the functions of the basic
SNA software.

– TRANSIT-SERVER, TRANSIT-CLIENT and TRANSIT-CPIC are Fujitsu Siemens Com-
puters products that provide the functions of the basic SNA software.

– CMX, PCMX and BCAM are Fujitsu Siemens Computers products.
– CICS, IMS, TxSeries and VTAM are IBM products.

As a general rule, the names of the IBM products may differ slightly in some versions.

Interconnection to IBM systems Direct LU6.2 interconnection via TRANSIT on Solaris

U5461-J-Z135-6-76 25

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
2

2.1 Direct LU6.2 interconnection via TRANSIT on Solaris

The following interconnection option can be used when the UTM application is running on
a Solaris computer connected directly to the SNA network.

Direct LU6.2 interconnection with openUTM on Solaris and use of TRANSIT

The Solaris computer must be generated as a type 2.1 PU in the SNA network.

The diagram shows SNA interconnection via Ethernet. See the TRANSIT-SERVER manual
for other methods of interconnection.

CMX

Solaris computer

CICS or IMS

IBM computer

SNA via Ethernet

TRANSIT-CPIC

TRANSIT-SERVER

openUTM-LU62

 openUTM or TXSeries

SNA basic software
e.g. VTAM

Direct LU6.2 interconnection via SNAP-IX on Solaris Interconnection to IBM systems

26 U5461-J-Z135-6-76

2.2 Direct LU6.2 interconnection via SNAP-IX on Solaris

The following interconnection option can be used when the UTM application is running on
a Solaris computer connected directly to the SNA network.

Direct LU6.2 interconnection with openUTM on Solaris and use of SNAP-IX

The figure above shows an SNA interconnection via Enterprise Extender (SNA via IP). See
the SNAP-IX documentation for information on other possible interconnections.

CMX

Solaris computer

CICS or IMS

IBM computer

Enterprise Extender (SNA via IP)

SNAP-IX

openUTM-LU62

 openUTM or TXSeries

SNA basic software
e.g. VTAM

Interconnection to IBM systems Direct LU6.2 interconnection via IBM Communications Server

U5461-J-Z135-6-76 27

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
2

2.3 Direct LU6.2 interconnection via IBM Communications
Server on Linux or AIX systems

The following configuration option can be used when the UTM application is running on a
Linux or AIX computer connected directly to the SNA network.

Direct LU6.2 interconnection with openUTM on Linux or AIX systems and use of IBM Communications Server

The figure above shows an SNA interconnection via Enterprise Extender (SNA via IP). See
the IBM Communications Server documentation for information on other possible intercon-
nections.

PCMX

Linux or AIX computer

CICS or IMS

IBM computer

Enterprise Extender (SNA via IP)

IBM Communications

openUTM-LU62

 openUTM or TXSeries

SNA basic software
e.g. VTAM

Server

Direct LU6.2 interconnection via IBM Communications Server Interconnection to IBM systems

28 U5461-J-Z135-6-76

2.4 Direct LU6.2 interconnection via IBM Communications
Server on Windows systems

The following interconnection option can be used if the UTM application is running on a
Windows system computer connected directly to the SNA network.

Direct LU6.2 interconnection with openUTM on Windows systems and use of IBM Communications Server

The diagram shows SNA interconnection via Enterprise Extender (SNA via IP). See the
documentation on the IBM Communications Server for other methods of interconnection.

Enterprise Extender (SNA via IP)

PCMX

Windows system

IBM

openUTM-LU62

 openUTM

 Communications
 Server

CICS or IMS

IBM computer

or TXSeries

SNA basic software
e.g. VTAM

Interconnection to IBM systems LU6.2 interconnection via gateway with TRANSIT on Solaris

U5461-J-Z135-6-76 29

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
2

2.5 LU6.2 interconnection via gateway computer with TRANSIT
on Solaris

The following interconnections via LU6.2 can always be utilized when the computer on
which the UTM application runs is not or should not be directly connected to the SNA net-
work. Any operating system can be used on this computer, for example BS2000/OSD, a
Solaris or Linux system, a Windows system or a different UNIX system. A Solaris system
is required as a gateway computer.

LU6.2 via gateway computer with TRANSIT on Solaris

In the case of openUTM under BS2000/OSD, the product OSS(BS2000/OSD) is also
required.

The connection between the two computers on the left can be established via TCP/IP with
RFC1006.
The Solaris computer at the bottom must be generated as a type 2.1 PU in the SNA net-
work.

The diagram shows SNA interconnection via Ethernet. See the TRANSIT-SERVER manual
for other methods of interconnection.

CMX/PCMX or BCAM

CMX

Solaris computer

 openUTM

TRANSIT-SERVER

TRANSIT-CPIC

openUTM-LU62

UNIX system, BS2000/OSD
or Windows system

SNA via Ethernet

CICS or IMS

IBM computer

or TXSeries

SNA basic software
e.g. VTAM

LU6.2 interconnection via gateway with SNAP-IX on Solaris Interconnection to IBM systems

30 U5461-J-Z135-6-76

2.6 LU6.2 interconnection via gateway computer with SNAP-IX
on Solaris

The following interconnection option via LU6.2 can be used whenever the computer on
which the UTM application is running is not to be or cannot be connected directly to the SNA
network. It does not matter which operating system is running on this computer. It can be a
BS2000/OSD system, a Solaris or Linux system, a Windows system or a different UNIX
system. A Solaris system is required as the gateway computer.

LU6.2 interconnection via Gateway computer with SNAP-IX on Solaris

In the case of openUTM under BS2000/OSD, the product OSS(BS2000/OSD) is also re-
quired.

The connection between the two computers on the left is implemented via TCP/IP with
RFC1006.

The figure shows an SNA interconnection via Enterprise Extender (SNA via IP). See the
SNAP-IX documentation for information on other possible interconnections.

CMX/PCMX or BCAM

CMX

Solaris computer

 openUTM

SNAP-IX

openUTM-LU62

UNIX system, BS2000/OSD
or Windows system

CICS or IMS

IBM computer

or TXSeries

SNA basic software
e.g. VTAM

Enterprise Extender (SNA via IP)

Interconnection to IBM systems LU6.2 interconnection via gateway with IBM CS

U5461-J-Z135-6-76 31

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
2

2.7 LU6.2 interconnection via gateway computer with IBM
Communications Server on Linux or AIX systems

The following interconnection option via LU6.2 can be used whenever the computer on
which the UTM application is running is not to be or cannot be connected directly to the SNA
network. It does not matter which operating system is running on this computer. It can be a
BS2000/OSD system, a Solaris or Linux system, a Windows system or a different UNIX
system. A Linux or AIX system is required as the gateway computer.

LU6.2 interconnection via gateway computer with IBM Communications Server on Linux or AIX systems

In the case of openUTM under BS2000/OSD, the product OSS(BS2000/OSD) is also re-
quired.

The connection between the two computers on the left is implemented via TCP/IP with
RFC1006.

The figure shows an SNA interconnection via Enterprise Extender (SNA via IP). See the
IBM Communications Server documentation for information on other possible interconnec-
tions.

CMX/PCMX or BCAM

Linux or AIX computer

 openUTM

UNIX system, BS2000/OSD
or Windows system

CICS or IMS

IBM computer

or TXSeries

SNA basic software
e.g. VTAM

Enterprise Extender (SNA via IP)

PCMX

IBM

openUTM-LU62

Communications
Server

LU6.2 interconnection via gateway with IBM CS Interconnection to IBM systems

32 U5461-J-Z135-6-76

2.8 LU6.2 interconnection via gateway computer with IBM
Communications Server on Windows

The following LU6.2 interconnection option can be used if the computer running the UTM
application cannot or should not be connected directly to the SNA network. The operating
system on the computer is immaterial, e.g. it can be a BS2000/OSD system, a UNIX system
or a WIndows system. A Windows system is required as the gateway computer.

LU6.2 interconnection via a gateway computer with IBM Communications Server on Windows systems

In the case of openUTM under BS2000/OSD, the product OSS(BS2000/OSD) is also re-
quired.

The connection between the two computers on the left is implemented via TCP/IP with
RFC1006.

The diagram shows SNA interconnection via Enterprise Extender (SNA via IP). See the
documentation on the IBM Communications Server for other methods of interconnection.

CMX/PCMX or BCAM

PCMX

Windows system

 openUTM

IBM

openUTM-LU62

Communications
Server

Enterprise Extender (SNA via IP)

CICS or IMS

IBM computer

or TXSeries

SNA basic software
e.g. VTAM

UNIX system, BS2000/OSD
or Windows system

Interconnection to IBM systems Direct LU6.1 interconnection with openUTM on Solaris

U5461-J-Z135-6-76 33

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
2

2.9 Direct LU6.1 interconnection with openUTM via TRANSIT on
Solaris

The following interconnection option can be used if the UTM is running on a Solaris com-
puter connected directly to an SNA network.

LU6.1 interconnection via TRANSIT with openUTM on Solaris

The figure shows an SNA interconnection via Ethernet. See the TRANSIT-SERVER manual
for information on other possible interconnections.

CMX

Solaris computer

CICS or IMS

IBM computer

TRANSIT-CLIENT

 openUTM

SNA basic software
e.g. VTAM

with UTMGW1

TRANSIT-SERVER

SNA via Ethernet

LU6.1 interconnection via gateway with TRANSIT on Solaris Interconnection to IBM systems

34 U5461-J-Z135-6-76

2.10 LU6.1 interconnection via gateway computer with TRANSIT
on Solaris

The following possible interconnections via LU6.1 can always be used when the computer
on which the UTM application runs is not or should not be directly connected to the SNA
network. Any operating system can be used on this computer, for example a BS2000/OSD
system, a Solaris or Linux system, a Windows system or another UNIX system. A Solaris
system is required as the gateway computer.

LU6.1 interconnection via a gateway computer with TRANSIT on Solaris

The connection between the two computers on the left can be established using TCP/IP
using the RFC1006.

The diagram shows SNA interconnection via Ethernet. See the TRANSIT-SERVER manual
for other methods of interconnection.

CMX/PCMX or BCAM

CMX

TRANSIT-SERVER

TRANSIT-CLIENT
with UTMGW1

Solaris computer

 openUTM

UNIX system, BS2000/OSD
or Windows system

CICS or IMS

IBM computer

SNA basic software
e.g. VTAM

SNA via Ethernet

U5461-J-Z135-6-76 35

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
8

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
3

3 LU6.2 interconnections with openUTM-LU62
The openUTM-LU62 product allows communication between UTM applications and LU6.2
applications, i.e. applications that use the LU6.2 protocol. Examples of such LU6.2 applica-
tions in the IBM environment are CICS, IMS starting with version 5, TXSeries and CPIC
applications. The LU6.2 protocol allows communication with or without transaction
management.

First, the general openUTM-LU62 concept and the use of this concept will be described in
the following. Then the details to consider when utilizing openUTM-CICS interconnection
via LU6.2 will be presented in the chapter “openUTM-CICS interconnection via LU6.2” on
page 77.

3.1 openUTM-LU62 concepts and functions

3.1.1 Substitute concept

openUTM-LU62 responds to a UTM application just like it does an application linked via
OSI-TP. openUTM-LU62 implements a substitute OSI-TP application for every LU6.2 appli-
cation that can be reached from a UTM application, meaning for every CICS, for example.

From the point of view of the LU6.2 application, openUTM-LU62 is a remote LU6.2 partner.
openUTM-LU62 implements a substitute LU (Logical Unit) for every UTM application that
can be reached from a LU6.2 application.

One openUTM-LU62 entity is required for each OSI-CON statement in a UTM application.
You will find more information on the OSI-CON statement in the openUTM manual “Gener-
ating Applications”.

openUTM-LU62 concepts and functions LU6.2 interconnections with openUTM-LU62

36 U5461-J-Z135-6-76

If should to be able to reach 3 different CICS systems from 2 UTM applications, then 6
openUTM-LU62 entities are required (see the section “INSTANCE statement” on page 43).
The entire system is illustrated in the following diagram:

Interconnection of several applications to several openUTM-LU62 entities

Each UTM application uses an application entity (AE) as an access point for OSI-TP
communication. This point is also designated as an access point in a UTM generation. The
3 CICS systems use one logical unit (LU) each as the access point for the LU6.2 commu-
nication.

openUTM-LU62 uses application entities as access points for OSI-TP communication and
LUs as access points for LU6.2 communication. Exactly one application entity and exactly
one LU is implemented in an openUTM-LU62 entity.

Entity 1 of openUTM-LU62 implements the LU 1 - AE 4 connection. Entity 2 of openUTM-
LU62 implements the LU 2 - AE 4 connection.

LU 4A AE 1A

LU 4B AE 2A

LU 4C AE 3A

LU 5A AE 1B

LU 5B AE 2B

LU 5C AE 3B

UTM appli-
cation 4 with
AE 4

UTM appli-
cation 5 with
AE 5

openUTM-LU62 entity 2

openUTM-LU62 entity 1

openUTM-LU62 entity 3

openUTM-LU62 entity 4

openUTM-LU62 entity 5

openUTM-LU62 entity 6

 CICS system 1
 with LU 1

 CICS system 2
 with LU 2

 CICS system 3
 with LU 3

LU6.2 interconnections with openUTM-LU62 openUTM-LU62 concepts and functions

U5461-J-Z135-6-76 37

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
8

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
3

If, for example, UTM application 4 wants to establish a connection to CICS system 1, then
it must establish a connection to AE 1A instead. If CICS system 3 wants to establish a
connection to UTM application 5, then it must address LU 5C instead.

In this manner, LUs 4A, 4B, 4C are the substitutes for UTM application 4, i.e. for AE 4, in
the SNA network. AEs 1A and 1B are the substitutes for CICS system 1, i.e. for LU 1, in the
ISO network.

3.1.2 The openUTM-LU62 architecture

openUTM-LU62 uses the XAP-TP system program interface standardized by X/Open for
OSI-TP communication. This program interface is also used in the openUTM and
openUTM-Client (OpenCPIC carrier system) products. The XAP-TP provider is based on
the OSS component. OSS is in turn based on CMX on some operation systems, and on
PCMX on other systems. The XAP-TP provider and OSS are included in the product
openUTM-LU62

openUTM-LU62 uses the APPC program interface for LU6.2 communication. This program
interface is implemented by means of the basic LU6.2 software. The following can be used
as the basic LU6.2 software:

● TRANSIT-SERVER and TRANSIT-CPIC on Solaris

● SNAP-IX on Solaris

● IBM Communications Server on Windows, Linux or AIX.

openUTM-LU62 not only converts LU6.2 protocols to OSI-TP protocols and vice-versa, but
also represents its own node in the transaction diagram, and therefore also writes log
records and independently executes a transaction recovery on the OSI-TP side and on the
LU6.2 side when a connection or a computer breaks down.

openUTM-LU62 concepts and functions LU6.2 interconnections with openUTM-LU62

38 U5461-J-Z135-6-76

This architecture is shown in the following figure:

openUTM-LU62 architecture

The boxes outlined in bold represent the borders of the computers. The lines within a box
designate the borders between the various software components, and the name of the
program interface is sometimes specified in parentheses on the bottom line.

As mentioned in section “Direct LU6.2 interconnection via SNAP-IX on Solaris” on page 26,
the computers in the middle and on the right may be identical for openUTM under UNIX or
Windows systems. In this case, the local loop from CMX via the IP address 127.0.0.1 is
used for communication between openUTM and openUTM-LU62.

UTM
application

(KDCS)

openUTM

XAP-TP
provider

OSS

CMX or
BCAM

CICS
Application

(CICS API)

CICS

Communica-
tion software
e.g. VTAM

openUTM-LU62

APPC
library

XAP-TP
provider

OSS

CMX

LU6.2 connection OSI-TP connection

LU6.2
Basic

software

LU6.2 interconnections with openUTM-LU62 openUTM-LU62 concepts and functions

U5461-J-Z135-6-76 39

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
8

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
3

3.1.3 openUTM-LU62 components

openUTM-LU62 consists of the following components:

– The u62_start program starts the openUTM-LU62 entities and the write log processes.
It monitors the openUTM-LU62 processes after that.

– The u62_tp program to map the protocol between OSI-TP and LU6.2. It is started by
u62_start once for each openUTM-LU62 entity.

– The u62_wlog write log program writes the log records to a file. It is started once for each
openUTM-LU62 entity as a write log daemon when transaction logging is used.

– There is a generation utility (u62_gen), and there are also administration utilities
(u62_adm, u62_sta).

– On Windows systems, the u62_svc program is also available for automatically starting
openUTM-LU62 as a service on system startup.

All programs except u62_sta can be found in the directory /opt/lib/utmlu62 on UNIX
systems. By default, they can be called by any user. It is possible to limit administration
rights to specific users of the UNIX system (see the section “Administration under UNIX
systems and Windows systems” on page 54).

The program u62_sta can be found in /opt/bin on UNIX systems and can be called by all
UNIX users.

On Windows systems, the administration programs are located in the directory
Programs\utmlu62, where Programs\utmlu62 is the default installation directory of
openUTM-LU62.

On UNIX systems, interprocess communication between u62_tp and u62_wlog, u62_adm
and u62_sta is implemented using named pipes and shared memory. On Windows
systems, u62_tp and u62_wlog run as threads in the same process (u62_tp.exe). Inter-
process communication between this process and u62_adm or u62_sta is implemented
using sockets and shared memory.

openUTM-LU62 concepts and functions LU6.2 interconnections with openUTM-LU62

40 U5461-J-Z135-6-76

3.1.4 Recovery functions

When the UTM and LU6.2 application programs communication is secured through trans-
action logging, then openUTM-LU62 ensures a transaction recovery that guarantees the
consistency of the corresponding databases for update transactions in case a connection
is lost or a computer crashes.

If the connection between openUTM-LU62 and the LU6.2 application or the UTM appli-
cation is lost while the transaction is terminating, then openUTM-LU62 ensures the proper
termination of the transaction as soon as the partner application can be reached again.

openUTM-LU62 writes log records onto the hard drive in critical situations while the trans-
action is ending. If the transaction has completely terminated, then these log records are
deleted. If the computer crashes or openUTM-LU62 terminates abnormally while the trans-
action is terminating, then the log records are not deleted. The log records are read during
the next start of openUTM-LU62 and the open transactions are executed to completion with
the participation of the two applications.

On UNIX systems, the log records are stored in the synclog file
/opt/lib/utmlu62/sync.log.loc_lu_alias for each openUTM-LU62 entity. The file suffix
loc_lu_alias is replaced by the current value of the corresponding openUTM-LU62 entity.
This file corresponds for the most part to the KDCFILE of a UTM application. On Windows
systems, the file sync.log.loc_lu_alias is located in the directory Programs\utmlu62, where
loc_lu_alias is the value of the parameter of the IINSTANCE statement (see the section
“INSTANCE statement” on page 43.

openUTM-LU62 also offers cold start capabilities. The existing log records are deleted
during a cold start. In general, a cold start should only be used in special cases. A warm
start should be carried out in any case after a computer crash or the abnormal termination
of openUTM-LU62.

If, however, the LU6.2 application was restarted with a cold start between the time of the
computer crash and the openUTM-LU62 warm start, then the corresponding openUTM-
LU62 entity must also be cold started. In this case the open transactions are not executed
to completion.

The command “CEMT SET CONNECTION NOTPENDING” can be entered for CICS for a
connection while the system is running. This command deletes the log records stored in
CICS for the corresponding connection. If this command is sent to connect to the UTM
application, then it has the same effect as a cold start.

If only CICS or only the openUTM-LU62 entity is cold started and the other system is warm
started due to a user error, then this is noted when the connection between openUTM-LU62
and CICS is established. In this case, openUTM-LU62 outputs a message and cancels the
establishment of the connection to CICS. You can query this status on the CICS side using
“CEMT INQUIRE CONNECTION” (“Xno” display).

LU6.2 interconnections with openUTM-LU62 openUTM-LU62 concepts and functions

U5461-J-Z135-6-76 41

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
8

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
3

If an openUTM-LU62 entity has been warm started and recovery information is available,
but CICS does not have any recovery information anymore due to a cold start or “CEMT
SET CONNECTION NOTPENDING“, then you must also start the corresponding
openUTM-LU62 entity. If the openUTM-LU62 entity has been cold started and CICS rejects
the establishment of transaction-oriented connections due to an exchange log name error,
then you must execute the command “CEMT SET CONNECTION NOTPENDING” in CICS.

The cold/warm start coordination between openUTM-LU62 and the UTM application cannot
be checked by openUTM-LU62 because there is no method in the OSI-TP protocol to do
this. However, the cold and warm starts between openUTM-LU62 and the UTM application
must be coordinated just as carefully.

3.1.5 Limitations of the protocol mapping

openUTM-LU62 maps the LU6.2 and OSI-TP protocols to each other. Since the two
protocols are not exactly identical with respect to the scope of their functions, openUTM-
LU62 can only map those elements common to both protocols. Details are described in the
sections “openUTM programming hints” and “CICS programming hints” in the following
chapter.

Generating openUTM-LU62 LU6.2 interconnections with openUTM-LU62

42 U5461-J-Z135-6-76

3.2 Generating openUTM-LU62

openUTM-LU62 requires certain configuration information that the system administrator
must provide in the form of a configuration file to start. The configuration file is created in 2
steps:

1. Creation of a generation file with a text editor. The format of the generation file is
described in the following section.

2. Creation of the binary configuration files from the generation file. To do this the u62_gen
program must be started. See below for more detailed information.

3.2.1 Generation file format

All substitute applications and their assignments to the real partners must be defined in the
generation file. The INSTANCE statement is used for this purpose. One INSTANCE
statement is required per openUTM-LU62 entity. A generation file can contain any number
of INSTANCE statements.

INSTANCE statement format

The word INSTANCE must stand alone in a line.

All INSTANCE statement parameters consist of a keyword, the ’=’ sign and a value.

Parameters of the INSTANCE statement must be separated by a comma, and a comma
may never be placed at the beginning of a line. The last parameter must not be followed by
a comma. Optional parameters are shown in square brackets. Default values are assumed
for any optional parameters not specified. The parameters can be placed in any order within
the INSTANCE statement. A parameter must fit into one line and must not span across two
lines.

Lines beginning with an asterisk (*) or the number sign (#) are treated as comments and
not read by u62_gen.

The symbols allowed to be used in names include all printable ASCII characters (letters,
numbers, special symbols) with the exception of the following special symbols:

– asterisk (*)
– comma (,)
– semicolon (;)
– space (0x20)
– tabulator (0x09)

LU6.2 interconnections with openUTM-LU62 Generating openUTM-LU62

U5461-J-Z135-6-76 43

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
8

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
3

3.2.2 INSTANCE statement

You specify the substitute and the parameters for the connection between a UTM access
point and an LU6.2 application, i.e. for a openUTM-LU62 entity, using the INSTANCE
statement.

As of openUTM-LU62 Version 5.1 you can choose whether the TCP/IP adress information
is to be generated in TNSX or in the INSTANCE statement. There is no need to use TNSX
when the information is generated in the INSTANCE statement.

Substitute LU

The substitute LU is specified with the LOC-LU-ALIAS parameter.

Substitute AE

When the TCP/IP adress information is generated in the INSTANCE statement, the substi-
tute AE has to be generated with the LOC-APT, LOC-AEQ, LOC_TSEL and
LOC-LISTENER-PORT parameters.

With TNSX the LOC-APT, LOC-AEQ and LOC-AE parameters have to be used.

Connection between openUTM-LU62 and LU6.2 application

The connection between openUTM-LU62 and the openUTM LU6.2 application has to be
specified with the REM-LU-ALIAS, MODENAME, ALLOC-TIME and LU62-CODE parame-
ters.

Connection between openUTM-LU62 and UTM application

When the TCP/IP adress information is generated in the INSTANCE statement, at least the
REM-APT, REM-AEQ, REM-NSEL, REM-TSEL, REM-LISTENER-PORT and CONTWIN
parameters are required for the connection between openUTM-LU62 and the UTM appli-
cation.

With TNSX the REM-APT, REM-AEQ, REM-AE and CONTWIN parameters have to be
used.

The remaining parameters (APPL-CONTEXT, ASSOCIATIONS, CONNECT,
OSI-TP-CODE, UTM-ASYNC) can be used to specify additional parameters for the connec-
tion with the UTM application.

Generating openUTM-LU62 LU6.2 interconnections with openUTM-LU62

44 U5461-J-Z135-6-76

Syntax of the INSTANCE statement:

If there is more than one INSTANCE statement in the generation file, the triple
REM-APT, REM-AEQ, REM-LU-ALIAS can only occur in one of them.

INSTANCE

LOC-LU-ALIAS = loc_lu_alias_name,

 [LOC-LISTENER-PORT = loc_port,]

 [LOC-TSEL = { T | A | E }'loc_tsel',]

 [LOC-AE = loc_tns_name,]

 LOC-APT = loc_ap_title,

 LOC-AEQ = loc_ae_qualifier,

 REM-LU-ALIAS = rem_lu_alias_name,

 MODENAME = mode_name,

 [ALLOC-TIME = alloc_time,]

 [LU62-CODE = { ASCII |

 EBCDIC-500 |

 EBCDIC-273 |

 EBCDIC-037 |

 *NO },

]

 [REM-LISTENER-PORT = rem_port,]

 [REM-TSEL = { T | A | E }'rem_tsel',]

 [REM-NSEL = rem_host,]

 [REM-AE = rem_tns_name,]

 REM-APT = rem_ap_title,

 REM-AEQ = rem_ae_qualifier,

 [APPL-CONTEXT = { UDTCCR | UDTSEC | UDTAC | UDTDISAC },]

 [ASSOCIATIONS = ass_number,]

 [CONNECT = conn_number,]

 CONTWIN = cwin_number,

 [OSITP-CODE = { ASCII | EBCDIC-BS2 | *NO }.]

 [UTM-ASYNC = { YES | NO }]

LU6.2 interconnections with openUTM-LU62 Generating openUTM-LU62

U5461-J-Z135-6-76 45

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
8

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
3

The parameters have the following meanings:

ALLOC-TIME = alloc_time
The maximum time in seconds that openUTM may wait for the establishment of a
connection to the LU6.2 application during the initiation of an LU6.2 job (e.g. of a
CICS transaction code) or that the LU6.2 application may wait for the establishment
of a connection to openUTM during the initiation of a UTM transaction code.

Default value: 30 seconds.
Possible values: 0 - 300 seconds.
The value 0 means that the time will not be monitored.

APPL-CONTEXT = { UDTCCR | UDTSEC | UDTAC | UDTDISAC }
Name of the application context that is used for the connection to the UTM appli-
cation. The value must correspond to the value of the APPLICATION-CONTEXT
operand from the associated OSI-LPAP statement in the UTM application.

Possible values are UDTCCR, UDTSEC, UDTAC and UDTDISAC. These values
have the same meanings as for openUTM.

The default value is UDTSEC.

If UDTSEC is not used, then it is impossible to use user IDs and passwords when
opening a conversation.

If UDTAC or UDTDISAC is specified, openUTM-LU62 works without transaction
management.

ASSOCIATIONS = ass_number
The maximum number of parallel connections between openUTM-LU62 and a UTM
application. This value should correspond to the value of the ASSOCIATIONS
parameter from the associated OSI-LPAP statement in the UTM generation. If
TRANSIT-SERVER is used, it should also match the value of SESS-MAX in the
XMODE statement of TRANSIT-SERVER. If SNAP-IX or the IBM Communications
Server is used, it should match the session limit in the mode definition.

Minimum value: 1
Default value: 1
Maximum value: 254

Generating openUTM-LU62 LU6.2 interconnections with openUTM-LU62

46 U5461-J-Z135-6-76

CONNECT = conn_number
The number of connections to the UTM application that are to be automatically
established during the initiation of an openUTM-LU62 entity. Permissible values are
whole numbers from 0 to ass_number.

The default value is 0.

If openUTM-LU62 cannot establish the desired number of connections during
startup, then a new attempt is made every 5 minutes.

The CONNECT parameter is effective throughout the openUTM-LU62 process, un-
less a connection is cleared by means of an administration command. If the partner
UTM application establishes the number of connections specified for CONNECT,
openUTM-LU62 does not establish any further connections.

CONTWIN = cwin_number
The number of connections to the UTM application in which openUTM-LU62 is the
contention winner. The sum of cwin_number and the value of the CONTWIN
parameter from the associated OSI-LPAP statement of the UTM generation should
be equal to ass_number.

LOC-AE = loc_tns_name
Only when using TNSX.
Global name (up to 18 characters long) from the TNSX (Transport Name Service in
UNIX systems) that describes the substitute AE. loc_tns_name consists of 5 parts,
each separated by periods:

NP5.NP4.NP3.NP2.NP1

If some of the parts of the name are empty, then some of the periods can be
dropped from the end of the name.

The loc_tns_name must be entered in the TNSX as a global name with the “local
name” property. Also, a P-selector and an S-selector must be entered for layer 4 in
addition to a T-selector. These selectors must be suited for use with the corre-
sponding parameters in an OSI-CON statement from the UTM generation. It is
recommended to select empty entries for the S-selectors and P-selectors.

LOC-AEQ = loc_ae_qualifier
Specifies the application entity qualifier of the substitute AE. loc_ae_qualifier must
be a whole number between 1 and 67108863. It must correspond to the value of the
AEQ operand in the associated OSI-LPAP statement of the UTM generation.

LU6.2 interconnections with openUTM-LU62 Generating openUTM-LU62

U5461-J-Z135-6-76 47

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
8

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
3

LOC-APT = loc_ap_title
Specifies the application process title of the substitute AE in the form of an object
name, i.e. in the form

(n1, n2, n3,...)

n1 can take on the values 0, 1 or 2, and n2 can take on the values 0 to 39. The appli-
cation process title must correspond to the values of the APT operands from the
associated OSI-LPAP statement of the UTM generation.
on.

LOC-LISTENER-PORT = loc_port
Only without use of TNSX, but then the parameter is mandatory.
TCP port number of the substitute AE with the scope 102, 1025 - 65535.

LOC-LU-ALIAS = loc_lu_alias_name
LU alias name (up to 8 characters long) of the substitute LU. The name must corre-
spond to an LU name in the LU6.2 basic software configuration (TRANSIT-
SERVER, SNAP-IX or IBM Communications Server. This name only needs to be
coordinated between openUTM-LU62 and LU6.2 basic software.

LOC-TSEL = { T | A | E }'loc_tsel'
Only without use of TNSX, but then the parameter is mandatory.
Transport selector of the substitute AE. The first character specifies the format:

T TRANSDATA
Only capital letters, numbers and the special characters @, # and $ are al-
lowed, where the first character may not be a number.

A ASCII

E EBCDIC

The maximum length of the content (loc_tsel) for all formats is 8 characters.

Generating openUTM-LU62 LU6.2 interconnections with openUTM-LU62

48 U5461-J-Z135-6-76

LU62-CODE =
Description of the character set in which the user data of the LU6.2 application
programs is encoded.

ASCII The LU6.2 application programs use the 8 bit ASCII character set
ISO 8859-1. This is typical for application programs under UNIX
systems, Windows systems or OS/2 systems.

EBCDIC-500 The LU6.2 application programs use IBM-EBCDIC with code page
500. This is the international code page usually used by IBM on
mainframes or AS/400 systems and is also the national code page
for Belgium and Switzerland.

EBCDIC-273 The LU6.2 application programs use IBM-EBCDIC with code page
273. This is the national code page usually used by IBM on
mainframes or AS/400 systems for Germany and Austria.

EBCDIC-037 The LU6.2 application programs use IBM-EBCDIC with code page
037. This is the national code page usually used by IBM on
mainframes or AS/400 systems for the USA, Canada, the Nether-
lands and Portugal.

*NO openUTM-LU62 does not perform code conversions on the user
data. This value must be specified if the application programs
transmit binary data, for example binary length fields (default value).

openUTM-LU62 carries out a code conversion on all user data if different character
sets are generated in LU62-CODE and OSITP-CODE. If *NO is specified, then
openUTM-LU62 does not perform code conversion. If *NO is specified here, then
*NO must also be specified for OSITP-CODE.

MODENAME = mode_name
Mode name (up to 8 characters long) that is to be used in the connections to the
LU6.2 application. This name must also be defined in the LU6.2 basic software
configuration (TRANSIT-SERVER, SNAP-IX or IBM Communications Server) and
for the partner system. The mode name SNASVCMG must not be used.

LU6.2 interconnections with openUTM-LU62 Generating openUTM-LU62

U5461-J-Z135-6-76 49

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
8

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
3

OSITP-CODE =
Description of the character set used to encode the user data of the UTM appli-
cation programs.

ASCII The UTM application programs use the 8-bit ASCII character set
ISO 8859-1. This is typical for UTM application programs under
UNIX or Windows systems.

EBCDIC-BS2 The UTM application programs use the EBCDIC variant
EBDIC.DF.04 Latin 1 typically used in BS2000/OSD.

*NO openUTM-LU62 does not perform code conversion on the user
data. This value must be specified if the UTM application programs
transmit binary data, for example binary length fields (default value).

openUTM-LU62 performs code conversion on all user data if different character
sets are generated in LU62-CODE and OSITP-CODE. If *NO is specified, then
openUTM-LU62 does not perform code conversion. If *NO is specified here, then
*NO must also be specified for OSITP-CODE.

REM-AE = rem_tns_name
Only when using TNSX.
Global name (up to 18 characters long) from the TNSX (Transport Name Service in
UNIX systems) that describes the application entity (i.e. the access point) of the
corresponding UTM application. rem_tns_name consists of 5 parts, each separated
by periods:

NP5.NP4.NP3.NP2.NP1

If some of the parts of the name are empty, then some of the periods can be
dropped from the end of the name.

The rem_tns_name must be entered as a global name with the “transport address”
and “transport system” properties. Also, a P-selector and an S-selector must be
entered for layer 4 in addition to a T-selector. These selectors must be suited for use
with the corresponding parameters in an ACCESS-POINT statement from the UTM
generation. It is recommended to select empty entries for the S-selectors and P-
selectors.

REM-AEQ = rem_ae_qualifier
Specifies the application entity qualifier of the UTM application. rem_ae_qualifier
must be a whole number between 1 and 67108863. It must correspond to the value
of the AEQ operand from the associated ACCESS-POINT statement of the UTM
generation.

Generating openUTM-LU62 LU6.2 interconnections with openUTM-LU62

50 U5461-J-Z135-6-76

REM-APT = rem_ap_title
Specifies the application process title of the UTM application in the form of an object
name, i.e. in the form

(n1, n2, n3,...)

These must correspond to the values of the APT operands from the associated
UTMD statement of the UTM generation.

REM-LISTENER-PORT = rem_port
Only without use of TNSX, but then the parameter is mandatory.
TCP port number of the partner UTM application with the scope 102, 1025 - 65535.

REM-LU-ALIAS = rem_lu_alias_name
LU alias name (up to 8 characters long) for the remote LU under which the LU6.2
application (for example, the CICS region) can be reached. It must correspond to
an RLU name in the LU6.2 basic software configuration (TRANSIT-SERVER,
SNAP-IX or IBM Communications Server). This name only needs to be coordinated
between openUTM-LU62 and LU6.2 basic software.

REM-NSEL = rem_host
Only without use of TNSX.
(DNS-)Name of the host, on which the partner UTM application is running.

The host name may not contain dots (domain name). The maximum length is 16
characters.

If the partner system resides in another domain, e.g. the search parameter in the
/etc/resolv.conf file under UNIX has to be extended with the relevant domain na-
me.

REM-TSEL = { T | A | E }'rem_tsel'
Only without use of TNSX, but then the parameter is mandatory.
Transport selector of the partner UTM application. The first character specifies the
format:

T TRANSDATA
Only capital letters, numbers and the special characters @, # and $ are al-
lowed, where the first character may not be a number.

A ASCII

E EBCDIC

The maximum length of the content (loc_tsel) for all formats is 8 characters.

LU6.2 interconnections with openUTM-LU62 Generating openUTM-LU62

U5461-J-Z135-6-76 51

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
8

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
3

UTM-ASYNC =
This parameter specifies how a service started by a UTM application program is for-
warded to the LU6.2 partner without a functional unit commit and without a function-
al unit handshake (i.e. in the case of APRO with KCOF=B).

NO openUTM-LU62 starts these services with sync-level 0
(NONE).

YES openUTM-LU62 starts these services with sync-level 1
(CONFIRM).

The value YES is necessary when a service is to be started without transaction
management for the LU6.2 partner from the UTM application program by means of
APRO AM.
If a UTM application uses APRO DM with KCOF=B and APRO AM with KCOF=B,
a separate instance of openUTM-LU62 should be started for each type of commu-
nication. The first instance is generated with UTM-ASYNC=NO and the second in-
stance with UTM-ASYNC=YES.

Generating openUTM-LU62 LU6.2 interconnections with openUTM-LU62

52 U5461-J-Z135-6-76

3.2.3 Starting the generation program

The u62_gen generation program is used to create a binary configuration file from a gener-
ation file and simultaneously check the generation file for logical errors. On UNIX systems
it may only be called by the system administrator.

On UNIX systems, you can call u62_gen directly from the shell. On Windows systems, it is
recommended that you create a DOS shell by selecting “Start > Programs > openUTM-
LU62 > Prompt“. Under this DOS shell, enter the following command without the prefix
/opt/lib/utmlu62/.

Call syntax:

/opt/lib/utmlu62/u62_gen [-f conf_file] [gen_file]

Description:

gen_file Name of the generation file from which the generation parameters are to be
read. The default value is /opt/lib/utmlu62/gen/genfile (UNIX systems)
or Programs\utmlu62\gen\genfile (Windows systems).

-f conf_file Name of the configuration file in which the generation data is to be written
in binary form. If conf_file is not specified, then the results are output to the
file /opt/lib/utmlu62/conffile (UNIX systems) or
Programs\utmlu62\conffile (Windows systems).

The u62_tp program reads the configuration data from the file conffile during its initial-
ization. This configuration file can also be recreated while u62_tp is running using u62_gen.
The new configuration data will only take effect during the next start of the corresponding
openUTM-LU62 entity.

u62_gen does not delete any log records required for a recovery. See page 40 for more
information on the subject of recovery.

LU6.2 interconnections with openUTM-LU62 Generating openUTM-LU62

U5461-J-Z135-6-76 53

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
8

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
3

3.2.4 Restoring generation files

If you want to create a readable generation file from a binary configuration file to check the
generation run, for example, then you can do so with the following command:

Call syntax:

/opt/lib/utmlu62/u62_gen -r [conf_file]

Description:

-r (restore)

conf_file Name of the binary configuration file. If conf_file is not specified, then the
file /opt/lib/utmlu62/conffile is read.

u62_gen outputs the data to stdout.

The information relating to Windows systems specified in the section “Starting the genera-
tion program” on page 52 also applies here.

3.2.5 Displaying the name of the generation file used

If you have forgotten the name of the generation file used, the following command allows
you to display the file name. It also indicates the internal version numbers of openUTM-
LU62 programs.

Call syntax:

/opt/lib/utmlu62/u62_adm -v

The information relating to Windows systems specified in the section “Starting the genera-
tion program” on page 52 also applies here.

Administering openUTM-LU62 LU6.2 interconnections with openUTM-LU62

54 U5461-J-Z135-6-76

3.3 Administering openUTM-LU62

3.3.1 Administration under UNIX systems and Windows systems

Administration under UNIX systems

Under UNIX systems, all administration commands can be called directly from the shell ex-
actly as specified below.

openUTM-LU62 can be administered by all users after installation. If you want to limit the
group of administrators of openUTM-LU62, you can create a list of the user IDs with admin-
istration authorization in the /opt/lib/utmlu62/u62_users file. This list has the following
syntax:

– User IDs are separated by a comma, blank, tab or the end of a line. The user root always
has administration authorization and does not need to be entered.

– Comments are preceded by a hash character (#) and extend to the end of the line.

If this file does not contain any entries or does not exist, all users have administration au-
thorization.

Administration under Windows systems

Under Windows systems, it is recommended that you create a DOS shell by selecting “Start
> Programs > openUTM-LU62 > Prompt”. Under this DOS shell, enter the commands de-
scribed here without the prefix /opt/lib/utmlu62/.

LU6.2 interconnections with openUTM-LU62 Administering openUTM-LU62

U5461-J-Z135-6-76 55

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
8

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
3

3.3.2 Starting openUTM-LU62

openUTM-LU62 is started as a background process with u62_start.

Call syntax:

/opt/lib/utmlu62/u62_start
 [-l loc_lu_alias_name]
 [-ton[,trace_options]]
 [{ -c | -k }]
Description:

-l loc_lu_alias_name
If the -l switch is not specified, then u62_start determines a list of all
openUTM-LU62 entities based on the configuration file and starts all these
entities. If the -l switch is specified, then only the entity belonging to the LU
loc_lu_alias_name is started. loc_lu_alias_name must correspond to a name
from the openUTM-LU62 configuration.

-ton[,trace_options]
(trace on) Activates the trace. The amount of detail recorded by the trace
can be controlled by the trace_options.

trace_options can be used to specify if and with how much detail the entity
trace is to record and whether the XAP trace is to be activated. All internal
operations of the u62_tp program are logged with the entity trace (IN).
There are different trace levels for this entity trace, which are represented
by numbers. Every level includes all of the traces in the lower levels. All in-
ternal operations of the XAP-TP provider and OSS are recorded with the
XAP-TP trace (XAP). The following can be specified for the various
trace_options:

in=1 The entity trace is activated with the lowest level. Only the trace
entries required for a protocol trace are recorded. See page 67 for
more information on the protocol trace. This trace level is generally
sufficient for an initial error diagnosis.

in=2 The entity trace is activated with the detailed level.

in=3 The entity trace is started with an additional timer for all activities.
This level is intended for diagnosing performance problems.

in The entity trace is activated with the detailed level (like in=2).

xap The XAP-TP trace is activated.

If both traces are to be activated, then in, xap must be specified as the
trace_options.
If no trace_options are specified, then the entity trace is activated with the
detailed level and the XAP-TP trace.

Administering openUTM-LU62 LU6.2 interconnections with openUTM-LU62

56 U5461-J-Z135-6-76

{ -c | -k }
Without a specification a warm start is executed by default.
(start type = w).

-c (cold) A cold start is executed. The cold start deletes all recovery infor-
mation. You should only use this parameter in special cases. See page 40
for more information.

-k (Lukewarm) A warm start is executed, during which all open transactions
are discarded.

The log names however remain, which means that the LU6.2 partner appli-
cation receives no information on the discard of the transactions.

This is necessary, if e.g. the partner system has discarded the open tran-
sactions already because of an error or via administrative interference and
a cold start is not possible because it would have effects on other tasks in
the partner system. In this case the partner system has to execute a cold
start.
A cold start in e.g. IMS requires termination and reboot of the complete IMS.
Thus the operation would be completely interrupted, what in production
systems naturally is undesired. Starting with the -k parameter allows you
to revise transactions pending on one side of the partners. In this case no
further actions are necessary on the partner system side, especially no
interruption.

Example: Start with a timer in the entity trace and an XAP-TP trace on UNIX systems:

/opt/lib/utmlu62/u62_start -ton,in=3,xap

After a successful start, the following message appears on the screen:

u62_start 17 * * * openUTM-LU62 started: * * *
 local LU alias name = T02CGEI4,
 PID = 1771,
 start type = w

The values for the local LU alias name and PID are replaced by their actual values.

Normally, you will want openUTM-LU62 to start automatically on system startup and termi-
nate automatically on system shutdown. On UNIX systems this is achieved by means of the
/etc/rc2.d/S30u62 file or a file of the same name in a different system RC directory.

LU6.2 interconnections with openUTM-LU62 Administering openUTM-LU62

U5461-J-Z135-6-76 57

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
8

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
3

On Windows systems, the installation process gives you the opportunity to decide whether
or not openUTM-LU62 is to be started as a service. If you choose this option, the operating
system automatically starts all openUTM-LU62 entities each time it boots up. If parameters
are to be transferred during autostart, these must be entered in the U62_SERVICE_ARGS
variable (in the directory
HKEY_LOCAL_MACHINE\SOFTWARE\Siemens\openUTM-LU62\CurrentVersion) using the oper-
ating system’s Registry editor. If you start an instance by means of the services administra-
tion of the Windows system, U62_SERVICE_ARGS is not evaluated. Instead, the start pa-
rameters must be entered manually.

If you wish to have openUTM-LU62 started as a service without having to reinstall the prod-
uct, you can also use the following command:

u62_start -r

To cancel the autostart, simply issue the following command:

u62_start -u

Administering openUTM-LU62 LU6.2 interconnections with openUTM-LU62

58 U5461-J-Z135-6-76

3.3.3 Terminating openUTM-LU62

openUTM-LU62 is terminated with u62_adm -e (end).

Call syntax:

/opt/lib/utmlu62/u62_adm -e [-l loc_lu_alias_name]

Description:

-l loc_lu_alias_name
If the -l switch is not specified, then all openUTM-LU62 entities are stopped.
If the -l switch is specified, then only the entity belonging to the LU
loc_lu_alias_name is stopped.

On Windows systems, you can also select “Start > Programs > openUTM-LU62 > Exit
openUTM-LU62”.

You must exit openUTM-LU62 before terminating TRANSIT.

LU6.2 interconnections with openUTM-LU62 Administering openUTM-LU62

U5461-J-Z135-6-76 59

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
8

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
3

3.3.4 Displaying status information

You can obtain information on the current status of openUTM-LU62 with u62_sta. This
command can be used by every UNIX system user. On Windows systems, select “Start >
Programs > openUTM-LU62 > Show Status”.

Call syntax:

u62_sta [{ -l loc_lu_alias_name | -c }] [-b]

Description:

-l loc_lu_alias_name
If the -l switch is specified, then only information on the entity belonging to
the LU loc_lu_alias_name is output.

-c If the switch -c is specified only the number of LU62 session in the local
default LU with the CPSVCMG mode is output.

If neither -l nor -c is specified, then status information is output for all
openUTM-LU62 entities.

-b The data is output in binary form corresponding to a predefined C structure
with the -b switch. This switch can be used for programs that are to process
the output from u62_sta. The C structure is defined in the header file
/opt/lib/utmlu62/status.h (UNIX systems)
or
Programme\utmlu62\status.h (Windows systems).

u62_sta outputs two header lines and one line per openUTM-LU62 entity. The output
appears similar to the output below:

 LLU name RLU name local OSI addr remote OSI addr XLN atot absy stot sbsy
 ===
 T02CGEI4 CICST6 SMP22804.utmlu62 SMP22800.utmlu62 ok 4 1 4 1

With the -c switch u62_sta z.B. creates the following output:

 LLU name RLU name Number of CPSVCMG sessions
 ==
 DEC1N05C P391.P391SSP 2

Administering openUTM-LU62 LU6.2 interconnections with openUTM-LU62

60 U5461-J-Z135-6-76

Meanings of the output fields:

LLU name Name of the local LU as it was specified in the generation file with
LOC-LU-ALIAS.

RLU name Name of the partner LU as it was specified in the generation file with
REM-LU-ALIAS.

local OSI addr
TNSX name of the local application entity as it was specified in the gener-
ation file with LOC-AE.

Without use of TNSX:
Local T-selector without format specification and the local port in brackets.
Example: LOC_TSEL(23766)

remote OSI addr
TNSX name of the partner application entity as it was specified in the gener-
ation file with REM-AE.

Without use of TNSX:
T-selector of the partner application without format specification and the lo-
cal port in brackets, followed by the host name and the TCP port (if there is
enough space).

Example:
REM_TSEL(host:102)
REM_TSEL(host)

If the host name is too long it will be cut. You will be notified with ...
REM_TSEL(hostn...)

XLN Exchange log name status.

If Sync-level 2 is specified, then an exchange log name command must be
executed between openUTM-LU62 and the LU6.2 application after
restarting the openUTM-LU62 entity or after an abnormal connection termi-
nation. Only after the exchange log name command has been successfully
terminated can transactions be started. openUTM-LU62 executes this
exchange log name command independently. You may need to intervene
manually when an error occurs.

The following is a list of the possible states:

- No exchange log name required because sync-level 2 is not used.

run The exchange log name command is currently running.

LU6.2 interconnections with openUTM-LU62 Administering openUTM-LU62

U5461-J-Z135-6-76 61

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
8

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
3

wai The exchange log name command is still outstanding. The following
is a list of the possible causes:

– there is no connection to the LU6.2 application

– the previous exchange log name command was cancelled due
to a communication error

– the openUTM-LU62 and LU6.2 basic software configurations
(TRANSIT-SERVER, SNAP-IX or IBM Communications Server)
are incompatible, i.e. the LU6.2 basic software configuration
was changed while openUTM-LU62 was running.

ok The exchange log name command was successfully executed.

err A fatal error occurred during the exchange log name command.

rst (Restart) This is displayed as the XLN status until the recovery to
the UTM application is completed. The log names could not be suc-
cessfully exchanged with the LU6.2 partner.

This status lasts only for a short time after the instance starts up, but
it can also last for a longer period if the LU6.2 partner is responsible
for the recovery of the transaction.

If err or rst is displayed, or wai is displayed although a connection exists,
then additional information can be found in the file

/opt/lib/utmlu62/PROT/prot.luname (UNIX systems)

or

Programs\utmlu62\PROT\prot.luname.txt (Windows systems).

atot (Associations total) The number of parallel connections established
between the openUTM-LU62 entity and the UTM application.

absy (Associations busy) The number of busy parallel connections to the UTM
application. A parallel connection is busy when program-program commu-
nication is currently taking place via this connection.

stot (Sessions total) The number of LU6.2 sessions opened between the
openUTM-LU62 entity and the LU6.2 partner. If communication to the
LU6.2 partner is to be possible, then at least 3 sessions must be opened.
Two sessions are always required for internal administration.

sbsy (Sessions busy) The number of busy sessions. A session is busy when a
conversation (program-program communication) is currently running via
this session.

Administering openUTM-LU62 LU6.2 interconnections with openUTM-LU62

62 U5461-J-Z135-6-76

 You can find additional status information, in particular when an error occurs, in the
file

/opt/lib/utmlu62/PROT/prot.luname (UNIX systems)

or

Programs\utmlu62\PROT\prot.luname.txt (Windows systems).

3.3.5 Establishing connections

You can also establish connections to the UTM application or to the LU6.2 application with
the command u62_adm.

Call syntax:

/opt/lib/utmlu62/u62_adm
 { -co | -cs }
 [-l loc_lu_alias_name]

Description:

-co (Connect OSI-TP) A parallel connection is established via OSI-TP to the
UTM application.

-cs (Connect SNA) An SNA-LU6.2 session is opened to the LU6.2 application.

-l loc_lu_alias_name
If the -l switch is not specified, then a connection is established by every
openUTM-LU62 entity. If the -l switch is specified, then a connection is only
established to the entity belonging to this LU.

 You need to call u62_sta afterwards to check if the connection was established
successfully.

i

i

LU6.2 interconnections with openUTM-LU62 Administering openUTM-LU62

U5461-J-Z135-6-76 63

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
8

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
3

3.3.6 Clearing connections

You can also clear connections to the UTM application or to the LU6.2 application using the
u62_adm command.

Syntax:

/opt/lib/utmlu62/u62_adm
 { -ao | -as | -do | -ds }
 [-l loc_lu_alias_name]

Description:

-ao (Abort OSI-TP) All existing parallel connections to the UTM application are
cleared, regardless of whether or not they are busy.

-as (Abort SNA) All existing SNA sessions to the LU6.2 application are closed,
regardless of whether or not they are being used for a conversation
(program-program communication).

-do (Disconnect OSI-TP) All existing parallel connections to the UTM appli-
cation that are not busy are cleared.

-ds (Disconnect SNA) All existing SNA sessions to the LU6.2 application are
closed. Sessions that are currently being used for a conversation are not
closed until the conversation has ended. Free sessions are closed immedi-
ately.

-l loc_lu_alias_name
If the -l switch is not specified, then the connections from each of the
openUTM-LU62 entities are cleared. If the -l switch is specified, then only
the connection to the entity belonging to this LU is cleared.

 You must check whether or not the connection has been cleared successfully by
calling u62_sta afterwards.i

Administering openUTM-LU62 LU6.2 interconnections with openUTM-LU62

64 U5461-J-Z135-6-76

3.3.7 Activating and deactivating traces

Trace information is useful for error diagnosis in openUTM-LU62. When traces are
activated, then the u62_tp program continuously writes internal information to special trace
files.

Call syntax:

/opt/lib/utmlu62/u62_adm -ton[,trace_options] [-l loc_lu_alias_name]

/opt/lib/utmlu62/u62_adm -tof[,trace_options] [-l loc_lu_alias_name]

/opt/lib/utmlu62/u62_adm -tfl[,trace_options] [-l loc_lu_alias_name]

Description:

-ton (Trace On) The trace is activated.

-tof (Trace Off) The trace is deactivated.

-tfl (Trace Flush) The trace is flushed, i.e. the current trace file is closed and a
new trace file is created.

trace_options Controls the type of trace and the amount of detail recorded. The following
trace_options are allowed. You can also specify several trace options
separated by commas.

in The entity trace is activated, deactivated or flushed. If this trace
option is specified for -ton, then the entity trace is activated with the
detailed level (in=2).

xap The XAP-TP trace is activated, deactivated or flushed.

in=1 (Only for -ton) The entity trace is activated with the lowest level. Only
the trace entries required for a protocol trace are recorded. See
page 67 for more information on the protocol trace. This trace level
is generally sufficient for an initial error diagnosis.

in=2 (Only for -ton) The entity trace is activated with the detailed level.

in=3 (Only for -ton) The entity trace is started with an additional timer for
all activities. This level is intended for diagnosing performance
problems.

If no trace_options are specified, then the in,xap options are assumed.

-l loc_lu_alias_name
If the -l switch is not specified, then the command affects all openUTM-LU62
entities. If the -l switch is specified, then the command only affects entity
belonging to this LU.

LU6.2 interconnections with openUTM-LU62 Administering openUTM-LU62

U5461-J-Z135-6-76 65

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
8

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
3

Example: Activating the detailed trace with a timer on UNIX systems:

/opt/lib/utmlu62/u62_adm -ton,in=3,xap

 If you want to run the trace right from the start, then you can accomplish this by
specifying the -t option for the u62_start command.

The traces are stored in the following files:

– entity trace file: /opt/lib/utmlu62/PROT/inlog.loc_lu_alias.suff

– XAP-TP trace file: /opt/lib/utmlu62/PROT/xaplog.loc_lu_alias.suff1.suff2

On Windows systems, the corresponding files are located under Programs\utmlu62\PROT.

The suffix suff assumes the value 0 initially. When the file has grown to a size of about one-
half megabyte or the flush command described above is entered, then the trace file is
closed and a new trace file is created with the suffix incremented by 1. The suff is reset to 0
once the file with suff=9 has been closed.

For an XAP-TP trace, suff1 is only incremented when a flush command is entered, and suff2
is only incremented when the maximum file size has been reached.

The value of 10 for the cyclical overwriting of the traces can be changed on UNIX systems
by setting the shell variable U62_TRC_FILES before openUTM-LU62 is started. If you want
to create 20 trace files, for example, then you must enter the following commands:

U62_TRC_FILES=20
export U62_TRC_FILES
/opt/lib/utmlu62/u62_start -t

The shell variable U62_TRC_LEN can be used to restrict the length of user data in the
trace.

The shell variable U62_TRC_COMPRESS can be used to compress the trace files on UNIX
systems. To achieve this, U62_TRC_COMPRESS must be set to “compress” or “gzip”. Note
that the “compress” or “gzip” programs are located using the PATH variable.

On Windows systems, variables with the name same as the shell variables can be set using
the operating system’s Registry editor. The variables are located in the directory
HKEY_LOCAL_MACHINE\SOFTWARE\Siemens\openUTM-LU62\CurrentVersion.

i

Administering openUTM-LU62 LU6.2 interconnections with openUTM-LU62

66 U5461-J-Z135-6-76

3.3.8 Analyzing traces

The following command is provided for analyzing the entity trace:

/opt/lib/utmlu62/u62_adm -f [-p] -o outfile tracefile [tracefile2 ...]

Description

-f tracefile (File) The entity trace files with the names tracefile (or tracefile2, etc.) are
converted to a readable form and output.

-o outfile Name of the output file.

-p An additional protocol trace is output to the file outfile.flow. u62_adm calls
the awk program u62_flow for this purpose. This protocol trace is described
in more detail in the following section.

Example:

If the trace files inlog.T02CGEI4.0 and inlog.T02CGEI4.1 were stored in the UNIX system
directory /opt/lib/utmlu62/PROT, then you can analyze these files with the following
commands:

cd /opt/lib/utmlu62/PROT
../u62_adm -fpo outfile inlog.T02CGEI4.0 inlog.T02CGEI4.1

The files outfile and outfile.flow are created in the directory
/opt/lib/utmlu62/PROT in the process.

The following command is available to analyze the XAP-TP trace:

/opt/lib/oss/step tracefile [tracefile2 ...]

step prepares the XAP-TP traces and outputs the traces in a readable form to stdout.

On Windows systems, step is located under Program Files\utmlu62.

LU6.2 interconnections with openUTM-LU62 Administering openUTM-LU62

U5461-J-Z135-6-76 67

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
8

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
3

3.3.9 Creating a dump

In some error situations, it may be necessary to save openUTM-LU62 status information in
the form of a dump to help with diagnostics. You use the following command for this:

/opt/lib/utmlu62/u62_adm -b in, xap

This creates the following files:

/opt/lib/utmlu62/PROT/in.dump.loc_lu_alias.1
/opt/lib/utmlu62/PROT/xap.dump.loc_lu_alias.1.DIAG00

On Windows systems the files are located under Program Files\utmlu62\PROT.

 With each call of u62_adm -b, the counter which is 1 in the example above, is incre-
mented by 1.

3.3.10 Protocol trace

You will find an abridged representation of the protocol flow from LU6.2 and OSI-TP in the
protocol trace. Because of the fact that openUTM-LU62 uses the APPC program interface
for LU6.2 communication and the XAP-TP program interface for OSI-TP communication,
several properties of these two interfaces can also be viewed in this trace.

On the LU6.2 side, the name of the APPC call, the TP-ID assigned by LU6.2 basic software
(TRANSIT-CPIC, SNAP-IX or the IBM Communications Server, the direction of processing
and any additional parameters are output for each message in the trace. The direction of
processing is marked with an arrow. An arrow pointing to the left marks a message sent by
openUTM-LU62, and an arrow pointing to the right marks a message received by
openUTM-LU62. First, administration data is exchanged between openUTM-LU62 and the
LU6.2 partner when an openUTM-LU62 entity is started and after the loss of a connection.
The transaction code X’06F2’ is used for this purpose. These protocol flows are marked
with a single arrow (--->). Protocol flows that come from application programs are marked
with a double arrow (===>).

On the OSI-TP side, the name of the XAP-TP call, the entity descriptor (fd) assigned by the
XAP-TP provider, the direction of processing and any additional parameters are output for
each message in the trace. The direction of processing is marked with an arrow. An arrow
pointing to the right marks a message sent by openUTM-LU62, and an arrow pointing to the
left marks a message received by openUTM-LU62. A control entity is used on the XAP-TP
interface when an openUTM-LU62 entity is started and during the commit phase. These
protocol flows are marked with a single arrow (--->). All other protocol flows are marked
with a double arrow (===>).

i

Administering openUTM-LU62 LU6.2 interconnections with openUTM-LU62

68 U5461-J-Z135-6-76

Each message contains a correlation number (corr) in order to make it easier to associate
an LU6.2 conversation and a parallel connection via XAP-TP. Protocol flows that are not
associated with a conversation are assigned the correlation number 0. Additionally, every
message is output with the time and the number of the corresponding line in the original
output file.

The protocol trace does not contain user data. This data can only be found in the original
output file.

The following example of a protocol trace contains additional comments. These comments
sometimes refer to the terms used in the following chapter, for example the names of CICS
commands.

The example has the following sequence:

1. Exchange log name
2. Call of a CICS transaction by a UTM application program
3. Call of a UTM transaction by a CICS application program

LU6.2 interconnections with openUTM-LU62 Administering openUTM-LU62

U5461-J-Z135-6-76 69

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
8

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
3

Exchange log name

 CICS openUTM-LU62 openUTM
==
 TP_RESTART_COMPLETE_IND (fd = 0)
 10:46:22, line 506, corr 0 <---------------------------------------

openUTM-LU62 was started. The XAP-TP provider sign-on was successful.

 RECEIVE_ALLOCATE (tpid = 00067478)
--> 10:46:22, line 1138, corr 0
 tp_name = X“06F2“,
 sync_level = CONFIRM_SYNC_LEVEL,
 conv_type = BASIC_CONVERSATION

 RECEIVE_IMMEDIATE (tpid = 00067478)
--> 10:46:23, line 1264, corr 0
 what_rcvd = DATA_COMPLETE, len = 33
 GDS_ID = Exchange Logname (Req, warm)

CICS has opened a conversation with the TP name X’06F2’ and has sent an exchange log
name command.

 RECEIVE_AND_POST (tpid = 00067478)
--> 10:46:23, line 1338, corr 0
 what_rcvd = SEND

 SEND_DATA (tpid = 00067478)
<-- 10:46:24, line 1444, corr 0
 send_type = SEND_DATA_DEALLOC_SYNC_LEVEL, len = 58,
 GDS_ID = Exchange Logname (Rpl+, cold)

openUTM-LU62 replies to the exchange log name. Transaction-oriented communication
between openUTM-LU62 and CICS is only possible after this point in time.

 GET_LU_STATUS (tpid = 00067478)
<-- 10:46:24, line 1487, corr 0
 zero_sess = YES,
 active_sess = 19

Administering openUTM-LU62 LU6.2 interconnections with openUTM-LU62

70 U5461-J-Z135-6-76

Call of a CICS transaction by a UTM application program

 TP_BEGIN_DIALOGUE_IND (fd = 10)
 10:46:40, line 2380, corr 1 <=======================================

A UTM application program was started and wants to establish a connection to a CICS
application program.

 GET_LU_STATUS (tpid = 00722838)
<-- 10:46:41, line 3069, corr 0
 zero_sess = NO,
 active_sess = 29

 MC_ALLOCATE (tpid = 00984982)
<== 10:46:41, line 3257, corr 1
 tp_name = UPS1,
 sync_level = SYNCPT,
 plu_alias = CICST6,
 security = NONE

openUTM-LU62 opens a conversation to the desired CICS application program using the
transaction code UPS1. You can see that the connection is a transaction-oriented
connection by the line containing sync_level = SYNCPT. No user ID and password pair is
sent.

 TP_DATA_IND (fd = 10)
10:46:42, line 3353, corr 1 <=======================================
 udata_len = 19

The UTM application sends 19 bytes of data. These 19 bytes also contain an OSI-TP
header.

 MC_SEND_DATA (tpid = 00984982)
<== 10:46:42, line 3448, corr 1
 send_type = NONE,
 data_type = APPLICATION, len = 2

openUTM-LU62 sends the data on to the CICS application program. You can see here that
this data consists of just 2 bytes of user data. The OSI-TP header was therefore 17 bytes
long (the length of the OSI-TP header may vary).

 TP_DEFERRED_END_DIALOGUE_IND (fd = 10)
 10:46:42, line 3488, corr 1 <=======================================

 TP_PREPARE_IND (fd = 10)
 10:46:42, line 3557, corr 1 <=======================================

LU6.2 interconnections with openUTM-LU62 Administering openUTM-LU62

U5461-J-Z135-6-76 71

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
8

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
3

The UTM application program has issued a CTRL PE and a PEND KP after the MPUT NE.
The CTRL PE can be regarded as a TP_DEFERRED_END_DIALOGUE_IND and a
TP_PREPARE_IND.

 MC_SEND_DATA (tpid = 00984982)
<== 10:46:42, line 3757, corr 1
 send_type = SEND_DATA_P_TO_R_FLUSH,
 data_type = PS_HEADER (Prepare)

openUTM-LU62 sends a prepare to the CICS application program, thereby requesting that
the end of transaction be initiated.

 MC_RECEIVE_IMMEDIATE (tpid = 00984982)
==> 10:46:45, line 3835, corr 1
 what_rcvd = PS_HEADER_COMPLETE (Request Commit)

 MC_RECEIVE_AND_POST (tpid = 00984982)
==> 10:46:45, line 3902, corr 1
 what_rcvd = SEND

The CICS application program has confirmed the end of transaction with the CICS
command SYNCPOINT. CICS therefore sends a Request Commit and gives up its send
authorization.

 TP_PREPARE_ALL_REQ (fd = 0)
 10:46:45, line 3932, corr 1 =======================================>

 TP_READY_ALL_IND (fd = 0)
 10:46:45, line 4009, corr 1 <=======================================
 udata_len = 99

 TP_COMMIT_REQ (fd = 0)
 10:46:45, line 4261, corr 1 =======================================>

openUTM-LU62 transmits the Request Commit as a TP_COMMIT_REQUEST to the UTM
application. This ends the first phase of the 2-phase commit protocol. The XAP-TP calls
TP_PREPARE_ALL_REQ and TP_READY_ALL_IND issued beforehand are only local in
nature.

 TP_COMMIT_IND (fd = 0)
 10:46:47, line 4337, corr 1 <=======================================

 TP_COMMIT_IND (fd = 10)
 10:46:47, line 4407, corr 1 <=======================================

The UTM application now starts the second phase of the 2-phase commit protocol.
openUTM-LU62 receives two TP_COMMIT_INDs. openUTM could also have rolled back
the transaction up to this point in time. This is not possible anymore after TP_COMMIT_IND.

Administering openUTM-LU62 LU6.2 interconnections with openUTM-LU62

72 U5461-J-Z135-6-76

 MC_SEND_DATA (tpid = 00984982)
<== 10:46:47, line 4517, corr 1
 send_type = SEND_DATA_P_TO_R_FLUSH,
 data_type = PS_HEADER (Committed)

openUTM-LU62 sends a Committed command to CICS based on the TP_COMMIT_IND
received.

 MC_RECEIVE_IMMEDIATE (tpid = 00984982)
==> 10:46:47, line 4596, corr 1
 what_rcvd = PS_HEADER_COMPLETE (Forget)

 MC_RECEIVE_AND_POST (tpid = 00984982)
==> 10:46:47, line 4695, corr 1
 primary_rc = DEALLOC_NORMAL

CICS replies with a Forget. The DEALLOC_NORMAL thereafter shows that the conver-
sation was terminated as desired after the end of transaction in the same manner as for a
UTM application program when CTRL PE is sent.

 TP_DONE_REQ (fd = 0)
 10:46:47, line 4802, corr 1 =======================================>

 TP_COMMIT_COMPLETE_IND (fd = 0)
 10:46:47, line 4877, corr 1 <=======================================

 TP_COMMIT_COMPLETE_IND (fd = 10)
 10:46:47, line 4949, corr 1 <=======================================

openUTM-LU62 transmits the Forget it has received as a TP_DONE_REQ to the UTM
application. After the second TP_COMMIT_COMPLETE_IND has been received, the trans-
action and the OSI-TP dialog are terminated.

LU6.2 interconnections with openUTM-LU62 Administering openUTM-LU62

U5461-J-Z135-6-76 73

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
8

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
3

Call of a UTM transaction by a CICS application program

 RECEIVE_ALLOCATE (tpid = 00133014)
==> 10:47:45, line 5489, corr 2
 tp_name = UCS1,
 sync_level = SYNCPT,
 conv_type = MAPPED_CONVERSATION

A CICS application program was started and wants to establish a connection to a UTM
application program with the transaction code UCS1.

 APM_ALLOCATE_REQ (fd = 1)
 10:47:45, line 5615, corr 2 =======================================>

 APM_ALLOCATE_CNF+ (fd = 1)
 10:47:45, line 5687, corr 2 <=======================================

 TP_BEGIN_DIALOGUE_REQ (fd = 1)
 10:47:45, line 5848, corr 2 =======================================>
 udata_len = 28

openUTM-LU62 establishes a connection to the desired UTM application program.

 MC_RECEIVE_IMMEDIATE (tpid = 00133014)
==> 10:47:45, line 5975, corr 2
 what_rcvd = DATA_COMPLETE, len = 2

The CICS application program sends 2 bytes of data.

 TP_DATA_REQ (fd = 1)
 10:47:45, line 6005, corr 2 =======================================>
 udata_len = 23

openUTM-LU62 sends the data on to the UTM application program. Here you can see that
openUTM-LU62 places a 21 byte long OSI-TP header in front of the data.

 MC_RECEIVE_IMMEDIATE (tpid = 00133014)
==> 10:47:45, line 6135, corr 2
 what_rcvd = PS_HEADER_COMPLETE (Request Commit)

 MC_RECEIVE_AND_POST (tpid = 00133014)
==> 10:47:45, line 6197, corr 2
 what_rcvd = SEND

Administering openUTM-LU62 LU6.2 interconnections with openUTM-LU62

74 U5461-J-Z135-6-76

The CICS application program has requested the UTM application program to end the
transaction with the SYNCPOINT command. CICS sends a Request Commit and gives up
its send authorization. CICS does not use a real 2-phase commit protocol in this case,
rather a simplified protocol that makes it impossible to roll back the transaction later on.
CICS always uses this simplified protocol when the CICS application program only has one
job-receiver and has not issued an ISSUE PREPARE before the SYNCPOINT command.

 TP_DEFERRED_END_DIALOGUE_REQ (fd = 1)
 10:47:45, line 6227, corr 2 =======================================>

That which was not recognizable in the protocol trace when the Request Commit was
received becomes clear here: The CICS application program has sent the message with
SEND LAST before the SYNCPOINT and therefore initiated the termination of the conver-
sation. openUTM-LU62 therefore sends a TP_DEFERRED_END_DIALOGUE_REQ on to
the UTM application.

 TP_PREPARE_ALL_REQ (fd = 0)
 10:47:45, line 6274, corr 0 =======================================>

After that, openUTM-LU62 transmits the request to end the transaction to the UTM appli-
cation.

 TP_READY_ALL_IND (fd = 0)
 10:47:47, line 6350, corr 2 <=======================================
 udata_len = 97

The UTM application program has confirmed the end of transaction by issuing PEND FI.
openUTM-LU62 therefore receives a TP_READY_ALL_IND.

 TP_COMMIT_REQ (fd = 0)
 10:47:47, line 6605, corr 2 =======================================>

 TP_COMMIT_IND (fd = 0)
 10:47:47, line 6682, corr 2 <=======================================

 TP_COMMIT_IND (fd = 1)
 10:47:47, line 6752, corr 2 <=======================================

 TP_DONE_REQ (fd = 0)
 10:47:47, line 6827, corr 2 =======================================>

 TP_COMMIT_COMPLETE_IND (fd = 0)
 10:47:48, line 6903, corr 2 <=======================================

 TP_COMMIT_COMPLETE_IND (fd = 1)
 10:47:48, line 6975, corr 2 <=======================================

All TP_COMMIT_REQ calls up to the TP_COMMIT_COMPLETE_IND call serve to ensure
that the transaction is terminated in accordance with the protocol.

LU6.2 interconnections with openUTM-LU62 Administering openUTM-LU62

U5461-J-Z135-6-76 75

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
8

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
3

 MC_SEND_DATA (tpid = 00133014)
<== 10:47:48, line 7244, corr 2
 send_type = NONE,
 data_type = PS_HEADER (Committed)

 MC_DEALLOCATE (tpid = 00133014)
<== 10:47:48, line 7286, corr 2
 dealloc_type = FLUSH

After the transaction has been terminated successfully on the OSI-TP side, openUTM-LU62
sends a Committed to CICS and then ends the conversation with MC_DEALLOCATE. This
also terminates the transaction and the conversation on the LU6.2 side.

76 U5461-J-Z135-6-76

U5461-J-Z135-6-76 77

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
4

4 openUTM-CICS interconnection via LU6.2
In this chapter you will find a discussion of the aspects of openUTM-CICS interconnection
via LU6.2 as they relate to generation and programming.

4.1 Generating an openUTM-CICS interconnection

4.1.1 Definitions in CICS

The following definitions are required in CICS:

– Definition of APPLID

– A connection and a session definition for each instance of openUTM-LU62

The CICS system administrator has several possibilities to define connections and
sessions, for example RDO (Resource Definition Online) using CEDA, DFHCSDUP or
macros.

APPLID

The name of the CICS application must be specified in the system initialization table (SIT):

DFHSIT APPLID=cics_netname
Name (1-8 characters) with which the SNA network name is specified for the CICS
application. This name must match the definitions in VTAM (VBUILD TYPE=APPL).

Generating an openUTM-CICS interconnection openUTM-CICS interconnection via LU6.2

78 U5461-J-Z135-6-76

DEFINE CONNECTION

The remote system, in this case the substitute LU in openUTM-LU62, is described with this
definition.

DEFINE CONNECTION connection_name
 GROUP group_name
 NETNAME netname
 ACCESSMETHOD VTAM
 PROTOCOL APPC
 SINGLESESS NO
 DATASTREAM USER
 RECORDFORMAT U
 AUTOCONNECT { NO | YES | ALL }
 INSERVICE YES
 ATTACHSEC { LOCAL | IDENTIFY | VERIFY | MIXIDPE }

The operands have the following meaning:

CONNECTION connection_name
Name (1-4 characters) used to designate the UTM application. This name only
exists within CICS. It must be specified in the CICS programs in the parameter
SYSID for ALLOCATE if the CICS program is to call a UTM transaction code.

GROUP group_name
Name (1-8 characters). The CICS system administrator must assign this name. The
name only appears in CICS definitions.

NETNAME netname
Name (1-8 characters) of the substitute LU. This name must match the LU name
defined in VTAM and the name defined in the basic LU6.2 software. If TRANSIT is
the basic LU6.2 software, this is the second part of the name assigned for XLU
NETNAME. Depending on the SNA protocol used, it may not be necessary to define
LU names in VTAM.

ACCESSMETHOD VTAM
VTAM access method.

PROTOCOL APPC
An LU6.2 connection is defined.

SINGLESESS NO
Parallel sessions are allowed. openUTM-LU62 requires parallel sessions.

DATASTREAM USER
The user data will be defined completely by the application program.

RECORDFORMAT U
The user data will be sent as a chain of RUs.

openUTM-CICS interconnection via LU6.2 Generating an openUTM-CICS interconnection

U5461-J-Z135-6-76 79

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
4

AUTOCONNECT { NO | YES | ALL }
The sessions will be opened at the start of CICS when YES or ALL is specified. This
is not true for NO.

INSERVICE YES
The connection is available.

ATTACHSEC { LOCAL | IDENTIFY | VERIFY | MIXIDPE }
The UTM application may not specify a user ID and password for APRO
(KCSECTYP=N) when specifying LOCAL (default value).
The UTM application must specify KCSECTYP=S in APRO when specifying
IDENTIFY.
The UTM application must specify KCSECTYP=P in APRO and a user ID and
password when specifying VERIFY.
The UTM application can select either KCSECTYP=S or KCSECTYP=P when
specifying MIXIDPE.

Generating an openUTM-CICS interconnection openUTM-CICS interconnection via LU6.2

80 U5461-J-Z135-6-76

DEFINE SESSIONS

The properties of the connection to the substitute LU in openUTM-LU62 are described with
this definition.

DEFINE SESSIONS session_name
 GROUP group_name
 CONNECTION connection_name
 MODENAME mode_name
 PROTOCOL APPC
 MAXIMUM max1, max2
 SENDSIZE ru_size
 RECEIVESIZE ru_size
 AUTOCONNECT { NO | YES | ALL }
 INSERVICE YES
 BUILDCHAIN YES
 IOAREALEN data_length

The operands have the following meanings:

SESSIONS session_name
Name of the sessions definition. This name only appears in CICS definitions.

GROUP group_name
Name (1-8 characters). The CICS system administrator must assign this name. The
name only appears in CICS definitions. The same name should be chosen as was
chosen in the associated connection definition.

CONNECTION connection_name
 Name of the associated connection definition.

MODENAME mode_name
Name (1-8 characters) for the connection between CICS and openUTM-LU62. This
name must also be defined as the mode name in VTAM and basic LU6.2 software
(TRANSIT-SERVER, SNAP-IX or the IBM Communications Server), and openUTM-
LU62.

PROTOCOL APPC
 An LU6.2 connection is defined.

openUTM-CICS interconnection via LU6.2 Generating an openUTM-CICS interconnection

U5461-J-Z135-6-76 81

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
4

MAXIMUM max1, max2
The maximum number of sessions between the two LUs is specified with max1.
This value must be between 1 and 254. When using TRANSIT-SERVER, it should
match the value of the parameter SESS-MAX in the associated XMODE statement
of the TRANSIT configuration. When using SNAP-IX or the IBM Communications
Server, it should match the session limit in the mode definition of the IBM Commu-
nications Server.

The maximum number of sessions in which the CICS side is the contention winner
is specified with max2. When using TRANSIT-SERVER, it should match the value
of the parameter SESS-LOS in the associated XMODE statement of the TRANSIT
configuration. When using SNAP-IX or the IBM Communications Server, it need not
be aligned with the IBM Communications Server configuration.

If the maximum values of CICS and the basic LU6.2 software are not the same, the
systems agree on the lower value.

SENDSIZE ru_size RECEIVESIZE ru_size
This specifies the maximum RU (Request Unit) size for LU6.2 communication
between CICS and openUTM-LU62. You should use the default value of 4096 if
possible. Smaller RUs lead to higher network loads. You should select the same
values for SENDSIZE and RECEIVESIZE.

The value specified here should correspond to the value in the MODE macro from
VTAM. When using TRANSIT-SERVER, it should also match the value SRU-MAX
or RRU-MAX configured there. When using SNAP-IX or the IBM Communications
Server, it should match the maximum RU size defined for the mode name. Please
note that the RU sizes must be specified in different formats in VTAM and TRANSIT-
SERVER. In TRANSIT, the value 4096 is to be written as 89. More details are
described in the TRANSIT manual.

AUTOCONNECT { NO | YES | ALL }
The sessions will be opened at the start of CICS when YES or ALL is specified. This
is not true for NO.

INSERVICE YES
The connection is available.

BUILDCHAIN YES
The parameter must always be set to the default value YES.

IOAREALEN data_length
The minimum size of the terminal input/output area of CICS is specified with value1.
This value should be selected so that it is at least as large as the maximum
message length for the application programs.

Generating an openUTM-CICS interconnection openUTM-CICS interconnection via LU6.2

82 U5461-J-Z135-6-76

4.1.2 VTAM generation

In cases in which the LUs are defined in VTAM, the substitute LUs used by openUTM-LU62
must be generated as independent LUs, meaning with LOCADDR=0. In addition, the mode
name must be generated in VTAM. See the section below containing the complete sample
generation.

4.1.3 TRANSIT generation for openUTM-CICS sessions

When using TRANSIT-SERVER, the SNA connection between the UNIX system and the
SNA host must be configured in TRANSIT on the one hand. On the other hand, the LU6.2
connection between CICS and openUTM-LU62 must also be configured there. See the
section below containing the complete sample generation.

4.1.4 SNAP-IX generation for openUTM-CICS sessions

When SNAP-IX is used, the SNA connection between the UNIX system and the SNA host
must be configured in this product. The LU6.2 connection between CICS and openUTM-
LU62 must also be configured there. See the complete generation example below.

4.1.5 Generating the IBM Communications Server for openUTM-CICS
sessions

When using the IBM Communications Server, the SNA connection between the UNIX/Win-
dows system and the SNA host must be configured in the Communications Server on the
one hand. On the other hand, the LU6.2 connection between CICS and openUTM-LU62
must also be configured there. See the section below containing the complete sample gen-
eration.

openUTM-CICS interconnection via LU6.2 Generating an openUTM-CICS interconnection

U5461-J-Z135-6-76 83

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
4

4.1.6 openUTM-LU62 generation

The openUTM-LU62 generation is described in detail in the previous chapter. See the
section below containing the complete sample generation to compare the generation
parameters with those of the other generations.

4.1.7 TNSX generation

On the computer on which openUTM-LU62 is running, the TCP/IP address information for
communication with the UTM application must be entered either in the TNSX (Transport
Name Server UNIX Systems) or directly in the openUTM-LU62. The address information
consists of IP addresses, port numbers and T-selectors. See also the complete generation
example below.

4.1.8 openUTM generation

From openUTM’s point of view, an LU6.2 interconnection must be generated in exactly the
same manner as a OSI-TP interconnection. However, you should bear in mind that a
maximum of 254 connections can be established per access point via openUTM-LU62.
This means that the value of the ASSOCIATIONS parameter in the OSI-LPAP statement
should not be larger than 254 for an LU6.2 connection.

Generating an openUTM-CICS interconnection openUTM-CICS interconnection via LU6.2

84 U5461-J-Z135-6-76

4.1.9 Defining CICS transactions

Local transactions are defined for CICS using RDO as follows:

DEFINE TRANSACTION transaction_code
 GROUP group_name
 PROGRAM program_name
 INDOUBT WAIT

The operands have the following meanings:

TRANSACTION transaction_code
Transaction code (1-4 characters) for the CICS transaction. The name must be
specified in the KCRN filed for the UTM call APRO.

GROUP group_name
Name (1-8 characters). The CICS system administrator must assign this name. It
only appears in the CICS definitions.

PROGRAM program_name
Name of the CICS program.

INDOUBT WAIT
This must be specified to achieve proper synchronization with openUTM after
session errors.

Remote transactions do not have to be defined in CICS. The transaction code is specified
just like for openUTM in the CICS programs. In contrast to the LU6.1 interface, CICS also
offers the possibility to specify transaction codes with more than 4 characters directly in the
program for LU6.2. This is important because UTM transaction codes can be up to
8 characters long.

openUTM-CICS interconnection via LU6.2 Generating an openUTM-CICS interconnection

U5461-J-Z135-6-76 85

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
4

4.1.10 Using user IDs

When using distributed processing, it often makes sense to only allow the human end user
to enter his or her user ID and password at one location in the entire system to prove that
he or she is authorized to execute specific actions. The other partner in a job-
submitter/receiver relationship is informed of the user ID so that the user only has certain
authorizations in the other system, too. The password, on the other hand, is usually not
transmitted over the network.

In order for such a procedure to function, the user IDs must be unique in all the participating
systems. The system administrators of the participating systems must therefore enter the
same user IDs to some extent. User IDs are specified as USER in the KDCDEF generation
for openUTM, and for CICS the user IDs are usually administered using the RACF product.

If user IDs are to be transmitted together with the jobs, then the application context
UDTSEC must be specified for openUTM-LU62 and for openUTM.

Application programs usually do not have to take care of sending the user ID when using
the LU6.2 protocol. UTM application programs can send the user ID on to the CICS system
by setting the KCSECTYP=S in APRO.

CICS programs always transmit the user ID. As mentioned above, however, it can only be
transmitted to the openUTM application if UDTSEC was generated as an application
context. If UDTSEC was not generated as an application context and the CICS program
sends a user ID, then openUTM-LU62 closes the LU6.2 conversation.

If different user IDs are used in the openUTM environment than in the CICS environment,
then the UTM application program can set a user ID and password itself as a job-submitter.
The APRO parameter KCSECTYP=P must be set. The user ID must be entered in
KCUSERID, and the password must be entered in KCPSWORD. Note that KCUIDTYP and
KCPWDTYP are to be set to “P” or “T“. The “octet string” type is not supported by
openUTM-LU62. Note that in this case all unused fields in the second parameter area must
be deleted for APRO.

However, a CICS program can only send the user ID with which it was called. A CICS
program cannot send a password to a UTM application.

If several UTM transactions are called from CICS simultaneously with the same user ID, the
value RESTART=NO must be specified in the USER statement in the UTM generation.

In addition, the UTM application must be generated in such a way that users can be signed
on with the same user ID more than once at any one time (SIGNON generation statement,
MULTI-SIGNON=YES parameter).

Generating an openUTM-CICS interconnection openUTM-CICS interconnection via LU6.2

86 U5461-J-Z135-6-76

4.1.11 A complete sample generation

A complete example of openUTM on UNIX system via CICS/ESA interconnection is shown
in the following. The connection between CICS and the UNIX systems is implemented with
SNA via Ethernet in this case. Generation parameters that must match are marked on the
right border with a number from (1) to (43). These parameters are explained in even more
detail at the end of this section.

The example contains communication in both directions: the calling of a CICS program by
openUTM and vice versa.

CICS program

Addressing in the job-submitter program:

 EXEC CICS ALLOCATE
 SYSID (IDI4) (1)
 EXEC CICS CONNECT PROCESS
 CONVID (id)
 PROCNAME (UCS1) (2)
 PROCLENGTH (4)
 SYNCLEVEL (2)

CICS definitions

System initialization:

DFHSIT APPLID=A9CICST6 (3)

CEDA definitions:

CEDA View Connection(IDI4)
 Connection : IDI4 (1)
 Group : KNAS1IND
 DEscription :
 CONNECTION IDENTIFIERS
 Netname : T02CGEI4 (4)
 INDsys :
 REMOTE ATTRIBUTES
 REMOTESYSTem :
 REMOTEName :
 REMOTESYSNet :

openUTM-CICS interconnection via LU6.2 Generating an openUTM-CICS interconnection

U5461-J-Z135-6-76 87

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
4

 CONNECTION PROPERTIES
 ACcessmethod : Vtam
 PRotocol : Appc
 Conntype :
 SInglesess : No
 DAtastream : User
 RECordformat : U
 Queuelimit : No
 Maxqtime : No
 OPERATIONAL PROPERTIES
 AUtoconnect : No
 INService : Yes
 SECURITY
 SEcurityname :
 ATtachsec : Local
 BINDPassword :
 BINDSecurity : No
 Usedfltuser : No
 RECOVERY
 PSrecovery : Sysdefault

 CEDA View Sessions(CGEI4)
 Sessions : CGEI4
 Group : KNAS1IND
 DEscription :
 SESSION IDENTIFIERS
 Connection : IDI4 (1)
 SESSName :
 NETnameq :
 MOdename : MODDIS89 (5)
 SESSION PROPERTIES
 Protocol : Appc
 MAximum : 015 , 015 (6)
 RECEIVEPfx :
 RECEIVECount :
 SENDPfx :
 SENDCount :
 SENDSize : 04096 (7)
 RECEIVESize : 04096 (7)
 SESSPriority : 000
 Transaction :
 OPERATIONAL PROPERTIES
 Autoconnect : Yes
 INservice :
 Buildchain : Yes
 USERArealen : 000
 IOarealen : 00000 , 00000
 RELreq : No

Generating an openUTM-CICS interconnection openUTM-CICS interconnection via LU6.2

88 U5461-J-Z135-6-76

 DIscreq : No
 NEPclass : 000
 RECOVERY
 RECOVOption : Sysdefault
 RECOVNotify : None

 CEDA View PROGram(UTMCICS1)
 PROGram : UTMCICS1 (8)
 Group : KNAS1IND
 DEscription :
 Language : CObol
 RELoad : No
 RESident : No
 USAge : Normal
 USElpacopy : No
 Status : Enabled
 RSl : 00
 Cedf : Yes
 DAtalocation : Below
 EXECKey : User

 CEDA View TRANSaction(UPS1)
 TRANSaction : UPS1 (9)
 Group : KNAS1IND
 DEscription :
 PROGram : UTMCICS1 (8)
 TWasize : 00000
 PROFile : DFHCICST
 PArtitionset :
 STAtus : Enabled
 PRIMedsize : 00000
 TASKDATALoc : Below
 TASKDATAKey : User
 STOrageclear : No
 RUnaway : System
 SHutdown : Disabled
 ISolate : Yes
 RECOVERY
 DTimout : No
 INdoubt : Wait
 RESTart : No
 SPurge : No
 TPUrge : No
 DUmp : Yes
 TRACe : Yes
 COnfdata : No

openUTM-CICS interconnection via LU6.2 Generating an openUTM-CICS interconnection

U5461-J-Z135-6-76 89

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
4

VTAM generation:

Start options:

SSCPNAME=M88, (10)
NETID=DESNI000 (43)

Major nodes:

P02CGE PU ADDR=C1, (17)
 DISCNT=NO,
 DLOGMOD=SNX32702,
 IDBLK=017, (11)
 IDNUM=2000E, (12)
 ISTATUS=ACTIVE,
 MAXDATA=1033, (13)
 MAXOUT=7,
 MAXPATH=2,
 MODETAB=MOD3270,
 PACING=0,
 PUTYPE=2,
 SSCPFM=USSSCS,
 USSTAB=USSSCS,
 VPACING=0
 PATH DIALNO=000440002222000E, (14)
 GRPNAM=G56TRN00
T02CGEI4 LU LOCADDR=0, (4)
 USSTAB=ISTINCDT, ACF/VTAM - USS-TABLE
 DLOGMOD=MODDIS89, (5)
 MODETAB=MODLU62, (15)
 RESSCB=32,
 PACING=3,
 VPACING=2,
 SSCPFM=FSS

Application Definitions:

A0CICS VBUILD TYPE=APPL
A9CICST6 APPL EAS=160,
 ACBNAME=A9CICST6,
 PARSESS=YES,
 AUTH=(ACQ,BLOCK, PASS)

Generating an openUTM-CICS interconnection openUTM-CICS interconnection via LU6.2

90 U5461-J-Z135-6-76

Logon mode table:

MODLU62 MODETAB (15)
MODDIS89 MODEENT LOGMODE=MODDIS89, (5)
 FMPROF=X’13’,
 TSPROF=X’07’,
 PRIPROT=X’B0’,
 SECPROT=X’B0’,
 COMPROT=X’50B1’,
 RUSIZES=X’8989’, (7)
 TYPE=X’00’,
 PSERVIC=X’060200000000000000002CD0’,
 PSNDPAC=X’04’,
 SRCVPAC=X’04’,
 SSNDPAC=X’04’,
 COS=NORMCOS
MODEEND

TRANSIT generation

 XLINK L02CGE, (16)
 TYP=LAN,
 XID=0172000E (11),(12)
 XPU P02CGE, (17)
 TYP=PEER,
 LINK=L02CGE, (16)
 DMAC=400037450001, (18)
 MAXDATA=1033 (13)
 XLU T02CGEI4, (19)
 TYP=6,
 SESS-CTR=IND,
 SESS-LMT=20, (6)
 PUCONNECT=APHSTART,
 NETNAME=DESNI000.T02CGEI4, (4),(43)
 SEC-PAIR=NO_CHECK NO_PASS,
 PAIR_EXT=CICST6 MODDIS89 SYNCLEVEL ALREADY_VERIFIED (5),(20)
 XRLU CICST6, (20)
 NETNAME=DESNI000.A9CICST6, (3),(43)
 PU=P02CGE (17)
 XMODE MODDIS89, (5)
 SESS-MAX=15, (6)
 SESS-LOS=2,
 SESS-WIN=2,
 SESS-AUTO=2,
 SRU-MAX=89, (7)
 RRU-MAX=89 (7)

openUTM-CICS interconnection via LU6.2 Generating an openUTM-CICS interconnection

U5461-J-Z135-6-76 91

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
4

openUTM-LU62 generation without use of TNSX

INSTANCE
 LOC-LU-ALIAS = T02CGEI4, (19)
 LOC-TSEL = T'SMP22804', (36)
 LOC-LISTENER-PORT = 22804, (37)
 LOC-APT = (1,2,3), (22)
 LOC-AEQ = 1, (23)
 REM-LU-ALIAS = CICST6, (20)
 MODENAME = MODDIS89, (5)
 LU62-CODE = EBCDIC-273,
 REM-TSEL = T'SMP22800', (29)
 REM-LISTENER-PORT = 22800, (30)
 REM-NSEL = localhost, (33)
 REM-APT = (1,2,4), (25)
 REM-AEQ = 1, (26)
 APPL-CONTEXT = UDTSEC, (27)
 ASSOCIATIONS = 15, (6)
 CONNECT = 4,
 CONTWIN = 5, (28)
 OSITP-CODE = ASCII

openUTM-LU62 generation with use of TNSX

INSTANCE
 LOC-LU-ALIAS = T02CGEI4, (19)
 LOC-AE = SMP22804, (21)
 LOC-APT = (1,2,3), (22)
 LOC-AEQ = 1, (23)
 REM-LU-ALIAS = CICST6, (20)
 MODENAME = MODDIS89, (5)
 LU62-CODE = EBCDIC-273,
 REM-AE = SMP22800.utmlu62, (24)
 REM-APT = (1,2,4), (25)
 REM-AEQ = 1, (26)
 APPL-CONTEXT = UDTSEC, (27)
 ASSOCIATIONS = 15, (6)
 CONNECT = 4,
 CONTWIN = 5, (28)
 OSITP-CODE = ASCII

Generating an openUTM-CICS interconnection openUTM-CICS interconnection via LU6.2

92 U5461-J-Z135-6-76

TNSX generation

SMP22800.utmlu62\ (24)
 PSEL V’’ (31)
 SSEL V’’ (32)
 TA RFC1006 127.0.0.1 PORT 22800 T’SMP22800’ (29),(30),(33)
SMP22804\ (21)
 PSEL V’’ (34)
 SSEL V’’ (35)
 TSEL RFC1006 T’SMP22804’ (36)
 TSEL LANINET A’22804’ (37)

openUTM generation

UTMD APT = (1,2,4) (25)
ACCESS-POINT OSIREP8, - (40)
 P-SEL = *NONE, - (31)
 S-SEL = *NONE, - (32)
 T-SEL = SMP22800, - (30)
 T-PROT = RFC1006, -
 TSEL-FORMAT = T, -
 LISTENER-PORT = 22800, - (29)
 AEQ = 1 (26)
OSI-CON SMP22804, -
 P-SEL = *NONE, - (34)
 S-SEL = *NONE, - (35)
 T-SEL = C’SMP22804’, - (36)
 N-SEL = C’local’, - (38)
 LOCAL-ACCESS-POINT = OSIREP8, - (40)
 T-PROT = RFC1006, -
 LISTENER-PORT = 22804, - (37)
 TSEL-FORMAT = T, -
 OSI-LPAP = ACICS04 (41)
OSI-LPAP ACICS04, - (41)
 APPLICATION-CONTEXT = UDTSEC, - (27)
 APT = (1,2,3), - (22)
 AEQ = 1, - (23)
 ASS-NAMES = OSIC4, -
 ASSOCIATIONS = 15, - (6)
 CONNECT = 2, -
 CONTWIN = 10 (28)
LTAC CICSUPS1, - (42)
 LPAP = ACICS04, - (41)
 RTAC = UPS1 (9)
TAC UCS1, - (2)

openUTM-CICS interconnection via LU6.2 Generating an openUTM-CICS interconnection

U5461-J-Z135-6-76 93

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
4

UTM application program

Addressing in the job-submitting program:

KCOP=APRO
KCOM=DM
KCRN=CICSUPS1 (42)
KCPI=>A
KCOF=C
KDCS()

Changes when using openUTM under BS2000/OSD

If you are using openUTM under BS2000/OSD instead of openUTM under UNIX systems,
the sample generation changes as follows:

openUTM-LU62-Generierung without use of TNSX

INSTANCE
 LOC-LU-ALIAS = T02CGEI4, (19)
 LOC-TSEL = T'SMP22804', (36)
 LOC-LISTENER-PORT = 22804, (37)
 LOC-APT = (1,2,3), (22)
 LOC-AEQ = 1, (23)
 REM-LU-ALIAS = CICST6, (20)
 MODENAME = MODDIS89, (5)
 LU62-CODE = EBCDIC-273,
 REM-TSEL = T'SMP22800', (29)
 REM-LISTENER-PORT = 102, (30)
 REM-NSEL = utmhost, (33)
 REM-APT = (1,2,4), (25)
 REM-AEQ = 1, (26)
 APPL-CONTEXT = UDTSEC, (27)
 ASSOCIATIONS = 15, (6)
 CONNECT = 4,
 CONTWIN = 5, (28)
 OSITP-CODE = ASCII

Generating an openUTM-CICS interconnection openUTM-CICS interconnection via LU6.2

94 U5461-J-Z135-6-76

TNSX generation

SMP22800.utmlu62\ (24)
 PSEL V’’ (31)
 SSEL V’’ (32)
 TA RFC1006 123.45.67.89 PORT 102 T’SMP22800’ (33),(29),(30)
SMP22804\ (21)
 PSEL V’’ (34)
 SSEL V’’ (35)
 TSEL RFC1006 T’SMP22804’ (36)
 TSEL LANINET A’22804’ (37)

BCAM generation

BCIN LC0090,IPADR=(123,45,67,90) (38),(39)
BCMAP FU=DEF, SUBFU=GLOBAL, ES=LC0090, -
 NAME=SMP22804, PPORT#=22804, PTSEL-I=’SMP22804’ (36),(37)

openUTM generation

ACCESS-POINT OSIREP8, - (40)
 P-SEL = *NONE, - (31)
 S-SEL = *NONE, - (32)
 T-SEL = SMP22800, - (29)
 AEQ = 1 (26)
OSI-CON SMP22804,
 P-SEL = *NONE, - (34)
 S-SEL = *NONE, - (35)
 T-SEL = C’SMP22804’, - (36)
 N-SEL = C’LC0090’, - (38)
 LOCAL-ACCESS-POINT = OSIREP8, - (40)
 OSI-LPAP = ACICS04 (41)

The openUTM generation is otherwise identical. All other sections of the sample generation
also remain unchanged.

openUTM-CICS interconnection via LU6.2 Generating an openUTM-CICS interconnection

U5461-J-Z135-6-76 95

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
4

Changes when using openUTM-LU62 under Windows systems:

When using openUTM-LU62 under Windows systems, only the TRANSIT generation is
changed. Since this openUTM variant uses the IBM Communications Server for Windows
instead of TRANSIT, the generation parameters must be defined in the syntax of the
Communications Server. Normally, the generation parameters are entered via menus. In
this way, the user can create a generation file (.acg) and select a name and storage
location. By default, this file is stored in the following directory:
<installation directory of IBM Communications Servers for Windows>\PRIVATE.

Generation of the IBM Communications Server for Windows

NODE=(
 ANYNET_SUPPORT=NONE
 COMPRESS_IN_SERIES=0
 CP_ALIAS=P02CGE (17)
 DEFAULT_PREFERENCE=NATIVE
 DISCOVERY_SUPPORT=DISCOVERY_CLIENT
 DLUR_SUPPORT=NORMAL
 FQ_CP_NAME=DESNI000.P02CGE (17),(43)
 MAX_LS_EXCEPTION_EVENTS=200
 NODE_ID=0172000E (11),(12)
 NODE_TYPE=END_NODE
 REGISTER_WITH_CDS=1
 REGISTER_WITH_NN=ALL
 TP_SECURITY_BEHAVIOR=VERIFY_EVEN_IF_NOT_DEFINED
)
PORT=(
 PORT_NAME=LAN0_04 (16)
 ACTIVATION_DELAY_TIMER=0
 DELAY_APPLICATION_RETRIES=1
 DLC_DATA=00000000000004
 DLC_NAME=LAN
 IMPLICIT_BRANCH_EXTENDER_LINK=0
 IMPLICIT_CP_CP_SESS_SUPPORT=1
 IMPLICIT_DEACT_TIMER=0
 IMPLICIT_DSPU_SERVICES=NONE
 IMPLICIT_HPR_SUPPORT=1
 IMPLICIT_LIMITED_RESOURCE=NO
 IMPLICIT_LINK_LVL_ERROR=0
 LINK_STATION_ROLE=NEGOTIABLE
 MAX_ACTIVATION_ATTEMPTS=0
 MAX_IFRM_RCVD=8
 MAX_RCV_BTU_SIZE=1033 (13)
 PORT_TYPE=SATF
 RETRY_LINK_ON_DISCONNECT=1
 RETRY_LINK_ON_FAILED_START=1

Generating an openUTM-CICS interconnection openUTM-CICS interconnection via LU6.2

96 U5461-J-Z135-6-76

 RETRY_LINK_ON_FAILURE=1
 PORT_LAN_SPECIFIC_DATA=(
 ACK_DELAY=100
 ACK_TIMEOUT=10000
 ADAPTER_NUMBER=0
 BUSY_STATE_TIMEOUT=15
 IDLE_STATE_TIMEOUT=30
 INB_LINK_ACT_LIM=128
 LOCAL_SAP=04
 MAX_RETRY=10
 OUTSTANDING_TRANSMITS=16
 OUT_LINK_ACT_LIM=127
 POLL_TIMEOUT=8000
 POOL_SIZE=32
 REJECT_RESPONSE_TIMEOUT=10
 TEST_RETRY_INTERVAL=8
 TEST_RETRY_LIMIT=5
 TOT_LINK_ACT_LIM=255
 XID_RETRY_INTERVAL=8
 XID_RETRY_LIMIT=5
)
)
LINK_STATION=(
 LS_NAME=P02CGE (17)
 ACTIVATE_AT_STARTUP=1
 ACTIVATION_DELAY_TIMER=-1
 ADJACENT_BRANCH_EXTENDER_NODE=PROHIBITED
 ADJACENT_NODE_TYPE=SUBAREA_LEN
 AUTO_ACTIVATE_SUPPORT=0
 BRANCH_EXTENDER_LINK=0
 CP_CP_SESS_SUPPORT=0
 DEFAULT_NN_SERVER=0
 DELAY_APPLICATION_RETRIES=1
 DEPENDENT_LU_COMPRESSION=0
 DEPENDENT_LU_ENCRYPTION=OPTIONAL
 DEST_ADDRESS=40003745000104 (18)
 DISABLE_REMOTE_ACT=0
 DSPU_SERVICES=NONE
 FQ_ADJACENT_CP_NAME=DESNI000.M88 (10),(43)
 HPR_LINK_LVL_ERROR=0
 HPR_SUPPORT=0
 INHERIT_PORT_RETRY_PARMS=1
 LIMITED_RESOURCE=NO
 LINK_DEACT_TIMER=0
 LINK_STATION_ROLE=USE_ADAPTER_DEFAULTS
 MAX_ACTIVATION_ATTEMPTS=-1
 MAX_IFRM_RCVD=0
 MAX_SEND_BTU_SIZE=1033 (13)

openUTM-CICS interconnection via LU6.2 Generating an openUTM-CICS interconnection

U5461-J-Z135-6-76 97

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
4

 NODE_ID=0172000E (11),(12)
 PORT_NAME=LAN0_04 (16)
 RETRY_LINK_ON_DISCONNECT=1
 RETRY_LINK_ON_FAILED_START=1
 RETRY_LINK_ON_FAILURE=1
 REVERSE_ADDRESS_BYTES=0
 SOLICIT_SSCP_SESSION=0
 TG_NUMBER=0
 USE_DEFAULT_TG_CHARS=1
 USE_PU_NAME_IN_XID=0
)
DLUR_DEFAULTS=(
 DEFAULT_PU_NAME=P02CGE (17)
 DLUS_RETRY_LIMIT=3
 DLUS_RETRY_TIMEOUT=5
)
LOCAL_LU=(
 LU_NAME=T02CGEI4 (4)
 PORT_NAME=LAN0_04 (16)
 DEFAULT_POOL=0
 LU_ALIAS=T02CGEI4 (19)
 LU_SESSION_LIMIT=100 (6)
 NAU_ADDRESS=0
 ROUTE_TO_CLIENT=0
 SYNCPT_SUPPORT=1
)
MODE=(
 MODE_NAME=MODDIS89 (5)
 AUTO_ACT=5
 COMPRESS_IN_SERIES=0
 COMPRESSION=PROHIBITED
 COS_NAME=#CONNECT
 ENCRYPTION_SUPPORT=NONE
 DEFAULT_RU_SIZE=1
 MAX_INCOMING_COMPRESSION_LEVEL=NONE
 MAX_NEGOTIABLE_SESSION_LIMIT=128
 MAX_OUTGOING_COMPRESSION_LEVEL=NONE
 MAX_RU_SIZE_UPPER_BOUND=4096 (7)
 MIN_CONWINNERS_SOURCE=5
 PLU_MODE_SESSION_LIMIT=15 (6)
 RECEIVE_PACING_WINDOW=1
)

Generating an openUTM-CICS interconnection openUTM-CICS interconnection via LU6.2

98 U5461-J-Z135-6-76

MODE=(
 MODE_NAME=SNASVCMG
 AUTO_ACT=0
 COMPRESS_IN_SERIES=0
 COMPRESSION=PROHIBITED
 COS_NAME=SNASVCMG
 ENCRYPTION_SUPPORT=NONE
 DEFAULT_RU_SIZE=0
 MAX_INCOMING_COMPRESSION_LEVEL=NONE
 MAX_NEGOTIABLE_SESSION_LIMIT=2
 MAX_OUTGOING_COMPRESSION_LEVEL=NONE
 MAX_RU_SIZE_UPPER_BOUND=512
 MIN_CONWINNERS_SOURCE=1
 PLU_MODE_SESSION_LIMIT=2
 RECEIVE_PACING_WINDOW=1
)
PARTNER_LU=(
 FQ_PLU_NAME=DESNI000.A9CICST6 (3),(43)
 ADJACENT_CP_NAME=DESNI000.M88 (10),(43)
 CONV_SECURITY_VERIFICATION=1
 MAX_MC_LL_SEND_SIZE=32767
 PARALLEL_SESSION_SUPPORT=1
 PARTNER_LU_ALIAS=CICST6 (20)
 PREFERENCE=USE_DEFAULT_PREFERENCE
)
ADJACENT_NODE=(
 FQ_CP_NAME=DESNI000.M88 (10),(43)
 LU_ENTRY=(
 WILDCARD_LU=0
 FQ_LU_NAME=DESNI000.A9CICST6 (3),(43)
)
)
SPLIT_STACK=(
 POOL_NAME=<None>
 STARTUP=1
)
SHARED_FOLDERS=(
 EXTENSION_LIST=(
)
 CACHE_SIZE=256
)
VERIFY=(
 CFG_MODIFICATION_LEVEL=12
 CFG_VERSION_LEVEL=1
 CFG_LAST_SCENARIO=20
)

openUTM-CICS interconnection via LU6.2 Generating an openUTM-CICS interconnection

U5461-J-Z135-6-76 99

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
4

Change when using SNAP-IX, IBM Communications Server for Linux or IBM
Communications Server for AIX

When SNAP-IX, IBM Communications Server for Linux or IBM Communications Server for
AIX are used instead of TRANSIT, generation parameters must be defined in the syntax of
this product.

Generation of SNAP-IX or IBM Communications Server for Linux or IBM
Communications Server for AIX

[define_node_config_file]
major_version = 5
minor_version = 1
update_release = 1
revision_level = 47

[define_node]
cp_alias = P02CGE (17)
description = SNAP-IX Knoten
fqcp_name = DESNI000.P02CGE (17),(43)
node_type = LEN_NODE
mode_to_cos_map_supp = YES
mds_supported = YES
node_id = <0172000E> (11),(12)
max_locates = 1500
dir_cache_size = 255
max_dir_entries = 0
locate_timeout = 0
reg_with_nn = YES
reg_with_cds = YES
mds_send_alert_q_size = 100
cos_cache_size = 24
tree_cache_size = 40
tree_cache_use_limit = 40
max_tdm_nodes = 0
max_tdm_tgs = 0
max_isr_sessions = 1000
isr_sessions_upper_threshold = 900
isr_sessions_lower_threshold = 800
isr_max_ru_size = 16384
isr_rcv_pac_window = 8
store_endpt_rscvs = NO
store_isr_rscvs = NO
store_dlur_rscvs = NO
cos_table_version = VERSION_0_COS_TABLES
send_term_self = NO
disable_branch_awareness = NO

Generating an openUTM-CICS interconnection openUTM-CICS interconnection via LU6.2

100 U5461-J-Z135-6-76

cplu_syncpt_support = YES
cplu_attributes = NONE
dlur_support = NO
pu_conc_support = YES
nn_rar = 128
max_ls_exception_events = 0
ptf_flags = NONE

[define_ethernet_dlc]
dlc_name = ETHER0
description = ""
neg_ls_supp = YES
initially_active = NO
adapter_number = 0
lan_type = 802_3_DIX

[define_ethernet_port]
port_name = ETSAP04 (16)
description = ""
dlc_name = ETHER0
port_type = PORT_SATF
port_number = 0
max_rcv_btu_size = 1033 (13)
tot_link_act_lim = 64
inb_link_act_lim = 0
out_link_act_lim = 0
ls_role = LS_NEG
implicit_dspu_services = NONE
implicit_dspu_template = ""
implicit_ls_limit = 0
act_xid_exchange_limit = 9
nonact_xid_exchange_limit = 5
ls_xmit_rcv_cap = LS_TWS
max_ifrm_rcvd = 7
target_pacing_count = 7
max_send_btu_size = 1033 (13)
mac_address = <000000000000>
lsap_address = 0x04
implicit_cp_cp_sess_support = NO
implicit_limited_resource = NO
implicit_deact_timer = 30
implicit_hpr_support = NO
implicit_link_lvl_error = NO
implicit_uplink_to_en = NO
effect_cap = 3993600
connect_cost = 0
byte_cost = 0
security = SEC_NONSECURE

openUTM-CICS interconnection via LU6.2 Generating an openUTM-CICS interconnection

U5461-J-Z135-6-76 101

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
4

prop_delay = PROP_DELAY_LAN
user_def_parm_1 = 128
user_def_parm_2 = 128
user_def_parm_3 = 128
initially_active = YES
window_inc_threshold = 1
test_timeout = 10
test_timer_retry = 5
xid_timer = 10
xid_timer_retry = 5
ack_timeout = 5000
p_bit_timeout = 5000
t2_timeout = 100
rej_timeout = 10
busy_state_timeout = 30
idle_timeout = 30
max_retry = 3

[define_ethernet_ls]
ls_name = M88
description = IBM-Host Muenchen
port_name = ETSAP04 (16)
adj_cp_name = DESNI000.M88 (10),(43)
adj_cp_type = END_NODE
mac_address = <400037450001> (18)
lsap_address = 0x04
auto_act_supp = NO
tg_number = 0
limited_resource = NO
solicit_sscp_sessions = NO
pu_name = <0000000000000000>
disable_remote_act = NO
default_nn_server = NO
dspu_services = NONE
dspu_name = <0000000000000000>
dlus_name = <0000000000000000000000000000000000>
bkup_dlus_name = <0000000000000000000000000000000000>
hpr_supported = NO
hpr_link_lvl_error = NO
link_deact_timer = 30
use_default_tg_chars = YES
ls_attributes = SNA
local_node_id = <00000000>
cp_cp_sess_support = NO
effect_cap = 3993600
connect_cost = 0
byte_cost = 0
security = SEC_NONSECURE

Generating an openUTM-CICS interconnection openUTM-CICS interconnection via LU6.2

102 U5461-J-Z135-6-76

prop_delay = PROP_DELAY_LAN
user_def_parm_1 = 128
user_def_parm_2 = 128
user_def_parm_3 = 128
target_pacing_count = 7
max_send_btu_size = 1033 (13)
ls_role = USE_PORT_DEFAULTS
max_ifrm_rcvd = 0
dlus_retry_timeout = 0
dlus_retry_limit = 0
branch_link_type = NONE
adj_brnn_cp_support = ALLOWED
dddlu_offline_supported = NO
initially_active = YES
restart_on_normal_deact = NO
react_timer = 30
react_timer_retry = 65535
test_timeout = 10
test_timer_retry = 5
xid_timer = 10
xid_timer_retry = 5
ack_timeout = 5000
p_bit_timeout = 5000
t2_timeout = 100
rej_timeout = 10
busy_state_timeout = 30
idle_timeout = 30
max_retry = 3

[define_partner_lu]
plu_alias = ""
description = (Auto defined - default LU)
fqplu_name = DESNI000.M88 (10),(43)
plu_un_name = <0000000000000000>
parallel_sess_supp = YES
max_mc_ll_send_size = 0
conv_security_ver = NO

[define_partner_lu]
plu_alias = CICST6 (20)
description = ""
fqplu_name = DESNI000.A9CICST6 (3),(43)
plu_un_name = A9CICST6 (3)
parallel_sess_supp = YES
max_mc_ll_send_size = 0
conv_security_ver = NO

openUTM-CICS interconnection via LU6.2 Generating an openUTM-CICS interconnection

U5461-J-Z135-6-76 103

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
4

[define_local_lu]
lu_alias = T02CGEI4 (19)
list_name = ""
description = ""
lu_name = T02CGEI4 (4)
lu_session_limit = 100 (6)
pu_name = <0000000000000000>
nau_address = 0
default_pool = NO
syncpt_support = YES
lu_attributes = NONE
sscp_id = 0
disable = NO
sys_name = ""
timeout = 60
back_level = NO

[define_mode]
mode_name = MODDIS89 (5)
description = ""
max_neg_sess_lim = 100
plu_mode_session_limit = 15 (6)
min_conwin_src = 1
min_conloser_src = 0
auto_act = 0
receive_pacing_win = 4
max_receive_pacing_win = 0
default_ru_size = YES
max_ru_size_upp = 4096 (7)
max_ru_size_low = 0
cos_name = #CONNECT

[define_directory_entry]
resource_name = DESNI000.M88 (10),(43)
resource_type = ENCP_RESOURCE
description = (Auto defined - remote node)
parent_name = <0000000000000000000000000000000000>
parent_type = ENCP_RESOURCE

[define_directory_entry]
resource_name = DESNI000.M88 (10),(43)
resource_type = LU_RESOURCE
description = (Auto defined - default LU)
parent_name = DESNI000.M88 (10),(43)
parent_type = ENCP_RESOURCE

Generating an openUTM-CICS interconnection openUTM-CICS interconnection via LU6.2

104 U5461-J-Z135-6-76

[define_directory_entry]
resource_name = DESNI000.A9CICST6 (3),(43)
resource_type = LU_RESOURCE
description = ""
parent_name = DESNI000.M88 (10),(43)
parent_type = ENCP_RESOURCE

Parameters that must match

The essential parameters in this example are:

Detailed explanation:

(1) If a CICS program wants to address a UTM application, then it must use the
connection name defined in CICS in the SYSID parameter of the EXEC CICS
ALLOCATE command. Additionally, a session must be defined in CICS that refers
to this connection.

(2) Secondly, the CICS program must specify the transaction code of the UTM appli-
cation program in the EXEC CICS CONNECT PROCESS command in the
PROCNAME parameter.

(3) The APPLID name generated for CICS is the LU name of the CICS. It must be
specified together with the network ID generated in VTAM in the TRANSIT gener-
ation for XRLU or in the definition of the partner LU in SNAP-IX or the IBM Commu-
nications Server generation.

Parameter CICS host openUTM-LU62
UNIX system

openUTM
end system

LU name DESNI000.A9CICST6 DESNI000.T02CGEI4

LU alias name CICST6 T02CGEI4

CP name DESNI000.M88 DESNI000.P02CGE

IDBLK/IDNUM 017 2000E

MAC address 400037450001 40002222000E

MODE name MODDIS89

IP address 123.45.67.90 123.45.67.89

T selector SMP22804 SMP22800

Port number 22804 22800

AP title (1,2,3) (1,2,4)

AE qualifier 1 1

APPL context UDTSEC

openUTM-CICS interconnection via LU6.2 Generating an openUTM-CICS interconnection

U5461-J-Z135-6-76 105

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
4

(4) The LU name of the substitute LU must be specified in the LU macro in VTAM, in
the connection definition in CICS, in the XLU statement in TRANSIT, and in the def-
inition of the local LU in SNAP-IX or the IBM Communications Server. In TRANSIT,
the network ID must also be specified here. If you are using SNAP-IX or the IBM
Communications Server and you wish to work with transaction management, syn-
cpoint support must be generated in SNAP-IX or the IBM Communications Server
in the definition of the local LU.

When Enterprise Extender is used, the definition of the LU name in VTAM is not re-
quired.

(5) A mode name must be agreed between VTAM, CICS, and the system on which
openUTM-LU62 runs. This mode name must be specified in VTAM, in the connec-
tion definition of CICS, in the XMODE and XLU statements in TRANSIT (or in the
MODE definition of SNAP-IX or the IBM Communications Server) and in the
openUTM-LU62 generation.

(6) The number of LU6.2 sessions between CICS and openUTM-LU62 and the maxi-
mum number of parallel connections that may be established between openUTM-
LU62 and the UTM application must be specified. These two values should be iden-
tical to avoid deadlock situations. The maximum number of sessions must be en-
tered for the session definition in CICS, the XMODE statements in TRANSIT, and
the MODE definition of SNAP-IX or the IBM Communications Server. The maximum
number of parallel connections must be specified in the openUTM-LU62 generation
and the openUTM generation using the parameter ASSOCIATIONS in both cases.

In TRANSIT-SERVER, a session limit must be specified for XLU. This must also be
specified in the definition of the local LU in SNAP-IX or the IBM Communications
Server. This session limit should be at least 2 sessions greater than the maximum
number of sessions specified above.

(7) The maximum RU size must be agreed between CICS, VTAM, and TRANSIT (or
SNAP-IX or the IBM Communications Server). It must be specified for CICS in the
session definition and for VTAM, TRANSIT, SNAP-IX and the IBM Communications
Server in the mode definition. You should the default value 4096 here whenever
possible (see also the section “DEFINE SESSIONS” on page 80).

(8) If the UTM application is to initiate a CICS program, then this program must be
informed of CICS in a program definition. Additionally, a transaction definition must
refer to the program name in CICS.

(9) The CICS transaction code assigned to this CICS program must be specified in a
transaction definition by CICS. In order for the UTM application to be able to access
the program, an LTAC statement must appear in the openUTM generation with the
CICS transaction code used as an RTAC parameter.

Generating an openUTM-CICS interconnection openUTM-CICS interconnection via LU6.2

106 U5461-J-Z135-6-76

(10) In the VTAM start options, the SSCPNAME parameter is used to generate the CP
name of the host system. This CP name must also be generated in SNAP-IX or the
IBM Communications Server, but need not be specified in TRANSIT.

(11), (12)
If the SNA connection is implemented via ethernet, then the IDBLK and IDNUM
parameters must be defined by VTAM and TRANSIT (or SNAP-IX or the IBM
Communications Server).

(13) The maximum frame size in communication with SNA via Ethernet must also be
agreed between VTAM and TRANSIT (or SNAP-IX or the IBM Communications
Server. If the generation parameters do not match, the two partners sometimes
agree on the lesser of the two values.

(14) The MAC address of the system running openUTM-LU62 must be specified in
VTAM.

(15) The name of a mode table is used in the VTAM logon mode table. This name must
be specified for the mode definition and for the LU definition.

(16) A link name must be assigned to the SNA ethernet connection within TRANSIT.
This name must be specified in the XLINK and XPU statements. In SNAP-IX or the
IBM Communications Server, the port name is used instead.

(17) A PU name must be assigned to the partner system on which the CICS runs within
TRANSIT. The name must be specified in the XPU and XRLU statements. You
usually select a name that is identical to the PU name in VTAM. In the case of
SNAP-IX and IBM Communications Server, the PU name must be entered as the
CP name for the node definition.

(18) The MAC address used to reach the SNA host must be specified in TRANSIT or
SNAP-IX or the IBM Communications Server.

(19) The substitute LU receives an LU alias name in TRANSIT or SNAP-IX or the IBM
Communications Server. This name must not be identical to the LU name defined
for (4). It must be specified in the openUTM-LU62 generation.

(20) The CICS system receives an LU alias name in TRANSIT or SNAP-IX or the IBM
Communications Server. This name must not be identical to the LU name defined
for (3). It must be specified for TRANSIT in the XLU and XRLU statements, for
SNAP-IX or the IBM Communications Server in the definition of the partner LU, and
for the openUTM-LU62 generation in the REM-LU-ALIAS parameter.

(21) Only when using TNSX.
The substitute AE of openUTM-LU62 must be defined in the openUTM-LU62 gener-
ation and in the TNSX.

openUTM-CICS interconnection via LU6.2 Generating an openUTM-CICS interconnection

U5461-J-Z135-6-76 107

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
4

(22), (23)
An application process title and an application entity qualifier must be specified for
the substitute AE. Both are to be specified in the openUTM-LU62 generation and in
the openUTM generation.

(24) Only when using TNSX.
The AE used by the UTM application must be defined in the openUTM-LU62 gener-
ation and in the TNSX.

(25), (26)
An application process title and an application entity qualifier must be specified for
the UTM application. Both are to be specified in the openUTM-LU62 generation and
in the openUTM generation. The UTM application and the substitute AE must have
different application process titles. The application entity qualifier can be identical in
both, however.

(27) An application context must be defined in openUTM-LU62 and in the UTM appli-
cation. It is recommended to use the default value UDTSEC for this purpose. If
UDTAC is used, in the case of TRANSIT the third and fourth parameters for
PAIR_EXT must be set to NONE. When UDTAC is used, no distributed transactions
are possible. Other values are not permissible.

(28) The parallel connections available between openUTM-LU62 and the UTM appli-
cation must be separated into contention winner and contention loser connections
by the generation. When added together, the CONTWIN values from the openUTM-
LU62 generation and openUTM generation should result in the generated number
of parallel connections.

(29), (30)
The T-selector and the port number of the UTM application’s access point must also
be entered in TNSX entry or directly in the openUTM-LU62 generation (24). This
establishes the connection between openUTM-LU62 and the UTM application via
CMX.

(31), (32)
According to the ISO protocol convention, an S-selector and a P-selector must be
assigned for the AE used by the UTM application. The S-selectors and P-selectors
must be specified in the TNSX and in the openUTM generation. It is recommended
to use empty S-selectors and P-selectors.
If no TNSX is used S- and P-selector are always empty.

Generating an openUTM-CICS interconnection openUTM-CICS interconnection via LU6.2

108 U5461-J-Z135-6-76

(33) The host name of the system running the UTM application must be entered

– In TNSX as IP address for the name used in the openUTM-LU62 generation for
REM-AE or

– directly in the openUTM-LU62 generation as host name in DNS (or in
/etc/hosts).

If openUTM-LU62 and the UTM application run on the same computer, you can use
localhost here.

(34), (35)
According to the ISO protocol convention, an S-selector and a P-selector must be
assigned for the substitute AE. The S-selectors and P-selectors must be specified
in the TNSX and in the openUTM generation. It is recommended to use empty
S-selectors and P-selectors.
If no TNSX is used S- and P-selector are always empty.

(36) The T-selector of the substitute AE must be entered

– in the TNSX or

– directly in the openUTM-LU62 generation and

– in the OSI-CON statement of the UTM generation.

(37) The port number of the substitute AE must be entered

– in the TNSX or

– directly in the openUTM-LU62 generation and

– and in the OSI-CON statement of the UTM generation.

A separate port number must be assigned for each instance of openUTM-LU62.

(38) In the OSI-CON statement of the UTM generation, the name of the computer on
which openUTM-LU62 is running must be entered. On UNIX systems, this is gen-
erally the DNS host name (e.g. local for your own computer), on BS2000/OSD the
BCAM name.

(39) The IP address of the computer on which openUTM-LU62 is running is generally
entered in DNS. When using openUTM under BS2000/OSD, the IP address is en-
tered using the BCIN command.

(40) The AE used by the UTM application receives a symbolic name in the openUTM
generation. This name appears at two different locations in the openUTM gener-
ation.

openUTM-CICS interconnection via LU6.2 Generating an openUTM-CICS interconnection

U5461-J-Z135-6-76 109

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
4

(41) The substitute AE, and therefore the CICS system, receive a symbolic name in
openUTM, the LPAP name. This name is generated in the openUTM generation
with an OSI-LPAP statement. The OSI-CON statement must refer to this name. If a
CICS program is to be addressed by the UTM application, then this name must also
be specified in an LTAC statement or in the UTM program in the APRO call.

(42) If a CICS program is to be addressed in the UTM application, then the openUTM
generation must contain a corresponding LTAC statement that refers to the CICS
system and the transaction code there using the parameters LPAP and RTAC. The
UTM application program must use this LTAC name in APRO. In addition, the LPAP
name can also be specified with the APRO call.

(43) The network ID of the SNA network is defined in the starting parameters of VTAM.
This name must also be specified at several points for TRANSIT or SNAP-IX or IBM
Communications Server.

Programming an openUTM-CICS interconnection openUTM-CICS interconnection via LU6.2

110 U5461-J-Z135-6-76

4.2 Programming an openUTM-CICS interconnection

LU6.2 communication between CICS and openUTM can only be programmed for CICS with
the help of DTP (Distributed Transaction Processing). Asynchronous processing using
START and RETRIEVE is not possible with LU6.2.

CICS programs are usually programmed with CICS commands of the type:

EXEC CICS command option

The most important CICS commands for LU6.2 communication are described in the
following sections. The CPI-C calls can also be used instead of the usual CICS commands.
The use of this interface is also described starting on page 153 because CPI-C is also an
important program interface for LU6.2 communication in a non-CICS environment.

The following commands are available for CICS for LU6.2 communication:

– ALLOCATE
– CONNECT PROCESS
– CONVERSE
– EXTRACT ATTRIBUTES
– EXTRACT PROCESS
– FREE
– ISSUE ABEND
– ISSUE CONFIRMATION
– ISSUE ERROR
– ISSUE PREPARE
– ISSUE SIGNAL
– RECEIVE
– SEND
– SYNCPOINT
– SYNCPOINT ROLLBACK
– WAIT CONVID

There are several variants for many of these commands. The LU6.2 variant is always desig-
nated using APPC in the CICS manuals, for example SEND (APPC).

Similar to CICS, there are several program interfaces to choose from for openUTM. The
following description usually assumes that the UTM applications are programmed using
KDCS. However, CPI-C is also discussed further below.

openUTM-CICS interconnection via LU6.2 Programming an openUTM-CICS interconnection

U5461-J-Z135-6-76 111

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
4

4.2.1 CICS commands for CICS job-submitter services

ALLOCATE

An ACICS job-submitting service attempts to allocate a session for a job-receiving service
with this command.

The command has the following syntax.

EXEC CICS ALLOCATE SYSID(name)
 [PROFILE(name)]
 [NOQUEUE]

SYSID(name)
Designates the name of the remote UTM application as it has been defined in a
connection definition.

PROFILE(name)
Designates a specific profile for communication with the partner. Profiles are
specified using CICS definitions. The PARTNER parameter can also be specified
instead of SYSID and PROFILE. This partner must then be created using a CICS
definition.

NOQUEUE
This means that the program should not wait if there is no session available immedi-
ately.

CICS returns a CONVID in the EIBRSRCE field after a successful ALLOCATE command.
This CONVID must be specified in all the following calls that refer to the session allocated
here.

Programming an openUTM-CICS interconnection openUTM-CICS interconnection via LU6.2

112 U5461-J-Z135-6-76

CONNECT PROCESS

The LU6.2 starts a conversation with this command.

The command has the following syntax:

EXEC CICS CONNECT PROCESS CONVID(name)
 PROCNAME(data_area)
 PROCLENGTH(data_value)
 SYNCLEVEL(data_value)

CONVID(name)
Designates the session allocated by ALLOCATE.

PROCNAME(data_area) and PROCLENGTH(data_value)
Designates the UTM transaction code.

SYNCLEVEL(data_value)
Designates the synchronization level of the LU6.2 protocol. The parameter corre-
sponds to the KCOF field in the UTM call APRO.
0 corresponds to KCOF=B (base functions),
1 corresponds to KCOF=H (handshake functions)
2 corresponds to KCOF=C (commit functions).

It is not possible to use the PIPLIST and PIPLENGTH parameters to send PIP data
(program initialization parameter data).

openUTM-CICS interconnection via LU6.2 Programming an openUTM-CICS interconnection

U5461-J-Z135-6-76 113

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
4

SEND

This command sends a dialog message segment.

The command has the following syntax:

EXEC CICS SEND CONVID(name)
 FROM(data_area)
 LENGTH(data_value)
 [{ INVITE | LAST }]
 [{ CONFIRM | WAIT }]

CONVID(name)
Designates the session allocated by ALLOCATE.

FROM(data_area) and LENGTH(data_value)
Designates the address and the length of the message.

INVITE
Initiates the transmission of the send authorization (change direction) to the partner
when the message is sent. The arrival of the send authorization is interpreted by
openUTM as the end of the dialog message from the partner. The UTM application
program is able to recognize this when it receives the return code 10Z from the next
MGET.

LAST Initiates the termination of the service after the message has been sent. The UTM
application program recognizes this when KCVGST=C.

CONFIRM
Initiates the request to send a processing acknowledge from the UTM application
program after the message has been sent. The UTM application program recog-
nizes this when KCRMGT=H. The parameter may only be specified for sync-levels
1 or 2.

WAIT Only allows the CICS command to return after CICS has actually sent the message.
If a SYNCPOINT command follows the SEND command, then you should not use
this parameter.

Programming an openUTM-CICS interconnection openUTM-CICS interconnection via LU6.2

114 U5461-J-Z135-6-76

RECEIVE

This command is used to receive a message sent by a UTM service.

The command has the following syntax:

EXEC CICS RECEIVE CONVID(name)
 INTO(data_area)
 LENGTH(data_value)
 [MAXLENGTH(data_value)]
 [NOTRUNCATE]

CONVID(name)
 Designates the session allocated by ALLOCATE.

INTO(data_area) and MAXLENGTH(data_value)
Designates the address and length of the buffer used to input the message.

LENGTH(data_value)
CICS returns the length of the message received in LENGTH.

NOTRUNCATE
The rest of the message is not transmitted unless it is shorter than MAXLENGTH.
If NOTRUNCATE is not specified, a message with a length of up to MAXLENGTH
is delivered. The rest is rejected. If NOTRUNCATE is specified, other parts can be
requested with RECEIVE.

CONVERSE

This command causes a message to be sent to the partner and the program to wait for the
reply. This command has the same effect as the command list SEND INVITE, RECEIVE.

The command has the following syntax:

EXEC CICS CONVERSE CONVID(name)
 FROM(data_area)
 FROMLENGTH(data_value)
 INTO(data_area)
 TOLENGTH(data_value)
 [MAXLENGTH(data_value)]
 [NOTRUNCATE]

The parameters mean the same as for the SEND and RECEIVE commands.

openUTM-CICS interconnection via LU6.2 Programming an openUTM-CICS interconnection

U5461-J-Z135-6-76 115

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
4

ISSUE ABEND

The service for the UTM application program is terminated abnormally with this command.
The call corresponds to the UTM call CTRL AB.

The command has the following syntax:

EXEC CICS ISSUE ABEND CONVID(name)

CONVID(name)
Designates the session allocated by ALLOCATE.

ISSUE CONFIRMATION

A positive processing acknowledge is sent to the UTM application program with this
command. The command is only allowed when sync-level 1 or 2 has been set and the UTM
application program has requested a processing acknowledge. The UTM application
program recognizes the arrival of the processing acknowledge when KCRMGT=C.

The command has the following syntax:

EXEC CICS ISSUE CONFIRMATION CONVID(name)

CONVID(name)
Designates the session allocated by ALLOCATE.

ISSUE ERROR

An error message or a negative processing acknowledge is sent to the UTM application
program with this command. The UTM application program receives KCRMGT=E for
MGET.

The command has the following syntax:

EXEC CICS ISSUE ERROR CONVID(name)

CONVID(name)
Designates the session allocated by ALLOCATE.

Programming an openUTM-CICS interconnection openUTM-CICS interconnection via LU6.2

116 U5461-J-Z135-6-76

SYNCPOINT

All job-receiver services are requested to initiate the end of the transaction with this
command. The command is only allowed for sync-level 2. The UTM application program
recognizes this when KCTAST=P for MGET.

The command has the following syntax:

EXEC CICS SYNCPOINT

SYNCPOINT ROLLBACK

The transaction is rolled back with this command. The command is only allowed for sync-
level 2. The UTM application program recognizes the rolling back of the transaction when
KCTAST=R for MGET.

The command has the following syntax:

EXEC CICS SYNCPOINT ROLLBACK

ISSUE PREPARE

The partners are requested to initiate the end of the transaction with this command. The
command is only allowed for sync-level 2.

The command has the following syntax:

EXEC CICS ISSUE PREPARE CONVID(name)

CONVID(name)
Designates the session allocated by ALLOCATE.

ISSUE PREPARE is only different from SYNCPOINT in that only one of several possible
job-receiving services is requested to initiate the end of transaction. The ISSUE PREPARE
must be followed later on by SYNCPOINT or SYNCPOINT ROLLBACK.

For CICS-CICS interconnection, the job-receiving service can still issue any errors after
ISSUE PREPARE using ISSUE ERROR and allow the job-submitter to decide whether it
should execute a SYNCPOINT or a SYNCPOINT ROLLBACK. A UTM application,
however, cannot issue a call corresponding to ISSUE ERROR, rather it can only reply with
a PEND variant. The decision on whether to end the transaction or roll back the transaction
is then made by the UTM application program after ISSUE PREPARE has been called.

openUTM-CICS interconnection via LU6.2 Programming an openUTM-CICS interconnection

U5461-J-Z135-6-76 117

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
4

FREE

The command releases a session allocated by ALLOCATE.

The command has the following syntax:

EXEC CICS FREE CONVID(name)

CONVID(name)
Designates the session allocated by ALLOCATE.

WAIT CONVID

The command ensures that data created before using CONNECT PROCESS or SEND are
actually sent.

The command has the following syntax:

EXEC CICS WAIT CONVID(name)

CONVID(name)
Designates the session allocated by ALLOCATE.

ISSUE SIGNAL

The command sends a request to the UTM application program to release its send autho-
rization. This command does not affect a connection to openUTM because the UTM appli-
cation program is not informed of the arrival of such a request.

Programming an openUTM-CICS interconnection openUTM-CICS interconnection via LU6.2

118 U5461-J-Z135-6-76

4.2.2 CICS commands for CICS job-receiving services

EXTRACT PROCESS

The command is used to query the parameters set in the UTM application program using
APRO.

The command has the following syntax:

EXEC CICS EXTRACT PROCESS [PROCNAME(data_area)]
 [MAXPROCLENGTH(data_value)]
 [PROCLENGTH(data_value)]
 [SYNCLEVEL(data_area)]

PROCNAME(data_area), MAXPROCLENGTH(data_value) and
PROCLENGTH(data_value)

Queries the CICS transaction code set by the UTM application program for APRO
in the KCRN parameter.

SYNCLEVEL(data_area)
Queries the synchronization level of the LU6.2 protocol set by the UTM application
program for APRO in the KCOF parameter.
0 corresponds to KCOF=B (base functions),
1 corresponds to KCOF=H (handshake functions)
2 corresponds to KCOF=C (commit functions)

RECEIVE

This command is used to receive a message sent by a UTM job-submitting service.

The syntax and meaning are the same as for job-submitting services. However, CONVID
does not have to be specified when reading the message from the job submitter.

SEND

This command sends a dialog message segment.

The syntax and meaning are the same as for job-submitting services. However, CONVID
does not have to be specified when sending to the job submitter.

openUTM-CICS interconnection via LU6.2 Programming an openUTM-CICS interconnection

U5461-J-Z135-6-76 119

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
4

CONVERSE

This command causes a message to be sent to the partner sent and the program to wait
for the reply. This command has the same effect as the command list SEND INVITE,
RECEIVE.

The syntax and meaning are the same as for job-submitting services.

ISSUE ABEND

The service for the UTM application program is terminated abnormally with this command.

The syntax and meaning are the same as for job-submitting services. However, CONVID
does not have to be specified for ISSUE ABEND to the UTM job-submitting service.

ISSUE CONFIRMATION

A positive processing acknowledge is sent to the UTM application program with this
command.

The syntax and meaning are the same as for job-submitting services. However, CONVID
does not have to be specified for ISSUE CONFIRMATION to the UTM job-submitting
service.

ISSUE ERROR

An error message or a negative processing acknowledge is sent to the UTM application
program with this command.

If the CICS job-receiving program calls ISSUE ERROR when it is requested to initiate the
end of transaction by the UTM application program, then this leads to the rolling back of the
transaction.

The syntax and meaning are the same as for job-submitting services. However, CONVID
does not have to be specified for ISSUE ERROR to the UTM job-submitting service.

Programming an openUTM-CICS interconnection openUTM-CICS interconnection via LU6.2

120 U5461-J-Z135-6-76

SYNCPOINT

The end of transaction is initiated upon the request of the job-submitter with this command.

It is important for an interconnection to openUTM that a CICS program only uses
SYNCPOINT when the UTM application program has requested it to do so before it has
requested the initiation of the end of the transaction. The CICS program can recognize if it
has been requested to initiate the end of transaction in the STATE parameter or in the
EIBSYNC field of every CICS command. STATE must then assume one of the values
SYNCFREE, SYNCRECEIVE or SYNCSEND. EIBSYNC must assume the value X’FF’.

The syntax is the same as for job-submitting services.

SYNCPOINT ROLLBACK

The transaction is rolled back with this command.

The syntax and meaning are the same as for job-submitting services.

FREE

The command releases the session to the job-submitting service.

The syntax and meaning are the same as for job-submitting services. However, CONVID
may not be specified for a job-submitting service.

WAIT CONVID

The command ensures that data sent before using SEND is actually sent.

The syntax and meaning are the same as for job-submitting services.

ISSUE SIGNAL

As described for job-submitting services, this command is not to be used.

ISSUE PREPARE

The command must not be issued in a job-submitting service.

openUTM-CICS interconnection via LU6.2 Programming an openUTM-CICS interconnection

U5461-J-Z135-6-76 121

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
4

RETURN

the RETURN command triggers the sending of any messages not yet sent by sending a
security request to the partner and also triggers the release of the session afterwards. The
RETURN command may only be used when the openUTM job-submitting service has
already issued a CTRL PE or PEND FI (EIBFREE indicator in the EIB) or after the CICS
program has abnormally terminated the service using ISSUE-ABEND.

The command has the following syntax:

EXEC CICS RETURN

Programming an openUTM-CICS interconnection openUTM-CICS interconnection via LU6.2

122 U5461-J-Z135-6-76

4.2.3 CICS programming hints

There are also several restrictions in the scope of the functionality for openUTM-CICS inter-
connection as compared to the functionality normally available for LU6.2 interconnections.

1. The LU6.2 communication between CICS and openUTM can only be programmed with
the help of DTP (distributed transaction processing) with CICS. Asynchronous process-
ing by means of START and RETRIEVE or a distributed program link by means of
EXEC CICS LINK is not possible with openUTM-LU62.

2. A CICS application program as the job submitter can never use SYNCPOINT or ISSUE
PREPARE independently. It can only do this when requested to do so by the UTM ap-
plication program.

3. Basic conversation is not possible. Basic conversation is programmed for CICS using
commands that begin with GDS, such as EXEC CICS GDS ALLOCATE, for example.

4. If the CICS job-receiving program calls ISSUE ERROR when it has been requested to
initiate the end of the transaction by the UTM application program, then the transaction
is rolled back.

5. PIP data cannot be used for CONNECT Process. The data is lost.

6. It is not possible to use different mode names for different connections to the same
partner. The mode name is set in the session definition for CICS/ESA V4.1 and can
therefore be selected implicitly in the program interface via the SYSID parameter in the
ALLOCATE call.

7. If an LU6.2 conversation to openUTM-LU62 cannot be opened because openUTM-
LU62 cannot establish the corresponding connection to the UTM application, then CICS
does not receive a detailed rejection message. The detailed rejection messages can
only be found in the openUTM-LU62 protocol file.

8. If the generation parameter UTM-ASYNC=YES is set, openUTM-LU62 LU6.2 always
establishes conversations with sync-level 1 or 2, never with sync-level 0. The sync-level
of an incoming conversation can be requested by means of EXTRACT PROCESS
using the CICS API.

openUTM-CICS interconnection via LU6.2 Programming an openUTM-CICS interconnection

U5461-J-Z135-6-76 123

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
4

4.2.4 Comparison with KDCS calls

We will compare the CICS command semantics with those of the KDCS calls in the
following.

Addressing a remote service with transaction management

ALLOCATE APRO DM/AM KCOF=C
CONNECT PROCESS SYNCLEVEL(2)

Addressing a remote service without transaction management

ALLOCATE APRO DM KCOF=H
CONNECT PROCESS SYNCLEVEL(1)

or

ALLOCATE APRO DM/AM KCOF=B
CONNECT PROCESS SYNCLEVEL(0)

Exchanging messages without a synchronization point

SEND INVITE WAIT MPUT NE KCRN=“>...“
RECEIVE PEND KP
 .
 INIT
 MGET KCRN=“>...“

Sending a message and requesting the end of a transaction

SEND MPUT NE KCRN=“>...“
SYNCPOINT CTRL PR KCRN=“>...“
 PEND KP
 .
 INIT
 MGET NT KCRN=“>...“

Sending a message and requesting the end of a transaction and a service

SEND LAST MPUT NE KCRN=“>...“
SYNCPOINT CTRL PE KCRN=“>...“
 PEND KP
 .
 INIT
 MGET NT KCRN=“>...“

Programming an openUTM-CICS interconnection openUTM-CICS interconnection via LU6.2

124 U5461-J-Z135-6-76

Exchanging messages and requesting the end of a transaction

SEND INVITE MPUT NE KCRN=“>...“
SYNCPOINT PEND RE
RECEIVE .
 INIT
 MGET NT KCRN=“>...“

Rolling back the transaction

SYNCPOINT ROLLBACK MPUT RM KCRN=“<...“
 PEND RS
 .
 INIT
 MGET NT KCRN=“<...“

Rolling back the transaction and cancelling the service

SYNCPOINT ROLLBACK PEND ER/FR
ISSUE ABEND

Exchanging messages with processing acknowledge

SEND INVITE CONFIRM MPUT NE KCRN=“>...“
RECEIVE MPUT HM KCRN=“>...“
 PEND KP
 .
 INIT
 MGET NT KCRN=“>...“

Sending a reply with a positive processing acknowledge

ISSUE CONFIRMATION MPUT NE KCRN=“>...“
SEND PEND FI

Sending a reply with a negative processing acknowledge

ISSUE ERROR MPUT EM KCRN=“>...“

Cancelling the dialogs to the partner

ISSUE ABEND CTRL AB

openUTM-CICS interconnection via LU6.2 Programming an openUTM-CICS interconnection

U5461-J-Z135-6-76 125

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
4

4.2.5 Examples of openUTM-CICS communication

Starting an openUTM dialog service from within a CICS application
program

1. Single-step service with transaction management

The “INIT PU” call was used in the UTM application program in the example above because
the end of transaction (KCENDTA) and send authorization (KCSEND) can then be checked.
If it is not necessary to query these values due to the procedural logic of the program, then
the normal INIT can also be used. The KCVGST (service status) and KCTAST (transaction
status) indicators were abbreviated to VGST and TAST, respectively, for MGET. The
SYNCPOINT command in the CICS application program only returns after the UTM appli-
cation program has called PEND FI. This is represented by the line containing “=NORMAL“.

RequestCommit and Committed are components of the LU6.2 protocol. If the CICS appli-
cation program has more than one job-receiver, then it sometimes uses a two-phase
protocol with the protocol elements Prepare, RequestCommit, Committed and Forget.

--->
 RECEIVE Client
 ALLOCATE
 CONNECT PROCESS CONVID
 SYNCLEVEL(2)
 SEND INVITE WAIT CONVID
 -- FMH5+data ----->
 INIT PU ENDTA=O,SEND=Y
 MGET VGST=O,TAST=O
 MPUT NE
 PEND KP
 <- data -----------
 RECEIVE CONVID
 SEND LAST CONVID
 SYNCPOINT
 -- data+
 RequestCommit -->
 INIT PU ENDTA=O,SEND=N
 MGET VGST=O,TAST=P
 PEND FI
 <- Committed -------
 =NORMAL
 SEND Client
<---
 RETURN

Programming an openUTM-CICS interconnection openUTM-CICS interconnection via LU6.2

126 U5461-J-Z135-6-76

The ISSUE PREPARE command can still be called in the CICS application program before
SYNCPOINT. This has certain advantages for a PEND ER/FR in the UTM application
program. See below for more information.

2. No data from the UTM application program is required in the CICS application program
and with transaction management.

If the procedural logic does not require that the UTM application program called send data
back to the CICS application program, then communication can be programmed more
easily as shown in the following example.

--->
 RECEIVE Client
 ALLOCATE
 CONNECT PROCESS CONVID
 SYNCLEVEL(2)
 SEND LAST CONVID
 SYNCPOINT
 -- FMH5+data+
 RequestCommit -->
 INIT PU ENDTA=F,SEND=N
 MGET VGST=O,TAST=P
 PEND FI
 <- Committed -------
 =NORMAL
 SEND Client
<---
 RETURN

openUTM-CICS interconnection via LU6.2 Programming an openUTM-CICS interconnection

U5461-J-Z135-6-76 127

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
4

3. Two transactions in a service, first variant

--->
 RECEIVE Client
 ALLOCATE
 CONNECT PROCESS CONVID
 SYNCLEVEL(2)
 SEND INVITE CONVID
 SYNCPOINT
 -- FMH5+data+
 RequestCommit -->
 INIT PU ENDTA=C,SEND=Y
 MGET VGST=O,TAST=P
 MPUT NE
 PEND RE
 <- Committed+data -
 =NORMAL
 RECEIVE CONVID
 SEND Client
<---
--->
 RECEIVE Client
 SEND LAST CONVID
 SYNCPOINT
 -- data+
 RequestCommit -->
 INIT PU ENDTA=F,SEND=N
 MGET VGST=O,TAST=P
 PEND FI
 <- Committed -------
 =NORMAL
 SEND Client
<---
 RETURN

Programming an openUTM-CICS interconnection openUTM-CICS interconnection via LU6.2

128 U5461-J-Z135-6-76

4. Two transactions in a service, second variant

This variant is different from the first in that the reply message from the UTM application
program is sent from within the first transaction. The reply message is sent in the second
transaction for the first variant. The second variant is more difficult to program and produces
more messages than the first variant. However, it has the advantage that any eventual
database changes bound to the SYNCPOINT are only permanently written by the UTM
application program after the message has been received.

--->
 RECEIVE Client
 ALLOCATE
 CONNECT PROCESS CONVID
 SYNCLEVEL(2)
 SEND INVITE WAIT CONVID
 -- FMH5+data ----->
 INIT PU ENDTA=O,SEND=Y
 MGET VGST=O,TAST=O
 MPUT NE
 PEND KP
 <- data -----------
 RECEIVE CONVID
 SYNCPOINT
 -- RequestCommit -->
 INIT PU ENDTA=R,SEND=N
 MGET VGST=O,TAST=P
 PEND RE
 <- Committed -------
 =NORMAL
 SEND Client
<---
--->
 RECEIVE Client
 SEND LAST CONVID
 SYNCPOINT
 -- data+
 RequestCommit -->
 INIT PU ENDTA=F,SEND=N
 MGET VGST=O,TAST=P
 PEND FI
 <- Committed -------
 =NORMAL
 SEND Client
<---
 RETURN

openUTM-CICS interconnection via LU6.2 Programming an openUTM-CICS interconnection

U5461-J-Z135-6-76 129

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
4

5. PEND ER/FR in the UTM application program

In the case above, a PEND ER or PEND FR from UTM results in the cancellation of the
CICS job-submitting program with Abend ASP3. This Abend cannot be intercepted by the
CICS application program. If you want to avoid this, then the ISSUE PREPARE command
must be used in the CICS application program:

--->
 RECEIVE Client
 ALLOCATE
 CONNECT PROCESS CONVID
 SYNCLEVEL(2)
 SEND LAST CONVID
 SYNCPOINT
 -- FMH5+data+
 RequestCommit -->
 INIT PU ENDTA=F,SEND=N
 MGET VGST=O,TAST=P
 PEND ER/FR
 <- FMH7 ------------
 -- FMH7-Response -->
 Abend ASP3
<---

--->
 RECEIVE Client
 ALLOCATE
 CONNECT PROCESS CONVID
 SYNCLEVEL(2)
 SEND LAST CONVID
 ISSUE PREPARE CONVID
 -- FMH5+data+
 Prepare -------->
 INIT PU ENDTA=F,SEND=N
 MGET VGST=O,TAST=P
 PEND ER/FR
 <- FMH7 ------------
 -- FMH7-Response -->
 =TERMERR
 SEND Client
<---
 RETURN

Programming an openUTM-CICS interconnection openUTM-CICS interconnection via LU6.2

130 U5461-J-Z135-6-76

6. PEND RS in the UTM application program

--->
 RECEIVE Client
 ALLOCATE
 CONNECT PROCESS CONVID
 SYNCLEVEL(2)
 SEND CONVID
 SYNCPOINT
 -- FMH5+data+
 RequestCommit -->
 INIT PU ENDTA=F,SEND=N
 MGET VGST=O,TAST=P
 PEND RE
 <- Committed -------
 =NORMAL
 SEND Client
<---
--->
 RECEIVE Client
 SEND LAST CONVID
 SYNCPOINT
 -- data+
 RequestCommit -->
 INIT PU ENDTA=F,SEND=N
 MGET VGST=O,TAST=P
 MPUT RM KCRN=<
 PEND RS
 <- FMH7 ------------
 -- FMH7-Response -->
 =ROLLEDBACK
 SEND Client
<---
--->
 RECEIVE Client
 SEND LAST CONVID
 SYNCPOINT
 -- data+
 RequestCommit -->
 INIT PU ENDTA=F,SEND=N
 MGET NT KCRN=<
 MGET VGST=O,TAST=P
 PEND FI
 <- Committed -------
 =NORMAL
 SEND Client
<---
 RETURN

openUTM-CICS interconnection via LU6.2 Programming an openUTM-CICS interconnection

U5461-J-Z135-6-76 131

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
4

However, a PEND RS in the UTM application program only behaves as described in the
example if the service has already reached a synchronization point beforehand. A PEND
RS in the first dialog step has the same effect as a PEND FR.

7. One-step service without transaction management

8. Processing acknowledge without transaction management

--->
 RECEIVE Client
 ALLOCATE
 CONNECT PROCESS CONVID
 SYNCLEVEL(0)
 SEND INVITE WAIT CONVID
 -- FMH5+data ----->
 INIT PU ENDTA=O,SEND=Y
 MGET VGST=O,TAST=U
 MPUT NE
 PEND FI
 <- data+CEB -------
 RECEIVE CONVID
 SEND Client
<---
 RETURN

--->
 RECEIVE Client
 ALLOCATE
 CONNECT PROCESS CONVID
 SYNCLEVEL(1)
 SEND INVITE CONFIRM
 CONVID
 -- FMH5+data ----->
 INIT PU ENDTA=O,SEND=Y
 MGET VGST=O,TAST=U
 MGET KCRMGT=H
 MPUT NE
 PEND FI
 <- data+CEB -------
 =OK EIBERR=X’00’
 RECEIVE CONVID
 SEND Client
<---
 RETURN

Programming an openUTM-CICS interconnection openUTM-CICS interconnection via LU6.2

132 U5461-J-Z135-6-76

9. Negative processing acknowledge without transaction management

--->
 RECEIVE Client
 ALLOCATE
 CONNECT PROCESS CONVID
 SYNCLEVEL(1)
 SEND INVITE CONFIRM
 CONVID
 -- FMH5+data ----->
 INIT PU ENDTA=O,SEND=Y
 MGET VGST=O,TAST=U
 MGET KCRMGT=H
 MPUT EM
 PEND FI
 <- FMH7 ------------
 =OK EIBERR=X’FF’
 RECEIVE CONVID =EOC
 SEND Client
<---
 RETURN

openUTM-CICS interconnection via LU6.2 Programming an openUTM-CICS interconnection

U5461-J-Z135-6-76 133

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
4

Starting an openUTM asynchronous service from a CICS application
program

10. With transaction management

openUTM sends the acknowledge message immediately after it has received and stored
the queued job. It may take some time before the queued job is executed depending on the
availability of system resources.

It is not possible to use EXEC CICS START to start a queued job for LU6.2.

--->
 RECEIVE Client
 ALLOCATE
 CONNECT PROCESS CONVID
 SYNCLEVEL(2)
 SEND LAST CONVID
 SYNCPOINT
 -- FMH5+data+
 RequestCommit -->
 <- Committed -------
 =NORMAL
 SEND Client
<---
 RETURN
 INIT
 FGET
 PEND FI

Programming an openUTM-CICS interconnection openUTM-CICS interconnection via LU6.2

134 U5461-J-Z135-6-76

11. Without transaction management

By sacrificing transaction management, the application program is subjected to the follow-
ing disadvantages:

– The sending of queued messages in the CICS program cannot be linked automatically
to other processes in the application program. For instance, a queued message may
thus be sent to the UTM application despite a failed local database update.

– If the acknowledgment is lost due to a communication error, the queued message may
be sent to the UTM application several times.

--->
 RECEIVE Client
 ALLOCATE
 CONNECT PROCESS CONVID
 SYNCLEVEL(1)
 SEND LAST CONFIRM
 CONVID
 -- FMH5+data --------->
 <- acknowledge --------
 =NORMAL
 SEND Client
<---
 RETURN
 INIT
 FGET
 PEND FI

openUTM-CICS interconnection via LU6.2 Programming an openUTM-CICS interconnection

U5461-J-Z135-6-76 135

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
4

Starting a CICS dialog service from a UTM application program

12. Single-step service with transaction management, first variant

--->
 INIT
 MGET Client
 APRO DM KCPI=>A KCOF=C
 MPUT NE KCRN=>A
 PEND KP
 -- FMH5+data ----->
 RECEIVE STATE(SEND)
 SEND
 <- Data -----------
 INIT
 MGET NT KCRN=>A
 VGST=O,TAST=O
 MPUT NE Client
 PEND FI
 -- Prepare -------->
 RECEIVE STATE(SYNCFREE)
 SYNCPOINT
 <- RequestCommit ---
 (UTM system code)
 -- Committed ------>
 <- Forget ----------
 =NORMAL
 RETURN
<---

Programming an openUTM-CICS interconnection openUTM-CICS interconnection via LU6.2

136 U5461-J-Z135-6-76

13. Single-step service with transaction management, second variant

In example 13, the 3rd program unit sees whether CICS has issued a commit or a rollback.

In example 12, the program unit does not learn any more about commit or rollback in CICS.
This is solely under the control of the UTM system code.

--->
 INIT
 MGET Client
 APRO DM KCPI=>A KCOF=C
 MPUT NE KCRN=>A
 PEND KP
 -- FMH5+data ----->
 RECEIVE STATE(SEND)
 SEND
 <- Data -----------
 INIT
 MGET NT KCRN=>A
 VGST=O,TAST=O
 MPUT NE KCRN=>A KCLM=0
 CTRL PE KCRN=>A
 PEND KP
 -- Prepare -------->
 RECEIVE STATE(SYNCFREE)
 SYNCPOINT
 <- RequestCommit ---
 INIT
 MGET NT KCRN=>A
 VGST=C,TAST=P
 MPUT NE Client
 PEND FI
 -- Committed ------>
 <- Forget ----------
 =NORMAL
 RETURN
<---

openUTM-CICS interconnection via LU6.2 Programming an openUTM-CICS interconnection

U5461-J-Z135-6-76 137

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
4

14. No data from the CICS application program is required in the UTM application program
and with transaction management.

If the procedural logic does not require the CICS application program called to send data
back to the UTM application program, then communication can be programmed more easily
as shown in the following example:

--->
 INIT
 MGET Client
 APRO DM KCRN=>A KCOF=C
 MPUT NE KCRN=>A
 CTRL PE KCRN=>A
 PEND KP
 -- FMH5+data+
 Prepare -------->
 RECEIVE STATE(SYNCFREE)
 SYNCPOINT
 <- RequestCommit ---
 INIT
 MGET NT KCRN=>A
 VGST=C,TAST=P
 MPUT NE Client
 PEND FI
 -- Committed ------>
 <- Forget ----------
 =NORMAL
 RETURN
<---

Programming an openUTM-CICS interconnection openUTM-CICS interconnection via LU6.2

138 U5461-J-Z135-6-76

15. Two transactions in a service, first variant

If no data is sent at the second Prepare, there is no need for the subsequent UTM calls, as
in examples 12 and 13:

MPUT NE KCRN=>A
CTRL PE KCRN=>A
PEND KP
INIT
MGET NT KCRN=>A VGST=C,TAST=P

--->
 INIT
 MGET Client
 APRO DM KCPI=>A KCOF=C
 MPUT NE KCRN=>A
 PEND RE
 -- FMH5+data+
 Prepare -------->
 RECEIVE STATE(SYNCSEND)
 SYNCPOINT
 <- RequestCommit ---
 -- Committed ------>
 <- Forget ----------
 =NORMAL
 SEND
 <- Data ------------
 INIT
 MGET NT KCRN=>A
 VGST=O,TAST=O
 MPUT NE KCRN=>A
 CTRL PE KCRN=>A
 PEND KP
 -- Data+Prepare --->
 RECEIVE STATE(SYNCFREE)
 SYNCPOINT
 <- RequestCommit ---
 INIT
 MGET NT KCRN=>A
 VGST=C,TAST=P
 MPUT NE Client
 PEND FI
 -- Committed ------>
 <- Forget ----------
 =NORMAL
 RETURN
<---

openUTM-CICS interconnection via LU6.2 Programming an openUTM-CICS interconnection

U5461-J-Z135-6-76 139

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
4

16. Two transactions in a service, second variant

Continued on the next page

--->
 INIT
 MGET Client
 APRO DM KCPI=>A KCOF=C
 MPUT NE KCRN=>A
 PEND KP
 -- FMH5+data ----->
 RECEIVE STATE(SEND)
 SEND
 <- Data -----------
 INIT
 MGET NT KCRN=>A
 VGST=O,TAST=O
 MPUT NE KCRN=>A KCLM=0
 CTRL PR KCRN=>A
 PEND KP
 -- Prepare -------->
 RECEIVE STATE(SYNCRECEIVE)
 SYNCPOINT
 <- RequestCommit ---
 INIT
 MGET NT KCRN=>A
 VGST=O,TAST=P
 MPUT NE Client
 PEND RE
 -- Committed ------>
 <- Forget ----------
 =NORMAL
<---
--->
 INIT
 MGET Client
 MPUT NE KCRN=>A
 CTRL PE KCRN=>A
 PEND KP
 -- Date+Prepare --->
 RECEIVE STATE(SYNCFREE)
 SYNCPOINT
 <- RequestCommit ---

Programming an openUTM-CICS interconnection openUTM-CICS interconnection via LU6.2

140 U5461-J-Z135-6-76

Continued

As in examples 12 and 13, some UTM calls are not required if you do without the roll-
back/commit information from CICS in the program unit. The 2nd and 3rd sections of the
program are then reduced to the following sequence:

INIT
MGET NT KCRN=>A VGST=O,TAST=O
CTRL PR KCRN=>A
MPUT NE Client
PEND RE

This variant is different from the first in that the reply message from the CICS application
program is sent from within the first transaction. The reply message is sent in the second
transaction in the first variant. The second variant is more difficult to program and produces
more messages than the first variant. However, it has the advantage that any eventual
database changes bound to the PEND RE are only permanently written by the CICS appli-
cation program after the message has been received.

 INIT
 MGET NT KCRN=>A
 VGST=C,TAST=P
 MPUT NE Client
 PEND FI
 -- Committed ------>
 <- Forget ----------
 =NORMAL
 RETURN
<---

openUTM-CICS interconnection via LU6.2 Programming an openUTM-CICS interconnection

U5461-J-Z135-6-76 141

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
4

17. The CICS application program rolls back the transaction and cancels the service, first
variant

--->
 INIT
 MGET Client
 APRO DM KCPI=>A KCOF=C
 MPUT NE KCRN=>A
 PEND KP
 -- FMH5+data ----->
 RECEIVE STATE(SEND)
 SYNCPOINT ROLLBACK
 ISSUE ABEND
 RETURN
 <- FMH7 ------------
 -- FMH7-Response -->
 Roll back the transaction
 possibly with message K034 on the client
 If a synchronization point has already been
 reached, then start this synchronization
 point’s successor program:
 INIT KCKNZVG=R
 MGET NT KCRN=>A
 VGST=O,TAST=R
 ...

Programming an openUTM-CICS interconnection openUTM-CICS interconnection via LU6.2

142 U5461-J-Z135-6-76

18. The CICS application program rolls back the transaction and cancels the service, sec-
ond variant

In contrast to example 17, the program unit in example 18 receives a message after rollback
by CICS.

--->
 INIT
 MGET Client
 APRO DM KCPI=>A KCOF=C
 MPUT NE KCRN=>A
 PGWT KP
 -- FMH5+Data ------>
 RECEIVE STATE(SEND)
 SYNCPOINT ROLLBACK
 ISSUE ABEND
 RETURN
 <- FMH7 ------------
 -- FMH7-Response -->
 KCTARB=Y
 MGET NT KCRN=>A
 VGST=T,TAST=R
 MPUT Client
 PEND KCOM=FR
...

openUTM-CICS interconnection via LU6.2 Programming an openUTM-CICS interconnection

U5461-J-Z135-6-76 143

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
4

19. The CICS application program rolls back the transaction, the service continues to run

Continued on the next page

--->
 INIT
 MGET Client
 APRO DM KCPI=>A KCOF=C
 MPUT NE KCRN=>A
 PEND KP
 -- FMH5+data ----->
 RECEIVE STATE(SEND)
 SEND
 <- Data -----------
 INIT
 MGET NT KCRN=>A
 VGST=O,TAST=O
 MPUT NE KCRN=>A KCLM=0
 CTRL PR KCRN=>A
 PEND KP
 -- Prepare -------->
 RECEIVE STATE(SYNCRECEIVE)
 SYNCPOINT
 <- RequestCommit ---
 INIT
 MGET NT KCRN=>A
 VGST=O,TAST=P
 MPUT NE Client
 PEND RE
 -- Committed ------>
 <- Forget ----------
 =NORMAL
<---
--->
 INIT
 MGET Client
 MPUT NE KCRN=>A
 CTRL PE KCRN=>A
 PEND KP
 -- Prepare -------->
 RECEIVE STATE(SYNCFREE)
 SYNCPOINT ROLLBACK
 <- FMH7 ------------
 -- FMH7-Response -->
 =NORMAL
<--- K034-message
--->

Programming an openUTM-CICS interconnection openUTM-CICS interconnection via LU6.2

144 U5461-J-Z135-6-76

Continued

Note that in this case the UTM application program does not receive a status message after
the SYNCPOINT ROLLBACK from the job-receiver. openUTM only sends the application
program a status message from the job-receiver when the job-receiver was terminated due
to the rolling back of the transaction.

In addition to message K034, the message to the client from the last synchronization point
is sent to the client again.

As in examples 12 and 13, some UTM calls are not required if you do without the roll-
back/commit information from CICS in the program unit. The 2nd and 3rd sections of the
program are then reduced to the following sequence:

INIT
MGET NT KCRN=>A VGST=O,TAST=O
CTRL PR KCRN=>A
MPUT NE Client
PEND KCOM=RE

 INIT KCKNZVG=R
 MGET Client
 MPUT NE KCRN=>A
 CTRL PE KCRN=>A
 PEND KP
 -- Prepare -------->
 RECEIVE STATE(SYNCFREE)
 SYNCPOINT
 <- RequestCommit ---
 INIT
 MGET NT KCRN=>A
 VGST=C,TAST=P
 MPUT NE Client
 PEND FI
 -- Committed ------>
 <- Forget ----------
 =NORMAL
 RETURN
<---

openUTM-CICS interconnection via LU6.2 Programming an openUTM-CICS interconnection

U5461-J-Z135-6-76 145

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
4

20. One-step service without transaction management

21. Processing acknowledge without transaction management

--->
 INIT
 MGET Client
 APRO DM KCPI=>A KCOF=B
 MPUT NE KCRN=>A
 PEND KP
 -- FMH5+data ----->
 RECEIVE STATE(SEND)
 SEND LAST WAIT
 RETURN
 <- data+CEB -------
 INIT
 MGET NT KCRN=>A
 VGST=C,TAST=U
 MPUT NE Client
 PEND FI
<---

--->
 INIT
 MGET Client
 APRO DM KCPI=>A KCOF=H
 MPUT NE KCRN=>A
 MPUT HM KCRN=>A
 PEND KP
 -- FMH5+data ----->
 RECEIVE STATE(CONFSEND)
 ISSUE CONFIRMATION
 SEND LAST WAIT
 RETURN
 <- data+CEB -------
 INIT
 MGET NT KCRN=>A
 KCRMGT=C
 MGET NT KCRN=>A
 VGST=C,TAST=U
 MPUT NE Client
 PEND FI
<---

Programming an openUTM-CICS interconnection openUTM-CICS interconnection via LU6.2

146 U5461-J-Z135-6-76

22. Negative processing acknowledge without transaction management

Starting a CICS asynchronous service from a UTM application
program

23. Starting a CICS asynchronous service from a UTM application program without trans-
action management

For this kind of communication, an openUTM-LU62 instance generated with the parameter
UTM-ASYNC=YES must be used.

--->
 INIT
 MGET Client
 APRO DM KCPI=>A KCOF=H
 MPUT NE KCRN=>A
 MPUT HM KCRN=>A
 PEND KP
 -- FMH5+data ----->
 RECEIVE STATE(CONFSEND)
 ISSUE ERROR
 SEND LAST WAIT
 RETURN
 <- FMH7 ------------
 INIT
 MGET NT KCRN=>A
 KCRMGT=E
 MGET NT KCRN=>A
 VGST=C,TAST=U
 MPUT NE Client
 PEND FI
<---

 INIT
 APRO AM KCPI=>A KCOF=B
 FPUT NE KCRN=>A
 PEND FI
 -- FMH5+data ----->
 RECEIVE STATE(RECEIVE)
 RECEIVE STATE(CONFFREE)
 ISSUE CONFIRMATION
 RETURN
 <- data+CEB -------

openUTM-CICS interconnection via LU6.2 Programming an openUTM-CICS interconnection

U5461-J-Z135-6-76 147

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
4

The case shown in example 20 is similar. The key difference is that the CICS program in
example 20 can still send data back. On the UTM side, the advantage of the dialog is that
the application is notified of the success or failure of the call.

If the CICS program sends a negative processing acknowledge using ISSUE ERROR, then
openUTM deletes the job. However, the UTM application program obviously cannot be
notified of this fact any more.

24. Starting a CICS asynchronous service from a UTM application program with trans-
action management

If the CICS program rolls back the transaction using SYNCPOINT ROLLBACK, then
openUTM deletes the job. However, the UTM application program obviously cannot be
notified of this fact any more.

The transaction management in example 24 has the following advantages for the appli-
cation programs compared to example 23, where there is no transaction management:

– The sending of queued messages in the UTM application program is automatically
linked to other processes in the application program, e.g. database update.

– If PEND FI is successful, it is guaranteed that the CICS asynchronous process will be
started only once.

This case is similar to example 14. The CICS programming is identical. On the UTM side,
the dialog case (example 14) has the advantage that the application is notified of the
success or failure of the call. The asynchronous case (example 24) is suitable, above all,
for time-driven jobs.

 INIT
 APRO AM KCPI=>A KCOF=C
 FPUT NE KCRN=>A
 PEND FI
 -- FMH5+data+
 Prepare -------->
 RECEIVE STATE(SYNCFREE)
 SYNCPOINT
 <- RequestCommit ---
 -- Committed ------>
 <- Forget ----------
 =NORMAL
 RETURN

Programming an openUTM-CICS interconnection openUTM-CICS interconnection via LU6.2

148 U5461-J-Z135-6-76

4.2.6 Distributed Program Link

In CICS you have the capability to link programs on different systems together using a
Distributed Program Link (DPL). A CICS program on one system can call a CICS program
as a subroutine on another system using this technique. It uses the CICS call EXEC CICS
LINK to do this. It is not possible to open a distributed program link between CICS and
openUTM. In a multi-level hierarchy, however, UTM application programs can also be used.
The following two examples show such communication. The first example shows the use of
EXEC CICS LINK between 2 CICS systems. In the second example the distributed program
link is called by a system with a CICS client. The program interface “External Call Interface”
(ECI) is used for the CICS client.

openUTM-CICS interconnection via LU6.2 Programming an openUTM-CICS interconnection

U5461-J-Z135-6-76 149

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
4

1. Distributed program link between two CICS systems

 CICS system 1 CICS system 2 openUTM
--->
 RECEIVE Client
 LINK SYSID(...)
 TRANSID(...)
 ---------->
 ALLOCATE
 CONNECT PROCESS CONVID
 SYNCLEVEL(2)
 SEND INVITE WAIT
 CONVID
 ---------->
 INIT PU ENDTA=O,SEND=Y
 MGET VGST=O,TAST=O
 MPUT NE
 PEND KP
 <----------
 =NORMAL
 RECEIVE CONVID
 RETURN
 <----------
 =NORMAL
 SYNCPOINT
 ---------->
 ---------->
 INIT PU ENDTA=R,SEND=N
 MGET KCRLM=0
 VGST=O,TAST=P
 PEND RE
 <----------
 <----------
 ---------->
 ---------->
 INIT PU ENDTA=F,SEND=N
 MGET KCRLM=0
 VGST=O,TAST=P
 PEND FI
 <----------
 <----------
 =NORMAL
 SEND Client
<---
 RETURN

Programming an openUTM-CICS interconnection openUTM-CICS interconnection via LU6.2

150 U5461-J-Z135-6-76

2. Distributed program link for a CICS client

Continued on the next page

 CICS-Client CICS/6000 CICS/ESA openUTM

 CICS_ExternalCall
 (program)
 -------->
 LINK SYSID(...)
 TRANSID(...)
 -------->
 ALLOCATE
 CONNECT PROCESS
 CONVID
 SYNCLEVEL(2)
 SEND INVITE WAIT
 CONVID
 -------->
 INIT PU
 ENDTA=O,SEND=Y
 MGET
 VGST=O,TAST=O
 MPUT NE
 PEND KP
 <--------
 =NORMAL
 RECEIVE CONVID
 RETURN
 <--------
 =NORMAL
 <--------
 =ECI_NO_ERROR
 CICS_ExternalCall
 (ECI_COMMIT)
 -------->
 -------->
 -------->
 INIT PU
 ENDTA=R,SEND=N
 MGET KCRLM=0
 VGST=O,TAST=P
 PEND RE
 <--------
 <--------
 <--------

openUTM-CICS interconnection via LU6.2 Programming an openUTM-CICS interconnection

U5461-J-Z135-6-76 151

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
4

Continued

 CICS-Client CICS/6000 CICS/ESA openUTM

 -------->
 -------->
 -------->
 INIT PU
 ENDTA=F,SEND=N
 MGET KCRLM=0
 VGST=O,TAST=P
 PEND FI
 <--------
 <--------
 <--------
 =ECI_NO_ERROR

Programming an openUTM-CICS interconnection openUTM-CICS interconnection via LU6.2

152 U5461-J-Z135-6-76

4.2.7 openUTM programming hints

The following points are to be considered when programming UTM applications if the appli-
cations are to communicate with LU6.2 partners:

1. If a UTM application program requests the LU6.2 partner as a job-submitter to initiate
the end of a transaction using CTRL PR or CTRL PE, then it cannot receive any more
data from the partner, regardless of whether or not it has called an MPUT before the
CTRL. An additional dialog step is required in many cases due to this limitation.

2. User data can only be transported in the UDT format. This means that the KCMF field
must always contain a space character for MPUT, FPUT and DPUT on an LU6.2
partner.

3. When using TRANSIT, only user data up to a length of 32763 bytes can be sent to CICS
by UTM. The maximum value that KCLM can assume is therefore 32763 for MPUT,
FPUT and DPUT on an LU6.2 partner.

4. If KCSECTYP=P is specified for APRO, i.e. the UTM application program wants to send
the partner a user ID, then a password must also be specified, i.e. KCPWDLTH must be
larger than 0. The user ID and password may be no longer than a maximum of 10 bytes
long each.

5. If openUTM-LU62 cannot establish the connection desired by a UTM application
program to a CICS transaction code, then the UTM application does not receive any
detailed rejection justification. The information in the openUTM SYSLOG file usually
does not contain enough information for a diagnosis. Detailed reasons for the rejection
can only be found in the openUTM-LU62 protocol file.

6. openUTM offers the possibility of generating a maximum wait time for the allocation of
a session to the partner (time1) and a maximum wait time for the arrival of a reply from
the job-receiver (time2) for the LTAC generation. The default value for time1 is set to 30
seconds and the default value for time2 is infinity. Only the wait time for the allocation a
connection between openUTM and openUTM-LU62 is monitored with time1 for
openUTM-CICS interconnection. If it is impossible for openUTM-LU62 to establish a
connection to CICS, then the wait time for the allocation of this connection must be
limited in openUTM-LU62 (using ALLOC-TIME) or using time2.

openUTM-CICS interconnection via LU6.2 Using the CPI-C program interface

U5461-J-Z135-6-76 153

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
4

4.3 Using the CPI-C program interface

The CPI-C program interface can also be used instead of the CICS commands in CICS for
LU6.2 communication. Because of the fact that, unlike CICS, the LU6.2 partner is often
implemented using the CPI-C program interface for interconnections between openUTM
and LU6.2 partners, the examples given above will be shown using the CPI-C program
interface for the openUTM-CICS communication. Examples of these kinds of partners are
APPC/MVS, IMS and System i5 (previously AS/400).

CPI-C can also be used in openUTM instead of KDCS for OSI-TP communication. If both
partners use CPI-C, then this situation is very similar on both sides to an openUTM-
openUTM interconnection with CPI-C or an openUTM-OpenCPIC interconnection. Both are
described in detail in the openUTM manual “Creating Applications with X/Open Interfaces“.

If transaction-oriented communication via OSI-TP or LU6.2 is to be programmed with
CPI-C, then an additional program interface is required in addition to CPI-C to request and
confirm a synchronization point and to roll back transactions. The TX program interface is
used in openUTM and for X/Open for this purpose. On the other hand, the CPI-RR
(Common Programming Interface for Resource Recovery) program interface is usually
used with the SRRCMIT and SRRBACK calls for IBM products. For this reason, the
openUTM-CICS examples above are reformulated in the following with CPI-C and CPI-RR.

4.3.1 Comparison to KDCS calls

The semantics of CICS commands will be compared with those of the KDCS calls in the
following.

Addressing a remote service with transaction management

CMINIT APRO DM/AM KCOF=O
CMSSL (CM_SYNC_POINT)
CMALLC

Addressing a remote service without transaction management

CMINIT APRO DM KCOF=H
CMSSL (CM_CONFIRM)
CMALLC

or

CMINIT APRO DM/AM KCOF=B
CMSSL (CM_NONE)
CMALLC

Using the CPI-C program interface openUTM-CICS interconnection via LU6.2

154 U5461-J-Z135-6-76

Receiving a message in the job-receiver

CMACCP INIT or INIT PU
CMRCV MGET

Exchanging messages without a synchronization point

CMSEND MPUT NE
CMRCV PEND KP
 .
 INIT
 MGET

Sending a message and requesting the end of a transaction

CMSEND MPUT NE KCRN=“>...“
SRRCMIT CTRL PR KCRN=“>...“
 PEND KP
 .
 INIT
 MGET NT KCRN=“>...“

Sending a message and requesting the end of a transaction and a service

CMSEND MPUT NE KCRN=“>...“
CMDEAL CTRL PE KCRN=“>...“
SRRCMIT PEND KP
 .
 INIT
 MGET NT KCRN=“>...“

Exchanging messages and requesting the end of a transaction

CMSST (CM_SEND_AND_PREP_TO_RECEIVE) MPUT NE KCRN=“>...“
CMSEND PEND RE
SRRCMIT .
CMRCV INIT
 MGET NT KCRN=“>...“

Rolling back the transaction

SRRBACK MPUT RM KCRN=“<...“
 PEND RS
 .
 INIT
 MGET NT KCRN=“<...“

openUTM-CICS interconnection via LU6.2 Using the CPI-C program interface

U5461-J-Z135-6-76 155

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
4

Rolling back the transaction and cancelling the service

SRRBACK PEND ER/FR
CMSDT (CM_DEALLOCATE_ABEND)
CMDEAL

Exchanging messages with processing acknowledge

CMSPTR(PREP_TO_RECEIVE_CONFIRM) MPUT NE KCRN=“>...“
CMSST (CM_SEND_AND_PREP_TO_RECEIVE) MPUT HM KCRN=“>...“
CMSEND PEND KP
CMRCV .
 INIT
 MGET NT KCRN=“>...“

Sending a reply with a positive processing acknowledge

CMCFMD MPUT NE
CMSEND PEND FI

Sending a reply with a negative processing acknowledge

CMSERR MPUT EM

Cancelling the dialogs to the partner

CMSDT (CM_DEALLOCATE_ABEND) CTRL AB
CMDEAL

Using the CPI-C program interface openUTM-CICS interconnection via LU6.2

156 U5461-J-Z135-6-76

4.3.2 Examples of openUTM-CPIC communication

Starting an openUTM dialog service from a CPIC application program

1. Single-step service with transaction management

2. No data from the UTM application program is required in the CPIC application program
and with transaction management.

 CMINIT
 CMSSL (CM_SYNC_POINT)
 CMALLC
 CMSEND
 CMRCV
 -- FMH5+data ----->
 INIT PU ENDTA=O,SEND=Y
 MGET VGST=O,TAST=O
 MPUT NE
 PEND KP
 <- data -----------
 =CM_OK
 CMDEAL
 SRRCMIT
 -- data+
 RequestCommit -->
 INIT PU ENDTA=F,SEND=N
 MGET VGST=O,TAST=P
 PEND FI
 <- Committed -------
 =RR_OK

 CMINIT
 CMSSL (CM_SYNC_POINT)
 CMALLC
 CMSEND
 CMDEAL
 SRRCMIT
 -- FMH5+data+
 RequestCommit -->
 INIT PU ENDTA=F,SEND=N
 MGET VGST=O,TAST=P
 PEND FI
 <- Committed -------
 =RR_OK

openUTM-CICS interconnection via LU6.2 Using the CPI-C program interface

U5461-J-Z135-6-76 157

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
4

3. Two transactions in a service, first variant

 CMINIT
 CMSSL (CM_SYNC_POINT)
 CMALLC
 CMSST (CM_SEND_AND_PREP_TO_RECEIVE)
 CMSEND
 SRRCMIT
 -- FMH5+data+
 RequestCommit -->
 INIT PU ENDTA=C,SEND=Y
 MGET VGST=O,TAST=P
 MPUT NE
 PEND RE
 <- Committed+data -
 =RR_OK
 CMDEAL
 SRRCMIT
 -- data+
 RequestCommit -->
 INIT PU ENDTA=F,SEND=N
 MGET VGST=O,TAST=P
 PEND FI
 <- Committed -------
 =RR_OK

Using the CPI-C program interface openUTM-CICS interconnection via LU6.2

158 U5461-J-Z135-6-76

4. Two transactions in a service, second variant

 CMINIT
 CMSSL (CM_SYNC_POINT)
 CMALLC
 CMSEND
 CMRCV
 -- FMH5+data ----->
 INIT PU ENDTA=O,SEND=Y
 MGET VGST=O,TAST=O
 MPUT NE
 PEND KP
 <- data -----------
 =CM_OK
 SRRCMIT
 -- RequestCommit -->
 INIT PU ENDTA=R,SEND=N
 MGET VGST=O,TAST=P
 PEND RE
 <- Committed -------
 =RR_OK
 CMSEND
 CMDEAL
 SRRCMIT
 -- data+
 RequestCommit -->
 INIT PU ENDTA=F,SEND=N
 MGET VGST=O,TAST=P
 PEND FI
 <- Committed -------
 =RR_OK

openUTM-CICS interconnection via LU6.2 Using the CPI-C program interface

U5461-J-Z135-6-76 159

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
4

5. PEND ER/FR in the UTM application program

 CMINIT
 CMSSL (CM_SYNC_POINT)
 CMALLC
 CMSEND
 CMDEAL
 SRRCMIT
 -- FMH5+data+
 RequestCommit -->
 INIT PU ENDTA=F,SEND=N
 MGET VGST=O,TAST=P
 PEND ER/FR
 <- FMH7 ------------
 -- FMH7-Response -->
 =RR_BACKED_OUT

Using the CPI-C program interface openUTM-CICS interconnection via LU6.2

160 U5461-J-Z135-6-76

6. Call PEND RS in the UTM application program

 CMINIT
 CMSSL (CM_SYNC_POINT)
 CMALLC
 CMSEND
 SRRCMIT
 -- FMH5+data+
 RequestCommit -->
 INIT PU ENDTA=R,SEND=N
 MGET VGST=O,TAST=P
 PEND RE
 <- Committed -------
 =RR_OK
 CMSEND
 CMDEAL
 SRRCMIT
 -- data+
 RequestCommit -->
 INIT PU ENDTA=F,SEND=N
 MGET VGST=O,TAST=P
 MPUT RM KCRN=<
 PEND RS
 <- FMH7 ------------
 -- FMH7-Response -->
 =RR_BACKED_OUT
 CMSEND
 CMDEAL
 SRRCMIT
 -- data+
 RequestCommit -->
 INIT PU ENDTA=F,SEND=N
 MGET NT KCRN=<
 MGET VGST=O,TAST=P
 PEND FI
 <- Committed -------
 =RR_OK

openUTM-CICS interconnection via LU6.2 Using the CPI-C program interface

U5461-J-Z135-6-76 161

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
4

7. One-step service without transaction management

8. Processing acknowledge without transaction management

 CMINIT
 CMALLC
 CMSEND
 CMRCV
 -- FMH5+data ----->
 INIT PU ENDTA=O,SEND=Y
 MGET VGST=O,TAST=U
 MPUT NE
 PEND FI
 <- data+CEB -------
 =CM_DEALLOCATED_NORMAL

 CMINIT
 CMSSL (CM_CONFIRM)
 CMALLC
 CMSST (CM_SEND_AND_PREP_TO_RECEIVE)
 CMSEND
 -- FMH5+data ----->
 INIT PU ENDTA=O,SEND=Y
 MGET VGST=O,TAST=U
 MGET KCRMGT=H
 MPUT NE
 PEND FI
 <- data+CEB -------
 =CM_OK
 CMRCV
 =CM_DEALLOCATED_NORMAL

Using the CPI-C program interface openUTM-CICS interconnection via LU6.2

162 U5461-J-Z135-6-76

9. Negative processing acknowledge without transaction management

 CMINIT
 CMSSL (CM_CONFIRM)
 CMALLC
 CMSST (CM_SEND_AND_PREP_TO_RECEIVE)
 CMSEND
 -- FMH5+data ----->
 INIT PU ENDTA=O,SEND=Y
 MGET VGST=O,TAST=U
 MGET KCRMGT=H
 MPUT EM
 PEND FI
 <- FMH7 ------------
 =CM_PROGRAM_ERROR_PURGING
 CMRCV
 =CM_DEALLOCATED_NORMAL

openUTM-CICS interconnection via LU6.2 Using the CPI-C program interface

U5461-J-Z135-6-76 163

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
4

Starting an openUTM asynchronous service from a CPIC application
program

10. With transaction management

openUTM sends the acknowledge message immediately after it has received and stored
the queued job. It may take some time before the queued job is executed depending on the
availability of system resources.

11. Without transaction management

openUTM sends the acknowledge message immediately after it has received and stored
the queued job. It may take some time before the queued job is executed depending on the
availability of system resources.

For information on the advantages of transaction management for asynchronous process-
es, see page 134.

 CMINIT
 CMSSL (CM_SYNC_POINT)
 CMALLC
 CMSEND
 CMDEAL
 SRRCMIT
 -- FMH5+data+
 RequestCommit -->
 <- Committed -------
 =RR_OK
 INIT
 FGET
 PEND FI

 CMINIT
 CMSSL (CM_CONFIRM)
 CMALLC
 CMSEND
 CMDEAL
 -- FMH5+data ---------->
 <- acknowledge --------
 =CM_OK
 INIT
 FGET
 PEND FI

Using the CPI-C program interface openUTM-CICS interconnection via LU6.2

164 U5461-J-Z135-6-76

Starting a CPIC dialog service from a UTM application program

12. Single-step service with transaction management, first variant

--->
 INIT
 MGET Client
 APRO DM KCPI=>A KCOF=C
 MPUT NE KCRN=>A
 PEND KP
 -- FMH5+Data ------>
 CMACCP
 CMRCV
 -> CM_SEND_RECEIVED
 CMSEND
 <- Data ------------
 INIT
 MGET NT KCRN=>A
 VGST=O,TAST=O
 MPUT NE Client
 PEND FI
 -- Prepare -------->
 CMRCV
 -> CM_TAKE_COMMIT_
 DEALLOCATE
 SRRCMIT
 <- RequestCommit ---
 (UTM system code)
 -- Committed ------>
 <- Forget ----------
 =RR_OK
<---

openUTM-CICS interconnection via LU6.2 Using the CPI-C program interface

U5461-J-Z135-6-76 165

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
4

13. Single-step service with transaction management, second variant

In example 13, the 3rd program unit sees whether CPI-C has issued a commit or a rollback.

In example 12, the program unit learns nothing further about commit or rollback in CPI-C.
This takes place solely under the control of UTM system code.

--->
 INIT
 MGET Client
 APRO DM KCPI=>A KCOF=C
 MPUT NE KCRN=>A
 PEND KP
 -- FMH5+data ----->
 CMACCP
 CMRCV
 -> CM_SEND_RECEIVED
 CMSEND
 <- Data -----------
 INIT
 MGET NT KCRN=>A
 VGST=O,TAST=O
 MPUT NE KCRN=>A KCLM=0
 CTRL PE KCRN=>A
 PEND KP
 -- Prepare -------->
 CMRCV
 -> CM_TAKE_COMMIT_
 DEALLOCATE
 SRRCMIT
 <- RequestCommit ---
 INIT
 MGET NT KCRN=>A
 VGST=C,TAST=P
 MPUT NE Client
 PEND FI
 -- Committed ------>
 <- Forget ----------
 =RR_OK
<---

Using the CPI-C program interface openUTM-CICS interconnection via LU6.2

166 U5461-J-Z135-6-76

14. No data from the CPIC application program is required in the UTM application program
and with transaction management.

--->
 INIT
 MGET Client
 APRO DM KCRN=>A KCOF=C
 MPUT NE KCRN=>A
 CTRL PE KCRN=>A
 PEND KP
 -- FMH5+data+
 Prepare -------->
 CMACCP
 CMRCV
 -> CM_TAKE_COMMIT_
 DEALLOCATE
 SRRCMIT
 <- RequestCommit ---
 INIT
 MGET NT KCRN=>A
 VGST=C,TAST=P
 MPUT NE Client
 PEND FI
 -- Committed ------>
 <- Forget ----------
 =RR_OK
<---

openUTM-CICS interconnection via LU6.2 Using the CPI-C program interface

U5461-J-Z135-6-76 167

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
4

15. Two transactions in a service, first variant

--->
 INIT
 MGET Client
 APRO DM KCPI=>A KCOF=C
 MPUT NE KCRN=>A
 PEND RE
 -- FMH5+data+
 Prepare -------->
 CMACCP
 CMRCV
 -> CM_TAKE_COMMIT_SEND
 SRRCMIT
 <- RequestCommit ---
 -- Committed ------>
 <- Forget ----------
 =RR_OK
 CMSEND
 <- Data -----------
 INIT
 MGET NT KCRN=>A
 VGST=O,TAST=O
 MPUT NE KCRN=>A
 CTRL PE KCRN=>A
 PEND KP
 -- Data+Prepare ---->
 CMRCV
 -> CM_TAKE_COMMIT_
 DEALLOCATE
 SRRCMIT
 <- RequestCommit ---
 INIT
 MGET NT KCRN=>A
 VGST=C,TAST=P
 MPUT NE Client
 PEND FI
 -- Committed ------>
 <- Forget ----------
 =RR_OK
<---

Using the CPI-C program interface openUTM-CICS interconnection via LU6.2

168 U5461-J-Z135-6-76

If no data is sent at the second Prepare, as in examples 12 and 13 the subsequent UTM
calls are not required:

MPUT NE KCRN=>A
CTRL PE KCRN=>A
PEND KP
INIT
MGET NT KCRN=>A VGST=C,TAST=P

openUTM-CICS interconnection via LU6.2 Using the CPI-C program interface

U5461-J-Z135-6-76 169

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
4

16. Two transactions in a service, second variant

Continued on the next page

--->
 INIT
 MGET Client
 APRO DM KCPI=>A KCOF=C
 MPUT NE KCRN=>A
 PEND KP
 -- FMH5+data ----->
 CMACCP
 CMRCV
 -> CM_SEND_RECEIVED
 CMSEND
 <- Data -----------
 INIT
 MGET NT KCRN=>A
 VGST=O,TAST=O
 MPUT NE KCRN=>A KCLM=0
 CTRL PR KCRN=>A
 PEND KP
 -- Prepare -------->
 CMRCV
 -> CM_TAKE_COMMIT
 SRRCMIT
 <- RequestCommit ---
 INIT
 MGET NT KCRN=>A
 VGST=O,TAST=P
 MPUT NE Client
 PEND RE
 -- Committed ------>
 <- Forget ----------
 =RR_OK
<---
--->
 INIT
 MGET Client
 MPUT NE KCRN=>A
 CTRL PE KCRN=>A
 PEND KP
 -- Data+Prepare --->
 CMRCV
 -> CM_TAKE_COMMIT_
 DEALLOCATE
 SRRCMIT

Using the CPI-C program interface openUTM-CICS interconnection via LU6.2

170 U5461-J-Z135-6-76

Continued

As in examples 12 and 13, some UTM calls are not required if you do without the roll-
back/commit information from CPI-C in the program unit. The 2nd and 3rd program sections
are then reduced to the following sequence:

INIT
MGET NT KCRN=>A VGST=O,TAST=O
CTRL PR KCRN=>A
MPUT NE Client
PEND RE

 <- RequestCommit ---
 INIT
 MGET NT KCRN=>A
 VGST=C,TAST=P
 MPUT NE Client
 PEND FI
 -- Committed ------>
 <- Forget ----------
 =RR_OK
<---

openUTM-CICS interconnection via LU6.2 Using the CPI-C program interface

U5461-J-Z135-6-76 171

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
4

17. The CPIC application program rolls back the transaction and cancels the service, first
variant

--->
 INIT
 MGET Client
 APRO DM KCPI=>A KCOF=C
 MPUT NE KCRN=>A
 PEND KP
 -- FMH5+data ----->
 CMACCP
 CMRCV
 -> CM_SEND_RECEIVED
 SRRBACK
 CMSDT
 (CM_DEALLOCATE_ABEND)
 CMDEAL
 <- FMH7 ------------
 -- FMH7-Response -->
 Roll back the transaction
 possibly with message K034 on the client
 If a synchronization point has already been
 reached, then start this synchronization
 point’s successor program:
 INIT KCKNZVG=R
 MGET NT KCRN=>A
 VGST=O,TAST=R
 ...

Using the CPI-C program interface openUTM-CICS interconnection via LU6.2

172 U5461-J-Z135-6-76

18. The CPI-C application program rolls back the transaction and cancels the service, sec-
ond variant

In contrast to example 17, in example 18 the program unit receives a message back after
the transaction is rolled back by CPI-C.

--->
 INIT
 MGET Client
 APRO DM KCPI=>A KCOF=C
 MPUT NE KCRN=>A
 PGWT KP
 -- FMH5+Data ------>
 CMACCP
 CMRCV
 -> CM_SEND_RECEIVED
 SRRBACK
 CMSDT
 (CM_DEALLOCATE_ABEND)
 CMDEAL
 <- FMH7 ------------
 -- FMH7-Response -->
 KCTARB=Y
 MGET NT KCRN=>A
 VGST=T,TAST=R
 MPUT Client
 PEND KCOM=FR
...

openUTM-CICS interconnection via LU6.2 Using the CPI-C program interface

U5461-J-Z135-6-76 173

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
4

19. The CPIC application program rolls back the transaction, the service continues to run

Continued on the next page

--->
 INIT
 MGET Client
 APRO DM KCPI=>A KCOF=C
 MPUT NE KCRN=>A
 PEND KP
 -- FMH5+data ----->
 CMACCP
 CMRCV
 -> CM_SEND_RECEIVED
 CMSEND
 <- Data -----------
 INIT
 MGET NT KCRN=>A
 VGST=O,TAST=O
 MPUT NE KCRN=>A
 CTRL PR KCRN=>A
 PEND KP
 -- Prepare -------->
 CMRCV
 -> CM_TAKE_COMMIT
 SRRCMIT
 <- RequestCommit ---
 INIT
 MGET NT KCRN=>A
 VGST=O,TAST=P
 MPUT NE Client
 PEND RE
 -- Committed ------>
 <- Forget ----------
 =RR_OK
<---
--->
 INIT
 MGET Client
 MPUT NE KCRN=>A
 CTRL PE KCRN=>A
 PEND KP
 -- Prepare -------->
 CMRCV
 -> CM_TAKE_COMMIT_
 DEALLOCATE
 SRRBACK

Using the CPI-C program interface openUTM-CICS interconnection via LU6.2

174 U5461-J-Z135-6-76

Continued

Note that the UTM application program does not receive a status message from the job-
receiver after the SRRBACK in this case. openUTM only sends a status message from the
job-receiver to the application program if the job-receiver has been terminated by the rolling
back of the transaction.

In addition to message K034, the message to the client from the last synchronization point
is sent to the client again.

As in examples 12 and 13, some UTM calls are not required if you do without the roll-
back/commit information from CICS in the program unit. The 2nd and 3rd sections of the
program are then reduced to the following sequence:

INIT
MGET NT KCRN=>A VGST=O,TAST=O
CTRL PR KCRN=>A
MPUT NE Client
PEND KCOM=RE

 <- FMH7 ------------
 -- FMH7-Response -->
 =RR_OK
<--- K034
--->
 INIT KCKNZVG=R
 MGET Client
 MPUT NE KCRN=>A
 CTRL PE KCRN=>A
 PEND KP
 -- Prepare -------->
 CMRCV
 -> CM_TAKE_COMMIT_
 DEALLOCATE
 SRRCMIT
 <- RequestCommit ---
 INIT
 MGET NT KCRN=>A
 VGST=C,TAST=P
 MPUT NE Client
 PEND FI
 -- Committed ------>
 <- Forget ----------
 =RR_OK
<---

openUTM-CICS interconnection via LU6.2 Using the CPI-C program interface

U5461-J-Z135-6-76 175

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
4

20. One-step service without transaction management

--->
 INIT
 MGET Client
 APRO DM KCPI=>A KCOF=B
 MPUT NE KCRN=>A
 PEND KP
 -- FMH5+data ----->
 CMACCP
 CMRCV
 -> CM_SEND_RECEIVED
 CMSEND
 CMDEAL
 <- data+CEB -------
 INIT
 MGET NT KCRN=>A
 VGST=C,TAST=U
 MPUT NE Client
 PEND FI
<---

Using the CPI-C program interface openUTM-CICS interconnection via LU6.2

176 U5461-J-Z135-6-76

21. Processing acknowledge without transaction management

--->
 INIT
 MGET Client
 APRO DM KCPI=>A KCOF=H
 MPUT NE KCRN=>A
 MPUT HM KCRN=>A
 PEND KP
 -- FMH5+data ----->
 CMACCP
 CMRCV
 -> CM_CONFIRM_SEND_
 RECEIVED
 CMCFMD
 CMSEND
 CMSDT(CM_DEALLOCATE_FLUSH)
 CMDEAL
 <- data+CEB -------
 INIT
 MGET NT KCRN=>A
 KCRMGT=C
 MGET NT KCRN=>A
 VGST=C,TAST=U
 MPUT NE Client
 PEND FI
<---

openUTM-CICS interconnection via LU6.2 Using the CPI-C program interface

U5461-J-Z135-6-76 177

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
4

22. Negative processing acknowledge without transaction management

--->
 INIT
 MGET Client
 APRO DM KCPI=>A KCOF=H
 MPUT NE KCRN=>A
 MPUT HM KCRN=>A
 PEND KP
 -- FMH5+Data ------>
 CMACCP
 CMRCV
 -> CM_CONFIRM_SEND_
 RECEIVED
 CMSERR
 CMSEND
 CMSDT(CM_DEALLOCATE_FLUSH)
 CMDEAL
 <- FMH7 ------------
 INIT
 MGET NT KCRN=>A
 KCRMGT=E
 MGET NT KCRN=>A
 VGST=C,TAST=U
 MPUT NE Client
 PEND FI
<---

Using the CPI-C program interface openUTM-CICS interconnection via LU6.2

178 U5461-J-Z135-6-76

Starting a CPIC asynchronous service from a UTM application
program

23. Starting a CPIC asynchronous service from a UTM application program without trans-
action management

For this kind of communication, an openUTM-LU62 instance generated with the parameter
UTM-ASYNC=YES must be used.

The case shown in example 20 is similar. The key difference is that the CPI-C program in
example 20 can still send data back. On the UTM side, the advantage of the dialog is that
the application is notified of the success or failure of the call.

If the CPIC program sends a negative processing acknowledge using CMSERR, then
openUTM deletes the job. However, the UTM application program obviously cannot be
informed of this any more.

 INIT
 APRO AM KCPI=>A KCOF=B
 FPUT NE KCRN=>A
 PEND FI
 -- FMH5+data ----->
 CMACCP
 CMRCV
 -> CM_DATA
 CMRCV
 -> CM_CONFIRM_DEALLOC_
 RECEIVED
 CMCFMD
 <- data+CEB -------

openUTM-CICS interconnection via LU6.2 Using the CPI-C program interface

U5461-J-Z135-6-76 179

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
3

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
4

24. Starting a CPIC asynchronous service from a UTM application program with trans-
action management

If the CPIC program rolls back the transaction using SRRBACK, then openUTM deletes the
job. However, the UTM application program obviously cannot be informed of this any more.

The transaction management in example 24 has the following advantages for the applica-
tion programs compared to example 23, where there is no transaction management:

– The sending of queued messages in the UTM application program is automatically
linked to other processes in the application program, e.g. database update.

– If PEND FI is successful, it is guaranteed that the CICS asynchronous process will be
started only once.

This case is similar to example 14. The CPI-C programming is identical. On the UTM side,
the dialog case (example 14) has the advantage that the application is notified of the suc-
cess or failure of the call. The asynchronous case (example 24) is suitable, above all, for
time-driven jobs.

 INIT
 APRO AM KCPI=>A KCOF=C
 FPUT NE KCRN=>A
 PEND FI
 -- FMH5+data+
 Prepare -------->
 CMACCP
 CMRCV
 -> CM_TAKE_COMMIT_
 DEALLOCATE
 SRRCMIT
 <- RequestCommit ---
 -- Committed ------>
 <- Forget ----------
 =RR_OK
 RETURN

180 U5461-J-Z135-6-76

U5461-J-Z135-6-76 181

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
8

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
5

5 openUTM-IMS interconnection via LU6.2
This chapter covers generation and programming aspects of openUTM-IMS interconnec-
tion via LU6.2. IMS is a transaction monitor and an IBM database. Since version 6, the IMS
Transaction Monitor (IMS TM) has been capable of transaction-oriented LU6.2 communica-
tion to partner applications. This can be used in an interconnection to openUTM.

5.1 Generating an openUTM-IMS interconnection

5.1.1 IMS startup parameters

If an IMS application is to use LU6.2, the APPC/IMS component must be used for this. AP-
PC/IMS is part of IMS TM. It uses two components of the z/OS operating system: AP-
PC/MVS and RRS/MVS. If an IMS application is to use LU6.2 protocols, the value APPC=Y
must be specified in the IMS startup parameters or in the DFSPBxxx member of IMS.PRO-
CLIB. In transaction-oriented communication, RRS=Y must be specified as well.

Example of IMS startup parameters in the DCC procedure:

// PROC RGN=2000K,SOUT=A,DPTY='(14,15)',
// SYS=,SYS1=,SYS2=,
// RGSUF=IV1,PARM1=APPC=Y,PARM2=RRS=Y,APPLID1=IMS81CR1,AOIS=R
//IEFPROC EXEC PGM=DFSMVRC0,DPRTY=&DPTY,
// REGION=&RGN,
// PARM='CTL,&RGSUF,&PARM1,&PARM2,&APPLID1,&AOIS'

APPC/MVS is a subsystem of the z/OS operating system that implements the LU6.2 proto-
col. RRS/MVS (Resource Recovery Services) is an operating system component that acts
as a sync point manager, coordinating the two-phase commit between databases and
LU6.2 partners.

Generating an openUTM-IMS interconnection openUTM-IMS interconnection via LU6.2

182 U5461-J-Z135-6-76

5.1.2 Defining the LU name of IMS

For LU6.2 communication, IMS needs an APPLID. This must be different from the APPLID
used for other SNA communication. The APPLID serves as an LU name. It must be defined
in VTAM. Here is an example of this kind of VTAM definition:

IMS VBUILD TYPE=APPL APPLICATION MAJOR NODE
IMSAPPL1 APPL ACBNAME=IMSAPPL1, ACBNAME FOR APPC
 APPC=YES,
 ATNLOSS=ALL,
 DLOGMOD=APPCMODE,
 DMINWNL=5,
 DSESLIM=10,
 MODETAB=LOGMODES,
 PARSESS=YES,
 SECACPT=NONE,
 SRBEXIT=YES,
 SYNCLVL=SYNCPT

IMSAPPL1 is the APPLID of IMS. APPCMODE is the MODE name in this example. You use
DSESLIM to specify the maximum number of LU6.2 sessions and DMINWNL to specify the
minimum number of contention winner sessions. SECACPT controls whether the LU6.2
partner programs have to pass a user ID and possibly a password when setting up a con-
versation. SYNCLVL=SYNCPT is required for two-phase commit communication.

The APPLID must also be specified for APPC/MVS. This is done by means of an LUADD
statement in SYS1.PARMLIB(APPCPMxx):

LUADD ACBNAME(IMSAPPL1) BASE SCHED(IMSREG) TPDATA(SYS1.APPCTP)

IMSAPPL1 is the APPLID of IMS. The IMS region is specified by means of the SCHED pa-
rameter. The value specified for TPDATA is the name of the file containing the TP_Profile
definitions.

The IMS system definition is specified by means of a number of Assembler macros. Chang-
es can be made to the system definition at runtime by means of the add-on product ETO
(Extended Terminal Option).

openUTM-IMS interconnection via LU6.2 Generating an openUTM-IMS interconnection

U5461-J-Z135-6-76 183

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
8

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
5

5.1.3 Defining IMS transactions

DL/I must be defined as an API. IMS transaction codes implemented with DL/I must be de-
fined in the IMS system definition by means of a TRANSACT macro. In addition, the asso-
ciated application program must be defined by means of an APPLCTN macro. IMS trans-
action codes implemented with CPI-C, on the other hand, must be defined in the TP_Profile
of APPC/MVS.

Example of an APPLCTN and TRANSACT macro

APPLCTN GPSB=IMS1PG1,PGMTYPE=TP
TRANSACT CODE=IMS1TR1,MSGTYPE=(,RESPONSE),INQUIRY=NO,MODE=SNGL

IMS1PG1 is the name of the program, and IMS1TR1 is the name of the transaction code.

In multi-step transactions, the parameter SPA must be specified in the TRANSACT macro.
The value of this parameter specifies the size of a scratch pad area. It serves to keep data
available over a number of dialog steps.

Example of a TP_Profile definition

TPADD TPSCHED_EXIT(DFSTPPE0)
 TPNAME(IMS1TPN)
 SYSTEM
 ACTIVE(YES)
 TPSCHED_DELIMITER(##)
 TRANCODE=IMS1SRVR
 CLASS=15
 MAXRGN=20
 RACF=NONE
 CPUTIME=100
 ##

IMS1TPN specifies the LU6.2 TP name, which is the name that must be addressed from
openUTM. The name IMS1SVR used for the TRANCODE parameter can be different from
this name and is then used in IMS as a transaction code.

Generating an openUTM-IMS interconnection openUTM-IMS interconnection via LU6.2

184 U5461-J-Z135-6-76

5.1.4 Defining partner LUs and openUTM transactions

If IMS acts only as a job recipient, no further definitions are required in IMS. If IMS also acts
as a job submitter, the address information must be generated for the partner program.

IBM recommends that partner transactions should be defined as side information in AP-
PC/MVS. The term side information is used in CPI-C. The side information contains a sym-
bolic destination name, a partner LU name, a partner TP name and a MODE name. The
symbolic name is then used in the application programs to address the partner transaction.
Here is an example of side information in APPC/MVS:

SIADD
 DESTNAME(DESTUTM1)
 TPNAME(UTMTAC01)
 MODENAME(APPCMODE)
 PARTNER_LU(APPCLUX)

The name of the side information file must be made known to IMS. This is done by means
of a SIDEINFO statement in SYS1.PARMLIB(APPCPMxx):

SIDEINFO DATASET(SYS1.APPCSI)

If the standard DL/I program interface is used without the LU6.2 extensions of the CHNG
call, the openUTM transaction cannot be addressed by means of side information. Instead,
an LTERM name must be used. As in openUTM, an LTERM in IMS is a symbolic name for
a communication partner that is used at the DL/I program interface. LTERM names must be
assigned to a real communication partner by means of IMS generation parameters.

In this kind of addressing you begin by defining an alternate PCB. Generation statements
are required at three different points to define an alternate PCB:

1. The PCB statement in IMS PSBGEN

Example:

PCB TYPE=TP,MODIFY=YES
PSBGEN PSBNAME=IMSTOJMS,CMPAT=YES,LANG=COBOL

2. The definition of ACBGEN

Example:

//ACBGEN EXEC ACBGEN,COMP='POSTCOMP'
//G.SYSIN DD *
 BUILD PSB=IMSTOJMS

openUTM-IMS interconnection via LU6.2 Generating an openUTM-IMS interconnection

U5461-J-Z135-6-76 185

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
8

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
5

3. The APPLCTN macro with the parameter PSB and the TRANSACT macro

Example:

APPLCTN PSB=IMSOJMS,PGMTYPE=TP
TRANSACT CODE=IMSD,MSGTYPE=(,RESPONSE),INQUIRY=NO,MODE=SNGL

In addition, an LTERM name must be defined with an LU6.2 descriptor in IMS.PRO-
CLIB(DFS62DTx) and assigned to this LU name, TP name and MODE name. Here is an
example of what this looks like:

A UTMIMS01 LUNAME=APPCLUX TPNAME=UTMTAC01 MODE=APPCMODE SYNCLEVEL=N

The LTERM name in this example is UTMIMS01.

You can also combine the two types of partner definition by using the parameter SIDE in-
stead of LUNAME, TPNAME and MODE for the LU6.2 descriptor, thus referencing side in-
formation.

In contrast to CICS, the maximum number of sessions to a partner LU is not specified in the
case of IMS. This maximum number is specified in the APPL definition of VTAM.

Generating an openUTM-IMS interconnection openUTM-IMS interconnection via LU6.2

186 U5461-J-Z135-6-76

5.1.5 VTAM generation

An initial part of the required VTAM generation is described above in the description of the
APPL macro.

The MODE name used for the LU6.2 communication must be defined in VTAM. Here is an
example of the definition of a MODE name:

APPCMODE MODEENT LOGMODE=APPCMODE, *
 RUSIZES=X'8989', *
 PSNDPAC=X'00', *
 SRCVPAC=X'00', *
 SSNDPAC=X'01'

RUSIZES specifies the maximum RU size in the sending and receiving direction. It is en-
coded in 2 hexadecimal characters: X'abab'. The actual RUSIZE is then calculated using
the formula n = a* 2b. The values for PSNDPAC, SRCVPAC and SSNDPAC influence the
pacing count.

Example of the VTAM definition of the partner PU and partner LU

P02CG3 PU ADDR=C1, *
 DISCNT=NO, *
 DLOGMOD=SNX32702, WITH QUERY *
 IDBLK=017, IDBLK FOR IBM-3174 *
 IDNUM=20003, *
 ISTATUS=ACTIVE, *
 MAXDATA=1033, *
 MAXOUT=7, *
 MAXPATH=2, *
 MODETAB=MOD3270, LOGMODE TABLE FOR REMOTE 3270 *
 PACING=0, *
 PUTYPE=2, *
 SSCPFM=USSSCS, *
 USSTAB=USSSCS, *
 VPACING=0
*
APPCLUX LU LOCADDR=0, INDEPENDENT LU *
 USSTAB=USSSCS, ACF/VTAM - USS-TABLE *
 DLOGMOD=APPCMODE, ACF/VTAM - DEFAULT LOGMODE *
 MODETAB=LOGMODES, LOGMODE TABLE *
 RESSCB=4, RESERVE 4 SCB'S FOR THIS LU *
 PACING=3, *
 VPACING=2, *
 SSCPFM=FSS

openUTM-IMS interconnection via LU6.2 Generating an openUTM-IMS interconnection

U5461-J-Z135-6-76 187

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
8

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
5

Example of the definition of a partner system linked by means of Enterprise Extender without the
definition of the LUs

SMNEEA2 VBUILD TYPE=SWNET
*
PUEEA1 PU IDBLK=003, *
 IDNUM=00002, *
 MAXPATH=5, *
 MAXDATA=256, *
 ADDR=01, *
 CPNAME=MCH00XYC, *
 CPCP=YES, *
 HPR=YES, *
 PUTYPE=2
PATH2A PATH SAPADDR=8, *
 IPADDR=111.22.333.144,
 GRPNM=GPP390, *

5.1.6 LU6.2 security

By LU6.2 security we understand the protection of transactions against unauthorized ac-
cess. There are 3 security variants when setting up a conversation:

● NONE: No user ID is passed.

● ALREADY_VERIFIED: A user ID is passed, together with an indication to the job recip-
ient that the user has already been verified by the job submitter.

● PROGRAM: A user ID and a password are passed.

IMS uses the product RACF for the purpose of access control. User IDs sent by partner ap-
plications therefore always have to be entered in RACF. Which user can call which transac-
tion code is entered in RACF. The passwords for the user IDs are also entered in RACF.

The SECACPT parameter of the VTAM-APPL macro specifies whether a user ID and pos-
sibly a password have to be passed when an LU6.2 conversation is set up to IMS. The de-
tails of the RACF checking of incoming conversations are specified in the RACF parameter
of the TP_Profile definition.

Generating an openUTM-IMS interconnection openUTM-IMS interconnection via LU6.2

188 U5461-J-Z135-6-76

5.1.7 Full generation example

The following example contains the generation statements of an openUTM-IMS intercon-
nection in the following circumstances:

● openUTM-LU62 is running on a Windows system.

● The interconnection between the IBM host and the Windows system is implemented by
means of Enterprise Extender.

The file names of the IMS and VTAM definitions should be regarded as examples. Different
file names can be chosen.

IMS definitions

IMS system definitions in IMS.CNTL(STAGE1):

//STAGE1 EXEC PGM=ASMA90,PARM='NOOBJ,DECK',REGION=0M
//SYSPRINT DD SYSOUT=*
//SYSLIB DD DISP=SHR,DSN=IMS810.ADFSMAC
//SYSPUNCH DD DISP=SHR,DSN=USER.IMS.CNTL(STAGE2)
//SYSUT1 DD UNIT=3390,SPACE=(CYL,(05,05)),DCB=OPTCD=C
//SYSUT2 DD UNIT=3390,SPACE=(CYL,(05,05)),DCB=OPTCD=C
//SYSUT3 DD UNIT=3390,SPACE=(CYL,(05,05)),DCB=OPTCD=C
//SYSIN DD *
 APPLCTN GPSB=TESTIMS1,PGMTYPE=TP
 TRANSACT CODE=IMS1,MSGTYPE=(,NONRESPONSE),INQUIRY=NO,MODE=SNGL
 APPLCTN GPSB=IMSTAC0,PGMTYPE=TP
 TRANSACT CODE=IMS0,MSGTYPE=(,RESPONSE),INQUIRY=NO,MODE=SNGL
 END ,

TP_Profile definition in IMS.CNTL(APPCTP):

// EXEC PGM=ATBSDFMU
//SYSPRINT DD SYSOUT=*
//SYSSDLIB DD DSN=SYS1.APPCTP,DISP=SHR
//SYSSDOUT DD SYSOUT=*
//SYSIN DD DATA,DLM=XX
 TPADD TPSCHED_EXIT(DFSTPPE0)
 TPNAME(IMSX)
 SYSTEM
 ACTIVE(YES)
 TPSCHED_DELIMITER(##)
 TRANCODE=TESTIMSX
 CLASS=1
 MAXRGN=1
 RACF=NONE
 CPUTIME=0
XX

openUTM-IMS interconnection via LU6.2 Generating an openUTM-IMS interconnection

U5461-J-Z135-6-76 189

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
8

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
5

Side information in IMS.CNTL(APPCSI):

// EXEC PGM=ATBSDFMU
//SYSPRINT DD SYSOUT=*
//SYSSDLIB DD DSN=SYS1.APPCSI,DISP=SHR
//SYSSDOUT DD SYSOUT=*
//SYSIN DD DATA,DLM=XX
 SIDELETE
 DESTNAME(DESTJW1)
 SIADD
 DESTNAME(DESTJW1)
 TPNAME(DATAECHO)
 MODENAME(APPCHOST)
 PARTNER_LU(P390.IMSJ)
XX

LTERM definition in PROCLIB(DFS62DTI):

A LTERMJW1 SIDE=DESTJW1 SYNCLEVEL=N CONVTYPE=M

IMS LU definition in PARMLIB(APPCPM1A):

LUADD ACBNAME(MVSLU01) BASE TPDATA(SYS1.APPCTP)
LUADD ACBNAME(IMSA) BASE SCHED(IVP1) TPDATA(SYS1.APPCTP)
SIDEINFO DATASET(SYS1.APPCSI)

VTAM generation

Starting options:

SSCPNAME=P390SSCP,
NETID=P390

Switched major node definition in VTAMLST(SWXCAEE):

SWXCA1A VBUILD TYPE=SWNET,MAXNO=256,MAXGRP=256
SW1A13A PU IDBLK=05D,IDNUM=25129,MAXPATH=5,MAXDATA=256,ADDR=01, -
 CPNAME=MHPB02GC, -
 CPCP=YES,HPR=YES, -
 PUTYPE=2
PATH13A PATH SAPADDR=4, -
 IPADDR=111.22.33.233, -
 GRPNM=GPP390

Generating an openUTM-IMS interconnection openUTM-IMS interconnection via LU6.2

190 U5461-J-Z135-6-76

Major node definition for Enterprise Extender in VTAMLST(XCAEE1):

XCAEEE1 VBUILD TYPE=XCA
PORT1A PORT MEDIUM=HPRIP,IPPORT=12000, -
 IPTOS=(20,40,80,C0,C0),LIVTIME=10, -
 SRQTIME=15,SRQRETRY=3,SAPADDR=4
GPP390 GROUP DIAL=YES,ANSWER=ON,ISTATUS=ACTIVE,CALL=INOUT, -
 DYNPU=YES,IPADDR=111.22.33.244
LNEE01 LINE
PUEE01 PU
LNEE02 LINE
PUEE02 PU

APPL definition in VTAMLST(A0IMS):

A0IMS VBUILD TYPE=APPL APPLICATION MAJOR NODE
IMSA APPL ACBNAME=IMSA, ACBNAME MUST BE EQ LABEL C
 APPC=YES, C
 ATNLOSS=ALL, C
 AUTOSES=0, C
 DDRAINL=NALLOW, C
 DLOGMOD=APPCHOST, C
 DMINWNL=5, C
 DMINWNR=5, C
 DRESPL=NALLOW, C
 DSESLIM=10, C
 LMDENT=19, C
 PARSESS=YES, C
 SECACPT=NONE, C
 SRBEXIT=YES, C
 SYNCLVL=SYNCPT, C
 VPACING=1

MODE definition in VTAM.SOURCE(ISTINCLM):

ISTINCLM MODETAB
APPCHOST MODEENT LOGMODE=APPCHOST, *
 RUSIZES=X'8989', 4096 *
 SRCVPAC=X'00', *
 SSNDPAC=X'01'

openUTM-IMS interconnection via LU6.2 Generating an openUTM-IMS interconnection

U5461-J-Z135-6-76 191

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
8

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
5

IBM Communications Server

NODE=(
 ANYNET_SUPPORT=NONE
 CP_ALIAS=MHPB02GC
 DEFAULT_PREFERENCE=NATIVE
 DISCOVERY_SUPPORT=DISCOVERY_SERVER
 DLUR_SUPPORT=NORMAL
 FQ_CP_NAME=P390.MHPB02GC
 MAX_LOCATES=150
 MAX_LS_EXCEPTION_EVENTS=200
 NODE_ID=05D25129
 NODE_TYPE=NETWORK_NODE
 REGISTER_WITH_CDS=1
 REGISTER_WITH_NN=NONE
 SEND_TERM_SELF=0
 TP_SECURITY_BEHAVIOR=VERIFY_EVEN_IF_NOT_DEFINED
)
PORT=(
 ACTIVATION_DELAY_TIMER=30
 ALLOW_ABM_XID_MISMATCH=0
 DELAY_APPLICATION_RETRIES=1
 DLC_NAME=IBMEEDLC
 IMPLICIT_BRANCH_EXTENDER_LINK=0
 IMPLICIT_CP_CP_SESS_SUPPORT=1
 IMPLICIT_DEACT_TIMER=600
 IMPLICIT_DSPU_SERVICES=NONE
 IMPLICIT_HPR_SUPPORT=1
 IMPLICIT_LIMITED_RESOURCE=NO
 IMPLICIT_LINK_LVL_ERROR=0
 LINK_STATION_ROLE=NEGOTIABLE
 MAX_ACTIVATION_ATTEMPTS=0
 MAX_IFRM_RCVD=8
 MAX_RCV_BTU_SIZE=1500
 PORT_NAME=IBMEEDLC
 PORT_TYPE=SATF
 RETRY_LINK_ON_DISCONNECT=1
 RETRY_LINK_ON_FAILED_START=1
 RETRY_LINK_ON_FAILURE=1

Generating an openUTM-IMS interconnection openUTM-IMS interconnection via LU6.2

192 U5461-J-Z135-6-76

DEFAULT_TG_CHARS=(
 COST_PER_BYTE=0
 COST_PER_CONNECT_TIME=0
 EFFECTIVE_CAPACITY=133
 PROPAGATION_DELAY=LAN
 SECURITY=NONSECURE
 USER_DEFINED_1=0
 USER_DEFINED_2=0
 USER_DEFINED_3=0
)
PORT_OEM_SPECIFIC_DATA=(
OEM_LINK_DATA=(
 OEM_DATA=010000000400000004000000030000000F00000000000000
 OEM_DATA=0A0000000000000000
)
OEM_PORT_DEFAULTS=(
 COST_PER_CONNECT_TIME=0
 EFFECTIVE_CAPACITY=133
 INB_LINK_ACT_LIM=128
 OUT_LINK_ACT_LIM=127
 PROPAGATION_DELAY=LAN
 SECURITY=NONSECURE
 TOT_LINK_ACT_LIM=255
)
)
)
LINK_STATION=(
 ACTIVATE_AT_STARTUP=1
 ACTIVATION_DELAY_TIMER=-1
 ADJACENT_BRANCH_EXTENDER_NODE=PROHIBITED
 ADJACENT_NODE_TYPE=LEARN
 AUTO_ACTIVATE_SUPPORT=0
 BRANCH_EXTENDER_LINK=1
 CP_CP_SESS_SUPPORT=1
 DEFAULT_NN_SERVER=0
 DELAY_APPLICATION_RETRIES=0
 DEPENDENT_LU_COMPRESSION=0
 DEPENDENT_LU_ENCRYPTION=OPTIONAL
 DEST_ADDRESS=F45519AC
 DISABLE_REMOTE_ACT=0
 DSPU_SERVICES=NONE
 FQ_ADJACENT_CP_NAME=P390.P390SSCP
 HPR_LINK_LVL_ERROR=0
 HPR_SUPPORT=1
 INHERIT_PORT_RETRY_PARMS=1
 LIMITED_RESOURCE=NO
 LINK_DEACT_TIMER=600
 LINK_STATION_ROLE=NEGOTIABLE

openUTM-IMS interconnection via LU6.2 Generating an openUTM-IMS interconnection

U5461-J-Z135-6-76 193

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
8

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
5

 LS_NAME=P390SSCP
 MAX_ACTIVATION_ATTEMPTS=-1
 MAX_IFRM_RCVD=7
 MAX_SEND_BTU_SIZE=1500
 NODE_ID=05D25129
 NULL_ADDRESS_MEANING=USE_WILDCARD
 PORT_NAME=IBMEEDLC
 PU_NAME=P390SSCP
 RETRY_LINK_ON_DISCONNECT=0
 RETRY_LINK_ON_FAILED_START=0
 RETRY_LINK_ON_FAILURE=0
 REVERSE_ADDRESS_BYTES=0
 SOLICIT_SSCP_SESSION=0
 TG_NUMBER=0
 USE_DEFAULT_TG_CHARS=1
 USE_PU_NAME_IN_XID=0
TG_CHARS=(
 COST_PER_BYTE=0
 COST_PER_CONNECT_TIME=0
 EFFECTIVE_CAPACITY=0
 PROPAGATION_DELAY=MINIMUM
 USER_DEFINED_1=0
 USER_DEFINED_2=0
 USER_DEFINED_3=0
)
LINK_STATION_OEM_SPECIFIC_DATA=(
OEM_LINK_DATA=(
 OEM_DATA=010000000400000004000000030000000F00000000000000
 OEM_DATA=0A000000F45519AC
)
)
)
DLUR_DEFAULTS=(
 DEFAULT_PU_NAME=MHPB02GC
 DLUS_RETRY_LIMIT=3
 DLUS_RETRY_TIMEOUT=5
)
LOCAL_LU=(
 LU_NAME=IMSJ
 DEFAULT_POOL=0
 LU_ALIAS=IJWIMSJ
 LU_SESSION_LIMIT=0
 NAU_ADDRESS=0
 ROUTE_TO_CLIENT=0
 SYNCPT_SUPPORT=1
)

Generating an openUTM-IMS interconnection openUTM-IMS interconnection via LU6.2

194 U5461-J-Z135-6-76

MODE=(
 MODE_NAME=APPCHOST
 AUTO_ACT=6
 COMPRESSION=PROHIBITED
 COS_NAME=#CONNECT
 DEFAULT_RU_SIZE=0
 ENCRYPTION_SUPPORT=NONE
 MAX_INCOMING_COMPRESSION_LEVEL=NONE
 MAX_NEGOTIABLE_SESSION_LIMIT=128
 MAX_OUTGOING_COMPRESSION_LEVEL=NONE
 MAX_RU_SIZE_UPPER_BOUND=4096
 MIN_CONWINNERS_SOURCE=6
 PLU_MODE_SESSION_LIMIT=12
 RECEIVE_PACING_WINDOW=1
)
PARTNER_LU=(
 FQ_PLU_NAME=P390.IMSA
 ADJACENT_CP_NAME=
 CONV_SECURITY_VERIFICATION=1
 MAX_MC_LL_SEND_SIZE=32767
 PARALLEL_SESSION_SUPPORT=1
 PARTNER_LU_ALIAS=PA713236
 PREFERENCE=USE_DEFAULT_PREFERENCE
)
SPLIT_STACK=(
 STARTUP=1
 POOL_NAME=
)
SHARED_FOLDERS=(
 CACHE_SIZE=256
EXTENSION_LIST=(
)
)
LOAD_BALANCING=(
 ADVERTISE_FREQUENCY=1
 APPC_LU_LOAD_FACTOR=0
 DEFAULT_MAX_LU62_SESSIONS=512
 ENABLE_LOAD_BALANCING=0
 HOST_LU_LOAD_FACTOR=0
 LOAD_VARIANCE=3
)

VERIFY=(
 CFG_MODIFICATION_LEVEL=12
 CFG_VERSION_LEVEL=1
 CFG_LAST_SCENARIO=6
)

openUTM-IMS interconnection via LU6.2 Generating an openUTM-IMS interconnection

U5461-J-Z135-6-76 195

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
8

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
5

openUTM-LU62 generation without using TNSX

INSTANCE
 LOC-LU-ALIAS=IJWIMSJ,
 LOC-TSEL=T'IJWOSICL',
 LOC-LISTENER-PORT=29664,
 LOC-APT=(1,2,29664),
 LOC-AEQ=712614,
 REM-LU-ALIAS=PA713236,
 MODENAME=APPCHOST,
 ALLOC-TIME=0,
 LU62-CODE=*NO,
 REM-NSEL=utmhost,
 REM-LISTENER-PORT=23000,
 REM-TSEL=T'SMP23000',
 REM-APT=(1,2,29660),
 REM-AEQ=1,
 APPL-CONTEXT=UDTSEC,
 ASSOCIATIONS=12,
 CONNECT=12,
 CONTWIN=6,
 OSITP-CODE=*NO

openUTM-LU62 generation using TNSX

INSTANCE
 LOC-LU-ALIAS=IJWIMSJ,
 LOC-AE=IJWOSICL,
 LOC-APT=(1,2,29664),
 LOC-AEQ=712614,
 REM-LU-ALIAS=PA713236,
 MODENAME=APPCHOST,
 ALLOC-TIME=0,
 LU62-CODE=*NO,
 REM-AE=BCOSI0.SMP23000,
 REM-APT=(1,2,29660),
 REM-AEQ=1,
 APPL-CONTEXT=UDTSEC,
 ASSOCIATIONS=12,
 CONNECT=12,
 CONTWIN=6,
 OSITP-CODE=*NO

Generating an openUTM-IMS interconnection openUTM-IMS interconnection via LU6.2

196 U5461-J-Z135-6-76

TNSX generation

BCOSI0.SMP23000\
 TA RFC1006 111.33.55.111 PORT 23000 T'SMP23000'
 PSEL V''
 SSEL V''
IJWOSICL\
 TSEL RFC1006 T'IJWOSICL'
 TSEL LANINET A'29664'
 PSEL V''
 SSEL V''

UTM generation

UTMD APT=(1,2,29660), -
 MAXJR=200, -
 CONCTIME=(180,60), -
 PTCTIME=0
ACCESS-POINT BCOSI0, -
 P-SEL=*NONE, -
 S-SEL=*NONE, -
 T-SEL=C'SMP23000', -
 AEQ=1, -
 T-PROT=RFC1006, -
 LISTENER-PORT=23000, -
 TSEL-FORMAT=T
OSI-CON IJWOSICL, -
 ACTIVE=YES, -
 LISTENER-PORT=29664, -
 LOCAL-ACCESS-POINT=BCOSI0, -
 MAP=USER, -
 N-SEL=C'MHPB02GC', -
 OSI-LPAP=IJWOSICL, -
 P-SEL=*NONE, -
 S-SEL=*NONE, -
 T-PROT=RFC1006, -
 T-SEL=C'IJWOSICL', -
 TSEL-FORMAT=T
OSI-LPAP IJWOSICL, -
 APPLICATION-CONTEXT=UDTSEC, -
 APPLICATION-ENTITY-QUALIFIER=712614, -
 APPLICATION-PROCESS-TITLE=(1,2,29664), -
 ASSOCIATION-NAMES=IJW, -
 ASSOCIATIONS=12, -
 CONNECT=12, -

openUTM-IMS interconnection via LU6.2 Generating an openUTM-IMS interconnection

U5461-J-Z135-6-76 197

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
8

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
5

 CONTWIN=6, -
 IDLETIME=0, -
 PERMIT=ADMIN, -
 STATUS=ON
TAC DATAECHO, -
 PROGRAM=comims, -
 TYPE=D
LTAC LIMS0, -
 RTAC=IMS0, -
 LPAP=IJWOSICL, -
 TYPE=D
LTAC LIMS1, -
 RTAC=IMS1, -
 LPAP=IJWOSICL, -
 TYPE=A
LTAC ICPC, -
 RTAC=CSVRCPIC, -
 LPAP=IJWOSICL, -
 TYPE=D

The essential parameters in this example are as follows:

Parameter IMS host openUTM-LU62
Windows

openUTM
end system

IP address 111.22.33.244
(F45519AC)

111.22.33.233 111.33.55.111

LU name P390.IMSA P390.IMSJ

LU alias PA713236 IJWIMSJ

CP name P390.P390SSCP P390.MHPB02GC

IDBLK/IDNUM 05D 25129

MODE name APPCHOST

T selector IJWOSICL SMP23000

Port number 29664 23000

AP title (1,2,29664) (1,2,29660)

AE qualifier 712614 1

APPL context UDTSEC

Programming an openUTM-IMS interconnection openUTM-IMS interconnection via LU6.2

198 U5461-J-Z135-6-76

5.2 Programming an openUTM-IMS interconnection

IMS application programs that use LU6.2 can be implemented by means of the DL/I or CPI-
C program interface.

In the IMS literature, distinctions are drawn between three IMS application program variants
in LU6.2 communication:

● Standard DL/I: The application program uses DL/I calls exclusively.

● Modified DL/I: DL/I is used to read the message from the job submitter and to send the
reply to the job submitter. In addition, CPI-C is used to establish communication with a
job recipient.

● CPI-C: The application program uses CPI-C calls exclusively.

5.2.1 DL/I program interface

DL/I is the conventional IMS program interface. Existing DL/I programs that receive mes-
sages from communication partners and send a reply back to the same partner can often
communicate with LU6.2 partners without the need for any changes. Two-phase commit
transactions can also be dealt with in this way. In addition, it is also possible with DL/I to
send an LU6.2 partner a queued message without transaction management, as in the case
of FPUT with openUTM. However, DL/I does not allow a two-phase commit transaction to
be requested from the partner. Nor is it possible with DL/I to set a user ID when sending a
queued message.

The following calls are available for data communication in DL/I:

Name Parameters Meaning Purpose

AUTH I/O PCB, I/O Area authorization To check whether the user can call specif-
ic functions and use resources

CHNG Alt PCB, dest name, opt list change To address a partner

CMD I/O PCB, I/O Area command To issue an administration command

GCMD I/O PCB, I/O Area get command To read the response to the administration
command

GU I/O PCB, I/O Area get unique To read the first message

GN I/O PCB, I/O Area get next To read a subsequent message

ISRT I/O PCB or Alt PCB, I/O
Area [, mod name]

insert To send a message

openUTM-IMS interconnection via LU6.2 Programming an openUTM-IMS interconnection

U5461-J-Z135-6-76 199

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
8

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
5

In addition, the following DL/I calls can be used for system services in the LU6.2
environment:

Meaning of the parameters

I/O PCB and Alt PCB:
When a message is received and sent, a PCB (program communication block) con-
taining information such as the status, partner name (LTERM), etc. is transferred. If
a message is sent back to the job submitter, the I/O PCB is used. To send a mes-
sage to a job recipient, an alternate PCB must be used for which a new destination
address is set beforehand by means of the CHNG call. One component of the PCB
is the partner type. The following partner types are possible:
– APPC (LU6.2 partner)
– OTMA (TCP/IP partner)
– TERMINAL (terminal or LU6.1 partner)
– TRANSACTION (transaction code).

PURG I/O PCB or Alt PCB purge To send a message immediately
(see Flush in CPI-C)

SETO I/O PCB or Alt PCB, I/O Ar-
ea, opt list

set options To send Send_Error or Deallocate_Abend

Name Parameters Meaning Purpose

INQY aib, I/O Area inquiry To query properties of the output PCB

ROLB I/O PCB, I/O Area rollback To send Deallocate_Abend and roll back the
transaction. The application program resumes
normally.

ROLL None roll To send Deallocate_Abend and roll back the
transaction. The program is terminated abnor-
mally, and the input message is deleted.

ROLS I/O PCB, I/O Area,
token

rollback to
sets/setu

To send Deallocate_Abend and roll back the
transaction. The program is terminated, the input
message remains in the queue, and the reset
point can be specified.

SETS I/O PCB, I/O Area,
token

set backout point To set a reset point for a subsequent ROLS

SETU I/O PCB, I/O Area,
token

set unconditional As for SETS, but with slightly different behavior in
error situations

SYNC I/O PCB sycnpoint To set a synchronization point

Programming an openUTM-IMS interconnection openUTM-IMS interconnection via LU6.2

200 U5461-J-Z135-6-76

I/O Area
The message area

dest name (destination name):
LTERM or transaction code name of the partner

opt list (options list):
In the case of CHNG, parameters of the LU6.2 partner can be specified here: LU
name, MODE name, TP name and sync-level (none or confirm). Alternatively, a
symbolic destination name can also be specified. In LU6.2 communication, ad-
dressing is carried out either by means of opt list or by means of an LTERM name
in the dest name field.

In the case of SETO, it is specified here whether Send_Error or Deallocate_Abend
is to be sent.

mod name (message output descriptor name):
Format name

aib (application interface control block):
This contains the PCB address and some additional information.

token: Name of a reset point

It is also possible to program longer dialogs alternately with GU/GN and ISRT.

Example of an extract from a DL/I-COBOL program (GN call)

ID DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
 77 GN-FUNC PIC X(4) VALUE 'GN '.
 01 IOAREA PIC X(256).
LINKAGE SECTION.
 01 D1PC.
 02 D1PCDBN PIC X(8).
 02 D1PCLEVL PIC 9(2).
 02 D1PCSTAT PIC X(2).
 02 D1PCPROC PIC X(4).
 02 D1PCRESV PIC S9(5) COMP.
 02 D1PCSEGN PIC X(8).
 02 D1PCKFBL PIC S9(5) COMP.
 02 D1PCNSSG PIC S9(5) COMP.
 02 D1PCKFBA PIC X(20).
PROCEDURE DIVISION.
 ENTRY 'DLITCBL' USING D1PC.
 ...

openUTM-IMS interconnection via LU6.2 Programming an openUTM-IMS interconnection

U5461-J-Z135-6-76 201

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
8

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
5

 CALL 'CBLTDLI' USING GN-FUNC, D1PC, IOAREA.
 IF D1PCSTAT NOT = ' '
 ...
 GOBACK.

5.2.2 CPI-C program interface

CPI-C allows the entire scope of LU6.2 to be exploited. Only with this program interface is
it possible from IMS programs to set up sync-level, sync-point conversations to partners.
CPI-RR must be used in this case to control the two-phase commit. For more information,
see also the section “Using the CPI-C program interface” on page 153.

5.2.3 LU6.2 Edit Exit routine

IMS always runs through the LU6.2 Edit Exit routine (DFSLUEE0) when a DL/I program
sends or receives an LU6.2 message. IBM supplies a ready-made exit routine that can be
modified by the customer. The exit routine can be used for the following purposes:

● To change the synchronization level of an asynchronous LU6.2 conversation

● To change the contents of messages

● To delete message segments

● To cancel (DEALLOCATE_ABEND) an LU6.2 conversation

5.2.4 Use of format names

MFS (Message Format Service) is the IMS component for handling formatted inputs and
outputs on character-oriented screens (type 3270).

When reading in a 3270 message, DL/I application programs receive a format name known
as the MOD name in the GU call. MOD stands for Message Output Descriptor. In the case
of ISRT they can pass a MOD name. If these kinds of programs are to be used unchanged
for LU6.2 communication, the LU6.2 Edit Exit routine (DFSLUEE0) must be used for these
purposes. The LU6.2 partner programs then have to send the format name at the beginning
of the message and receive a format name at the beginning of the return message.

Programming an openUTM-IMS interconnection openUTM-IMS interconnection via LU6.2

202 U5461-J-Z135-6-76

5.2.5 Examples of execution sequences with DL/I programs

The following examples are of execution sequences with openUTM and IMS programs. On
both sides, only the program calls for the LU6.2 communication are listed. Further program
calls are required for communication with the openUTM or IMS client.

The return values in the UTM application program are shown in italics in the following ex-
amples.

1. Synchronous call of an IMS transaction by openUTM without transaction management

2. Asynchronous call of an IMS transaction by openUTM without transaction management

IMS application UTM application

APRO DM KCOF=B, KCRN=A

MPUT NE, KCRN=A

PEND KP

<-- FMH5 + data

GU IOPCB

ISRT IOPCB

Exit

Data + CEB -->

MGET NT VGST=C, KCRN=A

IMS application UTM application

APRO AM KCOF=B, KCRN=A

FPUT NE, KCRN=A

PEND FI

<-- FMH5 + data + CEB

Acknowledgment -->

GU IOPCB

ISRT IOPCB

Exit

FMH5 + data + CEB -->

<-- Acknowledgment

TAC DFSASYNC

FGET

PEND FI

openUTM-IMS interconnection via LU6.2 Programming an openUTM-IMS interconnection

U5461-J-Z135-6-76 203

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
8

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
5

An openUTM-LU62 instance generated with the parameter UTM-ASYNC=YES must be
used for this kind of communication.

Note:
The TAC DFSASYNC must be generated in the UTM application as ASYNTAC. The
name DFSASYNC cannot be freely chosen. It is defined by IMS.

3. Asynchronous call of an IMS transaction by openUTM without transaction
management, IMS program does not send a message

An openUTM-LU62 instance generated with the parameter UTM-ASYNC=YES must be
used for this kind of communication.

IMS application UTM application

APRO AM KCOF=B, KCRN=A

FPUT NE, KCRN=A

PEND FI

<-- FMH5 + data + CEB

Acknowledgment -->

GU IOPCB

Exit

Programming an openUTM-IMS interconnection openUTM-IMS interconnection via LU6.2

204 U5461-J-Z135-6-76

4. Synchronous call of an IMS transaction by openUTM without transaction management,
multi-step transaction

In this example, only the IMS DL/I calls for sending and receiving messages are listed.
To keep data available over several dialog steps, IMS DL/I programs typically work with
a scratch pad area. Further GU, GN or ISRT calls are required to read and write the
scratch pad area.

IMS application UTM application

APRO DM KCOF=B, KCRN=A

MPUT NE, KCRN=A

PEND KP

<-- FMH5 + data

GU IOPCB

ISRT IOPCB

Data -->

MGET NT VGST=O, KCRN=A

MPUT NE, KCRN=A

PEND KP

<-- Data

GU IOPCB

ISRT IOPCB

Exit

Data + CEB -->

MGET NT VGST=C, KCRN=A

openUTM-IMS interconnection via LU6.2 Programming an openUTM-IMS interconnection

U5461-J-Z135-6-76 205

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
8

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
5

5. Synchronous call of an IMS transaction by openUTM with transaction management,
first variant

IMS application UTM application

APRO DM KCOF=C, KCPI=>A

MPUT NE, KCRN=A

PEND KP

<--FMH5 + data

GU IOPCB

ISRT IOPCB

Data + RQD2-->

(System code)

<- +DR2

MGET NT VGST=O, KCRN=A

PEND FI

<-- Prepare

Req Commit-->

<-- Committed

Forget + CEB-->

Programming an openUTM-IMS interconnection openUTM-IMS interconnection via LU6.2

206 U5461-J-Z135-6-76

6. Synchronous call of an IMS transaction by openUTM with transaction management,
second variant

In example 6, the 3rd program unit sees whether IMS issues a commit or a rollback.

In example 5, the program unit learns no more about commit or rollback in IMS. This is con-
trolled only by the UTM system code.

IMS application UTM application

APRO DM KCOF=C, KCRN=A

MPUT NE, KCRN=A

PEND KP

<--FMH5 + data

GU IOPCB

ISRT IOPCB

Data + RQD2-->

(System code)

<- +DR2

MGET NT VGST=O, KCRN=A

MPUT NE KCLM=0, KCRN=A

CTRL PE

PEND KP

<-- Prepare

Req Commit-->

MGET NT VGST=C, KCRN=A

<-- Committed

Forget + CEB-->

PEND FI

openUTM-IMS interconnection via LU6.2 Programming an openUTM-IMS interconnection

U5461-J-Z135-6-76 207

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
8

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
5

7. Synchronous call of an IMS transaction by openUTM with transaction management,
rollback by openUTM

8. Synchronous call of an IMS transaction by openUTM with transaction management,
rollback by the IMS program

IMS application UTM application

APRO DM KCOF=C, KCRN=A

MPUT NE, KCRN=A

PEND KP

<--FMH5 + data

GU IOPCB

ISRT IOPCB

Data -->

MGET NT VGST=O, KCRN=A

PEND FR

<-- Backout

Acknowledgment -->

IMS application UTM application

APRO DM KCOF=C, KCRN=A

MPUT NE, KCRN=A

PEND KP

<--FMH5 + data

GU IOPCB

ISRT IOPCB

ROLB

FMH7 -->

Error data -->

FMH7 + CEB -->

Rollback of the UTM transaction

Programming an openUTM-IMS interconnection openUTM-IMS interconnection via LU6.2

208 U5461-J-Z135-6-76

5.2.6 Examples of execution sequences with CPI-C programs

1. Synchronous call of an IMS CPI-C program by openUTM without transaction manage-
ment

This example corresponds to example 20 in the section “Examples of openUTM-CPIC
communication” on page 156.

2. Synchronous call of an IMS CPI-C program by openUTM with transaction management

IMS application UTM application

APRO DM KCOF=B, KCRN=A

MPUT NE, KCRN=A

PEND KP

<-- FMH5 + data

Accept

Receive_Data

Receive_SEND

Send_Data

SRRCMIT
(local sync point)

Deallocate

Data + CEB -->

MGET NT VGST=C, KCRN=A

IMS application UTM application

APRO DM KCOF=C, KCPI=A

MPUT NE KCRN=A

PEND KP

<--FMH5 + data

Accept

Receive DATA

Receive SEND

Send_Data

Prep_To_Rcv

Data -->

MGET NT KCRN=A VGST=O,

PEND FI

openUTM-IMS interconnection via LU6.2 Programming an openUTM-IMS interconnection

U5461-J-Z135-6-76 209

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
8

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
5

This example corresponds to example 12 in the section “Examples of openUTM-CPIC
communication” on page 156, where you will find further examples.

5.2.7 Examples of execution sequences with standard IMS transactions

1. Synchronous call of an IMS command by openUTM (e.g. /DISPLAY APPC)

Note:
You can use the "/DISPLAY APPC" command to output the status of all APPC
resources.

<-- Prepare

Receive
 SYNCP-DEAL

SRRCMIT

Req Commit-->

(UTM system code)

<-- Committed

Forget ------->

PEND FI

IMS command UTM application

APRO DM KCOF=B "/DISPLAY",
KCRN=A

MPUT NE "APPC", KCRN=A

PEND KP

<-- FMH5 + data

/DISPLAY APPC

Output

Data + CEB -->

MGET NT VGST=C, KCRN=A

IMS application UTM application

Programming an openUTM-IMS interconnection openUTM-IMS interconnection via LU6.2

210 U5461-J-Z135-6-76

2. Asynchronous call of an IMS command of openUTM (e.g. /DISPLAY APPC)

An openUTM-LU62 instance generated with the parameter UTM-ASYNC=YES must be
used for this kind of communication.

Note: The TAC DFSCMD must be generated as ASYNTAC in the UTM application. The
name DFSCMD cannot be freely chosen. It is defined by IMS.

3. Synchronous call of the IMS Message Switch by openUTM

Note: The IMS Message Switch allows queued messages to be sent to any LU6.2 part-
ners of the IMS application. For example, the message "DFSAPPC (TPN=REPORT
LU=FRED) REP1" causes IMS to send the message "REP1" to the TP name "RE-
PORT" of the partner LU "FRED".

IMS command UTM application

APRO AM KCOF=B "/DISPLAY",
KCRN=A

FPUT NE "APPC", KCRN=A

PEND FI

<-- FMH5 + data + CEB

Acknowledgment -->

/DISPLAY APPC

Output

FMH5 + data + CEB -->

<-- Acknowledgment

TAC DFSCMD

FGET

PEND FI

DFSAPPC UTM application

APRO DM KCOF=B "DFSAPPC",
KCRN=A

MPUT NE, KCRN=A

PEND KP

<-- FMH5 + data

Message Switch call

CEB -->

MGET NT VGST=C, KCRN=A

openUTM-IMS interconnection via LU6.2 Programming an openUTM-IMS interconnection

U5461-J-Z135-6-76 211

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
8

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
5

5.2.8 Examples of execution sequences with IMS as the job submitter

1. Call of a UTM asynchronous TAC by IMS without transaction management

2. Call of a UTM dialog TAC by IMS with transaction management

IMS application UTM application

GU IOPCB

CHNG ALTPCB

ISRT ALTPCB

PURG ALTPCB

FMH5 + data + CEB -->

<-- Acknowledgment

INIT

FGET

PEND FI

IMS application UTM application

Allocate synclev 2

Send_Data

Prep_To_Rcv

FMH5 + data -->

INIT

MGET VGST=O

MPUT NE

PEND KP

<-- Data

Receive DATA

Deallocate

SRRCMIT

Prepare -->

INIT

MGET TAST=P

PEND FI

Programming an openUTM-IMS interconnection openUTM-IMS interconnection via LU6.2

212 U5461-J-Z135-6-76

Transaction-oriented communication with IMS as the job submitter is only possible
when the IMS application programs use the CPI-C program interface.

<-- Req Commit

Committed -->

<-- Forget + CEB

IMS application UTM application

openUTM-IMS interconnection via LU6.2 IMS administration

U5461-J-Z135-6-76 213

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
8

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
5

5.3 IMS administration

Administration commands are essentially required for the following tasks:

● To display the connection statuses

● To set up LU6.2 sessions to the partner

● To resolve exchange log name problems

The following IMS commands are available for displaying the connection statuses

You can use the IMS command /ALLOCATE to set up sessions to LU6.2 partners.

The LU6.2 protocol contains an exchange log name when a session is set up. The two part-
ners exchange their log names. It is thus possible to ascertain whether one of the two part-
ners has deleted its log records with a cold start since the last connection cleardown. If one
partner has carried out a cold start, but the other partner has not, there is a warm-cold mis-
match. This can only be dealt with by manual intervention. In the case of openUTM-LU62,
a warm-cold mismatch is displayed as the XLN status "err". If IMS has carried out a cold
start, but openUTM-LU62 has not, you can deal with this by restarting the openUTM-LU62
instance using the cold-start option. Conversely, if openUTM-LU62 has been cold-started
and IMS warm-started, intervention is required on the IMS side.

/DISPLAY APPC,LU,ALL Displays all LUs.

/DISPLAY APPC,TP,ALL Displays the LU6.2 TP names used.

/DISPLAY APPC,CONV Displays current conversations.

/DISPLAY APPC,UOR,ALL Displays the current two-phase commit transactions.

214 U5461-J-Z135-6-76

U5461-J-Z135-6-76 215

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
4

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
6

6 openUTM-CICS interconnection via LU6.1
This chapter covers the generation and programming of openUTM-CICS interconnections
via LU6.1.

For CICS users, the generation and programming of openUTM-CICS interconnection are
largely identical to the procedure for IMS-CICS interconnection via LU6.1 (see the “CICS
for MVS/ESA Intercommunication Guide“ and the “CICS for MVS/ESA Distributed Trans-
action Programming Guide“).

6.1 CICS definitions for openUTM-CICS sessions

This section describes the generation of connections between CICS and openUTM.

Generations for CICS are possible via macros or online (resource definition online, RDO).
Increasingly, only the RDO definition is described with newer CICS versions; for this reason,
the RDO definition is described in this section.

For a connection to openUTM, RDO must be used to define the following:

CONNECTION
SESSIONS

In addition, the name of the CICS application is specified in the system initialization table
(SIT).

DFHSIT APPLID=cics_netname
Name (1-8 characters) which is used to define the SNA network name for the CICS
application. This name must match the RNETNAME operand in the corresponding
LPAP statement used for openUTM generation.

CICS definitions for openUTM-CICS sessions openUTM-CICS interconnection via LU6.1

216 U5461-J-Z135-6-76

DEFINE CONNECTION

This definition is used to describe the remote system, in this case the openUTM application.
It thus corresponds to the LPAP statement in the openUTM generation.

DEFINE CONNECTION connection_name
 GROUP group_name
 NETNAME netname
 ACCESSMETHOD VTAM
 PROTOCOL LU61
 DATASTREAM USER
 RECORDFORMAT U ⎢ VB
 ...

The operands have the following meaning:

CONNECTION connection_name
Name (1-4 characters) used to identify the openUTM application. This name only
exists within CICS. It must be specified in CICS programs in the SYSID parameter
in ALLOCATE when the CICS program wants to call a UTM transaction code. It
must also appear in a session definition.

GROUP group_name
Name (1-8 characters). The CICS system administrator must assign this name. It
only appears in the CICS definitions.

NETNAME netname
Name (1-8 characters) under which the openUTM application is known in the SNA
network. This name must match the LNETNAME operand in the corresponding
LPAP statement used for openUTM generation.

ACCESSMETHOD VTAM
VTAM access method.

PROTOCOL LU61
An LU6.1 connection is defined.

DATASTREAM USER
The user data is completely defined by the application program.

RECORDFORMAT U | VB
The format must correspond to the record format as it is sent from CICS. The default
value U (=unformatted) is valid for records without a length field. If VB (=variable
blocked) is specified, the records provided by CICS have to correspond to the VB
format provided by LU6.1, i.e. they must also contain the length field.

openUTM-CICS interconnection via LU6.1 CICS definitions for openUTM-CICS sessions

U5461-J-Z135-6-76 217

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
4

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
6

DEFINE SESSIONS

This is used to define one LU6.1 session. This corresponds to the LSES statement used
for openUTM generation.

DEFINE SESSIONS session_name
 GROUP group_name
 CONNECTION connection_name
 SESSNAME loc_ses_name
 NETNAMEQ rem_ses_name
 PROTOCOL LU61
 RECEIVECOUNT 01 ⎢ space
 SENDCOUNT 01 ⎢ space
 SENDSIZE ru_size
 RECEIVESIZE ru_size
 AUTOCONNECT NO | YES
 BUILDCHAIN YES
 IOAREALEN value1, value2
 ...

The operands have the following meaning:

SESSIONS session_name
Name of the session definition. This name only appears in the CICS definitions.

GROUP group_name
Name (1-8 characters). The CICS system administrator must assign this name. It
only appears in the CICS definitions. It should have the same name as the name
selected for the associated connection definition.

CONNECTION connection_name
Name of the associated CONNECTION definition.

SESSNAME loc_ses_name
Name (1-4 characters) used to define the local half-session qualifier. This name
must match the RSES operand in the corresponding LSES statement used for
openUTM generation.

NETNAMEQ rem_ses_name
Name (1-8 characters) used to define the remote half-session qualifier. This name
must match the LSES name in the corresponding LSES statement used for
openUTM generation.

PROTOCOL LU61
An LU6.1 session is defined.

CICS definitions for openUTM-CICS sessions openUTM-CICS interconnection via LU6.1

218 U5461-J-Z135-6-76

RECEIVECOUNT/SENDCOUNT
This is used to determine which partner is the PLU and which is the SLU. In the
openUTM application, the corresponding specifications are made in the
SESCHA statement.

RECEIVECOUNT 01
SENDCOUNT spaces

For this session, the CICS application is the PLU (primary logical unit) and
contention loser. In the corresponding SESCHA statement used for openUTM
generation, the following must be specified: PLU=Y,CONTWIN=N.

RECEIVECOUNT spaces
SENDCOUNT 01
For this session, the CICS application is the SLU (secondary logical unit) and
contention winner. In the corresponding SESCHA statement used for openUTM
generation, the following must be specified: PLU=N,CONTWIN=Y. This is not
allowed for interconnection via TRANSIT-CLIENT.

SENDSIZE / RECEIVESIZE ru_size
This defines the maximum size of the request units (RU) for this session. The value
for RU-size is determined by the maximum data length including the function
management header (FMH). The function management headers have a size
between 7 and 50 bytes. A value of 1024 is to be selected here for interconnections
via TRANSIT-CLIENT.

AUTOCONNECT NO | YES
The connections are automatically activated (YES) or not activated (NO) when the
system is started.

BUILDCHAIN YES
This operand must be specified for all openUTM-CICS sessions.

IOAREALEN value1, value2
The minimum size of the terminal input/output area is defined using value1. This
value should be chosen so that it is at least as large as the maximum message
length for the application program.

 With interconnection via TRANSIT-CLIENT, CICS must always be the PLU, i.e.
RECEIVECOUNT = 1. The maximum RU size must not exceed 1024 bytes. In
addition, only one SESSION is allowed for each CONNECTION (no parallel
sessions). If the data transfer is to be distributed over more than one session,
several CONNECTIONs must be defined and the selection of the various sessions
must be controlled via the openUTM or CICS application program.

!

openUTM-CICS interconnection via LU6.1 CICS definitions for openUTM-CICS sessions

U5461-J-Z135-6-76 219

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
4

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
6

Example of dependencies in CICS and openUTM generation

 CICS definitions openUTM generation

 SESCHA PLU,PLU=Y
 ,CONTWIN=N
 SIT: ,APPLID=CICSCGK←LRLRLRLRLRLRLRLRLRLRLU ,CONNECT=Y
 ,... ⎢
 ⎢
 ⎢ LPAP CICSP
 DEFINE CONNECTION UTMS ORLRLRLRLRLRLRLRLRLRLR→,RNETNAME=CICSCGK
 NETNAME UTMMCHP←LR→,LNETNAME=UTMMCHP
 URLRLRLRLRLRLRLR→,SESCHA=PLU
 ⎢
 ⎢
 DEFINE SESSIONS PCS1 ⎢
 CONNECTION UTMS ⎢
 RECEIVECOUNT 01←LRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLROUL UR→LSES UTS1
 NETNAMEQ UTS1←LRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLR⎢LROL ,LPAP=CICSP
 SESSNAME CIP1←LRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLR⎢LRLRLRLRLRLRLR→,RSES=CIP1

 SENDSIZE 1024 LR→ MAX NB=1024
 RECEIVESIZE 1024
 (1) CON statement

TRANSIT generation for openUTM-CICS sessions openUTM-CICS interconnection via LU6.1

220 U5461-J-Z135-6-76

6.2 TRANSIT generation for openUTM-CICS sessions

The openUTM gateway 1 (UTMGW1) uses an internal interface from TRANSIT-SERVER.
The LU6.1 protocols are transparently passed through by openUTM. In addition, session
setup and cleardown and the conversion of the transmission header (FID1 ← → FID2) are
handled. Communication with the openUTM system occurs via CMX.

Communication with the IBM application occurs via TRANSIT-SERVER and - depending on
the interconnection mode - via CMX or directly via the SINIX kernel. For a more detailed
description of the openUTM gateway, please refer to the "TRANSIT-CLIENT" manual.

For a more detailed description of the possible interconnections between TRANSIT-
SERVER and the IBM system, please refer to the "TRANSIT-SERVER" manual.

When openUTM is interconnected with CICS, the following components are run through.

openUTM → CMX → UTMGW1 → TRANSIT-SERVER → CMX → CCP → NCP/VTAM → CICS

Some interconnections don’t need CMX and CCP between TRANSIT-SERVER and
NCP/VTAM. Definitions must be made for all these components.

The previous chapter described the dependence between openUTM and CICS. The
following example provides a rough overview of the dependencies in the UNIX systems
definitions.

The following example applies to a session; openUTM and UTMGW1 are running on one
processor.

openUTM-CICS interconnection via LU6.1 TRANSIT generation for openUTM-CICS sessions

U5461-J-Z135-6-76 221

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
4

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
6

 openUTM generation UTMGW1
 LRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLR LRLRLRLRLRLR
 LPAP CICSP,
 LNETNAME=UTMMCHP,
 RNETNAME=CICSCGK←LRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLR→ APPLID=CICSCGK
 BCAMAPPL utmx1
 CON cicsx1, ←LRLRLRULRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLR→ LTNS=cicsx1
 BCAMAPPL=utmx1, ⎢ ←LRULRLRLRLRLRLRLRLRLRLRLRLRLRLRLR→ RTNS=utmx1
 LPAP=CICSP ⎢ ⎢
 ⎢ ⎢ URLRLR→ LUNAME=lu0gw1
 ⎢ ⎢ ⎢
 ⎢ ⎢ ⎢
 TNS configuration ⎢ ⎢ ⎢ TRANSIT configuration
 LRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLR ⎢ ⎢ ⎢ LR
 ⎢ ⎢ ⎢
 for UTMGW1 ⎢ ⎢ ⎢ XLINK ...,
 global name cicsx1 ←LROL ⎢ URLRLRLRLRLRLRLROULRLRLR→ NAME-PART[5]=sdlc
 ⎢ ⎢ ⎢ XPU ,
 for UTM: ⎢ ⎢ URLRLRLRLR⎢LRLR→ NAME-PART[5]=ibmhost
 global name utmx1 ←LRLRLRLRLROL ⎢ ⎢ ORLRLR→ XLU lu0gw1,PU=...,
 ⎢ ⎢ URLRLRLR→ TYP=F,LOCADDR=5
 for TRANSIT: ⎢ ⎢ ⎢
 global name sdlc ←LRLRLRLRLRLRLRLRLROL ⎢ ⎢
 ⎢ ⎢
 for IBM host: ⎢ ⎢
 global name ibmhost←LRLRLRLRLRLRLRLRLRLRLRLROL ⎢
 ⎢
 ⎢
 VTAM/NCP generation ⎢
 LR ⎢ LR
 ⎢
 L6L0 LINE ⎢ Line to SINIX
 P6L01 PU PUTYPE=2,.. ⎢
 UTMMCHP LU LOCADDR=5, ←LRLRLRLRLRLRLRLRLRLRLRLRLRLROL
 MODETAB=MODLU6,
 DLOGMOD=MODLU6,
 ...
 MODLU6 MODETAB MODETAB-ENTRY for LU6.1
 MODEENT LOGMODE=MODLU6,
 FMPROF=X'12', FM PROFILE 18
 TSPROF=X'04', TS PROFILE 4
 PRIPROT=X'B1',
 SECPROT=X'B1',
 COMPROT=X'70A0',
 RUSIZE=X'8787', SEND/RECEIVE 1024 BYTES
 PSERVIC=X'060130000000300000000000' LU6.1
 MODEEND
 END
 VBUILD TYPE=APPL CICS application
CICSCGK APPL ... LRLRLRLRLRLRLRLRLRLRLRLR→ UTM and UTMGW1

Defining CICS transactions openUTM-CICS interconnection via LU6.1

222 U5461-J-Z135-6-76

6.3 Defining CICS transactions

6.3.1 Local transactions

CICS transactions are defined via RDO.

DEFINE TRANSACTION <transaction code>
 PROGRAM <program name>
 INDOUBT WAIT

The operands have the following meanings:

TRANSACTION <transaction code>
Transaction code (1-4 characters) for the CICS transaction. This name must match
the RTAC operand in the corresponding LTAC statement used for openUTM gener-
ation.

PROGRAM <program name>
Name of a CICS program.

INDOUBT WAIT
This specification is necessary to achieve proper synchronization with openUTM
after session errors occur.

openUTM-CICS interconnection via LU6.1 Defining CICS transactions

U5461-J-Z135-6-76 223

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
4

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
6

6.3.2 Remote transactions

openUTM transactions are usually not defined in CICS. The transaction code appears only
in the programs. Remote dialog transactions are determined via the BUILD ATTACH call
and asynchronous programs with START. With the START call, the transaction code can
only have a length of 4 bytes. This can be taken into account in openUTM generation or this
transaction can be defined via RDO.

DEFINE TRANSACTION <local transaction code>
 REMOTESYSTEM <UTM system ID>
 REMOTENAME <remote transaction code>

The operands have the following meaning.

TRANSACTION <local transaction code>
Local transaction code (1-4 characters) for a openUTM service. This name is used
in the START call.

REMOTESYSTEM <UTM system ID>
Name of the openUTM application in the CICS application (see page 216).

REMOTENAME <remote transaction code>
Transaction code (1-8 characters) for a service in the openUTM application. This
name must correspond to the TAC name in the corresponding TAC statement used
for openUTM generation.

Example:

TAC ATAC0000 ←LRLRLRLRLRLRLRLRLRLRLRLR DEFINE TRANSACTION UASY
 ,TYPE=A ⎢ REMOTESYSTEM UTMP
 ,......... ⎢
 ORLRLRLRLRLRLRLRLRLRLRLRLRLRLRLR→ REMOTENAME ATAC0000

CICS programming openUTM-CICS interconnection via LU6.1

224 U5461-J-Z135-6-76

6.4 CICS programming during interconnection with openUTM

Two types of communication are possible between CICS and openUTM.

– Distributed Transaction Processing (DTP) LU6.1

– Asynchronous Processing LU6.1 with START and RETRIEVE

No other interconnection options offered by CICS can be used (e.g. DTP LU6.2).

The following section provides a rough overview of the special features of openUTM-CICS
communication.

6.4.1 Rules and restrictions for CICS programming

The following factors should be taken into consideration when creating CICS programs:

1. openUTM cannot distinguish between a remote CICS application and a remote
openUTM application. In other words, openUTM does not know whether a remote
service is a CICS conversation or an openUTM service.

2. Commands or command strings in CICS programs must correspond to a call or a
sequence of calls on the KDCS program interface to ensure that they can communicate
with openUTM services.

3. At the end of a CICS transaction (logical unit of work), selected resources (not all) are
logged. In contrast, at the end of an openUTM transaction all modified resources are
logged. In other words: openUTM operates fully transaction-oriented, and openUTM
logging is "indivisible". CICS conversations that require comprehensive transaction
logging must as a result treat the dialog or queued message as logged (PROTECTED).

4. A session between an openUTM service and a CICS conversation is involved in logging
and should not be released without a sync point.

5. In openUTM, the job-submitting service and the job-receiving service do not have equal
rights when it comes to terminating a session release (bracket): The job-submitting
service cannot be the first party to initiate the release of the session (with PEND FI)
before its job-receiving service. For this reason, when cooperating with a openUTM
service, a CICS conversation can initiate a session release if it is the job receiver.

6. In openUTM, indicators for sync points, session termination or change to SEND or
RECEIVE state are sent in the message. CICS commands and their combinations that
can cause isolated indicators (i.e. without message contents) to be sent to openUTM
should not be used (e.g. WAIT option with SEND in "CICS for MVS/ESA Application
Programming Reference“).

openUTM-CICS interconnection via LU6.1 CICS programming

U5461-J-Z135-6-76 225

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
4

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
6

7. openUTM interprets the arrival of the transmit authority (change direction) or of "end
bracket" as the end of the message. Only after this is it considered a complete message
and the destination program is activated. The CICS command CONVERSE or SEND
INVITE can be used to add the change direction indicator to the message. The CICS
command SEND LAST, RETURN or SEND LAST, SYNCPOINT can be used to add the
end bracket indicator to the message.

8. In openUTM, a sync point is always connected with the transmission of a complete
dialog message. As a result, a CICS conversation must see to it that the transmit
authority (change direction) is transferred to the openUTM partner service in the case
of a SYNCPOINT command.

9. openUTM always expects the ATTACH function management header for the addressing
of services. The CICS command BUILD ATTACH must be used in the CICS job-
submitting conversation. The openUTM transaction code cannot be placed at the
beginning of the message.

CICS commands: CICS as job submitter openUTM-CICS interconnection via LU6.1

226 U5461-J-Z135-6-76

6.5 CICS commands for CICS job-submitting conversations

The following section describes how an openUTM service is started from a CICS appli-
cation.

ALLOCATE

A CICS job-submitting conversation uses this command to attempt to assign a session for
a job-receiving conversation.

The command has the following syntax:

EXEC CICS ALLOCATE SYSID(name)
 [PROFILE(name)]
 [NOQUEUE]

SYSID(name)
Specifies the name for the remote openUTM application just like it was specified in
the CONNECTION definition. Immediately after the session is assigned, the name
of the assigned session is located in the EIBRSRCE field of the exec interface
blocks (EIB). This name must be specified in all subsequent job-submitting
commands (SEND/RECEIVE/CONVERSE) that relate to this session.

PROFILE(name)
Specifies a certain profile for communication with the partner. PROFILEs are deter-
mined during CICS generation (see "CICS for MVS/ESA Resource Definition“).

NOQUEUE
Means that the program should not wait if a session is not immediately available. A
session is "not immediately available" in the following situations:

1. All sessions to the remote openUTM application are busy.

2. Existing sessions are not yet active (bound).

3. The sessions still available are all contention loser sessions
(RECEIVECOUNT 1).

If NOQUEUE is not used, CICS adds the request to a queue and the program waits
until a session is available.

NOQUEUE should not be used for openUTM(SINIX) since CICS is always the
contention loser and hence no session is immediately available.

openUTM-CICS interconnection via LU6.1 CICS commands: CICS as job submitter

U5461-J-Z135-6-76 227

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
4

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
6

BUILD ATTACH

The CICS job-submitting conversation uses this command to create an ATTACH header
(FMH5) in which the TAC should be entered for the remote openUTM service. This FMH is
necessary to initiate openUTM services and is sent to the partner using SEND or
CONVERSE.

The command has the following syntax:

EXEC CICS BUILD ATTACH ATTACHID(name)
 PROCESS(name)
 RECFM(data-area)

ATTACHID(name)
Defines the name of the ATTACH header. This name is specified in the SEND or
CONVERSE command.

PROCESS(name)
Specifies the transaction code of the remote conversation.

RECFM(data-area)
data-area is a field (two bytes in length) that contains the record format of the
records sent by CICS.

x'01' data in VLVB format
x'04' unformatted data

Other options (see "CICS for MVS/ESA Application Programming Reference“) of this
command are irrelevant when it comes to interconnection with openUTM.

CICS commands: CICS as job submitter openUTM-CICS interconnection via LU6.1

228 U5461-J-Z135-6-76

SEND

This command creates a dialog message segment.

The command has the following syntax:

EXEC CICS SEND [SESSION(name)]
 [ATTACHID(name)]
 FROM(area)
 LENGTH(area)
 INVITE

SESSION(name)
Specifies the name of the session. This is known as the return value (EIBRSRCE)
from the ALLOCATE command. In this case, the message is meant for the job
receiver (alternate facility). If the option is omitted, the message is meant for the job
submitter (principal facility).

ATTACHID(name)
Specifies the name of the ATTACH-ID as it was defined in the BUILD ATTACH
command.

FROM(area) and LENGTH(area)
Specify the address and the length of the message. The format must correspond to
what was specified for RECFM in the BUILD ATTACH command. If VLVB was
specified in BUILD ATTACH, then the first 2 bytes of the message are the length
field. Several message segments can be sent with one SEND by placing another
length field after the first message segment and before the second message
segment. If "Chain of RUs“ was specified in BUILD ATTACH (default value), then
length fields may not be placed at the beginning of the message.

INVITE
Explicitly causes the transmit authority (change direction) to be passed to the
partner when the message is sent. openUTM interprets the arrival of the transmit
authority as the end of the partner’s dialog message.

openUTM-CICS interconnection via LU6.1 CICS commands: CICS as job submitter

U5461-J-Z135-6-76 229

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
4

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
6

RECEIVE

This command is used to receive a message sent from a openUTM service.

The command has the following syntax:

EXEC CICS RECEIVE [SESSION(name)]
 [INTO(area) ⎢ SET(pntr)]
 LENGTH(area)
 [MAXLENGTH(area)]
 [NOTRUNCATE]

SESSION(name)
Specifies the name of the session. This is known as the return value (EIBRSRCE)
from the ALLOCATE command. In this case, the message comes from the job
receiver (alternate facility), and therefore from the UTM application program. If the
option is omitted, a message should be received from the job submitter (principal
facility).

INTO(area)
Specifies the address of the memory area in which CICS is to write the messages.
Messages received by UTM normally contain a length field in the first two bytes, i.e.
openUTM usually uses the VLVB format. If the UTM application program has sent
several message segments using MPUT NT, then they are received in a RECEIVE
command. Every message segment has a length field in the first two bytes in this
case. If the UTM application program has set KCDF to a value other than 0 or KCMF
to a value other than the space character in MPUT, then openUTM still sends a
function management header 4 (FMH4) before the message, and the data does not
have a leading length field. The CICS program can query whether the data has
arrived with or without a length field using EXTRACT ATTACH. See page 231 for
more detailed information on EXTRACT ATTACH. The CICS program can also
recognize whether the incoming data contains an FMH4 with the INBFMH indicator
after the RECEIVE command has been executed. See page 231 for more infor-
mation on FMH4.

NOTRUNCATE
If NOTRUNCATE is not specified, a message with a maximum length of
MAXLENGTH is delivered. The rest is rejected. If NOTRUNCATE is specified, other
parts can be requested with RECEIVE.

See "CICS for MVS/ESA Application Programming Reference“ for the remaining param-
eters.

CICS commands: CICS as job submitter openUTM-CICS interconnection via LU6.1

230 U5461-J-Z135-6-76

CONVERSE

This command ensures that a message is sent to the partner and that the program waits
for the partner’s answer. This command has the same effect as the command string SEND
INVITE, RECEIVE.

The command has the following syntax:

EXEC CICS CONVERSE [SESSION(name)]
 [ATTACHID(name)]
 [FROM(area)]
 FROMLENGTH(area)
 [INTO(area) ⎢ SET(pntr)]
 TOLENGTH(area)
 [MAXLENGTH (area)]
 [NOTRUNCATE]

The parameters have the same meaning as those described for the SEND or RECEIVE
command.

openUTM-CICS interconnection via LU6.1 CICS commands: CICS as job submitter

U5461-J-Z135-6-76 231

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
4

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
6

EXTRACT ATTACH

This command is used to read information from the received ATTACH header (EIBATT
indicator in EIB after RECEIVE).

The command has the following syntax:

EXEC CICS EXTRACT ATTACH RECFM(data-area)

An FMH5 sent by openUTM only contains information regarding the message format. In
other fields (see "CICS for MVS/ESA Application Programming Reference“) no information
is supplied after the call.

RECFM(data-area)
This parameter describes a field (two bytes in length) which contains information for
the deblocking algorithm in the CICS application program in its least significant byte.

– The value X’01’ means that the data is available in VLVB format (variable length,
variable blocked). openUTM always sends data in VLVB format when KCDF=0
and KCMF=space have been specified in MPUT.-

Every message segment created with an MPUT NT/NE contains a 2-byte length
field.:

The deblocking of the message segments must occur in the CICS program.

– The value X’04’ means that the data is in the "Chain of RUs“ format. openUTM
sends the data in this format when KCDF was specified as a value other than 0
or KCMF was specified as a value other than the space character in MPUT.

In this case, openUTM places a function management header 4 (FMH4) in front
of the message. This FMH4 contains the information sent with KCDF and
KCMF in the following manner:

Byte 0 X’12’ (length of the FMH4)
Byte 1 X’04’ (code for FMH4)
Bytes 2- 5 no meaning
Byte 6 X’08’ (length of the FMH4BN)
Bytes 7-14 FMH4BN corresponds to KCMF
Byte 15 X’02’ (length of the FMH4BDT)
Bytes 16-17 FMH4BDT corresponds to KCDF

Every message segment created with MPUT NT/NE must be picked up in the
CICS program with its own RECEIVE command.

L1 D1 L2 Ln Dn

MPUT NT MPUT NT MPUT NE

CICS commands: CICS as job submitter openUTM-CICS interconnection via LU6.1

232 U5461-J-Z135-6-76

SYNCPOINT command

This command is used for the following:

1. To request a sync point and

2. To confirm a sync point

The command string SEND, SYNCPOINT requests a sync point. The transaction is then in
the PET (preliminary end of transaction) state.

The command string RECEIVE, SYNCPOINT confirms a received request to set a sync
point (EIBSYNC indicator in EIB). The transaction is then in ET (end of transaction) state.

The command has the following syntax:

EXEC CICS SYNCPOINT

RETURN command

The RETURN command implies the transmission of messages that have not yet been sent
with a sync point request to the partner and subsequent session release. The RETURN
command is valid only if the openUTM-AN service has already returned PEND FI
(EIBFREE indicator in EIB).

The command has the following syntax:

EXEC CICS RETURN

openUTM-CICS interconnection via LU6.1 CICS commands: CICS as job receiver

U5461-J-Z135-6-76 233

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
4

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
6

6.6 CICS commands for CICS job-receiving conversations

RECEIVE

This command is used to receive a message sent by an openUTM job-submitting service.
Immediately after initialization by a remote openUTM service, a CICS conversation is in the
RECEIVE state and must use this command to read in the message.

The command has the following syntax:

EXEC CICS RECEIVE {INTO(area) ⎢ SET(pntr)}
 LENGTH(area)
 [MAXLENGTH(area)]
 [NOTRUNCATE]

The NOTRUNCATE option ensures that the rest of the message is made available to a
subsequent RECEIVE command if the message is longer than specified in MAXLENGTH.
See page 229 for the other options.

EXTRACT ATTACH

This command is used to read information from the received ATTACH header (EIBATT
indicator in EIB).

The command has the following syntax:

EXEC CICS EXTRACT ATTACH
 PROCESS(data-area)
 RECFM(data-area)

An FMH5 sent by openUTM contains the CICS transaction code (PROCESS option) and
information regarding the message format used. In other fields (see "CICS for MVS/ESA
Application Programming Reference“) no information is supplied after the call.

PROCESS option
After the call, this contains the transaction code as it was sent by openUTM to CICS
in FMH5, i.e. the RTAC of the openUTM generation.

RECFM option
See page 231.

CICS commands: CICS as job receiver openUTM-CICS interconnection via LU6.1

234 U5461-J-Z135-6-76

BUILD ATTACH

With this command an ATTACH header (FMH5) is created by the CICS job-receiving
conversation that contains the message format for the messages thereafter for openUTM.

The command has the following syntax:

EXEC CICS BUILD ATTACH ATTACHID(name)
 RECFM(data-area)

ATTACHID(name)
Defines the name of the ATTACH header. This name is entered in a SEND or
CONVERSE command.

RECFM(data-area)
The data area is a two-byte field that contains the record format of the records sent
by CICS.

x’01’ Data in the VLVB format
x’04’ Data in the “Chain of RUs“ format

The other options (see "CICS for MVS/ESA Application Programming Reference“) for this
command do not have any meaning for interconnection with openUTM.

SEND

The SEND command is used to create a dialog message segment.

The command has the following syntax:

EXEC CICS SEND [ATTACHID(name)]
 FROM (area)
 LENGTH(area)
 [INVITE ⎢ LAST]

The message is meant for the job submitter (principal facility).

The INVITE operand explicitly causes the transmit authority (change direction) to be passed
to the partner when the message is sent. The dialog is continued during this process.
openUTM must then respond with MGET-MPUT (no PEND FI).

If data is sent by the CICS application program that is longer than the generated RU size,
then this data is received by the UTM application program in several message segments.
To avoid this, an ATTACHID parameter must be specified in the SEND command that refers
to a previous BUILD ATTACH. The message format can then be defined in this BUILD
ATTACH.

openUTM-CICS interconnection via LU6.1 CICS commands: CICS as job receiver

U5461-J-Z135-6-76 235

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
4

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
6

CONVERSE

The CONVERSE command is used to send a message to the partner while simultaneously
waiting for the answer. This command has the same effect as the command string SEND
INVITE,RECEIVE.

The command has the following syntax:
EXEC CICS CONVERSE FROM(area)
 FROMLENGTH(area)
 [ATTACHID(name)]
 {INTO(area) ⎢ SET(pntr)}
 TOLENGTH(area)
 [MAXLENGTH (area)]
 [NOTRUNCATE]

SYNCPOINT

See page 232.

RETURN

The RETURN command in a CICS job-receiving conversation implies the transmission of
messages that have not yet been sent with a sync point request (implicit sync point for
protected resources) to the partner, and the subsequent session release.

The command has the following syntax:

EXEC CICS RETURN

Comparison with KDCS calls openUTM-CICS interconnection via LU6.1

236 U5461-J-Z135-6-76

6.7 Comparison with KDCS calls

The following section attempts to compare the semantics of CICS commands with KDCS
calls.

Addressing a remote dialog service

ALLOCATE APRO DM
BUILD ATTACH

Communication without sync point:

SEND MPUT
RECEIVE PEND KP
 .
 INIT
 MGET

Communication and end of transaction request:

SEND MPUT
SYNCPOINT PEND RE
RECEIVE .
 INIT
 MGET

Communication and end of transaction and service request:

SEND MPUT
RETURN PEND FI

Confirmation of end of transaction after message receipt:

 INIT
RECEIVE (EIBSYNC=X'FF') MGET (KCTAST='P')
SEND MPUT
SYNCPOINT/RETURN PEND RE/FI

If the end of transaction (a sync point) is requested from the predecessor, CICS sets
EIBSYNC=X’FF’ and openUTM sets the transaction state KCTAST=’P’. After these values
are received, a command must be issued to write a sync point (SYNCPOINT/RETURN or
PEND RE/FI).

openUTM-CICS interconnection via LU6.1 Programming examples

U5461-J-Z135-6-76 237

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
4

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
6

6.8 Programming examples of CICS-openUTM communication

1. Starting a openUTM service from a CICS application program

2. Starting a CICS conversation from a openUTM application program

 SRQ: Syncpoint Request
 SRSP: Syncpoint Response

--->
 RECEIVE Client
 ALLOCATE
 BUILD ATTACH
 SEND INVITE SESSION(...)
 RECEIVE SESSION(...)
 -- FMH5+data ---->
 INIT
 MGET
 MPUT NE
 PEND FI
 <- FMH5+data+SRQ -
 Return of the RECEIVE
 SEND Client
 RETURN
<--- -- SRSP ---------->

--->
 INIT
 MGET Client
 APRO DM KCPI=“>A“
 MPUT NE KCRN=“>A“
 PEND KP
 -- FMH5+data ---->
 RECEIVE
 SEND LAST
 RETURN
 <- data+SRQ ------
 INIT
 MGET NT KCRN=“>A“
 MPUT NE Client
 PEND FI
<--- -- SRSP ---------->

CICS commands for queued jobs openUTM-CICS interconnection via LU6.1

238 U5461-J-Z135-6-76

6.9 CICS commands for queued jobs

With CICS, the START and RETRIEVE commands are used to send and receive queued
jobs.

START command

This command is used to create a queued job.

The command has the following syntax:

EXEC CICS START
 [SYSID(name)]
 TRANSID(name)
 FROM(area)
 LENGTH(area)
 NOCHECK
 PROTECT

The parameters have the following meanings:

SYSID(name)
Specifies the name of the openUTM application.

TRANSID(name)
Specifies the TAC for the asynchronous program with openUTM. With CICS, the
name must not be longer than 4 characters.

A local TAC name can also be used for a "remote transaction" with CICS (see
page 223). In this case, the SYSID option is not used since the partner application
was already determined through the generation.

NOCHECK
An answer is not expected. If no session is available, the message is added to a
queue in a CICS environment. If a session becomes available, the message is sent.

PROTECT
The remote asynchronous service should not be started before the CICS conver-
sation has issued a SYNCPOINT or RETURN command.

RTRANSID and RTERMID support is described starting on page 255. openUTM does not
support additional options such as TERMID and FMH (see "CICS for MVS/ESA Application
Programming Reference“).

Within a CICS transaction (LUW = logical unit of work), only a Start command can occur for
a openUTM application.

openUTM-CICS interconnection via LU6.1 CICS commands for queued jobs

U5461-J-Z135-6-76 239

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
4

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
6

RETRIEVE

The RETRIEVE command is used to read a queued message.

The command has the following syntax:

EXEC CICS RETRIEVE
 {INTO(area) ⎢ SET(pntr)}

RTRANSID and RTERMID support (see "CICS for MVS/ESA Application Programming
Reference“) is described starting on page 255.

Examples of the exchange of queued jobs

1. Starting an openUTM queued job from within a CICS application program

2. Starting a CICS queued job from within a UTM application program

 SRQ: Syncpoint Request
 SRSP: Syncpoint Response

 START
 SYNCPOINT
 -- FMH6+data+SRQ ->
 <- SRSP ------------
 INIT
 FGET
 PEND FI

 INIT
 APRO AM KCPI=“>A“
 FPUT NE KCRN=“>A“
 PEND FI
 -- FMH6+data+SRQ ->
 <- Data+SRQ -------
 RETRIEVE
 RETURN

Programming notes openUTM-CICS interconnection via LU6.1

240 U5461-J-Z135-6-76

6.10 Notes regarding openUTM-CICS programming

For openUTM services that wish to communicate with CICS conversations, the following
programming notes should be observed.

1. Specification of KCMF (format name) and KCDF (device features)

If the format name and/or KCDF are specified in openUTM programs, they are trans-
ferred via FMH4. FMH4 handling must be provided for in the CICS application program.

2. Message segments (MPUT NT/FPUT NT)

Message segments are usually transferred by openUTM in VLVB records. All segments
with their associated length field are sent in one or more RUs (depending on the NB
size). CICS programs must provide for their own deblocking.

However, if a format name and/or KCDF is specified in the UTM application program,
then openUTM sends the message segments in the "Chain of RUs“ format.

3. Service restart

openUTM assumes that processing will continue at the last sync point if communication
is interrupted (e.g. loss of connection).

CICS cannot provide for this function. This leads to service status ‘Z’ in the openUTM
program after the restart.

4. Converting user data

User data must be converted from ASCII to EBCDIC and vice-versa for interconnection
between openUTM under UNIX systems or Windows systems and CICS. If the user
data consists exclusively of printable characters, then the conversion can be handled
using the parameter MAP=SYSTEM in the SESCHA statement of openUTM. Note,
however, that this converts from BS2000/OSD-EBCDIC to ASCII and vice-versa, but a
different EBCDIC is usually used on IBM systems. Language-specific characters (such
as the German umlauts) and some special characters will be incorrectly converted. For
this reason it is recommended to carry out the ASCII-EBCDIC conversion in the
openUTM or CICS application program. Conversion should also be carried out in the
application program when interconnecting between openUTM under BS2000/OSD and
CICS for the reasons listed above.

openUTM-CICS interconnection via LU6.1 Programming notes

U5461-J-Z135-6-76 241

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
4

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
6

Definitions for openUTM-CICS programming

Between the openUTM and CICS partners, the following items need to be defined for
programming purposes.

– transaction names

– data format, record format (undefined/VLVB)

– synchronous (LU6.1) / asynchronous

– command string

– values in FMH6 (asynchronous)

242 U5461-J-Z135-6-76

U5461-J-Z135-6-76 243

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
9

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
7

7 openUTM-IMS interconnection via LU6.1
This chapter covers openUTM-IMS interconnection via LU6.1, including the associated
generation and programming.

For the IMS user, generation and programming of openUTM-IMS interconnection is largely
identical to the procedure for IMS-CICS interconnection (see “IMS/ESA Installation Volume
2: System Definition and Tailoring” and “IMS/ESA Application Programming: Transaction
Manager”).

7.1 IMS generation for openUTM-IMS sessions

This section describes the most important IMS macros required to generate openUTM-IMS
interconnection.

IMS generation for openUTM-CICS sessions openUTM-IMS interconnection via LU6.1

244 U5461-J-Z135-6-76

COMM macro

This macro describes the basic communications requirements independent of the terminal
type. It has to be specified exactly once.

COMM RECANY=(number,size),
 APPLID=username,
 EDTNAME=name,
 ,
 other parameters

The operands have the following meanings:

RECANY=(number,size)
"number" specifies the number of VTAM RECEIVE ANY buffers available in the IMS system.
"size" specifies the size of these buffers. The value of size must be larger than or equal to
the value of TRMSGLTH in the MAX statement used for openUTM generation. The permis-
sible size values are listed in "IMS/ESA Installation Volume 2: System Definition and
Tailoring".

APPLID=username
Name (1-8 characters) under which the IMS application is known in the SNA
network (SNA netname). This name must match the RNETNAME operand in the
corresponding LPAP statement used for openUTM generation.

EDTNAME=name
Name (1-8 characters) under which the ISC edit process is known in the IMS
system. This name must match the DPN operand in the corresponding SESCHA
statement used for openUTM generation.

TYPE macro

This macro is used to introduce the description of a group of VTAM terminals of the same
type. It is followed by the TERMINAL and NAME macros for the terminals in the group.

TYPE UNITYPE=LUTYPE6,
 ...,
 other parameters

The operand has the following meaning:

UNITYPE=LUTYPE6
Defines an LU6.1 device type.

openUTM-IMS interconnection via LU6.1 IMS generation for openUTM-CICS sessions

U5461-J-Z135-6-76 245

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
9

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
7

TERMINAL macro

This macro defines the physical and logical characteristics of a VTAM node of the type
specified in the preceding TYPE macro.

TERMINAL NAME=nodename,
 MSGDEL=SYSINFO,
 OPTIONS=FORCSESS,
 COMPT1=(SINGLE1 [,DPM-Bn],IGNORE),
 SEGSIZE=size,
 OUTBUF=buffer size,
 SESSION=n,
 ,
 other parameters

The operands have the following meanings:

NAME=nodename
Name (1-8 characters) which is used to define the SNA network name (SNA
netname) for the openUTM application. This name must match the LNETNAME
operand in the corresponding LPAP statement used for openUTM generation.

MSGDEL=SYSINFO
Specifies which message types will not be sent. SYSINFO must be specified for
openUTM links.

OPTIONS=(TRANRESP,FORCSESS)
FORCSESS specifies session restart. FORCSESS must be specified for openUTM
links.

TRANRESP is required to maintain a dialog with IMS transactions (default).

COMPT1=(SINGLE1[,DPM-Bn],...)
SINGLE1 specifies the bracket protocol for output. SINGLE1 must be specified for
openUTM links.

DPM-Bn specifies whether MFS (Distributed Presentation Management) is
available. If this parameter is omitted, VLVB is assumed. In this case, the first 8
characters of a message to be sent to a openUTM program unit must contain the
openUTM transaction code (possibly with trailing blanks). The complete message
(including transaction code) is made available to the openUTM program unit in the
message area.

SEGSIZE=size
"size" specifies the size of an input segment. The value must at least be equal to
the maximum message segment length in the openUTM application programs.

IMS generation for openUTM-CICS sessions openUTM-IMS interconnection via LU6.1

246 U5461-J-Z135-6-76

OUTBUF=buffer size
"buffer size“ specifies the size of the output buffer. This value must be smaller than
or equal to the value of TRMSGLTH in the MAX statement used for openUTM
generation. Permissible size values are listed in the manual "IMS/ESA Installation
Volume 2: System Definition and Tailoring“.

SESSION=n
n specifies the number of parallel sessions for a node. For openUTM(SINIX),
parallel sessions are not possible (n=1).

VTAMPOOL macro

This macro must be specified in order to use parallel sessions. The macro appears at the
beginning of the definition of one or several LU6 subpools. These are defined using
SUBPOOL macros, each of which may be followed by one or more NAME macros.

VTAMPOOL

This macro has no operands.

SUBPOOL macro

This macro defines an LU6 subpool. A SUBPOOL macro is required for each session to be
set up dynamically.

SUBPOOL NAME=subpool-name,
 MSGDEL=SYSINFO

The operands have the following meanings:

NAME=subpool-name
"subpool-name“ matches the RSES operand in the corresponding LSES statement
used for openUTM generation.

MSGDEL=SYSINFO
This parameter must match the MSGDEL operand in the TERMINAL macro.

openUTM-IMS interconnection via LU6.1 IMS generation for openUTM-CICS sessions

U5461-J-Z135-6-76 247

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
9

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
7

NAME macro

This macro defines a logical terminal name for a physical terminal. This name is used to
address the openUTM session in the IMS program.

Specifying the NAME macro after the SUBPOOL macro means that the logical terminal will
be created dynamically. This is necessary if parallel sessions are to be used (TERMINAL
SESSION=n, where n> 1).

NAME lterm,
 COMPT=1,
 ,
 other parameters

The operands have the following meanings:

lterm defines a logical terminal name (1-8 characters).

COMPT=1
Specifies the output components for this terminal. The value 1 corresponds to the
COMPTn operand in the TERMINAL macro.

IMS generation for openUTM-CICS sessions openUTM-IMS interconnection via LU6.1

248 U5461-J-Z135-6-76

7.1.1 Examples of dependencies in openUTM/IMS generation

The IMS and openUTM users have to establish definitions for the parameters marked with
arrows.

Example: openUTM under UNIX systems or openUTM under BS2000/OSD example
using TRANSIT-CLIENT

IMS is the PLU, openUTM the SLU, 2 sessions

 IMS openUTM
 LRLRLR LRLRLRLRLRLRLR
 URLRLRLRLRLRLRLR→ MAX TRMSGLTH=1024
 ⎢
 COMM APPLID=IMS13B ←LRLRLRLRLRLRLR⎢LRLRLRLRLU SESCHA IMSPLU
 ,RECANY=(10,4096) ←LRLRLROUL ⎢ ,PLU=Y
 ,EDTNAME=ISCEDT ←LRLRLRLRLR⎢LRLRLRLR⎢LRLRLRLRLRLRLR→,DPN=ISCEDT
 ⎢ ⎢
 ⎢ ORLRLR→ LPAP RNETNAME=IMS13B
 ⎢ ,SESCHA=IMSPLU
 ⎢ URLRLR→ ,LNETNAME=UTM1S
 ⎢ ⎢
 TYPE UNITYPE=LUTYPE6 ⎢ ⎢
 ⎢ ⎢
 TERMINAL OUTBUF=1024 ←LRLRLRLRLRLRLRLRLROL ⎢
 ,NAME=UTM1S ←LRLRLRLRLRLRLRLRLRLRLRLRLRLROL
 ,SESSION=1
 ,........

 SUBPOOL NAME=I1S1 ←LRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLR→ LSES I1X1,RSES=I1S1
 NAME LI1S1

 TERMINAL OUTBUF=1024 LPAP
 ,NAME=UTM2S ←LRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLR→ LNETNAME=UTM2S
 ,SESSION=1
 ,........

 SUBPOOL NAME=I1S2 ←LRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLR→ LSES I1X2,RSES=I1S2
 NAME LI2S1

Session setup

In IMS, the LSES name (e.g. I1X1) is only needed when the operator initializes the session
using the /OPN command.

For example, the session containing the SUBPOOL I1S1 is set up using the following call:

/OPN NODE UTM1S SUBPOOL I1S1 ID I1X1

The assignment between TERMINAL and SUBPOOL is not fixed with IMS. Instead, it is dy-
namic, based on the connection establishment data.

openUTM-IMS interconnection via LU6.1 TRANSIT generation for openUTM-IMS sessions

U5461-J-Z135-6-76 249

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
9

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
7

7.2 TRANSIT generation for openUTM-IMS sessions

The statements made about TRANSIT regarding openUTM-CICS interconnection also
apply to openUTM-IMS interconnection.

See page 220 for details.

7.3 Generating IMS transactions

TRANSACT macro

This macro is used to define IMS transactions. It corresponds to the TAC statement used
for openUTM generation.

TRANSACT CODE=transaction-code,
 MSGTYPE=(MULTSEG,RESPONSE),

The operands have the following meanings:

CODE=transaction-code
Name (1-8 characters) for the IMS transaction. This name must match the RTAC
operand in the corresponding LTAC statement used for openUTM generation.

MSGTYPE=(MULTSEG,RESPONSE)
MULTSEG specifies that an input message can consist of several segments.
RESPONSE is used for dialog programs, NONRESPONSE for asynchronous
programs.

The SPA parameter must not be used.

Examples

LTAC IMSDIA1P TRANSACT
 ,RTAC=DIALOG1 ←LRLRLRLRLRLRLRLRLRLRLRLRLRLRLR→ CODE=DIALOG1
 ,TYPE=D ,MSGTYPE=(MULTSEG,RESPONSE)
 ,........ ,.......

LTAC IMSASY1S TRANSACT
 ,RTAC=ASYNC1 LRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLR→ CODE=ASYNC1
 ,TYPE=A ,MSGTYPE=(MULTSEG,NONRESPONSE)
 ,........ ,.......

IMS programming for links to openUTM openUTM-IMS interconnection via LU6.1

250 U5461-J-Z135-6-76

7.4 IMS programming for links to openUTM

This section offers an introductory overview of openUTM-IMS communication.

7.4.1 IMS interconnection options

Synchronous jobs (dialog)

Due to its structure (message queues), IMS does not allow synchronous transactions if IMS
is the job submitter (front-end), i.e. if a request from the terminal is passed from IMS to
openUTM and a synchronous response from openUTM is expected.

If IMS is the job receiver (back-end), it is possible to establish a dialog between openUTM
and IMS. In IMS, the MSGTYPE parameter in the TRANSACT macro (RESPONSE or
NONRESPONSE) is used to specify whether the IMS transaction is processed synchro-
nously or asynchronously. In addition to this internal specification, the type of processing
can also be determined from the form of the incoming message. If openUTM starts dialog
traffic (MPUT), IMS sends a synchronous response even if NONRESPONSE was specified
in the TRANSACT macro.

Queued jobs

Due to dialog restrictions, asynchronous data traffic is often used for IMS links. Synchro-
nizing the responses and the corresponding requests is left to the user. However, it is
possible to automate the routing of responses. The destination for the response is supplied
in the request, making it possible to establish a dummy dialog. The routing information is
stored in function management header 6 (FMH6) and has to be evaluated by the partner.
Access to the data in FMH6 from openUTM is described in chapter “LU6.1 dummy dialogs
between asynchronous services” on page 255ff.

openUTM-IMS interconnection via LU6.1 IMS programming for links to openUTM

U5461-J-Z135-6-76 251

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
9

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
7

7.4.2 IMS calls

IMS programs send and receive messages using the following calls:

GU <I/O-PCB>,<I/O-area>
Receives the first or only message segment in the <I/O-area>.

GN <I/O-PCB>,<I/O-area>
Receives any additional message segments in the <I/O-area>.

CHNG <Alt-PCB>,<destination name>
Changes the destination address to <destination name> (lterm from NAME macro
used for generation).

ISRT <I/O-PCB>/<Alt-PCB>,<I/O-area>,<MOD-Name>
Sends messages from the <I/O-area>.

RETURN
Ends the transaction and requests a sync point.

When a message is received and sent, a PCB (program communication block) is passed.
This PCB stores information such as status, partner name (lterm) etc. When sending a
message to the partner that called a transaction, the I/O PCB is used. Otherwise, an
alternate PCB is used in which a new destination address is set using the CHNG call.

The transaction code is placed in front of the message or defined using an MOD (message
output description) name in the MFS (message format service).

7.4.3 Comparison to KDCS calls

– The GU and GN calls for the IOPCB correspond to the KDCS calls MGET/FGET. The
GN call provides a display indicating if additional message segments exist.

– A sequence of MPUT/FPUT NT and MPUT/FPUT NE must be read by IMS using GU
and GN.

– The ISRT call corresponds to the KDCS calls MPUT (IOPCB) and FPUT (alternate
PCB).

– The ROLL call corresponds to the KDCS call PEND FR.

– The ROLLB call corresponds to the KDCS call PEND RS.

– Program end implies a sync point request and corresponds to PEND FI.

IMS programming for links to openUTM openUTM-IMS interconnection via LU6.1

252 U5461-J-Z135-6-76

7.4.4 Examples of openUTM-IMS communication

1. Starting an IMS job from a UTM application program

2. The same, but with PEND RE in the UTM application program

 SRQ: Syncpoint Request
 SRSP: Syncpoint Response

--->
 INIT
 MGET Client
 APRO DM KCPI=“>A“
 MPUT NE KCRN=“>A“
 PEND KP
 -- FMH5+data ---->
 GU (IO/PCB)
 ISRT
 RETURN
 <- Data+SRQ ------
 INIT
 MGET NT KCRN=“>A“
 MPUT NE Client
 PEND FI
<--- -- SRSP ---------->

--->
 INIT
 MGET Client
 APRO DM KCPI=“>A“
 MPUT NE KCRN=“>A“
 PEND RE
 -- FMH5+data+SRQ ->
 GU (IO/PCB)
 ISRT
 RETURN
 <- Data+SRSP ------
 <- SRQ -------------
 INIT
 MGET NT KCRN=“>A“
 MPUT NE Client
 PEND FI
<--- -- SRSP ---------->

openUTM-IMS interconnection via LU6.1 IMS programming for links to openUTM

U5461-J-Z135-6-76 253

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
9

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

0
7

The second variant differs from the first in its transaction-oriented logic. In the first variant,
the entire run consists of a single transaction. In the second version, any database changes
made after the MGET KCRN=>A will not belong to the same transaction as the database
changes made on the IMS side.

If database changes are to be made on both sides, then the second variant must be
selected. If the transaction is rolled back in openUTM in the first variant after the MGET
KCRN=>A (e.g. by PEND ER), then IMS is no longer able to roll back the database
changes.

7.4.5 Examples of the exchange of queued jobs

1. Starting an openUTM queued job from an IMS application program

2. Starting an IMS queued job from a UTM application program

 SRQ: Syncpoint Request
 SRSP: Syncpoint Response

 ISRT (Alt.-PCB)
 RETURN
 -- FMH6+data+SRQ ->
 <- SRSP ------------
 INIT
 FGET
 PEND FI

 INIT
 APRO AM KCPI=“>A“
 FPUT NE KCRN=“>A“
 PEND FI
 -- FMH6+data+SRQ ->
 <- Data+SRQ -------
 GU (IO/PCB)
 RETURN

IMS programming for links to openUTM openUTM-IMS interconnection via LU6.1

254 U5461-J-Z135-6-76

7.4.6 Notes on openUTM-IMS programming

When IMS is the job submitter, then the name of the calling openUTM transaction is
normally sent with the data. The openUTM user must consider this in the input area.

Similar to interconnection with CICS, the problem of converting the database must also be
considered when interconnecting with IMS (see page 240).

Additional notes regarding the exchange of queued jobs can be found starting on page 255.

Definitions for openUTM-IMS programming

Between the two partners, openUTM and IMS, the following items need to be defined for
programming purposes:

– transaction names

– manner in which the transaction code is passed

– data format (VLVB or Chain of RUs)

– synchronous/asynchronous

– values in FMH6 (asynchronous)

U5461-J-Z135-6-76 255

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

ul
i 2

0
08

S

ta
nd

 1
0:

38
.2

5
P

fa
d:

 F
:\

ut
m

\B
ea

n
C

o
nn

e
ct

\L
U

62
_V

51
\M

a
nu

a
l\e

n\
H

e
te

ro
_e

.k
0

8

8 LU6.1 dummy dialogs between asynchronous
services
It is often difficult to program an LU6.1 interconnection between openUTM and IMS
because synchronous services cannot be started by IMS in a UTM application. The LU6.1
protocol therefore provides the capability to create dummy dialogs between asynchronous
services. These dummy dialogs can also be used in UTM applications using a special
KDCS enhancement that is not described in the normal openUTM manuals. This
enhancement is used when linking openUTM-IMS and openUTM-CICS.

Asynchronous services are principally addressed in LU 6.1 with the SCHEDULER Function
Management Header FMH6. The following fields are important when using this header:

DPN Destination Process Name
– transaction code in the job-receiving application (openUTM, CICS)
– name of an editor evaluating the message, or format name in the job-receiving

application (IMS).

PRN Primary Resource Name
– transaction code or LTERM name in the job-receiving application (IMS)
– LTERM name in the job-receiving application (CICS).

RDPN Return Destination Process Name
– DPN in the local application.

RPRN Return Primary Resource Name
– PRN in the local application.

The RDPN/RPRN fields in FMH6 can be used to maintain a dummy dialog between
asynchronous services. A job submitter sends a message containing RDPN/RPRN to a
queued job-receiving service which sends the result to the asynchronous service in the job-
submitting application, as specified by RDPN/RPRN.

LU6.1 Dummy dialogs between asynchronous services

256 U5461-J-Z135-6-76

In CICS, the RDPN/RPRN fields can be assigned using the RTRANSID/RTERMID param-
eters in the START command. Using the RETRIEVE command, a CICS application
program can retrieve the values of RDPN/RPRN from the input FMH into
RTRANSID/RTERMID.

IMS handles the assignment and evaluation of the data in FMH6 partly automatically or
using the Message Format Service (MFS) component.

In openUTM, there are special function calls for openUTM application programs that make
it possible to send a message to the job-submitting application destination specified in
RDPN/RPRN and to assign RDPN and RPRN in output messages.

LU6.1 dummy dialogs between asynchronous services Program interfaces for openUTM

U5461-J-Z135-6-76 257

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

ul
i 2

0
08

S

ta
nd

 1
0:

38
.2

5
P

fa
d:

 F
:\

ut
m

\B
ea

n
C

o
nn

e
ct

\L
U

62
_V

51
\M

a
nu

a
l\e

n\
H

e
te

ro
_e

.k
0

8

8.1 Program interfaces for openUTM

The function call

INFO GN (get names)

can be used by an asynchronous service started by a remote application to retrieve the
values of RDPN/RPRN from the input FMH.

The function call

APRO IN (insert names)

can be used to address an asynchronous service in a remote application; fields DPN, PRN,
RDPN and RPRN can be assigned explicitly for the output FMH. In this case, APRO IN
replaces APRO AM.

For the calls, a data area must be specified in addition to the KDCS parameter area.

The data area has the following structure:

Each of the fields has a length of 8 bytes.

When calling APRO IN, the UTM application program has to supply the data area with
values. After a successful INFO GN call, the fields have been assigned correct values for a
reply in a dummy dialog by openUTM.

Field name Meaning

KCDPN Destination Process Name
Destination in the remote applicationKCPRN Primary Resource Name

KCRDPN Return Destination Process Name
Destination in the local applicationKCRPRN Return Primary Resource Name

Program interfaces for openUTM LU6.1 dummy dialogs between asynchronous services

258 U5461-J-Z135-6-76

INFO GN

The following table shows the required specifications in the KDCS parameter area when
INFO GN is called:

All other parameter fields must be set to binary null.

COBOL format for the call:

CALL "KDCS" USING <parm1>, <parm2>

<parm1>: KDCS parameter area
<parm2>: data area

openUTM returns the following:

– If KCRCCC = 000 is specified, the KCRDPN and KCRPRN fields in the data area
<parm2> contain spaces, KCDPN and KCPRN contain the destination in the other
application, taken from the input message.

– KCRLM contains the length of the data area (32). If KCRCCC>=40Z applies, the length
is 0.

– The KCRCCC return field can contain one of the following values:

000 The function has been executed.
40Z The function could not be executed.

– The names do not exist (KCRCDC contains KD20).
41Z The call is not allowed at this location.

– INFO GN was issued in a dialog service.
– INFO GN was issued in a service that was not started by a remote appli-

cation.
42Z KCOM is invalid.
43Z KCLA is invalid.
47Z The address of the data area is missing or invalid.
49Z Parameter fields not used by this call have not been set to binary null.
71Z No INIT has been issued during the UTM application program run.

After a successful INFO GN call, the values contained in the data area <parm2> may be
used to send an answer to the partner program in CICS or IMS. In this case, the partner
program has to be addressed by APRO IN and spaces in KCRN (see below).

KCOP KCOM KCLA

"INFO" "GN" 32

LU6.1 dummy dialogs between asynchronous services Program interfaces for openUTM

U5461-J-Z135-6-76 259

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

ul
i 2

0
08

S

ta
nd

 1
0:

38
.2

5
P

fa
d:

 F
:\

ut
m

\B
ea

n
C

o
nn

e
ct

\L
U

62
_V

51
\M

a
nu

a
l\e

n\
H

e
te

ro
_e

.k
0

8

APRO IN

The following table shows the required specifications in the KDCS parameter area when
APRO IN is called:

All other parameter fields must be set to binary null.

All fields in the data area must be assigned; spaces indicate that the name was not
specified. If a field in the data area contains characters other than spaces, openUTM will
accept it as a valid name. No checking is done to determine if a field contains only alpha-
numerical characters or if KCRDPN/KCRPRN, for example, is a destination in the local
application.

Addressing the job submitter using APRO IN can be handled as follows:

1. Addressing via KCRN (LTAC), as with APRO AM
In this case, KCDPN and KCPRN must contain spaces.

2. Addressing via KCDPN and KCPRN
KCRN must contain spaces, and KCPA the LPAP name. This type of addressing is
useful after a successful INFO GN.

3. Addressing via the message
KCRN, KCDPN and KCPRN contain spaces, and KCPA contains the LPAP name. The
first 8 characters in FPUT/DPUT contain the transaction code.

COBOL format for the call:

CALL "KDCS" USING <parm1>, <parm2>

<parm1>: KDCS parameter area

<parm2>: data area

KCOP KCOM KCLM KCRN KCPA KCPI

"APRO" "IN" 32 LTAC name LPAP name
or
spaces

Service ID

spaces LPAP name

Program interfaces for openUTM LU6.1 dummy dialogs between asynchronous services

260 U5461-J-Z135-6-76

openUTM returns:

In addition to the return codes described in the “Programming openUTM Applications with
KDCS for COBOL, C and C++“, the KCRCCC return field can contain one of the following
values:

44Z When KCDPN and/or KCPRN are used for addressing, KCRN does not contain
spaces (KCRCDC contains KD21).

47Z The address of the data area is missing or invalid.

49Z Parameter fields not used by this call have not been set to binary null.

If KCRN is not used for addressing, openUTM supplies DPN and PRN in the output FMH
with the values from the data area. DPN generation in the SESCHA statement is ignored.

 The APRO IN call causes the loss of data protection functions if addressing is not
handled via KCRN.

For the data area, there are no data structures created by openUTM.

!

LU6.1 Dummy dialogs between asynchronous services FMH6 parameters

U5461-J-Z135-6-76 261

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

ul
i 2

0
08

S

ta
nd

 1
0:

38
.2

5
P

fa
d:

 F
:\

ut
m

\B
ea

n
C

o
nn

e
ct

\L
U

62
_V

51
\M

a
nu

a
l\e

n\
H

e
te

ro
_e

.k
0

8

8.2 Passing FMH6 parameters in openUTM, IMS and CICS

This section provides a more detailed description of the assignment and evaluation options
for the parameters in FMH6 which are available in the various systems for addressing the
respective partner.

8.2.1 Transaction code handling in openUTM

The transaction code can be passed to openUTM as follows:

1. in the DPN field of FMH6
2. in the PRN field of FMH6
3. in the first 8 bytes of the data.

Upon receipt from the remote system, openUTM determines the transaction code as
follows:

1. value in DPN, if assigned, and there is no specification in SESCHA DPN=
2. value in PRN, if assigned, and SESCHA DPN=name is specified
3. from the first 8 bytes of the data.

openUTM sends the transaction code to the remote system as follows:

1. if addressing is handled via APRO IN, assignment corresponds to the parameter area
for the call (see APRO IN and INFO GN)

2. in the DPN field if there is no specification in SESCHA DPN=
3. in the PRN field if SESCHA DPN=name is specified.

In this case, DPN in FMH6 contains the name from SESCHA DPN

FMH6 parameters LU6.1 Dummy dialogs between asynchronous services

262 U5461-J-Z135-6-76

8.2.2 Transaction code handling in IMS

IMS normally sends the transaction code in the data. DPN is assigned to the name of ISC
Edit (iscedt-name). For the openUTM user, this means the following:

Specification of SESCHA DPN=iscedt-name and use of the transaction code in the
definition of the input area. openUTM does not remove the transaction code from the data.
If DPN=iscedt-name is not specified, iscedt-name can be used as TAC. This name can then
be used to execute initially common functions for several transactions before the actual
transaction (name contained in the data) is run.

When responding to an asynchronous request, IMS acts like openUTM after INFO GN. For
output, IMS sets the RDPN/RPRN input parameters to the DPN/PRN fields.

If IMS is to start a dummy dialog, the RPRN field has to be assigned to the transaction code
of the receiver in IMS. By default, this field contains the name of the calling terminal or
program. Other values must be assigned via MFS.

8.2.3 Transaction code handling in CICS

CICS can assign the fields for queued jobs using parameters from the START call.

START TRANSID(T1) LRLR→ DPN
 TERMID (T2) LRLR→ PRN
 RTRANSID(T3) LRLR→ RDPN
 RTERMID(T4) LRLR→ RPRN

Normally, CICS sends the transaction code in the DPN field.

CICS uses the RETRIEVE command to receive data from openUTM. TAC is taken from the
DPN field.

RETRIEVE ...
 RTRANSID(T1) ←LRLR RDPN
 RTERMID(T2) ←LRLR RPRN

U5461-J-Z135-6-76 263

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

ul
i 2

0
08

S

ta
nd

 1
0:

38
.2

9
P

fa
d:

 F
:\

ut
m

\B
ea

n
C

o
nn

e
ct

\L
U

62
_V

51
\M

a
nu

a
l\e

n\
H

e
te

ro
_e

.k
0

9

9 Error diagnosis
You will find instructions on how to diagnose errors in this chapter.

9.1 Diagnostic aids

You should use the following diagnostic aids when communication problems arise between
the UTM application and the partner application in an IBM system:

1. The u62_sta command used to check the status of openUTM-LU62. This command is
described on page 59.

2. When using TRANSIT, the SNA_status command used to check the status of TRANSIT.
This command is described in the TRANSIT-SERVER manual.

3. When using the SNAP-IX or the IBM Communications Server, the status display func-
tions of this product.

4. The SYSLOG file of the UTM application. See the corresponding openUTM manuals for
more information.

5. When using openUTM-LU62 for UNIX systems, the diagnostic files
/opt/lib/utmlu62/PROT/prot.luname
When using openUTM-LU62 for Windows systems, the diagnostic files
Programs\utmlu62\PROT\prot.luname.txt
The messages contained in these files are described starting on page 269.

6. When using openUTM-LU62 with TRANSIT, the diagnostic files
/opt/lib/transit/PROT/prot.nukleus
/opt/lib/transit/PROT/prot.lu62
/opt/lib/transit/PROT/cnos.mlog
See also the TRANSIT manuals.

7. When using SNAP-IX or the IBM Communications Server, the log display functions of
this product.

8. When using LU6.1 interconnection with TRANSIT, use the diagnostics files
/opt/lib/transit/PROT/prot.nukleus
/opt/lib/transit/PROT/prot.utmgw1
The messages are described in the TRANSIT manuals.

Diagnostic aids Error diagnosis

264 U5461-J-Z135-6-76

9. The JES job log with the console messages from CICS or IMS. See the corresponding
CICS or IMS manuals for more information.

10. The BCAM trace from openUTM, the SNA trace from TRANSIT-SERVER, or the appro-
priate trace from SNAP-IX or the IBM Communications Server. The procedure to follow
in order to create an SNA trace is described in the TRANSIT-SERVER manual and in
the documentation of SNAP-IX and IBM Communications Server. Basic knowledge of
the SNA protocol and, for LU6.2, basic knowledge of the OSI-TP protocol are required
to be able to read these traces. It can occur for LU6.1 interconnection that openUTM
sends a negative response or a function management header 7 (FMH7) when an error
occurs. Both contain a 4-byte field containing encoded error information, also called the
sense data. The sense data sent by openUTM is described starting on page 265.

11. When openUTM-LU62 is used, the protocol trace described on page 67.

 Some of the diagnostics files created by openUTM-LU62 in the directory
/opt/lib/utmlu62/PROT (UNIX systems) or Programs\utmlu62\PROT (Windows
systems) are deleted when an entity is restarted by openUTM-LU62. You should
therefore save the diagnostics data beforehand.

The following diagnostics files are deleted from the directory utmlu62/PROT when
an entity is started by openUTM-LU62:

in.dump.luname
xaplog.luname.*
xap.dump.luname.*
prot.luname.old
inlog.luname.*.old
core.luname

The files prot.luname and inlog.luname.* are assigned the suffix .old. On
Windows systems, prot.luname also has the suffix .txt.

!

Error diagnosis LU6.1 sense data

U5461-J-Z135-6-76 265

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

ul
i 2

0
08

S

ta
nd

 1
0:

38
.2

9
P

fa
d:

 F
:\

ut
m

\B
ea

n
C

o
nn

e
ct

\L
U

62
_V

51
\M

a
nu

a
l\e

n\
H

e
te

ro
_e

.k
0

9

9.2 LU6.1 sense data

The sense data sent by openUTM in a LU6.1 interconnection is described in the following
section:

0006 0000 LUSTAT NOOP

0007 0000 LUSTAT QUEUE EMPTY

0809 xxxx MODE INCONSISTENCY

080B 0000 BRACKET RACE ERROR

0812 0000 INSUFFICIENT RESOURCE. Resource bottleneck, for example when the
pagepool is full.

0813 0000 BRACKET BID REJECT. A request to reserve a session from the contention
loser application was rejected because the contention winner application
has reserved the session for a job.

0814 0000 BRACKET BID REJECT, RTR FOLLOWS

0819 0000 RTR NOT REQUIRED

081B 0000 TRANSMISSION RACE. A request to reserve a session from the contention
loser application was rejected because the contention winner application
has reserved the session for a job.

082D 0000 LU BUSY

0835 xxxx INVALID PARAMETER. The number xxxx is the address of the incorrect
parameter in the protocol element received.

0846 0000 FMH7 FOLLOWS

084B 0000 REQUESTED RESOURCES NOT AVAILABLE, LPAP NOT ALLOWED

084D xxxx INVALID BIND

0864 0101 FUNCTION ABORT. LUSTAT CMD has been received, CDI=0 and ERI=0.

0864 0104 FUNCTION ABORT. A dialog message was received with BB. The message
cannot be processed because, for example
– the TAC is invalid
– the pagepool is full
– the message was received with EB.

0864 0106 FUNCTION ABORT. The length of the message received is invalid or the
length field of a message in the VLVB format is invalid.

LU6.1 sense data Error diagnosis

266 U5461-J-Z135-6-76

0864 0107 FUNCTION ABORT. The total length of the message portion received
exceeds the limit (larger than 32767).

0864 0108 FUNCTION ABORT. End of chain, but no message end (or message
section end. This means that the length field received in the VLVB format
contains a length value that is too large.

0864 C5D9 FUNCTION ABORT. PEND ER from the UTM application program

0864 C5E2 FUNCTION ABORT. PEND ER by openUTM

0864 D9E2 FUNCTION ABORT. PEND RS by openUTM. For example: The local
service was terminated and the last input message contains CD or DR2.

0864 D9E4 FUNCTION ABORT. PEND RS from the UTM application program

0866 D9E2 FUNCTION ABORT REC RESPONSE. PEND RS by openUTM

0866 D9E4 FUNCTION ABORT REC RESPONSE. PEND RS from the UTM appli-
cation program

0867 0000 SYNC EVENT RESPONSE

1002 0000 INVALID LENGTH

1003 0000 INVALID TAC. Invalid or locked transaction code.

1008 0106 INVALID FM HEADER. A message with an FMH was received, but the
message does not contain the complete FMH.

2001 0000 SEQENCE NUMBER ERROR

2002 0000 CHAINING ERROR

2003 0000 BRACKET ERROR

2004 0000 DIRECTION ERROR

2005 0000 DATA TRAFFIC RESET

2007 0000 DATA TRAFFIC NOT RESET

2008 0000 NO BEGIN BRACKET

2009 0000 SESSION CONTROL PROTOCOL VIOLATION

200A 0000 IMMEDIATE REQUEST MODE ERROR

200B 0000 QUEUED RESPONSE ERROR

200C 0000 ERP SYNC EVENT ERROR

200D 0000 RESPONSE OWED BEFORE SENDING REQUEST

4001 0000 INVALID SC OR NC RH

Error diagnosis LU6.1 sense data

U5461-J-Z135-6-76 267

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

ul
i 2

0
08

S

ta
nd

 1
0:

38
.2

9
P

fa
d:

 F
:\

ut
m

\B
ea

n
C

o
nn

e
ct

\L
U

62
_V

51
\M

a
nu

a
l\e

n\
H

e
te

ro
_e

.k
0

9

4003 0000 BB NOT ALLOWED

4004 0000 CEB OR EB NOT ALLOWED

4006 0000 EXCEPTION RESPONSE NOT ALLOWED

4007 0000 DEFINITE RESPONSE NOT ALLOWED

4009 0000 CD NOT ALLOWED

400A 0000 NO-RESPONSE NOT ALLOWED

400B 0000 CHAINING NOT SUPPORTED

400C 0000 BRACKETS NOT SUPPORTED

400D 0000 CD NOT SUPPORTED

400F 0000 INCORRECT USE OF FORMAT INDICATOR

4010 0000 ALTERNATE CODE NOT SUPPORTED

4011 0000 RU CATEGORY NOT CORRECT

4012 0000 REQUEST COED NOT CORRECT

4013 0000 SDI/RTI NOT CORRECT

4014 0000 DR1I/DR2I/ERI NOT CORRECT

4015 0000 QRI NOT CORRECT

4016 0000 EDI NOT CORRECT

4017 0000 PDI NOT CORRECT

268 U5461-J-Z135-6-76

U5461-J-Z135-6-76 269

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
5

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

1
0

10 openUTM-LU62 messages
This chapter contains all messages of the openUTM-LU62 product, their meanings and any
measures to be taken when the message appears.

Messages from the u62_tp program are output to the file

/opt/lib/utmlu62/PROT/prot.luname

on UNIX systems, and to the file

Programs\utmlu62\PROT\prot.luname.txt

on Windows systems. The u62_gen, u62_adm and u62_sta utilities output their messages to
stderr.

On Windows systems, additional messages are output to the files

Programs\utmlu62\PROT\stdout.txt
Programs\utmlu62\PROT\stderr.txt

if openUTM-LU62 is automatically started as a service at each system startup.

All messages can be output in the German or English language. On UNIX systems, the
$LANG environment variable controls which language is used. If the value of $LANG begins
with the letters ’De’, then the messages are output in the German language. The messages
are output in English in all other cases. On Windows systems, messages are output in
German if the system country settings are set to German. Otherwise, they are output in
English.

The message text appears in the English language in this manual. Names in capital letters
that begin with ’&’ (e.g. &FILENAME) serve as placeholders for variable elements in the
message text.

Messages from the u62_tp program openUTM-LU62 messages

270 U5461-J-Z135-6-76

10.1 Messages from the u62_tp program

All messages of the u62_tp program are described in the following section.

Messages from the u62_tp program are output to the file

/opt/lib/utmlu62/PROT/prot.luname

on UNIX systems, and to the file

Programs\utmlu62\PROT\prot.luname.txt

on Windows systems, where luname is the name of the corresponding LU. All messages be-
gin with the string

u62_tp [komp] nnn

The word komp designates the components of the u62_tp program and nnn the message
number.

There are the following components:

BD Boundary (handles the APPC and XAP-TP interfaces as well as the interface to the
system)

DM Dialogue Manager (handles the OSI-TP dialogs and LU6.2 conversations)

RS Resync Service Transaction Program (restarts in the start phase and after a line
failure)

TM Transaction Manager (handles the transaction management)

Messages from u62_start can therefore be found in the prot.luname file. These messages
are assigned the prefix u62_start and are described starting on page 346.

BD component messages

002 Call syntax:
u62_tp -l <LU name> [-c|-k] [-t on[,<trace options>]]
-l LU name: name of the local LU of the openUTM-LU62 inst.
c: cold start of openUTM-LU62
-k: lukewarm start of openUTM-LU62
-t on: explicit specification of the trace by

additional options possible (separated by comma):
IN[=<level>]: with instance trace
XAP: with XAP-TP provider trace

The u62_tp program is called internally by u62_start. This message appears when
incorrect parameters have been passed by u62_start.

openUTM-LU62 messages Messages from the u62_tp program

U5461-J-Z135-6-76 271

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
5

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

1
0

003 No admittance to the base directory &DIRNAME,
errno &ERRNO (&ERRTEXT)

The u62_tp program cannot change to the &DIRNAME working directory. The exact
cause of this is specified in the contents of the system variable errno = &ERRNO.
&ERRTEXT contains a short text that describes the error more precisely.

004 Error on signal handling,
errno &ERRNO (&ERRTEXT)

An internal error has occurred during the initialization of the signal handling. The
contents of the system variable errno = &ERRNO and the short text in &ERRTEXT
contain more precise information on the cause of the error.

006 Error opening the configuration file &FILENAME
errno &ERRNO (&ERRTEXT)

007 Error reading the configuration file &FILENAME,
errno &ERRNO (&ERRTEXT)

008 Wrong version in configuration file &FILENAME (&VERS1 instead of &VERS2)

The configuration file &FILENAME created by the u62_gen generation program
contains an incorrect version number. &FILENAME is either not a configuration file
or an incompatible u62_gen version was used to generate it.

009 The local LU name &LUNAME is not configured.

The local LU &LUNAME for which the entity was started (-l switch) is not contained
in the configuration file.

010 The instance for the local LU name &LUNAME is already running.

The entity for the local LU &LUNAME has already been started. Only one entity may
be run for a local LU.

011 Shutdown due to lack of resources

The entity has terminated itself because an attempt to obtain temporary memory
has failed. This message only appears during the initialization phase.

012 Internal error occurred

An internal error has occurred during initialization. The entity has terminated itself
because of this. You should therefore save diagnostics documents.

Messages from the u62_tp program openUTM-LU62 messages

272 U5461-J-Z135-6-76

013 Version: &VERSION &DATE &VERSIONID
System: &SYSTEM (&SYSTEMVERSION)
Host name: &SYSTEMNAME

At startup, the instance outputs information on the program version of u62_tp and
on the system environment. This information is particularly important for the pur-
pose of diagnostics. The contents of the variables are as follows:
&VERSION contains the version number of the program u62_tp.
&DATE is the creation date of the program u62_tp.
&VERSIONID contains an internal ID of the program u62_tp.
&SYSTEM is the name of the operating system (e.g. SunOS).
&SYSTEMVERSION is the operating system version.
&SYSTEMNAME is the host name of the local host.

015 PID file &PIDFILE cannot be created,
errno &ERRNO (&ERRTEXT)

The entity cannot create the system files (&PIDFILE) it uses internally. The system
variable errno = &ERRNO contains information regarding the cause.

016 Write to PID file &PIDFILE failed,
errno &ERRNO (&ERRTEXT)

Information cannot be stored in the file &PIDFILE used internally. The file system is
probably full.

017 Write to PID file &PIDFILE failed,
written &NUM1 bytes, expected: &NUM2 bytes

An attempt to write &NUM2 bytes in the file &PIDFILE has failed. Probably on
account of a full file system, only &NUM1 bytes of the &NUM2 bytes could be
stored.

018 Error creating the input pipe &PIPEFILE,
errno &ERRNO (&ERRTEXT)

An attempt to create the named pipe &PIPEFILE has failed. The errno variable
contains the cause of the error. This message can only appear immediately after
the start because the input pipe is only created once, during initialization. The entity
terminates itself in this case because communication with the other openUTM-
LU62 components is not possible.

019 Error opening the input pipe &PIPEFILE,
errno &ERRNO (&ERRTEXT)

The named pipe &PIPEFILE just created cannot be opened for reading. Otherwise,
the same is true here as described above for message 018.

openUTM-LU62 messages Messages from the u62_tp program

U5461-J-Z135-6-76 273

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
5

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

1
0

020 Only &NUM1 of the desired &NUM2 XAP-TP instances could be created.

An attempt was made during the initialization phase to create an XAP-TP entity for
every parallel connection desired (ASSOCIATIONS configuration parameter) and
for the XAP-TP control entity (for transaction monitoring). If the XAP-TP provider
only allows &NUM1 XAP-TP entities instead of the desired &NUM2 XAP-TP
entities, then this message is output.

There seems to be a resource bottleneck. The system administrator should deal
with it.

021 New log name created for openUTM-LU62:
&LOGNAME

If the value UDTCCR or UDTSEC was generated as the application context, then
sync-level 2 must be supported in LU6.2 page conversations. A prerequisite for this
is the exchange of log names with the LU6.2 partner. The log name &LOGNAME
just created is output with this message by openUTM-LU62 to inform the system
administrator during a cold start of the entity.

022 Log Name of openUTM-LU62 restored from synclog file:
&LOGNAME

No new log name is generated during a warm start of openUTM-LU62, rather the
old log name from and earlier cold start is used. This message only appears during
initialization and only serves to inform the system administrator.

023 Log Name of the partner restored from synclog file:
&LOGNAME

During an openUTM-LU62 warm start, its own log name as well as the log name
&LOGNAME of the LU6.2 partner are taken from the synclog file if the log name of
the LU6.2 partner became known during a previous run of the entity when the log
names were exchanged. This message only appears during initialization and only
serves to inform the system administrator.

025 openUTM-LU62 terminated.

This message is the last message written in the log file when an entity is terminated
normally by openUTM-LU62 by the administration (u62_adm -e).

026 Crash of openUTM-LU62 in module &MODULNAME,
error number = ERRNUM, error code = ERRCODE

The openUTM-LU62 entity has terminated itself due to a fatal internal error. The
&MODULNAME, &ERRNUM and &ERRCODE specifications are internal error infor-
mation and are very important for the error analysis. Save the contents of the
directory /opt/lib/utmlu62/PROT (UNIX systems) or Programs\utmlu62\PROT
(Windows systems). If possible, you should reproduce the error with the entity trace
activated.

Messages from the u62_tp program openUTM-LU62 messages

274 U5461-J-Z135-6-76

027 Shutdown by the XAP-TP provider:
&REASON

The XAP-TP provider has detected a fatal error and initiates the termination of the
openUTM-LU62 entity. &REASON contains more detailed information as to the case
of the error.

The Grp. (group) column in the following table describes which group of causes the
cancellation belongs to. There are the following groups:

A The cause is an application error, e.g. an error while
– generating and administrating openUTM-LU62
– generating the system (e.g. allocating the address space)

S The cause is an error in another system component (software or hardware).

M The cause is a shortage of memory.

X The cause is an internal error in openUTM-LU62.

It is possible that several causes are listed, e.g. XAS.

You should consult Siemens system services for all errors in groups S and X and
for all error codes not listed in the following table. Save the contents of the directory
/opt/lib/utmlu62/PROT (UNIX systems) or Programs\utmlu62\PROT (Windows
systems). If possible, you should reproduce the error with the entity trace activated.

REASON Grp. Cause

AHQA00 XM KCOCOTA module, function QueueAnno().
The mGetBufferSpace() macro returned the return code LB_NOREM.

ASA001 XA The KCOASAM module was called with an invalid operation code

ASA002 XA The KCOASAM module was called with the operation code
ASAM_SET_ACCPTS. The number of access points specified is larger
than the number of generated access points.

ASA003 XA The KCOASAM module was called with the operation code
ASAM_SET_ACCPTS. Bad return code from BerSetAet.

ASA004 XA The KCOASAM module was called with the operation code
ASAM_SET_ PARTNER. Bad return code from BerSetAet.

ASA006 ASX The KCOASAM module was called with the operation code
ASAM_ATTACH. Bad return code from bBuildPAddr.

ASA007 ASX The KCOASAM module was called with the operation code
ASAM_ATTACH. OSS returns the return code NOTFIRST. The entity
has probably already been started.

ASA104 AX The “bBuildPAddr“ function of the KCOASAM module was called. The
presentation selector of a local access point or of a remote partner is
too long.

openUTM-LU62 messages Messages from the u62_tp program

U5461-J-Z135-6-76 275

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
5

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

1
0

ASA105 AX The “bBuildPAddr“ function of the KCOASAM module was called. The
session selector of a local access point or of a remote partner is too
long.

ASA106 AX The “AssociationRequest“ function of the KCOASAM module was
called. OSS returns the return code ERROR from an “assrq“ call.

ASA107 AX The “AssociationRequest“ function of the KCOASAM module was
called. OSS returns the return code INVREF from an “assrq“ call.

ASA108 AX The “AssociationRequest“ function of the KCOASAM module was
called. OSS returns bad return code from an “assrq“ call.

ASA123 A The KCOASAM module was called with the operation code
ASAM_SET_TRANSSYNS. The number of transfer syntaxes to be
initiated is larger than the number generated.

ASA124 A The KCOASAM module was called with the operation code
ASAM_SET_TRANSSYNS. The number of elements in an object
identifier that designates a transfer syntax is larger than allowed.

ASA125 A The KCOASAM module was called with the operation code
ASAM_ATTACH. The reference for the transfer syntax contains an
invalid value.

CDTN02 M KCOCOHF module, function CheckDtnidTtnid().
The mGetBufferSpace() macro returned the return code LB_NOREM.

CSND04 XM Invalid return code after calling PutElement() to request a dynamic
buffer for data transmitted by the concatenator.

DMCA00 M KCOCODM module, function ConnectDynMemArea().
The function ConnectSharedMem() returns the return code
MEM_NOMEM.

DMDI00 XA KCOCODM module, function DynDynMemDmpInfo().
The parameter <pnAreaEntries> points to a value smaller than or equal
to null.

EHHP00 M KCOXFEH module, function HandlePresEvent().
The return code from mGetBufferSpace() was not equal to LB_OK.

EHRP01 MX KCOXFEH module, function ReloadPresEvent().
The mGetBufferSpace() macro returned a return code not equal to
LB_OK.

EHSP01 M KCOXFEH module, function StorePresEvent().
The function PutElement() returned the return code DM_NOMEM.
Measure: Increase the value for the size of the OSI scratch area in the
KDCDEF generation (MAX OSI-SCRATCH-AREA parameter).

EVGE00 M KCOXFEV module, function GetOssEvent().
The return code of the mGetBufferSpace() macro was not equal to
LB_OK.

REASON Grp. Cause

Messages from the u62_tp program openUTM-LU62 messages

276 U5461-J-Z135-6-76

FREE01
through
FREE03

XA
KCOXFFO module, function ap_free().
There are more than APFREE_MAX_TO_REL memory areas to be
released.

GSYS00 S KCOCOHF module, function GetSystemInfo().
The UNIX C function uname() returned a negative return code.

LBBD00 AX KCOCOLB module, function BufferDumpInfo().
The parameter <nPartEntries> contained a value smaller than or equal
to null.

MACF02 M The return code from mGetBufferSpace() was not equal to LB_OK.

MACF03 M The return code from SetTimer() was not equal to TI_OK.

MACF04 M The return code from GetLogRecord was not equal to MACF_OK.

MFCR07
through
MFCR12
MFCR16
through
MFCR21
MFCR24

M
The return code from the mGetBufferSpace() macro was not equal to
LB_OK.

MFDM03
through
MFDM06

M The return code from PutElement was not equal to DM_OK.

MFRM05
through
MFRM07

A
There were no free dialog table entries available for a transaction
branch in TP_RECOVER_REQ. Possible cause: The number of associ-
ations in the previous application run was larger than the number of
associations in the current application run.

MFRM08 M The return code from the mGetBufferSpace() macro was not equal to
LB_OK.

MFRM09
through
MFRM19
MFRM21

M The return code from PutElement was not equal to DM_OK.

MFRM25 A No table entries free for a log damage record.
Measure: Delete the log damage records with
TP_UPDATE_LOG_DAMAGE_REQ or set nMaxLogDamRec to a
larger value.

MFT102 M The return code from the mGetBufferSpace() macro was not equal to
LB_OK.

MFT104 M The return code from ChangeDescriptor was not equal to DM_OK.

MFT105 M The return code from PutElement was not equal to DM_OK.

MFT106 M The return code from CopyElement was not equal to DM_OK.

REASON Grp. Cause

openUTM-LU62 messages Messages from the u62_tp program

U5461-J-Z135-6-76 277

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
5

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

1
0

MFT107 M The return code from CopyElement was not equal to DM_OK.

MFT108 M The return code from the mGetBufferSpace() macro was not equal to
LB_OK.

MFT109 M The return code from CopyElement was not equal to DM_OK.

MFT110
MFT111

M The return code from PutElement was not equal to DM_OK.

MFT112 M Invalid internal message number (LOGREMOVE).

MFT113 M The return code from ChangeDescriptor was not equal to DM_OK.

MFT114 M The return code from CopyElement was not equal to DM_OK.

MFT115 M The return code from ChangeDescriptor was not equal to DM_OK.

MFT119 M The return code from GetLogRecord() was not equal to MACF_OK.

MFT120
through
MFT127

M The return code from PutElement was not equal to DM_OK.

MFT128
MFT129

M The return code from CopyElement was not equal to DM_OK.

MFT130
MFT131
MFT132

M The return code from PutElement was not equal to DM_OK.

MFT133 M The return code from CopyElement was not equal to DM_OK.

MFT134
MFT135

M The return code from PutElement was not equal to DM_OK.

MFT138
MFT139

M The function PutElement has returned a return code not equal to
DM_OK.

MFT141 M The function PutElement has returned a return code not equal to
DM_OK.

MFT142 M The function CopyElement has returned a return code not equal to
DM_OK.

MFT147
MFT151

M The function PutElement has returned a return code not equal to
DM_OK.

MFTP03 M The return code from PutElement was not equal to DM_OK.

MFTP04 M The return code from the mGetBufferSpace() macro was not equal to
LB_OK.

MFTP05
MFTP06

M The return code from PutElement was not equal to DM_OK.

MFTP07 M The return code from SetTimer was not equal to TI_OK.

REASON Grp. Cause

Messages from the u62_tp program openUTM-LU62 messages

278 U5461-J-Z135-6-76

MFTP10 M The return code from the mGetBufferSpace() macro was not equal to
LB_OK.

MFTP11 M The return code from RequestBuffer() was not equal to LB_OK.

MFTP12
through
MFTP19
MFTP24

M
The return code from the mGetBufferSpace() macro was not equal to
LB_OK.

NMTE00 M KCOCOHF module, function NewMemTabEntry().
The function RequestBuffer() returned the return code LB_NOMEM.

NMTE02 M KCOCOHF module, function NewMemTabEntry().
The mGetBufferSpace() macro returned the return code LB_NOMEM.

PCTR00 M KCOCOHF module, function PrepareCtrlReq().
The mGetBufferSpace() macro returned the return code LB_NOMEM.

POLL03 XM KCOXFPL module, function ap_poll().
The return code of the mGetBufferSpace() macro was not equal to
LB_OK.

RCV009 XM KCOXFRV module, function ap_rcv().
The return code the function CopyElement() was not equal to DM_OK.

RCV012 XM KCOXFRV module, function ap_rcv().
Inconsistency in the Boolean variables <bSwitchToNextTtnid> and
<bClearTtnid>.

RQOB00 M KCOCOHF module, function ReqOssInBuff().
The function RequestBuffer() returned the return code LB_NOMEM.

RVCA01 XA KCOXFRV module, function CopyVarLthAttr().
The function AllocUserMem() returned an unexpected return code.

RVCS03 M KCOXFRV module, function CheckSaRetc().
The return code returned by the function SetAttribute() was
SA_NOMEM.

RVUO01 XS KCOXFRV module, function UserDataOut().
The buffers provided by UTM in the multi-tasking variant to input the
user data are not large enough to transfer all user data.

SACT14 XM Invalid return code after calling PutElement() to request a dynamic
memory area for the COPY action in SACF.

SDCS02 M KCOXFSD module, function CheckSaRetc().
The SetAttribute() return code was SA_NOMEM.

SDUI01 M KCOXFSD module, function UserDataIn().
The mGetBufferSpace() macro returned the return code LB_NOMEM.

SND007 XM KCOXFSD module, function ap_snd().
The return code the function GetVarLthAttr() was not equal to GA_OK.

REASON Grp. Cause

openUTM-LU62 messages Messages from the u62_tp program

U5461-J-Z135-6-76 279

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
5

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

1
0

028 Shutdown by internal watch dog.

The u62_tp program constantly monitors to ensure that no function call takes longer
than a defined period of time. In this manner, infinite loops and blocked system
functions are recognized automatically. This error can occur once in while when
terminating TRANSIT. If it occurs in a different situation, then a system error has
occurred.

XADM12 AX KCOXFEX module, function apext_adm().
The function apext_adm() was called with a unknown opcode in the
multitasking variant.

XATT04 XM KCOXFEX module, function apext_att().
The return code of the function EstablishBuffer() was not equal to
LB_OK.

XATT12 XM KCOXFEX module, function apext_att().
The return code of the function EstablishBuffer() was not equal to
LB_OK.

XATT13 XM KCOXFEX module, function apext_att().
The return code of the function RequestBuffer() was not equal to
LB_OK.

XFAU03 XA KCOXFHF module, function AllocUserMem().
The parameter <Type> contained an invalid value.

XFDU02 XA KCOXFHF module, function DeallocUserMem().
The parameter <Type> contained an invalid value.

XFGA07 XSA KCOXFHF module, function GetAttribute().
The function AllocUserMem() returned an unexpected return code
when reading the AP_DTNID attribute in the single-tasking variant.

XFGA11 M KCOXFHF module, function GetAttribute().
The mGetBufferSpace() macro returned the return code LB_NOMEM.

XFGE02 AX KCOXFHF module, function bCheckAndGetCallEnv().
The function bCheckAndSetState() returned a bad return code and the
application status was not equal to WAITING_DUMP_APPL.

XFSA07 MX KCOXFHF module, function SetAttribute().
The function PutElement() returned a return code not equal to DM_OK
when setting the AP_DTNID attribute.

REASON Grp. Cause

Messages from the u62_tp program openUTM-LU62 messages

280 U5461-J-Z135-6-76

030 Cold start of openUTM-LU62, because the synclog file &SYNCLOG is missing.

openUTM-LU62 was called without the -c switch and is therefore to execute a warm
start. If, however, openUTM-LU62 has not yet started successfully for the local LU
specified, then the &SYNCLOG file with the information for a warm start is missing.
In this case, message 030 means that a cold start is to be executed instead. This
message only serves to inform the system administrator.

031 Error opening the synclog file &SYNCLOG,
errno &ERRNO (&ERRTEXT).
Since the CCR syntax is not configured, the initialization is continued.

This message is output during the initialization if openUTM-LU62 is started without
the -c switch and the application context UDTAC or UDTDISAC was generated, but
a &SYNCLOG synclog file from a previous start still exists. This can only happen if
the configuration has been changed between two openUTM-LU62 starts, which
changed the application context of UDTCCR or UDTSEC on UDTAC or UDTDISAC.
There is no transaction management when UDTAC or UDTDISAC is used, and that
is why openUTM-LU62 does not create a synclog file. The existing &SYNCLOG file
is not deleted as a precaution. If this file is not actually needed any more, then it
must be deleted manually by the system administrator.

032 Error opening the synclog file &SYNCLOG,
errno &ERRNO (&ERRTEXT).
Terminate openUTM-LU62, because CCR syntax is configured.

An error occurred during a warm start while opening the synclog file &SYNCLOG
containing all information required for a successful restart. The error is explained in
more detail by the contents of the variable errno = &ERRNO. openUTM-LU62
breaks off the initialization in this situation because this file may contain important
information on cancelled transactions. If it can be guaranteed that no transactions
need to be restarted, then a cold start can be initiated with the -c switch.

033 The synclog file &SYNCLOG remains unchanged, since the CCR syntax is not
configured (any more).

The system has determined during a warm start that a synclog file &SYNCLOG still
exists from a previous openUTM-LU62 start. openUTM-LU62 leaves the synclog
file unchanged as a precaution and continues initialization because of the fact that
the application context of UDTCCR or UDTSEC was changed in the meantime after
UDTAC or UDTDISAC (APPL-CONTEXT parameter), meaning that transaction
management is not required any more.

openUTM-LU62 messages Messages from the u62_tp program

U5461-J-Z135-6-76 281

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
5

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

1
0

034 Wrong format of the synclog file &SYNCLOG, cold start required!

openUTM-LU62 has determined during a warm start that the version of the synclog
file does not match the version of the u62_tp program (only possible after a new
openUTM-LU62 version has been installed) or that the &SYNCLOG synclog file
does not exist or is damaged. There are only two reasonable explanations:

Either the file was not created by openUTM-LU62 but by a system user, or the file
could not be written completely to the hard drive due to a lack of file system space
and has therefore been truncated. openUTM-LU62 therefore aborts the initiali-
zation. openUTM-LU62 must be cold started after this occurs because a warm start
is not possible with the existing synclog file.

035 The entries in the synclog file &SYNCLOG are not consistent with the given
configuration,
cold start required!

openUTM-LU62 has determined during a warm start that certain entries in the
synclog file do not correspond to the current configuration. More specifically, the
APT and AEQ of the local and the remote OSI-TP application are the problem. A
successful openUTM-LU62 start is now only possible using the -c switch.

036 Error in allocating a new shared memory of length &LEN,
errno &ERRNO (&ERRTEXT)

If the application context allows transaction management, then u62_tp program
allocates a shared memory area during the initialization phase with the system
function shmget(). The shared memory area represents an image of the synclog file
and reads the u62_wlog daemon process before it writes the information onto the
hard drive. An error while creating this shared memory area leads to openUTM-
LU62 aborting. The system variable errno informs you of the exact cause.

037 Error in attaching to the shared memory with the id &ID,
errno &ERRNO (&ERRTEXT)

After creating a shared memory area, the area is assigned an address using the
system function shmat() to allow read and write access. If this fails, then openUTM-
LU62 aborts the initialization.

040 Error in the configuration of the local LU &LLUNAME
or of the partner LU &RLUNAME.
The communication with the LU6.2 and with the OSITP partner will be started only
after the configuration of the LU6.2 base software will have been corrected.

If the local LU &LLUNAME (configuration parameter LOC-LU-ALIAS) or the remote
LU &RLUNAME (configuration parameter REM-LU-ALIAS) contained in the
openUTM-LU62 generation is not configured in the LU6.2 basic software, then
openUTM-LU62 waits to start the communication with the OSITP and LU6.2
partners.

Messages from the u62_tp program openUTM-LU62 messages

282 U5461-J-Z135-6-76

When TRANSIT is used as the LU6.2 basic software, then the cause may also be
the lack of a suitable PAIR parameter, which creates the association between the
local and the remote LU. If TRANSIT is terminated, reconfigured and restarted, then
everything should run again.

041 The error in the configuration of the local LU &LLUNAME
and of the partner LU &RLUNAME has been corrected.
The communication with the LU6.2 and with the OSITP partner is started now.

openUTM-LU62 has detected an inconsistency during the start in the LU6.2 basic
software generation (e.g. of TRANSIT) and has output message 040. After the
configuration of the LU6.2 basic software has been corrected, openUTM-LU62
outputs message 041 and starts communication with its two partners by initiating a
RECEIVE_ALLOCATE call on the LU6.2 side and by opening the XAPTP dialog
entities on the OSITP side.

042 The net name of the partner LU &ALIASNAME has been changed from
&OLDNAME to &NEWNAME.
Allocation of conversations is not possible any more!

openUTM-LU62 detected the network name of the partner LU &ALIASNAME (in the
TRANSIT configuration parameter REM-LU-ALIAS) configured in the LU6.2 basic
software (e.g. in TRANSIT) during a cold start with the help of a control operator
call. Each time a new conversation is opened to the LU6.2 partner the system will
check to see of this name is still correct or if it has been recently reconfigured
(&NEWNAME). The conversation is closed immediately when an error occurs.

043 The net name of the partner LU &ALIASNAME has been corrected again.

openUTM-LU62 has determined that the network name of the partner LU in the
LU6.2 basic software (e.g. in TRANSIT) was reconfigured and message 042 was
output for this reason. If openUTM-LU62 recognizes that the network name has
been corrected in the LU6.2 basic software when attempting to open a conver-
sation, then this message is output for informational purposes.

044 The net name of the local LU &ALIASNAME has been changed from &OLDNAME
to &NEWNAME.
Allocation of conversations is not possible any more!

This message has the same meaning as number 042 with the difference that the
local LU was affected by the network name change, not the partner LU.

045 The net name of the local LU &ALIASNAME has been corrected again.

This message has the same meaning as number 044 with the local instead of the
remote LU.

openUTM-LU62 messages Messages from the u62_tp program

U5461-J-Z135-6-76 283

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
5

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

1
0

046 Allocation of new conversations is possible again.

This message appears together with message 043 and/or 045 and shows that
conversations to the LU6.2 partner can be opened again after a faulty network
name change has been corrected.

047 The node is activated: Conversations can be established now.

The IBM Communications Server node has been started successfully. Conversa-
tions with the LU6.2 partner can now be opened (or resumed).

048 The node is deactivated: No conversations can be established.

The IBM Communications Server node was presumably deactivated by the admin-
istrator. It is no longer possible to open conversations with the LU6.2 partner.

049 The Attach Manager is already running:
Incoming conversations are not routed to openUTM-LU62.

An attach manager has already been started for the local LU of the openUTM-LU62
entity - possibly an openUTM-LU62 entity in another environment (U62_DIR varia-
ble). In this case, all requests to open a conversation received by the LU6.2 partner
on the IBM Communications Server are forwarded to another application instead of
to the openUTM-LU62 entity. In other words, only one active connection may be es-
tablished with the LU6.2 partner.

050 Read on input pipe failed with error ENOBUFS.

The error errno = ENOBUFS has occurred while reading from a named pipe with
read(), i.e. there is currently a shortage of system memory at the moment. u62_tp
then repeats the attempt to read after a wait time of 1/4 second has passed; if the
error ENOBUFS occurs again, then an error message is not output. If this error
occurs more than 20 times in a row or more than 60 times during the entire u62_tp
run time, then the program terminates itself with an abnormal termination.

051 Error opening the pipe to the administration program with PID = &ADMPID,
errno &ERRNO (&ERRTEXT)

All jobs sent by the u62_adm and u62_sta administration programs to u62_tp are
acknowledged by u62_tp with an acknowledgment (also u62_adm -e). If the opening
of the named pipe used to send the acknowledgment using the system function
open() fails, then u62_tp outputs this message. The contents of the variable
errno = &ERRNO specifies the exact cause for this.

It can happen during long jobs, such as the status display, and when the load is high
that the administration program has deleted its input pipe when u62_tp wants to
send its acknowledge. This is because the administration programs only wait for a
maximum of 5 seconds for the reply from u62_tp, and terminate themselves after
this wait time has passed.

Messages from the u62_tp program openUTM-LU62 messages

284 U5461-J-Z135-6-76

052 Write into pipe to process with PID = &PID failed with error ENOBUFS.

The error errno = ENOBUFS has occurred while an administration program or a job
attempted to write an acknowledge to the write log daemon u62_wlog with the
system function write(). u62_tp repeats the write attempt after a wait time of
1/4 second, but does not output this message any more when this error reoccurs.

If this error occurs 10 times in a row, then u62_tp simply throws out the internal
message. The administration program would then announce that the time limit has
been exceeded while waiting for acknowledgment. If the error occurs often enough
so that is has occurred more than 60 times in this run, then u62_tp terminates itself
with an abnormal termination.

053 The output pipe to the process with the PID = &PID is full.

The system cannot write any data at all at the moment through the named pipe to
the administration program or to the write log daemon with PID = &PID. This
message should not appear because the internal messages from openUTM-LU62
are relatively short and are also read immediately from their input pipes by the
individual programs. u62_tp repeats the write operation after 1/4 second in a
manner similar to that for error ENOBUFS and rejects the message after 20 unsuc-
cessful attempts.

054 Error writing into the pipe to the process with PID = &PID,
errno &ERRNO (&ERRTEXT)

The error errno = &ERRNO has occurred while writing through the output pipe to
the administration program or to the write log daemon with the PID = &PID. u62_tp
does not repeat the write attempt, in contrast to the two errors above (ENOBUFS,
EAGAIN) because this error must be a fatal error.

055 Response to the administration program discarded!

An error that has not yet lead to u62_tp aborting has occurred while opening a
named pipe to an administration program or when writing to this pipe. This means
that this message always precedes messages 051 - 054.

056 Unknown internal message 0x&HEX received via input pipe!

u62_tp has received an internal message with the unknown message type &HEX
(4 digits, hexadecimal). These messages point either to a communication error
between u62_tp and the administration programs or to a faulty openUTM-LU62
installation (incompatible versions of u62_tp and u62_adm or u62_sta).

057 Unknown internal message 0x&HEX received from an administration program

See comment on message 056.

058 SNMP not supported in this version; message 0x&HEX rejected!

See comment on message 056.

openUTM-LU62 messages Messages from the u62_tp program

U5461-J-Z135-6-76 285

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
5

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

1
0

060 Error opening the pipe to the write log daemon with PID = &PID,
errno &ERRNO (&ERRTEXT)

The write log daemon u62_wlog will be started by u62_tp during initialization if
UDTCCR or UDTSEC is configured as the application context, meaning that restart
information must therefore be written to the hard drive. As soon as u62_wlog has
sent its “Ready” message to u62_tp, u62_tp opens its output pipe to this daemon
for later jobs. If the open() system call fails, then this message is output with the
reason for the error in the errno variable.

061 Termination of the write log daemon with PID &PID during start.

The write log daemon u62_wlog started by u62_tp could not execute its initialization
successfully. In this case, it sends a corresponding internal message to u62_tp that
leads to the output of message 061, and the daemon terminates itself. u62_tp then
attempts to restart u62_wlog after a specific wait time has passed.

062 Write log daemon with PID &PID reports error in writing to the synclog file
=> instance crash!

The opening of or writing to the synclog file by the write log daemon has failed. This
error leads to the immediate abort of u62_tp. This error should only occur if there is
not enough space for the synclog file on the drive due to a full file system. This error
can only occur during the start phase because the size of the synclog file is not
changed while openUTM-LU62 is running.

063 Unknown message 0x&HEX received from the write log daemon!

u62_tp has received an internal message with the unknown message type &HEX
(4 digits, hexadecimal) from the write log daemon. These messages point either to
a communication error between u62_tp and the write log daemon or to a faulty
openUTM-LU62 installation (incompatible versions of u62_tp and u62_wlog).

064 The write log daemon with PID &PID has crashed down!

The u62_tp program checks in regular intervals whether or not the write log daemon
with PID = &PID that it has started is still alive. If the daemon no longer exists, then
message 064 is output and u62_wlog is restarted.

065 Write log daemon with PID &PID has been started.

This message does not mean that an error has occurred. It only logs the PID of the
child process just started using fork(), which still needs to be overlayed with the
program u62_wlog using exec().

066 The maximum number &NUM of unsuccessful attempts to start the write log
daemon has been exceeded.

Messages from the u62_tp program openUTM-LU62 messages

286 U5461-J-Z135-6-76

u62_tp has unsuccessfully attempted to start the write log daemon u62_wlog
several times in a row in constantly increasing intervals. If the maximum number
&NUM of such attempts is reached, then u62_tp terminates itself.

067 Error starting the write log daemon by calling fork(),
errno &ERRNO (&ERRTEXT)

The fork() system call used to start the write log daemon in the start phase or after
u62_tp has determined that u62_wlog is not running any more has failed. This is
usually the result of a lack of system resources in the system. The contents of the
variable errno = &ERRNO contains more exact information as to the cause. u62_tp
will attempt to start the daemon again after a specific wait time.

068 Error starting the write log daemon by calling execv(),
errno &ERRNO (&ERRTEXT)

This message has the same meaning as message 067 with the difference that the
execv() function, not the fork() function, to overlay the process with the u62_wlog
program has failed. This error message means that there is either a resource
shortage in the system or an incorrect environment (u62_wlog is not available or is
not executable).

069 Internal message could not be sent to the write log daemon with PID &PID!
Terminate and restart the daemon!

An error has occurred while writing an internal message through the named pipe to
the write log daemon with write() that did not lead to an abort of u62_tp. This
message always precedes messages 052 - 054. u62_tp terminates the write log
daemon, releases all associated resources and restarts the write log daemon.

070 ap_set_env failed for instance &INSTNO,
ap_errno = &APERRNO: &ERRTXT

This message indicates an internal error that occurred while using the XAP-TP
interface for communication via OSI-TP. The parameters have the following
meanings

&INSTNO: Number of the XAP-TP entity
&APERRNO: XAP-TP error number
&ERRTXT: XAP-TP error text

071 ap_get_env failed for instance &INSTNO,
ap_errno = &APERRNO: &ERRTXT???

See comment on message 070.

072 ap_free failed for instance &INSTNO,
ap_errno = &APERRNO: &ERRTXT

See comment on message 070.

openUTM-LU62 messages Messages from the u62_tp program

U5461-J-Z135-6-76 287

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
5

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

1
0

073 ap_bind failed for instance &INSTNO,
ap_errno = &APERRNO: &ERRTXT???

See comment on message 070.

074 ap_close failed for instance &INSTNO,
ap_errno = &APERRNO: &ERRTXT???

See comment on message 070.

075 ap_init_env failed for instance &INSTNO,
ap_errno = &APERRNO: &ERRTXT???

See comment on message 070.

076 ap_open failed,
ap_errno = &APERRNO: &ERRTXT

See comment on message 070.

077 ap_rcv failed for instance &INSTNO,
ap_errno = &APERRNO: &ERRTXT

See comment on message 070.

078 ap_snd failed for instance &INSTNO,
ap_errno = &APERRNO: &ERRTXT

See comment on message 070.

079 ap_poll failed,
ap_errno = &APERRNO: &ERRTXT

See comment on message 070.

080 apext_adm (operation code &OPCODE) failed,
ap_errno = &APERRNO: &ERRTXT

See comment on message 070. &OPCODE represents the code for the administra-
tion call.

081 apext_att failed,
ap_errno = &APERRNO: &ERRTXT

See comment on message 070.

082 apext_det failed,
ap_errno = &APERRNO: &ERRTXT

See comment on message 070.

Messages from the u62_tp program openUTM-LU62 messages

288 U5461-J-Z135-6-76

083 apext_init for Type &INITTYPE failed,
ap_errno = &APERRNO: &ERRTXT

See comment on message 070. &INITTYPE represents the type of data to be ini-
tialized.

090 The dump file &FILENAME cannot be opened.

u62_tp has unsuccessfully attempted to output a dump of its control block to the file
&FILENAME because of a fatal internal error or because of an administration
command. This file could not be opened, however.

100 Message &MSGNUM of the XAP-TP provider:

This message initiates a system message of the XAP-TP provider. The message
text depends on the message number &MSGNUM. The individual messages of the
XAP-TP provider are listed in their own section starting on page 319.

DM component messages

301 Conversation rejected,
TP Name &TPNAME, job submitted by LU6.2 side:
CCR syntax not negotiated for the OSITP partner application

The LU6.2 partner has opened a conversation with sync-level 2 to the TP
&TPNAME. (&TPNAME therefore designates the UTM transaction code.) openUTM-
LU62 cannot establish an OSI-TP dialog with the functional unit commit to the
OSITP partner as requested and rejects the conversation immediately because the
UDTAC or UDTDISAC application context has been configured.

302 Conversation rejected,
TP Name &TPNAME, job submitted by LU6.2 side:
Restart of the nominated control instance not completed yet

The LU6.2 partner has opened a conversation with sync-level 2 to the TP
&TPNAME. (&TPNAME therefore designates the UTM transaction code.) However,
the XAP-TP control entity is not yet in a suitable state to support new OSI-TP
dialogs with the functional unit commit because the restarting of transactions that
are left over from a previous openUTM-LU62 start has not completed yet. For this
reason, u62_tp rejects the conversation immediately. This can occur when the
connection to the LU6.2 partner is re-established after a crash, but the connection
between openUTM-LU62 and the UTM application has not yet been re-established.

303 Incoming conversation
(TP Name &TPNAME, job submitted by LU6.2 side)
supplies initialization data that will be discarded by openUTM-LU62.

openUTM-LU62 messages Messages from the u62_tp program

U5461-J-Z135-6-76 289

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
5

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

1
0

This message informs you that an incoming conversation from the LU6.2 partner
has delivered initialization data that cannot be transmitted to the OSI-TP partner
(i.e. to the UTM application). Check the application program of the LU6.2 partner. If
the initialization data is required for the application logic, then reasonable commu-
nication is not possible. &TPNAME designates the UTM transaction code.

304 Conversation rejected,
TP Name &TPNAME, job submitted by LU6.2 side:
Security data not supported by the OSITP partner or contain invalid characters.

An incoming conversation from the LU6.2 partner to the TP &TPNAME contains
security data (user ID and possibly a password) and can only be transmitted to the
OSITP partner (i.e. to UTM application) if this security check is also supported. This
is only the case, however, if APPL-CONTEXT = UDTSEC is configured. openUTM-
LU62 rejects the conversation immediately with the error code
AP_SECURITY_PARAMS_INVALID for all other application contexts or when an
error is found in the ASN1 code of the security data. &TPNAME designates the UTM
transaction code.

305 Conversation rejected,
TP Name &TPNAME, job submitted by LU6.2 side:
The alias name &ALIAS of the partner LU is not identical with the configured name
&CONFALIAS.

There is a problem with the names in the configuration.

306 Conversation rejected,
TP Name &TPNAME, job submitted by LU6.2 side:
Service TPs using mapped (!) conversations are not supported!

The LU6.2 partner has attempted to start a conversation with a non-printable TP
name (i.e. a transaction code between X’00’ and X’3F’). openUTM-LU62 does not
support these types of service TPs, except for the resync-TP X’06F2’. This
message appears, for example, when the EXEC CICS START function that
addresses the service TP X’02’ in openUTM-LU62 is used.

307 Conversation rejected,
TP Name &TPNAME, job submitted by LU6.2 side:
Configuration error: The net name of the local and/or of the partner LU has been
changed!

An incoming conversation from the LU6.2 partner to the TP &TPNAME is rejected
because an inconsistency has been detected while checking the network names of
the local and the remote LU. This means that the alias names for the local and/or
the remote LU (e.g. in the TRANSIT configuration) are not aliases of the same LUs
(in the SNA network) as before. This message always precedes at least one of the
messages 042 and 044.

Messages from the u62_tp program openUTM-LU62 messages

290 U5461-J-Z135-6-76

308 Conversation rejected,
TP Name &TPNAME, job submitted by LU6.2 side:
Error in the exchange of the log names between the local and the remote LU!

The LU6.2 partner has opened a conversation to openUTM-LU62 with sync-level 2
although the log names have not yet been exchanged between the two LUs, or a
fatal error occurred the last time the log names were exchanged. openUTM-LU62
reacts to this protocol violation by immediately closing the conversation.

309 RECEIVE_ALLOCATE rejected due to configuration error:
The local LU alias name &LUNAME is not configured!

The RECEIVE_ALLOCATE call to asynchronously accept incoming conversations
is rejected by the LU6.2 basic software (e.g. by TRANSIT) because the alias name
contained in this call of the local LU is not configured in the LU6.2 basic software.

310 RECEIVE_ALLOCATE failed:
LU6.2 base software is not running!

The RECEIVE_ALLOCATE call receives a negative replay because the LU6.2 basic
software is not running. When TRANSIT is used as the LU6.2 basic software, then
either the TRANSIT base system or the LU62Mgr has not been started. openUTM-
LU62 re-initiates a RECEIVE_ALLOCATE call after a specific wait time but does not
output this message again when an error occurs.

311 RECEIVE_ALLOCATE failed:
System error (errno = &ERRNO) occurred:
&ERRTXT

One of the system calls failed while the LU6.2 basic software (e.g. TRANSIT) was
processing the RECEIVE_ALLOCATE call. The actual cause of the error should be
returned by the LU6.2 basic software in the RECEIVE_ALLOCATE call in the errno
variable. The value of errno &ERRNO together with a short interpretation in
&ERRTXT is therefore output by openUTM-LU62. However, as TRANSIT does not
return any text as the LU6.2 basic software, the following always appears as the
error text:

The errno is not interpreted when TRANSIT is used as the LU6.2 software

312 Allocation of a conversation to the LU6.2 partner rejected,
TP Name &TPNAME, job submitted by OSI-TP side:
Configuration error:
The local LU alias name &ALIASNAME is not configured!

The LU6.2 basic software (e.g. TRANSIT) has rejected the attempt to open a
conversation to the LU6.2 partner because the alias name &ALIASNAME of the
local LU generated in openUTM-LU62 is not configured in the LU6.2 basic software.

openUTM-LU62 messages Messages from the u62_tp program

U5461-J-Z135-6-76 291

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
5

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

1
0

313 Allocation of a conversation to the LU6.2 partner failed,
TP Name &TPNAME, job submitted by OSI-TP side:
The LU6.2 base software is not running!

The LU6.2 basic software is not running. when TRANSIT is being used. This means
that the TRANSIT base system or the LU62Mgr has not been started. It is therefore
not possible to communicate via LU6.2. &TPNAME designates the CICS transaction
code, for example.

314 Allocation of a conversation to the LU6.2 partner failed,
TP Name &TPNAME, job submitted by OSI-TP side:
System error (errno = &ERRNO) occurred:
&ERRTXT

One of the system calls failed in the LU6.2 basic software (e.g. in TRANSIT) during
the attempt to open a conversation to the LU6.2 partner. Similar to the
RECEIVE_ALLOCATE call (see message 311!), TRANSIT does not provide any
error text, and the following text is always output as the &ERRTXT:

No interpretation of errno with TRANSIT as the LU6.2 software

315 Actively allocated conversation to LU6.2 partner deallocated
(TP Name &TPNAME, job submitted by OSI-TP side)
again due to a configuration error:
The net name of the local and/or of the partner LU has been changed!

An already active, open conversation to the TP &TPNAME of the LU6.2 partner is
closed immediately thereafter because an inconsistency was detected while
checking the network names of the local and remote LU. This means that the alias
names for the local and/or the remote LU (e.g. in the TRANSIT configuration) are
not aliases of the same LUs (in the SNA network) as before. This message always
precedes at least one of the messages 042 and 044.

316 Incoming conversation for TP &TPNAME not present any more:
Probably deallocated by issuing TP_ENDED in a collision
with RECEIVE_ALLOCATE!

A temporary error in the LU6.2 basic software led to an abort of an incoming conver-
sation from the LU6.2 partner. &TPNAME designates the UTM transaction code.

320 Allocation of a conversation to LU6.2 partner failed,
TP Name &TPNAME, job submitted by OSI-TP side:
Allocation error (code = &ERRTXT)

No conversations to the TP &TPNAME of the LU6.2 partner can be actively opened
at the moment. (&TPNAME is in this case the CICS transaction code, for example.)
The error code &ERRTXT then contains the return code of the corresponding LU6.2
call in the plain text.

Messages from the u62_tp program openUTM-LU62 messages

292 U5461-J-Z135-6-76

321 Allocation of a conversation to LU6.2 partner failed,
TP Name &TPNAME, job submitted by OSI-TP side:
Inconsistency in the configurations of openUTM-LU62 and the LU6.2 base software
(MODENAME, LOC_LU_ALIAS, REM_LU_ALIAS)

Conversations to LU6.2 partners cannot be opened at all with the current gener-
ation of the LU6.2 basic software (e.g. TRANSIT) and openUTM-LU62 because the
alias name of the local or remote LU or the name of the mode is not contained in
the LU6.2 basic software configuration. This situation will exist until the LU6.2 basic
software or the openUTM-LU62 entity is stopped, regenerated and restarted.

322 Allocation of a conversation to LU6.2 partner failed,
TP Name &TPNAME, job submitted by OSI-TP side:
Security data invalid

The LU6.2 basic software (e.g. TRANSIT) has rejected the request to open a
conversation to the LU6.2 partner because the security data of the user ID and/or
password contains a special character or because the partner has shown while
opening the session that it does not support security data. &TPNAME is in this case
the CICS transaction code, for example.

323 Allocation of a conversation to LU6.2 partner failed,
TP Name &TPNAME, job submitted by OSI-TP side:
The sync level &SYNCLEVEL is not supported by the LU6.2 base software.

The LU6.2 basic software (e.g. TRANSIT) has rejected the request to open a
conversation to the LU6.2 partner because the requested sync-level &SYNCLEVEL
SYNCPT (2) or CONFIRM (1) is not possible. If the LU6.2 partner supports the
specified sync-level, then it is sufficient for TRANSIT to modify the PAIR_EXT
generation parameter of the local LU in the TRANSIT configuration accordingly.
&TPNAME is in this case the CICS transaction code, for example.

330 Conversation to the LU6.2 partner
(TP Name &TPNAME, job submitted by OSI-TP side)
terminated by the partner with ABEND!

The LU6.2 partner has closed the conversation abnormally with Deallocate(Abend).
openUTM-LU62 therefore also terminates the OSI-TP dialog to the OSI-TP partner
(i.e. to the UTM application) abnormally with U_ABORT_REQ. The actual initial
error can generally be found in the application program of the LU6.2 partner.

331 Conversation to the LU6.2 partner
(TP Name &TPNAME, job submitted by LU6.2 side)
terminated by the partner with ABEND!

See comment on message 330.

openUTM-LU62 messages Messages from the u62_tp program

U5461-J-Z135-6-76 293

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
5

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

1
0

332 Conversation to the LU6.2 partner
(TP Name &TPNAME, job submitted by OSI-TP side)
terminated by shutdown of the LU6.2 base software!

The LU6.2 basic software has terminated itself. When TRANSIT is used, this means
that the TRANSIT base system or the LU62Mgr has been terminated. This is noted
by openUTM-LU62 in the next LU6.2 basic software call and leads to the abnormal
termination of the OSI-TP dialog with the OSI-TP partner (i.e. with the UTM appli-
cation) using U_ABORT_REQ.

333 Conversation to the LU6.2 partner
(TP Name &TPNAME, job submitted by LU6.2 side)
terminated by shutdown of the LU6.2 base software!

See comment on message 332.

334 Conversation to the LU6.2 partner
(TP Name &TPNAME, job submitted by OSI-TP side)
terminated by conversation error!

A fatal error has occurred in the session that has opened the conversation to the
LU6.2 partner, e.g. the link connection to the partner PU has failed or all sessions
have been closed using the administration command u62_adm -as. openUTM-LU62
then closes the OSI-TP dialog to the OSI-TP partner (i.e. to the UTM application)
abnormally.

335 Conversation to the LU6.2 partner
(TP Name &TPNAME, job submitted by LU6.2 side)
terminated by conversation error!

See comment on message 334.

336 User control data received on a conversation to the LU6.2 partner
(TP Name &TPNAME, job submitted by OSI TP side)
=> Termination of the conversation by openUTM-LU62!

The LU6.2 partner has sent openUTM-LU62 user control data. openUTM-LU62
closes the conversation to the LU6.2 partner and the OSI-TP dialog with the OSI-
TP partner (i.e. with the UTM application) because this cannot be converted into the
OSI-TP protocol.

337 User control data received on a conversation to the LU6.2 partner
(TP Name &TPNAME, job submitted by LU6.2 side)
=> Termination of the conversation by openUTM-LU62!

See comment on message 336.

Messages from the u62_tp program openUTM-LU62 messages

294 U5461-J-Z135-6-76

338 Return code AP_STATE_CHECK received on a conversation to the LU6.2 partner
(TP Name &TPNAME, job submitted by OSI TP side)
=> Termination of the conversation by openUTM-LU62!

The LU6.2 basic software has detected a formal encoding error in the data while
receiving a data packet from the LU6.2 partner. The software then throws the data
out, changes the direction of sending by itself and sends a negative acknowledge
to the LU6.2 partner. openUTM-LU62 receives the error code AP_STATE_CHECK
in this situation and closes the conversation and the associated OSI-TP dialog as a
result.

339 Return code AP_STATE_CHECK received on a conversation to the LU6.2 partner
(TP Name &TPNAME, job submitted by LU6.2 side)
=> Termination of the conversation by openUTM-LU62!

See comment on message 338.

340 Incoming conversation to the LU6.2 partner rejected,
TP Name &TPNAME, job submitted by LU6.2 side:
Expiration of the timer for the supervision of the association allocation

The LU6.2 partner has opened a conversation to the TP &TPNAME. (&TPNAME
therefore designates the UTM transaction code.) openUTM-LU62 cannot open an
OSI-TP dialog to the OSI-TP partner (i.e. to the UTM application) at the moment
due to a lack of free parallel connections. If no parallel connection becomes free
within a certain wait time, then openUTM-LU62 rejects the conversation. This
maximum wait time is configurable in openUTM-LU62 using the parameter ALLOC-
TIME, where the default value is 30 seconds. If this message appears often, then
you should either lower the session limit (the generation parameter SESS-MAX for
XMODE in TRANSIT) or increase the number of parallel connections for openUTM-
LU62 (generation parameter ASSOCIATIONS).

341 Incoming dialogue to the OSI-TP partner rejected,
TP Name &TPNAME, job submitted by OSI-TP side:
Expiration of the timer for the supervision of the conversation allocation

The OSI-TP partner (i.e. the UTM application) has opened an OSI-TP dialog to the
TP &TPNAME. (&TPNAME therefore designates the CICS transaction code, for
example.) openUTM-LU62 cannot open a conversation to the LU6.2 partner at the
moment due to a lack of free sessions. If no session becomes free within a specific
wait time, then openUTM-LU62 rejects the OSI-TP dialog. This maximum wait time
is configurable in openUTM-LU62 using the parameter ALLOC-TIME, where the
default value is 30 seconds. If this message appears often, then you should either
increase the session limit (in the generation parameter SESS-MAX for XMODE in
TRANSIT) or decrease the number of parallel connections for openUTM-LU62
(generation parameter ASSOCIATIONS).

openUTM-LU62 messages Messages from the u62_tp program

U5461-J-Z135-6-76 295

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
5

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

1
0

350 XAP-TP provider rejects association allocation
(TP &TPNAME): result = &RES, source = &SRC, reason = &RSN

openUTM-LU62 has a accepted an incoming conversation from the LU6.2 partner
and attempts to reserve a parallel connection for an OSI-TP dialog to the
TP &TPNAME of the OSI-TP partner (i.e. to the transaction code &TPNAME of the
UTM application). However, the local XAP-TP provider has rejected the request.
openUTM-LU62 closes the conversation to the LU6.2 partner as a result.

Meaning of &RES:

Meaning of &SRC:

Meaning of &RSN:

1 Association allocation request permanently rejected

2 Association allocation request temporarily rejected

0 ACSE Service User

1 ACSE Service Provider

2 Presentation Service Provider

7 APM Service Provider (Association Pool Manager)

-1 No reason given

0 CCR version 2 not available

1 Incompatible versions

2 Contention winner property rejected

3 Bid mandatory value rejected

6 Local or remote Application Entity Title (AET) invalid

7 No association pool found for the specified AET

58 All associations from the association pool are reserved although the pool limits allow
the opening of additional associations. The XAP-TP provider has begun allocating
additional associations.

59 All associations from the association pool are reserved and the pool limits do not allow
the allocating of additional associations.

60 The association pool manager timer has run down. This timer specifies the maximum
time to wait for the release of an association if all associations in the pool are
reserved.

61 The association is to be reserved for a protected conversation and the current trans-
action is in the end phase. At this point in time, no more further OSI-TP dialogs can
be added to the transaction tree.

Messages from the u62_tp program openUTM-LU62 messages

296 U5461-J-Z135-6-76

351 XAP-TP provider reports loss of association
(TP &TPNAME): source = &SRC, reason = &RSN, event = &EVT

openUTM-LU62 has accepted an incoming conversation from the LU6.2 partner
and has already successfully reserved a parallel connection for an OSI-TP dialog
to the TP &TPNAME of the OSI-TP partner (i.e. to the transaction code &TPNAME
of the UTM application). However, the parallel connection is lost before it has a
chance to open the OSI-TP dialog. openUTM-LU62 closes the connection to the
LU6.2 partner as a result.

Meaning of &SRC:

Meaning of &RSN when &SRC is equal to 0 or 1:

Meaning of &RSN when &SRC is equal to 2:

Meaning of &RSN when &SRC is equal to 7:

0 ACSE Service User

1 ACSE Service Provider

2 Presentation Service Provider

7 APM Service Provider (Association Pool Manager)

-1 A-RELEASE-IND: No reason given

0 A-RELEASE-IND: Normal release request

1 A-RELEASE-IND: Urgent release request

12 A-ABORT-IND

30 A-RELEASE-IND: User-defined release request

-1 No reason for abort given

0 Reason for abort unknown

1 Unknown Presentation Protocol Data Unit received

2 Unexpected Presentation Protocol Data Unit received

3 Unexpected Session Service Primitive received

4 Presentation Protocol Data Unit with unknown parameter received

5 Presentation Protocol Data Unit with unexpected parameter received

6 Presentation Protocol Data Unit with invalid parameter received

5 An OSI-TP dialog from the partner has reserved the association

openUTM-LU62 messages Messages from the u62_tp program

U5461-J-Z135-6-76 297

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
5

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

1
0

352 OSI-TP partner (XAP-TP user) rejects begin dialogue request,
TP Name &TPNAME, job submitted by LU6.2 side

openUTM-LU62 has attempted to open a OSI-TP dialog to the TP &TPNAME of the
OSI-TP partner (i.e. to the transaction code &TPNAME of the UTM application) due
to an incoming conversation from the LU6.2 partner. The remote XAP-TP user (i.e.
the UTM application program) has rejected the OSI-TP dialog, however, so that a
TP_BEGIN_DIALOGUE confirmation with result = rejected has been received by
openUTM-LU62. openUTM-LU62 terminates the conversation to the LU6.2 partner
as a result.

353 OSI-TP partner (XAP-TP provider) rejects begin dialogue request,
TP Name &TPNAME, job submitted by LU6.2 side:
Reason = &RSN

openUTM-LU62 has attempted to open a OSI-TP dialog to the TP &TPNAME of the
OSI-TP partner (i.e. to the transaction code &TPNAME of the UTM application) due
to an incoming conversation from the LU6.2 partner. The remote XAP-TP provider
(i.e. from openUTM itself) has rejected the OSI-TP dialog, however, so that a
TP_BEGIN_DIALOGUE confirmation with result = rejected has been received by
openUTM-LU62. openUTM-LU62 terminates the conversation to the LU6.2 partner
as a result. The reason for the rejection can be found in the SYSLOG file of the UTM
application.

Meaning of &RSN:

-1 No reason given

1 The TPSU title (transaction code) specified is not known to the partner

2 The TPSU title (transaction code) specified is permanently unavailable in the partner

3 The TPSU title (transaction code) specified is temporarily unavailable in the partner

4 The partner application has received a TP-BEGIN-DIALOGUE indication without the
specification of a TPSU title

5 One or more of the desired functional units is not supported by the partner

6 The desired combination of functional units is not supported by the partner

7 The association that was allocated for the OSI-TP dialog is already being used by the
partner application

8 The application entity parameter that was specified in the TP-BEGIN-DIALOGUE
request does not identify any known application entity invocation

Messages from the u62_tp program openUTM-LU62 messages

298 U5461-J-Z135-6-76

354 Diagnostic information in the initialization data of
AP_TP_BEGIN_DIALOGUE_CNF: 0xhhhh (d,d)

hhhh represents the hexadecimal value and d,d represent the according decimal
values.

For UTM as OSI-TP partner, the initialization data contains further information on
the reason, why the dialog has been rejected. The first value shows whether the
fault is transient (1) or permanent (2).

The second value shows the detailed reason for rejection.

The meaning of these values can be taken from the manual
openUTM V5.3 messages, test and diagnosis in BS2000/OSD
(description DIA3 in message K119 for DIA1=2)

355 Protocol error:
AP_TP_ACCEPT received in AP_TP_BEGIN_DIALOGUE_CNF,
TP-Name &TPNAME, job submitted by LU6.2 side

The OSI-TP partner has acknowledged the incoming OSI-TP dialog positively
although openUTM-LU62 has not requested an explicit acknowledge for opening
the OSI-TP dialog. This protocol violation then leads to the OSI-TP dialog and the
conversation to the LU6.2 partner being aborted. This message can only occur in
an OSI-TP partner that is not a UTM application.

356 Protocol error:
AP_TP_BEGIN_TRANSACTION_IND received,
TP-Name &TPNAME, job submitted by LU6.2 side

openUTM-LU62 has received a BEGIN_TRANSACTION primitive from the OSI-TP
partner. This is a serious violation of the OSI-TP protocol. As a result, openUTM-
LU62 aborts the OSI-TP dialog and the conversation to the LU6.2 partner. This
message can only occur in an OSI-TP partner that is not a UTM application.

357 Protocol error:
AP_TP_BEGIN_TRANSACTION_IND received,
TP Name &TPNAME, job submitted by OSI-TP side

See comment on message 356.

358 The length (&LEN) of the user data received from the OSI-TP partner exceeds the
maximum value &MAXLEN:
TP-Name &TPNAME, job submitted by LU6.2 side

openUTM-LU62 messages Messages from the u62_tp program

U5461-J-Z135-6-76 299

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
5

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

1
0

The OSI-TP partner (i.e. the UTM application) has sent data with a net length &LEN
to openUTM-LU62. However, only &MAXLEN bytes - or 32763 bytes when
TRANSIT is used as the LU6.2 basic software - can be transmitted in one data
packet to the LU6.2 partner. openUTM-LU62 terminates the OSI-TP dialog and the
conversation abnormally as a result. The UTM application program must therefore
be changed.

359 The length (&LEN) of the user data received from the OSI-TP partner exceeds the
maximum value &MAXLEN:
TP Name &TPNAME, job submitted by OSI-TP side

See comment on message 358.

360 Incoming dialogue rejected, job submitted by OSI-TP side:
No local TPSU title indicated

openUTM-LU62 has received a TP_BEGIN_DIALOGUE indication without the
specification of a TPSU title, i.e. without the specification of the transaction code
from the OSI-TP partner. The OSI-TP dialog request is rejected by openUTM-LU62.
This message can only occur in an OSI-TP partner that is not a UTM application.

361 Incoming dialogue rejected, job submitted by OSI-TP side:
Cannot decode local TPSU title

An error has occurred while decoding the TPSU title contained in the
TP_BEGIN_DIALOGUE indication (i.e. of the transaction code); the OSI-TP partner
(i.e. the UTM application) has probably coded the TPSU title incorrectly. openUTM-
LU62 therefore rejects the OSI-TP dialog request. This message can only occur in
an OSI-TP partner that is not a UTM application.

362 Incoming dialogue rejected, job submitted by OSI-TP side:
Invalid type of local TPSU title

The type of TPSU title contained in the TP_BEGIN_DIALOGUE indication (i.e. of
the transaction code) is not a PRINTABLE_STRING nor a T61_STRING. The
OSI-TP dialog request is rejected because openUTM-LU62 only supports these two
types.

363 Incoming dialogue rejected, job submitted by OSI-TP side:
the length of the local TPSU title (&LEN) exceeds the maximum value &MAXLEN

The decoded TPSU title contained in the TP_BEGIN_DIALOGUE indication (i.e.
the CICS transaction code, for example) is &LEN characters long. However, only
&MAXLEN characters (64 characters when TRANSIT is used as the LU6.2 basic
software) are available when opening a conversation to the LU6.2 partner.
openUTM-LU62 therefore rejects the OSI-TP dialog request.

Messages from the u62_tp program openUTM-LU62 messages

300 U5461-J-Z135-6-76

364 Incoming dialogue rejected,
TP Name &TPNAME, job submitted by OSI-TP side:
Shared control requested

openUTM-LU62 has received a TP_BEGIN_DIALOGUE indication with the
functional unit shared control from the OSI-TP partner. The OSI-TP dialog is
aborted because this functionality is not supported by openUTM-LU62. This
message can only occur in an OSI-TP partner that is not a UTM application.

365 Incoming dialogue rejected,
TP Name &TPNAME, job submitted by OSI-TP side:
Cannot decode remote application process title

openUTM-LU62 has received a TP_BEGIN_DIALOGUE indication with an incor-
rectly coded APT (application process title) or AEQ (application entity qualifier) from
the OSI-TP partner. This message can only occur in an OSI-TP partner that is not
a UTM application.

366 Incoming dialogue rejected,
TP Name &TPNAME, job submitted by OSI-TP side:
Invalid type of the remote Application Entity Qualifier

See comment on message 365.

369 Incoming dialogue rejected,
TP Name &TPNAME, job submitted by OSI-TP side:
CCR syntax not negotiated for this partner application

openUTM-LU62 has received a TP_BEGIN_DIALOGUE indication with the
functional unit commit from the OSI-TP partner (i.e. from the UTM application)
although a UDTAC or UDTDISAC application context was configured and therefore
transaction management is not possible. openUTM-LU62 therefore rejects the
OSI-TP dialog request.

If the functional unit commit is to be supported by openUTM-LU62, then a suitable
application context that has been coordinated with the OSI-TP partner must be
generated:

APPL-CONTEXT = UDTSEC (default) or
APPL-CONTEXT = UDTCCR

370 Incoming dialogue rejected,
TP Name &TPNAME, job submitted by OSI-TP side:
Explicit confirmation by DIALOGUE_RSP requested

openUTM-LU62 messages Messages from the u62_tp program

U5461-J-Z135-6-76 301

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
5

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

1
0

The OSI-TP partner has requested an explicit confirmation while opening an
OSI-TP dialog with a TP_BEGIN_DIALOGUE_RSP primitive. The OSI-TP dialog
request will be rejected by openUTM-LU62 because the LU6.2 protocol does not
have a direct equivalent for this. This message can only occur in an OSI-TP partner
that is not a UTM application.

371 Incoming dialogue rejected,
TP Name &TPNAME, job submitted by OSI-TP side:
Unchained transactions not supported

openUTM-LU62 has received a TP_BEGIN_DIALOGUE indication with the
functional unit commit_and_unchained from the OSI-TP partner. The LU6.2
protocol, however, does not provide an equivalent functionality, so openUTM-LU62
rejects the OSI-TP dialog request. This message can only occur in an OSI-TP
partner that is not a UTM application.

373 Incoming dialogue rejected,
TP Name &TPNAME, job submitted by OSI-TP side:
Restart of the nominated control instance not completed yet

The OSI-TP partner (i.e. the UTM application) has opened a OSI-TP dialog to
openUTM-LU62 with the functional unit commit at a time when the restart of the still
existing transactions has not been completed after the start of openUTM-LU62. In
this situation, the XAP-TP control entity is not yet able to support transaction
management in new OSI-TP dialogs with the functional unit commit. openUTM-
LU62 therefore rejects the OSI-TP dialog request. &TPNAME designates the
TP name on the LU6.2 side, e.g. the CICS transaction code.

374 Incoming dialogue rejected,
TP Name &TPNAME, job submitted by OSI-TP side:
Remote application process title is not consistent with the configuration

375 Incoming dialogue rejected,
TP Name &TPNAME, job submitted by OSI-TP side:
Remote application entity qualifier is not consistent with the configuration

openUTM-LU62 has received a TP_BEGIN_DIALOGUE indication with an APT
(application process title) or AEQ (application entity qualifier) from the OSI-TP
partner (i.e. from the UTM application) that does not match the openUTM-LU62
generation. The corresponding parameters in the openUTM-LU62 generation that
are to be modified are REM-APT and REM-AEQ.

376 Incoming dialogue rejected,
TP Name &TPNAME, job submitted by OSI-TP side:
Cannot decode application context name

Messages from the u62_tp program openUTM-LU62 messages

302 U5461-J-Z135-6-76

openUTM-LU62 has received a TP_BEGIN_DIALOGUE indication with an incor-
rectly encoded application context name from the OSI-TP partner which has led to
the rejection of the OSI-TP dialog request. This message can only occur in an
OSITP partner that is not a UTM application.

377 Warning: Application context name is not configured.
Incoming dialogue to TP &TPNAME is accepted all the same!

openUTM-LU62 has received a TP_BEGIN_DIALOGUE indication with an appli-
cation context name from the OSI-TP partner (i.e. from the UTM application) that
does not match the openUTM-LU62 generation. This error is not viewed as a partic-
ularly serious error so that the conversation to the LU6.2 partner is still opened.
However, the openUTM-LU62 generation parameter APPL-CONTEXT is to be
modified accordingly!

378 Incoming dialogue rejected,
TP Name &TPNAME, job submitted by OSI-TP side:
Presentation context identifier not found

The presentation context identifier is a value that uniquely describes the (abstract
syntax, transfer syntax) pair within the application context and that is required for
the coding and decoding of the user and security data. This value is determined
after a TP_BEGIN_DIALOGUE indication is received. If this is not possible, then a
fatal error has occurred that will lead to the OSI-TP dialog being aborted.

379 Incoming dialogue rejected,
TP Name &TPNAME, job submitted by OSI-TP side:
Initialization data not supported

openUTM-LU62 has received a TP_BEGIN_DIALOGUE indication with appended
initialization data from the OSI-TP partner. Such data is only allowed if the appli-
cation context is UDTSEC. In this case, the data is the security data (user ID and
password or the “Already verified“ indicator). For all other application contexts it is
not clear how the initialization data is to be coded in order to transmit the data as
PIP data in the ALLOCATE of the LU6.2 partner. For this reason, openUTM-LU62
rejects the OSI-TP dialog request here. This message can only occur in an OSI-TP
partner that is not a UTM application.

380 Incoming dialogue rejected,
TP Name &TPNAME, job submitted by OSI-TP side:
Decoding security data failed

openUTM-LU62 has received a TP_BEGIN_DIALOGUE indication with initiali-
zation data from the OSI-TP partner. This data is interpreted as security data and
decoded according to ASN.1 because the application context is UDTSEC. If the
decoding fails, then this is a fatal error that will lead to the rejection of the OSI-TP
dialog request. This message can only occur in an OSI-TP partner that is not a UTM
application.

openUTM-LU62 messages Messages from the u62_tp program

U5461-J-Z135-6-76 303

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
5

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

1
0

381 Incoming dialogue rejected,
TP Name &TPNAME, job submitted by OSI-TP side:
User-id or password too long:
Length of user-id = &ULEN, Length of password = &PLEN

openUTM-LU62 has received a TP_BEGIN_DIALOGUE indication with initiali-
zation data from the OSI-TP partner (i.e. from the UTM application) and has inter-
preted this data as security data (application context = UDTSEC). openUTM-LU62
has determined while decoding the data that the length of the specified user ID
&ULEN or of the specified password &PLEN exceeds the maximum value of 10 that
is defined for the LU6.2 interface. openUTM-LU62 rejects the OSI-TP dialog
request because the security data of the LU6.2 partner cannot be transmitted in its
entirety.

382 Incoming dialogue rejected,
TP Name &TPNAME, job submitted by OSI-TP side:
An empty user-id is not permitted

383 Incoming dialogue rejected,
TP Name &TPNAME, job submitted by OSI-TP side:
A user-id encoded as octet string is not permitted

384 Incoming dialogue rejected,
TP Name &TPNAME, job submitted by OSI-TP side:
An empty password is not permitted

385 Incoming dialogue rejected,
TP Name &TPNAME, job submitted by OSI-TP side:
A password encoded as octet string is not permitted

The four messages above show that the TP_BEGIN_DIALOGUE indication
received from the OSI-TP partner (i.e. from the UTM application) contains an invalid
user ID or an invalid password. Empty user ID’s and passwords are not, however,
supported by openUTM-LU62, just as user ID’s and passwords that are encoded as
octet strings are not supported because these cannot be converted to the LU6.2
protocol. Only user ID’s and passwords that are encoded as a
PRINTABLE_STRING or as a T61_STRING, are valid. If the “Already verified“ entry
is specified instead of a password, then they are valid in this case, too.

386 Incoming dialogue rejected,
TP Name &TPNAME, job submitted by OSI-TP side:
Error in the exchange of the log names between the local and the remote LU!

The OSI-TP partner (i.e. the UTM application) has opened an OSI-TP dialog to
openUTM-LU62 with the functional unit commit. However, before openUTM-LU62
can open a corresponding conversation with sync-level 2 to the LU6.2 partner and
in case the number of sessions has dropped to 0 in the meantime, the log name
must be exchanged again between the two LUs because the LU6.2 partner could

Messages from the u62_tp program openUTM-LU62 messages

304 U5461-J-Z135-6-76

have executed a cold start in the meantime. If an error occurs when the log names
are exchanged, then the OSI-TP dialog request of the OSI-TP partner (i.e. the UTM
application) is rejected. It does not matter in this case if the error that occurred was
only temporary in nature (e.g. loss of the resync-TP session) or if the log names are
actually inconsistent. An RS component (resync-TP) message that precedes this
message informs you of the exact cause.

390 OSI-TP dialogue aborted by partner (XAP-TP provider)
TP Name &TPNAME, job submitted by LU6.2 side

391 OSI-TP dialogue aborted by partner (XAP-TP provider)
TP Name &TPNAME, job submitted by OSI-TP side

392 OSI-TP dialogue aborted by partner (XAP-TP user)
TP Name &TPNAME, job submitted by LU6.2 side

393 OSI-TP dialogue aborted by partner (XAP-TP user)
TP Name &TPNAME, job submitted by OSI-TP side

The OSI-TP dialog between openUTM-LU62 and the OSI-TP partner (i.e. the UTM
application) has been terminated abnormally by the partner. If the cause is the
remote XAP-TP provider (i.e. openUTM itself), then a TP_P_ABORT indication will
have been received (messages 390 and 391). If the cause is the remote XAP-TP
user (and therefore the application program), then openUTM-LU62 has received a
TP_U_ABORT indication (messages 392 and 393). In any case, openUTM-LU62
closes the associated conversation to the LU6.2 partner using Deallocate(Abend)
or Deallocate(Resource-Failure) as a result.

394 Received log data:

This message is output in addition to message 392 or 393 if the TP_U_ABORT
indication contains log data. The data is logged in the hexadecimal format to the
prot.luname file and then thrown out afterwards because this data cannot be trans-
mitted to the LU6.2 partner.

399 Statistic:
Actively established unprotected conversations = &NA1
Actively established protected conversations = &NA2
Passively established unprotected conversations = &NP1
Passively established protected conversations = &NP2
--
Total number of all established conversations = &N3

This message is output every hour and when u62_tp is terminated. It informs the
user of how many transactions have executed.

openUTM-LU62 messages Messages from the u62_tp program

U5461-J-Z135-6-76 305

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
5

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

1
0

TM component messages

400 Initialization completed.

The u62_tp program has successfully completed the start phase. Transactions can
only be started after this message is output.

401 Warm start.
Resynchronization of &NUMBER transactions required.

There were still &NUMBER transactions in an undefined state when openUTM-
LU62 was terminated the last time. The open transactions must be resynchronized
before new transactions can be started. The open transactions are described in
more detail in the following message, message 402.

402 Information about open transaction:
TP Name &TPNAME, job submitted by &PARTNER side.
LUWID (LU6.2):

LU name = &LUNAME
instance = &INSTANCE
sequence = &SEQUENCE

AAID (OSI-TP):
size = &SIZE
aaid = &AAID

Log records: &RECORDS
LU6.2 resync role: &ROLE

This message writes the log records found in the synclog file at start of the
openUTM-LU62 entity.
&TPNAME designates the transaction code of the job-receiver that was called by
the job-submitter.
&PARTNER can contain the value LU6.2 or OSI-TP. The UTM transaction code
&TPNAME was called by the LU6.2 partner (e.g. by a CICS-program) for LU6.2. The
transaction code &TPNAME was called by a UTM application program by the LU6.2
partner for OSI-TP (therefore the CICS transaction code &TPNAME, for example).
The transaction can be identified uniquely by its LUWID and its AAID. The LU6.2
partner only knows the LUWID of the transaction, and it is output to the CICS log
file when an error occurs, for example. The UTM application only knows the AAID
of the transaction, and it is output to the SYSLOG of UTM when an error occurs.
&RECORDS records the status information of the transaction. The individual values
are described below.

Messages from the u62_tp program openUTM-LU62 messages

306 U5461-J-Z135-6-76

&ROLE describes the role of the openUTM-LU62 entity during a transaction restart
to the LU6.2 partner. The individual values are described below.

RECORDS Description

agent,committed The LU6.2 partner has started the transaction, openUTM-LU62 has
already committed the transaction, the LU6.2 partner may not be
informed as yet of this fact.

agent,in-doubt The LU6.2 partner has started the transaction, openUTM-LU62 cannot
set forward or roll back the transaction at the moment.

agent,HM The LU6.2 partner has started the transaction, the OSI-TP partner (i.e.
the UTM application) has announced a heuristic mix, i.e. the partici-
pating databases are not consistent. The LU6.2 partner still needs to be
informed.

agent,RIP The LU6.2 partner has started the transaction, the OSI-TP partner (i.e.
the UTM application) has announced a heuristic hazard, i.e. it is not sure
if the participating databases are consistent. The LU6.2 partner still
needs to be informed.

init,spm-pend The OSI-TP partner (i.e. the UTM application) has started the trans-
action. No information has been received yet from the LU6.2 partner
regarding whether it wants to roll the transaction forward or roll it back.

log-commit openUTM-LU62 has already committed the transaction, the OSI-TP
partner (i.e. the UTM application) may not be informed as yet of this fact.

log-ready openUTM-LU62 cannot roll forward or roll back the transaction at the
moment.

log-damage-mix The LU6.2 partner has announced a heuristic mix, i.e. the participating
databases are not consistent. The OSI-TP partner (i.e. the UTM appli-
cation) still needs to be informed.

log-damage-haz The LU6.2 partner has announced a “resync in progress“, i.e. it is not
sure if the participating databases are consistent. The OSI-TP partner
(i.e. the UTM application) still needs to be informed.

ROLE Description

ACTIVE openUTM-LU62 is responsible for the transaction restart for the LU6.2
partner.

PASSIVE The LU6.2 partner is responsible for the transaction restart, i.e. it must
send a “Compare States“.

NONE A transaction restart for the LU6.2 partner is not needed from openUTM-
LU62’s point of view.

openUTM-LU62 messages Messages from the u62_tp program

U5461-J-Z135-6-76 307

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
5

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

1
0

403 Connection to LU6.2 partner lost.
Resynchronization of transaction required.
TP Name &TPNAME, job submitted by &PARTNER side.
LUWID (LU6.2):

LU name = &LUNAME
instance = &INSTANCE
sequence = &SEQUENCE

AAID (OSI-TP):
size = &SIZE
aaid = &AAID

The connection to the LU6.2 partner was lost during the commit phase of a trans-
action. The transaction must be resynchronized after the connection is re-estab-
lished.
See message 402 for the meanings of &TPNAME, &PARTNER, LUWID and AAID.

404 Next attempt to resynchronization in &TIME seconds.

This message is output when an error occurs during the resynchronization of a
transaction, e.g. a connection is aborted and the resynchronization must be
repeated again later.

405 Resynchronization of transaction successful.
TP Name &TPNAME, job submitted by &PARTNER side.
LUWID (LU6.2):

LU name = &LUNAME
instance = &INSTANCE
 sequence = &SEQUENCE

AAID (OSI-TP):
size = &SIZE
aaid = &AAID

A transaction aborted due to a loss of the connection or some other error has been
successfully resynchronized.
See message 402 for the meanings of &TPNAME, &PARTNER, LUWID and AAID.

406 LU6.2 partner indicates heuristic mix.
TP Name &TPNAME, job submitted by &PARTNER side.
LUWID (LU6.2):

LU name = &LUNAME
instance = &INSTANCE
sequence = &SEQUENCE

AAID (OSI-TP):
size = &SIZE
aaid = &AAID

Messages from the u62_tp program openUTM-LU62 messages

308 U5461-J-Z135-6-76

The LU6.2 partner has terminated the transaction on its own, e.g. after a loss of the
connection, without waiting for the UTM application. The transaction is therefore
inconsistent. Changes to the database by UTM and LU6.2 that are to be coordi-
nated by the transaction have been executed incorrectly. E.g., the requested
database changes have been made on the LU6.2 side, but not on the UTM side.
See message 402 for the meanings of &TPNAME, &PARTNER, LUWID and AAID.
You usually need to change the participating database manually in this case to re-
coordinate the inconsistent database records.

407 LU6.2 partner indicates resync in progress.
TP Name &TPNAME, job submitted by &PARTNER side.
LUWID (LU6.2):

LU name = &LUNAME
instance = &INSTANCE
 sequence = &SEQUENCE

AAID (OSI-TP):
size = &SIZE
aaid = &AAID

The LU6.2 partner has terminated the transaction on its own, e.g. after a loss of the
connection, without waiting for the UTM application. It is unknown whether the
transaction is inconsistent or not.
See message 402 for the meanings of &TPNAME, &PARTNER, LUWID and AAID.

The administrators of the databases participating in the transaction are to check to
see if the databases are inconsistent.

408 OSI TP partner indicates heuristic mix.
TP Name &TPNAME, job submitted by &PARTNER side.
LUWID (LU6.2):

LU name = &LUNAME
instance = &INSTANCE
sequence = &SEQUENCE

AAID (OSI-TP):
size = &SIZE
aaid = &AAID

The OSI-TP partner (i.e. the UTM application or the database on the UTM side) has
terminated the transaction on its own, e.g. after a loss of the connection, without
waiting for the LU6.2 partner. The transaction is therefore inconsistent. Changes to
the database by UTM and LU6.2 that are to be coordinated by the transaction have
been executed incorrectly. For example, the requested database changes have
been made on the LU6.2 side, but not on the UTM side.
See message 402 for the meanings of &TPNAME, &PARTNER, LUWID and AAID.

You usually need to change the participating database manually in this case to
recoordinate the inconsistent database records.

openUTM-LU62 messages Messages from the u62_tp program

U5461-J-Z135-6-76 309

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
5

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

1
0

409 OSI TP partner indicates heuristic hazard.
TP Name &TPNAME, job submitted by &PARTNER side.
LUWID (LU6.2):

LU name = &LUNAME
instance = &INSTANCE
sequence = &SEQUENCE

AAID (OSI-TP):
size = &SIZE
aaid = &AAID

It cannot be determined for sure whether the open transaction was executed or
rolled back after a loss of the connection to the OSI-TP partner (i.e. to the UTM
application).
See message 402 for the meanings of &TPNAME, &PARTNER, LUWID and AAID.

The administrators of the databases participating in the transaction are to check to
see if the database is inconsistent.

410 Syncpoint request received from LU6.2 job-receiving service.
TP Name &TPNAME. Transaction is aborted.

A job-receiving program on the LU6.2 side has requested a syncpoint (e.g. EXEC
CICS SYNCPOINT) without having been requested to do so by the UTM application
program. This is prohibited in openUTM. The transaction is therefore aborted.
&TPNAME specifies the transaction code on the LU6.2 side.

The application program on the LU6.2 side, e.g. the CICS application program,
must be changed.

420 Error during resynchronization of a transaction.
LU6.2 partner does not accept the state &STATE.
TP Name &TPNAME, job submitted by &PARTNER side.
LUWID (LU6.2):

LU name = &LUNAME
instance = &INSTANCE
sequence = &SEQUENCE

AAID (OSI-TP):
size = &SIZE
aaid = &AAID

Possibly a cold start of openUTM-LU62 is needed.

A transaction has been interrupted in the commit phase due to a loss of the
connection on the LU6.2 side. An error has occurred during resynchronization with
the LU6.2 partner. The LU6.2 partner does not accept the transaction state
suggested by openUTM-LU62.
See message 402 for the meanings of &TPNAME, &PARTNER, LUWID and AAID.

Messages from the u62_tp program openUTM-LU62 messages

310 U5461-J-Z135-6-76

The transaction must be terminated manually in this case. On the openUTM-LU62
side, the only possibility to make a change manually is by terminating the affected
openUTM-LU62 entity and then executing a cold start. If the LU6.2 partner is CICS,
then the command “CEMT SET CONNECTION NOTPENDING“ must be entered in
CICS. Note that database inconsistencies may arise due to this manual inter-
vention. This possibility is to be examined by the administrators of the participating
databases.

421 Log name error during resynchronization of a transaction.
TP Name &TPNAME, job submitted by &PARTNER side.
LUWID (LU6.2):

LU name = &LUNAME
instance = &INSTANCE
sequence = &SEQUENCE

AAID (OSI-TP):
size = &SIZE
aaid = &AAID

Possibly a cold start of openUTM-LU62 is needed.

A transaction has been interrupted in the commit phase due to a loss of the
connection on the LU6.2 side. An error has occurred during resynchronization with
the LU6.2 partner. The LU6.2 partner does not accept the log name suggested by
openUTM-LU62. The cause is probably a cold start of openUTM-LU62 or of the
LU6.2 partner, or a “CEMT SET CONNECTION NOTPENDIG“ in CICS.
See message 402 for the meanings of &TPNAME, &PARTNER, LUWID and AAID.

If the cause is a cold start of the LU6.2 partner, then it should be checked whether
it is possible to return to the previous application run, i.e. is the cold start can be
reset. If this is not possible, then the openUTM-LU62 entity must be terminated and
cold started. If the cause is a cold start of openUTM-LU62, then the LU6.2 partner
must also execute a cold start. You do this in CICS using the “CEMT SET
CONNECTION NOTPENDING“ command, for example.
Note that database inconsistencies may arise due to this manual intervention. This
possibility is to be examined by the administrators of the participating databases.

422 Protocol error of LU6.2 partner:
&EVENT received in state &STATE1/&STATE2.
TP Name &TPNAME, job submitted by &PARTNER side.
LUWID (LU6.2):

LU name = &LUNAME
instance = &INSTANCE
sequence = &SEQUENCE

AAID (OSI-TP):
size = &SIZE
aaid = &AAID

Transaction is aborted.

openUTM-LU62 messages Messages from the u62_tp program

U5461-J-Z135-6-76 311

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
5

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

1
0

The LU6.2 partner has violated the LU6.2 protocol.
See message 402 for the meanings of &TPNAME, &PARTNER, LUWID and AAID.

If the protocol error is reproducible, then repeat the entire procedure with the trace
activated and inform the systems support staff.

423 Protocol error of LU6.2 partner:
Compare States &LUWSTATE &RRI received in state &STATE1/&STATE2.
TP Name &TPNAME, job submitted by &PARTNER side.
LUWID (LU6.2):

LU name = &LUNAME
instance = &INSTANCE
sequence = &SEQUENCE

AAID (OSI-TP):
size = &SIZE
aaid = &AAID

The LU6.2 partner has violated the LU6.2 protocol during the resynchronization of
a transaction.
See message 402 for the meanings of &TPNAME, &PARTNER, LUWID and AAID.

If the protocol error is reproducible, then repeat the entire procedure with the trace
activated and inform the systems support staff. The openUTM-LU62 entity and the
LU6.2 partner may need to be cold started to clear up the situation. See message
421 for more information.

424 LU6.2 partner indicates a protocol error.
State: &STAT1/&STATE2,
TP Name &TPNAME, job submitted by &PARTNER side.
LUWID (LU6.2):

LU name = &LUNAME
instance = &INSTANCE
sequence = &SEQUENCE

AAID (OSI-TP):
size = &SIZE
aaid = &AAID

The LU6.2 partner is of the opinion that openUTM-LU62 has violated the LU6.2
protocol. If the protocol violation is announced during normal operations, then the
transaction is rolled back.
See message 402 for the meanings of &TPNAME, &PARTNER, LUWID and AAID.

If the protocol error is reproducible, then repeat the entire procedure with the trace
activated and inform the systems support staff. It is possible that the database is
now inconsistent. The openUTM-LU62 entity and the LU6.2 partner may need to be
cold started to clear up the situation. See message 421 for more information.

Messages from the u62_tp program openUTM-LU62 messages

312 U5461-J-Z135-6-76

425 Invalid log record (error type &ERROR).
Transaction will be removed.
LUWID (LU6.2):

LU name = &LUNAME
instance = &INSTANCE
sequence = &SEQUENCE

AAID (OSI-TP):
size = &SIZE
aaid = &AAID

A faulty log record was read during a warm start of openUTM-LU62. The transaction
recorded in this log record can therefore not be resynchronized.
See message 402 for the meanings of LUWID and AAID.

If there are still some diagnostics documents left over from the previous openUTM-
LU62 run, then save these and give them to the systems support staff. It is possible
that the database is now inconsistent. The openUTM-LU62 entity and the LU6.2
partner may need to be cold started to clear up the situation. See message 421 for
more information.

426 Problem at the XAP-TP interface.
&EVENT received.

An error has occurred on the XAP-TP interface that is used for the communication
between openUTM-LU62 and the UTM application.

Inform the systems support staff.

427 Error &ERRNR when issuing &CALL.

An error has occurred in a UNIX system call. This can lead to the abnormal termi-
nation of openUTM-LU62.

openUTM-LU62 messages Messages from the u62_tp program

U5461-J-Z135-6-76 313

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
5

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

1
0

RS component messages

510 The LU (alias name = &ALIASNAME, net name = &NETNAME)
has returned an abnormal reply to the Exchange Logname command. This LU has
detected a warm/cold mismatch or a logname mismatch.

The remote LU, identified by the alias name &ALIASNAME in the LU6.2 basic
software (e.g. TRANSIT) or by the network name &NETNAME in the SNA network,
has detected a fatal error while exchanging the log name. One possible cause is a
cold start of openUTM-LU62 although the LU6.2 partner still needs to resyn-
chronize transactions.

If some transactions still need to be resynchronized and the openUTM-LU62
synclog file has not been deleted yet, then you should attempt a warm start because
otherwise you run the risk of introducing database inconsistencies. If this is not
possible, then you must either cold start the partner LU or abnormally terminate any
existing transactions (“logical units of work“) in the LU6.2 partner. No OSI-TP
dialogs with the functional unit commit and no conversations with sync-level 2 are
supported by openUTM-LU62 as long as the error has not been corrected.

511 A cold start has been attempted by LU
(alias name = &ALIASNAME, net name = &NETNAME),
but the local LU has logical units of work that are awaiting resynchronization from
the previous activation.

The LU6.2 partner has executed a cold start although there are transactions (logical
units of work) to openUTM-LU62 that still need to be resynchronized. If possible,
the cold start of the LU6.2 partner is to be reset because otherwise you run the risk
of introducing database inconsistencies. If this is not possible, then the situation can
only be corrected by terminating the openUTM-LU62 entity and then executing a
cold start.

512 The LU (alias name = &ALIASNAME, net name = &NETNAME)
does not have the same memory as does the local LU of the previous activation
between them.

The LU6.2 partner has executed a warm start in which the values of the data it has
stored (network name of its own LU, its own log name, the log name from openUTM-
LU62) do not match the values that openUTM-LU62 has stored for this data.

This error situation is so serious that openUTM-LU62 cannot support any OSI-TP
dialogs with the functional unit commit or any conversations with sync-level 2 until
all sessions with the LU6.2 partner have been closed and the log names are
successfully exchanged.

Messages from the u62_tp program openUTM-LU62 messages

314 U5461-J-Z135-6-76

513 A format error has been detected in a sync point message received from LU
(alias name = &ALIASNAME, net name = &NETNAME).

One of the syncpoint messages “Exchange log name“ or “Compare states“ that was
received by the partner LU (alias name in the LU6.2 basic software generation and
openUTM generation = &ALIASNAME, network name in the SNA network =
&NETNAME) contained a format error. In this case, openUTM-LU62 rejects all
incoming OSI-TP dialogs with the functional unit commit that wait for the result of
the log names, but the error is not viewed as a permanent error. This means that in
any case the exchange of the log names is to be initiated before the next conver-
sation is opened with sync-level 2, regardless of whether or not the number of
sessions to the LU6.2 partner has dropped down to 0 in the meantime.

If the format error keeps on occurring, then transaction-oriented communication
with the LU6.2 partner is not possible.

515 The partner LU (alias name = &ALIASNAME, net name = &NETNAME)
detected a protocol violation in a sync point message sent by the local LU.

The partner LU (alias name in the LU6.2 basic software generation and openUTM
generation = &ALIASNAME, network name in the SNA network = &NETNAME) has
detected a format error in a syncpoint message from openUTM-LU62. openUTM-
LU62 reacts in the same manner as described in message 513:

Reject the OSI-TP dialogs using the functional unit commit that are still waiting at
the next opportunity, but repeat the exchange of the log names.

If the format error keeps on occurring, then transaction-oriented communication
with the LU6.2 partner is not possible.

516 A log name exchange with LU
(alias name = &ALIASNAME, net name = &NETNAME)
has failed. This LU issued a cold Exchange Logname. The failure may be caused
by a warm/cold mismatch detected by the partner LU.

The partner LU (alias name in the LU6.2 basic software generation and openUTM-
generation = &ALIASNAME, network name in the SNA network = &NETNAME) has
detected a fatal error while exchanging the log names, probably a warm/cold error.
Conversations with sync-level 2 cannot be opened any more after this point in time.
Generally, the only recourse is to administratively terminate all existing transactions
(logical units of work) in the LU6.2 partner or to execute a cold start of the partner
directly. Note, however, that database inconsistencies may arise due to this.

openUTM-LU62 messages Messages from the u62_tp program

U5461-J-Z135-6-76 315

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
5

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

1
0

520 Active allocation of a conversation to the resync TP X’06F2’ failed:
allocation error (code = &ERRTXT)

Conversations to the resync-TP of the LU6.2 partner cannot be actively opened at
the moment so that the log names cannot be exchanged and it is not possible to
compare transaction states. The error code &ERRTXT then contains the return code
of the corresponding LU6.2 call in plain text. openUTM-LU62 rejects all OSI-TP
dialogs using the functional unit commit that are still waiting, but repeats the
exchange of the log names at the next opportunity.

521 Active allocation of a conversation to the resync TP X’06F2’ failed:
Inconsistency in the configurations of openUTM-LU62 and the LU6.2 base software
(LOC_LU_ALIAS, REM_LU_ALIAS)

No conversations are currently possible between openUTM-LU62 and the LU6.2
partner due to the inconsistencies in the LU6.2 basic software (e.g. TRANSIT) and
openUTM-LU62 configurations. As described for message 321, the error situation
can only be corrected by stopping, regenerating and then restarting the LU6.2 basic
software and/or openUTM-LU62.

523 Active allocation of a conversation to the resync TP X’06F2’ failed:
The sync level AP_CONFIRM_SYNC_LEVEL is not supported by the LU6.2 base
software!

openUTM-LU62 has attempted to open a conversation to the resync-TP of the
LU6.2 partner to exchange log names or to compare transaction states. This
conversation always uses the CONFIRM sync-level (1). However, the LU6.2 basic
software only allows conversations between the local and remote LU with sync-level
NONE (0). The PAIR_EXT configuration parameter must be changed for this reason
in TRANSIT.

The sync-level in the PAIR_EXT parameter should be set to the same value as in
SYNCLEVEL - but naturally only if the LU6.2 partner also supports this level -
because the resync-TP can only be initiated if the OSI-TP partner (i.e. the UTM
application) desired transaction management.

524 Active allocation of a conversation to the resync TP X’06F2’ failed:
The LU6.2 base software is not running!

Communication via LU6.2 is currently not possible because the LU6.2 basic
software (for TRANSIT the TRANSIT base system or the LU62Mgr) has not been
started. All OSI-TP dialogs to the OSI-TP partner (to the UTM application) are
therefore rejected at the moment.

Messages from the u62_tp program openUTM-LU62 messages

316 U5461-J-Z135-6-76

525 Active allocation of a conversation to the resync TP X’06F2’ failed due to the
following configuration error:
The local LU alias name &ALIASNAME is not configured!

This message is output if the first call to start the local resync-TP fails because the
local LU alias name specified in &ALIASNAME is not configured in the LU6.2 basic
software. The measures to take in this case are described in message 521.

526 Active allocation of a conversation to the resync TP X’06F2’ failed:
System error (errno = &ERRNO) occurred:
&ERRTXT

One of the system calls in the LU6.2 basic software (e.g. TRANSIT) failed while
attempting to open a conversation to the LU6.2 partner. As described for messages
311 and 314, TRANSIT does not provide any error text and the following text always
appears as the &ERRTXT:

No interpretation of errno with TRANSIT as LU6.2 software

This temporary error only leads to the rejection of all OSI-TP dialogs using the
functional unit commit to the OSI-TP partner (i.e. to the UTM application) that wait
for the end of the exchange of the log names. A failed “Compare States“ is repeated
after a certain wait time for a specific LUW.

530 Incoming basic conversation to TP &TPNAME rejected:
The only TP that supports basic conversations is the resync TP X’06F2’.

The LU6.2 partner has opened a basic conversation to the TP &TPNAME of
openUTM-LU62. openUTM-LU62 rejects the conversation with the
TP_NOT_AVAIL_NO_RETRY code because basic conversations are reserved just
for special transaction programs, of which openUTM-LU62 only supports the
resync-TP X’06F2’.

531 Incoming conversation to the resync TP X'06F2' rejected:
The indicated sync level &SYNCLEVEL does not equal
AP_CONFIRM_SYNC_LEVEL!

The LU6.2 partner has violated the protocol by starting the resync-TP with a sync-
level not equal to CONFIRM (1). This message therefore points out a blatant
violation committed by the LU6.2 partner.

openUTM-LU62 messages Messages from the u62_tp program

U5461-J-Z135-6-76 317

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
5

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

1
0

532 Incoming conversation to the resync TP X'06F2' rejected:
The CCR syntax is not configured!

Conversations with sync-level 2 to the LU6.2 partner are not allowed any more
because a UDTAC or UDTDISAC application context was configured, and trans-
action management is therefore not possible on the OSI-TP side. It is therefore not
necessary to exchange the log names via the resync-TP. If you want to use conver-
sations with sync-level 2, then you must use a UDTSEC or UDTCCR application
context. If you do not want to use such conversations, then you can ignore this
message.

533 Incoming conversation to the resync TP X'06F2' rejected:
Initialization data not supported

This message points out a protocol violation of the LU6.2 partner that was sent in
the PIP data while opening the conversation to the resync-TP.

534 Incoming conversation to the resync TP X'06F2' rejected:
The alias name &ALSNAME of the partner LU is not identical with the configured
name &CONFNAME.

The LU6.2 partner wants to open a conversation to the local resync-TP. The
LU name of the LU6.2 partner, however, does not match the name generated in
openUTM-LU62 using REM-LU-ALIAS. There is therefore an error in the overall
configuration. An LU residing on the local computer that is to be used by openUTM-
LU62 as a substitute LU for an UTM application can only communicate with a
certain partner LU.

540 Conversation to the resync TP X'06F2' crashed down:
The LU6.2 base software has been stopped!

541 Conversation to the resync TP X'06F2' crashed down:
Conversation Failure!

This error message is output if the conversation to the resync-TP has been aborted
due to a fatal error in the underlying session, possibly due to the breakdown of the
link connection to the partner PU or because the administration has terminated all
existing sessions to the partner LU (u62_adm -as). All OSI-TP dialogs using the
functional unit commit that wait for the end of the exchange of the log names are
rejected because this error is only temporary in nature. However, the exchanging of
the log names is initiated again as soon as the next OSI-TP dialog using the
functional unit commit arrives. You do not need to restart openUTM-LU62 after the
problem with the connection has been corrected.

Messages from the u62_tp program openUTM-LU62 messages

318 U5461-J-Z135-6-76

Other messages from the BD component on Windows systems

900 Listener socket cannot be opened, errno &ERRNO (&ERRTEXT)

On startup, each openUTM-LU62 entity creates a listener socket for accepting con-
nection requests from the administration programs. If the socket() system function
fails, this message is output and the entity shuts down.

901 Listener socket cannot be bound to port, errno &ERRNO (&ERRTEXT)

A free port >= 5000 is not available for openUTM-LU62. After this message is out-
put, the entity shuts down.

902 Port file &PORTFILE cannot be created,
errno &ERRNO (&ERRTEXT)

903 Write to port file &PORTFILE failed,
errno &ERRNO (&ERRTEXT)

904 Write to port file &PORTFILE failed,
written: &NUM1 bytes, expected: &NUM2 bytes

An error occurred in the open() or write() system function while creating or writing
to the &PORTFILE file, which should contain the port of the entity’s listener socket
in binary form. The entity then shuts down.

905 Accepting incoming TCP/IP connection failed, errno &ERRNO (&ERRTEXT)

The accept() system function for accepting an incoming connection request from an
administration program failed with the error code ERRNO. This message is output
for information purposes only, and does not cause the entity to shut down.

openUTM-LU62 messages Messages from the XAP-TP provider

U5461-J-Z135-6-76 319

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
5

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

1
0

10.2 Messages from the XAP-TP provider

The messages from the XAP-TP provider all start with the letter “P”. The values for the
inserts are either described following the message or (if the insert occurs a number of
times) in the section “General inserts for the XAP-TP messages” on page 337.

Without using TNSX, the local Access Points and partner addresses are displayed in the
messages as follows:
T'LOCTSEL'(26544)
T'REMTSEL'(host:5632)
The according inserts are marked with an asterisk (*).

P001 Error on OSS call (&XPFUNC):
&XPRET, &XPERR, &XP1INFO, &XP2INFOThis message is output if a call to an
OSS function (&XPFUNC) returns an error. If the error has been reported by the
transport system, message P012 is also output.

The inserts have the following meaning:

&XPFUNC Name of the OSS function

&XPRET See table on page 337

&XPERR See table on page 337

&XP1INFO Supplementary OSS information

&XP2INFO Supplementary OSS information

P002 Error on association establishment (&XPFUNC)
&ACPNT, &OSLPAP, &XPRET, &XPERR, &XP1INFO, &XP2INFO

This message is issued if the call to an OSS function (&XPFUNC) required to
establish an association returns an error. If the error has been reported by the
transport system, message P012 is also output. If the error has not been reported
by the transport system, the application is terminated with “Termapplication”.

The inserts have the following meaning:

&XPFUNC Name of the OSS function

&ACPNT Name of the local ACCESS-POINT (*)

&OSLPAP Name of the partner in the local application (*)

&XPRET See table on page 337

&XPERR See table on page 337

&XP1INFO Supplementary OSS information

&XP2INFO Supplementary OSS information

Messages from the XAP-TP provider openUTM-LU62 messages

320 U5461-J-Z135-6-76

P003 Association rejected (a_assin()):
&ACPNT, reason: &XPRJCT, length: &XPLTH

This message is issued if a request to establish an association was rejected from
outside.

The inserts have the following meaning:

&ACPNT Name of the local ACCESS-POINT (*)

&XPLTH Incorrect length

&XPRJCT See table on page 340

P004 Association rejected (a_assin()):
&ACPNT
&OSLPAP
Reason: &XPRJCT

This message is issued if a request to establish an association was rejected from
outside.

The inserts have the following meaning:

&ACPNT Name of the local ACCESS-POINT (*)

&OSLPAP Name of the partner in the local application (*)

&XPRJCT See table on page 340

P005 Association rejected (a_assin()):
&ACPNT, reason: unknown partner,
partner address (*)

This message is issued if a request to establish an association was rejected from
outside because the remote partner is not known to the local application.

The inserts have the following meanings:

&ACPNT Name of the local ACCESS-POINT (*)

P006 Association rejected (a_assin()):
&ACPNT, &OSLPAP, reason: wrong application context name
(&XP0OBID, &XP1OBID, &XP2OBID, &XP3OBID, &XP4OBID,
&XP5OBID, &XP6OBID, &XP7OBID, &XP8OBID, XP9OBID)

This message is issued if a request to establish an association was rejected from
outside. The application context name for the remote partner does not match the
application context name generated for this partner in the local application.

The inserts have the following meaning:

&ACPNT Name of the local ACCESS-POINT (*)

openUTM-LU62 messages Messages from the XAP-TP provider

U5461-J-Z135-6-76 321

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
5

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

1
0

&OSLPAP Name of the partner in the local application (*)

&XP0OBID - &XP9OBID
These are (up to) ten elements of the object identifier which form the
application context name of the remote partner.
-1 is output for elements which do not have a value assigned.

P007 Error on association establishment (a_assrs()):
&ACPNT, &OSLPAP, &XPRET, &XPERR, &XP1INFO, &XP2INFO This message is
output when a call to the OSS function a_assrs() to respond to a request to establish
an association from outside returns an error. If the error has been reported by the
transport system, message P012 is also output.

The inserts have the following meaning:

&ACPNT Name of the local ACCESS-POINT (*)

&OSLPAP Name of the partner in the local application (*)

&XPRET See table on page 337

&XPERR See table on page 337

&XP1INFO Supplementary OSS information

&XP2INFO Supplementary OSS information

P008 Association established: &ACPNT, &OSLPAP

This message is issued when an association has been established.

The inserts have the following meaning:

&ACPNT Name of the local ACCESS-POINT (*)

&OSLPAP Name of the partner in the local application (*)

P009 Association rejected (a_asscf()):
&ACPNT, &OSLPAP, reason: &XPRJCT, length: &XPLTH

This message is issued when active establishment of an association is rejected
because the confirmation from the partner cannot be accepted.

The inserts have the following meaning:

&ACPNT Name of the local ACCESS-POINT (*)

&OSLPAP Name of the partner in the local application (*)

&XPRJCT See table on page 340

&XPLTH Possible incorrect length

Messages from the XAP-TP provider openUTM-LU62 messages

322 U5461-J-Z135-6-76

P010 Association rejected (a_asscf()):
&ACPNT, &OSLPAP, reason: unknown partner
Partner address: &PARTADDR (*)

(&XASSREF)
This message is issued when active establishment of an association is rejected,
because the remote partner confirms establishment of an association with an
address (&XPADDR) which is unknown to the local application.

The inserts have the following meaning:

&ACPNT Name of the local ACCESS-POINT (*)

&OSLPAP Name of the partner in the local application (*)

&PARTADDR Real partner address

&XASSREF XAPTP-internal association reference

openUTM-LU62 messages Messages from the XAP-TP provider

U5461-J-Z135-6-76 323

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
5

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

1
0

P011 Association rejected (a_asscf()):
&ACPNT, &OSLPAP, reason: wrong application context name
(&XP0OBID, &XP1OBID, &XP2OBID, &XP3OBID, &XP4OBID,
&XP5OBID, &XP6OBID, &XP7OBID, &XP8OBID, XP9OBID)

This message is issued when active establishment of an association is rejected,
because the remote partner confirms establishment of an association with an appli-
cation context name other than the one configured for this partner in the local appli-
cation.

The inserts have the following meanings:

&ACPNT Name of the local ACCESS-POINT (*)

&OSLPAP Name of the partner in the local application (*)

&XP0OBID - &XP9OBID
These are (up to) ten elements of the object identifier which form the
application context name of the remote partner.
-1 is output for elements which do not have a value assigned.

P012 CMX diagnostic information:
&XPCTYPE, &XPCCLS, &XPCVAL

This message is issued if a preceding message is issued as a result of an error
reported by the transport system. The diagnostic code of the transport system is
print-edited. The following table describes a number of values for &XPCTYPE,
&XPCCLS and &XPCVAL. The CMX header file cmx.h contains a complete list.

XPCTYPE Meaning (CMX error type)

0 T_CMXTYPE: CMX error detected by the CMX library

2 T_DSTEMPERR: Temporary TNS error

3 T_DSCALL_ERR: TNS call error

4 T_DSPERM_ERR: Permanent TNS error

5 T_DSWARNING: TNS warning

>15 CMX error on the basis of error codes from the transport system

Messages from the XAP-TP provider openUTM-LU62 messages

324 U5461-J-Z135-6-76

XPCCLS Meaning (CMX error class, valid for &XPCTYPE < 15)

0 T_CMXCLASS: CMX class

2 T_DSNOT_SPEC: TNS class not specified

3 T_DSPAR_ERR: TNS parameter error

4 T_DSILL_VERS: Invalid TNS version

5 T_DSSYS_ERR: TNS system error

6 T_DSINT_ERR: Internal TNS error

7 T_DSMESSAGE: TNS note

XPCVAL Meaning (CMX error value)

0 T_NOERROR: No error

5 T_EIO: Temporary bottleneck or error in the transport system

14 T_EFAULT: IO_Area not allocated

100 T_UNSPECIFIED: Unspecified error, generally a system call error

101 T_WSEQUENCE: Invalid call sequence

103 T_WPARAMETER: Invalid parameter

104 T_WAPPLICATION:
The application is not known to TNS of the task is not authorized to sign on
to the application or the application has already been opened by this task.

105 T_WAPP_LIMIT:
The limit for the number of simultaneously active applications has already
been reached.

106 T_WCONN_LIMIT:
The limit for the number of simultaneously active connections has already
been reached.

107 T_WTREF:
Invalid transport reference or the transport connection has already been
established.

111 T_NOCCP:
The transport system does not support the requested application or
connection.

114 T_CCP_END:
The transport system has been terminated or the application was closed by
the administrator.

255 T_WLIBVERSION:
No connection to the CMX subsystem possible.

-100 T_INVREF:
Invalid evid. CMX cannot assign the call to a wait point.

openUTM-LU62 messages Messages from the XAP-TP provider

U5461-J-Z135-6-76 325

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
5

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

1
0

P013 Association rejected (a_asscf()):
&ACPNT, &OSLPAP, reason: &XPCRES, &XPSRC, &XPNDIA
CCR V2 = &XP1BOOL, Version Incompatibility = &XP2BOOL,
ContWin Assignment rejected = &XP3BOOL,
Bid mandatory rejected = &XP4BOOL, No reason = &XP5BOOL

This message is issued when active establishment of an association is rejected by
the remote partner.

The inserts have the following meaning:

&ACPNT Name of the local ACCESS-POINT (*)

&OSLPAP Name of the partner in the local application (*)

&XPCRES Specifies whether the rejection is temporary or permanent:
0= permanent reject
1= transient reject

&XPCSRC Specifies who has rejected establishment of the association:
0 = ACSE service user
1 = ACSE service provider
2 = Presentation service provider

&XPNDIA See table on page 344

&XP1BOOL - &XP5BOOL
These inserts can take the values TRUE or FALSE. Values of TRUE
indicate the reasons the partner reported for rejecting the request to
establish an association:

&XP1BOOL: CCR Version 2 is not available
&XP2BOOL: The TP protocol versions are not compatible
&XP3BOOL: The contention winner assignment has been rejected
&XP4BOOL: The specification “Bidding is mandatory” or “Bidding is

not mandatory” has been rejected
&XP5BOOL: No reason is specified

Messages from the XAP-TP provider openUTM-LU62 messages

326 U5461-J-Z135-6-76

P014 Error on association establishment (&XPFUNC)
&ACPNT, &OSLPAP, &XPRET, &XPERR, &XP1INFO, &XP2INFOThis message is
issued if the call to an OSS function (&XPFUNC) required to establish an associ-
ation returns an error. If the error has been reported by the transport system,
message P012 is also output. If the error has not been reported by the transport
system, the application is terminated with “Termapplication”.

The inserts have the following meanings:

&XPFUNC Name of the OSS function

&ACPNT Name of the local ACCESS-POINT (*)

&OSLPAP Name of the partner in the local application (*)

&XPRET See table on page 337

&XPRER See table on page 337

&XP1INFO Supplementary OSS information

&XP2INFO Supplementary OSS information, currently always set to zero.

P015 Association disconnected (&XPFUNC)
&ACPNT, &OSLPAP, &XPLNK, &XPSRC, &XPNDIA,
&XPINI, &XP1INFO, &XP2INFOThis message is issued when an association is
cleared.
The inserts have the following meaning:

&XPFUNC Name of the OSS function

&ACPNT Name of the local ACCESS-POINT (*)

&OSLPAP Name of the partner in the local application (*)

&XPLNK Represents the internal status of the association
0 = Association not linked
1 = Association linked to channel
2 = Association linked to instance

&XPCSRC Originator of clear-down
0 = ACSE service user
1 = ACSE service provider
2 = Presentation service provider

&XPNDIA See table on page 344

&XP1INFO Supplementary OSS information

&XP2INFO Supplementary OSS information

&XPINI See table below:

openUTM-LU62 messages Messages from the XAP-TP provider

U5461-J-Z135-6-76 327

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
5

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

1
0

XPINI Meaning

0 Association was cleared internally.

401 O_LOC_TRAN
The originator is the local transport system. &XP1INFO contains the CMX
return code. This is output in detail in the subsequent message P012.

402 O_REM_TRAN
The originator is the remote transport system. &XP1INFO contains the
reason for the CMX event t_disin. The values are defined in cmx.h. Some of
the possible values for &XP1INFO are contained in the list below:

0 (T_USER)
The communication partner cleared the association, possibly as a result of
a user error on the partner side.

1 (T_RTIMEOUT)
The connection was cleared locally by CMX because the connection had
been inactive for too long according to the t_timeout parameter.

2 (T_RADMIN)
The connection was cleared locally by CMX because the administrator
closed down CCP.

3 (R_CCPEND)
The connection was cleared locally by CMX because CCP failed.

256 (T_RUNKOWN)
Either the partner or CCP cleared the connection. No reason was given.

257 (T_RSAP_CONGEST)
The partner CCP cleared the connection because of a TSAP-specific
bottleneck.

258 (T_RSAP_NOTATT)
The partner CCP cleared the connection because the addressed TSAP was
not registered there.

259 (T_RUNSAP)
The partner CCP cleared the connection because the addressed TSAP was
not known there.

261 (T_RPERMLOST)
The connection was cleared by the network administrator or the partner
CCP administrator.

262 (T_RSYSERR)
Error in the network

385 (T_RCONGEST)
The partner CCP cleared the connection as a result of a resource
bottleneck.

Messages from the XAP-TP provider openUTM-LU62 messages

328 U5461-J-Z135-6-76

386 (T_RCONNFAIL)
No connection could be established. The partner CCP aborted the attempt
to do so.

387 (T_RDUPREF)
The partner CCP cleared the connection because a second connection
reference was assigned for an NSAP pair (system error).

388 (T_RMISREF)
The partner CCP cleared the connection because a connection reference
could not be assigned (system error).

389 (T_PROTERR)
The partner CCP cleared the connection because of a protocol error
(system error).

391 (T_PREFOFLOW)
The partner CCP cleared the connection because of a connection reference
overflow.

392 (T_RNOCONN)
The partner CCP rejected the request to establish a network connection.

394 (T_RINLNG)
The partner CCP cleared the connection because of an incorrect length
header or parameter (system error).

448 (T_RLCONGEST)
The local CCP cleared the connection because of a resource bottleneck.

449 (T_RLNOQOS)
The local CCP cleared the connection because the “quality of service” could
not be maintained.

451 (T_RILLPWD)
Invalid connection password.

452 (RNETACC)
Access to the network was refused.

464 (T_RLPROTERR)
The local CCP cleared the connection because of a transport protocol error
(system error).

465 (T_RLINTIDU)
The local CCP cleared the connection because it received an interface data
unit which was too long (system error).

466 (T_RLNORMFLOW)
The local CCP cleared the connection because of an infringement of the
flow control rules for normal data (system error).

XPINI Meaning

openUTM-LU62 messages Messages from the XAP-TP provider

U5461-J-Z135-6-76 329

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
5

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

1
0

467 (T_RLEXFLOW)
The local CCP cleared the connection because of an infringement of the
flow control rules for expedited data (system error).

468 (T_RLINSAPID)
The local CCP cleared the connection because it received an invalid TSAP
identification (system error).

469 (T_RLINCEPID)
The local CCP cleared the connection because it received an invalid TCEP
identification (system error).

470 (T_RLINPAR)
The local CCP cleared the connection because of an invalid parameter
value (e.g. user data too long or expedited data not permitted).

480 (T_RLNOPERM)
The administrator of the local CCP prevented establishment of a connection.

481 (T_RLPERMLOST)
The administrator of the local CCP cleared the connection.

482 (T_RLNOCONN)
The local CCP could not establish the connection because no network
connection is available.

483 (T_RLCONNLOST)
The local CCP cleared the connection because the network connection was
lost. Most common cause: generation error on the CCP and PDN side, e.g.
incorrect link addresses. Other possible causes: partner is not available,
modem is faulty or has been set incorrectly, data transfer connection not
plugged in, data transfer card faulty.

484 (T_RLNORESP)
The local CCP cannot establish the connection, because the partner did not
respond to the CONRQ.

485 (T_RLIDLETRAF)
The local CCP cleared the connection because the connection was lost (Idle
Traffic Timeout).

486 (T_RLRESYNC)
The local CCP cleared the connection because it was not possible to resyn-
chronize (more than ten attempts were made).

487 (T_RLEXLOST)
The local CCP cleared the connection because the expedited data channel
is faulty (more than three attempts were made).

XPINI Meaning

Messages from the XAP-TP provider openUTM-LU62 messages

330 U5461-J-Z135-6-76

403 O_LOC_SESS
The originator is the local session provider.
&XP1INFO can take the following values:

4 (S_PROTERROR)
Protocol error: Incorrect establishment of the session PDU or incorrect
SPDU parameter

16 (S_PICSREST)
Violation of implementation-specific restrictions.

404 O_REM_SESS
The originator is the remote session provider.
&XP1INFO can take the following values:

1 (S_TCDISCON)
transport disconnect

4 (S_PROTERROR)
protocol error

8 (S_UNDEFINED)
undefined

16 (S_PICSREST)
violation against restriction stated in PICS

405 O_LOC_PRES
The originator is the local presentation provider.
&XP1INFO can take the following values:

0 (P_ARRNO)
reason not specified
A decoding buffer requested internally cannot be provided due to a lack of
memory.
Overflow of the internal data buffer when reassembling fragmented
messages
An unknown session event was reported.
System bottleneck or system error.

1 (P_ARNRPDU)
unrecognized PPDU
No session user data is available or the presentation part of the session user
data cannot be decoded (system error).

4 (P_ARNRPAR)
unrecognized PPDU parameter
Error on decoding the ACSE, presentation or user syntax.

5 (P_ARNEPAR)
unexpected PPDU parameter
PPDU parameter not in normal mode.

XPINI Meaning

openUTM-LU62 messages Messages from the XAP-TP provider

U5461-J-Z135-6-76 331

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
5

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

1
0

6 (P_ARNIPAR)
invalid PPDU parameter
Invalid context identifier on decoding.
Invalid PPDU parameter, e.g. incorrect length.
This “abort” can be triggered by the UTM user by specifying invalid presen-
tation or session selectors.

406 O_REM_PRES
The originator is the remote presentation provider.
&XP1INFO can take the following values:

-1 (O_NOVALUE)
Optional parameter is not present

0 (P_ARNNO)
Reason not specified

1 (P_ARNRPDU)
Unrecognized PPDU

2 (P_ARNEPDU)
Unexpected PPDU

3 (P_ARNESSP)
Unexpected session service primitive

4 (P_ARNRPAR)
Unrecognized PPDU parameter

5 (P_ARNEPAR)
Unexpected PPDU parameter

6 (P_ARNIPAR)
Invalid PPDU parameter value

407 O_LOC_ACSE
The originator is the local ACSE provider
&XP1INFO always has the following value:

1 (A_ABSASP)
ACSE service provider initiated the abort
The instance is specified which initiated the abort (“abort source”) from the
point of view of ACSE.

408 O_REM_ACSE
The originator is the ACSE service provider.
&XP1INFO can take the following values:

0 (A_ABSASU)
ACSE service user initiated the abort

1 (A_ABSASP)
ACSE service provider initiated the abort

XPINI Meaning

Messages from the XAP-TP provider openUTM-LU62 messages

332 U5461-J-Z135-6-76

P016 Association disconnected (a_relin()):
&ACPNT, &OSLPAP, &XPLNK, &XPNDIA

This message is issued if an association is cleared because a “release indication”
was received.

The inserts have the following meaning:

&ACPNT Name of the local ACCESS-POINT (*)

&OSLPAP Name of the partner in the local application (*)

&XPLNK Represents the internal status of the association
0 = Association not linked
1 = Association linked to channel
2 = Association linked to instance

&XPNDIA See table on page 344

P017 OSS decoding error: &XPPDU, &XP1DIA, &XP2DIA, &XP3DIA

This message is issued if OSS detects an error on decoding a TP PDU, CCR PDU
or user data PDU.

The inserts have the following meaning:

XPPDU Meaning

0 PDU_UNKNOWN

1 TP_BEGIN_DIALOGUE_RI

2 TP_BEGIN_DIALOGUE_RC

3 TP_BID_RI

4 TP_BID_RC

5 TP_EBD_DIALOGUE_RI

6 TP_END_DIALOGUE_RC

7 TP_U_ERROR_RI

8 TP_U_ERROR_RC

9 TP_ABORT_RI

10 TP_GRANT_CONTROL_RI

11 TP_REQUEST_CONTROL_RI

12 TP_HANDSHAKE_RI

13 TP_HANDSHAKE_RC

14 TP_HSK_AND_GRT_CTRL_RI

15 TP_HSK_AND_GRT_CTRL_RC

openUTM-LU62 messages Messages from the XAP-TP provider

U5461-J-Z135-6-76 333

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
5

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

1
0

16 TP_DEFER_RI

17 TP_PREPARE_RI

18 TP_HEURISTIC_REPORT_RI

19 TP_TOKEN_GIVE_RI

20 TP_TOKEN_PLEASE_RI

21 TP_RECOVER_RI

22 TP_INITIALIZE_RI

23 TP_INITIALIZE_RC

24 CCR_INITIALIZE_RI

25 CCR_INITIALIZE_RC

26 CCR_BEGIN_RI

27 CCR_BEGIN_RC

28 CCR_PREPARE_RI

29 CCR_READY_RI

30 CCR_COMMIT_RI

31 CCR_COMMIT_RC

32 CCR_ROLLBACK_RI

33 CCR_ROLLBACK_RC

34 CCR_RECOVER_RI

35 CCR_RECOVER_RC

50 PDU_ANY

51 PDU_UASE_RI

XPPDU Meaning

Messages from the XAP-TP provider openUTM-LU62 messages

334 U5461-J-Z135-6-76

&XP3DIA Corresponding index in the syntax table

P018 FSM protocol error: &ACPNT, &OSLPAP, &XPPTYP, &XPFSMN

This message is issued when the finite state machine reports an error.

The inserts have the following meanings:

&ACPNT Name of the local ACCESS-POINT (*)

&OSLPAP Name of the partner in the local application (*)

&XPPTYP Type of the service protocol element

&XPFSMN Name of the finite state machine

P019 APDU contains invalid value:
&ACPNT, &OSLPAP, &XPAPDU, &XP3INFO

This message is issued if an invalid APDU is received.

The inserts have the following meanings:

&ACPNT Name of the local ACCESS-POINT (*)

&OSLPAP Name of the partner in the local application (*)

&XPAPDU Type of the APDU

&XP3INFO Supplementary information on the error

XP1DIA
XP2DIA

Meaning

1 not supported parameter was received and skipped

2 received data truncated

4 required transfer syntax name missing in user data or not specified in AVX
list, error codes in &XP2DIA

6 no transfer syntax name in user data though presentation negotiation was
not completed

7 transfer syntax name encoded in user data not found in AVX list

10 invalid value in data structure

11 invalid object identifier in data structure

12 invalid length or count in data structure

13 invalid index in data structure (EXTERNAL, CHOICE)

14 invalid value of ax_typtag in corresponding syntax table

openUTM-LU62 messages Messages from the XAP-TP provider

U5461-J-Z135-6-76 335

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
5

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

1
0

P020 OTRACE implicitly switched off. Reason: &XPTRFAIL

This message is issued when an attempt to write a trace record fails. The OSS trace
is deactivated implicitly as a result of the error. After the error has been corrected,
the administrator can reactivate the OSS trace.

The inserts have the following meaning:

P021 The unexpected event &XPEVT occurred for associations. The event is ignored:
&ACPNT, &OSLPAP, &XPOSAS, &XPASST

This message is output when an event occurs that does not fit with the current sta-
tus of the association. XAP-TP ignores this event.

The message inserts are as follows:

&XPEVT Type of the event that has occurred

&ACPNT Name of the local ACCESS-POINT (*)

&OSLPAP Name of the partner in the local application (*)

&XPOSAS Index of the relevant association

&XPASST Status of the relevant association

P100 Instance allocation timeout:
&ACPNT,
&OSLPAP,
&XPOSAS

This message is output when the attempt to allocate an XAP-TP instance to a con-
nection fails within a specified period.

&ACPNT Name of the local ACCESS-POINT (*)

&OSLPAP Name of the partner in the local application (*)

&XPOSAS Index of the relevant association

XPTRFAIL Meaning

1 The OSS function o_wutr() issued the return code O_ERROR.
The preceding P001 message provides further information on the error.

2 The OSS function o_wutr() issued the return code O_INVEREF.

3 The OSS function o_wutr() issued an unknown return code.

Messages from the XAP-TP provider openUTM-LU62 messages

336 U5461-J-Z135-6-76

P101 CMX Error:
&ACPNT,
&OSLPAP

This message is output when a CMX error occurs. Message P012 is output as well.

&ACPNT Name of the local ACCESS-POINT (*)

&OSLPAP Name of the partner in the local application (*)

One possible cause may be that the entries for PSEL and SSEL are missing from
the TNSX generation.

openUTM-LU62 messages XPERR insert

U5461-J-Z135-6-76 337

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
5

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

1
0

10.2.1 General inserts for the XAP-TP messages

XPRET Meaning

2 Not first process of application

-1 Function call not successful due to permanent error.

-2 Function call not successful due to transient error. Retry the call later

-3 Function call not successful, data flow stopped
Continue after event GO

-4 Session call:
Expedited function call stopped due to expedited data flow control shortage
Continue after event S_XGO/S_GO

Presentation call:
Function call not successful, apref invalid

Local function call:
Invalid connection reference

ACSE call:
Function call not successful, apref resp. aref invalid

-5 Invalid waiting point reference

-6 Invalid application reference

-7 Waiting period to obtain a lock on a shared association expired

XPERR Meaning

1 No memory available (temporary)

100 Call sequence error

101 Application not attached

102 Sending of data not allowed; wait for GO event

103 Internal error

104 Shared association is not locked

200 Missing ACSE/presentation reference

201 Invalid ACSE/presentation reference

202 Presentation call: missing AVX list (o_attach)
ACSE call: missing application reference

203 Presentation call: invalid AVX list
ACSE call: invalid application reference

XPERR insert openUTM-LU62 messages

338 U5461-J-Z135-6-76

204 Presentation call: invalid abstract syntax name in AVX
ACSE call: missing ACSE parameters

205 Presentation call: invalid decoding mode in AVX
ACSE call: missing presentation parameters

206 Presentation call: invalid user data length
ACSE call: missing session parameters

207 Presentation call: invalid context id in p_udl
ACSE call: missing application context name

208 Presentation call: invalid next parameter in p_udl
ACSE call: invalid application context name

209 Presentation call: invalid pdv parameter in p_udl
ACSE call: invalid calling AP Title

210 Presentation call: invalid chaining parameter
ACSE call: invalid calling AE Qualifier

211 Presentation call: missing token parameter
ACSE call: invalid called AP Title

212 Presentation call: invalid token parameter
ACSE call: invalid called AE Qualifier

213 Presentation call: missing rtype parameter
ACSE call: invalid responding AP Title

214 Presentation call: invalid rtype parameter
ACSE call: invalid responding AE Qualifier

215 Presentation call: missing type parameter
ACSE call: missing called p_address

216 Presentation call: invalid type parameter
ACSE call: invalid called p_address

217 Presentation call: invalid syncp parameter
ACSE call: missing calling p_address

218 Presentation call: missing syncp parameter
ACSE call: missing responding p_address

219 Presentation call: invalid ctxlst parameter
ACSE call: no mode parameter

220 Presentation call: invalid number of abstract syntaxes passed to OSS
ACSE call: invalid mode parameter

221 Presentation call: invalid transfer syntax name
ACSE call: missing result

222 Presentation call: invalid number of transfer syntaxes
ACSE call: invalid result

XPERR Meaning

openUTM-LU62 messages XPERR insert

U5461-J-Z135-6-76 339

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
5

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

1
0

223 Presentation call: invalid number of abstract syntaxes
ACSE call: missing result source

224 Presentation call: same abstract syntax occurred already in transparent or non-trans-
parent mode
ACSE call: invalid result source

225 Presentation call: invalid data separation parameter
ACSE call: invalid diagnostic

226 ACSE call: missing reason

227 ACSE call: invalid reason

228 ACSE call: missing provider reason

229 ACSE call: invalid provider reason

230 ACSE call: missing abort source

231 ACSE call: invalid p-requirements

232 ACSE call: invalid s-requirements

233 ACSE call: invalid syntax identifier

234 ACSE call: invalid p-context identifier

235 ACSE call: invalid p-context definition list

236 ACSE call: invalid p-context definition result list

237 ACSE call: invalid result in p-context definition result list

238 ACSE call: invalid default p-context result

239 ACSE call: invalid default p-context name

240 ACSE call: invalid user data length

241 ACSE call: invalid quality of service

242 ACSE call: invalid sync point serial number

243 ACSE call: invalid tokens

244 ACSE call: invalid SS-user reference

245 ACSE call: invalid SS-common reference

246 ACSE call: invalid SS-additional reference

250 Presentation call: ASN encoding error
ACSE call: ASN encoding error

251 Presentation call: ASN decoding error
ACSE call: ASN decoding error

252 Presentation call: ASN: invalid value in data struct
ACSE call: ASN: invalid value in data struct

XPERR Meaning

XPRJCT insert openUTM-LU62 messages

340 U5461-J-Z135-6-76

253 Presentation call: ASN: invalid object id in data struct
ACSE call: ASN: invalid object id in data struct

254 Presentation call: ASN: invalid length in data struct
ACSE call: ASN: invalid length in data struct

255 Presentation call: ASN: invalid index in data struct
ACSE call: ASN: invalid index in data struct

256 Presentation call: ASN: invalid tag in syntax table
ACSE call: ASN: invalid tag in syntax table

300 Presentation call: invalid protocol state
ACSE call: invalid protocol state
Local function call: error on system call

301 Presentation call: protocol error
ACSE call: protocol error
Local function call: error on transport system call

302 Local function call: error on local function call

305 Local function call: error on session call

306 Local function call: error on presentation call

307 Local function call: error on ACSE call

XPRJCT Meaning

0 NO_REJECT

1 APPLICATION_CONTEXT_NAME_TOO_LONG
The object identifier received from the partner, which forms the application context name,
contains more elements than supported by openUTM.

2 CALLING_APT_TOO_LONG
A length was specified for the application process title in the association indication which
is not supported by openUTM.

3 CALLING_AEQ_TOO_LONG
A length was specified for the application entity qualifier in the association indication
which is not supported by openUTM.

4 CALLED_APT_TOO_LONG
The application process title which was called is longer than that supported by
openUTM.

5 CALLED_AEQ_TOO_LONG
The application entity qualifier which was called is longer than that supported by
openUTM.

XPERR Meaning

openUTM-LU62 messages XPRJCT insert

U5461-J-Z135-6-76 341

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
5

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

1
0

6 CONTEXT_DEFINITION_LIST_TOO_LONG
More abstract syntaxes were passed for the association indication than are supported
by openUTM.

7 CONTEXT_RESULT_LIST_TOO_LONG
The list of supported abstract syntaxes passed when establishing an association
(association indication or confirmation) contains more elements than are supported by
openUTM.

9 ADDRESS_NO_PSAP_INFO
The address passed for association indication or confirmation does not contain any infor-
mation on PSAP.

10 ADDRESS_NO_INFO_VERS_0_PSAP
The address passed for association indication or confirmation contains an incorrect
version for the PSAP information.

11 ADDRESS_INVALID_P_SEL_LENGTH
The address passed for association indication or confirmation contains an invalid length
for the presentation selector.

12 ADDRESS_NO_SSAPINFO
The address passed for association indication or confirmation does not contain any infor-
mation on SSAP.

13 ADDRESS_NO_INFOVERS_0_SSAP
The address passed for association indication or confirmation contains an incorrect
version for the SSAP information.

14 ADDRESS_INVALID_S_SEL_LENGTH
The address passed for association indication or confirmation does not contain a valid
part for the session selector.

15 ADDRESS_NO_PARTNER_MODE
The address passed for association indication or confirmation does not contain a valid
part for the network and transport selector.

16 ADDRESS_TNSX_ERROR
The address passed for association indication or confirmation has been rejected by TNS.

17 UNKNOWN_PARTNER
The address passed for association indication or confirmation is not known in the local
application.

18 WRONG_APPLICATION_CONTEXT_NAME
The application context passed for association indication or confirmation does not corre-
spond to the application context name generated in the local application.

19 ABSTRACT_SYNTAX_MISSING
The association indication or confirmation supports less abstract syntaxes than are
generated in the local application.

XPRJCT Meaning

XPRJCT insert openUTM-LU62 messages

342 U5461-J-Z135-6-76

20 OSITP_SYNTAX_MISSING
The association indication or confirmation does not support the abstract syntax for
OSI-TP.

21 NO_TP_INITIALIZE
No TP-INITIALIZE-RI/RC PDU was passed with the association indication or confir-
mation.

22 OSITP_NO_VERSION_1
The partner does not support Version 1 of the OSI-TP protocol.

23 OSITP_RCH_WRONG_LENGTH
The recovery context handle passed with the TP-INITIALIZE-indication or TP-
INITIALIZE-confirmation is of a length not supported by openUTM.

24 NO_CCR_INITIALIZE
The CCR-INITIALIZE-RI PDU is missing.

25 CCR_NOT_VERSION_2
The partner does not support Version 2 of the CCR protocol.

26 SESSION_NO_FDX
Session functionality “full duplex” has not been set.

27 SESSION_NO_DATA_SEPARATION
Session functionality “data separation” has not been set although CCR is in the context.

28 SESSION_NO_TYPED_DATA
Session functionality “typed data” has not been set although CCR is in the context.

29 SESSION_NO_MINOR_SYNCHRONIZE
Session functionality “minor synchronize” has not been set although CCR is in the
context.

30 SESSION_NO_RESYNCHRONIZE
Session functionality “resynchronize” has not been set although CCR is in the context.

31 TOKEN_CONTENTION_WINNER_AND_NO_TOKEN
The local application is the contention winner, but does not possess the “token” (only if
CCR is in the context).

32 TOKEN_CONTENTION_LOSER_AND_TOKEN
The local application is the contention loser, but possesses the “token” (only if CCR is in
the context).

33 INITIAL_SYNC_POINT_SERIAL_NUMBER_NOT_SET
The initial syncpoint serial number is not set, although CCR is in the context.

34 NO_MORE_CONTENTION_LOSER_ASSOCIATIONS
The request to establish an association from outside is rejected because all the
contention loser associations have already been established in the local application.

35 NO_MORE_CONTENTION_WINNER_ASSOCIATIONS
Request to establish an association from outside is rejected because all the contention
winner associations have already been established in the local application.

XPRJCT Meaning

openUTM-LU62 messages XPRJCT insert

U5461-J-Z135-6-76 343

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
5

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

1
0

36 CCR_BUT_NO_PARTNER_AET
Partner did not specify an application entity title, although CCR is in the context.

37 CCR_BUT_NO_OWN_AET
No application entity title is specified in the local application, although CCR is in the
context.

38 RESPONDING_APT_TOO_LONG
The application process title specified in the association confirmation is longer than that
supported by openUTM.

39 RESPONDING_AEQ_TOO_LONG
The application entity qualifier specified in the association confirmation is longer than
that supported by openUTM.

40 ASS_ESTABLISHMENT_TIMEOUT
The establishment of an association started by the local application cannot be completed
in the specified time.

41 PARTNER_IS_IN_QUIET_STATE
The request for establishment of an association will be rejected because the partner in
the local application has been set to Quiet.

42 NO_SPACE_FOR_RCH
The PutElement call for storing the recovery context handle returned a bad value.

43 REMOTE_AET_2_BIG
The application entity title of the partner is longer than that supported by openUTM.

44 REMOTE_AET_CHANGED
When establishing parallel associations to a partner the partner did not provide the same
application entity title as for the first association established.

45 NO_SPACE_FOR_REMOTE_AET
The PutElement call for storing the application entity title of the partner returned a bad
value.

46 PARTNER_HAS_STATUS_OFF
The establishment of the association is rejected because the partner is locked in the
local UTM application (STATUS=OFF is set).

47 ADDRESS_PRES_ERROR
The address delivered with the Association Indication or Confirmation couldn’t be evalu-
ated.

XPRJCT Meaning

XPNDIA insert openUTM-LU62 messages

344 U5461-J-Z135-6-76

XPNDIA Meaning

0 NO_REASON_GIVEN

1 NO_COMMON_ACSE_VERSION
The partner rejected the request to establish an association because there is no
common ACSE version.

2 APPL_CONTXT_NAM_NOT_SUPPORTD
The partner rejected the request to establish an association because it does not support
the application context name.

3 CALLING_NSEL_NOT_RECON
The partner rejected the request to establish an association because the sender is not
generated correctly at the partner (e.g. incorrect N-SEL).

or (for heterogeneous connections only):
CALLING_AP_TITLE_NOT_RECON
The partner rejected the request to establish an association because it does not know
the calling application process title.

4 CALLING_AE_QUALI_NOT_RECON
The partner rejected the request to establish an association because it does not know
the calling application entity qualifier.

5 CALLING_AP_INVOC_ID_NOT_RECON
The partner rejected the request to establish an association because it does not know
the calling application process invocation identifier.

6 CALLING_AE_INVOC_ID_NOT_RECON
The partner rejected the request to establish an association because it does not know
the calling application entity invocation identifier.

7 CALLED_AP_TITLE_NOT_RECON
The partner rejected the request to establish an association because it does not know
the called application process title.

8 CALLED_AE_QUALI_NOT_RECON
The partner rejected the request to establish an association because it does not know
the called application entity qualifier.

9 CALLED_AP_INVOC_ID_NOT_RECON
The partner rejected the request to establish an association because it does not know
the called application process invocation identifier.

10 CALLED_AE_INVOC_ID_NOT_RECON
The partner rejected the request to establish an association because it does not
know the called application entity invocation identifier.

11 PERMANENT_FAILURE
The partner cleared the association because a permanent error occurred.

openUTM-LU62 messages XPNDIA insert

U5461-J-Z135-6-76 345

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
5

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

1
0

12 BEGIN_TRANSACTION_REJECT
The partner cleared the association because it rejected the start of a trans-
action.

13 TRANSIENT_FAILURE
The partner cleared the association because a temporary error occurred.

14 PROTOCOL_ERROR
The partner cleared the association because a protocol error occurred.

15 UNRECOGNIZED_PDU
The association was cleared from outside with P-ABORT because the presentation layer
received an unknown presentation PDU.

16 UNEXPECTED_PDU
The association was cleared from outside with P-ABORT because the presentation layer
received an unexpected presentation PDU.

17 UNEXPECTED_SESSION_SERVICE_PRIMITIVE
The association was cleared from outside with P-ABORT because the session layer
received an unexpected session service primitive.

18 UNRECOGNIZED_PDU_PARAMETER
The association was cleared from outside with P-ABORT because the presentation layer
received an unknown PPDU parameter.

19 UNEXPECTED_PPDU_PARAMETER
The association was cleared from outside with P-ABORT because the presentation layer
received an unexpected PPDU parameter.

20 INVALID_PPDU_PARAMETER_VALUE
The association was cleared from outside with P-ABORT because the presentation layer
received an invalid PPDU parameter value.

21 RELEASE_NORMAL
The association was cleared by the partner with release. The partner specified release
normal as the reason.

22 RELEASE_URGENT
The association was cleared by the partner with release. The partner specified release
urgent as the reason.

23 RELEASE_USER_DEFINED
The association was cleared by the partner with release. The partner specified user
defined as the reason

24 IDLE_TIMEOUT_ABORT
The association was cleared by the local application because the association was not
used in the time generated with IDLETIME.

XPNDIA Meaning

Messages from u62_start openUTM-LU62 messages

346 U5461-J-Z135-6-76

10.3 Messages from the utilities

10.3.1 Messages from u62_start

All messages from u62_start, with the exception of message 18, are output to stdout.
Messages 17 and 18 are output to the file

/opt/lib/utmlu62/PROT/prot.luname

on UNIX systems, and to the file

Programs\utmlu62\PROT\prot.luname.txt

on Windows systems.

02 Usage:
u62_start [-l <LU name>] [-c|-k] [-t on[,<trace options>]]
-l LU name: Name of the local LU of the openUTM-LU62 instance
-c: cold start openUTM-LU62
-k: lukewarm start openUTM-LU62
t on: explicit specification of the trace by

additional options possible (separated by comma):
IN[=<level>]: with instance trace
XAP: with XAP-TP provider trace

u62_start has been called with incorrect switches or parameters. openUTM-LU62
is not started.

03 Entering the base directory &DIRNAME denied,
errno &ERRNO (&ERRTEXT)

04 The directory &DIRNAME cannot be created, errno &ERRNO (&ERRTEXT)

If the subdirectories PROT and .pipes on UNIX systems do not exist under
/opt/lib/utmlu62 (or Programs\utmlu62) when u62_start is called (e.g. during the
first start after openUTM-LU62 has been installed), then u62_start creates these
subdirectories before the u62_tp call. If the corresponding system call (mkdir) fails,
then this message informs the user in more detail about the cause of the error:
&ERRNO = Contents of the system variable errno
&ERRTXT = Short explanation of &ERRNO

05 The directory &DIRNAME cannot be read,
errno &ERRNO (&ERRTEXT)

06 The configuration file &FILENAME cannot be opened,
errno &ERRNO (&ERRTEXT)

openUTM-LU62 messages Messages from u62_start

U5461-J-Z135-6-76 347

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
5

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

1
0

07 Error in reading the configuration file &FILENAME,
errno &ERRNO (&ERRTEXT)

08 The version of u62_start does not match with the configuration file &FILENAME
(&VERS1 instead of &VERS2)

The &FILENAME configuration file created by u62_gen contains an incorrect
version number. &FILENAME is either not a configuration file or an incompatible
u62_gen version was used for the generation.

09 The local LU name &LUNAME is not configured.

10 The instance for the local LU name &LUNAME is already running.

11 Not enough memory available

12 Internal error occurred

13 System call fork() failed, errno &ERRNO (&ERRTEXT)

u62_start uses the system call fork() to execute in the background so that the call
does not block the system. If this call fails, then u62_start outputs the cause of the
error with this message. Generally, the maximum number of processes has been
exceeded (in the system or for the user). This can be corrected by changing the
system settings.

On Windows systems, the system call CreateProcess() is used instead of fork().

14 System call fork() for starting the instance with the local LU name &LUNAME failed,
errno &ERRNO (&ERRTEXT)

There is a lack of system resources, just like as described for message 13.

15 System call execv() for starting the instance with the local LU name &LUNAME
failed, errno &ERRNO (&ERRTEXT)

Error in the system call execv(). On Windows systems, the system call CreateProc-
ess() is used instead of execv().

16 The protocol file &FILENAME cannot be opened,
errno &ERRNO (&ERRTEXT)

The system resources have probably all been used up (file system full, maximum
number of I-nodes has been reached, ...).

17 * * * openUTM-LU62 started: * * *
local LU alias name = &LUNAME,
PID = &INSTPID,
Start Type = c|w|k

This message is always output when an entity is started.

Messages from u62_start openUTM-LU62 messages

348 U5461-J-Z135-6-76

18 * * * End of openUTM-LU62 * * *

u62_start outputs a start message and an end message in the log file of a started
openUTM-LU62 entity. Both messages contain the exact time. &INSTPID in start
message 17 specifies the process ID of the u62_tp program that carried out the
protocol conversion for the local LU &LUNAME.

19 The current user is not authorized to start openUTM-LU62.

Users of the UNIX system (other than root) not listed in the configuration file
u62_users are not authorized to start openUTM-LU62 instances.

20 Variable U62_INST_DIR (installation directory) not set!

The variable U62_INST_DIR is entered in the Windows systems registry during in-
stallation, and must be set. If this entry is deleted from the registry, u62_start
aborts immediately.

21 UTM-LU62 runs as service.

This message is only output to the file stderr.txt.

22 stdout cannot be redirected to &FILENAME,
errno &ERRNO (&ERRTEXT)

23 stderr cannot be redirected to &FILENAME,
errno &ERRNO (&ERRTEXT)

If openUTM-LU62 is started as a service, a connection to a terminal is not available
for outputting messages. stdout and stderr are therefore rerouted to a file. If this
fails, openUTM-LU62 shuts down immediately with one of the messages shown
above.

24 Base thread id = %ID.

25 Service thread id = %ID.

If openUTM-LU62 is started as a service, the thread IDs of the basic and actual
service threads are output to the file stdout.txt for information purposes only.

26 Service control dispatcher returned successfully.

This message is output together with a time stamp if the service dispatcher is suc-
cessful, i.e. the system function that started the actual service is output to the file
stdout.txt.

27 Service control dispatcher failed,
errno &ERRNO (&ERRTEXT)

This message is output together with a time stamp if the service dispatcher is not
successful, i.e. the system function that started the actual service is output to the
file stderr.txt.

openUTM-LU62 messages Messages from u62_start

U5461-J-Z135-6-76 349

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
5

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

1
0

28 Waiting for service thread ...

When openUTM-LU62 is terminated as a service, you must wait until the service
has ended before exiting the program. To indicate the duration of this process, mes-
sage 28 is repeated every 100 milliseconds.

29 Service thread has terminated

This message is output together with a time stamp to indicate when the service
thread has ended.

30 Error installing the service:
Function &FUNC,
errno &ERRNO (&ERRTEXT)

31 Service &SERVICENAME installed successfully.

Messages 30 and 31 appear in response to the command u62_start -r.

32 Stopping service &SERVICENAME.

This message appears in response to the command u62_start -r if
openUTM-LU62 is still running. A period is then output every second until the serv-
ice has ended.

33 Service &SERVICENAME is stopped now.

34 Service &SERVICENAME cannot be stopped,
errno &ERRNO (&ERRTEXT)

This message appears in response to the command u62_start -u to indicate
whether or not openUTM-LU62 was stopped successfully. In the event of an error,
the error code &ERRNO from the system function QueryServiceStatus() is output.

35 Service &SERVICENAME removed successfully!

36 Error removing the service %s:
Function &FUNC,
errno &ERRNO (&ERRTEXT)

This message indicates whether or not openUTM-LU62 was successfully removed
as a service. In the event of an error, the name of the system function that caused
the error is output (OpenSCManager, OpenService or DeleteService) together with
the error code &ERRNO.

Messages from u62_start openUTM-LU62 messages

350 U5461-J-Z135-6-76

37 Error indicating service handler:
Function &FUNC,
errno &ERRNO (&ERRTEXT)

If openUTM-LU62 was started as a service, the system must be informed of the
function responsible for terminating the service. If this fails, error message 37 is out-
put. The error code ERRNO of the system function FUNKNAME provides informa-
tion on the precise cause of the error. openUTM-LU62 then shuts down.

38 Error setting service status:
Function &FUNC,
errno &ERRNO (&ERRTEXT)

At different points in time, the openUTM-LU62 service informs the system of the
current service state. If the corresponding system function &FUNKNAME fails, mes-
sage 38 is output. openUTM-LU62 then shuts down.

39 Creating new thread failed,
errno &ERRNO (&ERRTEXT)

As soon as all openUTM-LU62 entities have been started successfully, u62_start
creates threads whose sole purpose is to wait for entities to terminate and then per-
form the appropriate clean-up activities. If the corresponding function call
CreateThread() fails, this message is output and openUTM-LU62 terminates.

40 Usage:
In order to start openUTM-LU62 instances:
u62_start [-l <LU name>] [-c|-k] [-t on[,<trace options>]]
-l LU name: name of the local LU of the openUTM-LU62 instance
-c: cold start of openUTM-LU62
-k: lukewarm start of openUTM-LU62
-t on: explicit specification of the trace by additional options possible (separated

by comma):
IN=[<Level>]: with instance trace
XAP: with XAP-TP provider trace

In order to (de)register openUTM-LU62 as service:
u62_start -r [-l <LU-Name>] to register as service
u62_start -u [-l <LU-Name>] to deregister as service

42 The service &SERVICENAME started successfully.

This message is output at startup of openUTM-LU62 on Windows systems.

openUTM-LU62 messages Messages from u62_start

U5461-J-Z135-6-76 351

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
5

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

1
0

43 Error at startup of the service &SERVICENAME:
Function &FUNC,
errno &ERRNO (&ERRTEXT)

If one or more openUTM-LU62 instances are started directly from the command line
on Windows systems, a system service with the name &SERVICENAME is set up
and started for each instance that is started. If the system service cannot be started,
message 43 appears, where &FUNKNAME is the name of the failed system func-
tion (OpenSCManager, OpenService, StartService) and &ERRNO and &ERRTEXT
specify the error code.

Messages from u62_sta openUTM-LU62 messages

352 U5461-J-Z135-6-76

10.3.2 Messages from u62_sta

02 Usage:
u62_sta [-l <LU-Name>] [-b]
u62_sta -c [-b]

03 Error creating input pipe &PIPEFILE:
errno &ERRNO (&ERRTEXT)

04 Error opening input pipe &PIPEFILE:
errno &ERRNO (&ERRTEXT)

05 Instance &INST:
Error opening output pipe &PIPEFILE:
errno &ERRNO (&ERRTEXT)

There is probably a temporary shortage of system resources.

06 Instance &INST:
Instance is still initializing or terminating.

07 Instance &INST:
Error writing to output pipe &PIPEFILE:
errno &ERRNO (&ERRTEXT)

This message should only appear in exceptional situations, such as when there is
a shortage of system resources or when a collision occurs when the openUTM-
LU62 entity &INST is terminated.

08 Instance &INST:
Error writing to output pipe &PIPEFILE:
Number of written bytes erroneous.

09 Instance &INST:
Instance &PID (&PID) does not respond in time.

The u62_tp program has not responded within a specified period after u62_sta has
sent its request to the $INST entity of openUTM-LU62. This maximum wait time is
5 seconds long. u62_sta then continues with the status request of the next
openUTM-LU62 entity. Any acknowledgments from the openUTM-LU62 entity
&INST that arrive too late are thrown out without the user being informed. Such
drastic delays can occur when the load is high in large configurations.

10 Instance &INST:
Error reading from input pipe &PIPEFILE:
errno &ERRNO (&ERRTEXT)

11 Instance &INST:
Error reading from input pipe &PIPEFILE:
Number of read bytes erroneous.

openUTM-LU62 messages Messages from u62_sta

U5461-J-Z135-6-76 353

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
5

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

1
0

12 No instance process active.

13 The given instance is not active.

16 Instance &INST:
Command not recognized.

Probable cause: u62_sta and u62_tp belong to different versions due to a faulty
openUTM-LU62 installation.

17 Instance &INST:
Unexpected return code &RETCODE received.

Probable cause: u62_sta and u62_tp belong to different versions due to a faulty
openUTM-LU62 installation.

80 Instance &INST:
Error connecting to the gateway via sockets:
errno &ERRNO (&ERRTEXT)

u62_sta cannot establish a socket connection to the entity &INST. The error code
ERRNO originates from the system function connect().

81 Instance &INST:
Error issuing message to the gateway:
errno &ERRNO (&ERRTEXT)

82 Instance &INST:
Error issuing message to the gateway:
Number of written bytes erroneous.

The system function send() for sending requests to the entity has not returned the
expected result, i.e. the message length in bytes. This error does not cause the ad-
ministration program to terminate.

83 Instance &INST:
Error receiving the response from the gateway:
errno &ERRNO (&ERRTEXT)

84 Instance &INST:\
Error receiving the response from the gateway:
Number of read bytes erroneous.

The system function recv() for retrieving acknowledgments from the entity &INST
has not returned the expected result, which causes the program to abort. If ??? is
output for the entity, there are at least two acknowledgments from different entities.

Messages from u62_adm openUTM-LU62 messages

354 U5461-J-Z135-6-76

10.3.3 Messages from u62_adm

Messages 03 through 13 and messages 16 and 17 each mean the same as the corre-
sponding messages of the u62_sta program. These messages point to an error in commu-
nication between the administration program (u62_sta or u62_adm) and the u62_tp program.

02 Usage:
u62_adm [-l <LU name>] -ton [,<trace options]
u62_adm [-l <LU name>] -tof [,<trace options>]
u62_adm [-l <LU name>] -tfl [,<trace options>]
u62_adm [-l <LU name>] -co
u62_adm [-l <LU name>] -cs
u62_adm [-l <LU name>] -do
u62_adm [-l <LU name>] -ds
u62_adm [-l <LU name>] -ao
u62_adm [-l <LU name>] -as
u62_adm [-l <LU name>] -e
u62_adm [-l <LU name>] -v
u62_adm -f [-p] -o <output> <trace 1> [<trace 2> ...]

14 Instance &INST:
Configuration of LU6.2 software and openUTM-LU62 inconsistent.

This error message is only possible in conjunction with the switches -cs, -ds and
-as, and therefore with the commands in u62_tp that affect the LU6.2 interface to
the LU6.2 basic software (e.g. TRANSIT). In the case of TRANSIT, the message
informs the user that the TRANSIT configuration does not contain the local LU of
the openUTM-LU62 entity (LOC-LU-ALIAS generation parameter) or the remote LU
(REM-LU-ALIAS generation parameter), or that there is no suitable PAIR statement
in the TRANSIT generation so that communication between the two LUs is not
possible.

15 Instance &INST: System error occurred.

An administration command could not be executed for some reason which is not
described further. If the administration command affects the LU6.2 interface of
openUTM-LU62 (-cs, -ds, -as), a possible cause for this error message is that the
LU6.2 basic software (i.e. for TRANSIT the TRANSIT base system or the LU62Mgr)
is not active. In the case of the -cs command, it is also possible that the partner has
rejected the request to open a session.

20 Instance &INST terminates.

21 Instance &INST: Traces activated successfully.

22 Instance &INST: Traces already active.

23 Instance &INST: Instance trace activated successfully.

openUTM-LU62 messages Messages from u62_adm

U5461-J-Z135-6-76 355

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
5

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

1
0

24 Instance &INST: Instance trace is already active.

25 Instance &INST: XAP-TP trace activated successfully.

26 Instance &INST: XAP-TP trace is already active.

27 Instance &INST: Traces deactivated successfully.

28 Instance &INST: Traces already inactive.

29 Instance &INST: Instance trace deactivated successfully.

30 Instance &INST: Instance trace is already inactive.

31 Instance &INST: XAP-TP trace deactivated successfully.

32 Instance &INST: XAP-TP trace is already inactive.

33 Instance &INST: Flush of traces successful.

34 Instance &INST: Flush of instance trace successful.

35 Instance &INST: Flush of XAP-TP trace successful.

36 Instance &INST: Activation of new association initiated.

37 Instance &INST: Maximum number of associations exceeded.

38 Instance &INST: Activation of new session initiated.

39 Instance &INST: Maximum number of sessions exceeded.

40 Instance &INST: Deactivation of free associations initiated.

41 Instance &INST: No free associations exist currently.

42 Instance &INST: Deactivation of all sessions initiated.

43 Instance &INST: No sessions exist currently.

44 Instance &INST: Deactivation of all associations initiated.

45 Instance &INST: No associations exist currently.

50 Error opening output file &FILENAME,
errno &ERRNO (&ERRTXT)

Messages from u62_adm openUTM-LU62 messages

356 U5461-J-Z135-6-76

51 Error opening message catalogue &CATNAME,
errno &ERRNO (&ERRTXT)

The message catalog &CATNAME is required for the evaluation of the binary trace
file initiated with the command u62_adm -f. This catalog can be found in the directory
/opt/lib/nls/msg/En after openUTM-LU62 has been installed successfully. If the
catalog cannot be opened by u62_adm, then the catalog has generally been deleted
manually or the access rights have been changed manually. The contents of
&ERRNO for the variable errno contains more detailed information as to the cause
in any case.

52 Error opening trace file &FILENAME,
errno &ERRNO (&ERRTXT)

53 Error reading from trace file &FILENAME,
errno &ERRNO (&ERRTXT)

A trace record in the binary trace file &FILENAME could not be read; the evaluation
of the file is aborted. This message appears if &FILENAME is not a trace file for an
openUTM-LU62 entity or if the trace file was not completely written. The file is
written completely when the user enters u62_adm -tfl [,IN] or u62_adm -tof
[,IN]. In addition, the trace is also written completely when openUTM-LU62 is
terminated (only exception: kill -9 <PID of u62_tp>).

54 Not enough memory available

This error message only appears in connection with the -f switch used to evaluate
trace files. The program has not received enough memory space from the operating
system. This error message can appear when the trace level is greater than or equal
to 4, meaning that the u62_tp program has also written trace entries while interrupts
were being handled. When this happens just as another trace entry is being written,
then the internal structure of the trace file is destroyed.

55 Internal error occurred

56 Error closing trace file &FILENAME,
errno &ERRNO (&ERRTXT)

This message only serves to inform the caller and does not have any further
meaning; the evaluation has already been completed.

57 Error closing message catalogue &CATNAME,
errno &ERRNO (&ERRTXT)

This message only serves to inform the caller and does not have any other effect
because the evaluation of all specified trace files has already been completed.

58 Error extracting message flow by calling &FUNC
errno &ERRNO (&ERRTEXT)

openUTM-LU62 messages Messages from u62_adm

U5461-J-Z135-6-76 357

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
5

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

1
0

59 Extracting the protocol trace may take some time. Please wait ...

This message always appears when u62_adm -f -p is called to extract the protocol
between openUTM-LU62 and its communication partners (UTM application and
LU6.2 partner, e.g. CICS) from the trace file. The performance is not as good as it
could be because it is implemented as a shell script. The caller therefore needs to
be patient (do not press the DEL key!).

60 The current user is not authorized to administer openUTM-LU62.

Users of the UNIX system (other than root) not listed in the configuration file
u62_users are not authorized to execute administration commands - with the excep-
tion of a trace evaluation.

80 Instance &INST:
Error connecting to the gateway via sockets:
errno &ERRNO (&ERRTEXT)

u62_adm cannot establish a socket connection to the entity &INST. The error code
ERRNO originates from the system function connect().

81 Instance &INST:
Error issuing message to the gateway:
errno &ERRNO (&ERRTEXT)

82 Instance &INST:
Error issuing message to the gateway:
Number of written bytes erroneous.

The system function send() for sending requests to the entity has not returned the
expected result, i.e. the message length in bytes. This error does not cause the ad-
ministration program to terminate.

83 Instance &INST:
Error receiving the response from the gateway:
errno &ERRNO (&ERRTEXT)

84 Instance &INST:\
Error receiving the response from the gateway:
Number of read bytes erroneous.

The system function recv() for retrieving acknowledgments from the entity &INST
has not returned the expected result, which causes the program to abort. If ??? is
output for the entity, there are at least two acknowledgments from different entities.

Messages from u62_gen openUTM-LU62 messages

358 U5461-J-Z135-6-76

10.3.4 Messages from u62_gen

03 Unknown text in line &LINENO - not read from &INVTXT onwards

04 No comma permitted at the beginning of the line (error in line &LINENO)

05 No comma permitted at the end of a statement (error in line &LINENO)

06 Comma is expected in line &LINENO1 or &LINENO2

07 Comma at the wrong place in line &LINENO

08 Number expected (error in line &LINENO)

09 Invalid name (error in line &LINENO)

10 INSTANCE must be the only parameter in one line.

20 Multiple parameter definition (error in line &LINENO)

21 Invalid number of elements in the array OBJECT-IDENTIFIER
(error in line &LINENO)

An object identifier consists of at least 2 and at most 10 whole numbers. If these
limits are exceeded, then u62_gen outputs this error message.

22 Syntax error in line &LINENO

23 Remainder not read up to line &LINENO

This message is always output together with message 22 and shows the line that
parser has resynchronized and in which processing will continue after a syntax error
in the input file has been detected.

24 Name &NAME too long (error in line &LINENO)

25 Value &VAL not valid

26 Value for CONNECT too large (error in statement before line &LINENO)

27 Value for CONTWIN too large (error in statement before line &LINENO)

The value of CONNECT or CONTWIN exceeds the maximum number of parallel
connections specified by the generation parameter ASSOCIATIONS.

28 OSITP-CODE and LU62-CODE inconsistent
(only one = *NO) (error in statement before line &LINENO)

29 Invalid TNS name &NAME (error in line &LINENO)

30 Name &NAME already allocated (error in line &LINENO)

31 The local AE Title built from APT and AEQ is already allocated
(error in statement before line &LINENO)

openUTM-LU62 messages Messages from u62_gen

U5461-J-Z135-6-76 359

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

u
ly

 2
0

08

S
ta

nd
 1

0:
38

.2
5

P
fa

d:
 F

:\
ut

m
\B

ea
n

C
o

nn
e

ct
\L

U
62

_V
51

\M
a

nu
a

l\e
n\

H
e

te
ro

_e
.k

1
0

33 Invalid mode name &MODENAME (error in line &LINENO)

SNASVCMG is a reserved name and may not be specified as a common mode.

34 Parameter LOC-LU-ALIAS is mandatory

35 Parameter REM-LU-ALIAS is mandatory

36 Parameter MODENAME is mandatory

37 Parameter LOC-APT is mandatory

38 Parameter REM-APT is mandatory

39 Parameter LOC-AEQ is mandatory

40 Parameter REM-AEQ is mandatory

41 The configuration of the local OSI address is incomplete:
The parameter LOC-AE resp. one of the parameters
LOC-TSEL, LOC-LISTENER-PORT is missing

42 The configuration of the remote OSI address is incomplete:
The parameter REM-AE resp. one of the parameters
REM-NSEL, REM-TSEL, REM-LISTENER-PORT is missing

43 Parameter CONTWIN is mandatory

47 TNS entries and parameters for TNS-less use
must not be mixed up

48 Invalid port number
Only the ports 102 and 1025 - 65535 may be used

50 Usage:
Generation: u62_gen [-f <output file>] [<input file>]
Reverse : u62_gen -r [<conffile>]

51 File &FILENAME cannot be opened,
errno &ERRNO (&ERRTXT)

52 The version of u62_gen does not match with the file &FILENAME
(&VERS1 instead of &VERS2), or the file was not generated with u62_gen.

This message only appears when the -r switch is used. u62_gen has determined
that the binary configuration file &FILENAME contains the wrong version code
&VERS1. This must match the version &VERS2 of u62_gen. A new version of
openUTM-LU62 has probably been installed, and an attempt was made to convert
the existing binary configuration file to a readable format using u62_gen -r.

53 INSTANCE statement missing

Messages from u62_gen openUTM-LU62 messages

360 U5461-J-Z135-6-76

54 Application context &CONTEXT is not defined.
(error in line &LINENO)

The specified application context &CONTEXT does not correspond to any of the
allowable values (UDTSEC, UDTAC, UDTDISAC or UDTCCR).

55 STOP (error)

u62_gen has detected a fatal error and has therefore aborted the processing of the
input file. A configuration file was not created.

56 Not enough memory available

57 Internal error occurred

58 Error writing to file &FILENAME,
errno &ERRNO (&ERRTXT)

The most common cause is incorrect access rights for the directory or for the
existing configuration file, but the cause may also be a full file system.

59 Error reading from file &FILENAME,
errno &ERRNO (&ERRTXT)

60 Generation in file &FILENAME

u62_gen has not detected an error in the input file and has created the binary config-
uration file &FILENAME. openUTM-LU62 can now be started.

62 The current user is not authorized to generate the configuration.

Users of the UNIX system (other than root) not listed in the configuration file
u62_users are not authorized to (re)configure openUTM-LU62.

U5461-J-Z135-6-76 361

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

ul
y

20
0

8
 S

ta
nd

 1
0

:3
8.

21
P

fa
d

: F
:\

ut
m

\B
e

an
C

on
ne

ct
\L

U
62

_
V

51
\M

a
nu

a
l\e

n\
H

e
te

ro
_e

.m
ix

Glossary
addressable SNA entity (network addressable unit)

Generic term for LU, PU, SSCP.

Advanced Program-to-Program Communication (APPC)
Another name for the LU6.2 protocol and the underlying architecture. This term
is also sometimes used for a program interface used to access the LU6.2
protocol (APPC application program interface).

agent
The communication partner that receives the sync-point (end of transaction)
request in distributed transaction processing with LU6.2.

alternate facility
The name of a communication partner for a CICS program that has opened
communication by itself using Allocate. Antonym: principal facility. The term job-
receiver is used instead in openUTM.

Anynet
Name of a family of IBM products that implement MPTN protocols. MPTN
stands for Multiprotocol Transport Networking and allows you to run applica-
tions written for a specific transport protocol on other transport protocols. An
important example of “APPC over TCP/IP“, which is sometimes also referred to
as “SNA over TCP/IP” or “SNA/IP”. This allows you to run two APPC applications
over a TCP/IP network. For this purpose, an Anynet product must be installed
on both end systems. On Windows systems, the IBM eNetwork Communica-
tions Server for Windows systems offers the same functionality.

association
In the OSI world, a communication relationship between two application
entities. The term parallel connection is usually used instead of association in
openUTM. An association corresponds to a session for SNA .

attach header
See function management header.

Glossary

362 U5461-J-Z135-6-76

back-end transaction
In the CICS language, an application program that is started by another appli-
cation program using LU6.1 or LU6.2. The term job-receiver service is used
instead in openUTM.

backout
Roll back a transaction.

basic conversation
A type of LU6.2 conversation in which the application program must assemble
the data packets itself using GDS. Antonym: mapped conversation. Basic conver-
sations are usually not used by normal application programs, but by system
programs only. The restart (resync) in the LU6.2 protocol, for example, is imple-
mented with basic conversation.

bidder
Synonym for contention loser. Antonym: first speaker.

BIND
An SNA message that is sent from the primary LU to the secondary LU when the
session is set up. The secondary LU replies with a BIND response. All properties
of the session are specified with these two messages, including the type of the
session (e.g. LU6.1 or LU6.2), pacing, RU sizes, sync level, mode name and
contention winner/contention loser, amongst others.

bracket protocol
The bracket protocol in SNA is a definition of how to combine several messages
within the data flow of an LU-LU session into a processing unit. The bracket
protocol supports the exchange of transaction-oriented messages with changes
of direction in a job-submitter/job-receiver relationship.

chain of RUs
Specification within the LU6.1 protocol as to how user data is to be transferred.
Chain of RUs specifies that user data is to be split into blocks with a maximum
size equal to RU size. The first block receives the “begin of chain“ indicator, the
last block the “end of chain“ indicator and all other blocks the “middle of chain“
indicator. Alternatively, the user data can also be transferred as VLVB. These
two alternatives are not visible in the UTM application program, but they are
visible in the CICS application program.

cluster controller
Synonym for type 2.0 node, although more from a hardware point of view. A
typical example of a cluster controller is an IBM 3174.

Glossary

U5461-J-Z135-6-76 363

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

ul
y

20
0

8
 S

ta
nd

 1
0

:3
8.

21
P

fa
d

: F
:\

ut
m

\B
e

an
C

on
ne

ct
\L

U
62

_
V

51
\M

a
nu

a
l\e

n\
H

e
te

ro
_e

.m
ix

Common Programming Interface for Communication (CPI-C)
A program interface defined by IBM and X/Open for LU6.2 and OSI-TP commu-
nication.

Common Programming Interface for Resource Recovery (CPI-RR)
A program interface defined by IBM for transaction security. CPI-RR is usually
used together with the CPI-C program interface. X/Open has defined the
TX program interface instead of the CPI-RR.

communication controller
Synonym for type 4 node, although more from a hardware point of view. Corre-
sponds approximately to a BS2000/OSD front-end processor. A typical example
of a communication controller is an IBM 3745.

compare states
A protocol element used in LU6.2 that synchronizes the common transaction
when the connection is interrupted or a computer crashes.

contention winner / contention loser
One of the two communication partners of a session is declared the contention
winner, the other is declared the contention loser. The contention winner is
allowed to open brackets autonomously. The contention loser must obtain
permission from the contention winner to open a bracket. The contention winner
is also sometimes called the first speaker, and the contention loser is sometimes
called the bidder.

conversation
A logical connection between two transaction programs via an LU6.2 session. A
conversation begins with Allocate (corresponding to APRO in openUTM) and
ends with Deallocate. A conversation allocates a session for its entire life and
locks out all other users. The bracket protocol is used to reserve the session.

Customer Information Control System (CICS)
The IBM transaction monitor. It’s functionality is comparable to that of
openUTM. CICS is available for various platforms, e.g. CICS Transaction Server
for z/OS (for the operation system z/OS), CICS for iSeries (for the operation
system i5/OS, prior OS/400), TXSeries for Multiplatforms (for the operation
systems AIX, Solaris, HP-UX, Windows).

Data Language/1 (DL/I)
Program interface defined by IBM for database accesses and data communi-
cation. DL/I is used exclusively in IMS. DL/I permits communication between
IMS and openUTM.

Glossary

364 U5461-J-Z135-6-76

dependent LU
See independent LU.

dialog
In the OSI terminology world, a communication relationship that exists between
2 services. A dialog begins with a TP-BEGIN-DIALOGUE (corresponding to
APRO in openUTM) and ends with a TP-END-DIALOGUE or TP-ABORT. A
dialog allocates an association for its entire life and locks out all other users. The
term conversation is used instead in the SNA terminology world. The word
“dialog” is often used in other contexts in the openUTM manuals. For this
reason, this manual uses the OSI-TP dialog when in doubt.

Distributed program link (DPL)
Program communication variant that can be used by CICS programs. Commu-
nication between CICS and openUTM is not possible.

Distributed transaction processing (DTP)
Program-to-program communication variant that can be used by CICS
programs. Distributed transaction processing permits communication between
CICS and openUTM.

Enterprise Extender
Protocol defined by IBM that allows SNA protocols to be transported in IP
networks. Enterprise Extender is regarded by IBM as, among other things, a
successor to Anynet. Enterprise Extender does not use TCP. Instead, it uses the
connectionless User Datagram Protocol (UDP). The products that support
Enterprise Extender include IBM Communications Server (for AIX, Linux and
Windows), SNAP-IX and IBM Communications Server for z/OS. TRANSIT does
not support Enterprise Extender.

first speaker session
Synonym for contention-winner. Antonym: bidder.

front-end transaction
In the CICS language, an application program that calls another application
program using LU6.1 or LU6.2. The term job-submitter service is used instead
in openUTM.

Glossary

U5461-J-Z135-6-76 365

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

ul
y

20
0

8
 S

ta
nd

 1
0

:3
8.

21
P

fa
d

: F
:\

ut
m

\B
e

an
C

on
ne

ct
\L

U
62

_
V

51
\M

a
nu

a
l\e

n\
H

e
te

ro
_e

.m
ix

function management header (FMH)
The function management headers contain information used for communication
and are sent as a header before the net data in a request unit (RU). The following
FMHs exist for LU6.1:
* FMH4: FMH4 can be sent at the beginning of a message and contains
additional information for the following message. openUTM sends an FMH4 if
KCDF was specified as anything other than 0 or KCMF was specified as
anything other than a space character in MPUT.
* FMH5 (attach header): FMH5 is sent at the beginning of a bracket and begins a
job-submitter/job-receiver relationship. It contains the transaction code and an
indicator for the data format (VLVB or chain of RUs). It can also be placed at the
beginning of a response message, and it only contains the indicator for the data
format in this case.
* FMH6 (scheduler FMH): FMH6 is sent when a queued job is transmitted.
* FMH7 (error description): FMH7 sends the partner an error message.
The following FMHs exist for LU6.2:
* FMH5 (attach header): FMH5 is sent at the beginning of a conversation and
begins a job-submitter/job-receiver relationship. It contains the transaction
code, user ID, password, already verified indicator, indicators for basic/mapped
conversation, sync-level and LUWID, amongst others.
* FMH7 (error description): FMH7 sends the partner an error message.

functional unit commit
A function group in the OSI-TP protocol that is required to create distributed
transactions. Whether or not the functional unit commit may be used is
negotiated when an association is set up between the two partners. OSI-TP
dialogs can run with or without the functional unit commit in an association in
which the functional unit commit was agreed to. Whether or not the functional
unit commit is used by an OSI-TP dialog is decided upon by the UTM program
by the KCOF parameter in the APRO call or by the LU6.2 partner program. In
SNA, a dialog with functional unit commit corresponds to a conversation with
sync-level 2.

General Data Stream (GDS)
A specification within the LU6.2 protocol as to how user data is to be transferred.
GDS specifies that user data is to be split into blocks with a maximum size of
32763 bytes, with each block containing a 2 byte long length field and a 2 byte
field used to describe the data type.

Glossary

366 U5461-J-Z135-6-76

half-session
In LU6.1, each LU administers one half of a session, the half-session. The half-
session is identified by a name up to 8 characters long, the half-session
qualifier. This name is specified in the generation of the corresponding applica-
tions and is specified in LSES and RSES in openUTM. A session is uniquely
identified by the two half-session qualifiers. There are no half-session qualifiers
in LU6.2.

host
A synonym for type 5 node in the SNA language.

independent LU / dependent LU
A logical unit (LU) in a type 2.0 node is always a dependent LU. It depends on the
SSCP (System Service Control Point) in the associated type 5 node. A dependent
LU can set up at most one session to an LU in the associated type 5 node. It is
always the secondary LU in this session. There are dependent LUs for all LU
types, and therefore also for LU6.1 and LU6.2, amongst others. In contrast, a
type 2.1 node can contain dependent and independent LUs. An independent LU
can only utilize the LU6.2 protocol. However, it can maintain sessions with several
partners at the same time and can maintain up to 254 parallel sessions with one
partner.

Information Management System (IMS)
The IBM transaction monitor and database system. IMS only runs on the IBM
mainframe operating system z/OS. IMS consists of the following two central
components:
– IMS Database Management System (IMS DB)
– IMS Transaction Manager (IMS TM)
IMS TM is a comparable transaction monitor to openUTM.

initiator / sync point initiator
The communication partner that has prompted the other partner to execute a
sync-point (end of transaction) in distributed transaction processing with LU6.2.

cold start
A type of start for transaction-oriented applications in which all log records are
deleted, meaning that the memory of any incomplete transactions is lost.

Glossary

U5461-J-Z135-6-76 367

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

ul
y

20
0

8
 S

ta
nd

 1
0

:3
8.

21
P

fa
d

: F
:\

ut
m

\B
e

an
C

on
ne

ct
\L

U
62

_
V

51
\M

a
nu

a
l\e

n\
H

e
te

ro
_e

.m
ix

logical unit (LU)
A logical unit is understood to be an addressable communication partner in an
SNA network. An LU administers one or more communication relationships
(sessions) to other LUs (terminals or openUTM, CICS and IMS applications).
Whether only one or more communication relationships are possible depends
on the type of physical unit and on the type of LU (independent/dependent LU). An
LU in a type 2.0 node can only set up a session to another LU, and only using the
same SNA protocol. Depending on which protocol is being used (e.g. LU2, LU6.1
or LU6.2), the LUs are also designated as LUs of type LU2, LU6.1 or LU6.2.
Every LU is known in the SNA network under a unique name with a maximum of
8 characters, the LU name. An 8-character network identification is placed in
front of the 8-character LU name in an independent LU6.2. Together the two build
the so-called fully qualified network name of the LU. Addressing is not done
using the LU name in dependent LUs in type 2.0 nodes, rather using a so-called
loc-address (a number between 1 and 255). An LU corresponds approximately
to a BCAMAPPL or a ACCESS-POINT in openUTM.

LU6.1 protocol
The LU6.1 protocol is a component of the IBM SNA network architecture and
defines methods for distributed transaction processing. LU6.1 was developed
by IBM for distributed processing between CICS and IMS applications on host
systems. LU6.1 can also be used for distributed processing between openUTM
and CICS and between openUTM and IMS because it is also implemented in
openUTM. IBM views LU6.2 as the successor to LU6.1.

LU6.2 protocol
The LU6.2 protocol is a component of the IBM network architecture and is the
newest and most modern IBM network protocol. LU6.2 defines methods for
program-program communication between applications on different computers.
LU6.2 can be used with and without transaction security. It provides many
different security mechanisms.

logical unit of work (LUW)
This term is used in the IBM literature instead of the term transaction usually
used in openUTM. A logical unit of work can be local to a computer or
distributed amongst several computers.

logical unit of work identifier (LUWID)
In LU6.2, every distributed transaction is assigned a network-wide and long-
term unique name, the LUWID. The initiator of the transaction assigns this
name. All of the systems participating in the transaction can negotiate the
outcome of the transaction when a connection is lost or a computer crashes
using this name.

Glossary

368 U5461-J-Z135-6-76

log name
The name used in the LU6.2 protocol that characterizes an application (e.g. a
UTM or CICS application) for its entire life, i.e. between two cold starts. The log
names must be exchanged in accordance with LU6.2 between the two resync
TPs before the restart (compare states) is initiated after a connection has been
interrupted or the system has crashed. The exchange of the log names serves
to identify a one-sided cold start.

log record
Information on the status of an open transaction that is written to a secure
storage media (generally disk storage). The log records are used to restart the
transaction after a computer crash. The log records are deleted after the trans-
action has terminated.

mapped conversation
A type of LU6.2 conversation in which the application program does not have to
take care of assembling the data into packets using GDS. Antonym: basic conver-
sation. Normal application programs usually use mapped conversation.

mode
Describes the properties of sessions such as the maximum number of parallel
sessions, RU sizes and pacing values. A mode has a mode name.

mode name
A name up to 8 characters long that is defined when the session is set up. A
mode name is a symbolic name for a list of session properties, such as the
maximum number of parallel sessions, RU sizes and pacing values, for example.
The properties belonging to a mode name must usually be specified in at least
one system per generation. The mode name is only generated on the host for
LU6.1. The mode name must be generated in all participating systems for LU6.2
and independent LUs.

Network Control Program (NCP)
The operating system of the communication controller.

network name
See logical unit.

pacing
A mechanism to control the flow of data in SNA. The receiver only gives the
sender permission to send a certain number of RUs when pacing is used.

Glossary

U5461-J-Z135-6-76 369

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

ul
y

20
0

8
 S

ta
nd

 1
0

:3
8.

21
P

fa
d

: F
:\

ut
m

\B
e

an
C

on
ne

ct
\L

U
62

_
V

51
\M

a
nu

a
l\e

n\
H

e
te

ro
_e

.m
ix

parallel session
When there is more than one session between two LUs, then these sessions are
designated as parallel sessions. Parallel sessions are only possible between
two type 5 nodes in LU6.1 and only between two type 2.1 nodes in LU6.2.

physical unit (PU)
Every node in a SNA network contains a physical unit (PU) as an addressable SNA
entity. Before two logical units (LUs) can open a communication relationship in
the SNA network, a communication relationship must first be opened between
the corresponding PUs.
There are various types of PUs in SNA networks. The associated systems are
correspondingly designated as type 5 nodes, type 4 nodes, type 2.0 nodes or type 2.1
nodes.

primary logical unit (PLU) / secondary logical unit (SLU)
The logical units (LUs) can be separated into primary logical units (PLU) and
secondary logical units (SLU). The PLU or SLU status of two LUs is specified
during the SNA session setup (BIND). A preset value for the primary/secondary
property is specified with the help of generation parameters. This is done in
openUTM using the SESCHA generation parameter in LU6.1 connections. A
preset value is usually not specified in the generation for LU6.2 and independent
LUs. The primary logical unit sends proposals for the session parameters when
the session is opened. The secondary logical unit accepts these proposals or
sends back its own proposals (BIND response).

principal facility
Designation for the standard communication partner of a CICS program, i.e. the
partner that the program has called. Antonym: alternate facility. The term job-
submitter is used instead in openUTM.

RACF (Resource Access Control Facility)
RACF is an IBM product that offers access protection to all applications and
resources in a mainframe environment. RACF is thus responsible for:
– Identification and verification of users by checking user IDs and passwords

(authentication)
– Protection of resources through the administration of access rights (autho-

rization)
– Logging of accesses to protected resources (auditing).

request unit (RU)
Net data portion of an SNA protocol element. See also RU size.

Glossary

370 U5461-J-Z135-6-76

RU size
Maximum length of a request unit. These lengths must usually be set on both
systems. The value is then negotiated during the session setup.

resync (resynchronization)
A procedure specified in the LU6.1 and LU6.2 protocol definition that forces
open distributed transactions into a consistent state after a connection has been
interrupted or a computer has crashed.

Resync service Transaction Program (Resync TP)
A part of the LU6.2 protocol that is required for conversations with sync-level 2. The
LU6.2 protocol specifies that both resync TPs of the corresponding LUs must
exchange their log names before a conversation with sync-level 2 is set up. The
resync TP is also required to resynchronize transactions aborted when the
connection has been interrupted or the system has crashed. The resync TP has
the TP name X’06F2’ specified by LU6.2.

secondary logical unit (SLU)
See primary logical unit.

session
A session is understood to be a communication relationship between two LUs,
more generally between two addressable SNA entities. Only one session can be
set up between an LU on a system with PU type 2 and an LU on a host system
(PU type 5). This is also called a dependent session because the host is the
dominant partner in the session. Several sessions (parallel sessions) can be set
up simultaneously between two LUs on host systems or type 2.1 PUs. These
sessions are also called independent sessions.
Note that the term session has a different meaning in the OSI protocol world
than the meaning described here.

side information
Side information describes the configuration required for the execution of CPI-
C programs at the CPI-C program interface. In openUTM the side information is
described by means of the control statements for KDCDEF. For CPI-C programs
that run under IMS, the system administrator must make available a separate
side information file.

symbolic destination name
For the purposes of the CPI-C program interface, a symbolic destination name
is a symbolic name that allows you to address a remote transaction from within
the program. The side information is used to assign this symbolic name a
concrete transaction code in a concrete remote application. The concept is
comparable to the LTAC used by openUTM.

Glossary

U5461-J-Z135-6-76 371

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

ul
y

20
0

8
 S

ta
nd

 1
0

:3
8.

21
P

fa
d

: F
:\

ut
m

\B
e

an
C

on
ne

ct
\L

U
62

_
V

51
\M

a
nu

a
l\e

n\
H

e
te

ro
_e

.m
ix

sync-level (synchronization level)
Designation in LU6.2 that characterizes the transaction security for distributed
processing:
For sync-level 0 (none), only net data and error messages may be sent.
Acknowledgments are not allowed. This corresponds to KCOF=B for APRO in
openUTM.
For sync-level 1 (confirm), simple acknowledgments may also be sent in
addition to net data and error messages. This corresponds to KCOF=H for
APRO in openUTM.
For sync-level 2 (syncpoint), full transaction security is activated for distributed
transactions. This corresponds to KCOF=C for APRO in openUTM.

sync point (synchronization point)
A location within the flow of a distributed process at which the common
resources are brought to a defined state. The term “end of transaction” or
“synchronization point” is used instead in openUTM.

Systems Network Architecture (SNA)
SNA is the designation for a series of communication protocols defined by IBM.

System Services Control Point (SSCP)
Addressable SNA entities in a type 5 node. The SSCP administers the connections
to all type 4 and type 2.0 nodes in its network and all sessions between the type 5
node and its lower-ranking node.

transaction program (TP)
In the IBM language, every program that carries out program-program commu-
nication to other programs in the network is designated as a transaction
program, regardless of whether real distributed transaction processing occurs
or not. If the program-program communication is done via LU6.2, then every
transaction program is identified by a TP name. This TP name corresponds to
the transaction code from openUTM or CICS.

transmission header (TH)
The SNA layer 3 protocol header. openUTM uses the FID1 format. The trans-
mission header is 10 bytes long in this format. The FID2 format is used for the
transmission header between TRANSIT and the IBM partner system. The
transmission header is 6 bytes long in this case.

type 2.0 node
Designation for a node in the SNA network that can only set up sessions to its
higher-ranking type 4 or type 5 node. An LU in a type 2.0 node is always a
dependent LU.

Glossary

372 U5461-J-Z135-6-76

type 2.1 node
Designation for a node in the SNA network that contains the functions of a type
2.0 node on the one hand, but that can also open sessions to other type 2.1 nodes.
Only independent LUs and the LU6.2 protocol can be used in the sessions to other
type 2.1 nodes. The TRANSIT-SERVER product emulates a type 2.1 node.

type 4 node
Designation for a node that assumes the routing functions in a conventional SNA
network. It maintains connections to one or more type 5 nodes and one or more
type 2.0/2.1 nodes.

type 5 node
Designation for a node in the SNA network that assumes host functions, i.e. that
contains an SSCP. A type 5 node can also simultaneously cover the functionality
of a type 2.1 node. The prior TRANSIT-CD product emulates a type 4 and a type 5
node.

UDP (User Datagram Protocol)
UDP is a transport protocol that supports connectionless data exchange
between computers. UDP was defined in order to allow application processes
to send datagrams directly and thus meet the requirements of transaction-ori-
ented traffic. UDP builds directly on the underlying IP protocol. UDP has a min-
imal protocol mechanism and neither guarantees the delivery of a datagram to
the destination partner nor includes any measures to prevent duplication or
changes in sequence.

variable length variable blocked (VLVB)
A specification in the LU6.1 protocol as to how user data is to be transferred.
VLVB specifies that user data is to be split into blocks with a maximum size of
32765 bytes with each block containing a 2 byte long length field in front. The
user data can also be transferred as a chain of RUs as an alternative. These two
alternatives are not visible in the UTM application program, but they are visible
in the CICS application program.

virtual telecommunications access method (VTAM)
The component in an IBM host system that is responsible for remote data
processing. The term ACF/VTAM is also used sometimes instead.

U5461-J-Z135-6-76 373

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

ul
i 2

0
08

S

ta
nd

 1
0:

38
.2

1
P

fa
d:

 F
:\

ut
m

\B
ea

n
C

o
nn

e
ct

\L
U

62
_V

51
\M

a
nu

a
l\e

n\
H

e
te

ro
_e

.a
b

k

Abbreviations
AAID Atomic Action IDentifier

ACF Advanced Communications Function

ACSE Association Control Service Element

AE Application Entity

AEQ Application Entity Qualifier

APDU Application Protocol Data Unit

APPC Advanced Program to Program Communication

APT Application Process Title

ASCII American Standard Code for Information Interchange

BB Begin Bracket

BCAM Basic Communication Access Method

CCR Commitment, Concurrency and Recovery

CD Change Direction

CEB Conditional End Bracket

CICS Customer Information Control System

CMX Communication Manager in UNIX

CPI-C Common Programming Interface for Communication

CPI-RR Common Programming Interface for Resource Recovery

DPL Distributed Program Link

DPN Destination Process Name

DRI Define Response Indicator

DTP Distributed Transaction Processing

EB End Bracket

EBCDIC Extended Binary-Coded Decimal Interchange Code

ECI External Call Interface

EDI Enciphered Data Indicator

EIB Exec Interface Block

Abbreviations

374 U5461-J-Z135-6-76

ERI Exception Response Indicator

ESA Enterprise System Architecture

ET End of Transaction

FDDI Fiber Distributed Data Interface

FID Format Identifier

FMH Function Management Header

FSM Finite State Machine

GDS General Data Stream

IMS Information Management System

ISC InterSystem Communication

ISO international organization for standardization

KDCS Compatible data communication interface

LU Logical Unit

LUW Logical Unit of Work

LUWID Logical Unit of Word Identifier

MFS Message Format Service

MPTN Multiprotocol Transport Networking

MVS Multiple Virtual Storage System

NCP Network Control Program

OSI Open Systems Interconnection

OSI-TP Open Systems Interconnection - Distributed Transaction Processing

OSS Open Systems Interconnection Services

PCMX Portable Communication Manager in UNIX

PDI Padded Data Indicator

PDN Program system for remote data processing and network control

PET Preliminary End of Transaction

PID Process Identifier

PIP Program Initialization Parameter

PLU Primary Logical Unit

PRN Primary Resource Name

QRI Queued Response Indicator

RACF Resource Access Control Facility

RDO Resource Definition Online

Abbreviations

U5461-J-Z135-6-76 375

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

ul
i 2

0
08

S

ta
nd

 1
0:

38
.2

1
P

fa
d:

 F
:\

ut
m

\B
ea

n
C

o
nn

e
ct

\L
U

62
_V

51
\M

a
nu

a
l\e

n\
H

e
te

ro
_e

.a
b

k

RDPN Return Destination Process Name

RPRN Return Primary Resource Name

RLU Remote Logical Unit

RTI Response Type Indicator

RTR Ready To Receive

RU Request Unit

SDI Sense Data Indicator

SDLC Synchronous Data Link Control

SSCP System Services Control Point

SIT System Initialization Table

SLU Secondary Logical Unit

SNA System Network Architecture

SNI SNA Network Interconnection

TNSX Transport Name Service UNIX

TP Transaction Processing, Transaction Program

TPSU Transaction Processing Service User

TX Transaction Demarcation (X/Open)

UDT Unstructured Data Transfer

UTM Universal Transaction Monitor

VLVB Variable Length Variable Blocked

VM Virtual Machine

VTAM Virtual Telecommunications Access Method

XAP X/Open ACSE/Presentation Services

XAP-TP X/Open ACSE/Presentation Services - Transaction Processing

XLN Exchange Log Name

376 U5461-J-Z135-6-76

U5461-J-Z135-6-76 377

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

ul
y

20
08

S

ta
nd

 1
0:

38
.2

6
P

fa
d

: F
:\

ut
m

\B
e

an
C

o
nn

e
ct

\L
U

62
_V

51
\M

a
nu

a
l\e

n\
H

e
te

ro
_e

.li
t

Related publications
 openUTM is accompanied by a CD-ROM. This contains PDF files of all the

openUTM manuals.
The manuals are available as online manuals, see http://manuals.ts.fujitsu.com,
or in printed form which must be paid and ordered separately at
http://manualshop.ts.fujitsu.com.

openUTM documentation

openUTM
Concepts and Functions
User Guide

Target group
Anyone who wants information about the functionality and performance capability of
openUTM.

openUTM
Programming Applications with KDCS for COBOL, C and C++
Core Manual

Target group
Programmers who wish to use the KDCS program interface for programming UTM applica-
tions.

openUTM
Generating Applications
User Guide

Target group
Application planners, application developers and UTM application support staff.

i

http://manuals.ts.fujitsu.com
http://manualshop.ts.fujitsu.com

Related publications

378 U5461-J-Z135-6-76

openUTM
Using openUTM Applications under BS2000/OSD
User Guide

Target group
Application planners, application developers, users and UTM application support staff.

openUTM
Using openUTM Applications under UNIX Systems and Windows Systems
User Guide

Target group
Application planners, application developers, users and UTM application support staff.

openUTM
Administering Applications
User Guide

Target group
Administrators and programmers of administration programs.

openUTM
Messages, Debugging and Diagnostics in BS2000/OSD
User Guide

Target group
Users, administrators and programmers of UTM applications.

openUTM
Messages, Debugging and Diagnostics in UNIX Systems and Windows Systems
User Guide

Target group
Users, administrators and programmers of UTM applications.

openUTM (BS2000/OSD, UNIX systems, Windows NT)
Creating Applications with X/Open Interfaces
Core Manual

Target group
Programmers and generators of UTM applications which make use of the X/Open inter-
faces CPI-C, XATMI and TX.

Related publications

U5461-J-Z135-6-76 379

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

ul
y

20
08

S

ta
nd

 1
0:

38
.2

6
P

fa
d

: F
:\

ut
m

\B
e

an
C

o
nn

e
ct

\L
U

62
_V

51
\M

a
nu

a
l\e

n\
H

e
te

ro
_e

.li
t

openUTM
openUTM Data Marshalling with XML
User Guide
(Available in electronic form only: internet)

Target group
Programmers of UTM applications.

openUTM Client (UNIX systems)
for the OpenCPIC Carrier System
Client-Server Communication with openUTM
User Guide

Target group
Organizers, application planners and programmers of CPI-C and XATMI programs.

openUTM Client
for the UPIC Carrier System
Client-Server Communication with openUTM
User Guide

Target group
Organizers, application planners and programmers of CPI-C and XATMI programs.

openUTM WinAdmin
Graphical Administration Workstation for openUTM
Online description (available on the internet) and online help system

Target group
Organizers and administrators of UTM applications.

openUTM (BS2000/OSD)
Programming Applications with KDCS for Assembler
Supplement to Core Manual
(Available in electronic form only: internet)

Target group
Programmers of UTM Assembler applications.

openUTM (BS2000/OSD)
Programming Applications with KDCS for Fortran
Supplement to Core Manual
(Available in electronic form only: internet)

Target group
Programmers of UTM Fortran applications.

Related publications

380 U5461-J-Z135-6-76

openUTM (BS2000/OSD)
Programming Applications with KDCS for Pascal-XT
Supplement to Core Manual
(Available in electronic form only: internet)

Target group
Programmers of UTM Pascal-XT applications.

openUTM (BS2000/OSD)
Programming Applications with KDCS for PL/I
Supplement to Core Manual
(Available in electronic form only: internet)

Target group
Programmers of UTM PL/I applications.

WS4UTM (UNIX systems and Windows systems)
WebServices for openUTM
(Available in electronic form only: internet)

Target group
Application planners, application developers and UTM application support staff.

openUTM
Master Index
(Available in electronic form only: internet)

Target group
Anyone who wishes to work with the openUTM documentation.

Related publications

U5461-J-Z135-6-76 381

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

ul
y

20
08

S

ta
nd

 1
0:

38
.2

6
P

fa
d

: F
:\

ut
m

\B
e

an
C

o
nn

e
ct

\L
U

62
_V

51
\M

a
nu

a
l\e

n\
H

e
te

ro
_e

.li
t

Documentation for the openSEAS product environment

BeanConnect for openUTM
User Guide

Target group
BeanConnect administrators and designers, administrators of application servers, e.g. Ora-
cleAS/OC4J, Deployer, EJB developer and openUTM administrators.

BeanConnect for CICS
User Guide

Target group
BeanConnect administrators and designers, administrators of application servers, e.g. Ora-
cleAS/OC4J, Deployer, EJB developer and CICS administrators.

BizTransactions
Application Integration with Business Objects
Online description (available in the Internet)

Target group
Anyone wishing to integrate openUTM, MVS, UTM applications into Windows, Java and
openSEAS via business objects.

JConnect V2.0
Connecting Java Clients to openUTM
User documentation and Java docs
(Available in electronic form only: internet)

Target group
Programmers of Java applications.

WebTransactions
Concepts and Functions
Online description (available in the Internet)

Target group
Anyone wishing to connect UTM, MVS or OSD applications to the web.

WebTransactions
Template Language
Online description (available in the Internet)

Target group
Anyone wishing to connect UTM, MVS or OSD applications to the web.

Related publications

382 U5461-J-Z135-6-76

WebTransactions
Web Access to openUTM Applications via UPIC
Online description (available in the Internet)

Target group
Anyone who wishes to use WebTransactions to connect UTM applications to the web via
UPIC.

WebTransactions
Web Access to MVS Applications
Online description (available in the Internet)

Target group
Anyone who wishes to use WebTransactions to connect MVS applications to the web.

WebTransactions
Web Access to OSD Applications
Online description (available in the Internet)

Target group
Anyone who wishes to use WebTransactions to connect OSD applications to the web.

Related publications

U5461-J-Z135-6-76 383

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

ul
y

20
08

S

ta
nd

 1
0:

38
.2

6
P

fa
d

: F
:\

ut
m

\B
e

an
C

o
nn

e
ct

\L
U

62
_V

51
\M

a
nu

a
l\e

n\
H

e
te

ro
_e

.li
t

Documentation for the BS2000/OSD environment

AID (BS2000/OSD)
Advanced Interactive Debugger
Core Manual
User Guide

Target group
Programmers in BS2000/OSD.

BCAM (BS2000/OSD)
BCAM Volume 1/2
User Guide

Target group
Network planners, generators and administrators who run BCAM in BS2000/OSD.

BINDER (BS2000/OSD)
User Guide

Target group
Software developers.

BINDER (BS2000/OSD)
Ready Reference

Target group
Software developers with experience in the use of BINDER.

BS2000/OSD
Executive Macros
User Guide

Target group
BS2000/OSD assembly language programmers.

BS2000/OSD-BC
BLSSERV
Dynamic Binder Loader / Starter
User Guide

Target group
Software developers and experienced BS2000/OSD users.

Related publications

384 U5461-J-Z135-6-76

DCAM (BS2000/OSD, TRANSDATA)
COBOL Calls
User Guide

Target group
Programmers of DCAM COBOL programs.

DCAM (BS2000/OSD, TRANSDATA)
Macros
User Guide

Target group
Programmers of DCAM ASSEMBLER programs.

DCAM (BS2000/OSD, TRANSDATA)
Program Interfaces
Description

Target group
Organizers, application planners, programmers, system and network administrators.

FHS (BS2000/OSD, TRANSDATA)
Format Handling System for openUTM, TIAM, DCAM
User Guide

Target group
Programmers.

IFG for FHS (TRANSDATA)
User Guide

Target group
Terminal users, application engineers and programmers.

FHS-DOORS (BS2000/OSD,MS-Windows)
Graphical Interface for BS2000/OSD Applications
User Guide

Target group
End users of FHS-DOORS and administrators responsible for mask conversion and
provision.

Related publications

U5461-J-Z135-6-76 385

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

ul
y

20
08

S

ta
nd

 1
0:

38
.2

6
P

fa
d

: F
:\

ut
m

\B
e

an
C

o
nn

e
ct

\L
U

62
_V

51
\M

a
nu

a
l\e

n\
H

e
te

ro
_e

.li
t

HIPLEX AF (BS2000/OSD)
High-Availability of Applications in BS2000/OSD
Product Manual

Target group
System administrators and organizers in computer centers.

IMON (BS2000/OSD)
Installation Monitor
User Guide

Target group
Systems support staff of the BS2000/OSD operating system.

MT9750 (MS Windows)
9750 Emulation under Windows
Product Manual

Target group
PC users who want to use the product MT9750 to communicate with applications on a
BS2000 host.

OMNIS/OMNIS-MENU (TRANSDATA, BS2000/OSD)
Functions and Commands
User Guide

Target group
OMNIS administrators and OMNIS users.

OMNIS/OMNIS-MENU (TRANSDATA, BS2000)
Administration and Programming
User Guide

Target group
OMNIS administrators and programmers.

OMNIS-MENU (TRANSDATA, BS2000/OSD)
User Guide

Target group
OMNIS-MENU users and OMNIS-MENU administrators.

Related publications

386 U5461-J-Z135-6-76

OSS (BS2000/OSD)
OSI Session Service
User Guide

Target group
OSI TP users.

RSO (BS2000/OSD)
Remote SPOOL Output
User Guide

Target group
Nonprivileged users, RSO device administrators, SPOOL administrators and systems
support of BS2000/OSD.

SECOS (BS2000/OSD)
Security Control System
User Guide

Target group
BS2000/OSD system administrators and BS2000/OSD users working with extended
access protection for files.

SECOS (BS2000/OSD)
Security Control System
Ready Reference

Target group
Experienced SECOS users.

openSM2 (BS2000/OSD)
Software Monitor
Volume 1: Administration and Operation

Target group
Users and systems support staff.

TIAM (BS2000/OSD, TRANSDATA)
User Guide

Target group
BS2000/OSD users (non privileged) and programmers.

Related publications

U5461-J-Z135-6-76 387

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

ul
y

20
08

S

ta
nd

 1
0:

38
.2

6
P

fa
d

: F
:\

ut
m

\B
e

an
C

o
nn

e
ct

\L
U

62
_V

51
\M

a
nu

a
l\e

n\
H

e
te

ro
_e

.li
t

Unicode in BS2000/OSD
Introduction

Target group
Application programmers and system administrators, who want to get an overview, to which
extent the Unicode support is provided in BS2000/OSD, and which BS2000/OSD compo-
nents you need for the Unicode support.

VTSU (BS2000/OSD, TRANSDATA)
Virtual Terminal Support
User Guide

Target group
Users of the DCAM and TIAM access methods and of UTM, and also system and network
administrators.

XHCS (BS2000/OSD)
8-Bit Code and Unicode Support in BS2000/OSD
User Guide

Target group
Users of the DCAM and TIAM access methods and of UTM, and also system administrators
and users migrating from EHCS to XHCS.

Related publications

388 U5461-J-Z135-6-76

Documentation for the UNIX system environment

CMX V6.0 (Solaris)
Operation and Administration
User Guide

Target group
System administrators for Solaris.

CMX V6.0 (UNIX systems)
Operation and Administration
User Guide

Target group
System administrators for UNIX systems.

CMX V6.0
Programming CMX Applications
Programming Guide

Target group
Programmers of communication applications on UNIX systems.

OSS (SINIX)
OSI Session Service
User Guide

Target group
OSI TP users

PRIMECLUSTERTM

Concepts Guide (Solaris, Linux)

Target group
Users, system administrators, and support personnel.

Related publications

U5461-J-Z135-6-76 389

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

ul
y

20
08

S

ta
nd

 1
0:

38
.2

6
P

fa
d

: F
:\

ut
m

\B
e

an
C

o
nn

e
ct

\L
U

62
_V

51
\M

a
nu

a
l\e

n\
H

e
te

ro
_e

.li
t

Documentation for TRANSIT

The manuals are available as online manuals
http://manuals.fujitsu-siemens.com/softbooks/software/de/prevtsit.htm.

TRANSIT SERVER
Administration of TRANSIT
Core Manual Volume 1 and 2.

Target group
For openUTM-LU6.2 interconnection and openUTM-LU6.1 interconnection, System admin-
istrators, which are responsible for the usage of TRANSIT under UNIX systems.

TRANSIT CLIENT
Programming interface LU0, LU0-API, FTX-LU, UTMGW1
Programming Guide

Target group
For openUTM-LU6.1 interconnection, application programmer and TRANSIT admin-
strators.

http://manuals.fujitsu-siemens.com/softbooks/software/de/prevtsit.htm
http://manuals.fujitsu-siemens.com/softbooks/software/de/prevtsit.htm

Related publications

390 U5461-J-Z135-6-76

Documentation for CICS and IMS

This list of manuals provides just a general overview of the IBM publications available for
CICS and IMS. The titles may vary slightly for the different CICS Transaction Server for z/
OS V3.1 and IMS Version 9.

CICS
Intercommunication Guide
This document describes the different ways in CICS of communicating with other applica-
tions. Among other things, it describes the fundamentals of distributed transaction process-
ing with regard to installation, configuration and programming.

CICS
Distributed Transaction Programming Guide
Description programming when Distributed Transaction Programming is used

CICS
Application Programming Guide
This document describes the fundamentals of CPI-C application programming, including
distributed transaction processing.

CICS
Application Programming Reference
Description of the CICS program interface arranged in the alphabetical order of the
commands

CICS
Supplied Transactions
Description of the CICS administration commands

CICS
Resource Definition Guide
Description of the CICS definitions, e.g. Connection and Session definition

IMS Version 9
Application Programming: Design Guide
Chapter 7 describes the design of LU6.2 application programs.

IMS Version 9
Application Programming: Transaction Manager
This document contains detailed information on application programming with DL/I.

Related publications

U5461-J-Z135-6-76 391

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

ul
y

20
08

S

ta
nd

 1
0:

38
.2

6
P

fa
d

: F
:\

ut
m

\B
e

an
C

o
nn

e
ct

\L
U

62
_V

51
\M

a
nu

a
l\e

n\
H

e
te

ro
_e

.li
t

IMS Version 9
Installation Volume 2: System Definition and Tailoring
This document describes IMS system definition (e.g. the macros for defining transaction
codes).

IMS Version 9
Administration Guide: Transaction Manager
Chapters 19 and 20 describe how to set up LU6.2 interconnections.

IMS Version 9
Command Reference
Description of IMS administration commands

Related publications

392 U5461-J-Z135-6-76

Documentation for SNAP-IX and IBM Communications Server

This list of manuals provides just a general overview of the Data Connection Limited docu-
mentation available for SNAP-IX and IBM documentation available for IBM Communica-
tions Server products. The list of documentation is related to the following product versions:

– SNAP-IX Version 7
– IBM Communications Server for Windows Version 6.1.2
– IBM Communications Server for Linux Version 6.2.2
– IBM Communications Server for AIX Version 6.3.

SNAP-IX
General Information
This document contains general information on SNAP-IX.

SNAP-IX
Installation
This document contains instructions for installing SNAP-IX on Solaris systems.

SNAP-IX
Administration Guide
This document describes the administration of SNAP-IX. It is subdivided on the basis of the
different kinds of tasks involved.

SNAP-IX
Administration Command Reference
This document describes the administration commands of SNAP-IX. The commands are
arranged alphabetically. It also describes the generation parameters.

SNAP-IX
Diagnostic Guide
This document describes the diagnostic options available in SNAP-IX.

IBM Communications Server for Windows
Quick Beginnings
This document contains an introduction to the product and installation instructions.

IBM Communcations Server for Windows
Network Administration Guide
This document describes network administration. It is subdivided on the basis of the differ-
ent kinds of tasks involved.

Related publications

U5461-J-Z135-6-76 393

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

31
. J

ul
y

20
08

S

ta
nd

 1
0:

38
.2

6
P

fa
d

: F
:\

ut
m

\B
e

an
C

o
nn

e
ct

\L
U

62
_V

51
\M

a
nu

a
l\e

n\
H

e
te

ro
_e

.li
t

IBM Communications Server for Windows
Configuration File Reference
This document describes the generation parameters.

IBM Communications Server for Linux
Quick Beginnings
This document contains an introduction to the product and installation instructions.

IBM Communications Server for Linux
Administration Guide
This document describes administration. It is subdivided on the basis of the different kinds
of tasks involved.

IBM Communications Server for Linux
Administration Command Reference
This document describes the administration commands. The commands are arranged
alphabetically. It also describes the generation parameters.

IBM Communications Server for Linux
Diagnostics Guide
This document describes the diagnostic options that are available.

IBM Communications Server for AIX
Quick Beginnings
This document contains an introduction to the product and installation instructions.

IBM Communications Server for AIX
Administration Guide
This document describes administration. It is subdivided on the basis of the different kinds
of tasks involved.

IBM Communications Server for AIX
Administration Command Reference
This document describes the administration commands. The commands are arranged
alphabetically. It also describes the generation parameters.

IBM Communications Server for AIX
Diagnostics Guide
This document describes the diagnostic options that are available.

Related publications

394 U5461-J-Z135-6-76

Other publications

CPI-C (X/Open)
Distributed Transaction Processing
X/Open CAE Specification, Version 2
ISBN 1 85912 135 7

Reference Model Version 2 (X/Open)
Distributed Transaction Processing
X/Open Guide
ISBN 1 85912 019 9

TX (Transaction Demarcation) (X/Open)
Distributed Transaction Processing
X/Open CAE Specification
ISBN 1 85912 094 6

XTAMI (X/Open)
Distributed Transaction Processing
X/Open CAE Specification
ISBN 1 85912 130 6

XML
W3C specification (www consortium)
Web page: http://www.w3.org/XML

http://www.w3.org/XML

U5461-J-Z135-6-76 395

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

3
1.

 J
u

ly
 2

0
08

 S
ta

nd
 1

0:
42

.3
8

P
fa

d:
 F

:\u
tm

\B
ea

nC
on

n
ec

t\L
U

62
_V

5
1\

M
an

u
al

\e
n\

H
et

er
o_

e.
si

x

Index

A
ACCESS-POINT statement 49
activating

trace 64
administration

openUTM-LU62 54
openUTM-LU62 under Windows systems 54

agent 361
AIX systems

IBM CS gateway for LU6.2
interconnection 31

LU6.2 interconnection via IBM CS 27
alias name 47, 50, 55
ALLOCATE

IMS command 213
ALLOC-TIME 45
ALREADY_VERIFIED 187
alternate facility 361
analyzing traces 66
Anynet 28, 361
APPC 37, 361
APPL definition

IMS example for LU6.2 190
application context 45
application entity 36, 49
application entity qualifier 46, 49
application process title 47, 50
APPLID

IMS 182
APRO see KDCS call
ASCII 48, 49, 240
association 361
asynchronous processing 110, 224
ATTACH header 227
attach header 234, 361

B
back-end transaction 362
backout 362
basic conversation 122, 362
BCAM generation 94
BCIN 94
bidder 362
BIND 362
bracket protocol 362
brackets 21
busy parallel connections 61
busy session 61

C
CEMT SET CONNECTION NOTPENDING 40
Chain of RUs 227, 231, 362
change direction 113, 225
CHNG call see IMS calls
CICS 363
CICS client 148
CICS commands 238
CICS definitions 77

for LU6.1 connection 215
for LU6.1 transactions 222
for LU6.2 connection 86
for LU6.2 transactions 84

CICS macros 215
CICS programming

commands for LU6.1 226
commands for LU6.2 110
commands see EXEC CICS
dummy dialog 256, 262
example for LU6.2 86, 125
job recipient for LU6.2 118
job submitter for LU6.2 111

Index

396 U5461-J-Z135-6-76

job-receiver for LU6.1 233
job-submitter for LU6.1 226
LU6.1 example 237, 239
rules for LU6.1 224
rules for LU6.2 122
see also KDCS 123

clear connection 63
cluster controller 362
cold start 40, 56, 366

for CICS 40
commit 365
Committed 125
communication controller 363
compare states 363
comparing KDCS calls 236, 251
conffile 52
configuration file 42, 52
connection loss 40
CONNECTION name 78, 80, 216, 217
contention loser 363
contention winner 46, 81, 363
control entity 67
conversation 363
CPI-C 153, 363
CPI-C call

CMACCP 154
CMALLC 153
CMCFMD 176, 178
CMDEAL 154
CMINIT 153
CMRCV 154
CMSDT 155
CMSEND 154
CMSERR 155, 177
CMSPTR 155
CMSSL 153
CMSST 154

CPI-C program
see also KDCS 153

CPI-RR 153, 363
CTRL see KDCS call

D
data protection 260
DEFINE CONNECTION 78, 216
DEFINE SESSIONS 80, 217
DEFINE TRANSACTION 84, 222, 223
dependent LU 366
Destination Process Name 255
DFSLUEE0 201
dialog 364
dialog with IMS 250
DISPLAY

IMS command 213
Distributed Program Link 148, 364
distributed transaction processing 364
Distributed Transaction Processing (DTP) 110,

224
DL/I 198
DL/I-COBOL program

example 200
documentation

summary 14
DPN 244, 255, 261
dummy dialog 255
dump

creating 67
dump files 67

E
EBCDIC 48, 49, 240
EDTNAME 244
end of service 113
Enterprise Extender 364
entity 36
entity trace 55, 64, 66
error diagnosis 263
establishing connections 62
example for generating

openUTM-CICS via LU6.1 and UNIX
systems 221

openUTM-IMS via LU6.1 and UNIX
systems 248

examples 237
CPI-C programs (LU6.2) 208
DL/I program (LU6.2) 202

Index

U5461-J-Z135-6-76 397

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

3
1.

 J
u

ly
 2

0
08

 S
ta

nd
 1

0:
42

.3
8

P
fa

d:
 F

:\u
tm

\B
ea

nC
on

n
ec

t\L
U

62
_V

5
1\

M
an

u
al

\e
n\

H
et

er
o_

e.
si

x

exchange log name 60
EXEC CICS

ALLOCATE 86, 111, 226
BUILD ATTACH 227, 234
CONNECT PROCESS 86, 112
CONVERSE 114, 119, 230, 235
EXTRACT ATTACH 231, 233
EXTRACT PROCESS 118
FREE 117, 120
ISSUE ABEND 115, 119
ISSUE CONFIRMATION 115, 119
ISSUE ERROR 115, 119
ISSUE PREPARE 116, 120, 129
ISSUE SIGNAL 117, 120
LINK 148
RECEIVE 114, 118, 229, 233
RETRIEVE 239, 256, 262
RETURN 121, 235
SEND 113, 118, 228, 234
START 238, 256, 262
SYNCPOINT 116, 120, 235
SYNCPOINT ROLLBACK 116, 120, 141,

142, 172
WAIT CONVID 117, 120

External Call Interface 148

F
first speaker session 364
FMH 365
FMH4 240, 365
FMH5 227, 231, 234, 365
FMH6 241, 255, 261, 365
FMH7 365
format names

IMS with LU6.2 201
front-end transaction 364
function management header 365
functional unit commit 365

G
gateway

Linux/AIX systems with IBM CS 31
Solaris with SNAP-IX 30

gateway computer 29, 32, 34

GDS 365
general data stream 365
generating IMS transactions 249
generation 243

of openUTM-LU62 42
generation file 42, 52, 53

display name 53
generation program 52
GN call see IMS calls
GU call see IMS calls

H
half-session 366
host 366

I
IBM Communications Server 37

as gateway on Linux/AIX 31
generating LU6.2 interconnection 82, 95
IMS example for LU6.2 191
interconnection example 28, 32
Solaris 27

IMS 366
LU name in the case of LU6.2 182
LU6.2 TP name 183

IMS administration
LU6.2 213

IMS calls
AUTH (LU6.2) 198
CHNG 251
CHNG (LU6.2) 198
CMD (LU6.2) 198
GCMD (LU6.2) 198
GN 251
GN (LU6.2) 198
GU 251
GU (LU6.2) 198
INOY (LU6.2) 199
ISRT 251
ISRT (LU6.2) 198
PURG (LU6.2) 199
RETURN 251
ROLB (LU6.2) 199
ROLL 251

Index

398 U5461-J-Z135-6-76

ROLL (LU6.2) 199
ROLLB 251
ROLS (LU6.2) 199
SETO (LU6.2) 199
SETS (LU6.2) 199
SETU (LU6.2) 199
SYNC (LU6.2) 199

IMS definitions in the case of LU6.2 188
IMS programming 250

CPI-C for LU6.2 201
dummy dialog 262
with DL/I for LU6.2 198

IMS startup parameters
LU6.2 181

IMS transactions 183
independent LU 366
INFO see KDCS call
INIT see KDCS call
initiator 366
installation directory of openUTM-LU62 39
INSTANCE statement 43
ISC edit 244, 262
ISRT call see IMS calls

J
job receiver 224
job submitter 228

K
KCDF 240
KCDPN 257, 258, 259
KCMF 240
KCPRN 257, 258, 259
KCPSWORD 85
KCPWDTYP 85
KCRDPN 257
KCRPRN 257
KCSECTYP 85, 152
KCTAST 125
KCUIDTYP 85
KCUSERID 85
KCVGST 125
KDCS call

APRO AM 79, 123, 146, 153, 178, 239

APRO DM 79, 93, 123, 153, 236
APRO IN 257, 259
CTRL AB 124, 155
CTRL PE 123, 136, 152, 154
CTRL PR 123, 139, 152, 154, 169
INFO GN 257, 258
INIT PU 125
MPUT EM 124, 132, 155, 162
MPUT HM 124, 145, 155, 176
MPUT RM 130
PEND ER 124, 129, 155, 159
PEND FR 124, 129, 155, 159
PEND RE 138, 167
PEND RS 124, 130, 154
see also CICS 123
see also CPI-C 153

L
language 269
Linux systems

IBM CS gateway for LU6.2
interconnection 31

LU6.2 interconnection via IBM CS 27
LNETNAME 245
LOC-LISTENER-PORT 47
LOC-TSEL 47
log name 368
log record 40, 368
logical unit 367
logical unit of work 367
LPAP statement 215, 244, 245
LSES statement 217, 246
LTAC statement 152, 249
LTERM definition

IMS example 189
LU 367
LU6.1 interconnection

direct with TRANSIT on Solaris 33
to openUTM under BS2000/OSD 34
to openUTM under UNIX systems 34
to openUTM under Windwos systems 34

LU6.1 protocol 367
LU6.2 application 35
LU6.2 Edit Exit routine 201

Index

U5461-J-Z135-6-76 399

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

3
1.

 J
u

ly
 2

0
08

 S
ta

nd
 1

0:
42

.3
8

P
fa

d:
 F

:\u
tm

\B
ea

nC
on

n
ec

t\L
U

62
_V

5
1\

M
an

u
al

\e
n\

H
et

er
o_

e.
si

x

LU6.2 interconnection 35
direct via IBM CS on Solaris 27
direct via SNAP-IX on Solaris 26
direct via TRANSIT on Solaris 25
to openUTM under BS2000/OSD 29, 32
to openUTM under UNIX systems 29, 32
to openUTM under Windows systems 29, 32
with IBM CS gateway on Linux/AIX 31
with SNAP-IX gateway on Solaris 30

LU6.2 protocol 367
LU6.2 TP name

IMS 183
lukewarm 56
LUWID 367

M
macros 244, 249
major node definition

for Enterprise Extender 190
mapped conversation 368
Message Format Service 245
message segments 240
messages 269

u62_tp 270
XAP-TP provider 319

mode 368
MODE definition

IMS example for LU6.2 190
mode name 48, 122, 368
MPTN 361
MPUT see KDCS call

N
NCP 368
NETNAME 78, 216
NETNAMEQ 217
network name 368
notes regarding UTM-CICS programming 240
number of sessions 81

O
openUTM generation

openUTM-CICS LU6.2 interconnection 83,
92, 94

openUTM programming
dummy dialog 257
for LU6.2 152
IMS interconnection 254

openUTM-CICS interconnection 77, 255
openUTM-IMS interconnection 255
openUTM-LU62 35

entity 36
interconnection example 28, 29, 32

openUTM-LU62 generation with TNSX 91
IMS example for LU6.2 195

openUTM-LU62 generation without TNSX 91
openUTM-LU62 generation without TNSX TNSX

IMS-Beispiel für LU6.2 195
openUTM-LU62 generation without TSNX 93
openUTM-LU62 installation directory 39
openUTM-LU62 process 38
OSI-LPAP statement 45, 47
OSI-TP dialog 364
OSS 37

P
parallel connection 45

busy 61
parallel sessions 78, 218, 246, 369
Partner-UTM-Anwendung

TCP-Portnummer 50
password 85

IMS 187
PEND see KDCS call
physical unit 369
PLU 369
primary LU 218, 369
Primary Resource Name 255
principal facility 369
PRN 255
processing acknowledge 113, 115, 119, 131,

145, 161, 176
programming example

openUTM-IMS 252
protocol trace 67
PU 369

Index

400 U5461-J-Z135-6-76

Q
queued job

dummy dialog 255
in CICS 133, 146
in CPI-C 163, 178
with and without transaction

management 134, 147
queued jobs with IMS 250

R
RACF 85

IMS 187
RDPN 255
README files 19
registration editor 57
REM-LISTENER-PORT 50
REM-NSEL 50
remote LU 50
REM-TSEL 50
request unit 369
RequestCommit 125
Resource Definition Online 215
restart 40, 240
resync 370
RETURN call see IMS calls
Return Destination Process Name 255
Return Primary Resource Name 255
RNETNAME 215, 244
ROLL call see IMS calls
ROLLB call see IMS calls
RPRN 255
RSES 217, 246
RTAC 233, 249
RU 369
RU size 81, 218, 370

S
sample generation

openUTM-CICS via LU6.2 86
openUTM-CICS via TRANSIT-CD 219
openUTM-IMS transactions 249

sample program
asynchronous openUTM-CICS 239
openUTM-CICS via LU6.2 125

secondary LU 218, 369
security 79
security variants

IMS 187
send authorization 113, 225, 228
sense data 265
service restart 240
service status 125
service under Windows systems 57
SESCHA statement 218, 240, 244, 261
session 370

busy 61
release 224
setup 248

SESSNAME 217
side information

IMS 184
IMS example 189

SIDEINFO 184
SLU 369
SNA 371
SNAP-IX

as gateway on Solaris 30
Solaris 26

Solaris
direct LU6.1 interconnection 33
LU6.2 interconnection via SNAP-IX 26
LU6.2 interconnection via TRANSIT 25
SNAP-IX gateway for LU6.2

interconnection 30
SRRBACK 153, 171
SRRCMIT 153
SSCP 371
standard IMS transactions

LU6.2 209
starting openUTM-LU62 55
status information 59
Stellvertreter-AE

Transportselektor 47
Stellvertreter-LU

TCP-Portnummer 47
step 66
substitute AE 46
substitute concept 35

Index

U5461-J-Z135-6-76 401

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

3
1.

 J
u

ly
 2

0
08

 S
ta

nd
 1

0:
42

.3
8

P
fa

d:
 F

:\u
tm

\B
ea

nC
on

n
ec

t\L
U

62
_V

5
1\

M
an

u
al

\e
n\

H
et

er
o_

e.
si

x

substitute LU 47
sync point 232, 371
sync-level 112, 118, 371
synclog file 40
sync-point initiator 366
SYSID 78, 111, 216, 226, 238
system initialization table 77, 215
system startup 56

T
TAC statement 223
TCP-Portnummer 47, 50
terminating openUTM-LU62 58
TH 371
time measurement 55, 64
TNSX 46, 49, 83, 92, 94
TNSX generation

IMS example for LU6.2 196
TP 371
TP name 371
TP_Profile definition 188
trace level 55, 64
transaction code

IMS 183
transaction program 371
transaction restart 40
transaction status 125
TRANSIT

LU6.1 interconnection 33
TRANSIT-CD generation 249
TRANSIT-CLIENT

generating openUTM-CICS
interconnection 220

interconnection example 33, 34
TRANSIT-CPIC 37

interconnection example 25
TRANSIT-LU0 generation 249
TRANSIT-SERVER 25, 37

generating LU6.2 interconnection 82, 90
transmission header 220, 371
Transportselektor 47
TRMSGLTH 244, 246
TX 153, 363

type 2.0 node 371
type 2.1 node 29, 372
type 4 node 372
type 5 node 372
typewriter font 21

U
u62_adm 53, 58, 62, 63, 64, 66
u62_gen 52, 53
u62_sta 59
u62_start 55
u62_svc 39
u62_tp 39

messages 270
U62_TRC_FILES

trace files, change quantity 65
UDP 372
UDT 152
UDTAC 45
UDTCCR 45
UDTDISAC 45
UDTSEC 45
underscore 21
user ID 85, 152

IMS 187
USER.IMS.CNTL 188
userid see user ID
UTM generation

IMS example for LU6.2 196
UTM-ASYNC 51
UTM-CICS interconnection 215
UTMD statement 50
UTMGW1 220
UTM-IMS interconnection 243

V
VLVB 216, 227, 245, 372
VLVB format 231
VTAM 372
VTAM generation 82, 89

IMS example (LU6.2) 189
IMS LU6.2 interconnection 186

Index

402 U5461-J-Z135-6-76

W
warm start 40

Lukewarm 56
Write Log daemon 39
Write Log program 39

X
XAP-TP 37
XAP-TP provider 37

messages 319
XAP-TP trace 55, 64, 66
XMODE statement 45

	Contents
	Preface 11
	Summary of contents and target group 13
	Summary of contents of the openUTM manuals 14
	Changes to the previous manual 20
	Notational conventions 21
	Interconnection to IBM systems 23

	Direct LU6.2 interconnection via TRANSIT on Solaris 25
	Direct LU6.2 interconnection via SNAP-IX on Solaris 26
	Direct LU6.2 interconnection via IBM Communications Server on Linux or AIX systems 27
	Direct LU6.2 interconnection via IBM Communications Server on Windows systems 28
	LU6.2 interconnection via gateway computer with TRANSIT on Solaris 29
	LU6.2 interconnection via gateway computer with SNAP-IX on Solaris 30
	LU6.2 interconnection via gateway computer with IBM Communications Server on Linux or AIX systems 31
	LU6.2 interconnection via gateway computer with IBM Communications Server on Windows 32
	Direct LU6.1 interconnection with openUTM via TRANSIT on Solaris 33
	LU6.1 interconnection via gateway computer with TRANSIT on Solaris 34
	LU6.2 interconnections with openUTM-LU62 35

	openUTM-LU62 concepts and functions 35
	Generating openUTM-LU62 42
	Administering openUTM-LU62 54
	openUTM-CICS interconnection via LU6.2 77

	Generating an openUTM-CICS interconnection 77
	Programming an openUTM-CICS interconnection 110
	Using the CPI-C program interface 153
	openUTM-IMS interconnection via LU6.2 181

	Generating an openUTM-IMS interconnection 181
	Programming an openUTM-IMS interconnection 198
	IMS administration 213
	openUTM-CICS interconnection via LU6.1 215

	CICS definitions for openUTM-CICS sessions 215
	TRANSIT generation for openUTM-CICS sessions 220
	Defining CICS transactions 222
	CICS programming during interconnection with openUTM 224
	CICS commands for CICS job-submitting conversations 226
	CICS commands for CICS job-receiving conversations 233
	Comparison with KDCS calls 236
	Programming examples of CICS-openUTM communication 237
	CICS commands for queued jobs 238
	Notes regarding openUTM-CICS programming 240
	openUTM-IMS interconnection via LU6.1 243

	IMS generation for openUTM-IMS sessions 243
	TRANSIT generation for openUTM-IMS sessions 249
	Generating IMS transactions 249
	IMS programming for links to openUTM 250
	LU6.1 dummy dialogs between asynchronous services 255

	Program interfaces for openUTM 257
	Passing FMH6 parameters in openUTM, IMS and CICS 261
	Error diagnosis 263

	Diagnostic aids 263
	LU6.1 sense data 265
	openUTM-LU62 messages 269

	Messages from the u62_tp program 270
	Messages from the XAP-TP provider 319
	Messages from the utilities 346

	Preface
	Summary of contents and target group
	Summary of contents of the openUTM manuals
	openUTM documentation
	Documentation for the openSEAS product environment
	README files

	Changes to the previous manual
	Notational conventions

	Interconnection to IBM systems
	Direct LU6.2 interconnection via TRANSIT on Solaris
	Direct LU6.2 interconnection via SNAP-IX on Solaris
	Direct LU6.2 interconnection via IBM Communications Server on Linux or AIX systems
	Direct LU6.2 interconnection via IBM Communications Server on Windows systems
	LU6.2 interconnection via gateway computer with TRANSIT on Solaris
	LU6.2 interconnection via gateway computer with SNAP-IX on Solaris
	LU6.2 interconnection via gateway computer with IBM Communications Server on Linux or AIX systems
	LU6.2 interconnection via gateway computer with IBM Communications Server on Windows
	Direct LU6.1 interconnection with openUTM via TRANSIT on Solaris
	LU6.1 interconnection via gateway computer with TRANSIT on Solaris

	LU6.2 interconnections with openUTM-LU62
	openUTM-LU62 concepts and functions
	Substitute concept
	The openUTM-LU62 architecture
	openUTM-LU62 components
	Recovery functions
	Limitations of the protocol mapping

	Generating openUTM-LU62
	Generation file format
	INSTANCE statement
	Starting the generation program
	Restoring generation files
	Displaying the name of the generation file used

	Administering openUTM-LU62
	Administration under UNIX systems and Windows systems
	Starting openUTM-LU62
	Terminating openUTM-LU62
	Displaying status information
	Establishing connections
	Clearing connections
	Activating and deactivating traces
	Analyzing traces
	Creating a dump
	Protocol trace

	openUTM-CICS interconnection via LU6.2
	Generating an openUTM-CICS interconnection
	Definitions in CICS
	DEFINE CONNECTION
	DEFINE SESSIONS

	VTAM generation
	TRANSIT generation for openUTM-CICS sessions
	SNAP-IX generation for openUTM-CICS sessions
	Generating the IBM Communications Server for openUTM-CICS sessions
	openUTM-LU62 generation
	TNSX generation
	openUTM generation
	Defining CICS transactions
	Using user IDs
	A complete sample generation

	Programming an openUTM-CICS interconnection
	CICS commands for CICS job-submitter services
	ALLOCATE
	CONNECT PROCESS
	SEND
	RECEIVE
	CONVERSE
	ISSUE ABEND
	ISSUE CONFIRMATION
	ISSUE ERROR
	SYNCPOINT
	SYNCPOINT ROLLBACK
	ISSUE PREPARE
	FREE
	WAIT CONVID
	ISSUE SIGNAL

	CICS commands for CICS job-receiving services
	EXTRACT PROCESS
	RECEIVE
	SEND
	CONVERSE
	ISSUE ABEND
	ISSUE CONFIRMATION
	ISSUE ERROR
	SYNCPOINT
	SYNCPOINT ROLLBACK
	FREE
	WAIT CONVID
	ISSUE SIGNAL
	ISSUE PREPARE
	RETURN

	CICS programming hints
	Comparison with KDCS calls
	Examples of openUTM-CICS communication
	Starting an openUTM dialog service from within a CICS application program
	Starting an openUTM asynchronous service from a CICS application program
	Starting a CICS dialog service from a UTM application program
	Starting a CICS asynchronous service from a UTM application program

	Distributed Program Link
	openUTM programming hints

	Using the CPI-C program interface
	Comparison to KDCS calls
	Examples of openUTM-CPIC communication
	Starting an openUTM dialog service from a CPIC application program
	Starting an openUTM asynchronous service from a CPIC application program
	Starting a CPIC dialog service from a UTM application program
	Starting a CPIC asynchronous service from a UTM application program

	openUTM-IMS interconnection via LU6.2
	Generating an openUTM-IMS interconnection
	IMS startup parameters
	Defining the LU name of IMS
	Defining IMS transactions
	Defining partner LUs and openUTM transactions
	VTAM generation
	LU6.2 security
	Full generation example

	Programming an openUTM-IMS interconnection
	DL/I program interface
	CPI-C program interface
	LU6.2 Edit Exit routine
	Use of format names
	Examples of execution sequences with DL/I programs
	Examples of execution sequences with CPI-C programs
	Examples of execution sequences with standard IMS transactions
	Examples of execution sequences with IMS as the job submitter

	IMS administration

	openUTM-CICS interconnection via LU6.1
	CICS definitions for openUTM-CICS sessions
	DEFINE CONNECTION
	DEFINE SESSIONS
	Example of dependencies in CICS and openUTM generation

	TRANSIT generation for openUTM-CICS sessions
	Defining CICS transactions
	Local transactions
	Remote transactions

	CICS programming during interconnection with openUTM
	Rules and restrictions for CICS programming

	CICS commands for CICS job-submitting conversations
	ALLOCATE
	BUILD ATTACH
	SEND
	RECEIVE
	CONVERSE
	EXTRACT ATTACH
	SYNCPOINT command
	RETURN command

	CICS commands for CICS job-receiving conversations
	RECEIVE
	EXTRACT ATTACH
	BUILD ATTACH
	SEND
	CONVERSE
	SYNCPOINT
	RETURN

	Comparison with KDCS calls
	Programming examples of CICS-openUTM communication
	CICS commands for queued jobs
	START command
	RETRIEVE
	Examples of the exchange of queued jobs

	Notes regarding openUTM-CICS programming

	openUTM-IMS interconnection via LU6.1
	IMS generation for openUTM-IMS sessions
	COMM macro
	TYPE macro
	TERMINAL macro
	VTAMPOOL macro
	SUBPOOL macro
	NAME macro
	Examples of dependencies in openUTM/IMS generation

	TRANSIT generation for openUTM-IMS sessions
	Generating IMS transactions
	TRANSACT macro

	IMS programming for links to openUTM
	IMS interconnection options
	IMS calls
	Comparison to KDCS calls
	Examples of openUTM-IMS communication
	Examples of the exchange of queued jobs
	Notes on openUTM-IMS programming

	LU6.1 dummy dialogs between asynchronous services
	Program interfaces for openUTM
	INFO GN
	APRO IN

	Passing FMH6 parameters in openUTM, IMS and CICS
	Transaction code handling in openUTM
	Transaction code handling in IMS
	Transaction code handling in CICS

	Error diagnosis
	Diagnostic aids
	LU6.1 sense data

	openUTM-LU62 messages
	Messages from the u62_tp program
	Messages from the XAP-TP provider
	General inserts for the XAP-TP messages

	Messages from the utilities
	Messages from u62_start
	Messages from u62_sta
	Messages from u62_adm
	Messages from u62_gen

	Glossary
	Abbreviations
	Related publications
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

