
U2284-J-Z125-9-76 1

1 Preface
SDF-A (System Dialog Facility-Administration) is a software product for administration and
modification of the BS2000 user interface, which is implemented using SDF.
SDF (System Dialog Facility) requires, for the internal processing of inputs, syntax descrip-
tions; these are kept in special files, called syntax files. These syntax files can be arranged
in a hierarchical structure with a maximum of three levels (see section “File hierarchy” on
page 33).

The specification of the user interface simultaneously defines the scope of the system. By
modifying the user interface, it is therefore possible, for example, to provide specific users
with additional privileges or to restrict the rights and authority granted to certain users.
SDF-A can be used to process the user interface accordingly.

This manual describes how to use SDF-A to create new syntax files or to modify existing
syntax files.

The results of processing a syntax file with SDF-A become effective as soon as this syntax
file is activated.

2 U2284-J-Z125-9-76

Target group Preface

1.1 Target group

This manual is intended primarily for system administration and experienced BS2000 users.
It provides, on the one hand, a description of the features and applications of
SDF-A. On the other hand, it acts as a reference manual for all SDF-A statements and
macros and for the interface between SDF and high-level languages.

The manual also contains a description of SDF-SIM (System Dialog Facility-SIMulator).
SDF-SIM is designed for testing commands and statements in a defined environment of
syntax files.

We recommend the following manuals as preparatory reading matter and for more detailed
information about SDF:

– “Introductory Guide to the SDF Dialog Interface” [1]
This manual describes the dialog interface implemented with SDF and explains how to
enter SDF commands and statements as well as commands and standard statements
belonging directly to SDF.

– “SDF Management” [2]
This manual describes the commands for controlling SDF, the installation and
management of syntax files, and the statements for SDF-I, SDF-U and SDF-PAR.

– “Commands” [4], Volumes 1 through 6
These manuals describe all BS2000/OSD commands in SDF format, including the
commands reserved for system administration.

– “Introductory Guide to Systems Support” [6]
This manual describes the tasks to be performed by system operators and system
administrators.

There is also a “Ready Reference” [3] for SDF-A. This contains the SDF-A statements, the
macros and the function calls for the interface between SDF and high-level programming
languages, and the SDF-SIM statements. This Ready Reference is intended as a reference
work for experienced users.

U2284-J-Z125-9-76 3

Preface Summary of contents

1.2 Summary of contents

Chapter 2, “Syntax files and their processing with SDF-A”, is intended as an introduction to
the concept of SDF-A and to the basic principles for working with SDF-A.

Detailed examples illustrating the use and features of SDF-A can be found in chapters 3,
“Modifying command and statement definitions”, and 4, “Definition and implementation of
commands and statements by the user”.

The SDF-A statements, the SDF program interface, and SDF-SIM are described in
separate chapters, where they are listed in alphabetical order. This part of the manual is
intended for use as a reference section.

README file

Functional changes and supplements to the current product version not documented in this
manual are explained in the product-specific README file. The name of this file on your
BS2000 host is SYSRME.product.version.language and is SYSRME.SDF-A.041.E for SDF-A
V4.1. The user ID under which the README file is cataloged can be obtained from your
systems support group. The full path name is also output using the following command:

/SHOW-INSTALLATION-PATH INSTALL-UNIT=SDF-A,LOGICAL-IDENTIFIER=SYSRME.E

You can view the README file with the SHOW-FILE command or in an editor, or you can
use the following command to print the contents of the file on a standard printer:

/PRINT-DOCUMENT filename, LINE-SPACING=*BY-EBCDIC-CONTROL

4 U2284-J-Z125-9-76

Changes since the last version of the manual Preface

1.3 Changes since the last version of the manual

The manual for SDF-A V4.1E contains the following changes since the last version of the
manual (SDF-A V4.1A, published in June, 1996):

● SHOW-STMT (standard statement in SDF V4.4A and higher)

● The standard statements are not described any more in this manual. You will find
detailed descriptions of the standard statements in the “Introductory Guide to the SDF
Dialog Interface“ user guide [1].

● The following statements have been changed:

● The description of the interface to higher programming languages has been revised. Of
special note is that the interface to higher programming languages only supports the
standardized transfer area in the old format (see also the section “Changes to the SDF
program interface” on page 593ff), i.e. the functionality of the “old” macro calls
RDSTMT, CORSTMT and TRSTMT. The extended functionality of the corresponding
“new” macro calls CMDRST, CMDCST and CMDTST (e.g. statement return code) for
the standardized transfer area in the new format is only available through the Assembler
interface. The example of using the C interface has been updated accordingly.

SDF-A V4.1E can be run in BS2000/OSD V1.0 and higher (with SDF V4.1B and higher).
However, when the full scope of the functions are used, then the syntax files created can
only be used in BS2000/OSD V3.0 and higher.

Statement Changes

ADD-CMD,
MODIFY-CMD

IMPLEMENTOR=*PROCEDURE(...) structure:
– in the NAME=*BY-IMON(...) structure:

new ELEMENT operand
– new UNLOAD-PROGRAM operand

In the *YES(...) and *NO(...) structures of the DIALOG-, DIA-
LOG-PROC-, GUIDED-, BATCH-, BATCH-PROC- and CMD-
ALLOWED operands:
– PRIVILEGE=*ALL eliminated (corresponds to *SAME);

still supported for compatibility reasons, though

ADD-STMT,
MODIFY-STMT

New STMT-VERSION operand

DEFINE-
ENVIRONMENT

PARAMETER-FILE=*NO(...) structure:
– new SYSTEM=*CURRENT operand value

U2284-J-Z125-9-76 5

Preface Notes on the user interface

1.4 Notes on the user interface

The statements described in this manual are processed by the command processor SDF
(System Dialog Facility). The product thus offers various forms of guided or unguided dialog
with the facility for requesting help menus for the statements and commands. In the case of
an incorrect input, a correction dialog can be executed.
Detailed information on various options provided by SDF can be found in the “Introductory
Guide to the SDF Dialog Interface” [1].

Abbreviation of names

SDF permits inputs to be abbreviated in interactive and batch modes and in procedures,
provided the abbreviations used are unambiguous within the related syntax environment.
Note, however, that an abbreviation that is currently unambiguous could potentially become
ambiguous at a later date if new functions are added to the product. For this reason, it is
best to avoid abbreviations entirely, or at least to ensure that only guaranteed abbreviations
are used. In the statement formats, these guaranteed abbreviations are shown in boldface.

Command and statement names, operands and keyword values may be abbreviated as
follows:

– Complete name components may be omitted from right to left; the hyphen preceding
the dropped name component is also omitted.

– Individual characters of a name component may be omitted from right to left.

– An asterisk (*) preceding a keyword value is not considered a valid abbreviation for that
value. As of SDF V4.0A, keyword values are always represented with a leading asterisk.
The asterisk may be omitted only if there is no possible alternative variable operand
value with a value range that includes the name of the keyword value. This form of
abbreviation may be restricted due to extensions in later versions. For reasons of
compatibility, operand values that were previously represented without an asterisk are
still accepted without the asterisk.

Example

Unabbreviated command format:

/MODIFY-SDF-OPTIONS SYNTAX-FILE=*NONE,GUIDANCE=*MINIMUM

Abbreviated command format:

/MOD-SDF-OPT SYN-F=*NO,GUID=*MIN

The guaranteed abbreviations are only intended as recommendations for abbreviated input;
they may not always be the shortest possible input in your syntax environment. They are,
however, clear and easy to understand and are designed to remain unique in the long term.

6 U2284-J-Z125-9-76

Notes on the user interface Preface

In some cases, an additional abbreviation is documented in the manual next to the
command or statement name. This abbreviation is implemented as an alias for the
command or statement name and is guaranteed in the long term. The alias consists of a
maximum of 8 letters (A...Z) that are derived from the command or statement name. Aliases
cannot be abbreviated further.

Default values

Most operands are optional, i.e. need not be explicitly specified. Such operands are preset
to a specific operand value, the so-called default value. In the syntax, the default value for
each operand is shown underscored. If an optional operand is not explicitly specified, its
default value is automatically inserted when executing the command or statement. If some
default values do not correspond to the values most suitable for your purposes, you can
temporarily assign your individual default values for your task as of SDF V4.1A.

Positional operands

SDF permits operands to be specified either as keyword operands or as positional
operands. However, it is quite possible that the positions of operands may change in future
versions of the product. It is therefore advisable to avoid the use of positional operands,
especially in procedures.

XHCS support

Every terminal works with a particular character set. A coded character set (CCS) is the
unique representation of the characters in a character set in binary form. Extended
character sets can be used when working with the software product XHCS. SDF interprets
inputs in accordance with the standard code table EBCDIC.DF.03 (e.g. when converting
uppercase/ lowercase letters).
The coding of the following characters in an extended character set must be the same as
the coding used in the standard code table:

$, # , @ , ! , ” , ? , ^ , = , : , / , * , - , (,) , [,] , < , > , comma, semicolon, single quote.

SDF does not interpret any additional characters from an extended character set unless
they appear within the data types <c-string> and <text>. In other words, the conversion of
uppercase/lowercase letters is handled using a code table supplied by XHCS for the
extended character set. Any additional characters used within other data types are rejected
as syntax errors.

When statements are entered, the CCS used is the one specified in the appropriate macro
(RDSTMT/CMDRST, TRSTMT/CMDTST or CORSTMT/CMDCST). If no CCS was
specified, the one used for entering commands is assumed.

For further details on XHCS support, see the manuals “Introductory Guide to the SDF
Dialog Interface” [1] and “XHCS” [11].

U2284-J-Z125-9-76 7

Preface Metasyntax

1.5 Metasyntax

1.5.1 Notational conventions

The following notational conventions are used in this manual:

for notes

for warnings

Runtime examples are shown in typewriter script.Inputs expected from the user are
highlighted in bold.

In the text, references to other publications are given as abbreviated titles with numbers
enclosed in square brackets []. All references that follow refer to BS2000/OSD-BC V5.0.
The complete title of each publication to which reference is made is listed under “Related
publications” at the back of the manual. This is followed by information on how to order
manuals.

1.5.2 SDF syntax description

This syntax description is valid for SDF V4.5A.The syntax of the SDF command/statement
language is explained in the following three tables.

Table 1: Notational conventions

The meanings of the special characters and the notation used to describe command and
statement formats are explained in table 1.

Table 2: Data types

Variable operand values are represented in SDF by data types. Each data type represents
a specific set of values. The number of data types is limited to those described in table 2.

The description of the data types is valid for the entire set of commands/statements.
Therefore only deviations (if any) from the attributes described here are explained in the
relevant operand descriptions.

i

!

8 U2284-J-Z125-9-76

Metasyntax Preface

Table 3: Suffixes for data types

Data type suffixes define additional rules for data type input. They contain a length or
interval specification and can be used to limit the set of values (suffix begins with without),
extend it (suffix begins with with), or declare a particular task mandatory (suffix begins with
mandatory). The following short forms are used in this manual for data type suffixes:

cat-id cat
completion compl
correction-state corr
generation gen
lower-case low
manual-release man
odd-possible odd
path-completion path-compl
separators sep
temporary-file temp-file
underscore under
user-id user
version vers
wildcard-constr wild-constr
wildcards wild

The description of the ‘integer’ data type in table 3 contains a number of items in italics; the
italics are not part of the syntax and are only used to make the table easier to read.
For special data types that are checked by the implementation, table 3 contains suffixes
printed in italics (see the special suffix) which are not part of the syntax.

The description of the data type suffixes is valid for the entire set of commands/statements.
Therefore only deviations (if any) from the attributes described here are explained in the
relevant operand descriptions.

U2284-J-Z125-9-76 9

Preface Metasyntax

Metasyntax

Representation Meaning Examples

UPPERCASE

LETTERS
Uppercase letters denote keywords
(command, statement or operand
names, keyword values) and
constant operand values. Keyword
values begin with *.

HELP-SDF

SCREEN-STEPS = *NO

UPPERCASE

LETTERS

in boldface

Uppercase letters printed in
boldface denote guaranteed or
suggested abbreviations of
keywords.

GUIDANCE-MODE = *YES

= The equals sign connects an
operand name with the associated
operand values.

GUIDANCE-MODE = *NO

< > Angle brackets denote variables
whose range of values is described
by data types and suffixes (see
tables 2 and 3).

SYNTAX-FILE = <filename 1..54>

Underscoring Underscoring denotes the default
value of an operand.

GUIDANCE-MODE = *NO

/ A slash serves to separate
alternative operand values.

NEXT-FIELD = *NO / *YES

(…) Parentheses denote operand
values that initiate a structure.

,UNGUIDED-DIALOG = *YES (...) / *NO

[] Square brackets denote operand
values which introduce a structure
and are optional. The subsequent
structure can be specified without
the initiating operand value.

SELECT = [*BY-ATTRIBUTES](...)

Indentation Indentation indicates that the
operand is dependent on a higher-
ranking operand.

,GUIDED-DIALOG = *YES (...)

*YES(...)

 SCREEN-STEPS = *NO /

 *YES

Table 1: Metasyntax (part 1 of 2)

10 U2284-J-Z125-9-76

Metasyntax Preface

A vertical bar identifies related
operands within a structure. Its
length marks the beginning and
end of a structure. A structure may
contain further structures. The
number of vertical bars preceding
an operand corresponds to the
depth of the structure.

SUPPORT = *TAPE(...)

 *TAPE(...)

 VOLUME = *ANY(...)
 *ANY(...)
 ...

, A comma precedes further
operands at the same structure
level.

GUIDANCE-MODE = *NO / *YES

,SDF-COMMANDS = *NO / *YES

list-poss(n): The entry “list-poss” signifies that a
list of operand values can be given
at this point. If (n) is present, it
means that the list must not have
more than n elements. A list of
more than one element must be
enclosed in parentheses.

list-poss: *SAM / *ISAM

list-poss(40): <structured-name 1..30>

list-poss(256): *OMF / *SYSLST(...) /

<filename 1..54>

Alias: The name that follows represents a
guaranteed alias (abbreviation) for
the command or statement name.

HELP-SDF Alias: HPSDF

Representation Meaning Examples

Table 1: Metasyntax (part 2 of 2)

U2284-J-Z125-9-76 11

Preface Metasyntax

Data types

Data type Character set Special rules

alphanum-name A…Z
0…9
$, #, @

cat-id A…Z
0…9

Not more than 4 characters;
must not begin with the string PUB

command-rest freely selectable

composed-name A…Z
0…9
$, #, @
hyphen
period
catalog ID

Alphanumeric string that can be split into
multiple substrings by means of a period or
hyphen.
If a file name can also be specified, the string
may begin with a catalog ID in the form :cat: (see
data type filename).

c-string EBCDIC character Must be enclosed within single quotes;
the letter C may be prefixed; any single quotes
occurring within the string must be entered
twice.

date 0…9
Structure identifier:
hyphen

Input format: yyyy-mm-dd

yyyy: year; optionally 2 or 4 digits
mm: month
dd: day

device A…Z
0…9
hyphen

Character string, max. 8 characters in length,
corresponding to a device available in the
system. In guided dialog, SDF displays the valid
operand values. For notes on possible devices,
see the relevant operand description.

fixed +, -
0…9
period

Input format: [sign][digits].[digits]

[sign]: + or -
[digits]: 0...9

must contain at least one digit, but may contain
up to 10 characters (0...9, period) apart from the
sign.

Table 2: Data types (part 1 of 6)

12 U2284-J-Z125-9-76

Metasyntax Preface

filename A…Z
0…9
$, #, @
hyphen
period

Input format:

[:cat:][$user.]

 :cat:
optional entry of the catalog identifier;
character set limited to A...Z and 0...9;
maximum of 4 characters; must be enclosed
in colons; default value is the catalog
identifier assigned to the user ID, as
specified in the user catalog.

 $user.
optional entry of the user ID;
character set is A…Z, 0…9, $, #, @;
maximum of 8 characters; first character
cannot be a digit; $ and period are
mandatory;
default value is the user's own ID.

 $. (special case)
system default ID

file
file or job variable name;
may be split into a number of partial names
using a period as a delimiter:
name1[.name2[...]]
namei does not contain a period and must
not begin or end with a hyphen;
file can have a maximum length of 41
characters; it must not begin with a $ and
must include at least one character from the
range A...Z.

Data type Character set Special rules

Table 2: Data types (part 2 of 6)

file
file(no)
group

group
(*abs)
(+rel)
(-rel)

U2284-J-Z125-9-76 13

Preface Metasyntax

filename
(contd.)

#file (special case)
@file (special case)

or @ used as the first character indicates
temporary files or job variables, depending
on system generation.

file(no)
tape file name
no: version number;
character set is A...Z, 0...9, $, #, @.
Parentheses must be specified.

group
name of a file generation group
(character set: as for “file”)

group

 (*abs)
absolute generation number (1-9999);
* and parentheses must be specified.

 (+rel)
(-rel)

relative generation number (0-99);
sign and parentheses must be specified.

integer 0…9, +, - + or -, if specified, must be the first character.

name A…Z
0…9
$, #, @

Must not begin with 0...9.

Data type Character set Special rules

Table 2: Data types (part 3 of 6)

(*abs)
(+rel)
(-rel)

14 U2284-J-Z125-9-76

Metasyntax Preface

partial-filename A…Z
0…9
$, #, @
hyphen
period

Input format: [:cat:][$user.][partname.]

:cat: see filename
$user. see filename

partname
optional entry of the initial part of a name
common to a number of files or file
generation groups in the form:
name1.[name2.[...]]
namei (see filename).
The final character of “partname” must be a
period.
At least one of the parts :cat:, $user. or
partname must be specified.

posix-filename A...Z
0...9
special characters

String with a length of up to 255 characters;
consists of either one or two periods or of alpha-
numeric characters and special characters.
The special characters must be escaped with a
preceding \ (backslash); the / is not allowed.
Must be enclosed within single quotes if alter-
native data types are permitted, separators are
used, or the first character is a ?, ! or ^.
A distinction is made between uppercase and
lowercase.

posix-pathname A...Z
0...9
special characters
structure identifier:
slash

Input format: [/]part1/.../partn
where parti is a posix-filename;
max. 1023 characters;
must be enclosed within single quotes if alter-
native data types are permitted, separators are
used, or the first character is a ?, ! or ^.

Data type Character set Special rules

Table 2: Data types (part 4 of 6)

U2284-J-Z125-9-76 15

Preface Metasyntax

product-version A…Z
0…9
period
single quote

Input format:

where m, n, s and o are all digits and a is a letter.
Whether the release and/or correction status
may/must be specified depends on the suffixes
to the data type (see suffixes without-corr,
without-man, mandatory-man and mandatory-
corr in table 3).
product-version may be enclosed within single
quotes (possibly with a preceding C).
The specification of the version may begin with
the letter V.

structured-name A…Z
0…9
$, #, @
hyphen

Alphanumeric string which may comprise a
number of substrings separated by a hyphen.
First character: A...Z or $, #, @

text freely selectable For the input format, see the relevant operand
descriptions.

time 0…9
structure identifier:
colon

Time-of-day entry:

Input format:

hh: hours
mm: minutes
ss: seconds

vsn a) A…Z
0…9

a) Input format: pvsid.sequence-no
max. 6 characters
pvsid: 2-4 characters; PUB must

not be entered
sequence-no: 1-3 characters

 b) A…Z
0…9
$, #, @

b) Max. 6 characters;
PUB may be prefixed, but must not be
followed by $, #, @.

Data type Character set Special rules

Table 2: Data types (part 5 of 6)

[[C]’][V][m]m.naso[’]

correction status

release status

hh:mm:ss
hh:mm
hh

Leading zeros may be
omitted

16 U2284-J-Z125-9-76

Metasyntax Preface

x-string Hexadecimal:
00…FF

Must be enclosed in single quotes; must be
prefixed by the letter X. There may be an odd
number of characters.

x-text Hexadecimal:
00…FF

Must not be enclosed in single quotes;
the letter X must not be prefixed.
There may be an odd number of characters.

Data type Character set Special rules

Table 2: Data types (part 6 of 6)

U2284-J-Z125-9-76 17

Preface Metasyntax

Suffixes for data types

Suffix Meaning

x..y unit With data type “integer”: interval specification

x minimum value permitted for “integer”. x is an (optionally signed)
integer.

y maximum value permitted for “integer”. y is an (optionally signed)
integer.

unit with “integer” only: additional units. The following units may be
specified:
days byte
hours 2Kbyte
minutes 4Kbyte
seconds Mbyte
milliseconds

x..y special With the other data types: length specification
For data types catid, date, device, product-version, time and vsn the length
specification is not displayed.

x minimum length for the operand value; x is an integer.

y maximum length for the operand value; y is an integer.

x=y the length of the operand value must be precisely x.

special Specification of a suffix for describing a special data type that is
checked by the implementation. “special” can be preceded by other
suffixes. The following specifications are used:
arithm-expr arithmetic expression (SDF-P)
bool-expr logical expression (SDF-P)
string-expr string expression (SDF-P)
expr freely selectable expression (SDF-P)
cond-expr conditional expression (JV)
symbol CSECT or entry name (BLS)

with Extends the specification options for a data type.

-compl When specifying the data type “date”, SDF expands two-digit year specifica-
tions in the form yy-mm-dd to:

20yy-mm-dd if yy < 60
19yy-mm-dd if yy Ï 60

-low Uppercase and lowercase letters are differentiated.

-path-
compl

For specifications for the data type “filename”, SDF adds the catalog and/or
user ID if these have not been specified.

Table 3: Data type suffixes (part 1 of 7)

18 U2284-J-Z125-9-76

Metasyntax Preface

with (contd.)

-under Permits underscores (_) for the data type “name”.

-wild(n) Parts of names may be replaced by the following wildcards.
n denotes the maximum input length when using wildcards.
Due to the introduction of the data types posix-filename and posix-
pathname, SDF now accepts wildcards from the UNIX world (referred to
below as POSIX wildcards) in addition to the usual BS2000 wildcards.
However, as not all commands support POSIX wildcards, their use for data
types other than posix-filename and posix-pathname can lead to semantic
errors.
Only POSIX wildcards or only BS2000 wildcards should be used within a
search pattern. Only POSIX wildcards are allowed for the data types posix-
filename and posix-pathname. If a pattern can be matched more than once
in a string, the first match is used.

BS2000
wildcards

Meaning

* Replaces an arbitrary (even empty) character string. If the
string concerned starts with *, then the * must be entered twice
in succession if it is followed by other characters and if the
character string entered does not contain at least one other
wildcard.

Termina-
ting period

Partially-qualified entry of a name.
Corresponds implicitly to the string “./*”, i.e. at least one other
character follows the period.

/ Replaces any single character.

<sx:sy> Replaces a string that meets the following conditions:
– It is at least as long as the shortest string (sx or sy)
– It is not longer than the longest string (sx or sy)
– It lies between sx and sy in the alphabetic collating

sequence; numbers are sorted after letters (A...Z, 0...9)
– sx can also be an empty string (which is in the first position

in the alphabetic collating sequence)
– sy can also be an empty string, which in this position stands

for the string with the highest possible code (contains only
the characters X’FF’)

<s1,…> Replaces all strings that match any of the character combina-
tions specified by s. s may also be an empty string. Any such
string may also be a range specification “sx:sy” (see above).

Suffix Meaning

Table 3: Data type suffixes (part 2 of 7)

U2284-J-Z125-9-76 19

Preface Metasyntax

with-wild(n)
(contd.)

-s Replaces all strings that do not match the specified string s.
The minus sign may only appear at the beginning of string s.
Within the data types filename or partial-filename the negated
string -s can be used exactly once, i.e. -s can replace one of
the three name components: cat, user or file.

Wildcards are not permitted in generation and version specifications for file
names. Only system administration may use wildcards in user IDs.
Wildcards cannot be used to replace the delimiters in name components cat
(colon) and user ($ and period).

POSIX
wildcards

Meaning

* Replaces any single string (including an empty string). An *
appearing at the first position must be duplicated if it is followed
by other characters and if the entered string does not include
at least one further wildcard.

? Replaces any single character; not permitted as the first
character outside single quotes.

[cx-cy] Replaces any single character from the range defined by cx
and cy, including the limits of the range. cx and cy must be
normal characters.

[s] Replaces exactly one character from string s.
The expressions [cx-cy] and [s] can be combined into
[s1cx-cys2].

[!cx-cy] Replaces exactly one character not in the range defined by cx
and cy, including the limits of the range. cx and cy must be
normal characters. The expressions [!cx-cy] and [!s] can be
combined into [!s1cx-cys2].

[!s] Replaces exactly one character not contained in string s. The
expressions [!s] and [!cx-cy] can be combined into [!s1cx-cys2].

Suffix Meaning

Table 3: Data type suffixes (part 3 of 7)

20 U2284-J-Z125-9-76

Metasyntax Preface

with (contd.)

wild-
constr(n)

Specification of a constructor (string) that defines how new names are to be
constructed from a previously specified selector (i.e. a selection string with
wildcards). See also with-wild. n denotes the maximum input length when
using wildcards.
The constructor may consist of constant strings and patterns. A pattern
(character) is replaced by the string that was selected by the corresponding
pattern in the selector.
The following wildcards may be used in constructors:

Wildcard Meaning

* Corresponds to the string selected by the wildcard * in the
selector.

Termina-
ting period

Corresponds to the partially-qualified specification of a name in
the selector;
corresponds to the string selected by the terminating period in
the selector.

/ or ? Corresponds to the character selected by the / or ? wildcard in
the selector.

<n> Corresponds to the string selected by the n-th wildcard in the
selector, where n is an integer.

Allocation of wildcards to corresponding wildcards in the selector:
All wildcards in the selector are numbered from left to right in ascending
order (global index).
Identical wildcards in the selector are additionally numbered from left to right
in ascending order (wildcard-specific index).
Wildcards can be specified in the constructor by one of two mutually
exclusive methods:

1. Wildcards can be specified via the global index: <n>

2. The same wildcard may be specified as in the selector; substitution
occurs on the basis of the wildcard-specific index. For example:
the second “/” corresponds to the string selected by the second “/” in the
selector

Suffix Meaning

Table 3: Data type suffixes (part 4 of 7)

U2284-J-Z125-9-76 21

Preface Metasyntax

with-wild-
constr(n)

(contd.)

The following rules must be observed when specifying a constructor:

– The constructor can only contain wildcards of the selector.

– If the string selected by the wildcard <...> or [...] is to be used in the
constructor, the index notation must be selected.

– The index notation must be selected if the string identified by a wildcard
in the selector is to be used more than once in the constructor. For
example: if the selector “A/” is specified, the constructor “A<n><n>” must
be specified instead of “A//”.

– The wildcard * can also be an empty string. Note that if multiple asterisks
appear in sequence (even with further wildcards), only the last asterisk
can be a non-empty string, e.g. for “****” or “*//*”.

– Valid names must be produced by the constructor. This must be taken
into account when specifying both the constructor and the selector.

– Depending on the constructor, identical names may be constructed from
different names selected by the selector. For example:
 “A/*” selects the names “A1” and “A2”; the constructor “B*” generates
the same new name “B” in both cases.
To prevent this from occurring, all wildcards of the selector should be
used at least once in the constructor.

– If the constructor ends with a period, the selector must also end with a
period. The string selected by the period at the end of the selector
cannot be specified by the global index in the constructor specification.

Suffix Meaning

Table 3: Data type suffixes (part 5 of 7)

22 U2284-J-Z125-9-76

Metasyntax Preface

with-wild-
constr(n)
(contd.)

Examples:

without Restricts the specification options for a data type.

-cat Specification of a catalog ID is not permitted.

-corr Input format: [[C]’][V][m]m.na[’]
Specifications for the data type product-version must not include the
correction status.

-gen Specification of a file generation or file generation group is not permitted.

-man Input format: [[C]’][V][m]m.n[’]
Specifications for the data type product-version must not include either
release or correction status.

-odd The data type x-text permits only an even number of characters.

-sep With the data type “text”, specification of the following separators is not
permitted: ; = () < > Ë (i.e. semicolon, equals sign, left and right paren-
theses, greater than, less than, and blank).

-temp-
file

Specification of a temporary file is not permitted (see #file or @file under
filename).

Suffix Meaning

Table 3: Data type suffixes (part 6 of 7)

Selector Selection Constructor New name

A//* AB1
AB2
A.B.C

D<3><2> D1
D2
D.CB

C.<A:C>/<D,F> C.AAD
C.ABD
C.BAF
C.BBF

G.<1>.<3>.XY<2> G.A.D.XYA
G.A.D.XYB
G.B.F.XYA
G.B.F.XYB

C.<A:C>/<D,F> C.AAD
C.ABD
C.BAF
C.BBF

G.<1>.<2>.XY<2> G.A.A.XYA
G.A.B.XYB
G.B.A.XYA
G.B.B.XYB

A//B ACDB
ACEB
AC.B
A.CB

G/XY/ GCXYD
GCXYE
GCXY. 1

G.XYC
1 The period at the end of the name may violate naming conventions (e.g. for fully-qualified

file names).

U2284-J-Z125-9-76 23

Preface Metasyntax

without
(contd.)

-user Specification of a user ID is not permitted.

-vers Specification of the version (see “file(no)”) is not permitted for tape files.

-wild The file types posix-filename and posix-pathname must not contain a
pattern (character).

mandatory Certain specifications are necessary for a data type.

-corr Input format: [[C]’][V][m]m.naso[’]
Specifications for the data type product-version must include the correction
status and therefore also the release status.

-man Input format: [[C]’][V][m]m.na[so][’]
Specifications for the data type product-version must include the release
status. Specification of the correction status is optional if this is not
prohibited by the use of the suffix without-corr.

-quotes Specifications for the data types posix-filename and posix-pathname must
be enclosed in single quotes.

Suffix Meaning

Table 3: Data type suffixes (part 7 of 7)

24 U2284-J-Z125-9-76

Metasyntax Preface

U2284-J-Z125-9-76 25

2 Syntax files and their processing with SDF-A
Syntax files are supplied with the basic configuration of BS2000 and with the various
software products. These contain:

● information on the syntax of all and of the program statements

● information as to how these commands are implemented in BS2000, e.g.

– the names of the system entries via which command execution is effected

– the specifications for passing parameters to the executing system modules

● general and command-specific specifications for guided dialogs

● explanatory texts for the commands or statements and their operands (“help texts”)

● privileges required to access domains, commands, statements, operands and operand
values

The syntax files are merged, as required, to form group or system syntax files and are
assigned accordingly in the system (see the “SDF Management” manual [2]). When SDF
processes a command that has been entered, it retrieves the information needed to do so
from the activated syntax files (see section “File hierarchy” on page 33).

26 U2284-J-Z125-9-76

File types Syntax files

Figure 1: Principle of operation of SDF

Activated
syntax

files

SDF

Command
procedures

Application programs
and utility routines

BS2000 kernel
(system modules)

Data display terminal

Parameters for
execution

Information,
messages,
error dialog

Input

Input
processing

Execution

Output

U2284-J-Z125-9-76 27

Syntax files File types

2.1 File types

There are three types of syntax file:

– system syntax files

– group syntax files

– user syntax files

In addition to the system syntax files, one group and one or more user syntax files may be
activated for a task. In this context, there is a fixed file hierarchy that determines how SDF
is to work with more than one syntax file (see section “File hierarchy” on page 33ff).

SDF-A supports syntax files with and without a PAM key.

2.1.1 System syntax files

Syntax files of the type SYSTEM are supplied with the basic configuration of BS2000 and
with each software product. These contain the definitions of commands and programs
which are to be available throughout the system. They are supplied by Fujitsu Siemens
Computers and can be modified with SDF-A. As of SDF V3.0 multiple system syntax files
can be active simultaneously. The basic system syntax file must be one of those active, and
may be accompanied by a number of subsystem syntax files.

Basic system syntax file

You require at least the basic system syntax file in order to work with SDF. It contains the
definitions of the domains, the standard statements and the SDF-specific commands (from
the SDF domain) as well as the system-wide global information settings. The syntax file
SYSSDF.SDF.045 is activated for this purpose by default. Systems support can make the
modifications (e.g. restrict functions) with the SDF-A (or SDF-U) utility routine. Modifications
apply to all users of the system.

When SDF starts, the name of the basic system syntax file is read from the SDF parameter
file and the file is automatically activated.

During a session, system administration can replace the activated basic system syntax file
with another by means of the MODIFY-SDF-PARAMETERS command. A change to the
basic system syntax file during the session immediately affects all existing and future tasks.

28 U2284-J-Z125-9-76

File types Syntax files

Subsystem syntax files

There can be also several subsystem syntax files activated in addition to the basic syntax
file. A subsystem syntax file contains the definitions of commands and programs that
belong to a subsystem managed by DSSM or even to any installation unit (including
BS2CP). Subsystem syntax files can be modified using SDF-A. Any such modifications,
e.g. limitations on functional scope, apply for all users of the system.

The activation of a subsystem syntax file during the session takes immediate effect for all
existing and future tasks.

There are two ways to activate subsystem syntax files:

● The name of the subsystem syntax file was defined in the subsystem declaration. In this
case the subsystem syntax file is automatically activated when the subsystem is loaded
and deactivated when the subsystem is unloaded.

● The name of the subsystem syntax file is entered in the SDF parameter file. In this case
the subsystem syntax file is automatically activated at system initialization. If the pubset
on which this file is stored is not available when the system is initialized, then it can only
be activated after importing the pubset.
It can be modified (deactivated or exchanged) via the SDF parameter file only. In this
case, the subsystem syntax file is available independently of the availability of the corre-
sponding subsystem.

If a command or statement definition is defined in more than one active subsystem syntax
files, then the following cases arise:

● Only one version of the subsystem can be active at a time. In this case the command
or statement definition is used that is found in the syntax file of the version of the
subsystem last activated.

● Several versions of the subsystem can be active at a time (coexistence). The following
cases arise:

– The command or statement definition from the syntax file of the corresponding
subsystem version is used for a task that is assigned to a specific subsystem
version.
The syntax analysis of a START-<utility> command is always performed before the
program is loaded, i.e. before connecting the task to a subsystem version of the
program called. This is why the syntax file of the first version of the subsystem
activated is evaluated.

– The command or statement definition contained in the first version of the subsystem
activated is used for tasks that are not assigned to any subsystem version.

U2284-J-Z125-9-76 29

Syntax files File types

2.1.2 Group syntax file

Syntax files of type GROUP may also be supplied with software products. These contain
the definitions of commands and programs which are to be available only to certain user
IDs. They are supplied by Fujitsu Siemens Computers and can be modified with SDF-A.
System administration can also create group syntax files with SDF-A. With SDF-I [2] they
are merged into the appropriate group syntax file. The modifications, such as functional
restrictions, apply to all user IDs to which the group syntax file is assigned.

A group syntax file may contain extensions, restrictions and other modifications with respect
to the system syntax files. By assigning a group syntax file, system administration can
match the available functional scope precisely to the needs of certain users.

If, for example, system administration has restricted the functional scope supplied by Fujitsu
Siemens Computers in the basic system syntax file, a group syntax file can be used to
cancel these restrictions for certain user IDs. Conversely, a group syntax file can be used
to prevent certain user IDs from using functions available on a global basis.

A group syntax file may be activated, but need not be. System administration assigns it to
a profile ID via the file name. A profile ID may be assigned to one or more user IDs. User
IDs with the same profile ID all use the same group syntax file (see section “Naming
conventions” on page 36).

With the MODIFY-SDF-PARAMETERS command, system administration can

– change an existing assignment,

– cancel an existing assignment, or

– assign a group syntax file to a profile ID for the first time.

The SCOPE operand defines this assignment as permanent, permanent as of the next
session, or valid for the current session only. A specification made with MODIFY-SDF-
PARAMETERS applies only to tasks generated after this specification. The period of validity
for this specification can be defined more precisely with the SCOPE operand. Existing tasks
remain unaffected. When a group syntax file is assigned to a profile ID, it is automatically
activated following processing of the SET-LOGON-PARAMETERS command. It remains
activated until the end of the task.

Only one group syntax file can ever be activated per task. At startup, SDF generates a class
4 list containing the names of the group syntax files and the related profile IDs as laid down
in the SDF parameter file.

If the group syntax file to be activated is not available when the LOGON command is
processed, e.g. because it is being processed itself, a message is output and the task is
created without the group syntax file.

30 U2284-J-Z125-9-76

File types Syntax files

A warning is output if the SDF parameter file does not exist or is invalid. If the TSOS group
syntax file to be activated is invalid, SDF issues a console prompt requesting a correct
TSOS group syntax file. Thereafter, this group syntax file is the one activated at the next
LOGON under TSOS.

The basic system syntax file containing the command and program definitions for the user
IDs TSOS, SYSPRIV and SYSAUDIT is the only one required as of BS2000/OSD-BC V1.0.
Since the TSOS, SECURITY-ADMINISTRATION, SAT-FILE-MANAGEMENT and SAT-
FILE-EVALUATION privileges are assigned to these definitions, this special functionality is
available only to those users who possess the corresponding privileges.

Group syntax files are supplied in conjunction with certain products or created by the users
themselves with the aid of SDF-A.

2.1.3 User syntax files

A user syntax file may contain extensions, restrictions and other modifications with respect
to the basic system syntax file or the subsystem syntax files and, where applicable, with
respect to the group syntax file. Possible extensions and other functional modifications are
limited to statements to user programs and to commands implemented via procedures.
Functional restrictions for BS2000 commands (implemented via system modules),
specified in the system syntax files or the group syntax file cannot be canceled in a user
syntax file.

A user syntax file may be activated, but need not be. As of SDF V4.1 several user names
can be active simultaneously for each task. If a command or statement is defined in several
simultaneously activated user syntax files, the definition from the last activated user syntax
file is used.

If a user syntax file has the name $<userid>.SDF.USER.SYNTAX and a task under the user
ID <userid> is started, this user syntax file is automatically activated following processing
of the SET-LOGON-PARAMETERS command. If the user syntax file to be activated is not
available at this point, e.g. because it is being processed itself, a message is output and the
task is created without the user syntax file.

During the task, the user can activate the user syntax file(s) by means of the MODIFY-SDF-
OPTIONS command/statement. MODIFY-SDF-OPTIONS can also be used to deactivate
the user syntax file.

User syntax files must be generated by the user with the aid of SDF-A.

U2284-J-Z125-9-76 31

Syntax files Concept of privileges

2.2 Concept of privileges

As of BS2000 V10.0, the privileges formerly granted to the user ID TSOS can be distributed
to other user IDs if the software product SECOS [10] is loaded in the system. The privileges
that can be assigned to the user IDs are known as global privileges and authorize the user
to perform certain tasks such as global user administration (USER-ADMINISTRATION) or
security administration (SECURITY-ADMINISTRATION). If a user ID has a privilege of this
nature, the user can perform privileged operations, using certain privileged commands for
the purpose

2.2.1 Privileges in syntax files

Until now, privileged objects (domains, programs, commands, statements, operands and
operand values) were defined in group syntax files assigned to the user IDs with the appro-
priate privileges. This mechanism ensured that no other user ID had access to privileged
objects.

As of Version 2.0 of SDF-A, it is possible to define the individual privileges (e.g. TSOS,
USER-ADMINISTRATION or SECURITY-ADMINISTRATION) that a user ID requires in
order to work with specific objects (domains, programs, commands, statements, operands
and operand values). Consequently, all objects can be defined in a single syntax file to
which all users have access. A user request cannot access an object unless it possesses
at least one of the privileges allocated to the object. A user request can have more than one
privilege.

Privileges are keywords. Possible privileges are discussed in the “SECOS” User Guide [10];
note that privileges also depend on the software installed (for example the HSMS-
ADMINISTRATION and VM2000-ADMINISTRATION privileges).

Privileges are allocated to an object by SDF-A by means of a suitable ADD statement and
modified by means of a suitable MODIFY statement.

Only those objects for which the user has the requisite privileges and can therefore access
are displayed in a guided dialog.

The specification and evaluation of privileges for objects in the syntax file are supported as
follows:
– by SDF-A as of Version 2.0
– by SDF as of Version 2.0
– in BS2000 as of BS2000/OSD-BC V1.0 in conjunction with SRPM

(see “SECOS” User Guide [10]).

32 U2284-J-Z125-9-76

Concept of privileges Syntax files

2.2.2 Assigning privileges; notes and conventions

● If a privileges list is modified, those privileges that remain unchanged must be repeated
in the MODIFY statement.

● If a new privilege is assigned to a structure, only the dependent structures defined with
PRIVILEGE=*SAME receive the new privilege. This means that after every modify
operation, dependent structures having privileges of their own must be altered
separately (with EDIT and MODIFY-...).

● The same test is run in all MODIFY and ADD statements, in order to prevent a
dependent structure having more privileges than the higher-order structures.

● If a privilege is canceled in a structure, it is also canceled in those dependent structures
that have privileges of their own. This prevents inconsistencies in the syntax tree.
The privilege in question is canceled in those dependent structures defined with
PRIVILEGE=*SAME.
The last privilege in a dependent structure cannot be canceled. An attempt to cancel
the last privilege is rejected with an error message. If this happens, use the REMOVE
statement to explicitly remove the structure.

● If an operand has a default value, the default value must have the same privileges as
the operand.

● If an operand does not have a default value, it must have the same privileges as its
higher-order structure (command or value). For each of the operand’s privileges, there
must be at least a value having the same privilege. These two rules ensure that,
irrespective of its privileges, each user request can assign a value to the operand.

U2284-J-Z125-9-76 33

Syntax files File hierarchy

2.3 File hierarchy

The existence of a basic system syntax file is a prerequisite for the use of SDF. In addition,
multiple subsystem syntax files and, for each task, one group syntax file and one or more
user syntax files can also be active. If a command or a statement is defined in more than
one active system syntax file, the definition from the system syntax file last activated is
used.

Certain rules govern how SDF selects a syntax file in order to fetch the information it
requires in instances when syntax files of more than one type are simultaneously active for
a user ID. The rules produce a hierarchy of syntax files that is applicable for a task under a
certain user ID.
The following constellations are possible:

● only the system syntax files are active

● the system syntax files and a group syntax file are active

● the system syntax files and the user syntax files are active

● the system syntax files, a group syntax file and the user syntax files are active

● only a group syntax file is active

● a group syntax file and the user syntax files are active

Note that for all these constellations, as of BS2000/OSD-BC V1.0, the set of possible
commands and statements also depends on the privileges assigned to the objects in
question.

Only the system syntax files are active

In the simplest case, only the system syntax files are activated. Which commands and
statements may be entered then depends solely upon the contents of the system syntax
files.

System syntax files and group syntax file are active

If a group syntax file has been activated in addition to the system syntax files for the user
ID, the definitions contained in the group syntax file (including global information) take
precedence over those in the system syntax files. The disabling of a command or a
statement in the group syntax file also counts as a definition. Only when a command or a
statement is defined exclusively in the system syntax files does SDF take the information
from there. Which commands and statements may be entered depends on the contents of
both types of file.

34 U2284-J-Z125-9-76

File hierarchy Syntax files

System syntax files and user syntax files are active

If user syntax files have been activated in addition to the system syntax files, the definitions
of BS2000 commands (implemented via system modules) contained in the former must be
fully contained in the system syntax files. Otherwise, the definitions in the user syntax files
(including global information and disabled commands) take precedence over those in the
system syntax files.

System, group and user syntax files are active

If both a group syntax file and user syntax files have been activated in addition to the system
syntax files, the following applies:

The command set permitted in a user syntax file is determined by the definitions contained
in the group syntax file and the system syntax files. This means that a user syntax file must
not contain system commands which

● are disabled in the group syntax file or the system syntax files,

● or that do not exist in these files,

● or for which the user does not have at least one of the requisite privileges.

However, disabled commands, modifications and global information in the user syntax files
take precedence over the definitions in the group and system syntax files.

If a system command (implemented via system modules) is defined in all three types of
syntax file, the definition contained in the user syntax file must be fully contained in the
group syntax file.

The following possible cases exist.

● A user syntax file contains user-defined commands (implemented in the form of proce-
dures):
all system commands (implemented via system modules) contained in the procedure
must be covered by definitions in the system syntax files or the group syntax file.

● A command is disabled in a user syntax file:
the command cannot be executed, even if its definition is covered by the group syntax
file or the system syntax files.

● A user syntax file contains a system command for which an operand value has been
changed:
the command is executed as defined in the user syntax file.

● The group syntax file or the system syntax files contain a command which is not defined
in any of the user syntax files:
the user may use the command as long as it is not explicitly disabled in the user syntax
file.

U2284-J-Z125-9-76 35

Syntax files File hierarchy

● A command is disabled in the group syntax file.
The command cannot be executed, even if it is defined in the user syntax file and
covered by a definition in the system syntax files.

Only a group syntax file is active

The MODIFY-SDF-PARAMETERS command (see “SDF Management” [2]) can be used to
assign a group syntax file to a profile ID. If the HIERARCHY operand is set to *NO, only the
specified group syntax file (no system syntax files) is activated (at LOGON) for all tasks of
user IDs with this profile ID. In this case, the possible command and statement inputs are
determined solely by the contents of this group syntax file.

One group syntax file and user syntax files are active

If no system syntax files are active for a task (see above) and one or more user syntax files
are active in addition to the group syntax file, the definitions of the BS2000 commands
(implemented via system modules) contained in the user syntax file(s) must be fully covered
by the group syntax file. Apart from this, the definitions in the user syntax file(s) (including
global information and disabled commands) take precedence over those in the group
syntax file.

36 U2284-J-Z125-9-76

Naming conventions Syntax files

2.4 Naming conventions

In addition to the system syntax files, there may be one group syntax file and one or more
user syntax files active for each user task. In this case, a file hierarchy determines how SDF
uses the various syntax files. System syntax files and group syntax files can be activated
by means of the MODIFY-SDF-PARAMETERS command, user syntax files with the
MODIFY-SDF-OPTIONS command. The names of the system syntax files and the group
syntax files to be activated are entered in an SDF parameter file.

The basic system syntax file is automatically activated when SDF is loaded. The same
applies to the subsystem syntax files if they are named in the SDF parameter file, i.e. when
their names are entered in the SDF parameter file.
If no parameter file is specified in the DSSM declaration for SDF, then
$TSOS.SYSPAR.SDF is used as the parameter file. If the parameter file does not have any
valid contents, then a new name is requested via console message CMD0691. When
“*STD“ is the reply, $TSOS.SYSSDF.SDF.045 is activated as the basic system syntax file
(and $TSOS.SYSSDF.BS2CP.<bs2vers> is activated as the subsystem syntax file).
The activated basic system syntax file can be switched during the session by system admin-
istration (with the MODIFY-SDF-PARAMETERS command). The basic system syntax file
activated during a session with MODIFY-SDF-PARAMETERS may have any name.

System administration assigns a group syntax file to a profile ID and can change this
assignment during the session with the aid of the MODIFY-SDF-PARAMETERS command.
The SCOPE operand defines this assignment as permanent, permanent as of the next
session, or valid for the current session only.
The group syntax file assigned in this way is activated automatically after LOGON
processing for each task under a user ID with the corresponding profile ID.

A warning is output if the SDF parameter file does not exist or is invalid.

User syntax files are linked to a user ID. If a user syntax file is to be activated automatically
after LOGON processing, it must be cataloged under the name
$<userid>.SDF.USER.SYNTAX. The user may activate or deactivate user syntax files
during execution of a user task (with MODIFY-SDF-OPTIONS). If a user syntax file is
activated with MODIFY-SDF-OPTIONS, it may have any desired name.

U2284-J-Z125-9-76 37

Syntax files Processing syntax files

2.5 Processing syntax files

SDF-A can be used to create new syntax files or modify existing files. SDF-A works with the
syntax files exclusively on the logical level, i.e. the physical structure of the syntax files
remains hidden.

As of SDF-A V3.0, every user has access to the full range of SDF-A functions. While
enabling the user to process group and system syntax files (taking due account of file
attributes and privileges), this does not allow him/her to activate group and system syntax
files (see page 36). Only system administration can control which system syntax files are
to be activated for the system and which group syntax file is to be activated for a user ID.

2.5.1 Functional scope of SDF-A

SDF-A offers the following facilities:

– definition of user commands, implemented via command procedures, and modification
of such definitions

– definition of user programs and the statements to them, and modification of such defini-
tions

– disabling of commands, programs, statements, operands and operand values

– modification of default values

– renaming of domains, of command, statement and operand names, and of operand
values that are keywords

– modification or replacement of help texts for guided dialog, e.g. replacement of German
help texts by those in the appropriate local language

– modification of the assignment of commands to domains, and definition of new domains

– modification of the default values of SDF options, e.g. for guided dialog

– deletion and reconstruction of command and statement definitions

38 U2284-J-Z125-9-76

Processing syntax files Syntax files

2.5.2 Opening a syntax file

The SDF-A statement OPEN-SYNTAX-FILE is used to open a syntax file for subsequent
processing.

System syntax file

When opening a system syntax file for processing, it is possible to assign another system
syntax file (with any name) as a reference file by means of the SYSTEM-CONTROL
operand. This reference file should contain the definitions of all commands available
throughout the system, in the version supplied by the implementation. In particular, this file
should contain the original version of the definitions furnished by Siemens for the user
commands. In the simplest case, this file is merely a copy of the basic system syntax file
received from Fujitsu Siemens Computers.

With the aid of the SYSTEM-CONTROL file, SDF-A checks whether the changes to be
made are compatible with the implementation. If no SYSTEM-CONTROL file is assigned, it
is possible for SDF-A to modify the syntax file in a way that is not actually permitted. This
will cause difficulties later on, when the modified system syntax file is activated.

Figure 2: Processing a system syntax file with SDF-A

SDF-A statements

SYSTEM-
CONTROL

file

Command
description in its
original form

SDF-A

System syntax file
to be processed

U2284-J-Z125-9-76 39

Syntax files Processing syntax files

Group syntax file

When opening a group syntax file for processing, it is possible to assign a system syntax
file (with any name) as a reference file by means of the SYSTEM-CONTROL operand. This
file is subject to the same conditions as a SYSTEM-CONTROL file assigned when opening
a system syntax file.

A special SYSTEM-CONTROL file is needed when BS2000 V10 is used and the group
syntax file is to be prepared for system administration. Such a file is obtained by copying
the definitions of the commands and programs that are partly or entirely reserved for system
administration into a copy of the normal SYSTEM-CONTROL file, using
COPY...,OVERWRITE-POSSIBLE=*YES (see the description of the COPY statement).

In addition, another system syntax file (with any name) may be assigned by means of the
SYSTEM-DESCRIPTIONS operand. This should be the file that will later be activated
together with the processed group syntax file.

Figure 3: Processing a group syntax file with SDF-A

SDF-A statements

SYSTEM-
CONTROL

file

Command
description in its
original form

SDF-A

Group syntax file to
be processed

Disabled commands

SYSTEM-
DESCRIPTIONS

file

40 U2284-J-Z125-9-76

Processing syntax files Syntax files

If the group syntax file is opened with specification of a SYSTEM-DESCRIPTIONS file, the
commands and statements that are defined exclusively within the SYSTEM-
DESCRIPTIONS file can also be processed. If a definition is modified, SDF-A writes the
modified version into the group syntax file. The definition in the SYSTEM-DESCRIPTIONS
file remains unchanged.

If a command that is defined in the SYSTEM-DESCRIPTIONS file is to be disabled, it is
absolutely essential to specify this file when the group syntax file is opened. Otherwise,
SDF-A merely deletes the definition in the group syntax file (if there is one), without placing
a corresponding lock entry there.

If a command modification made in the group syntax file is to be retracted, you must not
specify the SYSTEM-DESCRIPTIONS file. The modified definition in the group syntax file
can then be deleted. SDF will then use the (unmodified) definition from the system syntax
file.

User syntax file

When opening a user syntax file for processing, a user syntax file (with any name) may be
assigned as a reference file by means of the USER-CONTROL operand. This file should
contain the original version of definitions of user commands. Otherwise, the same condi-
tions apply to this file as apply to a SYSTEM-CONTROL file assigned when a group or
system syntax file is opened.

In addition, a group or system syntax file may be assigned with the aid of the operands
GROUP-DESCRIPTIONS and SYSTEM-DESCRIPTIONS, respectively. These files should
be the files that will later be activated together with the processed user syntax file.

U2284-J-Z125-9-76 41

Syntax files Processing syntax files

Figure 4: Processing a user syntax file with SDF-A

In principle, the same conditions apply to the GROUP-DESCRIPTIONS and SYSTEM-
DESCRIPTIONS files specified when opening a user syntax file as apply to the SYSTEM-
DESCRIPTIONS file specified when opening a group syntax file. However, here the
functional scope of the BS2000 commands (implemented via system modules) defined in
the user syntax file must be completely contained in the GROUP-DESCRIPTIONS and
SYSTEM-DESCRIPTIONS files. Here, these files also have the function of the SYSTEM-
CONTROL file. In the user syntax file, definitions of commands that are implemented via
system modules may be modified but not redefined.

2.5.3 Processing command and statement definitions

Command and statement definitions consist of

– a global definition of the command or statement (header),

– a definition of each operand, and

– a definition of each operand value (input alternatives)

SDF-A statements

USER-
CONTROL

file

Command
description in
its original form

SDF-A

User syntax file
to be processed

Disabled commands

SYSTEM-
DESCRIPTIONS

file

GROUP-
DESCRIPTIONS

file

42 U2284-J-Z125-9-76

Processing syntax files Syntax files

Figure 5: Representation of a command or statement definition as a tree

At least one operand value must be defined for each operand. This also applies to the case
where an operand with a default value is masked out at the user interface for the command
or statement. If there is a structure (see the glossary at the back of the manual) linked to an
operand value, the structure is defined globally in the definition of the operand value. In
addition, there is

– a definition of each individual operand of the structure, and

– a definition of each value belonging to one of these operands.

The structure is ended by the CLOSE-STRUCTURE statement.

The command or statement definition is ended by the CLOSE-CMD-OR-STMT statement.

Statements to SDF-A can include comments, which must be enclosed in quotation
marks (").

Value 1.2.1.1
for operand 1.2.1

. . .

Value 1.2.1.m
for operand 1.2.1

. . . Value 1.2.2.1
for operand 1.2.2

Value 1.2.2.n
for operand 1.2.2

. . .

Operand 1.2.1
in structure of value 1.2

Operand 1.2.2
in structure of value 1.2

Command or
statement header

Operand 1

Value 1.1 for
operand 1

Value 1.3 for
operand 1

Value 1.2 for
operand 1

Operand x

Value x.1 for
operand x

Value x.2 for
operand x

U2284-J-Z125-9-76 43

Syntax files Processing syntax files

Figure 6: Sequence of SDF-A statements used to set up the definitions shown in Figure 5

//ADD-CMD ... or //ADD-STMT

//ADD-OPERAND <operand 1>,...

//ADD-VALUE <value 1.1>,...

//ADD-VALUE <value 1.2>,...,STRUCTURE=*YES(...),..

//ADD-OPERAND <operand 1.2.1>,...

//ADD-VALUE <value 1.2.1.1>,...

. . .

//ADD-VALUE <value 1.2.1.m>,...

//ADD-OPERAND <operand 1.2.2>,...

//ADD-VALUE <value 1.2.2.1>,...

. . .

//ADD-VALUE <value 1.2.2.n>,...

//CLOSE-STRUCTURE

//ADD-VALUE <value 1.3>,...

. . .

//ADD-OPERAND <operand x>,...

//ADD-VALUE <value x.1>,...

//ADD-VALUE <value x.2>,...

//CLOSE-CMD-OR-STMT

44 U2284-J-Z125-9-76

Processing syntax files Syntax files

A command or statement definition can be

– created

– modified

– deleted, or

– output on SYSOUT or SYSLST.

The same applies to the definition of an operand or an operand value.

When a command or statement definition is newly created, this does not necessarily mean
that all of the associated operand and operand value definitions also have to be newly
created. It is often possible to draw on existing operand or operand value definitions, which
are then copied into the new command or statement definition (see COPY). The existing
definition need not necessarily be exactly the definition required. If an existing definition
deviates only in minor details from the one required, it is more practical to make a copy and
to change the copy accordingly (see below).

A practical procedure for creating a command or statement definition would be as follows:

Step 1

Establish the framework of the command or statement (its name, operands, operand
values, structures) using very simple ADD statements containing only a few specifica-
tions (default values).

Step 2

Display the provisional command or statement using the SHOW statement and check it.

Step 3

Complete the provisional command or statement definition using MODIFY statements
in guided dialog (insertion of help texts and implementation specifications). Here,
SDF-A proceeds through the command or statement tree.

A command or statement definition is modified either by changing the global definition (see
MODIFY-CMD and MODIFY-STMT) or

– by adding operand or operand value definitions by creating them (see ADD-OPERAND
and ADD-VALUE) or copying them (see COPY),

– by modifying operand or operand value definitions (see MODIFY-OPERAND and
MODIFY-VALUE), or

– by deleting such definitions (see REMOVE).

Adding or modifying operand or operand value definitions requires prior positioning to the
point to be edited in the command or statement definition, either explicitly by means of the
EDIT statement or implicitly via the preceding processing operation.

U2284-J-Z125-9-76 45

Syntax files Processing syntax files

A command or statement definition is deleted by means of the REMOVE statement.

A command, statement, program, operand or operand value may be disabled by means of
the REMOVE statement. A system-global lock must be defined in the basic system syntax
file. Commands implemented via system modules, as well as operands and operand values
belonging to such commands, may also be disabled for a specific user ID in a group syntax
file. When defining a lock in a group syntax file, the basic system syntax file must be
assigned as a reference file. Technically, a lock can also be defined in a user syntax file, but
since the user activates and deactivates a user syntax file, a lock of this nature applies only
to the user.

The user can clear a lock on a command, program or statement by means of the RESTORE
statement. To do so, their definitions must still exist in a command file which occupies a
higher position in the file hierarchy than the syntax file being processed.

When displaying definitions (see SHOW), it is possible to specify

– how much detail should be shown, and

– whether the definitions should be shown in a form similar to a manual or, instead, as a
series of SDF-A statements with which they could be newly defined.

46 U2284-J-Z125-9-76

Integrity Syntax files

2.6 Integrity of syntax files

If an interrupt is generated when a syntax file is being processed with SDF-A, typically as
a result of pressing the [K2] key or due to the HOLD-PROGRAM or EXECUTE-SYSTEM-
CMD statement, it could potentially endanger the integrity of the file. In specially critical
situations, the [K2] key is ignored.

A syntax file that is only opened for reading (i.e. with OPEN-SYNTAX-FILE,MODE=
*READ) is not endangered by such interrupts.

Any syntax file that needs to be created or modified must, however, be opened with
MODE=*CREATE / *UPDATE. So long as an object is being processed, the occurrence of
an interrupt could have an adverse effect on the integrity of the object or even the syntax
file. SDF-A issues warnings if there is a risk of losing data when interrupts occur.

 SDF-A initiates a write operation to disk only when an object is explicitly closed. This occurs
in the case of the following statements:

– when CLOSE-CMD-OR-STMT closes the command or statement definition

– when OPEN opens a new syntax file, but first saves the syntax file that was open at the
time (if present)

– when END saves the current syntax file and terminates SDF-A.

 Caution!
If an interrupt occurs when the file is being saved, the syntax file may be corrupted
or destroyed.

The creation, deletion or modification of a command usually involves multiple write opera-
tions, since the command or statement tables also need to be updated. Interrupts should
be avoided especially in such cases, since they could otherwise produce inconsistencies
between the command/statement tables and the actually present objects. If SDF detects
such inconsistencies when activating a syntax file, the syntax file is rejected.
A syntax file that was rejected by SDF can be opened again with SDF-A (with
MODE=*UPDATE(...). You will receive message SDA0446 as a warning. You can then
check the syntax file, correct it if required, and save it again so that it is no longer rejected
by SDF.

The following steps are recommended to prevent potential problems:

– As far as possible, you should execute a CLOSE-CMD-OR-STMT before viewing
objects with SHOW. This will ensure that no objects are lost if the SHOW output is inter-
rupted with and you do not return immediately to SDF-A with RESUME-PROGRAM.

– Do not open syntax files with MODE=*UPDATE(...) unless you really wish to make
changes.

!

U2284-J-Z125-9-76 47

Syntax files Format and compatibility

2.7 Syntax files with the old format

The objects in the syntax files are not structured the same way in all the SDF-A versions. It
is therefore important to read the following notes in order to avoid compatibility problems:

● SDF V2.0 and higher and SDF-A V2.0 and higher can handle both the old and new
formats for the syntax files. SDF-A converts the objects it accesses to the new format.
SDF, in contrast, converts the objects only in virtual memory and makes no changes to
the syntax files.

● Syntax files which are to run under an SDF version < 2.0 must not be created with
SDF-A versions Ï 2.0.

● The following function is provided for correcting syntax files with the old format (required
under SDF V1.4 and earlier):
If task switch 15 is set, SDF-A (V2.0 or higher) internally loads the program SDF-A-V1,
which has the same functionality as SDF-A V1.0D. The syntax of the SDF-A statements
then corresponds to that of SDF-A V1.0D, with three exceptions:

– The default for the SYSTEM-DESCRIPTIONS and GROUP-DESCRIPTIONS
operands in the OPEN-CMD-SET statement is *NO instead of *CURRENT, with the
result that no reference syntax files are allocated by default. If the reference syntax
files are specified explicitly they, too, must have the old format.

– System syntax files cannot be created.

– The SDF-A statement SHOW is not supported.

● If syntax files with the old format generated by SDF-A V1.0D are processed with
SDF-A as of V2.0A, the processed objects and the global information are given the new
format.
These syntax files can then no longer be used under an SDF version < 2.0.

● As of SDF-A V4.0 you can select the syntax file format via the DEFINE-
ENVIRONMENT statement. Syntax files created and processed with SDF-A V3.0 retain
their original format if SYNTAX-FILE-FORMAT=*V3 is specified. Note that a syntax file
can never be modified using an earlier SDF-A version than the one in which it was
created and stored.

48 U2284-J-Z125-9-76

Format and compatibility Syntax files

U2284-J-Z125-9-76 49

3 Modifying command and statement definitions
System administration may modify the command and statement definitions provided by
Fujitsu Siemens Computers, either system-globally (system syntax files) or specifically for
individual users (group or user syntax file). Any system-global modification that has been
made can be retracted specifically for particular users (by means of entries in the group
syntax files).

As of SDF-A V3.0, each user has access to the full range of SDF-A functions. While
enabling the user to process group and system syntax files (taking due account of file
attributes and privileges), this does not allow the user to activate group and system syntax
files. System syntax files can be activated for systems and group syntax files for user IDs
only at the discretion of system administration. For example, the user can generate a group
syntax file with modified command definitions. System administration can then take this
group syntax file generated by the user and assign it to a user ID such that it will be activated
when the SET-LOGON-PARAMETERS command is processed.

The definitions provided by Fujitsu Siemens Computers for commands implemented via
system modules may be modified only so long as the modification does not affect the
functional scope of the command. For example, a user may change the default value of an
operand but not the data type of a value defined for that operand.
A modification often involves a number of individual but coordinated steps. If a certain
modification is used repeatedly, it is advisable to write a modification procedure containing
all the SDF-A statements needed to modify a command or a statement. These procedures
can then be used to update the group and user syntax files every time a new version of a
product is supplied.

The bulk of this chapter consists of examples illustrating the mode of operation and facilities
of SDF-A. Grouped together at the end of the chapter are some general remarks on defining
and removing functional limitations.

 If new command definitions are supplied by Fujitsu Siemens Computers as the
result of a change of a product version, all group and user syntax files in which these
command definitions are modified must be reconstructed.

i

50 U2284-J-Z125-9-76

Example 1: Disabling commands Modifying command and statement definitions

3.1 Examples

The following examples illustrate some typical cases in which SDF-A is used.

These runtime examples were created with SDF-A V4.1E under BS2000/OSD-BC V5.0.
Note that the chargeable product SDF-P [12] was also loaded in the test environment.
Typical output messages are given here; the actual output messages will depend on the
current system configuration.
User inputs in the runtime examples and outputs to be specially noted are printed in a
typewriter font in bold and italics, respectively.

3.1.1 Example 1: Disabling commands

Users of user ID EXAMPLE are to be prevented from loading and starting programs. This
is achieved by creating a group syntax file for the user ID EXAMPLE in which the LOAD-
PROGRAM and START-PROGRAM commands, as well as the old LOAD and EXECUTE
commands, are disabled. The special START commands for certain programs (e.g. START-
SDF-A, START-EDT, START-LMS, ...) are then also disabled as these START commands
require access to START-PROGRAM or LOAD-PROGRAM.

In BLSSERV V2.3 and higher the functionality of START-PROGRAM and LOAD-
PROGRAM are also offered with improved syntax via the new commands START- and
LOAD-EXECUTABLE-PROGRAM. In this case the two new commands must also be
locked.

/set-logon-parameters tsos,... —— (1)
 ...
/start-sdf-a —— (2)
% % BLS0517 MODULE 'SDAMAIN' LOADED
% SDA0001 'SDF-A' VERSION '04.1E10' STARTED
//open-syntax-file sys.sdf.group.syntax.example,*group,*create ———————— (3)
//remove *command((load,exec,load-prog,start-prog,load-exec,start-exec)) (4)
//end

1. A task is initiated under the privileged user ID TSOS.

2. SDF-A is loaded and started.

3. The group syntax file SYS.SDF.GROUP.SYNTAX.EXAMPLE is opened as a new file to
be created. By default, the activated system syntax file is assigned as a reference file.
The command definitions appearing in the reference file may be modified in the open
group syntax file.

4. The commands LOAD, EXECUTE, LOAD-PROGRAM, START-PROGRAM, LOAD-
and START-EXECUTABLE-PROGRAM are disabled.

U2284-J-Z125-9-76 51

Modifying command and statement definitions Example 1: Disabling commands

/mod-file-attr sys.sdf.group.syntax.example,access=*read,user-acc=*all (5)
/mod-user example,profile-id=user1 ———————————————————————————————————— (6)
/mod-sdf-parameters scope=*permanent,
 syntax-file-type=*group(sys.sdf.group.syntax.example,user1) —— (7)
% CMD0681 SYNTAX FILE '$.SYS.SDF.GROUP.SYNTAX.EXAMPLE' INSERTED IN
 PARAMETER FILE '$.SYSPAR.SDF'
% CMD0718 GROUP SYNTAX FILE '$.SYS.SDF.GROUP.SYNTAX.EXAMPLE' HAS BEEN
 ASSOCIATED WITH 'PROFILE-ID USER1' IN MEMORY TABLES
/exit-job

5. File SYS.SDF.GROUP.SYNTAX.EXAMPLE is declared as shareable. Only read access
is allowed.

6. The profile ID USER1 is assigned to user ID EXAMPLE.

7. Group syntax file SYS.SDF.GROUP.SYNTAX.EXAMPLE is assigned to profile ID
USER1. This assignment is permanently stored in the SDF parameter file.

/set-logon-parameters example ——— (8)
/show-sdf-options ——— (9)
%SYNTAX FILES CURRENTLY ACTIVATED :
% SYSTEM : :2OSH:$TSOS.SYSSDF.SDF.045
% VERSION : SESD04.5A300
% SUBSYSTEM : :2OSH:$TSOS.SYSSDF.ACO.022
% VERSION : SESD02.2A00
% SUBSYSTEM : :2OSH:$TSOS.SYSSDF.ACS.140
% VERSION : SESD14.0B100
 .
 .
% SUBSYSTEM : :2OSH:$TSOS.SYSSDF.SDF-A.041
% VERSION : SESD04.1E10
% SUBSYSTEM : :2OSH:$TSOS.SYSSDF.TASKDATE.140
% VERSION : SESD14.0A100
% GROUP : 2OSH:$.SYS.SDF.GROUP.SYNTAX.EXAMPLE
% VERSION : UNDEFINED
% USER : *NONE
%CURRENT SDF OPTIONS :
% GUIDANCE : *EXPERT
% LOGGING : *INPUT-FORM
% CONTINUATION : *NEW-MODE
% UTILITY-INTERFACE : *NEW-MODE
% PROCEDURE-DIALOGUE : *NO
% MENU-LOGGING : *NO
% MODE : *EXECUTION
% CHECK-PRIVILEGES : *YES
% DEFAULT-PROGRAM-NAME : *NONE
% FUNCTION-KEYS : *STYLE-GUIDE-MODE
% INPUT-HISTORY : *ON

52 U2284-J-Z125-9-76

Example 1: Disabling commands Modifying command and statement definitions

% NUMBER-OF-INPUTS : 20
% PASSWORD-PROTECTION: *YES
/start-prog $edt —— (10)
% CMD0086 OPERATION NAME 'START-PROG' REMOVED BY USER
/start-edt —— (11)
% CMD0086 OPERATION NAME 'START-PROGRAM' REMOVED BY USER
/load-prog $edt
% CMD0086 OPERATION NAME 'LOAD-PROG' REMOVED BY USER
/exec $edt —— (12)
% SDP0222 OPERAND ’CMD’ INVALID IN /EXEC-CMD, ERROR ’SDP0116’. IN SYSTEM
MODE: /HELP-MSG SDP0116
/load $edt
% CMD0187 ABBREVIATION OF OPERATION NAME 'LOAD' AMBIGUOUS WITH REGARD TO
'LOAD-ALIAS-CATALOG,LOAD-LOCAL-SUBSYSTEM-CATALOG'
/exit-job
 .
 .

8. A task is initiated under the user ID EXAMPLE.

9. The activated syntax files are listed. SYS.SDF.GROUP.SYNTAX.EXAMPLE, the group
syntax file prepared beforehand by the privileged user ID TSOS, is activated.

10. SDF does not accept the START-PROG command.

11. SDF likewise does not accept the START-EDT command because START-EDT calls a
procedure which in turn calls the START-PROGRAM command.

12. Since the EXEC command was removed, SDF interprets the user input as the SDF-P
command EXEC-CMD and rejects it due to the invalid syntax.

U2284-J-Z125-9-76 53

Modifying command and statement definitions Example 2: Changing a default value

3.1.2 Example 2: Changing a default value

When a new file is created with the CREATE-FILE command, access to the file under other
user IDs is prohibited by default (USER-ACCESS=OWNER-ONLY). In this case, however, for
files created under the user ID EXAMPLE, the default value is to be changed so that access
from other user IDs is possible.

This can be achieved by creating a user syntax file for the user ID EXAMPLE, in which the
CREATE-FILE command is modified accordingly.

Note
Default values can be very flexibly (i.e. without modifying syntax files) defined as task-
specific default values. Task-specific default values are only evaluated when entered in
the interactive dialog, however. In the following example, the default value could also
have been defined as a task-specific default value:

/!create-file user-access=*all-users

See the "Introductory Guide to the SDF Dialog Interface’ manual [1] for more detailed
information on task-specific default values.

/set-logon-parameters example,... ————————————————————————————————————— (1)
 .
 .
/create-file demo.1 ——— (2)
/show-f-attr demo.1,inf=*par(security=*yes) ——————————————————————————— (3)
%0000000003 :2OSG:$EXAMPLE.DEMO.1
% ------------------------------- SECURITY -----------------------------
% READ-PASS = NONE WRITE-PASS = NONE EXEC-PASS = NONE
% USER-ACC = OWNER-ONLY ACCESS = WRITE ACL = NO
% AUDIT = NONE FREE-DEL-D = *NONE EXPIR-DATE = NONE
% DESTROY = NO FREE-DEL-T = *NONE EXPIR-TIME = NONE
% SP-REL-LOCK= NO
%:2OSG: PUBLIC: 1 FILE RES= 3 FRE= 3 REL= 3 PAGES
 .
 .
/start-sdf-a —— (4)
% BLS0517 MODULE 'SDAMAIN' LOADED
% SDA0001 'SDF-A' VERSION '04.1E10' STARTED
//open-syntax-file sdf.user.syntax,,*crea ————————————————————————————— (5)

(1) A task is initiated under the user ID EXAMPLE.

(2) Using the CREATE-FILE command, a catalog entry is created for the file DEMO.1.

(3) The protection attributes of the file DEMO.1 are displayed. It is not shareable
(USER-ACC = OWNER-ONLY).

(4) SDF-A is loaded and started.

54 U2284-J-Z125-9-76

Example 2: Changing a default value Modifying command and statement definitions

(5) The user syntax file SDF.USER.SYNTAX is opened as a new file to be created. Any
user syntax file with this name cataloged under the user ID EXAMPLE is automati-
cally activated for tasks of the user ID EXAMPLE when the LOGON command is
processed. By default, the activated system syntax file and the activated group
syntax file are assigned as reference files. The command definitions appearing in
the reference files may be modified in the open user syntax file.

//show *oper(prot,orig=*com(create-file)),siz=*max ———————————————————— (6)
PROTECTION = *STD
 *STD or *PARAMETERS()
 Specifies the protection attributes of the file
 STRUCTURE: *PARAMETERS
 PROTECTION-ATTR = *BY-DEF-PROT-OR-STD
 .
 .
 .
 USER-ACCESS = *BY-PROTECTION-ATTR
 *BY-PROTECTION-ATTR or *OWNER-ONLY or *ALL-USERS or
 *SPECIAL
 Specifies whether external user IDs may access the file
 BASIC-ACL = *BY-PROTECTION-ATTR
 .
 .
 .
//edit *oper(prot,orig=*com(create-file)) ————————————————————————————— (7)
//mod-oper def='PARAMETERS' ——— (8)
//edit *oper(user-acc) —— (9)
//mod-oper def='ALL-USERS' —— (10)

(6) The PROTECTION operand of the CREATE-FILE command is displayed in its most
detailed form.

(7) The file is positioned to the PROTECTION operand of the CREATE-FILE command,
i.e. this operand becomes the current object in the user syntax file being processed
(SDF.USER.SYNTAX).

(8) The operand that is the current object (PROTECTION) is to have the default value
PARAMETERS. This change is necessary so that the subsequent modification (see
steps 9 and 10) will work even when PARAMETERS, the value introducing the
structure, is not explicitly specified. The value STD implicitly includes the specifi-
cation USER-ACCESS=*BY-PROTECTION-ATTR (corresponding to USER-
ACCESS= *OWNER-ONLY when no other default protection is defined with
SECOS).

(9) The file is positioned to the USER-ACCESS operand of the command currently
being processed, CREATE-FILE, i.e. this operand becomes the current object in the
open user syntax file (SDF.USER.SYNTAX).

U2284-J-Z125-9-76 55

Modifying command and statement definitions Example 2: Changing a default value

(10) The operand that is the current object (USER-ACCESS) is to have ALL-USERS as
its default value.

//show *oper(prot,orig=*com(create-file)),siz=*max ———————————————————— (11)
PROTECTION = *STD
 *STD or *PARAMETERS()
 Specifies the protection attributes of the file
 STRUCTURE: *PARAMETERS
 PROTECTION-ATTR = *BY-DEF-PROT-OR-STD
 .
 .
 .
 USER-ACCESS = *ALL-USERS
 *BY-PROTECTION-ATTR or *OWNER-ONLY or *ALL-USERS or
 *SPECIAL
 Specifies whether external user IDs may access the file
 BASIC-ACL = *BY-PROTECTION-ATTR
 .
 .
 .
//end
/mod-sdf-opt synt-file=*add(*std) ————————————————————————————————————— (12)
/create-file demo.2 ——— (13)
/show-f-attr demo.2,inf=*par(security=*yes) ——————————————————————————— (14)
%0000000003 :2OSG:$EXAMPLE.DEMO.2
% ------------------------------- SECURITY -----------------------------
% READ-PASS = NONE WRITE-PASS = NONE EXEC-PASS = NONE
% USER-ACC = OWNER-ONLY ACCESS = WRITE ACL = NO
% AUDIT = NONE FREE-DEL-D = *NONE EXPIR-DATE = NONE
% DESTROY = NO FREE-DEL-T = *NONE EXPIR-TIME = NONE
% SP-REL-LOCK= NO
%:2OSG: PUBLIC: 1 FILE RES= 3 FRE= 3 REL= 3 PAGES
 .
 .
/exit-job

(11) The PROTECTION operand of the command currently being processed, CREATE-
FILE, is displayed in its most detailed form.

(12) The user syntax file $EXAMPLE.SDF.USER.SYNTAX is activated.

(13) A user catalog entry for the file DEMO.2 is created with the CREATE-FILE
command.

(14) The protection attributes of the file DEMO.2 are displayed. It is shareable
(USER-ACC = ALL-USERS).

56 U2284-J-Z125-9-76

Example 3: File protection with passwords Modifying command and statement definitions

3.1.3 Example 3: Enforcing file protection using four-character passwords

The users of the user IDs EXAMPLE and EXAMP1 are to be forced, for reasons of data
security, to protect their files using four-byte passwords. This can be achieved by defining
suitable restrictions in a group syntax file which will be assigned to these user IDs.

The definitions of the commands CREATE-FILE, CREATE-FILE-GROUP, MODIFY-FILE-
ATTRIBUTES and MODIFY-FILE-GROUP-ATTRIBUTES are to be modified accordingly in
the group syntax file. The definitions of the old commands CATALOG and FILE cannot be
modified in this way. These commands must therefore be disabled. Since they can be called
with the CMD macro, a general disabling would have unforeseeable consequences. In
addition, they should continue to be available for batch mode. For this reason, the
commands are merely disabled for interactive mode.

/set-logon-parameters sdfusr,... —————————————————————————————————————— (1)
 .
 .
/start-sdf-a —— (2)
% BLS0517 MODULE 'SDAMAIN' LOADED
% SDA0001 'SDF-A' VERSION '04.1E10' STARTED
//open-syntax-file sys.sdf.group.syntax.example,group,*crea ——————————— (3)
//edit *command(catalog) —— (4)
//modify-cmd dial-allow=*n,dial-proc-allow=*n ————————————————————————— (5)
//edit *command(file) ——— (6)
//modify-cmd dial-allow=*n,dial-proc-allow=*n

1. A task is initiated under the user ID SDFUSR.

2. SDF-A is loaded and started.

3. The group syntax file SYS.SDF.GROUP.SYNTAX.EXAMPLE is opened as a new file to
be created. By default, the activated system syntax file is assigned as a reference file
for the processing that follows. If no reference file were assigned, the processing that
follows would have to be performed somewhat differently.

4. The file is positioned to the CATALOG command, i.e. this command becomes the
current object.

5. The command that is the current object (CATALOG) is disabled for interactive mode. It
is also made invalid within procedures executing in interactive mode.

6. The FILE command becomes the current object and is then disabled for interactive
operation.

U2284-J-Z125-9-76 57

Modifying command and statement definitions Example 3: File protection with passwords

//show *oper(prot,orig=*com(create-file)),siz=*max ———————————————————— (7)
PROTECTION = *STD
 *STD or *PARAMETERS()
 Specifies the protection attributes of the file
 STRUCTURE: *PARAMETERS
 PROTECTION-ATTR = *BY-DEF-PROT-OR-STD
 .
 .
 .
 WRITE-PASSWORD =
 *BY-PROT-ATTR-OR-NONE or *NONE or c-string_1..4 or
 x-string_1..8 or integer_-2147483648..2147483647 or
 *SECRET -default-: *BY-PROT-ATTR-OR-NONE
 Specifies the password for protection against unauthorized
 write access
 READ-PASSWORD =
 *BY-PROT-ATTR-OR-NONE or *NONE or c-string_1..4 or
 x-string_1..8 or integer_-2147483648..2147483647 or
 *SECRET -default-: *BY-PROT-ATTR-OR-NONE
 Specifies the password for protection against unauthorized
 read access
 EXEC-PASSWORD =
 *BY-PROT-ATTR-OR-NONE or *NONE or c-string_1..4 or
 x-string_1..8 or integer_-2147483648..2147483647 or
 *SECRET -default-: *BY-PROT-ATTR-OR-NONE
 Specifies the password for protection against unauthorized
 execution
 DESTROY-BY-DELETE = *BY-PROTECTION-ATTR
 *BY-PROTECTION-ATTR or *NO or *YES
 .
 .
 .
//edit *oper(prot,orig=*com(create-file)) ————————————————————————————— (8)
//modify-oper default='PARAMETERS' ———————————————————————————————————— (9)

7. The PROTECTION operand of the CREATE-FILE command is displayed in its most
detailed form.

8. The file is positioned to the PROTECTION operand of the CREATE-FILE command, i.e.
this operand becomes the current object in the open group syntax file
SYS.SDF.GROUP.SYNTAX.EXAMPLE.

9. The operand that is the current object is to have PARAMETERS as its default value.
STD is no longer the default value for the PROTECTION operand. Then the first
operand value defined for PROTECTION becomes the current object. This is the input
alternative STD.

58 U2284-J-Z125-9-76

Example 3: File protection with passwords Modifying command and statement definitions

//remove *value ——— (10)
//edit *oper(write-pass) —— (11)
//modify-oper default=*n,struct-impl=*y ——————————————————————————————— (12)
//remove *value ——— (13)
//edit *value(write-pass,*c-string) ——————————————————————————————————— (14)
//modify-value *c-string(short-l=4,long-l=4) —————————————————————————— (15)

10. The definition of the operand value that is the current object (*STD) is deleted.

11. The file is positioned to the WRITE-PASSWORD operand of the CREATE-FILE
command, i.e. this operand becomes the current object in the open group syntax file
(SYS.SDF.GROUP.SYNTAX.EXAMPLE). Of course, the WRITE-PASSWORD operand
is situated within a structure. Since the operand’s name is unique within the entire
command, neither the name of its parent operand (PROTECTION) nor PARAMETERS
(which introduces the structure) need be given. The explicit specification of CREATE-
FILE is not necessary, since SDF-A assumes the CREATE-FILE command by default
on the basis of the preceding statements.

12. The operand that is the current object is to have no default value. The previous default
value *BY-PROT-ATTR-OR-NONE (corresponding to *NONE when no other default
protection is defined with SECOS) is now no longer the default value of the WRITE-
PASSWORD operand. If the WRITE-PASSWORD operand is now specified on input,
the structure PARAMETERS will be implicitly selected. Next, the first operand value
defined for WRITE-PASSWORD becomes the current object. This is the input alter-
native of the type NONE.

13. The definition of the operand value that is the current object (*BY-PROT-ATTR-OR-
NONE) is deleted.

14. The file is positioned to the input alternative of the type C-STRING for the WRITE-
PASSWORD operand in the CREATE-FILE command, i.e. this operand value becomes
the current object in the group syntax file being processed, i.e.
SYS.SDF.GROUP.SYNTAX.EXAMPLE. Of course, the WRITE-PASSWORD operand is
situated within a structure. Since the operand’s name is unique within the entire
command, neither the name of its parent operand (PROTECTION) nor PARAMETERS
(which introduces the structure) need be given. The explicit specification of CREATE-
FILE is not necessary, since SDF-A assumes the CREATE-FILE command by default
on the basis of the preceding statements.

15. The operand value that is the current object is defined to be of the type C-STRING and
to have both a minimum and a maximum length of four bytes. Following this, the next
operand value defined for WRITE-PASSWORD becomes the current object. This is the
input alternative of the type X-STRING.

U2284-J-Z125-9-76 59

Modifying command and statement definitions Example 3: File protection with passwords

//modify-value *x-string(short-l=4,long-l=4) —————————————————————————— (16)
//remove *value ——— (17)
//edit *oper(read-pass) ——— (18)
//modify-oper default=*n,struct-impl=*y
//remove *value
//edit *value(read-pass,*c-string)
//modify-value *c-string(4,4)
//modify-value *x-string(4,4)
//remove *value
//edit *oper(exec-pass) ——— (19)
//modify-oper default=*n,struct-impl=*y
//remove *value
//edit *value(exec-pass,*c-string)
//modify-value *c-string(4,4)
//modify-value *x-string(4,4)
//remove *value

16. The operand value that is the current object is defined to be of the type X-STRING and
to have both a minimum and a maximum length of four bytes. Following this, the next
operand value defined for WRITE-PASSWORD becomes the current object. This is the
input alternative of the type INTEGER.

17. The definition of the operand value that is the current object (INTEGER) is deleted.

18. The READ-PASSWORD operand and its values are modified in exactly the same
manner as was the WRITE-PASSWORD operand earlier on (see steps 12-17).

19. The EXEC-PASSWORD operand and its values are modified in exactly the same
manner as was the WRITE-PASSWORD operand earlier on (see steps 12-17).

60 U2284-J-Z125-9-76

Example 3: File protection with passwords Modifying command and statement definitions

//show *oper(prot,orig=*com(create-file)),siz=*max ———————————————————— (20)
PROTECTION = *STD
 *STD or *PARAMETERS()
 Specifies the protection attributes of the file
 STRUCTURE: *PARAMETERS
 PROTECTION-ATTR = *BY-DEF-PROT-OR-STD
 .
 .
 .
 WRITE-PASSWORD =
 *NONE or c-string_4..4 or x-string_7..8 or *SECRET
 Specifies the password for protection against unauthorized
 write access
 READ-PASSWORD =
 *BY-PROT-ATTR-OR-NONE or *NONE or c-string_1..4 or
 x-string_1..8 or integer_-2147483648..2147483647 or
 *SECRET -default-: *BY-PROT-ATTR-OR-NONE
 Specifies the password for protection against unauthorized
 read access
 EXEC-PASSWORD =
 *BY-PROT-ATTR-OR-NONE or *NONE or c-string_1..4 or
 x-string_1..8 or integer_-2147483648..2147483647 or
 *SECRET -default-: *BY-PROT-ATTR-OR-NONE
 Specifies the password for protection against unauthorized
 execution
 DESTROY-BY-DELETE = *BY-PROTECTION-ATTR
 *BY-PROTECTION-ATTR or *NO or *YES
 .
 .
 .
 .
 . —— (21)
 .
//end
/mod-file-attr sys.sdf.group.syntax.example,access=*read,user-acc=*all (22)
/exit-job
 .
 .

20. The PROTECTION operand of the CREATE-FILE command is displayed in its most
detailed form.

21. The definitions of the commands CREATE-FILE-GROUP, MODIFY-FILE-ATTRIBUTES
and MODIFY-FILE-GROUP-ATTRIBUTES are modified in exactly the same manner as
for the definition of the CREATE-FILE command earlier on.

22. The file SYS.SDF.GROUP.SYNTAX.EXAMPLE is declared as shareable. It may only be
accessed for reading.

U2284-J-Z125-9-76 61

Modifying command and statement definitions Example 3: File protection with passwords

/set-logon-parameters tsos,... —— (23)
/copy-file from-file=$sdfusr.sys.sdf.group.syntax.example,to-file=-
/sys.sdf.group.syntax.example,prot=*same —————————————————————————————— (24)
/modify-user example,profile-id=user1 ————————————————————————————————— (25)
/modify-sdf-param scope=*temporary,syntax-file=*group-
/(sys.sdf.group.syntax.example,user1) ————————————————————————————————— (26)
/modify-user examp1,profile-id=user1 —————————————————————————————————— (27)
/exit-job
 .
 .

23. A task is initiated under the privileged user ID TSOS.

24. The group syntax file $SDFUSR.SYS.SDF.GROUP.SYNTAX.EXAMPLE generated
under the user ID SDFUSR is copied. The name of the copy is
$TSOS.SYS.SDF.GROUP.SYNTAX.EXAMPLE. It has the same protection attributes as
the original file.

25. Profile ID USER1 is assigned to user ID EXAMPLE.

26. Group syntax file SYS.SDF.GROUP.SYNTAX.EXAMPLE is assigned to profile ID
USER1.

27. Profile ID USER1 is assigned to user ID EXAMP1.

62 U2284-J-Z125-9-76

Example 3: File protection with passwords Modifying command and statement definitions

/set-logon-parameters example ——— (28)
/show-sdf-options ——— (29)
%SYNTAX FILES CURRENTLY ACTIVATED :
% SYSTEM : :2OSH:$TSOS.SYSSDF.SDF.045
% VERSION : SESD04.5A300
% SUBSYSTEM : :2OSH:$TSOS.SYSSDF.ACO.022
% VERSION : SESD02.2A00
% SUBSYSTEM : :2OSH:$TSOS.SYSSDF.ACS.140
% VERSION : SESD14.0B100
 .
 .
% SUBSYSTEM : :2OSH:$TSOS.SYSSDF.SDF-A.041
% VERSION : SESD04.1E10
% SUBSYSTEM : :2OSH:$TSOS.SYSSDF.TASKDATE.140
% VERSION : SESD14.0A100
% GROUP : 2OSH:$.SYS.SDF.GROUP.SYNTAX.EXAMPLE
% VERSION : UNDEFINED
% USER : *NONE
%CURRENT SDF OPTIONS :
% GUIDANCE : *EXPERT
% LOGGING : *INPUT-FORM
% CONTINUATION : *NEW-MODE
% UTILITY-INTERFACE : *NEW-MODE
% PROCEDURE-DIALOGUE : *NO
% MENU-LOGGING : *NO
% MODE : *EXECUTION
% CHECK-PRIVILEGES : *YES
% DEFAULT-PROGRAM-NAME : *NONE
% FUNCTION-KEYS : *STYLE-GUIDE-MODE
% INPUT-HISTORY : *ON
% NUMBER-OF-INPUTS : 20
% PASSWORD-PROTECTION: *YES
/catalog demo ——— (30)
% CMD0087 OPERATION NAME 'CATALOG' IS NOT PERMITTED AT THE MOMENT
/file demo —— (31)
% CMD0087 OPERATION NAME 'FILE' IS NOT PERMITTED AT THE MOMENT

28. A task is initiated under the user ID EXAMPLE.

29. The activated syntax files are listed. The group syntax file
$.SYS.SDF.GROUP.SYNTAX.EXAMPLE has been activated.

30. SDF does not accept the CATALOG command. Since it has been disabled for inter-
active mode, it is treated as unknown.

31. SDF does not accept the FILE command. Since it has been disabled for interactive
mode, it is treated as unknown.

U2284-J-Z125-9-76 63

Modifying command and statement definitions Example 3: File protection with passwords

/create-file demo,wr-pass=2,ex-pass='3' ——————————————————————————————— (32)
% CMD0051 INVALID OPERAND 'PROTECTION=PARAMETERS:WRITE-PASSWORD'
% CMD0064 OPERAND VALUE 'P' DOES NOT MATCH DATA TYPE 'C-STRING_4..4 OR
 X-STRING_7..8 OR SECRET'
% CMD0051 INVALID OPERAND 'PROTECTION=PARAMETERS:READ-PASSWORD'
% CMD0099 MANDATORY OPERAND MISSING OR INVALID
% CMD0051 INVALID OPERAND 'PROTECTION=PARAMETERS:EXEC-PASSWORD'
% CMD0062 LENGTH OF VALUE ''P'' NOT IN PERMISSIBLE RANGE FOR DATA TYPE
 'C-STRING_4..4'
/create-file demo,read-pass='1234',wr-pass='2345',ex-pass='3456' —————— (33)
/show-file-attr demo,inf=*par(security=*yes) —————————————————————————— (34)
%0000000003 :2OSG:$EXAMPLE.DEMO
% ------------------------------- SECURITY -----------------------------
% READ-PASS = YES WRITE-PASS = YES EXEC-PASS = YES
% USER-ACC = OWNER-ONLY ACCESS = WRITE ACL = NO
% AUDIT = NONE FREE-DEL-D = *NONE EXPIR-DATE = NONE
% DESTROY = NO FREE-DEL-T = *NONE EXPIR-TIME = NONE
% SP-REL-LOCK= NO
%:2OSG: PUBLIC: 1 FILE RES= 3 FRE= 3 REL= 3 PAGES
 .
 .
/exit-job

32. SDF does not accept the CREATE-FILE command, because
– the specified write password is neither equal to the keyword SECRET nor of the

type C-STRING or X-STRING, and
– because no read password has been specified, and
– the specified execute password of type C-STRING is only 1 byte long.

33. SDF accepts the CREATE-FILE command, because passwords of the type C-STRING
that are four bytes long have been specified.

34. A catalog entry has been created for the file DEMO. It is protected by passwords.

64 U2284-J-Z125-9-76

Example 4: Permitting only one program Modifying command and statement definitions

3.1.4 Example 4: Permitting only one program (EDT)

Users with the user ID EXAMPLE are to be permitted to load and start only one program,
in this case, the file editor EDT, which is cataloged under the privileged user ID TSOS.

The desired restriction may be put into effect via the group syntax file
$TSOS.SYS.SDF.GROUP.SYNTAX.EXAMPLE. In this file, the definitions of the commands
START-PROGRAM and LOAD-PROGRAM must be modified accordingly.

– The START-PROGRAM command is to be renamed to START-EDITOR and have no
visible operands. The START-EDITOR command must not be already defined in the
syntax file hierarchy.

– The LOAD-PROGRAM command is to retain its name. Its operands, with the exception
of FROM-FILE, are to be invisible.

– In BLSSERV V2.3 and higher the functionality of START-PROGRAM and LOAD-PRO-
GRAM are also offered with improved syntax via the new commands START- and
LOAD-EXECUTABLE-PROGRAM. In this case the two new commands must also be
locked or their syntax definitions are to be modified in the same manner as for START-
PROGRAM and LOAD-PROGRAM.

– The old commands EXECUTE and LOAD and the START commands of other programs
are disabled so that the defined limitation cannot be bypassed.

/set-logon-parameters tsos,... —— (1)
 .
 .
/start-sdf-a —— (2)
% BLS0517 MODULE 'SDAMAIN' LOADED
% SDA0001 'SDF-A' VERSION '04.1E10' STARTED
//open-syntax-file sys.sdf.group.syntax.example,*group,*crea —————————— (3)
//remove *command((load,exec)) —— (4)
//show *command(start-prog) ——— (5)

1. A task is initiated under the privileged user ID TSOS.

2. SDF-A is loaded and started.

3. The group syntax file SYS.SDF.GROUP.SYNTAX.EXAMPLE is opened as a new file to
be created. By default, the activated system syntax file is assigned as a reference file.
The command definitions contained in the reference file can be modified in the open
group syntax file.

4. The commands LOAD and EXECUTE are disabled.

5. The command START-PROGRAM is displayed. By default, the display is at the
MINIMUM level of detail (see page 65).

U2284-J-Z125-9-76 65

Modifying command and statement definitions Example 4: Permitting only one program

START-PROGRAM(SRPG,SR,START-PROG)
 FROM :2OSH:$TSOS.SYSSDF.BLSSERV.023 (SYSTEM)
 FROM-FILE =
 STRUCTURE: *MODULE
 LIBRARY = *DBL-DEFAULT
 STRUCTURE: *LINK
 LINK =
 ELEMENT-OR-SYMBOL(ELEMENT,ELEM) = *ALL
 STRUCTURE: composed-name
 VERSION = *STD
 STRUCTURE: c-string
 VERSION = *STD
 PROGRAM-MODE = *DBL-DEFAULT
 RUN-MODE = *DBL-DEFAULT
 STRUCTURE: *ADVANCED
 ALTERNATE-LIBRARIES = *DBL-DEFAULT
 NAME-COLLISION = *DBL-DEFAULT
 UNRESOLVED-EXTRNS = *DBL-DEFAULT
 ERROR-EXIT = *DBL-DEFAULT
 MESSAGE-CONTROL = *DBL-DEFAULT
 LOAD-INFORMATION = *DBL-DEFAULT
 PROGRAM-MAP = *DBL-DEFAULT
 STRUCTURE: *SYSLST
 SYSLST-NUMBER = *STD
 STRUCTURE: *BOTH
 SYSLST-NUMBER = *STD
 SHARE-SCOPE = *DBL-DEFAULT
 STRUCTURE: *MEMORY-POOL
 SCOPE = *ALL
 IGNORE-ATTRIBUTES = *DBL-DEFAULT
 REP-FILE = *DBL-DEFAULT
 AUTOLINK = *DBL-DEFAULT
 PROGRAM-VERSION = *DBL-DEFAULT
 STRUCTURE: *PHASE
 LIBRARY =
 ELEMENT =
 VERSION = *STD
 CPU-LIMIT = *JOB-REST
 TEST-OPTIONS = *DBL-DEFAULT
 MONJV = *NONE
 RESIDENT-PAGES = *PARAMETERS
 STRUCTURE: *PARAMETERS
 MINIMUM = *STD
 MAXIMUM = *STD
 VIRTUAL-PAGES = *STD

66 U2284-J-Z125-9-76

Example 4: Permitting only one program Modifying command and statement definitions

//show *operand(from-f,orig=*com(start-prog)),siz=*med,att-inf=*n ————— (6)
FROM-FILE =
 filename or *MODULE() or *PHASE()
//edit *oper(from-f,orig=*com(start-prog)) ———————————————————————————— (7)
//mod-oper def='$edt',pres=*intern ———————————————————————————————————— (8)
//edit *oper(cpu-lim) ——— (9)
//mod-oper pres=*intern
//edit *oper(test-opt)
//mod-oper pres=*intern
//edit *oper(monjv)
//mod-oper pres=*intern
//edit *oper(resid-p)
//mod-oper pres=*intern
//edit *oper(resid-p,par,min) ——— (10)
//mod-oper pres=*intern
//edit *oper(resid-p,par,max)
//mod-oper pres=*intern
//edit *oper(virt-p)
//mod-oper pres=*intern

6. The FROM-FILE operand of the START-PROGRAM command is displayed at the
medium level of detail. Output of the structures attached to the values MODULE and
PHASE is suppressed.

7. The file is positioned to the FROM-FILE operand of the START-PROGRAM command.
This operand becomes the current object in the open syntax file.

8. The operand that is the current object (FROM-FILE) is assigned the default value
'$EDT'. At the user interface of the command the operand is made invisible, provided it
has a default value.

9. The other operands of the START-PROGRAM command are also made invisible. The
command name need not be specified for positioning as the specification made in step
7 is still effective.

10. The RESIDENT-PAGES operand, which is made invisible, has a default value to which
a structure is attached. The operands included in this structure must also be made
invisible.

U2284-J-Z125-9-76 67

Modifying command and statement definitions Example 4: Permitting only one program

//show *com(start-prog),att-inf=*n,size=*max —————————————————————————— (11)
START-PROGRAM(SRPG,SR,START-PROG)
 Loads a program (load or object module) to the memory and starts it
//edit *com(start-prog) ——— (12)
//mod-cmd start-editor,help=(e('Loads the EDT to the memory and starts -
//it.'),d('Laedt den EDT in den Speicher und startet ihn.')) —————————— (13)
//show *com(start-editor) ——— (14)

11. The header of the START-PROGRAM command is displayed with the corresponding
help text.

12. The file is positioned to the START-PROGRAM command.

13. The name of the command which is the current object (START-PROGRAM) is modified
to START-EDITOR. The help texts are modified in accordance with the restricted
functional scope. If a START-EDITOR command has already been defined in the
system, the statement does not appear.

14. The START-EDITOR command is displayed (see next page). The display has the
MINIMUM level of detail. By default it is assigned its previous name START-PROGRAM
and several abbreviations. The operands of the structure FROM-FILE=*MODULE(...)
and FROM-FILE=*PHASE(...) are still displayed in SDF-A because they are defined
using PRESENCE=*NORMAL. However, these operands are no longer visible on the
user interface and can no longer be entered.

START-EDITOR(SRPG,SR,START-PROG,START-PROGRAM)
 FROM SYS.SDF.GROUP.EXAMPLE (GROUP)
 LIBRARY = *STD
 STRUCTURE: *LINK
 LINK =
 ELEMENT = *ALL
 STRUCTURE: filename
 VERSION = *STD
 STRUCTURE: c-string
 VERSION = *STD
 PROGRAM-MODE = *24
 RUN-MODE = *STD
 STRUCTURE: *ADVANCED
 ALTERNATE-LIBRARIES = *NO
 NAME-COLLISION = *STD
 UNRESOLVED-EXTRNS = *STD
 ERROR-EXIT = X'FFFFFFFF'
 MESSAGE-CONTROL = *INFORMATION
 LOAD-INFORMATION = *DEFINITIONS
 PROGRAM-MAP = *NO
 STRUCTURE: *SYSLST
 SYSLST-NUMBER = *STD

68 U2284-J-Z125-9-76

Example 4: Permitting only one program Modifying command and statement definitions

 STRUCTURE: *BOTH
 SYSLST-NUMBER = STD
 SHARE-SCOPE = *SYSTEM-MEMORY
 STRUCTURE: *MEMORY-POOL
 SCOPE = *ALL
 IGNORE-ATTRIBUTES = *NONE
 REP-FILE = *NONE
 AUTOLINK = *YES
 LIBRARY =
 ELEMENT =
 VERSION = *STD
//remove *com((start-archive,start-binder,start-hsms,...)) ———————————— (15)
//show *com(load-prog) —— (16)

15. All the other (still functioning) START commands must be disabled so that only the
program EDT can be started. The START commands of many programs are eliminated
without being disabled using the command
% CMD0185 OPERAND NAME 'FROM-FILE' COULD NOT BE IDENTIFIED.

16. The LOAD-PROGRAM command is displayed. The display has the MINIMUM level of
detail (see page 69).

U2284-J-Z125-9-76 69

Modifying command and statement definitions Example 4: Permitting only one program

LOAD-PROGRAM(LDPG,LOAD-PROG)
 FROM :2OSH:$TSOS.SYSSDF.BLSSERV.023 (SYSTEM)
 FROM-FILE =
 STRUCTURE: *MODULE
 LIBRARY = *DBL-DEFAULT
 STRUCTURE: *LINK
 LINK =
 ELEMENT-OR-SYMBOL(ELEMENT,ELEM) = *ALL
 STRUCTURE: composed-name
 VERSION = *STD
 STRUCTURE: c-string
 VERSION = *STD
 PROGRAM-MODE = *DBL-DEFAULT
 RUN-MODE = *DBL-DEFAULT
 STRUCTURE: *ADVANCED
 ALTERNATE-LIBRARIES = *DBL-DEFAULT
 NAME-COLLISION = *DBL-DEFAULT
 UNRESOLVED-EXTRNS = *DBL-DEFAULT
 ERROR-EXIT = *DBL-DEFAULT
 MESSAGE-CONTROL = *DBL-DEFAULT
 LOAD-INFORMATION = *DBL-DEFAULT
 PROGRAM-MAP = *DBL-DEFAULT
 STRUCTURE: *SYSLST
 SYSLST-NUMBER = *STD
 STRUCTURE: *BOTH
 SYSLST-NUMBER = *STD
 SHARE-SCOPE = *DBL-DEFAULT
 STRUCTURE: *MEMORY-POOL
 SCOPE = *ALL
 IGNORE-ATTRIBUTES = *DBL-DEFAULT
 REP-FILE = *DBL-DEFAULT
 AUTOLINK = *DBL-DEFAULT
 PROGRAM-VERSION = *DBL-DEFAULT
 STRUCTURE: *PHASE
 LIBRARY =
 ELEMENT =
 VERSION = *STD
 CPU-LIMIT = *JOB-REST
 TEST-OPTIONS = *DBL-DEFAULT
 MONJV = *NONE
 RESIDENT-PAGES = *PARAMETERS
 STRUCTURE: *PARAMETERS
 MINIMUM = *STD
 MAXIMUM = *STD
 VIRTUAL-PAGES = *STD

70 U2284-J-Z125-9-76

Example 4: Permitting only one program Modifying command and statement definitions

//show *oper(from-f,orig=*com(load-prog)),siz=*med,att-inf=*n ————————— (17)
FROM-FILE =
 filename or *MODULE() or *PHASE()
//edit *oper(from-f,orig=*com(load-prog)) ————————————————————————————— (18)
//mod-oper def='$edt' ——— (19)
//mod-value value=('$edt','edt'(outp='$edt')) ————————————————————————— (20)
//remove *value ——— (21)
//remove *value(from-f,phase) ——— (22)
//edit *oper(cpu-lim) ——— (23)
//mod-oper pres=*intern
//edit *oper(test-opt)
//mod-oper pres=*intern
//edit *oper(monjv)
//mod-oper pres=*intern
//edit *oper(resid-p)
//mod-oper pres=*intern
//edit *oper(resid-p,par,min)
//mod-oper pres=*intern
//edit *oper(resid-p,par,max)
//mod-oper pres=*intern

17. The FROM-FILE operand of the LOAD-PROGRAM command is displayed at the
medium level of detail. Output of the structures attached to the values MODULE and
PHASE is suppressed.

18. The file is positioned to the FROM-FILE operand of the LOAD-PROGRAM command.
This operand becomes the current object in the open syntax file.

19. The operand that is the current object (FROM-FILE) is assigned the default value
’$EDT’. Subsequently, the definition of the first operand value attached to FROM-FILE
(FILENAME) becomes the current object.

20. $EDT and EDT are defined as the only permissible values for the operand value
definition that is the current object (FILENAME). For the input value EDT it is defined
that instead of this value SDF passes value $EDT to the implementation. Subsequently,
the definition of the next operand value attached to FROM-FILE (MODULE) becomes
the current object.

21. The definition of the operand value that is the current object (MODULE) is deleted.
Note: after this, the definition of the operand value FILENAME becomes the current
object.

22. The definition of the operand value PHASE of the FROM-FILE operand of the LOAD-
PROGRAM command is deleted. To do this, it is not necessary to specify the command
name as the specification made in step 18 is still effective.

23. The other operands of the LOAD-PROGRAM command are made invisible.

U2284-J-Z125-9-76 71

Modifying command and statement definitions Example 4: Permitting only one program

//edit *oper(virt-p)
//mod-oper pres=*intern
//show *com(load-prog),att-info=*y,siz=*max ——————————————————————————— (24)
LOAD-PROGRAM(LDPG,LOAD-PROG)
 FROM SYS.SDF.GROUP.EXAMPLE (GROUP)
 loads a program (load or object module) to the memory
 FROM-FILE = $EDT
 $EDT or EDT
 name of the file containing the load module or details of the
 object module/load module library
//end
/mod-f-attr sys.sdf.group.syntax.example,access=*read,user-acc=*all ——— (25)
/mod-user example,profile-id=user1 ———————————————————————————————————— (26)
/mod-sdf-parameters scope=*permanent,syntax-file=*group-
/(sys.sdf.group.syntax.example,user1) ————————————————————————————————— (27)
% CMD0681 SYNTAX FILE '$.SYS.SDF.GROUP.SYNTAX.EXAMPLE' INSERTED IN
PARAMETER FILE '$.SYSPAR.SDF'
% CMD0718 GROUP SYNTAX FILE '$.SYS.SDF.GROUP.SYNTAX.EXAMPLE' HAS BEEN
ASSOCIATED WITH 'PROFILE-ID USER1' IN MEMORY TABLES
/start-prog $example.edt —— (28)
% BLS0517 MODULE 'SDAMAIN' LOADED
% SDA0001 'SDF-A' VERSION '04.1E10' STARTED
//end
/exit-job

24. The LOAD-PROGRAM command is displayed. The display has the maximum level of
detail. The only operand visible at the user interface is FROM-FILE, which has the
default value $EDT. The values permitted are $EDT and EDT.

25. The file SYS.SDF.GROUP.SYNTAX.EXAMPLE is declared as shareable. Access to it is
permitted only for reading.

26. Profile ID USER1 is assigned to user ID EXAMPLE.

27. Group syntax file SYS.SDF.GROUP.SYNTAX.EXAMPLE is assigned to profile ID
USER1. This assignment is permanently stored in the SDF parameter file.

28. The file $EXAMPLE.EDT contains the program SDF-A. The privileged user ID TSOS
may access this file because the START-PROGRAM command is not restricted for
TSOS. The following shows that a user under the user ID EXAMPLE cannot access a
program with the name EDT, even if this program exists under his/her own user ID. Due
to the restrictions implemented above, only the program $EDT can be loaded.

72 U2284-J-Z125-9-76

Example 4: Permitting only one program Modifying command and statement definitions

/set-logon-parameters example,... ————————————————————————————————————— (29)
/show-sdf-options ——— (30)
%SYNTAX FILES CURRENTLY ACTIVATED :
% SYSTEM : :2OSH:$TSOS.SYSSDF.SDF.045
% VERSION : SESD04.5A300
% SUBSYSTEM : :2OSH:$TSOS.SYSSDF.ACO.022
% VERSION : SESD02.2A00
% SUBSYSTEM : :2OSH:$TSOS.SYSSDF.ACS.140
% VERSION : SESD14.0B100
 .
 .
% SUBSYSTEM : :2OSH:$TSOS.SYSSDF.SDF-A.041
% VERSION : SESD04.1E10
% SUBSYSTEM : :2OSH:$TSOS.SYSSDF.TASKDATE.140
% VERSION : SESD14.0A100
% GROUP : 2OSH:$.SYS.SDF.GROUP.SYNTAX.EXAMPLE
% VERSION : UNDEFINED
% USER : *NONE
%CURRENT SDF OPTIONS :
% GUIDANCE : *EXPERT
% LOGGING : *INPUT-FORM
% CONTINUATION : *NEW-MODE
% UTILITY-INTERFACE : *NEW-MODE
% PROCEDURE-DIALOGUE : *NO
% MENU-LOGGING : *NO
% MODE : *EXECUTION
% CHECK-PRIVILEGES : *YES
% DEFAULT-PROGRAM-NAME : *NONE
% FUNCTION-KEYS : *STYLE-GUIDE-MODE
% INPUT-HISTORY : *ON
% NUMBER-OF-INPUTS : 20
% PASSWORD-PROTECTION: *YES
/exec $sdf-a —— (31)
% SDP0222 OPERAND ’CMD’ INVALID IN /EXEC-CMD, ERROR ’SDP0116’. IN SYSTEM
MODE: /HELP-MSG SDP0116

29. A task is initiated under the user ID EXAMPLE.

30. The activated syntax files are displayed. The group syntax file
SYS.SDF.GROUP.SYNTAX.EXAMPLE previously processed by the privileged user ID
TSOS is activated.

31. Since the EXEC command was removed, SDF interprets the user input as the SDF-P
command EXEC-CMD and rejects it due to the invalid syntax.

U2284-J-Z125-9-76 73

Modifying command and statement definitions Example 4: Permitting only one program

/load-program $sdf-a —— (32)
% CMD0051 INVALID OPERAND 'FROM-FILE'
% CMD0063 OPERAND VALUE '$SDF-A' NOT A MEMBER OF THE SINGLE VALUE LIST OF
 SCOPE '$EDT OR EDT'
/load-program edt ——— (33)
% BLS0500 PROGRAM 'EDT', VERSION '16.6A' OF '1996-06-04' LOADED
% BLS0552 COPYRIGHT (C) FUJITSU SIEMENS COMPUTERS GMBH 1996. ALL RIGHTS
RESERVED
/load-program ——— (34)
% BLS0500 PROGRAM 'EDT', VERSION '16.6A' OF '1996-06-04' LOADED
% BLS0552 COPYRIGHT (C) FUJITSU SIEMENS COMPUTERS GMBH 1996. ALL RIGHTS
RESERVED
/start-program $sdf-a ——— (35)
% CMD0376 SPECIFICATION OF POSITIONAL OPERANDS UP FROM POSITION '1' NOT
 PERMITTED
/start-editor ——— (36)
% BLS0500 PROGRAM 'EDT', VERSION '16.6A' OF '1996-06-04' LOADED
.
 .
halt
% EDT8000 EDT TERMINATED
/start-program —— (37)
% BLS0500 PROGRAM 'EDT', VERSION '16.6A' OF '1996-06-04' LOADED
.
 .
halt
% EDT8000 EDT TERMINATED
/exit-job

32. SDF does not accept the operand value $SDF-A in the LOAD-PROGRAM command.

33. SDF does not pass the value EDT to the implementation, but instead the value $EDT.
Instead of the program SDF-A contained in the file $EXAMPLE.EDT (see step 28) the
program contained in the file $TSOS.EDT is loaded.

34. SDF transfers the default value $EDT of the FROM-FILE operand to the implemen-
tation. EDT is loaded.

35. START-PROGRAM is the default name of the renamed command START-EDITOR.
SDF recognizes the START-EDT command and rejects the operand value $SDF-A as
not permissible.

36. Entering START-EDITOR causes EDT to be loaded and started.

37. SDF recognizes the START-EDITOR command by its default name START-PROGRAM.
EDT is loaded and started.

74 U2284-J-Z125-9-76

Example 5: Restricting set of usable programs Modifying command and statement definitions

3.1.5 Example 5: Restricting the set of usable programs

Users with the user ID EXAMPLE are to be permitted to load and start only those programs
that are cataloged under the user ID SDFUSR. All of these programs, without exception,
reside in files and not in libraries.

The desired restriction may be implemented via the group syntax file
$TSOS.SYS.SDF.GROUP.SYNTAX.EXAMPLE. It is to receive the version number
EXAMPLE#5. In this file, the definitions of the commands START-PROGRAM and LOAD-
PROGRAM are to be suitably modified. Since users with the user ID EXAMPLE do not test
programs, the operand TEST.OPTIONS is to be disabled when the two command defini-
tions are modified.

Note
In BLSSERV V2.3 and higher the functionality of START-PROGRAM and LOAD-PRO-
GRAM are also offered with improved syntax via the new commands START- and
LOAD-EXECUTABLE-PROGRAM. In this case the two new commands must also be
locked or their syntax definitions are to be modified in the same manner as for START-
PROGRAM and LOAD-PROGRAM.

The definitions of the old commands EXECUTE and LOAD cannot be modified as desired.
If EXECUTE and LOAD were to be disabled only for interactive and batch mode but not for
calls using the CMD macro, such disabling could easily be bypassed. Consequently, the
commands are to be generally disabled.

User guidance is preset throughout the system to GUIDANCE=*EXPERT. For the user ID
EXAMPLE, user guidance is to be preset to GUIDANCE=*NO.

The program EDT is available under the user ID SDFUSR.

/set-logon-parameters sdfusr,... —————————————————————————————————————— (1)
 .
 .
/start-sdf-a —— (2)
% BLS0517 MODULE 'SDAMAIN' LOADED
% SDA0001 'SDF-A' VERSION '04.1E10' STARTED
//open-syntax-file sys.sdf.group.syntax.example,*group,*crea —————————— (3)

1. A task is initiated under the user ID SDFUSR.

2. SDF-A is loaded and started.

3. The group syntax file SYS.SDF.GROUP.SYNTAX.EXAMPLE is opened as a new file to
be created. By default, the activated system syntax file is assigned as a reference file.

U2284-J-Z125-9-76 75

Modifying command and statement definitions Example 5: Restricting set of usable programs

//set-glob vers=example#5,guid=*n ————————————————————————————————————— (4)
//remove *com((load,exec)) —— (5)
//show *com(start-prog),att-inf=*n,size=*max —————————————————————————— (6)
START-PROGRAM(SRPG,SR,START-PROG)
 FROM :2OSH:$TSOS.SYSSDF.BLSSERV.023 (SYSTEM)
 Loads a program (load or object module) to the memory and starts it
//edit *com(start-prog) ——— (7)
//mod-cmd help=(e('Loads a $SDFUSR-program to the memory and starts it.'),-
//d('Laedt ein $SDFUSR-Programm in den Speicher und startet es.')) ———— (8)
//show *oper(from-f),siz=*med,att-inf=*n —————————————————————————————— (9)
FROM-FILE =
 filename or *MODULE() or *PHASE()
//show *oper(from-f),impl=*y,att-inf=*n ——————————————————————————————— (10)
ADD-OPERAND NAME=FROM-FILE,INTERNAL-NAME=FROMFI,STANDARD-NAME= -
 FROM-FILE,HELP=(D(TEXT='Name der Datei, die das Lademodul-
 enthaelt oder Angaben zur Bindemodul- bzw. Lademodulbibliothek'),E(-
 TEXT='name of the file containing the load module or-
 specification of the object module/load module library')), -
 RESULT-OPERAND-NAME=*POSITION(POSITION=1), -
 CONCATENATION-POS=1
//add-oper prefix,def='$sdfusr.',res-oper-n=*pos(1),conc-pos=1,pres=*int (11)

4. The group syntax file SYS.SDF.GROUP.SYNTAX.EXAMPLE receives the version
number EXAMPLE#5. User guidance is preset to GUIDANCE=*NO.

5. The commands LOAD and EXECUTE are disabled for all users.

6. The SDF-A statement used to define the START-PROGRAM command is displayed.

7. The file is positioned to the START-PROGRAM command, i.e. the command becomes
the current object in the open group syntax file.

8. The help text for the command that is the current object is changed. Thereafter, the first
operand of this command (FROM-FILE) becomes the current object.

9. The FROM-FILE operand of the command currently being edited (START-PROGRAM)
is displayed at the medium level of detail.

10. The SDF-A statement used to define the FROM-FILE operand of the START-
PROGRAM command is displayed.

11. The PREFIX operand is defined. SDF-A inserts its definition into the definition of the
START-PROGRAM command after the current object (FROM-FILE). At the user
interface of the START-PROGRAM command, the operand is invisible. Its default value
is “$SDFUSR”. When the command is passed to the implementation the operand has
the same position as the FROM-FILE operand (see step 10) and, when concatenated
with the latter, comes first.

76 U2284-J-Z125-9-76

Example 5: Restricting set of usable programs Modifying command and statement definitions

//add-value *part-filename —— (12)
//edit *oper(from-f) —— (13)
//mod-oper conc-pos=2,help=(e('specifies the name of the file holding the -
//load module.'),d('Name der Datei, die das Lademodul enthaelt.')) ———— (14)
//mod-value *filename(user-id=*n) ————————————————————————————————————— (15)
//remove *value ——— (16)
//remove *value(from-f,phase) ——— (17)
//show *oper(test-opt) —— (18)
TEST-OPTIONS = *NONE
//edit *oper(test-opt) —— (19)
//mod-oper pres=*intern ——— (20)

12. For the PREFIX operand an operand value of type PARTIAL-FILENAME is defined.

13. The file is positioned to the FROM-FILE operand of the command currently being edited
(START-PROGRAM), i.e. this operand becomes the current object.

14. The operand that is the current object (FROM-FILE) is to come second when concate-
nated with the PREFIX operand. The help texts for FROM-FILE are modified. Subse-
quently, the first operand value (FILENAME) of FROM-FILE becomes the current
object.

15. The definition of the operand value that is the current object (FILENAME) is modified.
Specification of the user ID as part of the file name is no longer permitted. After this, the
operand value MODULE becomes the current object.

16. The definition of the operand value that is the current object (MODULE) is deleted. The
structure attached to it is likewise deleted. Note: After this, the definition of the operand
value FILENAME becomes the current object.

17. The definition of operand value PHASE belonging to the operand FROM-FILE is
deleted.

18. The TEST-OPTIONS operand is displayed.

19. The file is positioned to the TEST-OPTIONS operand of the command currently being
edited (START-PROGRAM), i.e. TEST-OPTIONS becomes the current object.

20. The operand that is the current object (TEST-OPTIONS) is made invisible at the user
interface of the START-PROGRAM command.

U2284-J-Z125-9-76 77

Modifying command and statement definitions Example 5: Restricting set of usable programs

//show *com(load-prog),att-inf=*n,size=*max ——————————————————————————— (21)
LOAD-PROGRAM(LDPG,LOAD-PROG)
 FROM :2OSH:$TSOS.SYSSDF.BLSSERV.023 (SYSTEM)
 Loads a program (load or object module) to the memory
//edit *com(load-prog)
//mod-cmd help=(e('Loads a $SDFUSR-program to the memory.'),-
//d('Laedt ein $SDFUSR-Programm in den Speicher.'))
//show *oper(from-f),siz=*med,att-inf=*n
FROM-FILE =
 filename or *MODULE() or *PHASE()
//show *oper(from-f),impl=*y,att-inf=*n
ADD-OPERAND NAME=FROM-FILE,INTERNAL-NAME=FROMFI,STANDARD-NAME= -
 FROM-FILE,HELP=(D(TEXT='Name der Datei, die das Lademodul-
 enthaelt oder Angaben zur Bindemodul- bzw. Lademodulbibliothek'),E(-
 TEXT='name of the file containing the load module or-
 specification of the object module/load module library')), -
 RESULT-OPERAND-NAME=*POSITION(POSITION=1), -
 CONCATENATION-POS=1
//copy *oper(prefix,orig=*com(start-prog)) ———————————————————————————— (22)
//edit *oper(from-f)
//mod-oper conc-pos=2,help=(e('specifies the name of the file holding -
//the load module.'),d('Name der Datei, die in das Lademodul enthaelt.'))
//mod-value *filename(user-id=*n)
//remove *value
//remove *value(from-f,phase)
//show *oper(test-opt)
TEST-OPTIONS = *NONE
//edit *oper(test-opt)
//mod-oper pres=*intern
//end

21. The definition of the LOAD-PROGRAM command is displayed, and modified in a way
analogous to the way START-PROGRAM was modified previously.

22. The PREFIX operand and its operand value are defined for the LOAD-PROGRAM
command using the COPY statement instead of the ADD statement. The definitions
established in steps 11 and 12 for START-PROGRAM are copied.

78 U2284-J-Z125-9-76

Example 5: Restricting set of usable programs Modifying command and statement definitions

/mod-f-attr sys.sdf.group.syntax.example,access=*read,user-acc=*all ——— (23)
/start-prog demo —— (24)
% BLS0517 MODULE 'SDAMAIN' LOADED
% SDA0001 'SDF-A' VERSION '04.1E10' STARTED
//open-syntax-file
 .
 .
//end
/exit-job
 .
 .
/set-logon-parameters tsos,... —— (25)
/mod-user example,profile-id=user1 ———————————————————————————————————— (26)
/mod-sdf-param scope=*permanent,syntax-file=*group($sdfusr.sys.sdf.group.-
/syntax.example,user1) —— (27)
% CMD0681 SYNTAX FILE '$SDFUSR.SYS.SDF.GROUP.SYNTAX.EXAMPLE' INSERTED IN
PARAMETER FILE '$.SYSPAR.SDF'
% CMD0718 GROUP SYNTAX FILE '$SDFUSR.SYS.SDF.GROUP.SYNTAX.EXAMPLE' HAS BEEN
ASSOCIATED WITH 'PROFILE-ID USER1' IN MEMORY TABLES
/exit-job
 .
 .

23. The file SYS.SDF.GROUP.SYNTAX.EXAMPLE is declared as shareable. Access is
read-only.

24. The program DEMO cataloged under the user ID SDFUSR is loaded and started. It is
the program SDF-A.

25. A task is initiated under the system administrator ID TSOS.

26. Profile ID USER1 is assigned to user ID EXAMPLE.

27. Group syntax file $SDFUSR.SYS.SDF.GROUP.SYNTAX.EXAMPLE is assigned to
profile ID USER1. The assignment is permanently stored in the SDF parameter file.

U2284-J-Z125-9-76 79

Modifying command and statement definitions Example 5: Restricting set of usable programs

/set-logon-parameters example,... ————————————————————————————————————— (28)
 .
 .
%CMD:show-sdf-options ——— (29)
%SYNTAX FILES CURRENTLY ACTIVATED :
% SYSTEM : :2OSH:$TSOS.SYSSDF.SDF.045
% VERSION : SESD04.5A300
% SUBSYSTEM : :2OSH:$TSOS.SYSSDF.ACO.022
% VERSION : SESD02.2A00
% SUBSYSTEM : :2OSH:$TSOS.SYSSDF.ACS.140
% VERSION : SESD14.0B100
 .
 .
% SUBSYSTEM : :2OSH:$TSOS.SYSSDF.SDF-A.041
% VERSION : SESD04.1E10
% SUBSYSTEM : :2OSH:$TSOS.SYSSDF.TASKDATE.140
% VERSION : SESD14.0A100
% GROUP : 2OSH:$.SYS.SDF.GROUP.SYNTAX.EXAMPLE
% VERSION : EXAMPLE#5
% USER : *NONE
%CURRENT SDF OPTIONS :
% GUIDANCE : *NO
% LOGGING : *INPUT-FORM
% CONTINUATION : *NEW-MODE
% UTILITY-INTERFACE : *NEW-MODE
% PROCEDURE-DIALOGUE : *NO
% MENU-LOGGING : *NO
% MODE : *EXECUTION
% CHECK-PRIVILEGES : *YES
% DEFAULT-PROGRAM-NAME : *NONE
% FUNCTION-KEYS : *STYLE-GUIDE-MODE
% INPUT-HISTORY : *ON
% NUMBER-OF-INPUTS : 20
% PASSWORD-PROTECTION: *YES
%CMD:exec sdf-a ——— (30)
% SDP0222 OPERAND ’CMD’ INVALID IN /EXEC-CMD, ERROR ’SDP0116’. IN SYSTEM
MODE: /HELP-MSG SDP0116

28. A task is initiated under the user ID EXAMPLE.

29. The activated syntax files are listed. The group syntax file
$SDFUSR.SYS.SDF.GROUP.SYNTAX.EXAMPLE, with the version number
EXAMPLE#5, is activated. User guidance is set to GUIDANCE=*NO. Consequently,
SDF requests input of commands and statements by issuing “%CMD:” or “%STMT:”.

30. Since the EXEC command was removed, SDF interprets the user input as the SDF-P
command EXEC-CMD and rejects it due to invalid syntax.

80 U2284-J-Z125-9-76

Example 5: Restricting set of usable programs Modifying command and statement definitions

%CMD:start-prog sdf-a ——— (31)
% BLS0514 ERROR WHEN OPENING FILE $SDFUSR.SDF-A . DMS ERROR '0D33'. IN
SYSTEM MODE /HELP-MSG DMS0D33
% NRTT101 ABNORMAL JOBSTEP TERMINATION BLS0514
%CMD:help-msg 0d33
% DMS0D33 PROGRAM ERROR: REQUESTED FILE NOT CATALOGED
% ? The requested file has not been cataloged in the system.
% For the file or job variable (JV) no catalog entry could be found.
% ! Correct the error and try again.
%CMD:start-prog $sdfusr.demo —— (32)
% CMD0051 INVALID OPERAND 'FROM-FILE'
% CMD0072 ATTRIBUTE SPECIFIED IN FILE NAME '$SDFUSR.DEMO' NOT PERMITTED
%ENTER OPERANDS:
%$sdfusr.demo
demo —— (33)
% BLS0517 MODULE 'SDAMAIN' LOADED ———————————————————————————————————— (34)
% SDA0001 'SDF-A' VERSION '04.1E10' STARTED
%STMT:open-syntax-file user,,*crea ———————————————————————————————————— (35)

31. SDF accepts the command name START-PROGRAM. However, it passes to the imple-
mentation the file name $SDFUSR.SDF-A, which it has formed through concatenation.
This file does not exist.

32. SDF does not accept the file name $SDFUSR.DEMO, because it contains a user ID,
which is not permitted.

33. SDF accepts the file name DEMO. However, SDF passes to the implementation the file
name $SDFUSR.DEMO, which it has formed through concatenation.

34. The program SDF-A, found under the user ID SDFUSR in the file DEMO, is loaded and
started (see step 24).

35. The user syntax file USER is created and opened. By default, the activated system
syntax file and the activated group syntax file are assigned as reference files.

U2284-J-Z125-9-76 81

Modifying command and statement definitions Example 5: Restricting set of usable programs

%STMT:show *com(start-prog),siz=*max —————————————————————————————————— (36)
START-PROGRAM(SRPG,SR,START-PROG)
 FROM SYS.SDF.GROUP.EXAMPLE (GROUP)
 Loads a $SDFUSR-program to the memory and starts it.
 FROM-FILE =
 filename_1..54_without-user-id-generation
 Specifies the name of the file holding the load module.
 CPU-LIMIT = JOB-REST
 JOB-REST or integer_1..32767
 specifies the maximum CPU time in seconds the program may use for
 execution
 MONJV = *NONE
 *NONE or filename_1..54_without-generation
 specifies the name of the job variable which is to monitor the
 program.
 RESIDENT-PAGES = *PARAMETERS
 *PARAMETERS()
 specifies the number of resident memory pages required for program
 execution
 STRUCTURE: *PARAMETERS
 MINIMUM = *STD
 *STD or integer_0..32767
 specifies the minimum number of resident memory pages
 required
 MAXIMUM = *STD
 *STD or integer_0..32767
 specifies the maximum number of resident memory pages
 required
 VIRTUAL-PAGES = *STD
 *STD or integer_0..32767
 specifies the total number of memory pages (both resident and
 pageable) required for program execution
%STMT:end
%CMD:exit-job

36. The definition of the START-PROGRAM command is displayed in its most detailed form.
The changes made can be seen. The TEST-OPTIONS operand has been made
invisible.

82 U2284-J-Z125-9-76

Example 6: Clearing a lock on a command Modifying command and statement definitions

3.1.6 Example 6: Clearing a lock on a command

In a user syntax file the START-SDF-A command is disabled. This lock is to be cleared.

/set-logon-parameters sdfusr,... —————————————————————————————————————— (1)
 .
/show-sdf-options ——— (2)
%SYNTAX FILES CURRENTLY ACTIVATED :
% SYSTEM : :2OSH:$TSOS.SYSSDF.SDF.045
% VERSION : SESD04.5A300
% SUBSYSTEM : :2OSH:$TSOS.SYSSDF.ACO.022
% VERSION : SESD02.2A00
% SUBSYSTEM : :2OSH:$TSOS.SYSSDF.ACS.140
% VERSION : SESD14.0B100
 .
 .
% SUBSYSTEM : :2OSH:$TSOS.SYSSDF.SDF-A.041
% VERSION : SESD04.1E10
% SUBSYSTEM : :2OSH:$TSOS.SYSSDF.TASKDATE.140
% VERSION : SESD14.0A100
% GROUP : 2OSH:$.SYS.SDF.GROUP.SYNTAX.SDFUSR
% VERSION : UNDEFINED
% USER : 2OSH:$SDFUSR.SDF.USER.SYNTAX
% VERSION : USER001
%CURRENT SDF OPTIONS :
% GUIDANCE : *EXPERT
% LOGGING : *INPUT-FORM
% CONTINUATION : *NEW-MODE
% UTILITY-INTERFACE : *NEW-MODE
% PROCEDURE-DIALOGUE : *NO
% MENU-LOGGING : *NO
% MODE : *EXECUTION
% CHECK-PRIVILEGES : *YES
% DEFAULT-PROGRAM-NAME : *NONE
% FUNCTION-KEYS : *STYLE-GUIDE-MODE
% INPUT-HISTORY : *ON
% NUMBER-OF-INPUTS : 20
% PASSWORD-PROTECTION: *YES

1. A task is initiated under the user ID SDFUSR. The user syntax file SDF.USER.SYNTAX
cataloged under this user ID is automatically activated when the LOGON command is
processed. In this syntax file the START-SDF-A command is disabled.

2. The activated syntax files are listed. The user syntax file SDF.USER. SYNTAX is
activated.

U2284-J-Z125-9-76 83

Modifying command and statement definitions Example 6: Clearing a lock on a command

/start-sdf-a —— (3)
% CMD0086 OPERATION NAME 'START-SDF-A' REMOVED BY USER
/mod-sdf-opt synt-file=*rem(*std) ————————————————————————————————————— (4)
/start-sdf-a —— (5)
% BLS0517 MODULE 'SDAMAIN' LOADED
% SDA0001 'SDF-A' VERSION '04.1E10' STARTED
//open-syntax-file sdf.user.syntax ———————————————————————————————————— (6)
//show *com(start-sdf-a) —— (7)
% CMD0051 INVALID OPERAND 'OBJECT=*COM:NAME'
% SDA0083 NAME 'START-SDF-A' UNKNOWN
% SDA0407 CORRECTION REJECTED OR NOT POSSIBLE. STATEMENT IGNORED
//restore *com(start-sdf-a) ——— (8)
//end
/mod-sdf-opt synt-file=*add(*std) ————————————————————————————————————— (9)
/start-sdf-a —— (10)
% BLS0517 MODULE 'SDAMAIN' LOADED
% SDA0001 'SDF-A' VERSION '04.1E10' STARTED
//end
/exit-job
 .
 .

3. SDF does not accept the START-SDF-A command.

4. The user syntax file SDF.USER.SYNTAX is deactivated.

5. SDF accepts the START-SDF-A command, since the user syntax file SDF.USER.
SYNTAX is now deactivated. SDF-A is loaded and started.

6. The user syntax file SDF.USER.SYNTAX is opened. By default, the activated system
syntax file and the activated group syntax file are assigned as reference files.

7. Since the START-SDF-A command is disabled, SDF-A rejects the attempt to issue it.

8. The lock on the START-SDF-S command is lifted, provided that the assigned reference
syntax files contain the definition.

9. The previously edited user syntax file SDF.USER.SYNTAX is activated.

10. The START-SDF-A command is no longer disabled. The lock has been successfully
lifted by step 8.

84 U2284-J-Z125-9-76

Limiting the range of functions Modifying command definitions

3.2 Limiting the range of functions

SDF-A can be used to limit the range of functions either throughout the BS2000 system or
for a specific user ID. A system-global limitation must be defined in a system syntax file, a
limitation for a specific user ID in a group syntax file.

When defining a limitation in a group syntax file, the relevant system syntax file must be
assigned as a reference file (OPEN-SYNTAX-FILE ... SYSTEM-DESCRIPTIONS=) if the
definition of the command or statement is not already present in the group syntax file.

Commands, statements, operands and operand values can be disabled either generally
(using the REMOVE statement) or for specific operating modes (using the statement
MODIFY-xxx ...,DIALOG-ALLOWED=...,DIALOG-PROC-ALLOWED=..,BATCH-
ALLOWED=...,BATCH-PROC-ALLOWED=...). In addition, commands may be disabled as
a function of the way they are called (CMD-ALLOWED=).

Limiting the functional scope of a command

If the functional scope of a command is to be effectively limited, care must be taken to
ensure that the limitation defined cannot be circumvented with the help of other commands.
In most cases a limitation can be circumvented with the help of the old ISP commands.
These are defined such that their functional scope cannot be modified using SDF-A. They
can only be disabled. If they can be called via the MCLP interface, a general lock can have
unforeseeable consequences. A sensible precautionary measure would then be to disable
these commands for interactive and batch mode only, but not for calls via MCLP (Macro
Command Language Processor). However, such a partial disabling can be circumvented
relatively easily, e.g. with the help of EDT. The appropriate action is determined by the
particular case (see examples 4 and 6). Commands sent with the SDF-P command
EXECUTE-CMD (e.g. to divert the command output to a variable) are not subject to the
requirements for DIALOG-ALLOWED=..., DIALOG-PROC-ALLOWED=..., BATCH-
ALLOWED=... and BATCH-PROC-ALLOWED=..., because they are called via the MCLP
interface.

Disabling operands

If an operand is to be disabled, it is usually impossible to predict the consequences on the
implementation if the definition of the operand is deleted. To be on the safe side it is
advisable merely to mask out the operand at the user interface by means of the statement
MODIFY-OPERAND..., PRESENCE=*INTERNAL-ONLY. A default value must then be
defined, covered by an operand value defined for the operand.

It is also possible to define a limitation in the functional scope by defining a secret operand
and subsequently concatenating it with a visible operand (see example 5, page 74).

U2284-J-Z125-9-76 85

Modifying command definitions Limiting the range of functions

Limiting operand values

Limitations as to the permissible length or the permissible digit value for operand values can
be defined by means of the MODIFY-VALUE statement. Furthermore, in MODIFY-VALUE...,
VALUE=(<c-string>(...),...),... you can specify a list of valid input values. All values not listed
are then rejected as invalid. The statement MODIFY-VALUE... VALUE= <c-
string>(...,OUTPUT=...,) can be used to direct SDF to convert a defined single value to
another value before passing it to the implementation or to suppress transfer of the value.
In some cases, the limitation can also be imposed by modifying the data type. In the case
of operand values defined as fully or partially qualified file names, the specification of the
catalog identification, the user ID, a generation number or the designation of a version
number as well as the input of wildcards may be declared illegal. Wildcards can also be
declared legal or illegal for the data types <alphanum-name>, <composed-name> and
<name>.

Limiting the functional scope of a user program

A user program limitation defined in a system or group syntax file can be rendered
ineffectual by means of a user syntax file. If the functional scope of a user program is to be
limited effectively, care must be taken to ensure that the users concerned cannot define the
full functional scope in a user syntax file.

Restricted loading and execution of programs

System administration can restrict the loading and execution of programs to certain user
applications (such as EDT), by defining a START-EDITOR command in the UTILITIES or
PROGRAMMING-SUPPORT domain of SDF (see example on page 64).

To prevent the commands START-PROGRAM, EXEC, LOAD-PROGRAM and LOAD from
being executed directly, system or group syntax files are changed by assigning the
attributes DIALOG-ALLOWED=*NO and BATCH-ALLOWED=*NO to these commands.
The same attributes must be specified for the commands CALL-PROCEDURE, CALL and
DO. This method prevents the direct execution of any program or procedure, but does
permit procedure commands to be executed, in which case the procedures called may
contain the illegal commands (START-PROGRAM,...).

86 U2284-J-Z125-9-76

Removing limitations Modifying command definitions

3.3 Removing limitations

The actions involved in removing a limitation depend on:

– the type of syntax file in which the limitation is defined

– whether the limitation is to be removed on a global basis or only for particular users

– whether the limitation involves the functional scope of a command implemented via a
system module, a command implemented via a procedure, or a user program

– whether the limitation is to be removed completely or only partially

– whether the limitation is implemented via disabling, deletion or modification of a
command or statement.

The procedure often corresponds to that used to define the limitation.

– If the limitation was implemented by deleting the definition of a command, statement,
operand or operand value, it may be removed by reinstating the deleted definition using
COPY.

– If the limitation was implemented by modifying the definition of a command, statement,
operand or operand value, the first step involves deleting the modified definition by
means of REMOVE. Then, in a second step, the original definition can be reinstated
using COPY.

– If a command or statement modification defined in a group or user syntax file is to be
completely removed, the syntax file should be opened without assignment of a
reference file and the modified definition removed by means of REMOVE. This
approach presupposes that the original version of the definition is still present in the
relevant system or group syntax file.

– If a command or statement lock defined in a group or user syntax file is to be lifted, this
can be done with the aid of the RESTORE statement. When unlocking the definition of
a command implemented via system modules for a user syntax file, one must bear in
mind that the command definition must be contained in the reference syntax files
assigned when the user syntax file is opened.

U2284-J-Z125-9-76 87

4 Definition and implementation of commands
and statements by the user

4.1 Syntax rules and recommendations

This section lists rules and recommendations governing syntax. It does not provide infor-
mation regarding specific details, e.g. as to the maximum length of an operand name. Such
detailed information can be found in the descriptions of the ADD statements, which are
used to enter the syntax of commands and statements in a syntax file.

In the following, the words “should” and “may” are used for recommendations; the word
“must” denotes rules which must be complied with. The recommendations for commands
also apply to statements.

– The name of a command, statement or operand, as well as an operand value of the type
KEYWORD, may be made up of several subnames, connected together by hyphens. All
subnames should be based on natural language. When two things are the same, the
same subname should be used for them.

During input, the subnames may be abbreviated as desired and/or omitted entirely from
right to left, provided SDF can unambiguously identify the full name on the basis of the
abbreviation.

– The name of a command should begin with a verb. The subname following the verb
should indicate the object that is processed by the command. The ALIAS-NAME must
be different from NAME or STANDARD-NAME. If the possibility of a command name
colliding with the name of a new command supplied by Fujitsu Siemens Computers as
part of a future version of the program is to be absolutely ruled out, the subname “X”
can be used as the beginning of the command name.

– Each function should be dealt with by a separate command, taking care that the
function is not too complex. There should be complementary commands for comple-
mentary functions.

88 U2284-J-Z125-9-76

Syntax rules and recommendations Definition and implementation of commands/statements

– Each operand must have a name.
During input, an operand may be specified either as a positional operand or as a
keyword operand.

– Optional operands must have a default value.

– Operands that are relevant only when another operand has a certain specific value
should be attached to that value in a structure. A structure consists of one or more
operands, enclosed in parentheses. It is attached to the value of a higher-ranking
operand.

– Operands logically belonging together should be placed together in a structure. It may
make sense to construct a higher-ranking operand expressly for the purpose of intro-
ducing the structure.

– Structures should not be nested to more than five levels.
=>>No more than five levels of nesting are allowed for structures.

– The name of an operand within a structure need be unique only within that structure.
Nevertheless, it is expedient during input if the name is unambiguous for all commands
and statements. The structure can then be implicitly selected by specifying the operand.

– An operand value must be defined as one of the following data types:

<alphanumeric-name>
<cat-id>
<composed-name>
<c-string>
<date>
<device>
<fixed>
<filename>
<integer>
 KEYWORD
<name>
<partial-filename>
<posix-pathname>
<posix-filename>
<product-version>
<structured-name>
<time>
<vsn>
<x-string>
<x-text>

U2284-J-Z125-9-76 89

Definition and implementation of commands/statements Syntax rules and recommendations

For some of these data types the possible operand value can be defined more precisely
by means of additional specifications, e.g. by specifying a minimum and a maximum
length (see ADD-VALUE). The data types <command-rest>, KEYWORD-NUMBER,
<label> and <text> are reserved for Fujitsu Siemens Computers Software Devel-
opment.

– With the exception of keywords, the input alternatives defined for an operand must be
of different data types. These data types must be syntactically disjunct, unless
overlapping of data types has been permitted by means of the statement ADD-
OPERAND...VALUE-OVERLAPPING. Otherwise, for example, simultaneous definition
of a value of the type NAME and of an alternative value of the type STRUCTURED-
NAME for an operand is not possible (see section “Mutually exclusive data types” on
page 623 in the appendix).

VALUE-OVERLAPPING=*YES should only be used by SDF-A experts, and
even then only if the problem cannot be solved in any other way.

– A keyword must be prefixed by an asterisk when necessary to make it distinguishable
from other input alternatives
(see ADD-VALUE TYPE=*KEYWORD(STAR=*MANDATORY)).

– It is possible to specify that a list of values can be entered for one operand. During input
these values must be separated from one another by commas and enclosed in paren-
theses.

– The coexistence of operand values of data type KEYWORD and operand values of a
data type with wildcards leads to special situations. A list of 6 possible cases and the
results of the SDF syntax analysis for different inputs are given below:

1. ADD-OPERAND NAME=OP1,VALUE-OVERLAPPING=*YES
ADD-VALUE TYPE=*KEYWORD(STAR=*OPTIONAL),VALUE='ALL'
ADD-VALUE TYPE=*FILENAME(WILDCARD=*YES)

2. ADD-OPERAND NAME=OP1,VALUE-OVERLAPPING=*YES
ADD-VALUE TYPE=*FILENAME(WILDCARD=*YES)
ADD-VALUE TYPE=*KEYWORD(STAR=*OPTIONAL),VALUE='ALL'

3. ADD-OPERAND NAME=OP1,VALUE-OVERLAPPING=*NO
ADD-VALUE TYPE=*KEYWORD(STAR=*MANDATORY),VALUE='ALL'
ADD-VALUE TYPE=*FILENAME(WILDCARD=*YES)

4. ADD-OPERAND NAME=OP1,VALUE-OVERLAPPING=*NO
ADD-VALUE TYPE=*FILENAME(WILDCARD=*YES)
ADD-VALUE TYPE=*KEYWORD(STAR=*MANDATORY),VALUE='ALL'

5. ADD-OPERAND NAME=OP1,VALUE-OVERLAPPING=*YES
ADD-VALUE TYPE=*FILENAME(WILDCARD=*YES)

i

90 U2284-J-Z125-9-76

Syntax rules and recommendations Definition and implementation of commands/statements

6. ADD-OPERAND NAME=OP1,VALUE-OVERLAPPING=*NO
ADD-VALUE TYPE=*KEYWORD(STAR=*MANDATORY),VALUE='V4.1'
ADD-VALUE TYPE=*FILENAME(WILDCARD=*YES)

During syntax analysis, SDF V4.1 treats the inputs as the following data types:

Input
of:

Case number

1 2 3 4 5 6

A keyword filename filename filename filename filename

*A keyword keyword keyword keyword error error

**A filename filename filename filename filename filename

*A/ filename filename filename filename filename filename

* filename filename filename filename filename filename

*B error error error error error error

*V4.1 error error error error error keyword

*V4. filename filename filename filename filename filename

**V4.1 filename filename filename filename filename filename

U2284-J-Z125-9-76 91

Implementation of user-defined commands Examples

4.2 Examples for defining and implementing commands

4.2.1 Example 1: Assembly command

A command to assemble an assembly language source program and store the generated
object module in an EAM object module library is to be defined and then be implemented
via a procedure. The necessary macros may be located in a user macro library. The
command is to have the following format:

The command is implemented via a procedure. The symbolic operands appear as
positional operands in the operand list of the BEGIN-PROCEDURE command. The
following procedure appears as the element ASSEMB in the program library
$SDFUSR.PROC.LIB.

/BEGIN-PROCEDURE PARAMETERS=*YES(PROC-PARAM=(&SOURCE,&MACROLIB,&TEST))
/DELETE-SYSTEM-FILE FILE-NAME=*OMF
/ASSIGN-SYSDTA TO=*SYSCMD
/START-ASSEMBH
// COMPILE SOURCE=&SOURCE,-
// MACRO-LIB=&MACROLIB,-
// TEST=&TEST
// END
/SET-JOB-STEP
/ASSIGN-SYSDTA TO-FILE=*PRIMARY
/END-PROCEDURE

ASSEMBLE-SOURCE

SOURCE = <filename 1..54>

,MACRO-LIBRARY = *NONE / <filename 1..54>

,TEST-SUPPORT = *NO / *YES

92 U2284-J-Z125-9-76

Examples Implementation of user-defined commands

The command ASSEMBLE-SOURCE is defined in the user syntax file SDF.USER.
SYNTAX. It is then tested.

/set-logon-parameters sdfusr,... ————————————————————————————————————— (1)
/mod-sdf-options syntax-file=*remove(*std) ———————————————————————————— (2)
/start-sdf-a —— (3)
% BLS0517 MODULE 'SDAMAIN' LOADED
% SDA0001 'SDF-A' VERSION '04.1E10' STARTED
%//open-syntax-file sdf.user.syntax ——————————————————————————————————— (4)
%//set-glob cont=*new ——— (5)
%//add-cmd assemble-source,help=e('Assembles a program'), -
%//domain=programming-support, -
%//implementor=*proc('*lib-elem(lib=$sdfusr.proc.lib,elem=assemb)') ——— (6)
%//add-oper source,res-oper-name=*pos(1) —————————————————————————————— (7)
%//add-value *filename —— (8)
%//add-oper macro-library,def='*none',res-oper-name=*pos(2) ——————————— (9)
%//add-value *keyw(*mand),value='*none' ——————————————————————————————— (10)

1. A task is initiated under the user ID SDF.USER.

2. The user syntax file SDF.USER.SYNTAX automatically activated during LOGON
processing is deactivated.

3. SDF-A is loaded and started.

4. The existing user syntax file SDF.USER.SYNTAX is opened.

5. The global information defines that the continuation character “-” for continuing lines
may stand in any column between 2 and 72 when SYSCMD or SYSSTMT is input.

6. The header of the ASSEMBLE-SOURCE command is defined. The command contains
an English help text and is assigned to the domain USER. It is implemented by means
of the procedure located as the element ASSEMB in the program library
$SDFUSR.PROC.LIB.

7. The first operand of the ASSEMBLE-SOURCE command is defined. Its name is
SOURCE. It stands at the beginning of the string to be passed to the procedure.

8. It is defined that the value of the SOURCE operand must be of the type FILENAME.

9. The second operand of the ASSEMBLE-SOURCE command is defined. Its name is
MACRO-LIBRARY. Its default value is *NONE. It comes second in the string to be
passed to the procedure.

10. The keyword NONE is defined as a permissible value of the MACRO-LIBRARY
operand. When entered, it must be prefixed by an asterisk.

U2284-J-Z125-9-76 93

Implementation of user-defined commands Examples

%//add-value *filename —— (11)
%//add-oper test-support,def='no',res-oper-name=*pos(3) ——————————————— (12)
%//add-value *keyw,value='no' ——— (13)
%//add-value *keyw,value='yes' —— (14)
%//close-cmd —— (15)
%//show *com(assemb-source),siz=*max —————————————————————————————————— (16)
ASSEMBLE-SOURCE
 Assembles a program
 SOURCE =
 filename_1..54
 MACRO-LIBRARY = *NONE
 *NONE or filename_1..54
 TEST-SUPPORT = *NO
 *NO or *YES
%//end —— (17)

11. It is defined that the value of the MACRO-LIBRARY operand may be of the data type
FILENAME.

12. The third global operand of the ASSEMBLE-SOURCE command is defined. Its name
is TEST-SUPPORT and it has the default value NO. It comes third in the string to be
passed to the procedure.

13. It is defined that the keyword NO is a permissible value of the TEST-SUPPORT
operand.

14. It is defined that the keyword YES is a permissible value of the TEST-SUPPORT
operand.

15. The definition of the ASSEMBLE-SOURCE command is terminated.

16. The definition of the ASSEMBLE-SOURCE command created in the user syntax file
SDF.USER.SYNTAX is output in its most detailed form. SDF-A has defined a minimum
length of 1 and a maximum length of 54 for all file names.

17. SDF-A is terminated. The user syntax file SDF.USER.SYNTAX is stored implicitly.

94 U2284-J-Z125-9-76

Examples Implementation of user-defined commands

/mod-sdf-opt synt-file=*add(*std),guid=*n ————————————————————————————— (18)
/assemb-source demo.prog1,macro-lib=demo.maclib.test-support=*yes ————— (19)
% BLS0500 PROGRAM 'ASSEMBH', VERSION '1.2B00' OF '1998-04-24' LOADED
% BLS0552 COPYRIGHT (C) FUJITSU SIEMENS COMPUTERS GMBH 1990. ALL RIGHTS
RESERVED
% ASS6010 V01.2B02 OF BS2000 ASSTRAN READY
% ASS6011 ASSEMBLY TIME: 302 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NOTE
% ASS6006 LISTING GENERATOR TIME: 130 MSEC
% ASS6012 END OF ASSTRAN
.
 .

18. The user syntax file SDF.USER.SYNTAX, in which the ASSEMBLE-SOURCE
command is defined, is activated.

19. The ASSEMBLE-SOURCE command is entered. The user-specific macro library
DEMO.MACLIB is specified. Once the command has been executed, the resultant
object module has been stored in the EAM object module file.

U2284-J-Z125-9-76 95

Implementation of user-defined commands Examples

4.2.2 Example 2: Command to output the contents of a file

A command to output the contents of a SAM or ISAM file on SYSOUT is to be defined and
is to be implemented by means of a procedure. By default, the records in the file to be output
are of variable length, but files with fixed-length records may also be output. When ISAM
files are output, the ISAM key has a default length of eight bytes, but it may also be shorter.
The command is to have the following format:

The command is implemented by means of a procedure. The symbolic operands appear as
positional operands in the operand list of the BEGIN-PROCEDURE command. The utility
routine EDT is used within the procedure. The following procedure appears in the file
$SDFUSR.TYPE.FILE.

TYPE-FILE

NAME = <filename 1..54>

,ACCESS-METHOD = *ISAM(...) / *SAM

*ISAM(...)

 KEY-LENGTH = 8 / <integer 1..8>

,RECORD-SIZE = *VARIABLE / <integer 1..256>

96 U2284-J-Z125-9-76

Examples Implementation of user-defined commands

/ BEGIN-PROCEDURE N,PARAM=YES(PROC-PARAM=(&FILE,&ACCESS,&KEY,&RECORD),-
/ ESCAPE-CHARACTER='&')
/ MODIFY-JOB-SWITCHES ON=(4,5)
/ ASSIGN-SYSDTA TO-FILE=*SYSCMD
/ CREATE-JV JV=RECORD-SIZE
/ MODIFY-JV JV=RECORD-SIZE,VALUE='&RECORD'
/ LOAD-PROGRAM FROM-FILE=$EDT
/ SKIP-COMMAND TO-LABEL=&ACCESS "ACCESS IST ISAM ODER SAM"
/.SAM SKIP-COMMANDS TO-LABEL=SAM1,IF=JV(COND=(RECORD-SIZE='VARIABLE'))
/ SET-FILE-LINK LINK-NAME=EDTSAM,FILE-NAME=&FILE,ACCES-METHOD=SAM,-
/ RECORD-FORMAT=FIXED(REC-SIZE=&RECORD)
/.SAM1 RESUME-PROGRAM
@ READ '&FILE'
/ HOLD-PROGRAM
/ SKIP-COMMANDS TO-LABEL=COMMON,IF=JV(COND=(RECORD-SIZE='VARIABLE'))
/ REMOVE-FILE-LINK LINK-NAME=EDTSAM
/ SKIP-COMMANDS TO-LABEL=COMMON
/.ISAM CREATE-JV JV=ISAM-KEY
/ MODIFY-JV JV=ISAM-KEY,VALUE='&KEY'
/ SKIP-COMMANDS TO-LABEL=ISAM3,IF=JV(COND=(ISAM-KEY='8' AND -
/ RECORD-SIZE='VARIABLE'))
/ SKIP-COMMANDS TO-LABEL=ISAM1,IF=JV(COND=(ISAM-KEY='8'))
/ SKIP-COMMANDS TO-LABEL=ISAM2,IF=JV(COND=(RECORD-SIZE='VARIABLE'))
/ SET-FILE-LINK LINK-NAME=EDTISAM,FILE-NAME=&FILE,ACCESS-METHOD=-
/ ISAM(KEY-LEN=&KEY,KEY-POS=1),RECORD-FORMAT=FIXED(REC-SIZE=&RECORD)
/ SKIP-COMMANDS TO-LABEL=ISAM3
/.ISAM1 SET-FILE-LINK LINK-NAME=EDTISAM,FILE-NAME=&FILE,ACCES-METHOD=-
/ ISAM(KEY-LEN=8,KEY-POS=1),RECORD-FORMAT=FIXED(REC-SIZE=&RECORD)
/ SKIP-COMMANDS TO-LABEL=ISAM3
/.ISAM2 SET-FILE-LINK LINK-NAME=EDTISAM,FILE-NAME=&FILE,ACCES-METHOD=-
/ ISAM(KEY-LEN=&KEY)
/.ISAM3 RESUME-PROGRAM
@ GET '&FILE'
/ HOLD-PROGRAM
/ SKIP-COMMANDS TO-LABEL=ISAM4,IF=JV(COND=(ISAM-KEY='8' AND -
/ RECORD-SIZE='VARIABLE'))
/ REMOVE-FILE-LINK LINK-NAME=EDTISAM
/.ISAM4 DELETE-JV JV=ISAM-KEY
/.COMMON RESUME-PROGRAM
@ PRINT %.-$N
@ HALT
/ SET-JOB-STEP
/ DELETE-JV JV=RECORD-SIZE
/ ASSIGN-SYSDTA TO-FILE=*PRIMARY
/ MODIFY-JOB-SWITCHES OFF=(4,5)
/ END-PROCEDURE

U2284-J-Z125-9-76 97

Implementation of user-defined commands Examples

The TYPE-FILE command is defined in the user syntax file SDF.USER.SYNTAX. It is
subsequently tested.

/set-logon-parameters sdfusr,... —————————————————————————————————————— (1)
 .
 .
/mod-sdf-opt synt-file=*remove(*std) —————————————————————————————————— (2)
/start-sdf-a —— (3)
% BLS0517 MODULE 'SDAMAIN' LOADED
% SDA0001 'SDF-A' VERSION '04.1E10' STARTED
%//open-syntax-file sdf.user.syntax ——————————————————————————————————— (4)
%//set-globals cont=*new —— (5)
%//add-cmd type-file,help=e('Outputs the contents of an ISAM or SAM -
%//file to SYSOUT.'),domain=user,impl=*proc('$sdfusr.type.file') —————— (6)
%//add-oper name,help=e('Name of file to be output'),res-oper-nam=*pos(1) (7)
%//add-value *filename —— (8)
%//add-oper access-method,def='isam',res-oper-name=*pos(2) ———————————— (9)

1. A task is initiated under the user ID SDFUSR.

2. The user syntax file SDF.USER.SYNTAX automatically activated during LOGON
processing is deactivated.

3. SDF-A is loaded and started.

4. The existing user syntax file SDF.USER.SYNTAX is opened.

5. The global information defines that the continuation character “-” for follow-on lines may
be situated in any column between 2 and 72 when SYSCMD or SYSSTMT is input.

6. The header of the TYPE-FILE command is defined. It contains an English help text and
is assigned to the domain USER. It is implemented by means of the procedure
appearing in the file $SDFUSR.TYPE.FILE.

7. The first operand of the TYPE-FILE command is defined. Its name is NAME. It contains
an English help text. It comes first in the string to be passed to the procedure.

8. It is defined that the value of the operand NAME must be of the data type FILENAME.

9. The second operand of the TYPE-FILE command is defined. Its name is ACCESS-
METHOD. Its default value is ISAM. In the string to be passed to the procedure, it
occupies the second position.

98 U2284-J-Z125-9-76

Examples Implementation of user-defined commands

%//add-value *keyw,struct=*y,value='isam' ————————————————————————————— (10)
%//add-oper key-length,def='8',res-oper-name=*pos(3) —————————————————— (11)
%//add-value *integ(1,8) —— (12)
%//close-struct ——— (13)
%//add-value *keyw,value='sam' —— (14)
%//add-oper record-size,def='variable',res-oper-name=*pos(4) —————————— (15)
%//add-value *keyw,value='variable' ——————————————————————————————————— (16)
%//add-value *integ(1,256) —— (17)
%//close-cmd —— (18)

10. It is defined that the keyword ISAM is a permissible value of the ACCESS-METHOD
operand. ISAM introduces a structure.

11. The first operand of the structure ISAM is defined. Its name is KEY-LENGTH. Its default
value is the integer 8. It appears third in the string to be passed to the procedure.

12. It is defined that the value of the KEY-LENGTH operand must be of the data type
INTEGER. 1 is defined as its lower limit, 8 as its upper limit.

13. The structure ISAM just edited is closed.

14. It is defined that the keyword SAM is a permissible value of the ACCESS-METHOD
operand.

15. The third operand of the TYPE-FILE command is defined. Its name is RECORD-SIZE.
Its default value is VARIABLE. It occupies the fourth position in the string to be passed
to the procedure.

16. It is defined that the keyword VARIABLE is a permissible value of the RECORD-SIZE
operand.

17. It is defined that the value of the RECORD-SIZE operand may be of the data type
INTEGER. 1 is defined as its lower limit, 256 as its upper limit.

18. The definition of the TYPE-FILE command is terminated.

U2284-J-Z125-9-76 99

Implementation of user-defined commands Examples

%//show *com(type-f),siz=*max ——— (19)
TYPE-FILE
 Outputs the contents of an ISAM or SAM file to SYSOUT.
 NAME =
 filename_1..54
 Name of file to be output
 ACCESS-METHOD = *ISAM
 *ISAM() or *SAM
 STRUCTURE: *ISAM
 KEY-LENGTH = 8
 integer_1..8
 RECORD-SIZE = *VARIABLE
 *VARIABLE or integer_1..256
%//end
/type-file demo.1 ——— (20)
% CMD0186 OPERATION NAME 'TYPE-FILE' UNKNOWN
/mod-sdf-opt synt-file=*add(*std) ————————————————————————————————————— (21)
/type-f demo.1 —— (22)
Contents of ISAM file DEMO.1
 .
 .
/type-f demo.2,rec-siz=52
Contents of ISAM file DEMO.2
 .
 .
/type-f demo.3,isam(6)
Contents of ISAM file DEMO.3
 .
 .

19. The definition of the TYPE-FILE command, generated in the user syntax file
SDF.USER.SYNTAX, is displayed in its most detailed form. By default, SDF-A has
defined a minimum length of 1 and a maximum length of 54 for FILENAME.

20. SDF rejects the TYPE-FILE command, since it is not defined in an activated syntax file.

21. The user syntax file SDF.USER.SYNTAX is activated.

22. Various ISAM files are displayed with the TYPE-FILE command:
DEMO.1: the ISAM key is 8 bytes long, the record length is variable
DEMO.2: the ISAM key is 8 bytes long, the records length is 52 bytes
DEMO.3: the ISAM key is 6 bytes long, the record length is variable

100 U2284-J-Z125-9-76

Examples Implementation of user-defined commands

/type-f demo.4,sam,rec-siz=60 ——— (23)
Contents of SAM file DEMO.4
 .
 .
/type-f? —— (24)

23. The SAM file DEMO.4 is displayed with the TYPE-FILE command. This file has a fixed
record length of 60 bytes.

24. Guided dialog is temporarily introduced for the input of the TYPE-FILE command.

Further information is requested via the operands NAME and RECORD-SIZE.

COMMAND : TYPE-FILE

--
NAME = ?
ACCESS-METHOD = *ISAM(KEY-LENGTH=8)
RECORD-SIZE = ?VARIABLE

--
NEXT = *CONTINUE
KEYS : F1=? F3=*EXIT F5=*REFRESH F6=*EXIT-ALL F8=+ F9=REST-SDF-IN
 F11=*EXECUTE F12=*CANCEL

U2284-J-Z125-9-76 101

Implementation of user-defined commands Examples

Contents of ISAM file DEMO.5
 .
 .
/exit-job

The name of the file to be output is specified here as demo.5, and the record size is given
as a fixed length of 55 bytes. The access method *ISAM(KEY-LENGTH=8) is the default
value and is therefore preset.

The command is then executed. After the command has been executed the task is termi-
nated.

COMMAND : TYPE-FILE
OPERANDS : NAME=?,RECORD-SIZE=*VARIABLE

--
NAME = demo.5
 filename_1..54
 Name of the file to be output
ACCESS-METHOD = *ISAM(KEY-LENGTH=8)
RECORD-SIZE = 55
 *VARIABLE or integer_1..256

--
NEXT = *CONTINUE
KEYS : F1=? F3=*EXIT F5=*REFRESH F6=*EXIT-ALL F8=+ F9=REST-SDF-IN
 F11=*EXECUTE F12=*CANCEL

102 U2284-J-Z125-9-76

Notes Implementation of user-defined commands

4.2.3 Notes

If a command implemented by means of a procedure is to be generally available:

– the procedure must be shareable and

– the user ID under which the procedure file is cataloged must be specified as part of the
file name in the command definition (see ADD-CMD).

In the operand list that SDF passes to the procedure the operands may be defined as
keyword operands or as positional operands. In the case of a keyword operand, a different
name may be passed than the one that appears in the command syntax (see ADD-
OPERAND ...,RESULT-OPERAND-NAME=).

Several operands for a command may be concatenated to form a single operand and
passed to the procedure in this form (see ADD-OPERAND ...,RESULT-OPERAND-
NAME=,CONCATENATION-POS=).

Operand definitions Command input Parameter list
passed to the
procedure

//ADD-OPER OP1,...,RES-OPER-N=*POS(1)
//ADD-OPER OP2,...,RES-OPER-N=*POS(2)
//ADD-OPER OP3,...,RES-OPER-N=*SAME
//ADD-OPER OP4,...,RES-OPER-N=PARAM

/CMD W,X,Y,Z
/CMD W,OP4=Z,
OP3=Y,OP2=X

('W','X',OP3='Y',
PARAM='Z')

Operand definitions Command input Parameter list
passed to the
procedure

//ADD-OPER OP1,...,RES-OPER-N=*POS(2),
CONC-POS=2
//ADD-OPER OP2,...,RES-OPER-N=*POS(2)
CONC-POS=1
//ADD-OPER OP3,...,RES-OPER-N=*POS(1)

/CMD X,Y,Z

/CMD X,OP3=Z,
OP2=Y

('Z','YX')

//ADD-OPER OP1,...,RES-OPER-N=OP2,
CONC-POS=2
//ADD-OPER OP2,...,RES-OPER-N=*SAME
CONC-POS=1
//ADD-OPER OP3,...,RES-OPER-N=*POS(1)

/CMD X,Y,Z

/CMD X,OP3=Z,
OP2=Y

('Z',OP2='YX')

U2284-J-Z125-9-76 103

Implementation of user-defined commands Notes

An operand for which there is only one permissible value may be so defined that, while it
does get passed to the procedure, it does not appear in the command syntax (see ADD-
OPERAND ...,PRESENCE=*INTERNAL-ONLY). If the operand constitutes the only
operand in a structure, then the structure will also be invisible in the command syntax. This
can be used, among other things, for passing branch destinations to the procedure, to which
processing within the procedure may branch depending on input alternatives (see
“Example 1: Assembly command” on page 91).

On the other hand, an operand which, for example, is needed only for structuring the
command syntax, and not for the implementation, may be suppressed when operands are
passed to the procedure (see ADD-OPERAND ..., PRESENCE=*EXTERNAL-ONLY).
ADD-VALUE ...,VALUE=<c-string>(...,OUTPUT=...,...),... can be used to direct SDF to
convert defined single values to other values before passing them on to the procedure or to
suppress transfer of the values. For example, it can be specified that SDF is to pass on the
value ’ISD’ to the procedure instead of the value ’YES’ defined for the input (see example 1).

ADD-VALUE ...,OUTPUT=NORMAL(STRING-LITERALS=...) can be used to specify
whether SDF is to recode an operand value before passing it on to the procedure
(<c-string> to <x-string> or vice versa).

ADD-VALUE ...,STRUCTURE=*YES(SIZE=...,...),... is used to determine whether a
structure will be integrated into the operand form at the MINIMUM and MEDIUM level of
guided dialog or whether SDF will display a separate subform for this structure.

Normally, the default values of the ADD statements can be used extensively when defining
a command. However, these statements also provide a number of means for tailoring a
command definition to the user’s individual requirements. Further information on this can
be found in the descriptions of the ADD statements.

104 U2284-J-Z125-9-76

Example Implementation of user-defined statements

4.3 Definition and implementation of statements

4.3.1 Example: Program for copying files

A program is to be written to copy ISAM and SAM files. Using the program, it should be
possible to change the following:

– the access method

– the record length

– the ISAM key.

The program is to execute as a main program.

If the file to be processed is protected by a password, it should be possible to enter the
password without it appearing on the screen. If the password is omitted, it is to be requested
in an error dialog.

In addition to the standard SDF statements, the program has the following statement:

COPY-FILE

FROM-FILE = <filename 1..54>

,TO-FILE = <filename 1..54 without-gen-vers>(...)

<filename 1..54 without-gen-vers>(...)

 ACCESS-METHOD = *SAME / *ISAM(...) / *SAM
 *ISAM(...)
 KEY-LENGTH = *STD / <integer 1..50>
 ,RECORD-SIZE = *SAME / *VARIABLE / <integer 1..2048>

,PASSWORD = *NONE / <c-string 1..4> / *SECRET-PROMPT

U2284-J-Z125-9-76 105

Implementation of user-defined statements Example

Defining the program in the user syntax file

The program KOP is defined in the user syntax file SDF.KOP.SYNTAX:

/set-logon-parameters sdfusr, ... ————————————————————————————————————— (1)
 .
 .
/start-sdf-a —— (2)
% BLS0517 MODULE 'SDAMAIN' LOADED
% SDA0001 'SDF-A' VERSION '04.1E10' STARTED
%//open-syntax-file sdf.kop.syntax,,*create ——————————————————————————— (3)
%//add-program kop —— (4)
%//add-stmt name=copy-file,prog=kop,intern-name=copyfi,stmt-version=1 — (5)
%//add-oper from-file,res-oper-name=*pos(1) ——————————————————————————— (6)
%//add-val *filename —— (7)
%//add-oper to-file,res-oper-name=*pos(2) ————————————————————————————— (8)
%//add-val *filename(gen=*n,vers=*n),structure=*y(siz=*small) ————————— (9)
%//add-oper access-method,default='same',res-oper-name=*pos(3) ———————— (10)

1. A task is initiated under the user ID SDFUSR.

2. SDF-A is loaded and started.

3. The user syntax file SDF.KOP.SYNTAX is created and opened.

4. The program KOP is defined. By default, SDF-A takes the first three letters (KOP) as its
internal name.

5. The header of the COPY-FILE statement belonging to the program KOP is defined. Its
internal name is COPYFI and it has the version number 1.

6. The first operand of the COPY-FILE statement is defined. Its name is FROM-FILE. It
occupies the first position in the operand array of the transfer area.

7. It is defined that the value of the FROM-FILE operand must be of the data type
FILENAME.

8. The second operand of the COPY-FILE statement is defined. Its name is TO-FILE. In
the operand array of the transfer area it occupies the second position.

9. It is defined that the value of the TO-FILE operand must be of the data type FILENAME.
Specification of a generation number or version number is not permitted. FILENAME
introduces a structure.

10. The first operand in the structure FILENAME is defined. Its name is ACCESS-
METHOD. Its default value is SAME. In the operand array of the transfer area it
occupies the third position.

106 U2284-J-Z125-9-76

Example Implementation of user-defined statements

%//add-val *keyw,val='same' ——— (11)
%//add-val *keyw,val='isam',struct=*y ————————————————————————————————— (12)
%//add-oper key-length,default='std',res-oper-name=*pos(4) ———————————— (13)
%//add-val *keyw,val='std' —— (14)
%//add-val *integer(1,50) ——— (15)
%//close-structure —— (16)
%//add-val *keyw,val='sam' —— (17)
%//add-oper record-size,default='same',res-oper-name=*pos(5) —————————— (18)
%//add-val *keyw,val='same' ——— (19)
%//add-val *keyw,val='variable' ——————————————————————————————————————— (20)
%//add-val *integer(1,2048) ——— (21)
%//close-struct ——— (22)

11. It is defined that the keyword SAME is a permissible value for the ACCESS-METHOD
operand.

12. It is defined that the keyword ISAM is a permissible value for the ACCESS-METHOD
operand. ISAM introduces a structure.

13. The first operand in the ISAM structure is defined. Its name is KEY-LENGTH. Its default
value is STD. In the operand array of the transfer area it occupies the fourth position.

14. It is defined that the keyword STD is a permissible value for the KEY-LENGTH operand.

15. It is defined that the value of the KEY-LENGTH operand may be of the data type
INTEGER. 1 is defined as its lower limit, 50 as its upper limit.

16. The structure just edited (ISAM) is closed.

17. It is defined that the keyword SAM is a permissible value for the ACCESS-METHOD
operand.

18. The second operand in the structure FILENAME is defined. Its name is RECORD-SIZE.
Its default value is SAME. In the operand array of the transfer area it occupies the fifth
position.

19. It is defined that the keyword SAME is a permissible value for the RECORD-SIZE
operand.

20. It is defined that the keyword VARIABLE is a permissible value for the RECORD-SIZE
operand.

21. It is defined that the value of the RECORD-SIZE operand may be of the data type
INTEGER. 1 is defined as its lower limit, 2048 as its upper limit.

22. The structure just edited (FILENAME) is closed.

U2284-J-Z125-9-76 107

Implementation of user-defined statements Example

%//add-oper password,default='none',secret=*y,res-oper-name=*pos(6) ——— (23)
%//add-val *keyw,val='none' ——— (24)
%//add-val *c-string(1,4) ——— (25)
%//add-val *keyw,val='secret-prompt',out=*secret —————————————————————— (26)
%//close-cmd —— (27)
%//show object=*program(name=kop),size=*max ——————————————————————————— (28)
KOP
COPY-FILE
 FROM SDF.KOP.SYNTAX (USER)
 FROM-FILE =
 filename 1..54
 TO-FILE =
 filename 1..54_without-generation-version()
 STRUCTURE: filename
 ACCESS-METHOD = *SAME
 *SAME or *ISAM() or *SAM
 STRUCTURE: *ISAM
 KEY-LENGTH = *STD
 *STD or integer_1..50
 RECORD-SIZE = *SAME
 *SAME or *VARIABLE or integer_1..2048
 PASSWORD =
 *NONE or c-string_1..4 or *SECRET-PROMPT -DEFAULT-: *NONE

%//end
 .
 .

%//exit-job

23. The third global operand of the COPY-FILE statement is defined. Its name is
PASSWORD. Its default value is NONE. It is defined as a secret operand. In the
operand array of the transfer area it occupies the eighth position.

24. It is defined that the keyword NONE is a permissible value for the PASSWORD operand.

25. It is defined that the value of the PASSWORD operand may be of the data type
C-STRING. 1 is defined as its minimum length, 4 as its maximum length.

26. It is defined that the keyword SECRET-PROMPT is a permissible value for the
PASSWORD operand. It is not passed to the implementation; instead, after it has been
entered, SDF requests a value (not displayed) for PASSWORD.

27. The definition of the COPY-FILE statement is terminated.

28. The definition of the program KOP, with all of the statements that go with it, is displayed
in its most detailed form.

108 U2284-J-Z125-9-76

Example Implementation of user-defined statements

After analyzing the COPY-FILE statement, SDF writes the following information into the
transfer area. The entries enclosed in parentheses are written by SDF-A only when
ACCESS-METHOD=*ISAM applies.

Byte Length in
bytes

Description Value

0 to 7 8 Standard header

8 to 11 4 Length of the transfer area

12 to 19 8 Internal statement name C'COPYFI'

20 to 23 4 Reserved

24 to 26 3 Version of the statement C'001'

27 to 35 9 Reserved

36 to 37 2 Number of positions in the operand array 6

38 to 39 2 Reserved

40
41
42

43

44 to 47

1
1
1

1

4

Additional information for FROM-FILE
Type description for FROM-FILE
Global syntax attributes for FROM-FILE (always 0, as
wildcards are not permitted)
Syntax attributes for data type <filename>, if:
– a catalog ID is specified
– a user ID is specified
– a file generation is specified
– a version is specified
– the file is temporary
Absolute address of the value of FROM-FILE

B'1...'
11
B'....'

B'1...'
B'.1..'
B'..1.'
B'...1'
B'.... 1...'
aaaa

48
49
50

51

52 to 55

1
1
1

1

4

Additional information for TO-FILE
Type description for TO-FILE
Global syntax attributes for TO-FILE (always 0, as
wildcards are not permitted)
Syntax attributes for data type <filename>, if:
– a catalog ID is specified
– a user ID is specified
– the file is temporary
Absolute address of the value of TO-FILE

B'1...'
11
B'....'

B'1...'
B'.1..'
B'.... 1...'
aaaa

56
57
58
59

60 to 63

1
1
1
1
4

Additional information for ACCESS-METHOD
Type description for ACCESS-METHOD
Reserved
Reserved
Absolute address of the value of ACCESS-METHOD

B'1...'
22

aaaa
Continued ➠

U2284-J-Z125-9-76 109

Implementation of user-defined statements Example

The COPY-FILE statement occupies a maximum of 240 bytes in the transfer area. Conse-
quently, the transfer area must be at least 240 bytes long.

64

65
66
67

68 to 71

1

1
1
1
4

Additional information for KEY-LENGTH

Type description for KEY-LENGTH
Reserved
Reserved
Absolute address of the value of KEY-LENGTH

B'0...'
or
B'1...'
(2 or 22)

(aaaa)

72
73
74
75

76 to 79

1
1
1
1
4

Additional information for RECORD-SIZE
Type description for RECORD-SIZE
Reserved
Reserved
Absolute address of the value of RECORD-SIZE

B'1...'
2 or 22

aaaa

80
81
82
83

84 to 87

1
1
1
1

4

Additional information for PASSWORD
Type description for PASSWORD
Reserved
Syntax attributes for data type <c-string>:
– if the password contains single quotes
Absolute address of the value of PASSWORD

B'1...'
2 or 22

B'1...'
aaaa

2
2

Î 54

Length specification
Reserved
Value of FROM-FILE

II

xxx

2
2

Î 54

Length specification
Reserved
Value of TO-FILE

II

xxx

2
2
Î 4

Length specification
Reserved
Value of ACCESS-METHOD

II

xxx

(2)
(2)

(Î 4)

(Length specification)
(Reserved)
(Value of KEY-LENGTH)

(II)

(xxx)

2
2
Î 8

Length specification
Reserved
Value of RECORD-SIZE

II

xxx

2
2
Î 4

Length specification
Reserved
Value of PASSWORD

II

xxx

Byte Length in
bytes

Description Value

110 U2284-J-Z125-9-76

Example Implementation of user-defined statements

Generating the program

The KOP program is shown below:

KOP START
 TITLE 'Example of program using SDF macros'

* The program reads and corrects the statement COPY-FILE with SDF,
* then executes it.
* The field identifiers used by this program are to be found in the
* SDF macros CMDTA for the transfer area, CMDMEM for the status.

R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

FRFILE# EQU 1 position of operand FROM-FILE
TOFILE# EQU 2 TO-FILE
ACCESS# EQU 3 ACCESS-METH
KEYLEN# EQU 4 KEY-LENGTH
RECSIZ# EQU 5 RECORD-SIZE
PASSWR# EQU 6 PASSWORD
 CMDANALY , SDF return codes
TAD CMDTA MF=D SDF transfer area
RSTD CMDRST MF=D Read statements
CSTD CMDCST MF=D Correct statement

* Register usage
* R2 SDF output area for CMDSTA, CMDRST, CMDCST.
* R3 current character in filename analysis
* R3 current field in SDF output area
*
* R5 help register
* R10,R11 base registers
* R15 return code

U2284-J-Z125-9-76 111

Implementation of user-defined statements Example

KOP CSECT ,
BEGIN BALR R10,R0
 USING *,R10,R11
 B F00
SLICE# DC F'4096'
F00 LR R11,R10
 A R11,SLICE#

* Check if user syntax file is activated.

 CMDMEM D,P=XMD Layout for CMDSTA output
*
KOP CSECT ,
*
 CMDSTA OUTAREA=STA#OUT Get SDF options
*
 USING XMDMEM,R2
 LA R2,STA#OUT
 LA R3,XMDUSER
 CLI 0(R3),':' Check catid
 BNE NOCATID
CATIDL LA R3,1(R3)
 CLI 0(R3),':'
 BNE CATIDL
 LA R3,1(R3)
NOCATID CLI 0(R3),'$' Check userid
 BNE NOUSERID
USERIDL LA R3,1(R3)
 CLI 0(R3),'.'
 BNE USERIDL
 LA R3,1(R3)
NOUSERID CLC 0(USF#L,R3),USF#NAME Check user syntax file
 BNE FC#ERROR
 DROP R2

* Read SDF statement.

READSTMT DS 0Y
 MVI OWNFLAGS,0
 USING RSTD,1 from CMDRST
 USING TAD,R2 from CMDTA
 LA R1,RSTPL
 LA R2,OUTPUT
*
 CMDRST MF=E,PARAM=RSTPL
*
 CLI CMDRMR1,CMDRSUCCESSFUL no error, continue...

112 U2284-J-Z125-9-76

Example Implementation of user-defined statements

 BE F01
 CLI CMDRMR1,CMDREOF EOF reached
 BE FC#EOF
 CLI CMDRMR1,CMDREND_STMT //END was read
 BE FC#END
 B FC#ERROR otherwise error...

* Evaluate structured-description

F01 DS 0H
 CLC CMDINTN,COPYFILE is this //COPY-FILE ?
 BNE FC#ERROR it can only be //COPY-FILE !

* operand FROM-FILE

 LA R3,CMDMAIN+(FRFILE#-1)*CMDHEAL FROM-FILE
 USING CMDHEAD,R3
 L R3,CMDOPTR A(from-file value)
 MVI FRFILE,' '
 MVC FRFILE+1(L'FRFILE-1),FRFILE
 USING CMDOVAL,R3 value field
 LH R5,CMDLVAL value length
 BCTR R5,R0
 EX R5,EX#MVC1 mvc with l=R5
 B F02 skip ex#mvc1...
EX#MVC1 MVC FRFILE(1),CMDAVAL

* operand PASSWORD

F02 DS 0H
 LA R3,CMDMAIN+(PASSWR#-1)*CMDHEAL PASSWORD
 USING CMDODES,R3
 CLI CMDOTYP,CMDCSTR C-string input ?
 BNE NO#PASS no: no password input
* copy input password into own field
 MVI PASSWR,' '
 MVC PASSWR+1(L'PASSWR-1),PASSWR
 USING CMDHEAD,R3 operand description
 L R3,CMDOPTR A(password value)
 USING CMDOVAL,R3 value field
 LH R5,CMDLVAL value length
 BCTR R5,R0
 EX R5,EX#MVC2 mvc with l=R5
 B FC#OPEN skip ex#mvc2...
EX#MVC2 MVC PASSWR(1),CMDAVAL
NO#PASS DS 0H
 OI OWNFLAGS,NOPASS
FC#OPEN DS 0H

U2284-J-Z125-9-76 113

Implementation of user-defined statements Example

 CLC PASSWR,QUESTION is password = '????'
 BE PASS#ER test corstmt part.
* open of file FROM-FILE
* ...
* if error at open of FROM-FILE:
* B PASS#ER

* operand TO-FILE

 LA R3,CMDMAIN+(TOFILE#-1)*CMDHEAL TO-FILE
 USING CMDODES,R3
 TM CMDGSTA,CMDOCC operand input ?
 BZ FC#ERROR no: error
 MVI TOFILE,' '
 MVC TOFILE+1(L'TOFILE-1),TOFILE
 USING CMDHEAD,R3
 L R3,CMDOPTR A(to-file value)
 USING CMDOVAL,R3 value field
 LH R5,CMDLVAL value length
 BCTR R5,R0
 EX R5,EX#MVC3 mvc with l=R5
 B F03 skip ex#mvc3...
EX#MVC3 MVC TOFILE(1),CMDAVAL

* operand ACCESS-METHOD

F03 DS 0H
 LA R3,CMDMAIN+(ACCESS#-1)*CMDHEAL ACCESS-METHOD
 USING CMDODES,R3
 TM CMDGSTA,CMDOCC operand input ?
 BZ FC#ERROR no: error
 USING CMDHEAD,R3
 L R3,CMDOPTR A(access-method value)
 USING CMDOVAL,R3 value field
 LH R5,CMDLVAL value length
 CH R5,THREE sam?
 BE I#SAM
 CLI CMDAVAL,'I' isam?
 BE I#SAM
* access-method = same
 OI OWNFLAGS,ACCSAME
 MVI ACCESS,'X'
 B F04 skip sam/isam
* access-method = sam / isam
I#SAM DS 0H
 MVC ACCESS,CMDAVAL S:sam / I:isam

* operand KEY-LENGTH

114 U2284-J-Z125-9-76

Example Implementation of user-defined statements

F04 DS 0H
 LA R3,CMDMAIN+(KEYLEN#-1)*CMDHEAL KEY-LENGTH
 USING CMDODES,R3
 TM CMDGSTA,CMDOCC operand input ?
 BZ F05 no: not isam, next operand.
 CLI CMDOTYP,CMDINT
 BE KEYINT
* key-length = std : keylen := 8
 MVI KEYLEN,8
 B F05
* key-length = <integer_1..50>
KEYINT DS 0H
 USING CMDHEAD,R3
 L R3,CMDOPTR A(key-length value)
 USING CMDOVAL,R3 value field
 MVC KEYLEN,CMDAVAL+3
 B F05

* operand RECORD-SIZE

F05 DS 0H
 LA R3,CMDMAIN+(RECSIZ#-1)*CMDHEAL RECORD-SIZE
 USING CMDODES,R3
 TM CMDGSTA,CMDOCC operand input ?
 BZ FC#ERROR no: error
 CLI CMDOTYP,CMDINT
 BE RECINT
 USING CMDHEAD,R3
 L R3,CMDOPTR A(record-size value)
 USING CMDOVAL,R3 value field
 LH R5,CMDLVAL value length
 CH R5,FOUR
 BNE F051
* record-size = same
 OI OWNFLAGS,RECSAME
 B F06
F051 DS 0H
* record-size = variable
 OI OWNFLAGS,RECVAR
 B F06
* record-size = <integer_1..2048>
RECINT DS 0H
 USING CMDHEAD,R3
 L R3,CMDOPTR A(record-size value)
 USING CMDOVAL,R3 value field
 MVC RECSIZ,CMDAVAL+2
F06 DS 0H

U2284-J-Z125-9-76 115

Implementation of user-defined statements Example

* ... Copy file ...
* Output of copied values for test purpose (even password!)

 WROUT MESS1,FC#END
 WROUT MESS2,FC#END
 TM OWNFLAGS,NOPASS
 BZ WMESS3
 WROUT MESS11,FC#END
 B WMESS4
WMESS3 DS 0H
 WROUT MESS3,FC#END
WMESS4 DS 0H
 TM OWNFLAGS,ACCSAME
 BZ WMESS5
 WROUT MESS4,FC#END access given
 B WMESS6
WMESS5 WROUT MESS5,FC#END access default
WMESS6 DS 0H
 TM OWNFLAGS,KEYSTD
 BNZ WMESS8
 UNPK BUFF5(5),KEYHW(3)
 TR BUFF5(4),CONVCHAR-XF0
 MVC KEYCHAR,BUFF5
 WROUT MESS6,FC#END
 B WMESS7
WMESS8 WROUT MESS8,FC#END
WMESS7 DS 0H
 TM OWNFLAGS,RECSAME
 BNZ WMESS9
 TM OWNFLAGS,RECVAR
 BNZ WMESS10
 UNPK BUFF5(5),RECSIZ(3)
 TR BUFF5(4),CONVCHAR-XF0
 MVC RECCHAR,BUFF5
 WROUT MESS7,FC#END
 B REPEAT
WMESS9 WROUT MESS9,FC#END
 B REPEAT
WMESS10 WROUT MESS10,FC#END
*
* R E P E A T READSTMT
*
REPEAT DS 0H
 B READSTMT

* Password handling routine

116 U2284-J-Z125-9-76

Example Implementation of user-defined statements

PASS#ER DS 0H
 LA R3,CMDMAIN+(PASSWR#-1)*CMDHEAL PASSWORD
 USING CMDODES,R3
 OI CMDGSTA,CMDERR set operand erroneous
 LA R1,CSTPL
 USING CSTD,R1
 CMDCST MF=M,MESSAGE=A(MESSAGE)
CORRSTMT CMDCST MF=E,PARAM=CSTPL
 CLI CMDCMR1,CMDCSUCCESSFUL corstmt successful?
 BNE READSTMT no: new read...
 B F01 repeat analysis...
*
* Game over.
*
 B FC#END

FC#ERROR DS 0H error handling routine
* ...
FC#EOF DS 0H EOF handling routine
* ...

FC#END TERM

* Parameter lists

RSTPL CMDRST MF=L,PROGRAM='KOP',OUTPUT=A(OUTPUT)
CSTPL CMDCST MF=L,INOUT=A(OUTPUT),MESSAGE=A(0)
* given at execution

* Used constants, variables and buffers

RC DS X return code byte
USF#NAME DC 'SDF.KOP.SYNTAX' syntax file name
USF#L EQU *-USF#NAME user syntax file length
COPYFILE DC 'COPYFI ' //COPY-FILE internal name
QUESTION DC '????'
THREE DC H'3'
FOUR DC H'4'
EIGHT DC H'8'
CONVCHAR DC C'0123456789ABCDEF'
XF0 EQU X'F0'
* Message for CORSTMT
MESSAGE DS 0F
 DC Y(MSGEND-MESSAGE)
 DS XL2
 DC C'PLEASE ENTER PASSWORD FOR INPUT FILE'
MSGEND EQU *

U2284-J-Z125-9-76 117

Implementation of user-defined statements Example

* Output fields for statement operands

MESS1 DS 0F
 DC Y(END1-MESS1)
 DS CL2
 DC X'40'
 DC C'FROM-FILE = '
FRFILE DS CL52' ' own from-file
END1 EQU *
MESS2 DS 0F
 DC Y(END2-MESS2)
 DS CL2
 DC X'40'
 DC C'TO-FILE = '
TOFILE DS CL52' ' own to-file
END2 EQU *
MESS3 DS 0F
 DC Y(END3-MESS3)
 DS CL2
 DC X'40'
 DC C'PASSWORD = '
PASSWR DS CL4 own password
END3 EQU *
MESS4 DS 0F
 DC Y(END4-MESS4)
 DS CL2
 DC X'40'
 DC C'ACCESS-METHOD IS SAME'
END4 EQU *
MESS5 DS 0F
 DC Y(END5-MESS5)
 DS CL2
 DC X'40'
 DC C'ACCESS-METHOD = '
ACCESS DS X own access-method: Sam | Isam
END5 EQU *
MESS6 DS 0F
 DC Y(END6-MESS6)
 DS CL2
 DC X'40'
 DC C'KEY-LENGTH = '
KEYCHAR DS CL4' ' key-length converted into hexa
END6 EQU *
MESS7 DS 0F
 DC Y(END7-MESS7)
 DS CL2
 DC X'40'
 DC C'REC-SIZE = '

118 U2284-J-Z125-9-76

Example Implementation of user-defined statements

RECCHAR DS CL4' ' rec-size converted into hexa
END7 EQU *
MESS8 DS 0F
 DC Y(END8-MESS8)
 DS CL2
 DC X'40'
 DC C'KEY-LENGTH IS STD'
END8 EQU *
MESS9 DS 0F
 DC Y(END9-MESS9)
 DS CL2
 DC X'40'
 DC C'REC-SIZE IS SAME'
END9 EQU *
MESS10 DS 0F
 DC Y(END10-MESS10)
 DS CL2
 DC X'40'
 DC C'REC-SIZE IS VARIABLE'
END10 EQU *
MESS11 DS 0F
 DC Y(END11-MESS11)
 DS CL2
 DC X'40'
 DC C'PASSWORD IS NONE'
END11 EQU *
KEYHW DC H'0'
 ORG KEYHW
FIL1 DS X
KEYLEN DS AL1 own key-length
BUFF5 DS CL5 buffer for unpack
RECSIZ DS H own record-size
OWNFLAGS DS X own flags
ACCSAME EQU X'80' access-method=same
KEYSTD EQU X'40' key-length=std
RECSAME EQU X'20' record-size=same
RECVAR EQU X'10' =variable
NOPASS EQU X'08' no password.

STA#OUT DS 0F CMDSTA output
 ORG *+XMDMEML length from CMDMEM
OUTPUT CMDTA MF=L,MAXLEN=400 CMDRST output

 END KOP

U2284-J-Z125-9-76 119

Implementation of user-defined statements Example

Compiling, linking and testing the program

The source program KOP shown above is located in the file KOP.SRC. In the following it is
compiled, linked and tested.

/set-logon-parameters sdfusr,... —————————————————————————————————————— (1)
/start-assembh
% BLS0500 PROGRAM 'ASSEMBH', VERSION '1.2B00' OF '1998-04-24' LOADED
% BLS0552 COPYRIGHT (C) FUJITSU SIEMENS COMPUTERS GMBH 1990. ALL RIGHTS
RESERVED
% ASS6010 V01.2B02 OF BS2000 ASSTRAN READY
%//compile source=*lib-elem(lib=kop.lib,elem=kop.src),-
%//mod-lib=kop.lib(el=kop),listing=*parameters-
%//(source-print=*with-object-code(print-statements=*accept),- ———— (2)
%//macro-print=*std,min-mes-w=*note,cross-ref=*std,layout=*std,-
%//output=*syslst),macro-lib=($.syslib.sdf.041,$loader.v140.syslib)
% ASS6011 ASSEMBLY TIME: 4223 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS
% ASS6006 LISTING GENERATOR TIME: 3166 MSEC
%//end
% ASS6012 END OF ASSTRAN
/start-binder
% BND0500 BINDER VERSION 'V02.1A30' STARTED
%//start-llm-creation internal-name=kop ——————————————————————————————— (3)
%//include-module *lib(lib=kop.lib,elem=kop,type=r) ——————————————————— (4)
%//resolve-by-autolink $.syslib.sdf.045
%//resolve-by-autolink $loader.sysoml.bs2000-ga.14.0a

1. A task is initiated under the user ID SDFUSR.

2. The program must be assembled with ASSEMBH as it contains the new macros
CMDTA, CMDCST and CMDRST. The source program with the program segments
shown above is located under the name KOP.SRC as a type S member in the library
KOP.LIB. The SDF macros are in the macro library $SYSLIB.SDF.045. The generated
object module is to be stored in the library KOP.LIB under the member name KOP.

3. The linkage editor BINDER is instructed to create a link and load module (LLM) with the
internal name KOP.

4. The linkage editor is instructed to read the object module KOP generated in step 2 and
include it in the LLM.

120 U2284-J-Z125-9-76

Example Implementation of user-defined statements

%//save-llm lib=kop.lib,elem=kop —————————————————————————————————————— (5)
% BND1501 LLM FORMAT: '1'
%//end
% BND1101 BINDER NORMALLY TERMINATED. SEVERITY CLASS: 'OK'
/mod-sdf-options synt-file=*add(sdf.kop.syntax) ——————————————————————— (6)
/start-exe *lib-elem(lib=kop.lib,elem=kop) ———————————————————————————— (7)
% BLS0524 LLM 'KOP', VERSION ' ' OF '2001-10-10 14:00:22' LOADED
% BLS0551 COPYRIGHT (C) FUJITSU SIEMENS COMPUTERS GMBH 2001. ALL RIGHTS
RESERVED
%//mod-sdf-opt guid=*n —— (8)
%STMT:cop-f testdat.sv,pass=*secr ————————————————————————————————————— (9)
%ENTER SECRET OPERAND (PASSWORD):......
% CMD0051 INVALID OPERAND 'TO-FILE'
% CMD0099 MANDATORY OPERAND INVALID OR MISSING
%ENTER OPERANDS:
to-f=testdat.cop.1(isam,50)
%STMT:cop-f testdat.if,testdat.cop.2(acc-m=?) ————————————————————————— (10)
% CMD0090 EXPLANATION OF THE OPERAND ' TO-FILE=TESTDAT.COP.2:ACCESS-METHOD ':
%SAME or ISAM() or SAM -DEFAULT-: SAME
%ENTER OPERANDS:
%TESTDAT.SV,TESTDAT.COP.2(ACC-M=?)
acc-m=sam
% CMD0051 INVALID OPERAND 'PASSWORD'
% PLEASE ENTER PASSWORD FOR INPUT FILE
%ENTER SECRET OPERAND (PASSWORD):......

5. The executable LLM is stored under the name KOP (as a member of type L) in the
library KOP.LIB.

6. The user syntax file SDF.KOP.SYNTAX, in which the statements for the program KOP
are defined, is activated.

7. The program KOP is started.The command used here, START-EXECUTABLE-
PROGRAM, is available in BLSSERV V2.3 and higher (the START-PROGRAM
command with RUN-MODE=*ADVANCED is to be used if necessary).

8. User guidance is set to NO.

9. Case 1: The COPY-FILE statement is entered without the mandatory operand TO-FILE.
Input of the password is to be blanked. SDF requests input of the password and the
missing operand.

10. Case 2: The COPY-FILE statement is entered without the required password. Further
information on the ACCESS-METHOD operand is requested. SDF provides the infor-
mation and requests entry of the password.

U2284-J-Z125-9-76 121

Implementation of user-defined statements Example

%STMT:cop-f testdat.iv,testdat.cop.3(?) ——————————————————————————————— (11)

11. Case 3: The COPY-FILE statement is entered without the required password. Further
information on the structure that introduces the file name of the output file is requested
via the question mark. This causes a switch to temporarily guided dialog. SDF displays
the desired information in the operand form and then requests the required password.

PROGRAM : KOP STATEMENT : COPY-FILE
OPERANDS : FROM-FILE=TESTDAT.IV,TO-FILE=TESTDAT.COP.3

--
FROM-FILE = TESTDAT.IV
TO-FILE = TESTDAT.COP.3(ACCESS-METHOD=SAME,RECORD-SIZE=60)
PASSWORD =

--
NEXT = *CONTINUE
KEYS : F1=? F3=*EXIT F5=*REFRESH F6=*EXIT-ALL F8=+ F9=REST-SDF-IN
 F11=*EXECUTE F12=*CANCEL

PROGRAM : KOP STATEMENT : COPY-FILE
OPERANDS : FROM-FILE=TESTDAT.IV,TO-FILE=TESTDAT.COP.3(RECORD-SIZE=60)

--
FROM-FILE = TESTDAT.IV
TO-FILE = TESTDAT.COP.3(ACCESS-METHOD=SAME,RECORD-SIZE=60)
PASSWORD =

--
NEXT = *CONTINUE
KEYS : F1=? F3=*EXIT F5=*REFRESH F6=*EXIT-ALL F8=+ F9=REST-SDF-IN
 F11=*EXECUTE F12=*CANCEL

ERROR: PLEASE ENTER PASSWORD FOR INPUT FILE

122 U2284-J-Z125-9-76

Example Implementation of user-defined statements

%STMT:? ——— (12)

** NORMAL PROGRAM END **
%CMD:exit-job

12. The question mark indicates the switch to temporarily guided dialog. SDF displays a
menu listing the available statements. These include the standard statements. The
STEP statement is not available in interactive mode. Entering the digit 2 selects the
END statement and thus terminates the program.

PROGRAM : KOP
--
AVAILABLE STATEMENTS:

 1 COPY-FILE 8 RESET-INPUT-DEFAULTS
 2 END (!) 9 RESTORE-SDF-INPUT
 3 EXECUTE-SYSTEM-CMD 10 SHOW-INPUT-DEFAULTS
 4 HELP-MSG-INFORMATION 11 SHOW-INPUT-HISTORY
 5 HOLD-PROGRAM (!) 12 SHOW-SDF-OPTIONS
 6 MODIFY-SDF-OPTIONS 13 SHOW-STMT
 7 REMARK 14 WRITE-TEXT

--
NEXT =
KEYS : F1=? F3=*EXIT F5=*REFRESH F6=*EXIT-ALL F9=REST-SDF-IN F12=*CANCEL

U2284-J-Z125-9-76 123

Implementation of user-defined statements Notes on statement definition

4.3.2 Notes on the definition of statements

Standard statements

The standard statements (see page 127ff) are not specific to SDF-A. They are offered
system-globally for user programs that read their statements via SDF. These statements are
not to be implemented in the user program. Information on an END or STEP statement that
has been read in is passed to the user program via register 15 (old interface) or the return
code in the standard header (new interface).

Operand position

In the transfer area into which SDF writes the analyzed statement, operands can be
identified only on the basis of their position in the operand array (see section “Format of the
standardized transfer area” on page 365ff). This position can be defined when defining the
operands (see ADD-OPERAND..., RESULT-OPERAND-NAME=*POS(...)).

Structure

When defining a value that introduces a structure (see ADD-VALUE ...,
STRUCTURE=*YES(...,FORM...)) and when defining the operands within the structure
(see ADD-OPERAND ...,RESULT-OPERAND-LEVEL=), the user specifies whether the
structure is preserved in the transfer area or is linearized. If the default values of the state-
ments ADD-VALUE and ADD-OPERAND are used, the structure is linearized. ADD-VALUE
...,STRUCTURE=*YES(SIZE=...,...),... is used to determine whether a structure will be
integrated in the higher-ranking operand form at the MINIMUM and MEDIUM level of guided
dialog or whether SDF will display a separate subform for this structure. By default, the
structure is so defined that SDF integrates it in the higher-ranking form.

Passing an operand

An operand needed, for example, only for structuring the statement syntax and not for the
implementation may be omitted when operands are passed to the program (see ADD-
OPERAND ...,PRESENCE=*EXTERNAL-ONLY).

On the other hand, an operand for which there is only one single permissible value may be
so defined that, while it does get passed to the program, it does not appear in the statement
syntax (see ADD-OPERAND ..., PRESENCE=*INTERNAL-ONLY). If the operand consti-
tutes the only operand in a structure, then the structure will also be invisible in the statement
syntax.

Defining an operand value

When an operand value is defined, the user must specify how SDF is to write the value into
the transfer area. If the default values of the ADD-VALUE statement are used, SDF will write
any operand value input into the transfer area unchanged.

124 U2284-J-Z125-9-76

Notes on statement definition Implementation of user-defined statements

ADD-VALUE...,VALUE=<c-string>(...,OUTPUT=...,...) can be used to direct SDF to convert
defined single values to different values before passing them on to the program or to
suppress transfer of the values. For example, it can be specified that SDF passes on the
value ’ISD’ to the program instead of the value ’YES’ defined for the input (see example 1
on page 91).

The default value of an operand defined with ADD-OPERAND ..., OVERWRITE-
POSSIBLE=*YES can be replaced by the user program with another value (internal default)
such that, in guided dialog, the internal default value is visible in the operand form (see the
DEFAULT operand for the CMDCST, CMDRST and CMDTST macros).

An entered operand value can be replaced by the user program with another value if the
value to be replaced has been defined using ADD-VALUE ..., VALUE=<c-string>
(...,OVERWRITE-POSSIBLE=*YES),...) The following applies:

– The internal default value must be covered by an operand value defined with ADD-
VALUE.

– Not more than one internal default value can be defined per operand. However, it is
possible to assign the same internal default value to several input alternatives of an
operand.

– If an internal default value is assigned to an input alternative, and if another input alter-
native has a structure attached to it which is also to have an internal default value, this
requires that the structure be linearized in the transfer area (and thus also in the
conversion description for internal default values).

– Defining an internal default value in alternative structures is possible only if the struc-
tures are linearized in the transfer area (one of the alternative structures may be non-
linearized).

– If the operands to be defaulted belong to a structure whose introductory value is defined
using LIST-ALLOWED=YES (see ADD-VALUE), the following may occur: The
conversion description contains several list items to which a structure with operands to
be defaulted is attached. At the same time the user also enters several list items to
which a structure with operands to be defaulted is attached. SDF attempts first to
allocate the structures entered by the user to those specified in the conversion
description via the value that introduces the structure. If this value does not allow an
unambiguous allocation because none of the values entered corresponds to any of
those in the conversion description or because the user has entered the corresponding
value several times, the allocation is made via the position in the list of the value intro-
ducing the structure.

Normally, the default values of the ADD statements can be used extensively when defining
a statement. However, these statements also provide a number of means of tailoring a
statement definition to the user’s individual requirements. Further information on this may
be found in the descriptions of the ADD statements.

U2284-J-Z125-9-76 125

Implementation of user-defined statements Notes on the use of macros

4.3.3 Notes on the use of macros

SDF ensures that only statements without syntactical errors are read. This does not exclude
the possibility that an operand value read in may be invalid in a specific situation. When the
user program checks the validity of the operand values read in, the user can use the
CMDCST macro to define a correction dialog (see example on page 116) to deal with
errors.

If users want their programs to execute as a subprogram to which the calling program
passes the statements, they can use the CMDCST macro to direct SDF to perform the
statement analysis also.

By means of the STMT operand (cf. the CMDRST and CMDTST macros) the user can limit
the number of permissible statements. For example, immediately after initiation of SDF-A,
only the OPEN-SYNTAX-FILE, DEFINE-ENVIRONMENT and COMPARE-SYNTAX-FILE
statements are permissible in addition to the standard statements. By means of the
PREFER operand (see CMDRST) the user can specify that, in guided dialog, the form of
the statement expected by the program is displayed instead of the statement menu. This
does not, however, prevent the user from entering a statement different from that which is
expected. For example, immediately after an EDIT statement SDF-A expects a corre-
sponding MODIFY statement, but the user may enter any other SDF-A statement instead
of the expected MODIFY statement.

With the aid of the SPIN operand (see the CMDRST macro) the user can specify that, in
batch mode or in procedures, all statements up to the next STEP or END statement are
skipped.

The CMDSTA macro causes the user program to be supplied with information on the
activated syntax files and the definitions applicable for the command/statement input. When
interpreting this information it should be borne in mind that the user ID is specified as part
of the name of a syntax file only if the syntax file is cataloged under a different user ID (see
example).

126 U2284-J-Z125-9-76

Notes on the use of macros Implementation of user-defined statements

U2284-J-Z125-9-76 127

5 SDF-A statements
The statements to SDF-A are defined in syntax files furnished by Siemens Nixdorf. They
are entered via the SDF command processor.

The standard statements are not specific to SDF-A. They include:
– END
– EXECUTE-SYSTEM-CMD
– HELP-MSG-INFORMATION
– HOLD-PROGRAM
– MODIFY-SDF-OPTIONS
– REMARK
– RESET-INPUT-DEFAULTS
– RESTORE-SDF-INPUT
– SHOW-INPUT-DEFAULTS
– SHOW-INPUT-HISTORY
– SHOW-SDF-OPTIONS
– SHOW-STMT
– STEP
– WRITE-TEXT

They are available on a system-global basis for user programs that read their statements
via SDF. As soon as the user has defined his/her own user program, SDF assigns these
statements to it. The EXECUTE-SYSTEM-CMD and HOLD-PROGRAM statements are
available as of SDF V4.0 and BS2000/OSD-BC V2.0. The HELP-MSG-INFORMATION,
RESET-INPUT-DEFAULTS and SHOW-INPUT-DEFAULTS statements can be used as of
SDF V4.1.

Every user has access to the full range of SDF-A functions. Certain operands, however, are
reserved for Fujitsu Siemens Computers Software Development and are masked out in the
guided dialog and not described here.

Comments can be provided for statements to SDF-A; comments must be enclosed in
quotation marks (").

128 U2284-J-Z125-9-76

Starting SDF-A SDF-A

5.1 Starting SDF-A

SDF-A is started by means of the following command:

VERSION =
Allows the user to select the desired SDF-A version if multiple versions of SDF-A were
installed with IMON. If the version is specified within single quotes, it may be preceded by
the letter C (C-STRING syntax).
If the product was not installed using IMON or if the specified version does not exist,
VERSION=*STD applies.

VERSION = *STD
Calls the SDF-A version with the highest version number.

VERSION = <product-version>
Specifies the SDF-A version in the format mm.n[a[so]] (see also “product-version” on
page 15).

MONJV =
Specifies a monitoring job variable to monitor the SDF-A run.

MONJV = *NONE
No monitoring job variable is used.

MONJV = <filename 1..54 without-gen-vers>
Name of the job variable to be used.

CPU-LIMIT =
Maximum CPU time in seconds which the program may consume for execution.

CPU-LIMIT = *JOB-REST
The remaining CPU time available is to be used for the job.

CPU-LIMIT = <integer 1..32767 seconds>
Only as much time as is specified is to be used.

START-SDF-A Abbreviation: SDF-A

VERSION = *STD / <product-version>

,MONJV = *NONE / <filename 1..54 without-gen-vers>

,CPU-LIMIT = *JOB-REST / <integer 1..32767 seconds>

U2284-J-Z125-9-76 129

SDF-A Starting SDF-A

Interrupting and resuming SDF-A

If SDF-A is interrupted with [K2] during processing of a statement, it can be resumed in one
of two ways:

– if SDF-A is resumed with RESUME-PROGRAM, processing resumes with the
statement which was interrupted;

– if SDF-A is resumed with INFORM=PROGRAM (up to BS2000/OSD-BC V2.0: SEND-
MSG TO=*PROGRAM), the statement which was interrupted is aborted and SDF-A
waits for input of the next statement.

130 U2284-J-Z125-9-76

Functional overview SDF-A statements

5.2 Functional overview

SDF standard statements

A detailed description of the standard SDF statements can be found in the “Introductory
Guide to the SDF Dialog Interface” [1].

END Terminate the SDF-A session

EXECUTE-SYSTEM-CMD Execute a system command during the SDF-A run

HELP-MSG-INFORMATION Text of a system message issued on SYSOUT

HOLD-PROGRAM Hold the SDF-A run

MODIFY-SDF-OPTIONS Activate or deactivate a user syntax file and modify SDF
options

REMARK Include comments in the sequence of statements to
document program execution

RESET-INPUT-DEFAULTS Reset task-specific default values

RESTORE-SDF-INPUT Re-display previously entered statements or commands
on the screen

SHOW-INPUT-DEFAULTS Display task-specific default values

SHOW-INPUT-HISTORY Display contents of input buffer

SHOW-SDF-OPTIONS Display task-specific information about active syntax
files and the definitions for input and processing of state-
ments

SHOW-STMT Show the syntax of a statement

STEP Define a restart point within a sequence of SDF-A state-
ments

WRITE-TEXT Output a specified text to SYSOUT or SYSLST

U2284-J-Z125-9-76 131

SDF-A statements Functional overview

Creating, processing and comparing syntax files

Defining objects

Modifying objects

COMPARE-SYNTAX-FILE Compare objects in two syntax files with one another

COPY Copy the contents of another syntax file into the open
syntax file

DEFINE-ENVIRONMENT Define syntax file format and version

EDIT Position to an object in an open syntax file

OPEN-SYNTAX-FILE Open a syntax file for processing with SDF-A

REMOVE Delete objects from the open syntax file

RESTORE Restore objects from the syntax file

SET-GLOBALS Modify general settings for input and processing of
commands

ADD-CMD Define a command in the open syntax file

ADD-DOMAIN Define a domain in the open syntax file

ADD-OPERAND Define an operand in the open syntax file

ADD-PROGRAM Define a program in the open syntax file

ADD-STMT Define a statement in the open syntax file

ADD-VALUE Define an operand value in the open syntax file

MODIFY-CMD Modify a command definition in the open syntax file

MODIFY-CMD-ATTRIBUTES Modify command attributes

MODIFY-DOMAIN Modify a domain definition in the open syntax file

MODIFY-OPERAND Modify an operand definition in the open syntax file

MODIFY-PROGRAM Modify a program definition in the open syntax file

MODIFY-STMT Modify a statement definition in the open syntax file

MODIFY-STMT-ATTRIBUTES Modify statement attributes

MODIFY-VALUE Modify an operand value definition in the open syntax
file

132 U2284-J-Z125-9-76

Functional overview SDF-A statements

Terminating processing of commands and structures

Display functions

CLOSE-CMD-OR-STMT Close a command or statement definition

CLOSE-STRUCTURE Close structures

SHOW Output the contents of an open syntax file on SYSOUT
or SYSLST

SHOW-CORRECTION-INFOR-
MATION

Display correction information from the open syntax file
(only for purposes of diagnosis)

SHOW-STATUS Display the name of the open syntax file

U2284-J-Z125-9-76 133

SDF-A statements ADD-CMD

5.3 Description of the statements

ADD-CMD
Define command

The ADD-CMD statement is used to define, in the syntax file being processed, the global
characteristics for a command, such as

– the command name

– the help text

– the domain to which the command is to belong.

This command is then the “current” object. With the exception of RESULT-INTERNAL-
NAME, all names assigned to the command must be unambiguously distinguishable within
the overall set of commands.

BS2000 commands (implemented via system modules) can be defined only in a system or
group syntax file.

The definitions of the operands and operand values pertaining to a command are placed in
the syntax file by means of the ADD-OPERAND and ADD-VALUE statements, respectively,
or by means of the COPY statement, rather than by using the ADD-CMD statement.

(part 1 of 3)

ADD-CMD

NAME = <structured-name 1..30>

,INTERNAL-NAME = *STD / <alphanum-name 1..8>

,RESULT-INTERNAL-NAME = *SAME / <alphanum-name 1..8>

,STANDARD-NAME = *NAME / *NO / list-poss(2000): *NAME / <structured-name 1..30>

,ALIAS-NAME = *NO / list-poss(2000): <structured-name 1..30>

,MINIMAL-ABBREVIATION = *NO / <structured-name 1..30>

,HELP = *NO / list-poss(2000): <name 1..1>(...)

<name 1..1>(...)
 TEXT = <c-string 1..500 with-low>

,DOMAIN = *NO / list-poss(2000): <structured-name 1..30>

continued ➠

134 U2284-J-Z125-9-76

ADD-CMD SDF-A statements

,IMPLEMENTOR = *PROCEDURE(...) / *TPR(...) / *APPLICATION(...) / *BY-TPR(...)

*PROCEDURE(...)

 NAME = <c-string 1..280> / *BY-IMON(...)

 *BY-IMON(...)

 LOGICAL-ID = <filename 1..30 without-cat-user-gen-vers>
 ,INSTALLATION-UNIT = <text 1..30 without-sep>
 ,VERSION = *STD / <product-version>
 ,DEFAULT-PATH-NAME = <filename 1..54>
 ,ELEMENT = *NONE / <composed-name 1..64>
 ,CALL-TYPE = *CALL-PROCEDURE / *INCLUDE-PROCEDURE / *ENTER-PROCEDURE
 ,CALL-OPTIONS = *NONE / <c-string 1..1800 with-low>
 ,UNLOAD-PROGRAM = *YES / *NO

*TPR(...)

 ENTRY = <name 1..8>
 ,INTERFACE = *ASS / *SPL / *ISL(...)

 *ISL(...)

 VERSION = 1 / <integer 1..2>
 ,CMD-INTERFACE = *STRING(...) / *TRANSFER-AREA(...) / *NEW(...)

 *STRING(...)

 OUT-CMD-NAME = *SAME / <structured-name 1..30>
 *TRANSFER-AREA(...)

 MAX-STRUC-OPERAND = *STD / <integer 1..3000>
 ,CMD-VERSION = *NONE / <integer 1..999>
 *NEW(...)

 MAX-STRUC-OPERAND = *STD / <integer 1..3000>
 ,LOGGING = *BY-SDF / *BY-IMPLEMENTOR
 ,INPUT-FORM = *NONE / *INVARIANT / *STANDARD
 ,SCI = *NO / *YES

*APPLICATION(...)

 LOGGING = *BY-SDF / *BY-IMPLEMENTOR

*BY-TPR(...)

 TPR-CMD = <structured-name 1..30>

,REMOVE-POSSIBLE = *YES / *NO

continued ➠

(part 2 of 3)

U2284-J-Z125-9-76 135

SDF-A statements ADD-CMD

,DIALOG-ALLOWED = *YES(...) / *NO(...)

*YES(...)

 PRIVILEGE = *SAME / list-poss(64): <structured-name 1..30>

*NO(...)

 PRIVILEGE = *SAME / list-poss(64): <structured-name 1..30>

,DIALOG-PROC-ALLOWED = *YES(...) / *NO(...)

*YES(...)

 PRIVILEGE = *SAME / list-poss(64): <structured-name 1..30>

*NO(...)

 PRIVILEGE = *SAME / list-poss(64): <structured-name 1..30>

,GUIDED-ALLOWED = *YES(...) / *NO(...)

*YES(...)

 PRIVILEGE = *SAME / list-poss(64): <structured-name 1..30>

*NO(...)

 PRIVILEGE = *SAME / list-poss(64): <structured-name 1..30>

,BATCH-ALLOWED = *YES(...) / *NO(...)

*YES(...)

 PRIVILEGE = *SAME / list-poss(64): <structured-name 1..30>

*NO(...)

 PRIVILEGE = *SAME / list-poss(64): <structured-name 1..30>

,BATCH-PROC-ALLOWED = *YES(...) / *NO(...)

*YES(...)

 PRIVILEGE = *SAME / list-poss(64): <structured-name 1..30>

*NO(...)

 PRIVILEGE = *SAME / list-poss(64): <structured-name 1..30>

,CMD-ALLOWED = *YES(...) / *NO(...)

*YES(...)

 UNLOAD = *NO / *YES
 PRIVILEGE = *SAME / list-poss(64): <structured-name 1..30>

*NO(...)

 PRIVILEGE = *SAME / list-poss(64): <structured-name 1..30>

,NEXT-INPUT = *CMD / *STMT / *DATA / *ANY

,PRIVILEGE = *ALL / *EXCEPT(...) / list-poss(64): <structured-name 1..30>

*EXCEPT(...)

 EXCEPT-PRIVILEGE = list-poss(64): <structured-name 1..30>

(part 3 of 3)

136 U2284-J-Z125-9-76

ADD-CMD SDF-A statements

NAME = <structured-name 1..30>
(External) command name, to be specified when the command is entered. In contrast to
STANDARD-NAME and ALIAS-NAME, the user may abbreviate this name when entering
the command.

INTERNAL-NAME = *STD / <alphanum-name 1..8>
Internal command name. This name cannot be changed. With the help of the internal
command name, SDF identifies a command defined in several syntax files under different
external names as being the same command. If the command is implemented via system
modules and transfer is formatted (IMPLEMENTOR=*TPR(...,CMD-
INTERFACE=*NEW/*TRANSFER-AREA,...)), the executing module knows the command
by its internal name. Unless otherwise specified, SDF-A takes as the internal name the first
eight characters (omitting hyphens) of the external name entered for the NAME operand.

RESULT-INTERNAL-NAME = *SAME / <alphanum-name 1..8>
This operand is of significance only for some of the commands implemented via system
modules. Implementation via system modules is reserved for Fujitsu Siemens Computers
System Software Development. For this reason the RESULT-INTERNAL-NAME operand is
not described here.

STANDARD-NAME = *NAME / *NO / list-poss: *NAME / <structured-name 1..30>
Additional external command name, which may be alternatively used when entering the
command. It must not be abbreviated when entered. In contrast to an ALIAS-NAME, a
STANDARD-NAME cannot be deleted so long as the command with this name exists in one
of the assigned reference syntax files (see OPEN-SYNTAX-FILE).

ALIAS-NAME = *NO / list-poss(2000): <structured-name 1..30>
Additional external command name, which can be alternatively used when the command is
entered. It must not be abbreviated when entered. In contrast to a STANDARD-NAME, an
ALIAS-NAME may be deleted.

MINIMAL-ABBREVIATION = *NO / <structured-name 1..30>
Additional external command name which defines the shortest permissible abbreviation for
the command. Any shorter abbreviation will not be accepted, even if it is unambiguous with
respect to other commands.
The following should be noted:

1. Checking against the minimum abbreviation is carried out only after SDF has checked
the input for ambiguity. It may thus happen that SDF selects the correct command but
then rejects it because the abbreviation entered is shorter than the specified minimum
abbreviation.

2. The minimum abbreviation must be derived from the command name (NAME).

3. The ALIAS-NAMEs and STANDARD-NAMEs of the command must not be shorter than
the minimum abbreviation if they are an abbreviation of the command name.

U2284-J-Z125-9-76 137

SDF-A statements ADD-CMD

4. The minimum abbreviation may only be shortened - not lengthened - within a syntax file
hierarchy.

HELP =
Specifies whether there are help texts for the command, and if so, what those texts are.

HELP = *NO
There are no help texts.

HELP = list-poss(2000): <name 1..1>(...)
There are help texts in the specified languages (E = English, D = German). SDF uses the
language specified for message output.

TEXT = <c-string 1..500 with-low>
Help text.
The help text can contain the special character string “\n” for the line break.

DOMAIN = *NO / list-poss(2000): <structured-name 1..30>
Specifies whether the command is assigned to a domain, and if so, to which one.

IMPLEMENTOR =
Specifies how the command is implemented.

IMPLEMENTOR = *PROCEDURE(...)
The command is implemented via a procedure. Entering the command causes the
procedure to be called.

NAME=
Name of the procedure to be called.

NAME = <c-string 1..280>
Name of the file containing the procedure.
If SDF-P is loaded, the name of a list variable containing the procedure may also be
specified. A variable can be specified in the form ’*VARIABLE(VARIABLE-
NAME=varname)’.
Library elements can be specified with
’*LIBRARY-ELEMENT(LIBRARY=library,ELEMENT=element)’
If ’library(element)’ is specified, the value of CALL-OPTIONS is ignored. This notation
should therefore no longer be used.

It is the user’s responsibility to ensure that the string to specify the container of the
procedure is correctly constructed. Errors made at this position can only be detected
when the newly defined command is first called.

138 U2284-J-Z125-9-76

ADD-CMD SDF-A statements

NAME = *BY-IMON(...)
The name of the procedure or of the library that contains this procedure as a library
element is provided by calling IMON-GPN the installation path manager (see the
“IMON” manual [13]).

LOGICAL-ID = <filename 1..30 without-cat-user-gen-vers>
Logical name of the procedure or of the library that contains this procedure as a
library element implementing the command, e.g. SYSSPR.

INSTALLATION-UNIT =<text 1..30 without-sep>
Name of the installation unit, e.g. SDF-A.

VERSION = *STD / <product-version>
Version of the installation unit (see also “product-version” on page 15 and
page 181).
When *STD is specified, the version which was selected using the command
SELECT-PRODUCT-VERSION is used. If this command has not yet been carried
out for the relevant installation unit, the highest version is used.

DEFAULT-PATH-NAME = <filename 1..54>
Full file name of a procedure which is called if IMON-GPN is not available or if
LOGICAL-ID, INSTALLATION-UNIT or VERSION is not recognized in the system.
If the procedure is stored in a library element, the file name specified here desig-
nates the library from which the procedure specified in the ELEMENT operand is
called.
In the case of other errors the command is rejected with an error message, i.e. the
procedure specified here is not called.

ELEMENT = *NONE / <composed-name 1..64>
Specifies if the procedure is stored in a library element.

ELEMENT = <composed-name 1..64>
Name of the library element that contains the procedure. The element name is
passed to IMON-GPN.

CALL-TYPE = *CALL-PROCEDURE / *INCLUDE-PROCEDURE / *ENTER-
PROCEDURE
Defines whether the procedure is called with CALL-PROCEDURE or INCLUDE-
PROCEDURE or ENTER-PROCEDURE. CALL-PROCEDURE and ENTER-
PROCEDURE can be used to call S procedures as well as non S procedures;
INCLUDE-PROCEDURE can only be used to call S procedures (see also the manuals
“SDF-P” [12] and “Commands” [4]).

U2284-J-Z125-9-76 139

SDF-A statements ADD-CMD

Example:
To call the procedure with
CALL-PROCEDURE NAME=*LIB-ELEM(LIBRARY=xxx,ELEMENT=yyy) the command must be
defined as follows:
ADD-CMD ...,IMPLEMENTOR=*PROC(NAME=’*LIB-ELEM(LIBRARY=xxx,
ELEMENT=yyy)’,CALL-TYPE=*CALL-PROCEDURE...

CALL-OPTIONS = *NONE / <c-string 1..1800 with-low>
Specifies a character string containing additional operands (e.g. LOGGING) for the
procedure call (using CALL-PROCEDURE, INCLUDE-PROCEDURE or ENTER-
PROCEDURE) in the following format:
CALL-OPTIONS=’operandx=valuex,operandy=valuey,...’.
This character string must not contain the PROCEDURE-PARAMETERS operand of
the CALL-PROCEDURE, INCLUDE-PROCEDURE or ENTER-PROCEDURE
command.

UNLOAD-PROGRAM = *YES / *NO
Specifies if a program is to be unloaded when the command defined in the NAME oper-
and is executed in the program via the CMD macro.
The procedure called may not contain any commands defined with CMD-ALLOWED=
*YES(UNLOAD=*YES), and in particular no TU program may be called in the proce-
dure.

IMPLEMENTOR = *TPR(...)
The command is implemented via system modules. This alternative for implementing
commands is reserved for Fujitsu Siemens Computers System Software Development. For
this reason, the structure *TPR(...) is not described here.

IMPLEMENTOR = *APPLICATION(...)
The command is generated by a $CONSOLE application. This option is reserved for system
administration. The prerequisites for its use are described in the manual “Introductory
Guide to Systems Support” [6]. The required commands CONNECT-CMD-SERVER and
DISCONNECT-CMD-SERVER are detailed in the “Commands” [4] manual.

LOGGING = *BY-SDF / *BY-IMPLEMENTOR
The operand is reserved for Fujitsu Siemens Computers System Software Devel-
opment. For this reason, it is not described here.

IMPLEMENTOR = *BY-TPR(...)
An existing command serves as the basis for the new command.

TPR-CMD = <structured-name 1..30>
Name of a command defined with IMPLEMENTOR=*TPR(...) which is known in the
syntax file hierarchy.

140 U2284-J-Z125-9-76

ADD-CMD SDF-A statements

Example:
The user syntax file is opened and if necessary positioned using EDIT, and a new
X-SET-PROCEDURE-DIALOG command is defined using the following statements:

//ADD-CMD X-SET-PROCEDURE-DIALOG,-
//IMPLEMENTOR=*BY-TPR(TPR-CMD=MODIFY-SDF-OPTIONS),PRIVIL=*STD-PROCESSING
//COPY *COMMAND(MODIFY-SDF-OPTIONS),FROM-FILE=$.SYSSDF.SDF.041(*SYSTEM),-
//ATTACHED-INFO=*ONLY
//EDIT *OPERAND(PROCEDURE-DIALOG,ORIGIN=*COMMAND(X-SET-PROCEDURE-DIALOG))
//MODIFY-OPERAND DEFAULT='*YES'
//END

After the user syntax file processed in this way, the user can use the new commands.
The two following commands now act identically:

/X-SET-PROC-DIALOG
/MODIFY-SDF-OPTIONS PROCEDURE-DIALOG=*YES

REMOVE-POSSIBLE = *YES / *NO
Specifies whether the command may be deleted (see the description of the REMOVE
statement, page 301).

DIALOG-ALLOWED =
Specifies whether the command is allowed in interactive mode.

DIALOG-ALLOWED = *YES(...)
The command is allowed in interactive mode for all user tasks which have at least one of
the privileges specified for PRIVILEGE.

PRIVILEGE =
The command is allowed for all user tasks with the privileges specified here
(possible privileges are listed in the “SECOS” manual [10]).

PRIVILEGE = *SAME
The command is allowed for user tasks with exactly the same privileges as those
defined for the command itself (see the PRIVILEGE operand on page 145).

PRIVILEGE = list-poss(64): <structured-name 1..30>
The command is only allowed for user tasks that have the privileges defined in this list.

DIALOG-ALLOWED = *NO(...)
The command is not allowed in interactive mode for user tasks which have only the privi-
leges specified for PRIVILEGE.

PRIVILEGE =
The command is not allowed for user tasks with the privileges specified here
(possible privileges are listed in the “SECOS” manual [10]).

U2284-J-Z125-9-76 141

SDF-A statements ADD-CMD

PRIVILEGE = *SAME
The command is not allowed for user tasks with exactly the same privileges as those
defined for the command itself (see the EXCEPT-PRIVILEGE operand on page 145).

PRIVILEGE = list-poss(64): <structured-name 1..30>
The command is not allowed for user tasks with the privileges defined in this list. If a
user task has at least one privilege that is not included in this list, it may execute the
command.

DIALOG-PROC-ALLOWED =
Specifies whether the command is allowed in interactive mode within a procedure.

DIALOG-PROC-ALLOWED = *YES(...)
The command is allowed in interactive mode within a procedure for all user tasks which
have at least one of the privileges specified for PRIVILEGE.

PRIVILEGE =
The command is allowed for all user tasks with the privileges specified here
(possible privileges are listed in the “SECOS” manual [10]).

PRIVILEGE = *SAME
The command is allowed for user tasks with exactly the same privileges as those
defined for the command itself (see the PRIVILEGE operand on page 145).

PRIVILEGE = list-poss(64): <structured-name 1..30>
The command is only allowed for user tasks with the privileges defined in this list.

DIALOG-PROC-ALLOWED = *NO(...)
The command is not allowed in interactive mode within a procedure for user tasks which
have only the privileges specified for PRIVILEGE.

PRIVILEGE =
The command is not allowed for user tasks with the privileges specified here
(possible privileges are listed in the “SECOS” manual [10]).

PRIVILEGE = *SAME
The command is not allowed for user tasks with exactly the same privileges as those
defined for the command itself (see the EXCEPT-PRIVILEGE operand on page 145).

PRIVILEGE = list-poss(64): <structured-name 1..30>
The command is not allowed for user tasks with the privileges defined in this list. If a
user task has at least one privilege that is not included in this list, it may execute the
command.

GUIDED-ALLOWED =
Specifies whether the command is allowed in guided dialog.

GUIDED-ALLOWED = *YES(...)
The command is allowed in guided dialog for all user tasks which have at least one of the
privileges specified for PRIVILEGE.

142 U2284-J-Z125-9-76

ADD-CMD SDF-A statements

PRIVILEGE =
The command is allowed for all user tasks with the privileges specified here
(possible privileges are listed in the “SECOS” manual [10]).

PRIVILEGE = *SAME
The command is allowed for user tasks with exactly the same privileges as those
defined for the command itself (see the PRIVILEGE operand on page 145).

PRIVILEGE = list-poss(64): <structured-name 1..30>
The command is allowed only for the privileges defined in this list.

GUIDED-ALLOWED = *NO(...)
The command is not allowed in guided dialog for user tasks which have only the privileges
specified for PRIVILEGE.

PRIVILEGE =
The command is not allowed for user tasks with the privileges specified here
(possible privileges are listed in the “SECOS” manual [10]).

PRIVILEGE = *SAME
The command is not allowed for user tasks with exactly the same privileges as those
defined for the command itself (see the EXCEPT-PRIVILEGE operand on page 145).

PRIVILEGE = list-poss(64): <structured-name 1..30>
The command is not allowed for user tasks with the privileges defined in this list. If a
user task has at least one privilege that is not included in this list, it may execute the
command.

BATCH-ALLOWED =
Specifies whether the command is allowed in batch mode.

BATCH-ALLOWED = *YES(...)
The command is permitted in batch mode for all user tasks which have at least one of the
privileges specified for PRIVILEGE.

PRIVILEGE =
The command is allowed for all user tasks with the privileges specified here
(possible privileges are listed in the “SECOS” manual [10]).

PRIVILEGE = *SAME
The command is allowed for user tasks with exactly the same privileges as those
defined for the command itself (see the PRIVILEGE operand on page 145).

PRIVILEGE = list-poss(64): <structured-name 1..30>
The command is only allowed for user tasks with the privileges defined in this list.

BATCH-ALLOWED = *NO(...)
The command is not permitted in batch mode for user tasks which have only the privileges
specified for PRIVILEGE.

U2284-J-Z125-9-76 143

SDF-A statements ADD-CMD

PRIVILEGE =
The command is not allowed for user tasks with the privileges specified here
(possible privileges are listed in the “SECOS” manual [10]).

PRIVILEGE = *SAME
The command is not allowed for user tasks with exactly the same privileges as those
defined for the command itself (see the EXCEPT-PRIVILEGE operand on page 145).

PRIVILEGE = list-poss(64): <structured-name 1..30>
The command is not allowed for user tasks with the privileges defined in this list. If a
user task has at least one privilege that is not included in this list, it may execute the
command.

BATCH-PROC-ALLOWED =
Specifies whether the command is allowed in batch mode within a procedure.

BATCH-PROC-ALLOWED = *YES(...)
The command is permitted in batch mode within a procedure for all user tasks which have
at least one of the privileges specified for PRIVILEGE.

PRIVILEGE =
The command is allowed for all user tasks with the privileges specified here
(possible privileges are listed in the “SECOS” manual [10]).

PRIVILEGE = *SAME
The command is allowed for user tasks with exactly the same privileges as those
defined for the command itself (see the PRIVILEGE operand on page 145).

PRIVILEGE = list-poss(64): <structured-name 1..30>
The command is only allowed for user tasks with the privileges defined in this list.

BATCH-PROC-ALLOWED = *NO(...)
The command is not permitted in batch mode within a procedure for user tasks which have
only the privileges specified for PRIVILEGE.

PRIVILEGE =
The command is not allowed for user tasks with the privileges specified here
(possible privileges are listed in the “SECOS” manual [10]).

PRIVILEGE = *SAME
The command is not allowed for user tasks with exactly the same privileges as those
defined for the command itself (see the EXCEPT-PRIVILEGE operand on page 145).

PRIVILEGE = list-poss(64): <structured-name 1..30>
The command is not allowed for user tasks with the privileges defined in this list. If a
user task has at least one privilege that is not included in this list, it may execute the
command.

144 U2284-J-Z125-9-76

ADD-CMD SDF-A statements

CMD-ALLOWED =
Specifies whether the command can be called with the CMD macro.

CMD-ALLOWED = *YES(...)
The command can be called with the CMD macro. Calling with the CMD macro is permitted
for all user tasks which have at least one of the privileges specified for PRIVILEGE. Possible
restrictions as to the permissible modes of operation (DIALOG-ALLOWED, DIALOG-
PROC-ALLOWED, BATCH-ALLOWED, BATCH-PROC-ALLOWED) do not apply when the
command is called with the CMD macro.

UNLOAD = *NO / *YES
Specifies whether the calling program is to be unloaded. For commands implemented
via a command procedure the calling program is always unloaded. Whether or not the
calling program is unloaded is defined in this case in the UNLOAD-PROGRAM operand
(see the IMPLEMENTOR= PROCEDURE(...) operand, page 137).

PRIVILEGE =
The command may be called by user tasks with the privileges specified here
(possible privileges are listed in the “SECOS” manual [10]).

PRIVILEGE = *SAME
The command may be called by user tasks with exactly the same privileges as those
defined for the command itself (see the PRIVILEGE operand on page 145).

PRIVILEGE = list-poss(64): <structured-name 1..30>
The command is only allowed for user tasks with the privileges defined in this list.

CMD-ALLOWED = *NO(...)
Calling the command with the CMD macro is not permitted for user tasks which have only
the privileges specified for PRIVILEGE.

PRIVILEGE =
The command cannot be called by user tasks with the privileges specified here
(possible privileges are listed in the “SECOS” manual [10]).

PRIVILEGE = *SAME
The command cannot be called by user tasks with exactly the same privileges as those
defined for the command itself (see the EXCEPT-PRIVILEGE operand on page 145).

PRIVILEGE = list-poss(64): <structured-name 1..30>
The command is not allowed only for the privileges defined in this list.

NEXT-INPUT =
Specifies what type of input is to follow the command. SDF needs this specification to
conduct the guided dialog.

NEXT-INPUT = *CMD
A command is expected as the next entry. SDF interprets input in the NEXT field of the
guided dialog as a command.

U2284-J-Z125-9-76 145

SDF-A statements ADD-CMD

NEXT-INPUT = *STMT
A statement is expected as the next entry. SDF interprets input in the NEXT field of the
guided dialog as a statement.
Example: A command implemented by means of a procedure starts a program whose first
step is to read in a statement.

NEXT-INPUT = *DATA
Data is expected as the next entry. SDF interprets input in the NEXT field of the guided
dialog as data.
Example: A command implemented by means of a procedure starts a program whose first
step is to read in data.

NEXT-INPUT = *ANY
It is not possible to predict what type of input will follow.

PRIVILEGE =
Specifies the privileges assigned to the command.

PRIVILEGE = *ALL
All privileges currently defined and all subsequently defined privileges are assigned to the
command.

PRIVILEGE = *EXCEPT(...)
With the exception of those defined with *EXCEPT(...), all privileges currently defined and
all subsequently defined privileges are assigned to the command.

EXCEPT-PRIVILEGE = list-poss(64): <structured-name 1..30>
Specifies the privileges that are not assigned to the command.

PRIVILEGE = list-poss(64): <structured-name 1..30>
Only the privileges specified in this list are assigned to the command.

146 U2284-J-Z125-9-76

ADD-DOMAIN SDF-A statements

ADD-DOMAIN
Define domain

The ADD-DOMAIN statement is used to define a domain in the syntax file being processed.
The name given for the domain must be unambiguously distinguishable from all other
domain names.

NAME = <structured-name 1..30>
Name of the domain which is to be used in the guided dialog.

INTERNAL-NAME = *STD / <alphanum-name 1..8>
Internal name of the domain. This cannot be changed. With the help of the internal name,
SDF identifies a domain defined in several syntax files under different external names as
being the same domain. Unless otherwise specified, SDF-A takes as the internal name the
first eight characters (omitting hyphens) of the external name entered for the NAME
operand.

HELP = *NO / list-poss(2000): <name 1..1>(...)
Specifies whether there are help texts for the domain, and if so, what those texts are.

HELP = *NO
There are no help texts.

HELP = list-poss(2000): <name 1..1>(...)
There are help texts in the specified languages (E = English, D = German). SDF uses the
language specified for message output.

TEXT = <c-string 1..500 with-low>
Help text.
The help text can contain the special character string “\n” for the line break.

ADD-DOMAIN

NAME = <structured-name 1..30>

,INTERNAL-NAME = *STD / <alphanum-name 1..8>

,HELP = *NO / list-poss(2000): <name 1..1>(...)

<name 1..1>(...)
 TEXT = <c-string 1..500 with-low>

,PRIVILEGE = *ALL / *EXCEPT(...) / list-poss(64): <structured-name 1..30>

*EXCEPT(...)
 EXCEPT-PRIVILEGE = list-poss(64): <structured-name 1..30>

U2284-J-Z125-9-76 147

SDF-A statements ADD-DOMAIN

PRIVILEGE =
Specifies the privileges assigned to the domain.

PRIVILEGE = *ALL
All privileges currently defined and all subsequently defined privileges are assigned to the
domain.

PRIVILEGE = *EXCEPT(...)
With the exception of those defined with *EXCEPT(...), all privileges currently defined and
all subsequently defined privileges are assigned to the domain.

EXCEPT-PRIVILEGE = list-poss(64): <structured-name 1..30>
Specifies the privileges that are not assigned to the domain.

PRIVILEGE = list-poss(64): <structured-name 1..30>
Only the privileges specified in this list are assigned to the domain.

148 U2284-J-Z125-9-76

ADD-OPERAND SDF-A statements

ADD-OPERAND
Define operand

The ADD-OPERAND statement is used to define an operand in the open syntax file. The
command or statement for which the operand is defined must have already been defined in
the syntax file. The position the defined operand receives within this command or statement
depends on what the “current object” is at the time ADD-OPERAND is entered. The defined
operand is subsequently the current object.

All names given for the operand must be unique with regard to the other operands at the
same level (or in the same structure).

An operand may be defined for a command implemented via system modules only when
the command definition is in a group or system syntax file.

The definitions of the operand values belonging to the operand are placed in the syntax file
with the ADD-VALUE or COPY statement, rather than the ADD-OPERAND statement.

Current object
may be:

Position of the
defined
operand is then:

First operand
of the

command or
statement

Operand
Operand value

with no
structure

Operand value
with structure

Immediately
after the

operand which
is the current

object

Immediately
after the oper-
and whose val-
ue is the cur-

rent object

First operand
in the structure

Command
or

statement

U2284-J-Z125-9-76 149

SDF-A statements ADD-OPERAND

(part 1 of 2)

ADD-OPERAND

NAME = <structured-name 1..20>

,INTERNAL-NAME = *STD / <alphanum-name 1..8>

,STANDARD-NAME = *NAME / *NO / list-poss(2000): *NAME / <structured-name 1..20>

,ALIAS-NAME = *NO / list-poss(2000): <structured-name 1..20>

,MINIMAL-ABBREVIATION = *NO / <structured-name 1..30>

,HELP = *NO / list-poss(2000): <name 1..1>(...)

<name 1..1>(...)
 TEXT = <c-string 1..500 with-low>

,DEFAULT = *NONE / *JV(...) / *VARIABLE(...) / <c-string 1..1800 with-low>(...)

*JV(...)
 JV-NAME = <filename 1..54 without-gen-vers>
 ,ALTERNATE-DEFAULT = *NONE / <c-string 1..1800 with-low>(...)
 <c-string 1..1800 with-low>(...)
 ANALYSE-DEFAULT = *YES / *NO

*VARIABLE(...)
 VARIABLE-NAME = <composed-name 1..255>
 ,ALTERNATE-DEFAULT = *NONE / <c-string 1..1800 with-low>(...)
 <c-string 1..1800 with-low>(...)
 ANALYSE-DEFAULT = *YES / *NO

<c-string 1..1800 with-low>(...)
 ANALYSE-DEFAULT = *YES / *NO

,SECRET-PROMPT = *NO / *YES

,STRUCTURE-IMPLICIT = *NO / *YES

,REMOVE-POSSIBLE = *YES / *NO

,DIALOG-ALLOWED = *YES / *NO

,DIALOG-PROC-ALLOWED = *YES / *NO

,GUIDED-ALLOWED = *YES / *NO

,BATCH-ALLOWED = *YES / *NO

,BATCH-PROC-ALLOWED = *YES / *NO

continued ➠

150 U2284-J-Z125-9-76

ADD-OPERAND SDF-A statements

NAME = <structured-name 1..20>
(External) operand name, to be specified when the command or statement is entered (but
see operand PRESENCE=*INTERNAL-ONLY). The user can abbreviate this name on
input, in contrast to the STANDARD-NAME and ALIAS-NAME.

INTERNAL-NAME = *STD / <alphanum-name 1..8>
Internal operand name. With the help of the internal operand name, SDF identifies an
operand defined in several syntax files under different external names as being the same
operand. Unless otherwise specified, SDF-A takes as the internal operand name the first
eight characters (omitting hyphens) of the external name entered for the NAME operand.

STANDARD-NAME = *NAME / *NO / list-poss(2000): *NAME /<structured-name 1..20>
Additional external operand name, which can be alternatively used when entering the
command or statement. It must not be abbreviated when entered. In contrast to an ALIAS-
NAME, a STANDARD-NAME must not be deleted so long as the operand with this name
exists in one of the assigned syntax files (see OPEN-SYNTAX-FILE).

ALIAS-NAME = *NO / list-poss(2000): <structured-name 1..20>
Additional external operand name, which can be alternatively used when entering the
command or statement. It must not be abbreviated when entered. In contrast to a
STANDARD-NAME, an ALIAS-NAME may be deleted.

,LIST-POSSIBLE = *NO / *YES(...)

*YES(...)
 LIMIT = *STD / <integer 1..3000>
 ,FORM = *NORMAL / *OR

,LINES-IN-FORM = 1 / <integer 1..15>

,PRESENCE = *NORMAL / *EXTERNAL-ONLY / *INTERNAL-ONLY

,RESULT-OPERAND-LEVEL = 1 / <integer 1..5>

,RESULT-OPERAND-NAME = *SAME / <structured-name 1..20> / *POSITION(...) / *LABEL /

*COMMAND-NAME

*POSITION(...)
 POSITION = <integer 1..3000>

,CONCATENATION-POS = *NO / <integer 1..20>

,VALUE-OVERLAPPING = *NO / *YES

,OVERWRITE-POSSIBLE = *NO / *YES

,PRIVILEGE = *SAME / *EXCEPT(...) / list-poss(64): <structured-name 1..30>

*EXCEPT(...)
 EXCEPT-PRIVILEGE = list-poss(64): <structured-name 1..30>

(part 2 of 2)

U2284-J-Z125-9-76 151

SDF-A statements ADD-OPERAND

MINIMAL-ABBREVIATION = *NO / <structured-name 1..30>
Additional external operand name which defines the shortest permissible abbreviation for
the operand. Any shorter abbreviation will not be accepted, even if it is unambiguous with
respect to other operands.
The following should be noted:

1. Checking against the minimum abbreviation is carried out only after SDF has checked
the input for ambiguity. It may thus happen that SDF selects the correct operand but
then rejects it because the abbreviation entered is shorter than the specified minimum
abbreviation.

2. The minimum abbreviation must be derived from the operand name (NAME).

3. The ALIAS-NAMEs and STANDARD-NAMEs of the operand must not be shorter than
the minimum abbreviation if they are an abbreviation of the operand name.

4. The minimum abbreviation may only be shortened - not lengthened - within a syntax file
hierarchy.

HELP =
Specifies whether there are help texts for the operand, and if so, what those texts are.

HELP = *NO
There are no help texts.

HELP = list-poss(2000): <name 1..1>(...)
There are help texts in the specified languages (E = English, D = German). SDF uses the
language specified for message output.

TEXT = <c-string 1..500 with-low>
Help text.
The help text can contain the special character string “\n” for the line break.

DEFAULT=
Specifies whether there is a default value for the operand.

DEFAULT= *NONE
There is no default value. The operand is mandatory.

DEFAULT= *JV(...)
The operand is optional; its default value is stored in the job variable whose name is
specified here. If a job variable is used as a default value, this default value is always
analyzed by SDF at execution time. If it is not possible to access the job variable, the
alternate default value defined with ALTERNATE-DEFAULT is used. If no alternate default
value exists, the operand must be regarded as mandatory (corresponding to
DEFAULT=*NONE). Consequently, DEFAULT=*JV(...) must not be used together with
PRESENCE=*INTERNAL-ONLY.

JV-NAME = <filename 1..54 without-gen-vers>
Name of the job variable.

152 U2284-J-Z125-9-76

ADD-OPERAND SDF-A statements

ALTERNATE-DEFAULT =
Alternate default value to be used if errors occur when accessing the job variable.

ALTERNATE-DEFAULT = *NONE
There is no alternate default value.

ALTERNATE-DEFAULT = <c-string 1..1800 with-low>(...)
Alternate default value, to be specified in accordance with the rules governing the input
of operands. The alternate default may thus be given in the form of a list enclosed in
parentheses and must be contained in a definition of the operand value associated with
the operand (see ADD-VALUE). If this default value is contained in the keyword defined
with STAR=*MANDATORY, it must also be entered with an asterisk.

ANALYSE-DEFAULT = *YES / *NO
Specifies whether the given value will be analyzed syntactically by SDF-A as soon
as the command or statement definition has been completed. This expedites
analysis of the command or statement at runtime, but presupposes that the default
value does not consist of a list or introduce a structure.

DEFAULT= *VARIABLE(...)
The operand is optional; its default value is stored in the S variable whose name is specified
here (see the “SDF-P” [12] User Guide).
If an S variable is used as a default value, this default value is always analyzed by SDF at
execution time. If it is not possible to access the S variable, the alternate default value
defined with ALTERNATE-DEFAULT is used. If no alternate default value exists, this
operand is considered mandatory (corresponding to DEFAULT = *NONE). Consequently,
DEFAULT=*VARIABLE(...) must not be used together with PRESENCE=*INTERNAL-
ONLY.

VARIABLE-NAME = <composed-name 1..255>
Name of the S variable.

ALTERNATE-DEFAULT =
Alternate default value to be used if errors occur when accessing the S variable.

ALTERNATE-DEFAULT = *NONE
There is no alternate default value.

ALTERNATE-DEFAULT = <c-string 1..1800 with-low>(...)
Alternate default value, to be specified in accordance with the rules governing the input
of operands. The alternate default may thus be given in the form of a list enclosed in
parentheses and must be contained in a definition of the operand value associated with
the operand (see ADD-VALUE). If this default value is contained in the keyword defined
with STAR=*MANDATORY, it must also be entered with an asterisk.

U2284-J-Z125-9-76 153

SDF-A statements ADD-OPERAND

ANALYSE-DEFAULT = *YES / *NO
Specifies whether the given value will be analyzed syntactically by SDF-A as soon
as the command or statement definition has been completed. This expedites
analysis of the command or statement at runtime, but presupposes that the default
value does not consist of a list or introduce a structure.

DEFAULT= <c-string 1..1800 with-low>(...)
The operand is optional and has the specified default value. This default value is subject to
the same rules that govern the input of operands and may thus be entered in the form of a
list enclosed in parentheses. The default value must be contained in a definition of the
operand value associated with the operand (see ADD-VALUE). If it is contained in a
keyword defined with STAR=*MANDATORY, it must also be entered with an asterisk.

ANALYSE-DEFAULT = *YES / *NO
Specifies whether the given value will be analyzed syntactically by SDF-A as soon as
the command or statement definition has been completed. This expedites analysis of
the command or statement at runtime, but presupposes that the default value does not
consist of a list or introduce a structure.

SECRET-PROMPT = *NO / *YES
Specifies whether the operand is treated as a secret operand. The input fields for values of
secret operands are kept blank, and logging is suppressed (see also ADD-VALUE...,
OUTPUT=*SECRET-PROMPT and ADD-VALUE...,SECRET-PROMPT=*SAME/*NO).

STRUCTURE-IMPLICIT =
Relevant only for an operand contained in a structure and specifies whether the structure
containing the operand is implicitly selected via global specification of the operand name
when the command or statement is entered.

STRUCTURE-IMPLICIT = *NO
The structure is only implicitly selected when the operand is specified if the operand name
is unique throughout the command or statement or within an already selected structure.

STRUCTURE-IMPLICIT = *YES
The structure is implicitly selected when the operand is specified even if other operands with
the same name exist. These must be defined using STRUCTURE-IMPLICIT=*NO.
This specification is permitted only for operands whose structure is introduced with the
value KEYWORD or KEYWORD-NUMBER.
Example:
SHOW-FILE-ATTR ACCESS-METHOD=*ISAM
is the abbreviated form of
SHOW-FILE-ATTR SEL=*BY-ATTR(ACCESS-METHOD=*ISAM)
Simultaneous specification of the operand both within and outside the structure may lead
to errors (such as SDF message CMD0039: MORE THAN ONE VALUE HAS BEEN SPECIFIED
FOR AN OPERAND. ONLY THE LAST ONE IS USED).

154 U2284-J-Z125-9-76

ADD-OPERAND SDF-A statements

REMOVE-POSSIBLE = *YES / *NO
Specifies whether the operand may be deleted (see the REMOVE statement, page 301).

DIALOG-ALLOWED = *YES / *NO
Specifies whether the operand is allowed in interactive mode. Specifying YES presupposes
that the command or statement and, where applicable, the operand value introducing the
structure are allowed in interactive mode.

DIALOG-PROC-ALLOWED = *YES / *NO
Specifies whether the operand is allowed in interactive mode within a procedure. Specifying
YES presupposes that the command or statement and, where applicable, the operand
value introducing the structure are allowed in interactive mode within a procedure.

GUIDED-ALLOWED = *YES / *NO
Specifies whether the operand is allowed in guided dialog. Specifying YES presupposes
that the command or statement and, where applicable, the operand value introducing the
structure are allowed in guided dialog.
GUIDED-ALLOWED=*NO is not suitable for security-related aspects, since operands
defined with this setting are shown in the procedure error dialog as well as for /SHOW-CMD
and //SHOW-STMT with FORM=*UNGUIDED .

BATCH-ALLOWED = *YES / *NO
Specifies whether the operand is allowed in batch mode. Specifying YES presupposes that
the command or statement and, where applicable, the operand value introducing the
structure are allowed in batch mode.

BATCH-PROC-ALLOWED = *YES / *NO
Specifies whether the operand is allowed in batch mode within a procedure. Specifying YES
presupposes that the command or statement and, where applicable, the operand value
introducing the structure, are allowed in batch mode within a procedure.

LIST-POSSIBLE =
Specifies whether a list is allowed at the operand position. The ADD-VALUE statement is
used to define for which of the operand values a list is allowed.

LIST-POSSIBLE = *NO
No list is allowed.

LIST-POSSIBLE = *YES(...)
A list is allowed.

LIMIT = *STD / <integer 1..3000>
Specifies the maximum number of list elements. Unless otherwise specified, SDF-A
assumes the value 2000 (see also page 377).

FORM = *NORMAL / *OR
Specifies whether the list elements are to be addressed individually (NORMAL) or are
to be passed to the implementation converted into a single value using logical OR (see
section 6.3, “Format of the standardized transfer area”). The latter is appropriate only

U2284-J-Z125-9-76 155

SDF-A statements ADD-OPERAND

for list elements of the data type KEYWORD, for which hexadecimal transfer values
have been defined (see ADD-VALUE..,VALUE = <c-string>(..,OUTPUT=<x-string>...).
FORM is relevant only when the defined operand pertains to a statement or to a
command defined with IMPLEMENTOR=*TPR(..,CMD-
INTERFACE=*NEW/*TRANSFER-AREA,...) (see ADD-CMD). The specification made
here must be consistent with the transfer area defined in the implementation.

LINES-IN-FORM = 1 / <integer 1..15>
Specifies the number of input lines in the guided dialog form.

PRESENCE =
Specifies whether the operand is to be suppressed.

PRESENCE = *NORMAL
The operand is not suppressed.

PRESENCE = *EXTERNAL-ONLY
Transfer of the operand to the implementation is suppressed (e.g. an operand that is no
longer needed but must be retained at the user interface for compatibility reasons, or an
operand that serves merely to group further operands in a structure).

PRESENCE = *INTERNAL-ONLY
The operand is suppressed at the user interface. Together with the then mandatory
definition of a default value (see operand DEFAULT=), a fixed value may be assigned to a
parameter implemented in this way without an operand being visible to the user in the
command or statement format. If a structure is attached to the operand, all of the sub-
operands contained in the structure will be integrated into the higher level.
PRESENCE=*INTERNAL-ONLY must not be used together with DEFAULT=*JV(...) or
DEFAULT=*VARIABLE(...).

RESULT-OPERAND-LEVEL = 1 / <integer 1..5>
Specifies the structure level at which the operand is to be passed to the implementation.
For an operand not attached to a structure, this value must be 1. The following applies to
an operand attached to a structure: The RESULT-OPERAND-LEVEL is equal to or less than
the structure level on which the operand stands in the input format of the command or
statement. It is lower than, equal to or 1 higher than the RESULT-OPERAND-LEVEL of the
operand to which the operand value introducing the structure belongs.
For statements and for commands defined with IMPLEMENTOR=*TPR (...,CMD-
INTERFACE=*NEW/*TRANSFER-AREA,...), see also ADD-
VALUE...STRUCTURE=*YES(...,FORM=...).

RESULT-OPERAND-NAME =
Specifies how the implementation identifies the operand in the transfer area or string that
SDF passes to it.
Note: SDF uses a transfer area (see page 365ff) for statements and for commands defined
with IMPLEMENTOR=*TPR(...,CMD-INTERFACE=*NEW/*TRANSFER-AREA,...) (see

156 U2284-J-Z125-9-76

ADD-OPERAND SDF-A statements

ADD-CMD). SDF passes a string in the case of commands defined with IMPLE-
MENTOR=*PROCEDURE or IMPLEMENTOR=*TPR(...,CMD-INTERFACE=*STRING,...)
(see ADD-CMD).

RESULT-OPERAND-NAME = *SAME
Permissible only when operands are transferred by means of a string. In the string to be
passed, the operand has the same name as the one given to it with NAME=.

RESULT-OPERAND-NAME = <structured-name 1..20>
Permissible only when operands are transferred by means of a string. In the string to be
passed, the operand has the specified name.

RESULT-OPERAND-NAME = *POSITION(...)
In the transfer area (see page 365ff) or in the string to be passed, the operand has a
specified position. A name is not assigned to it.

POSITION = <integer 1..3000>
Specifies the position. For operands attached to a structure, the position is specified
relative to the structure, i.e. the first operand in the structure is assigned position 1
if the RESULT-OPERAND-LEVEL that was defined for the current operand is higher
than that of the operand at the level above it.

RESULT-OPERAND-NAME = *LABEL
Permissible only for operands in commands defined with
IMPLEMENTOR=*TPR(...,CALL=*OLD,...) (see ADD-CMD). This operand value is
reserved for Fujitsu Siemens Computers Development and is therefore not described here.

RESULT-OPERAND-NAME = *COMMAND-NAME
Permissible only for operands in commands defined with IMPLEMENTOR=*TPR(...,CMD-
INTERFACE=*STRING,...) (see ADD-CMD). This operand value is reserved for Fujitsu
Siemens Computers Development and is therefore not described here.

CONCATENATION-POS = *NO / <integer 1..20>
Specifies whether and, if so, how the operand is to be put together with other input operands
to form a single operand in the string to be passed to the implementation. The input
operands are concatenated. The position they occupy when concatenated should be
specified here. It is presupposed that the transfer to the implementation is in the form of a
string (commands that are defined with IMPLEMENTOR=*PROCEDURE or
IMPLEMENTOR= *TPR(...,CMD-INTERFACE=*STRING,...); see ADD-CMD). All input
operands to be concatenated must have the same RESULT-OPERAND-NAME. If the same
position is specified for several input operands, SDF uses the first operand it encounters
during analysis

VALUE-OVERLAPPING =
Specifies whether overlapping of data types is to be permitted in the definition of the
operand values.

U2284-J-Z125-9-76 157

SDF-A statements ADD-OPERAND

VALUE-OVERLAPPING = *NO
No overlapping is allowed (see section “Mutually exclusive data types” on page 623 for a
list of mutually exclusive data types).

VALUE-OVERLAPPING = *YES
Overlapping is allowed.
When the command or statement is entered, SDF checks the operand value using the data
type definitions as examples and in the order specified for the operand. SDF outputs an
error message if there is no match between the data type and the value entered.
If the data type is KEYWORD(-NUMBER), SDF checks whether the value which has been
entered is unique with respect to further definitions of this type. In addition, SDF checks the
defined attributes (e.g. length, value range) of the value entered. If these attributes do not
apply, the check is continued with the next defined data type.

OVERWRITE-POSSIBLE = *NO / *YES
This is only relevant for statements, and for commands defined with IMPLE-
MENTOR=*TPR(...,CMD-INTERFACE=*NEW/*TRANSFER-AREA,...); see ADD-CMD.
OVERWRITE-POSSIBLE determines whether the operand default value can be replaced
by a value created dynamically by the implementation (see the DEFAULT operand in the
CMDCST, CMDRST and CMDTST macros). The program-generated value must be a valid
operand value. In guided dialog, SDF shows the implementation-specific value in the form
display.

PRIVILEGE =
Specifies the privileges assigned to the operand.

PRIVILEGE = *SAME
The operand is assigned the same privileges as those defined for the associated command
or statement. If the operand is part of a structure, it is assigned the same privileges as the
operand value which introduces the structure.

PRIVILEGE = *EXCEPT(...)
With the exception of those defined with *EXCEPT(...), all privileges currently defined and
all subsequently defined privileges are assigned to the operand.

EXCEPT-PRIVILEGE = list-poss(64): <structured-name 1..30>
Specifies the privileges that are not assigned to the operand.

PRIVILEGE = list-poss(64): <structured-name 1..30>
Only the privileges specified in this list are assigned to the operand.

158 U2284-J-Z125-9-76

ADD-PROGRAM SDF-A statements

ADD-PROGRAM
Define program

The ADD-PROGRAM statement is used to define a program in the syntax file being
processed. The names given for the program must be unique with regard to all other names
defined in the syntax file.

NAME = <structured-name 1..30>
(External) program name which is shown in guided dialog. This name is freely selectable
(and need not agree with the module or phase name).

INTERNAL-NAME = *STD / <alphanum-name 1..8>
Internal program name. This cannot be changed. The program specifies it to SDF when
requesting statement input (see the CMDRST and CMDTST macros). Unless otherwise
specified, SDF-A takes the first eight characters (omitting hyphens) of the external program
name specified for the NAME operand.

PRIVILEGE =
Specifies the privileges assigned to the program.

PRIVILEGE = *ALL
All privileges currently defined and all subsequently defined privileges are assigned to the
program.

PRIVILEGE = *EXCEPT(...)
With the exception of those defined with *EXCEPT(...), all privileges currently defined and
all subsequently defined privileges are assigned to the program.

EXCEPT-PRIVILEGE = list-poss(64): <structured-name 1..30>
Specifies the privileges that are not assigned to the program.

PRIVILEGE = list-poss(64): <structured-name 1..30>
Only the privileges specified in this list are assigned to the program.

ADD-PROGRAM

NAME = <structured-name 1..30>

,INTERNAL-NAME = *STD / <alphanum-name 1..8>

,PRIVILEGE = *ALL / *EXCEPT(...) / list-poss(64): <structured-name 1..30>

*EXCEPT(...)
 EXCEPT-PRIVILEGE = list-poss(64): <structured-name 1..30>

,COMMENT-LINE = *NONE / *STD / <c-string 1..50 with-low>

U2284-J-Z125-9-76 159

SDF-A statements ADD-PROGRAM

COMMENT-LINE =
Specifies which program comment lines are to be displayed in the guided dialog. The
program comment line appears at the top of guided dialog forms.

COMMENT-LINE = *NONE
No program comment lines are displayed.

COMMENT-LINE = *STD
The version and creation date of the program are displayed in the program comment line.
Object modules (elements of type R) have no internal version, so the execution date is
shown instead of the creation date.

COMMENT-LINE = <c-string 1..50 with-low>
String to be output as the program comment line.

160 U2284-J-Z125-9-76

ADD-STMT SDF-A statements

ADD-STMT
Define statement

The ADD-STMT statement is used to define, in the open syntax file, a statement for a
program. This statement then becomes the “current object” (see page 148). The program
must already be defined in the syntax file. All names given for the statement must be unique
with regard to the set of statements pertaining to the program.
The definitions of the operands and operand values belonging to the statement are placed
in the syntax file using the ADD-OPERAND and ADD-VALUE or COPY statements, rather
than with the ADD-STMT statement.

ADD-STMT

NAME = <structured-name 1..30>

,PROGRAM = <structured-name 1..30>

,INTERNAL-NAME = *STD / <alphanum-name 1..8>

,STANDARD-NAME = *NAME / *NO / list-poss(2000): *NAME / <structured-name 1..30>

,ALIAS-NAME = *NO / list-poss(2000): <structured-name 1..30>

,MINIMAL-ABBREVIATION = *NO / <structured-name 1..30>

,HELP = *NO / list-poss(2000): <name 1..1>(...)

<name 1..1>(...)

 TEXT = <c-string 1..500 with-low>

,MAX-STRUC-OPERAND = *STD / <integer 1..3000>

,IMPLEMENTATION = *NORMAL / *RESTORE-SDF-INPUT / *SHOW-INPUT-HISTORY / *REMARK /

*WRITE-TEXT / *STEP / *END / *MODIFY-SDF / *SHOW-SDF / *EXECUTE / *HOLD /

*SHOW-INPUT-DEFAULTS / *RESET-INPUT-DEFAULTS / *HELP-MSG / *SHOW-STMT

,REMOVE-POSSIBLE = *YES / *NO

,DIALOG-ALLOWED = *YES / *NO

,DIALOG-PROC-ALLOWED = *YES / *NO

,GUIDED-ALLOWED = *YES / *NO

,BATCH-ALLOWED = *YES / *NO

,BATCH-PROC-ALLOWED = *YES / *NO

,NEXT-INPUT = *STMT / *DATA / *ANY

,PRIVILEGE = *ALL / *EXCEPT(...) / list-poss(64): <structured-name 1..30>

*EXCEPT(...)

 EXCEPT-PRIVILEGE = list-poss(64): <structured-name 1..30>

,STMT-VERSION = *NONE / <integer 1..999>

U2284-J-Z125-9-76 161

SDF-A statements ADD-STMT

NAME = <structured-name 1..30>
(External) statement name, to be specified when the statement is entered. The user can
abbreviate this name on input, in contrast to the STANDARD-NAME and ALIAS-NAME.

PROGRAM = <structured-name 1..30>
External name of the program (see ADD-PROGRAM) to which the statement belongs.

INTERNAL-NAME = *STD / <alphanum-name 1..8>
Internal statement name. The program to which the statement belongs knows the
statement by its internal name (cf. the CMDRST and CMDTST macros). This name cannot
be changed. With the help of the internal statement name, SDF identifies a statement
defined in several syntax files under different external names as being the same statement.
Unless otherwise specified, SDF-A takes as the internal statement name the first eight
characters (omitting hyphens) of the external name entered for the NAME operand.

STANDARD-NAME = *NAME / *NO / list-poss(2000): *NAME / <structured-name 1..30>
Additional external statement name, which can be alternatively used when entering the
statement. It must not be abbreviated when entered. In contrast to an ALIAS-NAME, a
STANDARD-NAME must not be deleted so long as the statement with this name exists in
one of the assigned reference syntax files (see OPEN-SYNTAX-FILE). STANDARD-NAME
is reserved for Fujitsu Siemens Computers Software Development and is therefore not
described here.

ALIAS-NAME = *NO / list-poss(2000): <structured-name 1..30>
Additional external statement name, which can be alternatively used when entering the
statement. It must not be abbreviated when entered. In contrast to a STANDARD-NAME,
an ALIAS-NAME may be deleted.

MINIMAL-ABBREVIATION = *NO / <structured-name 1..30>
Additional external statement name which defines the shortest permissible abbreviation for
the statement. Any shorter abbreviation will not be accepted, even if it is unambiguous with
respect to other statements.
The following should be noted:

1. Checking against the minimum abbreviation is carried out only after SDF has checked
the input for ambiguity. It may thus happen that SDF selects the correct statement but
then rejects it because the abbreviation entered is shorter than the specified minimum
abbreviation.

2. The minimum abbreviation must be derived from the statement name (NAME).

3. The ALIAS-NAMEs and STANDARD-NAMEs of the statement must not be shorter than
the minimum abbreviation if they are an abbreviation of the statement name.

4. The minimum abbreviation may only be shortened - not lengthened - within a syntax file
hierarchy.

162 U2284-J-Z125-9-76

ADD-STMT SDF-A statements

HELP =
Specifies whether there are help texts for the statement, and if so, what those texts are.

HELP = *NO
There are no help texts.

HELP = list-poss(2000): <name 1..1>(...)
There are help texts in the specified languages (E = English, D = German). SDF uses the
language specified for message output.

TEXT = <c-string 1..500 with-low>
Help text.
The help text can contain the special character string “\n” for the line break.

MAX-STRUC-OPERAND = *STD / <integer 1..3000>
Number of operand positions to be reserved at the top level in structured transfer. Unless
otherwise specified, an operand array is created that is as large as required. However, the
array may also be made larger for planned future expansions.

IMPLEMENTATION = *NORMAL / *RESTORE-SDF-INPUT / *SHOW-INPUT-HISTORY /
*REMARK / *WRITE-TEXT / *STEP / *END / *MODIFY-SDF / *SHOW-SDF / *EXECUTE /
*HOLD /*SHOW-INPUT-DEFAULTS / *RESET-INPUT-DEFAULTS / *HELP-MSG /
*SHOW-STMT
This function is provided only for Fujitsu Siemens Computers System Software Devel-
opment and is therefore not described here.

REMOVE-POSSIBLE = *YES / *NO
Specifies whether the statement may be deleted (cf. REMOVE).

DIALOG-ALLOWED = *YES / *NO
Specifies whether the statement is allowed in interactive mode.

DIALOG-PROC-ALLOWED = *YES / *NO
Specifies whether the statement is allowed in interactive mode within a procedure.

GUIDED-ALLOWED = *YES / *NO
Specifies whether the statement is allowed in guided dialog.

BATCH-ALLOWED = *YES / *NO
Specifies whether the statement is allowed in batch mode.

BATCH-PROC-ALLOWED = *YES / *NO
Specifies whether the statement is allowed in batch mode within a procedure.

NEXT-INPUT =
Specifies what type of input is expected following the statement. SDF needs this specifi-
cation to conduct the guided dialog.

U2284-J-Z125-9-76 163

SDF-A statements ADD-STMT

NEXT-INPUT = *STMT
A statement is expected as the next entry. SDF interprets input in the NEXT field of the
guided dialog as a statement.

NEXT-INPUT = *DATA
Data is expected as the next entry. SDF interprets input in the NEXT field of the guided
dialog as data.

NEXT-INPUT = *ANY
It is not possible to predict what type of input will follow.

PRIVILEGE =
Specifies the privileges assigned to the statement.

PRIVILEGE = *ALL
All privileges currently defined and all subsequently defined privileges are assigned to the
statement.

PRIVILEGE = *EXCEPT(...)
With the exception of those defined with *EXCEPT(...), all privileges currently defined and
all subsequently defined privileges are assigned to the statement.

EXCEPT-PRIVILEGE = list-poss(64): <structured-name 1..30>
Specifies the privileges that are not assigned to the statement.

PRIVILEGE = list-poss(64): <structured-name 1..30>
Only the privileges specified in this list are assigned to the statement.

STMT-VERSION = *NONE / <integer 1..999>
Version of the statement. The value is transferred in the standardized transfer areas.
*NONE means that a zero value is specified in the standardized transfer area. STMT-
VERSION is ignored if the program to which the statement belongs does not work with the
new macros CMDRST and CMDTST or still uses the old format for the standardized
transfer area. More information on the format of standardized transfer areas and SDF
macros can be found in section “Format of the standardized transfer area” on page 365ff
and section “SDF macros” on page 379ff.

164 U2284-J-Z125-9-76

ADD-VALUE SDF-A statements

ADD-VALUE
Define operand value

The ADD-VALUE statement is used to define an operand value in the open syntax file. The
operand for which this value is defined must already be defined in the syntax file.

The position at which the operand value is inserted depends on whether the operand itself
or one of its previously defined values is the “current object” (see page 148):

– if the operand itself is the “current object”, the operand value defined will be inserted
into the command or statement definition as the first value for this operand;

– if another, previously defined value for this operand is the “current object”, the newly
defined operand value will be inserted immediately following this existing value.

In both cases, the newly defined operand value then becomes the “current object”.

All names given for the operand value must be unique with regard to its environment. If the
names are not explicitly defined but are instead left up to SDF-A, it can happen, in the case
of the data type KEYWORD, that the internal name assembled by SDF-A by default is
invalid.

An operand value for a command implemented via system modules may be defined only if
the command definition is in a group or system syntax file.

(part 1 of 6)

ADD-VALUE

TYPE = *ALPHANUMERIC-NAME(...) / *CAT-ID / *COMMAND-REST(...) / *COMPOSED-NAME(...) /

*C-STRING(...) / *DATE(...) / *DEVICE(...) / *FIXED(...) / *FILENAME(...) / *INTEGER(...) /

*KEYWORD(...) / *KEYWORD-NUMBER(...) / *LABEL(...) / *NAME(...) / *PARTIAL-FILENAME(...) /

 *POSIX-PATHNAME(...) / *POSIX-FILENAME(...) / *PRODUCT-VERSION(...) /

*STRUCTURED-NAME(...) / *TEXT(...) / *TIME(...) / *VSN(...) / *X-STRING(...) / *X-TEXT(...)

*ALPHANUMERIC-NAME(...)

 ,SHORTEST-LENGTH = *ANY / <integer 1..255>
 ,LONGEST-LENGTH = *ANY / <integer 1..255>
 ,WILDCARD = *NO / *YES(...)
 *YES(...)

 TYPE = *SELECTOR / *CONSTRUCTOR

 ,LONGEST-LOGICAL-LEN = *LONGEST-LENGTH / <integer 1..255>

continued ➠

U2284-J-Z125-9-76 165

SDF-A statements ADD-VALUE

*COMMAND-REST(...)
 LOWER-CASE = *NO / *YES

*COMPOSED-NAME(...)
 SHORTEST-LENGTH = *ANY / <integer 1..1800>
 ,LONGEST-LENGTH = *ANY / <integer 1..1800>
 ,UNDERSCORE = *NO / *YES
 ,WILDCARD = *NO / *YES(...)
 *YES(...)
 TYPE = *SELECTOR / *CONSTRUCTOR
 ,LONGEST-LOGICAL-LEN = *LONGEST-LENGTH / <integer 1..1800>

*C-STRING(...)
 SHORTEST-LENGTH = *ANY / <integer 1..1800>
 ,LONGEST-LENGTH = *ANY / <integer 1..1800>
 ,LOWER-CASE = *NO / *YES

*DATE(...)
 COMPLETION = *NO / *YES

*DEVICE(...)
 CLASS-TYPE = *DISK(...) / list-poss(2000): *DISK(...) / *TAPE(...)
 *DISK(...)
 EXCEPT = *NO / list-poss(50): <text 1..8 without-sep>
 ,SCOPE = *ALL / *STD-DISK
 *TAPE(...)
 EXCEPT = *NO / list-poss(50): <text 1..8 without-sep>
 ,ALIAS-ALLOWED = *YES / *NO
 ,VOLUME-TYPE-ONLY = *NO / *YES
 ,RESULT-VALUE = *BY-NAME / *BY-CODE

*FIXED(...)
 LOWEST = *ANY / <fixed -2147483648..2147483647>
 ,HIGHEST = *ANY / <fixed -2147483648..2147483647>

continued ➠

(part 2 of 6)

166 U2284-J-Z125-9-76

ADD-VALUE SDF-A statements

*FILENAME(...)
 SHORTEST-LENGTH = *ANY / <integer 1..80>
 ,LONGEST-LENGTH = *ANY / <integer 1..80>
 ,CATALOG-ID = *YES / *NO
 ,USER-ID = *YES / *NO
 ,GENERATION = *YES / *NO
 ,VERSION = *YES / *NO
 ,WILDCARD = *NO / *YES(...)
 *YES(...)
 TYPE = *SELECTOR / *CONSTRUCTOR
 ,LONGEST-LOGICAL-LEN = *LONGEST-LENGTH / <integer 1..80>
 ,PATH-COMPLETION = *NO / *YES
 ,TEMPORARY-FILE = *YES / *NO

*INTEGER(...)
 LOWEST = *ANY / <integer -2147483648..2147483647>
 ,HIGHEST = *ANY / <integer -2147483648..2147483647>
 ,OUT-FORM = *STD / *BINARY / *PACKED / *UNPACKED / *CHAR / *STD

*KEYWORD(...)
 STAR = *OPTIONAL / *MANDATORY

*KEYWORD-NUMBER(...)
 STAR = *OPTIONAL / *MANDATORY

*LABEL(...)
 SHORTEST-LENGTH = *ANY / <integer 1..8>
 ,LONGEST-LENGTH = *ANY / <integer 1..8>

*NAME(...)
 SHORTEST-LENGTH = *ANY / <integer 1..255>
 ,LONGEST-LENGTH = *ANY / <integer 1..255>
 ,UNDERSCORE = *NO / *YES
 ,LOWER-CASE = *NO / *YES

continued ➠

(part 3 of 6)

U2284-J-Z125-9-76 167

SDF-A statements ADD-VALUE

 ,WILDCARD = *NO / *YES(...)
 *YES(...)
 TYPE = *SELECTOR / *CONSTRUCTOR
 ,LONGEST-LOGICAL-LEN = *LONGEST-LENGTH / <integer 1..255>

*PARTIAL-FILENAME(...)
 SHORTEST-LENGTH = *ANY / <integer 2..79>
 ,LONGEST-LENGTH = *ANY / <integer 2..79>
 ,CATALOG-ID = *YES / *NO
 ,USER-ID = *YES / *NO
 ,WILDCARD = *NO / *YES(...)
 *YES(...)
 TYPE = *SELECTOR / *CONSTRUCTOR
 ,LONGEST-LOGICAL-LEN = *LONGEST-LENGTH / <integer 2..79>

*POSIX-PATHNAME(...)
 SHORTEST-LENGTH = *ANY / <integer 1..1023>
 ,LONGEST-LENGTH = *ANY / <integer 1..1023>
 ,WILDCARD = *YES / *NO
 ,QUOTES = *OPTIONAL / *MANDATORY

*POSIX-FILENAME(...)
 SHORTEST-LENGTH = *ANY / <integer 1..255>
 ,LONGEST-LENGTH = *ANY / <integer 1..255>
 ,WILDCARD = *YES / *NO
 ,QUOTES = *OPTIONAL / *MANDATORY

*PRODUCT-VERSION(...)
 USER-INTERFACE = *YES (...) / *NO / *ANY(...)
 *YES(...)
 CORRECTION-STATE = *YES / *NO / *ANY
 *ANY(...)
 CORRECTION-STATE = *ANY / *NO / *YES

continued ➠

(part 4 of 6)

168 U2284-J-Z125-9-76

ADD-VALUE SDF-A statements

*STRUCTURED-NAME(...)
 SHORTEST-LENGTH = *ANY / <integer 1..255>
 ,LONGEST-LENGTH = *ANY / <integer 1..255>
 ,WILDCARD = *NO / *YES(...)
 *YES(...)

 TYPE = *SELECTOR / *CONSTRUCTOR

 ,LONGEST-LOGICAL-LEN = *LONGEST-LENGTH / <integer 1..255>

*TEXT(...)
 SHORTEST-LENGTH = *ANY / <integer 1..1800>
 ,LONGEST-LENGTH = *ANY / <integer 1..1800>
 ,LOWER-CASE = *NO / *YES
 ,SEPARATORS = *YES / *NO

*TIME(...)

 OUT-FORM = *STD / *BINARY / *CHAR

*VSN(...)
 SHORTEST-LENGTH = *ANY / <integer 1..6>
 ,LONGEST-LENGTH = *ANY / <integer 1..6>

*X-STRING(...)
 SHORTEST-LENGTH = *ANY / <integer 1..1800>
 ,LONGEST-LENGTH = *ANY / <integer 1..1800>

*X-TEXT(...)
 SHORTEST-LENGTH = *ANY / <integer 1..3600>
 ,LONGEST-LENGTH = *ANY / <integer 1..3600>
 ,ODD-POSSIBLE = *YES / *NO

,INTERNAL-NAME = *STD / <alphanum-name 1..8>

,REMOVE-POSSIBLE = *YES / *NO

,SECRET-PROMPT = *SAME / *NO

,DIALOG-ALLOWED = *YES / *NO

,DIALOG-PROC-ALLOWED = *YES / *NO

,GUIDED-ALLOWED = *YES / *NO

,BATCH-ALLOWED = *YES / *NO

,BATCH-PROC-ALLOWED = *YES / *NO

continued ➠

(part 5 of 6)

U2284-J-Z125-9-76 169

SDF-A statements ADD-VALUE

,STRUCTURE = *NO / *YES(...)

*YES(...)
 SIZE = *SMALL / *LARGE
 ,FORM = *FLAT / *NORMAL
 ,MAX-STRUC-OPERAND = *STD / <integer 1..3000>

,LIST-ALLOWED = *NO / *YES

,VALUE = *NO / list-poss(2000): <c-string 1..1800 with-low>(...)

<c-string 1..1800 with-low>(...)
 STANDARD-NAME = *NAME / *NO / list-poss(2000): *NAME / <structured-name 1..30> /

 <c-string 1..30>
 ,ALIAS-NAME = *NO / list-poss(2000): <structured-name 1..30>
 ,GUIDED-ABBREVIATION = *NAME / <structured-name 1..30> / <c-string 1..30>
 ,MINIMAL-ABBREVIATION = *NO / <structured-name 1..30> / <c-string 1..30>
 ,NULL-ABBREVIATION = *NO / *YES
 ,OUTPUT = *SAME / *EMPTY-STRING / *DROP-OPERAND / <c-string 1..1800> / <x-string 1..3600>
 ,OUT-TYPE = *SAME / *ALPHANUMERIC-NAME / *CAT-ID / *COMMAND-REST /

 *COMPOSED-NAME / *C-STRING / *DATE / *DEVICE / *FIXED / *FILENAME /

 *INTEGER / *KEYWORD / *KEYWORD-NUMBER / *LABEL / *NAME /

 *PARTIAL-FILENAME / *PRODUCT-VERSION / *POSIX-PATHNAME /

 *POSIX-FILENAME / *STRUCTURED-NAME / *TEXT / *TIME / *VSN /

 *X-STRING / *X-TEXT
 ,OVERWRITE-POSSIBLE = *NO / *YES

,OUTPUT = *NORMAL(...) / *SECRET-PROMPT

*NORMAL(...)
 AREA-LENGTH = *VARIABLE / <integer 1..3000>
 ,LEFT-JUSTIFIED = *STD / *YES / *NO
 ,FILLER = *STD / <c-string 1..1> / <x-string 1..2>
 ,STRING-LITERALS = *NO / *HEX / *CHAR
 ,HASH = *NO / *YES(...)
 *YES(...)

 OUTPUT-LENGTH = <integer 2..32>

,PRIVILEGE = *SAME / *EXCEPT(...) / list-poss(64): <structured-name 1..30>

*EXCEPT(...)

 EXCEPT-PRIVILEGE = list-poss(64): <structured-name 1..30>

(part 6 of 6)

170 U2284-J-Z125-9-76

ADD-VALUE SDF-A statements

TYPE =
Specifies the data type of the operand value. The various values defined for an operand
must not be mutually exclusive with respect to data type (see page 623). (If this is not
possible in exceptional cases, the value YES must be specified for VALUE-OVERLAPPING
in the ADD-OPERAND or MODIFY-OPERAND statement. Otherwise it is not possible, for
example, to define a value of the type NAME and an alternative value of the type STRUC-
TURED-NAME for an operand. Only the data type KEYWORD may be specified in more
than one alternative operand value definition. When a command or statement is entered,
SDF checks whether an operand value entered is of the type defined for it. In the following
descriptions of the data types, the term “alphanumeric character” is repeatedly used. This
may be a letter (A, B, C, ..., Z), a digit (0, 1, 2, ..., 9) or a special character (@, #, $).

TYPE = *ALPHANUMERIC-NAME(...)
Specifies that the operand value is of the data type ALPHANUMERIC-NAME. This is
defined as a sequence of alphanumeric characters.

SHORTEST-LENGTH = *ANY / <integer 1..255>
Specifies whether the string must have a minimum length, and if so, what that minimum
length is (specified in bytes).

LONGEST-LENGTH = *ANY / <integer 1..255>
Specifies whether the string is not to exceed a maximum length, and if so, what that
maximum length is (specified in bytes).

WILDCARD =
Specifies whether wildcards (see the description of the SDF metasyntax in section 1.5)
may be used in place of characters/strings within the name when the command or
statement is entered.

WILDCARD = *NO
No wildcards are allowed when entering the operand value.

WILDCARD = *YES(...)
Wildcards may be used.

TYPE =
Specifies whether the string can be a wildcard selector ()search pattern) or wildcard
constructor. Wildcard constructors are used to build names from strings generated
with the aid of a wildcard selector.

TYPE = *SELECTOR
The string can be a wildcard selector; the data type receives the suffix with-wild (see
the description of the SDF metasyntax in section 1.5).

TYPE = *CONSTRUCTOR
The string can be a wildcard constructor; the data type receives the suffix
with-wild-constr (see the description of the SDF metasyntax in section 1.5).

U2284-J-Z125-9-76 171

SDF-A statements ADD-VALUE

LONGEST-LOGICAL-LEN =
Specifies the maximum length of the name matched by the wildcard (selector or
construction).

LONGEST-LOGICAL-LEN = *LONGEST-LENGTH
The maximum length of the name matched by the wildcard is the same as the length
specified by the LONGEST-LENGTH operand (for reasons of compatibility).

LONGEST-LOGICAL-LEN = <integer 1..255>
Specifies the maximum length of the name matched by the wildcard.

TYPE = *CAT-ID
Specifies that the operand value is of the data type CAT-ID, defined as a sequence of up to
4 characters (without “:” delimiters) from the ranges A-Z and 0-9; the special characters $,
@ and # are not permitted. A four-character catalog ID must not begin with the string ’PUB’.

TYPE = *COMMAND-REST(...)
Specifies that the operand value is of the data type COMMAND-REST. This data type is
provided only for special purposes for Fujitsu Siemens Computers Software Development
and is therefore not described here.

TYPE = *COMPOSED-NAME(...)
Specifies that the operand value is of the data type COMPOSED-NAME. This data type is
very similar to the data type FILENAME, with the following differences:

1. The following characters are not permitted: ’:’ , ’(’ , ’)’

2. Letters, digits and the following special characters are permitted: ’@’ , ’$’ , ’#’ , ’.’ , ’-’,
and possibly ’_’ (depending on the value of the UNDERSCORE operand).

3. There are no restrictions for the characters ’@’ , ’$’ and ’#’

4. The characters ’-’ and ’.’ may only be specified as separators between other characters.
The following are not permitted, for example: ’..’ , ’--’ , ’.-’ or ’-.’. Furthermore, ’.’ and ’-’
must not be used at the start or end of a composed name.

5. The length is not limited to 54 characters;

6. The name does not need to include a letter.

SHORTEST-LENGTH = *ANY / <integer 1..1800>
Specifies whether the string must have a minimum length, and if so, what that minimum
length is (specified in bytes).

LONGEST-LENGTH = *ANY / <integer 1..1800>
Specifies whether the string is not to exceed a maximum length, and if so, what that
maximum length is (specified in bytes).

UNDERSCORE = *NO / *YES
Specifies whether the underscore character ’_’ is accepted.

172 U2284-J-Z125-9-76

ADD-VALUE SDF-A statements

WILDCARD =
Specifies whether wildcards (see the description of the SDF metasyntax in section 1.5)
may be used in place of characters/strings within the name when the command or
statement is entered.

WILDCARD = *NO
No wildcards are allowed when entering the operand value.

WILDCARD = *YES(...)
Wildcards may be used.

TYPE =
Specifies whether the string can be a wildcard selector (search pattern) or wildcard
constructor. Wildcard constructors are used to build names from strings generated
with the aid of a wildcard selector.

TYPE = *SELECTOR
The string can be a wildcard selector; the data type receives the suffix with-wild (see
the description of the SDF metasyntax in section 1.5).

TYPE = *CONSTRUCTOR
The string can be a wildcard constructor; the data type receives the suffix
with-wild-constr (see the description of the SDF metasyntax in section 1.5).

LONGEST-LOGICAL-LEN =
Specifies the maximum length of the name matched by the wildcard (selector or
constructor).

LONGEST-LOGICAL-LEN = *LONGEST-LENGTH
The maximum length of the name matched by the wildcard is the same as the length
specified by the LONGEST-LENGTH operand (for reasons of compatibility).

LONGEST-LOGICAL-LEN = <integer 1..1800>
Specifies the maximum length of the name matched by the wildcard.

TYPE = *C-STRING(...)
Specifies that the operand value is of the data type C-STRING. This is defined as a
sequence of EBCDIC characters, enclosed in single quotes. It may be prefixed with the
letter C. A single quote as a value within the limiting apostrophes must be specified twice.

SHORTEST-LENGTH = *ANY / <integer 1..1800>
Specifies whether the string must have a minimum length, and if so, what that minimum
length is (specified in bytes).

LONGEST-LENGTH = *ANY / <integer 1..1800>
Specifies whether the string is not to exceed a maximum length, and if so, what that
maximum length is (specified in bytes).

LOWER-CASE = *NO / *YES
Specifies whether lowercase letters within the apostrophes are retained.

U2284-J-Z125-9-76 173

SDF-A statements ADD-VALUE

TYPE = *DATE(...)
Specifies that the operand value is of the data type DATE. This is defined as a sequence of
one four-digit number and two two-digit numbers, joined together by hyphens (<year>-
<month>-<day>). The year may also be specified with two digits instead of four.

COMPLETION = *NO / *YES
Specifies whether a two-digit year specification is to be extended. If YES is specified,
SDF extends two-digit year specifications (in the form yy-mm-dd) as follows:
– 20yy-mm-dd if yy < 60
– 19yy-mm-dd if yy Ï 60.

TYPE = *DEVICE(...)
Specifies that the operand value is of the data type DEVICE. The user is offered a list of the
disk or tape devices available in the system for operands whose value is defined with the
data type DEVICE (see the manual “System Installation” [9]).

CLASS-TYPE = *DISK / list-poss(2000): *DISK(...) / *TAPE(...)
Specifies the class type of the device.

CLASS-TYPE = *DISK(...)
The class type of the device is disk.

EXCEPT = *NO / list-poss(50): <text 1..8 without-sep>
Specifies the disks that will not appear in the list of available devices.

SCOPE =
Specifies whether all disks appear in the list of available devices or only the
standard disks specified by DMS (see the “Introductory Guide to DMS” [7])
SCOPE=*ALL is always valid in BS2000/OSD-BC < V3.0.

SCOPE = *ALL
All the disks appear in the list.

SCOPE = *STD-DISK
Only those disks which are specified as standard disks in DMS appear in the list.

CLASS-TYPE = *TAPE(...)
The class type of the device is tape.

EXCEPT = *NO / list-poss(50): <text 1..8 without-sep>
Specifies the devices that will not appear in the list of available devices.

ALIAS-ALLOWED = *YES / *NO
Specifies whether an alias is allowed for the device.

VOLUME-TYPE-ONLY = *NO / *YES
Specifies whether the volume type is accepted.

RESULT-VALUE =
Specifies the form in which SDF transfers information to the implementation.

174 U2284-J-Z125-9-76

ADD-VALUE SDF-A statements

RESULT-VALUE = *BY-NAME
SDF outputs the external device name. The external device name is 8 characters in
length.

RESULT-VALUE = *BY-CODE
SDF outputs the internal device code. The internal device code is 2 bytes long.

TYPE = *FIXED(...)
Specifies that the operand value is of the data type FIXED. This is defined as follows:
[sign][digits].[digits]
[sign] is + or –
[digits] are 0..9
FIXED must consist of at least one digit; it must not exceed 10 characters (digits and a ’.’).
The value is stored in the standardized transfer area in the following format:

LOWEST = *ANY / <fixed -2 147 483648..2 147 483647>
Specifies whether there is a lower limit for the fixed value and, if so, what this limit is.

HIGHEST = *ANY / <fixed -2 147 483648..2 147 483647>
Specifies whether there is an upper limit for the fixed value and, if so, what this limit is.

TYPE = *FILENAME(...)
Specifies that the operand value is of the data type FILENAME. The definition of the
character string to be entered is the one given in the BS2000 manual “Introductory Guide
to DMS” [7] for fully qualified file names.

SHORTEST-LENGTH = *ANY / <integer 1..80>
Specifies whether the string must have a minimum length, and if so, what that minimum
length is (specified in bytes).

LONGEST-LENGTH = *ANY / <integer 1..80>
Specifies whether the string is not to exceed a maximum length, and if so, what that
maximum length is (specified in bytes).

CATALOG-ID = *YES / *NO
Specifies whether the catalog ID may be specified as part of the file name.

USER-ID = *YES / *NO
Specifies whether the user ID may be specified as part of the file name.

GENERATION = *YES / *NO
Specifies whether a generation number may be specified as part of the file name. If a
structure is appended to the file name, NO must be specified.

4 bytes for the fixed-
point nunber* 10n

n : 1 byte for the number of digits after the period

U2284-J-Z125-9-76 175

SDF-A statements ADD-VALUE

VERSION = *YES / *NO
Specifies whether a version identifier may be specified as part of the file name. If a
structure is appended to the file name, NO must be specified.

 WILDCARD =
Specifies whether wildcards (see the description of the SDF metasyntax in section 1.5)
may be used in place of characters/strings within the name when the command or
statement is entered.

WILDCARD = *NO
No wildcards are allowed when entering the operand value.

WILDCARD = *YES(...)
Wildcards may be used.
The data type <filename x..y with-wild> also contains partially qualified file names, i.e.
it is not necessary to additionally define a value for the operand of the data type <partial-
filename>.

TYPE =
Specifies whether the string can be a wildcard selector (search pattern) or wildcard
constructor. Wildcard constructors are used to build names from strings generated
with the aid of a wildcard selector.

TYPE = *SELECTOR
The string can be a wildcard selector; the data type receives the suffix with-wild (see
the description of the SDF metasyntax in section 1.5).

TYPE = *CONSTRUCTOR
The string can be a wildcard constructor; the data type receives the suffix
with-wild-constr (see the description of the SDF metasyntax in section 1.5).

LONGEST-LOGICAL-LEN =
Specifies the maximum length of the name matched by the wildcard (selector or
constructor).

LONGEST-LOGICAL-LEN = *LONGEST-LENGTH
The maximum length of the name matched by the wildcard is the same as the length
specified by the LONGEST-LENGTH operand (for reasons of compatibility).

LONGEST-LOGICAL-LEN = <integer 1..80>
Specifies the maximum length of the name matched by the wildcard.

PATH-COMPLETION = *NO / *YES
specifies whether the file name is extended to a full path name at the transfer to the
implementation. This includes the substitution of aliases by the ACS function.
PATH-COMPLETION = *YES can only be specified when CATALOG-ID and USER-ID
are permitted and when wildcards in file names are not permitted.

176 U2284-J-Z125-9-76

ADD-VALUE SDF-A statements

TEMPORARY-FILE = *YES / *NO
specifies whether temporary file names are permitted.

TYPE = *INTEGER(...)
Specifies that the operand value is of the data type INTEGER. This is defined as a
sequence of digits, which may be preceded by a sign.

LOWEST = *ANY / <integer -2 147 483648..2 147 483647>
Specifies whether there is a lower limit for the integer, and if so, what that lower limit is.

HIGHEST = *ANY / <integer -2 147 483648..2 147 483647>
Specifies whether there is an upper limit for the integer, and if so, what that upper limit is.

OUT-FORM = *STD / *BINARY / *PACKED / *UNPACKED / *CHAR
Specifies the form in which the integer is to be passed by SDF to the implementation.
If passed in a transfer area (see section 6.3, “Format of the standardized transfer area”),
SDF-A converts *SDT to *BINARY. If a string is passed (commands defined with
IMPLEMENTOR=*PROCEDURE(...) or IMPLEMENTOR=*TPR (...,CMD-INTERFACE-
*STRING,...); see ADD-CMD), SDF-A converts OUT-FORM=*STD to *CHAR. If the
integer is passed in BINARY format, SDF creates a minimum of 4 bytes (see the
OUTPUT operand). If the integer is passed in *PACKED format, SDF creates a
minimum of 8 bytes. For *CHAR and *UNPACKED, at least 1 byte is created.

TYPE = *KEYWORD(...)
Specifies that the operand value is of the data type KEYWORD. This is defined as a
sequence of alphanumeric characters. This character string may be subdivided into several
substrings, joined together by hyphens. Substring sequences may contain periods. The
periods must not be at the beginning or end of the substring sequence. The entire string,
or, as the case may be, the first substring, must begin with a letter or special character. The
value range for an operand value of the type KEYWORD is limited to one or a finite number
of precisely defined individual values (see the VALUE operand of this statement).
From SDF-A/SDF Version 2.0 onwards, the value ’*...’ is also accepted. This value can be
used where a list of keywords has to be defined for an operand (e.g. the definition for all
external devices). This permits new keywords (e.g. new device names) to be inserted
without having to modify the syntax file, since ’*...’ causes SDF to accept additional values
and to analyze them as keywords. The data type KEYWORD may be up to 30 characters
long.

STAR =
Specifies whether the string must be preceded by an asterisk when entered.

STAR = *OPTIONAL
An asterisk may be prefixed, but need not be. If an asterisk is prefixed, it is suppressed
when the operand value is passed to the implementation.

STAR = *MANDATORY
An asterisk must be prefixed (necessary in order to distinguish between alternative data
types).

U2284-J-Z125-9-76 177

SDF-A statements ADD-VALUE

TYPE = *KEYWORD-NUMBER(...)
Specifies that the operand value is of the data type KEYWORD-NUMBER. This data type
is provided only for special purposes for Fujitsu Siemens Computers System Software
Development and is therefore not described here.

TYPE = *LABEL(...)
Specifies that the operand value is of the data type LABEL. This data type is provided only
for special purposes for Fujitsu Siemens Computers System Software Development and is
therefore not described here.

TYPE = *NAME(...)
Specifies that the operand value is of the data type NAME. This is defined as a sequence
of alphanumeric characters, beginning with a letter or special character.

SHORTEST-LENGTH = *ANY / <integer 1..255>
Specifies whether the string must have a minimum length, and if so, what that minimum
length is (specified in bytes).

LONGEST-LENGTH = *ANY / <integer 1..255>
Specifies whether the string is not to exceed a maximum length, and if so, what that
maximum length is (specified in bytes).

UNDERSCORE = *NO / *YES
Specifies whether an underscore character (_) is accepted.

LOWER-CASE = *NO / * YES
Specifies whether lowercase characters are to be retained.

WILDCARD =
Specifies whether wildcards (see the description of the SDF metasyntax in section 1.5)
may be used in place of characters/strings within the name when the command or
statement is entered.

WILDCARD = *NO
No wildcards are allowed when entering the operand value.

WILDCARD = *YES(...)
Wildcards may be used.

TYPE =
Specifies whether the string can be a wildcard selector (search pattern) or wildcard
constructor. Wildcard constructors are used to build names from strings generated
with the aid of a wildcard selector.

TYPE = *SELECTOR
The string can be a wildcard selector; the data type receives the suffix with-wild (see
the description of the SDF metasyntax in section 1.5).

178 U2284-J-Z125-9-76

ADD-VALUE SDF-A statements

TYPE = *CONSTRUCTOR
The string can be a wildcard constructor; the data type receives the suffix
with-wild-constr (see the description of the SDF metasyntax in section 1.5).

LONGEST-LOGICAL-LEN =
Specifies the maximum length of the name matched by the wildcard (selector or
constructor).

LONGEST-LOGICAL-LEN = *LONGEST-LENGTH
The maximum length of the name matched by the wildcard is the same as the length
specified by the LONGEST-LENGTH operand (for reasons of compatibility).

LONGEST-LOGICAL-LEN = <integer 1..255>
Specifies the maximum length of the name matched by the wildcard.

TYPE = *PARTIAL-FILENAME(...)
Specifies that the operand value is of the data type PARTIAL-FILENAME. The definition of
the string to be entered is the one given in the BS2000 manual “Introductory Guide to DMS”
[7] for partially qualified file names.

SHORTEST-LENGTH = *ANY / <integer 2..79>
Specifies whether the string must have a minimum length, and if so, what that minimum
length is (specified in bytes).

LONGEST-LENGTH = *ANY / <integer 2..79>
Specifies whether the string is not to exceed a maximum length, and if so, what that
maximum length is (specified in bytes).

CATALOG-ID = *YES / *NO
Specifies whether the catalog ID may be specified as part of the file name.

USER-ID = *YES / *NO
Specifies whether the user ID may be specified as part of the file name.

WILDCARD =
Specifies whether wildcards (see the description of the SDF metasyntax in section 1.5)
may be used in place of characters/strings within the name when the command or
statement is entered.

WILDCARD = *NO
No wildcards are allowed when entering the operand value.

WILDCARD = *YES(...)
Wildcards may be used.

TYPE =
Specifies whether the string can be a wildcard selector (search pattern) or wildcard
constructor. Wildcard constructors are used to build names from strings generated
with the aid of a wildcard selector.

U2284-J-Z125-9-76 179

SDF-A statements ADD-VALUE

TYPE = *SELECTOR
The string can be a wildcard selector; the data type receives the suffix with-wild (see
the description of the SDF metasyntax in section 1.5).

TYPE = *CONSTRUCTOR
The string can be a wildcard constructor; the data type receives the suffix
with-wild-constr (see the description of the SDF metasyntax in section 1.5).

LONGEST-LOGICAL-LEN =
Specifies the maximum length of the name matched by the wildcard (selector or
constructor).

LONGEST-LOGICAL-LEN = *LONGEST-LENGTH
The maximum length of the name matched by the wildcard is the same as the length
specified by the LONGEST-LENGTH operand (for reasons of compatibility).

LONGEST-LOGICAL-LEN = <integer 2..79>
Specifies the maximum length of the name matched by the wildcard.

TYPE = *POSIX-PATHNAME(...)
Defines the data type of the operand value as POSIX-PATHNAME. The character string
entered here must comply with the conventions below:
– The following characters are allowed: letters, digits, and the characters ‘_’, ‘-’, ‘.’,

and ‘/’ (the ‘/’ always serves as a delimiter between directories and file names). Control
characters are not allowed.

– A POSIX-PATHNAME consists of POSIX-FILENAMEs, separated by ’/’. The total length
of a POSIX-PATHNAME must not exceed 1023 characters.

– A ‘\’ (backslash) is used to escape metacharacters in all POSIX-specific names; the
backslash character itself is not included when counting the length. The metacharacter
* is likewise excluded from the count.

Metacharacters are characters used in wildcard patterns. The following metacharacters
may be used:

POSIX-PATHNAMEs which contain characters other than those listed above or which begin
with a ’?’ or ’!’ must be enclosed within single quotes on input (as in the case of
C-STRINGs). Since the single quotes are not a part of the file name, they are removed by

* matches zero, one, or any number of characters

? matches any single character

[S] matches any single character from the defined character set S,

[!S] matches any single character that is not an element of the defined
character set S,

where S
is

a set of fixed characters (e.g. abcd) or
a range of characters (e.g. a-d) or
a combination of the above (set and range).

180 U2284-J-Z125-9-76

ADD-VALUE SDF-A statements

SDF in the standardized transfer area or the transferred string. Single quotes that are part
of a file name must be duplicated.
To avoid compatibility problems, the C-string syntax should always be used in procedures.

SHORTEST-LENGTH = *ANY / <integer 1..1023>
Specifies whether the string must have a minimum length, and if so, what that minimum
length is (specified in bytes).

LONGEST-LENGTH = *ANY / <integer 1..1023>
Specifies whether the string is not to exceed a maximum length, and if so, what that
maximum length is (specified in bytes).

WILDCARD = *YES / *NO
Defines whether metacharacters (see above) may be specified in the name (instead of
characters/strings) when entering a command or statement.

QUOTES = *OPTIONAL / *MANDATORY
Specifies whether the path name can (*OPTIONAL) or must (*MANDATORY) be
enclosed within single quotes on input.

TYPE = *POSIX-FILENAME(...)
Defines the data type of the operand value as POSIX-FILENAME. The string to be entered
here must comply with the conventions listed for POSIX-PATHNAMEs (see page 179f), but
with the following restrictions:
– the slash (/) is not allowed
– the maximum length is limited to 255 characters.

SHORTEST-LENGTH = *ANY / <integer 1..255>
Specifies whether the string must have a minimum length, and if so, what that minimum
length is (specified in bytes).

LONGEST-LENGTH = *ANY / <integer 1..255>
Specifies whether the string is not to exceed a maximum length, and if so, what that
maximum length is (specified in bytes).

WILDCARD = *YES / *NO
Defines whether metacharacters (see POSIX-PATHNAME) may be specified in the
name (instead of characters/strings) when entering a command or statement.

QUOTES = *OPTIONAL / *MANDATORY
Specifies whether the file name can (*OPTIONAL) or must (*MANDATORY) be
enclosed in single quotes.

U2284-J-Z125-9-76 181

SDF-A statements ADD-VALUE

TYPE = *PRODUCT-VERSION(...)
Specifies that the operand value is of the data type PRODUCT-VERSION. The product
version has the following format:

C, V and the apostrophe are optional characters and are suppressed in the SDF transfer
area.

USER-INTERFACE =
Indicates whether the release status of the user interface can or must be specified.

USER-INTERFACE = *YES(...)
The release status of the user interface must be specified.

CORRECTION-STATE =
Indicates whether the correction state can or must be specified.

CORRECTION-STATE = *YES
The correction state must be specified. Specifications for the data type
PRODUCT-VERSION then have the following format:
[[C]’][V][m]m.naso[’].

CORRECTION-STATE = *NO
The correction state must not be specified. Specifications for the data type
PRODUCT-VERSION then have the following format:
[[C]’][V][m]m.na[’].

CORRECTION-STATE = *ANY
The correction state can be specified.

USER-INTERFACE = *NO
The release status of the user interface and the correction state must not be specified.
Specifications for the data type PRODUCT-VERSION then have the following format:
[[C]’][V][m]m.n[’].

USER-INTERFACE = *ANY(...)
The release status of the user interface can be specified.

CORRECTION-STATE =
Indicates whether the correction state can or must be specified.

CORRECTION-STATE = *ANY
The correction state can be specified.

[[C]’][V][m]m.naso[’] m, n: digit (0..9)
a: letter
s,o: digit

Correction state
Release status

182 U2284-J-Z125-9-76

ADD-VALUE SDF-A statements

CORRECTION-STATE = *NO
The correction state must not be specified. Specifications for the data type
PRODUCT-VERSION then have the following format:
[[C]’][V][m]m.na[’].

CORRECTION-STATE = *YES
The correction state must be specified if the release status is specified. Specifica-
tions for the data type PRODUCT-VERSION then have the following format:
[[C]’][V][m]m.naso[’].

TYPE = *STRUCTURED-NAME(...)
Specifies that the operand value is of the data type STRUCTURED-NAME. This is defined
as a sequence of alphanumeric characters. This string may be subdivided into several
substrings, joined together by hyphens. The entire string, or, as the case may be, the first
substring, must begin with a letter or special character.

SHORTEST-LENGTH = *ANY / <integer 1..255>
Specifies whether the string must have a minimum length, and if so, what that minimum
length is (specified in bytes).

LONGEST-LENGTH = *ANY / <integer 1..255>
Specifies whether the string is not to exceed a maximum length, and if so, what that
maximum length is (specified in bytes).

WILDCARD =
Specifies whether wildcards (see the description of the SDF metasyntax in section 1.5)
may be used in place of characters/strings within the name when the command or
statement is entered.

WILDCARD = *NO
No wildcards are allowed when entering the operand value.

WILDCARD = *YES(...)
Wildcards may be used.

TYPE =
Specifies whether the string can be a wildcard selector (search pattern) or wildcard
constructor. Wildcard constructors are used to build names from strings generated
with the aid of a wildcard selector.

TYPE = *SELECTOR
The string can be a wildcard selector; the data type receives the suffix with-wild (see
the description of the SDF metasyntax in section 1.5).

TYPE = *CONSTRUCTOR
The string can be a wildcard constructor; the data type receives the suffix
with-wild-constr (see the description of the SDF metasyntax in section 1.5).

U2284-J-Z125-9-76 183

SDF-A statements ADD-VALUE

LONGEST-LOGICAL-LEN =
Specifies the maximum length of the name matched by the wildcard (selector or
constructor).

LONGEST-LOGICAL-LEN = *LONGEST-LENGTH
The maximum length of the name matched by the wildcard is the same as the length
specified by the LONGEST-LENGTH operand (for reasons of compatibility).

LONGEST-LOGICAL-LEN = <integer 1..255>
Specifies the maximum length of the name matched by the wildcard.

TYPE = *TEXT(...)
Specifies that the operand value is of the data type TEXT. This data type is provided only
for special purposes for Fujitsu Siemens Computers System Software Development and is
therefore not described here.

TYPE = *TIME(...)
Specifies that the operand value is of the data type TIME. This is defined as a sequence of
one, two or three unsigned numbers, joined together by colons
(<hours>[:<minutes>[:<seconds>]]). The specifications for hours, minutes and seconds
must not contain more than two digits. Numbers with less digits may be preceded by leading
zeros. The value range for minutes and seconds lies between 0 and 59.

OUT-FORM = *STD / *BINARY / *CHAR
Specifies the format that SDF uses to represent numbers in the time specification
passed to the implementation.

OUT-FORM = *STD
If the transfer is made in a transfer area (see the section “Format of the standardized
transfer area” on page 365), then the time specification is passed in the binary format.
When passing in a string (for commands that are defined with IMPLEMENTOR= *PRO-
CEDURE(...) or IMPLEMENTOR= *TPR(...,CMD-INTERFACE=*STRING,...), see
ADD-CMD), the time specification is passed in the character format.

OUT-FORM = *BINARY
The time specification is passed in the binary format.

OUT-FORM = *CHAR
The time specification is passed in the character format.

TYPE = *VSN(...)
Specifies that the operand value is of data type VSN. SDF is able to distinguish between
two types:

a) VSN with a period:
This VSN must consist of 6 characters. Apart from a single period, only the letters A-Z
and digits 0-9 are accepted. Such a VSN has the format pvsid.sequence-number,

184 U2284-J-Z125-9-76

ADD-VALUE SDF-A statements

where: pvsid consists of 2 to 4 characters and sequence-number of 1 to 3 characters.
This subordinate type of VSN must not be preceded by PUB: PUBA.0 or PUB.02 would
be invalid. The period may be the third, fourth or fifth character of the VSN.

b) VSN without a period:
This VSN consists of a string of up to 6 characters. Only letters A-Z, digits 0-9 and
special characters $, @ and # are allowed. Such a VSN may start with “PUB”. In this
case, the subsequent characters must not be special characters (e.g. PUB@1 or
PUB$## will be rejected). Furthermore, VSNs beginning with the string ’PUB’ must be
6 characters long.
SDF makes no further distinctions between public or private VSNs or PUBRES.

SHORTEST-LENGTH = *ANY / <integer 1..6>
Specifies whether the string must have a minimum length, and if so, what that minimum
length is (specified in bytes).

LONGEST-LENGTH = *ANY / <integer 1..6>
Specifies whether the string is not to exceed a maximum length, and if so, what that
maximum length is (specified in bytes).

TYPE = *X-STRING(...)
Specifies that the operand value is of the data type X-STRING. This is defined as a
sequence of hexadecimal characters (digits 0 through 9, capital letters A through F),
enclosed in apostrophes. It is prefixed by the letter X.

SHORTEST-LENGTH = *ANY / <integer 1..1800>
Specifies whether the string must have a minimum length, and if so, what that minimum
length is (specified in bytes).

LONGEST-LENGTH = *ANY / <integer 1..1800>
Specifies whether the string is not to exceed a maximum length, and if so, what that
maximum length is (specified in bytes).

TYPE = *X-TEXT(...)
Specifies that the operand value is of the data type X-TEXT. This data type is very similar
to the data type X-STRING, but it is not enclosed in single quotes and is not preceded by
the letter ’X’.

SHORTEST-LENGTH = *ANY / <integer 1..3600>
Specifies whether the string must have a minimum length, and if so, what that minimum
length is (specified in bytes).

LONGEST-LENGTH = *ANY / <integer 1..3600>
Specifies whether the string is not to exceed a maximum length, and if so, what that
maximum length is (specified in bytes).

ODD-POSSIBLE = *YES / *NO
Specifies whether an odd number of characters is accepted.

U2284-J-Z125-9-76 185

SDF-A statements ADD-VALUE

INTERNAL-NAME = *STD / <alphanum-name 1..8>
Internal operand value name. SDF identifies an operand value by means of this name.
Unless otherwise specified, SDF-A takes the first eight characters (omitting hyphens) of the
data type specified for the TYPE operand. For operand values of the data type KEYWORD,
the default value for SDF-A is the first eight characters (omitting hyphens) of the first
individual value specified for the VALUE operand.

SECRET-PROMPT = *SAME / *NO
Specifies whether the operand value is to be treated as secret. SECRET-PROMPT= *SAME
assumes the setting of the operand to which the defined operand value belongs (see ADD-
OPERAND ...,SECRET-PROMPT= , page 153).The input fields for values of secret
operands are kept blank, and logging is suppressed.
If SECRET-PROMPT=*NO is specified, the operand value is not treated as secret. If a
secret operand is not preset with a secret value, the input field is not kept blank. The input
field can be kept blank by entering the ^ character or a value defined using
OUTPUT=*SECRET-PROMPT.

REMOVE-POSSIBLE = *YES / *NO
Specifies whether the operand value may be deleted (see REMOVE).

DIALOG-ALLOWED = *YES / *NO
Specifies whether the operand value is allowed in interactive mode. Specifying YES presup-
poses that the operand to which the value pertains is allowed in interactive mode.

DIALOG-PROC-ALLOWED = *YES / *NO
Specifies whether the operand value is allowed in interactive mode within a procedure.
Specifying YES presupposes that the operand to which the value pertains is allowed in
interactive mode within a procedure.

GUIDED-ALLOWED = *YES / *NO
Specifies whether the operand value is allowed in guided dialog. Specifying YES presup-
poses that the operand to which the value pertains is allowed in guided dialog.

BATCH-ALLOWED = *YES / *NO
Specifies whether the operand value is allowed in batch mode. Specifying YES presup-
poses that the operand to which the value pertains is allowed in batch mode.

BATCH-PROC-ALLOWED = *YES / *NO
Specifies whether the operand value is offered in batch mode within a procedure. Speci-
fying YES presupposes that the operand to which the value pertains is allowed in batch
mode within a procedure.

STRUCTURE =
Specifies whether the operand value introduces a structure.

STRUCTURE = *NO
The operand value does not introduce a structure.

186 U2284-J-Z125-9-76

ADD-VALUE SDF-A statements

STRUCTURE = *YES(...)
The operand value introduces a structure.

SIZE = *SMALL / *LARGE
Specifies whether, at the MINIMUM or MEDIUM level of guided dialog, the structure is
to be integrated into the higher-level form (SMALL), or if a separate form is to be created
for it (LARGE).

FORM = *FLAT / *NORMAL
Relevant only for statements and for commands defined with IMPLEMENTOR=
*TPR(...,CMD-INTERFACE=*NEW/*TRANSFER-AREA,...) (see ADD-CMD). If LIST-
ALLOWED=*YES is specified, FORM=NORMAL must also be specified. In the default
case (*FLAT), the structure is linearized for the implementation in the transfer area, and
the operands for the structure are integrated into a higher-ranking operand array. In the
NORMAL case, the structure receives its own operand array. In it, the operands are
passed for which a higher structure level is defined for RESULT-OPERAND-LEVEL than
for the operand to which the defined operand value that introduces a structure pertains
(see ADD-OPERAND ...,RESULT-OPERAND-LEVEL=,... and section “Format of the
standardized transfer area” on page 365).

MAX-STRUC-OPERAND = *STD / <integer 1..3000>
Number of operand positions to be reserved in the structured transfer. Unless otherwise
specified, the operand array will be made as large as necessary for the structure.
However, it may also be made larger to accommodate planned expansions. This
operand refers to the structure introduced by the operand value, and is only relevant
when NORMAL was specified for the preceding operand.

LIST-ALLOWED = *NO / *YES
Specifies whether a list may be specified for the operand value when the command or
statement is entered. This presupposes that the operand to which the value pertains was
defined with LIST-POSSIBLE=*YES (see ADD-OPERAND). For statements and
commands defined with IMPLEMENTOR=*TPR(...,CMD-
INTERFACE=*NEW/*TRANSFER-AREA,...) and STRUCTURE=*YES with FORM=*FLAT,
only LIST-ALLOWED=*NO may be specified.

VALUE =
Specifies which values are permitted as input.

VALUE = *NO
All values corresponding to the operand type are permitted. Limitations exist only insofar as
these have been specified in the definition of the operand type (e.g. length restrictions). For
operands of the type KEYWORD, NO is not permitted.

U2284-J-Z125-9-76 187

SDF-A statements ADD-VALUE

VALUE = list-poss(2000): <c-string 1..1800 with-low>(...)
The permissible values are limited to the specified values. In contrast to STANDARD-NAME
and ALIAS-NAME, the user may abbreviate the specified values of the type KEYWORD
during input. For values of the type KEYWORD, a list of single values is not permissible (a
separate ADD-VALUE must be issued for each individual value).

STANDARD-NAME = *NAME / *NO / list-poss(2000):<structured-name 1..30>/
<c-string 1..30>
Relevant only for operand values of the type KEYWORD. This specifies the standard
name of the operand value, and may be alternatively used when entering the command
or statement. It must not be abbreviated when entered. In contrast to an ALIAS-NAME,
a STANDARD-NAME must not be deleted and is reserved for Fujitsu Siemens
Computers Software Development.

ALIAS-NAME = *NO / list-poss(2000): <structured-name 1..30>
Relevant only for operand values of the type KEYWORD. This specifies the alias name
for the operand value, which may be alternatively used when the command or statement
is entered. It must not be abbreviated when entered. In contrast to STANDARD-NAME,
an ALIAS-NAME may be deleted.

GUIDED-ABBREVIATION = *NAME / <structured-name 1..30> / <c-string 1..30>
Relevant only for operand values of the type KEYWORD. This specifies the name by
which SDF identifies the operand value at the medium help level of guided dialog.
Unless otherwise specified, SDF-A takes as GUIDED-ABBREVIATION the individual
value entered for the VALUE operand.

MINIMAL-ABBREVATION = *NO / <structured-name 1..30> / <c-string 1..30>
Only for operand values of the type KEYWORD:
Determines the shortest permissible abbreviation for the operand value. Any shorter
abbreviation will not be accepted by SDF.
The following should be noted:

1. Checking against the minimum abbreviation is carried out only after SDF has
checked the input for ambiguity. It may thus happen that SDF selects the correct
operand value but then rejects it because the abbreviation entered is shorter than
the specified minimum abbreviation.

2. The minimum abbreviation must be derived from the KEYWORD.

3. The ALIAS-NAMEs and STANDARD-NAMEs of the operand value must not be
shorter than the minimum abbreviation if they are an abbreviation of the operand
value.

4. The minimum abbreviation may only be shortened - not lengthened - within a syntax
file hierarchy.

188 U2284-J-Z125-9-76

ADD-VALUE SDF-A statements

NULL-ABBREVIATION = *NO / *YES
Relevant only for operand values of the type KEYWORD defined with
STRUCTURE=*YES. It specifies whether the operand value may be omitted in front of
the opening structure parenthesis when the command or statement is entered, e.g. an
operand value introducing a structure, when there are no alternative values for the
operand.

OUTPUT =
Specifies which value is passed to the implementation when OUTPUT=*NORMAL
applies (see below).

OUTPUT = *SAME
The value specified for the VALUE operand is passed.

OUTPUT = *EMPTY-STRING
An empty string is passed.

OUTPUT = *DROP-OPERAND
Transfer of the operand is suppressed.

OUTPUT = <c-string 1..1800>
The value specified here is passed.

OUTPUT = <x-string 1..3600>
The value specified here is passed.

OUT-TYPE = *SAME/*ALPHANUMERIC-NAME/*CAT-ID/*COMMAND-REST/
*COMPOSED-NAME/*C-STRING/*DATE/*DEVICE/*IXED/*FILENAME/
*INTEGER / *KEYWORD / *KEYWORD-NUMBER / *LABEL / *NAME / *PARTIAL-
FILENAME / *PRODUCT-VERSION / *POSIX-PATHNAME / *POSIX-FILENAME /
*STRUCTURED-NAME / *TEXT / *TIME / *VSN / *X-STRING / *X-TEXT
Relevant only for statements and for commands defined with IMPLEMENTOR=
*TPR(...,CMD-INTERFACE=*NEW/*TRANSFER-AREA,...) (see ADD-CMD). OUT-
TYPE specifies whether SDF changes the data type of the operand value, and if so, in
what way, when the value is stored in the transfer area for the implementation (see
section “Format of the standardized transfer area” on page 365). If not otherwise
specified, SDF does not change the data type.

OVERWRITE-POSSIBLE = *NO / *YES
Relevant only for statements and for commands defined with
IMPLEMENTOR=*TPR(...,CMD-INTERFACE=*NEW/*TRANSFER-AREA,...) (see
ADD-CMD). OVERWRITE-POSSIBLE specifies whether the operand value entered is
overwritten by a value dynamically generated by the implementation (see the DEFAULT
operand in the CMDRST and CMDTST macros). The program-generated value must
represent a valid operand value. In guided dialog, SDF shows the implementation-
specific value in the form.
Example: The value UNCHANGED in MODIFY statements for SDF-A is overwritten by
SDF-A with the current value.

U2284-J-Z125-9-76 189

SDF-A statements ADD-VALUE

OUTPUT =
Specifies whether, and if so, in what way SDF is to pass the operand value entered to the
implementation.

OUTPUT = *NORMAL(...)
SDF passes the operand value to the implementation. From SDF-A Version 2.0 onwards,
the specifications AREA-LENGTH=, LEFT-JUSTIFIED= and FILLER= are no longer
restricted to certain operand values.

AREA-LENGTH = *VARIABLE / <integer 1..3000>
Specifies the length of the field in which SDF stores the operand value for the imple-
mentation. The field must be large enough to hold the maximum value which can be
entered during execution. If the value specified for AREA-LENGTH is less than the
value defined for LONGEST-LENGTH, SDF issues a warning and accepts the value
specified for AREA-LENGTH.

There are two possible cases when a value that is greater than AREA-LENGTH and
less than LONGEST-LENGTH is analyzed:

1. Values that are of type C-STRING with LONGEST-LENGTH 32 and which are part
of a secret operand are compressed by SDF and stored in a hexadecimal string with
the length defined for AREA-LENGTH. This behavior is typically used for
passwords. The passwords are compressed with the aid of a hash algorithm and
are protected against unauthorized access by their hexadecimal storage format.

Notes:
– The same hash algorithm is used as in the HASH-STRING function provided in

SDF-P.
– The command server or the program that processes the value analyzed by SDF

may need to be adapted if the password definition was changed in order to
support hash passwords. The hash value returned by SDF may otherwise be
rejected by the semantic analysis module of the program or command server.

2. In all other cases, i.e. those which deviate from case 1, the value is truncated to the
length specified for AREA-LENGTH.

LEFT-JUSTIFIED = *STD / *YES / *NO
Relevant only when a fixed length has been defined for the field in which the operand
value is stored. LEFT-JUSTIFIED specifies whether SDF stores the operand value in
the field left-justified or right-justified. SDF-A changes STD to NO for numeric values
and to YES for all other values.

FILLER = *STD / <c-string 1..1> / <x-string 1..2>
Relevant only when a fixed length has been defined for the field in which the operand
value is stored. FILLER specifies the character with which SDF pads the field when
necessary. SDF-A changes *STD to X’00’ for values of the type X-STRING or
INTEGER, and to C’ ’ (blank) for all other values.

190 U2284-J-Z125-9-76

ADD-VALUE SDF-A statements

STRING-LITERALS = *NO / *HEX / *CHAR
Specifies whether SDF converts the operand value into the data type X-STRING or
C-STRING to be passed on to the implementation. In the default case, SDF does not
change the data type. It must then be kept in mind that, for operand values of the type
C-STRING, SDF transfers only the content of the string (without the apostrophes and
the prefixed C). This operand is valid only if VALUE=*NO is specified.

HASH = *NO / *YES(...)
Specifies whether the input value can be converted to a value with a defined length
using a hash algorithm.

HASH = *YES(...)
Is only permitted for operand values of the data type C-STRING which are defined with
LONGEST-LENGTH Î 32.
The other operands in the structure OUTPUT=*NORMAL(..) do not format the value
until after the hash function has been carried out. The value then has the data type
X-STRING and may then contain unprintable characters.

OUTPUT-LENGTH = <integer 2..32>
Length of the value into which the input value can be converted.

OUTPUT = *SECRET-PROMPT
The operand value is not passed to the implementation, but instead causes SDF to request
the user to enter one of the alternative values for the operand. The input that follows is then
not displayed and is not logged. Prerequisites are:
– the operand is defined as secret (see ADD-OPERAND ...,SECRET-PROMPT=*YES)
– input is made in unguided dialog or in a foreground procedure
– a single value is specified as permissible input for the operand value defined with

SECRET-PROMPT (see the operand VALUE=<c-string>; in the normal case it is of the
type KEYWORD).

The following case occurs in an application with guided dialog:
The input field for a secret operand set to a value which is not secret, is not kept blank. The
input field can be kept blank by entering the defined value with OUTPUT=*SECRET-
PROMPT.

PRIVILEGE =
Specifies the privileges assigned to the operand value.

PRIVILEGE = *SAME
The operand value is assigned the same privileges as the operand for which this operand
value is defined.

PRIVILEGE = *EXCEPT(...)
With the exception of those defined by *EXCEPT(...), the operand value is assigned all
currently defined privileges and all privileges defined subsequently.

EXCEPT-PRIVILEGE = list-poss(64): <structured-name 1..30>
Specifies those privileges that are not assigned to the operand value.

U2284-J-Z125-9-76 191

SDF-A statements ADD-VALUE

PRIVILEGE = list-poss(64): <structured-name 1..30>
The operand value is assigned only those privileges specified in this list.

192 U2284-J-Z125-9-76

CLOSE-CMD-OR-STMT SDF-A statements

CLOSE-CMD-OR-STMT
Conclude definition of command or statement

The CLOSE-CMD-OR-STMT statement is used to conclude editing of a command or
statement definition, and causes SDF-A to check the definition for consistency. Any struc-
tures that have not yet been closed are closed. If errors are detected, SDF-A issues appro-
priate messages and takes standard measures to correct the errors.

When the editing of a command of statement definition is terminated with a different
statement, e.g. ADD-CMD, ADD-STMT or END, the same consistency checks are thereby
implicitly initiated. However, any error messages regarding the completed definition are
then output, mixed with any messages arising from the statement entered.

This statement has no operands.

CLOSE-CMD-OR-STMT

U2284-J-Z125-9-76 193

SDF-A statements CLOSE-STRUCTURE

CLOSE-STRUCTURE
Close structure

The CLOSE-STRUCTURE statement is used to close structures in command or statement
definitions.

LEVEL =
Specifies which structures are closed.

LEVEL = *CURRENT
The structure being edited is closed after the “current object”. The operand value intro-
ducing the structure becomes the new “current object”.

LEVEL = *ALL
The structure being edited is closed after the “current object”. Any structures ranked above
this structure which are still open are likewise closed. The operand value introducing the
lowest of all these structures becomes the new “current object”.

CLOSE-STRUCTURE

LEVEL = *CURRENT / *ALL

194 U2284-J-Z125-9-76

COMPARE-SYNTAX-FILE SDF-A statements

COMPARE-SYNTAX-FILE
Compare objects from two syntax files

Objects in two different syntax files can be compared using the COMPARE-SYNTAX-FILE
statement.
First of all, SDF-A searches for the object to be compared using the external name in the
first syntax file. If it exists, SDF-A searches for this object using its internal name in the
second syntax file. Therefore only objects with the same internal names can be compared.
In the comparison log, SDF-A always uses the first default name of the object, i.e. the output
can display two different external names for objects with the same internal names.

(part 1 of 4)

COMPARE-SYNTAX-FILE

OBJECT = *GLOBAL-INFORMATION / *DOMAIN(...) / *COMMAND(...) / *PROGRAM(...) /

*STATEMENT(...) / *OPERAND(...) / *VALUE(...)

*DOMAIN(...)
 NAME = *ALL / <structured-name 1..30 with-wild> / list-poss(2000): <structured-name 1..30>

*COMMAND(...)
 NAME = *ALL / <structured-name 1..30 with-wild> / list-poss(2000): <structured-name 1..30>

*PROGRAM(...)
 NAME = *ALL / <structured-name 1..30 with-wild> / list-poss(2000): <structured-name 1..30>

*STATEMENT(...)
 NAME = *ALL / <structured-name 1..30 with-wild> / list-poss(2000): <structured-name 1..30>
 ,PROGRAM = <structured-name 1..30>

*OPERAND(...)
 OPERAND-L1 = <structured-name 1..20>
 ,VALUE-L1 = *NO / *COMMAND-REST / *INTEGER / *X-STRING / *C-STRING / *NAME /

 *ALPHANUMERIC-NAME / *STRUCTURED-NAME / *FILENAME /

 *PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL / *VSN /

 *COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *PRODUCT-VERSION /

 *POSIX-PATHNAME / *POSIX-FILENAME /

 <composed-name 1..30>

continued ➠

U2284-J-Z125-9-76 195

SDF-A statements COMPARE-SYNTAX-FILE

 ,OPERAND-L2 = *NO / <structured-name 1..20>
 ,VALUE-L2 = *NO / *COMMAND-REST / *INTEGER / *X-STRING / *C-STRING / *NAME /

 *ALPHANUMERIC-NAME / *STRUCTURED-NAME / *FILENAME /

 *PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL / *VSN /

 *COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *PRODUCT-VERSION /

 *POSIX-PATHNAME / *POSIX-FILENAME /

 <composed-name 1..30>
 ,OPERAND-L3 = *NO / <structured-name 1..20>
 ,VALUE-L3 = *NO / *COMMAND-REST / *INTEGER / *X-STRING / *C-STRING / *NAME /

 *ALPHANUMERIC-NAME / *STRUCTURED-NAME / *FILENAME /

 *PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL / *VSN /

 *COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *PRODUCT-VERSION /

 *POSIX-PATHNAME / *POSIX-FILENAME /

 <composed-name 1..30>
 ,OPERAND-L4 = *NO / <structured-name 1..20>
 ,VALUE-L4 = *NO / *COMMAND-REST / *INTEGER / *X-STRING / *C-STRING / *NAME /

 *ALPHANUMERIC-NAME / *STRUCTURED-NAME / *FILENAME /

 *PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL / *VSN /

 *COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *PRODUCT-VERSION /

 *POSIX-PATHNAME / *POSIX-FILENAME /

 <composed-name 1..30>
 ,OPERAND-L5 = *NO / <structured-name 1..20>
 ,ORIGIN = *COMMAND(...) / *STATEMENT(...)
 *COMMAND(...)

 NAME = <structured-name 1..30>
 *STATEMENT(...)

 NAME = <structured-name 1..30>
 ,PROGRAM = <structured-name 1..30>

*VALUE(...)
 OPERAND-L1 = <structured-name 1..20>
 ,VALUE-L1 = *NO / COMMAND-REST / *INTEGER / *X-STRING / *C-STRING / *NAME /

 *ALPHANUMERIC-NAME / *STRUCTURED-NAME / *FILENAME /

 *PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL / *VSN /

 *COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *PRODUCT-VERSION /

 *POSIX-PATHNAME / *POSIX-FILENAME /

 <composed-name 1..30>

continued ➠

(part 2 of 4)

196 U2284-J-Z125-9-76

COMPARE-SYNTAX-FILE SDF-A statements

 ,OPERAND-L2 = *NO / <structured-name 1..20>
 ,VALUE-L2 = *NO / *COMMAND-REST / *INTEGER / *X-STRING / *C-STRING / *NAME /

 *ALPHANUMERIC-NAME / *STRUCTURED-NAME / *FILENAME /

 *PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL / *VSN /

 *COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *PRODUCT-VERSION /

 *POSIX-PATHNAME / *POSIX-FILENAME /

 <composed-name 1..30>
 ,OPERAND-L3 = *NO / <structured-name 1..20>
 ,VALUE-L3 = *NO / *COMMAND-REST / *INTEGER / *X-STRING / *C-STRING / *NAME /

 *ALPHANUMERIC-NAME / *STRUCTURED-NAME / *FILENAME /

 *PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL / *VSN /

 *COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *PRODUCT-VERSION /

 *POSIX-PATHNAME / *POSIX-FILENAME /

 <composed-name 1..30>
 ,OPERAND-L4 = *NO / <structured-name 1..20>
 ,VALUE-L4 = *NO / *COMMAND-REST / *INTEGER / *X-STRING / *C-STRING / *NAME /

 *ALPHANUMERIC-NAME / *STRUCTURED-NAME / *FILENAME /

 *PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL / *VSN /

 *COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *PRODUCT-VERSION /

 *POSIX-PATHNAME / *POSIX-FILENAME /

 <composed-name 1..30>
 ,OPERAND-L5 = *NO / <structured-name 1..20>
 ,VALUE-L5 = *NO / *COMMAND-REST / *INTEGER / *X-STRING / *C-STRING / *NAME /

 *ALPHANUMERIC-NAME / *STRUCTURED-NAME / *FILENAME /

 *PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL / *VSN /

 *COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *PRODUCT-VERSION /

 *POSIX-PATHNAME / *POSIX-FILENAME /

 <composed-name 1..30>
 ,ORIGIN = *COMMAND(...) / *STATEMENT(...)
 *COMMAND(...)

 NAME = <structured-name 1..30>

 *STATEMENT(...)

 NAME = <structured-name 1..30>
 ,PROGRAM = <structured-name 1..30>

continued ➠

(part 3 of 4)

U2284-J-Z125-9-76 197

SDF-A statements COMPARE-SYNTAX-FILE

OBJECT =
Type of object whose definition is to be compared.

OBJECT = *GLOBAL-INFORMATION
Specifies that the global information of syntax files is to be compared.

OBJECT = *DOMAIN(...)
Specifies that the definitions of domains are to be compared.

NAME = *ALL / <structured-name 1..30 with-wild> / list-poss(2000):
<structured-name 1..30>
The definitions of all domains or of the domains named are compared.

OBJECT = *COMMAND(...)
Specifies that the definitions of commands are to be compared.

NAME = *ALL / <structured-name 1..30 with-wild> / list-poss(2000):
<structured-name 1..30>
The definitions of all commands or of the commands named are compared.

OBJECT = *PROGRAM(...)
Specifies that the definitions of programs are to be compared.

NAME = *ALL / <structured-name 1..30 with-wild> /
list-poss(2000): <structured-name 1..30>
The definitions of all programs or of the programs named are compared.

OBJECT = *STATEMENT(...)
Specifies that the definitions of statements are to be compared.

,INPUT-FILE = <filename 1..54 without-gen-vers>(...)

<filename1..54 without-gen-vers>(...)
 TYPE = *SYSTEM / *USER / *GROUP

,COMPARE-FILE = <filename 1..54 without-gen-vers>(...)

<filename 1..54 without-gen-vers>(...)
 TYPE = *SYSTEM / *USER / *GROUP

,ATTACHED-INFORMATION = *YES / *NO

,OUTPUT = *SYSOUT / *SYSLST(...)

*SYSLST(...)
 SYSLST-NUMBER = *STD / <integer 1..99>

,COMPARE-ATTRIBUTES = *ALL / *USER-INTERFACE / *PRIVILEGES-ALLOWNESS

(part 4 of 4)

198 U2284-J-Z125-9-76

COMPARE-SYNTAX-FILE SDF-A statements

NAME = *ALL / <structured-name 1..30 with-wild /
list-poss(2000): <structured-name 1..30>
The definitions of all statements or of the statements named are compared.

PROGRAM = <structured-name 1..30>
Name of the program to which the statements belong.

OBJECT = *OPERAND(...)
Specifies that the definition of an operand is to be compared. If this operand is included in
a structure, it is specified by the path leading to it, i.e. by specifying the operands and
operand values that introduce the structure in this path. If the name of one of the operands
in the path is unique, not only within its structure, but also with respect to the higher-ranking
structure (or globally within the command or statement), the path need not be completely
specified (it can even be omitted). An operand which is not absolutely essential for the
identification of the operand definition to be compared, as well as the operand value
pertaining to it, can be omitted. An operand value specified for VALUE-Li (i=1,...,5) must
pertain to the operand defined by OPERAND-Li. After the first VALUE-Li = *NO, SDF-A
takes the operand defined by OPERAND-Li as the one whose definition is to be compared.
Subsequently, SDF-A does not interpret the specifications for any other OPERAND-Lj,
VALUE-Lj. If a value other than *NO is specified for VALUE-Li, the value specified for
OPERAND-Li + 1 must also be other than *NO.

OPERAND-L1 = <structured-name 1..20>
Specifies the operand whose definition is to be compared (VALUE-L1 = *NO) or an
operand in the path leading to it (VALUE-L1 î *NO). <structured-name> must be a
globally unique operand name within the command or statement.

VALUE-L1 = *NO/*COMMAND-REST/*INTEGER/*X-STRING/*C-STRING/
*NAME/*ALPHANUMERIC-NAME/*STRUCTURED-NAME/*FILENAME/
*PARTIAL-FILENAME/*TIME/*DATE/*TEXT/*CAT-ID/*LABEL/*VSN/
*COMPOSED-NAME / *X-TEXT / *FIXED / *PRODUCT-VERSION /
*POSIX-PATHNAME / *POSIX-FILENAME / <composed-name 1..30> /
*NO means that the definition of OPERAND-L1 is to be compared. Otherwise, an
operand value that introduces a structure is to be specified. The structure must directly
or indirectly contain the operand whose definition is to be compared. If the operand
value introducing the structure is of the data type KEYWORD(-NUMBER), then the
particular value defined for it is to be specified (see ADD-VALUE
TYPE=*KEYWORD,...,VALUE= <c-string>). Here it must be remembered that this
particular value is to be specified in each case without the prefixed asterisk. If the
operand value introducing the structure is not of the type KEYWORD(-NUMBER), then
the data type defined for it is to be specified.

U2284-J-Z125-9-76 199

SDF-A statements COMPARE-SYNTAX-FILE

OPERAND-L2 = *NO /<structured-name 1..20>
*NO means that OPERAND-L2 is irrelevant for the specification of the operand whose
definition is to be compared. Otherwise, the name of an operand that is unique within
the structure determined by VALUE-L1 is to be specified. This operand is either the one
whose definition is to be compared (VALUE-L2 = *NO) or one that is in the path leading
to it (VALUE-L2 î *NO).

VALUE-L2 = analogous to VALUE-L1
*NO means that VALUE-L2 is irrelevant for the specification of the operand. Otherwise,
an operand value introducing a a structure is to be specified. The structure must directly
or indirectly contain the operand whose definition is to be copied. For further information
see VALUE-L1.

OPERAND-L3 = *NO / <structured-name 1..20>
*NO means that OPERAND-L3 is irrelevant for the specification of the operand whose
definition is to be compared. Otherwise the name of an operand that is unique within
the structure determined by VALUE-L2 is to be specified. This operand is either the one
whose definition is to be compared (VALUE-L3 = *NO) or one that is in the path leading
to it (VALUE-L3 î *NO).

VALUE-L3= analogous to VALUE-L1
*NO means that VALUE-L3 is irrelevant for the specification of the operand. Otherwise,
an operand value introducing a structure is to be specified. The structure must directly
or indirectly contain the operand whose definition is to be compared. For further infor-
mation see VALUE-L1.

OPERAND-L4 = *NO / <structured-name 1..20>
see OPERAND-L2.

VALUE-L4 = analogous to VALUE-L1
see VALUE-L2.

OPERAND-L5 = *NO / <structured-name 1..20>
see OPERAND-L2.

ORIGIN =
Specifies the command or statement to which the operand definition to be compared
pertains.

ORIGIN = *COMMAND (...)
The operand definition pertains to a command.

NAME = <structured-name 1..30>
Name of the command.

ORIGIN = *STATEMENT(...)
The operand definition pertains to a statement.

200 U2284-J-Z125-9-76

COMPARE-SYNTAX-FILE SDF-A statements

NAME = <structured-name 1..30>
Name of the statement.

PROGRAM = <structured-name 1..30>
Name of the program to which the statement pertains.

OBJECT = *VALUE(...)
Specifies that the definition of an operand value is to be compared. This operand value is
specified by the path leading to it, i.e. by specifying the operands and operand values intro-
ducing the structure in this path. If the operand value pertains to an operand that is not
attached to any structure, the path contains only this operand. If the operand value does
pertain to an operand attached to a structure, the path also includes the higher-ranking
operands as well as the associated operand values introducing the structure. If the name
of one of the operands in the path is unique, not only within its structure, but also with
respect to the higher-ranking structure (or globally within the command or statement), the
path need not be completely specified. An operand that is not absolutely essential to identify
the operand value definition to be compared, as well as the operand value pertaining to it,
can be omitted. An operand value specified for VALUE-Li (i=1,...,5) must pertain to the
operand defined by OPERAND-Li. After the first OPERAND-Li+1=*NO,
SDF-A takes the operand value defined by VALUE-Li as the one whose definition is to be
compared. Subsequently, SDF-A does not interpret the specifications for any other
OPERAND-Lj, VALUE-Lj. If a value other than *NO is specified for OPERAND-Li, the value
specified for VALUE-Li must also be other than *NO.

OPERAND-L1 = <structured-name 1..20>
Specifies the operand to which the operand value whose definition is to be compared
pertains (OPERAND-L2 = *NO) or an operand in the path leading to this operand value
(OPERAND-L2 î *NO).

VALUE-L1 = *NO / *COMMAND-REST / *INTEGER / *X-STRING / *C-STRING/
*NAME / *ALPHANUMERIC-NAME / *STRUCTURED-NAME / *FILENAME/
*PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL / *VSN/
*COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *PRODUCT-VERSION/
*POSIX-PATHNAME / *POSIX-FILENAME / <composed-name 1..30>
Specifies the operand value whose definition is to be compared (OPERAND-L2=*NO)
or an operand value, introducing a structure, in the path leading to it (OPERAND-
L2î*NO). If VALUE-L1 is of data type KEYWORD(-NUMBER), then the particular value
defined for it is to be specified (see ADD-VALUE TYPE=*KEYWORD,...,VALUE=
<c-string>). Here it must be remembered that this particular value is to be specified in
each case without the prefixed asterisk. If the operand value is not of the type
KEYWORD(-NUMBER), then the data type defined for it is to be specified.

U2284-J-Z125-9-76 201

SDF-A statements COMPARE-SYNTAX-FILE

OPERAND-L2 = *NO / <structured-name 1..20>
*NO means that the definition of VALUE-L1 is to be compared. Otherwise, the name of
the operand to which the operand value whose definition is to be compared pertains
(OPERAND-L3 = *NO) or the name of an operand in the path leading to this operand
value (OPERAND-L3 î *NO) is to be specified. If an operand name is specified, this
must be unique within the structure defined by VALUE-L1.

VALUE-L2 = *NO/*COMMAND-REST/*INTEGER/*X-STRING/*C-STRING/
*NAME/*ALPHANUMERIC-NAME/*STRUCTURED-NAME/*FILENAME/
*PARTIAL-FILENAME/*TIME/*DATE/*TEXT/*CAT-ID/*LABEL/*VSN/
*COMPOSED-NAME/*X-TEXT/*FIXED/*DEVICE/*PRODUCT-VERSION/
*POSIX-PATHNAME / *POSIX-FILENAME / <composed-name 1..30> /
*NO means that the VALUE-L2 is irrelevant for the specification of the operand value to
be compared. Otherwise, an operand value is to be specified. This operand value is
either the one whose definition is to be compared (OPERAND-L3=*NO) or an operand
value introducing a structure in the path leading to it (OPERAND-L3î*NO). For further
information see VALUE-L1.

OPERAND-L3 = *NO / <structured-name 1..20>
*NO means that OPERAND-L3 is irrelevant for the specification of the definition of the
operand value to be compared. Otherwise, the name of the operand to which the
operand value whose definition is to be compared pertains (OPERAND-L4=*NO) or the
name of an operand in the path leading to this operand value (OPERAND-L4î*NO) is
to be specified. If an operand name is specified, this must be unique within the structure
defined by VALUE-L2.

VALUE-L3 = analogous to VALUE-L2
*NO means that VALUE-L3 is irrelevant for the specification of the definition of the
operand value to be compared. Otherwise an operand value is to be specified. This
operand value is either the one whose definition is to be compared (OPERAND-L4 =
*NO) or an operand value, introducing a structure, in the path leading to it (OPERAND-
L4î*NO). For further information see VALUE-L1.

OPERAND-L4 = *NO / <structured-name 1..20>
see OPERAND-L3.

VALUE-L4 = analogous to VALUE-2
see VALUE-L2.

OPERAND-L5 = *NO / <structured-name 1..20>
see OPERAND-L3.

VALUE-L5= analogous to VALUE-2
see VALUE-L2.

ORIGIN =
Specifies the command or statement to which the operand value definition to be
compared pertains.

202 U2284-J-Z125-9-76

COMPARE-SYNTAX-FILE SDF-A statements

ORIGIN = *COMMAND(...)
The operand value definition pertains to a command.

NAME = <structured-name 1..30>
Name of the command.

ORIGIN = *STATEMENT(...)
The operand value definition pertains to a statement.

NAME = <structured-name 1..30>
Name of the statement.

PROGRAM = <structured-name 1..30>
Name of the program to which the statement pertains.

INPUT-FILE = <filename 1..54 without-gen-vers>(...)
Syntax file containing the definitions or global information to be compared.

TYPE = *SYSTEM / *GROUP / *USER
The type of syntax file containing the definitions or the global information to be
compared: system syntax file, group syntax file or user syntax file.

COMPARE-FILE = <filename 1..54 without-gen-vers>(...)
Syntax file with which the definitions or global information from INPUT-FILE are to be
compared.

TYPE = *SYSTEM / *GROUP / *USER
Type of syntax file:
system syntax file, group syntax file or user syntax file.

ATTACHED-INFO =
Specifies which of the definitions pertaining to the particular object are to be output.

ATTACHED-INFO = *YES
The definition of the particular object is output, along with the definitions of all objects
associated with the particular object (in other words: domain with associated commands,
program with associated statements, command or statement with associated operand
values, operand value with associated structure, global information with language-
dependent texts).

ATTACHED-INFO = *NO
The definition of the specified object is output without the definitions of the objects
associated with the specified object (in other words: domain without associated commands,
program without associated statements, command or statement without associated
operands, operand without associated operand values, operand value without associated
structure, global information without language-dependent texts).

OUTPUT =
Specifies the output medium for the comparison log.

U2284-J-Z125-9-76 203

SDF-A statements COMPARE-SYNTAX-FILE

OUTPUT = *SYSOUT
Output is directed to the logical system file SYSOUT, i.e. in interactive mode usually to the
screen.

OUTPUT = *SYSLST(...)
Output is directed to the logical system file SYSLST.

SYSLST-NUMBER = *STD / <integer 1..99>
Specifies the number of the logical system file SYSLST. If *STD is specified, the logical
system file SYSLST is not numbered.

COMPARE-ATTRIBUTES =
Specifies the comparison attributes.

COMPARE-ATTRIBUTES = *ALL
The complete object definition is compared.

COMPARE-ATTRIBUTES = *USER-INTERFACE
The following are compared:
– the help texts of the command, the statement, the domain or the operand
– the additions to the data type of an operand value (e.g. <integer 1..99>)
– the commentary line assigned to a program.

COMPARE-ATTRIBUTES = *PRIVILEGES-ALLOWNESS
The following are compared:
– the input modes (DIALOG-ALLOWED, DIALOG-PROC-ALLOWED, BATCH-ALLOWED

etc.)
– the privileges which are assigned to the object.

204 U2284-J-Z125-9-76

COMPARE-SYNTAX-FILE SDF-A statements

Outputs of the COMPARE-SYNTAX-FILE statement

If the definitions of the objects to be compared are identical, only the names of the two
syntax files and then the message END OF COMPARISON are output.

If the definitions of the objects to be compared are not identical, SDF-A outputs the following
information:

● Name of both syntax files

● Identification of the objects which are defined differently

● Differences in the definition

Names of the two syntax files

The figure in the first column identifies the syntax file:

If the digit in the first column is missing, the information following it is valid for both syntax
files.

Identifying the objects which are defined differently

SDF-A searches for objects with the external name in syntax file 1 (INPUT-FILE). If the
name exists, SDF-A searches for this object by its internal name in syntax file 2
(COMPARE-FILE).

The identifier in the comparison log always begins with the object type, followed by a colon
and the exact path to the object. The meanings of the terms in the following text are:

1
2

: Syntax file which was specified with INPUT-FILE
: Syntax file which was specified with COMPARE-FILE

<domain-name> Name of the domain

<command-name> First STANDARD-NAME of the command (see ADD-CMD, page 133)

<program-name> Name of the program

<statement-name> First STANDARD-NAME of the statement (see ADD-STMT, page 160)

<operand-name> First STANDARD-NAME of the operand (see ADD-OPERAND, page 148)

<value-name> First STANDARD-NAME of the operand value, if it is of the data type
KEYWORD(-NUMBER); otherwise the data type of the operand value in
lowercase letters.

U2284-J-Z125-9-76 205

SDF-A statements COMPARE-SYNTAX-FILE

DOMAIN:<domain-name>
Differences in the definition of a domain.

COMMAND:<domain-name>.<command-name>
Differences in the command definition, and the comparison was carried out using
OBJECT=*DOMAIN(...).

COMMAND:<command-name>
Differences in the command definition, and the comparison was carried out using
OBJECT=*COMMAND(...).

PROGRAM:<program-name>
Differences in the program definition.

STATEMENT:<program-name>.<statement-name>
Differences in the statement definition.

OPERAND:<domain-name>.<command-name>.<operand-name>
Differences in the operand definition of a command, and the comparison was carried
out using OBJECT=*DOMAIN(...).

OPERAND:<command-name>.<operand-name>
Differences in the operand definition of a command, and the comparison was carried
out using OBJECT=*COMMAND(...).

OPERAND:<program-name>.<statement-name>.<operand-name>
Differences in the operand definition of a statement and the comparison was carried out
using OBJECT=*PROGRAM(...).

VALUE:<domain-name>.<command-name>.<operand-name>.<value-name>
Differences in the operand value definition of a command, and the comparison was
carried out using OBJECT=*DOMAIN(...).

VALUE:<command-name>.<operand-name>.<value-name>
Differences in the operand value definition of a command, and the comparison was
carried out using OBJECT=*COMMAND(...).

VALUE:<program-name>.<statement-name>.<operand-name>.<value-name>
Differences in the operand value definition of a command, and the comparison was
carried out using OBJECT=*PROGRAM(...).

Differences between the compared objects

Directly after the object identifier, the results of the comparison are output.
Lines without the digit 1 or 2 in the first column are relevant to both syntax files and contain,
for example, the text 'NOT DEFINED' as an indication that the object to be defined is not
defined in both syntax files. The following are examples of output lines in a comparison log
and with a short explanation.

206 U2284-J-Z125-9-76

COMPARE-SYNTAX-FILE SDF-A statements

Examples of undefined objects

PROGRAM NOT DEFINED
No program is defined in either of the syntax files. OBJECT=*PROGRAM(NAME=*ALL)
was specified for the comparison.

PROGRAM:SDF-A NOT DEFINED
The program SDF-A is defined neither in syntax file 1 (INPUT-FILE) nor in syntax file 2
(COMPARE-FILE).

1 OPERAND:MODIFY-SDF-OPTIONS.MODE.TEST.CHECK-PRIVILEGES NOT DEFINED
In syntax file 1, the CHECK-PRIVILEGE operand is not defined in the structure
MODE=*TEST(...) in the command MODIFY-SDF-OPTIONS.

2 COMMAND:SDF.RESET-INPUT-DEFAULTS NOT DEFINED
In syntax file 2, the RESET-INPUT-DEFAULTS command is not defined in the domain
SDF.

1 COMMAND:MODIFY-SDF-OPTIONS NOT DEFINED
2 COMMAND:MODIFY-SDF-OPTIONS NOT DEFINED

The MODIFY-SDF-OPTIONS command does not have the same internal name in
syntax file 2 as in syntax file 1.

Examples of different objects

Differences are presented in the form of the part of the SDF-A statement with which the
effected object was defined; e.g. ADD-CMD for differences between commands, ADD-
DOMAIN for differences between domains, or SET-GLOBALS for different global infor-
mation.

1 COMMAND:MODIFY-SDF-OPTIONS HELP=(E('help from input-file'))
2 COMMAND:MODIFY-SDF-OPTIONS HELP=(E('help from compare-file'))

The help texts for the MODIFY-SDF-OPTIONS command are different.
The difference is presented as a part of the statement ADD-CMD NAME=MODIFY-
SDF-OPTIONS,...,HELP=(E('...')).

1 COMMAND:MODIFY-SDF-OPTIONS HELP=(E('help from compare-file')) NOT DEFINED
There is no English help text defined in syntax file 1 for the MODIFY-SDF-OPTIONS
command (the help text 'help from compare-file' is from syntax file 2 and is missing in
syntax file 1).

1 VALUE:SDF.MODIFY-SDF-OPTIONS.MODE.TEST STRUCTURE=YES
2 VALUE:SDF.MODIFY-SDF-OPTIONS.MODE.TEST STRUCTURE=NO

The TEST value in the MODE operand of the MODIFY-SDF-OPTIONS command (SDF
domain) is defined in syntax file 1 with STRUCTURE=*YES, and in syntax file 2 with
STRUCTURE=*NO.

U2284-J-Z125-9-76 207

SDF-A statements COPY

COPY
Copy contents of syntax file

The COPY statement is used to copy the contents of a syntax file. Information on the locking
of objects (see REMOVE) is not copied. SDF-A inserts the copies into the syntax file being
processed.

Definitions of BS2000 commands (implemented via system modules) may be copied into a
user syntax file only when they are fully covered by the reference syntax files assigned (see
OPEN-SYNTAX-FILE). The same applies to the case where an operand or operand value
definition is being copied into the definition of a command implemented via system
modules.

If the global information is copied, SDF-A overwrites the existing global information in the
syntax file being processed.

The SDF default statements neither can nor need to be copied into the user syntax file. SDF
provides these statements automatically for every program which has statements defined
in syntax files. All standard statements released by Fujitsu Siemens Computers are stored
centrally in the syntax file of SDF as of V4.0A.

Before the definition of an operand or operand value is copied, it must be ensured that the
object is the current one (e.g. another operand) after whose definition the copy is to be
inserted into a command or statement definition (see ADD-OPERAND and ADD-VALUE).
The operand or operand value must not yet have been defined in this environment.
Otherwise, SDF-A refuses to perform the copy operation and issues an appropriate
message.

The SHOW-SYNTAX-VERSIONS command supplied with earlier versions of SDF up to
V3.0A cannot be copied to a user syntax file with COPY OBJECT=*COMMAND
(NAME=*ALL). As of SDF V4.0A, the SHOW-SYNTAX-VERSIONS command is treated like
any other command and can thus be copied to a user syntax file.

Certain operand values are context-sensitive. For example, a value defined with
TYPE=*INTEGER(OUT-FORM=*STD) can be converted in different ways, depending on
the implementation form:

– If a command is defined with IMPLEMENTOR=*PROCEDURE or IMPLEMENTOR=
*TPR(...,CMD-INTERFACE=*STRING,...), OUT-FORM=*STD is converted to OUT-
FORM=*CHAR.

– If a command is defined with IMPLEMENTOR=*TPR(...,CMD-
INTERFACE=*NEW/*TRANSFER-AREA,...), OUT-FORM=*STD is converted to OUT-
FORM=*BINARY.

208 U2284-J-Z125-9-76

COPY SDF-A statements

If an object of this nature is copied from one context (e.g. ...,CMD-
INTERFACE=*NEW/*TRANSFER-AREA,...) to another (e.g. ...,CMD-
INTERFACE=*STRING,...), the user must adapt it to the context. This entails using the
EDIT statement to position to the object in question and using the MODIFY statement to
modify the object.

U2284-J-Z125-9-76 209

SDF-A statements COPY

(part 1 of 3)

COPY

OBJECT = *GLOBAL-INFORMATION / *DOMAIN(...) / *COMMAND(...) / *PROGRAM(...) /

*STATEMENT(...) / *OPERAND(...) / *VALUE(...)

*DOMAIN(...)
 NAME = *ALL(...) / <structured-name 1..30 with-wild> / list-poss(2000): <structured-name 1..30>

 *ALL(...)

 EXCEPT = *NONE / <structured-name 1..30 with-wild> /

 list-poss(2000): <structured-name 1..30>

*COMMAND(...)
 NAME = *ALL(...) / <structured-name 1..30 with-wild> / list-poss(2000): <structured-name 1..30>

 *ALL(...)

 EXCEPT = *NONE / <structured-name 1..30 with-wild> /

 list-poss(2000): <structured-name 1..30>

*PROGRAM(...)
 NAME = *ALL(...) / <structured-name 1..30 with-wild> / list-poss(2000): <structured-name 1..30>

 *ALL(...)

 EXCEPT = *NONE / <structured-name 1..30 with-wild> /

 list-poss(2000): <structured-name 1..30>

*STATEMENT(...)
 NAME = *ALL(...) / <structured-name 1..30 with-wild> / list-poss(2000): <structured-name 1..30>

 *ALL(...)

 EXCEPT = *NONE / <structured-name 1..30 with-wild> /

 list-poss(2000): <structured-name 1..30>

 ,PROGRAM = <structured-name 1..30>

*OPERAND(...)
 OPERAND-L1 = *CURRENT / <structured-name 1..20>

 ,VALUE-L1 = *NO / *COMMAND-REST / *INTEGER / *X-STRING / *C-STRING / *NAME /

 *ALPHANUMERIC-NAME / *STRUCTURED-NAME / *FILENAME /

 *PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL / *VSN /

 *COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *PRODUCT-VERSION /

 *POSIX-PATHNAME / *POSIX-FILENAME /

 <composed-name 1..30>

 ,OPERAND-L2 = *NO / <structured-name 1..20>

continued ➠

210 U2284-J-Z125-9-76

COPY SDF-A statements

 ,VALUE-L2 = *NO / *COMMAND-REST / *INTEGER / *X-STRING / *C-STRING / *NAME /

 *ALPHANUMERIC-NAME / *STRUCTURED-NAME / *FILENAME /

 *PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL / *VSN /

 *COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *PRODUCT-VERSION /

 *POSIX-PATHNAME / *POSIX-FILENAME /

 <composed-name 1..30>
 ,OPERAND-L3 = *NO / <structured-name 1..20>
 ,VALUE-L3 = *NO / *COMMAND-REST / *INTEGER / *X-STRING / *C-STRING / *NAME /

 *ALPHANUMERIC-NAME / *STRUCTURED-NAME / *FILENAME /

 *PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL / *VSN /

 *COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *PRODUCT-VERSION /

 *POSIX-PATHNAME / *POSIX-FILENAME /

 <composed-name 1..30>
 ,OPERAND-L4 = *NO / <structured-name 1..20>
 ,VALUE-L4 = *NO / *COMMAND-REST / *INTEGER / *X-STRING / *C-STRING / *NAME /

 *ALPHANUMERIC-NAME / *STRUCTURED-NAME / *FILENAME /

 *PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL / *VSN /

 *COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *PRODUCT-VERSION /

 *POSIX-PATHNAME / *POSIX-FILENAME /

 <composed-name 1..30>
 ,OPERAND-L5 = *NO / <structured-name 1..20>
 ,ORIGIN = *CURRENT / *COMMAND(...) / *STATEMENT(...)
 *COMMAND(...)

 NAME = <structured-name 1..30>
 *STATEMENT(...)

 NAME = <structured-name 1..30>
 ,PROGRAM = <structured-name 1..30>

*VALUE(...)
 OPERAND-L1 = *ABOVE-CURRENT / <structured-name 1..20>
 ,VALUE-L1 = *CURRENT / *COMMAND-REST / *INTEGER / *X-STRING / *C-STRING / *NAME /

 *ALPHANUMERIC-NAME / *STRUCTURED-NAME / *FILENAME /

 *PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL / *VSN /

 *COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *PRODUCT-VERSION /

 *POSIX-PATHNAME / *POSIX-FILENAME /

 <composed-name 1..30>
 ,OPERAND-L2 = *NO / <structured-name 1..20>

continued ➠

(part 2 of 3)

U2284-J-Z125-9-76 211

SDF-A statements COPY

 ,VALUE-L2 = *NO / *COMMAND-REST / *INTEGER / *X-STRING / *C-STRING / *NAME /

 *ALPHANUMERIC-NAME / *STRUCTURED-NAME / *FILENAME /

 *PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL / *VSN /

 *COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *PRODUCT-VERSION /

 *POSIX-PATHNAME / *POSIX-FILENAME /

 <composed-name 1..30>
 ,OPERAND-L3 = *NO / <structured-name 1..20>
 ,VALUE-L3 = *NO / *COMMAND-REST / *INTEGER / *X-STRING / *C-STRING / *NAME /

 *ALPHANUMERIC-NAME / *STRUCTURED-NAME / *FILENAME /

 *PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL / *VSN /

 *COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *PRODUCT-VERSION /

 *POSIX-PATHNAME / *POSIX-FILENAME /

 <composed-name 1..30>

 ,OPERAND-L4 = *NO / <structured-name 1..20>
 ,VALUE-L4 = *NO / *COMMAND-REST / *INTEGER / *X-STRING / *C-STRING / *NAME /

 *ALPHANUMERIC-NAME / *STRUCTURED-NAME / *FILENAME /

 *PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL / *VSN /

 *COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *PRODUCT-VERSION /

 *POSIX-PATHNAME / *POSIX-FILENAME /

 <composed-name 1..30>
 ,OPERAND-L5 = *NO / <structured-name 1..20>
 ,VALUE-L5 = *NO / *COMMAND-REST / *INTEGER / *X-STRING / *C-STRING / *NAME /

 *ALPHANUMERIC-NAME / *STRUCTURED-NAME / *FILENAME /

 *PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL / *VSN /

 *COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *PRODUCT-VERSION /

 *POSIX-PATHNAME / *POSIX-FILENAME /

 <composed-name 1..30>
 ,ORIGIN = *CURRENT / *COMMAND(...) / *STATEMENT(...)
 *COMMAND(...)

 NAME = <structured-name 1..30>
 *STATEMENT(...)

 NAME = <structured-name 1..30>
 ,PROGRAM = <structured-name 1..30>

,FROM-FILE = *CURRENT / *TASK-HIERARCHY / <filename 1..54 without-gen-vers>(...)

<filename 1..54 without-gen-vers>(...)

 TYPE = *CURRENT / *USER / *GROUP / *SYSTEM

,ATTACHED-INFO = *YES / *NO / *ONLY

,OVERWRITE-POSSIBLE = *NO / *YES / *EXTERNAL-ATTRIBUTES

(part 3 of 3)

212 U2284-J-Z125-9-76

COPY SDF-A statements

OBJECT =
Type of the object whose definition is to be copied.

OBJECT = *GLOBAL-INFORMATION
Specifies that the global information of a syntax file is to be copied.

OBJECT = *DOMAIN(...)
Specifies that the definitions of domains are to be copied.

NAME = *ALL(...)
The definitions of all domains are copied.

EXCEPT = *NONE / <structured-name 1..30 with-wild / list-poss(2000):
<structured-name 1..30>
The definitions of the domains specified here are not copied.

NAME = <structured-name 1..30 with-wild / list-poss(2000):
<structured-name 1..30>
The definitions of the named domains or of the domains matching the wildcard
selector are copied.

OBJECT = *COMMAND(...)
Specifies that the definitions of commands are to be copied.

NAME = *ALL
The definitions of all commands are copied.

EXCEPT = *NONE / <structured-name 1..30 with-wild / list-poss(2000):
<structured-name 1..30>
The definitions of the commands specified here are not copied.

NAME = <structured-name 1..30 with-wild / list-poss(2000):
<structured-name 1..30>
The definitions of the named commands or of the commands matching the wildcard
selector are copied.

OBJECT = *PROGRAM(...)
Specifies that the definitions of programs are to be copied.

NAME = *ALL(...)
The definitions of all programs are copied.

EXCEPT = *NONE / <structured-name 1..30 with-wild /
list-poss(2000): <structured-name 1..30>
The definitions of the programs specified here are not copied.

NAME = <structured-name 1..30 with-wild / list-poss(2000):
<structured-name 1..30>
The definitions of the named programs or of the programs matching the wildcard
selector are copied.

U2284-J-Z125-9-76 213

SDF-A statements COPY

OBJECT = *STATEMENT(...)
Specifies that the definitions of statements are to be copied.

NAME = *ALL(...)
The definitions of all statements are copied.

EXCEPT = *NONE / <structured-name 1..30 with-wild /
list-poss(2000): <structured-name 1..30>
The definitions of the statements specified here are not copied.

NAME = <structured-name 1..30 with-wild / list-poss(2000):
<structured-name 1..30>
The definitions of the named statements or of the statements matching the wildcard
selector are copied.

PROGRAM = <structured-name 1..30>
Name of the program to which the statements pertain. The program must have already
been defined in the open syntax file.

OBJECT = *OPERAND(...)
Specifies that the definition of an operand is to be copied. If this operand is included in a
structure, it is specified by the path leading to it, i.e. by specifying the operands and operand
values that introduce the structure in this path. If the name of one of the operands in the
path is unique, not only within its structure, but also with respect to the higher-ranking
structure (or globally within the command or statement), the path need not be completely
specified (it may even be omitted). An operand which is not absolutely essential to identify
the operand definition to be copied, as well as the operand value pertaining to it, can be
omitted. An operand value specified for VALUE-Li (i=1,...,5) must pertain to the operand
defined by OPERAND-Li. After the first VALUE-Li = *NO, SDF-A takes the operand defined
by OPERAND-Li as the one whose definition is to be copied. Subsequently, SDF-A does
not interpret the specifications for any other OPERAND-Lj, VALUE-Lj. If a value other than
*NO is specified for VALUE-Li, the value specified for OPERAND-Li + 1 must also be other
than *NO.

OPERAND-L1 = *CURRENT / <structured-name 1..20>
Specifies the operand whose definition is to be copied (VALUE-L1 = *NO) or an operand
in the path leading to it (VALUE-L1î*NO). *CURRENT means that OPERAND-L1 is the
current object. <structured-name> must be a globally unique operand name within the
command or statement.

214 U2284-J-Z125-9-76

COPY SDF-A statements

VALUE-L1 = *NO / *COMMAND-REST / *INTEGER / *X-STRING / *C-STRING/
*NAME / *ALPHANUMERIC-NAME / *STRUCTURED-NAME / *FILENAME/
*PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL / *VSN/
*COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *PRODUCT-VERSION /
*POSIX-PATHNAME / *POSIX-FILENAME / <composed-name 1..30> /
*NO means that the definition of OPERAND-L1 is to be copied. Otherwise, an operand
value that introduces a structure is to be specified. The structure must directly or
indirectly contain the operand whose definition is to be copied. If the operand value
introducing the structure is of the data type KEYWORD(-NUMBER), then the particular
value defined for it is to be specified (see ADD-VALUE TYPE=*KEYWORD,...,VALUE=
<c-string>). Here it must be remembered that this particular value is to be specified in
each case without the prefixed asterisk. If the operand value introducing the structure
is not of the type KEYWORD(-NUMBER), then the data type defined for it is to be
specified.

OPERAND-L2 = *NO / <structured-name 1..20>
*NO means that OPERAND-L2 is irrelevant for the specification of the operand whose
definition is to be copied. Otherwise, the name of an operand that is unique within the
structure determined by VALUE-L1 is to be specified. This operand is either the one
whose definition is to be copied (VALUE-L2=*NO) or one that is in the path leading to it
(VALUE-L2î*NO).

VALUE-L2 = analogous to VALUE-L1
*NO means that VALUE-L2 is irrelevant for the specification of the operand. Otherwise,
an operand value introducing a structure is to be specified. The structure must directly
or indirectly contain the operand whose definition is to be copied. For further information
see VALUE-L1.

OPERAND-L3 = *NO / <structured-name 1..20>
*NO means that OPERAND-L3 is irrelevant for the specification of the operand whose
definition is to be copied. Otherwise the name of an operand that is unique within the
structure determined by VALUE-L2 is to be specified. This operand is either the one
whose definition is to be copied (VALUE-L3=*NO) or one that is in the path leading to it
(VALUE-L3î*NO).

VALUE-L3= analogous to VALUE-L1
*NO means that VALUE-L3 is irrelevant for the specification of the operand. Otherwise,
an operand value introducing a structure is to be specified. The structure must directly
or indirectly contain the operand whose definition is to be copied. For further information
see VALUE-L1.

OPERAND-L4 = *NO / <structured-name 1..20>
see OPERAND-L2.

VALUE-L4 = analogous to VALUE-L1
see VALUE-L2.

U2284-J-Z125-9-76 215

SDF-A statements COPY

OPERAND-L5 = *NO / <structured-name 1..20>
see OPERAND-L2.

ORIGIN =
Specifies the command or statement to which the operand definition to be copied
belongs.

ORIGIN = *CURRENT
The operand definition belongs to the same command (or statement) into which
SDF-A is to insert the copy.

ORIGIN = *COMMAND (...)
The operand definition belongs to a command.

NAME = <structured-name 1..30>
Name of the command.

ORIGIN = *STATEMENT(...)
The operand definition belongs to a statement.

NAME = <structured-name 1..30>
Name of the statement.

PROGRAM = <structured-name 1..30>
Name of the program to which the statement pertains.

OBJECT = *VALUE(...)
Specifies that the definition of operand value is to be copied. This operand value is specified
by the path leading to it, i.e. by specifying the operands and operand values introducing the
structure in this path. If the operand value pertains to an operand that is not attached to any
structure, the path contains only this operand. If the operand value does pertain to an
operand attached to a structure, the path also includes the higher-ranking operands as well
as the associated operand values introducing the structure. If the name of one of the
operands in the path is unique, not only within its structure, but also with respect to the
higher-ranking structure (or globally within the command or statement), the path need not
be completely specified. An operand that is not absolutely essential to identify the operand
value definition to be copied, as well as the operand value pertaining to it, can be omitted.
An operand value specified for VALUE-Li (i=1,...,5) must pertain to the operand defined by
OPERAND-Li. After the first OPERAND-Li+1 = *NO, SDF-A takes the operand value
defined by VALUE-Li as the one whose definition is to be copied. Subsequently, SDF-A
does not interpret the specifications for any other OPERAND-Lj, VALUE-Lj. If a value other
than *NO is specified for OPERAND-Li, the value specified for VALUE-Li must likewise be
other than *NO.

OPERAND-L1 = *ABOVE-CURRENT / <structured-name 1..20>
Specifies the operand to which the operand value whose definition is to be copied
pertains (OPERAND-L2 = *NO) or an operand in the path leading to this operand value
(OPERAND-L2î*NO).

216 U2284-J-Z125-9-76

COPY SDF-A statements

*ABOVE-CURRENT means that a value pertaining to OPERAND-L1 is the current
object. <structured-name> must be a globally unique operand name within the
command or statement.

VALUE-L1=*CURRENT / *COMMAND-REST / *INTEGER / *X-STRING/
*C-STRING / *NAME / *ALPHANUMERIC-NAME / *STRUCTURED-NAME/
*FILENAME / *PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID /
*LABEL/*VSN/*COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *PRODUCT-
VERSION/
*POSIX-PATHNAME / *POSIX-FILENAME / <composed-name 1..30>
Specifies the operand value whose definition is to be copied (OPERAND-L2=*NO) or
an operand value, introducing a structure, in the path leading to it (OPERAND-L2î*NO).
*CURRENT means that VALUE-L1 is the current object. If it is not the current object and
of the data type KEYWORD(-NUMBER), then the particular value defined for it is to be
specified (see ADD-VALUE TYPE=KEYWORD,...,VALUE=<c-string>).
Here it must be remembered that this particular value is to be specified in each case
without the prefixed asterisk. If the operand value is not of the type
KEYWORD(-NUMBER), then the data type defined for it is to be specified.

OPERAND-L2 = *NO / <structured-name 1..20>
*NO means that the definition of VALUE-L1 is to be copied. Otherwise, the name of the
operand to which the operand value whose definition is to be copied pertains
(OPERAND-L3=*NO) or the name of an operand in the path leading to this operand
value (OPERAND-L3î*NO) is to be specified. If an operand name is specified, this must
be unique within the structure defined by VALUE-L1.

VALUE-L2 = *NO/*COMMAND-REST/*INTEGER/*X-STRING/*C-STRING/
*NAME/*ALPHANUMERIC-NAME/*STRUCTURED-NAME/*FILENAME/
*PARTIAL-FILENAME/*TIME/*DATE/*TEXT/*CAT-ID/*LABEL/*VSN/
*COMPOSED-NAME/*X-TEXT/*FIXED/*DEVICE/*PRODUCT-VERSION/
*POSIX-PATHNAME / *POSIX-FILENAME / <composed-name 1..30>
*NO means that the VALUE-L2 is irrelevant for the specification of the operand value to
be copied. Otherwise, an operand value is to be specified. This operand value is either
the one whose definition is to be copied (OPERAND-L3=*NO) or an operand value
introducing a structure in the path leading to it (OPERAND-L3î*NO). For further infor-
mation see VALUE-L1.

OPERAND-L3 = *NO / <structured-name 1..20>
*NO means that OPERAND-L3 is irrelevant for the specification of the definition of the
operand value to be copied. Otherwise, the name of the operand to which the operand
value whose definition is to be copied pertains (OPERAND-L4=*NO) or the name of an
operand in the path leading to this operand value (OPERAND-L4î*NO) is to be
specified. If an operand name is specified, this must be unique within the structure
defined by VALUE-L2.

U2284-J-Z125-9-76 217

SDF-A statements COPY

VALUE-L3 = analogous to VALUE-L2
*NO means that VALUE-L3 is irrelevant for the specification of the definition of the
operand value to be copied. Otherwise an operand value is to be specified. This
operand value is either the one whose definition is to be copied (OPERAND-L4=*NO)
or an operand value, introducing a structure, in the path leading to it (OPERAND-
L4î*NO). For further information see VALUE-L1.

OPERAND-L4 = *NO / <structured-name 1..20>
see OPERAND-L3.

VALUE-L4 = analogous to VALUE-2
see VALUE-L2.

OPERAND-L5 = *NO / <structured-name 1..20>
see OPERAND-L3.

VALUE-L5= analogous to VALUE-2
see VALUE-L2.

ORIGIN =
Specifies the command or statement to which the operand value definition to be copied
pertains.

ORIGIN = *CURRENT
The operand value definition to be copied pertains to the same command (or statement)
into which SDF-A is to insert the copy.

ORIGIN = *COMMAND(...)
The operand value definition pertains to a command.

NAME = <structured-name 1..30>
Name of the command.

ORIGIN = *STATEMENT(...)
The operand value definition pertains to a statement.

NAME = <structured-name 1..30>
Name of the statement.

PROGRAM = <structured-name 1..30>
Name of the program to which the statement pertains.

FROM-FILE =
Syntax file containing the definitions or global information to be copied.

FROM-FILE = *CURRENT
The syntax file currently being processed contains the definitions to be copied. This is
possible only when copying definitions of operands or operand values.

218 U2284-J-Z125-9-76

COPY SDF-A statements

FROM-FILE = *TASK-HIERARCHY
The definition to be copied is taken from one of the syntax files which belong to the current
syntax file hierarchy.

FROM-FILE = <filename 1..54 without-gen-vers>(...)
The syntax file named contains the definitions or global information to be copied.

TYPE = *CURRENT / *USER / *GROUP / *SYSTEM
The syntax file containing the definitions or the global information to be copied is
*CURRENT of the same type as the syntax file being processed
*USER a user syntax file
*GROUP a group syntax file
*SYSTEM a system syntax file.

ATTACHED-INFO =
Specifies which of the definitions pertaining to the specified object is to be copied. For
global information, programs and domains, SDF-A interprets the value ONLY as *YES.

ATTACHED-INFO = *YES
The definition of the specified object is copied, along with the definitions of all objects
associated with the specified object (in other words: domain with associated commands,
program with associated statements, command or statement with associated operand
values, operand value with associated structure, global information with language-
dependent texts).

ATTACHED-INFO = *NO
The definition of the specified object is copied without the definitions of the objects
associated with the specified object (in other words: domain without associated commands,
program without associated statements, command or statement without associated
operands, operand without associated operand values, operand value without associated
structure, global information without language-dependent texts).

ATTACHED-INFO = *ONLY
Only the definitions of objects associated with the specified object are copied. The definition
of the specified object itself is not copied (examples: operand values without the operands
to which they pertain; a structure without the operand value introducing it).

OVERWRITE-POSSIBLE =
Specifies whether the definition of a domain, command, program or statement is to be
copied if the object is already defined in the open syntax file.

OVERWRITE-POSSIBLE = *NO
SDF-A rejects the copying of a domain, command, program or statement (and issues an
appropriate message) if the object has already been defined in the syntax file being
processed. Copying of global information is possible.

U2284-J-Z125-9-76 219

SDF-A statements COPY

OVERWRITE-POSSIBLE = *YES
SDF-A performs the copy operation regardless of whether the object is already defined in
the open syntax file. In this case, SDF-A replaces the existing definition in the open syntax
file by the definition to be copied. A command or statement can be overwritten only if:
– NAMEs or STANDARD-NAMEs are identical and
– INTERNAL-NAMEs are identical.

OVERWRITE-POSSIBLE = *EXTERNAL-ATTRIBUTES
SDF-A copies the objects only, without the definitions of the objects themselves. The defini-
tions of the objects which follow the overwritten domain or the program (e.g. commands or
statements) remain the same. Specification of this operand is only possible when copying
domains and programs (COPY OBJ=*DOMAIN... or OBJ=*PROGRAM...). The
ATTACHED-INFO operand is given the value *NO, regardless of whether or not the user has
specified a different value.

220 U2284-J-Z125-9-76

DEFINE-ENVIRONMENT SDF-A statements

DEFINE-ENVIRONMENT
Define format and version of syntax file

The DEFINE-ENVIRONMENT statement defines the SDF-A version to be used and thus
the syntax file format in which the processed syntax file is stored. This statement must be
explicitly executed before creating or opening a syntax file whenever the user does not wish
to work with the highest SDF-A version. Note that syntax files cannot be processed with a
lower version than the one with which they were created or stored.

SYNTAX-FILE-FORMAT =
Defines the SDF-A version to be used.

SYNTAX-FILE-FORMAT = *CURRENT / *V4.1
SDF-A V4.1 remains loaded, so subsequently processed syntax files are stored in V4.1
format.

SYNTAX-FILE-FORMAT = *V4
SDF-A V4.0 is loaded, and the complete functionality of SDF-A V4.0 is available to the user.
Subsequently processed syntax files are stored in V4 format.

SYNTAX-FILE-FORMAT = *V3
SDF-A V3.0 is loaded, and the complete functionality of SDF-A V3.0 is available to the user.
Subsequently processed syntax files are stored in V3 format.

DEFINE-ENVIRONMENT

SYNTAX-FILE-FORMAT = *CURRENT / *V4.1 / *V4 / *V3

U2284-J-Z125-9-76 221

SDF-A statements EDIT

EDIT
Position to object in syntax file

The EDIT statement is used to declare a domain, a program, a command, a statement, an
operand or an operand value, or the global information of the syntax file as the “current
object” (see page 148). EDIT can also be used to position to an object that is not in the open
syntax file but in the group or system syntax file specified with the operand GROUP-
DESCRIPTION or SYSTEM-DESCRIPTION when the syntax file being processed was
opened.

When the definition of an object is to be modified using a MODIFY statement, the user must
first make sure that the object is the “current” object. Likewise, if the definition of an operand
or operand value is to be inserted into the definition of a command or statement by means
of an ADD or COPY statement, it must be ensured that the object after whose definition the
insertion is to be made is the “current” object. When (in guided dialog) the global information
is modified using the SET-GLOBALS statement, the current values are displayed only if the
global information is the “current” object.

(part 1 of 4)

EDIT

OBJECT = *GLOBAL-INFORMATION / *PRIVILEGE(...) / *DOMAIN(...) / *COMMAND(...) / *PROGRAM(...) /

*STATEMENT(...) / *OPERAND(...) / *VALUE(...)

*PRIVILEGE(...)
 NAME = <structured-name 1..30>

*DOMAIN(...)
 NAME = <structured-name 1..30>

*COMMAND(...)
 NAME = <structured-name 1..30>

*PROGRAM(...)
 NAME = <structured-name 1..30>

*STATEMENT(...)
 NAME = <structured-name 1..30>
 ,PROGRAM = <structured-name 1..30>

continued ➠

222 U2284-J-Z125-9-76

EDIT SDF-A statements

*OPERAND(...)
 OPERAND-L1 = *CURRENT / <structured-name 1..20>
 ,VALUE-L1 = *NO / *COMMAND-REST / *INTEGER / *X-STRING / *C-STRING / *NAME /

 *ALPHANUMERIC-NAME / *STRUCTURED-NAME / *FILENAME /

 *PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL / *VSN /

 *COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *PRODUCT-VERSION /

 *POSIX-PATHNAME / *POSIX-FILENAME /

 <composed-name 1..30>
 ,OPERAND-L2 = *NO / <structured-name 1..20>
 ,VALUE-L2 = *NO / *COMMAND-REST / *INTEGER / *X-STRING / *C-STRING / *NAME /

 *ALPHANUMERIC-NAME / *STRUCTURED-NAME / *FILENAME /

 *PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL / *VSN /

 *COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *PRODUCT-VERSION /

 *POSIX-PATHNAME / *POSIX-FILENAME /

 <composed-name 1..30>
 ,OPERAND-L3 = *NO / <structured-name 1..20>
 ,VALUE-L3 = *NO / *COMMAND-REST / *INTEGER / *X-STRING / *C-STRING / *NAME /

 *ALPHANUMERIC-NAME / *STRUCTURED-NAME / *FILENAME /

 *PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL / *VSN /

 *COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *PRODUCT-VERSION /

 *POSIX-PATHNAME / *POSIX-FILENAME /

 <composed-name 1..30>
 ,OPERAND-L4 = *NO / <structured-name 1..20>
 ,VALUE-L4 = *NO / *COMMAND-REST / *INTEGER / *X-STRING / *C-STRING / *NAME /

 *ALPHANUMERIC-NAME / *STRUCTURED-NAME / *FILENAME /

 *PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL / *VSN /

 *COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *PRODUCT-VERSION /

 *POSIX-PATHNAME / *POSIX-FILENAME /

 <composed-name 1..30>
 ,OPERAND-L5 = *NO / <structured-name 1..20>
 ,ORIGIN = *CURRENT / *COMMAND(...) / *STATEMENT(...)
 *COMMAND(...)

 NAME = <structured-name 1..30>
 *STATEMENT(...)

 NAME = <structured-name 1..30>
 ,PROGRAM = <structured-name 1..30>

continued ➠

(part 2 of 4)

U2284-J-Z125-9-76 223

SDF-A statements EDIT

*VALUE(...)
 OPERAND-L1 = *ABOVE-CURRENT / <structured-name 1..20>
 ,VALUE-L1 = *CURRENT / *COMMAND-REST / *INTEGER / *X-STRING / *C-STRING / *NAME /

 *ALPHANUMERIC-NAME / *STRUCTURED-NAME / *FILENAME /

 *PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL / *VSN /

 *COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *PRODUCT-VERSION /

 *POSIX-PATHNAME / *POSIX-FILENAME /

 <composed-name 1..30>
 ,OPERAND-L2 = *NO / <structured-name 1..20>
 ,VALUE-L2 = *NO / *COMMAND-REST / *INTEGER / *X-STRING / *C-STRING / *NAME /

 *ALPHANUMERIC-NAME / *STRUCTURED-NAME / *FILENAME /

 *PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL / *VSN /

 *COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *PRODUCT-VERSION /

 *POSIX-PATHNAME / *POSIX-FILENAME /

 <composed-name 1..30>
 ,OPERAND-L3 = *NO / <structured-name 1..20>
 ,VALUE-L3 = *NO / *COMMAND-REST / *INTEGER / *X-STRING / *C-STRING / *NAME /

 *ALPHANUMERIC-NAME / *STRUCTURED-NAME / *FILENAME /

 *PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL / *VSN /

 *COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *PRODUCT-VERSION /

 *POSIX-PATHNAME / *POSIX-FILENAME /

 <composed-name 1..30>
 ,OPERAND-L4 = *NO / <structured-name 1..20>
 ,VALUE-L4 = *NO / *COMMAND-REST / *INTEGER / *X-STRING / *C-STRING / *NAME /

 *ALPHANUMERIC-NAME / *STRUCTURED-NAME / *FILENAME /

 *PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL / *VSN /

 *COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *PRODUCT-VERSION /

 *POSIX-PATHNAME / *POSIX-FILENAME /

 <composed-name 1..30>
 ,OPERAND-L5 = *NO / <structured-name 1..20>
 ,VALUE-L5 = *NO / *COMMAND-REST / *INTEGER / *X-STRING / *C-STRING / *NAME /

 *ALPHANUMERIC-NAME / *STRUCTURED-NAME / *FILENAME /

 *PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL / *VSN /

 *COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *PRODUCT-VERSION /

 *POSIX-PATHNAME / *POSIX-FILENAME /

 <composed-name 1..30>

continued ➠

(part 3 of 4)

224 U2284-J-Z125-9-76

EDIT SDF-A statements

OBJECT =
Type of the object being declared the current object.

OBJECT = *GLOBAL-INFORMATION
The global information of the syntax file becomes the current object.

OBJECT = *PRIVILEGE(...)
The specified privilege becomes the current object. This operand is reserved for Fujitsu
Siemens Computers Software Development.

NAME = <structured-name 1..30>
Name of the privilege.

OBJECT = *DOMAIN(...)
A domain becomes the current object.

NAME = <structured-name 1..30>
Name of the domain.

OBJECT = *COMMAND(...)
A command becomes the current object.

NAME = <structured-name 1..30>
Name of the command.

OBJECT = *PROGRAM(...)
A program becomes the current object.

NAME = <structured-name 1..30>
Name of the program.

OBJECT = *STATEMENT(...)
A statement becomes the current object.

NAME = <structured-name 1..30>
Name of the statement.

PROGRAM = <structured-name 1..30>
Name of the program to which the statement pertains.

 ,ORIGIN = *CURRENT / *COMMAND(...) / *STATEMENT(...)
 *COMMAND(...)
 NAME = <structured-name 1..30>
 *STATEMENT(...)
 NAME = <structured-name 1..30>
 ,PROGRAM = <structured-name 1..30>

(part 4 of 4)

U2284-J-Z125-9-76 225

SDF-A statements EDIT

OBJECT = *OPERAND(...)
An operand becomes the current object. If the operand that becomes the current object is
included in a structure, it is specified by the path leading to it, i.e. by specifying the operands
and operand values that introduce the structure in this path. If the name of one of the
operands in the path is unique, not only within its structure, but also with respect to the
higher-ranking structure (or globally within the command or statement), the path need not
be completely specified (and may even be omitted). An operand that is not absolutely
essential to identify the operand that becomes the current object, as well as the operand
value pertaining to it, can be omitted. An operand value specified for VALUE-Li (i=1,...,5)
must pertain to the operand defined by OPERAND-Li. After the first VALUE-Li=*NO, SDF-
A takes the operand defined by OPERAND-Li as the one that becomes the current object.
Subsequently, SDF-A does not interpret the specifications for any other OPERAND-Lj,
VALUE-Lj. If a value other than *NO is specified for VALUE-Li, the value specified for
OPERAND-Li + 1 must also be other than *NO.

OPERAND-L1 = *CURRENT / <structured-name 1..20>
Specifies the operand that becomes the current object (VALUE-L1=*NO) or an operand
in the path leading to it (VALUE-L1î*NO). *CURRENT means that OPERAND-L1 is the
current object. <structured-name> must be a globally unique operand name within the
command or statement.

VALUE-L1 = *NO/*COMMAND-REST/*INTEGER/*X-STRING/*C-STRING/
*NAME/*ALPHANUMERIC-NAME/*STRUCTURED-NAME/*FILENAME/
*PARTIAL-FILENAME/*TIME/*DATE/*TEXT/*CAT-ID/*LABEL/*VSN/
*COMPOSED-NAME/*X-TEXT/*FIXED/*DEVICE/*PRODUCT-VERSION/
*POSIX-PATHNAME / *POSIX-FILENAME / <composed-name 1..30>
*NO means that OPERAND-L1 becomes the current object. Otherwise, an operand
value introducing a structure is to be specified. This structure must directly or indirectly
contain the operand that becomes the current object. If the operand value introducing
the structure is of the data type KEYWORD(-NUMBER), then the particular value
defined for it is to be specified (see ADD-VALUE TYPE=KEYWORD,...,VALUE=
<c-string>). Here it must be remembered that this particular value is to be specified in
each case without the prefixed asterisk. If the operand value introducing the structure
is not of the type KEYWORD(-NUMBER), the data defined for it must be specified.

OPERAND-L2 = *NO / <structured-name 1..20>
*NO means that OPERAND-L2 is irrelevant for the specification of the operand that
becomes the current object. Otherwise, the name of an operand that is unique within
the structure determined by VALUE-L1 is to be specified. This operand either becomes
the current object (VALUE-L2 = *NO) or is in the path leading to the operand that
becomes the current object (VALUE-L2 î *NO).

226 U2284-J-Z125-9-76

EDIT SDF-A statements

VALUE-L2 = analogous to VALUE-L1
*NO means that VALUE-L2 is irrelevant for the specification of the operand that
becomes the current object. Otherwise, an operand value introducing a structure is to
be specified. This structure must directly or indirectly contain the operand that becomes
the current object. For further information see VALUE-L1.

OPERAND-L3 = *NO / <structured-name 1..20>
*NO means that OPERAND-L3 is irrelevant for the specification of the operand that
becomes the current object. Otherwise, the name of an operand that is unique within
the structure determined by VALUE-L2 is to be specified. This operand either becomes
the current object (VALUE-L3 = *NO) or is in the path leading to the operand that
becomes the current object (VALUE-L3 î *NO).

VALUE-L3 = analogous to VALUE-L1
*NO means that VALUE-L3 is irrelevant for the specification of the operand that
becomes the current object. Otherwise, an operand value introducing a structure is to
be specified. This structure must directly or indirectly contain the operand that becomes
the current object. For further information see VALUE-L1.

OPERAND-L4 = *NO / <structured-name 1..20>
see OPERAND-L2.

VALUE-L4 = analogous to VALUE-L1
see VALUE-L2.

OPERAND-L5 = *NO / <structured-name 1..20>
see OPERAND-L2.

ORIGIN =
Specifies the command or statement in which the specified operand becomes the
current object.

ORIGIN = *CURRENT
The operand belongs to the command (or statement) which at the present time either
is itself the current object or contains an operand or operand value that is the current
object.

ORIGIN = *COMMAND(...)
The operand belongs to a command.

NAME = <structured-name 1..30>
Name of the command.

ORIGIN = *STATEMENT(...)
The operand belongs to a statement.

NAME = <structured-name 1..30>
Name of the statement.

U2284-J-Z125-9-76 227

SDF-A statements EDIT

PROGRAM = <structured-name 1..30>
Name of the program to which the statement pertains.

OBJECT = *VALUE(...)
An operand value becomes the current object. The operand value that becomes the current
object is specified by the path leading to it, i.e. by specifying the operands and operand
values introducing the structure in this path. If the operand value that becomes the current
object pertains to an operand that is not attached to any structure, the path contains only
this operand. If the operand value that becomes the current object does pertain to an
operand attached to a structure, the path also includes the higher-ranking operands as well
as the associated operand values introducing the structure. If the name of one of the
operands in the path is unique, not only within its structure, but also with respect to the
higher-ranking structure (or globally within the command or statement), the path need not
be completely specified. An operand that is not absolutely essential to identify the operand
value that becomes the current object, as well as the operand value pertaining to it, can be
omitted. An operand value specified for VALUE-Li (i=1,...,5) must pertain to the operand
defined by OPERAND-Li. After the first OPERAND-Li + 1 = *NO, SDF-A takes the operand
value defined by VALUE-Li as the one that becomes the current object. Subsequently, SDF-
A does not interpret the specifications for any other OPERAND-Lj, VALUE-Lj. If a value
other than *NO is specified for OPERAND-Li, the value specified for VALUE-Li must
likewise be other than *NO.

OPERAND-L1 = *ABOVE-CURRENT / <structured-name 1..20>
Specifies the operand to which the operand value that becomes the current object
pertains (OPERAND-L2 = *NO) or an operand in the path leading to this operand value
(OPERAND-L2 î *NO). *ABOVE-CURRENT means that a value pertaining to
OPERAND-L1 is the current object. <structured-name> must be a globally unique
operand name within the command or statement.

VALUE-L1 = *CURRENT/*COMMAND-REST/*INTEGER/*X-STRING/
*C-STRING/*NAME/*ALPHANUMERIC-NAME/*STRUCTURED-NAME/
*FILENAME/*PARTIAL-FILENAME/*TIME/*DATE/*TEXT/*CAT-
ID/*LABEL/*VSN/*COMPOSED-NAME/*X-TEXT/*FIXED/*DEVICE/*PRODUCT-
VERSION/
*POSIX-PATHNAME / *POSIX-FILENAME / <composed-name 1..30>
Specifies the operand value that becomes the current object (OPERAND-L2=*NO) or
an operand value introducing a structure in the path leading to the operand value that
becomes the current object (OPERAND-L2î*NO). *CURRENT means that VALUE-L1
is the current object. If VALUE-L1 is not the current object and of the data type
KEYWORD(-NUMBER), then the particular value defined for it is to be specified (see
ADD-VALUE TYPE=*KEYWORD,...,VALUE=<c-string). Here it must be remembered
that this particular value is to be specified in each case without the prefixed asterisk. If
the operand value is not of the type KEYWORD(-NUMBER), then the data type defined
for it is to be specified.

228 U2284-J-Z125-9-76

EDIT SDF-A statements

OPERAND-L2 = *NO / <structured-name 1..20>
*NO means that VALUE-L1 becomes the current object. Otherwise, the name of the
operand to which the operand value that becomes the current object pertains
(OPERAND-L3 = *NO) or the name of an operand in the path leading to this operand
value (OPERAND-L3 î *NO) must be specified. If an operand name is specified, this
must be unique within the structure defined by VALUE-L1.

VALUE-L2 = *NO/*COMMAND-REST/*INTEGER/*X-STRING/*C-STRING/
*NAME/*ALPHANUMERIC-NAME/*STRUCTURED-NAME/*FULL-FILENAME/
*PARTIAL-FILENAME/*TIME/*DATE/*TEXT/*CAT-ID/*LABEL/*VSN/
*COMPOSED-NAME/*X-TEXT/*FIXED/*DEVICE/*PRODUCT-VERSION/
*POSIX-PATHNAME / *POSIX-FILENAME / <composed-name 1..30>
*NO means that the VALUE-L2 is irrelevant for the specification of the operand value
that becomes the current object. Otherwise, an operand value is to be specified. This
operand value either becomes the current object (OPERAND-L3 = *NO) or is an
operand value introducing a structure in the path leading to the operand value that
becomes the current object (OPERAND-L3 î *NO). For further information see VALUE-
L1.

OPERAND-L3 = *NO / <structured-name 1..20>
*NO means that OPERAND-L3 is irrelevant for the specification of the operand value
that becomes the current object. Otherwise, the name of the operand to which the
operand value that becomes the current object pertains (OPERAND-L4 = *NO) or the
name of an operand in the path leading to this operand value (OPERAND-L4 î *NO) is
to be specified. If an operand name is specified, this must be unique within the structure
defined by VALUE-L2.

VALUE-L3 = analogous to VALUE-L2
*NO means that the VALUE-L3 is irrelevant for the specification of the operand value
that becomes the current object. Otherwise, an operand value is to be specified. This
operand value either becomes the current object (OPERAND-L4 = *NO) or is an
operand value introducing a structure in the path leading to the operand value that
becomes the current object (OPERAND-L4 î *NO). For further information see VALUE-
L1.

OPERAND-L4 = *NO / <structured-name 1..20>
see OPERAND-L3.

VALUE-L4 = analogous to VALUE-2
see VALUE-L2.

OPERAND-L5 = *NO / <structured-name 1..20>
see OPERAND-L3.

VALUE-L5 = analogous to VALUE-2
see VALUE L2.

U2284-J-Z125-9-76 229

SDF-A statements EDIT

ORIGIN =
Specifies the command or statement in which the specified operand value becomes the
current object.

ORIGIN = *CURRENT
The operand value belongs to the command (or statement) which at the present time
either is itself the current object or contains an operand or operand value that is the
current object.

ORIGIN = *COMMAND(...)
The operand value belongs to a command.

NAME=<structured-name 1..30>
Name of the command.

ORIGIN = *STATEMENT(...)
The operand value belongs to a statement.

NAME = <structured-name 1..30>
Name of the statement.

PROGRAM = <structured-name 1..30>
Name of the program to which the statement pertains.

230 U2284-J-Z125-9-76

END SDF-A statements

END
Terminate program run

The END statement is used to terminate input to SDF-A and implicitly closes the most
recently opened syntax file.

This statement has no operands.

END

U2284-J-Z125-9-76 231

SDF-A statements MODIFY-CMD

MODIFY-CMD
Modify command definition

The MODIFY-CMD statement is used to modify the definition of a command in the open
syntax file. The command must be the “current” object (see page page 148). Afterwards the
first operand of the command is the “current” object.

The MODIFY-CMD statement is very similar to the ADD-CMD statement. The default value
for all operands of the MODIFY-CMD statement is *UNCHANGED, i.e. only those parts of
a command definition that are explicitly specified are modified. In guided dialog the operand
form displays the current operand assignment instead of *UNCHANGED. When a value
other than *UNCHANGED is specified for a MODIFY-CMD operand, the old specifications
in the command definition are replaced by the new ones. This also applies if a list can be
specified, i.e. instead of being added to the value list, the specified value replaces it. There
is a special rule for STANDARD-NAME. When the command to be modified is defined in an
assigned reference file (see OPEN-SYNTAX-FILE), the old entries for STANDARD-NAME
are retained and the name specified with MODIFY-CMD is added to them.

With the exception of the RESULT-INTERNAL-NAME, all names given to the command
must be unique with respect to the complete set of commands.

Definitions of the operands and operand values pertaining to the command are modified by
means of the MODIFY-OPERAND or MODIFY-VALUE statement, rather than by means of
the MODIFY-CMD statement.

(part 1 of 4)

MODIFY-CMD

NAME = *UNCHANGED / <structured-name 1..30>

,RESULT-INTERNAL-NAME = *UNCHANGED / *SAME / <alphanum-name 1..8>

,STANDARD-NAME = *UNCHANGED / *NO / list-poss(2000): *NAME / <structured-name 1..30>

,ALIAS-NAME = *UNCHANGED / *NO / list-poss(2000): <structured-name 1..30>

,MINIMAL-ABBREVIATION = *UNCHANGED / *NO / <structured-name 1..30>

,HELP = *UNCHANGED / *NO / list-poss(2000): <name 1..1>(...)

<name 1..1>(...)
 TEXT = *UNCHANGED / <c-string 1..500 with-low>

,DOMAIN = *UNCHANGED / *NO / list-poss(2000): <structured-name 1..30>

continued ➠

232 U2284-J-Z125-9-76

MODIFY-CMD SDF-A statements

,IMPLEMENTOR = *UNCHANGED / *PROCEDURE(...) / *TPR(...) / *APPLICATION(...) / *BY-TPR(...)

*PROCEDURE(...)

 NAME = *UNCHANGED / <c-string 1..280> / *BY-IMON(...)
 *BY-IMON(...)

 LOGICAL-ID = *UNCHANGED / <filename 1..30 without-cat-user-gen-vers>

 ,INSTALLATION-UNIT = *UNCHANGED / <text 1..30 without-sep>

 ,VERSION = *UNCHANGED / *STD / <product-version>

 ,DEFAULT-PATH-NAME = *UNCHANGED / <filename 1..54>

 ,ELEMENT = *UNCHANGED / *NONE / <composed-name 1..64>

 ,CALL-TYPE = *UNCHANGED / *CALL-PROCEDURE / *INCLUDE-PROCEDURE /
 *ENTER-PROCEDURE

 ,CALL-OPTIONS = *UNCHANGED / *NONE / <c-string 1..1800 with-low>

 ,UNLOAD-PROGRAM = *UNCHANGED / *NO / *YES

*TPR(...)

 ENTRY = *UNCHANGED / <name 1..8>
 ,INTERFACE = *UNCHANGED / *SPL / *ASS / *ISL(...)
 *ISL(...)

 VERSION = *UNCHANGED / <integer 1..2>
 ,CMD-INTERFACE = *UNCHANGED / *STRING(...) / *TRANSFER-AREA(...) / *NEW(...)
 *STRING(...)

 OUT-CMD-NAME = *UNCHANGED / *SAME / <structured-name 1..30>
 *TRANSFER-AREA(...)

 MAX-STRUC-OPERAND = *UNCHANGED / *STD / <integer 1..3000>
 ,CMD-VERSION = *UNCHANGED / *NONE / <integer 1..999>
 *NEW(...)

 MAX-STRUC-OPERAND = *UNCHANGED / *STD / <integer 1..3000>
 ,LOGGING = *UNCHANGED / *BY-SDF / *BY-IMPLEMENTOR
 ,INPUT-FORM = *UNCHANGED / *INVARIANT / *STANDARD / *NONE
 ,SCI = *UNCHANGED / *YES / *NO

*APPLICATION(...)

 LOGGING = *UNCHANGED / *BY-SDF / *BY-IMPLEMENTOR

*BY-TPR(...)

 TPR-CMD = *UNCHANGED / <structured-name 1..30>

continued ➠

(part 2 of 4)

U2284-J-Z125-9-76 233

SDF-A statements MODIFY-CMD

,REMOVE-POSSIBLE = *UNCHANGED / *YES / *NO

,DIALOG-ALLOWED = *UNCHANGED / *YES(...) / *NO(...)

*YES(...)

 PRIVILEGE = *UNCHANGED / *SAME / list-poss(64): <structured-name 1..30>

*NO(...)

 PRIVILEGE = *UNCHANGED / *SAME / list-poss(64): <structured-name 1..30>

,DIALOG-PROC-ALLOWED = *UNCHANGED / *YES(...) / *NO(...)

*YES(...)

 PRIVILEGE = *UNCHANGED / *SAME / list-poss(64): <structured-name 1..30>

*NO(...)

 PRIVILEGE = *UNCHANGED / *SAME / list-poss(64): <structured-name 1..30>

,GUIDED-ALLOWED = *UNCHANGED / *YES(...) / *NO(...)

*YES(...)

 PRIVILEGE = *UNCHANGED / *SAME / list-poss(64): <structured-name 1..30>

*NO(...)

 PRIVILEGE = *UNCHANGED / *SAME / list-poss(64): <structured-name 1..30>

,BATCH-ALLOWED = *UNCHANGED / *YES(...) / *NO(...)

*YES(...)

 PRIVILEGE = *UNCHANGED / *SAME / list-poss(64): <structured-name 1..30>

*NO(...)

 PRIVILEGE = *UNCHANGED / *SAME / list-poss(64): <structured-name 1..30>

,BATCH-PROC-ALLOWED = *UNCHANGED / *YES(...) / *NO(...)

*YES(...)

 PRIVILEGE = *UNCHANGED / *SAME / list-poss(64): <structured-name 1..30>

*NO(...)

 PRIVILEGE = *UNCHANGED / *SAME / list-poss(64): <structured-name 1..30>

,CMD-ALLOWED = *UNCHANGED / *NO(...) / *YES(...)

*NO(...)

 PRIVILEGE = *UNCHANGED / *SAME / list-poss(64): <structured-name 1..30>

*YES(...)

 UNLOAD = *UNCHANGED / *YES / *NO
 PRIVILEGE = *UNCHANGED / *SAME / list-poss(64): <structured-name 1..30>

continued ➠

(part 3 of 4)

234 U2284-J-Z125-9-76

MODIFY-CMD SDF-A statements

NAME = *UNCHANGED / <structured-name 1..30>
(External) command name to be specified when the command is entered. In contrast to
STANDARD-NAME and ALIAS-NAME, the user may abbreviate this name when entering
the command.

RESULT-INTERNAL-NAME = *UNCHANGED / *SAME / <alphanum-name 1..8>
This operand is of significance only for some of the commands implemented via system
modules. Implementation via system modules is reserved for Fujitsu Siemens Computers
System Software Development. For this reason, the RESULT-INTERNAL-NAME operand
is not described here.

STANDARD-NAME = *UNCHANGED / *NO / list-poss(2000): *NAME /
<structured-name 1..30>
Additional external command name, which may be alternatively used when entering the
command. It must not be abbreviated when entered. In contrast to an ALIAS-NAME, a
STANDARD-NAME must not be deleted so long as the command with this name exists in
one of the assigned reference syntax files (see OPEN-SYNTAX-FILE). If the original
external name given in the documentation for a command is declared to be its standard
name, it is thereby ensured that the command can be entered using the original name,
regardless of any name changes. Specifying *NAME causes SDF-A to take as STANDARD-
NAME the external command name entered for the NAME operand.

ALIAS-NAME = *UNCHANGED / *NO / list-poss(2000): <structured-name 1..30>
Additional external command name, which can be alternatively used when the command is
entered. It must not be abbreviated when entered. In contrast to a STANDARD-NAME, an
ALIAS-NAME may be deleted.

,NEXT-INPUT = *UNCHANGED / *CMD / *STMT / *DATA / *ANY

,PRIVILEGE = *UNCHANGED / *ALL / *EXCEPT(...) / *ADD(...) / *REMOVE(...) /

list-poss(64): <structured-name 1..30>

*EXCEPT(...)
 EXCEPT-PRIVILEGE = list-poss(64): <structured-name 1..30>

*ADD(...)
 ADD-PRIVILEGE = list-poss(64): <structured-name 1..30>

*REMOVE(...)
 REMOVE-PRIVILEGE = list-poss(64): <structured-name 1..30>

(part 4 of 4)

U2284-J-Z125-9-76 235

SDF-A statements MODIFY-CMD

MINIMAL-ABBREVIATION = *NO / <structured-name 1..30>
Additional external command name which defines the shortest permissible abbreviation for
the command. Any shorter abbreviation will not be accepted, even if it is unambiguous with
respect to other commands.
The following should be noted:

1. Checking against the minimum abbreviation is carried out only after SDF has checked
the input for ambiguity. It may thus happen that SDF selects the correct command but
then rejects it because the abbreviation entered is shorter than the specified minimum
abbreviation.

2. The minimum abbreviation must be derived from the command name (NAME).

3. The ALIAS-NAMEs and STANDARD-NAMEs of the command must not be shorter than
the minimum abbreviation if they are an abbreviation of the command name.

4. The minimum abbreviation may only be shortened - not lengthened - within a syntax file
hierarchy.

HELP =
Specifies whether there are help texts for the command, and if so, what those texts are.

HELP = *UNCHANGED
No change with regard to help texts.

HELP = *NO
There are no help texts.

HELP = list-poss(2000): <name 1..1>(...)
There are help texts in the specified languages (E = English, D = German). SDF uses the
language specified for message output.

TEXT = *UNCHANGED / <c-string 1..500 with-low>
Help text. UNCHANGED is permissible only if there is already a help text defined for the
language key.
The help text can contain the special character string “\n” for line breaks.

DOMAIN = *UNCHANGED / *NO / list-poss(2000): <structured-name 1..30>
Specifies whether the command is assigned to a domain, and if so, to which one.

IMPLEMENTOR =
Specifies how the command is implemented.

IMPLEMENTOR = *UNCHANGED
No change with regard to the implementation of the command.

236 U2284-J-Z125-9-76

MODIFY-CMD SDF-A statements

IMPLEMENTOR = *PROCEDURE(...)
The command is implemented via a procedure. Entering the command causes the
procedure to be called.

NAME = *UNCHANGED / <c-string 1..280> / *BY-IMON(...)
Name of the file containing the procedure.

NAME = <c-string 1..280>
Name of the file containing the procedure. If SDF-P is loaded, the name of a list variable
containing the procedure may also be specified. A variable can be specified in the form
’*VARIABLE(VARIABLE-NAME=varname)’.
Library elements can be specified with
’*LIBRARY-ELEMENT(LIBRARY=library,ELEMENT=element)’
If ’library(element)’ is specified, the value of CALL-OPTIONS is ignored. This notation
should therefore no longer be used.

It is the user’s responsibility to ensure that the string to specify the container of the
procedure is correctly constructed. Errors made at this position can only be detected
when the newly defined command is first called.

NAME = *BY-IMON(...)
The name of the procedure or of the library that contains this procedure as a library
element is provided by calling IMON-GPN, the installation path manager (see the
“IMON” manual [13]).

LOGICAL-ID = *UNCHANGED / <filename 1..30 without-cat-user-gen-vers>
Logical name of the procedure or of the library that contains this procedure as a
library element for implementing the commands, e.g. SYSSPR.

INSTALLATION-UNIT = *UNCHANGED /<text 1..30 without-sep>
Name of the installation unit, e.g. SDF-A.

VERSION = *UNCHANGED / *STD / <product-version>
Version of the installation unit (see also “product-version” on page 15 and
page 181).
If *STD is specified, the version selected using the SELECT-PRODUCT-VERSION
command is used. If this command has not yet been carried out for the relevant
installation unit, the highest version is used.

DEFAULT-PATH-NAME = *UNCHANGED / <filename 1..54>
Full file name of a procedure which is called if IMON-GPN is not available or if
LOGICAL-ID, INSTALLATION-UNIT or VERSION is not known in the system. If the
procedure is stored in a library element, then the file name specified here desig-
nates the library from which the procedure specified in the ELEMENT operand is
called.
In the case of other errors, the command is rejected with an error message, i.e. the
specified procedure is not called.

U2284-J-Z125-9-76 237

SDF-A statements MODIFY-CMD

ELEMENT = *UNCHANGED / *NONE / <composed-name 1..64>
Specifies if the procedure is stored in a library element.

ELEMENT = <composed-name 1..64>
Name of the library element that contains the procedure. The element name is
passed to IMON-GPN.

CALL-TYPE = *UNCHANGED / *CALL-PROCEDURE / *INCLUDE-PROCEDURE /
*ENTER-PROCEDURE
Defines whether the command procedure is called with CALL-PROCEDURE,
INCLUDE-PROCEDURE or ENTER-PROCEDURE. CALL-PROCEDURE and ENTER-
PROCEDURE can be used to call S procedures as well as non-S procedures;
INCLUDE-PROCEDURE can only be used to call S procedures (see also the manuals
“SDF-P” [12] and “Commands” [4]).

Example:
To call the command procedure with
CALL-PROCEDURE NAME=*LIB-ELEM(LIBRARY=xxx,ELEMENT=yyy)
the command must be defined as follows:
ADD-CMD ...,IMPLEMENTOR=*PROC(NAME=’*LIB-ELEM(LIBRARY=xxx,
ELEMENT=yyy)’,CALL-TYPE=*CALL-PROCEDURE...

CALL-OPTIONS = *UNCHANGED / *NONE / <c-string 1..1800 with-low>
Specifies a string containing additional operands (e.g. LOGGING) for the procedure call
(using CALL-/INCLUDE-/ENTER-PROCEDURE) in the following format:
CALL-OPTIONS=’operandx=valuex,operandy=valuey, ...’ . This character string
must not contain the PROCEDURE-PARAMETERS operand of the CALL-/INCLUDE-
/ENTER-PROCEDURE command.

UNLOAD-PROGRAM = *UNCHANGED / *YES / *NO
Specifies if a program is to be unloaded when the command defined in the NAME oper-
and is executed in the program via the CMD macro.
The procedure called may not contain any commands defined with CMD-ALLOWED=
*YES(UNLOAD=*YES), and in particular no TU program may be called in the proce-
dure.

IMPLEMENTOR = *TPR(...)
The command is implemented via system modules. This alternative for implementing
commands is reserved for Fujitsu Siemens Computers System Software Development. For
this reason, the structure *TPR(...) is not described here.

238 U2284-J-Z125-9-76

MODIFY-CMD SDF-A statements

IMPLEMENTOR = *APPLICATION(...)
The command is generated by a $CONSOLE application. This option is reserved for system
administration. The prerequisites for its use are described in the manual “Introductory
Guide to Systems Support” [6]. The required commands CONNECT-CMD-SERVER and
DISCONNECT-CMD-SERVER are detailed in the “Commands” [4] manual.

LOGGING = *UNCHANGED / *BY-SDF / *BY-IMPLEMENTOR
The operand is reserved for Fujitsu Siemens Computers System Software Devel-
opment. For this reason, it is not described here.

IMPLEMENTOR = *BY-TPR(...)
An existing command serves as the basis for the new command.

TPR-CMD = *UNCHANGED / <structured-name 1..30>
Name of a command defined with IMPLEMENTOR=*TPR(...) which is known in the
syntax hierarchy (see page 140 for an example).

REMOVE-POSSIBLE = *UNCHANGED / *YES / *NO
Specifies whether the command may be deleted (see REMOVE). If the command has been
defined with REMOVE-POSSIBLE=*NO in one of the assigned reference syntax files (see
OPEN-SYNTAX-FILE), SDF-A rejects a change to *YES.

DIALOG-ALLOWED = *UNCHANGED / *YES(...) / *NO(...)
Specifies whether the command is allowed in interactive mode.

DIALOG-ALLOWED = *YES(...)
The command is allowed in interactive mode for all user tasks which have at least one of
the privileges specified for PRIVILEGE.

PRIVILEGE = *UNCHANGED / *SAME / list-poss(64): <structured-name 1..30>
The command is allowed for all user tasks with the privileges specified here
(possible privileges are listed in the “SECOS” manual [10]).

PRIVILEGE = *SAME
The command is allowed for all user tasks with exactly the same privileges as those
defined for the command itself (see the PRIVILEGE operand on page 243).

PRIVILEGE = list-poss(64): <structured-name 1..30>
The command is allowed only for user tasks with exactly the same privileges as those
defined in this list.

U2284-J-Z125-9-76 239

SDF-A statements MODIFY-CMD

DIALOG-ALLOWED = *NO(...)
The command is not allowed in interactive mode for user tasks which have only the privi-
leges specified for PRIVILEGE.

PRIVILEGE = *UNCHANGED / *SAME / list-poss(64): <structured-name 1..30>
The command is not allowed for user tasks with the privileges specified here
(possible privileges are listed in the “SECOS” manual [10]).

PRIVILEGE = *SAME
The command is not allowed for all user tasks with exactly the same privileges as those
defined for the command itself (see the EXCEPT-PRIVILEGE operand on page 243).

PRIVILEGE = list-poss(64): <structured-name 1..30>
The command is not allowed for user tasks with the privileges defined in this list. If a
user task has at least one privilege that is not included in this list, it may execute the
command.

DIALOG-PROC-ALLOWED = *UNCHANGED / *YES(...) / *NO(...)
Specifies whether the command is allowed in interactive mode within a procedure.

DIALOG-PROC-ALLOWED = *YES(...)
The command is allowed in interactive mode within a procedure for all user tasks which
have at least one of the privileges specified for PRIVILEGE.

PRIVILEGE = *UNCHANGED / *SAME / list-poss(64): <structured-name 1..30>
The command is allowed for all user tasks with the privileges specified here
(possible privileges are listed in the “SECOS” manual [10]).

PRIVILEGE = *SAME
The command is allowed for all user tasks with exactly the same privileges as those
defined for the command itself (see the PRIVILEGE operand on page 243).

PRIVILEGE = list-poss(64): <structured-name 1..30>
The command is allowed only for user tasks with exactly the same privileges as those
defined in this list.

DIALOG-PROC-ALLOWED = *NO(...)
The command is not allowed in interactive mode within a procedure for user tasks which
have only the privileges specified for PRIVILEGE.

PRIVILEGE = *UNCHANGED / *ALL / list-poss(64): <structured-name 1..30>
The command is not allowed for user tasks with the privileges specified here
(possible privileges are listed in the “SECOS” manual [10]).

PRIVILEGE = *SAME
The command is not allowed for all user tasks with exactly the same privileges as those
defined for the command itself (see the EXCEPT-PRIVILEGE operand on page 243).

240 U2284-J-Z125-9-76

MODIFY-CMD SDF-A statements

PRIVILEGE = list-poss(64): <structured-name 1..30>
The command is not allowed for user tasks with the privileges defined in this list. If a
user task has at least one privilege that is not included in this list, it may execute the
command.

GUIDED-ALLOWED = *UNCHANGED / *YES(...) / *NO(...)
Specifies whether the command is allowed in guided dialog.

GUIDED-ALLOWED = *YES(...)
The command is allowed in guided dialog for all user tasks which have at least one of the
privileges specified for PRIVILEGE.

PRIVILEGE = *UNCHANGED / *SAME / list-poss(64): <structured-name 1..30>
The command is allowed for all user tasks with the privileges specified here
(possible privileges are listed in the “SECOS” manual [10]).

PRIVILEGE = *SAME
The command is allowed for all user tasks with exactly the same privileges as those
defined for the command itself (see the PRIVILEGE operand on page 243).

PRIVILEGE = list-poss(64): <structured-name 1..30>
The command is allowed only for user tasks with exactly the same privileges as those
defined in this list.

GUIDED-ALLOWED = *NO(...)
The command is not allowed in guided dialog for user tasks which have only the privileges
specified for PRIVILEGE.

PRIVILEGE = *UNCHANGED / *SAME / list-poss(64): <structured-name 1..30>
The command is not allowed for user tasks with the privileges specified here
(possible privileges are listed in the “SECOS” manual [10]).

PRIVILEGE = *SAME
The command is not allowed for all user tasks with exactly the same privileges as those
defined for the command itself (see the EXCEPT-PRIVILEGE operand on page 243).

PRIVILEGE = list-poss(64): <structured-name 1..30>
The command is not allowed for user tasks with the privileges defined in this list. If a
user task has at least one privilege that is not included in this list, it may execute the
command.

U2284-J-Z125-9-76 241

SDF-A statements MODIFY-CMD

BATCH-ALLOWED = *UNCHANGED / *YES(...) / *NO(...)
Specifies whether the command is allowed in batch mode.

BATCH-ALLOWED = *YES(...)
The command is allowed in batch mode for all user tasks which have at least one of the
privileges specified for PRIVILEGE.

PRIVILEGE = *UNCHANGED / *SAME / list-poss(64): <structured-name 1..30>
The command is allowed for all user tasks with the privileges specified here
(possible privileges are listed in the “SECOS” manual [10]).

PRIVILEGE = *SAME
The command is allowed for all user tasks with exactly the same privileges as those
defined for the command itself (see the PRIVILEGE operand on page 243).

PRIVILEGE = list-poss(64): <structured-name 1..30>
The command is allowed only for user tasks with exactly the same privileges as those
defined in this list.

BATCH-ALLOWED = *NO(...)
The command is not allowed in batch mode for user tasks which have only the privileges
specified for PRIVILEGE.

PRIVILEGE = *UNCHANGED / *SAME / list-poss(64): <structured-name 1..30>
The command is not allowed for user tasks with the privileges specified here
(possible privileges are listed in the “SECOS” manual [10]).

PRIVILEGE = *SAME
The command is not allowed for all user tasks with exactly the same privileges as those
defined for the command itself (see the EXCEPT-PRIVILEGE operand on page 243).

PRIVILEGE = list-poss(64): <structured-name 1..30>
The command is not allowed for user tasks with the privileges defined in this list. If a
user task has at least one privilege that is not included in this list, it may execute the
command.

BATCH-PROC-ALLOWED = *UNCHANGED / *YES(...) / *NO(...)
Specifies whether the command is allowed in batch mode within a procedure.

BATCH-PROC-ALLOWED = *YES(...)
The command is allowed in batch mode within a procedure for all user tasks which have at
least one of the privileges specified for PRIVILEGE.

PRIVILEGE = *UNCHANGED / *SAME / list-poss(64): <structured-name 1..30>
The command is allowed for all user tasks with the privileges specified here
(possible privileges are listed in the “SECOS” manual [10]).

PRIVILEGE = *SAME
The command is allowed for all user tasks with exactly the same privileges as those
defined for the command itself (see the PRIVILEGE operand on page 243).

242 U2284-J-Z125-9-76

MODIFY-CMD SDF-A statements

PRIVILEGE = list-poss(64): <structured-name 1..30>
The command is allowed only for user tasks with exactly the same privileges as those
defined in this list.

BATCH-PROC-ALLOWED = *NO(...)
The command is not allowed in batch mode within a procedure for user tasks which have
only the privileges specified for PRIVILEGE.

PRIVILEGE = *UNCHANGED / *SAME / list-poss(64): <structured-name 1..30>
The command is not allowed for user tasks with the privileges specified here
(possible privileges are listed in the “SECOS” manual [10]).

PRIVILEGE = *SAME
The command is not allowed for all user tasks with exactly the same privileges as those
defined for the command itself (see the EXCEPT-PRIVILEGE operand on page 243).

PRIVILEGE = list-poss(64): <structured-name 1..30>
The command is not allowed for user tasks with the privileges defined in this list. If a
user task has at least one privilege that is not included in this list, it may execute the
command.

CMD-ALLOWED =
Specifies whether the command can be called with the CMD macro.

CMD-ALLOWED = *UNCHANGED
No change with regard to calling the command with the CMD macro.

CMD-ALLOWED = *YES(...)
The command can be called with the CMD macro. Calling with the CMD macro is allowed
for all user tasks which have at least one of the privileges specified for PRIVILEGE. Possible
restrictions as to the permissible modes of operation (DIALOG-ALLOWED, DIALOG-
PROC-ALLOWED, BATCH-ALLOWED, BATCH-PROC-ALLOWED) do not apply when the
command is called with the CMD macro.

UNLOAD = *NO / *YES
Specifies whether the calling program is to be unloaded. For commands implemented
via a command procedure the calling program is always unloaded.

PRIVILEGE = *UNCHANGED / *SAME / list-poss(64): <structured-name 1..30>
The command call is allowed for all user tasks with the privileges specified here
(possible privileges are listed in the “SECOS” manual [10]).

PRIVILEGE = *SAME
The command call is allowed for all user tasks with exactly the same privileges as those
defined for the command itself (see the PRIVILEGE operand on page 243).

PRIVILEGE = list-poss(64): <structured-name 1..30>
The command call is allowed only for user tasks with exactly the same privileges as
those defined in this list.

U2284-J-Z125-9-76 243

SDF-A statements MODIFY-CMD

CMD-ALLOWED = *NO(...)
The command cannot be called with the CMD macro by any user task which has only the
privileges specified for PRIVILEGE.

PRIVILEGE = *UNCHANGED / *SAME / list-poss(64): <structured-name 1..30>
The command call is not allowed for user tasks with the privileges specified here
(possible privileges are listed in the “SECOS” manual [10]).

PRIVILEGE = *SAME
The command call is not allowed for all user tasks with exactly the same privileges as
those defined for the command itself (see the EXCEPT-PRIVILEGE operand on
page 243).

PRIVILEGE = list-poss(64): <structured-name 1..30>
The command is not allowed for user tasks with the privileges defined in this list. If a
user task has at least one privilege that is not included in this list, it may execute the
command.

NEXT-INPUT =
Specifies what type of input is expected to follow the command. SDF needs this specifi-
cation in order to conduct the guided dialog.

NEXT-INPUT = *UNCHANGED
No change with regard to the subsequent input.

NEXT-INPUT = *CMD
A command is expected as the next entry. SDF interprets input in the NEXT field of the
guided dialog as a command.

NEXT-INPUT = *STMT
A statement is expected as the next entry. SDF interprets input in the NEXT field of the
guided dialog as a statement. Example: a command implemented by means of a procedure
starts a program whose first step is to read in a statement.

NEXT-INPUT = *DATA
Data is expected as the next entry. SDF interprets input in the NEXT field of the guided
dialog as data. Example: a command implemented by means of a procedure starts a
program whose first step is to read in data.

NEXT-INPUT = *ANY
It is not possible to predict what kind of input will follow.

PRIVILEGE = *UNCHANGED / *ALL / *EXCEPT(...) / *ADD(...) / *REMOVE(...) /
list-poss(64): <structured-name 1..30>
Specifies the privileges assigned to the command.

PRIVILEGE = *ALL
All privileges currently defined and all subsequently defined privileges are assigned to the
command.

244 U2284-J-Z125-9-76

MODIFY-CMD SDF-A statements

PRIVILEGE = *EXCEPT(...)
With the exception of those defined with *EXCEPT(...), all privileges currently defined and
all subsequently defined privileges are assigned to the command.

EXCEPT-PRIVILEGE = list-poss(64): <structured-name 1..30>
Specifies the privileges that are not assigned to the command.

PRIVILEGE = *ADD(...)
The privileges specified with *ADD(...) are assigned to the command in addition to the privi-
leges already assigned to it.

ADD-PRIVILEGE = list-poss(64): <structured-name 1..30>
Specifies which additional privileges are to be assigned to the command.

PRIVILEGE = *REMOVE(...)
The privileges specified with *REMOVE(...) are removed from the command.

REMOVE-PRIVILEGE = list-poss(64): <structured-name 1..30>
Specifies which privileges are to be removed from the command.

PRIVILEGE = list-poss(64): <structured-name 1..30>
Only the privileges specified in this list are assigned to the command.

U2284-J-Z125-9-76 245

SDF-A statements MODIFY-CMD-ATTRIBUTES

MODIFY-CMD-ATTRIBUTES
Modify command attributes

The statement MODIFY-CMD-ATTRIBUTES is used to modify security attributes (input
modes and privileges) for several commands simultaneously.

(part 1 of 2)

MODIFY-CMD-ATTRIBUTES

NAME = *ALL / <structured-name 1..30 with-wild> / list-poss(2000): <structured-name 1..30>

,DIALOG-ALLOWED = *UNCHANGED / *YES(...) / *NO(...)

*YES(...)
 PRIVILEGE = *UNCHANGED / *SAME / list-poss(64): <structured-name 1..30>

*NO(...)
 PRIVILEGE = *UNCHANGED / *SAME / list-poss(64): <structured-name 1..30>

,DIALOG-PROC-ALLOWED = *UNCHANGED / *YES(...) / *NO(...)

*YES(...)
 PRIVILEGE = *UNCHANGED / *SAME / list-poss(64): <structured-name 1..30>

*NO(...)
 PRIVILEGE = *UNCHANGED / *SAME / list-poss(64): <structured-name 1..30>

,GUIDED-ALLOWED = *UNCHANGED / *YES(...) / *NO(...)

*YES(...)
 PRIVILEGE = *UNCHANGED / *SAME / list-poss(64): <structured-name 1..30>

*NO(...)
 PRIVILEGE = *UNCHANGED / *SAME / list-poss(64): <structured-name 1..30>

,BATCH-ALLOWED = *UNCHANGED / *YES(...) / *NO(...)

*YES(...)
 PRIVILEGE = *UNCHANGED / *SAME / list-poss(64): <structured-name 1..30>

*NO(...)
 PRIVILEGE = *UNCHANGED / *SAME / list-poss(64): <structured-name 1..30>

,BATCH-PROC-ALLOWED = *UNCHANGED / *YES(...) / *NO(...)

*YES(...)
 PRIVILEGE = *UNCHANGED / *SAME / list-poss(64): <structured-name 1..30>

continued ➠

246 U2284-J-Z125-9-76

MODIFY-CMD-ATTRIBUTES SDF-A statements

NAME = *ALL / <structured-name 1..30 with-wild> /
list-poss(2000): <structured-name 1..30>
Names of the commands whose attributes are to be modified.

The description of all other operands of the MODIFY-CMD-ATTRIBUTES statement are to
be found under MODIFY-CMD as of page 238.

*NO(...)
 PRIVILEGE = *UNCHANGED / *SAME / list-poss(64): <structured-name 1..30>

,CMD-ALLOWED = *UNCHANGED / *NO(...) / *YES(...)

*NO(...)
 PRIVILEGE = *UNCHANGED / *SAME / list-poss(64): <structured-name 1..30>

*YES(...)
 UNLOAD = *UNCHANGED / *YES / *NO
 ,PRIVILEGE = *UNCHANGED / *SAME / list-poss(64): <structured-name 1..30>

,PRIVILEGE = *UNCHANGED / *ALL / *EXCEPT(...) / *ADD(...) / *REMOVE(...) /

list-poss(64): <structured-name 1..30>

*EXCEPT(...)
 EXCEPT-PRIVILEGE = list-poss(64): <structured-name 1..30>

*ADD(...)
 ADD-PRIVILEGE = list-poss(64): <structured-name 1..30>

*REMOVE(...)
 REMOVE-PRIVILEGE = list-poss(64): <structured-name 1..30>

(part 2 of 2)

U2284-J-Z125-9-76 247

SDF-A statements MODIFY-DOMAIN

MODIFY-DOMAIN
Modify domain definition

The MODIFY-DOMAIN statement is used to modify the definition of a domain in the open
syntax file. This domain must be the current object (see page 221).

The MODIFY-DOMAIN statement is very similar to the ADD-DOMAIN statement. The
default value for all operands of the MODIFY-DOMAIN statement is *UNCHANGED, i.e.
only those parts of a domain definition that are explicitly specified are modified. In guided
dialog the operand form displays the current operand assignment rather than
*UNCHANGED. When a value other than *UNCHANGED is specified for a MODIFY-
DOMAIN operand, the old specifications in the domain definition are replaced by the new
ones. All names given to a domain must be unique with respect to all other domains.

NAME = *UNCHANGED / <structured-name 1..30>
Name of the domain which is to be used in guided dialog.

HELP =
Specifies whether there are help texts for the domain, and if so, what those texts are.

HELP = *UNCHANGED
No changes with regard to help texts.

HELP = *NO
There are no help texts.

HELP = list-poss(2000): <name 1..1>(...)
There are help texts in the specified languages (E = English, D = German). SDF uses the
language specified for message output.

MODIFY-DOMAIN

NAME = *UNCHANGED / <structured-name 1..30>

,HELP = *UNCHANGED / *NO / list-poss(2000): <name 1..1>(...)

<name 1..1>(...)
 TEXT = *UNCHANGED / <c-string 1..500 with-low>

,PRIVILEGE = *UNCHANGED / *ALL / *EXCEPT(...) / list-poss(64): <structured-name 1..30>

*EXCEPT(...)
 EXCEPT-PRIVILEGE = list-poss(64): <structured-name 1..30>

248 U2284-J-Z125-9-76

MODIFY-DOMAIN SDF-A statements

TEXT = *UNCHANGED / <c-string 1..500 with-low>
Help text. *UNCHANGED is permissible only if a help text has already been defined for
the language key.
The help text can contain the special character string “\n” for line breaks.

PRIVILEGE = *UNCHANGED / *ALL / *EXCEPT(...) /
list-poss(64): <structured-name 1..30>
Specifies the privileges assigned to the domain.

PRIVILEGE = *ALL
All privileges currently defined and all subsequently defined privileges are assigned to the
domain.

PRIVILEGE = *EXCEPT(...)
With the exception of those defined with *EXCEPT(...), all privileges currently defined and
all subsequently defined privileges are assigned to the domain.

EXCEPT-PRIVILEGE = list-poss(64): <structured-name 1..30>
Specifies the privileges that are not assigned to the domain.

PRIVILEGE = list-poss(64): <structured-name 1..30>
Only the privileges specified in this list are assigned to the domain.

U2284-J-Z125-9-76 249

SDF-A statements MODIFY-OPERAND

MODIFY-OPERAND
Modify operand definition

The MODIFY-OPERAND statement is used to modify the definition of an operand in the
open syntax file. The operand must be the “current” object (see page 148). Afterwards the
first operand value of the operand is the “current” object.

The MODIFY-OPERAND statement is very similar to the ADD-OPERAND statement. The
default value for all operands of the MODIFY-OPERAND statement is *UNCHANGED, i.e.
only those parts of an operand definition that are explicitly specified are modified. In guided
dialog the operand form displays the current operand assignment rather than
*UNCHANGED. When a value other than *UNCHANGED is specified for a MODIFY-
OPERAND operand, the old specifications in the operand definition to be modified are
replaced by the new ones. This also applies if a list is possible, i.e. instead of being added
to the value list, the specified value replaces the list.

There is a special rule for STANDARD-NAME. When the operand to be modified is defined
in an assigned reference file (see OPEN-SYNTAX-FILE), the old entries for STANDARD-
NAME are retained and the name specified with MODIFY-OPERAND is added to them. All
names given to the operand must be unique with respect to all other operands at the same
level (or in the same structure). Definitions of the operand values pertaining to the operand
are modified by means of the MODIFY-VALUE statement rather than the MODIFY-
OPERAND statement.

250 U2284-J-Z125-9-76

MODIFY-OPERAND SDF-A statements

(part 1 of 2)

MODIFY-OPERAND

NAME = *UNCHANGED / <structured-name 1..20>

,INTERNAL-NAME = *UNCHANGED / *STD / <alphanum-name 1..8>

,STANDARD-NAME = *UNCHANGED / *NO / list-poss(2000): *NAME / <structured-name 1..20>

,ALIAS-NAME = *UNCHANGED / *NO / list-poss(2000): <structured-name 1..20>

,MINIMAL-ABBREVIATION = *UNCHANGED / *NO / <structured-name 1..30>

,HELP = *UNCHANGED / *NO / list-poss(2000): <name 1..1>(...)

<name 1..1>(...)
 TEXT = *UNCHANGED / <c-string 1..500 with-low>

,DEFAULT = *UNCHANGED / *NONE / *JV(...) / *VARIABLE(...) / <c-string 1..1800 with-low>(...)

*JV(...)
 JV-NAME = *UNCHANGED / <filename 1..54 without-gen-vers>
 ,ALTERNATE-DEFAULT = *UNCHANGED / *NONE / <c-string 1..1800>(...)
 <c-string 1..1800>(...)
 ANALYSE-DEFAULT = *UNCHANGED / *YES / *NO

*VARIABLE(...)
 VARIABLE-NAME = *UNCHANGED / <composed-name 1..255>
 ,ALTERNATE-DEFAULT = *UNCHANGED / *NONE / <c-string 1..1800>(...)
 <c-string 1..1800>(...)
 ANALYSE-DEFAULT = *UNCHANGED / *YES / *NO

<c-string 1..1800 with-low>(...)
 ANALYSE-DEFAULT = *UNCHANGED / *YES / *NO

,SECRET-PROMPT = *UNCHANGED / *YES / *NO

,STRUCTURE-IMPLICIT = *UNCHANGED / *YES / *NO

,REMOVE-POSSIBLE = *UNCHANGED / *YES / *NO

,DIALOG-ALLOWED = *UNCHANGED / *YES / *NO

,DIALOG-PROC-ALLOWED = *UNCHANGED / *YES / *NO

,GUIDED-ALLOWED = *UNCHANGED / *YES / *NO

,BATCH-ALLOWED = *UNCHANGED / *YES / *NO

,BATCH-PROC-ALLOWED = *UNCHANGED / *YES / *NO

continued ➠

U2284-J-Z125-9-76 251

SDF-A statements MODIFY-OPERAND

NAME = *UNCHANGED / <structured-name 1..20>
(External) operand name, to be specified when the command or statement is entered (but
see the operand PRESENCE=*INTERNAL-ONLY). The user can abbreviate this name on
input, unlike STANDARD-NAME and ALIAS-NAME.

INTERNAL-NAME = *UNCHANGED / *STD / <alphanum-name 1..8>
Internal operand name. With the help of the internal operand name, SDF identifies an
operand defined in several syntax files under different external names as being the same
operand. When *STD is specified, SDF-A takes as the internal operand name the first eight
characters (omitting hyphens) of the external name entered for the NAME operand.

STANDARD-NAME = *UNCHANGED / *NO / list-poss(2000): *NAME /
<structured-name 1..20>
Additional external operand name, which can be alternatively used when entering the
command or statement. It must not be abbreviated when entered. In contrast to an ALIAS-
NAME, a STANDARD-NAME must not be deleted so long as the operand with this name
exists in one of the assigned syntax files (see OPEN-SYNTAX-FILE). If the original external
name given in the command or program documentation is declared to be the standard

,LIST-POSSIBLE = *UNCHANGED / *NO / *YES(...)

*YES(...)
 LIMIT = *UNCHANGED / *STD / <integer 1..3000>
 ,FORM = *UNCHANGED / *NORMAL / *OR

,LINES-IN-FORM = *UNCHANGED / <integer 1..15>

,PRESENCE = *UNCHANGED / *NORMAL / *EXTERNAL-ONLY / *INTERNAL-ONLY

,RESULT-OPERAND-LEVEL = *UNCHANGED / <integer 1..5>

,RESULT-OPERAND-NAME = *UNCHANGED / *SAME / <structured-name 1..20> / *POSITION(...) /

 *LABEL / *COMMAND-NAME

*POSITION(...)
 POSITION = *UNCHANGED / <integer 1..3000>

,CONCATENATION-POS = *UNCHANGED / *NO / <integer 1..20>

,VALUE-OVERLAPPING = *UNCHANGED / *YES / *NO

,OVERWRITE-POSSIBLE = *UNCHANGED / *NO / *YES

,PRIVILEGE = *UNCHANGED / *SAME / *EXCEPT(...) / list-poss(64): <structured-name 1..30>

*EXCEPT(...)
 EXCEPT-PRIVILEGE = list-poss(64): <structured-name 1..30>

(part 2 of 2)

252 U2284-J-Z125-9-76

MODIFY-OPERAND SDF-A statements

name, it is thereby ensured that the operand can be entered using the original name,
regardless of any name changes. Specifying *NAME causes SDF-A to take as STANDARD-
NAME the external operand name entered for the NAME operand.

ALIAS-NAME = *UNCHANGED / *NO / list-poss(2000): <structured-name 1..20>
Additional external operand name, which can be alternatively used when entering the
command or statement. It must not be abbreviated when entered. In contrast to a
STANDARD-NAME, an ALIAS-NAME may be deleted.

MINIMAL-ABBREVIATION = *UNCHANGED / *NO / <structured-name 1..30>
Additional external operand name which defines the shortest permissible abbreviation for
the operand. Any shorter abbreviation will not be accepted, even if it is unambiguous with
respect to other commands.
The following should be noted:

1. Checking against the minimum abbreviation is carried out only after SDF has checked
the input for ambiguity. It may thus happen that SDF selects the correct operand but
then rejects it because the abbreviation entered is shorter than the specified minimum
abbreviation.

2. The minimum abbreviation must be derived from the operand name (NAME).

3. The ALIAS-NAMEs and STANDARD-NAMEs of the operand must not be shorter than
the minimum abbreviation if they are an abbreviation of the operand name.

4. The minimum abbreviation may only be shortened - not lengthened - within a syntax file
hierarchy.

HELP =
Specifies whether there are help texts for the operand, and if so, what those texts are.

HELP = *UNCHANGED
No changes with regard to help texts.

HELP = *NO
There are no help texts.

HELP = list-poss(2000): <name 1..1>(...)
There are help texts in the specified languages (E = English, D = German). SDF uses the
language specified for message output.

TEXT = *UNCHANGED / <c-string 1..500 with-low>
Help text. *UNCHANGED is permissible only if a help text has already been defined for
the language key.
The help text can contain the special character string “\n” for line breaks.

U2284-J-Z125-9-76 253

SDF-A statements MODIFY-OPERAND

DEFAULT =
Defines whether a default value exists for the operand.

DEFAULT = *UNCHANGED
No change with regard to the default value.

DEFAULT = *NONE
There is no default value. The operand is a mandatory operand.

DEFAULT = *JV(...)
The operand is optional and its default value is stored in the job variable whose name is
specified here. If a job variable is used as a default value, this default value is always
analyzed by SDF at execution time. If it is not possible to access the job variable, the
alternate default value defined with ALTERNATE-DEFAULT is used. If no alternate default
value exists, the operand must be regarded as mandatory (corresponding to
DEFAULT=*NONE). Consequently, DEFAULT=*JV(...) must not be used together with
PRESENCE=*INTERNAL-ONLY.

JV-NAME = *UNCHANGED
The name of the job variable is not changed.

JV-NAME = <filename 1..54 without-gen-vers>
Name of the job variable.

ALTERNATE-DEFAULT = *UNCHANGED / *NONE / <c-string 1..1800 with-low>(...)
Alternate default value to be used if errors occur when accessing the job variable.

ALTERNATE-DEFAULT = *NONE
There is no alternate default value.

ALTERNATE-DEFAULT = <c-string 1..1800 with-low>(...)
Alternate default value, to be specified in accordance with the rules governing the input
of operands. The alternate default may thus be given in the form of a list enclosed in
parentheses and must be contained in a definition of the operand value associated with
the operand (see ADD-VALUE). If this default value is contained in the keyword defined
with STAR=*MANDATORY, it must also be entered with an asterisk.

ANALYSE-DEFAULT = *UNCHANGED / *YES / *NO
Specifies whether the given value will be analyzed syntactically by SDF-A as soon
as the command or statement definition has been completed. This expedites
analysis of the command or statement at runtime, but presupposes that the default
value does not consist of a list or introduce a structure.

254 U2284-J-Z125-9-76

MODIFY-OPERAND SDF-A statements

DEFAULT = *VARIABLE(...)
The operand is optional and its default value is stored in the S variable whose name is
specified here (see the “SDF-P” [12] User Guide).
If an S variable is used as a default value, this default value is always analyzed by SDF at
execution time. If it is not possible to access the S variable, the alternate default value
defined with ALTERNATE-DEFAULT is used. If no alternate default value exists, this
operand must be regarded as mandatory (corresponding to DEFAULT = *NONE). Conse-
quently, DEFAULT=*VARIABLE(...) must not be used together with
PRESENCE=*INTERNAL-ONLY.

VARIABLE-NAME = *UNCHANGED
The name of the S variable is not changed.

VARIABLE-NAME = <composed-name 1..255>
Name of the S variable.

ALTERNATE-DEFAULT = *UNCHANGED / *NONE / <c-string 1..1800 with-low>(...)
Alternate default value to be used if errors occur when accessing the S variable.

ALTERNATE-DEFAULT = *NONE
There is no alternate default value.

ALTERNATE-DEFAULT = <c-string 1..1800 with-low>(...)
Alternate default value, to be specified in accordance with the rules governing the input
of operands. The alternate default may thus also be given in the form of a list enclosed
in parentheses and must be contained in a definition of the operand value associated
with the operand (see ADD-VALUE). If this default value is contained in the keyword
defined with STAR=*MANDATORY, it must also be entered with an asterisk.

ANALYSE-DEFAULT = *UNCHANGED / *YES / *NO
Specifies whether the given value will be analyzed syntactically by SDF-A as soon
as the command or statement definition has been completed. This expedites
analysis of the command or statement at runtime, but presupposes that the default
value does not consist of a list or introduce a structure.

DEFAULT = <c-string 1..1800 with-low>(...)
This operand is optional and has the specified default value. It must be specified in accor-
dance with the rules governing the input of operands. The default value may thus be
specified as a list enclosed in parentheses and must be contained in a definition of the
operand value associated with the operand (see ADD-VALUE). If the default value is
contained in the keyword defined with STAR=*MANDATORY, it must also be entered with
an asterisk.

ANALYSE-DEFAULT = *UNCHANGED / *YES / *NO
Specifies whether the given value will be analyzed syntactically by SDF-A as soon as
the command or statement definition has been completed. This expedites analysis of
the command or statement at runtime, but presupposes that the default value does not
consist of a list or introduce a structure.

U2284-J-Z125-9-76 255

SDF-A statements MODIFY-OPERAND

SECRET-PROMPT = *UNCHANGED / *NO / *YES
Specifies whether the operand is treated as a secret operand. The input fields for values of
secret operands are kept blank, and logging is suppressed (see also ADD-VALUE...,
OUTPUT=*SECRET-PROMPT and ADD-VALUE...,SECRET-PROMPT=*SAME/*NO).

STRUCTURE-IMPLICIT = *UNCHANGED / *NO / *YES
Relevant only for an operand that stands in a structure, and specifies whether the structure
containing the operand is implicitly selected via global specification of the operand name
when the command or statement is entered. (For details, see ADD-OPERAND, page 148).

REMOVE-POSSIBLE = *UNCHANGED / *YES / *NO
Specifies whether the operand may be deleted (see REMOVE). If the operand has been
defined with REMOVE-POSSIBLE=*NO in one of the assigned reference syntax files (see
OPEN-SYNTAX-FILE), SDF-A rejects a change to *YES.

DIALOG-ALLOWED = *UNCHANGED / *YES / *NO
Specifies whether the operand is allowed in interactive mode. Specifying *YES presup-
poses that the command or statement and, where applicable, the operand value introducing
the structure are allowed in interactive mode.

DIALOG-PROC-ALLOWED = *UNCHANGED / *YES / *NO
Specifies whether the operand is allowed in interactive mode within a procedure. Specifying
*YES presupposes that the command or statement and, where applicable, the operand
value introducing the structure are allowed in interactive mode within a procedure.

GUIDED-ALLOWED = *UNCHANGED / *YES / *NO
Specifies whether the operand is allowed in guided dialog. Specifying YES presupposes
that the command or statement and, where applicable, the operand value introducing the
structure are allowed in guided dialog.
GUIDED-ALLOWED=*NO is not suitable for security-related aspects, since operands
defined with this setting are shown in the procedure error dialog as well as for /SHOW-CMD
and //SHOW-STMT with FORM=*UNGUIDED.

BATCH-ALLOWED = *UNCHANGED / *YES / *NO
Specifies whether the operand is allowed in batch mode. Specifying *YES presupposes that
the command or statement and, where applicable, the operand value introducing the
structure are allowed in batch mode.

BATCH-PROC-ALLOWED = *UNCHANGED / *YES / *NO
Specifies whether the operand is allowed in batch mode within a procedure. Specifying
*YES presupposes that the command or statement and, where applicable, the operand
value introducing the structure are allowed in batch mode within a procedure.

256 U2284-J-Z125-9-76

MODIFY-OPERAND SDF-A statements

LIST-POSSIBLE =
Specifies whether a list is allowed at the operand position. The ADD-VALUE statement is
used to define for which of the operand values a list is allowed.

LIST-POSSIBLE = *UNCHANGED
No change with regard to whether a list is allowed.

LIST-POSSIBLE = *NO
No list is allowed.

LIST-POSSIBLE = *YES(...)
A list is allowed.

LIMIT = *UNCHANGED / *STD / <integer 1..3000>
Specifies the maximum number of list elements. Unless otherwise specified, SDF-A
sets the value at 2000 (see also page 377).

FORM = *UNCHANGED / *NORMAL / *OR
Specifies whether the list elements are to be addressed individually (*NORMAL) or
passed to the implementation converted into a single value using logical OR (see
section “Format of the standardized transfer area” on page 365”). The latter is appro-
priate only for list elements of the data type KEYWORD, for which hexadecimal transfer
values have been defined (see ADD-VALUE...,VALUE=<c-string>(...,OUTPUT=<x-
string>...). A specification here is relevant only when the defined operand pertains to a
statement or to a command defined with IMPLEMENTOR=*TPR(..,CMD-
INTERFACE=*NEW/*TRANSFER-AREA,...) (see ADD-CMD). The specification made
here must be consistent with the transfer area defined in the implementation.

LINES-IN-FORM = *UNCHANGED / <integer 1..15>
Specifies the number of input lines in the guided dialog form.

PRESENCE =
Specifies whether the operand is to be suppressed.

PRESENCE = *UNCHANGED
No change as far as suppressing the operand is concerned.

PRESENCE = *NORMAL
The operand is not suppressed.

PRESENCE = *EXTERNAL-ONLY
Transfer of the operand to the implementation is suppressed (e.g. an operand that is no
longer needed but must be retained at the user interface for compatibility reasons, or an
operand that serves merely to group further operands in a structure).

U2284-J-Z125-9-76 257

SDF-A statements MODIFY-OPERAND

PRESENCE = *INTERNAL-ONLY
The operand is suppressed at the user interface. Together with the then mandatory
definition of a default value (see the DEFAULT operand), a fixed value may be assigned to
a parameter implemented in this way without an operand appearing to the user in the
command or statement format. If a structure is attached to the operand, all of the sub-
operands contained in the structure will be integrated into the higher level.
PRESENCE=*INTERNAL-ONLY must not be used together with DEFAULT=*JV(...) or
DEFAULT=*VARIABLE(...).

RESULT-OPERAND-LEVEL = *UNCHANGED / <integer 1..5>
Specifies the structure level at which the operand is to be passed to the implementation.
For an operand not attached to a structure, this value must be 1. The following applies to
an operand attached to a structure: the RESULT-OPERAND-LEVEL is equal to or less than
the structure level at which the operand stands in the input format of the command or
statement. It is lower than, equal to or one higher than the RESULT-OPERAND-LEVEL of
the operand to which the operand value introducing the structure belongs. For statements
and for commands defined with IMPLEMENTOR=*TPR(...,CMD-
INTERFACE=*NEW/*TRANSFER-AREA,...), see also ADD-
VALUE...STRUCTURE=*YES(...,FORM=...).

RESULT-OPERAND-NAME =
Specifies how the implementation identifies the operand in the transfer area or string that
SDF passes to it. Note: SDF uses a transfer area (see section “Format of the standardized
transfer area” on page 365”) for statements and for commands defined with IMPLE-
MENTOR=*TPR(...,CMD-INTERFACE=*NEW/*TRANSFER-AREA,...) (see ADD-CMD).
SDF passes a string in the case of commands defined with
IMPLEMENTOR=*PROCEDURE (...) or IMPLEMENTOR= *TPR(...,CMD-
INTERFACE=STRING*,...) (see ADD-CMD).

RESULT-OPERAND-NAME = *UNCHANGED
No change with regard to the RESULT-OPERAND-NAME.

RESULT-OPERAND-NAME = *SAME
Permissible only when operands are transferred by means of a string. In the string to be
passed, the operand has the same name as the one given to it with NAME=.

RESULT-OPERAND-NAME = <structured-name 1..20>
Permissible only when operands are transferred by means of a string. In the string to be
passed, the operand has the name specified.

RESULT-OPERAND-NAME = *POSITION(...)
In the transfer area (see section “Format of the standardized transfer area” on page 365) or
in the string to be passed, the operand has a specified position. A name is not assigned to it.

258 U2284-J-Z125-9-76

MODIFY-OPERAND SDF-A statements

POSITION = *UNCHANGED / <integer 1..3000>
Specifies the position. For operands attached to a structure, the position is specified
relative to the structure, i.e. the first operand in the structure is assigned position 1 if the
RESULT-OPERAND-LEVEL that was defined for the current operand is higher than that
of the operand at the level above it.

RESULT-OPERAND-NAME = *LABEL
Permissible only for operands in commands defined with IMPLEMENTOR=*TPR(..., CMD-
INTERFACE=*STRING,...) (see ADD-CMD). This operand value is reserved for Fujitsu
Siemens Computers Development and is therefore not described here.

RESULT-OPERAND-NAME = *COMMAND-NAME
Permissible only for operands in commands defined with IMPLEMENTOR=*TPR(..., CMD-
INTERFACE=*STRING,...) (see ADD-CMD). This operand value is reserved for Fujitsu
Siemens Computers Development and is therefore not described here.

CONCATENATION-POS = *UNCHANGED / *NO / <integer 1..20>
Specifies whether and, if so, how the operand is to be combined with other input operands
to form a single operand in the string to be passed to the implementation. The input
operands are concatenated. The position they take when concatenated must be specified
here. It is presupposed that the transfer to the implementation is in the form of a string
(commands that are defined with IMPLEMENTOR=*PROCEDURE or IMPLEMENTOR=
*TPR(...,CMD-INTERFACE=*STRING,...); see ADD-CMD). All input operands to be
concatenated must have the same RESULT-OPERAND-NAME.

VALUE-OVERLAPPING = *UNCHANGED / *YES
Specifies whether overlapping of data types is to be permitted in the definition of the
operand values. When the command or statement is input, SDF checks the value which has
been entered, with the aid of the data type definitions and in the order they were specified
for the operand. If the data type KEYWORD-(NUMBER) has been specified, SDF checks
whether the entered value is unique with respect to further definitions of this type. In
addition, SDF checks the attributes which have been defined (e.g. length, value range) for
the entered value. If these attributes do not match, checking continues with the next data
type defined. Overlapping of data types is supported starting with SDF Version 1.3. If a
syntax file with the overlapping of data types is used in an older version of SDF, this leads
to errors. A list of mutually exclusive data types can be found on page 623). If the
overlapping of data types has been permitted for an operand, this overlapping cannot be
canceled by the MODIFY-OPERAND statement (*NO cannot be specified). Modification is
possible only by deleting the operand and then redefining it, along with its values.

OVERWRITE-POSSIBLE = *UNCHANGED / *NO / *YES
This is only relevant for statements, and for commands defined with IMPLE-
MENTOR=*TPR(...,CMD-INTERFACE=*NEW/*TRANSFER-AREA,...); see the ADD-CMD
statement. OVERWRITE-POSSIBLE determines whether the operand default value can be
replaced by a value created dynamically by the implementation (see the DEFAULT operand

U2284-J-Z125-9-76 259

SDF-A statements MODIFY-OPERAND

in the CMDCST, CMDRST and CMDTST macros). The program-generated value must be
a valid operand value. In guided dialog, SDF shows the implementation-specific value in the
form display.

PRIVILEGE = *UNCHANGED / *SAME / *EXCEPT(.....) /
list-poss(64): <structured-name 1..30>
Specifies the privileges assigned to the operand.

PRIVILEGE = *SAME
The operand is assigned the same privileges as those defined for the associated command
or statement. If the operand is part of a structure, it is assigned the same privileges as the
operand value which introduces the structure.

PRIVILEGE = *EXCEPT(...)
With the exception of those defined with *EXCEPT(...), all privileges currently defined and
all subsequently defined privileges are assigned to the operand.

EXCEPT-PRIVILEGE = list-poss(64): <structured-name 1..30>
Specifies the privileges that are not assigned to the operand.

PRIVILEGE = list-poss(64): <structured-name 1..30>
Only the privileges specified in this list are assigned to the operand.

260 U2284-J-Z125-9-76

MODIFY-PROGRAM SDF-A statements

MODIFY-PROGRAM
Modify program definition

The MODIFY-PROGRAM statement is used to modify the definition of a program in the
open syntax file. This program must be the “current” object (see page 148). The name given
for the program must be unique with regard to all programs defined in the syntax file.

The MODIFY-PROGRAM statement is very similar to the ADD-PROGRAM statement.

NAME = *UNCHANGED / <structured-name 1..30>
(External) program name, which is displayed in guided dialog. This name is freely
selectable (it does not need to be the same as the module or phase name). In guided dialog,
the operand form displays the current program name rather than *UNCHANGED.

PRIVILEGE = *UNCHANGED / *ALL / *EXCEPT(...) /
list-poss(64): <structured-name 1..30>
Specifies the privileges assigned to the program.

PRIVILEGE = *ALL
All privileges currently defined and all subsequently defined privileges are assigned to the
program.

PRIVILEGE = *EXCEPT(...)
With the exception of those defined with *EXCEPT(...), all privileges currently defined and
all subsequently defined privileges are assigned to the program.

EXCEPT-PRIVILEGE = list-poss(64): <structured-name 1..30>
Specifies the privileges that are not assigned to the program.

PRIVILEGE = list-poss(64): <structured-name 1..30>
Only the privileges specified in this list are assigned to the program.

MODIFY-PROGRAM

NAME = *UNCHANGED / <structured-name 1..30>

,PRIVILEGE = *UNCHANGED / *ALL / *EXCEPT(...) / list-poss(64): <structured-name 1..30>

*EXCEPT(...)
 EXCEPT-PRIVILEGE = list-poss(64): <structured-name 1..30>

,COMMENT-LINE = *UNCHANGED / *NONE / *STD / <c-string 1..50 with-low>

U2284-J-Z125-9-76 261

SDF-A statements MODIFY-PROGRAM

COMMENT-LINE =
Specifies which program comment line is to be displayed in the guided dialog. The program
comment line appears at the top of guided dialog forms.

COMMENT-LINE = *UNCHANGED
No changes are made with respect to the program comment line.

COMMENT-LINE = *NONE
No program comment line is displayed.

COMMENT-LINE = *STD
The version and creation date of the program are displayed in the program comment line.
Object modules (elements of type R) have no internal version, so the execution date is
shown instead of the creation date.

COMMENT-LINE = <c-string 1..50 with-low>
String to be output as the program comment line.

262 U2284-J-Z125-9-76

MODIFY-STMT SDF-A statements

MODIFY-STMT
Modify statement definition

The MODIFY-STMT statement is used to modify the definition of a statement in the open
syntax file. The statement must be the current object (see page 148). Afterwards, the first
operand for this statement is the current object. The MODIFY-STMT statement is very
similar to the ADD-STMT statement.

The default value for all operands for MODIFY-STMT is *UNCHANGED, i.e. only those parts
of a statement definition that are explicitly specified are modified. In guided dialog the
operand form displays the current operand assignment rather than *UNCHANGED. When
a value other than *UNCHANGED is specified for a MODIFY-STMT operand, the old speci-
fications in the statement definition to be modified are replaced by the new ones. This also
applies if a list is possible, i.e. the specified value is not added to the value list but replaces it.

There is a special rule for STANDARD-NAME. When the statement to be modified is defined
in an assigned reference file (see OPEN-SYNTAX-FILE), the old entries for STANDARD-
NAME are retained, and the name specified with MODIFY-STMT is added to them. All
names given to the statement must be unique with respect to the set of statements
pertaining to the program.

Definitions of the operands and operand values pertaining to the statement are modified by
means of the MODIFY-OPERAND and MODIFY-VALUE statements, rather than by means
of MODIFY-STMT.

U2284-J-Z125-9-76 263

SDF-A statements MODIFY-STMT

NAME = *UNCHANGED / <structured-name 1..30>
(External) statement name, to be specified when the statement is entered. The user can
abbreviate this name on input, in contrast to the STANDARD-NAME and ALIAS-NAME.

MODIFY-STMT

NAME = *UNCHANGED / <structured-name 1..30>

,PROGRAM = *UNCHANGED / <structured-name 1..30>

,STANDARD-NAME = *UNCHANGED / *NO / list-poss(2000): *NAME / <structured-name 1..30>

,ALIAS-NAME = *UNCHANGED / *NO / list-poss(2000): <structured-name 1..30>

,MINIMAL-ABBREVIATION = *UNCHANGED / *NO / <structured-name 1..30>

,HELP = *UNCHANGED / *NO / list-poss(2000): <name 1..1>(...)

<name 1..1>(...)
 TEXT = *UNCHANGED / <c-string 1..500 with-low>

,MAX-STRUC-OPERAND = *UNCHANGED / *STD / <integer 1..3000>

,REMOVE-POSSIBLE = *UNCHANGED / *YES / *NO

,DIALOG-ALLOWED = *UNCHANGED / *YES / *NO

,DIALOG-PROC-ALLOWED = *UNCHANGED / *YES / *NO

,GUIDED-ALLOWED = *UNCHANGED / *YES / *NO

,BATCH-ALLOWED = *UNCHANGED / *YES / *NO

,BATCH-PROC-ALLOWED = *UNCHANGED / *YES / *NO

,NEXT-INPUT = *UNCHANGED / *STMT / *DATA / *ANY

,PRIVILEGE = *UNCHANGED / *ALL / *EXCEPT(...) / *ADD(...) / *REMOVE(...) /

list-poss(64): <structured-name 1..30>

*EXCEPT(...)
 EXCEPT-PRIVILEGE = list-poss(64): <structured-name 1..30>

*ADD(...)
 ADD-PRIVILEGE = list-poss(64): <structured-name 1..30>

*REMOVE(...)
 REMOVE-PRIVILEGE = list-poss(64): <structured-name 1..30>

,STMT-VERSION = *UNCHANGED / *NONE / <integer 1..999>

264 U2284-J-Z125-9-76

MODIFY-STMT SDF-A statements

STANDARD-NAME = *UNCHANGED / *NO / list-poss(2000): *NAME /
<structured-name 1..30>
Additional external statement name, which can be alternatively used when entering the
statement. It must not be abbreviated when entered. In contrast to an ALIAS-NAME, a
STANDARD-NAME must not be deleted. It is reserved for Fujitsu Siemens Computers
Software Development and is therefore not described here.

ALIAS-NAME = *UNCHANGED / *NO / list-poss(2000): <structured-name 1..30>
Additional external statement name, which can be alternatively used when entering the
statement. It must not be abbreviated when entered. In contrast to a STANDARD-NAME,
an ALIAS-NAME may be deleted.

MINIMAL-ABBREVIATION = *NO / <structured-name 1..30>
Additional external statement name which defines the shortest permissible abbreviation for
the statement. Any shorter abbreviation will not be accepted, even if it is unambiguous with
respect to other statements.
The following should be noted:

1. Checking against the minimum abbreviation is carried out only after SDF has checked
the input for ambiguity. It may thus happen that SDF selects the correct statement but
then rejects it because the abbreviation entered is shorter than the specified minimum
abbreviation.

2. The minimum abbreviation must be derived from the statement name (NAME).

3. The ALIAS-NAMEs and STANDARD-NAMEs of the statement must not be shorter than
the minimum abbreviation if they are an abbreviation of the statement name.

4. The minimum abbreviation may only be shortened - not lengthened - within a syntax file
hierarchy.

HELP =
Specifies whether there are help texts for the statement, and if so, what those texts are.

HELP = *UNCHANGED
No change with regard to help texts.

HELP = *NO
There are no help texts.

HELP = list-poss(2000): <name 1..1>(...)
There are help texts in the specified languages (E = English, D = German). SDF uses the
language specified for message output.

TEXT = *UNCHANGED / <c-string 1..500 with-low>
Help text. UNCHANGED is permissible only if a help text has already been defined for
the language key.
The help text can contain the special character string “\n” for line breaks.

U2284-J-Z125-9-76 265

SDF-A statements MODIFY-STMT

MAX-STRUC-OPERAND = *UNCHANGED / *STD / <integer 1..3000>
Number of operand positions to be reserved at the highest level in structured transfer. When
STD is specified, the size of the operand array corresponds to requirements. However, the
array may also be made larger to accommodate planned expansions.

REMOVE-POSSIBLE = *UNCHANGED / *YES / *NO
Specifies whether the statement may be deleted (see REMOVE). This operand cannot be
changed for the standard statements.

DIALOG-ALLOWED = *UNCHANGED / *YES / *NO
Specifies whether the statement is allowed in interactive mode. This operand cannot be
changed for the standard statements.

DIALOG-PROC-ALLOWED = *UNCHANGED / *YES / *NO
Specifies whether the statement is allowed in interactive mode within a procedure. This
operand cannot be changed for the standard statements.

GUIDED-ALLOWED = *UNCHANGED / *YES / *NO
Specifies whether the statement is allowed in guided dialog. This operand cannot be
changed for the standard statements.

BATCH-ALLOWED = *UNCHANGED / *YES / *NO
Specifies whether the statement is allowed in batch mode. This operand cannot be changed
for the standard statements.

BATCH-PROC-ALLOWED = *UNCHANGED / *YES / *NO
Specifies whether the statement is allowed in batch mode within a procedure. This operand
cannot be changed for the standard statements.

NEXT-INPUT =
Specifies what type of input is expected following the statement. SDF needs this specifi-
cation in order to conduct the guided dialog.

NEXT-INPUT = *UNCHANGED
No change with regard to the subsequent input expected.

NEXT-INPUT = *STMT
A statement is expected as the next entry. SDF interprets input in the NEXT field of the
guided dialog as a statement.

NEXT-INPUT = *DATA
Data is expected as the next entry. SDF interprets input in the NEXT field of the guided
dialog as data.

NEXT-INPUT = *ANY
It is not possible to predict what kind of input will follow.

266 U2284-J-Z125-9-76

MODIFY-STMT SDF-A statements

PRIVILEGE = *UNCHANGED / *ALL / *EXCEPT(...) / *ADD(...) / *REMOVE(...) /
list-poss(64): <structured-name 1..30>
Specifies the privileges assigned to the statement.

PRIVILEGE = *ALL
All privileges currently defined and all subsequently defined privileges are assigned to the
statement.

PRIVILEGE = *EXCEPT(...)
With the exception of those defined with *EXCEPT(...), all privileges currently defined and
all subsequently defined privileges are assigned to the statement.

EXCEPT-PRIVILEGE = list-poss(64): <structured-name 1..30>
Specifies the privileges that are not assigned to the statement.

PRIVILEGE = *ADD(...)
The privileges specified with *ADD(...) are assigned to the command in addition to the privi-
leges already assigned to it.

ADD-PRIVILEGE = list-poss(64): <structured-name 1..30>
Specifies which additional privileges are to be assigned to the command.

PRIVILEGE = *REMOVE(...)
The privileges specified with *REMOVE(...) are removed from the command.

REMOVE-PRIVILEGE = list-poss(64): <structured-name 1..30>
Specifies which privileges are to be removed from the command.

PRIVILEGE = list-poss(64): <structured-name 1..30>
Only the privileges specified in this list are assigned to the statement.

STMT-VERSION = *UNCHANGED / *NONE / <integer 1..999>
Version of the statement. The value is transferred in the standardized transfer area.
*NONE means that a zero value can be entered in the standardized transfer area.
STMT-VERSION is ignored if the program which the statement belongs to is not working
with the new CMDRST and CMDTST macros or is using the old format of the standardized
transfer area. More information on the format of the standardized transfer area and the SDF
macros can be found in section “Format of the standardized transfer area” on page 365ff
and section “SDF macros” on page 379ff.

U2284-J-Z125-9-76 267

SDF-A statements MODIFY-STMT-ATTRIBUTES

MODIFY-STMT-ATTRIBUTES
Modify statement attributes

The MODIFY-STMT-ATTRIBUTES statement is used to modify the security attributes (input
modes and privileges) of several statements of a program simultaneously.

NAME = *ALL / <structured-name 1..30 with-wild> /
list-poss(2000): <structured-name 1..30>
Names of the statements whose attributes are to be modified.

PROGRAM = <structured-name 1..30>
External name of the program to which the statements belong.
This name cannot be modified using MODIFY-STMT-ATTRIBUTES.

The description of all other operands of the MODIFY-STMT-ATTRIBUTES statement can be
found under MODIFY-STMT as of page 262.

MODIFY-STMT-ATTRIBUTES

NAME = *ALL / <structured-name 1..30 with-wild> / list-poss(2000): <structured-name 1..30>

,PROGRAM = <structured-name 1..30>

,DIALOG-ALLOWED = *UNCHANGED / *YES / *NO

,DIALOG-PROC-ALLOWED = *UNCHANGED / *YES / *NO

,GUIDED-ALLOWED = *UNCHANGED / *YES / *NO

,BATCH-ALLOWED = *UNCHANGED / *YES / *NO

,BATCH-PROC-ALLOWED = *UNCHANGED / *YES / *NO

,PRIVILEGE = *UNCHANGED / *ALL / *EXCEPT(...) / *ADD(...) / *REMOVE(...) /

 list-poss(64): <structured-name 1..30>

*EXCEPT(...)
 EXCEPT-PRIVILEGE = list-poss(64): <structured-name 1..30>

*ADD(...)
 ADD-PRIVILEGE = list-poss(64): <structured-name 1..30>

*REMOVE(...)
 REMOVE-PRIVILEGE = list-poss(64): <structured-name 1..30>

268 U2284-J-Z125-9-76

MODIFY-VALUE SDF-A statements

MODIFY-VALUE
Modify operand value definition

The MODIFY-VALUE statement is used to modify the definition of an operand value in the
syntax file being processed. The operand value must be the current object (see page 148).
If the value introduces a structure, the first operand of the structure then becomes the
current object. Otherwise, it is a question of whether there are still more values defined for
the operand to which the modified value belongs. If there are, then the next value belonging
to the operand becomes the current object. If there are no further values, then the next
operand in the command or statement structure becomes the current object. If the last value
of a structure is changed, the value following the one introducing the structure becomes the
current object. If this value is missing, the subsequent operand becomes the current object.

The MODIFY-VALUE statement is very similar to the ADD-VALUE statement. The default
value for all operands for MODIFY-VALUE is *UNCHANGED, i.e. only those parts of an
operand value definition that are explicitly specified are modified. In guided dialog the
operand form displays the current operand assignment rather than *UNCHANGED. When
a value other than *UNCHANGED is specified for a MODIFY-VALUE operand, the old speci-
fications in the operand value definition to be modified are replaced by the new ones. This
also applies if a list is possible, i.e. instead of being added to the value list, the specified
value replaces it. There is a special rule for STANDARD-NAME. When the operand value
to be modified is defined in an assigned reference file (see OPEN-SYNTAX-FILE), the old
entries for STANDARD-NAME are retained and the name specified with MODIFY-VALUE is
added to them.

All names given to the operand value must be unique with regard to its environment.

U2284-J-Z125-9-76 269

SDF-A statements MODIFY-VALUE

(part 1 of 6)

MODIFY-VALUE

TYPE = *UNCHANGED / *ALPHANUMERIC-NAME(...) / *CAT-ID / *COMMAND-REST(...) /

*COMPOSED-NAME(...) / *C-STRING(...) / *DATE(...) / *DEVICE(...) / *FIXED(...) /

*FILENAME(...) / *INTEGER(...) / *KEYWORD(...) / *KEYWORD-NUMBER(...) / *LABEL(...) /

*NAME(...) / *PARTIAL-FILENAME(...) / *POSIX-PATHNAME(...) / *POSIX-FILENAME(...) /

*PRODUCT-VERSION(...) / *STRUCTURED-NAME(...) / *TEXT(...) / *TIME(...) / *VSN(...) /

*X-STRING(...) / *X-TEXT(...)

*ALPHANUMERIC-NAME(...)
 SHORTEST-LENGTH = *UNCHANGED / *ANY / <integer 1..255>
 ,LONGEST-LENGTH = *UNCHANGED / *ANY / <integer 1..255>

 ,WILDCARD = *UNCHANGED / *NO / *YES(...)
 *YES(...)

 TYPE = *UNCHANGED / *SELECTOR / *CONSTRUCTOR

 ,LONGEST-LOGICAL-LEN = *UNCHANGED / *LONGEST-LENGTH / <integer 1..255>

*COMMAND-REST(...)
 LOWER-CASE = *UNCHANGED / YES / *NO

*COMPOSED-NAME(...)
 SHORTEST-LENGTH = *UNCHANGED / *ANY / <integer 1..1800>
 ,LONGEST-LENGTH = *UNCHANGED / *ANY / <integer 1..1800>
 ,UNDERSCORE = *UNCHANGED / *NO / *YES
 ,WILDCARD = *UNCHANGED / *NO / *YES(...)
 *YES(...)

 TYPE = *UNCHANGED / *SELECTOR / *CONSTRUCTOR

 ,LONGEST-LOGICAL-LEN = *UNCHANGED / *LONGEST-LENGTH / <integer 1..1800>

*C-STRING(...)
 SHORTEST-LENGTH = *UNCHANGED / *ANY / <integer 1..1800>
 ,LONGEST-LENGTH = *UNCHANGED / *ANY / <integer 1..1800>
 ,LOWER-CASE = *UNCHANGED / YES / *NO

*DATE(...)
 COMPLETION = *UNCHANGED / *NO / *YES

continued ➠

270 U2284-J-Z125-9-76

MODIFY-VALUE SDF-A statements

*DEVICE(...)
 CLASS-TYPE = *UNCHANGED / list-poss(2000): *DISK(...) / *TAPE(...)
 *DISK(...)
 EXCEPT = *UNCHANGED / *NO / list-poss(50): <text 1..8 without-sep>
 ,SCOPE = *UNCHANGED / *ALL / *STD-DISK
 *TAPE(...)
 EXCEPT = *UNCHANGED / *NO / list-poss(50): <text 1..8 without-sep>
 ,ALIAS-ALLOWED = *UNCHANGED / *YES / *NO
 ,VOLUME-TYPE-ONLY = *UNCHANGED / *YES / *NO
 ,RESULT-VALUE = *UNCHANGED / *BY-NAME / *BY-CODE

*FIXED(...)
 LOWEST = *UNCHANGED / *ANY / <fixed -2147483648..2147483647>
 ,HIGHEST = *UNCHANGED / *ANY / <fixed -2147483648..2147483647>

*FILENAME(...)
 SHORTEST-LENGTH = *UNCHANGED / *ANY / <integer 1..80>
 ,LONGEST-LENGTH = *UNCHANGED / *ANY / <integer 1..80>
 ,CATALOG-ID = *UNCHANGED / *YES / *NO
 ,USER-ID = *UNCHANGED / *YES / *NO
 ,GENERATION = *UNCHANGED / *YES / *NO
 ,VERSION = *UNCHANGED / *YES / *NO
 ,WILDCARD = *UNCHANGED / *NO / *YES(...)
 *YES(...)
 TYPE = *UNCHANGED / *SELECTOR / *CONSTRUCTOR
 ,LONGEST-LOGICAL-LEN = *UNCHANGED / *LONGEST-LENGTH / <integer 1..80>
 ,PATH-COMPLETION = *UNCHANGED / *YES / *NO
 ,TEMPORARY-FILE = *UNCHANGED / *YES / *NO

*INTEGER(...)
 LOWEST = *UNCHANGED / *ANY / <integer -2147483648..2147483647>
 ,HIGHEST = *UNCHANGED / *ANY / <integer -2147483648..2147483647>
 ,OUT-FORM = *UNCHANGED / *BINARY / *PACKED / *UNPACKED / *CHAR / *STD

continued ➠

(part 2 of 6)

U2284-J-Z125-9-76 271

SDF-A statements MODIFY-VALUE

*KEYWORD(...)
 STAR = *UNCHANGED / *OPTIONAL / *MANDATORY

*KEYWORD-NUMBER(...)
 STAR = *UNCHANGED / *OPTIONAL / *MANDATORY

*LABEL(...)
 SHORTEST-LENGTH = *UNCHANGED / *ANY / <integer 1..8>
 ,LONGEST-LENGTH = *UNCHANGED / *ANY / <integer 1..8>

*NAME(...)
 SHORTEST-LENGTH = *UNCHANGED / *ANY / <integer 1..255>
 ,LONGEST-LENGTH = *UNCHANGED / *ANY / <integer 1..255>
 ,UNDERSCORE = *UNCHANGED / *YES / *NO
 ,LOWER-CASE = *UNCHANGED / YES / *NO
 ,WILDCARD = *UNCHANGED / *NO / *YES(...)
 *YES(...)
 TYPE = *UNCHANGED / *SELECTOR / *CONSTRUCTOR
 ,LONGEST-LOGICAL-LEN = *UNCHANGED / *LONGEST-LENGTH / <integer 1..255>

*PARTIAL-FILENAME(...)
 SHORTEST-LENGTH = *UNCHANGED / *ANY / <integer 2..79>
 ,LONGEST-LENGTH = *UNCHANGED / *ANY / <integer 2..79>
 ,CATALOG-ID = *UNCHANGED / *YES / *NO
 ,USER-ID = *UNCHANGED / *YES / *NO
 ,WILDCARD = *UNCHANGED / *NO / *YES(...)
 *YES(...)
 TYPE = *UNCHANGED / *SELECTOR / *CONSTRUCTOR
 ,LONGEST-LOGICAL-LEN = *UNCHANGED / *LONGEST-LENGTH / <integer 2..79>

*POSIX-PATHNAME(...)
 SHORTEST-LENGTH = *UNCHANGED / *ANY / <integer 1..1023>
 ,LONGEST-LENGTH = *UNCHANGED / *ANY / <integer 1..1023>
 ,WILDCARD = *UNCHANGED / *YES / *NO
 ,QUOTES = *UNCHANGED / *OPTIONAL / *MANDATORY

continued ➠

(part 3 of 6)

272 U2284-J-Z125-9-76

MODIFY-VALUE SDF-A statements

*POSIX-FILENAME(...)
 SHORTEST-LENGTH = *UNCHANGED / *ANY / <integer 1..255>
 ,LONGEST-LENGTH = *UNCHANGED / *ANY / <integer 1..255>
 ,WILDCARD = *UNCHANGED / *YES / *NO
 ,QUOTES = *UNCHANGED / *OPTIONAL / *MANDATORY

*PRODUCT-VERSION(...)
 USER-INTERFACE = *UNCHANGED / *NO / *YES(...) *ANY(...)
 *YES(...)

 CORRECTION-STATE = *UNCHANGED /*YES / *NO / *ANY
 *ANY(...)

 CORRECTION-STATE = *UNCHANGED / *ANY / *NO / *YES

*STRUCTURED-NAME(...)
 SHORTEST-LENGTH = *UNCHANGED / *ANY / <integer 1..255>
 ,LONGEST-LENGTH = *UNCHANGED / *ANY / <integer 1..255>
 ,WILDCARD = *UNCHANGED / *NO / *YES(...)
 *YES(...)

 TYPE = *UNCHANGED / *SELECTOR / *CONSTRUCTOR

 ,LONGEST-LOGICAL-LEN = *UNCHANGED / *LONGEST-LENGTH / <integer 1..255>

*TEXT(...)
 SHORTEST-LENGTH = *UNCHANGED / *ANY / <integer 1..1800>
 ,LONGEST-LENGTH = *UNCHANGED / *ANY / <integer 1..1800>
 ,LOWER-CASE = *UNCHANGED / *YES / *NO
 ,SEPARATORS = *UNCHANGED / *YES / *NO

*TIME(...)

 OUT-FORM = *UNCHANGED / *STD / *BINARY / *CHAR

*VSN(...)
 SHORTEST-LENGTH = *UNCHANGED / *ANY / <integer 1..6>
 ,LONGEST-LENGTH = *UNCHANGED / *ANY / <integer 1..6>

*X-STRING(...)
 SHORTEST-LENGTH = *UNCHANGED / *ANY / <integer 1..1800>
 ,LONGEST-LENGTH = *UNCHANGED / *ANY / <integer 1..1800>

continued ➠

(part 4 of 6)

U2284-J-Z125-9-76 273

SDF-A statements MODIFY-VALUE

*X-TEXT(...)
 SHORTEST-LENGTH = *UNCHANGED / *ANY / <integer 1..3600>
 ,LONGEST-LENGTH = *UNCHANGED / *ANY / <integer 1..3600>
 ,ODD-POSSIBLE = *UNCHANGED / *YES / *NO

,INTERNAL-NAME = *UNCHANGED / *STD / <alphanum-name 1..8>

,REMOVE-POSSIBLE = *UNCHANGED / *YES / *NO

,SECRET-PROMPT = *UNCHANGED / *SAME / *NO

,DIALOG-ALLOWED = *UNCHANGED / *YES / *NO

,DIALOG-PROC-ALLOWED = *UNCHANGED / *YES / *NO

,GUIDED-ALLOWED = *UNCHANGED / *YES / *NO

,BATCH-ALLOWED = *UNCHANGED / *YES / *NO

,BATCH-PROC-ALLOWED = *UNCHANGED / *YES / *NO

,STRUCTURE = *UNCHANGED / *NO / *YES(...)

*YES(...)
 SIZE = *UNCHANGED / *SMALL / *LARGE
 ,FORM = *UNCHANGED / *NORMAL / *FLAT
 ,MAX-STRUC-OPERAND = *UNCHANGED / *STD / <integer 1..3000>

,LIST-ALLOWED = *UNCHANGED / *YES / *NO

,VALUE = *UNCHANGED / *NO / list-poss(2000): <c-string 1..1800 with-low>(...)

<c-string 1..1800 with-low>(...)
 STANDARD-NAME = *UNCHANGED / *NO / list-poss(2000): *NAME /

 <structured-name 1..30> / <c-string 1..30>
 ,ALIAS-NAME = *UNCHANGED / *NO / list-poss(2000): <structured-name 1..30>
 ,GUIDED-ABBREVIATION = *UNCHANGED / *NAME / <structured-name 1..30> / <c-string 1..30>
 ,MINIMAL-ABBREVIATION = *UNCHANGED / *NO / <structured-name 1..30> / <c-string 1..30>
 ,NULL-ABBREVIATION = *UNCHANGED / *YES / *NO
 ,OUTPUT = *UNCHANGED / SAME / *EMPTY-STRING / *DROP-OPERAND /

 <c-string 1..1800> / <x-string 1..3600>

continued ➠

(part 5 of 6)

274 U2284-J-Z125-9-76

MODIFY-VALUE SDF-A statements

TYPE =
Specifies the data type of the operand value. The various values defined for an operand
must not be mutually exclusive with respect to the data type (see page 623). (If this is not
possible in exceptional cases, the value YES must be specified for VALUE-OVERLAPPING
in the ADD-OPERAND or MODIFY-OPERAND statement.) Otherwise it is not possible, for
example, to define a value of the type NAME for an operand together with an alternative
value of the type STRUCTURED-NAME. Only the data type KEYWORD may be specified
in more than one alternative operand value definition. When a command or statement is
entered, SDF checks whether an operand value entered is of the type defined for it. In the
following descriptions of the data types, the term “alphanumeric character” is used
repeatedly. This may be a letter (A, B, C, ..., Z), a digit (0, 1, 2, ..., 9) or a special character
(@, #, $).

TYPE = *UNCHANGED
No change with respect to the data type.

 ,OUT-TYPE = *UNCHANGED / *SAME / *ALPHANUMERIC-NAME / *CAT-ID / *COMMAND-REST /

 *COMPOSED-NAME / *C-STRING / *DATE / *DEVICE / *FIXED / *FILENAME /

 *INTEGER / *KEYWORD / *KEYWORD-NUMBER / *LABEL / *NAME /

 *PARTIAL-FILENAME / *PRODUCT-VERSION / *POSIX-PATHNAME /

 *POSIX-FILENAME / *STRUCTURED-NAME / *TEXT / *TIME / *VSN /

 *X-STRING / *X-TEXT
 ,OVERWRITE-POSSIBLE = *UNCHANGED / *YES / *NO

,OUTPUT = *UNCHANGED / *SECRET-PROMPT / *NORMAL(...)

*NORMAL(...)
 AREA-LENGTH = *UNCHANGED / *VARIABLE / <integer 1..3000>
 ,LEFT-JUSTIFIED = *UNCHANGED / *STD / *YES / *NO
 ,FILLER = *UNCHANGED / *STD / <c-string 1..1> / <x-string 1..2>
 ,STRING-LITERALS = *UNCHANGED / *HEX / *CHAR / *NO
 ,HASH = *UNCHANGED / *NO / *YES(...)
 *YES(...)
 OUTPUT-LENGTH = *UNCHANGED / <integer 2..32>

,PRIVILEGE = *UNCHANGED / *SAME / *EXCEPT(...) / list-poss(64): <structured-name 1..30>

*EXCEPT(...)
 EXCEPT-PRIVILEGE = list-poss(64): <structured-name 1..30>

(part 6 of 6)

U2284-J-Z125-9-76 275

SDF-A statements MODIFY-VALUE

TYPE = *ALPHANUMERIC-NAME(...)
Specifies that the operand value is of the data type ALPHANUMERIC-NAME. This is
defined as a sequence of alphanumeric characters.

SHORTEST-LENGTH = *UNCHANGED / *ANY / <integer 1..255>
Specifies whether the string must have a minimum length and if so, what that minimum
length is (specified in bytes).

LONGEST-LENGTH = *UNCHANGED / *ANY / <integer 1..255>
Specifies whether the string is not to exceed a maximum length, and if so, what that
maximum length is (specified in bytes).

WILDCARD = *UNCHANGED / *NO / *YES(...)
Specifies whether wildcards (see the description of the SDF metasyntax in section 1.5)
may be used in place of characters/strings within the name when the command or
statement is entered.

WILDCARD = *NO
No wildcards are allowed when entering the operand value.

WILDCARD = *YES(...)
Wildcards may be used.

TYPE = *UNCHANGED / *SELECTOR / *CONSTRUCTOR
Specifies whether the string can be a wildcard selector or wildcard constructor.
Wildcard constructors are used to build names from strings generated with the aid
of a wildcard selector.

TYPE = *SELECTOR
The string can be a wildcard selector; the data type receives the suffix with-wild (see
the description of the SDF metasyntax in section 1.5).

TYPE = *CONSTRUCTOR
The string can be a wildcard constructor; the data type receives the suffix
with-wild-constr (see the description of the SDF metasyntax in section 1.5).

LONGEST-LOGICAL-LEN = *UNCHANGED / *LONGEST-LENGTH /
<integer 1..255>
Specifies the maximum length of the name matched by the wildcard (selector or
constructor).

LONGEST-LOGICAL-LEN = *LONGEST-LENGTH
The maximum length of the name matched by the wildcard (selector or constructor)
is the same as the length specified by the LONGEST-LENGTH operand (for
reasons of compatibility).

LONGEST-LOGICAL-LEN = <integer 1..255>
Specifies the maximum length of the name matched by the wildcard.

276 U2284-J-Z125-9-76

MODIFY-VALUE SDF-A statements

TYPE = *CAT-ID
Specifies that the operand value is of the data type CAT-ID, defined as a sequence of up to
4 characters (without “:” delimiters) from the ranges A-Z and 0-9; the special characters $,
@ and # are not permitted. A four-character catalog ID must not begin with the string ’PUB’.

TYPE = *COMMAND-REST(...)
Specifies that the operand value is of the data type COMMAND-REST. This data type is
provided only for special purposes for Fujitsu Siemens Computers System Software Devel-
opment and is therefore not described here.

TYPE = *COMPOSED-NAME(...)
Specifies that the operand value is of the data type COMPOSED-NAME. This data type is
very similar to the data type FILENAME, with the following differences:
– catid, userid, version, generation and wildcard are not permitted
– the length is not restricted to 54 characters
– there does not need to be a letter in the name.

SHORTEST-LENGTH = *UNCHANGED / *ANY / <integer 1..1800>
Specifies whether the string must have a minimum length, and if so, what that minimum
length is (specified in bytes).

LONGEST-LENGTH = *UNCHANGED / *ANY / <integer 1..1800>
Specifies whether the string is not to exceed a maximum length, and if so, what that
maximum length is (specified in bytes).

UNDERSCORE = *UNCHANGED / *NO / *YES
Specifies whether an underscore character (_) is accepted.

WILDCARD = *UNCHANGED / *NO / *YES(...)
Specifies whether wildcards (see the description of the SDF metasyntax in section 1.5)
may be used in place of characters/strings within the name when the command or
statement is entered.

WILDCARD = *NO
No wildcards are allowed when entering the operand value.

WILDCARD = *YES(...)
Wildcards may be used.

TYPE = *UNCHANGED / *SELECTOR / *CONSTRUCTOR
Specifies whether the string can be a wildcard selector (search pattern) or wildcard
constructor. Wildcard constructors are used to build names from strings generated
with the aid of a wildcard selector.

TYPE = *SELECTOR
The string can be a wildcard selector; the data type receives the suffix with-wild (see
the description of the SDF metasyntax in section 1.5).

U2284-J-Z125-9-76 277

SDF-A statements MODIFY-VALUE

TYPE = *CONSTRUCTOR
The string can be a wildcard constructor; the data type receives the suffix with-wild-
constr (see the description of the SDF metasyntax in section 1.5).

LONGEST-LOGICAL-LEN = *UNCHANGED / *LONGEST-LENGTH /
<integer 1..1800>
Specifies the maximum length of the name matched by the wildcard (selector or
constructor).

LONGEST-LOGICAL-LEN = *LONGEST-LENGTH
The maximum length of the name matched by the wildcard is the same as the length
specified by the LONGEST-LENGTH operand (for reasons of compatibility).

LONGEST-LOGICAL-LEN = <integer 1..1800>
Specifies the maximum length of the name matched by the wildcard.

TYPE = *C-STRING(...)
Specifies that the operand value is of the data type C-STRING. This is defined as a
sequence of EBCDIC characters, enclosed in single quotes. It may be prefixed with the
letter C. A single quote as a value within the limiting apostrophes must be specified twice.

SHORTEST-LENGTH = *UNCHANGED / *ANY / <integer 1..1800>
Specifies whether the string must have a minimum length, and if so, what that minimum
length is (specified in bytes).

LONGEST-LENGTH = *UNCHANGED / *ANY / <integer 1..1800>
Specifies whether the string is not to exceed a maximum length, and if so, what that
maximum length is (specified in bytes).

LOWER-CASE = *UNCHANGED / *NO / *YES
Specifies whether lowercase letters within the apostrophes are retained.

TYPE = *DATE(...)
Specifies that the operand value is of the data type DATE. This is defined as a sequence of
one four-digit number and two two-digit numbers joined together by hyphens (<year>-
<month>-<day>). The year may also be specified with two digits instead of four.

COMPLETION = *UNCHANGED / *NO / *YES
Specifies whether a two-digit year specification is to be extended. If *YES is specified,
SDF extends two-digit year specifications (in the form yy-mm-dd) as follows:
– 20yy-mm-dd if yy < 60
– 19yy-mm-dd if yy Ï 60.

TYPE = *DEVICE(...)
Specifies that the operand value is of the data type DEVICE. In guided dialog, the user is
offered a list of the disk or tape devices available in the system for operands whose value
is defined with the data type DEVICE (see the manual “System Installation” [9]).

278 U2284-J-Z125-9-76

MODIFY-VALUE SDF-A statements

CLASS-TYPE = *UNCHANGED / list-poss(2000): *DISK(...) / *TAPE(...)
Specifies the class type of the device.

CLASS-TYPE = *DISK(...)
The class type of the device is disk.

EXCEPT = *UNCHANGED / *NO / list-poss(50): <text 1..8 without-sep>
Specifies the disks that will not appear in the list of available devices.

SCOPE = *UNCHANGED / *ALL / *STD-DISK
Specifies whether all the disks appear in the list of available devices or only the
standard disks specified by DMS (see the “Introductory Guide to DMS“ [7]).
In BS2000/OSD-BC < V3.0, SCOPE=*ALL is always valid.

SCOPE = *ALL
All disks appear in the list.

SCOPE = *STD-DISK
Only disks which are specified in DMS as standard appear in the list.

CLASS-TYPE = *TAPE(...)
The class type of the device is tape.

EXCEPT = *UNCHANGED / *NO / list-poss(50): <text 1..8 without-sep>
Specifies the devices that will not appear in the list of available devices.

ALIAS-ALLOWED = *UNCHANGED / *YES / *NO
Specifies whether an alias is allowed for the device.

VOLUME-TYPE-ONLY = *UNCHANGED / *NO / *YES
Specifies whether the volume type is accepted.

RESULT-VALUE = *UNCHANGED / *BY-NAME / *BY-CODE
Specifies the format in which SDF passes information to the implementation.

RESULT-VALUE = *BY-NAME
SDF outputs the external device name. The external device name is 8 characters in
length.

RESULT-VALUE = *BY-CODE
SDF outputs the internal device code. The internal device code is 2 bytes long.

U2284-J-Z125-9-76 279

SDF-A statements MODIFY-VALUE

TYPE = *FIXED(...)
Specifies that the operand value is of the data type FIXED. This is defined as follows:
[sign][digits].[digits]
[sign] is + or –
[digits] are 0..9
FIXED must consist of at least one digit; it must not exceed 10 characters (digits and a ’.’).
The value is stored in the standardized transfer area in the following format:

LOWEST = *UNCHANGED / *ANY / <fixed -2147483648 .. 2147483647>.
Specifies whether there is a lower limit for the fixed value, and if so, what this limit is.

HIGHEST = *UNCHANGED / *ANY / <fixed -2147483648 .. 2147483647>
Specifies whether there is an upper limit for the fixed value, and if so, what this limit is.

TYPE = *FILENAME(...)
Specifies that the operand value is of the data type FILENAME. The definition of the string
to be entered is the one given in the “Introductory Guide to DMS” [7] for fully qualified file
names.

SHORTEST-LENGTH = *UNCHANGED / *ANY / <integer 1..80>
Specifies whether the string must have a minimum length, and if so, what that minimum
length is (specified in bytes).

LONGEST-LENGTH = *UNCHANGED / *ANY / <integer 1..80>
Specifies whether the string is not to exceed a maximum length, and if so, what that
maximum length is (specified in bytes).

CATALOG-ID = *UNCHANGED / *YES / *NO
Specifies whether the catalog ID may be specified as part of the file name.

USER-ID = *UNCHANGED / *YES / *NO
Specifies whether the user ID may be specified as part of the file name.

GENERATION = *UNCHANGED / *YES / *NO
Specifies whether a generation number may be specified as part of the file name.

VERSION = *UNCHANGED / *YES / *NO
Specifies whether a version identifier may be specified as part of the file name.

WILDCARD = *UNCHANGED / *NO / *YES(...)
Specifies whether wildcards (see the description of the SDF metasyntax in section 1.5)
may be used in place of characters/strings within the name when the command or
statement is entered.

4 bytes for the fixed-
point number * 10n

n : 1 byte for the number of digits after the period

280 U2284-J-Z125-9-76

MODIFY-VALUE SDF-A statements

WILDCARD = *NO
No wildcards are allowed when entering the operand value.

WILDCARD = *YES(...)
Wildcards may be used.
The data type <filename x..y with-wild> also contains partially qualified file names, i.e.
it is not necessary to define an additional value of the data type <partial-filename> for
the operand.

TYPE = *UNCHANGED / *SELECTOR / *CONSTRUCTOR
Specifies whether the string can be a wildcard selector (search pattern) or wildcard
constructor. Wildcard constructors are used to build names from strings generated
with the aid of a wildcard selector.

TYPE = *SELECTOR
The string can be a wildcard selector; the data type receives the suffix with-wild (see
the description of the SDF metasyntax in section 1.5).

TYPE = *CONSTRUCTOR
The string can be a wildcard constructor; the data type receives the suffix
with-wild-constr (see the description of the SDF metasyntax in section 1.5).

LONGEST-LOGICAL-LEN = *UNCHANGED / *LONGEST-LENGTH /
<integer 1..80>
Specifies the maximum length of the name matched by the wildcard (selector or
constructor).

LONGEST-LOGICAL-LEN = *LONGEST-LENGTH
The maximum length of the name matched by the wildcard is the same as the length
specified by the LONGEST-LENGTH operand (for reasons of compatibility).

LONGEST-LOGICAL-LEN = <integer 1..80>
Specifies the maximum length of the name matched by the wildcard.

PATH-COMPLETION = *UNCHANGED / *NO / *YES
Specifies whether the file name is extended to a full path name upon transfer to the
implementation. This includes the substitution of aliases by means of the ACS function.
PATH-COMPLETION=*YES may only be specified if CATALOG-ID and USER-ID are
permitted and if wildcards are not permitted in the file name.

TEMPORARY-FILE = *UNCHANGED / *YES / *NO
Specifies whether temporary file names are permitted.

TYPE = *INTEGER(...)
Specifies that the operand value is of the data type INTEGER. This is defined as a
sequence of digits which may be preceded by a sign.

LOWEST = *UNCHANGED / *ANY / <integer -2 147 483648..2 147 483647>
Specifies whether there is a lower limit for the integer, and if so, what that lower limit is.

U2284-J-Z125-9-76 281

SDF-A statements MODIFY-VALUE

HIGHEST = *UNCHANGED / *ANY / <integer -2 147 483648..2 147 483647>
Specifies whether there is an upper limit for the integer, and if so, what that upper limit is.

OUT-FORM = *UNCHANGED / *STD / *BINARY / *PACKED / *UNPACKED / *CHAR
Specifies the form in which the integer is to be passed by SDF to the implementation.
If passed in a transfer area (see section “Format of the standardized transfer area” on
page 365), SDF-A converts *STD to *BINARY. If a string is passed (commands defined
with IMPLEMENTOR=*PROCEDURE or IMPLEMENTOR=*TPR (...,CMD-
INTERFACE=*STRING,...); see ADD-CMD), SDF-A converts OUT-FORM=*STD to
*CHAR.

TYPE = *KEYWORD(...)
Specifies that the operand value is of the data type *KEYWORD. This is defined as a
sequence of alphanumeric characters. This character string may be subdivided into several
substrings, joined together by hyphens. Substrings may contains periods, but the periods
must not be at the beginning or the end of the substring. The entire string, or, as the case
may be, the first substring, must begin with a letter or special character. The value range for
an operand value of the type *KEYWORD is limited to one or a finite number of precisely
defined individual values (see the VALUE operand of this statement).
From SDF-A/SDF Version 2.0 onwards, the value ’*...’ is also accepted. This value can be
used where a list of keywords has to be defined for an operand (e.g. the definition for all
external devices). This permits new keywords (e.g. new device names) to be inserted
without having to modify the syntax file, since ’*...’ causes SDF to accept additional values
and to analyze them as keywords. The data type *KEYWORD may be up to 30 characters
long.

STAR =
Specifies whether the string must be preceded by an asterisk when entered.

STAR = *UNCHANGED
No change with respect to the asterisk.

STAR = *OPTIONAL
An asterisk may be prefixed, but need not be. If an asterisk is prefixed, it is suppressed
when the operand value is passed to the implementation.

STAR = *MANDATORY
An asterisk must be prefixed (necessary in order to distinguish between alternative data
types).

TYPE = *KEYWORD-NUMBER(...)
Specifies that the operand value is of the data type KEYWORD-NUMBER. This data type
is provided only for special purposes for Fujitsu Siemens Computers System Software
Development and is therefore not described here.

STAR = *UNCHANGED
No change with respect to the asterisk.

282 U2284-J-Z125-9-76

MODIFY-VALUE SDF-A statements

STAR = *OPTIONAL
An asterisk may be prefixed, but need not be.

STAR = *MANDATORY
An asterisk must be prefixed (necessary in order to distinguish between alternative data
types).

TYPE = *LABEL(...)
Specifies that the operand value is of the data type LABEL. This data type is provided only
for special purposes for Fujitsu Siemens Computers System Software Development and is
therefore not described here.

TYPE = *NAME(...)
Specifies that the operand value is of the data type NAME. This is defined as a sequence
of alphanumeric characters, beginning with a letter or special character.

SHORTEST-LENGTH = *UNCHANGED / *ANY / <integer 1..255>
Specifies whether the string must have a minimum length, and if so, what that minimum
length is (specified in bytes).

LONGEST-LENGTH = *UNCHANGED / *ANY / <integer 1..255>
Specifies whether the string is not to exceed a maximum length, and if so, what that
maximum length is (specified in bytes).

UNDERSCORE = *UNCHANGED / *NO / *YES
Specifies whether an underscore character (_) is accepted.

LOWER-CASE = *UNCHANGED / *NO / *YES
Specifies whether lowercase characters are retained.

WILDCARD = *UNCHANGED / *NO / *YES(...)
Specifies whether wildcards (see the description of the SDF metasyntax in section 1.5)
may be used in place of characters/strings within the name when the command or
statement is entered.

WILDCARD = *NO
No wildcards are allowed when entering the operand value.

WILDCARD = *YES(...)
Wildcards may be used.

TYPE = *UNCHANGED / *SELECTOR / *CONSTRUCTOR
Specifies whether the string can be a wildcard selector or wildcard constructor.
Wildcard constructors are used to build names from strings generated with the aid
of a wildcard selector.

TYPE = *SELECTOR
The string can be a wildcard selector; the data type receives the suffix with-wild (see
the description of the SDF metasyntax in section 1.5).

U2284-J-Z125-9-76 283

SDF-A statements MODIFY-VALUE

TYPE = *CONSTRUCTOR
The string can be a wildcard constructor; the data type receives the suffix
with-wild-constr (see the description of the SDF metasyntax in section 1.5).

LONGEST-LOGICAL-LEN = *UNCHANGED / *LONGEST-LENGTH /
<integer 1..255>
Specifies the maximum length of the name matched by the wildcard (selector or
constructor).

LONGEST-LOGICAL-LEN = *LONGEST-LENGTH
The maximum length of the name matched by the wildcard is the same as the length
specified by the LONGEST-LENGTH operand (for reasons of compatibility).

LONGEST-LOGICAL-LEN = <integer 1..255>
Specifies the maximum length of the name matched by the wildcard.

TYPE = *PARTIAL-FILENAME(...)
Specifies that the operand value is of the data type PARTIAL-FILENAME. The definition of
the string to be entered is the one given in the “Introductory Guide to DMS” [7] for partially
qualified file names.

SHORTEST-LENGTH = *UNCHANGED / *ANY / <integer 2..79>
Specifies whether the string must have a minimum length, and if so, what that minimum
length is (specified in bytes).

LONGEST-LENGTH = *UNCHANGED / *ANY / <integer 2..79>
Specifies whether the string is not to exceed a maximum length, and if so, what that
maximum length is (specified in bytes).

CATALOG-ID = *UNCHANGED / *YES / *NO
Specifies whether the catalog ID may be specified as part of the file name.

USER-ID = *UNCHANGED / *YES / *NO
Specifies whether the user ID may be specified as part of the file name.

WILDCARD = *UNCHANGED / *NO / *YES(...)
Specifies whether wildcards (see the description of the SDF metasyntax in section 1.5)
may be used in place of characters/strings within the name when the command or
statement is entered.

WILDCARD = *NO
No wildcards are allowed when entering the operand value.

WILDCARD = *YES(...)
Wildcards may be used.

TYPE = *UNCHANGED / *SELECTOR / *CONSTRUCTOR
Specifies whether the string can be a wildcard selector (search pattern) or wildcard
constructor. Wildcard constructors are used to build names from strings generated
with the aid of a wildcard selector.

284 U2284-J-Z125-9-76

MODIFY-VALUE SDF-A statements

TYPE = *SELECTOR
The string can be a wildcard selector; the data type receives the suffix with-wild (see
the description of the SDF metasyntax in section 1.5).

TYPE = *CONSTRUCTOR
The string can be a wildcard constructor; the data type receives the suffix
with-wild-constr (see the description of the SDF metasyntax in section 1.5).

LONGEST-LOGICAL-LEN = *UNCHANGED / *LONGEST-LENGTH /
<integer 2..79>
Specifies the maximum length of the name matched by the wildcard (selector and
constructor).

LONGEST-LOGICAL-LEN = *LONGEST-LENGTH
The maximum length of the name matched by the wildcard is the same as the length
specified by the LONGEST-LENGTH operand (for reasons of compatibility).

LONGEST-LOGICAL-LEN = <integer 2..79>
Specifies the maximum length of the name matched by the wildcard.

TYPE = *POSIX-PATHNAME(...)
Defines the data type of the operand value as POSIX-PATHNAME. The string entered here
must comply with the conventions below:
– The following characters are allowed: letters, digits, and the characters ‘_’, ‘-’, ‘.’,

and ‘/’ (the ‘/’ always serves as a delimiter between directories and file names). Control
characters are not allowed.

– A POSIX-PATHNAME consists of POSIX-FILENAMEs, separated by ’/’. The total length
of a POSIX-PATHNAME must not exceed 1023 characters.

– A ´\´(backslash) is used to escape metacharacters in all POSIX-specific names; the
backslash character itself is not included when counting the length. The metacharacter
* is likewise excluded from the count.

Metacharacters are characters used in wildcard patterns. The following metacharacters
may be used:

* matches zero, one, or any number of characters

? matches any single character

[S] matches any single character from the defined character set S

[!S] matches any single character that is not an element of the defined
character set S

where S
is

a set of fixed characters (e.g. abcd) or
a range of characters (e.g. a-d) or
a combination of the above (set and range).

U2284-J-Z125-9-76 285

SDF-A statements MODIFY-VALUE

POSIX-PATHNAMEs which contain characters other than those listed above or which begin
with a ’?’ or ’!’ must be enclosed within single quotes on input (as in the case of
C-STRINGs). Since the single quotes are not a part of the file name, they are removed by
SDF in the standardized transfer area or the transferred string. Single quotes that are part
of a file name must be duplicated.
To avoid compatibility problems, the C-string syntax should always be used in procedures.

SHORTEST-LENGTH = *ANY / <integer 1..1023>
Specifies whether the character string must have a minimum length, and if so, what that
minimum length is (specified in bytes).

LONGEST-LENGTH = *ANY / <integer 1..1023>
Specifies whether the character string is not to exceed a maximum length, and if so,
what that maximum length is (specified in bytes).

WILDCARD = *YES / *NO
Defines whether metacharacters (see above) may be specified in the name (instead of
characters/strings) when entering a command or statement.

TYPE = *POSIX-FILENAME(...)
Defines the data type of the operand value as POSIX-FILENAME. The string to be entered
here must comply with the conventions listed for POSIX-PATHNAMEs (see page 179f), but
with the following restrictions:
– the slash (/) is not allowed
– the maximum length is limited to 255 characters.

SHORTEST-LENGTH = *ANY / <integer 1..255>
Specifies whether the string must have a minimum length, and if so, what that minimum
length is (specified in bytes).

LONGEST-LENGTH = *ANY / <integer 1..255>
Specifies whether the string is not to exceed a maximum length, and if so, what that
maximum length is (specified in bytes).

WILDCARD = *YES / *NO
Defines whether metacharacters (see POSIX-PATHNAME) may be specified in the
name (instead of characters/strings) when entering a command or statement.

286 U2284-J-Z125-9-76

MODIFY-VALUE SDF-A statements

TYPE = *PRODUCT-VERSION(...)
Specifies that the operand value is of the data type PRODUCT-VERSION. The product
version has the following format:

“C”, “V” and “ ’ ” are optional characters and are suppressed in the SDF transfer area.

USER-INTERFACE = *UNCHANGED / *NO / *YES(...) / *ANY(...)
Specifies whether the release status of the user interface can or must be specified.

USER-INTERFACE = *NO
The release status of the user interface and the correction state must not be specified.
Specifications for the data type PRODUCT-VERSION then have the following format:
[[C]’][V][m]m.n[’].

USER-INTERFACE = *YES(...)
The release status of the user interface must be specified.

CORRECTION-STATE = *UNCHANGED / *YES / *NO / *ANY
Indicates whether the correction state can or must be specified.

CORRECTION-STATE = *YES
The correction state must be specified. Specifications for the data type
PRODUCT-VERSION then have the following format:
[[C]’][V][m]m.naso[’].

CORRECTION-STATE = *NO
The correction state must not be specified. Specifications for the data type
PRODUCT-VERSION then have the following format:
[[C]’][V][m]m.na[’].

CORRECTION-STATE = *ANY
The correction state can be specified.

USER-INTERFACE = *ANY
The release status of the user interface can be specified.

CORRECTION-STATE = *UNCHANGED / *ANY / *NO / *ANY
Indicates whether the correction state can or must be specified.

CORRECTION-STATE = *ANY
The correction state can be specified.

[[C]’][V][m]m.naso[’] m, n: digit (0..9)
a: letter
s,o: digit

Correction state
Release status

U2284-J-Z125-9-76 287

SDF-A statements MODIFY-VALUE

CORRECTION-STATE = *NO
The correction state must not be specified. Specifications for the data type
PRODUCT-VERSION then have the following format:
[[C]’][V][m]m.na[’].

CORRECTION-STATE = *YES
The correction state must be specified. Specifications for the data type
PRODUCT-VERSION then have the following format:
[[C]’][V][m]m.naso[’].

TYPE = *STRUCTURED-NAME(...)
Specifies that the operand value is of the data type STRUCTURED-NAME. This is defined
as a sequence of alphanumeric characters. This string may be subdivided into several
substrings, joined together by hyphens. The entire string, or, as the case may be, the first
substring, must begin with a letter or special character.

SHORTEST-LENGTH = *UNCHANGED / *ANY / <integer 1..255>
Specifies whether the string must have a minimum length, and if so, what that minimum
length is (specified in bytes).

LONGEST-LENGTH = *UNCHANGED / *ANY / <integer 1..255>
Specifies whether the string is not to exceed a maximum length, and if so, what that
maximum length is (specified in bytes).

WILDCARD = *UNCHANGED / *NO / *YES(...)
Specifies whether wildcards (see the description of the SDF metasyntax in section 1.5)
may be used in place of characters/strings within the name when the command or
statement is entered.

WILDCARD = *NO
No wildcards are allowed when entering the operand value.

WILDCARD = *YES(...)
Wildcards may be used.

TYPE = *UNCHANGED / *SELECTOR / *CONSTRUCTOR
Specifies whether the character string can be a wildcard selector (search pattern)
or wildcard constructor. Wildcard constructors are used to build names from strings
generated with the aid of a wildcard selector.

TYPE = *SELECTOR
The string can be a wildcard selector; the data type receives the suffix with-wild (see
the description of the SDF metasyntax in section 1.5).

TYPE = *CONSTRUCTOR
The string can be a wildcard constructor; the data type receives the suffix
with-wild-constr (see the description of the SDF metasyntax in section 1.5).

288 U2284-J-Z125-9-76

MODIFY-VALUE SDF-A statements

LONGEST-LOGICAL-LEN = *UNCHANGED / *LONGEST-LENGTH /
<integer 1..255>
Specifies the maximum length of the name matched by the wildcard (selector or
constructor).

LONGEST-LOGICAL-LEN = *LONGEST-LENGTH
The maximum length of the name matched by the wildcard is the same as the length
specified by the LONGEST-LENGTH operand (for reasons of compatibility).

LONGEST-LOGICAL-LEN = <integer 1..255>
Specifies the maximum length of the name matched by the wildcard.

TYPE = *TEXT(...)
Specifies that the operand value is of the data type TEXT. This data type is provided only
for special purposes for Fujitsu Siemens Computers System Software Development and is
therefore not described here.

TYPE = *TIME(...)
Specifies that the operand value is of the data type TIME. This is defined as a sequence of
one, two or three unsigned numbers, joined together by colons (<hours>[:<minutes>
[:<seconds>]]). The specifications for hours, minutes and seconds must not contain more
than two digits. Numbers with less digits may be preceded by leading zeros. The value
range for minutes and seconds lies between 0 and 59.

OUT-FORM = *UNCHANGED / *STD / *BINARY / *CHAR
Specifies the format that SDF uses to represent numbers in the time specification
passed to the implementation.

OUT-FORM = *STD
If the transfer is made in a transfer area (see the section “Format of the standardized
transfer area” on page 365), then the time specification is passed in the binary format.
When passing in a string (for commands that are defined with IMPLEMENTOR=
*PROCEDURE(...) or IMPLEMENTOR= *TPR(...,CMD-INTERFACE=*STRING,...), see
ADD-CMD), the time specification is passed in the character format.

OUT-FORM = *BINARY
The time specification is passed in the binary format.

OUT-FORM = *CHAR
The time specification is passed in the character format.

TYPE = *VSN(...)
Specifies that the operand value is of data type VSN. As of V1.4A, SDF is able to distinguish
between two types:

a) VSN with a period:
This VSN must consist of 6 characters. Apart from a single period, only the letters A-Z
and the digits 0-9 are accepted. Such a VSN has the format pvsid.sequence-
number, where: pvsid consists of 2 to 4 characters and sequence-number of 1 to 3

U2284-J-Z125-9-76 289

SDF-A statements MODIFY-VALUE

characters.
This subordinate type of VSN must not be preceded by PUB: for example, PUBA.0 or
PUB.02 would be invalid. The period may be the third, fourth or fifth character of the
VSN.

b) VSN without a period:
This VSN consists of a string of up to 6 characters. Only the letters A-Z, the digits 0-9
and the special characters $, @ and # are allowed. Such a VSN may start with “PUB”.
In this case, the subsequent characters must not be special characters (e.g. PUB@1 or
PUB$## will be rejected). SDF makes no further distinctions between public or private
VSNs or PUBRES.

SHORTEST-LENGTH = *UNCHANGED / *ANY / <integer 1..6>
Specifies whether the string must have a minimum length, and if so, what that minimum
length is (specified in bytes).

LONGEST-LENGTH = *UNCHANGED / *ANY / <integer 1..6>
Specifies whether the string is not to exceed a maximum length, and if so, what that
maximum length is (specified in bytes).

TYPE = *X-STRING(...)
Specifies that the operand value is of the data type X-STRING. This is defined as a
sequence of hexadecimal characters (digits 0 through 9, capital letters A through F),
enclosed in apostrophes. It is prefixed by the letter X.

SHORTEST-LENGTH = *UNCHANGED / *ANY / <integer 1..1800>
Specifies whether the string must have a minimum length, and if so, what that minimum
length is (specified in bytes).

LONGEST-LENGTH = *UNCHANGED / *ANY / <integer 1..1800>
Specifies whether the string is not to exceed a maximum length, and if so, what that
maximum length is (specified in bytes).

TYPE = *X-TEXT(...)
Specifies that the operand value is of the data type X-TEXT. This data type is very similar
to the data type X-STRING, but it is not enclosed in single quotes and is not preceded by
the letter ’X’.

SHORTEST-LENGTH = *UNCHANGED / *ANY / <integer 1..3600>
Specifies whether the string must have a minimum length, and if so, what that minimum
length is (specified in bytes).

LONGEST-LENGTH = *UNCHANGED / *ANY / <integer 1..3600>
Specifies whether the string is not to exceed a maximum length, and if so, what that
maximum length is (specified in bytes).

ODD-POSSIBLE = *UNCHANGED / *YES / *NO
Specifies whether an odd number of characters is accepted.

290 U2284-J-Z125-9-76

MODIFY-VALUE SDF-A statements

INTERNAL-NAME = *UNCHANGED / *STD / <alphanum-name 1..8>
Internal operand value name. SDF identifies an operand value by means of this name.
When *STD is specified, SDF-A takes the first eight characters (omitting hyphens) of the
data type specified for the TYPE operand. For operand values of the data type KEYWORD,
when *STD is specified SDF-A takes the first eight characters (omitting hyphens) of the first
value specified for the VALUE operand.

REMOVE-POSSIBLE = *UNCHANGED / *YES / *NO
Specifies whether the operand value may be deleted (see REMOVE). If the operand value
has been defined with REMOVE-POSSIBLE=*NO in one of the assigned reference syntax
files (see OPEN-SYNTAX-FILE), SDF-A rejects a change to *YES.

SECRET-PROMPT = *UNCHANGED / *SAME / *NO
Specifies whether the operand value is to be treated as secret. SECRET-PROMPT= *SAME
assumes the setting of the operand to which the defined operand value belongs (see ADD-
OPERAND ...,SECRET-PROMPT= , page 153).The input fields for values of secret
operands are kept blank, and logging is suppressed.
If SECRET-PROMPT=*NO is specified, the operand value is not treated as secret.
If a secret operand value is preset to a value that is not secret, the input field is not kept
blank. The input field can be kept blank by entering the character ^ or a value defined by
OUTPUT=*SECRET-PROMPT.

DIALOG-ALLOWED = *UNCHANGED / *YES / *NO
Specifies whether the operand value is valid in interactive mode. Specifying YES presup-
poses that the operand to which the value pertains is allowed in dialog mode.

DIALOG-PROC-ALLOWED = *UNCHANGED / *YES / *NO
Specifies whether the operand value is allowed in interactive mode within a procedure.
Specifying *YES presupposes that the operand to which the value pertains is allowed in
interactive mode within a procedure.

GUIDED-ALLOWED = *UNCHANGED / *YES / *NO
Specifies whether the operand value is allowed in guided dialog. Specifying *YES presup-
poses that the operand to which the value pertains is allowed in guided dialog.

BATCH-ALLOWED = *UNCHANGED / *YES / *NO
Specifies whether the operand value is allowed in batch mode. Specifying *YES presup-
poses that the operand to which the value pertains is allowed in batch mode.

BATCH-PROC-ALLOWED = *UNCHANGED / *YES / *NO
Specifies whether the operand value is allowed in batch mode within a procedure. Speci-
fying *YES presupposes that the operand to which the value pertains is allowed in batch
mode within a procedure.

STRUCTURE =
Specifies whether the operand value introduces a structure.

U2284-J-Z125-9-76 291

SDF-A statements MODIFY-VALUE

STRUCTURE = *UNCHANGED
No change as far as introducing a structure is concerned.

STRUCTURE = *NO
The operand value does not introduce a structure.

STRUCTURE = *YES(...)
The operand value introduces a structure.

SIZE = *UNCHANGED / *SMALL / *LARGE
Specifies whether, at the minimum or medium level of guided dialog, the structure is to
be integrated into the parent form (*SMALL), or whether a separate form is to be created
for it (*LARGE).

FORM = *UNCHANGED / *FLAT / *NORMAL
Relevant only for statements and for commands defined with IMPLEMENTOR=
*TPR(...,CMD-INTERFACE=*NEW/*TRANSFER-AREA,...) (see ADD-CMD). When
*FLAT is specified, the structure is linearized for the implementation in the transfer area,
and the operands for the structure are integrated into a higher-ranking operand array.
In the *NORMAL case, the structure receives its own operand array. In this array, those
operands are passed for which a higher structure level is defined for RESULT-
OPERAND-LEVEL than for the operand to which the operand value that introduces a
structure and which is defined here pertains (see ADD-OPERAND ..., RESULT-
OPERAND-LEVEL=,... and section “Format of the standardized transfer area” on
page 365”).

MAX-STRUC-OPERAND = *UNCHANGED / *STD / <integer 1..3000>
Number of operand positions to be reserved in the structured transfer. If *STD is
specified, the operand array will be made as large as necessary for the structure.
However, the array may also be made larger to accommodate planned expansions. This
operand refers to the structure introduced by the operand value, and is only relevant
when *NORMAL was specified for the preceding operand.

LIST-ALLOWED = *UNCHANGED / *NO / *YES
Specifies whether a list may be specified for the operand value when the command or
statement is entered. This presupposes that the operand to which the value pertains was
defined with LIST-POSSIBLE=*YES (see ADD-OPERAND).

VALUE =
Specifies which values are permitted as input.

VALUE = *UNCHANGED
No change with regard to the permissible input values.

VALUE = *NO
All values corresponding to the operand type are permitted. Limitations exist only insofar as
these have been specified in the definition of the operand type (e.g. length restrictions). For
operands of the type KEYWORD, *NO is not permitted.

292 U2284-J-Z125-9-76

MODIFY-VALUE SDF-A statements

VALUE = list-poss(2000): <c-string 1..1800 with-low>(...)
The operand value must have one of the specified values (mandatory for values of the type
KEYWORD). In contrast to the STANDARD-NAME and the ALIAS-NAME, the user may
abbreviate this value on input. If the operand value is of the type KEYWORD, specification
of a list is not permissible.

STANDARD-NAME = *UNCHANGED / *NO / list-poss(2000): *NAME /
<structured-name 1..30> / <c-string 1..30>
Relevant only for operand values of the type KEYWORD. This specifies the standard
name of the operand value, and may be alternatively used when entering the command
or statement. It must not be abbreviated when entered. In contrast to an ALIAS-NAME,
a STANDARD-NAME must not be deleted so long as the operand value with this name
exists in one of the assigned reference syntax files (see OPEN-SYNTAX-FILE). If the
original individual value, designated a keyword in the command or program documen-
tation, is declared to be the standard name, it is thereby ensured that the operand value
can be entered using the original keyword, regardless of any changes. If *NAME is
specified, SDF-A takes as STANDARD-NAME the particular value specified for the
VALUE operand.

GUIDED-ABBREVIATION = *UNCHANGED / *NAME /
<structured-name 1..30> / <c-string 1..30>
Relevant only for operand values of the type KEYWORD. This specifies the name by
which SDF identifies the operand value at the medium help level of guided dialog. When
*NAME is specified, SDF-A takes as GUIDED-ABBREVIATION the particular value
entered for the VALUE operand.

ALIAS-NAME = *UNCHANGED / *NO / list-poss(2000): <structured-name 1..30>
Relevant only for operand values of the type KEYWORD. This specifies the alias for the
operand value, which may be alternatively used when the command is entered. It must
not be abbreviated when entered. In contrast to a STANDARD-NAME, an ALIAS-NAME
may be deleted.

MINIMAL-ABBREVIATION = *UNCHANGED / *NO / <structured-name 1..30> /
<c-string 1..30>
Applies only to operand values of the type KEYWORD and defines the shortest permis-
sible abbreviation for the operand value. Any shorter abbreviation will not be accepted
by SDF.
The following should be noted:

1. Checking against the minimum abbreviation is carried out only after SDF has
checked the input for ambiguity. It may thus happen that SDF selects the correct
operand value but then rejects it because the abbreviation entered is shorter than
the specified minimum abbreviation.

2. The minimum abbreviation must be derived from the KEYWORD.

U2284-J-Z125-9-76 293

SDF-A statements MODIFY-VALUE

3. The ALIAS-NAMEs and STANDARD-NAMEs of the operand value must not be
shorter than the minimum abbreviation if they are abbreviations of the operand
value.

4. The minimum abbreviation may only be shortened - not lengthened - within a syntax
file hierarchy.

NULL-ABBREVIATION = *UNCHANGED / *NO / *YES
Relevant only for operand values of the type KEYWORD defined with
STRUCTURE=*YES. This specifies whether the operand value may be omitted
preceding the opening structure parentheses when the command or statement is
entered, e.g. an operand value introducing a structure when there are no alternative
values for the operand.

OUTPUT =
Specifies which value is passed to the implementation when OUTPUT=*NORMAL
applies (see below).

OUTPUT = *UNCHANGED
No change with regard to the value to be passed.

OUTPUT = *SAME
The value specified for the VALUE operand is passed.

OUTPUT = *EMPTY-STRING
An empty string is passed.

OUTPUT = *DROP-OPERAND
Transfer of the operand is suppressed.

OUTPUT = <c-string 1..1800>
The value specified here is passed.

OUTPUT = <x-string 1..3600>
The value specified here is passed.

OUT-TYPE = *UNCHANGED / *SAME / *ALPHANUMERIC-NAME / *CAT-ID /
*COMMAND-REST / *COMPOSED-NAME / *C-STRING / *DATE / *DEVICE /
*FIXED / *FILENAME / *INTEGER / *KEYWORD-NUMBER / *NAME /
*PARTIAL-FILENAME /*POSIX-PATHNAME / *POSIX-FILENAME / *PRODUCT-
VERSION / *STRUCTURED-NAME / *TEXT / *TIME / *VSN / *X-STRING / *X-TEXT
Relevant only for statements and for commands defined with IMPLEMENTOR=
*TPR(...,CMD-INTERFACE=*NEW/*TRANSFER-AREA,...) (see ADD-CMD). OUT-
TYPE specifies whether SDF changes the data type of the operand value and, if so,
how, when the value is stored in the transfer area for the implementation (see section
“Format of the standardized transfer area” on page 365ff). If SAME is specified, SDF
does not change the data type.

294 U2284-J-Z125-9-76

MODIFY-VALUE SDF-A statements

OVERWRITE-POSSIBLE = *UNCHANGED / *NO / *YES
Relevant only for statements and for commands defined with IMPLEMENTOR=
*TPR(...,CMD-INTERFACE=*NEW/*TRANSFER-AREA,...) (see ADD-CMD).
OVERWRITE-POSSIBLE specifies whether the operand value entered is overwritten
by a value dynamically generated by the implementation (see the DEFAULT operand in
the CMDRST and CMDTST macros). One of the existing operand value definitions for
the operand must cover the value generated by the implementation. In guided dialog,
SDF shows the value generated by the implementation in the form.
Example: The value UNCHANGED in MODIFY statements for SDF-A is overwritten by
SDF-A with the current value.

OUTPUT =
Specifies whether, and if so how, SDF is to pass the operand value entered to the imple-
mentation.

OUTPUT = *UNCHANGED
No change regarding the transfer of the operand value.

OUTPUT = *NORMAL(...)
SDF passes the operand value to the implementation. From SDF-A Version 2.0 onwards,
the specifications AREA-LENGTH=, LEFT-JUSTIFIED= and FILLER= are no longer
restricted to specific operand values.

AREA-LENGTH = *UNCHANGED / *VARIABLE / <integer 1..3000>
Specifies the length of the field in which SDF stores the operand value for the imple-
mentation. The field must be large enough to hold the maximum value which can be
entered during execution. If the value specified for AREA-LENGTH is less than the
value defined for LONGEST-LENGTH, SDF issues a warning and accepts the value
specified for AREA-LENGTH.

There are two possible cases when a value that is greater than AREA-LENGTH and
less than LONGEST-LENGTH is analyzed:

1. Values that are of type C-STRING with LONGEST-LENGTH Î 32 and which are part
of a secret operand are compressed by SDF and stored in a hexadecimal string with
the length defined for AREA-LENGTH. This behavior is typically used for
passwords. The passwords are compressed with the aid of a hash algorithm and
are protected against unauthorized access by their hexadecimal storage format.

Notes:
– The same hash algorithm is used as in the HASH-STRING function provided in

SDF-P.
– The command server or the program that processes the value analyzed by SDF

may need to be adapted if the password definition was changed in order to
support hash passwords. The hash value returned by SDF may otherwise be
rejected by the semantic analysis module of the program or command server.

U2284-J-Z125-9-76 295

SDF-A statements MODIFY-VALUE

2. In all other cases, i.e. those which deviate from case 1, the value is truncated to the
length specified for AREA-LENGTH.

LEFT-JUSTIFIED = *UNCHANGED / *STD / *YES / *NO
Relevant only when a fixed length has been defined for the field in which the operand
value is stored. LEFT-JUSTIFIED specifies whether SDF stores the operand value in
the field left-justified or right-justified. SDF-A changes *STD to *NO for numeric values
and to *YES for all other values.

FILLER = *UNCHANGED / *STD / <c-string 1..1> / <x-string 1..2>
Relevant only when a fixed length has been defined for the field in which the operand
value is stored. FILLER specifies the character with which SDF pads the field when
necessary. SDF-A changes *STD to X’00’ for values of the types X-STRING or
INTEGER, and to C’ ’ (blank) for all other values.

STRING-LITERALS = *UNCHANGED / *NO / *HEX / *CHAR
Specifies whether SDF converts the operand value into the data type X-STRING or
C-STRING for the transfer to the implementation. When *NO is specified, SDF does not
change the data type. It must then be borne in mind that, for operand values of the type
C-STRING, SDF transfers only the contents of the string (without the apostrophes and
the prefixed C). This operand is valid only if VALUE=*NO is specified.

HASH = *UNCHANGED / * NO / * YES(...)
Specifies whether the input value can be converted to a value with a defined length
using a hash algorithm.

HASH = *YES(...)
Is only permitted for operand values of the data type C-STRING which are defined with
LONGEST-LENGTH Î 32.
The other operands in the structure OUTPUT=*NORMAL(..) do not format the value
until after the hash function has been carried out. The value then has the data type
X-STRING and may then contain non-printable characters.

OUTPUT-LENGTH = <integer 2..32>
Length of the value to which the input value is changed.

OUTPUT = *SECRET-PROMPT
The operand value is not passed to the implementation; instead it causes SDF to request
the user to enter one of the alternative values for the operand. The input that follows is then
not displayed and is not logged. Prerequisites for this are:
– The operand is defined as secret (see ADD-OPERAND...,SECRET-PROMPT=*YES)
– Input is made in unguided dialog or in a foreground procedure
– A single value is specified as permissible input for the operand value defined with

SECRET-PROMPT (see the operand VALUE=<c-string>; normally the value is of the
type KEYWORD).

296 U2284-J-Z125-9-76

MODIFY-VALUE SDF-A statements

The following case occurs in guided dialog:
The input field for a secret operand which is set to a value which is not secret will not be
kept blank. The input field can be kept blank by entering a value defined with
OUTPUT=*SECRET-PROMPT.

PRIVILEGE = *UNCHANGED / *SAME / *EXCEPT(...) /
list-poss(64): <structured-name 1..30>
Specifies the privileges assigned to the operand value.

PRIVILEGE = *SAME
The operand value is assigned the same privileges as the operand to which it belongs.

PRIVILEGE = *EXCEPT(...)
With the exception of those defined with *EXCEPT(...), all privileges currently defined and
all subsequently defined privileges are assigned to the operand value.

EXCEPT-PRIVILEGE = list-poss(64): <structured-name 1..30>
Specifies the privileges that are not assigned to the operand value.

PRIVILEGE = list-poss(64): <structured-name 1..30>
Only the privileges specified in this list are assigned to the operand value.

U2284-J-Z125-9-76 297

SDF-A statements OPEN-SYNTAX-FILE

OPEN-SYNTAX-FILE
Open syntax file

The OPEN-SYNTAX-FILE statement is used to open a syntax file for processing with
SDF-A. The format of this syntax file can be defined with the DEFINE-ENVIRONMENT
statement before opening the file. Each subsequent OPEN-SYNTAX-FILE statement
implicitly causes SDF-A to close the previously opened syntax file.

A syntax file can be opened either with (default) or without a hierarchy. Any modification of
the hierarchy between two operations may lead to errors. It is therefore advisable to edit a
syntax file always in the same hierarchy.

(part 1 of 2)

OPEN-SYNTAX-FILE

FILE = <filename 1..54>

,TYPE = *USER (...) / *GROUP(...) / *SYSTEM(...)

*USER(...)
 GROUP-DESCRIPTIONS = *CURRENT / *NO / <filename 1..54>
 ,SYSTEM-DESCRIPTIONS = *CURRENT / *NO / <filename 1..54>
 ,USER-CONTROL = *NO / <filename 1..54>

*GROUP(...)
 SYSTEM-DESCRIPTIONS = *CURRENT / *NO / <filename 1..54>
 ,SYSTEM-CONTROL = *NO / <filename 1..54>

*SYSTEM(...)
 SYSTEM-CONTROL = *NO / <filename 1..54>

,MODE = *UPDATE (...) / *CREATE / *READ / *INIT(...)

*UPDATE(...)
 COMPONENT-VERSION = *UNCHANGED / <integer 0..999>
 ,SOFTWARE-UNIT-NAME = *NOCHECK (...) / <structured-name 1..15>(...)
 *NOCHECK(...)
 VERSION = *UNCHANGED / <product-version>
 <structured-name 1..15>(...)
 VERSION = *UNCHANGED / <product-version>

continued ➠

298 U2284-J-Z125-9-76

OPEN-SYNTAX-FILE SDF-A statements

FILE = <filename 1..54>
Name of the syntax file to be opened.

TYPE =
Type of the syntax file to be opened.

TYPE = *USER(...)
A user syntax file is to be opened.

GROUP-DESCRIPTIONS =
Specifies whether SDF-A is to access the contents of a group syntax file when
processing the user syntax file to be opened.

GROUP-DESCRIPTIONS = *CURRENT
SDF-A is to access the group syntax file activated for the current task.

GROUP-DESCRIPTIONS = *NO
SDF-A is not to access a group syntax file.

GROUP-DESCRIPTIONS = <filename 1..54>
Name of the group syntax file to be accessed by SDF-A.

SYSTEM-DESCRIPTIONS =
Specifies whether SDF-A is to access the contents of a system syntax file when
processing the user syntax file to be opened.

SYSTEM-DESCRIPTIONS = *CURRENT
SDF-A is to access the currently activated system syntax file.

SYSTEM-DESCRIPTIONS = *NO
SDF-A is not to access a system syntax file.

SYSTEM-DESCRIPTIONS = <filename 1..54>
Name of the system syntax file to be accessed by SDF-A.

*INIT(...)
 KERNEL = <filename 1..54>
 ,MONSYS-DOMAIN = <structured-name 1..13>
 ,COMMAND-CLASS = <name 3..3>(...)
 <name 3..3>(...)
 SOFTWARE-UNIT-NAME = <structured-name 1..15>(...)

 <structured-name 1..15>(...)
 VERSION = <product-version>
 ,COMPONENT-VERSION = <integer 0..999>

(part 2 of 2)

U2284-J-Z125-9-76 299

SDF-A statements OPEN-SYNTAX-FILE

USER-CONTROL =
Specifies whether SDF-A is to check that definitions of user-defined commands or
statements are not modified in ways that are not permissible. For this monitoring,
SDF-A requires a user syntax file in which the definitions of the user-defined
commands/statements are stored in their original versions.

USER-CONTROL = *NO
No monitoring is to take place.

USER-CONTROL = <filename 1..54>
Name of the user syntax file containing the command/statement definitions required for
monitoring.

TYPE = *GROUP(...)
A group syntax file is to be opened.

SYSTEM-DESCRIPTIONS =
Specifies whether SDF-A is to access the contents of a system syntax file when
processing the group syntax file to be opened.

SYSTEM-DESCRIPTIONS = *CURRENT
SDF-A is to access the currently activated system syntax file.

SYSTEM-DESCRIPTIONS = *NO
SDF-A is not to access a system syntax file.

SYSTEM-DESCRIPTIONS = <filename 1..54>
Name of the system syntax file to be accessed by SDF-A.

SYSTEM-CONTROL =
Specifies whether SDF-A is to check that definitions of commands or statements
available to specific user IDs are not modified in ways that are not permissible. For this
monitoring, SDF-A requires a system syntax file in which the definitions of these
commands/statements are stored in their original versions.

SYSTEM-CONTROL = *NO
No monitoring is to take place.

SYSTEM-CONTROL = <filename 1..54>
Name of the system syntax file containing the command/statement definitions required
for monitoring.

TYPE = *SYSTEM(...)
A system syntax file is to be opened.

SYSTEM-CONTROL =
Specifies whether SDF-A is to check that definitions of commands or statements
available throughout the system are not modified in ways that are not permissible. For
this check, SDF-A requires as a reference syntax file a system syntax file in which the
definitions of these commands/statements are stored in their original versions.

300 U2284-J-Z125-9-76

OPEN-SYNTAX-FILE SDF-A statements

SYSTEM-CONTROL = *NO
No monitoring is to take place.

SYSTEM-CONTROL = <filename 1..54>
Name of the system syntax file containing the command/statement definitions required
for monitoring.

MODE =
Specifies whether the opened syntax file may be processed or whether it is to be created.

MODE = *UPDATE(...)
The contents of the syntax file may be both displayed and modified. The syntax file already
exists. It must not have been activated.

COMPONENT-VERSION = *UNCHANGED / <integer 0..999>
This operand is reserved for Fujitsu Siemens Computers Software Development.

SOFTWARE-VERSION = *NOCHECK(...) / <structured-name 1..15>(...)
This operand is reserved for Fujitsu Siemens Computers Software Development.

MODE = *CREATE
The contents of the syntax file may be both displayed and modified. The file is to be newly
created by SDF-A. This also means that SDF-A generates the global information. If a file
with the same name already exists, SDF-A refuses to open the file and issues an error
message.

MODE = *READ
The contents of the syntax file can be displayed, but not modified (read access only). The
syntax file already exists. It may already have been activated.

MODE = *INIT(...)
This operand value is reserved for Fujitsu Siemens Computers Software Development.

U2284-J-Z125-9-76 301

SDF-A statements REMOVE

REMOVE
Delete objects from syntax file

The REMOVE statement is used to delete objects from the open syntax file. Objects in this
sense are domains, programs, commands, statements, operands or operand values. The
term “delete” as used below implies two operations:

1. SDF-A removes the definition of the object to be deleted from the open syntax file. This
applies to all types of syntax files.

2. SDF-A writes into the processed user or group syntax file the information that the object
to be deleted is disabled. This presupposes that, when the syntax file was opened, a
group or system syntax file in which the object to be deleted is defined was specified for
the GROUP-DESCRIPTIONS or SYSTEM-DESCRIPTIONS operand. In this case the
command name cannot be used for another command.

The removal of mandatory operands from a system command is not allowed. This prevents
a permanent syntax error during execution.

The standard SDF statements cannot be deleted.

REMOVE OBJECT=*DOMAIN removes also the commands assigned exclusively to this
domain, unless the command has been defined with REMOVE-POSSIBLE=*NO.

An object defined with REMOVE-POSSIBLE=*NO (in ADD or MODIFY statements) cannot
be deleted.

(part 1 of 4)

REMOVE

OBJECT = *PRIVILEGE(...) / *DOMAIN(...) / *COMMAND(...) / *PROGRAM(...) / *STATEMENT(...) /

*OPERAND(...) / *VALUE(...) / *CORRECTION-INFORMATION(...)

*PRIVILEGE(...)
 NAME = <structured-name 1..30>

*DOMAIN(...)
 NAME = *ALL(...) / <structured-name 1..30 with-wild> / list-poss(2000): <structured-name 1..30>
 *ALL(...)
 EXCEPT = *NONE / <structured-name 1..30 with-wild> /

 list-poss(2000): <structured-name 1..30>
 ,REMOVE-ATT-COMMANDS = *YES / *NO

continued ➠

302 U2284-J-Z125-9-76

REMOVE SDF-A statements

*COMMAND(...)
 NAME = *ALL(...) / <structured-name 1..30 with-wild> / list-poss(2000): <structured-name 1..30>
 *ALL(...)
 EXCEPT = *NONE / <structured-name 1..30 with-wild> /

 list-poss(2000): <structured-name 1..30>

*PROGRAM(...)
 NAME = *ALL(...) / <structured-name 1..30 with-wild> / list-poss(2000): <structured-name 1..30>
 *ALL(...)
 EXCEPT = *NONE / <structured-name 1..30 with-wild> /

 list-poss(2000): <structured-name 1..30>

*STATEMENT(...)
 NAME = *ALL(...) / <structured-name 1..30 with-wild> / list-poss(2000): <structured-name 1..30>
 *ALL(...)
 EXCEPT = *NONE / <structured-name 1..30 with-wild> /

 list-poss(2000): <structured-name 1..30>

 ,PROGRAM = <structured-name 1..30>

*OPERAND(...)
 OPERAND-L1 = *CURRENT / <structured-name 1..20>
 ,VALUE-L1 = *NO / *COMMAND-REST / *INTEGER / *X-STRING / *C-STRING / *NAME /

 *ALPHANUMERIC-NAME / *STRUCTURED-NAME / *FILENAME /

 *PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL / *VSN /

 *COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *PRODUCT-VERSION /

 *POSIX-PATHNAME / *POSIX-FILENAME / <composed-name 1..30>
 ,OPERAND-L2 = *NO / <structured-name 1..20>
 ,VALUE-L2 = *NO / *COMMAND-REST / *INTEGER / *X-STRING / *C-STRING / *NAME /

 *ALPHANUMERIC-NAME / *STRUCTURED-NAME / *FILENAME /

 *PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL / *VSN /

 *COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *PRODUCT-VERSION /

 *POSIX-PATHNAME / *POSIX-FILENAME / <composed-name 1..30>

continued ➠

(part 2 of 4)

U2284-J-Z125-9-76 303

SDF-A statements REMOVE

 ,OPERAND-L3 = *NO / <structured-name 1..20>
 ,VALUE-L3 = *NO / *COMMAND-REST / *INTEGER / *X-STRING / *C-STRING / *NAME /

 *ALPHANUMERIC-NAME / *STRUCTURED-NAME / *FILENAME /

 *PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL / *VSN /

 *COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *PRODUCT-VERSION /

 *POSIX-PATHNAME / *POSIX-FILENAME / <composed-name 1..30>
 ,OPERAND-L4 = *NO / <structured-name 1..20>
 ,VALUE-L4 = *NO / *COMMAND-REST / *INTEGER / *X-STRING / *C-STRING / *NAME /

 *ALPHANUMERIC-NAME / *STRUCTURED-NAME / *FILENAME /

 *PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL / *VSN /

 *COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *PRODUCT-VERSION /

 *POSIX-PATHNAME / *POSIX-FILENAME / <composed-name 1..30>
 ,OPERAND-L5 = *NO / <structured-name 1..20>
 ,ORIGIN = *CURRENT / *COMMAND(...) / *STATEMENT(...)
 *COMMAND(...)
 NAME = <structured-name 1..30>
 *STATEMENT(...)
 NAME = <structured-name 1..30>
 ,PROGRAM = <structured-name 1..30>

*VALUE(...)

 OPERAND-L1 = *ABOVE-CURRENT / <structured-name 1..20>
 ,VALUE-L1 = *CURRENT / *COMMAND-REST / *INTEGER / *X-STRING / *C-STRING / *NAME /

 *ALPHANUMERIC-NAME / *STRUCTURED-NAME / *FILENAME /

 *PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL / *VSN /

 *COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *PRODUCT-VERSION /

 *POSIX-PATHNAME / *POSIX-FILENAME / <composed-name 1..30>
 ,OPERAND-L2 = *NO / <structured-name 1..20>
 ,VALUE-L2 = *NO / *COMMAND-REST / *INTEGER / *X-STRING / *C-STRING / *NAME /

 *ALPHANUMERIC-NAME / *STRUCTURED-NAME / *FILENAME /

 *PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL / *VSN /

 *COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *PRODUCT-VERSION /

 *POSIX-PATHNAME / *POSIX-FILENAME / <composed-name 1..30>

continued ➠

(part 3 of 4)

304 U2284-J-Z125-9-76

REMOVE SDF-A statements

 ,OPERAND-L3 = *NO / <structured-name 1..20>
 ,VALUE-L3 = *NO / *COMMAND-REST / *INTEGER / *X-STRING / *C-STRING / *NAME /

 *ALPHANUMERIC-NAME / *STRUCTURED-NAME / *FILENAME /

 *PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL / *VSN /

 *COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *PRODUCT-VERSION /

 *POSIX-PATHNAME / *POSIX-FILENAME / <composed-name 1..30>
 ,OPERAND-L4 = *NO / <structured-name 1..20>
 ,VALUE-L4 = *NO / *COMMAND-REST / *INTEGER / *X-STRING / *C-STRING / *NAME /

 *ALPHANUMERIC-NAME / *STRUCTURED-NAME / *FILENAME /

 *PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL / *VSN /

 *COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *PRODUCT-VERSION /

 *POSIX-PATHNAME / *POSIX-FILENAME / <composed-name 1..30>
 ,OPERAND-L5 = *NO / <structured-name 1..20>
 ,VALUE-L5 = *NO / *COMMAND-REST / *INTEGER / *X-STRING / *C-STRING / *NAME /

 *ALPHANUMERIC-NAME / *STRUCTURED-NAME / *FILENAME /

 *PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL / *VSN /

 *COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *PRODUCT-VERSION /

 *POSIX-PATHNAME / *POSIX-FILENAME / <composed-name 1..30>
 ,ORIGIN = *CURRENT / *COMMAND(...) / *STATEMENT(...)
 *COMMAND(...)
 NAME = <structured-name 1..30>
 *STATEMENT(...)
 NAME = <structured-name 1..30>
 ,PROGRAM = <structured-name 1..30>

*CORRECTION-INFORMATION(...)
 PM-NUMBER = *ALL / list-poss(20): <alphanum-name 8..8>

(part 4 of 4)

U2284-J-Z125-9-76 305

SDF-A statements REMOVE

OBJECT =
Type of the object to be deleted.

OBJECT = *PRIVILEGE(...)
Specifies that a privilege is to be deleted. This operand value is reserved for Fujitsu
Siemens Computers Software Development.

OBJECT = *DOMAIN(...)
Specifies that domains are to be deleted. The commands assigned to these domains are
not deleted if:
– they are assigned to at least one other domain,
– they are defined with REMOVE-POSSIBLE=*NO or
– the user specifies REMOVE-ATT-COMMANDS=*NO.

Domains do not contain statements, which means that no statements can be deleted when
a domain is deleted.

NAME = *ALL(...)
All domains are deleted.

EXCEPT = *NONE / <structured-name 1..30 with-wild> / list-poss(2000):
<structured-name 1..30>
The domains specified here are not deleted.

NAME = <structured name 1..30 with-wild /
list-poss(2000): <structured-name 1..30>
The domains named or the domains whose name matches the name of the wildcard
selector are deleted.

REMOVE-ATT-COMMANDS = *YES / *NO
Specifies whether the commands assigned to the domain are deleted.

OBJECT = *COMMAND(...)
Specifies that commands are to be deleted. This includes the deletion of the associated
operands.

NAME = *ALL(...)
All commands are deleted.

EXCEPT = *NONE / <structured-name 1..30 with-wild> / list-poss(2000):
<structured-name 1..30>
The commands specified here are not deleted.

NAME = <structured name 1..30 with-wild /
list-poss(2000): <structured-name 1..30>
The commands named or the commands whose name matches the name of the
wildcard selector are deleted.

306 U2284-J-Z125-9-76

REMOVE SDF-A statements

OBJECT = *PROGRAM(...)
Specifies that programs are to be deleted. This includes deleting the associated state-
ments.

NAME = *ALL(...)
All programs are deleted.

EXCEPT = *NONE / <structured-name 1..30 with-wild> / list-poss(2000):
<structured-name 1..30>
The programs specified here are not deleted.

NAME = <structured name 1..30 with-wild /
list-poss(2000): <structured-name 1..30>
The programs named or the programs whose name matches the name of the wildcard
selector are deleted.

OBJECT = *STATEMENT(...)
Specifies that statements are to be deleted. This includes deleting the associated
operands.

NAME = *ALL(...)
All statements are deleted.

EXCEPT = *NONE / <structured-name 1..30 with-wild> / list-poss(2000):
<structured-name 1..30>
The statements specified here are not deleted.

NAME = <structured name 1..30 with-wild /
list-poss(2000): <structured-name 1..30>
The statements / the statements whose name matches the name of the wildcard
selector are deleted.

PROGRAM = <structured-name 1..30>
Name of the program to which the statements belong.

U2284-J-Z125-9-76 307

SDF-A statements REMOVE

OBJECT = *OPERAND(...)
Specifies that an operand is to be deleted. This includes deleting the associated operand
values. If this operand is included in a structure, it is specified by the path leading to it, i.e.
by specifying the operands and operand values that introduce the structure in this path. If
the name of one of the operands in the path is unique, not only within its structure, but also
with respect to the higher-ranking structure (or globally within the command or statement),
the path need not be completely (or not at all) specified. An operand that is not absolutely
essential to identify the operand to be deleted, as well as the operand value pertaining to it,
can be omitted. An operand value specified for VALUE-Li (i=1,...,5) must pertain to the
operand defined by OPERAND-Li. After the first VALUE-Li=*NO, SDF-A takes the operand
defined by OPERAND-Li as the one that is to be deleted. Subsequently, SDF-A does not
interpret the specifications for any other OPERAND-Lj, VALUE-Lj. If a value other than *NO
is specified for VALUE-Li, the value specified for OPERAND-Li + 1 must also be other than
*NO.

OPERAND-L1 = *CURRENT / <structured-name 1..20>
Specifies the operand to be deleted (VALUE-L1 = *NO) or an operand in the path
leading to it (VALUE-L1 î *NO). *CURRENT means that OPERAND-L1 is the current
object. <structured-name> must be a globally unique operand name within the
command or statement.

VALUE-L1 = *NO / *COMMAND-REST / *INTEGER / *X-STRING / *C-STRING /
*NAME / *ALPHANUMERIC-NAME / *STRUCTURED-NAME / *FILENAME /
*PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL / *VSN /
*COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *POSIX-PATHNAME /
*POSIX-FILENAME / *PRODUCT-VERSION / <composed-name 1..30>
*NO means that OPERAND-L1 is to be deleted. Otherwise, an operand value that intro-
duces a structure is to be specified. This structure must directly or indirectly contain the
operand that is to be deleted. If the operand value introducing the structure is of the data
type KEYWORD-NUMBER, then the particular value defined for it is to be specified
(see ADD-VALUE TYPE=*KEYWORD,...,VALUE=<c-string>). Here it must be remem-
bered that this particular value is to be specified in each case without the prefixed
asterisk. If the operand value introducing the structure is not of the type
KEYWORD-NUMBER, then the data type defined for it is to be specified.

OPERAND-L2 = *NO / <structured-name 1..20>
*NO means that OPERAND-L2 is irrelevant for the specification of the operand to be
deleted. Otherwise, the name of an operand that is unique within the structure deter-
mined by VALUE-L1 is to be specified. This operand is either the one to be deleted
(VALUE-L2 = *NO) or an operand that is in the path leading to the operand to be deleted
(VALUE-L2 î *NO).

308 U2284-J-Z125-9-76

REMOVE SDF-A statements

VALUE-L2 = analogous to VALUE-L1
*NO means that VALUE-L2 is irrelevant for the specification of the operand to be
deleted. Otherwise, an operand value introducing a structure is to be specified. This
structure must directly or indirectly contain the operand to be deleted. For further infor-
mation see VALUE-L1.

OPERAND-L3 = *NO / <structured-name 1..20>
*NO means that OPERAND-L3 is irrelevant for the specification of the operand that is
to be deleted. Otherwise, the name of an operand that is unique within the structure
determined by VALUE-L2 is to be specified. This operand is either the one to be deleted
(VALUE-L3 = *NO) or an operand that is in the path leading to the operand to be deleted
(VALUE-L3 î *NO).

VALUE-L3 = analogous to VALUE-L1
*NO means that VALUE-L3 is irrelevant for the specification of the operand to be
deleted. Otherwise, an operand value introducing a structure is to be specified. This
structure must directly or indirectly contain the operand that is to be deleted. For further
information see VALUE-L1.

OPERAND-L4 = *NO / <structured-name 1..20>
see OPERAND-L2.

VALUE-L4= analogous to VALUE-L1
see VALUE-L2.

OPERAND-L5 = *NO / <structured-name 1..20>
see OPERAND-L2.

ORIGIN =
Specifies the command or statement to which the operand to be deleted belongs.

ORIGIN = *CURRENT
The operand pertains to a command or statement that currently either is itself the
current object or contains an operand or operand value that is the current object.

ORIGIN = *COMMAND(...)
The operand pertains to a command.

NAME = <structured-name 1..30>
Name of the command.

ORIGIN = *STATEMENT(...)
The operand pertains to a statement.

NAME = <structured-name 1..30>
Name of the statement.

PROGRAM = <structured-name 1..30>
Name of the program to which the statement pertains.

U2284-J-Z125-9-76 309

SDF-A statements REMOVE

OBJECT = *VALUE(...)
Specifies that an operand value is to be deleted. This includes deleting the associated
structures. The operand value to be deleted is specified by the path leading to it, i.e. by
specifying the operands and operand values introducing a structure in this path. If the
operand value to be deleted pertains to an operand that is not attached to any structure, the
path contains only this operand. If the operand value to be deleted does pertain to an
operand attached to a structure, the path also includes the higher-ranking operands as well
as the associated operand values introducing the structure. If the name of one of the
operands in the path is unique, not only within its structure, but also with respect to the
higher-ranking structure (or globally within the command or statement), the path need not
be completely specified. An operand that is not absolutely essential to identify the operand
value to be deleted, as well as the operand value pertaining to it, can be omitted. An
operand value specified for VALUE-Li (i=1,...,5) must pertain to the operand defined by
OPERAND-Li. After the first OPERAND-Li + 1 = *NO, SDF-A takes the operand value
defined by VALUE-Li as the one whose definition is to be deleted. Subsequently, SDF-A
does not interpret the specifications as to any other OPERAND-Lj, VALUE-Lj. If a value
other than *NO is specified for OPERAND-Li, the value specified for VALUE-Li must
likewise be other than *NO.

OPERAND-L1 = *ABOVE-CURRENT / <structured-name 1..20>
Specifies the operand to which the operand value to be deleted pertains (OPERAND-
L2 = *NO) or an operand in the path leading to this operand value (OPERAND-L2 î
*NO). *ABOVE-CURRENT means that a value pertaining to OPERAND-L1 is the
current object. <structured-name> must be a globally unique operand name within the
command or statement.

VALUE-L1 = *CURRENT / *COMMAND-REST / *INTEGER / *X-STRING /
*C-STRING / *NAME / *ALPHANUMERIC-NAME / *STRUCTURED-NAME /
*FILENAME / *PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL /
*VSN / *COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *POSIX-PATHNAME /
*POSIX-FILENAME / *PRODUCT-VERSION / <composed-name 1..30>
Specifies the operand value to be deleted (OPERAND-L2=*NO) or an operand value
introducing a structure in the path leading to the operand to be deleted (OPERAND-
L2î*NO). *CURRENT means that VALUE-L1 is the current object. If it is not the current
object and of the data type KEYWORD(-NUMBER), then the particular value defined
for it is to be specified (see ADD-VALUE TYPE=*KEYWORD,...,VALUE=<c-string>).
Here it must be remembered that this particular value is to be specified in each case
without the prefixed asterisk. If the operand value is not of the type
KEYWORD(-NUMBER), then the data type defined for it is to be specified.

310 U2284-J-Z125-9-76

REMOVE SDF-A statements

OPERAND-L2 = *NO / <structured-name 1..20>
*NO means that the definition of VALUE-L1 is to be deleted. Otherwise, the name of the
operand to which the operand value that is to be deleted pertains (OPERAND-L3 =
*NO) or the name of an operand in the path leading to the operand value to be deleted
(OPERAND-L3 î *NO) is to be specified. If an operand name is specified, this must be
unique within the structure defined by VALUE-L1.

VALUE-L2 = *NO / *COMMAND-REST / *INTEGER / *X-STRING / *C-STRING /
*NAME / *ALPHANUMERIC-NAME / *STRUCTURED-NAME / *FILENAME /
*PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL / *VSN /
*COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *POSIX-PATHNAME / * POSIX-
FILENAME / *PRODUCT-VERSION / <composed-name 1..30>
*NO means that the VALUE-L2 is irrelevant for the specification of the operand value to
be deleted. Otherwise, an operand value is to be specified. This operand value is either
the one that is to be deleted (OPERAND-L3 = *NO) or an operand value introducing a
structure in the path leading to the operand value to be deleted (OPERAND-L3 î *NO).
For further information see VALUE-L1.

OPERAND-L3 = *NO / <structured-name 1..20>
*NO means that OPERAND-L3 is irrelevant for the specification of the operand value to
be deleted. Otherwise, the name of the operand to which the operand value that is to
be deleted pertains (OPERAND-L4 = *NO) or the name of an operand in the path
leading to the operand value to be deleted (OPERAND-L4 î *NO) is to be specified. If
an operand name is specified, this must be unique within the structure defined by
VALUE-L2.

VALUE-L3 = analogous to VALUE-L2
*NO means that VALUE-L3 is irrelevant for the specification of the operand value to be
deleted. Otherwise, an operand value is to be specified. This operand value is either the
one that is to be deleted (OPERAND-L4 = *NO) or an operand value introducing a
structure in the path leading to the operand value to be deleted (OPERAND-L4 î *NO).
For further information see VALUE-L1.

OPERAND-L4 = *NO / <structured-name 1..20>
see OPERAND-L3.

VALUE-L4 = analogous to VALUE-2
see VALUE-L2.

OPERAND-L5 = *NO / <structured-name 1..20>
see OPERAND-L3.

VALUE-L5 = analogous to VALUE-2
see VALUE-L2.

U2284-J-Z125-9-76 311

SDF-A statements REMOVE

ORIGIN =
Specifies the command or statement to which the operand value to be deleted pertains.

ORIGIN = *CURRENT
The operand value to be deleted belongs to a command (or statement) that currently
either is itself the current object or else contains an operand or operand value that is the
current object.

ORIGIN = *COMMAND(...)
The operand value pertains to a command.

NAME = <structured-name 1..30>
Name of the command.

ORIGIN = *STATEMENT(...)
The operand value pertains to a statement.

NAME = <structured-name 1..30>
Name of the statement.

PROGRAM = <structured-name 1..30>
Name of the program to which the statement pertains.

OBJECT = *CORRECTION-INFORMATION(...)
Reserved for Fujitsu Siemens Computers Software Development.

312 U2284-J-Z125-9-76

RESTORE SDF-A statements

RESTORE
Restore objects of syntax file

The RESTORE statement is used to lift the lock on objects in the open syntax file. The lock
was set with the aid of the REMOVE statement; it can be lifted for commands, statements
and programs. Their definitions must be included in the syntax file to be edited or in a syntax
file which is higher up in the file hierarchy. Physically deleted objects cannot be restored.
The RESTORE statement cannot be used if the syntax file being processed is the system
syntax file.

OBJECT =
Type of object for which the lock is to be lifted.

OBJECT = *COMMAND(...)
Specifies that the lock is to be lifted for commands.

NAME = *ALL / list-poss(2000): <structured-name 1..30>
The lock is lifted for all commands or for those specified by name.

OBJECT = *STATEMENT(...)
Specifies that the lock is to be lifted for statements.

NAME = *ALL / list-poss(2000): <structured-name 1..30>
The lock is lifted for all statements or for those specified by name.

PROGRAM = <structured-name 1..30>
Name of the program to which the statements belong.

RESTORE

OBJECT = *COMMAND(...) / *PROGRAM(...) / *STATEMENT(...)

*COMMAND(...)
 NAME = *ALL / list-poss(2000): <structured-name 1..30>

*PROGRAM(...)
 NAME = *ALL / list-poss(2000): <structured-name 1..30>

*STATEMENT(...)
 NAME = *ALL / list-poss(2000): <structured-name 1..30>
 ,PROGRAM = <structured-name 1..30>

U2284-J-Z125-9-76 313

SDF-A statements RESTORE

OBJECT = *PROGRAM(...)
Specifies that the lock is to be lifted for programs. In this case, the lock is not lifted for the
program itself, but for all statements belonging to the program.

NAME = *ALL / list-poss(2000): <structured-name 1..30>
The lock is lifted for all programs or for those specified by name.

314 U2284-J-Z125-9-76

SET-GLOBALS SDF-A statements

SET-GLOBALS
Modify global information

The global information includes general specifications relating to command/statement input
and processing. These specifications take effect as soon as the syntax file is activated. The
prevailing specifications can be changed for a specific task by means of the MODIFY-SDF-
OPTIONS command or statement.

Normally, SDF-A generates the global information when a syntax file is first opened. The
resulting specifications can be changed using the SET-GLOBALS statement. When
working in guided dialog with the SET-GLOBALS statement, the operands with the current
values are preset in the form, provided global information is the current object (see EDIT).
Otherwise, presetting is performed with the default value *UNCHANGED.

(part 1 of 11)

SET-GLOBALS

VERSION = *UNCHANGED / <alphanum-name 1..12> / <c-string 1..12>

,GUIDANCE = *UNCHANGED / *STD / *MAXIMUM / *MEDIUM / *MINIMUM / *NO / *EXPERT

,LOGGING = *UNCHANGED / *STD / *INPUT-FORM / *ACCEPTED-FORM / *INVARIANT-FORM

,PROCEDURE-DIALOG = *UNCHANGED / *STD / *YES / *NO

,UTILITY-INTERFACE = *UNCHANGED / *STD / *OLD / *NEW

,CONTINUATION = *UNCHANGED / *STD / *OLD / *NEW

,FUNCTION-KEYS = *UNCHANGED / *STD / *OLD-MODE / *STYLE-GUIDE-MODE / *BY-TERMINAL-TYPE

,INPUT-HISTORY = *UNCHANGED / *STD / *ON / *OFF

,NUMBER-OF-INPUTS = *UNCHANGED / *STD / <integer 1..100>

,GENERAL-INFO-VERSION = *UNCHANGED / <integer 1..255>

,MODIFY-LANGUAGE-TEXT = *UNCHANGED / list-poss(2000): <name 1..1>(...)

<name 1..1>(...)
 COMMAND-REST = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..10 with-low>
 ,HELP = *UNCHANGED / <c-string 1..100 with-low>

continued ➠

U2284-J-Z125-9-76 315

SDF-A statements SET-GLOBALS

 ,INTEGER = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..10 with-low>
 ,HELP = *UNCHANGED / <c-string 1..100 with-low>
 ,X-STRING = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..10 with-low>
 ,HELP = *UNCHANGED / <c-string 1..150 with-low>
 ,C-STRING = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..10 with-low>
 ,HELP = *UNCHANGED / <c-string 1..250 with-low>
 ,NAME = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..10 with-low>
 ,HELP = *UNCHANGED / <c-string 1..100 with-low>
 ,ALPHANUM-NAME = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..10 with-low>
 ,HELP = *UNCHANGED / <c-string 1..100 with-low>
 ,STRUCTURED-NAME = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..10 with-low>
 ,HELP = *UNCHANGED / <c-string 1..250 with-low>

continued ➠

(part 2 of 11)

316 U2284-J-Z125-9-76

SET-GLOBALS SDF-A statements

 ,LABEL = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..10 with-low>
 ,HELP = *UNCHANGED / <c-string 1..150 with-low>
 ,VSN = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..10 with-low>
 ,HELP = *UNCHANGED / <c-string 1..250 with-low>
 ,FILENAME = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..10 with-low>
 ,HELP = *UNCHANGED / <c-string 1..700 with-low>
 ,PARTIAL-FILENAME = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..10 with-low>
 ,HELP = *UNCHANGED / <c-string 1..400 with-low>
 ,TIME = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..10 with-low>
 ,HELP = *UNCHANGED / <c-string 1..250 with-low>
 ,DATE = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..10 with-low>
 ,HELP = *UNCHANGED / <c-string 1..250 with-low>

continued ➠

(part 3 of 11)

U2284-J-Z125-9-76 317

SDF-A statements SET-GLOBALS

 ,COMPOSED-NAME = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..10 with-low>
 ,HELP = *UNCHANGED / <c-string 1..350 with-low>
 ,TEXT = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..10 with-low>
 ,HELP = *UNCHANGED / <c-string 1..350 with-low>
 ,CAT-ID = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..10 with-low>
 ,HELP = *UNCHANGED / <c-string 1..100 with-low>
 ,PRODUCT-VERSION = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..10 with-low>
 ,HELP = *UNCHANGED / <c-string 1..250 with-low>
 ,POSIX-PATHNAME = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..20 with-low>
 ,HELP = *UNCHANGED / <c-string 1..250 with-low>
 ,POSIX-FILENAME = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..20 with-low>
 ,HELP = *UNCHANGED / <c-string 1..250 with-low>

continued ➠

(part 4 of 11)

318 U2284-J-Z125-9-76

SET-GLOBALS SDF-A statements

 ,AMBIGUOUS-OPERATIONS = *UNCHANGED / <c-string 1..50>
 ,X-TEXT = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..10 with-low>
 ,HELP = *UNCHANGED / <c-string 1..150 with-low>
 ,FIXED = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..10 with-low>
 ,HELP = *UNCHANGED / <c-string 1..250 with-low>
 ,WILDCARD = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..10 with-low>
 ,LOWER-CASE = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..10 with-low>
 ,USER-ID = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..10 with-low>
 ,GENERATION = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..10 with-low>

continued ➠

(part 5 of 11)

U2284-J-Z125-9-76 319

SDF-A statements SET-GLOBALS

 ,VERSION = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..10 with-low>
 ,UNDERSCORE = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..10 with-low>
 ,SEPARATORS = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..10 with-low>
 ,ODD-POSSIBLE = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..10 with-low>
 ,COMPLETION = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..10 with-low>
 ,EXIT = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..10 with-low>
 ,TEMPORARY-FILE = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..10 with-low>

continued ➠

(part 6 of 11)

320 U2284-J-Z125-9-76

SET-GLOBALS SDF-A statements

 ,QUOTES-MANDATORY = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..11 with-low>
 ,LONGEST-LOGICAL-LEN = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..10 with-low>
 ,USER-INTERFACE = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..10 with-low>
 ,CORRECTION-STATE = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..10 with-low>
 ,PATH-COMPLETION = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..10 with-low>
 ,WILDCARD-CONSTRUCT = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..20 with-low>
 ,REFRESH = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..10 with-low>

continued ➠

(part 7 of 11)

U2284-J-Z125-9-76 321

SDF-A statements SET-GLOBALS

 ,REST-SDF-IN = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..11 with-low>
 ,EXIT-ALL = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..10 with-low>
 ,DOMAIN = *UNCHANGED / <c-string 1..11>
 ,COMMAND = *UNCHANGED / <c-string 1..11>
 ,PROGRAM = *UNCHANGED / <c-string 1..11>
 ,STATEMENT = *UNCHANGED / <c-string 1..13>
 ,KEYS = *UNCHANGED / <c-string 1..13>
 ,STRUCTURE = *UNCHANGED / <c-string 1..11>
 ,SITUATION = *UNCHANGED / <c-string 1..11>
 ,COMMENT-LINE = *UNCHANGED / <c-string 1..50>
 ,PROCEDURE-ERROR = *UNCHANGED / <c-string 1..60>
 ,INTERNAL-ERROR = *UNCHANGED / <c-string 1..60>
 ,PROC-HELP = *UNCHANGED / <c-string 1..80>
 ,INTERNAL-HELP = *UNCHANGED / <c-string 1..80>
 ,CORRECT-COMMAND = *UNCHANGED / <c-string 1..80>
 ,CORRECT-STATEMENT = *UNCHANGED / <c-string 1..80>
 ,OPERANDS = *UNCHANGED / <c-string 1..11>
 ,DOMAIN-TITLE = *UNCHANGED / <c-string 1..80>
 ,COMMAND-TITLE = *UNCHANGED / <c-string 1..80>
 ,STATEMENT-TITLE = *UNCHANGED / <c-string 1..80>
 ,DIRECT-EXECUTION = *UNCHANGED / <c-string 1..27>
 ,OR = *UNCHANGED / <c-string 1..10 with-low>
 ,DEFAULT = *UNCHANGED / <c-string 1..10 with-low>
 ,DEFAULT-BY-JV = *UNCHANGED / <c-string 1..20 with-low>

continued ➠

(part 8 of 11)

322 U2284-J-Z125-9-76

SET-GLOBALS SDF-A statements

 ,DEFAULT-BY-VAR = *UNCHANGED / <c-string 1..20 with-low>
 ,ALTERNATE-DEFAULT = *UNCHANGED / <c-string 1..20 with-low>
 ,MANDATORY = *UNCHANGED / <c-string 1..20 with-low>
 ,WITH = *UNCHANGED / <c-string 1..10 with-low>
 ,WITHOUT = *UNCHANGED / <c-string 1..10 with-low>
 ,LIST-POSSIBLE = *UNCHANGED / <c-string 1..20 with-low>
 ,STRUCTURE-INCLUDED = *UNCHANGED / <c-string 1..20>
 ,NEXT = *UNCHANGED / <c-string 1..10>
 ,MESSAGE = *UNCHANGED / <c-string 1..10>
 ,ERROR = *UNCHANGED / <c-string 1..10>
 ,NUMBER = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..10 with-low>
 ,NEXT-CMD = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..10 with-low>
 ,NEXT-STMT = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..10 with-low>
 ,NEXT-DATA = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..10 with-low>
 ,NEXT-INPUT = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..10 with-low>

continued ➠

(part 9 of 11)

U2284-J-Z125-9-76 323

SDF-A statements SET-GLOBALS

 ,NEXT-DOMAIN = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..10 with-low>
 ,DOWN-OPERAND = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..10 with-low>
 ,DOMAIN-MENU = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..10 with-low>
 ,UP = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..10 with-low>
 ,DOWN = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..10 with-low>
 ,TEST = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..10 with-low>
 ,EXECUTE = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..10 with-low>

continued ➠

(part 10 of 11)

324 U2284-J-Z125-9-76

SET-GLOBALS SDF-A statements

VERSION =
Defines the version number/name of the syntax file; useful only for documentation
purposes.

VERSION = *UNCHANGED
The version number remains unchanged.

VERSION = <alphanum-name 1..12> / <c-string 1..12>
The syntax file receives the specified version number or the specified name as the version
name. Blanks at the end of a c-string are ignored.

 ,CONTINUE = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..10 with-low>
 ,CANCEL = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..10 with-low>
 ,RESTORE = *NAMES (...)
 *NAMES(...)
 LONG-TEXT = *UNCHANGED / <c-string 1..20 with-low>
 ,ABBREVIATION = *UNCHANGED / <c-string 1..10 with-low>
 ,ENTER-COMMAND = *UNCHANGED / <c-string 1..80>
 ,ENTER-STATEMENT = *UNCHANGED / <c-string 1..80>
 ,ENTER-CONTINUATION = *UNCHANGED / <c-string 1..80>
 ,ENTER-OPERANDS = *UNCHANGED / <c-string 1..80>
 ,CORRECT-OPERATION = *UNCHANGED / <c-string 1..80>
 ,SECRET-OPERAND = *UNCHANGED / <c-string 1..80>
 ,PROC-INTERRUPT = *UNCHANGED / <c-string 1..80>
 ,PROC-INT-YES = *UNCHANGED / <c-string 1..10>
 ,PROC-INT-NO = *UNCHANGED / <c-string 1..10>

,REMOVE-LANGUAGE-TEXT = *NO / list-poss(2000): <name 1..1>

(part 11 of 11)

U2284-J-Z125-9-76 325

SDF-A statements SET-GLOBALS

GUIDANCE =
Specifies the level of user guidance. (This definition does not apply to jobs started via
OMNIS; for these, EXPERT is always assumed.)

GUIDANCE = *UNCHANGED
The specification in the global information regarding user guidance remains unchanged.

GUIDANCE = *STD
User guidance remains unchanged when the processed user or group syntax file is
activated. For a system syntax file, *STD has the same effect as *NO.

GUIDANCE = *MAXIMUM
Menus with explanatory texts are displayed for the selection of domains, commands and
statements. Forms are displayed for the assignment of values to operands. There is a
separate form for each structure. The forms contain help texts for the operands, the default
values, all permissible operand values, and additional information regarding these values.

GUIDANCE = *MEDIUM
Menus with explanatory texts are displayed for the selection of domains, commands and
statements. Forms are displayed for the assignment of values to operands. There is a
separate form for each structure whose introductory value is defined with SIZE=*LARGE
(see ADD-VALUE). The forms contain the default values and all permissible operand
values.

GUIDANCE = *MINIMUM
Menus are displayed for the selection of domains, commands and statements. Forms are
displayed for the assignment of values to operands. There is a separate form for each
structure whose introductory value is defined with SIZE=*LARGE (see ADD-VALUE). The
forms contain only the default values.

GUIDANCE = *NO
Input is requested with the text %CMD: or %STMT:. Several commands may be entered in
a block, one after the other, each separated from the next by a “logical end-of-line”. It is
possible to correct incorrect input.

GUIDANCE = *EXPERT
Input is requested with / or //. Several commands may be entered in a block, one after the
other, each one separated from the next by a “logical end-of-line”. Correction of incorrect
input is not possible.

326 U2284-J-Z125-9-76

SET-GLOBALS SDF-A statements

LOGGING =
Specifies how input is to be logged.

LOGGING = *UNCHANGED
The specification in the global information regarding logging remains unchanged.

LOGGING = *STD
Logging remains unchanged if the processed user or group syntax file is activated. For a
system syntax file, *STD has the same effect as *INPUT-FORM.

LOGGING = *INPUT-FORM
In unguided dialog input strings are logged exactly as entered. Passwords are masked out.
In guided dialog or in error dialog, logging is carried out in the same way as with
*ACCEPTED-FORM.

LOGGING = *ACCEPTED-FORM
The following are logged:
– all names in their unabbreviated form
– each operand appearing in the input, with its name and the value specified
– the final input, reflecting any corrections.

Passwords are masked out. Entries in guided dialog are concatenated to form a string.

LOGGING = *INVARIANT-FORM
The following are logged:
– all names in the versions defined in the syntax file as STANDARD-NAME (i.e. the

names specified in the manuals)
– each operand appearing in the input, with its name and the value specified
– all optional operands implicit in the input, with their default values
– the final input, reflecting any corrections.

Passwords are masked out. Input entered in guided dialog is concatenated to form a string.

PROCEDURE-DIALOG =
Specifies whether the user is to be requested to make interactive corrections when syntax
or semantic errors occur with a SYSSTMT file or a procedure executing in interactive mode.

PROCEDURE-DIALOG = *UNCHANGED
The specification in the global information regarding interactive corrections remains
unchanged.

PROCEDURE-DIALOG = *STD
The rule governing interactive corrections remains unchanged if the processed user or
group syntax file is activated. For a system syntax file, *STD has the same effect as *NO.

PROCEDURE-DIALOG = *YES
The user is requested to make interactive corrections.

PROCEDURE-DIALOG = *NO
The user is not requested to make interactive corrections.

U2284-J-Z125-9-76 327

SDF-A statements SET-GLOBALS

UTILITY-INTERFACE =
Sets a switch that can be checked by a program with the CMDSTA macro. By means of this
switch, the type of statement input can be controlled for programs that can read their state-
ments both with RDATA as well as via SDF with CMDRST.

UTILITY-INTERFACE = *UNCHANGED
The specification in the global information regarding the switch remains unchanged.

UTILITY-INTERFACE = *STD
The switch remains unchanged if the processed user or group syntax file is activated. For
a system syntax file, *STD has the same effect as *NEW.

UTILITY-INTERFACE = *OLD
Programs are to read their statements using RDATA.

UTILITY-INTERFACE = *NEW
Programs are to read their statements via SDF using CMDRST.

CONTINUATION =
Specifies in which column the continuation character “-” is to be entered in the case of
command input (SYSCMD), if required. (For statement input (SYSSTMT), the continuation
character may be entered in any column.)

CONTINUATION = *UNCHANGED
The specification in the global information regarding the continuation character remains
unchanged.

CONTINUATION = *STD
The rule governing continuation characters remains unchanged if the processed user or
group syntax file is activated. For a system syntax file, specifying *STD means that the
specification made at system generation applies.

CONTINUATION = *OLD
The continuation character must be entered in column 72.

CONTINUATION = *NEW
The continuation character may be entered anywhere in columns 2 through 72.

FUNCTION-KEYS =
Defines function key assignments. A detailed description of the different modes can be
found in the “Introductory Guide to the SDF Dialog Interface” [1]. Unsupported function keys
do nothing; they do not have the same effect as the [DUE] or [SEND] key.

FUNCTION-KEYS = *UNCHANGED
The function key assignments defined in the global information are not changed. Unsup-
ported function keys do nothing; they do not have the same effect as the [DUE]or [SEND]
key.

328 U2284-J-Z125-9-76

SET-GLOBALS SDF-A statements

FUNCTION-KEYS = *STD
The existing setting for the option is retained when the processed user or syntax file is
activated. In the case of a system syntax file, *STD has the same effect as *BY-TERMINAL-
TYPE.

FUNCTION-KEYS = *OLD-MODE
Function keys assignments correspond to the old mode, which is supported by all terminal
types. The following key assignments apply:

FUNCTION-KEYS = *STYLE-GUIDE-MODE
Function keys are assigned in accordance with the Fujitsu Siemens style guide. The
following key assignments apply:

[K1] Exit function

[K2] Interrupt function

[K3] Refresh function (only in guided dialog)

[F1] Exit-all function

[F2] Test function (only in guided dialog)

[F3] Execute function (only in guided dialog)

[K2] Interrupt function

[F1] Help function

[F3] Exit function

[F5] Refresh function (only in guided dialog)

[F6] Exit-all function

[F7] Page backward (only in guided dialog)

[F8] Page forward (only in guided dialog)

[F9] Execute RESTORE-SDF-INPUT INPUT=*LAST

[F11] Execute function (only in guided dialog)

[F12] Cancel function

U2284-J-Z125-9-76 329

SDF-A statements SET-GLOBALS

FUNCTION-KEYS = *BY-TERMINAL-TYPE
The assignment of function keys depends on the type of terminal. If the terminal type
supports the more comprehensive functionality of the Fujitsu Siemens style guide, SDF
selects the *STYLE-GUIDE-MODE setting; otherwise, the *OLD-MODE setting.

 The terminal type with which the terminal or terminal emulation was generated in
the system is evaluated for this setting. If the generated terminal type differs from
the actual terminal type, there is no guarantee that the setting will reflect the actually
supported functionality. In the case of an emulation, the recognized terminal type
will depend on the generation as well as the environment variables. See the
description of the emulation program for more details.

INPUT-HISTORY =
Specifies whether the input buffer is to be turned on, turned off, or reset.

INPUT-HISTORY = *UNCHANGED
The input history setting defined in the global information is not changed.

INPUT-HISTORY = *STD
The existing setting for the option is retained when the processed user or syntax file is
activated. In the case of a system syntax file, *STD has the same effect as *ON.

INPUT-HISTORY = *ON
The input buffer is turned on, and SDF saves all syntactically correct inputs in it. SET-
LOGON-PARAMETERS, RESTORE-SDF-INPUT, SHOW-INPUT-HISTORY, and ISP
commands are not saved.
The saved inputs can be output by the user by means of the SHOW-INPUT-HISTORY
statement. The RESTORE-SDF-INPUT statement can be used to retrieve a particular input
and then repeat it with or without modifications.

 Values which are specified for “secret” operands and which correspond to neither
the default value nor a value defined with SECRET=*NO are saved in the input
buffer as a “^”. Values specified for operands not defined as secret, by contrast, are
saved as plain text. In some cases, such information (e.g. procedure parameters)
may also be worth protecting from a user´s viewpoint. To prevent such inputs from
being re-displayed on the screen by SHOW-INPUT-HISTORY or RESTORE-SDF-
INPUT, the user can turn off the input buffer (i.e. the history feature) before making
entries for which security is required and then turn it on again. Alternatively, if the
inputs have already been saved, the input buffer can be purged with *RESET, in
which case all saved inputs will be deleted.

INPUT-HISTORY = *OFF
The input buffer is turned off. Subsequent inputs are not stored; however, but inputs saved
earlier remain accessible.

i

i

330 U2284-J-Z125-9-76

SET-GLOBALS SDF-A statements

NUMBER-OF-INPUTS = *UNCHANGED / *STD / <integer 1..100>
part of the INPUT-HISTORY operand; defines how many inputs can be saved in the input
buffer. The maximum possible number is 100.

GENERAL-INFO-VERSION = *UNCHANGED / <integer 1..255>
This operand is reserved for the administrator of privileges and is therefore not described
here.

MODIFY-LANGUAGE-TEXT =
The global information includes the texts used by SDF when conducting the dialog. These
texts may be defined for various languages. Which language is given priority by SDF is
determined at system generation, along with the language for message output.

MODIFY-LANGUAGE-TEXT = *UNCHANGED
The texts remain unchanged.

MODIFY-LANGUAGE-TEXT = list-poss(2000): <name 1..1>(...)
The texts for the specified language key <name> (E = English, D = German) are changed.
If no texts exist for a specified language key, a new set of texts is created for it by copying
from the first available language. These texts are then subsequently changed. For certain
texts there is an unabbreviated form (LONG-TEXT) and a short form (ABBREVIATION).
SDF uses the long form for the maximum level of guided dialog, the short form for the
medium and minimum levels.
From SDF/SDF-A Version 2.0 onwards, a help text can also be created for the predefined
SDF data types. This help text is displayed if the user enters ’??’ during guided dialog. In
guided dialog, using the EDIT statement to position on GLOBAL-INFORMATION before
calling the SET-GLOBALS statement calls up the operand forms for SET-GLOBALS with the
default texts. An example (see pages 331 to 341) illustrates the default texts and the
functionality of the SET-GLOBALS statement for modifying texts.

REMOVE-LANGUAGE-TEXT =
Specifies whether the texts for the specified languages are deleted.

REMOVE-LANGUAGE-TEXT = *NO
No texts are deleted.

REMOVE-LANGUAGE-TEXT = list-poss(2000): <name 1..1>
The texts for the specified language key are deleted.

U2284-J-Z125-9-76 331

SDF-A statements SET-GLOBALS

Default language-dependent texts

As each new syntax file is created, it is assigned predefined global information which can
be modified with the SET-GLOBALS statement. Default texts are defined for the language-
dependent texts specified with the MODIFY-LANGUAGE-TEXTS operand. The language-
dependent texts can be classified as follows:

● Data types: used in the help texts and error messages for operand values. The default
values are as follows:

Data type MODIFY-LANGUAGE-TEXT=E(...

NAMES(LONG-TEXT=... ,ABBREVIATION=...)

COMMAND-REST
INTEGER
X-STRING
C-STRING
NAME
ALPHANUM-NAME
STRUCTURED-NAME
LABEL
VSN
FILENAME
PARTIAL-FILENAME
TIME
DATE
COMPOSED-NAME
TEXT
CAT-ID
RODUCT-VERSION
POSIX-PATHNAME
POSIX-FILENAME
X-TEXT
FIXED

'command-rest'
'integer'
'x-string'
'c-string'
'name'
'alphanum-name'
'structured-name'
'label'
'vsn'
'filename'
'partial-name'
'time'
'date'
'composed-name'
'text'
'cat-id'
'product-version'
'posix-pathame'
'posix-filename'
'x-text'
'fixed'

'cmdrest'
'integer'
'x-string'
'c-string'
'name'
'aln-name'
'struc-name'
'label'
'vsn'
'filename'
'p-filename'
'time'
'date'
'comp-name'
'text'
'cat-id'
'prod-ver'
'posix-pathname'
'posix-filename'
'x-text'
'fixed'

332 U2284-J-Z125-9-76

SET-GLOBALS SDF-A statements

● Data type attributes: used in the help texts and error messages for operand values. The
default values are as follows:

● Identifiers in the headers of command and statement menus and in the operand forms.
The default values are as follows:

● Identifiers for available objects in the body of the menu. The default values are as
follows:

Data type attribute MODIFY-LANGUAGE-TEXT=E(...

NAMES(LONG-TEXT=... ,ABBREVIATION=...)

WILDCARDS
LOWER-CASE
USER-ID
GENERATION
VERSION
UNDERSCORE
SEPARATORS
ODD-POSSIBLE
COMPLETION
LONGEST-LOGICAL-LEN
TEMPORARY-FILE
QUOTES-MANDATORY
USER-INTERFACE
CORRECTION-STATE
PATH-COMPLETION
WILDCARD-CONSTRUCT

'wildcards'
'lower-case'
'user-id'
'generation'
'version'
'underscore'
'separators'
'odd-possible'
'completion'
'longest-logical-len'
'temporary-file'
'quotes'
'manual-release'
'correction-state'
'path-completion'
'wildcard-constr'

'wildcards'
'lower-case'
'user-id'
'gen'
'version'
'under'
'separ'
'odd-poss'
'completion'
'long-log'
'temp-file'
'quotes'
'man-rel'
'corr-state'
'path-compl'
'w-constr'

Identifier MODIFY-LANGUAGE-TEXT=E(...

DOMAIN
COMMAND
PROGRAM
STATEMENT
KEYS
STRUCTURE
SITUATION
COMMENT-LINE
AMBIGUOUS-OPERATIONS

'DOMAIN‘
'COMMAND'
'PROGRAM'
'STATEMENT'
'KEYS'
'STRUCTURE'
'SITUATION'
'COMMENT'
'OPERATIONS CORRESPONDING TO'

Identifier MODIFY-LANGUAGE-TEXT=E(...

DOMAIN-TITLE
COMMAND-TITLE
STATEMENT-TITLE

'AVAILABLE APPLICATION DOMAINS'
'AVAILABLE COMMANDS'
'AVAILABLE STATEMENTS'

U2284-J-Z125-9-76 333

SDF-A statements SET-GLOBALS

● Prompt for immediate execution: this prompt appears only in the guided dialog
(MAXIMUM guidance) and is displayed only for commands and statements having no
operands.

● Operand attributes: output in help texts and error messages in the operand forms. The
default values are as follows:

● Structure identifiers: text output for structure identifier indicates whether there is a
subform. The default identifier is as follows:

Identifier MODIFY-LANGUAGE-TEXT=E(...

DIRECT-EXECUTION 'EXECUTED IMMEDIATLY'

Operand attribute MODIFY-LANGUAGE-TEXT=E(...

DEFAULT
DEFAULT-BY-JV
DEFAULT-BY-VAR
ALTERNATE-DEFAULT
MANDATORY
OR
WITH
WITHOUT
LIST-POSSIBLE

'default'
'default-by-JV'
'default-by-variable'
'alternate-default'
'mandatory'
'or'
'with'
'without'
'list-possible'

Identifier MODIFY-LANGUAGE-TEXT=E(...

STRUCTURE-INCLUDED 'INPUT TRANSFERRED'

334 U2284-J-Z125-9-76

SET-GLOBALS SDF-A statements

● Identifiers for menu control and errors: these appear in the bottom section of menus.
The default values are as follows:

User action/Messages/Errors

Explanation of syntax for NEXT field

● Default texts for unguided dialog are as follows:

The input line for secret operand is masked out.

Identifier MODIFY-LANGUAGE-TEXT=E(...

NEXT
MESSAGE
ERROR

'NEXT'
'MESSAGE'
'ERROR'

Identifier MODIFY-LANGUAGE-TEXT=E(...

NAMES(LONG-TEXT=... ,ABBREVIATION=...)

NUMBER
NEXT-CMD
NEXT-STMT
NEXT-DATA
NEXT-INPUT
NEXT-DOMAIN
DOWN-OPERAND
DOMAIN-MENU
UP
DOWN
TEST
EXECUTE
CONTINUE
CANCEL
RESTORE
EXIT
REFRESH
REST-SDF-IN
EXIT-ALL

'Number'
'Next-command'
'Next-statement'
'Next-data'
'Next-input'
'Next-domain'
'DOWN'
'DOMAIN-MENU'
'UP'
'DOWN'
'TEST'
'EXECUTE'
'CONTINUE'
'CANCEL'
'RESTORE'
'EXIT'
'REFRESH'
'REST-SDF-IN'
'EXIT-ALL'

'Number'
'Next-cmd'
'Next-stmt'
'Next-data'
'Next-input'
'Next-dom'
'DOWN'
'DOM-MENU'
'UP'
'DOWN'
'TEST'
'EXECUTE'
'CONTINUE'
'CANCEL'
'RESTORE'
'EXIT'
'REFRESH'
'REST-SDF-IN'
'EXIT-ALL'

Identifier MODIFY-LANGUAGE-TEXT=E(...

SECRET-OPERAND ' ENTER SECRET OPERAND'

U2284-J-Z125-9-76 335

SDF-A statements SET-GLOBALS

A number of prompts are used if the dialog mode is GUIDANCE=*NO. The default
values for these prompts are as follows:

● Procedure error messages in guided dialog. These error messages appear in the menu
header and indicate the reason for the dialog:

● Program error messages in guided dialog. These error messages appear in the menu
header and indicate the reason for the correction dialog:

● Prompts concerning procedure interruption. The default values are as follows:

Identifier MODIFY-LANGUAGE-TEXT=E(...

ENTER-COMMAND
ENTER-STATEMENT
ENTER-CONTINUATION
ENTER-OPERANDS
CORRECT-OPERATION
CORRECT-COMMAND
CORRECT-STATEMENT
OPERANDS

'CMD'
'STMT'
'ENTER CONTINUATION'
'ENTER OPERANDS'
'CORRECT OPERATIONNAME'
'CORRECT CMD'
'CORRECT STMT'
'OPERANDS'

Identifier MODIFY-LANGUAGE-TEXT=E(...

PROCEDURE-ERROR
PROC-HELP

' ERROR IN PROCEDURE-CMD/STMT'
' DIALOG IN PROCEDURE'

Identifier MODIFY-LANGUAGE-TEXT=E(...

INTERNAL-ERROR
INTERNAL-HELP

'ERROR IN PROC/S-PROC'
'DIALOG IN PROG/S-PROC'

Identifier MODIFY-LANGUAGE-TEXT=E(...

PROC-INTERRUPT
PROC-INT-YES
PROC-INT-NO

' NEXT-DATA'
' YES'
' NO'

336 U2284-J-Z125-9-76

SET-GLOBALS SDF-A statements

Example

The example below shows how a user syntax file is created and a number of language-
dependent texts forming part of global information are modified. In the screens shown on
the following pages, the original texts to be modified and the new wording are shown in bold
print.

/start-sdf-a
% BLS0517 MODULE 'SDAMAIN' LOADED
% SDA0001 'SDF-A' VERSION '04.1E10' STARTED
//open-syntax-file file=syssdf.user.globals,type=*user,mode=*create ——— (1)
//set-globals mod-lang-text=e(generation=names('gen','g'),-
 domain-title='list of domains',-
 command-title='list of commands',- ——— (2)
 without='no',-
 next='select',-
 number=names('#','#'))
//end
/modify-sdf-options guid=*max,funct-keys=*style-guide-mode ———————————— (3)

 ——— (4)

1. When SDF-A is called, a user syntax file with the name SYSSDF.USER.GLOBALS is
created and opened.

2. A number of English texts that appear in guided dialog are then modified.

--
AVAILABLE APPLICATION DOMAINS:

 1 ACCOUNTING : Output of informations about the user
 identification and introduction of data
 into the accounting record
 2 ALL-COMMANDS : Output of all command names in alphabetic
 order
 3 CONSOLE-MANAGEMENT : Control of operator console/terminal
 4 DATABASE : Management and administration of databases
 5 DCAM : Control of transaction-driven system (DCAM)
 6 DCE : Management of DCE (Distributed Computing
 Environment)
 7 DEVICE : Information about devices and volumes
 8 FILE : Management of files
 9 FILE-GENERATION-GROUP : Management of file generation groups
--
NEXT = +
 Number / Next-command / (Next-domain)
KEYS : F5=*REFRESH F8=+ F9=REST-SDF-IN

U2284-J-Z125-9-76 337

SDF-A statements SET-GLOBALS

3. SDF-A is terminated, which means that the user syntax file is saved. The user then
switches to guided dialog. The SYSSDF.USER.GLOBALS syntax file is not yet
activated, so the default SDF texts appear in the menus.

4. The domains menu appears. In this screen, the texts to be modified are shown in bold
print. By selecting option 9, the user switches to the JOB domain.

 —— (5)

5. Entering the number 13 and pressing [DUE] switches the user to the JOB domain.

--
AVAILABLE APPLICATION DOMAINS:

 10 FILE-TRANSFER : Transfer of files between computers
 through the network
 11 IDIAS
 12 IDOM
 13 JOB : Job control
 14 JOB-VARIABLES : Management of Job variables
 15 MESSAGE-PROCESSING : Management of message files
 16 MULTI-CATALOG-AND-PUBSET-MGMT : Control of file accesses to local area
 network
 17 NETWORK-MANAGEMENT : Control of DCM applications and connections
 18 PROCEDURE : Control of the command procedures
 19 PROGRAM : Control of program flow
 20 PROGRAMMING-SUPPORT : Start of compilers and programming tools
--
NEXT = 13
 Number / Next-command / (Next-domain)
KEYS : F5=*REFRESH F7=- F8=+ F9=REST-SDF-IN

338 U2284-J-Z125-9-76

SET-GLOBALS SDF-A statements

——— (6)

6. The command menu for the JOB domain appears. The [DUE] key (preset value ’+’ in
the NEXT line) or [F8] was already pressed once to page down (to see the ENTER-JOB
command). Text that is highlighted in the command menu needs to be changed. Enter-
ing the number 11 switches to the operand form of the ENTER-JOB command.

 —— (7)

DOMAIN : JOB
--
AVAILABLE COMMANDS:

 11 ENTER-JOB : Initiates a command sequence, stored in an
 ENTER file, as a batch job
 12 EOF : Generates an end of file for the
 currently active system input file SYSDTA
 (EXECUTED IMMEDIATELY!)
 13 EXIT-JOB : Terminates the currently executing task
 14 HELP-MSG-INFORMATION : Displays a system message
 15 INFORM-OPERATOR : Sends a message to a console
 16 INFORM-PROGRAM : Sends a message to an program (STXIT
 routine)
 17 LOGOFF : Terminates the currently executing task
 18 MODIFY-JOB : Modifies job attributes which were defined
 for a batch job in the ENTER-JOB command
--
NEXT = 11
 Number / Next-command / (Next-domain) / *DOMAIN-MENU
KEYS : F3=*EXIT F5=*REFRESH F6=*EXIT-ALL F7=- F8=+ F9=REST-SDF-IN F12=*CANCEL

DOMAIN : JOB COMMAND: ENTER-JOB

--
FROM-FILE =
 *LIBRARY-ELEMENT() or filename_1..54_without-generation
 Specifies the name of the ENTER file
PROCESSING-ADMISSION = *STD
 *STD or *PARAMETERS()
 Specifies the user ID under which the batch job is to be
 executed
FILE-PASSWORD =
 *NONE or c-string_1..4 or x-string_1..8
 Specifies the write or execute password protecting the
 ENTER file

--
NEXT = [F6]
 Next-command / (Next-domain) / *CONTINUE / *DOMAIN-MENU / *TEST
KEYS : F3=*EXIT F5=*REFRESH F6=*EXIT-ALL F8=+ F9=REST-SDF-IN
 F11=*EXECUTE F12=*CANCEL

U2284-J-Z125-9-76 339

SDF-A statements SET-GLOBALS

7. The operand form of the ENTER-JOB command appears. Under the FROM-FILE
operand, the without-generation data type attribute is highlighted - this text, too, will
be modified. To perform a comparison, the user syntax file SYSSDF.USER.GLOBALS
should now be activated by pressing [F6] (alternative: enter *EXIT-ALL in the NEXT line
and press [DUE]) to return to the global domains menu.

——— (8)

8. The global domains menu appears. The highlighted texts have not yet been modified.
The user now calls the MODIFY-SDF-OPTIONS to activate the user syntax file
SYSSDF.USER.GLOBALS, in response to which the texts are immediately modified.

--
AVAILABLE APPLICATION DOMAINS:

 1 ACCOUNTING : Output of informations about the user
 identification and introduction of data
 into the accounting record
 2 ALL-COMMANDS : Output of all command names in alphabetic
 order
 3 CONSOLE-MANAGEMENT : Control of operator console/terminal
 4 DATABASE : Management and administration of databases
 5 DCAM : Control of transaction-driven system (DCAM)
 6 DCE : Management of DCE (Distributed Computing
 Environment)
 7 DEVICE : Information about devices and volumes
 8 FILE : Management of files
 9 FILE-GENERATION-GROUP : Management of file generation groups
--
NEXT = mod-sdf-opt syntax-file=*add(syssdf.user.globals)
 Number / Next-command / (Next-domain)
KEYS : F5=*REFRESH F8=+ F9=REST-SDF-IN

340 U2284-J-Z125-9-76

SET-GLOBALS SDF-A statements

——— (9)

9. The global domains menu remains on the screen, but the new texts (highlighted in bold
in the screens shown here) have been incorporated. The user selects option 13 to
switch to the JOB domain.

——— (10)

--
LIST OF DOMAINS:

 1 ACCOUNTING : Output of informations about the user
 identification and introduction of data
 into the accounting record
 2 ALL-COMMANDS : Output of all command names in alphabetic
 order
 3 CONSOLE-MANAGEMENT : Control of operator console/terminal
 4 DATABASE : Management and administration of databases
 5 DCAM : Control of transaction-driven system (DCAM)
 6 DCE : Management of DCE (Distributed Computing
 Environment)
 7 DEVICE : Information about devices and volumes
 8 FILE : Management of files
 9 FILE-GENERATION-GROUP : Management of file generation groups
--
SELECT = 13
 # / Next-command / (Next-domain)
KEYS : F5=*REFRESH F8=+ F9=REST-SDF-IN

DOMAIN : JOB
--
LIST OF COMMANDS:

 1 ASSIGN-SYSDTA : Assigns SYSDTA to an input source
 2 ASSIGN-SYSEVENT : Assigns an event stream to the own user
 task
 3 ASSIGN-SYSIPT : Assigns SYSIPT to an input source
 4 ASSIGN-SYSLST : Assigns SYSLST to an output destination
 5 ASSIGN-SYSOPT : Assigns SYSOPT to an output destination
 6 ASSIGN-SYSOUT : Assigns SYSOUT to an output destination
 7 CANCEL-JOB : Cancel a dialog, batch or print job
 8 CHANGE-TASK-PRIORITY : Changes the priority of a dialog, batch or
 print job
 9 COPY-SYSTEM-FILE : Copies current system file to an user file
 10 DELETE-SYSTEM-FILE : Deletes a system file

--
SELECT = 11
 # / Next-command / (Next-domain) / *DOMAIN-MENU
KEYS : F3=*EXIT F5=*REFRESH F6=*EXIT-ALL F8=+ F9=REST-SDF-IN F12=*CANCEL

U2284-J-Z125-9-76 341

SDF-A statements SET-GLOBALS

10. The menu for the JOB domain appears. Here, too, bold print is used to highlight the
modified texts. The user selects option 11 to switch to the operand form for the ENTER-
JOB command.

11. The operand form for the ENTER-JOB command appears. The text for the data type
attribute under the FROM-FILE operand has been changed from without-generation
to no-gen. By pressing [F6] (alternative: enter *EXIT-ALL in the NEXT line and press
[DUE]), the user returns to the global domains menu.

DOMAIN : JOB COMMAND: ENTER-JOB

--
FROM-FILE =
 *LIBRARY-ELEMENT() or filename_1..54_no-gen
 Specifies the name of the ENTER file
PROCESSING-ADMISSION = *STD
 *STD or *PARAMETERS()
 Specifies the user ID under which the batch job is to be
 executed
FILE-PASSWORD =
 *NONE or c-string_1..4 or x-string_1..8
 Specifies the write or execute password protecting the
 ENTER file

--
SELECT = [F6]
 Next-command / (Next-domain) / *CONTINUE / *DOMAIN-MENU / *TEST
KEYS : F3=*EXIT F5=*REFRESH F6=*EXIT-ALL F8=+ F9=REST-SDF-IN
 F11=*EXECUTE F12=*CANCEL

342 U2284-J-Z125-9-76

SHOW SDF-A statements

SHOW
Display objects of syntax file

The SHOW statement is used to output the contents of a syntax file to SYSOUT or SYSLST.
The output can be interrupted and restarted or aborted with the [K2] key.

The output from this statement can be used as input in order to reconstruct a syntax file or
a syntax file object (see OBJECT=*ALL, IMPLEMENTATION=*YES, LINES-PER-
PAGE=*UNLIMITED(OUTPUT=*FOR-INPUT)).

(part 1 of 4)

SHOW

OBJECT = *ALL / *GLOBAL-INFORMATION / *DOMAIN(...) / *COMMAND(...) / *PROGRAM(...) /

*STATEMENT(...) / *PRIVILEGE(...) / *OPERAND(...) / *VALUE(...) /

*CORRECTION-INFORMATION(...)

*DOMAIN(...)

 NAME = *ALL(...) / *NONE / <structured-name 1..30 with-wild> /

 list-poss(2000): <structured-name 1..30>
 *ALL(...)
 EXCEPT = *NONE / <structured-name 1..30 with-wild> /

 list-poss(2000): <structured-name 1..30>

*COMMAND(...)
 NAME = *ALL(...) / *REMOVED / *CURRENT / <structured-name 1..30 with-wild> /

 list-poss(2000): <structured-name 1..30>
 *ALL(...)
 EXCEPT = *NONE / <structured-name 1..30 with-wild> /

 list-poss(2000): <structured-name 1..30>

*PROGRAM(...)
 NAME = *ALL(...) / *REMOVED / *CURRENT / <structured-name 1..30 with-wild> /

 list-poss(2000): <structured-name 1..30>
 *ALL(...)
 EXCEPT = *NONE / <structured-name 1..30 with-wild> /

 list-poss(2000): <structured-name 1..30>

continued ➠

U2284-J-Z125-9-76 343

SDF-A statements SHOW

*STATEMENT(...)
 NAME = *ALL(...) / *REMOVED / *CURRENT / <structured-name 1..30 with-wild> /

 list-poss(2000): <structured-name 1..30>
 *ALL(...)
 EXCEPT = *NONE / <structured-name 1..30 with-wild> /

 list-poss(2000): <structured-name 1..30>
 ,PROGRAM = <structured-name 1..30>

*PRIVILEGE(...)
 NAME = *ALL / <structured-name 1..30>

*OPERAND(...)

 OPERAND-L1 = *CURRENT / <structured-name 1..20>
 ,VALUE-L1 = *NO / *COMMAND-REST / *INTEGER / *X-STRING / *C-STRING / *NAME /

 *ALPHANUMERIC-NAME / *STRUCTURED-NAME / *FILENAME /

 *PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL / *VSN /

 *COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *PRODUCT-VERSION /

 *POSIX-PATHNAME / *POSIX-FILENAME / <composed-name 1..30>
 ,OPERAND-L2 = *NO / <structured-name 1..20>
 ,VALUE-L2 = *NO / *COMMAND-REST / *INTEGER / *X-STRING / *C-STRING / *NAME /

 *ALPHANUMERIC-NAME / *STRUCTURED-NAME / *FILENAME /

 *PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL / *VSN /

 *COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *PRODUCT-VERSION /

 *POSIX-PATHNAME / *POSIX-FILENAME / <composed-name 1..30>
 ,OPERAND-L3 = *NO / <structured-name 1..20>
 ,VALUE-L3 = *NO / *COMMAND-REST / *INTEGER / *X-STRING / *C-STRING / *NAME /

 *ALPHANUMERIC-NAME / *STRUCTURED-NAME / *FILENAME /

 *PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL / *VSN /

 *COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *PRODUCT-VERSION /

 *POSIX-PATHNAME / *POSIX-FILENAME / <composed-name 1..30>
 ,OPERAND-L4 = *NO / <structured-name 1..20>
 ,VALUE-L4 = *NO / *COMMAND-REST / *INTEGER / *X-STRING / *C-STRING / *NAME /

 *ALPHANUMERIC-NAME / *STRUCTURED-NAME / *FILENAME /

 *PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL / *VSN /

 *COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *PRODUCT-VERSION /

 *POSIX-PATHNAME / *POSIX-FILENAME / <composed-name 1..30>

continued ➠

(part 2 of 4)

344 U2284-J-Z125-9-76

SHOW SDF-A statements

 ,OPERAND-L5 = *NO / <structured-name 1..20>
 ,ORIGIN = *CURRENT / *COMMAND(...) / *STATEMENT(...)
 *COMMAND(...)
 NAME = <structured-name 1..30>
 *STATEMENT(...)
 NAME = <structured-name 1..30>
 ,PROGRAM = <structured-name 1..30>

*VALUE(...)
 OPERAND-L1 = *ABOVE-CURRENT / <structured-name 1..20>
 ,VALUE-L1 = *CURRENT / *COMMAND-REST / *INTEGER / *X-STRING / *C-STRING / *NAME /

 *ALPHANUMERIC-NAME / *STRUCTURED-NAME / *FILENAME /

 *PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL / *VSN /

 *COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *PRODUCT-VERSION /

 *POSIX-PATHNAME / *POSIX-FILENAME / <composed-name 1..30>

 ,OPERAND-L2 = *NO / <structured-name 1..20>
 ,VALUE-L2 = *NO / *COMMAND-REST / *INTEGER / *X-STRING / *C-STRING / *NAME /

 *ALPHANUMERIC-NAME / *STRUCTURED-NAME / *FILENAME /

 *PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL / *VSN /

 *COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *PRODUCT-VERSION /

 *POSIX-PATHNAME / *POSIX-FILENAME / <composed-name 1..30>
 ,OPERAND-L3 = *NO / <structured-name 1..20>
 ,VALUE-L3 = *NO / *COMMAND-REST / *INTEGER / *X-STRING / *C-STRING / *NAME /

 *ALPHANUMERIC-NAME / *STRUCTURED-NAME / *FILENAME /

 *PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL / *VSN /

 *COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *PRODUCT-VERSION /

 *POSIX-PATHNAME / *POSIX-FILENAME / <composed-name 1..30>
 ,OPERAND-L4 = *NO / <structured-name 1..20>
 ,VALUE-L4 = *NO / *COMMAND-REST / *INTEGER / *X-STRING / *C-STRING / *NAME /

 *ALPHANUMERIC-NAME / *STRUCTURED-NAME / *FILENAME /

 *PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL / *VSN /

 *COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *PRODUCT-VERSION /

 *POSIX-PATHNAME / *POSIX-FILENAME / <composed-name 1..30>
 ,OPERAND-L5 = *NO / <structured-name 1..20>

continued ➠

(part 3 of 4)

U2284-J-Z125-9-76 345

SDF-A statements SHOW

 ,VALUE-L5 = *NO / *COMMAND-REST / *INTEGER / *X-STRING / *C-STRING / *NAME /

 *ALPHANUMERIC-NAME / *STRUCTURED-NAME / *FILENAME /

 *PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL / *VSN /

 *COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *PRODUCT-VERSION /

 *POSIX-PATHNAME / *POSIX-FILENAME / <composed-name 1..30>
 ,ORIGIN = *CURRENT / *COMMAND(...) / *STATEMENT(...)
 *COMMAND(...)
 NAME = <structured-name 1..30>
 *STATEMENT(...)
 NAME = <structured-name 1..30>
 ,PROGRAM = <structured-name 1..30>

*CORRECTION-INFORMATION(...)
 PM-NUMBER = *ALL / list-poss(20): <alphanum-name 8..8>

,ATTACHED-INFORMATION = *YES / *NO / *IMMEDIATE

,SIZE = *MINIMUM / *MAXIMUM / *MEDIUM

,IMPLEMENTATION-INFO = *NO(...) / *YES

*NO(...)
 FORM = *UNGUIDED / *GUIDED
 ,LANGUAGE = E / <name 1..1>

,LINE-LENGTH = *STD / <integer 72..132>

,LINES-PER-PAGE = *STD / *UNLIMITED(...) / <integer 1..200>

*UNLIMITED(...)
 OUTPUT-FORM = *STD / *FOR-INPUT

,OUTPUT = *SYSOUT / *SYSLST(...)

*SYSLST(...)
 SYSLST-NUMBER = *STD / <integer 1..99>

,PRIVILEGE = *ANY / list-poss(64): <structured-name 1..30>

(part 4 of 4)

346 U2284-J-Z125-9-76

SHOW SDF-A statements

OBJECT =
Type of the object whose definition is to be output.

OBJECT = *ALL
Specifies that the entire contents of a syntax file are to be output.

OBJECT = *GLOBAL-INFORMATION
Specifies that the global information of a syntax file is to be output.

OBJECT = *DOMAIN(...)
Specifies that the definitions of domains are output.

NAME = *ALL(...)
The definitions of all domains are output.

EXCEPT = *NONE / <structured-name 1..30 with-wild> / list-poss(2000):
<structured-name 1..30>
The definitions of the named domains are not output.

NAME =*NONE
The definitions of all the commands which are not assigned to a domain are output.

NAME = <structured name 1..30 with-wild /
list-poss(2000): <structured-name 1..30>
The definitions of the named domains or of the domains whose names match the
wildcard selector are output.

OBJECT = *COMMAND(...)
Specifies that the definitions of commands are to be output.

NAME = *ALL(...)
The definitions of all commands are to be output.

EXCEPT = *NONE / <structured-name 1..30 with-wild> / list-poss(2000):
<structured-name 1..30>
The definitions of the named commands are not output.

NAME = *REMOVED
Outputs all commands which have been removed (and which can be restored because
their description exists on a higher hierarchical level).

NAME = *CURRENT
Outputs the current commands (if any).

NAME = <structured-name 1..30 with-wild> /
list-poss(2000): <structured-name 1..30>
The definitions of the named commands or the definitions of the commands which
match the wilcard selector are output.

U2284-J-Z125-9-76 347

SDF-A statements SHOW

OBJECT = *PROGRAM(...)
Specifies that definitions of programs are to be output.

NAME = *ALL(...)
The definitions of all programs are output.

EXCEPT = *NONE / <structured-name 1..30 with-wild> / list-poss(2000):
<structured-name 1..30>
The definitions of the programs named here are not output.

NAME = *REMOVED
Outputs all programs which have been removed (and which can be restored because
their description exists on a higher hierarchical level).

NAME =<structured-name 1..30 with-wild> /
list-poss(2000): <structured-name 1..30>
The definitions of the named programs or of the programs whose name matches the
wildcard selector are to be output.

OBJECT = *STATEMENT(...)
Specifies that the definitions of statements are to be output.

NAME = *ALL(...)
The definitions of all statements are output.

EXCEPT = *NONE / <structured-name 1..30 with-wild> / list-poss(2000):
<structured-name 1..30>
The definitions of the statements named here are not output.

NAME = *REMOVED
Outputs all statements which have been removed (and which can be restored because
their description exists on a higher hierarchical level).

NAME = *CURRENT
Outputs the current statements (if any).

NAME = <structured-name 1..30 with-wild> /
list-poss(2000): <structured-name 1..30>
The definitions of the named statements or the definitions of the statements which
match the wildcard selector are output.

PROGRAM = <structured-name 1..30>
Name of the program to which the statements pertain.

OBJECT = *PRIVILEGE(...)
Specifies that the definitions of privileges are to be output.

NAME = *ALL / <structured-name 1..30>
The definitions of all privileges or of the privileges named are to be output.

348 U2284-J-Z125-9-76

SHOW SDF-A statements

OBJECT = *OPERAND(...)
Specifies that the definition of an operand is to be output. If this operand is included in a
structure, it is specified by the path leading to it, i.e. by specifying the operands and operand
values that introduce the structure in this path. If the name of one of the operands in the
path is unique, not only within its structure, but also with respect to the higher-ranking
structure (or globally within the command or statement), the path need not be completely
specified (and may even be omitted). An operand that is not absolutely essential to identify
the operand definition to be output, as well as the operand value pertaining to it, can be
omitted.
An operand value specified for VALUE-Li (i=1,...,5) must pertain to the operand defined by
OPERAND-Li. After the first VALUE-Li = *NO, SDF-A takes the operand defined by
OPERAND-Li as the one whose definition is to be output. Subsequently, SDF-A does not
interpret the specifications for any other OPERAND-Lj, VALUE-Lj. If a value other than *NO
is specified for VALUE-Li, the value specified for OPERAND-Li+1 must also be other than
*NO.

OPERAND-L1 = *CURRENT / <structured-name 1..20>
Specifies the operand whose definition is to be output (VALUE-L1 = *NO) or an operand
in the path leading to it (VALUE-L1 î *NO). *CURRENT means that OPERAND-L1 is
the current object. <structured-name> must be a globally unique operand name within
the command or statement.

VALUE-L1 = *NO / *COMMAND-REST / *INTEGER / *X-STRING / *C-STRING /
*NAME / *ALPHANUMERIC-NAME / *STRUCTURED-NAME / *FILENAME /
*PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL / *VSN /
*COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *PRODUCT-VERSION /
*POSIX-PATHNAME / *POSIX-FILENAME / <composed-name 1..30>
*NO means that the definition of the OPERAND-L1 is to be output. Otherwise, an
operand value that introduces a structure is to be specified. This structure must directly
or indirectly contain the operand whose definition is to be output. If the operand value
introducing the structure is of the data type KEYWORD-NUMBER, then the particular
value defined for it is to be specified (see ADD-VALUE
TYPE=*KEYWORD,...,VALUE=<c-string>). Here it must be remembered that this
particular value is to be specified in every case without the prefixed asterisk. If the
operand value introducing the structure is not of the type KEYWORD(-NUMBER), then
the data type defined for it is to be specified.

OPERAND-L2 = *NO / <structured-name 1..20>
*NO means that OPERAND-L2 is irrelevant for the specification of the operand whose
definition is to be output. Otherwise, the name of an operand that is unique within the
structure determined by VALUE-L1 is to be specified. This operand is either the one
whose definition is to be output (VALUE-L2 = *NO) or one that is in the path leading to
it (VALUE-L2 î *NO).

U2284-J-Z125-9-76 349

SDF-A statements SHOW

VALUE-L2 = analogous to VALUE-L1
*NO means that VALUE-L2 is irrelevant for the specification of the operand. Otherwise,
an operand value introducing a structure is to be specified. This structure must directly
or indirectly contain the operand whose definition is to be output. For further infor-
mation, see VALUE-L1.

OPERAND-L3 = *NO / <structured-name 1..20>
*NO means that OPERAND-L3 is irrelevant for the specification of the operand whose
definition is to be output. Otherwise, the name of an operand that is unique within the
structure determined by VALUE-L2 is to be specified. This operand is either the one
whose definition is to be output (VALUE-L3 = *NO) or one that is in the path leading to
it (VALUE-L3 î *NO).

VALUE-L3 = analogous to VALUE-L1
*NO means that VALUE-L3 is irrelevant for the specification of the operand. Otherwise,
an operand value introducing a structure is to be specified. The structure must directly
or indirectly contain the operand whose definition is to be output. For further infor-
mation, see VALUE-L1.

OPERAND-L4 = *NO / <structured-name 1..20>
see OPERAND-L2.

VALUE-L4 = analogous to VALUE-L1
see VALUE-L2.

OPERAND-L5 = *NO / <structured-name 1..20>
see OPERAND-L2.

ORIGIN =
Specifies the command or statement to which the operand definition to be output
pertains.

ORIGIN = *CURRENT
The operand definition to be output pertains to a command or statement that currently
either is itself the current object or else contains an operand or operand value that is the
current object.

ORIGIN = *COMMAND(...)
The operand definition pertains to a command.

NAME = <structured-name 1..30>
Name of the command.

ORIGIN = *STATEMENT(...)
The operand definition belongs to a statement.

NAME = <structured-name 1..30>
Name of the statement.

350 U2284-J-Z125-9-76

SHOW SDF-A statements

PROGRAM = <structured-name 1..30>
Name of the program to which the statement pertains.

OBJECT = *VALUE(...)
The definition of the operand value is to be output. This operand value is specified by the
path leading to it, i.e. by specifying the operands and operand values introducing the
structure in this path. If the operand value pertains to an operand that is not attached to any
structure, the path contains only this operand. If the operand value does pertain to an
operand attached to a structure, the path also includes the higher-ranking operands as well
as the associated operand values introducing the structure. If the name of one of the
operands is unique, not only within its structure, but also with respect to the higher-ranking
structure (or globally within the command or statement), the path need not be completely
specified. An operand that is not absolutely essential to identify the operand value definition
to be output, as well as the operand value pertaining to it, can be omitted. An operand value
specified for VALUE-Li (i=1,...,5) must pertain to the operand defined by OPERAND-Li.
After the first OPERAND-Li + 1 = *NO, SDF-A takes the operand value defined by VALUE-
Li as the one whose definition is to be output. Subsequently, SDF-A does not interpret the
specifications for any other OPERAND-Lj, VALUE-Lj. If a value other than *NO is specified
for OPERAND-Li, the value specified for VALUE-Li must also be other than *NO.

OPERAND-L1 = *ABOVE-CURRENT / <structured-name 1..20>
Specifies the operand to which the operand value whose definition is to be output
pertains (OPERAND-L2 = *NO) or an operand in the path leading to this operand value
(OPERAND-L2 î *NO). *ABOVE-CURRENT means that a value pertaining to
OPERAND-L1 is the current object. <structured-name> must be a globally unique
operand name within the command or statement.

VALUE-L = *CURRENT / *COMMAND-REST / *INTEGER / *X-STRING / *C-STRING/
*NAME / *ALPHANUMERIC-NAME / *STRUCTURED-NAME / *FILENAME /
*PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL / *VSN /
*COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *PRODUCT-VERSION /
*POSIX-PATHNAME / *POSIX-FILENAME /<composed-name 1..30>
Specifies the operand value whose definition is to be output (OPERAND-L2 = *NO) or
an operand value that introduces a structure in the path leading to it (OPERAND-
L2î*NO). *CURRENT means that VALUE-L1 is the current object. If it is not the current
object and of the data type KEYWORD(-NUMBER), then the particular value defined
for it is to be specified (see ADD-VALUE TYPE=*KEYWORD,...,VALUE=<c-string>).
Here it must be remembered that this particular value is to be specified in every case
without the prefixed asterisk. If the operand value is not of the type
KEYWORD(-NUMBER), then the data type defined for it is to be specified.

U2284-J-Z125-9-76 351

SDF-A statements SHOW

OPERAND-L2 = *NO / <structured-name 1..20>
*NO means that the definition of VALUE-L1 is to be output. Otherwise, the name of the
operand to which the operand value whose definition is to be output pertains
(OPERAND-L3 = *NO) or the name of an operand in the path leading to this operand
value (OPERAND-L3 î *NO). If an operand name is specified, this must be unique
within the structure defined by VALUE-L1.

VALUE-L2 = *NO / *COMMAND-REST / *INTEGER / *X-STRING / *C-STRING /
*NAME / *ALPHANUMERIC-NAME / *STRUCTURED-NAME / *FILENAME /
*PARTIAL-FILENAME / *TIME / *DATE / *TEXT / *CAT-ID / *LABEL / *VSN /
*COMPOSED-NAME / *X-TEXT / *FIXED / *DEVICE / *PRODUCT-VERSION /
*POSIX-PATHNAME / *POSIX-FILENAME / <composed-name 1..30>
*NO means that the VALUE-L2 is irrelevant for the specification of the operand value to
be output. Otherwise, an operand value is to be specified. This operand value is either
the one whose definition is to be output (OPERAND-L3=*NO) or an operand value intro-
ducing a structure in the path leading to it (OPERAND-L3 î *NO). For further infor-
mation, see VALUE-L1.

OPERAND-L3 = *NO / <structured-name 1..20>
*NO means that OPERAND-L3 is irrelevant for the specification of the operand value
definition to be output. Otherwise, the name of the operand to which the operand value
whose definition is to be output pertains (OPERAND-L4 = *NO) or the name of an
operand in the path leading to this operand value (OPERAND-L4 î *NO) is to be
specified. If an operand name is specified, this must be unique within the structure
defined by VALUE-L2.

VALUE-L3 = analogous to VALUE-L2
*NO means that VALUE-L3 is irrelevant for the specification of the operand value
definition value to be output. Otherwise, an operand value is to be specified. This
operand value is either the one whose definition is to be output (OPERAND-L4 = *NO)
or an operand value introducing a structure in the path leading to it (OPERAND-L4 î
*NO). For further information, see VALUE-L1.

OPERAND-L4 = *NO / <structured-name 1..20>
see OPERAND-L3.

VALUE-L4 = analogous to VALUE-2
see VALUE-L2.

OPERAND-L5 = *NO / <structured-name 1..20>
see OPERAND-L3.

VALUE-L5 = analogous to VALUE-2
see VALUE-L2.

ORIGIN =
Specifies the command or statement to which the operand value definition to be output
pertains.

352 U2284-J-Z125-9-76

SHOW SDF-A statements

ORIGIN = *CURRENT
The operand value definition to be output pertains to a command or statement that
currently either is itself the current object or else contains an operand or operand value
that is the current object.

ORIGIN = *COMMAND(...)
The operand value definition pertains to a command.

NAME = <structured-name 1..30>
Name of the command.

ORIGIN = *STATEMENT(...)
The operand value definition pertains to a statement.

NAME = <structured-name 1..30>
Name of the statement.

PROGRAM = <structured-name 1..30>
Name of the program to which the statement pertains.

OBJECT = *CORRECTION-INFORMATION(...)
This operand value is reserved for special purposes for Fujitsu Siemens Computers
Software Development and consequently is not described in this manual.

ATTACHED-INFORMATION =
Specifies which of the definitions pertaining to the specified object is to be output.

ATTACHED-INFORMATION = *YES
The definition of the specified object is output along with the definitions of all objects
associated with the specified object. (In other words: domain with associated commands,
program with associated statements, command or statement with associated operands,
operand with associated operand values, operand value with associated structure, global
information with language-dependent texts.)

ATTACHED-INFORMATION = *NO
The definition of the specified object is output without the definitions of the objects
associated with the specified object. (In other words: domain without associated
commands, program without associated statements, command or statement without
associated operands, operand without associated operand values, operand value without
associated structure, global information without language-dependent texts.)

ATTACHED-INFORMATION = *IMMEDIATE
The definition of the specified object is output together with the definitions of the objects
which are immediately associated with it. Domains and programs are output with the
associated commands or statements, but without the associated operands and operand
values. For all other objects, *IMMEDIATE has the same effect as *YES.

U2284-J-Z125-9-76 353

SDF-A statements SHOW

SIZE =
Specifies the extent of output. The actual effect of the SIZE operand depends on the
OBJECT operand. If IMPLEMENTATION-INFO=*YES is specified, *MEDIUM has the same
effect as *MAXIMUM. SIZE has no effect on the output of global information. For
OBJECT=*COMMAND or *STATEMENT, and analogously for *OPERAND and *VALUE,
the following information is output:

SIZE = *MINIMUM
If IMPLEMENTATION-INFO=*NO:
the command/statement name, all associated operand names, all associated default
values, and the operand values introducing structures are output. The additional infor-
mation regarding the operand values and help texts is not output.
If IMPLEMENTATION-INFO=*YES:
parts of the definition defined with the default values of the associated ADD statements are
not output.

SIZE = *MAXIMUM
If IMPLEMENTATION-INFO=*NO:
the command/statement name, all associated operand names, all associated default
values, and all other associated operand values are output. In addition, the additional infor-
mation regarding the operand values and the help texts is output.
If IMPLEMENTATION-INFO=*YES:
all parts of the definition are output.

SIZE = *MEDIUM
If IMPLEMENTATION-INFO=*NO:
the command/statement name, all associated operand names, all associated default
values, and all other associated operand values are output. The additional information
regarding the operand values and help texts is not output.
If IMPLEMENTATION-INFO=*YES:
parts of the definition defined with the default values of the associated ADD statements are
not output.

IMPLEMENTATION-INFO =
Specifies how the output is to be edited. This operand has no effect for global information.

IMPLEMENTATION-INFO = *NO(...)
The definitions of the specified objects are output in a form similar to that of a manual.
Operands assigned the value PRESENCE=*INTERNAL-ONLY are not listed here.

FORM =
Specifies whether the definitions of objects that are not permitted for guided dialog are
output.

FORM = *UNGUIDED
The definitions are output.

354 U2284-J-Z125-9-76

SHOW SDF-A statements

FORM = *GUIDED
The definitions are not output.

LANGUAGE = E / <name 1..1>
Specifies in which language the help texts are output (E = English, D = German). This
operand has no effect for global information.

IMPLEMENTATION-INFO = *YES
Those SDF-A statements are listed with which the specified objects could be defined in a
syntax file.

LINE-LENGTH = *STD / <integer 72..132>
Specifies the line length for the output.

LINE-LENGTH = *STD
The default value is 74 characters for output on a display terminal and 72 characters for
output to a file.

LINES-PER-PAGE = *STD / *UNLIMITED(...) / <integer 1..200>
Specifies the number of lines per page. This value does not include the two lines for the
header which SDF-A generates on each new page. The header is generated only if
OUTPUT = *SYSLST.

LINES-PER-PAGE = *STD
The default value is 24 lines for output on a display terminal and 55 lines for output to a file.

LINES-PER-PAGE = *UNLIMITED(...)
No control by SDF-A (no header is generated).

OUTPUT-FORM =
Specifies which characters can be output at the beginning of the lines.

OUTPUT-FORM = *STD
The first character of this line is a blank.

OUTPUT-FORM = *FOR-INPUT
Two slashes (//) are output at the beginning of each line.
This specification can be used together with IMPLEMENTATION=*YES to generate
SDF-A statements with which a syntax file or a syntax file object can be reconstructed.
Example: the following SDF-A statement creates a file containing the SDF-A state-
ments for reconstructing a syntax file:
SHOW OBJECT=*ALL,IMPLEMENTATION-INFO=*YES,
LINES-PER-PAGE=*UNLIMITED(OUTPUT-FORM=*FOR-INPUT),
OUTPUT= *SYSLST(07),LINE-LENGTH=72

OUTPUT =
Specifies the output medium for the requested information.

U2284-J-Z125-9-76 355

SDF-A statements SHOW

OUTPUT = *SYSOUT
The output is sent to the logical system file SYSOUT; in interactive mode, this is generally
the display terminal.

OUTPUT = *SYSLST(...)
The output is sent to the logical system file SYSLST.

SYSLST-NUMBER = *STD / <integer 1..99>
Specifies the number of the logical system file SYSLST. If *STD is specified, the logical
system file SYSLST does not receive a number.

PRIVILEGE = *ANY / list-poss(64): <structured-name 1..30>
Only those objects are output to which at least one of the listed privileges is assigned. If
*ANY is specified, the objects are output irrespective of their privileges.

356 U2284-J-Z125-9-76

SHOW-CORRECTION-INFORMATION SDF-A statements

SHOW-CORRECTION-INFORMATION
Show correction information of syntax file

The SHOW-CORRECTION-INFORMATION statement provides information about the
corrections contained in the syntax file.

The statement is intended exclusively for diagnostic purposes.

There is no description of the operands here because the statement is only intended for
diagnostic purposes.

 SHOW-CORRECTION-INFORMATION

CORRECTION-ID = *SOURCE (...) / *OBJECT(...)

*SOURCE(...)
 PM-NUMBER = *ALL / list-poss(100): <alphanum-name 8..8>

*OBJECT(...)
 PM-NUMBER = *ALL / <alphanum-name 8..8>
 ,JULIAN-DATE = *ANY / <integer 1..999>

,PRODUCT-NAME = *ANY / <structured-name 1..15>(...)

<structured-name 1..15>(...)
 VERSION = *ANY / <product-version>

U2284-J-Z125-9-76 357

SDF-A statements SHOW-STATUS

SHOW-STATUS
Display status of opened syntax file

 The SHOW-STATUS statement causes SDF-A to output the name of the currently open
syntax file and information on one or more associated reference syntax files.

This statement has no operands.

SHOW-STATUS

358 U2284-J-Z125-9-76

STEP SDF-A statements

STEP
Define restart point

The STEP statement is used to define a restart point for error handling in a sequence of
SDF-A statements. The STEP statement is valid only in procedures and batch runs.

This statement has no operands.

If SDF-A encounters a syntax error or a serious logical error, it instigates the following steps:

– an error message is output

– the current SDF-A statement is terminated

– the subsequent statements are skipped until STEP or END is reached.

If the next command reached by SDF-A is an END command, an abnormal program termi-
nation (TERM UNIT=STEP,MODE=ABNORMAL) is generated, and the spin-off mechanism
is activated. If the next command reached by SDF-A is a STEP command, it continues with
the statement following STEP. If an error has no effect on the normal execution of the
current job, the user must intercept abnormal program termination by inserting a STEP
command.

SDF corrects minor logical errors automatically, accompanying the correction by an appro-
priate warning message. The spin-off mechanism is not activated.

STEP

U2284-J-Z125-9-76 359

6 SDF program interface
SDF also provides facilities for reading statements via the SDF user interface, and for
analyzing and correcting these statements, for user-defined programs. These programs
can thus be operated via the same user interface as the operating system itself.

When a user program is to be used with SDF, the following requirements must be satisfied:

– a syntax description in a syntax file must be created with SDF-A, using statements such
as ADD-PROGRAM and ADD-STMT;

– within the program, SDF must be called in order to request the statements, using the
SDF macros described in this section or the interface’s function calls between SDF and
high-level languages.

360 U2284-J-Z125-9-76

Macro calls SDF program interface

6.1 Macro calls for implementing statements

The SDF macros described in this section cause SDF to request statements.

The macros are stored in the macro library SYSLIB.SDF.045, which is supplied with SDF.
The macros are described in this manual because they can be used only if a suitable syntax
can be defined with SDF-A.

Processing of the macros depends on the SDF version running on the system.

Changes for programs under SDF V4.1A and higher

The layout of the standardized transfer area was changed for SDF V4.1. For this reason the
CMDSTRUC macro for generating the transfer area was replaced by the CMDTA macro. In
addition, the macros RDSTMT, TRSTMT and CORSTMT for processing statements were
replaced by the new macros CMDRST, CMDTST and CMDCST.

The format of the standardized transfer area used up to SDF V4.0 and the macros
CMDSTRUC, RDSTMT, TRSTMT and CORSTMT should no longer be used in the new
programs; however, for the convenience of the user descriptions can still be found in the
appendix (see section “Changes to the SDF program interface” on page 593ff).

 The SDF interface to higher programming languages only supports the
standardized transfer area in the old format. The new format can only be used via
the Assembler interface!

i

U2284-J-Z125-9-76 361

SDF program interface System context/program context

6.2 Macro calls in simultaneously open syntax file hierarchies

With the aid of the OPNCALL macro, user programs open a syntax file hierarchy parallel to
the syntax file hierarchy which was opened for the user task during LOGON processing.
Parallel to the work context created by SDF for the user task, a new work context is thus
created.

The new context is opened by the program and is used to analyze subsequent inputs. The
context is closed again with the CLSCALL macro or when the program is terminated.

The contexts opened by the OPNCALL macro are therefore called “program contexts”. The
user program determines the syntax file hierarchy. The context created by SDF when the
user task is started is called the “system context”. This context uses the system adminis-
tration defaults stored in the SDF parameter file.

● The system context is used by the command processor to read and analyze commands
before they are executed by the command processor. The syntax file hierarchy and the
SDF options are processed as described (see page 25ff). The identifier of the system
context in the various macros is the default NULL address.

● The program context can be used by a program to read and analyze its statements
before execution. The syntax file hierarchy is defined by the user program with
OPNCALL for the level of the system and group syntax file(s). The SDF options can be
modified locally within the program context by means of MODIFY-SDF-OPTIONS. The
identifier of the program context is returned by the OPNCALL macro and is used by
subsequent macro calls in this context.

The command processor can in no case execute a command that is being processed in a
program context. It is not possible to create a program context with the CMD macro.

With the OPNCALL macro, a user program can

– compile commands (i.e. analyze them without executing them)

– read, compile or correct statements

– retrieve information

in or from the program contexts.

362 U2284-J-Z125-9-76

System context/program context SDF program interface

The program context has the following characteristics:

– The system syntax files may either be the current system syntax files of the system
context of the user task, or the OPNCALL macro can specify explicitly that another basic
system syntax file is to be opened. If system administration switches the current system
syntax files of the system context dynamically with MODIFY-SDF-PARAMETERS, then
this change also applies, after the next transaction, to the program context which has
used the system syntax files in question.

– The group syntax file may either be the current group syntax file of the system context
of the user task or be specified explicitly with the OPNCALL macro. It cannot be
switched in the generated program context.

– The user syntax file is the current user syntax file of the user task. It is valid both for the
system context and for the program context and can be dynamically switched using the
MODIFY-SDF-OPTIONS command or statement. MODIFY-SDF-OPTIONS is read by
CMDRST or, in the buffer, by CMDTST (EXECUTE=*YES).

– If user-defined syntax files are opened in the program context, SDF standard state-
ments from the program context are used. SDF takes standard statements which are
not available in the program context out of the $CMDPGM program defined in the basic
system syntax file in the system context.

Changes to the user syntax file and to the options in the program context have no effect on
the system context. A user program may open up 255 contexts, including the system
context, at any one time.

The following SDF macros may be used in a program context or may process a program
context:

– OPNCALL:
creates the new context and determines the group and system syntax files to be
activated. The identifier of the program context is returned to the user program in the
form of a return code. This identifier is determined for each call which is processed in a
program context.

– CMDTST, CMDRST, CMDCST and CMDSTA:
the identifier of the program context is determined whenever work is carried out in the
context.

– CLSCALL:
closes the program context. If no CLSCALL is issued, all program contexts are released
when the program is terminated.

U2284-J-Z125-9-76 363

SDF program interface System context/program context

Notes on the programming context

The program context provides a new SDF working environment with its own input and
syntax memories. For this reason, the following points must be noted:

– If blocked input is used for a list of statements, the input has only a local effect on the
current context. Blocked input for CMDRST in a program context cannot call another
context.

– Blocked input of statements may also include records. These can then be read with
RDATA (SYSFILE) after CMDRST, but only in the system context:

RDATA (SYSFILE) can only read records from the terminal buffer of the system context.
RDATA should therefore not be called after CMDRST in the program context.

– The EOF condition for statement input and the spin-off mechanism work only in the
context in which the statements are read.

– The statements are not compiled in the environment of the current user task
(CMDTST). The user must specify the simulated user task type (batch or dialog task)
in the OPNCALL macro and the simulated procedure mode (procedure or primary) in
the CMDTST macro.
The default is that CMDTST does not need to check the user task type or the procedure
mode when checking the input. CMDRST reads the statements in the environment of
the current user task.

<stmt> [LZE]
<stmt> [LZE]
<stmt> [LZE]

. . .
<data> [LZE]
<data> [LZE]
<data> [EM] [DUE]

Calls from the program

%//...

RDATA (SYSFILE) reads
from the SDF input buffer
(system context only)

Input

first CMDRST (SDF)

SDF input buffer

first stmt
next CMDRST

. . .

364 U2284-J-Z125-9-76

System context/program context SDF program interface

CHKPT and RESTART-PROGRAM for program contexts

After a checkpoint of a program in the program context, the following behavior of the
reopened hierarchies must be expected after RESTART-PROGRAM:

– If no special system syntax file was defined for the program context at the time of the
CHKPT (see OPNCALL SFSYSTM=*STD), then the system syntax file of the current
system context is used after the restart.
If a special system syntax file was defined, then this file is reopened.

– If no special group syntax file was defined for the program context at the time of the
CHKPT (see OPNCALL SFGROUP=*STD), then the group syntax file of the current
system context which is assigned to the current profile ID is used after the restart.
If a special group syntax file was defined, then this file is reopened.

– The user syntax files which were open at the time of the checkpoint are reopened after
the restart.

After RESTART-PROGRAM, the contexts are reconstructed as if the system syntax file had
been modified dynamically by system administration.

U2284-J-Z125-9-76 365

SDF program interface Standardized transfer area

6.3 Format of the standardized transfer area

Standardized transfer areas are needed for three purposes:

1. SDF passes an analyzed statement to the program.
Memory space for at least one such area must be reserved in the program. The space
to be allocated must be large enough to accommodate any possible statement input
that SDF has analyzed for the program.
The address of this area is to be entered in the OUTPUT operand of the CMDRST and
CMDTST macros, and in the INOUT operand of the CMDCST macro.

2. The program passes semantically incorrect statements back to SDF.
No special memory space for this need be reserved in the program. The program uses
the same area into which SDF had previously written the analyzed statement. After the
program has detected semantic errors in the statement, it supplements the statement
with information for the semantic error dialog, and returns it to SDF.
The address of this area is to be specified in the INOUT operand of the CMDCST
macro.

3. The program passes values to SDF to replace the specified operand values or the
default value. For each statement in which such operand values can appear (see ADD-
VALUE..., VALUE=<string>(OVERWRITE-POSSIBLE=*YES),... and ADD-
OPERAND..., OVERWRITE-POSSIBLE=*YES) one such area is to be allocated in the
program and be supplied with values by the program. The addresses of these areas are
to be specified in the DEFAULT operand of the CMDRST and CMDTST macros.

 The format of the standardized transfer area has been changed as of SDF V4.1.
The new layout is created using the CMDTA macro and must be used with the new
CMDRST, CMDTST and CMDCST macros.

In all three cases, the transfer area has the same formal structure (see Figure 7).

i

366 U2284-J-Z125-9-76

Standardized transfer area SDF program interface

Figure 7: Formal structure of standardized transfer area

The standardized transfer area begins on a word boundary. The header field is in bytes 0
through 39. It contains, amongst other things, the internal statement name and the
statement version (see ADD-STMT ...,INTERNAL-NAME=...,STMT-VERSION=...). The
array for operands valid for all statements, i.e. for operands defined with RESULT-
OPERAND-LEVEL=1 (see ADD-OPERAND), begins with byte 40. It accommodates an
8-byte description for each of these operands. The operand descriptions are arranged in
the order resulting from the operand positions established in the statement definition (see
ADD-OPERAND ...,RESULT-OPERAND-NAME=*POSITION(POSITION=<integer>)).
Each operand description contains, among other things, the absolute address where the
associated operand value, or the description of the associated list or non-linearized
structure, is stored in the transfer area. The description of a non-linearized structure
contains an operand array describing the operands contained in the structure. It has the
same format as the array for the operands valid for all statements.

In the simplest case, an operand has only one simple value (see Figure 8). An operand
description with a simple value likewise contains the syntax attributes for this value.

Array for
operands
valid for all
statements

Description of operand 1

Description of operand 2

Description of operand n

.

.

.

Operand values and descriptions
of structures and lists

Header field

U2284-J-Z125-9-76 367

SDF program interface Standardized transfer area

Figure 8: Operand valid for all statements, with simple value

If the operand value introduces a structure (Figure 9), there is a structure description for this
value. This contains an operand array with descriptions for all operands of the structure, as
well as for the operands from linearized substructures. The operand descriptions are
arranged in the order resulting from the structure-oriented operand positions established in
the statement definition (see ADD-OPERAND...,RESULT-OPERAND-
NAME=*POSITION(POSITION=<integer>)).
The operand values corresponding to the operands of the structure may introduce further
structures and/or consist of a list of values.

Length of the transfer area

Internal statement name

Number of positions in the operand array

Value description of operand i

Address of the operand value

Value of operand i

Determines implicitly the position of an
operand description in the operand array

Provides information on the type
of operand value

Standard header

368 U2284-J-Z125-9-76

Standardized transfer area SDF program interface

Figure 9: Operand valid for all statements, with structure

Values for operands defined with ADD-OPERAND ...,LIST-POSSIBLE=*YES
(...,FORM=*NORMAL) are transferred in the form shown in Figure 10. A structure may be
attached to a list element. In this case, “value of the list element” is a structure description.

Number of positions in the operand array of the structure

Description of the value introducing the structure

Address of the value introducing the structure

Value description of operand 1 in the structure

Address of the operand value

Value description of operand n in the structure

Address of the operand value

Number of positions in the operand array

Internal statement name

Length of the transfer area

Value description of operand i

Address of the operand value

Value of the structure initiator

Value of operand 1 in the structure

Value of operand n in the structure

.

.

.

Determines implicitly the position
of an operand description in the
operand array

Provides information on the type of
operand value (type = structure)

Header field of the structure
description

Operand array of the structure
description

Standard header

U2284-J-Z125-9-76 369

SDF program interface Standardized transfer area

Figure 10: Operand valid for all statements, with value list

Number of positions in the operand array

Internal statement name

Length of the transfer area

Value description of operand i

Address of the operand value

Value description of list element 1

Address of the value of list element 1

Address of list element 2

.

.

.

Value of list element 1

Value description of list element 2

Address of the value of list element 2

Address of list element 3

Value description of list element n

Address of the value of list element n

Address of the list elements = 0

Value of list element n

Standard header

Determines implicitly the position
of an operand description in the
operand array

Provides information on the type of
operand value (type = list)

370 U2284-J-Z125-9-76

Standardized transfer area SDF program interface

Header field of a standardized transfer area

The internal name of the statement, the statement version and the number of positions in
the operand array are stored in the syntax file in the statement definition (see ADD-
STMT...,INTERNAL-NAME=...,MAX-STRUC-OPERAND=...,STMT-VERSION=...).
If the actual number of operands is larger than the value specified in MAX-STRUC-
OPERAND, the actual number of operands in the transfer area is registered.

If the program passes default values for a statement, the version of the statement in the
transfer area must agree with the version of the statement in the syntax file. If no version is
registered in the syntax file, 000 (or binary zeros) must be entered, otherwise the default
value will be rejected.

If the program supports several versions of a statement, a default value must be passed for
each version.

Byte Contents Source of field contents in case of

analyzed
statement to

program

errored
 statement back

to SDF

default
values to

SDF

0 to 7 Standard header Program unchanged Program

8 to 11 Length of the transfer area Program unchanged Program

12 to 19 Internal name of the statement SDF unchanged Program

20 to 23 Reserved – – –

24 to 26 Version of the statement SDF unchanged Program

27 to 35 Reserved – – –

36 to 37 Number of positions in the
operand array

SDF unchanged Program

38 to 39 Reserved – – –

U2284-J-Z125-9-76 371

SDF program interface Standardized transfer area

Description of the operands

The operand array and the descriptions therein for the operands of a structure have exactly
the same format as the one for the operands valid for all statements.

Additional information

The additional information is contained in the first byte of the value description. The
following specifications regarding the additional information apply regardless of whether the
additional information appears in an operand description, in the header field of a structure
description, in the description of a list element or in an OR list description.

Byte Contents Source of field contents in case of

analyzed
statement to

program

errored
statement back

to SDF

default
values to

SDF

0 to 3
0
1
2
3

Value description
Additional information
Description of type
Global syntax attributes
Type-specific attributes

See below
SDF
SDF
SDF

See below
Unchanged

-
-

See below
Program 1)

-
-

1 Entry only for operands for which there are values to be converted, i.e. when bit 0 of the additional information
is set

4 to7 Absolute address (stored aligned)
of the value assigned to the
operand or, in the case of struc-
tures or lists, of the further
description

SDF unchanged Program 1)

Bit Value Meaning Source of field contents in case of

analyzed
statement to

program

errored statement
back to SDF

default values
to SDF

0 0 Value not available SDF 1) unchanged Program 2)

0 1 Value available SDF unchanged Program 2)

1 0 Value changeable – Program3) –

1 1 Value not changeable – Program3) –

2 0 Value not errored – Program –

2 1 Value errored – Program –
continued ➠

372 U2284-J-Z125-9-76

Standardized transfer area SDF program interface

Type description

The type description is contained in the second byte of the value description. The following
specifications regarding the type description apply regardless of whether the type
description appears in an operand description, in the header field of a structure description,
in the description of a list element or in an OR list description.

Structure descriptions can be entered by a program in order to specify local default values.
Default values can be entered:

– in the internal format (like the OUTPUT operand in the SDF-A statement ADD-VALUE)
or

– in the external format as a string analogous to the operand description. The auxiliary
data type <input-text> must be used, and the value is analyzed as if it had been entered
via the user interface.

3 0 Value is not to be used as
default value

– – Program

3 1 Value is to be used as
default value

– – Program

4 to 7 – Reserved – – Program

1 For example: values for operands defined with ADD-OPERAND..., PRESENCE= *EXTERNAL-ONLY, or values
in structures not referenced.

2 0 for operands for which there are neither operand values to be converted nor structures containing operands
with values to be converted.
1 for operands for which there are either operand values to be converted or structures containing operands with
values to be converted.

3 All list values coming after the first changeable list value are considered changeable by SDF, regardless of
whether bit 1 is set. In this way, list elements that have already been processed are protected against being
overwritten.

Value (decimal) Meaning

1 Command rest

2 Integer

4 X-string

5 C-string

6 Name

7 Alphanumeric name
continued ➠

Bit Value Meaning Source of field contents in case of

analyzed
statement to

program

errored statement
back to SDF

default values
to SDF

U2284-J-Z125-9-76 373

SDF program interface Standardized transfer area

Global syntax attributes

The description of the global syntax attributes of an operand value is found in the third byte
of the value description. These are attributes which are specified for several data types (see
ADD-VALUE, page 164ff).

Global attributes are always output attributes. They are ignored if the program supplies
default values, or in correction dialogs.

8 Structured name

9 Label

11 File name

12 Partially-qualified file name

13 Time

14 Date

15 Composed name

16 Text

17 Catalog identifier (cat-id)

18 Input text

19 Structure

20 List

21 OR list

22 Keyword

23 Reserved for internal use

24 Volume serial number (VSN)

25 X-text

26 Fixed-point number

27 Device

28 Product version

29 POSIX path name

35 POSIX file name

Bit Meaning when the bit is set

0 Value is a wildcard selector

1 Value is a wildcard constructor

2 to 7 Reserved

Value (decimal) Meaning

374 U2284-J-Z125-9-76

Standardized transfer area SDF program interface

Syntax attributes specific to data type

The description of the data-specific syntax attributes is found in the fourth byte of the value
description. These are attributes which are specified for one data type or for a small number
of data types.

Data type-specific attributes are likewise output attributes. They are ignored if the program
supplies default values, or in correction dialogs.

Data type FILENAME / PARTIAL-FILENAME:

Data type NAME:

Data type COMPOSED-NAME:

Data type TEXT:

Bit Meaning when the bit is set

0 File name contains catalog ID

1 File name contains user ID

2 File name contains file generation or file generation group

3 File name contains version

4 File name is temporary

5 to 7 Reserved

Bit Meaning when the bit is set

0 Name contains underscore (_)

1 to 7 Reserved

Bit Meaning when the bit is set

0 Composed name contains underscore (_)

1 Composed name contains catalog ID

2 to 7 Reserved

Bit Meaning when the bit is set

0 Text contains separator

1 to 7 Reserved

U2284-J-Z125-9-76 375

SDF program interface Standardized transfer area

Data type X-TEXT:

Data type POSIX-PATHNAME / POSIX-FILENAME:

Data type C-STRING:

Data type PRODUCT-VERSION:

Bit Meaning when the bit is set

0 X-TEXT has an odd number of bytes

1 to 7 Reserved

Bit Meaning when the bit is set

0 POSIX path name of file name is absolute

1 POSIX path name or file name is relative

2 POSIX path name or file name was entered in single quotes

3 to 7 Reserved

Bit Meaning when the bit is set

0 C-STRING contains a single quote

1 to 7 Reserved

Bit Meaning when the bit is set

0 Product version contains correction status

1 Product version contains release status

2 to 7 Reserved

376 U2284-J-Z125-9-76

Standardized transfer area SDF program interface

Header field of a structure description

The number of positions in the operand array is stored in the statement definition in the
syntax file (see ADD-VALUE...,STRUCTURE=*YES(..,MAX-STRUC-OPERAND=...).

The operand array belonging to the structure begins immediately after the header field (see
Figure 9). It has exactly the same format as the one for operands valid for all statements.

Byte Contents Source of field contents in case of

analyzed
statement to

program

errored
statement back

to SDF

default values
to SDF

0 to 1 Number of positions in the
operand array

SDF unchanged Program

2 to 3 Reserved

4 to 7

4
5
6
7

Value description for the operand
value introducing the structure
Additional information
Type description
Global syntax attributes
Type-specific syntax attributes

–
SDF
SDF
SDF

see above
unchanged

-
-

see above
Program

-
-

8 to 11 Absolute address (stored aligned)
of the operand value introducing
the structure

SDF unchanged Program

U2284-J-Z125-9-76 377

SDF program interface Standardized transfer area

List element

In the last element of the list, the “absolute address of the next list element” has the value 0
(see Figure 10).

An OR list consists of a single element. The “absolute address of the next list element” is
redundant in this case.

For an operand defined with LIST-POSSIBLE=*YES(FORM=*NORMAL), the number of list
elements must be restricted (LIMIT=...) so as to prevent an overflow in the standardized
transfer area. The size of a list in the standardized transfer area can be calculated by using
the following formula.

n * (10 + 2 + l)

where: n is the number of list elements, and

 l is the length of a single list element (rounded to a multiple of 2).

Byte Contents Source of field contents in case of

analyzed
statement to

program

errored
statement back

to SDF

default values
to SDF

0 to 3
0
1
2
3

Value description
Additional information
Description of type
Global syntax attributes
Type-specific syntax attributes

see above
SDF
SDF
SDF

see above
unchanged

-
-

see above
Program1)

-
-

1 Specified only for operands with operand values to be converted, i.e. when bit 0 of the additional information is
set.

4 to 7 Absolute address (stored
unaligned) of the value assigned
to the list element or, in the case
of structures, of the further
description

SDF unchanged Program

8 to 11 Absolute address (stored aligned)
of the next list element

SDF unchanged Program

378 U2284-J-Z125-9-76

Standardized transfer area SDF program interface

Example:

ADD-OPERAND ... LIST-POSSIBLE=*YES(LIMIT=100,FORM=*NORMAL)
 ADD-VALUE *NAME(1,8)

A list that is defined in this way can occupy up to 2000 bytes in the standardized transfer
area (100 * (10 + 2 + 8) = 2000).

How values are stored

How the values are passed depends on the definition in the syntax file (see ADD-VALUE...,
OUTPUT=*NORMAL(...). In this regard, the following points apply:

– A value defined with ADD-VALUE TYPE=*INTEGER(...,OUT-FORM=*BINARY) is
stored as a signed four-byte string.

– A value defined with ADD-VALUE TYPE=*TIME is stored as a four-byte string, with 2
bytes (binary) for the hours and one byte each for the minutes and seconds.

Byte Contents Source of field contents in case of

analyzed
statement to

program

errored
statement back

to SDF

default values
to SDF

0 to 1 Length specifications SDF unchanged Program

2 to 3 Reserved - - -

4 to ... Value SDF unchanged Program

U2284-J-Z125-9-76 379

SDF program interface SDF macros

6.4 SDF macros

6.4.1 Macro types

To avoid confusion, it should be noted that the term “macro type” does not refer to the terms
“action macro” and “definition macro”. These two terms refer to the function of a macro:

An action macro is a macro from which the execution of certain actions is expected; a
typical example is the PRNT macro, which controls a print operation.

A definition macro is a macro from which definitions (such as addressing aids, DSECTS),
rather than actions, are expected. The CUPAB macro is an example for the generation of
symbolic names for addressing operand tables.

Macros are divided into types according to the way in which they pass operands, namely
the R type (where the operands are passed in registers), the S type (where they are passed
in memory), and the so-called O type, which do not have a specific type assignment.
Macros of type S can be either action macros (MF=E) or definition macros (MF=D).

R type macros

A macro is an R type macro if all necessary operand values can be loaded into the two
registers (R0 and R1) used for this purpose. An R type macro therefore generates no
parameter area.

Operation Operands

macro
 , operand1

(r1)
operand2
(r2)

380 U2284-J-Z125-9-76

SDF macros SDF program interface

S type macros

For an S type macro, the operand values specified in the macro are passed to the function
module in the form of a data area which is part of the macro expansion. It contains the data
and memory definitions (DC and DS statements) necessary for passing the operand
values.

The S type supports specification of the MF operand. In accordance with the different
functions of the various macros, the MF operands can be represented in different ways:

– Standard form (MF=S):

MF=S is the default value. The command section is generated first, followed by the data
area, taking into account the operand values specified in the macro. The data area does
not contain any field names or any explanatory equates. The standard header is
initialized.

– L form (MF=L):

Only the data area is generated, taking into account the operand values specified in the
macro. The data area does not contain any field names or any explanatory equates.
The standard header is initialized. The macro is usually issued in the definition section
of the program. For shared-code programming, this call must not be in the invariant part
of the program if it contains variable data. In the invariant part of the program the data
area is initialized with constant values, copied to a local data area before the E form is
called, and modified in this local area if necessary. Modification can be handled, for
example, with the M form if it is available for the relevant interface.

Name Operation Operands

[opaddr] macro

operand1,.,operandn[,MF=

MF=

S
L
C[,PREFIX=p],[MACID=mac]
(C,p)
D[,PREFIX=p]
(D,p)
M[,PREFIX=p],[MACID=mac]

(E,opaddr)
(E,(r))
E[,PARAM=addr]

U2284-J-Z125-9-76 381

SDF program interface SDF macros

– C form (MF=C / MF=(C,p)):

Only the data area is generated; any operand values specified in the macro are not
evaluated. Each field has a field name and, if necessary, explanatory equates. The first
characters of each field name can be specified (p = a prefix which replaces the first
characters). The data area is terminated with a length equate. The standard header
must generally be initialized by the user.

– D form (MF=D / MF=(D,p)):

A DSECT is generated. Each field has a field name and, if necessary, explanatory
equates. The first characters of each field name can be specified (p = a prefix which
replaces the first characters). The DSECT describes the structure of a memory area
without taking up any memory space itself. It is terminated with a length equate. There
is no switch to the initial location counter. The symbolic name specified for the DSECT
is entered in an ESD record. The location counter is set to 0.

– E form:

Only the commands necessary for calling the function module are generated. The
command section usually ends with an SVC. In the macro, the address of the data area
must be specified with the operand values; the following forms are commonly used:

– M form (MF=M)

Commands (such as MVCs) are generated. During program execution, these overwrite
fields in a data area already initialized with MF=M or, in the case of shared-code
programming, in a local copy of the data area initialized with MF=L with the operand
values specified in the macro. This therefore makes it easy to dynamically modify the
operand values with which a macro is called, in order to adapt it to the requirements of
the program.
Since the commands generated for this purpose use addresses and equates in the C
form or D form, care must be taken, when using the M form, that these names are
available for addressing of the operand list to be modified. In particular, care must be
taken that the operands PREFIX and MACID, if specified in a macro with MF=M, receive
the same values as those specified in the related macro with MF=C or MF=D.

A detailed description of the MF forms can be found in the “Executive Macros” manual [8].

MF=(E,addr)
MF=(E,(r))
MF=E,PARAM=addr

addr =
r =

addr =

address of the data area
register containing the address of the data area
 address of the data area

No further operands are evaluated in the E form

382 U2284-J-Z125-9-76

Macro standard header SDF program interface

O type macros

Some macros cannot be classified as R type or S type: they are macros without a type
assignment.

O type macros are, for example, macros for which one register (often only R1) is specified
in the operand field. This register contains the start address of an operand list.

The operand list is defined in the data section of the program (with DC statements) and
contains the actual operand values.

6.4.2 Standard header

All new macros and, generally, all macros extended to handle the 31-bit interface use the
standard header to identify their interface.
The standard header is an 8-byte field at the beginning of the operand list (parameter list)
with the (standardized) designation of the interface and 4 bytes to contain the return code.
The standard header is generated and initialized, i.e. filled with the valid values for UNIT,
FUNCTION and VERSION by the macro. For E form macros which refer to the operand list,
the user may have to initialize the standard header. Further details can be found in the
macro description.

Format of the standard header:

Byte Contents and meaning

0 - 1
 2
 3
 4
 5

6 - 7

Name of the function unit (UNIT) with the required function
Name of the function (FUNCTION) within the function unit
Name of the version (VERSION) of the function
Subvalue 2 of the return code (SC2).
Subvalue 1 of the return code (SC1).
Main value of the return code (Maincode).

U2284-J-Z125-9-76 383

SDF program interface Macro standard header

The following return code values are conventions:

The maincode shows the result of execution of the function. SC1 classifies the maincode.
SC2 either subdivides the errors into error classes or contains additional diagnostic infor-
mation.

In all new macros introduced since BS2000 V9.0, the return code should only ever be
passed in the standard header. However, for a transitional period it can, for certain macro
interfaces, also be passed in register R15 or in both the standard header and register R15.
In order to check whether a return code was passed in the standard header, the return code
field should be preset to X'FFFFFFFF'.

(SC2) SC1 Maincode Meaning
00 00 0000 Function executed successfully. There is no additional infor-

mation for MAINCODE.
01 00 0000 Function executed successfully. No further actions were

necessary.
00 01 FFFF The requested function is not supported (invalid specification for

UNIT or FUNCTION in the standard header). This error cannot
be rectified.

00 02 FFFF The requested function is not available. This error cannot be
rectified.

00 03 FFFF The specified interface version is not supported (invalid version
specification in the standard header). This error cannot be
rectified.

00 04 FFFF The parameter list is not aligned on a word boundary
00 41 FFFF The subsystem does not exist; it must be generated explicitly.
00 42 FFFF The calling task is not connected to this interface; it must be

connected explicitly.
00 81 FFFF The subsystem is currently not available.
00 82 FFFF The subsystem is in the DELETE or HOLD state.

384 U2284-J-Z125-9-76

Metasyntax for macros SDF program interface

6.4.3 Metasyntax for macro call formats

The following table explains the specific metacharacters and declarations that are used to
represent formats of macro calls:

Formal
notation

Explanation Example

UPPERCASE
LETTERS

Uppercase letters designate constants and
must be entered by the user exactly as
shown.

DATATYPE=CATID
Required input:
DATATYPE=CATID

Lowercase
letters

Lowercase letters designate variables that
must be replaced by the user with current
values on input, i.e. they represent values that
may differ from case to case.

SHORTST=integer
Required input:
SHORTST=10 or
SHORTST=54
etc.

Braces enclose multiple alternatives, i.e. one
of the enclosed values must be selected.

CCSNAME=

Required input:
CCSNAME=*NO or
CCSNAME=*EXTEND or
CCSNAME=xxxxx

 / A slash is used as a separator between two
alternatives from which one must be selected

SYMTYP=CSECT/ENTRY
Required input:
SYMTYP=CSECT or
SYMTYP=ENTRY

Underscoring Underscoring is used to indicate the default
value, i.e. the value assumed by the system if
no entry is made by the user.

PATTERN=*NO / addr

. . . Ellipses are used to indicate repetitions, i.e.
the preceding unit may be repeated in
succession more than once.

(module,...)
Required input:
(MODULE1) or
(A,B,C) or
(A1,A2,A3,A4) etc.

list-poss(n) Means that a list can be constructed from the
values that follow list-poss(n). If (n) is
specified, the list may include a maxi-mum of
n elements. If the list contains more than one
element, it must be enclosed within paren-
theses.

DEVCLAS=list-poss(2):
DISK / TAPE
Required input:
DEVCLAS=DISK or
DEVCLAS=TAPE or
DEVCLAS=(DISK,TAPE)

Table 4: Elements of metasyntax

*NO
*EXTEND
name

U2284-J-Z125-9-76 385

SDF program interface Metasyntax for macros

[] Square brackets enclose optional entries, i.e.
specifications that may be omitted. If a
comma is included with an optional entry
within the square brackets, it must be entered
only if that optional entry is used and may be
omitted for the first operand. If the comma is
located outside the brackets, it must always
be entered even if none of the optional entries
are made (parentheses, if any, must always
be specified).

MAP=S[YSOUT]

Required input:
MAP=SYSOUT or
in abbreviated form:
MAP=S

equals sign = The equals sign (=) separates the operand
from the operand value.

SPIN=*NO / *YES

< > Angle brackets identify the data type of the
operand.

INOUT=<var:pointer>

Formal
notation

Explanation Example

Table 4: Elements of metasyntax

386 U2284-J-Z125-9-76

Metasyntax for macros SDF program interface

Data types of operand values

Data type Character set Notes

c-string EBCDIC
characters

Must be enclosed within single quotes and specified without a
leading “C”. Single quotes appearing in the string must be dupli-
cated. The specification is followed by the meaning of its contents
in SDF notation, separated by a colon. The suffix n..m defines the
input length in bytes.
Example:
Shown in the syntax diagram as: SELECT=<c-string 1..255>
Input: SELECT='testfile'

x-string Hexadecimal
00..FF

Must be enclosed within single quotes and preceded by the letter
X, i.e. in the form X´xxxx´. The suffix n..m defines the input length
in bytes.
Example:
Shown in the syntax diagram as:
PASSWORD=<x-string 1..10>
Input in Assembler: PASSWORD=X'FF00AA1122'
Input in C/C++: PASSWORD=0xFF00AA1122

name A..Z, 0..9, $, #, @ Identifier. The appropriate format is given under the relevant
operand description.
Example:
Shown in the syntax diagram as: PARAM=<name 1..8>
Input: PARAM=MYPARAM

label A..Z
0..9
$,#,@

Designates a label.
Example:
OUTAREA=structure (2):
(1) address: <label>

integer 0..9,+,- A “+” or “-” may only be the first character. The suffix n..m defines
the permitted range of values.
Example:
Shown in the syntax diagram as: MAXLEN=<integer 1..255>
Input: MAXLEN=200

var: Introduces the specification of a variable. The data type of the
variable is given after the colon (see following table).
Example:
Shown in the syntax diagram as: SELECT = <var: char:255>
Input (to specify the variable name): SELECT=VARSELECT

reg: Introduces a register specification (Register 0..15). The data type
of the register contents is given after the colon. A register or
register EQUATE may be used on input.

Data types of operand values

U2284-J-Z125-9-76 387

SDF program interface Metasyntax for macros

Data types of variables and register contents

Data type Description

char:n Designates a character string of length n. The string may be shorter, but only if
a specific condition is satisfied. The applicable conditions are given under the
respective operand descriptions.
If the length is not specified, n=1 is assumed.

int:n Designates an integer with a length of n bytes, where n<=4. If the length is not
specified, n=1 is assumed.

bit:n Designates a bit string of length n. If the length is not specified, n=1 is assumed.
(in C: declaration as 'unsigned')

enum-of E:n The variable is the enumeration E with a length of n bytes, where n<=4. If the
length is not specified, n=1 is assumed.

pointer Pointer (the address is passed).
Area reference with the aid of pointer variables:
with MF=L: address notation:

...,MF=M,<operand>=A(area)
with MF=M: register notation, address notation or symbolic address of a field
containing the address of an area:

LA 2,area
... MF=M,<operand>=(2)

or

... MF=M,<operand>=A(area)
or

LA 2,area
ST 2,areaADD
... MF=M,<operand>=areaADD
areaADD DS A

Data types of variables and register contents

388 U2284-J-Z125-9-76

Functional overview SDF macros

6.4.4 Functional overview

Data definitions

CMDALLW Generates a list of valid operations for the macros CMDRST and
CMDTST

CMDANALY Generates EQUATE statements for return codes

CMDMEM Generates a transfer area for status information

CMDRETC Generates a DSECT for command return codes

CMDTA Generates a transfer area for an analyzed statement

Statement processing

CMDCST Initiates the semantic error dialog

CMDRST Reads and analyzes a statement

CMDTST Analyzes a statement

Calls in simultaneously open syntax file hierarchies

OPNCALL Creates a program context

CLSCALL Closes a program context

Miscellaneous

CMDRC Sets command return codes

CMDSEL Creates selection mask for guided dialog

CMDSTA Specifies information about active syntax files

CMDVAL Checks an input value for a data type or for a wildcard search string
match

CMDWCC Check syntax of wildcard patterns and perform pattern matching

CMDWCO Generate new names with the aid of wildcard constructors

TRCMD Analyzes a command

U2284-J-Z125-9-76 389

SDF macros CLSCALL

6.4.5 Macro descriptions

The macros are described in alphabetical order.

CLSCALL
Close program context

CLSCALL closes the program context opened with OPNCALL. The specified context
identifier is then no longer valid.

CALLID = addr / (reg)
The address of a 4-byte field or the register which contains the context identifier.

MF=
defines special requirements for macro expansion (see the manual “Executive Macros” [8]
for details).

L
Only the data part of the macro expansion (operand list) is generated. This requires that
no operand types with executable code appear in the macro. The data part generated
has the address specified in the name field of the macro.

(E,(1)) / (E,opaddr)
Only the instruction part of the macro expansion is generated. The associated data part
(operand list) is referenced by the address “opaddr”. This is either in register 1 or is
specified directly.

Operation Operands

CLSCALL CALLID = addr / reg

[,MF =]
L
(E,(1))
(E,opaddr)

390 U2284-J-Z125-9-76

CLSCALL SDF macros

Register usage

Register 1: address of the parameter list

Return information and error flags

Register 15 contains a return code in the right-most byte:

X’00’ normal execution

X’08’ call ID does not exist

X’40’ call ID in incorrect environment

U2284-J-Z125-9-76 391

SDF macros CMDALLW

CMDALLW
Generate list of valid operations

The CMDALLW macro generates a list of the valid operations that can be used when the
macros CMDRST and CMDTST are called and STMT=A(identifier) is specified for these
macros.

LIST = (name,...)
Outputs the list of valid statements for the macros CMDRST and CMDTST. The layout is
generated as required by the STMT parameter in these macros. Only those statements for
which the internal statement name is listed are valid. The internal name is stored in the
statement definition in the syntax file (see ADD-STMT). The internal name is at least one
and no more than 8 bytes long. Irrespective of the specifications here, the SDF standard
statements are always valid.

SIZE = 1 / i
Specifies the number of names that can be entered in the list of valid operations. i must be
an integer greater than zero.

For a description of the parameters PREFIX, MACID and MF see section “Macro types” on
page 379ff.

Possible combinations

[label] CMDALLW MF=D[,SIZE=i][,PREFIX=p][,MACID=mac]
[label] CMDALLW MF=C[,SIZE=i][,PREFIX=p][,MACID=mac]
[label] CMDALLW MF=L[,LIST=(name,...)]

Return information and error flags

The macro does not return a return code.

Operation Operands

CMDALLW LIST = (name, ...)

[,SIZE = 1 / i]

[,PREFIX = C / p]

[,MACID = MDA / mac]

[,MF = L / D / C]

392 U2284-J-Z125-9-76

CMDALLW SDF macros

Examples

– Request memory space for a maximum of 20 names:

ALLC CMDALLW MF=C,SIZE=20

– Declare the model for the list of valid statements in a DSECT:

ALLD CMDALLW MF=D,PREFIX=D

– Declaration of a list of 20 names (in this example) in the static code. In this instance, the
length of the memory space is defined by the number of elements in the list.

ALL20 CMDALLW LIST=(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T),-
 PREFIX=I

– The space in memory can be initialized by the static code. Processing continues with a
pointer to the DSECT:

MVC ALLC(IMDALL#),ALL20
L R5,ALLC
USING ALLD,R5
MVC DMDALNR,=H'15'
MVC DMDAL1+10*DMDALNL,=CL8'V'
...

(IMDALL#, DMDALNR, DMDAL1 and DMDALNL are generated by CMDALLW with
PREFIX=I and D)

– Call with static lists:

 ...
 LA 2,MYLIST
 LA 1,RST1
 USING RSTD,1
 CMDRST MF=M,PARAM=RST1,STMT=(2) * Update parameter area RST1
 * using register notation
 ...
RST1 CMDRST MF=L,STMT=A(MYLIST) * direct initialization of
 * parameter area RST1
MYLIST CMDALLW LIST=(A,B,C)

RSTD CMDRST MF=D

U2284-J-Z125-9-76 393

SDF macros CMDANALY

CMDANALY
Generate EQUATE statements for return codes

The CMDANALY macro generates a series of EQUATE statements. These define the return
codes for the macros CMDSTA, CORSTMT, RDSTMT and TRSTMT. This is not necessary
for the macros CMDRST, CMDTST and CMDCST (see, for example, “Migration from
RDSTMT to CMDRST” on page 416).

P = CMD / mac
Prefix of the macro identifier. By default, the macro identifier starts with the string ’CMD’.

Notes on certain return codes

1. DIALOGUE_IMPOSSIBLE_:
No correction dialog could be provided for correction of the current input:

– the input was unknown

– batch task

– spin-off state

– procedure mode and PROCEDURE-DIALOG=*NO specified

2. DIALOGUE_REJECTED_:
A correction dialog was started but the requested correction was rejected by the caller
in guided or unguided mode.

Operation Operands

CMDANALY [P = CMD / mac]

394 U2284-J-Z125-9-76

CMDCST SDF macros

CMDCST
Initiate semantic error dialog

The CMDCST macro causes SDF to conduct a dialog with the user in which the user
corrects semantic errors in a statement. Immediately beforehand, SDF has analyzed the
statement and passed it to the program as being syntactically correct.
Secret operand values that were entered in blanked input fields by the user must be
repeated during the correction process.

Prerequisites for the semantic error dialog are:

● The program is running in an interactive task and an error dialog was permitted in the
syntax analysis, i.e.:
– temporary or permanent guided dialog must be set
– the SDF option PROCEDURE-DIALOGUE=*YES must be set in procedures
– if CMDCST is called after CMDTST, DIALOG=*ERROR must be set for CMDTST

● The same syntax file is available as when the statement was first analyzed (no inter-
vening change of syntax files).

If these prerequisites are not satisfied, SDF rejects the dialog (error code X’20’).

Figure 11: Effects of the CDMCST macro

Correct
semantic errors

Syntax
file

Statement
definition

SDF

Request
statement
correction

Corrected
statement

Initiate
statement
correction

Analyzed
errored

statement

Program

.

.

.

.

.

.

.

.

.

Transfer
area

CMDCST

Analyzed
corrected
statementStatement

analysis

U2284-J-Z125-9-76 395

SDF macros CMDCST

INOUT=<var: pointer>
Address of the standardized transfer area, which must begin on a word boundary. It
contains the results of analysis of the incorrect statement, passed previously to the program
by SDF. The program has identified the operand values it has found to be errored. SDF does
not accept changes in input values made by the program. Following the error dialog and
renewed analysis, SDF stores the modified analysis results back into this area (see section
“Format of the standardized transfer area” on page 365).

MESSAGE=<var: pointer>
Address of the text to be output for the error dialog. In guided dialog, this text is integrated
into the statement menu.This area must be aligned on a halfword boundary and have the
following format:

The maximum text length is 400 characters. Only the first 280 characters are displayed on
an SDF-formatted screen. The menu mask can be destroyed If the text contains screen
control characters.

DEFAULT=
specifies whether the following values are to be replaced by SDF with values dynamically
generated by the program:
– operand values entered or
– operand default values

 The operands, or operand values, must have been defined accordingly in the syntax file
(see ADD-OPERAND...,OVERWRITE-POSSIBLE=*YES,... and ADD-VALUE...,VALUE=
<c-string> (OVERWRITE-POSSIBLE=*YES),...). The program-generated value must be a
valid operand value.

Operation Operands

CMDCST INOUT = <var: pointer>

,MESSAGE = <var: pointer>

,DEFAULT = *NO / <var: pointer>

,INVAR = *NO / <var: pointer>

,CALLID = *NO / <var: pointer>

,CCSNAME = *NO / *EXTEND / <c-string 1..8> / <var: char:8>

,MF = C / D / L / M / E

2 bytes:
2 bytes:
n bytes:

Absolute length of record (n+4)
(Reserved)
Message text

396 U2284-J-Z125-9-76

CMDCST SDF macros

In guided dialog, the values generated by the program are displayed by SDF in the form.

Example:
In the MODIFY statements entered, SDF-A replaces the value *UNCHANGED by the
current value.

*NO
The operand values entered are not replaced by values generated dynamically by the
program.

<var: pointer>
Address of a list aligned on a word boundary which contains addresses containing
conversion descriptions for statements. A formatted transfer area of the type “structure”
is used as conversion description (see section “Format of the standardized transfer
area” on page 365ff). Only one conversion description can be specified for each
statement. A conversion description contains, among other things, the internal
statement name and information regarding which of the operand values entered are to
be changed and what values they are to be changed to. The list of addresses of
conversion description is structured as follows:

The areas for the conversion descriptions which are passed for the default values of the
program must be aligned on a word boundary. The same is true of the output area of
the macros (OUTPUT operand).

If the operands to be given default values are in a structure introduced by a value
defined with LIST-ALLOWED=*YES (see ADD-VALUE), the following situation may
arise: the conversion description contains several list elements to which structures with
operands to be defaulted are attached. On the other hand, the user likewise enters
several list elements to which structures with operands to be defaulted are attached.
SDF first tries to match the structures entered by the user to those specified in the
conversion description by means of the values introducing the structures. If an
unambiguous allocation cannot be made on the basis of the values introducing the
structures because none of the values entered matches any of the ones in the
conversion description or because the user has entered the matching value more than
once, the allocation is then made on the basis of the list position of the introductory
value.

2 bytes:
2 bytes:
4 bytes:

4 bytes:

Number of conversion descriptions in the list (n)
(Reserved)
Address of the first conversion description
. . .
Address of the nth conversion description

U2284-J-Z125-9-76 397

SDF macros CMDCST

 INVAR =
Specifies whether the INVARIANT-INPUT form of the statement is stored. This means that
the statement is stored with all the user-defined operands, all operands having default
values and all operands currently allowed for this task. INVARIANT-INPUT is thus the
largest input form for a statement available to a user who has certain privileges and who is
working in the selected dialog mode.

In contrast to LOGGING=*INVARIANT-FORM (see MODIFY-SDF-OPTIONS), this form
does not mask out keywords and secret operands.

 *NO
The INVARIANT-INPUT form of the statement is not stored.

<var: pointer>
Specifies the address of a buffer into which SDF writes the INVARIANT-INPUT form of
the statement. The buffer must be aligned on a word boundary and the first halfword
must contain the length of the buffer. SDF stores the INVARIANT-INPUT form as a
record of variable length beginning with the second halfword. The contents of the buffer
are then as follows:

CALLID =
Refers to a context (= syntax file hierarchy) which was opened by an OPNCALL macro.
The name of the syntax file hierarchy (callid) must have the 4-byte value returned by SDF
to the field which was designated by the CALLID operand in the Open Context macro.
This function applies to the OPNCALL and CLSCALL macros.

*NO
The current syntax file hierarchy (context) of the task is used for analyzing the
statement.

<var: pointer>
Address of the call check field or register containing this address.
The area must be aligned on a word boundary.

2 bytes:
2 bytes:
2 bytes:
n bytes:

Maximum length of the buffer
Output length written by SDF (n+4)
(Reserved)
INVARIANT-INPUT form of the statement, starting at the seventh byte

398 U2284-J-Z125-9-76

CMDCST SDF macros

CCSNAME =
Specifies the name of the character set used for the correction dialog on 8-bit terminals and
for conversion from lowercase to uppercase letters. Each terminal uses a certain character
set. A coded character set (CCS) is the unique representation of the characters in a
character set in binary form. Each coded character set is defined by its coded character set
name, or CCSN (see the “XHCS” manual [11]). This parameter has no effect on message
output.

*NO
Standard 7-bit code is used for I/O operations.

*EXTEND
Standard 8-bit code is used for I/O operations.

 <c-string 1..8> / <var: char:8>
Specifies the name of a special 8-bit code for I/O operations. The name must be 8 bytes
long and can be passed as a c-string constant or as a string variable.

Description of the MF, PARAM, MACID and PREFIX parameters: see the “Executive
Macros” manual [8] for details.

U2284-J-Z125-9-76 399

SDF macros CMDCST

Return information and error flags

The format of the transfer area is described on page 365ff. The format used for the transfer
area up to SDF V4.0 can be found in chapter “Appendix” on page 593.

Information on the INVARIANT-INPUT form of a statement can be found under the
description of the CMDRST macro on page 405.

The return code is passed in the standard header of the parameter list.

Standard header

(SC2) SC1 Maincode Meaning
00 00 0000 Normal termination
00 20 0004 Unrecoverable system error

00
01
03
04
06
07

01 0008 Parameter error:
– wrong parameter list
– INOUT
– DEFAULT
– MESSAGE
– INVAR
– CALLID

00 40 000C Transfer area too small
00 40 0010 End-of-file (EOF), or error in statement, end-of-file (EOF) was

then detected
00 40 0014 Error in statement, a command was then detected
00 40 0018 Statement is correct but the default values provided by the

system are errored
00 40 001C Error in statement, //STEP was then detected
00 40 0020 Error dialog not possible
00 40 0024 Error dialog rejected by user
00 40 002C END statement was read
00 40 0034 Error in statement, END was then detected
00 40 0040 Specified CALLID not found
00 40 0044 Syntax file in DSSM catalog not found
00 40 005C Not enough space in INVAR buffer, INVARIANT-INPUT

truncated
00 20 0064 XHCS error during statement entry

c c b b a a a a

cc: Subcode 2 (SC2)
bb: Subcode 1 (SC1)
aaaa: Maincode

400 U2284-J-Z125-9-76

CMDCST SDF macros

 Migration from CORSTMT to CMDCST

Migration from CORSTMT to CMDCST is only necessary when the user wishes to use the
new functions of CMDCST, CMDRST and CMDTST. In this case the same points must be
borne in mind as for CMDRST (see “Migration from RDSTMT to CMDRST” on page 416ff).

The macro return code is transferred in the standard header of the parameter list. The
maincode of CMDCST is equivalent to the values which for CORSTMT were transferred in
the right-most byte in register 15. The creation of equates for return codes with the
CMDANALY macro is no longer necessary because they are automatically created with
CMDCST MF=D. The following list shows the old (CORSTMT) and new (CMDCST) field
names:

CORSTMT CMDCST

&P.NOERR
&P.SYERR
&P.PAERR
&P.TRUNC
&P.EOF
&P.SCMD
&P.DFLT
&P.STEP
&P.DIMP
&P.DREJ
&P.END
&P.EERR
&P.NOPRG
&P.INCID
&P.NOFND
&P.ITRC
&P.XHCS

&PREFIX.MDCSUCCESSFUL
&PREFIX.MDCSYSTEM_ERROR
&PREFIX.MDCPARAMETER_ERROR
&PREFIX.MDCAREA_TOO_SMALL
&PREFIX.MDCEOF
&PREFIX.MDCSTMTERROR_CMD
&PREFIX.MDCWRONG_DEFAULTS
&PREFIX.MDCSTMTERROR_STEP
&PREFIX.MDCDIALOG_IMPOSSIBLE
&PREFIX.MDCDIALOG_REJECTED
&PREFIX.MDCEND_STMT
&PREFIX.MDCSTMTERROR_END
&PREFIX.MDCPROGRAM_NOT_IN_SYNTAX_FILE
&PREFIX.MDCINVALID_CALLID
&PREFIX.MDCSYNTAX_FILE_NOT_FOUND
&PREFIX.MDCINVARIANT_INPUT_TRUNCATED
&PREFIX.MDCXHCS_ERROR

U2284-J-Z125-9-76 401

SDF macros CMDMEM

CMDMEM
Generate transfer area for status information

The CMDMEM macro generates a DSECT or a CSECT. These define the transfer area into
which, after the CMDSTA macro has been called, information is written regarding the
activated syntax files and the current specifications for command/statement input and
processing.

D / C
Specifies whether a DSECT (D) or a CSECT (C) is generated.

P = CMD / prefix
Specifies a character string that is to be concatenated with the beginning of all names in the
program section. The string may be up to three characters long. Unless otherwise specified,
the string “CMD” will be concatenated with the name of the section.

 The size of the transfer area has been increased as of SDF V2.0A. The CMDSTA
macro supplied by SDF V4.0A uses this new layout. The transfer area used by the
caller must match the call, i.e. the function call and the definition of the transfer area
must have been created with the same SDF environment. Non-compliance with this
can lead to a parameter error, which is returned by the CMDSTA macro. Earlier
versions of the CMDSTA macro used with the old transfer area are still supported.

Operation Operands

CMDMEM D / C

[,P = CMD / prefix]

i

402 U2284-J-Z125-9-76

CMDRC SDF macros

CMDRC
Set command return codes

The CMDRC macro enables user programs to save certain values as “command return
codes” for the program. When the program is ended, the command processor returns these
values instead of the official return codes. The values may be interpreted as the command
return codes of the program or those of the command with which the program was started
(START-PROGRAM or RESUME-PROGRAM). This command return code can then be
used further by other system functions (e.g. SDF-P).

The return code defined with CMDRC is not available until the program is ended, because
until then it is buffered by the command processor. Only the return code most recently set
by CMDRC is of significance. The official command return code in the command processor
is not modified by CMDRC during program execution.

RCADDR=addr
Address of the command return code.
The DSECT for the command return code is created with the CMDRETC macro (see
page 404).

MF=
defines special requirements for macro expansion (see the “Executive Macros” manual [8]
for details).

L
Only the data part of the macro expansion (operand list) is generated. This requires that
no operand types with executable code appear in the macro. The data part generated
has the address specified in the name field of the macro.

(E,(1)) / (E,opaddr)
Only the instruction part of the macro expansion is generated. The associated data part
(operand list) is referenced by the address “opaddr”. This is either in register 1 or is
specified directly.

Operation Operands

CMDRC RCADDR = addr

[,MF =]
L
(E,(1))
(E,opaddr)

U2284-J-Z125-9-76 403

SDF macros CMDRC

Register usage

Register 1: address of the parameter list

Return information and error flags

Register 15 contains a return code in the right-most byte.

X’00’ normal execution

X’01’ abnormal execution

 If CMDRC is not called, SDF will independently generate the applicable return
codes indicated above in accordance with the UNIT parameter of the TERM macro.i

404 U2284-J-Z125-9-76

CMDRETC SDF macros

CMDRETC
Generate DSECT for command return codes

This macro generates a DSECT or CSECT for the input area of the CMDRC macro.

See section “Macro types” on page 379ff for a description of the parameters.

Operation Operands

CMDRETC [PREFIX = C / p]

[,MACID = MDR / mac]

[,MF = D / C]

U2284-J-Z125-9-76 405

SDF macros CMDRST

CMDRST
Read and analyze statement

The CMDRST macro causes SDF to

– read in a program statement from SYSSTMT. (For the system file SYSSTMT the same
assignment applies as was made for the system file SYSDTA. With regard to continu-
ation lines, continuation characters and notes, the same rules apply to statement input
from SYSSTMT as to command input from SYSCMD.)

– analyze the statement read in, and

– pass the results of the analysis to the program.

This presupposes that an activated syntax file contains the definition of the program and its
statements.
The input length for a statement read via CMDRST is 16348 bytes.

In addition to normal reading and analysis of statements, CMDRST can also read records.
However, this function is intended solely for purposes of migration. SDF merely passes the
records on, i.e. no formatting takes place.

Figure 12: Effects of the CMDRST macro

Syntax
file

Statement
definition

SDF

Request
statement

input

Statement

Initiate ´
statement

input

Program

.

.

.

.

.

.

.

.

.

Transfer
area

CMDRST

Analyzed
statement

Statement
analysis

SYSSTMT

406 U2284-J-Z125-9-76

CMDRST SDF macros

PROGRAM=<c-string 1..8> / <var: char:8>
Internal name of the program that generates the macro. This name is stored in the program
definition in the syntax file (see ADD-PROGRAM). It is at least one byte and at most eight
bytes long and can be transferred as a c-string constant or a string variable.

OUTPUT=<var:pointer>
Address of the standardized transfer area, which must begin on a word boundary. The
transfer area must be generated with the CMDTA macro (or for OUTFORM=*OLD with
CMDSTRUC, see chapter “Appendix” on page 593).

Operation Operands

CMDRST PROGRAM = <c-string 1..8> / <var: char:8>

,OUTPUT = <var: pointer>

,STMT = *ALL / <var: pointer>

,PREFER = *ALL / <c-string 1..8> / <var: char:8>

,DEFAULT = *NO / <var: pointer>

,MESSAGE = *NO / <var: pointer>

,PROT = *YES / *NO / <var: bit:1>

,BUFFER = *NO / <var: pointer>

,INVAR = *NO / <var: pointer>

,SPIN = *NO / *YES / <var: bit:1>

,ERRSTMT = *STEP / *NEXT / <var: bit:1>

,CALLID = *NO / <var: pointer>

,CCSNAME = *NO / *EXTEND / <c-string 1..8> / <var: char:8>

,DATA_RECORD = *NO / <var: pointer>

,STMTRC = *NO / <var: pointer>

,OUTFORM = *NEW / *OLD / <var: bit:1>

,MF = C / D / L / M / E

U2284-J-Z125-9-76 407

SDF macros CMDRST

STMT =
specifies which statements are permitted as input.
Only statements with specified internal application names are permitted. The internal state-
ment name is stored in the syntax file in the statement definition (see ADD-STMT). It is at
least one and not more than eight bytes long. The SDF default statements are always per-
mitted, regardless of the specification made here.

*ALL
All statements are permitted.

<var:pointer>
Address of the list of the permitted statements. This list can have been generated with
the CMDALLW macro.
The list must be aligned on a halfword boundary and have the following format:

PREFER =
Relevant only for guided dialog; specifies whether a particular statement is expected as the
next input.

*NO
No particular statement is expected. SDF asks the user via the statement menu which
statement is to be entered.

<c-string 1..8>
Internal name of the statement most likely to be entered. SDF does not display a state-
ment menu in which the user selects the statement to be entered, but instead immedi-
ately displays the form listing the operand values for the expected statement. The user
may of course enter another statement instead of the one expected.

Example:
Following MODIFY-OPERAND, SDF-A expects MODIFY-VALUE as the next
statement. The internal statement name is stored in the statement definition in the
syntax file (see ADD-STMT). It is at least one byte and at most eight bytes long.

<var: char:8>
Address of an area, 8 bytes long, containing the internal name of the expected state-
ment. The name must be left-justified and padded with blanks as necessary (X’40’).

2 bytes:
8 bytes:

8 bytes:

Number of internal names in the list (n)
First internal statement name
. . .
nth internal statement name

408 U2284-J-Z125-9-76

CMDRST SDF macros

DEFAULT =
specifies whether the following values are to be replaced by SDF with values dynamically
generated by the program:
– operand values entered or
– operand default values

The operands, or operand values, must have been defined accordingly in the syntax file
(see ADD OPERAND...,OVERWRITE-POSSIBLE=YES,... and ADD-VALUE..., VALUE=
<c-string> (OVERWRITE-POSSIBLE=*YES),...). The program-generated value must be a
valid operand value.
In guided dialog, the values generated by the program are displayed by SDF in the form.

Example:
In the entered MODIFY statements SDF replaces the value *UNCHANGED by the
current value.

*NO
SDF is not to replace the entered operand values by values generated dynamically by
the program.

<var: pointer>
Address of a list aligned on a word boundary which contains the addresses of conver-
sion descriptions for statements. The conversion descriptions for these statements are
a formatted transfer area of the type “structure” (see section “Format of the standard-
ized transfer area” on page 365ff). Only one conversion description can be specified per
statement. A conversion description contains, among other things, the internal state-
ment name and information as to which of the operand values entered are to be
changed and what values they are to be changed to. The list of addresses of conversion
descriptions has the following format:

The areas for the conversion descriptions which are passed for the default values of the
program must be aligned on a word boundary. The same is true of the output area of
the macros (OUTPUT operand).

If the operands to be given default values are in a structure introduced by a value
defined with LIST-ALLOWED=*YES (see ADD-VALUE), the following situation may
arise: the conversion description contains several list elements to which structures with
operands to be defaulted are attached. On the other hand, the user likewise enters
several list elements to which structures with operands to be defaulted are attached.
SDF first tries to match the structures entered by the user to those specified in the
conversion description by means of the values introducing the structures. If an

2 bytes:
2 bytes:
4 bytes:

4 bytes:

Number of conversion descriptions in the list (n)
(Reserved)
Address of the first conversion description
. . .
Address of the nth conversion description

U2284-J-Z125-9-76 409

SDF macros CMDRST

unambiguous allocation cannot be made on the basis of the values introducing the
structures because none of the values entered matches any of the ones in the
conversion description or because the user has entered the matching value more than
once, the allocation is then made on the basis of the list position of the introductory
value.

MESSAGE =
specifies whether SDF is to issue a message when requesting statement input. In guided
dialog this message is integrated into the statement menu.

*NO
SDF is not to issue a message.

<var: pointer>
Address of the message text to be issued, or a register that contains this address. The
text is expected in the form of a variable-length record.

The text may be a maximum length of 400 characters. However, only the first 280
characters are displayed on SDF-formatted screens. If the text contains screen control
characters, the menu mask may be destroyed.

PROT =
Specifies whether SDF is to log input and messages to SYSOUT. If they are not written to
SYSOUT, the user of the program should be informed of this in the program documentation.
A log buffer can be provided.

*YES
SDF is to log input and messages to SYSOUT.

*NO
SDF is not to perform any logging.
The following behavior may be expected:

2 bytes:
2 bytes:
n bytes:

Absolute length of the record (n+4)
(Reserved)
Message text

Result of analysis PROT parameter

*YES *NO

No error Input statement – / –

Syntax error 1. Input statement
2. Syntax error message
3. Spin-off message

Spin-off message

410 U2284-J-Z125-9-76

CMDRST SDF macros

BUFFER =
The statement log and the error messages can be written into an area provided by the user.

*NO
No buffer area is provided.

<var: pointer>
Address of an area in which the log of the entered statements and the messages are
written, regardless of what was specified for PROT. The area must be aligned on a word
boundary and has the following format:

Each individual log set has the following format:

If the buffer is not empty, the first record is generally the log of the input command.
Subsequent records contain messages. If no input log is available, or if the input log
cannot be output, two slashes
(“//”) are written into the output area.

INVAR =
Specifies whether the INVARIANT-INPUT form of the statement is stored. This means that
the statement is stored with all the specified operands, all operands having default values
and all operands currently allowed for this task. In contrast to LOGGING=*INVARIANT-
FORM (see MODIFY-SDF-OPTIONS), this form does not mask out keywords and secret
operands. More details on this topic can be found on page 415.

*NO
The INVARIANT-INPUT form of the statement is not stored.

 <var: pointer>
Specifies the address of a buffer into which SDF writes the INVARIANT-INPUT form of
the statement. The buffer must be aligned on a word boundary and the first halfword
must contain the length of the buffer. SDF stores the INVARIANT-INPUT form as a
record of variable length beginning with the second halfword. The contents of the buffer
are then as follows:

2 bytes:
2 bytes:
n bytes:

Maximum length of logging area
Length of logging area actually used
Log records

2 bytes:
2 bytes:
m bytes:

Absolute length of the log record (m+4)
(Reserved)
Contents of the log record

2 bytes:
2 bytes:
2 bytes:
n bytes:

Maximum length of the buffer
Length of the record written by SDF (n+4)
(Reserved)
INVARIANT-INPUT form of the statement, starting at the
seventh byte

U2284-J-Z125-9-76 411

SDF macros CMDRST

SPIN =
Specifies which statement, in batch mode, SDF is to read and analyze next.

*NO
SDF is to read and process the next statement in the statement sequence.

*YES
SDF is to skip all statements until the next STEP statement (or, as the case may be,
until the END statement) and, if there is a STEP statement, continue processing with
the statement following it.

 <var: bit1>
Bit variables: bit = 0: as *NO

bit = 1: as *YES

ERRSTMT =
defines which statement terminates the spin-off mechanism if SDF senses a syntax error
for the read statement.

*STEP
SDF initiates spin-off until STEP or END is recognized.
The return code is X’1C’, X’34’,...

*NEXT
SDF does not initiate spin-off. The next statement is read on the next CMDRST call. The
return code is then X’50’.

<var: bit1>
Bit variables: bit = 0: as *STEP

bit = 1: as *NEXT

CALLID =
This function applies to the OPNCALL and CLSCALL macros.
CALLID specifies the program context (=syntax file hierarchy opened by an OPNCALL
macro) in which the statement must be read and analyzed. The name of the syntax file hier-
archy (CALLID) must have the 4-byte value returned by SDF to the field which was desig-
nated by the CALLID operand in the OPNCALL macro.

*NO
The current syntax file hierarchy (context) of the task is used for analyzing the state-
ment. This can, for example, be the syntax file hierarchy opened for the task at LOGON.

 <var: pointer>
Address of the call check field or register containing this address. The area must be
aligned on a word boundary.

412 U2284-J-Z125-9-76

CMDRST SDF macros

CCSNAME =
Specifies the name of the character set used for the correction dialog on 8-bit terminals and
for conversion from lowercase to uppercase letters. Each terminal uses a certain character
set. A coded character set (CCS) is the unique representation of the characters in a char-
acter set in binary form. Each coded character set is defined by its coded character set
name, or CCSN (see the “XHCS” manual [11]). This parameter has no effect on message
output.

*NO
Standard 7-bit code is used for I/O operations.

*EXTEND
Standard 8-bit code is used for I/O operations.

<c-string 1..8> / <var: char:8>
Specifies the name of a special 8-bit code for I/O operations. The name must be 8 bytes
long and can be passed as a c-string constant or as a string variable.

DATA_RECORD=
determines whether SDF stores data which was entered instead of statements. If this is the
case, SDF returns a special return code (see “Return information and error flags“ below).
This parameter may only be used for migration from RDATA to CMDRST (not for programs
which already contain RDSTMT or CMDRST calls). In this way a program which only offers
the SDF interface in the dialog can be called compatibly in procedures and batch jobs. The
SDF statements of the program must be preceded by “//” in the procedures and batch jobs.

 *NO
No data storage. The result of the CMDRST call is dependent on the input:

Input from: Type of input Output by CMDRST

Terminal //<stmt> in OUTPUT parameter

Terminal <data> not possible

Procedure/Batch //<stmt> in OUTPUT parameter

Procedure/Batch <data> in OUTPUT parameter 1)

1 Data treated as statement

S procedure //<stmt> in OUTPUT parameter

S procedure <data> Error 2)

2 '//' is mandatory before statements in S procedures

U2284-J-Z125-9-76 413

SDF macros CMDRST

 <var: pointer>
Address of an area aligned on a word boundary in which SDF stores the data which was
read instead of statements. The area has the following layout:

The result of the CMDRST call is independent of the input:

STMTRC =
Specifies whether the statement supplies a return code. This return code can be evaluated
with SDF-P functions in S procedure like a command return code.

*NO
The statement does not generate a return code. SDF transfers some default return
codes according to the specifications made for ERRSTMT and SPIN:

<var: pointer>
Address of a structure which contains the return code of the statement. SDF checks the
following return code requirements to ensure that the ones returned to the user are
meaningful. If these are not adhered to, SDF generates its own return codes.

1. In the case of an error in the read statement, SDF should first be called as CMDRST
with SPIN=*YES and a statement return code with SC1 not equal to zero.

2. In the case of no errors, SDF should first be called with SPIN=*NO and a return
code with SC1 equal to zero.

2 bytes:
2 bytes:
2 bytes:
n bytes:

maximum length of the area
Output length actually used (n+4)
(Reserved)
Data records

Input from: Type of input Output by CMDRST

Terminal //<stmt> in OUTPUT parameter

Terminal <data> not possible

Procedure/Batch //<stmt> in OUTPUT parameter

Procedure/Batch <data> in DATA_RECORD parameter

S procedure //<stmt> in OUTPUT parameter

S procedure <data> in DATA_RECORD parameter

(SC2) SC1 Maincode Meaning
0 0 CMD0001 No errors
0 1 CMD0230 SDF is in spin-off
1 0 CMD0232 //STEP was recognized during spin-off, control returned to

program

414 U2284-J-Z125-9-76

CMDRST SDF macros

3. In the case of semantic errors, CMDRST should first be called with SPIN=*YES and
a return code with SC1 not equal to null. If no return codes are generated or if the
return code is positive, SDF uses the return code CMD0230.

4. If CMDRST is called with ERRSTMT=*NEXT and the macro return code X'50' is
returned, the next CMDRST can be called without spin-off and a return code with
SC1 equal to null. The program should not start a spin-off since it has already
suppressed a spin-off initiated by SDF.

OUTFORM =
Specifies which format of the standardized transfer area is output by SDF. If default values
are input (see the DEFAULT parameter) SDF identifies the format of the transfer area itself.

 *NEW
The standardized transfer area has the new format (see page 365ff).

 *OLD
The transfer area has the format used up to SDF V4.0 (see chapter “Appendix” on
page 593ff).

<var: bit:1>
Bit variable: bit = 0: same as *NEW

bit = 1: same as *OLD

Description of the parameters MF, PARAM, MACID and PREFIX: see the “Executive
Macros” manual [8].

U2284-J-Z125-9-76 415

SDF macros CMDRST

Return information and error flags

The format of the transfer area is described on page 365ff. The transfer area format used
up to SDF V4.0 can be found in chapter “Appendix” on page 593ff.

In the INVARIANT-INPUT form, the statement is stored with all specified operands, all
operands having default values, and all the operand values currently allowed for this task.
INVARIANT-INPUT is thus the largest input form for a statement that is available to a user
who has certain privileges and who is working in the selected dialog mode. Keywords and
secret operands are not masked out. The INVARIANT-INPUT form is not the same as the
logging format LOGGING=*INVARIANT-FORM (see MODIFY-SDF-OPTIONS).

The INVARIANT-INPUT form provides a portable format for SDF inputs. Since only
standard names are used, this form can be transmitted without problems to a remote
partner even if other external names or other default values are used at that location.

 The INVARIANT-INPUT form can, however, be rejected by the remote partner if
certain commands, operands, etc. have been removed from there (see the
REMOVE statement) or are not allowed because of inappropriate privileges.
Default values which are not allowed in the local environment are not transmitted to
the remote partner, since the default values that apply in the environment of the
remote system are inserted on executing the command or statement.

The return code is passed in the standard header of the parameter list.

Standard header

(SC2) SC1 Maincode Meaning
00 00 0000 Normal termination
00 20 0004 Unrecoverable system error

00
01
02
03
04
05
06
07
08
10

01 0008 Parameter error:
– wrong parameter list
– OUTPUT
– STMT list
– DEFAULT
– MESSAGE
– PROT
– INVAR
– CALLID
– DATA_RECORD
– STMTRC

00 40 000C Transfer area too small
00 40 0010 End of input recognized
00 40 0014 Error in statement, command was recognized

continued ➠

i

c c b b a a a a

cc: Subcode 2 (SC2)
bb: Subcode 1 (SC1)
aaaa: Maincode

416 U2284-J-Z125-9-76

CMDRST SDF macros

CMDRST also provides the origin of the statement. In the case of a error-free parameter
list, the SYSSTMT assignment is stored in the parameter list in field
<prefix><macid>SYSSTMT_STATE.

The following values can occur:

Migration from RDSTMT to CMDRST

Migration from RDSTMT to CMDRST is only necessary if the user wants to use the new
functions of CMDRST. In doing so, the following points should be noted:

● In the case of a CMDRST call, the MF parameter must always be specified. The
CMDDRST parameter list must be declared and initialized with MF=L, separate from
the executing code.The DSECT for the parameter list must be generated with MF=D.
Direct modifications (via an offset from the beginning of the parameter list) are not
permitted. More information about the parameters MF and PARAM can be found in the
“Executive Macros” manual [8].

00 40 0018 Statement is correct but the default values provided by the
system are errored

00 40 001C Error in statement, //STEP was recognized
00 40 0028 Not enough space in buffer, log truncated
00 40 002C END statements read
00 40 0034 Error in statement, the next statement to be processed is END
00 40 003C Program not known in syntax file
00 40 0040 Specified CALLID not found
00 40 0044 Syntax file entered in DSSM catalog not found
00 40 0050 Error in statement, spin-off was not initiated
00 40 005C Not enough space in INVAR buffer, INVARIANT-INPUT

truncated
00 20 0064 XHCS error during statement entry
00 40 0068 Data record was read instead of a statement and stored in the

DATA_RECORD buffer

Value SYSSTMT =

X’01’ Data display terminal

X’02’ SYSCMD in non-S procedure or file

X’03’ Card reader

X’04’ Floppy disk

X’05’ SYSCMD in S procedure

X’06’ S variable

(SC2) SC1 Maincode Meaning

U2284-J-Z125-9-76 417

SDF macros CMDRST

Comparison of RDSTMT and CMDRST

● The macro return code is transferred in the standard header of the parameter list. The
maincode of CMDRST is equivalent to the values which were transferred in RDSTMT
in the right-most byte in register 15. The generation of equates for return codes with the
CMDANALY macro is no longer necessary since these are automatically generated with
CMDRST MF=D. The following table shows a comparison of the old (RDSTMT) and
new (CMDRST) field names:

RDSTMT CMDRST

<Program code> . . .

<Code for manipulating the
 parameter list using
 LABEL+Offset>
RDSTMT MF=(E,(LABEL))

<Program code> . . .

<Data>

LABEL RDSTMT MF=L,<params>

<Program code> . . .

LA 1,LABEL
USING D,1
<Code for manipulating the parameter
 list with the name from DSECT D>
CMDRST MF=M,PARAM=(1),<params>
CMDRST MF=E,PARAM=LABEL

<Program code> . . .

<Data>

LABEL CMDRST MF=L,<params>
<dsect>
D CMDRST MF=D

RDSTMT CMDRST

&P.NOERR
&P.SYERR
&P.PAERR
&P.TRUNC
&P.EOF
&P.SCMD
&P.DFLT
&P.STEP
&P.PTRC
&P.END
&P.EERR
&P.NOPRG
&P.INCID
&P.NOFND
&P.NEXT
&P.ITRC
&P.XHCS

&PREFIX.MDRSUCCESSFUL
&PREFIX.MDRSYSTEM_ERROR
&PREFIX.MDRPARAMETER_ERROR
&PREFIX.MDRAREA_TOO_SMALL
&PREFIX.MDREOF
&PREFIX.MDRSTMTERROR_CMD
&PREFIX.MDRWRONG_DEFAULTS
&PREFIX.MDRSTMTERROR_STEP
&PREFIX.MDRPROTOCOL_TRUNCATION
&PREFIX.MDREND_STMT
&PREFIX.MDRSTMTERROR_END
&PREFIX.MDRPROGRAM_NOT_IN_SYNTAX_FILE
&PREFIX.MDRINVALID_CALLID
&PREFIX.MDRSYNTAX_FILE_NOT_FOUND
&PREFIX.MDRSTMTERROR_NEXT
&PREFIX.MDRINVARIANT_INPUT_TRUNCATED
&PREFIX.MDRXHCS_ERROR

418 U2284-J-Z125-9-76

CMDRST SDF macros

● The syntax for the parameters of CMDRST only differs from RDSTMT in the following
points:

– keywords must be preceded by an asterisk (e.g. *YES)

– character strings must be enclosed in single quotes (e.g. 'test')

– the parameter value *ADDR is no longer permitted; only identifiers can be specified.

Examples of different entries

● The format of the standardized transfer area was modified at the same time as
CMDRST was introduced. Considerably more information can be stored in the new
transfer area and the alignment of the data is guaranteed. It is therefore recommended
that only transfer areas in the new format are specified for OUPUT and DEFAULT. For
reasons of compatibility, SDF continues to support the old format of the transfer area
(see the OUTFORM parameter). If the program passes its own default values to SDF,
SDF identifies the format of the transfer area itself.

– In the case of OUTFORM=*OLD, the program section for analyzing the transfer
area must not be modified. However, the transfer area must still be generated with
CMDSTRUC (see chapter “Appendix” on page 593ff).

RDSTMT CMDRST

PROGRAM = name
OUTPUT= addr/(r)
STMT = *ALL/(name,...)/ 1
*ADDR(addr/(r))
PREFER = *NO/name/
 *ADDR(addr/(r))
DEFAULT = *NO/(addr,...)
MESSAGE = *NO/addr/(r)
PROT = YES/NO
BUFFER = *NO/addr|(r)
INVAR = *NO/addr|(r)
SPIN = NO/YES
ERRSTMT = STEP/NEXT
CALLID = *NO/addr/(r)
CCSNAME = *NO/*EXTEND/name

MF = L
MF = (E,(1))/(E,param)
MF not specified (standard form)

1 List entries are no longer possible for STMT and DEFAULT

PROGRAM = 'name'
OUTPUT = identifier 2

STMT = *ALL/identifier

PREFER = *NO/'name'/identifier

DEFAULT = *NO/identifier
MESSAGE = *NO/identifier
PROT = *YES/*NO
BUFFER = *NO/identifier
INVAR = *NO/identifier
SPIN = *YES/*NO
ERRSTMT = *STEP/*NEXT
CALLID = *NO/id
CCSNAME = *NO/*EXTEND/'name'/
 identifier
MF = L
MF = E,PARAM=identifier
(not supported)

2 identifier can be a label in the program (address) or, with MF=M, a register

U2284-J-Z125-9-76 419

SDF macros CMDRST

– In the case of OUTFORM=*NEW, it is sometimes sufficient to substitute CMDTA for
CMDSTRUC and to recompile the program. The fields in the DSECTs which are
generated by CMDSTRUC are to some extent also contained in the DSECTs
generated by CMDTA. A list showing the old and new DSECTs can be found in the
description of the CMDTA macro (“Migration from CMDSTRUC to CMDTA” on
page 430).

420 U2284-J-Z125-9-76

CMDSEL SDF macros

CMDSEL
Create selection mask for guided dialog

The CMDSEL macro creates a selection mask similar to the SDF forms, in which the user
can select one or more items in the guided dialog.

Figure 13 shows the main layout of a selection mask created with CMDSEL.

Figure 13: Layout of a selection mask

A maximum of 24 lines can be output on BS2000 screens. The number of lines needed for
the selection masks depends on whether a title is output and how many NEXT lines there
are. If there are more than 20 lines in the selection mask, the display is spread over the
appropriate number of screen pages. The NEXT line then also contains + (scroll forward)
and - (scroll backward).

A line on the screen can contain a maximum of 5 columns. The contents of a column in a
line must be available in a data area, the initial address and length of which are passed in
the program. The space needed for all the lines in a column is calculated from the number
of lines multiplied by the length of the data area of a column.

An item to be output with a certain offset relative to the beginning of the data area and with
a specific length is found in each data area of a column. Unless otherwise specified, the
item has no offset relative to the beginning of the data area.

SELECTION BOX TITLE
--
 ITEMS TITLE
 (.) ITEM1(1) ITEM2(1) ITEM3(1) ITEM4(1) ITEM5(1)
 ...
 ...
 ...
 ...
 ...
 ...
 (.) ITEM1(i) ITEM2(i) ITEM3(i) ITEM4(i) ITEM5(i)
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 (.) ITEM1(n) ITEM2(n) ITEM3(n) ITEM4(n) ITEM5(n)
--
NEXT = *EXECUTE
 *EXECUTE or *NONE or *CANCEL

U2284-J-Z125-9-76 421

SDF macros CMDSEL

Example

The following data structure occurs in a selection box with 2 columns and 3 lines:

Operation Operands

CMDSEL SELECT = *SINGLE / *MULTIPLE / <var: enum-of SELECTION_S:1>

,LINENBR = <integer 1..65536> / <var: int:4>

,OUTPUT = <var: pointer>

,TITLE@ = NULL / <var: pointer>

,TITLEL = <integer 1..75> / <var: int:4>

,TITEMS = NULL / <var: pointer>

,TITEMSL = 0 / <integer 1..65535> / <var: int:4>

,AREA1 = NULL / <var: pointer>

,AREA1L = 0 / <integer 1..65535> / <var: int:2>

,ITOFF1L = *AREA START / <integer 1..65535> / <var: int:2>

,ITEM1L = *AREA LENGTH / <integer 1..75> / <var: int:1>

,AREA2 = NULL / <var: pointer>

,AREA2L = 0 / <integer 1..65535> / <var: int:2>

,ITOFF2L = *AREA START / <integer 1..65535> / <var: int:2>

,ITEM2L = *AREA LENGTH / <integer 1..75> / <var: int:1>

ITEM1(1)

Offset of ITEM1(1)

AREA1

ITEM1(2)

Offset of ITEM1(2)

AREA1 + AREA1L

ITEM1(3)

Offset of ITEM1(3)

AREA1 + (2*AREA1L)

ITEM2(1)

Offset of ITEM2(1)

AREA2

ITEM2(2)

Offset of ITEM2(2)

AREA2 + AREA2L

ITEM2(3)

Offset of ITEM2(3)

AREA2 + (2*AREA2L)

_

_

_

_

422 U2284-J-Z125-9-76

CMDSEL SDF macros

SELECT =
Specifies whether single or multiple selections are permitted in the mask.

*SINGLE
Only one item can be selected in the mask.

*MULTIPLE
Two or more items can be selected in the mask.

<var: enum-of SELECTION_S:1>
Variable that can assume the following values:
0: as *SINGLE
1: as *MULTIPLE

LINENBR = <integer 1..65536> / <var: int:4>
Number of lines that can be displayed in the selection mask.

OUTPUT = <var: pointer>
Address of an area in which the result of the selection can be entered. One byte must be
reserved for each of the selectable items, i.e. the area must have the byte length specified
in LINENBR and be initialized with zero or blank. If the user selects the item(i), byte(i)
receives a value other than zero/blank. If a byte is assigned a value other than zero or blank
before the user selection, the corresponding item is the default value in the selection mask.

,AREA3 = NULL / <var: pointer>

,AREA3L = 0 / <integer 1..65535> / <var: int:2>

,ITOFF3L = *AREA START / <integer 1..65535> / <var: int:2>

,ITEM3L = *AREA LENGTH / <integer 1..75> / <var: int:1>

,AREA4 = NULL / <var: pointer>

,AREA4L = 0 / <integer 1..65535> / <var: int:2>

,ITOFF4L = *AREA START / <integer 1..65535> / <var: int:2>

,ITEM4L = *AREA LENGTH / <integer 1..75> / <var: int:1>

,AREA5 = NULL / <var: pointer>

,AREA5L = 0 / <integer 1..65535> / <var: int:2>

,ITOFF5L = *AREA START / <integer 1..65535> / <var: int:2>

,ITEM5L = *AREA LENGTH / <integer 1..75> / <var: int:1>

Operation Operands

_

_

_

_

_

_

U2284-J-Z125-9-76 423

SDF macros CMDSEL

TITLE@ =
Title of the selection box which is output in the first line of the screen.

NULL
No title in the selection box.

<var: pointer>
Address of the character string with the title.

TITLEL = <integer 1..75> / <var: int:4>
Length of the character string which is output as the title. This parameter is only evaluated
if an address other than 0 is specified for TITLE@.

TITEMS = NULL / <var: pointer>
Address of an item title which is displayed in the sixth position on the third screen line (with
3270 terminals: 8th position).

TITEMSL = 0 / <integer 1..65535> / <var: int:4>
Length of the item title (maximum 73 characters).

AREAx =
with x=(1..5):
Data area in which the contents of a line are stored in a column, i.e. there must be precisely
one of these data areas in each column.

 NULL
No item is output in a specific line in column x.

<var: pointer>
Address of the data area in which the item to be output is stored.

AREAxL = 0 / <integer 1..65535> / <var: int:2>
with x=(1..5):
Length of a data area (in bytes) in column x.
The total length of all data areas of column x is calculated by multiplying the number of lines
with the value of AREAxL.

424 U2284-J-Z125-9-76

CMDSEL SDF macros

ITOFFxL =
with x=(1..5):
Offset of the item relative to the data area specified in AREAx.

*AREA_START
No offset.

<integer 1..65535> / <var: int:2>
Offset in bytes.

ITEMxL =
with x=(1..5): Length of the item (maximum 75 characters).

*AREA LENGTH
The item fills the entire data area AREAx.

<integer 1..75> / <var: int:1>
Length of the item (in bytes).

Return information and error flags

The return code is passed in the standard header of the parameter list.

Standard header

(SC2) SC1 Maincode Meaning
00 00 0000 Normal termination
00 20 0004 Unrecoverable system error

00
01
02
03
04
05
06
07
08
09
0A

01 0008 Parameter error:
– wrong parameter list
– LINENBR
– SELECT
– OUTPUT
– TITLE@
– TITLEL
– Item1
– Item2
– Item3
– Item4
– Item5

00 40 000C User has not made a selection

_

c c b b a a a a

cc: Subcode 2 (SC2)
bb: Subcode 1 (SC1)
aaaa: Maincode

U2284-J-Z125-9-76 425

SDF macros CMDSTA

CMDSTA
List information on activated syntax files

The CMDSTA macro causes the program to be provided with information on

– the activated syntax files and

– the specifications in effect for command/statement input and processing.

OUTAREA=addr / (r)
Address of a transfer area, or register containing this address. The information is written to
this area. The area may be generated with the CMDMEM macro. This field must be aligned
on a halfword boundary.

 The size of the transfer area has been increased as of SDF V2.0A. See page 401
for further details.

CALLID =
Refers to a context (= syntax file hierarchy) which was opened by an OPNCALL macro.
The name of the syntax file hierarchy (CALLID) must have the 4-byte value returned by SDF
to the field which was designated by the CALLID operand in the Open Context macro. This
function applies to the OPNCALL and CLSCALL macros and is reserved for BS2000 devel-
opment.

*NO
The currently activated syntax file hierarchy is used.

addr / (r)
Address of a 4-byte field or register containing this address. The caller transfers the
CALLID to the context (= syntax file hierarchy) to be used. This field must be aligned on
a word boundary.

Operation Operands

CMDSTA OUTAREA = addr / (r)

 ,CALLID = *NO / addr / (r)

 ,FORM = SHORT / LONG / USER

[,MF =]
L
(E,(1))
(E,opaddr)

i

426 U2284-J-Z125-9-76

CMDSTA SDF macros

FORM =
The form (short or long or additionally with all user syntax files) in which the output informa-
tion is to be written to the transfer area OUTAREA.

SHORT
Output consists only of the activated basic system syntax files (without the activated
subsystem syntax files), the activated group syntax file, the most recently activated user
syntax file and the current options for entering and processing commands and state-
ments. A short-form output consists of 530 bytes.

LONG
as SHORT; but in addition all information relevant to the subsystem syntax files is out-
put. In this case, the first two bytes of the transfer area must define the length of the
transfer area. The transfer area for long-form output must be larger than 530 bytes. The
amount of subsystem information in the output depends on the space available in the
transfer area. If the subsystem information overflows the transfer area, the correspond-
ing return code is returned.

USER
as LONG; but in addition information relevant to all activated user syntax files is output.

MF =
Defines special requirements for macro expansion (see the manual “Executive Macros” [8]
for details).

L
Only the data part of the macro expansion (operand list) is generated. This requires that
no operand types with executable code appear in the macro. The data part generated
has the address specified in the name field of the macro.

(E,(1)) / (E,opaddr)
Only the instruction part of the macro expansion is generated. The associated data part
(operand list) is referenced by the address “opaddr”. This either appears in register 1 or
is specified directly.

U2284-J-Z125-9-76 427

SDF macros CMDSTA

Return information and error flags

Register 15 contains a return code in the right-most byte. EQUATE statements for this can
be generated by means of the CMDANALY macro.

X’00’ Normal termination
X’04’ Unrecoverable error
X’08’ Operand error in the macro
X’0C’ Insufficient space in transfer area
X’38’ SDF not available
X’4C’ The program is not executable above the 16-Mbyte boundary, since SDF is not

loaded. Please notify system administration.

The transfer area has the following structure:

Byte Contents

0 Bit 0 = 0
Bit 0 = 1
Bit 1 = 0
Bit 1 = 1
Bit 2 = 0
Bit 2 = 1
Bit 3 = 0
Bit 3 = 1
Bit 4 = 0
Bit 4 = 1
Bit 5 = 0
Bit 5 = 1
Bit 6 = 0
Bit 6 = 1
Bit 7 = 0
Bit 7 = 1

UTILITY-INTERFACE = NEW-MODE
UTILITY-INTERFACE = OLD-MODE
PROCEDURE-DIALOGUE = NO
PROCEDURE-DIALOGUE = YES
CONTINUATION = NEW-MODE
CONTINUATION = OLD-MODE
CMD-STATISTICS = NO
CMD-STATISTICS = YES
MENU-LOGGING = NO
MENU-LOGGING = YES
MODE = EXECUTION
MODE = TEST
No spin-off for CMDRST (read statement)
Spin-off for CMDRST
INPUT-HISTORY = OFF
INPUT-HISTORY = ON

1 Scope of user guidance (see SET-GLOBALS ...,GUIDANCE=...
and MODIFY-SDF-OPTIONS ...,GUIDANCE=...)

X'04'
X'05'
X'06'
X'07'
X'08'

NO
EXPERT
MAXIMUM
MINIMUM
MEDIUM

2 Type of input logging (see SET-GLOBALS ...,LOGGING=...
and MODIFY-SDF-OPTIONS ...,LOGGING=...)

X'04'
X'05'
X'06'

INPUT-FORM
ACCEPTED-FORM
INVARIANT-FORM

3 to 56 Name of the activated basic system syntax file

428 U2284-J-Z125-9-76

CMDSTA SDF macros

 Bit 6 in byte 0 (spin-off for CMDRST) cannot be used by a user program since
CMDRST always executes a return after a spin-off. For this reason, this flag is
always reset for user programs. This feature is reserved for system programming.

If aliases are substituted when MODIFY-SDF-OPTIONS is executed, the syntax file
names are stored in the CMDSTA transfer area with <cat-id> and <user-id>.

57 to 68 Version number of the activated basic system syntax file
(see SET-GLOBALS VERSION= ...)

69 to 122 Name of the group syntax file activated for the task

123 to 134 Version number of the group syntax file activated for the task
(see SET-GLOBALS VERSION= ...)

135 to 188 Name of the user syntax file last activated

189 to 200 Version number of the user syntax file last activated
(see SET-GLOBALS VERSION= ...)

201 to 230 Name of the program which the command processor uses for analysis of the
entered statements in test mode

231 to 234 Current SDF version, format is nn.n

235 Function key assignment (see SET-GLOBALS...,FUNCTION-KEYS= and
MODIFY-SDF-OPTIONS..., FUNCTION-KEYS=....)

X'04'
X'05'

OLD-MODE
STYLE-GUIDE-MODE

236 to 237 Number of inputs to be stored
(see SET-GLOBALS..., NUMBER-OF-INPUTS=... and MODIFY-SDF-OPTIONS...
INPUT-HISTORY=*ON(NUMBER-OF-INPUTS=...))

238 Security-relevant settings, see MODIFY-SDF-OPTIONS...
,MODE=*TEST(...),...,INPUT-HISTORY=*ON(...)

bit 0=0
bit 0=1
bit 1=0
bit 1=1

CHECK-PRIVILEGES = *NO
CHECK-PRIVILEGES = *YES
PASSWORD-PROTECTION = *NO
PASSWORD-PROTECTION = *YES

239 to 243 Reserved

244 to 245 Number of activated user syntax files

238 to 531 Reserved for future extensions

Byte Contents

i

U2284-J-Z125-9-76 429

SDF macros CMDSTA

For FORM=LONG, the transfer area is extended as follows:

The transfer area has been extended as follows for FORM=USER:

Byte Contents

239 Reserved

240 to 243 Address of the list of all the user syntax files activated for the task

244 to 245 Number of activated user syntax files

246 to 531 Reserved for future extensions

532 to 533 Number of activated subsystem syntax files

534 to 587 Name of the first activated subsystem syntax file

588 to 599 Version number of the first activated subsystem syntax file

600 to 653 Name of the second activated subsystem syntax file

654 to 665 Version number of the second activated subsystem syntax file

.

.

.

Byte Contents

(following the
information on

subsystem
syntax files)

Name of the first activated user syntax file (54 bytes)

Version number of the first activated user syntax file (2 bytes)

Name of the second activated user syntax file (54 bytes)

Version number of the second activated user syntax file (2 bytes)

.

.

.

430 U2284-J-Z125-9-76

CMDTA SDF macros

CMDTA
Generate transfer area for analyzed statement

The CMDTA macro generates a DSECT for the standardized transfer area. This defines and
initializes the data area. The standardized transfer area is needed for the following three
purposes:

1. SDF passes an analyzed statement to the program
(see CMDCST, CMDRST and CMDTST)

2. The program returns a semantically incorrect statement to SDF (see CMDCST)

3. The program passes values to SDF that are to replace specified operand values
(see CMDRST and CMDTST).

The standardized transfer area is described in detail on page 365ff.

MAXLEN = <integer 0..2147483647> / <var: int:8>
Specifies the length of the standardized transfer area (in bytes).

Description of the parameters MF, MACID and PREFIX see the “Executive Macros“
manual [8].

Migration from CMDSTRUC to CMDTA

In the new transfer area all the data is correctly aligned (addresses on word boundary,
halfwords on halfword boundary, etc.). As a result, ICM instructions can be replaced by L
and LH instructions.
The length field of the new transfer area occupies 4 bytes (after the standard header). In
the old transfer area this was 2 bytes right at the start of the transfer area.

On the next pages you will find a comparison of the DSECTs generated by CMDSTRUC
and CMDTA. The names changed when CMDTA is used are shown in bold print.

Operation Operands

CMDTA MAXLEN = <integer 0..2147483647> / <var: int 0..2147483647>

,MF = C / D / L / M

U2284-J-Z125-9-76 431

SDF macros CMDTA

*- *****************************
*- * STRUCTURED DESCRIPTION *
*- *****************************
*- CMDSTRUC CMDTA

CMDSDES DSECT CMDSDES DSECT
CMDML DC XL2'0' CMDFHDR FHDR MF=(C,CMD),EQUATES=NO
CMDINTN DC CL8' ' CMDML DS F
CMDVER DC XL4'0' CMDINTN DS CL8
CMDLAB DC AL4(0) CMDLAB DS A
CMDNRMO DC XL2'0' CMDVER DS CL3
CMDMAINO EQU * CMDUNU1 DS XL1
CMDSDESL EQU *-CMDSDES CMDUNU2 DS XL8
 CMDNRMO DS H
 CMDUNU3 DS XL2
 CMDMAIN EQU *
 CMDSDEL EQU *-CMDFHDR

*- ***************************
*- * OPERAND DESCRIPTOR *
*- ***************************

CMDODES DSECT CMDODES DSECT
CMDGSTAT DC X'00' CMDGSTA DS AL1
CMDOCC EQU X'80' CMDOCC EQU X'80'
CMDUCH EQU X'40' CMDUCH EQU X'40'
CMDERR EQU X'20' CMDERR EQU X'20'
CMDRDEF EQU X'10' CMDRDEF EQU X'10'
* CMDOTYP DS FL1
CMDOTYPE DC X'00' CMDGATT DS AL1
* CMDWILD EQU X'80'
CMDODESL EQU *-CMDODES CMDCWIL EQU X'40'
 CMDSATT DS 0XL1
 CMDFNAT DS AL1
 CMDFNCA EQU X'80'
 CMDFNUS EQU X'40'
 CMDFNGE EQU X'20'
 CMDFNVE EQU X'10'
 CMDFNTP EQU X'08'
 ORG CMDSATT
 CMDNAAT DS AL1
 CMDNAUN EQU X'80'
 ORG CMDSATT
 CMDCNAT DS AL1
 CMDCNUN EQU X'80'
 CMDCNCA EQU X'40'
 ORG CMDSATT
 CMDTXAT DS AL1

432 U2284-J-Z125-9-76

CMDTA SDF macros

 CMDTXSE EQU X'80'
 ORG CMDSATT
 CMDXTAT DS AL1
 CMDXTOD EQU X'80'
 ORG CMDSATT
 CMDPXAT DS AL1
 CMDPXAB EQU X'80'
 CMDPXPO EQU X'40'
 CMDPXQU EQU X'20'
 ORG CMDSATT
 CMDSTAT DS AL1
 CMDSTQU EQU X'80'
 ORG CMDSATT
 CMDPVAT DS AL1
 CMDPVCO EQU X'80'
 CMDPVUI EQU X'40'
 ORG CMDSATT+1
 CMDODEL EQU *-CMDODES

*- ***************************
*- * OPERAND HEADER *
*- ***************************
*-
CMDHEAD DSECT CMDHEAD DSECT
CMDDES DC XL2'0' DS 0A
CMDOPTR DC AL4(0) CMDDES DS XL4
CMDHEADL EQU *-CMDHEAD CMDOPTR DS A
 CMDHEAL EQU *-CMDHEAD

*- ***************************
*- * STRUCTURE OPERAND *
*- ***************************
*-
CMDSOP DSECT CMDSOP DSECT
CMDNREL DC XL2'0' DS 0A
CMDSTRT DC XL6'0' CMDNREL DS H
CMDSTEL EQU * CMDUNU4 DS XL2
CMDSOPL EQU *-CMDSOP CMDSTRT DS XL8
 CMDSTEL EQU *
 CMDSOPL EQU *-CMDSOP

U2284-J-Z125-9-76 433

SDF macros CMDTA

*- ***************************
*- * OPERAND VALUE *
*- ***************************
*-
CMDOVAL DSECT CMDOVAL DSECT
CMDLVAL DC XL2'0' DS 0A
CMDAVAL EQU * CMDLVAL DS H
CMDTIME EQU CMDAVAL CMDUNU5 DS XL2
CMDHOUR DC XL2'0' CMDAVAL EQU *
CMDMINU DC X'0' CMDTIME EQU CMDAVAL
CMDSEC DC X'0' CMDHOUR DS H
 ORG CMDAVAL CMDMINU DS X
CMDIVAL DC XL4'0' CMDSEC DS X
CMDOVALL EQU *-CMDOVAL ORG CMDAVAL
 CMDIVAL DS F
 CMDOVLL EQU *-CMDOVAL

*- ***************************
*- * LIST ELEMENT *
*- ***************************
*-
CMDLE DSECT CMDLE DSECT
CMDETYPE DC XL6'0' DS 0A
CMDORL EQU * CMDETYP DS XL8
CMDNEL DC AL4(0) CMDORL EQU *
CMDELOP EQU * CMDNEL DS AL4
CMDELVAL EQU * CMDELOP EQU *
CMDLEL EQU *-CMDLE CMDELVA EQU *
 CMDLEL EQU *-CMDLE

*- *****************************
*- * EQUATES FOR OPERAND TYPES *
*- *****************************
*-
CMDC#RES EQU 1 CMDCRES EQU 1
CMDINT EQU 2 CMDINT EQU 2
CMDX#STR EQU 4 CMDXSTR EQU 4
CMDC#STR EQU 5 CMDCSTR EQU 5
CMDNAME EQU 6 CMDNAME EQU 6
CMDA#NAM EQU 7 CMDANAM EQU 7
CMDS#NAM EQU 8 CMDSNAM EQU 8
CMDLABEL EQU 9 CMDLABE EQU 9
CMDSTAR EQU 10 CMDSTAR EQU 10
CMDF#FIL EQU 11 CMDFFIL EQU 11
CMDP#FIL EQU 12 CMDPFIL EQU 12
CMDTIM EQU 13 CMDTIM EQU 13
CMDDATE EQU 14 CMDDATE EQU 14
CMDCNAME EQU 15 CMDCNAM EQU 15

434 U2284-J-Z125-9-76

CMDTA SDF macros

CMDTEXT EQU 16 CMDTEXT EQU 16
CMDCATID EQU 17 CMDCATI EQU 17
CMDI#TXT EQU 18 CMDITXT EQU 18
CMDSTRUC EQU 19 CMDSTRU EQU 19
CMDLIST EQU 20 CMDLIST EQU 20
CMDOR#LI EQU 21 CMDORLI EQU 21
CMDKEYW EQU 22 CMDKEYW EQU 22
CMDVSN EQU 24 CMDVSN EQU 24
CMDXTEXT EQU 25 CMDXTEX EQU 25
CMDFIXD EQU 26 CMDFIXD EQU 26
CMDDEV EQU 27 CMDDEV EQU 27
CMDPVER EQU 28 CMDPVER EQU 28
CMDX#PAT EQU 29 CMDXPAT EQU 29
CMDX#FIL EQU 35 CMDXFIL EQU 35

U2284-J-Z125-9-76 435

SDF macros CMDTST

CMDTST
Analyze statement

The CMDTST macro causes SDF to

– analyze a program statement stored in the program itself, and

– pass the results of the analysis to the program.

Additional statements may result from the analysis of the transferred statement, due to the
fact that a system exit may replace the transferred statement by several statements. Dealing
with these additional statements is the responsibility of the program.

An activated syntax file must contain the definition of the program and its statements.

Figure 14: Effects of the CMDTST macro

Statement check and
correction (if necessary)

Syntax
file

Statement
definition

SDF

Initiate
statement
analysis

Statement

Program

.

.

.

.

.

.

.

.

.

Transfer
area

CMDTST

Analyzed
statement

Statement
analysis

Statement

.

.

.

436 U2284-J-Z125-9-76

CMDTST SDF macros

PROGRAM = <c-string 1..8> / <var: char:8>
Internal name of the program that is executed by the macro. This name is stored in the pro-
gram definition1 in the syntax file (see ADD-PROGRAM).

*NONE
The internal name of the program is not specified. In this case the external name of the
program must be specified in the EXTNAME operand.

<c-string 1..8> / <var: char:8>
The internal name of the program can be passed as a c-string constant or a string
variable. It is at least one byte and at most eight bytes long.

Operation Operands

CMDTST PROGRAM = *NONE / <c-string 1..8> / <var: char:8>

,EXTNAME = *NONE / <c-string 1..8> / <var: char:8>

,INPUT = <var: pointer> / *NO

,OUTPUT = <var: pointer>

,STMT = *ALL / <var: pointer>

,DIALOG = *NO / *YES / *ERROR / <var: enum-of DIALOG_S:1>

,MESSAGE = *NO / <var: pointer>

,PROT = *YES / *NO / <var: bit:1>

,BUFFER = *NO / <var: pointer>

,INVAR = *NO

,DEFAULT = *NO / <var: pointer>

,ERROR = *NO / *YES / <var: bit:1>

,CALLID = *NO / <var: pointer>

,EXECUTE = *NO / *YES / <var: bit:1>

,PROCMOD = *ANY / *NO / *YES / <var: enum-of PROCEDURE_S:1>

,CCSNAME = *NO / *EXTEND / <c-string 1..8> / <var: char:8>

,INPUTSV = *NO / *YES / <var: bit:1>

,OUTFORM = *NEW / *OLD / <var: bit:1>

,DEFDEF = *NO / *YES / <var: bit:1>

,MF = C / D / L / M / E

1 If the program-specific syntax file is even assigned with CMDTST, then CMDEDIT is to be specified as the program name.

U2284-J-Z125-9-76 437

SDF macros CMDTST

EXTNAME =
External name of the program that issued the macro call. This name is stored in the pro-
gram definition in the syntax file (see the ADD-PROGRAM statement, NAME operand,
page 136).

*NONE
The external name of the program is not specified. In this case the internal name of the
program must be specified in the EXTNAME operand.

<c-string 1..8> / <var: char:8>
The internal name of the program can be passed as a c-string constant or a string
variable. It is at least one byte and at most eight bytes long.

INPUT =
specifies which statement SDF is to analyze.

*NO
SDF is not to analyze any statement stored in the program, but is instead to analyze an
additional statement provided by a system exit.

<var:pointer>
SDF is to analyze the statement whose address is specified. The area with the speci-
fied address must be aligned on a halfword boundary. SDF expects the statement in the
following format.

OUTPUT = <var:pointer>
Address of the standardized transfer area. The area must begin on a word boundary. The
transfer area is generated by means of the CMDTA macro (or in OUTFORM=*OLD by
means of CMDSTRUC, see chapter “Appendix” on page 593ff).

2 bytes:
2 bytes:
n bytes:

absolute length of the record (n+4)
(Reserved)
Message text

438 U2284-J-Z125-9-76

CMDTST SDF macros

STMT =
Specifies which statements are permitted as input. Only statements with specified internal
statement names are permitted. The internal statement name is stored in the syntax file in
the statement definition (see ADD-STMT). It is at least one and not more that 8 bytes in
length. The SDF standard statements are always permitted, regardless of the specification
made here.

*ALL
All statements are permitted.

<var:pointer>
Address of the list of permitted statements. This list can have been generated with the
CMDALLW macro. The list must be aligned on a halfword boundary and structured as
follows:

DIALOG =
Specifies whether SDF is to conduct a dialog when analyzing statements. This operand is
relevant only when the program is executing in an interactive task.

*NO
SDF is not to conduct a dialog.

*YES
SDF is to present the statement given to it by the program to the user in dialog for pos-
sible modification, provided this is compatible with the current SDF specifications for the
dialog (see MODIFY-SDF-OPTIONS and SET-GLOBALS).

*ERROR
SDF is to conduct a dialog only when it has detected a syntax error. If the statement
contains a semantic error, the program can initiate a semantic error dialog by means of
CMDCST.

 <var:enum-of DIALOG_S:1>
Enumeration variable which can assume the following values:
0 : same as *NO
1 : same as *YES
2 : same as *ERROR

2 bytes:
8 bytes:

n bytes:

Number of internal names in the list (n)
First internal statement name
...
nth internal statement name

U2284-J-Z125-9-76 439

SDF macros CMDTST

MESSAGE =
Specifies whether SDF is to issue a message when presenting the statement to the user
for checking and possible modification (relevant only for DIALOG î NO). SDF integrates this
message into the form.

*NO
SDF is not to issue a message.

<var:pointer>
Address of the message text to be issued, aligned to a halfword boundary. The text is
expected in the form of a variable-length record.

The message text has a maximum length of 400 characters. However, only the first 280
characters are displayed on SDF-formatted screens. If the text contains screen control
characters, the menu mask may be destroyed.

PROT =
specifies whether SDF is to log input and messages to SYSOUT. If they are not written to
SYSOUT, the user of the program should be informed of this in the program documentation.
A logging buffer is available (see BUFFER).

*NO
SDF is not to perform any logging.

*YES
SDF is to log input and messages to SYSOUT.

<var: bit: 1>
Bit variable: bit = 0: same as *NO

bit = 1: same as *YES

BUFFER =
The log of the statement and error messages can be written to an area defined by the user.

*NO
No buffer is defined.

2 bytes:
2 bytes:
n bytes:

absolute length of the record (n+4)
(Reserved)
Message text

440 U2284-J-Z125-9-76

CMDTST SDF macros

<var:pointer>
Address of an area in which the log of the specified statement and the messages are
stored, irrespective of the values specified for PROT. The area must be aligned to a half-
word boundary, and has the following format.

Each individual log record has the following format:

If the buffer is not empty, the first record is generally the log of the input command.
Subsequent records contain messages. If no input log is available, or if the input log
cannot be output, two slashes
(“//”) are written to the output area. The alignment of the log records is not guaranteed.

INVAR =
Specifies whether the INVARIANT-INPUT form of the statement is stored. This means that
the statement is stored with all the defined operands, all operands having default values and
all operands currently allowed for this task. INVARIANT-INPUT is thus the largest input form
for a statement available to a user who has certain privileges and who is working in the
selected dialog mode. In contrast to LOGGING=*INVARIANT-FORM (see MODIFY-SDF-
OPTIONS), this form does not mask out keywords and secret operands.

 *NO
The INVARIANT-INPUT form of the statement is not stored.

 <var:pointer>
Specifies the address of a buffer into which SDF writes the INVARIANT-INPUT form of
the statement. The buffer must be aligned on a word boundary and the first halfword
must contain the length of the buffer. SDF stores the INVARIANT-INPUT form as a
record of variable length beginning with the second halfword.
The contents of the buffer are then as follows:

2 bytes:
2 bytes:
n bytes:

Absolute length of the logging area (n+4)
Actual used length of the logging area
Log records

2 bytes:
2 bytes:
m bytes:

Absolute length of the log record (n+4)
(Reserved)
Contents of the log record

2 bytes:
2 bytes:
2 bytes:
n bytes:

Maximum length of the buffer
Output length written by SDF (n+4)
Reserved
INVARIANT-INPUT form of the statement, as of the 7th byte

U2284-J-Z125-9-76 441

SDF macros CMDTST

DEFAULT =
specifies whether the following values are to be replaced by SDF with values dynamically
generated by the program:
– operand values entered or
– operand default values

The operands, or operand values, must have been defined accordingly in the syntax file
(see ADD OPERAND..., OVERWRITE-POSSIBLE=YES,... and ADD-VALUE...,VALUE=
<c-string> (OVERWRITE-POSSIBLE=*YES),...). The program-generated value must be a
valid operand value.
In guided dialog, the values generated by the program are displayed by SDF in the form.

Example:
In the MODIFY statements issued to SDF-A, the value *UNCHANGED is replaced by
the current value.

*NO
SDF is not to replace the operand values entered by values generated dynamically by
the program.

<var:pointer>
Address of a list aligned on a word boundary that contains addresses of conversion
descriptions for statements. A formatted transfer area of the type “structure” is used as
a conversion description (see section “Format of the standardized transfer area” on
page 365ff). Only one conversion description can be specified per statement. A conver-
sion description contains, among other things, the internal statement name and infor-
mation regarding which of the operand values entered are to be changed and what val-
ues they are to be changed to. The list of addresses of conversion description is struc-
tured as follows:

The areas for the conversion descriptions which are passed for the default values of the
program must be aligned on a word boundary. The same is true of the output area of
the macros (OUTPUT operand).

If the operands to be given default values are in a structure introduced by a value
defined with LIST-ALLOWED=*YES (see ADD-VALUE), the following situation may
arise: the conversion description contains several list elements to which structures with
operands to be defaulted are attached. On the other hand, the user likewise enters
several list elements to which structures with operands to be defaulted are attached.
SDF first tries to match the structures entered by the user to those specified in the
conversion description by means of the values introducing the structures. If an

2 bytes:
2 bytes:
4 bytes:

4 bytes:

Number of conversion descriptions in the list (n)
(Reserved)
Address of the first conversion description
...
Address of the nth conversion description

442 U2284-J-Z125-9-76

CMDTST SDF macros

unambiguous allocation cannot be made on the basis of the values introducing the
structures because none of the values entered matches any of the ones in the
conversion description or because the user has entered the matching value more than
once, the allocation is then made on the basis of the list position of the introductory
value.

ERROR =
Specifies how the message text specified with the MESSAGE operand is to be issued.

*NO
SDF is to issue the message text as a message.

*YES
SDF is to issue the message text as an error message.

 <var: bit:1>
Bit variable: bit = 0: same as *NO

bit = 1: same as *YES

CALLID =
Defines the context to be used by SDF for analyzing the command. CALLID defines the pro-
gram context (=syntax file hierarchy opened by an OPNCALL macro) in which the statement
must be analyzed.

*NO
The currently active syntax file hierarchy is used.

<var. pointer>
Address of a 4-byte field which is aligned on a word boundary. The caller transfers the
CALLID of the context to be used.

EXECUTE =*NO / *YES / <var: bit:1>
Specifies whether standard SDF statements are to be executed. EXECUTE is irrelevant if
the CMDTST macro does not refer to a new syntax file hierarchy (CALLID=*NO), e.g. if the
current syntax file hierarchy is used. In this case, the standard SDF statements are always
executed by CMDTST, provided they exist in the current hierarchy. The operand belongs to
the multihierarchical attribute introduced with the preceding CALLID operand. If CMDTST
refers to a hierarchy opened in parallel (CALLID=<var: pointer>), the standard SDF state-
ments are executed if EXECUTE = *YES.

<var: bit:1>
Bit variable: bit = 0: same as *NO

bit = 1: same as * YES

U2284-J-Z125-9-76 443

SDF macros CMDTST

PROCMOD =
Defines the environment in which the user works. SDF performs a check, as a result of
which it rejects commands which are illegal in the specified environment. The operand
belongs to the multihierarchical attribute referred to by means of the CALLID operand and
is only of relevance if the macro call refers to a new hierarchy opened in addition to the cur-
rent one.
If no CALLID has been defined (CALLID=*NO), PROCMOD is irrelevant. In other words, the
value *ANY is set automatically and reference is made to the current procedure mode.

*ANY
No check is made. Statements are always analyzed.

*YES
Statements are handled as if they were read from a procedure file. They are analyzed
if they have been defined in the syntax file with DIALOG-PROC-ALLOWED=*YES and
if the program runs in interactive mode, or if BATCH-PROC-ALLOWED=*YES applies
in batch jobs.

*NO
Statements are handled as if they were read from a primary level, e.g. from terminal
input or from a batch job. They are analyzed if they have been defined in the syntax file
with DIALOG-ALLOWED=*YES and if the program runs in interactive mode, or if
BATCH-ALLOWED=*YES applies in batch jobs.

<var: enum-of PROCEDURE_S:1>
Enumeration variable which can assume the following values:
0 : same as *ANY
1 : same as *YES
2 : same as *NO

CCSNAME =
Specifies the name of the character set used for the correction dialog on 8-bit terminals and
for conversion from lowercase to uppercase letters. Each terminal uses a certain character
set. A coded character set (CCS) is the unique representation of the characters in a char-
acter set in binary form. Each coded character set is defined by its coded character set
name, or CCSN (see the “XHCS” manual [11]). This parameter has no effect on message
output.

*NO
Standard 7-bit code is used for I/O operations.

444 U2284-J-Z125-9-76

CMDTST SDF macros

*EXTEND
Standard 8-bit code is used for I/O operations.

<c-string 1..8> / <var:char:8>
Specifies the name of a special 8-bit code for I/O operations. The name must be 8 bytes
long and can be passed as a c-string constant or as a string variable.

INPUTSV =
Specifies whether a history of past inputs is to be saved in the form of a list that can be sub-
sequently accessed again via the built-in RESTORE mechanism (see the MODIFY-SDF-
OPTIONS and RESTORE-SDF-INPUT statements).

*NO
The inputs are not saved.

*YES
The inputs are saved in a buffer.

<var: bit:1>
Bit variable: bit = 0: same as *NO

bit = 1: same as *YES

OUTFORM =
Specifies which format of the standardized transfer area is output by SDF. When default val-
ues are input, (see the DEFAULT parameter), SDF identifies the format of the transfer area
itself.

*NEW
The standardized transfer area has the new format (see page 365ff).

*OLD
The standardized transfer area has the format used up to SDF V4.0 (see chapter
“Appendix” on page 593ff).

<var: bit:1>
Bit variable: bit = 0: same as *NEW

bit = 1: same as *OLD

U2284-J-Z125-9-76 445

SDF macros CMDTST

DEFDEF =
Specifies whether statements for setting task-specific default values may be entered (see
the “Introductory Guide to the SDF Dialog Interface SDF” [1]).

*NO
Statements for setting task-specific values are not accepted.

*YES
Statements for setting task-specific values are accepted.

<var: bit:1>
Bit variable: bit = 0: same as *NO

bit = 1: same as *YES

Description of the parameters MF, PARAM, MACID and PREFIX: see the “Executive
Macros” manual [8].

Return information and error flags

The format of the transfer area is described on page 365ff. The format used for the transfer
area up to SDF V4.0 can be found in chapter “Appendix” on page 593ff.

Information on the INVARIANT-INPUT form of a statement can be found under the
description of the CMDRST macro on page 405.

The return code is passed in the standard header of the parameter list.

Standard header

(SC2) SC1 Maincode Meaning

00
01

00 0000 Normal termination
– no special occurrences
– program supplies default values

00 20 0004 Unrecoverable system error

00
01
02
03
04
05
06
07
09

01 0008 Parameter error:
– wrong parameter list
– OUTPUT
– STMT list
– DEFAULT
– MESSAGE
– PROT
– INVAR
– CALLID
– INPUT

00 40 000C Transfer area too small

c c b b a a a a

cc: Subcode 2 (SC2)
bb: Subcode 1 (SC1)
aaaa: Maincode

446 U2284-J-Z125-9-76

CMDTST SDF macros

Indicators of additional statements (created by a system exit):

In the case of an error-free parameter list, an indicator for additionally generated statements
is stored in the parameter list in the field <prefix><macid>EXIT_ACTIVE.

The following values can occur:

Migration from TRSTMT to CMDTST

Migration from TRSTMT to CMDTST is only necessary if the user wishes to use the new
functions offered by CMDTST. In this case, the same points must be taken into account as
for CMDRST (see “Migration from RDSTMT to CMDRST” on page 416ff). There are also
the following changes:

The macro return code is transferred in the standard header of the parameter list. The
maincode of CMDTST is equivalent to the values which were transferred in TRSTMT in the
right-most byte in register 15. The generation of equates for return codes by means of the

00 40 0018 Statement is correct but the default values provided by the
system are errored

00 40 001C Error in statement
00 40 0020 Error dialog not possible
00 40 0024 Error dialog rejected by user
00 40 0028 Not enough space in buffer, log truncated
00 40 002C END statements read
00 40 003C Program not known in syntax file
00 40 0040 Specified CALLID not found
00 40 0044 Syntax file entered in DSSM catalog not found
00 40 005C Not enough space in INVAR buffer, INVARIANT-INPUT

truncated
00 20 0064 XHCS error during statement entry
00 40 006C Statement for setting task-specific defaults was entered instead

of normal statement

Value Meaning

X’00’ There are no further statements

X’01’ There are further statements

TRSTMT CMDTST

PROT = YES/NO/addr/(r)

INPUTSAV = NO/YES

PROT = *YES/*NO
BUFFER = *NO/identifier

INPUTSV = *NO/*YES (renamed!)

(SC2) SC1 Maincode Meaning

U2284-J-Z125-9-76 447

SDF macros CMDTST

CMDANALY macro is no longer necessary, as these are automatically generated with
CMDTST MF=D. The following table shows a comparison of the old (TRSTMT) and new
(CMDTST) field names:

TRSTMT CMDTST

&P.NOERR
&P.SYERR
&P.PAERR
&P.TRUNC
&P.CERR
&P.DFLT
&P.DIMP
&P.DREJ
&P.PTRC
&P.END
&P.NOPRG
&P.INCID
&P.NOFND
&P.ITRC
&P.XHCS

&PREFIX.MDTSUCCESSFUL
&PREFIX.MDTSYSTEM_ERROR
&PREFIX.MDTPARAMETER_ERROR
&PREFIX.MDTAREA_TOO_SMALL
&PREFIX.MDTERROR_IN_STMT
&PREFIX.MDTWRONG_DEFAULTS
&PREFIX.MDTDIALOG_IMPOSSIBLE
&PREFIX.MDTDIALOG_REJECTED
&PREFIX.MDTPROTOCOL_TRUNCATION
&PREFIX.MDTEND_STMT
&PREFIX.MDTPROGRAM_NOT_IN_SYNTAX_FILE
&PREFIX.MDTINVALID_CALLID
&PREFIX.MDTSYNTAX_FILE_NOT_FOUND
&PREFIX.MDTINVARIANT_INPUT_TRUNCATED
&PREFIX.MDTXHCS_ERROR

448 U2284-J-Z125-9-76

CMDVAL SDF macros

CMDVAL
Check value for data type

The CMDVAL macro checks whether a value matches an SDF data type description. The
macro passes on the result of the check and, if requested, an SDF error message to the
PROT buffer. The error messages are not output to SYSOUT. This macro can also be used
to check whether an input string matches a predefined wildcard search pattern.

Operation Operands

CMDVAL INPUT = addr

[, DATATYP =]

[,SHORTST = *ANY / integer]

[,LONGEST = *ANY / integer]

[,WCLOGL = *NONE / integer]

[,LOWDEC = 0 / integer]

[,HIGDEC = 0 / integer]

[,CONST = *NO / addr / (addr, ...)]

[,PATTERN = *NO / addr]

[,ATTRIB =]

[,DEVCLAS = list-poss(2): DISK / TAPE]

[,EXCDISK = *NONE / addr / (text8,...)]

[,EXCTAPE = *NONE / addr / (text8,...)]

[,PROT = *NO / addr]

NOCHECK / INTEGER / XSTRING / CSTRING
/NAME / ALPHANAME / STRUCNAME /
FILENAME / PARTFILE / TIME / DATE /
COMPONAME / TEXT / CATID / KEYWORD /
KEYNUMBER / VSN / XTEXT / FIXED / DEVICE
/PRODVERS / POSIXPATH / POSIXFILE

*NONE
([NOCATID] [,NOUSERID] [,NOGENERATION]
[,NOVERSION] [,WILDCARD] [,KEYSTAR]
[,NOSEPERATORS] [,UNDERSCORE] [,NOODD]
[,NOALIAS] [,VOLUMEONLY] [,NOUSERINT]
[,NOCORSTATE] [,ANYCORSTATE] [,WILDCONST]
[,LOWERCASE] [,TEMPFILE] [,QUOTESMAND]
[,ANYUSERINT] [,STDDISK])

U2284-J-Z125-9-76 449

SDF macros CMDVAL

INPUT = addr
String representing a value in variable record format (first halfword: length of the record;
second halfword: fill characters used to pad the record to the specified length).
No blanks are allowed as part of the input (exception: blanks within a value of the type <c-
string> or <text>).
addr must be aligned on a word boundary.

DATATYP =
Specifies the data type for which the value is to be checked (see statement ADD-VALUE
TYPE=...).

NOCHECK
No data type check. Instead, the value is checked to verify whether it matches a wild-
card search pattern. The PATTERN parameter is mandatory in conjunction with
NOCHECK.

The following table shows the possible data type checks:

CMDVAL
(continued)

[,PREFIX = C / p]

[,MACID = MDV / mac]

[,MF = D / C / L / E]

[,PARAM = addr]

DATATYPE= Data type whose value is checked

INTEGER <integer>

XSTRING <x-string>

CSTRING <c-string>

NAME <name>

ALPHANAME <alphanum-name>

STRUCNAME <structured-name>

FILENAME <filename>

PARTFILE <partial-filename>

TIME <time>

DATE <date>

COMPONAME <composed-name>

CATID <cat-id>

TEXT The value is checked for the data type <text> if it is a positional operand in an
operation. The value is invalid if it contains incorrectly placed separators.

Operation Operands

450 U2284-J-Z125-9-76

CMDVAL SDF macros

SHORTST =
Specifies a minimum length (if any) for the string (see ADD-VALUE TYPE=...(SHORTEST-
LENGTH=...)). For the data types DATE, TIME, CATID, KEYWORD and KEYNUMBER, this
parameter is irrelevant. If the data type is XSTRING, SHORTST is the number of bytes in
the value specified as INPUT. If the data type is INTEGER, SHORTST is the lower limit of
the value range; if the data type is FIXED, SHORTST is combined with the LOWDEC
parameter. An integer complete with sign can be specified for both these data types.

*ANY
The limits specified by SDF apply to the data type.

integer
Explicitly specifies the minimum length.

LONGEST =
Specifies a maximum length (if any) for the string (see ADD-VALUE TYPE=... (LONGEST-
LENGTH=...)). For the data types DATE, TIME, CATID, KEYWORD and KEYNUMBER, this
parameter is irrelevant. If the data type is XSTRING, LONGEST is the number of bytes in
the value specified as INPUT. If the data type is INTEGER, LONGEST is the upper limit of
the value range; if the data type is FIXED, LONGEST is combined with the HIGDEC param-
eter. An integer complete with sign can be specified for both these data types.

*ANY
The limits specified by SDF apply to the data type.

integer
Explicitly specifies the maximum length.

KEYWORD <keyword>

KEYNUMBER <keyword-number>

VSN <vsn>

XTEXT <x-text>

FIXED <fixed>

DEVICE <device>

PRODVERS <product-version>

POSIXPATH <posix-pathname>

POSIXFILE <posix-filename>

DATATYPE= Data type whose value is checked

U2284-J-Z125-9-76 451

SDF macros CMDVAL

WCLOGL =
Relevant only with ATTRIB=WILDCARD. The value specified as INPUT may include wild-
cards. WCLOGL specifies the maximum length of the value matching the wildcard search
pattern, whereas LONGEST specifies the actual length of the input value.
This parameter has no significance for the data types POSIXPATH and POSIXFILE.

*NONE
The limits specified by SDF apply.

integer
Explicitly specifies the maximum length.

LOWDEC = 0 / integer
Specifies the number of decimal places for SHORTST. Relevant only if the data type is
FIXED.

HIGDEC = 0 / integer
Specifies the number of decimal places for LONGEST. Relevant only if the data type is
FIXED.

CONST = *NO / addr / (addr,...)
The INPUT value is compared with the constants specified here. CONST is relevant only
with DATATYP=NOCHECK. The constants must be stored in records of variable length. If
the data type of the INPUT value is KEYWORD or KEYNUMBER, the value can be an
abbreviation of one of the constants. Note, however, that lists are not supported. The num-
ber of constants is limited to 2000. The minimum and maximum lengths of the constants
depend on the defaults for SDF data types.

addr
The record addresses are grouped in a field beginning with the address addr. This field
must be aligned on a word boundary and its format must be as follows:

(addr,...)
The record addresses are listed.

Byte Meaning

0 Number of elements in the field (N, 2 bytes long)

2 Filler

4 Address of 1st record (aligned on word boundary)

8 Address of 2nd record (aligned on word boundary)

...

N*4 Address of nth record (aligned on word boundary)

452 U2284-J-Z125-9-76

CMDVAL SDF macros

PATTERN = *NO / addr
The INPUT value is compared with a wildcard search pattern.
If checking for a data type is requested, the syntax is subject to the conventions for wild-
cards for the data type in question (including the maximum length of the wildcard expres-
sion).
With DATATYP=NOCHECK, the INPUT value is checked to verify only whether it matches
the specified wildcard search pattern (no data type check). The length of the wildcard
expression is not restricted in this case. Wildcards are not valid for all data types (see state-
ment ADD-VALUE TYPE=...). PATTERN cannot be used together with ATTRIB=(...,WILD-
CARD,...).
With DATATYPE=POSIXPATH or POSIXFILE, a special POSIX wildcard syntax applies
instead of the BS2000 wildcard syntax. PATTERN cannot be specified for either of these
data types.

PATTERN = addr
Specifies the address of a record of variable length in which the wildcard search pattern
is stored. addr must be aligned on a word boundary. The value in the record length field
of the V record is equal to the sum of the exact length of the search pattern and the
length of the record field (e.g. the record length field for “ABC*” will have the value
4+4=8). Trailing blanks are not allowed in the pattern.

ATTRIB = (...)
Specifies a list of attributes valid for the data type. Invalid combinations are rejected and an
error message issued. The attributes must be enclosed by parentheses. This applies even
if the list contains only one attribute. See the ADD-VALUE statement for more detailed infor-
mation.

Attributes Meaning and possible data type

*NONE The SDF defaults apply for the attributes.

NOCATID Specification of a catalog ID is not permissible
(data types <filename>, <partial-filename>)

NOUSERID Specification of a user ID is not permissible
(data types <filename>, <partial-filename>).

NOGENERATION Specification of a generation number is not permissible
(data type <filename>).

NOVERSION Specification of a generation number is not permissible
(data type <filename>).

WILDCARD Wildcards may be used. The WILDCARD attribute must not be used together
with the PATTERN parameter (data types <alphanum-name>, <composed-
name>, <filename>, <name> and <partial-filename> and <structured-name>).

KEYSTAR The input string must be preceded by an asterisk
(applicable only to data types KEYWORD and KEYNUMBER).

U2284-J-Z125-9-76 453

SDF macros CMDVAL

DEVCLAS = DISK / TAPE
Specifies the device class (data type <device>, see statement ADD-VALUE
TYPE=*DEVICE(...)).

EXCDISK = *NONE / addr / (text8,...)
Specifies the excluded disk devices (data type <device>). The list may contain a maximum
of 50 device names.

addr
Specifies the address of a field aligned on a word boundary and containing the device
names. The first halfword in the field contains the number of elements in the field, the
second halfword contains the filler. The device names following the filler are each 8
bytes long; separators are not permitted in the names. If the real device names are
shorter than 8 bytes, they must be entered left-justified and padded with blanks to the
full length.

NOSEPERATORS Separators are not allowed (data type <text>).

UNDERSCORE The underscore character (_) is allowed (<name>, <composed-name>)

NOODD The string must not consist of an odd number of characters (data type <x-
text>).

NOALIAS Aliases are not allowed
(data type <device>)

VOLUMEONLY Volume type is accepted (data type <device>).

NOUSERINT Specification of the user interface is not allowed (data type <product-version>)

NOCORSTATE Specification of the correction state is not allowed (data type <product-
version>). If NOUSERINT was specified in the list, NOCORSTATE automati-
cally applies.

ANYCORSTATE Specification of the correction state is permitted for <product-version>.
ANYCORSTATE must not be specified with NOCORSTATE and vice versa.

WILDCONST The value can be a wildcard constructor (see ADD-VALUE TYPE=...(...,WILD-
CARD=*YES(TYPE=*CONSTRUCTOR=...)).
(Data types <alphanum-name>, <composed-name>, <filename>, <name>,
<partial-filename> and <structured-name>)

LOWERCASE Lowercase characters are retained (data type <name>).

NOTEMPFILE Temporary file names are not permitted (data type <filename>).

QUOTESMAND POSIX path names and file names must be enclosed in single quotes

ANYUSERINT The release status of the user interface can be specified (data type <product-
version>). If NOUSERINT is specified at the same time, ANYUSERINT is not
permitted, and vice versa.

STDDISK Only standard disk devices may be used (data type <device>)

Attributes Meaning and possible data type

454 U2284-J-Z125-9-76

CMDVAL SDF macros

EXCDISK = (text8,...)
Specifies a list of device names, each name being 8 bytes long. The rules of syntax for data
types <text-without-sep> apply to the device names.

EXCTAPE = *NONE / addr / (text8,...)
Specifies the excluded tape devices. This parameter is used only in conjunction with
DEVICE=TAPE (see ADD-VALUE TYPE=*DEVICE(...)). The list may contain a maximum
of 50 device names.

addr
Specifies the address of a field aligned on a word boundary and containing the device
names. The first halfword in the field contains the number of elements in the field, the
second halfword contains the filler. The device names following the filler are each 8
bytes long; separators are not permitted in the names. If the real device names are
shorter than 8 bytes, they must be entered left-justified and padded with blanks to the
full length.

EXCTAPE = ((text8,...)
Specifies a list of device names, each name being 8 bytes long. The rules of syntax for
data types <text-without-sep> apply to the device names.

PROT = *NO / addr
Record of variable length in which SDF stores the error message for the checked value.
addr must be aligned on a word boundary. For details of the record, see the description of
the BUFFER parameter in the CMDRST macro.

For descriptions of the parameters PREFIX, MACID, MF and PARAM, see section “Macro
types” on page 379ff.

Possible calls

[label] CMDVAL MF=D [,PREFIX=p][,MACID=mac]
[label] CMDVAL MF=C [,PREFIX=p][,MACID=mac]
[label] CMDVAL MF=L,...
[label] CMDVAL MF=E,PARAM=addr

The CMDVAL macro is implemented with a standard header, which means that the form
MF=S is not available.

U2284-J-Z125-9-76 455

SDF macros CMDVAL

Register usage

Register 1: Address of the parameter list.

Register 15: Return code that is additionally passed in the standard header as well.

Return information and error flags

The return code is passed in the standard header of the parameter area.

Standard header

(SC2) SC1 Maincode Meaning
00 00 0000 Checked value matches data type and/or wildcard search

pattern.
01 01 0008 The INPUT parameter is invalid.
02 01 0008 Invalid address (not allocated, not aligned on word boundary, ...)
03 01 0008 Invalid specification for

– the combination DATATYP/ATTRIB/PATTERN or
– the combination DEVCLAS/EXCDISK/EXCTAPE

04 01 0008 Invalid specifications for value ranges:
– upper limit < lower limit,
– SDF-A limits violated,
– values incorrect,
– number of decimal places not specified,
– limits invalid

05 01 0008 The PATTERN parameter is invalid
(length=0, syntax error)

06 01 0008 The CONST parameter is invalid
xx

01

02
03
04
05

40

40

40
40
40
40

001C

001C

001C
001C
001C
001C

The checked value does not match data type and/ or wildcard
search pattern. An SDF error message has been written into the
PROT buffer. The input value was:
– not of the specified data type or was without the

 specified attributes
– not one of the specified devices
– out of the range specified by the user or SDF
– not one of the specified constants (value or keyword)
– not a match for the wildcard search pattern.

c c b b a a a a

cc: Subcode 2 (SC2)
bb: Subcode 1 (SC1)
aaaa: Maincode

456 U2284-J-Z125-9-76

CMDVAL SDF macros

Notes

– If the PROT buffer is too small, the SDF error messages are truncated. It is up to the
caller to recognize this situation and react accordingly.

– The table below should be used for comparing file names (with file generation numbers)
with a wildcard search pattern. The table contains the valid combinations for which a
match is currently possible. For details on file generation groups (fggs) see the “Intro-
ductory Guide to DMS” [7].

abs_fgg : absolute generation number (*nnnn), 0001ÎnnnnÎ9999
rel_fgg : relative generation number (+/-nn), 0ÎnnÎ99

Future system extensions may render this table invalid. Consequently, it should not be
considered as a guaranteed interface.

– Search patterns for a file name may be of the data type <filename> or
<partial-filename>.

– Similarly, a partially qualified file name can be used as a wildcard search pattern.

Examples

1. Check a value for its data type:

 ...
 CMDVAL MF=E,PARAM=MYPL
 * returncode must be X'0140001C'
 LA 1,MYPL
 USING MYPLD,1
 LH 2,DMDVMRET
 LTR 2,2
 BNE ERRPROC
 ...
 MYPL CMDVAL MF=L,INPUT=BUFF@,DATATYP=FILENAME,ATTRIB=(NOCATID,WILDCARD)
 ...

INPUT string PATTERN string Match possible ?

without fgg without fgg
with fgg

yes
no

with absolute fgg
(abs_fgg (*nnnn))

without fgg
with abs_fgg (*nnnn)
with rel_fgg (+/-nn)

yes
yes if (*nnnn) matches
no

with relative fgg
(rel_fgg (+/-nn)

without fgg
with abs_fgg (*nnnn)
with rel_fgg (+/-nn)

yes
no
yes if (+/-nn) matches

Table 5:

U2284-J-Z125-9-76 457

SDF macros CMDVAL

 BUFF@ DS 0F
 BUFFL DC Y(BUFFEND-BUFF@)
 BUFFFIL DS XL2
 BUFFCT DC C':OY:$TSOS.SDF-A'
 BUFFEND EQU *
 ...
 MYPLD CMDVAL MF=D,PREFIX=D
 ...

2. Check whether an input value matches a wildcard search pattern:

 ...
 CMDVAL MF=E,PARAM=MYPL2
 LA 1,MYPL2
 USING MYPLD,1
 LH 2,DMDVMRET
 LTR 2,2
 BNE ERRPROC
 ...
 MYPL2 CMDVAL MF=L,INPUT=BUFF@,PATTERN=PATT@
 ...
 BUFF@ DS 0F
 BUFFL DC Y(BUFFEND-BUFF@)
 BUFFFIL DS XL2
 BUFFCT DC C':OY:$TSOS.SDF-A'
 BUFFEND EQU *
 ...
 PATT@ DS 0F
 PATTL DC Y(PATTEND-PATT@)
 PATTFIL DS XL2
 PATTCT DC C':OY:$TSOS.SD/-*'
 PATTEND EQU *
 ...
 MYPLD CMDVAL MF=D,PREFIX=D
 ...

458 U2284-J-Z125-9-76

CMDWCC SDF macros

CMDWCC
Check wildcard syntax and perform pattern matching

The CMDWCC macro can be used to check a predefined wildcard pattern for correct syntax
and to perform pattern matching. Examples demonstrating the use of CMDWCC can be
found on page 461f.

ACTION =
Defines if only the wildcard syntax is checked or if pattern matching is also performed.

*CHECK
The wildcard pattern is checked for correct syntax.

*MATCH
The wildcard pattern is matched with the string specified by INP@. The syntax of the
pattern should always be verified with *CHECK beforehand or at the same time.

PAT@ = <var: pointer>
Address of the wildcard pattern.

PATL = <var: int:4>
Length of the wildcard pattern.

Operation Operands

CMDWCC ACTION = list-poss(2): *CHECK / *MATCH

,PAT@ = <var: pointer>

,PATL = <var: int:4>

,INP@ = NULL / <var: pointer>

,INPL = 0 / <var: int:4>

,FGG = *NO / *YES / <var: bit:1>

,PART_Q = *NO / *YES / <var: bit:1>

,SYNTAX = *BS2000 / *POSIX

,WORK@ = NULL / <var: pointer>

,PREFIX = C / <char:1>

,MACID = MDW / <char:3>

,MF = D / C / L / M / E

,PARAM = <var: pointer>

U2284-J-Z125-9-76 459

SDF macros CMDWCC

INP@=
Only for ACTION=*MATCH:
Specifies the address of a string to be matched with the wildcard

NULL
No string is specified for comparison.

<var: pointer>
Address of a string.

INPL=<var: int:4>
Length of the string (only for ACTION=*MATCH).

FGG=
Specifies whether file generation groups are supported when matching the wildcard pattern
with the input string.

*NO
File generation groups are not supported.

*YES
File generation groups are supported.

<var: bit:1>
Bit variable: bit = 0: file generation groups are not supported.

bit = 1: file generation groups are supported.

PART_Q =
Specifies whether partially qualified file names are supported when matching the wildcard
pattern with the input string.

*NO
Partially qualified file names are not supported.

*YES
Partially qualified file names are supported.

<var: bit(1)>
Bit variable: bit = 0: partially qualified file names are not supported.

bit = 1: partially qualified file names are supported.

SYNTAX =
Defines which type of wildcard syntax is used.

*BS2000
The complete BS2000 wildcard syntax may be used.

460 U2284-J-Z125-9-76

CMDWCC SDF macros

*POSIX
The POSIX wildcard syntax is used.

WORK@=
Only for ACTION=*MATCH.
Specifies the address of a working area for comparing the input string with the wildcard
search pattern.

NULL
Specifies no work area.

<var: pointer>
the input string with the wildcard pattern. The work area must have a minimum length
of (5*PATL/4 + 5)*4 bytes and must be aligned on a word boundary.

For a description of the parameters PREFIX, MACID, MF and PARAM: see section “Macro
types” on page 379ff.

Return information and error flags

The return code is passed in the standard header of the parameter area.

Standard header

Notes

– The data type of a pattern for file names can be <filename> or <partial-filename>.

– A partially qualified file name may also be used as a wildcard pattern.

– The following table must be taken into consideration when matching a wildcard pattern
with file names that have generation numbers. The table contains the currently appli-
cable cases in which a match is possible.

(SC2) SC1 Maincode Meaning
00 00 0000 No errors
00 40 0001 Syntax error in pattern
00 40 0002 Input string does not match pattern
00 01 0008 Parameter error
01 00 0000 No wildcard in pattern

c c b b a a a a

cc: Subcode 2 (SC2)
bb: Subcode 1 (SC1)
aaaa: Maincode

U2284-J-Z125-9-76 461

SDF macros CMDWCC

For more information on file generation groups (fgg), see the “Introductory Guide to
DMS” [7].

abs_fgg : absolute file generation group (*nnnn), 0001ÎnnnnÎ9999
rel_fgg : relative file generation group (+/-nn), 0ÎnnÎ99

This table may be rendered obsolete by future system extensions and should hence not
be treated as a guaranteed interface.

Examples of the use of CMDWCC

EXWCC START
 BASR 10,0
 USING *,10
*
* HOW TO USE CMDWCC
*
*
* EXAMPLE 1: PL1 IS INITIALIZED USING MF=L
*
EX1 LA 1,PL1
 CMDWCC MF=E,PARAM=PL1
 B EX2
PL1 CMDWCC MF=L,PAT@=A(PAT),PATL=8,INP@=A(INP),INPL=8, *
 SYNTAX=*BS2000,ACTION=*MATCH,WORK@=A(WA)
*
* EXAMPLE 2: PL2 IS INITIALIZED USING MF=L WITH DUMMY VALUES
* AND MODIFIED USING MF=M BEFORE EXECUTION
* NOTE: MF=M ASSUME THAT THE PARAMETER AREA IS POINTED BY REGISTER 1
*
EX2 LA 1,PL2
 USING CWCC_MDL,1
 CMDWCC MF=M,PATL=PATL,INPL=INPL,PAT@=A(PAT),INP@=A(INP), *
 WORK@=A(WA)
 CMDWCC MF=E,PARAM=PL2

 INPUT string PATTERN string Match possible?

 without fgg without fgg
 with fgg

 yes
 no

 with absolute fgg
 (abs_fgg (*nnnn))

 without fgg
 with abs_fgg (*nnnn)
 with rel_fgg (+/-nn)

 yes
 yes if (*nnnn) matches
 no

 with relative fgg
 (rel_fgg (+/-nn)

 without fgg
 with abs_fgg (*nnnn)
 with rel_fgg (+/-nn)

 yes
 no
 yes if (+/-nn) matches

462 U2284-J-Z125-9-76

CMDWCC SDF macros

 B EX3
PL2 CMDWCC MF=L,PAT@=A(0),PATL=0,INP@=A(0),INPL=0, *
 SYNTAX=*BS2000,ACTION=*MATCH,WORK@=A(0)
*
* EXAMPLE 3: PL3 IS INITIALIZED USING MF=L WITH DUMMY VALUES
* AND MODIFIED USING MF=M BEFORE EXECUTION IN ANOTHER WAY
* NOTE: MF=M ASSUME THAT THE PARAMETER AREA IS POINTED BY REGISTER 1
*
EX3 LA 1,PL3
 USING CWCC_MDL,1
 LA 2,PAT
 ST 2,PATADD
 LA 2,INP
 ST 2,INPADD
 LA 2,WA
 ST 2,WAADD
 CMDWCC MF=M,PATL=PATL,INPL=INPL,PAT@=PATADD,INP@=INPADD, *
 WORK@=WAADD
 CMDWCC MF=E,PARAM=PL3
 TERM
PL3 CMDWCC MF=L,PAT@=A(0),PATL=0,INP@=A(0),INPL=0, *
 SYNTAX=*BS2000,ACTION=*MATCH,WORK@=A(0)
PATADD DS A
INPADD DS A
WAADD DS A
*
* PATTERN AND INPUT
*
PAT DC C'PATTERN* '
PATL DC F'8'
INP DC C'PATTERNA '
INPL DC F'8'
WA DS 0A
 DS XL1000
 CMDWCC MF=D
 END

U2284-J-Z125-9-76 463

SDF macros CMDWCO

CMDWCO
Wildcard constructor

The CMDWCO macro generates a new string from an existing string with the aid of a
selector and constructor. The output string and its length are stored in the parameter area
in the fields '<prefix><macid>NAM' and '<prefix><macid>LEN', respectively. The input
string and the output string may be of any SDF data type. The user should therefore perform
a data type analysis independently (by using the CMDVAL macro), since the input string is
not compared syntactically with the output string in this case.

SELECT =
Specifies the selector, i.e. a selection string consisting of a combination of a wildcard pat-
tern and constant name components (see the description of the SDF metasyntax in section
1.5). The selector can have a maximum length of 255 characters. If it is shorter, it must be
terminated by at least one blank. If an empty selector (blanks) is specified in combination
with PARTIAL=*YES, all names are selected, with the same handling as for partially quali-
fied file names.

<c-string 1..255>
Specification in the form of a C string constant.

<var: char(255)>
Specification in the form of a string variable.

Operation Operands

CMDWCO SELECT = <c-string 1..255> / <var: char(255)>

,CONSTR = <c-string 1..255> / <var: char(255)>

,SRCNAME = <c-string 1..255> / <var: char(255)>

,MAXLEN =255 / <integer 1..255> / <var: integer(1)>

,PARTIAL = *NO / *YES / bit(1)

,SYNTAX = *BS2000 / *POSIX

,PREFIX = C / <char(1)>

,MACID = MDW / <char(3)>

,MF = D / C / L / M / E

,PARAM = <var: pointer>

464 U2284-J-Z125-9-76

CMDWCO SDF macros

CONSTR =
Specifies the constructor, i.e. a construction string consisting of a combination of a con-
struction pattern and constant name components (see the description of the SDF metasyn-
tax in section 1.5). The constructor can have a maximum length of 255 characters. If it is
shorter, it must be terminated by at least one blank. If an empty constructor (consisting of
blanks) is specified in combination with PARTIAL=*YES, all names are selected, with the
same handling as for partially qualified file names.

<c-string 1..255>
Specification in the form of a C string constant.

<var: char(255)>
Specification in the form of a string variable.

SRCNAME =
Specifies the source string referenced by the selection pattern. This string can have a max-
imum length of 255 characters. If it is shorter, it must be terminated by at least one blank.

<c-string 1..255>
Specification in the form of a C string constant.

<var: char(255)>
Specification in the form of a string variable.

MAXLEN =
Specifies the maximum length of the output string to be generated.
If a generated output string is longer than the value specified here, an error code is
returned, and only the number of characters specified for MAXLEN is entered in the
parameter area.

255 / <integer 1..255>
Specifies the maximum length. Default a length of 255 bytes.

<var: int(1)>
Specifies the maximum length by means of an integer variable with a length of 1 byte.

U2284-J-Z125-9-76 465

SDF macros CMDWCO

PARTIAL =
Partial qualification is allowed. The presence of a period at the end of the selection or con-
struction string (i.e. the selector or constructor) is interpreted as a partial qualification. This
is also assumed if the selector and constructor are blank. An empty string (blanks) is inter-
preted as the wildcard ’*’. This implicitly constructed pattern cannot be referenced by ’*’ in
the constructor character string.
The string ’xxxx. ’ is interpreted as ’xxxx.*’.

*NO
A period at the end of the selector or constructor is interpreted as a constant, so blank
selectors can only be used to select blank SRCNAMEs, and blank constructors can only
be used to generate blank file names.

*YES
A period at the end of the selector or constructor is interpreted as a partial qualification.
This also applies to empty strings.

<var: bit(1)>
Bit variable: bit = 0: partial qualification is not allowed.

bit = 1: partial qualification is allowed.

SYNTAX =
Defines which type of wildcard syntax is used.

*BS2000
The complete BS2000 wildcard syntax may be used.

*POSIX
The POSIX wildcard syntax is used.

<var: bit(1)>
Bit variable: bit = 0: as for *BS2000

bit = 1: as for *POSIX

For a description of the parameters PREFIX, MACID, MF and PARAM: see section “Macro
types” on page 379.

466 U2284-J-Z125-9-76

CMDWCO SDF macros

Return information and error flags

The return code is passed in the standard header of the parameter area.

If SC1=X'00' applies, the output fields will contain valid information.:

Standard header

<prefix><macid>LEN : Length of the generated string.

<prefix><macid>NAM : Generated string, followed by blanks.

(SC2) SC1 Maincode Meaning
00 00 0000 No errors
00 40 0002 Invalid selector or SRCNAME not selectable
00 40 0003 Syntax error in constructor or semantic error
00 01 0004 Generated string is longer than MAXLEN. The output area is

only filled up to a length of MAXLEN.
00 01 0008 Error in parameter list (access error or parameter not supported)

c c b b a a a a

cc: Subcode 2 (SC2)
bb: Subcode 1 (SC1)
aaaa: Maincode

U2284-J-Z125-9-76 467

SDF macros OPNCALL

OPNCALL
Create program context

OPNCALL creates a program context and opens the syntax files specified by the user. If
*STD (= default) is specified, the syntax file used by the system context is opened again.
The macro returns the context identifier (= CALLID) to the user.

OPNCALL can be used to open a program context corresponding to the system context, in
which user programs can activate their own user syntax files without affecting the current
user syntax file in the system context. The user syntax file of the program is opened in
parallel to the user syntax file of the system concept.

CALLID =
Address of the identifier of the opened context, which is determined by further macro calls.

addr / (r)
Address of a 4-byte field or a register in which SDF passes the context identifier. The
caller must specify the context identifier when referring to the program context. This field
must be aligned on a word boundary.

TASKTYP =
Specifies the environment in which the caller is working when the CMDTST and TRCMD
macros are called. SDF checks whether the specified statements or commands are allowed
in the defined environment. If not, they are rejected by SDF.

ANYTASK
SDF does not check whether the inputs are allowed.

Operation Operands

OPNCALL CALLID = addr / (r)]

[,TASKTYP = ANYTASK / TERMINAL / BATCH / ALL]

[,SFSYSTM = *STD / filename]

[,SFGROUP = *STD / filename]

[,MF =]
L
(E,(1))
(E,opaddr)

468 U2284-J-Z125-9-76

OPNCALL SDF macros

TERMINAL
SDF accepts only the statements and commands which are defined in the syntax files
of the context with DIALOG-ALLOWED=*YES or DIALOG-PROC-ALLOWED=*YES
(see the PROCMOD operand of the CMDTST and TRCMD macros).

BATCH
The statements must be defined with BATCH-ALLOWED=*YES or BATCH-PROC-
ALLOWED=*YES.

ALL
SDF checks for both dialog and batch tasks to ascertain whether the statements are
allowed. If a statement is not allowed for either type of task, it is rejected by SDF.

In the case of subsequent CMDTST or TRCMD calls, the following process can be
expected:

– in the case of PROCMOD=ANY, all statements and commands are rejected

– in the case of PROCMOD=NO, statements and commands defined with DIALOG-
ALLOWED=*NO or BATCH-ALLOWED=*NO are rejected

– in the case of PROCMOD=YES, statements and commands which are defined with
DIALOG-PROC-ALLOWED=*NO or BATCH-PROC-ALLOWED=*NO are rejected.

– in the case of PROCMOD=ALL (only TRCMD) all statements and commands which
are only permitted in interactive mode (defined with DIALOG-PROC/BATCH-
PROC/BATCH-ALLOWED=*NO) are rejected.

SFSYSTM =
Specifies the system syntax files which are activated in the program context being created.

*STD
The system syntax files of the system context are activated in the program context. If
system administration switches these system syntax files, the system syntax files of the
program context are modified accordingly.

filename
Name of the system syntax file to be activated. The specified system syntax file in the
program context can be switched only after a CLSCALL. It applies to the user task
which issued the OPNCALL macro. Another user task can access this syntax file only
after it has issued its own OPNCALL macro.

U2284-J-Z125-9-76 469

SDF macros OPNCALL

SFGROUP =
Specifies the group syntax file to be activated.

*STD
The group syntax file of the system context is activated. This is assigned to the profile
ID of the user task.

*NO
No group syntax file is activated in the program context.

filename
Name of the group syntax file which is to be opened in the program context.

MF =
Defines special requirements for macro expansion (see the “Executive Macros” manual [8]
for details).

L
Only the data part of the macro expansion (operand list) is generated. This requires that
no operand types with executable code appear in the macro. The data part generated
has the address specified in the name field of the macro.

(E,(1)) / (E,opaddr)
Only the instruction part of the macro expansion is generated. The associated data part
(operand list) is referenced by the address “opaddr”. This either appears in register 1 or
is specified directly.

Register usage

Register 1: address of the parameter list

Return information and error flags

Register 15 contains a return code in the right-most byte.

X’00’ normal execution

X’44’ syntax file not found

X’54’ maximum permissible number of contexts exceeded

470 U2284-J-Z125-9-76

TRCMD SDF macros

TRCMD
Analyze command

The caller uses the TRCMD macro to transfer a command to SDF as a character string.
SDF analyzes this command and generates a log, INVARIANT-INPUT form or ACCEPTED-
INPUT form and the internal form.

The internal form (also called the converted form) is precisely the information which is
necessary for calling the command server and therefore for executing the command. The
internal form is either a character string or a standardized transfer area, depending on how
the command is defined in the syntax file.

SDF also transfers the result of the syntax analysis to the program.
In interactive jobs, the command can be corrected in the course of an error dialog.

The INVARIANT-INPUT form of the statement contains all the specified operands, all the
operands which have default values and all the operands which are currently permitted for
the task (see also CMDRST, page 405).

The ACCEPTED-INPUT form contains all the names in their long form, all the specified
operands with their name and value and any corrections. As there are no abbreviations in
the ACCEPTED-INPUT form, their uniqueness is guaranteed for later BS2000 versions.
Passwords and secret operands are not masked out.

Operation Operands

TRCMD INPUT = *NO / addr / (r)

,OUTPUT = *NO / addr / (r)

,CMD = *ALL / (name,...)

,DIALOG = NO / YES / ERROR

,MESSAGE = *NO / addr / (r)

,ERROR = NO / YES

,PROT = *YES / *NO / addr / (r)

,MEMORY = ACTUAL / BASIC

,CALLINF = *NO / addr / (r)

,EXIT = YES / NO

,CALLID = *NO / addr / (r)

,EXECUTE = NO / YES

,PROCMOD = ANY / YES / NO / ALL
continued ➠

U2284-J-Z125-9-76 471

SDF macros TRCMD

INPUT =
Determines which command SDF should analyze.
Specification of this parameter is mandatory.

*NO
SDF is not to analyze any commands stored in the program, but rather the first com-
mand generated by a system exit. All other commands generated by a system exit can
be requested by the repeated call of TRCMD with INPUT=*NO.

 addr / (r)
SDF is to analyze the command whose address is specified or is in the specified regis-
ter. SDF expects the command character string as a variable-length record in the stan-
dard BS2000 format. The record area must be aligned on a halfword boundary.

OUTPUT =
determines whether the internal form of the command is generated.
Specification of this parameter is mandatory.

 *NO
The internal form of the command is not generated. The syntax of the command spec-
ified at INPUT is checked.

 addr / (r)
Address of an area in which SDF saves the internal form, or a register which contains
this address. The internal form can be processed by the command server. Depending
on the command definition in the syntax file, the internal form is either:
– a character string (see the statement ADD-CMD ... IMPLE-

MENTOR=*STRING/*PROCEDURE...)

,CHKPRV = *YES / *NO / addr

,DUMESC = NO / YES

,OVERLNG = NO / YES

,SETVAR = NO / YES

,INVAR = *NO / addr / (r)

,ACCEPT = *NO / addr / (r)

,DEFDEF = NO / YES

[,MF =]

Operation Operands

L
(E,(1))
(E,opaddr)

472 U2284-J-Z125-9-76

TRCMD SDF macros

– a standardized transfer area (see the statement ADD-CMD ... IMPLE-
MENTOR=*NEW/*TRANSFER-AREA...).

The area must begin on a word boundary. Before TRCMD is called, the program must
ensure that the maximum possible area length is in the first halfword of the area.

CMD =
Determines which commands are permitted as input.

*ALL
All commands of the current syntax hierarchy are permitted.

 (name,...)
Only commands whose RESULT-INTERNAL-NAME is specified are permitted. The
RESULT-INTERNAL-NAME is in stored in the command definition of the syntax file (see
the ADD-CMD statement). The names specified here must be of the data type <alpha-
num-name 1..8>

DIALOG =
Determines whether SDF is to conduct a dialog during the command analysis. This operand
is only relevant when the program is executing in an interactive task.

 NO
SDF is not to conduct a dialog.

 YES
SDF is to offer the command transferred by the program to the user in the dialog for any
changes, as far as this is compatible with the valid SDF specifications for the dialog (see
MODIFY-SDF-OPTIONS and SET-GLOBALS).

ERROR
SDF is only to conduct a dialog when syntax errors are detected.

MESSAGE =
Determines whether SDF is to output a message on SYSOUT if the user is offered the com-
mand for checking and any changes (only relevant for DIALOG î NO). SDF integrates this
message into the form.

*NO
SDF is not to issue a message.

U2284-J-Z125-9-76 473

SDF macros TRCMD

addr / (r)
Address of the message text to be output (aligned on a halfword boundary) or register
which contains this address. The text is expected as a variable-length record with a
maximum length of 400 characters. In guided dialog only the first 280 characters are
represented. SDF interprets the first byte of the message text as a printer control char-
acter. If the text contains screen control characters, the menu mask can be destroyed.

ERROR =
Determines how the message text specified for the MESSAGE operand is output.

NO
SDF is to output the message text as a message.

YES
SDF is to output the message text as an error message.

PROT =
Controls the log output for the input command.

*YES
SDF is to write the log form to SYSOUT.

*NO
SDF is to not output a log form.

addr / (r)
Address of a log buffer (aligned on a halfword boundary) or register which contains this
address. SDF is only to write the log form of the command and messages in the buffer,
not to SYSOUT. The length of the buffer is given in the first halfword of the buffer. The
length of the buffer actually used is given in the second halfword. Then come the log
records with variable record length.
If the buffer is not empty, the first record is normally the log of the input command. The
other records contain messages of all types. If no input log is available or can be output,
a slash (/) is written in the output area.

MEMORY =
Specifies whether the definition of the command is to be read from the current syntax file
hierarchy or only from the basic system syntax file.

ACTUAL
The command is analyzed in the current syntax file hierarchy.

BASIC
Only the command definition in the basic system syntax file is analyzed. Definitions
from a group or user syntax file are ignored.

474 U2284-J-Z125-9-76

TRCMD SDF macros

CALLINF =
Determines whether call information is generated for the command server. If SDF is to exe-
cute the commands MODIFY-SDF-OPTIONS and SHOW-SDF-OPTIONS, this call informa-
tion must be transferred by the program.

CALLINF = *NO
The call information is not generated. No SDF command is executed.

CALLINF = addr / (r)
Address of an area which is 102 bytes long and aligned on a halfword boundary, or a
register which contains this address. SDF stores the call information for the input com-
mand here.

EXIT = YES / NO
Determines whether system exits (80/81) are called for analyzing the input command.

CALLID =
Determines in which context SDF analyzes the command.

 *NO
The currently activated syntax file hierarchy is used (the system context).

 addr / (r)
Address of a 4-byte field (aligned on a word boundary), or a register which contains this
address. In this, the caller transfers the CALLID of the program context that it wishes to
use.

The CALLID of the program context is provided from a previous OPNCALL call. With
OPNCALL the input mode for the task can also be specified (parameter TASKTYP).

EXECUTE = NO / YES
Determines whether the SHOW-SDF-OPTIONS and MODIFY-SDF-OPTIONS commands
are executed. A precondition for this is that in the case of CALLINF the call information is
transmitted for the command. EXECUTE has no meaning if TRCMD refers to the system
context rather than the program context (i.e. CALLID=*NO). The commands are always
executed by TRCMD.

PROCMOD =
Determines which environment the user works in. SDF carries out a check: commands
which are not permitted in the specified environment are not accepted by SDF. This operand
refers to the possibility of opening several syntax file hierarchies. It is only important when
the macro call refers to one of the new syntax hierarchies which are opened in addition to
the current one. In the case of CALLID=*NO, PROCMOD is irrelevant, i.e. the value ANY is

U2284-J-Z125-9-76 475

SDF macros TRCMD

set automatically and the current procedure mode is valid.
For further information on the PROCMOD parameter see the OPNCALL macro, parameter
TASKTYP=ALL (page 468).

 ANY
No check is carried out

 YES
Commands are handled as though they are being read from a procedure file, i.e. they
are analyzed if they are defined in the syntax file with DIALOG-PROC-
ALLOWED=*YES and if the program is running in interactive mode, or in the case of
BATCH-PROC-ALLOWED=*YES in batch jobs.

 NO
Commands are handled as though they are being read from one of the primary levels,
e.g. from the screen input or from a batch job. They are analyzed if they were defined
in the syntax file with DIALOG-ALLOWED=*YES and if the program is running in inter-
active mode or in the case of BATCH-ALLOWED=*YES in batch jobs.

 ALL
Commands are checked for all procedure modes. Depending on the TASKTYP param-
eter for the OPNCALL macro, the following behavior is observed:

– for TASKTYP=ANY:
Every command is considered to be illegal and is rejected (illegal parameter combi-
nation)

– for TASKTYP=BATCH:
The command is analyzed if it is defined in the syntax file with BATCH-
ALLOWED=*YES or BATCH-PROC-ALLOWED=*YES

– for TASKTYP=TERMINAL:
The command is analyzed if it is defined in the syntax file with DIALOG-
ALLOWED=*YES or DIALOG-PROC-ALLOWED=*YES

476 U2284-J-Z125-9-76

TRCMD SDF macros

CHKPRV =
Determines whether SDF checks the privileges of the commands.
The parameter is only meaningful in the program context (i.e. for CALLID î *NO).

*YES
The privileges are checked as a function of the permitted input mode (TRCMD PROC-
MOD=... , OPNCALL TASKTYP=...).

*NO
The privileges of the commands are not checked. The command is not executed, i.e.
EXECUTE=NO is always valid.

addr
Address of an 8-byte area in which a 64-bit privilege mask is stored. The command is
checked against this privilege mask to determine whether it is permitted in a particular
input mode. The order of the privileges in the bit mask is the same as the order in which
the privileges are currently defined in the system. These privilege masks can be output
with the SDF-I statement SHOW-SYNTAX-FILE for example (see the “SDF Manage-
ment“ manual [2]).

DUMESC =
Specifies whether expression substitutions which begin with an escape sign can be consid-
ered to be part of the command or ignored. Expression substitutions are normally specified
in the form '&proc-parameter' or '&(expression)'.

NO
Specifies whether expression substitutions are considered to be part of the command
by SDF and syntactically analyzed as such. In most cases (with the exceptions of <text>
and <cmd-rest>) SDF returns a syntax error.

YES
Expression substitutions which begin with the escape character are not subjected to a
syntax analysis by SDF. The keyword BY-AND is also ignored.

OVERLNG =
Determines whether SDF is to overwrite the length field of the area specified in OUTPUT
(first halfword) with the actual length of the internal form (ISP character string or standard-
ized transfer area). However, this only occurs in the case of a successful function call and
if the OUTPUT area is not too short.

NO
The length field of the OUTPUT area is not overwritten.

YES
In the case of a successful function call, the length field is overwritten with the actual
length (including the length field) of the internal command form.

U2284-J-Z125-9-76 477

SDF macros TRCMD

SETVAR =
Specifies whether the command can be an assignment of the form '<variable-name>=value'
if it is entered in an S procedure. In non-S procedures, there may be conflicts with the per-
missible ISP inputs for /REMARK, /TYPE, /PAUSE etc.

NO
Equals signs are considered to be part of the operand list of the command.
For reasons of compatibility NO is the default value.

YES
Equals signs are interpreted as variable assignments. By default, /SET-VARIABLE is
used as the command name. If this command is not defined in the syntax hierarchy, the
input command is rejected with a corresponding error message. If SDF could success-
fully identify the variable assignment, the requested outputs are produced by SET-VARI-
ABLE on the basis of the command definition.

INVAR =
Specifies whether the INVARIANT-INPUT form of the command is saved, i.e. that the state-
ment is stored with all the input operands, all the operands with default values and all the
operand values which are permitted for the task dependent on the input mode and on the
privileges:

1. The input mode (PROCMOD parameter) is only checked if CALLID is also specified.
The dependencies between CALLID and PROCMOD are included in the description of
the PROCMOD parameter

2. The privileges in the case of CHKPRV are only taken into account if CALLID is also
specified. If CALLID is not specified, TRCMD uses the current task privileges.

Keywords and secret operands are not masked out.
INVAR must not be specified together with ACCEPT.

 *NO
The INVARIANT-INPUT form of the statement is not saved.

 addr / (r)
Specifies the address of a buffer aligned on a word boundary in which SDF writes the
INVARIANT-INPUT form of the command. The first halfword must contain the length of
the buffer. If the buffer is too short, the corresponding macro return code is returned.
SDF stores the INVARIANT-INPUT form as of the second halfword as a variable-length
record.

478 U2284-J-Z125-9-76

TRCMD SDF macros

The buffer contains the following:

ACCEPT =
Specifies whether the ACCEPTED-INPUT form of the command is saved. The
ACCEPTED-INPUT form contains all the names in their long form and all the input oper-
ands with their names and values (as permitted for the task dependent on the input mode
and the privileges):

1. The input mode (PROCMOD parameter) is only checked if CALLID was also specified.
The dependencies between CALLID and PROCMOD are outlined in the description of
the PROCMOD parameter.

2. The privileges for CHKPRV are only taken into account if CALLID is also specified. If
CALLID is not specified, TRCMD uses the current task privileges.

Keywords and secret operands are not masked out.
INVAR must not be specified together with ACCEPT.

ACCEPT = *NO
The ACCEPTED-INPUT form of the statement is not saved.

ACCEPT= addr / (r)
Specifies the address of a buffer aligned on a word boundary in which SDF writes the
ACCEPTED-INPUT form of the command. The first halfword must contain the length of
the buffer. If the buffer is too short, the corresponding macro return code is returned.
SDF stores the ACCEPTED-INPUT form as of the second halfword as a variable-length
record.

The buffer contains the following:

2 bytes 2 bytes 2 bytes

buflen reclen filler invariant-input

buflen:
reclen:

filler:
invariant-input:

Length of the buffer
Length of the record which SDF writes
Filler
INVARIANT-INPUT form of the command, beginning at the
seventh byte

2 bytes 2 bytes 2 bytes

buflen reclen filler invariant-input

buflen:
reclen:

filler:
accepted-input:

Length of the buffer
Length of the record which SDF writes
Filler
ACCEPTED-INPUT form of the command, beginning at the
seventh byte

U2284-J-Z125-9-76 479

SDF macros TRCMD

DEFDEF =
Specifies whether commands for setting task-specific default values may be input (see the
“Introductory Guide to the SDF DIalog Interface“ [1]).

NO
Commands for setting task-specific default values are not accepted.

YES
Commands for setting task-specific default values are accepted. The set default values
remain valid until they are explicitly changed. SDF transfers a special return code if it
recognizes a default value definition, and in this case it ignores the output parameters.
For syntax errors the normal return code is returned.

MF =
Defines special requirements for the macro expansion (see the “Executive Macros“ manual
[8]).

L
Only the data part of the macro expansion (operand list) is generated. This requires that
no operand types with executable code occur in the macro call. The generated data part
has the address given in the name field of the macro call.

(E,(1)) / (E,opaddr)
Only the command part of the macro expansion is generated. The corresponding data
part (operand list) is indicated by the address “opaddr“. This is either in register 1 or is
specified directly.

Return information and error flags

The format of the transfer area is described on page 365ff.

Register 15 contains a return code in the right-most byte:

X’00’ Normal termination; command is syntactically correct

X’04’ Unrecoverable system error

X’08’ Operand error in the macro

X’0C’ Transfer area too small

X’10’ EOF detected

X’1C’ Error in command or command unknown

X’20’ Error dialog not possible

X’24’ Error dialog rejected

X’28’ Error or log area too small

480 U2284-J-Z125-9-76

TRCMD SDF macros

X’30’ Time out

X’38’ SDF not available

X’44’ Syntax file not found

X’48’ SDF command carried out

X’5C’ Not enough space in INVAR buffer, INVARIANT-INPUT truncated

X’6C’ Command for setting task-specific fault values recognized

X’70’ String passed is empty

Indicator for additional command (via a system exit):

If a 1:n conversion of the input command has been carried out via a system exit, the flag
shows FURTH in the call information (CALLINF), indicating that further commands can be
requested with TRCMD INPUT=*NO.

U2284-J-Z125-9-76 481

SDF program interface HLL interface

6.5 Interface between SDF and high-level languages

As of Version 3, SDF incorporates an interface for high-level languages (HLLs) such as
COBOL, FORTRAN and C. This interface makes it possible to access SDF macros from
within HLL programs, without writing Assembler programs for calling the SDF macros.

Figure 15 is a block diagram illustrating the HLL interface.

Figure 15: Interface between SDF and high-level languages

The following SDF macros are supported by the HLL interface:

– macros for processing statements (RDSTMT, CORSTMT, TRSTMT)

– the macro for calling a system command (CMD)

– the macro for setting the command return code (CMDRC)

– the macro for outputting information about activated syntax files (CMDSTA).

 The interface to higher programming languages only supports the standardized
transfer area in the old format (see page 593). The new format (see page 365ff) can
only be used via the Assembler interface!

COBOL
program

FORTRAN
program

C program

HLL
interface

SDF
macros

SDF

User programs

i

482 U2284-J-Z125-9-76

HLL interface SDF program interface

6.5.1 Interface conventions

The HLL interface is available directly for all programming languages that use the same
conventions for transfer parameters to subprograms as COBOL and FORTRAN. For these
programming languages, the function calls described on page 483ff apply.

The following conventions apply:

– Register 1 must contain a pointer to the list of addresses of the transfer parameters.

– The most significant bit in the last parameter address must be set (logically ORed with
X’80000000’).

– Register 13 contains the address of the register backup area (normally set by the
program manager).

Calls that comply with the ILCS conventions are also supported. The following conventions
apply:

– Register 1 must contain a pointer to the list of parameter addresses.

– Register 0 must contain the number of parameters.

– Register 13 must contain the address of the register backup area (normally set by the
program manager).

An interface satisfying these requirements was developed especially for C. This C interface
is described in a separate section (see section “C interface” on page 503ff).

Under certain circumstances, the HLL interface can also be used by Assembler programs.
The preconditions that apply are as follows:

– The requisite parameter list must be available.

– The address of the parameter list must be passed to SDF in register 1.

– Register 13 must contain the address of a register backup area 18 words long which
must be deleted before the call.

– The entry name is ’SDF’.

The interface modules and the include elements are supplied in the library
SYSLIB.SDF.045.

U2284-J-Z125-9-76 483

SDF program interface HLL interface

6.5.2 COBOL and FORTRAN interface

6.5.2.1 Description of the function calls

Function calls

The notation adopted for describing the function calls is:

The contents of <paramlist> are shown in the description of the function call. The exact
syntax of the call varies depending on the language.

Notational conventions

Since the exact syntax of the function calls is language-dependent, certain notational
conventions have been adopted for the descriptions below. The parameter list always
appears in parentheses (). Square brackets inside the parameter list always enclose an
optional parameter or parameters.

The list itself is always followed by a tabular description:

CALL SDF(<parameterlist>)

Column 1: Name of the parameter

Column 2: Data type of the parameter and its length.
The following data types occur:

char
integer
ptr
V-rec@

character string
integer (always 4 bytes long)
address
address of a variable-length record

Column 3: in
out
inout

input parameter
output parameter
input/output parameter

Column 4: Explanatory remarks

484 U2284-J-Z125-9-76

Overview SDF function calls

Information returned by the functions

Each function returns information in the form of a return code. SDF writes this return code
into the “error” parameter, which must be present in the parameter list of each function.

The return codes may belong to one of three classes:

6.5.2.2 Overview of SDF function calls

CCMD Execute a system command

CORR Set correction bit

INIT Initialize buffer

LEVL Position on an operand array

OPER Read operand value from the transfer area

READ Read and analyze a statement

SEMA Initiate a semantic error dialog

STAT Output information about syntax files

STMT Read statement name from the transfer area

STRU Analyze data type and length of value-introducing structure

TRNS Analyze a statement

TYPE Analyze data type and length of operands

WRRC Set command return code

error=0: Command executed without error.

error>0: Error in the associated macro. The error code has been copied from register
15 into the ’error’ parameter. The value of the error code corresponds to that
of the macro error code.

error<0: -1 :
-2 :
-3 :
-4 :
-5 :
-6 :
-7 :

Function unknown
Not enough operands
Last operand in structure reached
Last operand in list reached
Position is negative
Operand is not of the type LIST
Operand is not of the type STRUCTURE

U2284-J-Z125-9-76 485

SDF function calls CCMD

CCMD
Execute system command

The CCMD function calls a command without exiting the program mode. The CCMD
function is based on the CMD macro described in the “Executive Macros” manual [8].

Call

Description of the parameter list

 The parameter list corresponds to PARMOD=31 with specification of the CMDRC
or LIST parameter (see the description of the CMD macro in the “Executive Macros”
manual [8]).

CALL SDF('CCMD',area,error,sysout,dialog,list,cmdrc,buff)

Parameter Data type
(length)

Input/
output

Meaning

CCMD char(4) in Function name: keyword CCMD

area V-rec@ in Address of a variable-length record containing the
command to be executed

error integer out Return code of the function

sysout integer in 1 : SYSOUT = YES
0 : SYSOUT = NO

dialog integer in 1 : DIALOG = YES
0 : DIALOG = NO

list integer in 1 : LIST = YES
0 : LIST = NO

cmdrc char(9) in Address of an area, 9 bytes in length, into which the
command processor will write the command return code.
Must be aligned on a halfword boundary.

buff V-rec@ in Address of a variable-length record for the output buffer
(BUFMOD=SHORT, see the CMD macro)

i

486 U2284-J-Z125-9-76

CORR SDF function calls

CORR
Set correction bit

The CORR function sets a correction bit for a given operand. When this correction bit is set,
the operand in question is underscored in the error dialog for a statement, if it was invalid.

Call

Description of the parameter list

CALL SDF('CORR',area,error,pos)

Parameter Data type
(length)

Input/
output

Meaning

CORR char(4) in Function name: keyword CORR

area char() inout Buffer in which the standardized transfer area was stored
(see INIT)

error integer out Return code

pos integer in Position of the operand whose correction bit is to be set

U2284-J-Z125-9-76 487

SDF function calls INIT

INIT
Initialize buffer

The INIT function initializes the buffer in which the standardized transfer area is stored. The
internal name of the program must be specified as it is defined in the syntax file.

The INIT function must be called once before all other SDF functions that use the
standardized transfer area.

Call

Description of the parameter list

CALL SDF('INIT',area,error,lng,program)

Parameter Data type
(length)

Input/
output

Meaning

INIT char(4) in Function name: keyword INIT

area char(lng) inout Buffer for creating the standardized transfer area, must be
aligned on a word boundary

error integer out Return code

lng integer in Length of the buffer for the standardized transfer area

program char(8) in Internal program name
(as defined in the syntax file)

488 U2284-J-Z125-9-76

LEVL SDF function calls

LEVL
Position on operand array

The LEVL function enables the user to position on an operand array belonging to a structure
description (see section “Format of the standardized transfer area” on page 365).

When the INIT function is called, the system positions on the operand array of the highest
level, in other words on the operand array whose operand was defined with the SDF-A
statement ADD-OPERAND ...,RESULT-OPERAND-LEVEL=1.

The LEVL function always refers to the current operand array. This can be the operand array
of a structure description, if the LEVL function has already been called beforehand.

The structure description can also be an element in a list. In this case, the user must specify
both the position of the list in the current operand array and the position of the structure
description in the list.
If the structure description is not an element in a list, the user needs to specify only the
position of the structure description in the operand array.

To return to the operand array of the highest level, enter 0 for the position.

Call

CALL SDF('LEVL',area,error,pos[,lst])

U2284-J-Z125-9-76 489

SDF function calls LEVL

Description of the parameter list

 Direct access to operand array positions greater than 2 is not possible.

Reverse positioning by the system is only possible on the operand array of the
highest level. It is the responsibility of the user to trace the path to reverse-position
on an intermediate level.

Parameter Data type
(length)

Input/
output

Meaning

LEVL char(4) in Function name: keyword LEVL

area char() in Buffer in which the standardized transfer area was stored
(see INIT)

error integer out Return code

pos integer in – Position of the structure description in the current
operand array or

– position of the list containing the structure description
pos=0 positions on the operand array of the highest level.

lst integer in Relevant only if the structure description is an element in a
list:
position of the structure description in the list

i

490 U2284-J-Z125-9-76

OPER SDF function calls

OPER
Read operand value from transfer area

The OPER function reads the value of an operand at a certain position from the
standardized transfer area. The OPER call must be preceded by a TYPE or STRU call
defining the operand type and operand length.

Call

Description of the parameter list

 If the OPER function is called for an operand of the type STRUCTURE, it returns
the value of the operand introducing the structure, whose length and type were
analyzed beforehand by the STRU function.

CALL SDF('OPER',area,error,pos,val,lng[,lst])

Parameter Data type
(length)

Input/
output

Meaning

OPER char(4) in Function name: keyword OPER

area char() in Buffer in which the standardized transfer area was stored
(see INIT)

error integer out Return code

pos integer in Position of the operand

val char(lng) inout Address of a string in which the value is to be stored

lng integer in Length of the val string must be greater than or equal to the
value returned by TYPE or STRU for the lng parameter

lst integer in Relevant only if the operand is an element in a list:
position of the operand in the list

i

U2284-J-Z125-9-76 491

SDF function calls READ

READ
Read and analyze statement

The READ function causes SDF

– to read a program statement from SYSSTMT. (The assignment for the SYSDTA system
file also applies to SYSSTMT. The rules governing continuation lines, continuation
characters and comments in SYSSTMT are the same as those that apply to SYSCMD.)

– analyze the statement read in and

– transfer the result of this analysis to the program.

The precondition is that an activated syntax file contains the definition of the program and
its statements. For details, see the description of the RDSTMT macro (page 606ff).

Call

CALL SDF('READ',area,error[,msg[,allow[,prefer[,default1,...]]]])

492 U2284-J-Z125-9-76

READ SDF function calls

Description of the parameter list

1) Format of the list of valid statements:

2) With the aid of conversion descriptions, default values of operands defined in the syntax
file with ADD-VALUE ...,VALUE=<c-string>...(OVERWRITE-POSSIBLE=*YES) or
ADD-OPERAND...,OVERWRITE-POSSIBLE=*YES can be replaced by values
generated dynamically by the program. Only one conversion description can be
specified per statement. The conversion description contains the internal statement
name and the information defining which operand values can be replaced and how. A
conversion description can be generated either by a READ call executed beforehand or
by a TRNS call in which the new values are entered. The description has the format of
a standardized transfer area.

The ’area’ buffer contains pointers to absolute addresses. Consequently, it cannot be
copied into another memory area for evaluation.

Parameter Data type
(length)

Input/
output

Meaning

READ char(4) in Function name: keyword READ

area char() inout Buffer for creating the standardized transfer area (see
INIT)

error integer out Return code

msg V-rec@ in Address of a variable-length record containing the text of a
message to be output before the statement is read (max.
400 characters in length)

allow ptr in Address of a structure containing the list of valid
statements1)

prefer char(8) in Only in guided dialog: internal name of the statement
expected next

default1,

char()
(standard.
transfer
areas)

in List of up to 5 conversion descriptions with which default
values of operands can be replaced by values generated
dynamically by the program 2)

N statement 1 statement 2 statementn

N
statement x

(2 bytes) :
(8 bytes) :

number of statements in the list
internal name of a valid statement

Table 6:

U2284-J-Z125-9-76 493

SDF function calls READ

If a zero (address=0 or blank string) is specified for the parameters msg, allow and prefer,
the corresponding value is ignored.

The following are ignored:

– a statement name beginning with a blank “ “ specified for prefer

– a record of length 0 specified for msg

– a list containing 0 elements specified for allow.

The RDSTMT macro is called with the following defaults:

PROT=*YES
BUFFER=*NO
INVAR=*NO
SPIN=*NO
ERRSTMT=*STEP
CALLID=*NO
CCSNAME=*NO

494 U2284-J-Z125-9-76

SEMA SDF function calls

SEMA
Initiate semantic error dialog

The SEMA function causes SDF to initiate a dialog with the user, providing the opportunity
to correct a semantic error in a statement. Immediately beforehand, SDF analyzes the
statement and transfers it to the program as syntactically correct. For detailed information,
see the description of the CORSTMT macro (page 601ff).

Call

Description of the parameter list

The CORSTMT macro is called with the following defaults:

DEFAULT=*NO
INVAR=*NO
CALLID=*NO
CCSNAM=*NO

CALL SDF('SEMA',area,error,msg)

Parameter Data type
(length)

Input/
output

Meaning

SEMA char(4) in Function name: keyword SEMA

area char() inout Buffer in which the standardized transfer area was stored
(see INIT)

error integer out Return code

msg V-rec@ in Address of a variable-length record containing the text of a
message to be output during the error dialog
(up to 400 characters long)

U2284-J-Z125-9-76 495

SDF function calls STAT

STAT
Output information about syntax files

The STAT function outputs information concerning activated syntax files and the specifica-
tions applying to command/statement input and processing.
For a description of the transfer area for the information, see the CMDSTA macro
(page 425ff).

Call

Description of the parameter list

CALL SDF('STAT',area,error[,lng])

Parameter Data type
(length)

Input/
output

Meaning

STAT char(4) in Function name: keyword STAT

area char() out Transfer area in which the information is stored by SDF.
Must be aligned on halfword boundary.

error integer out Return code

lng integer in Length of transfer area:
– If lng is specified, the length of the transfer area is lng

and FORM=LONG is output (see CMDSTA)
– If lng is not specified, the transfer area must be 530

bytes in length and FORM=SHORT is output (see
CMDSTA)

496 U2284-J-Z125-9-76

STMT SDF function calls

STMT
Read statement name from transfer area

The STMT function reads the internal name of a statement read beforehand with the READ
function from the standardized transfer area. It can also be used to query the number of
operands in the statement.

Call

Description of the parameter list

CALL SDF('STMT',area,error,stmt[,num])

Parameter Data type
(length)

Input/
output

Meaning

STMT char(4) in Function name: keyword STMT

area char() in Buffer in which the standardized transfer area was stored
(see INIT)

error integer out Return code

stmt char(8) out Address of an 8-byte field into which the internal statement
name will be written

num integer out Number of operands in the statement read

U2284-J-Z125-9-76 497

SDF function calls STRU

STRU
Analyze data type and length of value introducing structure

The STRU function analyzes the operand value introducing a structure to determine its data
type and length. The STRU call must be preceded by a TYPE call having the operand type
structure (X’13’) as its result. An operand value does not introduce a structure unless it was
defined with STRUCTURE=*YES(FORM=*NORMAL) in the SDF-A statement ADD-
VALUE.

Call

Description of the parameter list

CALL SDF('STRU',area,error,pos,typ,lng[,lst])

Parameter Data type
(length)

Input/
output

Meaning

STRU char(4) in Function name: keyword STRU

area char() in Buffer in which the standardized transfer area was stored
(see INIT)

error integer out Return code

pos integer in Position of the value introducing the structure

typ integer out Data type of the operand value (for a description of the data
types, see page 372ff)

lng integer out Length of the operand value

lst integer in Relevant only if the operand value is an element in a list:
position of the structure in the list

498 U2284-J-Z125-9-76

TRNS SDF function calls

TRNS
Analyze statement

The TRNS function analyzes a statement in text format and translates it into the format for
the standardized transfer area. The result of this analysis is stored in the standardized
transfer area. For detailed information, see the description of the macro TRSTMT macro
(page 614ff).

The TRNS function can also be used to create conversion descriptions for the READ
function.

Call

Description of the parameter list

The TRSTMT macro is called with the following defaults:

 STMT=*ALL
 DIALOG=*ERROR
 MESSAGE=*NO
 PROT=*NO
 INVAR=*NO
 DEFAULT=*NO
 ERROR=*NO
 CALLID=*NO
 EXECUTE=*NO
 PROCMODE=*ANY
 CCSNAME=*NO

CALL SDF('TRNS',area,error,stmt)

Parameter Data type
(length)

Input/
output

Meaning

TRNS char(4) in Function name: keyword TRNS

area char() inout Buffer in which the standardized transfer area was stored
(see INIT)

error integer out Return code

stmt V-rec@ in Address of a variable-length record containing the
statement to be analyzed in text format

U2284-J-Z125-9-76 499

SDF function calls TYPE

TYPE
Analyze data type and length of operand

The TYPE function analyzes an operand at a given position to ascertain its data type and
its length. The position corresponds to the position defined with the SDF-A statement ADD-
OPERAND ..., RESULT-OPERAND-NAME=*POS(...).

Call

Description of the parameter list

CALL SDF('TYPE',area,error,pos,typ,lng[,lst])

Parameter Data type
(length)

Input/
output

Meaning

TYPE char(4) in Function name: keyword TYPE

area char() in Buffer in which the standardized transfer area was stored
(see INIT)

error integer out Return code

pos integer in Operand position (as defined by ADD-OPERAND ...,
RESULT-OPERAND-NAME=*POS(...))

typ integer out Operand data type
(for a description of the data types, see page 372ff)

lng integer out Length of the operand

lst integer in Relevant only if the operand is an element in a list:
position of the operand in the list

500 U2284-J-Z125-9-76

WRRC SDF function calls

WRRC
Set command return codes

The WRRC function enables a user program to save values it generates as command
return codes; these are made available to the command processor as the official command
return codes when the program is terminated and can then be used by other system
functions (e.g. SDF-P). The function is based on the CMDRC macro (page 402ff).

Call

Description of the parameter list

6.5.2.3 Examples

The following examples demonstrate the principles underlying SDF function calls in the
programming languages COBOL and FORTRAN.

Use of the COBOL interface (program excerpt)

 .
 .
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 *work variable
 01 SDF-DATA
 02 SDF-INIT PIC X(4) VALUE "INIT".
 02 SDF-READ PIC X(4) VALUE "READ".
 02 SDF-STMT PIC X(4) VALUE "STMT".
 02 SDF-TYPE PIC X(4) VALUE "TYPE".
 02 SDF-VAL PIC X(4) VALUE "OPER".
 02 SDF-TYP PIC 9(6) COMP.
 02 SDF-LNG PIC 9(6) COMP.
 02 SDF-POS PIC 9(6) COMP.
 02 SDF-LST PIC 9(6) COMP.

CALL SDF('WRRC',area,error)

Parameter Data type
(length)

Input/
output

Meaning

WRRC char(4) in Function name: keyword WRRC

area char(9) in Area in which the 9-byte command return code is specified;
must be aligned on a halfword boundary.

error integer out Return code of the function

U2284-J-Z125-9-76 501

SDF function calls Examples

 02 SDF-ERR PIC S9(6) COMP.
 02 SDF-STMT PIC X(8).
 02 SDF-PROG PIC X(8).
 77 BUF PIC X(500).
 77 MAX PIC 9(6) COMP VALUE 500.
 01 VAL.
 02 FILLER PIC X OCCURS 1 TO 50 DEPENDING ON SDF-LNG.
 .
 .
 *
 PROCEDURE DIVISION.
 *
 *INIT
 *
 MOVE "TEST" TO SDF-PROG.
 CALL "SDF" USING SDF-INIT, BUF, SDF-ERR, MAX, SDF-PROG.
 *
 *READ
 *
 CALL "SDF" USING SDF-READ, BUF, SDF-ERR.
 *
 *STMT
 *
 CALL "SDF" USING SDF-STMT, BUF, SDF-ERR, SDF-STMT.
 *
 *TYPE
 *
 CALL "SDF" USING SDF-TYPE, BUF, SDF-ERR, SDF-POS,
 SDF-TYP, SDF-LNG.
 *
 *VAL
 *
 CALL "SDF" USING SDF-VAL, BUF, SDF-ERR, SDF-POS, VAL,
 SDF-LNG.
 .
 .

The program must be linked with the library SYSLIB.SDF.04x (e.g. 045 for SDF V4.5). This
library includes, among other things, a COBOL copy element containing the description of
the SDF declarations (type S member SDFCOPY).

502 U2284-J-Z125-9-76

Examples SDF function calls

Use of the FORTRAN interface (program excerpt)

.

.
C*****Work variable
 CHARACTER*4 SDF$INIT/'INIT'/
 CHARACTER*4 SDF$READ/'READ'/
 CHARACTER*4 SDF$STMT/'STMT'/
 CHARACTER*4 SDF$VAL/'OPER'/
 CHARACTER*4 SDF$TYPE/'TYPE'/
 INTEGER SDFLNG,SDFPOS,SDFLST,SDFTYP,SDF$ERR
 CHARACTER*8 SDF$STMT,SDF$PROG
 CHARACTER*500 AREA,VAL*50
 INTEGER MTYP(2),MLNG(2)

 *
 *INIT
 *
 CALL SDF(SDF$INIT,AREA,SDF$ERR,500,'TESTËËËË')
 *
 *READ
 *
 CALL SDF(SDF$READ,AREA,SDF$ERR)
 *
 *STMT
 *
 CALL SDF(SDF$STMT,AREA,SDF$ERR,SDF$STMT)
 *
 *TYPE
 *
 CALL SDF(SDF$TYPE,AREA,SDF$ERR,SDFPOS,SDFTYP,SDF$LNG)
 *
 *VAL
 *
 CALL SDF(SDF$VAL,AREA,SDF$ERR,SDFPOS,VAL,SDFLNG)
 .
 .

The program must be linked with the library SYSLIB.SDF.04x (e.g. 045 for SDF V4.5). This
library includes, among other things, a FORTRAN include element containing the
description of the SDF declarations (type S member SDFINCL).

U2284-J-Z125-9-76 503

SDF program interface C interface

6.5.3 C interface

The conventions that apply to C for passing parameters to functions differ from those for
COBOL and FORTRAN. Consequently, SDF also has a C interface which provides the
same functionality as the general HLL interface. Functions in which optional parameters
occur have been split into a number of C functions.

The C functions offer the functionality of the old macro calls RDSTMT, CORSTMT and
TRSTMT that use the standardized transfer area in the old format (see section “Changes
to the SDF program interface” on page 593ff).

If the extended functionality of the corresponding “new” macro calls CMDRST, CMDCST
and CMDTST (e.g statement return code) are used for the standardized transfer area in the
new format, then the Assembler interface must be used (see page 379ff).

6.5.3.1 Description of the C functions

The C functions are listed in alphabetical order in the overview and described in detail in
the pages that follow (page 504ff). Those functions that support optional parameters and
have therefore been split into several functions are described under a single function name.
For example, the functions sdfrd, sdfrdmsg, sdfrdall, sdfrdpre and sdfrddef are all described
in the section entitled ’sdfrd’ and labelled formats 1 to 5.

Results of functions

Every C function returns an integer as its result:

Result = 0: Normal execution; no errors

Result > 0: Error in the associated macro. The error code has been copied from
register 15. The value of the error code corresponds to that of the
macro error code.

Result < 0: Error in the function call. The value is one of the following:

-1 :
-2 :
-3 :
-4 :
-5 :
-6 :
-7 :

Function unknown
Not enough operands
Last operand in structure reached
Last operand in list reached
Position is negative
Operand is not of the type LIST
Operand is not of the type STRUCTURE

504 U2284-J-Z125-9-76

Overview C interface

Notes

In order to call a C function for SDF, the program requires the following include elements
from the SYSLIB.SDF.04x library:

sdfc.h (contains constant and type definitions)

sdfcext.h (contains the external declarations of the functions)

Note that certain strings must be aligned on a halfword or word boundary. However, since
variables of the data type ’char’ may be aligned only on the byte boundary, they must also
be aligned with the aid of the malloc() function.

The variables for internal statement names must be 8 characters long and must end with
“\0”. The predefined type STR8 from the include element sdfc.h can be used for this
purpose.

An example of how to use the C functions begins on page 519.

6.5.3.2 Overview of C functions

sdfcbit Set correction bit

sdfcmd Execute a system command

sdfcor Initiate a semantic error dialog

sdfinit Initialize buffer

sdflev Position on an operand array

sdfrc Set command return code

sdfrd Read and analyze a statement

sdfsta Output information about syntax files

sdfstmt Read statement name from the transfer area

sdfstv Analyze data type and length of value-introducing structure

sdftr Analyze a statement

sdftyp Analyze data type and length of operands

sdfval Read operand value from the transfer area

U2284-J-Z125-9-76 505

C interface sdfcbit

sdfcbit
Set correction bit

The sdfcbit function sets a correction bit for a given operand. When this correction bit is set,
the operand in question is underscored in the error dialog for a statement, if it was invalid.

Format:

Description of the parameters

char *area Pointer to the buffer in which the standardized transfer area was
created (see sdfinit)

int pos Position of the operand whose correction bit is to be set

Result

The function returns an integer as its result (see page 503).

int sdfcbit (char *area, int pos);

506 U2284-J-Z125-9-76

sdfcmd C interface

sdfcmd
Execute system command

The sdfcmd function calls a command without exiting the program mode. The sdfcmd
function is based on the CMD macro described in the “Executive Macros” manual [8].

Format:

Description of the parameters

char *area Pointer to a string containing the command to be executed. SDF
internally converts the string into a variable-length record.

int sysout Specifies whether the log is to be output to SYSOUT and/or the log
buffer:
0 : SYSOUT = NO (SYSOUT only)
1 : SYSOUT = YES (SYSOUT and buffer)

int dialog Specifies whether an error dialog is to be initiated if syntactical
errors are discovered:
0 : DIALOG = NO
1 : DIALOG = YES

int list Specifies whether the area string contains more than one command
with semicolons as separators
0 : LIST = NO (only one command in the string)
1 : LIST = YES (more than one command in the string)

char *cmdrc Pointer to a string (9 bytes) in which the command processor is to
store the command return code. cmdrc must be aligned on the
halfword boundary.

char *buff Pointer to a string into which the log is output (BUFMOD=SHORT,
see the CMD macro).

Result

The function returns an integer as its result (see page 503).

 A version 3 parameter list (VER=3, PARMOD=31 - see CMD macro in the
„Executive Macros“ manual [6] is generated.

int sdfcmd (char *area, int sysout, int dialog, int list, char *cmdrc, char *buff);

i

U2284-J-Z125-9-76 507

C interface sdfcor

sdfcor
Initiate semantic error dialog

The sdfcor function causes SDF to initiate a dialog with the user, providing the opportunity
to correct a semantic error in a statement. Immediately beforehand, SDF analyzes the
statement and transfers it to the program as syntactically correct. For detailed information,
see the description of the CORSTMT macro (page 601ff).

Format:

Description of the parameters

char *area Pointer to the buffer in which the standardized transfer area was
created (see sdfinit).

char *msg Pointer to a message to be output in the error dialog. SDF internally
converts the string into a variable length record no more than 400
characters long. If a NULL pointer is specified, no message is
displayed.

Result

The function returns an integer as its result (see page 503).

int sdfcor (char *area, char *msg);

508 U2284-J-Z125-9-76

sdfinit C interface

sdfinit
Initialize buffer

The sdfinit function initializes the buffer in which the standardized transfer area is stored.
The internal name of the program must be specified as it is defined in the syntax file.

The sdfinit function must be called once before all other SDF-C functions that use the
standardized transfer area.

Format:

Description of the parameters

char *area Pointer to the buffer where the standardized transfer area will be
placed; must be aligned on the word boundary.

int lng Length of the buffer for the standardized transfer area.

STR8 progname Internal program name (as defined in syntax file), 8 characters long
with null (’\0’) at end.

Result

The function returns an integer as its result (see page 503).

int sdfinit (char *area, int lng, STR8 progname);

U2284-J-Z125-9-76 509

C interface sdflev

sdflev
Position on operand array

The sdflev function enables the user to position on an operand array belonging to a
structure description (see page 365ff). All functions that access data in the standardized
transfer area always refer to the current operand array.

When the sdfinit function is called, the system positions on the operand array of the highest
level, in other words on the operand array whose operand was defined in the syntax file with
the SDF-A statement ADD-OPERAND ...,RESULT-OPERAND-LEVEL=1.

The sdflev function always refers to the current operand array. This can be the operand
array of a structure description, if the sdflev function has already been called beforehand.

The structure description can also be an element in a list (the operand type check with
sdftyp returns ’list’ as the operand type). In this case, the user must specify both the position
of the list in the current operand array and the position of the structure description in the list.
If the structure description is not an element in a list, the user needs to specify only the
position of the structure description in the operand array.

To return to the operand array of the highest level, enter 0 for the position.

Since the function has an optional parameter, there are 2 different formats.

Format 1:

Format 2:

int sdflev (char *area, int pos);

int sdflevls (char *area, int pos, int lst);

510 U2284-J-Z125-9-76

sdfrc C interface

Description of the parameters

char *area Pointer to the buffer in which the standardized transfer area was
created (see sdfinit).

int pos Position of the structure description in the current operand array or
position of the list containing the structure description. pos=0
positions on the operand array of the highest level.

int lst Relevant only if the structure description is an element in a list;
specifies the position of the structure description in the list.

Result

The function returns an integer as its result (see page 503).

sdfrc
Set command return code

The sdfrc function enables a user program to save values it generates as command return
codes; these are made available to the command processor as the official command return
codes when the program is terminated and can then be used by other system functions
such as SDF-P (see the “Commands” manual [4]). The sdfrc function is based on the
CMDRC macro (see page 402ff).

Format:

Description of the parameters

char *area Pointer to a string containing the command return code, must be
aligned on a halfword boundary. The predefined structure type
SDF_COMMAND_RC should be used (see example on
page 519ff).

Result

The function returns an integer as its result (see page 503).

int sdfrc (char *area);

U2284-J-Z125-9-76 511

C interface sdfrd

sdfrd
Read and analyze statement

The sdfrd function causes SDF

– to read a program statement from SYSSTMT. (The assignment for the SYSDTA system
file also applies to SYSSTMT. The rules governing continuation lines, continuation
characters, logging and comments in SYSSTMT are the same as those that apply to
SYSCMD.)

– analyze the statement read in and

– transfer the result of this analysis to the program.

This presupposes that an activated syntax file contains the definition of the program and its
statements. For details, see the description of the RDSTMT macro (page 606ff).

Since the function has a number of optional parameters, there are 5 different formats.

Format 1:

Format 2:

Format 3:

Format 4:

Format 5:

int sdfrd (char *area);

int sdfrdmsg (char *area, char *msg);

int sdfrdall (char *area, char *msg, char *allow);

int sdfrdpre (char *area, char *msg, char *allow, STR8 prefer);

int sdfrddef (char *area, char *msg, char *allow, STR8 prefer, char *def1,
 char *def2, char *def3, char *def4, char *def5);

512 U2284-J-Z125-9-76

sdfrd C interface

Description of the parameters

char *area Pointer to the buffer in which the standardized transfer area was
created (see sdfinit).

char *msg Pointer to a message to be output before the statement is read. SDF
internally converts the string into a variable-length record. The
string must be no more than 400 characters long. If a NULL pointer
is specified, no message is displayed.

char *allow Pointer to the list of valid statements (must be aligned on word
boundary).

Format of list of valid statements:

STR8 prefe Only in guided dialog: internal name of the statement expected next,
8 characters long, with zero (’\0’) as the last character.

char *def1,*def2,*def3,*def4,*def5
Pointers to up to 5 conversion descriptions with which default values
of operands can be replaced by values generated dynamically by
the program. A value must be specified for each of the 5 pointers.
Pointers not needed must be specified as NULL pointers. All
pointers after the first NULL pointer are ignored.

Result

The function returns an integer as its result (see page 503).

Read and convert default values

With the aid of conversion descriptions, default values of operands defined in the syntax file
with ADD-VALUE ...,VALUE=<c-string>...(OVERWRITE-POSSIBLE=*YES) or ADD-
OPERAND...,OVERWRITE-POSSIBLE=*YES can be replaced by values generated
dynamically by the program. Only one conversion description can be specified per
statement. The conversion description contains the internal statement name and the infor-
mation defining which operand values can be replaced and how. A conversion description
can be generated either by an sdfrd call executed beforehand or by an sdftr call in which
the new values are entered. This description has the format of a standardized transfer area.

N statement 1 statement 2 statement n

N
statementx

(2 bytes) :
(8 bytes) :

number of statements in the list
internal name of a valid statement

U2284-J-Z125-9-76 513

C interface sdfsta

sdfsta
Output information about syntax files

The sdfsta function outputs information concerning activated syntax files and the specifica-
tions applying to command/statement input and processing.
For a description of the transfer area for the information, see the CMDSTA macro
(page 425ff).

Since the function has an optional parameter, there are 2 different formats.

If format 1 is called, the short form is always output, i.e.:

activated syntax files, but no subsystem syntax files, plus the current options for the input
and processing of commands and statements. The predefined structure type
SDF_STATUS_SHORT should be used for area (see example on page 519ff).

If format 2 is called, the long form is output, i.e.:

activated syntax files (including subsystem syntax files) and the current options for the input
and processing of commands and statements. The scope of information about subsystem
syntax files depends on the amount of space available in the transfer area. If the subsystem
information overflows the transfer area, an error code to the appropriate effect is output.

Format 1:

Format 2:

Description of the parameters

char *area Pointer to the transfer area in which the information is to be stored
by SDF; must be aligned on a halfword boundary.

int lng Length of transfer area for FORM=LONG (see CMDSTA macro).
The length must be greater than SDF_STATUS_SIZE_SHORT
(SDF_STATUS_SIZE_SHORT=530)

Result

The function returns an integer as its result (see page 503).

int sdfsta (char *area);

int sdfstal (char *area, int lng);

514 U2284-J-Z125-9-76

sdfstmt C interface

sdfstmt
Read statement name from transfer area

The sdfstmt function reads the internal name of a statement read beforehand with the sdfrd
function from the standardized transfer area. It can also be used to query the number of
operands in the statement.

Since the function has an optional parameter, there are 2 different formats.

Format 1:

Format 2:

Description of the parameters

char *area Pointer to the buffer in which the standardized transfer area was
stored (see sdfinit).

STR8 stmt String for the internal name of the statement, 8 characters long, with
zero (’\0’) at the end.

int *num Pointer to the number of operands in the statement read.

Result

The function returns an integer as its result (see page 503).

int sdfstmt (char *area, STR8 stmt);

int sdfstmtn (char *area, STR8 stmt, int *num);

U2284-J-Z125-9-76 515

C interface sdfstv

sdfstv
Analyze data type and length of value introducing structure

The sdfstv function analyzes the operand value introducing a structure to determine its data
type and length. The sdfstv function must be preceded by a sdftyp call returning the
operand type structure (19) as its result. An operand value does not introduce a structure
unless it was defined with STRUCTURE=*YES(FORM=*NORMAL) in the SDF-A statement
ADD-VALUE.

Since the function has an optional parameter, there are 2 different formats.

Format 1:

Format 2:

Description of the parameters

char *area Pointer to the buffer in which the standardized transfer area was
created (see sdfinit).

int pos Position of the value of the operand introducing the structure.

int *typ Pointer to a value containing the type of the operand value (for
description of types, see page 372ff).

int *lng Pointer to the length of the operand value.

int lst Relevant only if the operand value is an element in a list and
specifies the position of the structure in the list.

Result

The function returns an integer as its result (see page 503).

int sdfstv (char *area, int pos, int *typ, int *lng);

int sdfstvls (char *area, int pos, int *typ, int *lng, int lst);

516 U2284-J-Z125-9-76

sdftr C interface

sdftr
Analyze statement

The sdftr function analyzes a statement in text format and translates it into the format for the
standardized transfer area. The result of this analysis is stored in the standardized transfer
area. For detailed information, see the description of the TRSTMT macro (page 614ff).

The sdftr function can also be used to create conversion descriptions for the sdfrddef
function.

Since the function has an optional parameter, there are 2 different formats.

Format 1:

Format 2:

Description of the parameters

char *area Pointer to the buffer in which the standardized transfer area was
placed (see sdfinit).

char *stmt Pointer to a string containing the statement to be analyzed in text
format. SDF internally converts the string into a variable-length
record.

char *allow Pointer to a list of statements permissible as inputs (must be aligned
on a word boundary).

Format of the list of permissible statements:

Result

The function returns an integer as its result (see page 503).

int sdftr (char *area, char *stmt);

int sdftrall (char *area, char *stmt, char *allow);

N statement 1 statement 2 statement n

N
statementx

(2 bytes):
(8 bytes) :

number of statements in the list
internal name of a valid statement

U2284-J-Z125-9-76 517

C interface sdftyp

sdftyp
Analyze data type and length of operands

The sdftyp function analyzes an operand at a given position to ascertain its data type and
its length. The position corresponds to the position defined with the SDF-A statement ADD-
OPERAND ..., RESULT-OPERAND-NAME=*POS(...).

Format 1:

Format 2:

Description of the parameters

char *area Pointer to the buffer in which the standardized transfer area was
created (see sdfinit).

int pos Position of the operand (as specified in ADD-OPERAND ...,
RESULT-OPERAND-NAME=*POS(...)).

int *typ Pointer to a value containing the type of the operand (see
page 372ff).

int *lng Pointer to the length of the operand.

int lst Relevant only if the operand is an element in a list and specifies the
position of the operand in the list.

Result

The function returns an integer as its result (see page 503).

int sdftyp (char *area, int pos, int *typ, int *lng);

int sdftypls (char *area, int pos, int *typ, int *lng, int lst);

518 U2284-J-Z125-9-76

sdfval C interface

sdfval
Read operand value from transfer area

The sdfval function reads the value of an operand at a certain position from the
standardized transfer area. The sdfval call must be preceded by an sdftyp or sdfstv call
defining the operand type and the operand length.

Since the function has an optional parameter, there are 2 different formats.

Format 1:

Format 2:

Description of the parameters

char *area Pointer to the buffer in which the standardized transfer area was
created (see sdfinit).

int pos Position of the operand in the current operand array.

char *val Pointer to a string in which the value is to be placed.

int lng Length of the val string, must be greater than or equal to the value
returned beforehand for the lng parameter by sdfstv or sdftyp.

int lst Relevant only if the operand is an element in a list and specifies the
position of the operand in the list.

Result

The function returns an integer as its result (see page 503).

int sdfval (char *area, int pos, char *val, int lng);

int sdfvalls (char *area, int pos, char *val, int lng, int lst);

U2284-J-Z125-9-76 519

C interface Example

6.5.3.3 Example of the use of the C functions

In section “Example: Program for copying files” on page 104 an Assembler program KOP
for copying SAM and ISAM files was created. The following example is intended to show
how to achieve similar results with a C program. In addition to the SDF standard statements,
the program KOPC has the following statement:

Defining the program in the user syntax file

The KOPC program is defined in the syntax file SDF.USER.SYNTAX. This is done by
passing the same statements to SDF-A as are given on page 105ff, except for statements
4 and 5, which are entered as follows:

//add-prog kopc --- (4)
//add-stmt name=copy-file,prog=kopc,intern-name=copyfi,stmt-vers=1 ------ (5)

COPY-FILE

FROM-FILE = <filename 1..54>

,TO-FILE = <filename 1..54 without-gen-vers>(...)

<filename 1..54 without-gen-vers>(...)

 ACCESS-METHOD = *SAME / *ISAM(...) / *SAM
 *ISAM(...)
 KEY-LENGTH = *STD / <integer 1..50>
 ,RECORD-SIZE = *SAME / *VARIABLE / <integer 1..2048>

,PASSWORD = *NONE / <c-string 1..4> / *SECRET-PROMPT

520 U2284-J-Z125-9-76

Example C interface

Generating the program

Excerpts from the KOPC program are reproduced on the following pages.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
/*******************************/
/* SDF includes */
/*******************************/
#include "sdfc.h"
#include "sdfcext.h"

/*******************************/
/* Constants & types */
/*******************************/
#define OUTPUTL 200
typedef char STR8[8+1]; /* string of 8 chars, null terminated */
typedef char FILENAME[54+1];
typedef char STR4[4+1];

main () {

/*******************************/
/* data */
/*******************************/

/* SDF interface data */

char *output;
SDF_STATUS_SHORT *status;
char *usfname;
STR8 name;
int sdf_err;
int sdf_op_l,sdf_op_t;
char val_char[16];

/* program data */

FILENAME from_file,to_file;
int access;
int keyl;
int recs_var;
int recs;
int passwd_given;
STR4 passwd;
int nocorr;

U2284-J-Z125-9-76 521

C interface Example

/* SDF interface data allocation */

if ((output=malloc(OUTPUTL)) == NULL) exit(2);
if ((status=malloc(SDF_STATUS_SIZE_SHORT)) == NULL)exit(2);

/*******************************/
/* check syntax file */
/*******************************/

sdf_err = sdfsta((char *)status);
if (sdf_err) exit(3);
usfname = strchr((status)->sdf_user_sf_name,'.') + 1;
if (strncmp(usfname,
 "SDF.KOP.SYNTAX",14))
 exit(3);

/*******************************/
/* initialization */
/*******************************/

sdf_err = sdfinit (output,OUTPUTL, "KOP ");
if (sdf_err) exit(4);

/*******************************/
/* read first statement */
/*******************************/

sdf_err = sdfrd (output);
switch (sdf_err) {
 case SDF_END:
 case SDF_EOF: return(0);
 case SDF_OK: break;
 default: exit(5);
 }

/*******************************/
/* analyse loop */
/*******************************/

do {
 /* * * * * * * * * * * * * * * * */
 /* transfer area analysis */
 /* * * * * * * * * * * * * * * * */

 /* statement name */

 sdf_err = sdfstmt (output,name);

522 U2284-J-Z125-9-76

Example C interface

 if (sdf_err) exit(6);
 if (strncmp (name,"COPYFI ",8)) exit(7);

 /* operand from file */

 sdf_err = sdftyp (output,1,&sdf_op_t,&sdf_op_l);
 if (sdf_err) exit(8);
 sdf_err = sdfval (output,1,from_file,sdf_op_l);
 if (sdf_err) exit(9);
 from_file[sdf_op_l] = '\0';

 /* operand password */

 passwd_given = 0;
 sdf_err = sdftyp (output,6,&sdf_op_t,&sdf_op_l);
 if (sdf_err) exit(10);
 if (sdf_op_t == SDF_CSTR) {
 passwd_given = 1;
 sdf_err = sdfval (output,6,passwd,sdf_op_l);
 if (sdf_err) exit(11);
 passwd[sdf_op_l] = '\0';
 }

 /* operand to file */

 sdf_err = sdftyp (output,2,&sdf_op_t,&sdf_op_l);
 if (sdf_err) exit(13);
 sdf_err = sdfval (output,2,to_file,sdf_op_l);
 if (sdf_err) exit(14);
 to_file[sdf_op_l] = '\0';

 /* sub operand access-method */

 sdf_err = sdftyp (output,3,&sdf_op_t,&sdf_op_l);
 if (sdf_err) exit(15);
 sdf_err = sdfval (output,3,val_char,sdf_op_l);
 if (sdf_err) exit(16);
 if (sdf_op_l == 3)
 access = 1; /* assume SAM is 1 */
 else if (val_char[0] == 'I')
 access = 2; /* assume ISAM is 2 */
 else
 access = 0; /* assume SAME is 0 */

 /* sub sub operand key length */

U2284-J-Z125-9-76 523

C interface Example

 if (access == 2) { /* only for ACCESS-METHOD=ISAM */
 sdf_err = sdftyp (output,4,&sdf_op_t,&sdf_op_l);
 if (sdf_err) exit(17);
 switch (sdf_op_t) {
 case (SDF_NOTY): return(17); /* operand not occupied */
 case (SDF_INTG):
 sdf_err = sdfval (output,4,(char *)&keyl,sdf_op_l);
 if (sdf_err) exit(18);
 break;
 default: keyl = 8;
 break;
 }
 }

 /* sub operand record-size */

 recs = 0;
 recs_var = 0;
 sdf_err = sdftyp (output,5,&sdf_op_t,&sdf_op_l);
 if (sdf_err) exit(21);
 if (sdf_op_t == SDF_INTG) {
 sdf_err = sdfval (output,5,(char *)&recs,sdf_op_l);
 if (sdf_err) exit(22);
 }
 else {
 sdf_err = sdfval (output,5,val_char,sdf_op_l);
 val_char[sdf_op_l] = '\0';
 if (sdf_err) exit(23);
 if (!strcmp (val_char,"SAME"))
 recs = 0; /* assume 0 is same */
 else if (!strcmp (val_char,"VARIABLE"))
 recs_var = 1;
 else exit(24);
 }

 /* * * * * * * * * * * * * * * * */
 /* actual processing */
 /* * * * * * * * * * * * * * * * */

 /* semantic validation of input parameter and
 correction if necessary */
 /* example : open of input file
 call DMS
 IF error
 sdf_err = sdfcbit (output,1);
 sdf_err = sdfcor (output,"Input file can not be opened");
 if (!sdf_err) continue; restart analysis */

524 U2284-J-Z125-9-76

Example C interface

 /* example : assume password 'AAAA' wrong : prompt for
 correction */
 nocorr = 0;
 if (!strcmp (passwd,"AAAA")) {
 sdf_err = sdfcbit (output,6);
 sdf_err = sdfcor (output,"Invalid password");
 if (!sdf_err) continue; /* restart analysis */
 else nocorr = 1;
 }

 if (!nocorr) {
 /* copy processing */
 printf ("from file %s\n",from_file);
 printf ("to file %s\n",to_file);
 printf ("access %d \n",access);
 if (access == 2) {
 printf ("key l %d\n",keyl);
 }
 if (!recs_var)
 printf ("recs %d \n",recs);
 else
 printf ("rec var\n");
 if (passwd_given)
 printf ("password %s\n",passwd);
 }

 /* * * * * * * * * * * * * * * * */
 /* read next statement */
 /* * * * * * * * * * * * * * * * */

 sdf_err = sdfrd (output);
 switch (sdf_err) {
 case SDF_END:
 case SDF_EOF: return(0);
 case SDF_OK: break;
 default: exit(3);
 }
} while (1); /* endless loop */

}

U2284-J-Z125-9-76 525

C interface Example

Testing the program

The source program KOPC shown above has been compiled and linked and can now be
tested.

/set-logon-parameters sdfusr,... —————————————————————————————————————— (1)
 .
 .
/modify-sdf-options syntax-file=*add(sdf.kop.syntax) —————————————————— (2)
/start-exe *lib-elem(lib=kop.lib,elem=kopc) ——————————————————————————— (3)
% BLS0524 LLM 'KOPC', VERSION ' ' OF '2001-10-10 14:00:22' LOADED
% BLS0551 COPYRIGHT (C) FUJITSU SIEMENS COMPUTERS GMBH 2001. ALL RIGHTS
RESERVED
%// ... ——— (4)
 .
 .

1. A task is started under the user ID SDFUSR.

2. The user syntax file SDF.KOP.SYNTAX, in which statements for the program KOPC are
defined, is activated.

3. The program KOPC is started. The command used here, START-EXECUTABLE-
PROGRAM, is available in BLSSERV V2.3 and higher (the START-PROGRAM
command with RUN-MODE=*ADVANCED is to be used if necessary).

4. The program KOPC expects the entry of a statement. This can be one of the SDF
standard statements or the COPY-FILE statement. The KOPC program can be tested
in the same way as the KOP program (cf. page 120ff, from step 8 onwards).

526 U2284-J-Z125-9-76

Example C interface

U2284-J-Z125-9-76 527

7 SDF-SIM
When defining commands and statements with SDF-A, there is no way of getting by without
testing their syntax. SDF-SIM (System Dialog Facility-Simulator) provides you with a tool
that enables you to carry out this essential syntax test efficiently and without risk in a test
environment of your own choice.

SDF-SIM has a simple interface which makes it easy to use. It supports a variety of useful
auxiliary features, such as:

– flexible test environments

– simulation of procedure or batch mode with realistic spin-off behavior

– entry of job variables

– support of privileges

– differentiated output options for the simulation result.

Defining the simulation environment

SDF-SIM can be used to simulate an environment in which the syntax of commands and
statements is analyzed. This environment is not dependent on the BS2000 system
environment and a user who is not equipped with any special privileges can exert a consid-
erably greater influence on it than is normally possible (e.g. as regards assigning system
and group syntax files).

The following SDF options can be defined for the environment:

– batch or interactive mode

– procedure mode

– guided dialog or unguided dialog

– continuation mode (CONTINUATION)

– logging (INPUT-FORM, ACCEPTED-FORM, INVARIANT-FORM)

– privileges belonging to the task.

528 U2284-J-Z125-9-76

Outputting information on the command or statement SDF-SIM

Testing command and statement syntax

The syntax of the commands or statements, which are described in a specific SDF syntax
file hierarchy (system, group and user syntax file), is tested on TU level. This enables the
user to check how SDF edits the syntax of an entered command or statement.

The procedures, programs or command servers are not required for the syntax test as SDF-
SIM only accesses the syntax definitions in the defined syntax file hierarchy. This can be
seen in Figure 16.

Figure 16: Testing the command and statement syntax

Outputting information on the command or statement

The following information is output for each simulated command or statement:

– log of the command or statement

– interface type for the commands (ASS/ISL/SPL/PROCEDURE)

– name of the entry point for the routine executing the command (for TPR commands
only)

– output format:
– character string if a TPR command is mapped onto an old ISP command or if the

command is implemented by a procedure
– SDF transfer area in the case of new SDF commands or statements
– in the case of commands implemented by a procedure, the associated procedure

call is also output. This enables you to check how the procedure parameters are
passed to the procedure (see the example on page 566).

Command or
statement
input

SDF-SIM ISP character string or
SDF transfer area

System, group
and user syntax
files

U2284-J-Z125-9-76 529

SDF-SIM Working with SDF-SIM

7.1 Working with SDF-SIM

Components for installing SDF-SIM

The statements that can be passed to SDF-SIM are defined in the syntax file
SYSSDF.SDF-SIM.045.

The following files are supplied as part of SDF-SIM:

Coexistence between different SDF-SIM versions

The START-SDF-SIM command (see page 530) invokes the SDF-SIM version that was
specified for the user´s system by the system administrator. This will usually be the latest
SDF-SIM version. It is, however, also possible to call an older SDF-SIM version if desired.
The following steps are required for this purpose:

1. Create a user syntax file with SDF-A and copy all SDF-SIM statements of the desired
SDF-SIM version into it (using the COPY statement). The required SDF-SIM state-
ments can be found in the system syntax file that was supplied with the desired SDF-
SIM version (SYSSDF.SDF-SIM.<version>).

2. Activate the created user syntax file with the MODIFY-SDF-OPTIONS command (see
the “Commands” manual [4]).

3. Call the desired SDF-SIM version with the following command:

/START-EXE *LIB-ELEM(LIBRARY=$.SYSLNK.SDF-SIM.vvv,ELEMENT=SDF-SIM) 1

<version> is the desired version number, e.g. 041 for SDF-SIM V4.1.

or

/START-SDF-SIM VERSION=<version>

<version> is the desired version number, e.g. 041 for SDF-SIM V4.1.

SYSLNK.SDF-SIM.045 Library containing the module SDF-SIM.

SYSSDF.SDF-SIM.045 Syntax file containing the SDF-SIM statements and the
START-SDF-SIM command.

SYSMES.SDF-SIM.045 SDF-SIM message file

1 The command used here, START-EXECUTABLE-PROGRAM, is available in BLSSERV V2.3 and higher (the command
START-PROGRAM is to be used if necessary).

530 U2284-J-Z125-9-76

Starting and terminating SDF-SIM SDF-SIM

Starting SDF-SIM

SDF-SIM is started by means of the following command:

VERSION=
Allows the user to select the desired SDF-SIM version if multiple versions of SDF-SIM were
installed with IMON. If the version is specified within single quotes, it may be preceded by
the letter C (C-STRING syntax).
If the product was not installed using IMON or if the specified version does not exist,
VERSION=*STD applies (see also “Coexistence between different SDF-SIM versions” on
page 529).

VERSION=*STD
Calls the SDF-SIM version with the highest version number.

VERSION=<product-version>
Specifies the SDF-SIM version in the format m.n[a[so]] (see also “product-version” on
page 15).

MONJV =
Specifies a monitoring job variable to monitor the SDF-SIM run.

MONJV = *NONE
No monitoring job variable is used.

MONJV = <filename 1..54 without-gen-vers>
Name of the job variable to be used.

CPU-LIMIT =
Maximum CPU time in seconds which the program may consume for execution.

CPU-LIMIT = *JOB-REST
The remaining CPU time available is to be used for the job.

CPU-LIMIT = <integer 1..32767 seconds>
Only as much time as is specified is to be used.

START-SDF-SIM Abbreviation: SDF-SIM

VERSION = *STD / <product-version>

,MONJV = *NONE / <filename 1..54 without-gen-vers>

,CPU-LIMIT = *JOB-REST / <integer 1..32767 seconds>

U2284-J-Z125-9-76 531

SDF-SIM Starting and terminating SDF-SIM

You can then enter the statements for preparing the simulation (DEFINE-TEST-OBJECT,
DEFINE-ENVIRONMENT).

The simulation is started after entry of the START-SIMULATION statement. SDF-SIM first
of all displays the current syntax file hierarchy, then it displays an asterisk (*) prompting you
to enter the command or statement to be simulated.

Terminating SDF-SIM

During simulation ('*' prompting), SDF-SIM can be terminated by entering the string ’/*’.
During the preparations for simulation (’%//’ prompting), this can also be done with the aid
of the SDF standard statement END.

Features of a simulation run

The following example shows the basic features of a simulation run.

The statements for preparing simulation can also be specified more than once. In such
cases, the settings made with the last statement of the same sort apply.

/START-SDF-SIM
%// ...
%// ...
%// ...
%//START-SIMULATION
* ...
* ...
* ...
/

Statements for preparing simulation

Starting simulation

Commands / statements to be simulated

532 U2284-J-Z125-9-76

Command environment SDF-SIM

7.1.1 Command environment

SDF-SIM checks the command defined in the active syntax file hierarchy for syntax errors.
This check is conducted within an environment defined by means of the DEFINE-
ENVIRONMENT statement.

Simulation preparation

If a parameter file (*STD or <filename>) is specified in the PARAMETER-FILE operand, the
names of the system syntax file and the group syntax file assigned to the profile ID of TSOS
(SYS-TSOS) are read from the parameter file and activated for the simulation.
If the parameter file contains an error or the syntax files are invalid, the system syntax file
and the TSOS group syntax file with the standard names are used.

If the name of the system, group or user syntax file is entered and an error occurs during
activation of the syntax file, an error message is output. In the case of an error in the system
or group syntax file, the syntax files with the standard names are activated. If there is an
error in the user syntax file, no user syntax file is activated. At least one system or group
syntax file must be activated, otherwise simulation is impossible as there is no global infor-
mation available. If *STD is entered for the system syntax file, only the current basic system
syntax file is activated. If *CURRENT is entered as the system syntax file, then the current
basic system syntax file and the current subsystem syntax file are activated.

Simulation

Once simulation has been started, the command to be simulated can be entered in guided
or unguided dialog. This is also contingent upon the specification in the MODIFY-SDF-
OPTIONS command (see the example on page 556). Both in simulated procedure mode
and in batch mode (statement DEFINE- ENVIRONMENT PROC-MODE=*YES or TASK-
TYPE=*BATCH), the command entered must be preceded by a slash (/). The commands
may also be entered in lowercase letters (see the example on page 561).

Output

A log is output after the syntax analysis. This log contains the name of the entry point, the
type of the programming language interface, the generated character string (ISP format) or
the standardized transfer area for commands defined by way of the SDF-A statement ADD-
CMD ...,IMPLEMENTOR=*TPR(...,CMD-INTERFACE=*NEW/*TRANSFER-AREA...).

Replacing job variables

Job variables are replaced in SDF-SIM in exactly the same way as when simulation is not
being performed (see the example on page 560). Procedure parameters, however, cannot
be replaced.

U2284-J-Z125-9-76 533

SDF-SIM Command environment

Special SDF commands

The following SDF commands can be used if they are contained in at least one of the syntax
files from the syntax file hierarchy. These commands are not simulated, they are really
executed by SDF-SIM.

These commands include:

– MODIFY-SDF-OPTIONS:
This activates and deactivates a user syntax file and modifies the SDF options for
simulation (see page 551ff).

– SHOW-SDF-OPTIONS:
This displays the active syntax files and the SDF options set for simulation.

– SHOW-INPUT-HISTORY:
This shows a list of preceding inputs.

– RESTORE-SDF-INPUT:
This restores the input.

– SHOW-INPUT-DEFAULTS:
This displays task-specific default values.

– RESET-INPUT-DEFAULTS:
This resets task-specific default values.

– WRITE-TEXT:
This displays text that has been entered.

– SHOW-SYNTAX-VERSIONS:
This displays the names and versions of the syntax files of individual products contained
in currently active group and system syntax files.

– MODIFY-SDF-PARAMETERS:
This modifies or creates a parameter file for SDF.
This command can only be executed if the privilege *TSOS or *ALL has been specified
in the DEFINE-ENVIRONMENT statement. In contexts other than simulation, it is
reserved for system administration.

– SHOW-SDF-PARAMETERS:
This displays the contents of the SDF parameter file.
This command can only be executed if the privilege *TSOS or *ALL has been specified
in the DEFINE-ENVIRONMENT statement. In contexts other than simulation, it is
reserved for system administration.

534 U2284-J-Z125-9-76

Command environment SDF-SIM

Information output by SDF-SIM

SDF-SIM outputs the following information:

– the log; SDF supplies this in the form defined in the LOGGING operand of the MODIFY-
SDF-OPTIONS command

– the name of the entry point into the TPR routine (not if the command was defined with
ADD-CMD ...,IMPLEMENTOR=*PROCEDURE (see SDF-A))

– the interface type: ASS/SPL/ISL/PROCEDURE

– the output supplied by the command server, namely either:

– a character string, if a command is mapped onto an old ISP command or if the
command is implemented by way of a procedure, or

– a standardized transfer area of not longer than 2042 bytes.

In the case of commands implemented by way of a procedure, the generated procedure call
is also output. For commands which use the new format of the standardized transfer area
(as of SDF V4.1), the version of the transfer area and command area are also displayed.

Example

Command implemented by way of a procedure (defined with ADD-CMD
 ...,IMPL=*PROCEDURE..., see SDF-A page 133ff)

/x-write 'date 2001-12-31'
(IN) /x-write 'date 2001-12-31'

ENTRY : CLICOLD
INTERFACE : ISL
STRUCTURE-FORM
GENERATED CALL COMMAND :
/CALL-PROCEDURE $USER1.PROC.TEXT.1,(TEXT='date 2001-12-31')

U2284-J-Z125-9-76 535

SDF-SIM Statement environment

7.1.2 Statement environment

SDF-SIM checks statements defined in the active syntax file hierarchy for syntax errors. The
internal name of the program to which the statements to be simulated belong as well as the
format of the standardized transfer area used for the statements must be specified in the
preparatory phase for simulation (see DEFINE-TEST-OBJECT TEST-
MODE=*STMT(PROGRAM-NAME=...,LAYOUT=*OLD/*NEW).

The statements are simulated in the environment defined by means of DEFINE-
ENVIRONMENT. The MODIFY-SDF-OPTIONS statement can be used to influence
simulation in the same way as in the command environment (guided or unguided dialog,
form of logging, etc.).

On completion of the syntax analysis, a log and the standardized transfer area are output,
if so requested by the user.

Information output by SDF-SIM

SDF-SIM outputs the following information:

● the log of the statement in the form defined in the LOGGING operand of the
MODIFY-SDF-OPTIONS statement

● the standardized transfer area (a detailed example can be found on page 567).

The standardized transfer area is displayed as follows if:

– the operand DISPLAY=*LONG is set in the DEFINE-ENVIRONMENT statement, or

– the message
% SDS0008 DO YOU WANT TO DISPLAY TRANSFER AREA? REPLY: NO/LONG/SHORT
is answered with “LONG”.

If DISPLAY=*SHORT is specified, only the first part (the contents of the transfer area in
hexadecimal form) is output. The structure description is only output if
DISPLAY=*LONG is specified. The internal name of the statement is displayed. The
structure description of the statement must not be longer than 15000 bytes.

536 U2284-J-Z125-9-76

Statement environment SDF-SIM

Example

 .
 .
 % SDS0008 DO YOU WANT TO DISPLAY TRANSFER AREA? REPLY: NO/LONG/SHORT
 *long

 *** TRANSFER AREA ***
        ~~~~~~~~~~~~~~~~~~~~~
                     x x  x x x x
        (0FD540) 07FAC3D9 C6C9D3C5 40400000 00000000 00000020 ...
        (0FD5C0) 00000000 00000000 00000000 00000000 00008014 ...
        (0FD600) 00000000 00000000 00000000 00000000 ...
        (0FD6E0) 00000000 00000000 80160005 ...
         .
         .
        *** STRUCTURED DESCRIPTION ***
        ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 INTERNAL NAME OF THE CMD/STMT : xxxxxxxx
 VERSION OF THE TRANSFER AREA : x
 VERSION OF THE CMD/STMT : x
 MAXIMUM NUMBER OF OPERANDS : xx
 OP(1) :
 - TYPE : KEYWORD
 - LENGTH : xx
 - VALUE : xxxxxx

 OP(2) :
 - TYPE : STRUCTURE
 VALUE INTRODUCING THE STRUCTURE:
 - TYPE : xxxx
 - LENGTH : xx
 - VALUE : xxxxxxx
 MAXIMUM NUMBER OF OPERANDS : xx
 OP(1) :
 - TYPE : xxxxxx
 - LENGTH :
 - VALUE : ...
 OP(2) :
 .
 .

 OP(3) :
 - TYPE : LIST
 - VAL(1) : - TYPE : xxxx
 - LENGTH : xxxxxxx
 - VALUE : xxxxxxx
 - VAL(2) :

(only for new format of standardized
transfer area (as of SDF V4.1))

U2284-J-Z125-9-76 537

SDF-SIM Statement environment

 OP(4) :
 - TYPE : OR_LIST
 - LENGTH : xxxx
 - VALUE : xxxxx
 .
 .

The following values are possible for TYPE:

STRUCTURE : Structure
LIST : List

OR_LIST : OR list
X_STR : Hexadecimal string (x-string)
ALPHA_NAME : Alphanumeric name (alphanum-name)
NAME : Name (name)
STRUCT_NAME : Structured name (structured-name)
COM_R : Command rest (command-rest)
C_STR : Character string (c-string)
TEXT : Text (text)
INT : Integer (integer)
KEYW : Keyword (KEYWORD)
KEYW_NUM : Keyword number (reserved for internal use)
F_FILENAME : Fully qualified file name (filename)
P_FILENAME : Partially qualified file name (partial-filename)
TIME : Time (time)
DATE : Date (date)
CAT_ID : Catalog identifier (cat-id)
REAL : real
LABEL : Label (label)
STAR-ALPHA : star-alphanumeric
COMPOSED_N : Composed name (composed-name)
INPUT_TEXT : Input text (input-text)
VSN : Volume serial number (vsn)
X_TEXT : X text (x-text)
FIXED : Fixed-point number (fixed)
DEVICE : Device (device)
POSIX_PATHN : POSIX pathname (posix-pathname)
POSIX_FILEN : POSIX file name (posix-filename)
PRODUCT_V : Product version (product-version)

538 U2284-J-Z125-9-76

Statement environment SDF-SIM

Special SDF statements

The following statements are SDF standard statements and are therefore defined for all
programs if the activated syntax file was created correctly. These statements are not
simulated by SDF-SIM; they are actually executed. As of SDF V4.1 the SDF standard state-
ments in the syntax file are defined by SDF. They are no longer assigned to the SDF-U
syntax file and cannot be copied into the syntax file of the application program. Therefore,
when standard statements are used in the simulation, an SDF parameter file must be
specified which, as basic system syntax file, contains the syntax file (see the example on
page 549).

These statements include:

– MODIFY-SDF-OPTIONS:
This activates or deactivates a user syntax file and modifies the SDF options for
simulation.

– SHOW-SDF-OPTIONS:
This displays the active syntax files and the SDF options set for simulation.

– SHOW-INPUT-HISTORY:
This shows a list of preceding inputs.

– RESTORE-SDF-INPUT:
This restores the input.

– SHOW-INPUT-DEFAULTS:
This shows task-specific default values.

– SHOW-STMT:
Show the syntax of a statement

– RESET-INPUT-DEFAULTS
This resets task-specific default values.

– WRITE-TEXT:
This displays text that has been entered.

– REMARK:
This provides comments on statement sequences.

– STEP:
This interrupts the spin-off mechanism.

– END:
This terminates the simulated program.

The SDF standard statements EXECUTE-SYSTEM-CMD and HOLD-PROGRAM (as of
SDF V4.0 and BS2000/OSD-BC V2.0) are no longer supported in SDF-SIM.

U2284-J-Z125-9-76 539

SDF-SIM SDF-SIM in procedures and batch tasks

Program notes

– If the program name specified in the DEFINE-TEST-OBJECT statement is not defined
in the activated syntax file hierarchy, execution of START-SIMULATION is followed by
the display of the syntax file hierarchy, output of the message
% SDS0006 PROGRAM ’...’ NOT DEFINED IN ACTIVATED SYNTAX FILES
and the termination of SDF-SIM.

– The SDF-A statement ADD-PROGRAM ... COMMENT-LINE=... can be used to add
comment lines to programs. If COMMENT-LINE=*STD was specified, no comment line
will appear in the simulation, since SDF-SIM cannot access this internal program infor-
mation.

7.1.3 SDF-SIM execution within a procedure or a batch task

Like other utilities, SDF-SIM can also be called in procedures or batch tasks. However, this
does not implicitly mean that commands or statements are automatically tested in
simulated procedure or batch mode. This is only possible if the DEFINE-ENVIRONMENT
statement with the operand PROC-MODE=*YES or TASK-TYPE=*BATCH is entered.

If the value QUESTION is specified explicitly or implicitly (as the default value) for the
DISPLAY operand of the DEFINE-ENVIRONMENT statement, this has the same effect in
procedures and batch tasks as DISPLAY=*NO.

In the case of commands or statements which are tested within a procedure or a batch task
in procedure or batch mode, an asterisk (*) must be entered before the slash (/) or double
slash (//). If this is not done, the entries will be interpreted as real commands or statements
and will actually be processed.

540 U2284-J-Z125-9-76

Statements SDF-SIM

7.2 SDF-SIM statements

SDF-SIM offers the user the following statements:

– DEFINE-TEST-OBJECT defines the type of the test object. The test object can be either
a command or a statement.

– DEFINE-ENVIRONMENT defines a test environment.

– START-SIMULATION terminates simulation preparation and starts simulation.

The SDF standard statements (MODIFY-SDF-OPTIONS, REMARK, RESTORE-SDF-
INPUT, SHOW-INPUT-HISTORY, SHOW-SDF-OPTIONS, SHOW-STMT, STEP, SHOW-
INPUT-DEFAULTS, RESET-INPUT-DEFAULTS, WRITE-TEXT) can likewise be used in
SDF-SIM. These standard statements will be actually executed at any point in the SDF-SIM
run, i.e. even after START-SIMULATION (during * prompting), and therefore have a direct
effect on the simulation run. For example, you can enter statements in guided dialog during
simulation or conduct an error dialog.

The metasyntax used for SDF-SIM statements can be found in section “Metasyntax” on
page 7. The SDF standard statements are described in the “Introductory Guide to the SDF
Dialog Interface” [1].

U2284-J-Z125-9-76 541

SDF-SIM statements DEFINE-ENVIRONMENT

DEFINE-ENVIRONMENT
Define test environment

The DEFINE-ENVIRONMENT statement defines the test environment for simulation.

The following options can be defined for the environment:

– syntax file hierarchy (PARAMETER-FILE operand)

– procedure mode (PROC-MODE operand)

– batch or dialog mode (TASK-TYPE operand)

– behavior in the event of an error (SPINOFF operand)

– display of the standardized transfer area (DISPLAY operand)

– privileges of the task (PRIVILEGES operand).

– display of call information

(part 1 of 2)

DEFINE-ENVIRONMENT

PARAMETER-FILE = *STD (...) / *NO(...) / <filename 1..54 without-gen-vers>(...)

*STD(...)
 USER = *STD / *NO / <filename 1..54>

*NO(...)
 SYSTEM = *STD / *NO / *CURRENT / <filename 1..54>
 ,GROUP = *STD / *NO / <filename 1..54>
 ,USER = *STD / *NO / <filename 1..54>

<filename 1..54 without-gen-vers>(...)
 USER = *STD / *NO / <filename 1..54>

,PROC-MODE = *NO / *YES

,TASK-TYPE = *DIALOG / *BATCH

,SPINOFF = *NO / *YES

,DISPLAY = *QUESTION / *NO / *SHORT / *LONG

continued ➠

542 U2284-J-Z125-9-76

DEFINE-ENVIRONMENT SDF-SIM statements

PARAMETER-FILE =
Determines the syntax file hierarchy in which the commands or statements are simulated.

PARAMETER-FILE = *STD(...)
The SDF standard parameter file is used.

USER =
Determines the user syntax file.

USER = *STD
The current user syntax file is used.

USER = *NO
No user syntax file is activated.

USER = <filename 1..54>
Name of the user syntax file that is to be activated.

PARAMETER-FILE = *NO
No parameter file is used. The user defines the syntax file hierarchy himself.

SYSTEM =
Determines the system syntax file.

SYSTEM = *STD
The current basic system syntax file is used.

SYSTEM = *NO
No system syntax file is used.

SYSTEM = *CURRENT
The current basic system syntax file and the current subsystem syntax file are used.

SYSTEM = <filename 1..54>
Name of the system syntax file that is to be activated.

,PRIVILEGES = *ALL / list-poss(2000): *TSOS / *SECURITY-ADMINISTRATION /

*USER-ADMINISTRATION / *HSMS-ADMINISTRATION / *SECURE-OLTP /

*TAPE-ADMINISTRATION / *SAT-FILE-MANAGEMENT / *NET-ADMINISTRATION /

*FT-ADMINISTRATION / *FTAC-ADMINISTRATION / *HARDWARE-MAINTENANCE /

*SAT-FILE-EVALUATION / *SUBSYSTEM-MANAGEMENT /

*SW-MONITOR-ADMINISTRATION / *ACS-ADMINISTRATION /

*VM2000-ADMINISTRATION / *VIRTUAL-MACHINE-ADMINISTRATION /

*SECURE-UTM / *PROP-ADMINISTRATION / *OPERATING / *STD-PROCESSING /

*POSIX-ADMINISTRATION / *PRINT-SERVICE-ADMINISTRATION

,CALL-INFORMATION = *YES / *NO

(part 2 of 2)

U2284-J-Z125-9-76 543

SDF-SIM statements DEFINE-ENVIRONMENT

GROUP =
Determines the group syntax file.

GROUP = *STD
The current group syntax file is used.

GROUP = *NO
No group syntax file is activated.

GROUP = <filename 1..54>
Name of the group syntax file that is to be activated.

USER =
Determines the user syntax file.

USER = *STD
The current user syntax file is used.

USER = *NO
No user syntax file is activated.

USER = <filename 1..54>
Name of the user syntax file that is to be activated.

PARAMETER-FILE = <filename 1..54 without-gen-vers>(...)
Name of the parameter file that is used.

USER =
Determines the user syntax file.

USER = *STD
The current user syntax file is used.

USER = *NO
No user syntax file is activated.

USER = <filename 1..54>

Name of the user syntax file that is to be activated.

 If a parameter file is used for input (*STD or <filename>), the names of the system
syntax file and the group syntax file assigned to the profile ID of TSOS (SYS-TSOS)
are read from the parameter file and activated for simulation.
If the parameter file contains errors or if the syntax files are invalid, the system
syntax file and the TSOS group syntax file with the standard names are used and
messages CMD0685 and CMD0686 are output.

If the name of the system, group or user syntax file is entered and an error occurs
while activating the syntax file, an error message is output. If the system syntax file
or the group syntax file contains errors, the syntax files with the standard names are

i

544 U2284-J-Z125-9-76

DEFINE-ENVIRONMENT SDF-SIM statements

used. If the user syntax file is errored, no user syntax file is activated.
At least one system or group syntax file must be activated, otherwise simulation is
not possible as there is no global information available.

If *STD is entered as the system syntax file, only the current basic system syntax
file is activated.

PROC-MODE =
Determines whether procedure mode is to be simulated.

PROC-MODE = *NO
Procedure mode is not to be simulated in the test environment.

PROC-MODE = *YES
Procedure mode is to be simulated in the test environment.

 In simulated procedure mode, commands must be entered preceded by a slash (/)
and statements must be entered preceded by a double slash (//). Commands and
statements can also be entered in lowercase letters.
The spin-off mechanism can be activated following an error (see the SPINOFF
operand, page 545). The spin-off mechanism is stopped by entering the SET-JOB-
STEP command or the STEP statement.
Procedure parameters cannot be replaced.
This environment makes it possible to test commands and statements that are only
permitted in batch mode.

TASK-TYPE =
Determines the type of the task.

TASK-TYPE = *DIALOG
Dialog mode is used in the environment.

TASK-TYPE = *BATCH
Batch mode is used in the environment.

 In simulated batch mode, commands must be entered preceded by a slash (/) and
statements must be entered preceded by a double slash (//). Commands and state-
ments can also be entered in lowercase letters. The spin-off mechanism can be
activated following an error (see the SPINOFF operand, page 545). The spin-off
mechanism is stopped by entering the SET-JOB-STEP command or the STEP
statement.
This environment makes it possible to test commands and statements that are only
permitted in batch mode.

i

i

U2284-J-Z125-9-76 545

SDF-SIM statements DEFINE-ENVIRONMENT

SPINOFF =
Determines whether the spin-off mechanism is to be activated for errored commands or
statements. This operand is used only if PROC-MODE=*YES or TASK-TYPE=*BATCH has
been set.

SPINOFF = *NO
The spin-off mechanism is not activated in the event of an error.

SPINOFF = *YES
The spin-off mechanism is activated in the event of an error. To stop this mechanism, the
SET-JOB-STEP command or the STEP statement must be processed.

DISPLAY =
Determines whether the contents of the standardized transfer area are displayed. This
operand does not apply to commands defined with ADD-CMD...,IMPLEMENTOR=
*TPR(...,CMD-INTERFACE=*STRING...) (see SDF-A).

DISPLAY = *QUESTION
Following the syntax analysis, the following query is issued for each command or statement:
% SDS0008 DO YOU WANT TO DISPLAY TRANSFER AREA? REPLY: NO/LONG/SHORT
In procedures and batch tasks, DISPLAY=*QUESTION has the same effect as
DISPLAY=*NO.

DISPLAY = *NO
The contents of the standardized transfer area are not displayed.

DISPLAY = *SHORT
The contents of the standardized transfer area are displayed in character format and in
hexadecimal format with a line length of 80 characters per line.

DISPLAY = *LONG
In addition to the information output for DISPLAY=*SHORT, a structure description
(STRUCTURED DESCRIPTION) is displayed. This contains the type, length and value of
every operand and can be up to 15000 bytes long.
For a correct output to be received in the case of statements which use the normal format
as of SDF V4.1 for the standardized transfer area, *STMT(...LAYOUT=*NEW) must be
specified for DEFINE-TEST-OBJECT.

546 U2284-J-Z125-9-76

DEFINE-ENVIRONMENT SDF-SIM statements

PRIVILEGES =
Determines the privileges which the task has in the test environment.

PRIVILEGES = *ALL
The task has all privileges.

PRIVILEGES = list-poss(2000): *TSOS / *SECURITY-ADMINISTRATION /
*USER-ADMINISTRATION / *HSMS-ADMINISTRATION / *SECURE-OLTP /
*TAPE-ADMINISTRATION / *SAT-FILE-MANAGEMENT / *NET-ADMINISTRATION /
*FT-ADMINISTRATION / *FTAC-ADMINISTRATION / *HARDWARE-MAINTENANCE /
*SAT-FILE-EVALUATION / *SUBSYSTEM-MANAGEMENT /
*SW-MONITOR-ADMINISTRATION / *ACS-ADMINISTRATION /
*VM2000-ADMINISTRATION / *VIRTUAL-MACHINE-ADMINISTRATION /
*SECURE-UTM / *PROP-ADMINISTRATION / *OPERATING / *STD-PROCESSING
*POSIX-ADMINISTRATION / *PRINT-SERVICE-ADMINISTRATION
The task has precisely those privileges included in this list.

CALL-INFORMATION = *YES / *NO
Defines whether call information is to be shown. The call information includes:
– a log of the command or statement
– the interface type of the command (ASS/ISL/SPL/PROCEDURE)
– the name of the entry point for TPR commands.

U2284-J-Z125-9-76 547

SDF-SIM statements DEFINE-TEST-OBJECT

DEFINE-TEST-OBJECT
Define test object

The DEFINE-TEST-OBJECT statement defines whether the syntax of commands or state-
ments is to be tested.

TEST-MODE =
Defines the type of the test objects.

TEST-MODE = *CMD
The test objects are commands.

TEST-MODE = *STMT(...)
The test objects are statements.

PROGRAM-NAME = <name 1..8>
Internal name of the program to which the statements to be simulated belong.

LAYOUT = *OLD / *NEW
Format of the standardized transfer area. If statements use the new format (as of SDF
V4.1), *NEW must be specified for correct outputs to be received from SDF-SIM.

DEFINE-TEST-OBJECT

TEST-MODE = *CMD / *STMT(...)

*STMT(...)
 PROGRAM-NAME = <name 1..8>
 ,LAYOUT = *OLD / *NEW

548 U2284-J-Z125-9-76

START-SIMULATION SDF-SIM statements

START-SIMULATION
Start simulation

The START-SIMULATION statement starts simulation in the environment defined by
DEFINE-ENVIRONMENT for the test object defined by DEFINE-TEST-OBJECT.

Once simulation has started, SDF-SIM displays the current syntax file hierarchy. It then
displays an asterisk (*) prompting you to enter the command or statement to be simulated.

This statement has no operands.

START-SIMULATION

U2284-J-Z125-9-76 549

SDF-SIM Application

7.3 Examples of the application of SDF-SIM

7.3.1 Providing SDF standard statements in the simulation

As of SDF V4.1 the SDF standard statements in the syntax file are defined by SDF. They
are no longer assigned to the SDF-U syntax file and cannot be copied into the syntax file of
the application program. Therefore, when standard statements are used in the simulation,
a SDF parameter file must be specified which, as basic system syntax file, contains the
syntax file.

In order to use the standard statements in SDF-SIM, it is necessary to carry out the
following steps:

● Create a parameter file which contains the syntax file of SDF as basic system syntax
file. If the syntax file of the application program is a subsystem syntax file, it must be
entered in the SDF parameter file (see “Creating a SDF parameter file with the help of
SDF-SIM” on page 550).

● Start SDF-SIM (START-SDF-SIM command)

● Specify simulation environment and text object,

– if the syntax file of the application program is a system syntax file:

//DEFINE-ENVIRONMENT PARAMETER-FILE=MY-PARAMETER-FILE
//DEFINE-TEST-OBJECT *STMT(PROGRAM-NAME=<internal-program-name>)

– if the syntax file of the application program is a user syntax file:

//DEFINE-ENVIRONMENT PARAMETER-FILE=MY-PARAMETER-FILE,
 USER=<program-syntax-file>
//DEFINE-TEST-OBJECT *STMT(PROGRAM-NAME=<name>,LAYOUT=<layout>)

● Start simulation (//START-SIMULATION).
Then the SDF standard statements are available in addition to the statements of the
application program.

550 U2284-J-Z125-9-76

SDF standard statements SDF-SIM

Creating a SDF parameter file with the help of SDF-SIM

Nonprivileged users can also use the MODIFY-SDF-PARAMETERS command in SDF-SIM
to create a SDF parameter file for the simulation:

/start-sdf-sim
% BLS0523 ELEMENT 'SDF-SIM', VERSION 'V04.5A10' FROM LIBRARY ':2OSH:$TSOS.SY
SLNK.SDF-SIM.045' IN PROCESS
% BLS0524 LLM 'SDF-SIM', VERSION ' ' OF '2001-04-19 16:11:57' LOADED
% BLS0551 COPYRIGHT (C) SIEMENS AG 2001. ALL RIGHTS RESERVED
% SDS0001 SDF-SIM VERSION 'V04.5A10' STARTED
%//define-environment parameter-file=*no(system=$.syssdf.sdf.045)
%//start-simulation
% SDS0005 'SYSTEM' SYNTAX FILE '$.SYSSDF.SDF.045' ACTIVATED
% SDS0005 'USER' SYNTAX FILE 'SDF.USER.SYNTAX' ACTIVATED
*modify-sdf-parameters scope=*next-session(parameter-file-name=my-parameter-
file),syntax-file-type=*system(name=$.syssdf.sdf.045)
(IN) modify-sdf-parameters scope=*next-session(parameter-file-name=my-
parameter-file),syntax-file-type=*system(name=$.syssdf.sdf.045)
% CMD0681 SYNTAX FILE '$.SYSSDF.SDF.045' INSERTED IN PARAMETER FILE 'MY-
PARAMETER-FILE'
*modify-sdf-parameters scope=*next-session(parameter-file-name=my-parameter-
file),syntax-file-type=*subsystem(name=$.syssdf.sdf-a.041,sub-name=sdf-a)
(IN) modify-sdf-parameters scope=*next-session(parameter-file-name=my-
parameter-file),syntax-file-type=*subsystem(name=$.syssdf.sdf-a.041,sub-
name=sdf-a)
% CMD0709 SYSTEM SYNTAX FILE '$.SYSSDF.SDF-A.041' INSERTED IN PARAMETER FILE
'MY-PARAMETER-FILE'
/

U2284-J-Z125-9-76 551

SDF-SIM SDF standard statements

7.3.2 Using MODIFY-SDF-OPTIONS

The MODIFY-SDF-OPTIONS command or statement can be used to modify the SDF
options during simulation (* prompting). MODIFY-SDF-OPTIONS is not simulated, it is
actually executed.

The following options are useful for simulation:

GUIDANCE = *EXPERT / *NO / *MINIMUM / *MEDIUM / *MAXIMUM

for specifying the type of dialog guidance to be used for the syntax test

LOGGING = *INPUT-FORM / *ACCEPTED-FORM / *INVARIANT-FORM

for specifying the form of the log output by SDF-SIM

PROCEDURE-DIALOGUE = *YES / *NO

for simulating a procedure dialog in the event of an error (valid only if PROC-
MODE=*YES has been set in the DEFINE-ENVIRONMENT statement)

CONTINUATION = *OLD-MODE / *NEW-MODE

only for the simulated procedure or batch mode.

552 U2284-J-Z125-9-76

Interactive corrections SDF-SIM application

Test with interactive corrections in simulated procedure mode

/start-sdf-sim
% BLS0523 ELEMENT 'SDF-SIM', VERSION 'V04.5A10' FROM LIBRARY ':2OSH:$TSOS.SY
SLNK.SDF-SIM.045' IN PROCESS
% BLS0524 LLM 'SDF-SIM', VERSION ' ' OF '2001-04-19 16:11:57' LOADED
% BLS0551 COPYRIGHT (C) SIEMENS AG 2001. ALL RIGHTS RESERVED
% SDS0001 SDF-SIM VERSION 'V04.5A10' STARTED
%//def-test-obj *cmd
%//def-env par-fi=*std(user=*no),proc-mode=*yes,display=*no
%//start-simulation
% SDS0005 ’SYSTEM’ SYNTAX FILE ’$TSOS.SYS.SDF.SYSTEM.SYNTAX’ ACTIVATED
% SDS0005 ’GROUP’ SYNTAX FILE ’$TSOS.SYS.SDF.GROUP.SYNTAX.TSOS’ ACTIVATED
*/mod-sdf-options guid=*no,proc-dial=*yes ————————————————————————————— (1)
(IN) /mod-sdf-options guid=*no,proc-dial=*yes
CMD:
*/sh-fi-att file-ne=aaaa
(IN) /sh-fi-att file-ne=aaaa
% CMD0185 OPERAND NAME 'FILE-NE' COULD NOT BE IDENTIFIED.
ENTER OPERANDS: ——— (2)
file-ne=aaaa
*file-name=aaaa
(IN) /show-file-attributes file-name=aaaa

ENTRY : DCOFSTAT
INTERFACE : ISL
STRING FORM
/FSTATUS AAAA,LIST=(SYSOUT)
CMD:
/
% SDS0002 SDF-SIM TERMINATED NORMALLY

1. The MODIFY-SDF-OPTIONS command is executed in the simulation context. Since
simulation is executed in procedure mode (DEFINE-ENV ...,PROC-MODE=*YES), an
error dialog is conducted if an error is detected (GUIDANCE=*NO).

2. The entry of an invalid operand name initiates an error dialog.

U2284-J-Z125-9-76 553

SDF-SIM application Logging

Logging during simulation

/start-sdf-sim
% BLS0523 ELEMENT 'SDF-SIM', VERSION 'V04.5A10' FROM LIBRARY ':2OSH:$TSOS.SY
SLNK.SDF-SIM.045' IN PROCESS
% BLS0524 LLM 'SDF-SIM', VERSION ' ' OF '2001-04-19 16:11:57' LOADED
% BLS0551 COPYRIGHT (C) SIEMENS AG 2001. ALL RIGHTS RESERVED
% SDS0001 SDF-SIM VERSION 'V04.5A10' STARTED
%//def-test-obj *cmd
%//def-env *std(user=*no),display=*no
%//start-simulation
 .
 .
*mod-sdf-opt logging=*inv ——— (1)
(IN) mod-sdf-opt logging=*inv
*sh-f-att aaa.
(IN) SHOW-FILE-ATTRIBUTES FILE-NAME=AAA.,INFORMATION=*NAME-AND-
SPACE,SELECT=*ALL,OUTPUT=*SYSOUT,OUTPUT-OPTIONS=*PARAMETERS(SORT-LIST=
*BY-FILENAME) —— (2)

ENTRY : DCOFSDF
INTERFACE : ISL
STRUCTURE-FORM
*mod-fi-att aaa,bbb,wr-pass=c'111'
(IN) MODIFY-FILE-ATTRIBUTES FILE-NAME=AAA,NEW-NAME=BBB,SUPPORT=
*UNCHANGED,PROTECTION=*PARAMETERS(PROTECTION-ATTR=*UNCHANGED,ACCESS=*BY-
PROTECTION-ATTR,USER-ACCESS=*BY-PROTECTION-ATTR,BASIC-ACL=*BY-PROTECTION-
ATTR,GUARDS=*BY-PROTECTION-ATTR,WRITE-PASSWORD=P,READ-PASSWORD=P,EXEC-
PASSWORD=P,DESTROY-BY-DELETE=*BY-PROTECTION-ATTR,AUDIT=*UNCHANGED,SPACE-
RELEASE-LOCK=*BY-PROTECTION-ATTR,EXPIRATION-DATE=*BY-PROTECTION-ATTR,FREE-
FOR-DELETION=*BY-PROT-ATTR-OR-UNCH),SAVE=*UNCHANGED,MIGRATE=*STD,CODED-
CHARACTER-SET=*UNCHANGED,DIALOG-CONTROL=*STD,OUTPUT=*NO

ENTRY : CMDFCAT
INTERFACE : ISL
STRUCTURE-FORM
 .
 .

1. Logging is to be as detailed as possible (INVARIANT-FORM).

2. The simulated commands are logged in their most detailed form. For this reason, the
operands for which default values are set are also displayed.

554 U2284-J-Z125-9-76

Temporary guided dialog SDF-SIM application

7.3.3 Testing in temporary guided dialog

In temporary guided dialog application domains and command/statement structures
(operands and default values) can be tested.

The following example shows the test of the COPY-FILE command contained in the system
syntax file $TSOS.SYS.SDF.SYSTEM.SYNTAX.

/start-sdf-sim
% BLS0523 ELEMENT 'SDF-SIM', VERSION 'V04.5A10' FROM LIBRARY ':2OSH:$TSOS.SY
SLNK.SDF-SIM.045' IN PROCESS
% BLS0524 LLM 'SDF-SIM', VERSION ' ' OF '2001-04-19 16:11:57' LOADED
% BLS0551 COPYRIGHT (C) SIEMENS AG 2001. ALL RIGHTS RESERVED
% SDS0001 SDF-SIM VERSION 'V04.5A10' STARTED
%//def-test-obj *cmd
%//def-env par-fi=*no(system=$.sys.sdf.system.syntax,group=*no,user=*no)
%//start-simulation
 .
 .
*copy-file? ——— (1)

(IN) /COPY-FILE FROM-FILE=A,TO-FILE=B

ENTRY : DCOCOPF
INTERFACE : ISL
STRUCTURE-FORM
% SDS0008 DO YOU WANT TO DISPLAY TRANSFER AREA? REPLY: NO/LONG/SHORT?short

COMMAND : COPY-FILE

--
FROM-FILE = a
TO-FILE = b (2)
PROTECTION = *STD
REPLACE-OLD-FILES = *YES
BLOCK-CONTROL-INFO = *KEEP-ATTRIBUTE
IGNORE-PROTECTION = *NO
DIALOG-CONTROL = *STD
OUTPUT = *NO

--
NEXT = *EXECUTE
 *EXECUTE"F3" / Next-cmd / *CONTINUE / *EXIT"K1" / *EXIT-ALL"F1" /
 *TEST"F2"

LTG TAST

U2284-J-Z125-9-76 555

SDF-SIM application Temporary guided dialog

 *** TRANSFER AREA ***
 ßßßßßßßßßßßßßßßßßßßßß
 C O P F I L
 (2250E0) 0052C3D6 D7C6C9D3 40400000 00000000

 (2250F0) 00000009 800B0022 512A800B 0022512E
 A
 (225120) 00000000 00000000 00000001 C1000001
 B
 (225130) C200
/
% SDS0002 SDF-SIM TERMINATED NORMALLY

1. Testing is not possible in temporary guided dialog unless the question mark (?) required
for normal operation with SDF is entered here too.

2. When displayed on the screen, the command or statement operands have their preset
values. The values that are to be checked (in this case a and b) are entered.

 In order to test with permanent guided dialog or with an error dialog, MODIFY-SDF-
OPTIONS must be used in the simulation
(GUIDANCE=*MINIMUM/*MEDIUM/*MAXIMUM/*NO).

i

556 U2284-J-Z125-9-76

Maximum guidance level SDF-SIM application

7.3.4 Testing with the maximum guidance level

When working with the maximum guidance level you can test and check not only the
commands/statements, operands and values, but also the application domains and the help
texts for the commands/statements and operands.

The following example shows how the MODIFY-USER-SWITCHES command defined in
the current system syntax file of the task is tested.

/start-sdf-sim
% BLS0523 ELEMENT 'SDF-SIM', VERSION 'V04.5A10' FROM LIBRARY ':2OSH:$TSOS.SY
SLNK.SDF-SIM.045' IN PROCESS
% BLS0524 LLM 'SDF-SIM', VERSION ' ' OF '2001-04-19 16:11:57' LOADED
% BLS0551 COPYRIGHT (C) SIEMENS AG 2001. ALL RIGHTS RESERVED
% SDS0001 SDF-SIM VERSION 'V04.5A10' STARTED
%//def-test-obj *cmd
%//def-env par-fi=*no(system=*std)
%//start-simulation
 .
 .
*mod-sdf-opt guidance=*max —— (1)
(IN) mod-sdf-opt guidance=*max

 .
 .

AVAILABLE APPLICATION DOMAINS:

 1 ACCOUNTING : Output of informations about the user
 identification and introduction of data
 into the accounting record
 2 ALL-COMMANDS : Output of all command names in alphabetic
 order
 3 CONSOLE-MANAGEMENT : Control of operator console/terminal
 4 DATABASE : Management and administration of databases
 5 DCAM : Control of transaction-driven system (DCAM)
 6 DCE : Management of DCE (Distributed Computing
 Environment)
 7 DEVICE : Information about devices and volumes
 8 FILE : Management of files
 9 FILE-GENERATION-GROUP : Management of file generation groups
--
NEXT = +
 Number / Next-command / (Next-domain)
KEYS : F5=*REFRESH F8=+ F9=REST-SDF-IN

LTG TAST

U2284-J-Z125-9-76 557

SDF-SIM application Maximum guidance level

--
AVAILABLE APPLICATION DOMAINS:

 10 MULTI-CATALOG-AND-PUBSET-MGMT : Control of file accesses to local area
 network
 11 PROCEDURE : Control of the command procedures
 12 PROGRAM : Control of program flow
 13 SDF : Control of dialogue interfaces
 14 SECURITY-ADMINISTRATION : Management of access controls and security
 audit trails
 15 SYSTEM-MANAGEMENT : Dynamic control of the subsystem
 configuration
 16 SYSTEM-TUNING : Performance control and tuning of system
 parameters to optimize system throughput,
 response time, disk access and resource
 management
--
NEXT = +
 Number / Next-command / (Next-domain)
KEYS : F5=*REFRESH F7=- F8=+ F9=REST-SDF-IN

LTG TAST

--
AVAILABLE APPLICATION DOMAINS:

 12 PROGRAM : Control of program flow
 13 SDF : Control of dialogue interfaces
 14 SECURITY-ADMINISTRATION : Management of access controls and security
 audit trails
 15 SYSTEM-MANAGEMENT : Dynamic control of the subsystem
 configuration
 16 SYSTEM-TUNING : Performance control and tuning of system
 parameters to optimize system throughput,
 response time, disk access and resource
 management
 17 USER-ADMINISTRATION : Modification of the user identification
 passwords and switches
 18 UTILITIES : Start of utility programs
--
NEXT = 17
 Number / Next-command / (Next-domain)
KEYS : F5=*REFRESH F7=- F9=REST-SDF-IN

LTG TAST

558 U2284-J-Z125-9-76

Maximum guidance level SDF-SIM application

--
AVAILABLE APPLICATION DOMAINS:

 12 PROGRAM : Control of program flow
 13 SDF : Control of dialogue interfaces
 14 SECURITY-ADMINISTRATION : Management of access controls and security
 audit trails
 15 SYSTEM-MANAGEMENT : Dynamic control of the subsystem
 configuration
 16 SYSTEM-TUNING : Performance control and tuning of system
 parameters to optimize system throughput,
 response time, disk access and resource
 management
 17 USER-ADMINISTRATION : Modification of the user identification
 passwords and switches
 18 UTILITIES : Start of utility programs
--
NEXT = 17 (2)
 Number / Next-command / (Next-domain)
KEYS : F5=*REFRESH F7=- F9=REST-SDF-IN

LTG TAST

DOMAIN : USER-ADMINISTRATION
--
AVAILABLE COMMANDS:

 1 MODIFY-USER-SWITCHES : Modifies the user switch settings
 2 SHOW-USER-STATUS : Provides information on a group of user
 tasks
 3 SHOW-USER-SWITCHES : Displays the user switches which are set
 to 1
 4 WAIT-EVENT : Places a task in the wait state until a
 defined event occurs or until the
 specified time has elapsed

--
NEXT = 1 (3)
 Number / Next-command / (Next-domain) / *DOMAIN-MENU
KEYS : F3=*EXIT F5=*REFRESH F6=*EXIT-ALL F9=REST-SDF-IN F12=*CANCEL

LTG TAST

U2284-J-Z125-9-76 559

SDF-SIM application Maximum guidance level

 .
 .

1. The MODIFY-SDF-OPTIONS command is executed in the context of the simulation.
The possible domains are displayed on the screen, together with their help texts. The
user can select one of the domains.

2. The user selects the domain USER-ADMINISTRATION by entering the number 17.

3. The MODIFY-USER-SWITCHES command is selected by entering the number 1. The
operand form for the command is displayed, together with its help texts and default
values. The user can now enter the values to be tested.

DOMAIN : USER-ADMINISTRATION COMMAND: MODIFY-USER-SWITCHES

--
USER-IDENTIFICATION = *OWN
 *OWN or name_1..8
 Specifies the user ID whose user switches are to be
 changed
ON = *UNCHANGED
 *UNCHANGED or -list-possible (32)-: integer_0..31
 Specifies the user switches that are to be set to 1
OFF = *UNCHANGED
 *UNCHANGED or -list-possible (32)-: integer_0..31
 Specifies the user switches that are to be set to 0

--
NEXT = +
 Next-command / (Next-domain) / *CONTINUE / *DOMAIN-MENU / *TEST
KEYS : F3=*EXIT F5=*REFRESH F6=*EXIT-ALL F8=+ F9=REST-SDF-IN
 F11=*EXECUTE F12=*CANCEL

LTG TAST

560 U2284-J-Z125-9-76

Replacing job variables SDF-SIM application

7.3.5 Replacing job variables

Job variables are replaced in SDF-SIM in exactly the same way as outside the context of
simulation.

 .
 .
/create-jv jv-name=jv1
/modify-jv jv-contents=jv1,set-value='bbb' ———————————————————————————— (1)
 .
 .
/start-sdf-sim
 .
 .
*sh-f-att &(jv1)
(IN) sh-f-att bbb ——— (2)

ENTRY : DCOFSTAT
INTERFACE : ISL
STRING FORM
/FSTATUS BBB,LIST=(SYSOUT)
*enter-job &(jv1),j-class=jcb00200
(IN) enter-job bbb,j-class=jcb00200

ENTRY : JMGENTR
INTERFACE : ISL
STRING FORM
/ENTER BBB,ERASE=NO,JOB-CLASS=JCB00200,JOB-PRIO=STD,RERUN=NO,FLUSH=NO,
START=STD,REPEAT=STD,RUN-PRIO=STD,TIME=STD,PRINT=STD,PUNCH=STD,
LOG=(LISTING=NO)
*
 .
 .

1. The user creates a job variable with the name jv1 and assigns it the value ’bbb’.

2. SDF-SIM replaces the job variable by its value.

 Users should bear in mind that it is not possible to replace procedure parameters.i

U2284-J-Z125-9-76 561

SDF-SIM application Procedure/batch mode

7.3.6 Simulation of procedure or batch mode

SDF-SIM permits testing in a simulated procedure mode if PROC-MODE=*YES is specified
in the DEFINE-ENVIRONMENT statement. If TASK-TYPE=*BATCH is specified in this
statement, testing can be carried out in simulated batch mode. Commands/statements
must begin with a slash (/) or a double slash (//) and may be entered in lowercase form. If
SPINOFF=*YES is specified in the DEFINE-ENVIRONMENT statement, the spin-off
mechanism is triggered in the event of an error. If SDF-SIM is called in procedures or in
batch files, the first position in the line must be occupied by an asterisk (*) for
commands/statements to be simulated in procedure or batch mode. If this is not the case,
the commands or statements will be interpreted as being real and will actually be
processed.

/start-sdf-sim
% BLS0523 ELEMENT 'SDF-SIM', VERSION 'V04.5A10' FROM LIBRARY ':2OSH:$TSOS.SY
SLNK.SDF-SIM.045' IN PROCESS
% BLS0524 LLM 'SDF-SIM', VERSION ' ' OF '2001-04-19 16:11:57' LOADED
% BLS0551 COPYRIGHT (C) SIEMENS AG 2001. ALL RIGHTS RESERVED
% SDS0001 SDF-SIM VERSION 'V04.5A10' STARTED
%//def-test-obj *cmd
%//def-env par-fi=*std(user=*no),proc-mode=*yes,spinoff=*yes,display=*no (1)
%//start-simulation
% SDS0005 ’SYSTEM’ SYNTAX FILE ’$TSOS.SYS.SDF.SYSTEM.SYNTAX’ ACTIVATED
% SDS0005 ’GROUP’ SYNTAX FILE ’$TSOS.SYS.SDF.GROUP.SYNTAX.TSOS’ ACTIVATED
*fstat aaa.
(IN) FSTAT AAA. ——————————— (2)
% CMD0661 DATA RECORD WAS READ INSTEAD OF COMMAND
*/fstat aaa.
(IN) /FSTAT AAA.

ENTRY : DCOFSTAT
INTERFACE : ISL
STRING FORM
/FSTAT AAA.
*/shh-file-att aaa.
(IN) /SHH-FILE-ATT
% CMD0186 OPERATION NAME 'SHH-FILE-ATT' UNKNOWN
% CMD0205 ERROR IN PRECEDING COMMAND OR PROGRAM AND PROCEDURE STEP (3)
TERMINATION: COMMANDS WILL BE IGNORED UNTIL /SET-JOB-STEP OR /LOGOFF
OR /ABEND IS RECOGNIZED
*/sh-file-att aaa.
*/set-job-step
(IN) /SET-JOB-STEP
ENTRY : SSMSTEP
INTERFACE : ISL
STRING FORM
/STEP

562 U2284-J-Z125-9-76

Procedure/batch mode SDF-SIM application

*/sh-file-att aaa.
(IN) /SH-FILE-ATT AAA.

ENTRY : DCOFSTAT
INTERFACE : ISL
STRING FORM
/FSTATUS AAA.,LIST=(SYSOUT)
/
% SDS0002 SDF-SIM TERMINATED NORMALLY

1. Procedure mode (PROC-MODE=*YES) is simulated. In addition, the spin-off
mechanism (SPINOFF=*YES) is to be triggered in the event of an error.

2. In procedure mode, an asterisk here must be followed by a slash; as the slash is
missing, an error message is issued.

3. An invalid command name is entered, thereby activating the spin-off mechanism. The
subsequent correction attempt is ignored and cannot be implemented until
/SET-JOB-STEP has been processed.

U2284-J-Z125-9-76 563

SDF-SIM application In procedures and batch tasks

7.3.7 SDF-SIM execution within a procedure or a batch task

Like other utilities, SDF-SIM can also be called in procedures or batch tasks. However, this
does not implicitly mean that commands or statements are automatically tested in
simulated procedure or batch mode. This is only possible if the DEFINE-ENVIRONMENT
statement with the operand PROC-MODE=*YES or TASK-TYPE=*BATCH is entered.

In the case of commands or statements which are tested within a procedure or a batch task
in procedure or batch mode, an asterisk (*) must be entered before the slash (/) or double
slash (//). If this is not done, the entries will be interpreted as real commands or statements
and will actually be processed.

SDF-SIM in a procedure

The following example illustrates the use of SDF-SIM in the procedure SIM.PROC.

Procedure file SIM.PROC

/BEGIN-PROCEDURE LOGGING=A
/ASSIGN-SYSDTA *SYSCMD
/START-SDF-SIM
//DEFINE-TEST-OBJECT *CMD
//DEFINE-ENVIRONMENT PAR-FILE=*STD(USER=*NO) ——————————————————————— (1)
//START-SIMULATION
*CR-FILE AAA,SUPP=LLMLM
*/SH-FI-ATT BBBB
/
/ASSIGN-SYSDTA *PRIMARY
/END-PROCEDURE

Tracer listing for the procedure SIM.PROC

(IN) CALL-PROC SIM.PROC
(IN) /BEGIN-PROCEDURE LOGGING=A
(IN) /ASSIGN-SYSDTA *SYSCMD
(IN) /START-SDF-SIM
(OUT) % BLS0523 ELEMENT 'SDF-SIM', VERSION 'V04.5A10' FROM LIBRARY
() ':2OSH:$TSOS.SYSLNK.SDF-SIM.045' IN PROCESS
(OUT) % BLS0524 LLM 'SDF-SIM', VERSION ' ' OF '2001-04-19 16:11:57'
() 'LOADED
(OUT) % BLS0551 COPYRIGHT (C) SIEMENS AG 2001. ALL RIGHTS RESERVED
(OUT) % SDS0001 SDF-SIM VERSION 'V04.5A10' STARTED
(IN) //DEFINE-TEST-OBJECT *CMD
(IN) //DEFINE-ENVIRONMENT PAR-FILE=*STD(USER=*NO)
(IN) //START-SIMULATION

564 U2284-J-Z125-9-76

In procedures and batch tasks SDF-SIM application

(OUT) % SDS0005 ’SYSTEM’ SYNTAX FILE ’$TSOS.SYS.SDF.SYSTEM.SYNTAX’
() ACTIVATED
(IN) *CR-FILE AAA,SUPP=LLMLM —————————————————————————————————————— (2)
(OUT) (IN) CR-FILE
(OUT) % CMD0051 INVALID OPERAND 'SUPPORT'
(OUT) % CMD0081 VALUE 'P' NOT CONTAINED IN KEYWORD LIST OF VALUE RANGE
() '*PUBLIC-DISK() OR *PRIVATE-DISK() OR *TAPE() OR *NONE'
(IN) */SH-FI-ATT BBBB ——— (3)
(OUT) (IN) /SH-FI-ATT BBBB
(OUT)
(OUT) ENTRY : DCOFSTAT
(OUT) INTERFACE : ISL
(OUT) STRING FORM
(OUT) /FSTATUS BBBB,LIST=(SYSOUT)
(IN) */*
(OUT) % SDS0002 SDF-SIM TERMINATED NORMALLY
(IN) /ASSIGN-SYSDTA *PRIMARY
(IN) /END-PROCEDURE

1. The statements required for simulation preparation are entered and simulation is
started.

2. The CREATE-FILE command is simulated. As an invalid value has been specified for
the SUPPORT operand, SDF-SIM reports an error.

3. The spin-off mechanism was not triggered, even though there was an input error. As a
result, the next command can be simulated immediately. If the command is preceded
by a slash (/), there must be an asterisk (*) at the start of the line. Here, however, the
slash is not necessary as procedure mode is not being simulated.

U2284-J-Z125-9-76 565

SDF-SIM application In procedures and batch tasks

SDF-SIM in a batch task

The following example illustrates the simulation of the statements for the test program
TESTPRO in a batch task. The prerequisites outlined above for procedures apply here too,
so there is no need to reproduce the tracer listing here.

Batch file SIM.ENTER

/LOGON
/START-SDF-SIM
//DEFINE-TEST-OBJECT *STMT(PROG-NAME=TESTPRO)
//DEFINE-ENVIRONMENT PAR-FILE=*STD(USER=TEST.USER),DISPLAY=*SHORT
//START-SIMULATION
*OPEN AAAA,TYPE=*USER, ... ——— (1)
 .
 .
*END —— (2)
/LOGOFF

1. OPEN is a statement defined in the TESTPRO program.

2. If *STMT was specified for DEFINE-TEST-OBJECT, END terminates the SDF-SIM run
and issues the message END OF PROGRAM. The END statement is not simulated.

566 U2284-J-Z125-9-76

Command implemented by a procedure SDF-SIM application

7.3.8 Command implemented by a procedure

In the following example the syntax of a user-defined command is tested. The command is
defined in the user syntax file SF.TEST.

/start-sdf-sim
% BLS0523 ELEMENT 'SDF-SIM', VERSION 'V04.5A10' FROM LIBRARY ':2OSH:$TSOS.SY
SLNK.SDF-SIM.045' IN PROCESS
% BLS0524 LLM 'SDF-SIM', VERSION ' ' OF '2001-04-19 16:11:57' LOADED
% BLS0551 COPYRIGHT (C) SIEMENS AG 2001. ALL RIGHTS RESERVED
% SDS0001 SDF-SIM VERSION 'V04.5A10' STARTED
%//def-test-obj *cmd
%//def-env par-fi=*no(sys=*std,group=*n,user=sf.test),displ=*long ————— (1)
%//start-simulation
% SDS0005 ’SYSTEM’ SYNTAX FILE ’$TSOS.SYS.SDF.SYSTEM.SYNTAX’ ACTIVATED
% SDS0005 ’USER’ SYNTAX FILE ’SF.TEST’ ACTIVATED
*my-com first-op=aaa,second-op=bbbb ——————————————————————————————————— (2)
(IN) my-com first-op=aaa,second-op=bbbb

INTERFACE : PROCEDURE
STRING FORM ——————————————————— (3)
/CALL MY-PROC,(FIRST-OP='AAA',SECOND-OP='BBBB')
/
% SDS0002 SDF-SIM TERMINATED NORMALLY

1. The user syntax file SF.TEST containing the syntax definition of the command
MY-COMMAND must be activated in the syntax file hierarchy of the test environment.

2. Once simulation has been started, the user enters the command to be simulated,
together with two operands.

3. SDF-SIM outputs a log containing the following information:

– interface type PROCEDURE

– transfer in the form of a character string

– generated procedure call with the operands as procedure parameters.

U2284-J-Z125-9-76 567

SDF-SIM application Displaying the standardized transfer area

7.3.9 Displaying the standardized transfer area

The following example illustrates the display of the standardized transfer area for a
simulated SDF-A statement. In the case of commands, the standardized transfer area is
displayed only if it was defined with ADD-CMD ...,IMPLEMENTOR=
*TPR(...,CALL=*NEW...) (see SDF-A). The standardized transfer area is displayed as
shown in the example:

– if the operand DISPLAY=*LONG has been set in the DEFINE-ENVIRONMENT
statement, or

– if “LONG” is entered in response to the message
% SDS0008 DO YOU WANT TO DISPLAY TRANSFER AREA? REPLY: NO/LONG/SHORT

/start-sdf-sim
% BLS0523 ELEMENT 'SDF-SIM', VERSION 'V04.5A10' FROM LIBRARY ':2OSH:$TSOS.SY
SLNK.SDF-SIM.045' IN PROCESS
% BLS0524 LLM 'SDF-SIM', VERSION ' ' OF '2001-04-19 16:11:57' LOADED
% BLS0551 COPYRIGHT (C) SIEMENS AG 2001. ALL RIGHTS RESERVED
% SDS0001 SDF-SIM VERSION 'V04.5A10' STARTED
%//def-test *stmt(prog=$sdaed41) —————————————————————————————————————— (1)
%//def-env par-fi=*no(sys=$tsos.syssdf.sdf-a.041,group=*n,user=*n),-
%//display=*long —— (2)
%//start-simulation
% CMD0692 THE SYSTEM SYNTAX FILE $TSOS.SYSSDF.SDF-A.041 DOESN‘T CONTAIN THE
COMMAND MODIFY-SDF-PARAMETERS
% SDS0005 ’SYSTEM’ SYNTAX FILE ’$TSOS.SYSSDF.SDF-A.041’ ACTIVATED
//
*add-cmd name=my-command,int-name=mycom,batch-allowed=*no,-
//
*impl=*proc(name='my-proc')
(IN) add-command name=my-command,int-name=mycom,batch-allowed=*no,impl=
*proc(name=’my-proc’)

1. The statements of the program SDF-A are defined as test objects. The internal program
name for SDF V4.1 is $SDAED41.

2. It is defined for the environment that only the system syntax file of SDF-A be activated.
DISPLAY=*LONG specifies that the standardized transfer area and the structure
description will be displayed at once and without having to request them. The output is
reproduced on the following pages.

568 U2284-J-Z125-9-76

Displaying the standardized transfer area SDF-SIM application

*** TRANSFER AREA ***
~~~~~~~~~~~~~~~~~~~~~
              A D  D C M D
(129418) 3A98C1C4 C4C3D4C4 40400000 00000000

(129428) 00000046 80080012 95D00000 00000000

(129438) 80160012 95F88016 001295EA 80160012

(129448) 95F08016 001295F4 00000000 00008007

(129458) 001295DC 00000000 00000000 00000000

(129468) 00000000 00008016 0012962C 80160012

(129478) 96308016 00129698 80130012 965E8013

(129488) 00129636 80130012 964A8013 00129672

(129498) 00000000 00000000 00000000 80050012

(1294A8) 960C8016 001295E4 80160012 95FC8013

(1294B8) 00129684 80160012 96000000 00000000

(1294D8) 00000000 00000000 00000000 00008016

(1294E8) 0012969E 80160012 96A80000 00000000

(129508) 00000000 00000000 00000000 00008016

(129518) 00129616 80160012 96260000 00000000

(129558) 00000000 00000000 00000000 80160012

(129568) 96AE0000 00000000 80160012 967E8016

(129578) 00129692 80160012 96448016 00129658

(129588) 80160012 966C8016 001296A2 00000000
                                M Y  - C O M
(1295C8) 00000000 00000000 000AD4E8 60C3D6D4
          M A N D      M Y  C O M        S A
(1295D8) D4C1D5C4 0005D4E8 C3D6D400 0004E2C1
          M E      N A M E      N O      N O
(1295E8) D4C50004 D5C1D4C5 0002D5D6 0002D5D6
              N O      N O      P R  O C E D
(1295F8) 0002D5D6 0002D5D6 0009D7D9 D6C3C5C4



U2284-J-Z125-9-76  569

SDF-SIM application Displaying the standardized transfer area

          U R E        M Y  - P R O  C
(129608) E4D9C500 0007D4E8 60D7D9D6 C300000E
          C A L L  - P R O  C E D U  R E
(129618) C3C1D3D3 60D7D9D6 C3C5C4E4 D9C50004
          N O N E      N O      Y E  S
(129628) D5D6D5C5 0002D5D6 0003E8C5 E2000000
                            Y E S        A L
(129638) 80160012 963E0003 E8C5E200 0003C1D3
          L                          Y E S
(129648) D3000000 80160012 96520003 E8C5E200
              A L  L 
(129658) 0003C1D3 D3000000 80160012 96660003
          Y E S        A L  L 
(129668) E8C5E200 0003C1D3 D3000000 80160012
                   N O      A L L
(129678) 967A0002 D5D60003 C1D3D300 00008016
                       Y E  S        A L L
(129688) 0012968C 0003E8C5 E2000003 C1D3D300
              Y E  S        N O      A L L
(129698) 0003E8C5 E2000002 D5D60003 C1D3D300
              C M  D        A L L
(1296A8) 0003C3D4 C4000003 C1D3D300 00000000

*** STRUCTURED DESCRIPTION ***
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
INTERNAL NAME OF THE COMMAND : ADDCMD
VERSION OF THE TRANSFER AREA : x
VERSION OF THE CMD/STMT : x
MAXIMUM NUMBER OF OPERANDS : 70
OP(1) :
 - TYPE : STRUCT_NAME
 - LENGTH : 10
 - VALUE :
 M Y - C O M M A N D
 D4E860C3 D6D4D4C1 D5C4
OP(3) :
 - TYPE : KEYW
 - LENGTH : 2
 - VALUE :
 N O
 D5D6
OP(4) :
 - TYPE : KEYW
 - LENGTH : 4
 - VALUE :
 N A M E
 D5C1D4C5
OP(5) :

(only for the new format of the
transfer area (as of SDF V4.1))

570 U2284-J-Z125-9-76

Displaying the standardized transfer area SDF-SIM application

 - TYPE : KEYW
 - LENGTH : 2
 - VALUE :
 N O
 D5D6
OP(6) :
 - TYPE : KEYW
 - LENGTH : 2
 - VALUE :
 N O
 D5D6
OP(8) :
 - TYPE : ALPHA_NAME
 - LENGTH : 5
 - VALUE :
 M Y C O M
 D4E8C3D6 D4
OP(12) :
 - TYPE : KEYW
 - LENGTH : 2
 - VALUE :
 N O
 D5D6
OP(13) :
 - TYPE : KEYW
 - LENGTH : 3
 - VALUE :
 Y E S
 E8C5E2
OP(14) :
 - TYPE : KEYW
 - LENGTH : 3
 - VALUE :
 Y E S
 E8C5E2
OP(15) :
 - TYPE : STRUCTURE
 VALUE INTRODUCING THE STRUCTURE :
 - TYPE : KEYW
 - LENGTH : 3
 - VALUE :
 Y E S
 E8C5E2
OP(16) :
 - TYPE : STRUCTURE
 VALUE INTRODUCING THE STRUCTURE :
 - TYPE : KEYW
 - LENGTH : 3

U2284-J-Z125-9-76 571

SDF-SIM application Displaying the standardized transfer area

 - VALUE :
 Y E S
 E8C5E2
OP(17) :
 - TYPE : STRUCTURE
 VALUE INTRODUCING THE STRUCTURE :
 - TYPE : KEYW
 - LENGTH : 3
 - VALUE :
 Y E S
 E8C5E2
OP(18) :
 - TYPE : STRUCTURE
 VALUE INTRODUCING THE STRUCTURE :
 - TYPE : KEYW
 - LENGTH : 2
 - VALUE :
 N O
 D5D6
OP(21) :
 - TYPE : C_STR
 - LENGTH : 7
 - VALUE :
 M Y - P R O C
 D4E860D7 D9D6C3
OP(22) :
 - TYPE : KEYW
 - LENGTH : 4
 - VALUE :
 S A M E
 E2C1D4C5
OP(23) :
 - TYPE : KEYW
 - LENGTH : 2
 - VALUE :
 N O
 D5D6
OP(24) :
 - TYPE : STRUCTURE
 VALUE INTRODUCING THE STRUCTURE :
 - TYPE : KEYW
 - LENGTH : 3
 - VALUE :
 Y E S
 E8C5E2
OP(25) :
 - TYPE : KEYW
 - LENGTH : 9

572 U2284-J-Z125-9-76

Displaying the standardized transfer area SDF-SIM application

 - VALUE :
 P R O C E D U R E
 D7D9D6C3 C5C4E4D9 C5
OP(32) :
 - TYPE : KEYW
 - LENGTH : 2
 - VALUE :
 N O
 D5D6
OP(33) :
 - TYPE : KEYW
 - LENGTH : 3
 - VALUE :
 C M D
 C3D4C4
OP(40) :
 - TYPE : KEYW
 - LENGTH : 14
 - VALUE :
 C A L L - P R O C E D U R E
 C3C1D3D3 60D7D9D6 C3C5C4E4 D9C5
OP(41) :
 - TYPE : KEYW
 - LENGTH : 4
 - VALUE :
 N O N E
 D5D6D5C5
OP(53) :
 - TYPE : KEYW
 - LENGTH : 3
 - VALUE :
 A L L
 C1D3D3
OP(55) :
 - TYPE : KEYW
 - LENGTH : 3
 - VALUE :
 A L L
 C1D3D3
OP(56) :
 - TYPE : KEYW
 - LENGTH : 3
 - VALUE :
 A L L
 C1D3D3
OP(57) :
 - TYPE : KEYW
 - LENGTH : 3

U2284-J-Z125-9-76 573

SDF-SIM application Displaying the standardized transfer area

 - VALUE :
 A L L
 C1D3D3
OP(58) :
 - TYPE : KEYW
 - LENGTH : 3
 - VALUE :
 A L L
 C1D3D3
OP(59) :
 - TYPE : KEYW
 - LENGTH : 3
 - VALUE :
 A L L
 C1D3D3
OP(60) :
 - TYPE : KEYW
 - LENGTH : 3
 - VALUE :
 A L L
 C1D3D3
//
/
% SDS0002 SDF-SIM TERMINATED NORMALLY

574 U2284-J-Z125-9-76

Displaying the standardized transfer area SDF-SIM application

U2284-J-Z125-9-76 575

8 Messages

8.1 SDF-A messages

SDA0001 ’(&01)’ VERSION ’(&00)’ STARTED

SDA0003 COMMENT DOES NOT END WITH A DOUBLE QUOTE (")

Meaning
The comment has to end with a double quote.

SDA0004 CHARACTER STRING ’(&00)’ DOES NOT END WITH A SINGLE QUOTE (’)

Meaning
The character string has to end with a single quote.

SDA0030 OPERAND NAME ’(&00)’ IS LONGER THAN 20 CHARACTERS

Meaning
Maximum length permitted: 20 characters.

SDA0031 SYNTAX ERROR IN OPERAND NAME ’(&00)’

SDA0033 INVALID LIST SPECIFICATION AFTER OPERAND NAME

SDA0034 OPERAND NAME BEFORE EQUALS SIGN ’=’ MISSING

Meaning
Specify the operand name before the equals sign.

SDA0035 OPERAND ’(&00)’ NOT PERMITTED IN PRESENT MODE

Meaning
The operand (&00) is not permitted in the current input mode (see attributes xxx-ALLOWED
or the privileges definition in the syntax file).
For more detailed information, see the BS2000 manual ’SDF’ (or ’SDF-A’).

SDA0037 ’(&00)’ CANNOT BE ASSIGNED TO ANY OPERAND. REASON FOR ERROR: ’(&01)’. INPUT
IGNORED

SDA0038 ERROR IN COMMAND FORMAT: ’(&00)’ IGNORED

SDA0039 SEVERAL HELP TEXTS SPECIFIED FOR SAME LANGUAGE. LAST SPECIFICATION IS USED

576 U2284-J-Z125-9-76

SDA0043 SDF-A messages

SDA0043 LIST ELEMENT ’(&00)’ EXCEEDS MAXIMUM PERMITTED NUMBER

SDA0044 CLOSING PARENTHESIS ’)’ IN LIST ’(&00)’ MISSING

SDA0045 SPECIFICATION OF OPERAND VALUE ’(&00)’ IN LIST NOT PERMITTED

SDA0046 NO APPROPRIATE STRUCTURE ACTIVATED. VALUE ’(&01)’ FOR OPERAND ’(&00)’ COULD NOT
BE INTERPRETED

SDA0047 CLOSING PARENTHESIS ’)’ IN STRUCTURE ’(&00)’ MISSING

SDA0048 STRUCTURE SPECIFICATION ’(&00)’ INVALID AND NOT PERMITTED FOR VALUE ’(&01)’

SDA0050 ’(&00)’ CANNOT BE ASSIGNED TO ANY VALUE. INPUT IGNORED

SDA0052 MODIFICATION OF ADDRESSED OPERAND VALUE OF LIST ELEMENT NOT POSSIBLE BY
SPECIFYING ’(&00)’ IN SEMANTICS ERROR DIALOG

SDA0053 VALUE ’(&00)’ NOT PERMITTED IN PRESENT MODE

Meaning
The value (&00) is not permitted in the current input mode (see the xxx-ALLOWED
attributes or the privileges definition in the syntax file).
For more detailed information, see the BS2000 manual ’SDF’ (or ’SDF-A’).

SDA0055 DELETION OF LIST ELEMENT ’(&00)’ BY ENTERING A SHORTENED LIST NOT PERMITTED

Meaning
It is not possible to delete a list element (&00) in semantics
error dialog by entering a shortened list.

SDA0057 INVALID VALUE ’(&00)’ NOT CORRECTED YET

SDA0058 OPERAND VALUE ’(&00)’ NOT PERMITTED IN CURRENT MODE

SDA0061 OPERAND VALUE ’(&00)’ NOT IN PERMISSIBLE RANGE ’(&01)’

SDA0062 LENGTH OF OPERAND VALUE ’(&00)’ NOT IN PERMISSIBLE RANGE FOR DATA TYPE ’(&01)’

SDA0063 THE OPERAND VALUE ’(&00)’ IS NOT MEMBER OF THE SINGLE VALUE LIST OF THE SCOPE
’(&01)’

SDA0064 OPERAND VALUE ’(&00)’ DOES NOT MATCH DATA TYPE ’(&01)’

SDA0065 SPECIFICATION ’(&00)’ CANNOT BE ASSIGNED TO ANY OF THE VALUES ’(&01)’ (VALUES-
OVERLAPPING=YES)

SDA0067 LENGTH OF OPERAND VALUE ’(&00)’ MUST BE EVEN

Meaning
The value X-TEXT is declared with ODD-POSSIBLE=NO in the syntax file.
Therefore the value given for the VALUE operand must have an even number of characters.

Response
Correct the value.

U2284-J-Z125-9-76 577

SDF-A messages SDA0071

SDA0071 NO OPERAND SPECIFIED FOR COMMAND OR STATEMENT

SDA0072 ATTRIBUTE SPECIFIED IN FILE NAME ’(&00)’ NOT PERMITTED

SDA0073 INVALID GENERATION OR VERSION SPECIFICATION IN FILE NAME ’(&00)’

SDA0074 INVALID USER IDENTIFICATION SPECIFIED IN FILE NAME ’(&00)’

SDA0075 FILE NAME ’(&00)’ INVALID

Meaning
The file name (&00) contains characters that are not permitted.

SDA0076 INVALID GENERATION OR VERSION SPECIFICATION IN FILE NAME

SDA0077 SPECIFICATION OF POSITIONAL OPERANDS NOT PERMITTED AFTER OPERAND NAME WITH VALUE

SDA0078 INVALID CATALOG IDENTIFICATION SPECIFIED IN FILE NAME ’(&00)’

SDA0079 SPECIFIED CHARACTERS IN TEXT ’(&00)’ NOT PERMITTED

Meaning
Invalid characters:
– equals sign
– blank
– semicolon
– parenthesis.

SDA008A ’PRODUCT-NAME’ MUST BE SPECIFIED WHEN ADDING CORRECTION-INFORMATION TO AN
INSTALLATION SYNTAX FILE

SDA008B PRODUCT-NAME ’(&00)’ DIFFERS FROM REGISTERED ONE ’(&01)’

SDA008C PRODUCT-VERSION ’(&00)’ DIFFERS FROM REGISTERED ONE ’(&01)’

SDA008D ’SOURCE’ CORRECTIONS CAN ONLY BE REGISTERED IN COMPONENT SYNTAX FILES

SDA008E ’OBJECT’ CORRECTIONS CAN ONLY BE REGISTERED IN KPSD, SESD, INSD SYNTAX FILES

SDA008F THE CORRECTION-INFORMATION CANNOT BE MODIFIED BY THE CURRENT PROGRAM VERSION

Meaning
The program you use now is old-fashioned.

Response
Please, use an up-to-date program version.

SDA0080 NUMBER (&00) OUTSIDE PERMITTED RANGE

SDA0081 VALUE ’(&00)’ NOT CONTAINED IN KEYWORD LIST OF VALUE RANGE ’(&01)’

SDA0082 ABBREVIATION ’(&00)’ AMBIGUOUS WITH REGARD TO ’(&01)’

Response
Use an unambiguous abbreviation.

578 U2284-J-Z125-9-76

SDA0083 SDF-A messages

SDA0083 NAME ’(&00)’ UNKNOWN

SDA0084 ’(&00)’ EQUIVALENT TO TPR COMMAND(S) ’(&01)’. COMMAND REJECTED

Meaning
Possible reasons:
– the specified command already exists
– the specified command corresponds to the abbreviation of a command that already

exists or commands that are already defined.

(&00): the specified command
(&01): the command that already exists or a list of the commands that already exist.

SDA0085 V-RECORD OF COMPONENT SYNTAX FILE IS FULL

Meaning
The 255 positions in the correction information table are occupied.

Response
Remove the unnecessary entries from this table.

SDA0086 NO MORE ENTRIES POSSIBLE IN V-RECORD OF COMPONENT SYNTAX FILE

Meaning
Only some of the given PM operand values are written to the component syntax file.

Response
Remove the unnecessary entries from this table.

SDA0087 KERNEL OR COMPONENT SYNTAX FILE CANNOT BE OF ’USER’ TYPE

SDA0088 CORRECTION NUMBER ’(&00)’ NOT CONTAINED IN SYNTAX FILE

Meaning
The correction information is not contained in the V-record.

SDA0089 THERE ARE NO SIGNIFICANT DIGITS OR MORE THAN 10 SIGNIFICANT DIGITS HAVE BEEN
FOUND

Meaning
Only 10 digits can be specified for the SDF data type FIXED. Moreover, at least one digit
must be specified.

SDA009A CHECK ERROR: THE (&00) ’(&01)’ DOESN’T MATCH

Meaning
The V_record contains a SOFTWARE-UNIT-NAME, a VERSION and a COMPONENT-
VERSION specification. Those values can be used as CHECK-VALUES prior to any
V_record update.
(&00) identifies the specification.
(&01) identifies its value.

U2284-J-Z125-9-76 579

SDF-A messages SDA009B

SDA009B THE CORRECTION-INFORMATION CANNOT BE MODIFIED: DATA ORGANIZATION NOT RECOGNIZED

Meaning
The v_record structure is false.

SDA009C THE CORRECTION-INFORMATION CANNOT BE MODIFIED: THE V-RECORD IS FULL

Meaning
The v_record is full.

Response
Remove the unnecessary correction-informations.

SDA0090 OPERAND VALUE ’(&00)’ VIOLATES PERMITTED LOGICAL LENGTH FOR DATA TYPE ’(&01)’

SDA0099 MANDATORY OPERAND INVALID OR MISSING

Meaning
An incorrect value has been specified for an operand which is mandatory.

SDA0159 LANGUAGE ’(&00)’ NOT DEFINED IN GLOBALS OF CURRENT SYNTAX FILE HIERARCHY.
LANGUAGE ’(&01)’ IS USED

SDA0300 DMS ERROR ’(&01)’ WHEN ACCESSING FILE ’(&00)’. IN SYSTEM MODE: /HELP-MSG
DMS(&01)

Meaning
For more detailed information about the DMS error code, enter /HELP-MSG in system
mode or see the BS2000 manual ’System Messages’.

SDA0301 ERROR DURING OUTPUT TO SYSLST

SDA0302 INVALID VERSION OF SYNTAX FILE ’(&00)’ SELECTED

SDA0303 JVS ERROR ’(&01)’ WHEN ACCESSING JV ’(&00)’. IN SYSTEM MODE: /HELP-MSG JVS(&01)

Meaning
For more detailed information about the JVS error code, enter /HELP-MSG in system mode
or see the manual ’JV (BS2000)’.
JVS: Job Variable Service

SDA0304 DMS ERROR ’(&00)’ WHEN COPYING KERNEL SYNTAX FILE TO ’(&01)’. IN SYSTEM MODE:
/HELP-MSG DMS(&00)

Meaning
For more detailed information about the DMS error code, enter /HELP-MSG in system
mode or see the BS2000 manual ’System Messages’.

SDA0305 VERSION DOES NOT MATCH DOD-FORMAT CONVENTION. INPUT IGNORED

Meaning
The specified value does not follow the syntax rules.

580 U2284-J-Z125-9-76

SDA0306 SDF-A messages

SDA0306 KERNEL SYNTAX FILE MUST BE OF ’SYSTEM’ TYPE. INPUT IGNORED

SDA0307 KERNEL SYNTAX FILE CANNOT BE UPDATED. INPUT IGNORED

SDA0308 ERROR DURING OPEN OF (&00). THIS MAY LEAD TO SOME PROBLEMS

SDA0316 KEYWORD ’(&00)’ IN INPUT ALREADY EXISTS

SDA0335 OPERAND NAME ’(&00)’ ALREADY EXISTS

SDA0350 INTERNAL ERROR:’(&00)’

SDA0372 AUTHORIZATION RANGE SPECIFIED IN USER SYNTAX FILE FOR COMMAND ’(&00)’ WIDER THAN
THAT SPECIFIED IN SYSTEM AND GROUP SYNTAX FILES

SDA0373 DESCRIPTION OF SYSTEM INTERFACE FOR COMMAND ’(&00)’ MODIFIED IN SYNTAX FILE

Meaning
Possible reasons:
- attribute of the command has been changed in the user syntax file.
- the command is overruled by a command defined in the user syntax file.

SDA0376 SPECIFICATION OF POSITIONAL OPERANDS AT POSITION ’(&00)’ NOT PERMITTED

SDA0377 NUMBER OF DATA TYPES PER OPERAND TOO LARGE

SDA0378 STRUCTURE DEPTH GREATER THAN 5

SDA0379 IN COMMAND ’(&00)’ FOR OPERAND ’(&01)’, VALUES WHICH ARE NOT COMPATIBLE WITH
FILE HIERARCHY ARE ENTERED IN USER OR GROUP SYNTAX FILE

SDA0380 ERROR WHEN STARTING ’$.SDF-A-V1’. PROGRAM TERMINATED ABNORMALLY

Meaning
The program $.SDF-A-V1 is started when switch 15 is set to update syntax files with
V1 format which were created with SDF-A 1.0D

Response
Reset switch 15 or contact the system administrator.

SDA0381 ERROR WHEN READING A STATEMENT. PROGRAM TERMINATED ABNORMALLY

SDA0382 ERROR WHEN READING //OPEN-SYNTAX-FILE STATEMENT. PROGRAM TERMINATED ABNORMALLY

SDA0383 FORMAT OF SYNTAX FILE HAS BEEN CHANGED

Meaning
The syntax file has been created using a previous version (V1.0D or earlier). Its structure
is now modified and it cannot be opened anymore by those earlier versions.

SDA0384 NO VALUES SPECIFIED FOR OPERAND ’(&00)’. OPERAND WILL BE DELETED

SDA0385 NO STRUCTURE OPERANDS ASSIGNED TO VALUE ’(&00)’. STRUCTURE WILL BE DELETED
(C) Routing code: * Weight: 99

U2284-J-Z125-9-76 581

SDF-A messages SDA0386

SDA0386 ERROR WHEN STARTING ’$.SDF-A-V3’. PROGRAM TERMINATED ABNORMALLY

Meaning
The program $.SDF-A-V3 is started when the statement ’DEFINE-ENVIRONMENT *V3’ is
specified, to update or create syntax files with V3 format.

Response
Contact the system administrator.

SDA0388 WARNING: DEFAULT VALUE OF OPERAND ’(&00)’ LIES OUTSIDE PERMISSIBLE RANGE BECAUSE
OF ’(&01)’

SDA0389 OBJECT ’(&00)’ ALREADY DEFINED IN SYNTAX FILE

SDA0390 COPY DESTINATION NOT DEFINED OR ITS TYPE IS NOT COMPATIBLE

Meaning
Possible reasons:
– an //ADD or //EDIT statement is missing before the //COPY statement
– the type of the copy destination is not compatible with the type of the copied object.

SDA0391 INVALID SYNTAX FILE OBJECT. INPUT IGNORED

SDA0392 INTERNAL OPERAND OR VALUE ’(&00)’ ALREADY ASSIGNED

SDA0393 CURRENT COMMAND OR CURRENT STATEMENT NOT DEFINED

SDA0395 CURRENT OPERAND OR VALUE NOT DEFINED

SDA0396 SPECIFIED DATA TYPE CANNOT BE FOUND

SDA0397 SELECTED OPERAND OR VALUE NOT AVAILABLE AT CURRENT HIERARCHY LEVEL OF SYNTAX
FILE

SDA0401 WARNING: STANDARD NAME ’(&00)’ OF CONTROL FILE ADDED TO ’(&01)’

Meaning
To avoid inconsistency, the standard name of the control file cannot be suppressed by the
syntax file.

SDA0402 WARNING: STANDARD NAME ’(&00)’ OF CONTROL FILE ADDED TO OPERAND ’(&01)’

Meaning
To avoid inconsistency, the standard name of the control file cannot be suppressed by the
syntax file.

SDA0403 WARNING: STANDARD NAME ’(&00)’ OF CONTROL FILE ADDED TO VALUE ’(&01)’

Meaning
To avoid inconsistency, the standard name of the control file cannot be suppressed by the
syntax file.

582 U2284-J-Z125-9-76

SDA0404 SDF-A messages

SDA0404 VALUE TYPE ’(&00)’ MUST BE SYNTACTICALLY SEPARATED FROM VALUE TYPE ’(&01)’

SDA0405 ERROR CAN LEAD TO PROBLEMS OF PRIVILEGING IF SAME HIERARCHY OF SYNTAX FILES IS
ACTIVATED

SDA0406 VALUE ’(&00)’ DOES NOT MATCH CORRESPONDING SYNTAX TYPE BECAUSE OF ’(&01)’

SDA0407 CORRECTION REJECTED OR NOT POSSIBLE. STATEMENT IGNORED

SDA0408 ABBREVIATION ’(&00)’ INVALID AS AN ABBREVIATION OF MAIN VALUE ’(&01)’

Meaning
Use an unambiguous abbreviation.

SDA0409 KEYWORD ’(&00)’ TOO LONG

Meaning
Maximum length permitted: 30 characters.

SDA0410 A SINGLE VALUE MUST BE SPECIFIED FOR ’KEYWORD’ DATA TYPE

SDA0411 EXTERNAL COMMAND OR STATEMENT NAME ’(&00)’ ALREADY ASSIGNED

Meaning
Possible reasons:
– the command or the statement exists.
– the command or the statement is removed at user level but defined at group or system

level.

SDA0412 WARNING: RESULT OPERAND LEVEL ALLOCATED TO OPERAND ’(&00)’ IN ’(&01)’ IS TOO
LARGE AND WILL BE CORRECTED

SDA0413 FLAT STRUCTURE SPECIFIED FOR VALUE ’(&00)’ ALTHOUGH STRUCTURE ALLOWED WITHIN A
LIST

SDA0414 DELETION OF COMMAND OR STATEMENT ’(&00)’ NOT PERMITTED

SDA0415 DELETION OF OPERAND ’(&00)’ NOT PERMITTED

SDA0416 DELETION OF VALUE ’(&00)’ NOT PERMITTED

SDA0417 INTERNAL NAME ’(&00)’ ALREADY ASSIGNED

SDA0418 ’(&00)’ OPERAND IGNORED. PROCESSING CONTINUES

Meaning

– INPUT-FORM means that TPR commands can only be generated in INVARIANT or
STANDARD input form if their interface is ISL of a version greater than 1.

– SOFTWARE-UNIT-NAME means that the syntax file is not concerned by this operand.
– VERSION means that on open update, it can only be evaluated when SOFTWARE-

UNIT-NAME is specified.

U2284-J-Z125-9-76 583

SDF-A messages SDA0419

SDA0419 ’COMMAND-REST’ DATA TYPE ONLY PERMITTED AT COMMAND LEVEL

SDA0420 WARNING: SOME OBJECTS NOT COPIED. STATEMENT PARTIALLY EXECUTED

Meaning
A problem has been encountered during the processing of one object.
Refer to the preceding error messages.

SDA0421 VALUE SPECIFIED FOR ’COMMAND-REST’ DATA TYPE NOT PERMITTED

SDA0422 FOR A VALUE INTRODUCED BY AN OPERAND DECLARED ’LIST-POSSIBLE=NO’, LIST
SPECIFICATION NOT POSSIBLE

SDA0423 OPERATION ADD-OP NOT PERMITTED AT THE MOMENT

Meaning
Definition *command-rest data type only permitted for last operand

SDA0424 FILE NAME WITH GENERATION OR VERSION SPECIFICATION MUST NOT BE FOLLOWED BY A
STRUCTURE

SDA0425 VALID OUTPUT POSITION SPECIFICATION FOR THIS OPERAND MANDATORY

SDA0426 SELECTED OPERAND OR VALUE DOES NOT MATCH REQUIRED TYPE OF OPERAND OR VALUE

SDA0427 NO VALUE CAN BE SPECIFIED FOR ’DEVICE’ DATA TYPE

SDA0428 WARNING: OPERAND DECLARED ’PRESENCE=INTERNAL-ONLY’ WHICH INTRODUCES A STRUCTURE
CANNOT BE DEFINED IN LIST. ’PRESENCE’ WAS RESET TO ’NORMAL’

SDA0430 VALUE ’(&00)’ VIOLATES IMPLEMENTATION BOUNDARIES

Meaning
Each data type has limit values which are output in guided dialog (e.g. C_string 1..1800).

SDA0431 INVALID DEFAULT VALUES. STATEMENT IGNORED

SDA0432 TRANSFER AREA TOO SMALL. STATEMENT IGNORED

SDA0433 OPERAND DECLARED ’PRESENCE=INTERNAL-ONLY’ MUST HAVE DEFAULT VALUE

SDA0434 IF DATA TYPE IS CHANGED TO ’INTEGER’ OR ’TIME’, REPRESENTATION ’OUT-FORM=’ IS
MANDATORY

SDA0435 STRUCTURE MUST NOT FOLLOW ’TEXT’ OR ’COMMAND-REST’ DATA TYPE

SDA0436 LOWEST LIMIT GREATER THAN HIGHEST LIMIT

Meaning
Possible reasons:
– SHORTEST-LENGTH is greater than LONGEST-LENGTH (for example: 10..2 is wrong,

2..10 is correct).
– LOWEST-VALUE is greater than HIGHEST-VALUE (for example: (2,-2) is wrong, (-2,2)

is correct).

584 U2284-J-Z125-9-76

SDA0437 SDF-A messages

SDA0437 OPERAND ’(&00)’ IN COMMAND ’(&01)’ HAS INVALID RESULT OPERAND NAME. CORRECTION
TO VALUE ’*POS(1)’

SDA0438 START OF PROCESSING OF OBJECT ’(&00)’

SDA0439 ’OUTPUT=DROP-OPERAND’ NOT PERMITTED FOR VALUES WITH ’LIST-ALLOWED=YES’

SDA044A WARNING: THE INTERNAL NAME OF THE COMMAND SHOULD START WITH ’(&00)’ OR ’(&01)’

Meaning
(&01) = command class (specified at KPSD creation).

SDA0440 NO GLOBAL INFORMATION AVAILABLE IN CURRENT SYNTAX FILE. TASK TERMINATED
ABNORMALLY

SDA0441 SPECIFICATION OF STRUCTURE FOR OPERAND ’(&00)’ AMBIGUOUS

SDA0442 RECURSIVE DEFINITION OF VALUES OR OPERANDS NOT PERMITTED

Meaning
When defining the value ’v2’ or the operand ’op2’ in the structure ’op1=v1(op2=v2)’, it is not
permissible to use ’ATT-INFO=YES’ to copy the value ’v1’ or the operand ’op1’.

Response
Use the SDF-A statement //ADD-VALUE or //ADD-OPERAND to define the value
’v2’ or the operand ’op2’.

SDA0443 /SEND-MESSAGE (/INTR) FOLLOWS K2 INTERRUPT : STATEMENT CANCELLED

SDA0444 INTERNAL NAME OF APPLICATION DOMAIN ’(&00)’ FOR ’(&01)’ DOES NOT EXIST

SDA0445 WARNING: LIST SPECIFICATION FOR OPERAND ’(&00)’ DELETED BECAUSE NO CORRESPONDING
VALUE PERMITTED IN LIST

SDA0446 WARNING: CURRENT SYNTAX FILE NOT CLOSED PROPERLY WHEN LAST PROCESSED

Meaning
After the previous processing, the program run was terminated abnormally.
Check the consistency of the syntax file currently used.
An update of the syntax file is possible.
The error indicator will be reset after a successful program run via the END statement.

SDA0447 FILE NAME ’(&00)’ SPECIFIED IN //OPEN-SYNTAX-FILE STATEMENT ALREADY EXISTS

Meaning
The file name (&00) specified in the statement has already been specified.

SDA0448 LIST OF SINGLE VALUES NOT PERMITTED FOR ’KEYWORD’ DATA TYPE

SDA0449 COPYING OF OBJECTS WITHIN SAME SYNTAX FILE NOT POSSIBLE. STATEMENT REJECTED

Meaning
In the //COPY statement, it is necessary to specify a syntax file which is different from the
current syntax file.

U2284-J-Z125-9-76 585

SDF-A messages SDA0450

Response
Specify two different file names as syntax files.

SDA0450 WARNING: INCORRECT ’LONGEST-LENGTH’ FOR FULL-FILENAME OR PARTIAL-FILENAME
SPECIFIED

Meaning
The LONGEST-LENGTH for a full-filename is defined as follows:
– with CAT-ID=YES and USER-ID=YES, LONGEST-LENGTH=54
– with CAT-ID=NOand USER-ID=YES, LONGEST-LENGTH=48
– with CAT-ID=YES and USER-ID=NO,LONGEST-LENGTH=44
– with CAT-ID=NOand USER-ID=NO,LONGEST-LENGTH=38.

The LONGEST-LENGTH for a partial-filename is defined as follows:
– with CAT-ID=YES and USER-ID=YES, LONGEST-LENGTH=53
– with CAT-ID=NOand USER-ID=YES, LONGEST-LENGTH=47
– with CAT-ID=YES and USER-ID=NO,LONGEST-LENGTH=43
– with CAT-ID=NOand USER-ID=NO,LONGEST-LENGTH=37.

Response
Automatic correction which inserts a correct value for the LONGEST-LENGTH operand.

SDA0451 WARNING: ALIAS NAME SUPPRESSED BECAUSE DUPLICATE OF MAIN OR STANDARD NAME

SDA0452 MODIFICATION OF ’NON KEYWORD’ VALUE INTO ’KEYWORD’ NOT PERMITTED

SDA0453 DEFINITION OF SDF GLOBALS NOT PERMITTED

Meaning
Duplicates in the next fields’ names (CONTINUE, TEST, EXECUTE, ...) are not permitted.

SDA0454 OPTION ’OVERWRITE-POSSIBLE=YES’ ONLY PERMITTED FOR OPERANDS WITH DEFAULT VALUE

SDA0455 WARNING: OUTPUT AREA TOO SHORT TO CONTAIN POSSIBLE INPUTS

SDA0456 OUTPUT AREA TOO SHORT TO CONTAIN INPUT VALUE

SDA0457 FOR ONE OPERAND ONLY ONE VALUE WITH ’NULL ABBREVIATION’ IS PERMITTED

SDA0458 NO CURRENT OBJECT PRESENTLY DEFINED

SDA0459 ERROR IN //COPY STATEMENT

SDA0460 VALUE ’(&00)’ IS DEFAULT VALUE FOR OPERAND ’(&01)’. DELETION NOT PERMITTED

SDA0461 WARNING: THE HASHING FUNCTION IS ONLY PERMITTED FOR C-STRING VALUES

SDA0463 LONGEST-LOGICAL-LENGTH INCORRECT

Meaning
The longest logical length cannot be less than the minimum length or greater than the
maximum length.

586 U2284-J-Z125-9-76

SDA0464 SDF-A messages

SDA0464 WARNING: RECOVERY OF PARTIAL-FILENAME BY FILENAME WITH WILDCARDS

Meaning
The datatype <partial-filename> may be suppressed because it is completely included in
the datatype <filename with- wild>.

SDA0469 ITEM CURRENTLY NOT DEFINED IN REFERENCE SYNTAX FILES

Meaning
The input, which contains a command, a statement, an operand or a value, is not defined
in the reference syntax files.

SDA0470 INTERNAL PROGRAM NAME ’(&00)’ DOES NOT EXIST IN CURRENT SYNTAX FILE

SDA0471 HELP TEXT DOES NOT EXIST FOR SPECIFIED LANGUAGE

SDA0472 DEFINITION OF SYSTEM COMMAND WITH ’IMPLEMENTOR=TPR’ NOT PERMITTED IN USER SYNTAX
FILE

SDA0474 //EDIT STATEMENT NOT PERMITTED FOR THIS OBJECT

Meaning
This function is reserved for the system administrator.

SDA0475 //COPY STATEMENT NOT PERMITTED FOR THIS OBJECT

Meaning
It is not permitted to copy an old command into a user syntax file.
It is not permitted to copy a common statement into a system or a group
syntax file.

SDA0476 WARNING: FOR GLOBAL INFORMATION, PROGRAMS AND DOMAINS, ’ATTACHED-INFO=ONLY’
VALUE IS INTERPRETED AS ’ATTACHED-INFO=YES’

SDA0477 NO VALUE PRESENTLY DEFINED FOR PROCEDURE FILE NAME

Meaning
The name of the procedure that implements the command is not defined : either a file name
has not been given or some IMON information has not been given yet.

SDA0478 OBJECT ’(&00)’ IS NOT FLAGGED ’REMOVED’. //RESTORE STATEMENT REJECTED

Meaning
Possible reasons:
– the specified object is not flagged REMOVED.
– the specified object corresponds to the abbreviation of many objects which are not

flagged REMOVED.

U2284-J-Z125-9-76 587

SDF-A messages SDA0479

SDA0479 THE NAME OF THE INPUT-FILE IS THE SAME AS THE NAME OF THE COMPARE-FILE

SDA0480 VALUE ’(&00)’ DOES NOT MATCH CORRESPONDING SYNTAX TYPE BECAUSE INPUT OF BLANKS
IS NOT PERMITTED

SDA0481 WARNING: ’STRUCTURE-IMPLICIT=YES’ NOT PERMITTED FOR OPERAND ’(&00)’.
’STRUCTURE-IMPLICIT’ RESET TO ’NO’

Meaning
STRUCTURE-IMPLICIT=YES is only possible for operands of structures which are intro-
duced by a keyword or a keyword number.

SDA0482 WARNING: ’ANALYSE-DEFAULT’ WAS RESET TO ’NO’ FOR OPERAND ’(&00)’

Meaning
- Due to previous error.
- For Device Data type.
- For Secret value wanted.
- For default value containing a list or a structure.

SDA0483 ’OVERWRITE-POSSIBLE=YES’ NOT PERMITTED FOR OPERANDS AND VALUES

SDA0485 ’EXTERNAL-ATTRIBUTES’ VALUE ONLY VALID FOR PROGRAMS OR DOMAINS

SDA0486 EXTERNAL DOMAIN OR PROGRAM NAME ’(&00)’ ALREADY ASSIGNED

SDA0487 //RESTORE STATEMENT IN SYSTEM SYNTAX FILE NOT POSSIBLE

Meaning
An object removed from the system syntax file really has been deleted; a restoration is not
possible.

SDA0488 OBJECT ’(&00)’ NOT REMOVED. //RESTORE STATEMENT REJECTED

Meaning
The specified object is not removed. It corresponds to the abbreviation of already existing
objects, which are not removed.

SDA0489 OBJECT ’(&00)’ CANNOT BE RESTORED IN USER SYNTAX FILE

Meaning
The object defined in the system syntax file was removed when the group syntax file was
opened.

Response
Open the group syntax file in order to restore this object.

SDA0490 SYNTAX FILE ’(&00)’ WAS NOT CLOSED CORRECTLY IN PREVIOUS PROCESSING. FILE IS
CORRUPTED AND CAN NO LONGER BE USED

SDA0491 OVERWRITING OF AN OBJECT DEFINED IN HIGHER LEVEL OF HIERARCHY NOT POSSIBLE

SDA0492 WARNING: ERROR ON ’STXIT’ INITIALISATION. /INTR COMMAND REJECTED

588 U2284-J-Z125-9-76

SDA0493 SDF-A messages

SDA0493 ERROR ON STXIT INITIALISATION : ABEND/K2 CAN NOT BE USED. DO NOT INTERRUPT THE
PROGRAM AT THIS POINT

SDA0494 THE OVERWRITE OF COMMON STATEMENTS IS ONLY POSSIBLE FROM SDF-U PROGRAM

SDA0495 THE TPR-COMMAND ’(&00)’ DOESN’T EXIST OR IS NOT A TPR-COMMAND

SDA0496 WARNING : THE RESULT-INTERNAL-NAME MAY NOT BE DEFINED WITH IMPLEMENTOR=*BY-TPR

SDA0497 NO VALUE PRESENTLY DEFINED FOR TPR COMMAND NAME

SDA0499 WARNING: THERE IS NO OBJECT CORRESPONDING TO THE SPECIFIED INPUT

SDA0507 FILE ’(&00)’ IS NOT A SYNTAX FILE OR FILE TYPE INVALID

SDA0508 SYNTAX FILE ’(&00)’ NOT CLOSED CORRECTLY

SDA0509 ’(&00)’ IS NOT A NEW KERNEL SYNTAX FILE. INPUT IGNORED

SDA0510 VERSION VALUE ’(&00)’ IGNORED BECAUSE ’(&01)’ IS NOT A COMPONENT SYNTAX FILE.
PROCESSING CONTINUES

Meaning
The version specified in the //OPEN-SYNTAX-FILE statement has not been found. The
specified file is not a component syntax file.

SDA0511 TERMINATE THE PROGRAM BY ’//END’ ELSE THE LAST OBJECT MAY BE INCOMPLETE IN THE
SYNTAX FILE

Meaning
Return to the program to complete the last cmd/stmt processed by a CLOSE-CMD-STMT
or END otherwise the file will be rejected by SDF.

SDA0512 THE PROCESSED SYNTAX FILE IS IN AN INCONSISTENT STATE

Meaning
The syntax file will be rejected by SDF. Open it again in update mode and try to correct the
last processed objects.

SDA0571 TABLE OF COMMAND NAMES DOES NOT EXIST IN ACTIVE SYNTAX FILE

SDA0572 TABLE OF NAMES OF APPLICATION DOMAINS DOES NOT EXIST IN ACTIVE SYNTAX FILE

SDA0573 TABLE OF PROGRAM NAMES DOES NOT EXIST IN ACTIVE SYNTAX FILE

SDA0574 TABLE OF ALL PRIVILEGES DOES NOT EXIST IN ACTIVE SYNTAX FILE

SDA0575 STATEMENT FOR PROGRAM ’(&00)’ DOES NOT EXIST IN ACTIVE SYNTAX FILE

SDA0576 MCLP ERROR ’(&00)’. COMMAND NOT PROCESSED

Meaning
For more detailed information about the MCLP error code, see the description of the CMD
macro in the BS2000 manual ’Executive Macros’.
MCLP: Macro Command Language Processor.

U2284-J-Z125-9-76 589

SDF-A messages SDA0580

SDA0580 NAME OF APPLICATION DOMAIN ’(&00)’ DOES NOT EXIST IN ACTIVE SYNTAX FILE

SDA0581 GLOBAL INFORMATION DOES NOT EXIST IN ACTIVE SYNTAX FILE

SDA0582 COMMAND ’(&00)’ DOES NOT EXIST IN ACTIVE SYNTAX FILE

SDA0583 STATEMENT ’(&00)’ DOES NOT EXIST IN ACTIVE SYNTAX FILE

SDA0584 V-RECORD DOES NOT EXIST IN SYNTAX FILE

SDA0585 DATA TYPE ’(&00)’ DOES NOT EXIST IN ACTIVE SYNTAX FILE

SDA0586 PROGRAM ’(&00)’ DOES NOT EXIST IN ACTIVE SYNTAX FILE

SDA0600 INTERNAL NUMBER ’(&00)’ ALREADY ASSIGNED TO ANOTHER PRIVILEGE

Meaning
Each privilege is internally identified by the positioning of the corresponding number in the
64 bits string representing the privileges. Therefore the position of the number must be
different for each privilege.

Response
Change the internal number assigned to the privilege.

SDA0601 INCONSISTENCY IN PRIVILEGE DEFINITION

Meaning
In a command or statement definition, a node (operand or value) is defined with more privi-
leges than its ’father’ nodes. The privileges for the operands and values of the lowest level
cannot be further modified as one of these operands or values has no more privilege
assigned to it.

Response
Check privileges assigned to each command node (command, operand or value) and
change inconsistencies.

SDA0602 WARNING: INCONSISTENCY IN PRIVILEGE DEFINITION FOR OPERAND ’(&00)’

Meaning
It must be possible to give a value to the operand for every task, whatever its privilege(s).
Therefore the default value must have the same privilege(s) as the operand.
If the operand has no default value, then the operand must have the same privilege(s) as
its father node (command or value node), and for each privilege assigned to the operand,
there must be at least one value with this privilege.

SDA0603 //REMOVE STATEMENT NOT PERMITTED FOR THIS OBJECT

Meaning
Removal of a privilege is only permitted in the system kernel file. This function is reserved
for the privilege administrator.

590 U2284-J-Z125-9-76

SDA0605 SDF-A messages

SDA0605 MINIMAL-ABBREVIATION ’(&00)’ NOT ABBREVIATION OF MAIN NAME ’(&01)’

Meaning
The minimal abbreviation must be an abbreviation of the main name (&01) defined with the
NAME operand.

Response
Use an unambiguous abbreviation.

SDA0606 WARNING: NAME ’(&00)’ SHORTER THAN REQUIRED MINIMAL-ABBREVIATION ’(&01)’. INPUT
IGNORED

Meaning
A shorter input than the minimal abbreviation can be unequivocal, but will not be executed
for security reasons.

Response
Use an unambiguous abbreviation.

SDA0607 MINIMAL-ABBREVIATION ’(&00)’ AMBIGUOUS WITH REGARD TO AN OPERAND NAME OR VALUE

Meaning
The minimal abbreviation is ambiguous regarding the main, alias or standard name of
another operand or value of the same level.

Response
Use an unambiguous abbreviation.

SDA0608 WARNING: ’NULL-ABBREVIATION’ RESET TO ’NO’ BECAUSE ’MINIMAL-ABBREVIATION’ IS
GIVEN

Meaning
NULL-ABBREVIATION=YES cannot be used when a previous MINIMAL-ABBREVIATION
has been defined.

SDA0609 WARNING: ’PRIVILEGE DEFINITION’ RESET BECAUSE PRIVILEGES ASSOCIATED WITH OBJECT
TO BE COPIED DO NOT EXIST IN HIERARCHY

Meaning
For command or statement definition, the operands and values must have the same
privilege as the command or statement node.

SDA0610 WARNING: ’PRIVILEGE DEFINITION’ RESET BECAUSE THE OBJECT TO BE COPIED IS DEFINED
WITH MORE PRIVILEGES THAN ITS ’FATHER’ NODE

Meaning
The privilege definitions of the object and of the operands and values of the lowest level are
reset to the same privilege as its ’father’ node.

U2284-J-Z125-9-76 591

SDF-SIM messages SDS0001

8.2 SDF-SIM messages

SDS0001 SDF-SIM VERSION ’(&00)’ STARTED

SDS0002 SDF-SIM TERMINATED NORMALLY

SDS0003 SDF-SIM TERMINATED ABNORMALLY

SDS0004 INVALID SYNTAX FILE FOR OPERAND ’(&00)’

SDS0005 ’(&00)’ SYNTAX FILE ’(&01)’ ACTIVATED

SDS0006 PROGRAM ’(&00)’ IS NOT DEFINED IN THE ACTIVATED SYNTAX FILES

SDS0007 ERROR ’(&00)’ RETURNED BY ’(&01)’ CALL

SDS0008 DO YOU WANT TO DISPLAY TRANSFER AREA? REPLY: NO/LONG/SHORT

SDS0009 ENTER THE NAME OF THE OML TO USE FOR ENTRY ’(&00)’ OR *NO

Meaning
The user has specified EXECUTION=*YES (in DEFINE-ENVIRONMENT) and SDF-SIM
has not been able to find the entry corresponding to a command. SDF-SIM therefore asks
the name of the OML which contains this entry then links it to the simulation phase.

SDS0010 INVALID OML NAME

SDS0011 SDF INTERNAL ERROR: ERROR ’(&00)’, RETURNED BY MACRO ’(&01)’, ’SERSLOG’ LEVEL

SDS0012 DO YOU WANT TO DISPLAY STACK? REPLY: YES/NO

Meaning
An SDF internal error has occurred. Displaying the stacks (ABNORM routine) can facilitate
diagnosis.

SDS0013 SDF INTERNAL ERROR: ERROR ’(&00)’, RETURNED BY INTERFACE NUMBER ’(&01)’,
’TERMINATE’ LEVEL

592 U2284-J-Z125-9-76

U2284-J-Z125-9-76 593

9 Appendix

9.1 Changes to the SDF program interface

The layout of the standardized transfer area was modified for SDF V4.1, and for this reason
the CMDSTRUC macro for generating the transfer area was replaced by the CMDTA macro.
Additionally, the macros RDSTMT, TRSTMT and CORSTMT used in connection with the
statements were replaced by the new macros CMDRST, CMDTST and CMDCST.

The format used for the standardized transfer are up to V4.0 and the macros CMDSTRUC,
RDSTMT, TRSTMT and CORSTMT are still supported for reasons of compatibility.
However, they should no longer be used in new programs.

9.1.1 Format of the standardized transfer area up to SDF V4.0

The standardized transfer area begins on a word boundary. The header field is in bytes 0
through 19. It contains, amongst other things, the internal statement name (see ADD-STMT
...,INTERNAL-NAME=...). The array for operands valid for all statements, i.e. for operands
defined with RESULT-OPERAND-LEVEL=1 (see ADD-OPERAND), begins with byte 20. It
accommodates a 6-byte description for each of these operands. The operand descriptions
are arranged in the order resulting from the operand positions established in the statement
definition (see ADD-OPERAND ...,RESULT-OPERAND-NAME=*POSITION
(POSITION=<integer>)). Each operand description contains, among other things, the
absolute address where the associated operand value, or the description of the associated
list or non-linearized structure, is stored in the transfer area. The description of a non-
linearized structure contains an operand array describing the operands contained in the
structure. It has the same format as the array for the operands valid for all statements.

In the simplest case, an operand has only one simple value (Figure 8 without standard
header, page 369).

594 U2284-J-Z125-9-76

Format of the standardized transfer area up to SDF V4.0 Appendix

If the operand value introduces a structure (Figure 9 without default header, page 368),
there is a structure description for this value. This contains an operand array with descrip-
tions for all operands of the structure, as well as for the operands from linearized substruc-
tures. The operand descriptions are arranged in the order resulting from the structure-
oriented operand positions established in the statement definition (see ADD-
OPERAND...,RESULT-OPERAND-NAME=*POSITION (POSITION=<integer>)). The
operand values corresponding to the operands of the structure may introduce further struc-
tures and/or consist of a list of values.

Values for operands defined with ADD-OPERAND ...,LIST-POSSIBLE=*YES
(...,FORM=*NORMAL) are transferred in the form shown in Figure 10 (page 369, without
default header). A structure may be attached to a list element. In this case, “value of the list
element” is a structure description.

Header field of a standardized transfer area

The internal name of the statement and the number of positions in the operand array are
stored in the syntax file in the statement definition
(see ADD-STMT...,INTERNAL-NAME=...,MAX-STRUC-OPERAND=...).

Byte Contents Source of field contents in case of

analyzed
statement to

program

errored
 statement back

to SDF

default
values to

SDF

0 to 1 Length of the transfer area
(maximum 65536 bytes)

Program unchanged Program

2 to 9 Internal name of the statement SDF unchanged Program

10 to 17 Reserved – – –

18 to 19 Number of positions in the
operand array

SDF unchanged Program

U2284-J-Z125-9-76 595

Appendix Format of the standardized transfer area up to SDF V4.0

Description of operands

The operand array and the descriptions therein for the operands of a structure have exactly
the same format as the one for the operands valid for all statements.

Additional information

The additional information is contained in the first byte of the value description. The
following specifications regarding the additional information apply regardless of whether the
additional information appears in an operand description, in the header field of a structure
description, in the description of a list element or in an OR list description.

Byte Contents Source of field contents in case of

analyzed
statement to

program

errored
 statement back

to SDF

default
values to

SDF

0 to 1
0
1

Value description
Additional information
Description of type

See below
SDF

See below
unchanged

See below
Program 1)

1 Entry only for operands for which there are values to be converted, i.e. when bit 0 of the additional information
is set

2 to 5 Absolute address (stored
unaligned) of the value assigned
to the operand or, in the case of
structures or lists, of the further
description

SDF unchanged Program 1)

Bit Value Meaning Source of field contents in case of

analyzed
statement to

program

errored
 statement back to

SDF

default values
to SDF

0 0 Value not available SDF 1) unchanged Program 2)

0 1 Value available SDF unchanged Program 2)

1 0 Value changeable – Program3) –

1 1 Value not changeable – Program3) –

2 0 Value not errored – Program –

2 1 Value errored – Program –

3 0 Value is not to be used as
default value

– – Program

3 1 Value is to be used as
default value

– – Program

4 to 7 – Reserved – – Program

596 U2284-J-Z125-9-76

Format of the standardized transfer area up to SDF V4.0 Appendix

Type description

The type description is contained in the second byte of the value description. The following
specifications regarding the type description apply regardless of whether the type
description appears in an operand description, in the header field of a structure description,
in the description of a list element or in an OR list description.

Structure descriptions can be entered by a program in order to specify custom defaults.
Defaults can be entered:

– in the internal format (like the OUTPUT operand in the SDF-A statement ADD-VALUE)
or

– in the external format as a string analogous to the operand description. The auxiliary
data type <input-text> must be used, and the value is analyzed as if it had been entered
via the user interface.

1 For example: values for operands defined with ADD-OPERAND..., PRESENCE= *EXTERNAL-ONLY, or values in
structures not referenced.

2 0 for operands for which there are neither operand values to be converted nor structures containing operands with
values to be converted.
1 for operands for which there are either operand values to be converted or structures containing operands with
values to be converted.

3 All list values coming after the first changeable list value are considered changeable by SDF, regardless of whether
bit 1 is set. In this way, list elements that have already been processed are protected against being overwritten.

Value (decimal) Meaning

1 Command rest

2 Integer

4 X-string

5 C-string

6 Name

7 Alphanumeric name

8 Structured name

9 Label

11 Fully qualified file name

12 Partially qualified file name

13 Time

14 Date

15 Composed name
Continued ➠

U2284-J-Z125-9-76 597

Appendix Format of the standardized transfer area up to SDF V4.0

Header field of a structure description

The number of positions in the operand array is stored in the statement definition in the
syntax file (see ADD-VALUE...,STRUCTURE=*YES(..,MAX-STRUC-OPERAND=...).

The operand array belonging to the structure begins immediately after the header field.
It has exactly the same format as the one for operands valid for all statements.

16 Text

17 Catalog identifier (cat-id)

18 Input text

19 Structure

20 List

21 OR list

22 Keyword

23 Reserved for internal use

24 VSN

25 X-text

26 Fixed-point number

27 Device

28 Product version

29 POSIX pathname

35 POSIX file name

Byte Contents Source of field contents in case of

analyzed
statement to

program

errored
 statement back

to SDF

default values
to SDF

0 to 1 Number of positions in the
operand array

SDF unchanged Program

2 to 3

2
3

Value description for the operand
value introducing the structure
Additional information
Type description

–
SDF

See above
unchanged

See above
Program

4 to 7 Absolute address (stored
unaligned) of the operand value
introducing the structure

SDF unchanged Program

Value (decimal) Meaning

598 U2284-J-Z125-9-76

Format of the standardized transfer area up to SDF V4.0 Appendix

List element

In the last element of the list, the “absolute address of the next list element” has the value 0.

An OR-list consists of a single element. The “absolute address of the next list element” is
redundant in this case.

For an operand defined with LIST-POSSIBLE=*YES(FORM=*NORMAL), the number of list
elements must be restricted (LIMIT=...) so as to prevent an overflow in the standardized
transfer area. The size of a list in the standardized transfer area can be calculated by using
the following formula:

n * (10 + 2 + l)

where: n is the number of list elements, and

l is the length of a single list element (rounded to a multiple of 2).

Byte Contents Source of field contents in case of

analyzed
statement to

program

errored
 statement back

to SDF

default values
to SDF

0 to 1
0
1

Value description
Additional information
Description of type

See above
SDF

See above
unchanged

See above
Program1)

1 Specified only for operands with operand values to be converted, i.e. when bit 0 of the additional information is
set

2 to 5 Absolute address (stored
unaligned) of the value assigned
to the list element or, in the case
of structures, of the further
description

SDF unchanged Program1)

6 to 9 Absolute address (stored
unaligned) of the next list element

SDF unchanged Program1)

U2284-J-Z125-9-76 599

Appendix Format of the standardized transfer area up to SDF V4.0

Example:

ADD-OPERAND ... LIST-POSSIBLE=*YES(LIMIT=100,FORM=*NORMAL)
 ADD-VALUE *NAME(1,8)

A list that is defined in this way can occupy up to 2000 bytes in the standardized transfer
area:
(100 * (10 + 2 + 8) = 2000).

How values are stored

How the values are passed depends on the definition in the syntax file (see ADD-VALUE...,
OUTPUT=*NORMAL(...). In this regard, the following points apply:

– A value defined with ADD-VALUE TYPE=*INTEGER(...,OUT-FORM=*BINARY) is
stored as a signed four-byte string.

– A value defined with ADD-VALUE TYPE=*TIME is stored as a four-byte string, with 2
bytes (binary) for the hours and one byte each for the minutes and seconds.

Byte Contents Source of field contents in case of

analyzed
statement to

program

errored
 statement back

to SDF

default values
to SDF

0 to 1 Length specifications SDF unchanged Program

2 to... Value SDF unchanged Program

600 U2284-J-Z125-9-76

CMDSTRUC Appendix

9.1.2 CMDSTRUC
Generate transfer area for analyzed statement

The CMDSTRUC macro generates a DSECT. This defines the standardized transfer area
up to SDF V4.0. This is needed for the following three purposes:

1. SDF passes an analyzed statement to the program (see CORSTMT, RDSTMT and
TRSTMT)

2. The program returns a semantically incorrect statement to SDF (see CORSTMT)

3. The program passes values to SDF that are to replace specified operand values (see
RDSTMT and TRSTMT).

The standardized transfer area is described in detail in section “Format of the standardized
transfer area up to SDF V4.0” on page 593ff.

P = CMD / prefix
specifies a character string that is to be concatenated with the beginning of all names in the
DSECT. It may be up to three characters long. Unless otherwise specified, the string “CMD”
will be used.

Operation Operands

CMDSTRUC [P = CMD / prefix]

U2284-J-Z125-9-76 601

Appendix CORSTMT

9.1.3 CORSTMT
Initiate semantic error dialog

The CORSTMT macro causes SDF to conduct a dialog with the user in which the user
corrects semantic errors in a statement. Immediately beforehand, SDF has analyzed the
statement and passed it to the program as being syntactically correct.
Secret operand values that were entered in blanked input fields by the user must be
repeated during the correction process.

Prerequisites for the semantic error dialog are:

● The program is running in an interactive task and an error dialog was permitted in the
syntax analysis, i.e.:
– temporary or permanent guided dialog must be set
– the SDF option PROCEDURE-DIALOGUE=YES must be set in procedures
– if CORSTMT is called after TRSTMT, DIALOG=ERROR must be set for TRSTMT

● The same syntax file is available as when the statement was first analyzed (no inter-
vening change of syntax files).

If these prerequisites are not satisfied, SDF rejects the dialog (error code X’20’).

INOUT=addr / (r1)
Address of the standardized transfer area, or a register that contains this address. The area
must begin on a word boundary. It contains the results of analysis of the incorrect state-
ment, passed previously to the program by SDF. The program has identified the operand
values it has found to be errored. SDF does not accept changes in input values made by

Operation Operands

CORSTMT INOUT = addr / (r1)

,MESSAGE = addr / (r3)

[,DEFAULT = *NO / (addr,...)]

[,INVAR = *NO / addr / (r)]

[,CALLID = *NO / addr / (r7)]

[,CCSNAME = *NO / *EXTEND / name]

[,MF =]
L
(E,(1))
(E,opaddr)

602 U2284-J-Z125-9-76

CORSTMT Appendix

the program. Following the error dialog and renewed analysis, SDF stores the modified ana-
lysis results back into this area (see section “Format of the standardized transfer area up to
SDF V4.0” on page 593).

MESSAGE=addr / (r3)
Address of the text to be output for the error dialog, or a register that contains this address.
In guided dialog, this text is integrated into the statement menu. The text is expected in the
form of a variable-length record, and may occupy up to four lines on the terminal. If the text
contains screen control characters, the menu mask may be destroyed.
This area must be aligned on a halfword boundary.

DEFAULT=
specifies whether the following values are to be replaced by SDF with values dynamically
generated by the program:
– operand values entered or
– operand default values

The operands, or operand values, must have been defined accordingly in the syntax file
(see ADD-OPERAND...,OVERWRITE-POSSIBLE=*YES,... and ADD-
VALUE...,VALUE=<c-string> (OVERWRITE-POSSIBLE=*YES),...). The program-
generated value must be a valid operand value.
In guided dialog, the values generated by the program are displayed by SDF in the form.

Example:
In the MODIFY statements entered, SDF-A replaces the value UNCHANGED by the
current value. If the operands to be defaulted are in a structure whose introductory value
is defined by LIST-ALLOWED=*YES (see ADD-VALUE), the following may occur:
The conversion description contains several list elements to which a structure with
operands to be defaulted is attached. At the user end, the user also enters several list
elements to which a structure with operands to be defaulted is attached. SDF attempts
first to match the structures entered by the user to those specified in the conversion
description via the value that introduces the structure. If this value does not allow an
unambiguous allocation because none of the values entered matches any of those in
the conversion description, or because the user has entered the matching value several
times, the allocation is made via the position in the list of the value introducing the
structure.

*NO
The operand values entered are not replaced by values generated dynamically by the
program.

U2284-J-Z125-9-76 603

Appendix CORSTMT

(addr,...)
In one or more of the possible statements, operand values entered are to be replaced
by values generated dynamically by the program. The conversion descriptions for these
statements are located at the specified addresses (addr21,...) in the program. A conver-
sion description contains, among other things, the internal statement name and infor-
mation regarding which of the operand values entered are to be changed and what
values they are to be changed to.
The areas for the conversion descriptions which are passed for the default values of the
program must be aligned on a word boundary. The same is true of the output area of
the macros (OUTPUT operand).

INVAR =
Specifies whether the INVARIANT-INPUT form of the statement is stored. This means that
the statement is stored with all the user-defined operands, all operands having default
values and all operands currently allowed for this task. INVARIANT-INPUT is thus the lar-
gest input form for a statement available to a user who has certain privileges and who is
working in the selected dialog mode. In contrast to LOGGING=*INVARIANT-FORM (see
MODIFY-SDF-OPTIONS), this form does not mask out keywords and secret operands.

*NO
The INVARIANT-INPUT form of the statement is not stored.

addr / (r)
Specifies the address of a buffer into which SDF writes the INVARIANT-INPUT form of
the statement. The buffer must be aligned on a word boundary and the first halfword
(HW) must contain the length of the buffer. SDF stores the INVARIANT-INPUT form as
a record of variable length beginning with the second halfword. The contents of the buf-
fer are then as follows:

1st HW 2nd HW 3rd HW

buflen reclen filler invariant-input

buflen:
reclen:

filler:
invariant-input:

Length of the buffer
Length of the record written by SDF
Filler
INVARIANT-INPUT form of the statement,
starting at the seventh byte

604 U2284-J-Z125-9-76

CORSTMT Appendix

CALLID =
Refers to a context (= syntax file hierarchy) which was opened by an OPNCALL macro.
The name of the syntax file hierarchy (callid) must have the 4-byte value returned by SDF
to the field which was designated by the CALLID operand in the Open Context macro.
This function applies to the OPNCALL and CLSCALL macros.

*NO
The current syntax file hierarchy (context) of the task is used for analyzing the state-
ment.

addr /(r7)
Address of the call check field or register containing this address.
The area must be aligned on a word boundary.

CCSNAME =
Specifies the name of the character set used for the correction dialog on 8-bit terminals and
for conversion from lowercase to uppercase letters. Each terminal uses a certain character
set. A coded character set (CCS) is the unique representation of the characters in a cha-
racter set in binary form. Each coded character set is defined by its coded character set
name, or CCSN (see the “XHCS” manual [11]). This parameter has no effect on message
output.

*NO
Standard 7-bit code is used for I/O operations.

*EXTEND
Standard 8-bit code is used for I/O operations.

name
Specifies the name of a special 8-bit code for I/O operations. The name must be 8 bytes
long.

MF =
Defines special requirements for macro expansion (the “Executive Macros” manual [8] for
details).

L
Only the data part of the macro expansion (operand list) is generated. This requires that
no operand types with executable code appear in the macro. The data part generated
has the address specified in the name field of the macro.

U2284-J-Z125-9-76 605

Appendix CORSTMT

(E,(1)) / (E,opaddr)
Only the instruction part of the macro expansion is generated. The associated data part
(operand list) is referenced by the address “opaddr”. This either appears in register 1 or
is specified directly.

Return information and error flags

The format of the transfer area is described on page 593ff.

Register 15 contains a return code in the right-aligned byte. EQUATE statements for this
can be generated with the CMDANALY macro.

X’00’ Normal termination

X’04’ Unrecoverable system error

X’08’ Operand error in the macro

X’0C’ Transfer area too small

X’10’ End-of-file (EOF), or error in statement, end-of-file (EOF) was then detected

X’14’ Error in statement, a command was then detected

X’18’ Statement is correct but the default values provided by the system are errored

X’1C’ Error in statement, STEP was then detected

X’20’ Error dialog not possible

X’24’ Error dialog rejected by user (Exit function activated)

X’2C’ END statement has been read

X’34’ Error in statement, END was then detected

X’38’ SDF not available

X’44’ Syntax file not found

X’4C’ The program is not executable above the 16-Mbyte boundary, since SDF is not
loaded. Please notify the system administration.

X’5C’ Not enough space in INVAR buffer, INVARIANT-INPUT truncated

X’64’ XHCS error

606 U2284-J-Z125-9-76

RDSTMT Appendix

9.1.4 RDSTMT
Read and analyze statement

The RDSTMT macro causes SDF to

– read in a program statement from SYSSTMT (For the system file SYSSTMT the same
assignment applies as was made for the system file SYSDTA. With regard to continu-
ation lines, continuation characters and notes, the same rules apply to statement input
from SYSSTMT as to command input from SYSCMD.)

– analyze the statement read in, and

– pass the results of the analysis to the program.

This presupposes that an activated syntax file contains the definition of the program and its
statements. The input length for a statement read via RDSTMT is 16364 bytes.

Operation Operands

RDSTMT PROGRAM = name

,OUTPUT = addr / (r1)

[,STMT = *ALL / (name,...) / *ADDR(addr/(r))]

[,PREFER = *ALL / name / *ADDR(addr/(r))]

[,DEFAULT = *NO / (addr,...)]

[,MESSAGE = *NO / addr / (r3)]

[,PROT = YES / NO]

[,BUFFER = *NO / addr / (r)]

[,INVAR = *NO / addr / (r)]

[,SPIN = NO / YES]

[,ERRSTMT = STEP / NEXT]

[,CALLID = *NO / addr / (r7)]

[,CCSNAME = *NO / *EXTEND / name]

[,MF =]
L
(E,(1))
(E,opaddr)

U2284-J-Z125-9-76 607

Appendix RDSTMT

PROGRAM = name
Internal name of the program that generates the macro. This name is stored in the program
definition in the syntax file (see ADD-PROGRAM). It is at least one byte and at most eight
bytes long.

OUTPUT = addr / (r1)
Address of the standardized transfer area, or a register that contains this address. The area
must begin on a word boundary. Prior to calling the RDSTMT macro the program must
ensure that the first two bytes of this area contain the maximum length possible for the area
(see section “Format of the standardized transfer area up to SDF V4.0” on page 593ff). In
it, SDF stores the analysis results

STMT =
specifies which statements are permitted as input.

*ALL
All statements are permitted.

(name,...)
Only the statements whose internal names are specified are permitted. The internal
statement name is stored in the statement definition in the syntax file (see ADD-STMT).
It is at least one byte and at most eight bytes long.
The standard SDF statements are always permitted, regardless of the specification
made here.

*ADDR(addr/(r))
Address of the list of permissible statements. This list must be generated beforehand
with the CMDALLW macro.

PREFER =
Relevant only for guided dialog; specifies whether a particular statement is expected as the
next input.

*NO
No particular statement is expected. SDF asks the user via the statement menu which
statement is to be entered.

name
Internal name of the statement most likely to be entered. SDF does not display a state-
ment menu in which the user selects the statement to be entered, but instead immedi-
ately displays the form listing the operand values for the expected statement. The user
may of course enter another statement instead of the one expected.

608 U2284-J-Z125-9-76

RDSTMT Appendix

Example:
Following MODIFY-OPERAND, SDF-A expects MODIFY-VALUE as the next
statement. The internal statement name is stored in the statement definition in the
syntax file (see ADD-STMT). It is at least one byte and at most eight bytes long.

*ADDR(addr/(r))
Address of an area, 8 bytes long, containing the internal name of the expected state-
ment. The name must be left-justified and padded with blanks as necessary (X’40’).

DEFAULT =
specifies whether the following values are to be replaced by SDF with values dynamically
generated by the program:
– operand values entered or
– operand default values

The operands, or operand values, must have been defined accordingly in the syntax file
(see ADD-OPERAND...,OVERWRITE-POSSIBLE=*YES,... and ADD-
VALUE...,VALUE=<c-string> (OVERWRITE-POSSIBLE=*YES),...). The program-
generated value must be a valid operand value.
In guided dialog, the values generated by the program are displayed by SDF in the form.

Example:
In the entered MODIFY statements SDF-A replaces the value *UNCHANGED by the
current value.
If the operands to be given default values are in a structure introduced by a value
defined with LIST-ALLOWED=*YES (see ADD-VALUE), the following situation may
arise: The conversion description contains several list elements to which structures with
operands to be defaulted are attached. On the other hand, the user likewise enters
several list elements to which structures with operands to be defaulted are attached.
SDF first tries to match the structures entered by the user to those specified in the
conversion description by means of the values introducing the structures. If an
unambiguous allocation cannot be made on the basis of the values introducing the
structures because none of the values entered matches any of the ones in the
conversion description or because the user has entered the matching value more than
once, the allocation is then made on the basis of the list position of the introductory
value.

*NO
SDF is not to replace the entered operand values by values generated dynamically by
the program.

U2284-J-Z125-9-76 609

Appendix RDSTMT

(addr,...)
In one or more of the possible statements, SDF is to replace entered operand values by
values generated dynamically by the program. The conversion descriptions for these
statements (see section “Format of the standardized transfer area up to SDF V4.0” on
page 593ff) are located at the specified addresses (addr21,...) in the program. Only one
conversion description can be specified per statement. A conversion description con-
tains, among other things, the internal statement name and information as to which of
the operand values entered are to be changed and what values they are to be changed
to. The areas for the conversion descriptions which are passed for the default values of
the program must be aligned on a word boundary. The same is true of the output area
of the macros (OUTPUT operand).

MESSAGE =
specifies whether SDF is to issue a message when requesting statement input. In guided
dialog this message is integrated into the statement menu.

*NO
SDF is not to issue a message.

addr / (r3)
Address of the message text to be issued, or a register that contains this address. The
text is expected in the form of a variable-length record with a maximum length of 400
characters. However, only the first 80 characters are displayed on SDF-formatted
screens. If the text contains screen control characters, the menu mask may be
destroyed. This area must be aligned on a halfword boundary.

PROT =
Specifies whether SDF is to log input and messages to SYSOUT. If they are not written to
SYSOUT, the user of the program should be informed of this in the program documentation.
In contrast to the TRSTMT macro, this parameter is a flag (set=NO, reset=YES). No logging
buffer is available.

YES
SDF is to log input and messages to SYSOUT.

NO
SDF is not to perform any logging. The following behavior may be expected:

Result of analysis

PROT=YES PROT=NO

No error Input statement – / –

Syntax error 1. Input statement
2. Syntax error message
3. Spin-off message

Spin-off message

610 U2284-J-Z125-9-76

RDSTMT Appendix

BUFFER =
The statement log and the error messages can be written into an area provided by the user.

NO
No buffer area is provided.

addr / (r)
Address of an area or a register in which the log of the entered statements and the mes-
sages are written, regardless of what was specified for PROT. The area must be aligned
on a word boundary. The first halfword must contain the total length of the area. SDF
writes the actual length of the output log to the second halfword. The log records are
then written to the area as variable-length records.
If the buffer is not empty, the first record is generally the log of the input command. Sub-
sequent records contain messages. If no input log is available, or if the input log cannot
be output, two slashes (“//”) are written into the output area.

INVAR =
Specifies whether the INVARIANT-INPUT form of the statement is stored. This means that
the statement is stored with all the user-defined operands, all operands having default
values and all operands currently allowed for this task. INVARIANT-INPUT is thus the lar-
gest input form for a statement available to a user who has certain privileges and who is
working in the selected dialog mode. In contrast to LOGGING=INVARIANT-FORM (see
MODIFY-SDF-OPTIONS), this form does not mask out keywords and secret operands.

*NO
The INVARIANT-INPUT form of the statement is not stored.

addr / (reg)
Specifies the address of a buffer into which SDF writes the INVARIANT-INPUT form of
the statement. The buffer must be aligned on a word boundary and the first halfword
(HW) must contain the length of the buffer. SDF stores the INVARIANT-INPUT form as
a record of variable length beginning with the second halfword. The contents of the buf-
fer are then as follows:

1st HW 2nd HW 3rd HW (halfword)

buflen reclen filler invariant-input

buflen:
reclen:

filler:
invariant-input:

Length of the buffer
Length of the record written by SDF
Filler
INVARIANT-INPUT form of the statement,
starting at the seventh byte

U2284-J-Z125-9-76 611

Appendix RDSTMT

SPIN =
Specifies which statement, in batch mode, SDF is to read and analyze next.

NO
SDF is to read and process the next statement in the statementsequence.

YES
SDF is to skip all statements until the next STEP statement (or, as the case may be,
until the END statement) and, if there is a STEP statement, continue processing with
the statement following it.

ERRSTMT =
defines which statement terminates the spin-off mechanism if SDF senses a syntax error
for the read statement.

STEP
SDF initiates spin-off until STEP or END is recognized. The return code is X’1C’,
X’34’,...

NEXT
SDF does not initiate spin-off. The next statement is read on the next RDSTMT call. The
return code is then X’50’.

CALLID =
This function applies to the OPNCALL and CLSCALL macros.
CALLID specifies the program context (=syntax file hierarchy opened by an OPNCALL
macro) in which the statement must be read and analyzed. The name of the syntax file hier-
archy (CALLID) must have the 4-byte value returned by SDF to the field which was desi-
gnated by the CALLID operand in the OPNCALL macro.

*NO
The current syntax file hierarchy (context) of the task is used for analyzing the state-
ment. This can, for example, be the syntax file hierarchy opened for the task at LOGON.

addr / (r7)
Address of the call check field or register containing this address. The area must be ali-
gned on a word boundary.

612 U2284-J-Z125-9-76

RDSTMT Appendix

CCSNAME =
Specifies the name of the character set used for the correction dialog on 8-bit terminals and
for conversion from lowercase to uppercase letters. Each terminal uses a certain character
set. A coded character set (CCS) is the unique representation of the characters in a cha-
racter set in binary form. Each coded character set is defined by its coded character set
name, or CCSN (see the “XHCS” manual [11]). This parameter has no effect on message
output.

*NO
Standard 7-bit code is used for I/O operations.

*EXTEND
Standard 8-bit code is used for I/O operations.

name
Specifies the name of a special 8-bit code for I/O operations. The name must be 8 bytes
long.

MF =
Defines special requirements for macro expansion (see the “Executive Macros” manual [8]
for details).

L
Only the data part of the macro expansion (operand list) is generated. This requires that
no operand types with executable code appear in the macro. The data part generated
has the address specified in the name field of the macro.

(E,(1)) / (E,opaddr)
Only the instruction part of the macro expansion is generated. The associated data part
(operand list) is referenced by the address “opaddr”. This either appears in register 1 or
is specified directly.

U2284-J-Z125-9-76 613

Appendix RDSTMT

Return information and error flags

The format of the transfer area is described in section “Format of the standardized transfer
area up to SDF V4.0” on page 593ff.

Register 15 contains return code in the right-aligned byte and specifications regarding the
assignment of SYSSTMT in the leftmost byte. EQUATE statements for all these can be
generated with the aid of the CMDANALY macro.

Assignment of SYSSTMT:

X’00’ Normal termination

X’04’ Unrecoverable system error

X’08’ Operand error in the macro

X’0C’ Transfer area too small

X’10’ Error in end-of-file (EOF) or in statement, end-of-file (EOF) was detected

X’14’ Error in statement, a command was then detected

X’18’ Statement is correct but the default values provided by the program are errored

X’1C’ Error in statement, STEP was detected

x’28’ Buffer too small, logging aborted

X’2C’ END statement has been read

X’34’ Error in statement, the next statement to be processed is //END

X’38’ SDF not available

X’3C’ Program not known in syntax file

X’44’ Syntax file not found

X’4C’ The program is not executable above the 16-Mbyte boundary, since SDF is not
loaded. Please notify system administration.

X’50’ Error in statement, spin-off not initiated

X’5C’ Not enough space in INVAR buffer, INVARIANT-INPUT truncated

X’64’ XHCS error

X’01’ SYSSTMT = terminal

X’02’ SYSSTMT = file

X’03’ SYSSTMT = card reader

X’04’ SYSSTMT = floppy disk

X’05’ SYSSTMT = SYSCMD in S procedure

X’06’ SYSSTMT = S variable

614 U2284-J-Z125-9-76

TRSTMT Appendix

9.1.5 TRSTMT
Analyze statement

The TRSTMT macro causes SDF to

– analyze a program statement stored in the program itself, and

– pass the results of the analysis to the program.

Additional statements may result from the analysis of the transferred statement, due to the
fact that a system exit may replace the transferred statement by several statements. Dealing
with these additional statements is the responsibility of the program.

An activated syntax file must contain the definition of the program and its statements.

Operation Operands

TRSTMT PROGRAM = name

,INPUT = *NO / addr / (r1)

,OUTPUT = addr / (r2)

[,STMT = *ALL / (name,...) / *ADDR(addr/(r))]

[,DIALOG =NO / YES / ERROR]

[,MESSAGE = *NO / addr / (r3)]

[,PROT = *NO / *YES / addr / (r4)]

[,INVAR = *NO / addr / (r)]

[,DEFAULT = *NO / (addr,...)]

[,ERROR = NO / YES]

[,CALLID = *NO / addr / (r7)]

[,EXECUTE = NO / YES]

[,PROCMOD = ANY / NO / YES]

[,CCSNAME = *NO / *EXTEND / name]

[,INPUTSAV = *NO / YES]

[,MF =]
L
(E,(1))
(E,opadr)

U2284-J-Z125-9-76 615

Appendix TRSTMT

PROGRAM = name
Internal name of the program that is executed by the macro. This name is stored in the pro-
gram definition in the syntax file (see ADD-PROGRAM). It is at least one byte and at most
eight bytes long.

INPUT =
specifies which statement SDF is to analyze.

*NO
SDF is not to analyze any statement stored in the program, but is instead to analyze an
additional statement provided by a system exit.

addr / (r1)
SDF is to analyze the statement whose address is specified or whose address is con-
tained in the specified register. SDF expects the statement in the form of a variable-
length record in the usual BS2000 format. The record area must be aligned on a half-
word boundary.

OUTPUT = addr / (r2)
Address of the standardized transfer area, or a register that contains this address. The area
must begin on a word boundary. Prior to calling the RDSTMT macro the program must
ensure that the first two bytes of this area contain the maximum length possible for the area
(see section “Format of the standardized transfer area up to SDF V4.0” on page 593ff). In
this area SDF stores the analysis results.

STMT =
Specifies which statements are permitted as input.

*ALL
All statements are permitted.

(name,...)
Only the statements with the internal names specified are permitted. The internal state-
ment name is stored in the statement definition in the syntax file (see ADD-STMT). It is
at least one byte and at most eight bytes long.
The standard SDF statements are always permitted, regardless of the specification
made here.

*ADDR(addr/(r))
Address of the list of permissible statements. This list must be generated beforehand
with the CMDALLW macro.

616 U2284-J-Z125-9-76

TRSTMT Appendix

DIALOG =
Specifies whether SDF is to conduct a dialog when analyzing statements. This operand is
relevant only when the program is executing in an interactive task.

NO
SDF is not to conduct a dialog.

YES
SDF is to present the statement given to it by the program to the user in dialog for pos-
sible modification, provided this is compatible with the current SDF specifications for the
dialog (see MODIFY-SDF-OPTIONS and SET-GLOBALS).

ERROR
SDF is to conduct a dialog only when it has detected a syntax error. If the statement
contains a semantic error, the program can initiate a semantic error dialog by means of
CORSTMT.

MESSAGE =
Specifies whether SDF is to issue a message when presenting the statement to the user
for checking and possible modification (relevant only for DIALOG ≠ NO). SDF integrates this
message into the form.

*NO
SDF is not to issue a message.

addr / (r3)
Address of the message text to be issued, or a register that contains this address. The
text is expected in the form of a variable-length record with a maximum length of 400
characters. However, only the first 80 characters are displayed on SDF-formatted
screens. If the text contains screen control characters, the menu mask may be
destroyed. The record area must be aligned on a halfword boundary.

PROT =
specifies whether SDF is to log input and messages to SYSOUT. If they are not written to
SYSOUT, the user of the program should be informed of this in the program documentation.
In contrast to the RDSTMT macro, this parameter has been implemented as an integer
(byte field). A logging buffer is available.

*NO
SDF is not to perform any logging.

YES
SDF is to log input and messages to SYSOUT.

U2284-J-Z125-9-76 617

Appendix TRSTMT

addr / (r4)
Address of a buffer, or a register that contains this address. SDF is to write input and
messages to be logged into this buffer. The buffer must begin on a halfword boundary.
The length of the buffer is contained in bytes 0 and 1, the length of the record to be
logged is contained in bytes 2 and 3.
If the buffer is not empty, the first record is generally the log of the input command.
Subsequent records contain messages. If no input log is available, or if the input log
cannot be output, two slashes (“//”) are written into the output area.
The PROT parameter has the following effect:

INVAR =
Specifies whether the INVARIANT-INPUT form of the statement is stored. This means that
the statement is stored with all the user-defined operands, all operands having default
values and all operands currently allowed for this task. INVARIANT-INPUT is thus the lar-
gest input form for a statement available to a user who has certain privileges and who is
working in the selected dialog mode. In contrast to LOGGING=INVARIANT-FORM (see
MODIFY-SDF-OPTIONS), this form does not mask out keywords and secret operands.

INVAR = *NO
The INVARIANT-INPUT form of the statement is not stored.

INVAR = addr / (reg)
Specifies the address of a buffer into which SDF writes the INVARIANT-INPUT form of
the statement. The buffer must be aligned on a word boundary and the first halfword
(HW) must contain the length of the buffer. SDF stores the INVARIANT-INPUT form as
a record of variable length beginning with the second halfword. he contents of the buffer
are then as follows:

Result of analysis PROT parameter

YES (or addr / reg) NO

No error Input statement – / –

Syntax error 1. Input statement
2. Syntax error message

– / –

1st HW 2nd HW 3rd HW (halfword)

buflen reclen filler invariant-input

buflen:
reclen:

filler:
invariant-input:

Length of the buffer
Length of the record written by SDF
Filler
INVARIANT-INPUT form of the statement,starting at the seventh
byte

618 U2284-J-Z125-9-76

TRSTMT Appendix

DEFAULT =
specifies whether the following values are to be replaced by SDF with values dynamically
generated by the program:
– operand values entered or
– operand default values

The operands, or operand values, must have been defined accordingly in the syntax file
(see ADD OPERAND..., OVERWRITE-POSSIBLE=*YES,... and ADD-VALUE...,VALUE=
<c-string> (OVERWRITE-POSSIBLE=*YES),...). The program-generated value must be a
valid operand value. In guided dialog, the values generated by the program are displayed
by SDF in the form.

Example:
In the MODIFY statements issued to SDF-A, the value *UNCHANGED is replaced by
the current value.
If the operands to be given default values are in a structure introduced by a value
defined with LIST-ALLOWED=*YES (see ADD-VALUE), the following situation may
arise:
The conversion description contains several list elements to which a structure with
operands to be defaulted is attached. At the same time, the user likewise enters several
list elements to which a structure with operands to be defaulted is attached.
SDF first tries to match the structures entered by the user to those specified in the
conversion description by means of the value introducing the structure. If an
unambiguous allocation cannot be made on the basis of the value introducing the
structure because none of the values entered matches any of the ones in the
conversion description or because the user has entered the matching value more than
once, the allocation is then made based on the list position of the introductory value.

*NO
SDF is not to replace the operand values entered by values generated dynamically by
the program.

(addr,...)
In one or more of the possible statements, SDF is to replace entered operand values by
values generated dynamically by the program. The conversion descriptions for these
statements (see section “Format of the standardized transfer area up to SDF V4.0” on
page 593ff) are located at the specified addresses (addr51,...) in the program. A con-
version description contains, among other things, the internal statement name and
information regarding which of the operand values entered are to be changed and what
values they are to be changed to. The areas for the conversion descriptions which are
passed for the default values of the program must be aligned on a word boundary. The
same is true of the output area of the macros (OUTPUT operand).

U2284-J-Z125-9-76 619

Appendix TRSTMT

ERROR =
Specifies how the message text specified with the MESSAGE operand is to be issued.

NO
SDF is to issue the message text as a message.

YES
SDF is to issue the message text as an error message.

CALLID =
Defines the context to be used by SDF for analyzing the command.

*NO
The currently active syntax file hierarchy is used.

addr / (r7)
Address of a 4-byte field or register containing this address. The caller transfers the cal-
lid of the context to be used. This field must be aligned on a word boundary.

EXECUTE = NO/YES
Specifies whether standard SDF statements are to be executed.
EXECUTE is irrelevant if the TRSTMT macro does not refer to a new syntax file hierarchy
(CALLID=*NO), e.g. if the current syntax file hierarchy is used. In this case, the standard
SDF statements are always executed by TRSTMT, provided they exist in the current hierar-
chy. The operand belongs to the multihierarchical attribute introduced with the preceding
CALLID operand. If TRSTMT refers to a hierarchy opened in parallel (CALLID=addr7/r(7)),
the standard SDF statements are executed if EXECUTE=YES.

PROCMOD =
Defines the environment in which the user works. SDF performs a check, as a result of
which it rejects commands which are illegal in the specified environment and are not accep-
ted by SDF. The operand refers to the option of opening several syntax hierarchies. It is only
important if the macro call refers to a new syntax file hierarchy opened in addition to the
current one. If no CALLID has been defined (CALLID=*NO), PROCMOD is irrelevant. For
instance, the value ANY is set automatically and reference is made to the current procedure
mode.

ANY
No check is made. Statements, however, are always analyzed.

620 U2284-J-Z125-9-76

TRSTMT Appendix

YES
Statements are handled as if they were read from a procedure file. For instance, they
are analyzed if they have been defined in the syntax file with DIALOG-PROC-ALLO-
WED=YES and if the program runs in interactive mode, or if BATCH-PROC-ALLO-
WED=YES in batch jobs.

NO
Statements are handled as if they were read from a primary level, e.g. from terminal
input or from a batch job. They are analyzed if they have been defined in the syntax file
with DIALOG-ALLOWED=*YES and if the program runs in interactive mode, or if
BATCH-ALLOWED=*YES in batch jobs.

CCSNAME =
Specifies the name of the character set used for the correction dialog on 8-bit terminals and
for conversion from lowercase to uppercase letters. Each terminal uses a certain character
set. A coded character set (CCS) is the unique representation of the characters in a cha-
racter set in binary form. Each coded character set is defined by its coded character set
name, or CCSN (see the “XHCS” manual [11]). This parameter has no effect on message
output.

*NO
Standard 7-bit code is used for I/O operations.

*EXTEND
Standard 8-bit code is used for I/O operations.

name
Specifies the name of a special 8-bit code for I/O operations. The name must be 8 bytes
long.

INPUTSAV =
Specifies whether a history of past inputs is to be saved in the form of a list that can be sub-
sequently accessed again via the built-in RESTORE mechanism (see the MODIFY-SDF-
OPTIONS and RESTORE-SDF-INPUT statements).

*NO
The inputs are not saved.

*YES
Inputs are saved in a buffer.

U2284-J-Z125-9-76 621

Appendix TRSTMT

MF =
Defines special requirements for macro expansion (see the “Executive Macros” manual [8]
for details).

L
Only the data part of the macro expansion (operand list) is generated. This requires that
no operand types with executable code appear in the macro. The data part generated
has the address specified in the name field of the macro.

(E,(1)) / (E,opaddr)
Only the instruction part of the macro expansion is generated. The associated data part
(operand list) is referenced by the address “opaddr”. This either appears in register 1 or
is specified directly.

Return information and error flags

The format of the transfer area is described in section “Format of the standardized transfer
area up to SDF V4.0” on page 593ff.

Register 15 contains a return code and a flag for the existence of additional statements in
the right-aligned and left-aligned bytes, respectively. EQUATE statements for all these can
be generated with the aid of the CMDANALY macro.

X’00’ Normal termination

X’04’ Unrecoverable system error

X’08’ Operand error in the macro

X’0C’ Transfer area too small

X’18’ The statement is correct but the default values provided by the system are errored

X’1C’ Error in statement

X’20’ Error dialog not possible

X’24’ Error dialog rejected

X’28’ Error or logging area too small

X’2C’ END statement has been read

X’38’ SDF not available

X’3C’ Program not known in syntax file

X’44’ Syntax file not found

X’48’ SDF command/statement executed

X’4C’ The program is not executable above the 16-Mbyte boundary, since SDF is not
loaded. Please notify system administration.

X’5C’ Not enough space in INVAR buffer, INVARIANT-INPUT truncated

622 U2284-J-Z125-9-76

TRSTMT Appendix

Indicators of additional statements (created by a system exit):

X’64’ XHCS error

X’00’ There are no further statements

X’01’ There are further statements

U2284-J-Z125-9-76 623

Appendix Mutually exclusive data types

9.2 Mutually exclusive data types

This table shows which combinations of data types are valid for the various operands.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1: alphan.-name () x x x x x x x x x x x x x x x

2: cat-id x n x x x x x x x x x x x

3: command-rest x x n x

4: comp.-name x x x () x x x x x x x x x x x x x x

5: c-string x () x x x x

6: date x x n x x x

7: device x x x x x x x x x x x x x

8: fixed x x x () x x x x x x x x

9: filename x x x x x x () x x x x x x x x x

10: integer x x x x () x x x x x x

11: keyword x x x x x x x x x x x x

12: keyw-number x x x x x x x x x x x x x x

13: *keyword x x x

14: *keyw-numb. x x x

15: name x x x x x x x x () x x x x x

16: partial-filen. x () x x

17: prod.-version x x x x x () x x x x

18: struct.-name x x x x x x x x x () x x x x

19: text x x x x x x x x x x x x x x x x x x () x x x x x x

20: time x x x x n x x

21: vsn x x x x x x x x x x x x x x x () x x

22: x-string x x () x

23: x-text x x x x x x x x x x x x x x () x

24: posix-filen. /
 posix-pathn.

x () x

25: 'posix-filen.' /
 'posix-pathn.'

x x x x x ()

No entry Combination of data types permitted without restriction.

x Combination of data types is permitted only if VALUE-OVERLAPPING=*YES.

() Combination of the same data types of differing lengths or with differing value range is permitted
only if VALUE-OVERLAPPING=*YES.

n Multiple specification of the same data type is not permitted as no additional attributes have been
specified to permit differentiation.

624 U2284-J-Z125-9-76

Appendix

U2284-J-Z125-9-76 625

Glossary
data type

Basic syntax type, which can be checked for syntax errors by the SDF
command processor. The possible data types are shown in the tables starting
on page 11.

domain
A set of commands, compiled according to user criteria, from which the user
can select the command desired in guided dialog. Domains may overlap.

list
Assignment of several operand values to one operand in a command or
statement. The list is formed by enclosing the values, separated by commas,
within parentheses. Whether a given operand permits a list is an attribute of that
operand. List parentheses are distinguishable from parentheses enclosing a
structure by means of the context.

structure
Syntactical combination of several operands. This combination is expressed
syntactically by enclosing the operands in parentheses. Structure parentheses
are distinguishable from parentheses enclosing a list by means of the context.
A structure can either be an operand value itself or it can be dependent on the
specification of an input alternative that introduces the structure.

626 U2284-J-Z125-9-76

Glossary

U2284-J-Z125-9-76 627

Related publications
[1] SDF V4.5A (BS2000/OSD)

Introductory Guide to the SDF Dialog Interface
User Guide

Target group
BS2000/OSD users
Contents
This manual describes the interactive input of commands and statements in SDF format. A
Getting Started chapter with easy-to-understand examples and further comprehensive
examples facilitates use of SDF. SDF syntax files are discussed.
Order number
U2339-J-Z125-8-76

[2] SDF V4.5A (BS2000/OSD)
SDF Management
User Guide

Target group
This manual is intended for system administrators and experienced BS2000 users.
Contents
It describes how SDF is installed and administered using SDF commands and the SDF-I,
SDF-U and SDF-PAR utility routines. It includes a description of SDF-I, SDF-U and SDF-
PAR statements.
Order number
U2622-J-Z125-10-76

628 U2284-J-Z125-9-76

Related publications

[3] SDF-A (BS2000/OSD)
Ready Reference

Target group
This publication is intended for experienced BS2000 users with a good knowledge of
SDF-A.
Contents
It contains the SDF-A statements in alphabetical order as well as the macros and function
calls of the SDF program interface, the formats of the transfer area and the SDF-SIM state-
ments.
Order number
U2285-J-Z125-9-76

[4] BS2000/OSD-BC V5.0
Commands, Volumes 1 - 5
User Guide

Target group
This manual is addressed to nonprivileged users and systems support staff.
Contents
Volumes 1 through 5 contain the BS2000/OSD commands ADD-... to WRITE-... (basic
configuration and selected products) with the functionality for all privileges. The command
and operand functions are described in detail, supported by examples to aid understanding.
An introductory overview provides information on all the commands described in Volumes
1 through 5.
The Appendix of Volume 1 includes information on command input, conditional job variable
expressions, system files, job switches, and device and volume types.
The Appendix of Volumes 4 and 5 contains an overview of the output columns of the SHOW
commands of the component NDM. The Appendix of Volume 5 contains additionally an
overview of all START commands.
There is a comprehensive index covering all entries for Volumes 1 through 5.
Order numbers
U2338-J-Z125-15-76 Commands, Volume 1, A – C
U41074-J-Z125-2-76 Commands, Volume 2, D – MOD-JO
U21070-J-Z125-5-76 Commands, Volume 3, MOD-JV – R
U41075-J-Z125-2-76 Commands, Volume 4, S – SH-PRI
U23164-J-Z125-4-76 Commands, Volume 5, SH-PUB – Z

U2284-J-Z125-9-76 629

Related publications

[5] BS2000/OSD-BC V5.0
Commands, Volume 6, Output in S Variables and SDF-P-BASYS
User Guide

Target group
This manual is addressed to programmers and users who write procedures.
Contents
Volume 6 contains tables of all S variables that are supplied with values by the SHOW com-
mands in conjunction with structured output. Further chapters deal with:
– introduction to working with S variables
– SDF-P-BASYS V2.2A
Order number
U23165-J-Z125-4-76

[6] BS2000/OSD-BC V5.0
Introductory Guide to Systems Support
User Guide

Target group
This manual is addressed to BS2000/OSD systems support staff and operators.
Contents
The manual covers the following topics relating to the management and monitoring of the
BS2000/OSD basic configuration: system initialization, parameter service, job and task
control, memory/device/system time/user/file/pubset management, assignment of privi-
leges, accounting and operator functions.
Order number
U2417-J-Z125-14-76

630 U2284-J-Z125-9-76

Related publications

[7] BS2000/OSD-BC V5.0
Introductory Guide to DMS
User Guide

Target group
This manual is addressed to nonprivileged users and systems support staff.
Contents
It describes file management and processing in BS2000.
Attention is focused on the following topics:
– volumes and files
– file and catalog management
– file and data protection
– OPEN, CLOSE and EOV processing
– DMS access methods (SAM, ISAM,...)
The main new features of OSD-BC V5.0 are the introduction of files larger than or equal to
32 Gbytes and the possibility of restricting TSOS co-ownership of files.
Order number
U4237-J-Z125-7-76

[8] BS2000/OSD-BC V5.0
Executive Macros
User Guide

Target group
This manual is addressed to all BS2000/OSD assembly language programmers.
Contents
The manual contains a summary of all Executive macros:
– linking and loading
– virtual storage, memory pool, ESA
– task and program control
– ITC, serialization, eventing, DLM, contingencies, STXIT
– messages, accounting, JMS, TIAM, VTSU,
Detailed description of all macros in alphabetical order and with examples; general training
section dealing with ITC, serialization, eventing, DLM, contingencies, STXIT, virtual
storage, memory pool, ESA, ...
Order number
U3291-J-Z125-10-76

U2284-J-Z125-9-76 631

Related publications

[9] BS2000/OSD-BC V5.0
System Installation
User Guide

Target group
This manual is intended for BS2000/OSD system administration.
Contents
The manual describes the generation of the hardware configuration with UGEN and the
following installation services: disk organization with MPVS, the installation of volumes
using the SIR utility routine, and the IOCFCOPY subsystem.
Order number
U2505-J-Z125-15-76

[10] SECOS V4.0A (BS2000/OSD
Security Control System
User Guide

Target group
– BS2000 system administrators
– BS2000 users working with extended access protection for files
Contents
Capabilities and application of the functional units:
– SRPM (System Resources and Privileges Management)
– SRPMSSO (Single Sign On)
– GUARDS (Generally Usable Access Control Administration System)
– GUARDDEF (Default Protection)
– GUARDCOO (Co-owner Protection)
– SAT (Security Audit Trail).
Order number
U5605-J-Z125-6-76

[11] XHCS V1.3 (BS2000/OSD)
8-Bit Code Processing in BS2000/OSD
User Guide

Target group
Users of the DCAM, TIAM and UTM access methods, system administrators, and users
migrating from EHCS to XHCS.
Contents
XHCS (Extended Host Code Support) is a software package of BS2000/OSD that lets you
use extended character sets in conjunction with 8-bit terminals. XHCS is also the central
source of information on the coded character sets in BS2000/OSD. XHCS replaces EHCS.
Order number
U9232-J-Z135-4-76

632 U2284-J-Z125-9-76

Related publications

[12] SDF-P V2.2A (BS2000/OSD)
Programming in the Command Language
User Guide

Target group
This manual is addressed to BS2000 users and systems support staff.
Contents
SDF-P is a structured procedure language in BS2000. The manual begins with introductory
chapters dealing with the basic principles of procedures and variables, and goes on to
provide detailed descriptions of SDF-P commands, functions and macros.
Overview of contents:
– brief introduction to SDF-P
– procedure concept in SDF-P
– creating, testing, calling and controlling S procedures
– S variables, S variable streams, functions, expressions
– converting non-S procedures
– macros, predefined (built-in) functions, SDF-P commands
SDF-P V2.2A can only be used in conjunction with SDF-P-BASYS Ï V2.1A, VAS Ï V2.0A
and SDF Ï V4.1A.
Order number
U6442-J-Z125-5-76

[13] IMON V2.5 (BS2000/OSD)
Installation Monitor
User Guide

Target group
This manual is intended for systems support staff of the BS2000/OSD operating system.
Contents
The manual describes the installation and administration of BS2000 software using the
IMON installation monitor and its three components IMON-BAS, IMON-GPN and IMON-
SIC. Installation (standard and customer-specific) using the component IMON-BAS for
systems with BS2000-OSD V2.0 and as of BS2000-OSD V3.0/V4.0 is described in detail
with the aid of examples in two separate chapters.
Order number
U21926-J-Z125-3-76

U2284-J-Z125-9-76 633

Related publications

[14] DSSM V4.0/SSCM V2.3
Subsystem Management in BS2000/OSD
User Guide

Target group
This manual addresses systems support staff and software consultants of BS2000/OSD.
Contents
The following are described: BS2000/OSD subsystem concept, dynamic subsystem
management (DSSM) V4.0, subsystem catalog management (SSCM) V2.3 and the
associated commands and statements.
DSSM supports the option of creating and managing user-specific subsystem configura-
tions on a task-local basis.
Order number
U23166-J-Z125-3-76

[15] BS2000/OSD
Softbooks English
CD-ROM

Target group
BS2000/OSD users
Contents
The CD-ROM "BS2000/OSD SoftBooks English" contains almost all of the English manuals
and README files for the BS2000 system software of the latest BS2000/OSD version and
also of the previous versions, including the manuals listed here.
These Softbooks can also be found in the Internet on our manual server. You can browse
in any of these manuals or download the entire manual.
Order number
U26175-J8-Z125-1-76
Internet address
http://manuals.fujitsu-siemens.com

634 U2284-J-Z125-9-76

Related publications

U2284-J-Z125-9-76 635

Index

A
abbreviation facilities 5
ACCEPTED-INPUT 470
action macro 379
activated syntax files

list information 425
ADD-CMD 133
ADD-DOMAIN 146
ADD-OPERAND 148
ADD-PROGRAM 158
ADD-STMT 160
ADD-VALUE 164
alias 6, 10
ALIAS-NAME

external command name 136
alphanum-name (data type) 11
analyzed statement

generate transfer area 430, 600
analyzing

command 470
statement 405, 435, 491, 606, 614
statement in C 511

Assembler program 110
assigning

privileges, conventions 32
references file 38

asterisk preceding constant operand value 5
automatic activation

group syntax file 36
system syntax file 36
user syntax file 36

B
basic system syntax file 27

automatic activation 36

basic system syntax file
change 36

batch mode
for SDF-SIM 561

batch task
in SDF-SIM 539, 563

C
C program

example 520
call format

macro type 379
calling the command server 470
cat (suffix for data type) 22
cat-id (data type) 11
CCS (Coded Character Set) 6
change, basic system syntax file 36
changing

default value 53
characteristics

program context 362
checking value

data type 448
checkpoint

program context 364
CHKPT

for program contexts 364
clearing a lock 45, 312

example 82
for a command 82

CLOSE-CMD-OR-STMT 192
CLOSE-STRUCTURE 193
closing

command definition 192
program context 389

636 U2284-J-Z125-9-76

Index

closing (cont.)
statement definition 192

closing a structure
in command definition 193
in statement definition 193

CLSCALL 389
CMDALLW 391
CMDANALY 393
CMDCST

effects 394
CMDMEM 401
CMDRC 402
CMDRETC 404
CMDRST 405

effects 405
CMDSEL 420
CMDSTA 425

transfer area 427
CMDSTRUC 600
CMDTA 430
CMDTST 435

effects 435
CMDVAL 448
CMDWCC 458
CMDWCO 463
COBOL example 500
command

analyze 470
close the definition 192
define 133
execute 470

command definition
close 192
close a structure 193
modify 231
representation 41

command environment
for SDF-SIM 532

command implemented by a procedure
for SDF-SIM 566

command processor 5
command return codes

generate a DSECT for 404
set 402, 500

command return codes (cont.)
set in C 510

command server
call 470

command-rest (data type) 11
commands

disable 50
rules for defining 87

comments for SDF-A statements 127
compiling a program 119, 525
compl (suffix for data type) 17
composed-name (data type) 11
compression of passwords 189, 294
constellations

file hierarchy 33
constructor (string) 20
contents of syntax files 25
conversion descriptions

create 498
COPY 207
copying

contents of syntax file 207
global information 207

corr (suffix for data type) 22, 23
CORSTMT

effects 601
migration to CMDCST 400

creating
command definition 44
program 519
program context 467
selection mask (CMDSEL macro) 420
statement definition 44

c-string (data type) 11
current object 148

D
data type

alphanum-name 11
cat-id 11
command-rest 11
composed-name 11
c-string 11
date 11

U2284-J-Z125-9-76 637

Index

data type (cont.)
device 11
filename 12
fixed 11
integer 13
name 13
partial-name 14
posix-filename 14
posix-pathname 14
product-version 15
structured-name 15
text 15
time 15
vsn 15
x-string 16
x-text 16

data types 625
check value 448
mutually exclusive 623

data types in SDF 7, 11
suffixes 8

date (data type) 11
default name

group syntax file 36
user syntax file 36

default value
change 53

DEFINE-ENVIRONMENT 220, 541
DEFINE-TEST-OBJECT 547
defining

command 133
domain 146
environment for SDF-SIM 541
lock 45
operand 148
operand value 164
program 158
program in user syntax file 105
restart point 358
statement 160
test object for SDF-SIM 547

definition
close a structure 193
modify for domain 247

definition (cont.)
modify for operand 249
modify for operand value 268
modify for program 260

definition macro 379
deleting

objects from a syntax file 301
device (data type) 11
disabling

commands 50
operand 84
statement 45

displaying
objects in a syntax file 342
syntax file contents 342
syntax file name 357

domain 625
commands assigned to 305
define 146
modify definition 247

domain definition
modify 247

E
EDIT 221
effects

CMDCST 394
CMDRST 405
CMDTST 435
CORSTMT 601
RDSTMT 606
TRCMD 470
TRSTMT 614

END 230
EQUATE statement

generate 393
example

clearing a lock 82
SDF-SIM 551

executing a command 470
external command name

ALIAS-NAME 136
MINIMAL-ABBREVIATION 136, 235
STANDARD-NAME 136

638 U2284-J-Z125-9-76

Index

external operand name
MINIMAL-ABBREVIATION 151

external statement name
MINIMAL-ABBREVIATION 161

F
file hierarchy

constellations 33
syntax files 33

file protection
by passwords 56

file types 27
filename (data type) 12
fixed (data type) 11
format

standard header 382
standardized transfer area 365

FORTRAN
example 502

function calls
C interface 482
for FORTRAN, COBOL etc. 482

functions
of the program interface 359, 360

G
gen (suffix for data type) 22
general description

macro type 379
generating

DSECT for command return codes 404
EQUATE statement 393
transfer area for analyzed statement 430,

600
transfer area for status information 401

global index 20
global information

as current object 221
copy 207
modify 314

global privileges 31
global syntax attributes 373
group syntax file 29

automatic activation 36

group syntax file (cont.)
default name 36
open 39
process 39

guaranteed abbreviations 5

H
hash passwords 189, 294
header field

standardized transfer area 366
structure description 376, 596

I
implementing statements 104, 519

macros 360
index 20
installation

of SDF-SIM 529
integer (data type) 13
integrity of syntax files 46
internal command name

INTERNAL-NAME 136
interrupts

when processing syntax files 46
INVARIANT-INPUT 397, 410, 440, 470, 477

J
job variables

in SDF-SIM 532, 560

K
K2 interrupt 46

L
length of the transfer area 370, 594
lifting a lock 312
limitations

remove 86
limiting the functional scope 84

of a command 84
of an operand 84
operand values 85
program 85
system-global 84

U2284-J-Z125-9-76 639

Index

limiting the functional scope (cont.)
user ID-specific 84
user program 85

linking a program 119, 525
list 625

of valid operations 391
listing information

active syntax files 425
lock

clear 45, 312
define 45
lift 312

low (suffix for data type) 17

M
macro type

call format 379
general description 379
O type 382
R type 379
S type 380

macros 360
implementing statements 360
of the program interface 360
standard header 382
type 379

man (suffix for data type) 22, 23
mandatory (suffix for data type) 23
metasyntax

for macros 384
metasyntax of SDF 7
migration

CORSTMT to CMDCST 400
RDSTMT to CMDRST 416
TRSTMT to CMDTST 446

MINIMAL-ABBREVIATION
external command name 136, 235
external operand name 151
external statement name 161

MODIFY-CMD 231
MODIFY-DOMAIN 247
modifying

command definition 231
domain definition 247

modifying (cont.)
global information 314
operand definition 249
operand value definition 268
program definition 260
statement definition 49, 262

modifying definition
domain 247
operand 249
operand value 268
statement 262

MODIFY-OPERAND 249
MODIFY-PROGRAM 260
MODIFY-STATEMENT 262
MODIFY-VALUE 268
mutually exclusive data types 623

N
name (data type) 13
naming conventions

syntax files 36
notational conventions 7
notational conventions for SDF 7
notes

program context 363
SDF user interface 5

O
O type

macro type 382
objects

current 148
position to 221
privileged 31
remove from the syntax file 301

objects in a syntax file 301
delete 301
display 342
reconstruct 312
restore 312
unlock 312

odd (suffix for data type) 22
opening

group syntax file 39

640 U2284-J-Z125-9-76

Index

opening (cont.)
syntax file 297
system syntax file 38
user syntax file 40

OPEN-SYNTAX-FILE 297
operand

define 148
disable 84
modify operand 249
pass 123

operand array 366, 371, 595
operand definition

modify 249
operand position 123
operand value

define 123, 164
modify definition 268

operand value definition
modify 268

OPNCALL 467
output

from SDF-SIM 528, 532, 534, 535

P
partial-filename (data type) 14
passing analysis result to program 405, 435,

606, 614
password compression 189, 294
path-compl (suffix for data type) 17
permitting

program 64
positional operands 6
positioning 221
posix-filename (data type) 14
posix-pathname (data type) 14
principle of operation

SDF 27
privilege support 31
privileges 31

in syntax files 31
procedure

for creating a command definition 44
for creating a statement definition 44
in SDF-SIM 539, 563

procedure mode
for SDF-SIM 561

procedure parameters
for SDF-SIM 560

processing
group syntax file 39
syntax files 37
system syntax file 38
user syntax file 41

product-version (data type) 15
profile ID 29
program

compile 119, 525
create 519
define 158
define in user syntax file 105
link 119, 525
pass result of analysis 405, 435, 606, 614
permit 64
test 120, 525
transfer result of analysis 491
write 104

program (C)
transfer result of analysis 511

program context 361
characteristics 362
checkpoint 364
close 389
create 467
notes 363
restart 364

program definition
modify 260
user syntax file 519

program interface 359
program name

for statement environment 535
program run

terminate 230

Q
quotes (suffix for data type) 23

U2284-J-Z125-9-76 641

Index

R
R type

macro type 379
range of functions

limit 84
SDF-A 37, 49

RDSTMT 606
effects 606
migration to CMDRST 416
valid operations 391

reading
statements 405, 491, 606
statements in C 511

reconstructing
objects in a syntax file 312

reference file
assign 38

rejected syntax file 46
REMOVE 301
removing

limitations 86
objects from the syntax file 301

representation
command definition 41
statement definition 41

restart
program context 364

restart point
define 358

RESTART-PROGRAM
for program contexts 364

RESTORE 312
restoring

objects of the syntax file 312
return codes 383

functions of the HLL interface 484
rules and recommendations

syntax 87
rules for defining

commands 87
statements 87

S
S type

macro type 380
saving a syntax file 46
SDF

principle of operation 27
SDF commands

for SDF-SIM 533
SDF macros 379
SDF options

for SDF-SIM 527, 541
SDF parameter file

for SDF-SIM 542
SDF statements

for SDF-SIM 538, 540
SDF user interface (notes) 5
SDF-A

functional scope 37
interrupt 129
resume 129
start 128

SDF-A version
define 220

SDF-SIM 527
define test environment 541
define test object 547
different versions 529
examples 551
execution 531
start 530
start simulation 548
statements 540
terminate 531, 565

sep (suffix for data type) 22
SET-GLOBALS 314
setting

command return codes 402, 500
command return codes in C 510

SHOW 342
SHOW-CORRECTION-INFORMATION 356
SHOW-STATUS 357
simulation environment

for SDF-SIM 527
simulation preparation 531, 532

642 U2284-J-Z125-9-76

Index

standard header
format 382
macro 382

standard statements 127, 130
for SDF-SIM 538, 540

standardized transfer area
additional information 371, 595
description of operands 371, 595
for SDF-SIM 535, 567
format 365
header field 366
illustration 366
purpose 365
type description 372, 596

STANDARD-NAME
external command name 136

starting
SDF-A 128
SDF-SIM 530
simulation 548

START-SDF-A 128
START-SDF-SIM 530
START-SIMULATION 548
statement

analyze 405, 435, 491, 606, 614
close definition 192
define 160
disable 45
implement 104, 519
modify definition 262
read 405, 491, 606
rules for defining 87
SDF-SIM 540

statement definition
close 192
close a structure 193
modify 49, 262
representation 41

statement environment
for SDF-SIM 535, 567

statement in C
analyze 511
read 511

status information
generate transfer area for 401

STEP 358
STR8

predefined type in C 504
structure 625

value to introduce 123
structure description

for SDF-SIM 567
header field 376, 596
storage of values 378, 599

structured-name (data type) 15
subsystem syntax files 28
suffixes for data types 8, 17
syntax

rules and recommendations 87
syntax attributes, global 373
syntax description 7
syntax file contents

display 342
syntax file format

define 220
syntax file hierarchy

for SDF-SIM 532, 541
syntax file name

display 357
syntax file processing

interrupts 46
syntax files

contents 25
copy contents 207
display contents 342
file hierarchy 33
naming conventions 36
of type GROUP 29
open 297
process 37
save 46
type SYSTEM 27
types of 27
with old format 47

syntax test
environment for SDF-SIM 527
with SDF-SIM 527

U2284-J-Z125-9-76 643

Index

system context 361
system syntax file 27

automatic activation 36
change 36
open 38
process 38

SYSTEM-CONTROL file 38, 39
SYSTEM-DESCRIPTIONS file 40

T
task switch 47
temp-file (suffix for data type) 22
terminating

program run 230
SDF-SIM 531, 565

test environment
define for SDF-SIM 541

test object
define for SDF-SIM 547

testing a program 120
text (data type) 15
time (data type) 15
transfer area

CMDSTA 427
standardized 365

transferring result
of analysis program 491
of analysis program (C) 511

TRCMD 470
effects 470

TRSTMT 614
effects 614
migration to CMDTST 446
valid operations 391

type description
standardized transfer area 372, 596

types
of macro 379
of syntax files 27

types in C
predefined 504

U
under (suffix for data type) 18

unlocking
objects in a syntax file 312

user (suffix for data type) 23
user guidance

modify 325
user interface 1
user syntax file 30

automatic activation 36
default name 36
open 40
process 41
program definition 519

USER-CONTROL file 40

V
vers (suffix for data type) 23
versions of SDF-SIM 529
vsn (data type) 15

W
wild(n) (suffix for data type) 18
wild-constr (suffix for data type) 20
with (suffix for data type) 17
with-constr (suffix for data type) 20
with-low (suffix for data type) 17
without (suffix for data type) 22
without-cat (suffix for data type) 22
without-corr (suffix for data type) 22
without-gen (suffix for data type) 22
without-man (suffix for data type) 22
without-odd (suffix for data type) 22
without-sep (suffix for data type) 22
without-user (suffix for data type) 23
without-vers (suffix for data type) 23
with-under (suffix for data type) 18
with-wild(n) (suffix for data type) 18
work context 361
writing a program 104

X
XHCS support 6
x-string (data type) 16
x-text (data type) 16

644 U2284-J-Z125-9-76

Index

U2284-J-Z125-9-76 645

Contents
1 Preface . 1
1.1 Target group . 2
1.2 Summary of contents . 3
1.3 Changes since the last version of the manual . 4
1.4 Notes on the user interface . 5
1.5 Metasyntax . 7
1.5.1 Notational conventions . 7
1.5.2 SDF syntax description . 7

2 Syntax files and their processing with SDF-A . 25
2.1 File types . 27
2.1.1 System syntax files . 27

Basic system syntax file . 27
Subsystem syntax files . 28

2.1.2 Group syntax file . 29
2.1.3 User syntax files . 30
2.2 Concept of privileges . 31
2.2.1 Privileges in syntax files . 31
2.2.2 Assigning privileges; notes and conventions . 32
2.3 File hierarchy . 33
2.4 Naming conventions . 36
2.5 Processing syntax files . 37
2.5.1 Functional scope of SDF-A . 37
2.5.2 Opening a syntax file . 38
2.5.3 Processing command and statement definitions . 41
2.6 Integrity of syntax files . 46
2.7 Syntax files with the old format . 47

646 U2284-J-Z125-9-76

Contents

3 Modifying command and statement definitions . 49
3.1 Examples . 50
3.1.1 Example 1: Disabling commands . 50
3.1.2 Example 2: Changing a default value . 53
3.1.3 Example 3: Enforcing file protection using four-character passwords 56
3.1.4 Example 4: Permitting only one program (EDT) . 64
3.1.5 Example 5: Restricting the set of usable programs . 74
3.1.6 Example 6: Clearing a lock on a command . 82
3.2 Limiting the range of functions . 84
3.3 Removing limitations . 86

4 Definition and implementation of commands and statements by the user 87
4.1 Syntax rules and recommendations . 87
4.2 Examples for defining and implementing commands . 91
4.2.1 Example 1: Assembly command . 91
4.2.2 Example 2: Command to output the contents of a file . 95
4.2.3 Notes . 102
4.3 Definition and implementation of statements . 104
4.3.1 Example: Program for copying files . 104
4.3.2 Notes on the definition of statements . 123
4.3.3 Notes on the use of macros . 125

5 SDF-A statements . 127
5.1 Starting SDF-A . 128
5.2 Functional overview . 130
5.3 Description of the statements . 133

ADD-CMD Define command .133
ADD-DOMAIN Define domain . 146
ADD-OPERAND Define operand . 148
ADD-PROGRAM Define program . 158
ADD-STMT Define statement . 160
ADD-VALUE Define operand value . 164
CLOSE-CMD-OR-STMT Conclude definition of command or statement 192
CLOSE-STRUCTURE Close structure . 193
COMPARE-SYNTAX-FILE Compare objects from two syntax files 194
COPY Copy contents of syntax file .207
DEFINE-ENVIRONMENT Define format and version of syntax file 220
EDIT Position to object in syntax file 221
END Terminate program run . 230
MODIFY-CMD Modify command definition 231
MODIFY-CMD-ATTRIBUTES Modify command attributes . 245
MODIFY-DOMAIN Modify domain definition . 247
MODIFY-OPERAND Modify operand definition . 249
MODIFY-PROGRAM Modify program definition . 260

U2284-J-Z125-9-76 647

Contents

MODIFY-STMT Modify statement definition 262
MODIFY-STMT-ATTRIBUTES Modify statement attributes . 267
MODIFY-VALUE Modify operand value definition 268
OPEN-SYNTAX-FILE Open syntax file . 297
REMOVE Delete objects from syntax file 301
RESTORE Restore objects of syntax file 312
SET-GLOBALS Modify global information . 314
SHOW Display objects of syntax file 342
SHOW-CORRECTION-INFORMATION

Show correction information of syntax file 356
SHOW-STATUS Display status of opened syntax file 357
STEP Define restart point . 358

6 SDF program interface . 359
6.1 Macro calls for implementing statements . 360
6.2 Macro calls in simultaneously open syntax file hierarchies . 361
6.3 Format of the standardized transfer area . 365
6.4 SDF macros . 379
6.4.1 Macro types . 379
6.4.2 Standard header . 382
6.4.3 Metasyntax for macro call formats . 384
6.4.4 Functional overview . 388
6.4.5 Macro descriptions . 389

CLSCALL Close program context . 389
CMDALLW Generate list of valid operations 391
CMDANALY Generate EQUATE statements for return codes . . . 393
CMDCST Initiate semantic error dialog 394
CMDMEM Generate transfer area for status information 401
CMDRC Set command return codes . 402
CMDRETC Generate DSECT for command return codes 404
CMDRST Read and analyze statement 405
CMDSEL Create selection mask for guided dialog 420
CMDSTA List information on activated syntax files 425
CMDTA Generate transfer area for analyzed statement 430
CMDTST Analyze statement . 435
CMDVAL Check value for data type . 448
CMDWCC Check wildcard syntax and perform pattern matching 458
CMDWCO Wildcard constructor . 463
OPNCALL Create program context . 467
TRCMD Analyze command . 470

648 U2284-J-Z125-9-76

Contents

6.5 Interface between SDF and high-level languages . 481
6.5.1 Interface conventions . 482
6.5.2 COBOL and FORTRAN interface . 483
6.5.2.1 Description of the function calls . 483
6.5.2.2 Overview of SDF function calls . 484

CCMD Execute system command . 485
CORR Set correction bit . 486
INIT Initialize buffer . 487
LEVL Position on operand array . 488
OPER Read operand value from transfer area . 490
READ Read and analyze statement . 491
SEMA Initiate semantic error dialog . 494
STAT Output information about syntax files . 495
STMT Read statement name from transfer area 496
STRU Analyze data type and length of value introducing structure 497
TRNS Analyze statement . 498
TYPE Analyze data type and length of operand 499
WRRC Set command return codes . 500

6.5.2.3 Examples . 500
6.5.3 C interface . 503
6.5.3.1 Description of the C functions . 503
6.5.3.2 Overview of C functions . 504

sdfcbit Set correction bit . 505
sdfcmd Execute system command . 506
sdfcor Initiate semantic error dialog . 507
sdfinit Initialize buffer . 508
sdflev Position on operand array . 509
sdfrc Set command return code . 510
sdfrd Read and analyze statement . 511
sdfsta Output information about syntax files . 513
sdfstmt Read statement name from transfer area 514
sdfstv Analyze data type and length of value introducing structure 515
sdftr Analyze statement . 516
sdftyp Analyze data type and length of operands 517
sdfval Read operand value from transfer area . 518

6.5.3.3 Example of the use of the C functions . 519

U2284-J-Z125-9-76 649

Contents

7 SDF-SIM . 527
7.1 Working with SDF-SIM . 529
7.1.1 Command environment . 532

Special SDF commands . 533
Information output by SDF-SIM . 534

7.1.2 Statement environment . 535
Information output by SDF-SIM . 535
Special SDF statements . 538

7.1.3 SDF-SIM execution within a procedure or a batch task . 539
7.2 SDF-SIM statements . 540

DEFINE-ENVIRONMENT Define test environment . 541
DEFINE-TEST-OBJECT Define test object . 547
START-SIMULATION Start simulation . 548

7.3 Examples of the application of SDF-SIM . 549
7.3.1 Providing SDF standard statements in the simulation . 549
7.3.2 Using MODIFY-SDF-OPTIONS . 551

Test with interactive corrections in simulated procedure mode 552
Logging during simulation . 553

7.3.3 Testing in temporary guided dialog . 554
7.3.4 Testing with the maximum guidance level . 556
7.3.5 Replacing job variables . 560
7.3.6 Simulation of procedure or batch mode . 561
7.3.7 SDF-SIM execution within a procedure or a batch task . 563
7.3.8 Command implemented by a procedure . 566
7.3.9 Displaying the standardized transfer area . 567

8 Messages . 575
8.1 SDF-A messages . 575
8.2 SDF-SIM messages . 591

9 Appendix . 593
9.1 Changes to the SDF program interface . 593
9.1.1 Format of the standardized transfer area up to SDF V4.0 . 593
9.1.2 CMDSTRUC Generate transfer area for analyzed statement 600
9.1.3 CORSTMT Initiate semantic error dialog . 601
9.1.4 RDSTMT Read and analyze statement . 606
9.1.5 TRSTMT Analyze statement . 614
9.2 Mutually exclusive data types . 623

Glossary . 625

Related publications . 627

Index . 635

650 U2284-J-Z125-9-76

Contents

U2284-J-Z125-9-76

SDF-A V4.1E (BS2000/OSD)

User Guide

Target group
This manual is intended for experienced BS2000 users and system administration staff.

Contents
It describes how to process syntax files and explains the SDF-A functions on the basis of
examples. The SDF-A statements are listed in alphabetical order.
The manual also includes a description of the SDF-SIM utility routine.

Edition: March 2002

File: sdf_a.pdf

Copyright © Fujitsu Siemens Computers GmbH, 2002.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

This manual was produced by
cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

http://www.cognitas.de

Comments on SDF-A V4.1E

U2284-J-Z125-9-76

Fujitsu Siemens computers GmbH
User Documentation
81730 Munich
Germany

Fax: (++49) 700 / 372 00000

e-mail: manuals@fujitsu-siemens.com
http://manuals.fujitsu-siemens.com

Comments
Suggestions
Corrections

✁

Submitted by

mailto:manuals@fujitsu-siemens.com
http://manuals.fujitsu-siemens.com

Information on this document
On April 1, 2009, Fujitsu became the sole owner of Fujitsu Siemens Compu-
ters. This new subsidiary of Fujitsu has been renamed Fujitsu Technology So-
lutions.

This document from the document archive refers to a product version which
was released a considerable time ago or which is no longer marketed.

Please note that all company references and copyrights in this document have
been legally transferred to Fujitsu Technology Solutions.

Contact and support addresses will now be offered by Fujitsu Technology So-
lutions and have the format …@ts.fujitsu.com.

The Internet pages of Fujitsu Technology Solutions are available at
http://ts.fujitsu.com/...
and the user documentation at http://manuals.ts.fujitsu.com.

Copyright Fujitsu Technology Solutions, 2009

Hinweise zum vorliegenden Dokument
Zum 1. April 2009 ist Fujitsu Siemens Computers in den alleinigen Besitz von
Fujitsu übergegangen. Diese neue Tochtergesellschaft von Fujitsu trägt seit-
dem den Namen Fujitsu Technology Solutions.

Das vorliegende Dokument aus dem Dokumentenarchiv bezieht sich auf eine
bereits vor längerer Zeit freigegebene oder nicht mehr im Vertrieb befindliche
Produktversion.

Bitte beachten Sie, dass alle Firmenbezüge und Copyrights im vorliegenden
Dokument rechtlich auf Fujitsu Technology Solutions übergegangen sind.

Kontakt- und Supportadressen werden nun von Fujitsu Technology Solutions
angeboten und haben die Form …@ts.fujitsu.com.

Die Internetseiten von Fujitsu Technology Solutions finden Sie unter
http://de.ts.fujitsu.com/..., und unter http://manuals.ts.fujitsu.com finden Sie die
Benutzerdokumentation.

Copyright Fujitsu Technology Solutions, 2009

	Title
	Contents
	Preface
	Target group
	Summary of contents
	Changes since the last version of the manual
	Notes on the user interface
	Metasyntax
	Notational conventions
	SDF syntax description

	Syntax files and their processing with SDF-A
	File types
	System syntax files
	Basic system syntax file
	Subsystem syntax files
	Group syntax file
	User syntax files

	Concept of privileges
	Privileges in syntax files
	Assigning privileges; notes and conventions

	File hierarchy
	Naming conventions
	Processing syntax files
	Functional scope of SDF-A
	Opening a syntax file
	Processing command and statement definitions

	Integrity of syntax files
	Syntax files with the old format

	Modifying command and statement definitions
	Examples
	Example 1: Disabling commands
	Example 2: Changing a default value
	Example 3: Enforcing file protection using four-character passwords
	Example 4: Permitting only one program (EDT)
	Example 5: Restricting the set of usable programs
	Example 6: Clearing a lock on a command

	Limiting the range of functions
	Removing limitations

	Definition and implementation of commands and statements by the user
	Syntax rules and recommendations
	Examples for defining and implementing commands
	Example 1: Assembly command
	Example 2: Command to output the contents of a file
	Notes

	Definition and implementation of statements
	Example: Program for copying files
	Notes on the definition of statements
	Notes on the use of macros

	SDF-A statements
	Starting SDF-A
	Functional overview
	Description of the statements
	ADD-CMD Define command
	ADD-DOMAIN Define domain
	ADD-OPERAND Define operand
	ADD-PROGRAM Define program
	ADD-STMT Define statement
	ADD-VALUE Define operand value
	CLOSE-CMD-OR-STMT Conclude definition of command or statement
	CLOSE-STRUCTURE Close structure
	COMPARE-SYNTAX-FILE Compare objects from two syntax files
	COPY Copy contents of syntax file
	DEFINE-ENVIRONMENT Define format and version of syntax file
	EDIT Position to object in syntax file
	END Terminate program run
	MODIFY-CMD Modify command definition
	MODIFY-CMD-ATTRIBUTES Modify command attributes
	MODIFY-DOMAIN Modify domain definition
	MODIFY-OPERAND Modify operand definition
	MODIFY-PROGRAM Modify program definition
	MODIFY-STMT Modify statement definition
	MODIFY-STMT-ATTRIBUTES Modify statement attributes
	MODIFY-VALUE Modify operand value definition
	OPEN-SYNTAX-FILE Open syntax file
	REMOVE Delete objects from syntax file
	RESTORE Restore objects of syntax file
	SET-GLOBALS Modify global information
	SHOW Display objects of syntax file
	SHOW-CORRECTION-INFORMATION Show correction information of syntax file
	SHOW-STATUS Display status of opened syntax file
	STEP Define restart point

	SDF program interface
	Macro calls for implementing statements
	Macro calls in simultaneously open syntax file hierarchies
	Format of the standardized transfer area
	SDF macros
	Macro types
	Standard header
	Metasyntax for macro call formats
	Functional overview
	Macro descriptions
	CLSCALL Close program context
	CMDALLW Generate list of valid operations
	CMDANALY Generate EQUATE statements for return codes
	CMDCST Initiate semantic error dialog
	CMDMEM Generate transfer area for status information
	CMDRC Set command return codes
	CMDRETC Generate DSECT for command return codes
	CMDRST Read and analyze statement
	CMDSEL Create selection mask for guided dialog
	CMDSTA List information on activated syntax files
	CMDTA Generate transfer area for analyzed statement
	CMDTST Analyze statement
	CMDVAL Check value for data type
	CMDWCC Check wildcard syntax and perform pattern matching
	CMDWCO Wildcard constructor
	OPNCALL Create program context
	TRCMD Analyze command

	Interface between SDF and high-level languages
	Interface conventions
	COBOL and FORTRAN interface
	Description of the function calls
	Overview of SDF function calls

	CCMD Execute system command
	CORR Set correction bit
	INIT Initialize buffer
	LEVL Position on operand array
	OPER Read operand value from transfer area
	READ Read and analyze statement
	SEMA Initiate semantic error dialog
	STAT Output information about syntax files
	STMT Read statement name from transfer area
	STRU Analyze data type and length of value introducing structure
	TRNS Analyze statement
	TYPE Analyze data type and length of operand
	WRRC Set command return codes
	Examples

	C interface
	Description of the C functions
	Overview of C functions

	sdfcbit Set correction bit
	sdfcmd Execute system command
	sdfcor Initiate semantic error dialog
	sdfinit Initialize buffer
	sdflev Position on operand array
	sdfrc Set command return code
	sdfrd Read and analyze statement
	sdfsta Output information about syntax files
	sdfstmt Read statement name from transfer area
	sdfstv Analyze data type and length of value introducing structure
	sdftr Analyze statement
	sdftyp Analyze data type and length of operands
	sdfval Read operand value from transfer area
	Example of the use of the C functions

	SDF-SIM
	Working with SDF-SIM
	Command environment
	Special SDF commands
	Information output by SDF-SIM
	Statement environment
	Information output by SDF-SIM
	Special SDF statements
	SDF-SIM execution within a procedure or a batch task

	SDF-SIM statements
	DEFINE-ENVIRONMENT Define test environment
	DEFINE-TEST-OBJECT Define test object
	START-SIMULATION Start simulation

	Examples of the application of SDF-SIM
	Providing SDF standard statements in the simulation
	Using MODIFY-SDF-OPTIONS
	Test with interactive corrections in simulated procedure mode
	Logging during simulation
	Testing in temporary guided dialog
	Testing with the maximum guidance level
	Replacing job variables
	Simulation of procedure or batch mode
	SDF-SIM execution within a procedure or a batch task
	Command implemented by a procedure
	Displaying the standardized transfer area

	Messages
	SDF-A messages
	SDF-SIM messages

	Appendix
	Changes to the SDF program interface
	Format of the standardized transfer area up to SDF V4.0
	CMDSTRUC Generate transfer area for analyzed statement
	CORSTMT Initiate semantic error dialog
	RDSTMT Read and analyze statement
	TRSTMT Analyze statement

	Mutually exclusive data types

	Glossary
	Related publications
	Comments, Suggestions, Corrections
	Index
	A-C
	D
	E
	F-L
	M-O
	P-Q
	R-S
	T-X

